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ABSTRACT

Detecting and diagnosing brain tumour types quickly and accurately is essential to
any effective treatment. The general brain tumour diagnosis procedure, biopsy, not
only causes a great deal of pain to the patient but also raises operational difficulty to
the clinician. In this thesis, a non-invasive brain tumour diagnosis system based on
MR images is proposed. The first part is image preprocessing applied to original MR
images from the hospital. Non-uniformed intensity scales of MR images are
standardized relying on their statistic characteristics without requiring prior or post
templates. It is followed by a non-brain region removal process using morphologic
operations and a contrast enhancement between white matter and grey matter by
means of histogram equalization. The second part is image segmentation applied to

preprocessed MR images. A new image segmentation algorithm named IFCM is

developed based on the traditional FCM algorithm. Neighbourhood attractions

considered in IFCM enable this new algorithm insensitive to noise, while a neural

network model is designed to determine optimized degrees of attractions. This

extension can also estimate inhomogenities. Brain tissue intensities are acquired from

segmentation. The final part of the system is brain tumour classification. It extracts
hidden diagnosis information from brain tissue intensities using a fuzzy logic based

GP algorithm. This novel method imports a fuzzy membership to implement a

multi-class classification directly without converting it into several binary

classification problems as with most other methods. Two fitness functions are defined

to describe the features of medical data precisely.

The superiority of image analysis methods in each part was demonstrated on
synthetic images and real MR images. Classification rules of three types and two
grades of brain tumours were discovered. The final diagnosis accuracy was very

promising. The feasibility and capability of the non-invasive diagnosis system were

testified comprehensively.



Contents

Chapter 1

INTRODUCGTION.cciitsisetssncssanssoncesssssssesessnsssessssssessassassessonssassossssssnssssssssosssansssnsassnesssssssnsass . 1
1.1 BACKGROUND......ovvtrerrrssrsmesssasssssssssssassessesssosssmssssssssessssesesssssssssessssssssssssssssassessssmesssess 1
L2 AIMS.oiticreseasssssssssesnssssnsssssnsssssssssssasssssssnssersssssssssssesssssssssssssssssssssssssasssesesssssssessens 4
1.3 THESIS ORGANIZATION.......oveerureencreencessseessssseemmassesssssessssssssassssssssssssssssssssssssssssssseesess 8

MAGNETIC RESONANCE IMAGING ...covuvevesnssnssresssenserssssessssssssssssossossossosssassssssssassssssasssssesssens 10
2.1 INTRODUCTION........covveerrierarssessssssssassssssssssssssessssssssssssessssssassassssssesssossassssssssssessasessasess 10
2.1.1 HISIOTY Qf MRU ...........eccovrveerrevirisirsrssssrsensssssessssasssssssssssssssssssssssssossasssassosssnssassosssesn 10
2.1.2 BasSic Principles Of MR ..............cveeeveeereinsereseresnensssnssssssssssssssssssssssessssssssasssssnsnsssasans 13
2.2 MRIPARAMETERS .......coerrrrtrrerrnsresisesnsssessssssassssssssssssssassssssssssssssssesesssssosssssssssssasassssns 17
2.3 MR SIGNALS .....cuoicirtrncrerecncnersssensansesesssasssssssssssssssssssstosssssssasssnsssssenessssesssssssssssorsssasssasanss 19
2.4 MRIARTIFACTS .....cttivinereeinsnraensrersssanresasenssasensossonsssssssssssssssssssosssssssssesaassesssssssssassssessesass 22
Chapter 3
BRAIN TUMOUR DIAGNOSIS cuuccvccrniresncssncsesscsssasssnsssssssssssnsasssasessassssassosesassassonssssasnssanass seessssssans 26
3.1  INTRODUCTION......ccecorrermmrurrersesereneresenensassssssssssssssnsasssssssasossssserssssassssasassossssssenssssessessones 26
3.2 BRAIN TUMOUR TYPES .....conurecrirnernrnnnressenssessnssnssnsensssersssssssesssssesssssesssssssessassesssesssssases 29
3.3 TRADITIONAL DIAGNOSIS METHODS.......cccceceninurenssnnnernesssnecesesssssasssrsssssssesesenssssssons 31
3.4  DIAGNOSIS PROBLEMS .......cooininininniniisiosconssensnsssnseesssssessessessssesssssessessessssessessossssaneas 35

VI



Chapter 4

DATA MINING AND KNOWLEDGE DISCOVERY ..ccccteitisccscscensrsnsessscsssssosssessssasssasssessnsasassssasces 36
4.1 INTRODUCTION..cuuutiiiieiitieeinniererceirseessssssssenesesesssesesesssssssssssasssssssssssesssesssssssasasessrasssssssssses 36
4.2 SIMPLE ILLUSTRATIONS FOR DISCOVERED PATTERNS.......ccecvceiininncnienrnnennsenssnnn, .39

4.2.1 FUARANCE «.uuereveeririricrniiriressiinininiieicsissneseisssssssssessrsssssssasesssesssssasssesssssssasesessssasssssssssnes 39

42.2 MOGUCINIC. ...ttt sssre s resssss s sasssssssasssssnssssssanssssanssssasssanstssnnres 41

4.3 DATA MINING ALGORITHMS ..octrrereriiiirieecricccniinnserenssesesesseessesssesessesssssssssssssarsasssssssssass 42

4.3.1 BY FURCHION. c.cueanaeeaaaevivviveenieeiiieeireieisirssssisnnsisreesesieissosssserssssssessssssssssssasssssssssssssssnesees 43

4.3.2 BY MEIRO. ........coeeeienvreieneieeiieriissineiesinesesssesssssessssssssssssssssesssssessssssssesassssssssssssensssssases 43

4.4 GENETIC PROGRAMMING.....ccovrrirereinnneieisisssstenesssssssesessssssssaseressssnanssesssasssssssssnanssssases 46

4.4.1 INEPOQUCHION. «...vvvneeecreeerctrecreeiceeeensssrasissesseesseeesaressssssssessassssseesssessssessasssnssssssassassanons 46

4.4.2 GENELIC OPEOFAIOTS.ccuvuececresererereererrrirerereisssssssrsseresssssssesssssssssssssaresssssssssssessssssssasesersanes 47

4.4.2.1 ROPDIOAUCHION.cc.ceevvvirrvirrreeeceeresreeesisesssersssnssssnsesasssssussssusssssossssnssnssssanssrssessasssssensansessasssnsesranses 49

4422 CFOSSOVEF 1qeesriersvessrnsnnrcsrssasesssssnessaeessessssssaossassassastssersnssssoessossassnssonsssstossessassnessnesstssanensasanssanss 49

B.4.2.3  MULGUON. c...cveoueeerrecrrrreceeissresrrecrenesensisnssssosssasssosesssntessesssessbsesstsssrossssssaessssssesssesssessnessnsssnssressss 50

4.4.3 Individual Structure and Initial POPUIGLION .............ueeevevvereereererreseeisessesnecsessesssssensens 51
4.4.4 Process of Genetic ProGramming ...........ccocveeversssversssessessssssssessssserssssssssnssssssssssssnss 33

4.5 FUZZY LOGIC....cueoreenietsiisiestsssienessssssseesasessssssssosessessassonssssessessastassssssssssssssssssessassensesess 54

4.5.1 TPEPOQUCTION. .....vonecvecverirenrrenseisiessessesseesseessssssesesesssssesssssasssssssesssessasassessssaserssssnsses 34
45.2 MEMBEISRID FURCHION ......oveuevveerveeirevnrirsosissssrsossssssssrossassresssssesssssssssssssssssssssasssssesssessens 35

4.5.3 ADDIICQIIONS ...uvvvevevevsnseresesssessessssesssessnsesssssetssssssssssssssnssesessssasessssssssssssanasssssansssssnaessns 56

Chapter 5

MR IMAGE PREPROCESSING cucvecceeeerenenneeessessesssssrosssasasssssssssssesescssescssessssassssasassassssesssssssssssssssosss 59
5.1 IMAGE SOURCE AND IMAGE TYPES ......ccccciiimnnnmmeeesssnsesneinteeinentcsinimessmoscssosssssossssenes 59
5.2 INTRODUGCTION...cuucrcrrerenernerereerersrsrscsesessssorssassansssssasssssseserssnssssssnssassessssssassssesssesansasssesss 60
5.3 IMAGE STANDARDIZATION ...outivvnmereeeinietseieninesossssssssssessosssssssssassssensessssssssssnsssssssssessoss 61
54 REMOVAL OF NON-BRAIN REGIONS....ccccccttnrennnensiscssscrsascnssesuntmerecssnsessssesesssssssssssssossss 71
5.4.1 MorphologicAl PrOCESSING.....uvveeeevveereriressisirsisissinenisssssutesmenienneesssssssssesssssssesessassesns 71
J.4.1.1 EoPOSION . euvevreereereeressrserersessoressesorassssesssevsnasanserssssssssssesasnassstssssnenssessosessassersssssassssssnsnansaasressssssts 71
S5.4.1.2  DUlQUION..aeeueeeeeeerrererisresssssreseserensssssssessessnrstrenirsssissrssssesssssesasesssssossasessssssesssssssssansesaserstsnass 72
5.4.2 Removal of Non-brain Regions Using Morphological Processing ...........cccveirverenneen 73
5.4.3 Removal Using A Supplementary MetROd..........uvuevuevrvenveiirnririnresrienssrsessnnssssssassens 76
3.5 TISSUE CONTRAST ENHANCEMENT ....cootiitiiiiiiiiiniinennssesesesissescessssesssssesssossnsessensssasss 79
3.5.1 Histogram EQUALIZALION..........coccrvviveveniisniniiinsinssiiniensnmiecessseeenssisessssssssnsssnsssssssens 79
3.5.2 Tissue Contrast Enhancement in MR IMAQES.......cuuueeeevvereeeeneeneressesessssesssessssssorsssssssses 81
5.6 RESULT S .. iiiiiciseiisrererseississsveensersesesssrsnsssesssssssssssosssossonnssssessssssnsnssssssssosssssansssasssssessassassanns 84
5.7 CONC CLUSIONS ... cceieeiseereceesersesrerersunsesnsnesensstosssssassessssssnessessesssssssssessesssssssonssossassssssssssannssss 89

VII



Chapter 6

MR IMAGE SEGMENTATION..ccccccsccssscroreressacasesesscsssacscssrsssssssssssssesssessssssssasssnsesssssssassssasssssssssenses 90
6.1 INTRODUCGTION....eeererreerccssnereccssensecsoraseserssssesesssssscssssssssssssssssssnsasssssasasessnsassssssssessases 90
6.1.1 TRPESPOIAING c.vneneveeeevereereririnereeerecsrenieeseesssssneesesssssrasesssssssstesesesesssasssssosssnasaasessrsaneness 91
6.1.2 REGION GPOWING c..coeeveverererrarerieineesssscsinserrsesssssrsssenssresessssnsnssesessssssrsessorssessssrsssassessssnns 92
6.1.3 Edge-based SeQMENIALION. ..............ueeeverereivrirressrsesssssssssesssssesenssssssssnssssssssssessssssssessans 93
6.1.4 CLUSERIING v vveveeerereirireerererersssssssssssssssssessssersasssesssmsssesesssesersserssessseessssasstesasasarssnessraesese 94
6.2 FUZZY C-MEANS CLUSTERING ALGORITHM ....cccccerererrrsvsverseessesseoscssesssssasassssssasssses 95
6.3 RELATED EXTENSIONS TO FUZZY C-MEANS CLUSTERING ALGORITHMS........ 98
6.4 IMPROVED FUZZY C-MEANS CLUSTERING (IFCM) ALGORITHM.....ccccevieirccrarens 101
6.5 PARAMETER ESTIMATION ...ccvcrrrerereinicrenreseecscssssansercersssssnsnssesessssesssasssssssssssasssassssnsans 105
6.6 RESULT EVALUATION ......ccccccccrcrnrmererncercsesssssanssassesssssonssenssossesssssssssassssssssssssssssaasssssasens 108
6.6.1 SQUAPE IMAGE .......eeeeeeeeeeeieeeirerirviireineisreesireisessssssessssssssssssssssssssessssssnsansnssersasensasasssss 110
6.6.2 FOCIAI IMAQE areereeeeeneeeeeeirerrrrenesererersssssssesessnsssessssssrsssssnssesssssssssssssnsessssssasssssnesssssnns 119
6.6.3 SIMUIQIEA MR IMQZE........uuueeeereereoirrrereririirssireeserssssessiresesessssrsssassessssrssssssssssossnsssssons 124
6.7  MRIMAGE SEGMENTATION.....cccecemrrrrrreresvesecsrsscraessessesssansnessssesssssasssssssnsssssssssssssssans 136
6.8 RF INHOMOGENEITY ESTIMATION ...ccccccnnuiernnerorsrnsecssssscssnsessssnsossssssressrsssssssssssasssanes 146
6.8.1 BIAS FIELD MODEL.......ocooooveeivvrneneieeevensresirescssssssansossssssssssasesssesesssnssssssssessssnssneses 146
6.8.2 BIAS FIELD ESTIMATION ......cuuuueeeeeerereeeieericicorsssssorsssssssnssssnsestssesssressassassssssssssanases 147
6.8.3 EXAMPLES . ...ovvaeeeeueeeeeevveeeereerensreereecsscsssesssssassrasessansansesssssssssnssssssssasesssssssssssssrsrassasans 148
6.9 CONCLUSIONS .....ccctececserssererseccsosssasoessersasssssassosessssssrsasassssssssensesssssessersrssasssssssssrssanessress 152
Chapter 7

BRAIN TUMOUR DIAGNOSIS USING FUZZY LOGIC BASED GENETIC

PROGRAMMING ccccovrcossceccsssocssssosssusesssscscssesessssssssssessoncsessasnes resosemesssstsssstsasctsessnneesessnesssenesessnnessesns 154
7.1 INTRODUGTION . .ccuceeecoersessrsssssssssssssssasssssassssesssesesssssasssssssssssarsssassesssssssssssessesssssnnssssassess 154
7.2 DATA MINING METHODS IN MULTI-CLASS CLASSIFICATION....ccccevverunerererercrens 155
7.3 FUZZY LOGIC BASED GP ..ocovevveierreccsescrssseesssasossassssoserssssesesssssssssasesssssserssssssssssssnssssosees 157
7.4 METHODOLGY EVALUATION ..ccevetcersrcecssserssssssscssssosssssecssrsessesessssesssssssosonsonssesssesssssesss 164

7.4.1 FUSREE S ITIS DQIASEL.o.coveeseeerenessvesenssssssssssssasssssssssessssssessssssnsssssssnssssnsssnsossnesssssssassrsnse 164
7.4.2 Wisconsin Breast COrncer DQIASEL ......cccvveessrsessessssssssssessssassssessesssssssssssssssssssasssssanssss 167
7.5 BRAIN TUMOUR DIAGNOSIS ..o oevvrecerseesarsoscossoscsssrsccssesesasssesssssssssassssssossssssanassesssassesses 170
7.6 CON CLUSIONS .. cvvecteescesseosssssssesssssesosssssssessssanessransessssesassesssssssnssssrsssssnssssnesonasssssssassanessss 174

VIII



Chapter 8

CONCLUSIONS AND FUTURE WORK . .ccc0csiaesescsssssscsssssascscsssrassssensscssssssssssasssasassnsssssesssassasosses 177
8.1 CONCLUSIONS ....cootiireirrtisnnisnossisssssssssassssssssosssssssassssessesssssasssssssassstorsssssssasssssstsssssassaess 177
8.2  FUTURE WORK ...coritriiinriininicincsnicscnsensnnsissisissisasionssssensssssnsssnssssssossssssssssssosssnes 183

REFERENCGES..ccicciccsstccsassesnseansossscssncsonsessessnsesssssssssssssnssosssssssssssssssssassssesessssnsssssenssssasesasssasassssasssssses 185

APPENDIX I: LIST OF FIGURES ....ccictsisssccsnsssentsscnnescssasssasssssessssssssssaensssssssassesssossressonsessasersessses 204

APPENDIX II: LIST OF TABLES.....ccceettsecscsnncsnssssascancsssnsssnsesesssoncssansssssscssssssassonsesassssenssssssssases 209

APPENDIX III: COMPUTING IMPLEMENTATION..cccccccsencssasssasssessasasassssssssasssarssasssssssessssssess 211

APPENDIX IV: PUBLICATIONS.....cccceiscssnsensesssoscsassonssenssassnsusorssasssasssssssassascnsossssssssnasssssasssaseasens 214

IX



Chapter 1 Introduction

Chapter 1

INTRODUCTION

1.1 BACKGROUND

Brain tumours are composed of cells that exhibit unrestrained growth in the brain. It
is a complex disease that affects more than 100,000 annually in the USA, and it is
still on the increase. Worldwide this number 1s much higher. Although the incidence
rate of brain tumours is lower than other cancers, it is still the most serious disease
threatening human lives. The survival rate of brain tumours is significantly lower
than that for most other types of cancers, as their cause is unknown. It is not clear
how to reduce the risk of having brain tumours [The Brain Tumour Society, 2002].
Brain tumours are generally divided into two categories, primary and

secondary. Primary tumours are tumours that begin in the brain. Secondary tumours
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start elsewhere in the body such as the lung, kidney, breast, or skin and spread, or

metastasize, to the brain. Gliomas are the most common type of primary brain
tumours which arise from the connective tissue of the brain. Types of gliomas
include astrocytomas, glioblastomas, oligodendrogliomas and ependymomas. These
tumours make up approximately 50% of all primary brain tumours. Meningiomas
comprise approximately 25% of brain tumours, with pituitary tumours making up
10% and acoustic neuromas comprising 7.5%. Other tumour types including
chondrosarcomas, germinomas, hemangiomas, teratomas, and chordomas, make up
the remaining 7.5% [The Wallace-Kettering Neuroscience Institute, 2003].

Detecting and diagnosing brain tumours quickly and accurately is essential to
the effective treatment. Clinical brain tumour diagnosis normally includes three steps:
neurological exam, brain image analysis and biopsy. When a brain tumour is
suspected from the patient’s medical history and symptoms, a neurological exam is

used to check, for example, the eye movement, eye reflex, pupil reaction, sensation,
hearing, balance and coordination of the patients. These can imply the signs of
diminished mental function. The next step involves a brain image scan of the patients.

It may detect the presence of a brain tumour and its exact size and location. The most

common imaging techniques for brain tumour diagnosis are:

Computed Tomography (CT) CT is an established technique which uses

X-rays or gamma rays to reconstruct cross-sectional image of the human body. It

uses the different attenuation coefficients of different tissues after absorbing the rays
to produce the anatomical structure of the body [Cho, 1975]. A CT scan often gives

the location of the tumour and can detect swelling, bleeding and other associated

conditions.

Magnetic Resonance Imaging (MRI) MRI does not involve ionizing radiation

but provides information on the number and position of hydrogen nuclei within the

body by detecting the Radio Frequency (RF) signals which are emitted following

excitation by magnetic fields. It can often distinguish more accurately between
healthy and abnormal tissue than CT [Liang, 2000]. MRI can generate images from
various angles which enable 3D brain images to be constructed. It can supply a better

view of tumours located near bone, smaller tumours, brainstem tumours, and
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low-grade tumours. However, the running cost of MRI scanner is high and a long
scanning time 1s required.

Positron Emission Tomography (PET) PET yields transverse tomographic
images of the distribution of positron-emitting radionuclides systemically
administered to the human body. It provides an image of brain activity rather than
structure by measuring levels of injected glucose (sugar) or methionine (amino acid)
that have been labeled with a radioactive tracer [Robb, 1985]. Recent studies have
shown that 1t may be easier to detect recurrent brain tumours with PET rather than
CT and MRI. Fig.1.1 shows CT, MRI and PET 1images of the brain.

The final step of brain tumour diagnosis is a biopsy. A biopsy i1s a surgical
procedure used to take a sample tissue from the suspected tumour to determine an
exact diagnosis such as malignance and tumour types [The Brain Tumour Society,
2002]. Generally, biopsies can be performed "open" or "closed". An open biopsy
usually implies that a small window of bone 1s temporarily removed from the skull to
allow the surgeon to remove a small portion of the suspected tumour under direct
visualization. A closed biopsy 1s usually performed through a tiny hole, often no
larger than one eighth of an inch. The tumour 1s not directly seen by the surgeon,
rather a CT scan or MRI 1s used to determine from where the biopsy should be

obtained. The suspected tumour sample can then be viewed under the microscope

and a diagnosis 1s made.

Figure 1.1 (Left) CT [Alvira 1997], (middle) MRI [Beardsley 2004| and (right)
PET [Medica.de 2004 images.
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A biopsy, however, can cause a great deal of pain to the patients and an open or
closed biopsy is also a dangerous procedure, particularly the open biopsy. This raises
the difficulty of diagnosis. Further more, not all brain tumours can be biopsied, for
example brain stem gliomas, as it is too hazardous, as removing any healthy tissue
from the brain stem can affect vital functions. So, a basic question arises “Is it

possible to diagnose brain tumour types without an invasive procedure?” There are

new developing techniques that may provide an answer to the question.

1.2 AIMS

The development of imaging techniques has greatly extended the range of human
vision into realms that would otherwise be inaccessible, such as the anatomical
structure inside the human body. In fact, much of what we know about ourselves and
the world around us has been derived from images produced by various imaging
devices. These imaging techniques may supply much more knowledge than we can
imagine.

To answer the question we stated above ‘how to diagnose brain tumour types
without an invasive procedure?’ again, the consideration needs to be given to
imaging techniques.

The main brain imaging techniques include CT, MRI, PET, functional MRI
(fMRI) and magneto-encephalography (MEG). CT and MRI provide images of the
brain structure. PET mainly focuses on the chemistry of brain activities and fMRI
records physiological changes like blood flow in the brain. MEG supplies images of

nerve activity. All these techniques need to be considered, but which one is the most

suitable to our problem?

Siromoney ef al. (2000) first discriminated two types of brain tumours,
meningioma and astrocytoma, using MR images analysis. Hence the possibility of
using MRI for brain tumour diagnosis has been established. Besides the successful
precedent, MRI has advantages over other imaging techniques. MRI scanner
produces multi-dimensional images representing the spatial distribution of some

measured physical quantity like other imaging techniques. However, unlike many of
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them, it can generate, two-dimensional sectional images in any orientation,
three-dimensional volumetric images or even four-dimensional images representing
spatial-spectral distributions [Liang and Lauterbur, 2000]. Secondly, MRI does not
use ionizing radiation like CT and requires no injection of radioactive isotopes like
PET. It is constdered very safe for biological systems as there are no known harmful
effects [Siromoney et al., 2000]. Finally, the most important advantage of MRI over
other techniques 1s its high spatial resolution and contrast resolution [Wells et al.,
1996]. MR images can supply excellent discrimination of soft tissues, such as white
matter and gray matter in the brain. Taking into account these factors, MRI 1s the
most appropriate and most promising technique for non-invasive diagnosing brain
tumours.

Signal intensities are important information in an MRI scan. Different tissues in
the brain MRI have different signal intensities and therefore have distinctive
displays. Siromoney ef al. (2000) utilized the measurements of MR signal intensities

of brain tumour and white matter to diagnose tumour types. A pre-prepared data set

of signal intensities for white matter, gray matter, cerebrospinal fluid (CSF) and brain

tumours measured manually were applied in diagnosis. Two types of brain tumours

were diagnosed merely just by using these intensities. Their results demonstrated the

ability of MRI to diagnose brain tumours. The aim of this thesis was to set up an
automatic system to diagnose the brain tumour types from MR images, instead of
taking a biopsy. This system would be much more comprehensive than the work of

Siromoney et al. It would use original MR images and make a decision on the

tumour types from them.
According to above statement, it is reasonable to assume that the brain tissue

intensities and brain tumour intensities, or their relations in MR images may indicate
the brain tumour type. To obtain the intensities of MR images, an image
segmentation procedure and a preprocessing procedure are required which enable the
original images to be segmented and meet other related requirements. The acquired
intensities can constitute the classification rules for each tumour type. The structure
of the automatic diagnosing system may therefore contain three major parts: image

preprocessing, image segmentation and brain tumour classification (Fig.1.2).

Segmenting brain tissues precisely is a key step which determines the direction
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of our further work. However, the original MR images usually have various signal
intensities. This makes the intensities in different images impossible to compare.
Therefore the preprocessing procedure before segmentation is crucial, as it must
standardize the signal intensities. This is the first major difficulty that needs to be
addressed in this work. In addition, the preprocessing procedure must remove the
non-brain regions from MR images due to the redundancy of the non-brain regions in
the brain analysis. Presenting an easily manipulated method for the accurate removal

of the non-brain regions should also be part of this system. Contrast enhancement is

another important consideration in preprocessing because it may reduce the difficulty

of the following segmentation.

Tissue segmentation is an imperative step before measuring tissue intensities.
Manual segmentation by an expert operator is too time-consuming. It involves not
only a large amount of work, but also a mass of data and its accuracy may be
degraded by different human operators. An automatic segmentation method is
therefore an important part of this work. A number of algorithms based on

approaches such as histogram analysis, region growing, edge detection and clustering

have been proposed in the literature [Pal and Pal, 1993; Robb, 2000]. However, they
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all have some shortcomings. Therefore, the most important task in this thesis is to

develop a robust algorithm for brain MR image segmentation, which should be
robust for most types of MR images. The average intensities of different tissues

should be easy to obtain in each image after segmentation.

The i1nitial purpose of this thesis was to discover the rules for predicting the
brain tumours using the tissue intensities acquired. A large number of data (tissue
intensities) can be collected from previous processing. In order to discover useful
rules from this data, data mining and knowledge discovery techniques would be
employed. Tumour diagnosis may be categorized as a classification problem which
aims to find classification rules for each brain tumour type and classify the tumour
correctly. Classification methods used by data mining and knowledge discovery
techniques include for example, decision tree induction, neural networks, Bayesian
classification, genetic algorithms, genetic programming, and rough sets. Selecting a

proper classification method can greatly improve the accuracy of tumour diagnosis
and save computing time. This is therefore another important aspect of the thesis.

Necessary improvements to match the features of the medical data must also be

considered.

In summary, the primary goal of this thesis is to present a new method to
diagnose brain tumours non-invasively. Three major parts will be needed for this.
The first part is image preprocessing, from which the signal intensities of the brain
tissues can be prepared for the following process of segmentation, by standardizing,
non-brain removal and tissue contrast enhancement. The second one is segmentation.
A powerful segmentation method needs to be developed to overcome the
shortcomings of other segmentation methods. The last part is a data mining and

knowledge discovery step. This is required to discover the classification rules for

each brain tumour type using an appropriate classification method. It is expected that

good accuracy of tumour diagnosis would be achieved.
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1.3 THESIS ORGANIZATION

The first four chapters of this thesis cover the fundamental description of all fields

involved in this thesis. The next three chapters review present work and propose

novel procedures to diagnose brain tumours non-invasively. The last chapter presents

conclusions.
Chapter 2 reviews the basic principle of MRI technique, the characteristics of

MRI and the artifacts in MR images.

Chapter 3 introduces an overview of brain tumours. It includes tumour
definition, types of brain tumours and the common diagnosis methods.

Chapter 4 presents a general introduction of data mining and knowledge

discovery techniques. Fuzzy clustering and genetic programming, two essential

methods in this approach, are fully described in this chapter and then provides the

foundation of the later work.
Chapter 5 details the methodology applied in image preprocessing. It comprises

three main sections: image standardization, the non-brain region removal and tissue

contrast enhancement. The first section describes the standardization process for

image intensities by means of statistical features of intensities. The second section
presents the techniques for the removal of non-brain regions using morphological

operations. The third section proposes the technique for tissue contrast enhancement,
especially between white matter and gray matter, using the histogram equalization.

Chapter 6 introduces an improved fuzzy clustering algorithm developed for MR
image segmentation. Neural networks are also used to decide the optimized
parameters for this algorithm. The robustness of the proposed method to noise is
evaluated by various types of images and also compared to other segmentation
methods described in the literature.

Chapter 7 presents a fuzzy logic based genetic programming method to deal
with the data mining task of brain tumour classification. It overcomes the drawback
In present classification methods in multi-class classification problems. The

characteristics of medical data are comprehensively considered during the
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classification. Its performance is compared and evaluated with other classification
methods by applying it to Iris data and Wisconsin breast cancer data. The

classification rules for different MRI modalities and different brain tumour types are

described.

Chapter 8 summarizes the thesis with the main conclusions and

recommendation for future work.



Chapter 2

MAGNETIC RESONANCE IMAGING

2.1 INTRODUCTION

2.1.1 History of MRI

Magnetic resonance imaging (MRI) has become the primary technique in the routine
diagnosis of many diseases, replacing and sometimes surpassing computed

tomography (CT). MRI has particular advantages because it is non-invasive, using

non-ionizing radiation, and has a high soft-tissue resolution and discrimination in any
imaging plane. It may also provide both morphological and functional information.

The resultant MR image is based on multiple tissue parameters used, any of which

10
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can modify tissue contrast. In its development MRI has incorporated a
multi-disciplinary team of radiologists, technicians, clinicians and scientists who
have made, and are continuing to make combined efforts to further extend the
(_:Iinical usefulness and effectiveness of this technique.

The first successful nuclear magnetic resonance (NMR) experiment was made
in 1946 independently by two scientists in the United States [Ellard, 2003]. Felix
Bloch, working at Stanford University, and Edward Purcell, from Harvard University,
found that when certain nuclei were placed in a magnetic field they absorbed energy
in the radiofrequency range of the electromagnetic spectrum, and re-emitted this
energy when the nuclei returned to their original state. The strength of the magnetic
field and the radiofrequency matched each other as earlier demonstrated by Sir
Joseph Larmor (Irish physicist 1857-1942) and is known as the Larmor relationship
(i.e., the angular frequency of precession of the nuclear spins being proportional to
the strength of the magnetic field). This phenomenon was termed as NMR.

With this discovery, NMR spectroscopy was invented and soon became an
important analytical method in the study of the composition of chemical compounds.
For this discovery Bloch and Purcell were awarded the Nobel Prize for Physics in
1952. Interestingly, Dr Isidor Rabi, an American physicist who was awarded the
Nobel Prize for Physics in 1944 for his invention of the atomic and molecular beam
magnetic resonance method of observing atomic spectra, came across the NMR

phenomenon in the late 1930's but considered it to be an artifact of his apparatus and
disregarded its importance [Ellard, 2003]. During the 50's and 60's NMR
spectroscopy became a widely used technique for the non-destructive analysis of

small samples. Many of its applications were at the microscopic level using small (a

few centimeters) bore high field magnets.
In the late 60's and early 70's Raymond Damadian, an American medical doctor

at the State University of New York in Brooklyn, demonstrated that a NMR tissue
parameter (termed T; relaxation time) of tumour samples, measured in vitro, was
significantly higher than normal tissue. Although not confirmed by other workers,
Damadian intended to use this and other NMR tissue parameters not for imaging but
for tissue characterization (i.e., separating benign from malignant tissue). This has
remained the “Holy Grail” of NMR which is yet to be achieved due mainly to the
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heterogeneity of tissue. His description of relaxation time changes in cancer tissue
was one of the main impetuses for the introduction of NMR into medicine.

In 1973, a short paper was published in Nature entitled “Image formation by
induced local interaction; examples employing magnetic resonance” by Paul
Lauterbur, a professor of Chemistry at the State University of New York. In this
seminal paper Lauterbur proposed using magnetic field gradients to distinguish
between NMR signals originating from different locations. He termed this new
imaging technique as zeugmatography (from the Greek zeugmo meaning yoke or a
joining together) [McRobbie ef al., 2003]. This referred to the joining together of a
weak gradient magnetic field with the stronger main magnetic field allowing the
spatial localization of two test tubes of water, This imaging experiment moved from
the single dimension of NMR spectroscopy to the second dimension of spatial
orientation being the foundation of MRI. The technique was called NMR imaging

rather than MRI. The °N’ was dropped because the term ‘nuclear’ implied a

connection with nuclear energy.

Lauterbur's idea revolutionized NMR because it opened the field to imaging. As
a result, selective excitation or sensitization of tomographic image slices was
invented at the University of Nottingham, England in 1974 by Alan N. Garroway,
Peter K. Grannell, and Peter Mansfield [EMRF Foundation, 2003]. In 1975, Richard

Ernst’s group in Zurich invented two-dimensional Fourier transform imaging (2D

FT). The first practical 2D FT imaging method, dubbed ‘spin warp’, was developed
by Bill Edelstein and Jim Hutchison at the Univeréity of Aberdeen, Scotland in 1980.

There are other milestones in the development of MRI for medical applications.

By 1975, Peter Mansfield and Andrew A. Maudsley proposed a line technique which,

in 1977, led to the first image of in vivo human anatomy, a cross section through a
finger. In 1978, Mansfield presented his first image through the abdomen. In 1977,
Hinshaw, Paul Bottomley, Neil Holland, Moore, and Brian Worthington and
collaborators succeeded with an image of the wrist. More human thoracic and
abdominal images followed, and by 1978, Hugh Clow and Ian R. Young, working at
EMI, reported the first transverse NMR image through a human head. Two years

later, William Moore and colleagues presented the first coronal and sagittal images

through a human head.
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All of the research described above contributed to a completely new 1imaging

technique. Nowadays, MRI 1s one of the most popular techniques for clinical

imaging where the potential contrast between normal tissues and abnormal tissues 1s

many times greater than that offered by X-ray technology and ultrasound.

2.1.2 Basic Principles of MRI

Clinical MRI uses the magnetic properties of hydrogen and its interaction with both a
large external magnetic field and a radio frequency (RF) to produce highly detailed
images of the human body. Fig.2.1 shows a sketch of MRI device. MRI is a dynamic
and flexible technology that allows one to tailor MR images to the anatomical part of
interest and to abnormal changes in the body.

[n order to understand MRI, 1t is necessary to understand the properties of atoms.
The atom consists of a central nucleus and orbiting electrons. The nucleus contains
nucleons which are subdivided into protons and neutrons; protons are positive
charged. neutrons have no charge and electrons are negatively charged. The atomic
number is the number of protons in the nucleus which determines the type of element
the atoms make up. Mass number 1s the sum of the neutrons and protons in the
nucleus. In a stable atom, the number of negatively charged electrons equals the
number of positively charged protons. Atoms with a deficit or excess number of

electrons are called 1ons | Westbrook, 2002].

Figure 2.1 MRI machine [Wilson Memorial Hospital 2003 .

|3
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Three types of motion are present within the atom. Electrons spin on their own

=

ax1s and orbit the nucleus, the nucleus itself spin on its own axis. The principles of
MRI rely on the spinning motion of specific nucle1 in biological tissues, known as
MR active nuclel. The hydrogen nucleus i1s the MR active nucleus used 1n clinical
MRI because 1t 1s abundant in the human body (in fat and water, 70% of the body 1s
made up of water). The simple hydrogen nucleus consists of one proton, and no
neutrons. Due to the presence of only one proton, the hydrogen atom has a positive
charge and an atomic number of 1. Any electrically charged particle which moves
creates a magnetic field called a magnetic moment. Therefore the hydrogen nucleus
induces a magnetic field around 1tself. The other reason for the use of hydrogen
nucleus 1s that 1ts solitary proton provides a relatively large magnetic moment. The
magnetic moment of hydrogen 1s called the net magnetization vector (NMV)
| Westbrook and Kaut, 2002].

Usually the magnetic moments are randomly orientated without an external
magnetic field. When a human body 1s placed in a large magnetic field By, many of
the free hydrogen nucler align themselves with the direction of the magnetic field and
constitute the NMV of the human body (Fig.2.2). Each hydrogen nucleus that makes
up the NMV spins on 1ts axis. The influence of the external magnetic field By
produces an additional spin, or wobble of the NMV around B,. This secondary spin 1s
called precession. The speed at which the NMV wobbles around Bj 1s called the

precessional frequency. The value of the precessional frequency 1s proportional to the

(a) (b) (C)

Figure 2.2 (a) Spinning proton (b) No magnetic field present (¢) Magnetic field

present [King 2003].

14
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strength of the applied magnetic field. The stronger the magnetic field, the higher the
precessional frequency. It 1s described as follows:
Wy =75, (2.1)
This expression is stated as the Larmor equation, so the precessional frequency 1is
often called the Larmor frequency, where y is the gyromagnetic ratio, which is a
constant and expressed as the precessional frequency of a specific MR active nucleus
at 1.0 T. The gyromagnetic ratio of hydrogen is 42.57MHz/T [Mackiewich, 1995].
Resonance refers to the property of an atom to absorb energy only at the Larmor
frequency. Energy at the Larmor frequency of hydrogen at all magnetic field
strengths in clinical MRI corresponds to the radio frequency (RF). To induce
resonance in hydrogen, an RF pulse of energy must be applied. The energy must also
be delivered at 90° to the NMV and main magnetic field (By). In the first part of
resonance, the hydrogen nuclet absorb energy from the RF pulse. As a result, NMV

moves out of alignment, 90° away from By, and lies in the transverse plane. Then, the

magnetic moment of the hydrogen nuclei within the transverse NMV moves into

phase with each other.
A receiver coil is situated in the transverse plane. As the NMV rotates around

the transverse plane as a result of resonance, it passes across the receiver coil
inducing a voltage in it according to Faraday’s law. This voltage is the MR signal.

Once the RF pulse is removed, the energy of the NMV given by the RF pulse starts
to decrease because the NMV tries to realign with By. The amplitude of the MR

signal consequently decreases. This is called free induction decay (FID).

Gradients
The imaging system must be able to locate the detected signal spatially in three

dimensions, so that it can position each signal at the correct point on the image. This
task is performed by magnetic field gradients. Gradients are alterations to the main
magnetic field and are generated by coils of wire located within the bore of the
magnet through which current is passed. The passage of current through a gradient

coil induces a gradient magnetic field around it, which either subtracts from or adds

to the main static magnetic field strength By. The strength of By is altered in a linear
fashion by the gradient coils, so that the magnetic field strength and therefore the

15
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precessional frequency experienced by nuclei situated along the axis of the gradient

can be predicted. This is called spatial encoding.

Slice selection

Nuclei experience an increased magnetic field strength whose precessional
frequency increases and vice versa. Therefore the position of a nucleus along a
gradient can be identified according to its precessional frequency. There are three
gradient coils situated within the bore of the magnet and these are named according
to the axis along which they act when they are switched on, i.e. The Z gradient alters
the magnetic field strength along the Z axis of the magnet. The magnetic centre is the
centre point of the axis of all three gradients and the magnetic field strength always
remains the same as By. If the Z gradient is on, the magnetic field strength and
therefore the precessional frequency of nuclei located along the Z axis vary linearly

from one end of the magnet to the other. Therefore a specific point along the Z axis
has a specific precessional frequency. In this way, a single transverse slice can be
selectively excited without the excitation of other slices. If a gradient along the X
axis were used instead of the Z gradient, the slices selected would be a sagittal slice.

Similarly, a Y gradient would select a coronal slice. By the combination of X, Y and

Z gradients, any plane may be chosen.

Frequency encoding
Once a slice has been selected, the signal coming from the slice must be located

along both axes of the image. The signal is usually located along the long axis of the

anatomy by a process known as frequency encoding. When the frequency encoding

gradient is switched on, the magnetic field strength and therefore the precessional
frequency of signal along the axis of the gradient vary linearly. The gradient
produces a frequency difference or shift of signal along its axis. The signal can now
be located along the axis of the gradient according to its frequency. The direction of
frequency encoding can be selected by the operator so that it encodes the signal

along the long axis of the anatomy. In coronal and sagittal images, the Z gradient

performs frequency encoding. In transverse images, the X gradient performs

frequency encoding, but the Y gradient for brain images.

16
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Phase encoding

The signal is located along the short axis of the anatomy by a process known as
phase encoding. When the phase encoding gradient is on, the precessional frequency
of nuclei along the axis of the gradient is altered. As the speed of precession of the
nuclei changes, so does the accumulated phase of the magnetic moments along their
precessional path. Nuclei that have sped up, due to the presence of the gradient,
move further around their precessional path. Nuclei that have slowed down, due to
the presence of the gradient, move further back around their precessional path. There
1s now a phase difference or shift between nuclei positioned along the axis of the
gradient. After the phase encoding gradient is switched off, the magnetic field
strength experienced by the nuclei returns to the main field strength By. Therefore the
precessional frequency of all the nuclei returns to the Larmor frequency. However,

the phase difference between the nuclei remains. This difference in phase between
the nuclei 1s used to determine their position along the phase encoding gradient.

The basic principles of MRI have been described [Westbrook and Kaut, 1994;
Bushong, 1995] and the details of different types of RF pulse sequences are

described in the next section.

2.2 MRI PARAMETERS

Many parameters are introduced in MRI. The most common ones are the strength of
magnetic field, the Larmor frequency, the relaxation times (T;, T3), the repetition
time (TR), the echo time (TE). These are all relevant to MR image generation.

The magnetic field and Larmor frequency has already been described in section

2.1. The strength of the magnetic field used in most clinical MRI units is 1.5 Tesla or
above and the corresponding Larmor frequency of the protons is 64 MHz.

As stated above, after the removal of the RF pulse, the energy of NMV
decreases. The process is called relaxation. Relaxation then results in the recovery of
magnetization in the longitudinal plane called T; recovery and decay of

magnetization in the transverse plane called T decay. Different tissues undergo
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different rates of relaxation which create image contrast. T recovery is caused by the

nucler emitting their energy to the surrounding lattice known as spin lattice
relaxation. Energy released to the surrounding lattice causes the nuclei to recover
their magnetization. The rate of recovery is an exponential process, with a recovery
time constant called T;. T; is the time that 63% of the longitudinal magnetization is
recovered. T, decay is caused by nuclei exchanging energy with neighbouring nuclei
known as spin-spin relaxation. It results in a decay of transverse magnetization. The
rate of decay is also an exponential process with a decay time constant Ts. T, is the
time that 63% of the transverse magnetization decayed.

The repetition time (TR) is the time from the application of one RF pulse to the
application of the next RF pulse, measured in milliseconds (ms). It determines the
amount of T recovery that will occur., The echo time (TE) is the time from the
application of the RF pulse to the peak of the signal induced in the coil and is

measured in ms. TE controls the amount of T, decay that will occur. Fig.2.3 shows

the sketch of TR and TE.
Three types of MR images are commonly used, T;-weighted, T,-weighted and

proton density (PD) weighted. A T;-weighted image is an image whose contrast is
predominated by T, signals. To achieve this, TR must be short in order to exaggerate
T1 and TE must be short 1n order to diminish T,. A Ts-weighted image is created by a
long TE and a long TR whose contrast in predominately determined by T, signals,
because TR is long to diminish T; and TE is long to exaggerate T>. A PD weighted
image is an image dependent primarily on the density of protons by minimizing the

effects of Ty and Ts. A long TR and short TE are chosen to diminish both T, and T,

_— - —

-.
{1

Figure 2.3 TE and TR.
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[Fonar Corporation, 2003]. Typical values of TR and TE are [Westbrook and Kaut,
2002]:

Long TR: over 2000 ms

Short TR: 250-700 ms

Long TE: over 60 ms

Short TE: 10-25 ms

In Ty-weighted images, tissues with short T; recovery time such as fat are bright
(high signal). Because they recover most of their longitudinal magnetization during
TR, more magnetization is available in order to allow them to be flipped into the
transverse plane by the next RF pulse. In contrast, they are dark (low signal) in
T2-weighted images. Tissues with long T, decay time are bright, such as water,
because they retain most of their transverse coherence during the TE period. In PD-
weighted images, tissues with a high proton density, such as cortical bone are bright

because the high number of protons results in a large component of transverse

magnetization. Table 2.1 shows the brightness of some typical tissues in different

types of MR images.

Table 2.1 Brightness of typical tissues in different MR images [Hesselink, 2003].
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2.3 MRSIGNALS

Based on the introduction above, the implementation of MRI required the body to be

placed in a main, uniform magnetic field which is then is excited with another
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oscillating magnetic field at the Larmor frequency. An MR signal of a slice is thus

generated. The signal expression is as following assuming that the nuclear

magnetization is fully relaxed before the following 90° RF pulse applied:
S(t)=k ”P(x, )’)e—”ne_i%rdxdy (2.2)

Where apis the Larmor frequency, o(x,y) is the spin spectral density function which

1s specific to different tissues. (x,y) are the spatial coordinates. k is a proportional

coefficient. The detected magnitude of MR signal is obtained from the real part:
3, (t)=k I _[p(x, y)e ™ '"? cos @, tdxdy (2.3a)
and the imaginary part:
S.(t) =k _[ j p(x, y)e~'T2 sin ), tdxdy (2.3b)

A set of RF pulses applied to produce a specific form of MR signal is called a
pulse sequence. Signals are determined by variable parameters based on pulse
sequences used [Hornak, 1996]. Spin echo (SE) pulse sequences are one of the most

basic pulse sequences used in MRL It consists of a 90° excitation pulse followed by a

180° rephrasing pulse and an echo. An echo is in fact the signal generated in the

receiver coil as shown in Fig.2.4.
The MR signal of repeated SE pulse sequences can be defined as a function of
Ti, T2, TR and TE [Stark and Bradley, 1999]. Its maximum amplitude is:

S — kp(l_e-TRlTl)e—TElTZ (2.4)

Fast spin echo (FSE) sequence is a simple extension of SE sequence. It uses a

90° pulse followed by a series of 180° rephrasing pulses to produce multiple echoes

in a given TR [Westbrook and Kaut, 1994].

Inversion recovery (IR) sequences are another type of pulse sequence. They
begin with a 180° inverting pulse followed by a 90° pulse and a FID is generated

after them. It is shown in Fig.2.5. The maximum MR signal of no repeated IR

sequence can be expressed as follows:
S =kp(1-2¢"""") (2.5)

Where, TI is the time between the 180° inverting pulse and the following 90° pulse,

and is known as inversion time. If the IR sequence repeats at every TR seconds, the

signal becomes:
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Figure 2.4 Spin echo sequence and signal.
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Figure 2.5 Inversion recovery sequence.
S=kp(1_2e-ﬂlﬂ _l_eTR/Tl) (2.6)

Fluid attenuated inversion recovery (FLAIR) is a variation of IR sequence. It is
an MRI pulse sequence in which fluids such as CSF appears dark and most lesions

including MS plaques, other white matter lesions, tumours, edema, and acute infarcts
appear bright.

However, this MRI signal is a sum from all parts of the human body. Because
the human body is not spatially homogeneous, it is necessary to differentiate the

signals from different parts and reconstruct MR images. By far the most common

method to reconstruct MR images is 2D FT (2-dimenional Fourier Transform), also

called ‘spin-warp’. The details of MR image reconstruction can be found in [Liang,

2003).
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2.4 MRI ARTIFACTS

Artifacts are features in MR images produced by various complications of the
imaging process. They result in an image that does not portray (in the simple visual
sense) an accurate representation of a slice of tissue [Savoy and Jovicih, 2001].
Examples of sources of artifacts include chemical shift, aliasing, RF inhomogeneity,
motion, flow, truncation, and partial volume. Almost all MR images have to some
extent artifacts and some of these may significantly affect the quality of MR images

and even cause incorrect diagnosis. This section presents the most common artifacts

encountered in MRI [Ballinger, 1996].

Chemical shift artifact:
The chemical shift artifact is commonly noticed in the spine at the vertebral body end

plates, in the abdomen, and in the orbits where fat and other tissues form borders. It
1s caused by the different chemical environment of fat and water. Although fat and
water are both made up of hydrogen protons, fat consists of hydrogen linked to
carbon, whereas hydrogen in water is lined to oxygen. As a result, hydrogen in fat
resonates at a lower Larmor frequency than that in water. Therefore a frequency shift

is inherently presented between fat and water, known as chemical shift. Its magnitude

depends on the magnetic strength. A low magnetic strength for scanning can reduce

this type of artifact. In Fig.2.6, the arrow shows the location of a chemical shift

artifact.

Aliasing or wrap around artifact:

This is a common artifact produced when the field of view (FOV) is smaller than the
anatomy being imaged. The FOV is the physical size of the imaged region [Siemens,
2001]. The tissue outside the selected FOV still produces a signal if it is close to the
receiver coil. This signal is mis-mapped into pixels within the FOV, The primary
solution to this artifact is oversampling, which is the digitization of a time domain
signal at a frequency much greater than necessary to record the desired FOV [Az1z

and Uetani, 2002]. Fig.2.7 shows the wrap-around of the back of the head on to the

front of the head.
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Figure 2.6 Chemical shift artifact Figure 2.7 Aliasing artifact
[MRI-CHUQ 2003]. [Ballinger 1996].

RF inhomogeneity:

RF inhomogeneity 1s an intensity variation across an image. It is caused by variable
sensitivity 1n an RF coil. Some RF coils, such as surface coils, have natural variations
in sensitivity and will always display this artifact. The presence of this artifact in
other coils represents the failure of an element in the RF coil or the presence of
non-ferromagnetic material 1n the imaged object. Therefore, the selection of RF coils
and magnets may reduce this artifact. Superconductive magnets are the most
commonly used magnets which can maintain a homogenous magnetic field over time
[Aziz and Uetani, 2002; Douglas 1998]|. The transverse image of the brain shown 1n
FF1g.2.8 contains an RF inhomogeneity artifact in anterior region of the brain.

Motion artifact:

Any movement of the patient can cause this artifact. The patient motion during the
imaging sequence generally results in a blurring of the entire 1image with ghost
images in the phase encoding direction. Movement of a part of the patient results in a
blurring of the corresponding part across the image. The voluntary motion of patients
can usually be prevented, but the involuntary motion such as heart beating, breathing,
bowel motion etc cannot be eliminated. The solution for the first two cases 1s to gate
the imaging sequence to the cardiac or respiratory cycle of the patient. Bowel motion
can be reduced by giving the patient an anti-spasmodic agent prior to the scan when
imaging the abdomen or pelvis [Westbrook and Kaut, 2002b; Aziz and Uetani, 2002].

12.2.9 shows a head axial image with motion artifact. A blood vessel in the posterior
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Figure 2.8 RI' inhomogenity Figure 2.9 Motion artifact
|Hornak 1996]. |Hornak 1996].

side of the head moved 1n a pulsating motion during the acquisition. This motion
caused a ghosting across the image.

Flow artifact:

This 1s caused by tlow of blood or fluids in the body. A liquid flowing through a slice
can be subjected to an RF pulse and disappear by the time the signal is recorded. It
may result in different signal intensities of blood vessels. For example, the intensity
of a vessel perpendicular to the image plane changes periodically due to pulsatile
blood flow [Douglas, 1998; Siemens, 2001]. Fig.2.10 shows a T;-weighted axial
image of the spine. Note the appearance of two spinal cords. The artifacts produced

extra spinal cord is due to pulsatile flow of the CSF.

Figure 2.10 Flow artifact Figure 2.11 Truncation artifact
| Patola and Coulter 1997]. | Patola and Coulter 1997].
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1runcation artifact:

Truncation artifact results from under sampling of data so that interfaces of high and
low signal are incorrectly represented on the image. Usually bright or dark lines are
seen parallel and adjacent to borders of abrupt intensity change. A common site for
this artifact 1s in the T,-weighted image, where there is bright CSF next to dark
spinal cord. It 1s also seen 1n other locations such as the brain and calvarium interface.
To reduce this artifact, under sampling should be avoided [Westbrook and Kaut,
2002b; Ballinger 1996]. The fine lines visible in Fig.2.11 are due to under sampling
of the high spatial frequencies. Sharp edged borders between areas of high contrast
are represented by high spatial frequency data.

Partial volume:

A partial volume artifact 1s any artifact which is caused by the size of the image
voxel (the smallest discrete spatial component of the image). For example, a small
voxel may contain a signal from one tissue type, and a larger voxel may contain a
combination of two types, whose signal intensity is equal to the weighted average of
the quantity of two tissues in the voxel. It may be manifest as a loss of resolution
caused by multiple features presenting in the image voxel [Douglas, 1998]. The
solution to this artifact 1s to use a smaller voxel: however this may result 1n poorer
signal-to-noise ratios in the image. Fig.2.12 shows a comparison of two axial slices
through the same location of the head. One is taken with a 3 mm slice thickness and
the other with a 10 mm slice thickness. The loss of resolution in the 10 mm 1mage 1s

obvious and the detail of some structures disappears.

Figure 2.12 Resolution comparison (left): 3mm slice thickness
(right): 10mm slice thickness [Hornak 1996].
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Chapter 3

BRAIN TUMOUR DIAGNOSIS

3.1 INTRODUCTION

The brain is the most complex organ in the human body. It is a major part of the

central nervous system (CNS), which controls our personality — memory, intelligence,

speech, emotions; senses — vision, hearing, taste, smell and touch; basic functions —

breathing, heart-beat, blood pressure, movement and balance. The brain is a soft,
spongy mass of tissue and it is protected by the bones of the skull and three thin

membranes called meninges. Watery fluid, called cerebrospinal fluid (CSF), cushions
the brain. This fluid flows through spaces between the meninges and through spaces

within the brain called ventricles. The simple anatomy of brain is shown in Fig.3.1.
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Fluid between
the meninges

~Spinal cord

Figure 3.1 The brain [National Cancer Institute 2003 ]

A network of nerves carries messages back and forth between the brain and the

rest of the body. Some nerves go directly from the brain to the eyes, ears, and other

parts of the head. Other nerves run through the spinal cord to connect the brain with
the other parts of the body. The brain is mainly made up of two types of cells, nerve
cells (also called neurons) and ghal cell. There are two types of nervous tissue. One
type of tissue is made up of connected cell bodies known as gray matter. The other
type of tissue containing mainly long, myelinated (sheathed) axons 1s known as white
matter. Fig.3.2 shows the structure of white matter and gray matter. Within the brain

and the spinal cord, glial cells are the building-block cells of the connective or

supportive tissues. They surround neurons to hold them and help them carry out their

+#‘-' -. -
i . A
"% . .-
# = 'h' t uaf '
‘ /3
. E
4 | o ol 1
I ¥
4
i
d ¢
W i
L]

7. A Nr‘\r <« X Gray matter
4 W

AP
1 8 r)}

'1.-‘
n T
L ]
" -
" P
.
L

White matter

‘4

1 1
- i 4 :

Figure 3.2 White matter and gray matter [Galit 2001].
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functions.

A brain tumour 1s a mass of unnecessary, abnormal cells growing in the brain as
shown in Fig.3.3. It 1s more dangerous and more difficult to treat than other tumours
because of the brain’s vital functions. Brain tumours are the second most common
type of tumour in children. They account for almost 21% of tumours, and are a
leading cause of death in children younger than 15 years of age. Most brain tumours
develop by age 10. The incidence is 2.2-2.5 cases per 100,000 with the peak being
between birth and 10 years of age. Brain tumours are slightly more common in boys
|Pennstate Children’s Hospital, 2003].

The particular severity of brain tumours are expressed in terms of the following
aspects. Firstly, brain tumours occur in the brain which 1s enclosed in a bony canal. [t
allows little room for growth of the tumour without compressing and damaging the
normal brain. Secondly, many brain tumours extensively 1nvade normally
functioning brain tissues, making complete surgical removal impossible. Thirdly, in
their early stages, brain tumours are protected behind a blood-brain barrier; even
when this barrier is disrupted in the bulk of the tumour, infiltrating tumour cells at
the growing edge remain protected. Fourthly, disruption of the blood-brain barrier
leads to oedema, which the brain tolerates poorly because of the limited intracranial
space and the lack of lymphatics to rid itself of the products of oedema and other
debris. Fifthly, the brain 1s itself rich in expressed genes and therefore 1s a fertile
field for the growth of both primary tumours and metastases. Finally, the brain and
brain tumours appear to be less susceptible to attack by the immune system than are

tumours in other organs [Louis ef al., 2000].

Brain tumours produce a variety of symptoms ranging from headache to stroke.

brain tumor

Figure 3.3 Brain tumour [ ThirdAge 2003 .



Chapter 3 Brain Tumour Diagnosis

A persistent headache can often be the first symptom of a brain tumour. Although
very rarely a headache is due to a brain tumour, severe, persistent or more frequent
headaches should be investigated further. It occurs because of the raised intracranial
pressure. Nausea and vomiting can accompany the headaches, and so can mental
confusion. Other symptoms of a brain tumour include disturbed vision, impaired

speech and hearing, drowsiness, reduced movement or loss of balance and

personality changes and these symptoms depend on the part of the brain that is

affected. Another sign that sometimes occurs is seizures, which can be as mild as a

loss of consciousness for a few seconds or may involve severe shaking of the limbs.
This is due to a build up of abnormal electrical activity in the brain when the nerve

cells are irritated by the brain tumour [Slevin and Ryan, 1988].

3.2 BRAIN TUMOUR TYPES

Brain tumours can be classified as either benign (non-cancerous) or malignant
(cancerous). Benign tumours do not invade tissues around them or spread to other

parts of the body. The border or edge of a benign brain tumour can be clearly seen.
Malignant tumours contain cancerous cells. They are likely to grow rapidly and

crowd or invade the surrounding healthy brain tissue.
Brain tumours can also be divided into primary and secondary. Primary tumours

are tumours that begin in the brain. Secondary tumours are tumours that start out
elsewhere in the body and spread, or metastasize, to the brain. For example,
secondary brain tumours could have begun as breast cancer or lung cancer [Musella
Foundation, 2003].

All benign tumours are primary tumours. They represent half of all primary
brain tumours. The cells of benign tumours look normal and grow slowly. Benign
tumours are not particularly harmful in most parts of the human body, however they

are dangerous in the brain since any abnormal growth in the brain can place pressure

on sensitive tissues and impair brain functions.
Malignant tumours can be either primary or secondary. Secondary malignant

brain tumours are about three times more common than primary malignant brain
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tumours. They occur when cancer cells spread to the brain from a primary cancer in
another part of the body. Mostly, the primary cancer causing the secondary brain
tumours originates in the lung, breast, kidney or skin. Primary malignant brain
tumours that originate in the brain rarely spread to other parts of the body [American

Accreditation HealthCare Commission, 2002].

Primary brain tumours are named according to the type of cells or the part of the
brain in which they begin.

About half of all primary brain tumours are known collectively as gliomas,
which come from glial cells. There are several types of gliomas such as astrocytomas
from astrocytes, oligodendrogliomas from oligodendrocyte glial cells, ependymomas
from ependymal cells etc. Gliomas can be categorized into different grades
depending on the degree of their malignancy. They can be either low grade or high
grade (Other systems: Kernohan grades these tumours on a scale of I to IV and the
WHO grades on a scale of I to III). Low grade (I and II) is less malignant and high
grade (Il and IV) are more dangerous. Low grade gliomas are almost
normal-shaped and grow slowly over a long period as solid masses. High grade
gliomas grow rapidly and can invade surrounding brain tissues. Therefore, low grade
gliomas are easier to treat and high grade gliomas require more intense therapy [The
Brain Tumour foundation, 2003]. Other tumour types can also be graded as gliomas.

In a tumour that contains a mixture of different cell grades, the tumour is graded

using the highest grade cells even when they are very few.

Meningioma is another common type of brain tumour. It is usually a benign

tumour originating from the meninges, or membranes, which cover the brain and the
spinal cord. Typically, a meningioma is not recognized until it has become relatively
large in size. In fact, meningiomas comprise 25% of all primary brain tumours but
less than 2% of all childhood brain tumours. A meningioma may be classified by its
constituent cell types (i.e. syncytial, fibroblastic, angioblastic, transitional)
[American Accreditation HealthCare Commission, 2002; The Hyman-Newman
Institute for Neurology and Neurosurgery, 2002].

Pituitary tumours comprise about 10% of primary brain tumours. They mostly

develop in the front, or anterior portion of the pituitary gland (the adenohypophysis).
The term, "pituitary adenoma", describes a tumour of the pituitary gland, the
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majority of which are benign and curable. Only about 10% of all identified pituitary
tumours are found in children. There are several types of functioning pituitary

adenomas, including those which produce prolactin (PRL), growth hormone (GH),

corticotropin (ACTH), and mixed varieties.

Other types of primary brain tumours include medulloblastomas, neuronomas,

craniopharingiomas, pineal tumours, germ cell tumours, and schwannomas. Fig.3.4

shows the distribution of brain tumour types.

3.3 TRADITIONAL DIAGNOSIS METHODS

As described above there are a great number of brain tumour types. Different brain
tumours may have different treatments. For instance, a low grade glioma is usually
treated by surgery and radiotherapy, and a high grade glioma requires surgery,
radiotherapy, chemotherapy and possibly investigational treatments. Hence, brain

tumour diagnosis is very important when choosing effective therapies.

A neurological exam 1s usually the first test given after checking the medical
history of the patients when they complain of symptoms that suggest a brain tumour.

Part of the exam includes checking the power and strength of the arms and legs, knee

m Gliomas
® Meningiomas

Pituitary tumours
0O Others

Figure 3.4 Distribution of brain tumour types.
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jerks and other reflexes, feeling pin-pricks, distinguishing between heat and cold, and
also performing some mental exercises. These can indicate whether there are signs of
diminished mental function. In addition to these, an eye exam using an
ophthalmoscope can be included. The ophthalmoscope shines light into the lining of

the eye (the retina) and the optic nerve, which connects the eye to the brain. A brain

tumour causing raised intracranial pressure may swell part of the optical nerve
|Slevin and Ryan, 1988].

A further test involves a brain image scan of the patient. It may detect the
presence of a brain tumour and its exact size and location. X-rays of the skull were
once standard diagnostic tools but are now performed only when more advanced
procedures are not available. Unusually, some tumours may be shown on an X-ray
image due to them containing calcium (bones). Advanced imaging techniques have
dramatically improved the diagnosis of brain tumours 1n recent years. The most
common imaging techniques for brain tumour diagnosis are CT, MRI and PET.

CT uses a sophisticated X-ray machine and a computer to create a detailed
image of the body's tissues and structures. It 1s not as accurate as an MR image and
does not detect about half of low-grade gliomas. However, it 1s still useful in certain
situations. Often, doctors will inject the patient with an i1odine dye, called contrast
material, to make 1t easier to see abnormal tissues. A CT scan helps locate the tumour
and can sometimes help detect swelling, bleeding, and associated conditions. In
addition, CT 1s used to check the effectiveness of treatments and watch for tumour
recurrence. Fi1g.3.5 shows a C'T scan of a brain tumour.

MRI 1s the gold standard for diagnosing a brain tumour. It does not use radiation

and provides images from various angles that can enable doctors to construct a

Tumour

Figure 3.5 CT scan of brain tumour [Rich and Lasley 1998].
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three-dimensional image of the tumour. It gives a clear view of tumours near bones,
smaller tumours, brainstem tumours, and low-grade tumours. MRI 1s also useful
during surgery to show tumour bulk, for accurately mapping the brain and for
detecting response to therapy. Fig.3.6 1s an MR 1mage of a brain tumour. A variant
called magnetic resonance spectroscopy (MRS) 1s capable of providing information
on the activity of the brain using MRI. MRS 1s proving to be accurate for
distinguishing dead (necrotic) tissue caused by previous radiation treatments from
recurring tumour cells in the brain, which 1s a difticult diagnostic 1ssue.

PET provides an image of the brain's activity rather than its structure by
tracking substances that have been labeled with a radioactive tracer. PET is not
routinely used for diagnosis, but it may supplement MRI to help determine tumour
grade after a diagnosis. Fig.3.7 shows a brain tumour image of PET using

fluorodeoxyglucose (FDG) as the tracking substance. As with MRS, 1t 1s also able to

Tumour

Figure 3.6 [,-weighted MR 1mage of brain tumour
|Srdanovic 1998].

Jumour

Figure 3.7 PET 1mage of brain tumour [Sabbatini 1997].
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distinguish between recurrent tumour cells from dead cells or scar tissue, although

MRS is more widely available.

The final step for brain tumour diagnosis is a biopsy. A biopsy 1s a surgical

procedure to take a sample tissue from the suspected tumour [The Brain Tumour
Society, 2002]. An 1maging scan such as CT, MRI and PET is taken prior to the
biopsy to determine the position where the biopsy will be performed. Generally,
biopsies can be performed "open" or "closed" through a craniotomy. An open biopsy
usually implies that a small window of bone is temporarily removed from the skull to
allow the surgeon to remove a small portion of the suspected tumour under direct
visualization. A closed biopsy, also called stereotactic biopsy is a new kind of biopsy.
[t relies on computer guidance to locate the brain tumour and avoid serious
complications. A tiny hole, no larger than an eighth of an inch, is drilled into the skull
and a needle is inserted into the brain tissue guided by computer-assisted imaging
techniques (CT or MRI). A special head frame is applied to direct the probe into the
brain and allows the CT and/or MRI to be used along with a highly specialized
computer (Fig.3.8) [Rokahr, 1996]. Since the early nineties, it has also been possible

to perform these biopsies without the frame. Because the frame is attached to the
skull with screws, it can cause the patient some additional suffering [AccessMed
Health Information Library, 2002; York Neurosurgical Associate, 2003]. By

examining the obtained tissue sample under a microscope, the pathologist can

determine an exact diagnosis such as malignance and tumour types and discriminate

Figure 3.8 Stereotactic brain biopsy [Rokahr 1996/|.
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a tumour from a brain abscess.

3.4 DIAGNOSIS PROBLEMS

According to description above, it is clear that the biopsy is an essential step to
confirm the diagnosis of brain tumours. However, its drawbacks are also very
explicit. First of all, although the advance of the biopsy means that it is less invasive
and better tolerated by the patient, it is still an invasive procedure and can cause a
great deal of pain. Secondly brain injury may occur due to the removal of brain tissue.
Because of the vital function of the brain, removing any healthy tissue may affect
normal functioning. Thirdly, an anesthesia process is necessary before the biopsy to
relieve the pain. Usually, a general anesthesia is applied to the patient, which further
increases the risks from the biopsy. Fourthly, the resulting scar, left on the brain has
the potential to trigger seizures. Fifthly, the patient has to be monitored after the
biopsy for several hours in case of unexpected complications and is usually required
to spend a few days in the hospital. Sixthly, because the biopsy is a very precise
cranial procedure, it must be performed by a specified neurosurgeon. An anesthetist
and other staff are required as well. It 1s obvious a very expensive surgical procedure.
In addition, not all brain tumours can have a biopsy, such as brain stem gliomas,
because it may be too hazardous. Diagnosis is therefore complicated, risky and can
result in complications.

Consequently, a new technique to diagnose brain tumours non-invasively is

required, which can compensate for the drawbacks in the present diagnosis method.
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Chapter 4

DATA MINING AND KNOWLEDGE

DISCOVERY

4.1 INTRODUCTION

In this information age, advances in our capability to both generate and collect data
can lead to a flood of data. The amount of data is growing exponentially in a wide

variety of fields. It has been estimated that the amount of data in the world doubles

every 20 months [Cios, Pedrycz and Swiniarski, 1998]. Databases today can range in
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size up to the terabytes - more than 1,000,000,000,000 bytes of data [Two Crows

Corporation, 1999]. A great deal of useful knowledge is hidden within this mass of

data, however such volumes of data clearly overwhelm the traditional manual
methods of data analysis. A new generation of techniques and tools is therefore
required to analyze this amount of data intelligently and automatically. Data mining

and knowledge discovery techniques are rapidly emerging to satisfy this need.

The term “knowledge discovery” was coined in 1989. It refers to the overall
process of discovering useful knowledge from data. It is defined as “the nontrivial
process of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data” [Cios et al., 2000]. Here, it implies that knowledge discovery
comprises several steps which involve such as data preparation, pattern searching,
and knowledge evaluation. Extracting a pattern means fitting a model to data, finding
structure from data or making decisions using data. Data mining is a major step in
the process of knowledge discovery, consisting of particular data mining algorithms

under some acceptable computational efficiency limitations, producing a particular

enumeration of patterns [Fayyad, Shapiro and Smyth, 1996a].

Basically, knowledge discovery is the process of using data mining methods
(algorithms) iteratively to extract what is deemed knowledge according to the

specifications of measures and thresholds, using the database along with any required
preprocessing, sub-sampling and transformation. The components of knowledge

discovery are variable in different description. Here, the process is divided into five

steps as follows:

1. Data cleaning and data preprocessing

Generally, data cleaning deals with removing noise or outliers if appropriate.
Data preprocessing covers many fields such as handling missing or wrong data,

developing an understanding of the application domain and the relevant prior

knowledge, collecting the necessary information to model, accounting for

time-sequence information.

2. Data selection

Each database may consist of many data sets and each data set may have a
considerable number of variables or attributes. The objective of this step is to select a

data set or to focus on a subset of variables or data samples from the data provided
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according to task requirements. It should greatly decrease the quantity of work so

that task-relevant data can be obtained.
3. Data mining

Data mining is the essential step in the knowledge discovery process. It searches
for patterns of interests according to the particular task, such as classification,
regression and summarization. The most commonly used techniques of data mining
are evolutionary computing, machine Learning (ML), neural networks, rough sets,
fuzzy logic, and Bayesian method. Many of these have been in use for more than a

decade in specialized analysis tools that work with relatively small volumes of data.

Each technique has its particular features tailored to different tasks.

4. Pattern evaluation
Since patterns are discovered after data mining, their significance in solving the

proposed tasks must then be evaluated. This includes understanding and interpreting

the patterns, from which the novel, particular and interesting ones can be found.

Sometimes if the patterns do not make sense, advice is sought from experts for

evaluation.

5. Knowledge discovery

The most novel and interesting patterns are chosen from the evaluation. Useful

knowledge or effective solutions are therefore provided in the final step of

knowledge discovery.
The process of knowledge discovery can involve significant iteration due to no

satisfactory knowledge perceived. Fig.4.1 shows the diagram of this whole process
[Cios, Pedrycz and Swiniarski, 1998; Cios et al., 2000; Fayyad et al., 1996b; Shaw et
al., 2001; Ramirez, 2000; Feelders, Daniels and Holsheimer, 2000].
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Figure 4.1 Knowledge discovery process.

4.2 SIMPLE ILLUSTRATIONS FOR DISCOVERED

PATTERNS

For the sake of complete understanding, some simple examples in data mining and

knowledge discovery are described in this section to demonstrate the power of these

techniques.

4.2.1 Finance

Credit risk 1s a crucial criterion for credit card or finance companies in dealing with
their customers. Prompt and exact evaluation of the credit risk leads to successtul
company operation. However, there i1s not always a pattern in deciding how to
determine a credit risk to an individual. Although hundreds and thousands of

customer records with many attributes are available, it is not easy to find
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relationships between them. Table 4.1 lists samples of customer records.

Notwithstanding there being many attributes, only a few of them are considered

important, such as income, years of job and debt.

Table 4.1 Samples of customer records [Two Crows Corporation, 1999].

In the first step of knowledge discovery, data cleaning and data preprocessing, only

the past ten years records were included in the dataset, because the credit system was
much different before then. The incomplete customer records were also removed

from the data. Then, the attributes in each customer records such as Name, Telephone
number were excluded from the dataset in data selection. A particular data mining

method, such as ID3 [Quinlan, 1986] or C4.5 [Quinlan, 1993], was applied to obtain

the patterns. The patterns acquired were evaluated according to their accuracy of
representing the dataset. This 1s the fourth step, pattern evaluation. The patterns with

the highest accuracy were selected, known as knowledge discovery. Two best

IF-THEN patterns (rules) were obtained as follows:

Pattern |
IF Income>£40,000 AND Age<30 AND Debt=High

THEN Credit risk= Bad Risk

Pattern 11
| IF Income<£40,000 AND Years of Job>5 AND 28<Age<42

THEN Credit risk= Good Risk

From the patterns, it is seen that age is a determinant of risk which may have

been ignored by the analysts [Two Crows Corporation, 1999]. This situation may

happen in many different circumstances in that some unconsidered attributes are
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disclosed as being very important. This is the significance of data mining and

knowledge discovery techniques.

4.2.2 Medicine

Example 1
A historical set of 9,714 medical records describes pregnant women over time.

The task was to discover rules that predict which future patients will be at high risk

of requiring an emergency cesarean-section delivery [Mitchell, 1999]. Table 4.2

gives an example of the patient records.

Table 4.2 N times records of Patient103.

I T I N T
S O N R
e T

The records with missing attributes were removed in data cleaning and data
preprocessing step. Some presumably unimportant attributes were excluded in data

selection. The data mining method used in this example was CN2 [Clark and
Boswell, 1989]. Pattern evaluation evaluated the ability that a pattern could predict
whether an emergency c-section was required. The pattern would help to predict the

probability that pregnant women will need an emergency c-section. This could

reduce the risk of giving birth.
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Pattern learned;
|

IF No previous vaginal delivery AND Abnormal second trimester Ultrasound
I

AND Malpresentation at admission j
THEN Probability of Emergency c-section is 0.6

7% of all pregnant women in the data set recetved emergency c-sections,

however the pattern identified a subclass at 60% risk for requiring c-sections.

Example 2
This example is for early diagnosis of rheumatic disease. To simplify the

description, only the pattern discovered is given which was:

IF Sex = male AND Age>46 AND Number of painful joints>3

AND Skin manifestations = psoriasis

THEN Diagnosis = Crystal induced synovitis

It assigns the diagnosis of crystal induced synovitis to male patients older than

46 years that have more than three painful joints and psorniasis as a skin manifestation

[Lavrac, 1999].
All examples given above are concerned with one type of pattern: rule, which is

the simplest and the most understandable. Data mining methods will be introduced

later.

4.3 DATA MINING ALGORITHMS

As stated above, data mining is extremely important in the knowledge discovery
process. Many kinds of data mining algorithms exist in the literature which can be

sorted into different categories by their function or by their method [Cios, Pedrycz
and Swiniarski, 1998; Fayyad, Shapiro and Smyth, 1996].
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4.3.1 By Function

Classification is learning a function that classifies a data item into one of several
predefined classes [Weiss and Kulikowski, 1991]. The term originated from pattern
recognition, for which a large number of classifiers were developed. Examples of
classification using data mining algorithms range from diagnosing diseases
[Bojarczuk, Lopes and Freitas, 2000] to classifying trends in financial markets [Apte

and Hong, 1996].
Regression is mapping a data item to a real-valued prediction variable. The

underlying idea is to construct a linear function explaining the data. The applications
in regression, which include estimating the probability that a patient will survive, are
estimated by the results of a set of diagnostic tests, or predicting consumer demand

for a new product as a function of advertising expenditure.

Summarization involves methods for finding a compact description for a
subset of data. It is an approach that characterizes data using a small number of
attributes. It 1s often applied to interactive exploratory data analysis and automated
report generation.

Dependency consists of finding a model that describes significant dependencies

between variables. In medicine, discovering related symptoms or must-combined

physical tests for a disease is an application of this domain. Investigating connected

retail goods, such as nails and hammers, is another application of dependency

analysis.
Deviation detection focuses on discovering the most significant changes in the

data from previously measured or normative values. Its prominent application is

predicting the amelioration and deterioration of diseases, and the quality of products.

4.3.2 By Method

Evolutionary computing can be seen as an optimization method driven by a
biological principle of the survival of the fittest. It exploits an entire population of

potential solutions and evolves them according to some genetically driven principles.
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There are three main algorithms used as the basis for evolutionary computing,

genetic algorithm (GA), genetic evolution strategy (ES), and evolutionary
programming (EP). GAs use fixed-length character strings to represent the genetic
information of a population of individuals which undergo genetic operations (for

example, crossover, reproduction, mutation) in order to find interesting patterns. ES

and EP share many similar features of GA. However, ES employs real-coded
parameters and relies on mutation as the genetic operators with a population size one.
EP dispenses with both genomic representations and with crossover as the genetic
operator. Genetic programming (GP) is an extension of GA, which is highly valued
by scientists nowadays. It continues the trend of dealing with the problem of
representation in GA by increasing the complexity of the individuals in the

population. Further details of GP are described below [Miettinen, 1999; Cios 1998:

Hiker and Beasley, 2000].

Machine Learning (ML) models the environment or generates a new data
structure that is different from the old one. The ability of a computer program

improves its own performance and aims at revealing the relationships within the
dataset (observations or experimentation), exploiting either deterministic or
non-deterministic methods [Cios, 1998]. The result of ML is provided in the form of

decision trees or production rules. ML methods can be classified into two groups: 1.
inductive learning of symbolic rules, such as induction of rules (CN2, C4.5), decision
trees (1D3, Assistant-R) and logic programming (FOIL, Progol and Claudien); 2.
statistical or pattern-recognition methods, such as k-nearest neighbours or

instance-based learning (IBL) [Cios, 1998; Kukar ef al., 1999; Bergadano, Giordana

and Saitta,. 1991].
Neural networks is an information processing method which models the

biological nervous system to process numeric data and building nonlinear
relationships between input and output. It was inspired by the mimicing of the
structure and function of the biological nervous system, such as the brain. The model
used In neural networks is composed of a large number of highly interconnected

processing elements (neurons) working in unison to solve specific problems. It is

able to solve large and complex problems in which there may be hundreds of

predictor variables that have many interactions. It is very effective in dealing with
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image data and solving many pattern recognition problems [Cios, 1998; Pudi, 2003;

Stergiou and Siganos, 1996].

Rough sets algorithms provide rigorous mathematic techniques for discovering
regularities in data and are particularly useful for dealing with imprecise and
inconsistent information. The principle of rough sets is lowering the precision in data
representation and making it possible to uncover patterns which may otherwise be
obscured by too many details. It is a discrete technique, requiring discrete types of
attributes and providing granular computations of approximations, classification. The
attribute-oriented rough sets technique reduces the computational complexity of
learning processes and eliminates the unimportant or irrelevant attributes. This
method has been shown to be very effective in revealing relationships within
imprecise data, discovering dependencies among objects and attributes, evaluating
the classificatory importance of attributes, removing data redundancies and
generating decision rules [Cios, 1998; Jagielska, Matthews and Whitfort, 1999].

Fuzzy logic is a mathematical methodology (and a philosophical ideology) that
1s similar in construct to Boolean algebra and similar in appearance to probability,
but more general than both in fundamental ideas [Pulo, 1999]. Fuzzy logic extends
Boolean logic to handle the expression of vague concepts and, as a result, solve the

problems with imprecise and incomplete data. To express imprecision quantitatively,
it introduces a membership function which indicates the degree of truth. This

membership function ranges from zero to one inclusively, where zero implies totally
untrue and one indicates perfectly true. It concentrates on representation of data at a
nonnumeric level [Krantz, 1999].

Bayesian method is the technique learning the Bayesian networks from the data

which represents the probabilistic relationships among a set of attributes. It provides
statistical methods for handling the required probability descriptors of the problem
and offers an efficient and principled approach for avoiding the over fitting of data. It

can handle incomplete data and learn about casual relationships [Cios, 1998;

Heckerman, 1997].
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4.4 GENETIC PROGRAMMING

4.4.1 Introduction

Genetic Programming (GP) is a relatively recent technology and is an important
branch in data mining techniques. It was proposed by Koza in 1987 and has grown
exponentially since then [Koza, 1992; Koza, 1994, Spector et al., 1999].

GP is based on the Darwinian principle of reproduction and survival of the
fittest and analogy of naturally occurring genetic operations such as reproduction,
crossover and mutation. It starts with an initial population of randomly generated
computer programs (individuals) composed of functional sets and terminal sets
appropriate to the problem domain. The individuals are usually expressed in tree

shapes. The functional sets may be, for example, standard arnthmetic operations,

standard programming operations, standard mathematical functions, logical functions,
or domain-specific functions. Depending on the particular problem, the computer
program may be Boolean-valued, integer-valued, real-valued, complex-valued,
vector-valued, symbolic-valued, or multiple-valued [Kenneth and Kinnear, 1994].

Each individual (computer program) in the population is then evaluated with respect

to its capability performing in the particular problems. This evaluation is called the

fitness function. The nature of the fitness function varies with the problem.

Thereafter, the individuals undergo the genetic operations depending on their fitness.
After applying different genetic operators on the individuals according to given
probabilities, a new generation of the population is created. The fitness evaluation,
genetic operation and creation of the new generation are executed iteratively until the

maximum number of generations is reached. The result of GP is the fittest
individuals (with highest or lowest fitness) produced along all generations [Koza,

1992; Bojarczuk, Lopes and Freitas, 1999; Langdon and Poli, 1997].
GP has been applied successfully to a large number of difficult problems like

automatic design, pattern recognition, robotic control, marketing, image processing,

and medical diagnosis. Koza et al. (1997) showed the ability of GP to automatically
design electrical circuits. Handley (1993) used GP to predict the shape of proteins
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using the composition of the proteins. Andre (1994) applied GP in optical character

recognition problems. Lee et al. evolved mobile robot controllers using GP and a
simulator and demonstrated the controller running on the physical robot [Lee,
Hallam and Lund, 1997]. GP was also employed by Andrews and Prager (1994) to
create strategies which for trading in simulated commodity and future markets. Poli
(1996) presented an image analysis method using GP. It was based on the idea that
image enhancement, feature detection and image segmentation can be re-framed as
filtering problems. Bojarczuk et al. diagnosed twelve types of chest pains using
genetic programming which had high accuracy levels [Bojarczuk, Lopes and Freitas,
2000]. Other applications of GP include using GP to find programs to do location
independent pattern recognition [Breunig, 1995] and using GP to discover the

cellular automata rule [Andre, Bennett III and Koza, 1996].

4.4.2 Genetic Operators

Several types of genetic operators have emerged during the evolution. Prior to

introducing genetic operators in details, the selection methods according to the

fitness of individuals are described. They determine which individuals can be

selected to do the particular genetic operation.

The most popular selection method is fitness-proportionate selection, first
introduced by Holland (1975). If fi) is the fitness of an individual i in the population,

the probability that the individual i will be selected to perform a particular genetic

operation is as following (assuming the higher the fitness, the better):

Probability = Mf ) (4.1)

D.fM

i=]

Where, M is the number of individuals in the population.
Another selection method is rank selection. In rank selection, all individuals are

sorted by ascending fitness:
fASfOILi<)
Each individual is assigned a rank r(i), relying on its order in the population,
where r(1)=1, r(i)=i and r(M)=M. So the probability for selection is determined by

the ranks:
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Probability = r() (4.2)

M

> r(i)

(=]

This method can reduce the potential domination of individuals with high fitness and

also exaggerate the difference between individuals with close fitness. However, this
may lead to slower convergence [Obitko, 1998; Koza, 1992].

Tournament selection can be viewed as an extension of rank selection. It

randomly picks N (¥ 2 2) individuals from the population. A rank selection is then
carried out on the subgroup with N individuals to select an individual [Smith, 2002;
Bennett, 2000]. The probability of selection is as follows:

Probability = N Nr(i)

M5 )

i=]

(4.3)

It may sometimes be described differently as selecting the individuals with the best

fitness from the subgroup instead of using rank selection [Koza, 1992; Burgess,
1999].
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4.4.2.1 Reproduction

Reproduction is the basic genetic operator of Darwinian natural selection and
survival of the fittest. It is an asexual operator. A single individual is selected from

the population according to the selection method and copied into the new generation.

The individuals with the best fitness in each generation are usually selected to do

reproduction. This guarantees that the best fitness from a subsequent generation will

never be worse than the best fitness from the prior generation.

4.4.2.2 Crossover

Crossover is a sexual operator which starts with two individuals and produces two
offspring (new individuals in next generation). The first individual (the first parent)
is selected from the population by the pre-decided selection method. The second

parent i1s generally chosen by means of the same selection method. The operation

First parent o

Second parent

l ° Second offspring
OO OE

Figure 4.2 Crossover
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then chooses a random point in each parent as the crossover point and swaps the
branches under the crossover points. An example of crossover 1s shown n Fig.4.2.

The first parent is an expression: ((a/8)x5)x(4-b): the second parent 1s:
¢+ (2 +a). Both of them are described tree-shaped as in Fig.4.2 (top). The crossover

point of the first parent is chosen to be the first “x” and the crossover point of the
second parent is the second “+°. The branches below the crossover points (inclusive
the crossover points) are separated from the parents and swapped. Two ofispring

(Fig.4.2 bottom) are finally produced and stored for the next generation.

4.4.2.3 Mutation

A mutation operator introduces random changes into the individuals 1n the
population. It is an asexual operator with only one parent involved and only one
offspring is produced for the next generation. The parent 1s selected with the
particular selection method. The mutation point of this parent 1s chosen randomly.

Thereafter, the branch below the mutation point (including the mutation point) is

New branch

Figure 4.3 Mutation
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discarded from the parent. A new branch is randomly generated and inserted at the

position of the discarded branch. Fig.4.3 shows an example of mutation. The selected

parent is: (2+a)x(4—-54) and the mutation point is ‘-’. The old branch, (4-5) is

replaced by a new generated branch, ¢/(6 —d) in this example. Its offspring is then

produced for the population of the next generation.

4.4.3 Individual Structure and Initial Population

The structure of individuals is a major point in GP which determines the effect of the

GP algorithm. Each individual is made up of functional sets and terminal sets

according to the grammar of the target problem. Different problems have specific
grammar, which represent the way of explaining and solving the problems.

Functional sets are a set of elementary operators, appropriate to the problem,
which are available as inner nodes in the tree-shaped individuals of GP. A function
can have no input but must have an output or outputs. Typical functional sets may
include [Koza, 1992; Beyer et al., 2002]:

» Arithmetic operations: {+, -, x, /}
» Mathematic operations: {sin, cos, exp, log}
s Boolean operations: {And, Or, Not}
» Logical operations: {If-Then-Else, Do-Until}
= Comparative operations: {<, >, =, £, 2, #}
Terminal sets are a set of variables or constants which are like leaves in the

tree-shaped individuals of GP. The format of the terminal sets is depended on the

various tasks. Terminals must have an input but no output.

A tree-shaped individual is shown in Fig.4.4, where ‘-’ and ‘/’ are functions; ‘c’,

Figure 4.4 Structure of individuals.
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‘6’ and °d’ are terminals.
Creating an initial population is the first operation in GP. In this stage,

functional sets and terminal sets are already decided but are required to be connected.
Three popular techniques of creating the initial population are presented here [Koza,
1992; Walker, 2001]. One technique is called full method; this method involves
creating tree-shaped individuals with a certain depth. It does not specify the number
of nodes in an individual but requires its final depth to be equal to a certain value d.
The depth means the number of layers in the tree-shaped individual. The individual
in Fig.4.4 has a depth of three but it is not a full tree. If a node in each individual has
a depth less than d, the element of the node is randomly selected from the functional
sets. If the node has a depth equal to d, the element of the node then is randomly

selected from the terminal sets. In other words, only the nodes in the deepest layer of

the individual are selected from the terminal sets and other nodes are chosen from the
functional sets.
The grow method 1s another technique of creating an initial population. It

generates tree-shaped individuals with variable shapes and depths up to a specified

maximum. Every node of the individual can be chosen from either the functional sets
or the terminal sets. The selection of nodes continues until a terminal is chosen or the
maximum depth is reached. This method provides a range of structures throughout
the population and may even produce individuals containing only one (terminal)
node. Fig 4.3 (top left) gives an individual created by the full method with a depth of
three; the individual in Fig 4.4 is created by the grow method with a depth of three
too, however the maximum depth can be greater than three. Noticeably, the grow
method can still create a full tree, but not vice versa.

The ramped half-and-half method is a mixture of both ‘full’ method and ‘grow’

method. It therefore creates individuals having a wide variety of shapes and depths

which have more possibility of including appropriate solutions for the problems. It
involves creating an equal number of individuals using a specified depth ranging

from 2 to the maximum depth. For each value of depth, 50% of individuals are

created by full method and the other 50% are produced by grow method.
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4.4.4 Process of Genetic Programming

Fig.4.5 is a flowchart of GP. The process of GP breeds computer programs to solve

problems by executing the following five steps:

1. Generate an initial population by means of a creating method (full, grow, ramped
half-and-half).

2. Compute and evaluate the fitness of each individual in the population.

3. Create a new population for the next generation using genetic operators
(reproduction, crossover, and mutation) which are applied to the individuals
chosen by a specified selection method (fitness proportion, rank selection, and
tournament selection) and increase the number of generation.

4, Repeat steps 2 and 3 until the termination criteria are satisfied (The termination

Create 1nitial population

Generation =Generation+1
‘—_

Compute and evaluate
the individual fitness in

the population

Termination
criteria
satisfied?

Yes

o

Create a new population
using genetic operations:
reproduction, crossover and
mutation with a probability

Figure 4.5 Flowchart of GP.
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criteria can be the approaching of the maximum generation or the obtaining of

the best fitness).
5. Acquire the solution of the target problem which is the individuals with the best

fitness appearing in any generation.

4.5 FUZZY LOGIC

4.5.1 Introduction

Fuzzy Logic was initiated by Zadeh in 1965 [Zadeh, 1965] at the University of
California in Befkeley as a way of processing data. However, it did not receive much
attention until 1974, when Mamdani and Assilian used this technique to regulate a

steam engine. The next major commercial development occurred in 1985, when

researchers at Bell laboratories developed the first fuzzy logic chip. This chip led to a

wide range of products such as cameras, camcorders and rice cookers. In 1993,

OMRON built the first fuzzy computer [Dutta, 1993]. Nowadays, fuzzy logic has

already become one of the fastest growing techniques of applied artificial

intelligence technology [Krantz, 1999].
Classic logical 1s based on Boolean logic, which assumes that every fact is

either entirely true or false (never both). Unfortunately, the inherent restriction of this
technique is that it 1s incapable of representing the imprecise and incomplete
concepts. For example, suppose that Boolean logic i1s used to identify whether a
person is ‘tall’ or ‘short’. If a threshold is given, that over 185cm is regarded as ‘tall’
otherwise i1s ‘short’. Therefore a person is regarded as ‘short’ if his height is 184cm
or 184.9cm, but 0.1cm or even 1 cm 1s too short to be noticeable.

Fuzzy logic extends Boolean logic to handle this type of problems and provides

the means of identifying an intermediate value. To express imprecision quantitatively,

it introduces a membership function that describes the degree of truth using real

values between zero and one (inclusive). A membership value of zero indicates
totally untrue and one indicates completely true. Any value between the two
extremes indicates a degree of partial membership to the truth. Reconsider the

example discussed above. If fuzzy logic is used to represent the height of a person,
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185cm would have a membership value of one and 150cm would have a membership

value of zero. Hence, 184cm would have a membership value very close to one, such
as 0.97 and 155¢cm would have a membership value close to zero, such as 0.1.

If Boolean logic is called a binary logic, then fuzzy logic may be called a
multi-valued logic. Using this logic, notions like ‘rather’, ‘very’, ‘a little’ can be

formulated mathematically and processed by computers. It enables the computers to

deal with problems in a more human-like way.

Fuzzy logic may appear similar to probability and statistics, however the term

70% has a different meaning in fuzzy logic and statistics. For example, Tom is 70%

tall. In the probability statement, it means that "There is a 70% chance that Tom is
tall" which supposes that there is a 70% chance that we know Tom is either tall or he
is not. But in the fuzzy logic statement, it means that "Tom has a 70% degree of

membership to be a tall people” which indicates that Tom is rather tall.

4.5.2 Membership Function

The membership function in fuzzy logic is a mathematic function which is variable

according to the particular problems. For example, the membership function of

tallness above can be described as:

0 .

Mombershin —  1€i8Ht =150 height <150cm
ST — 35  150cm< height <185cm

! height >185cm

Fig 4.6 shows a graphic representation of this membership function which is a very

general type.
Another type of membership function is shown in Fig 4.7. It shows an example

of the membership function of warmness. Suppose 18-25°C is warm, the temperature

under this range is considered as cold and over this range is as hot. The membership

function has a maximum one in the centre and decreases on both sides. The

membership function is expressed as follows:
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where T represents temperature.

In practice, the membership functions are much more complicated than in the
examples above. They are not all linear but non-linear which depends on the type of
problems. Moreover, the membership functions may be decided by a variety of
factors rather than one. Many of them are even unable to be described using

graphics.

4.5.3 Applications

As stated above, fuzzy logic is a well-suited technique to handle vague data and

model imprecise reasoning procedures. Many commercial applications of fuzzy logic
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Figure 4.7 Membership function of warmness.

relate to control system, which refer to the management of a mechanical or
environmental process [Krantz, 1999]. Practical applications of fuzzy logic are

[Bauer, Nouak and Winkler, 1996]:

= Automatic control of dam gates for hydroelectric-power plants (Tokio Electric

Pow.)
« Simplified control of robots (Hirota, Fuji Electric, Toshiba, Omron)

= Camera aiming for the telecast of sporting events (Omron)

Substitution of an expert for the assessment of stock exchange activities

(Yamaichi, Hitachi)
Preventing unwanted temperature fluctuations in air-conditioning systems

(Mitsubishi, Sharp)
» Efficient and stable control of car-engines (Nissan)

»  Cruise-control for automobiles (Nissan, Subaru)

Improved efficiency and optimized function of industrial control applications

(Aptronix, Omron, Meiden, Sha, Micom, Mitsubishi, Nisshin-Denki,
Oku-Electronics)
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Besides the practical applications listed above, fuzzy logic is also widely

employed in many other technical fields such as neural networks, genetic
programming, and clustering. It is also a major technique in this thesis and will be

used in later chapters.
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Chapter 5

MR IMAGE PREPROCESSING

5.1 IMAGE SOURCE AND IMAGE TYPES

Before starting the description of image processing techniques developed for this
thesis, the details of the MR images obtained are introduced in this section. All
images used in this thesis were acquired from a 1.5T GE NVI scanner in the

Southern General Hospital, Glasgow, UK. They were from 46 brain tumour patients.

Each of them has one of four tumour types, gliomas (high/low), meningiomas,
pituitary tumour, and medullablastma. There were 5 MR image modalities, which
were described as FLAIR-FSE, T,-SE, T,-FSE, PD-FSE and Tj-contrast. T;-SE
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represents a Ti-weighted MR 1mage produced by the conventional spin echo (SE)

pulse sequence. T>-FSE and PD-FSE images are T>-weighted and PD-weighted MR
images generated by a fast spin echo (FSE) pulse sequence. Tj-contrast is a

T)-weighted acquisition with contrast enhancement i.e. via an injection of

gadolinium-diethylene triaminopentoacetic acid (Gd-DTPA). A FLAIR-FSE image

1s therefore an MR image acquired by a special FLAIR with FSE MRI sequence
[Liang, 2003; Fonar, 2003]. Not every patient had all five types of images. All
techniques introduced 1n this thesis were applied to every image except blurred ones.

As images were generated independently, the basic parameters such as TR, TE and

IR were various. Therefore no such details were given in this thesis.

5.2 INTRODUCTION

Image preprocessing was the first part in the automatic brain tumour diagnosis

system developed for this thesis and comprises three major steps.

As stated above, the main goal of this thesis was to diagnose brain tumours
using 1image techniques alone without using an invasive procedure. The pivotal point
was to obtain brain tissue intensities through segmentation. However, segmentation
on raw MR images 1s not usually available due to their non-standard intensity values.
Even displaying each MR image using the same window setup is not possible. The
lack of a meaning for intensities also poses problems in image segmentation and
quantification. These problems lead to difficulties in continuing this work; thereby
the original MR 1mages acquired directly from the hospital had to be preprocessed
before segmentation. The first and the foremost step in image preprocessing part is
the standardization of intensity scales for MR images.

The second step is non-brain region removal. Generally, the brain MR images
contain the non-brain regions which are useless in this analysis since only the brain is
of interest. However, the existence of the non-brain regions may greatly affect the
segmentation results because they may have the similar range of intensities to tissues
of interest. So, the removal of the non-brain regions was also indispensable to the

image preprocessing part. The removal follows standardization because each image

60



Chapter 5§ MR Image Preprocessing

may require a different threshold if the intensity scales were not standardized.

To measure the tissue intensities, the brain MR images must be segmented into
different tissues, such as white matter, gray matter, CSF and brain tumours. High
contrast images enable much easier segmentation processes to be implemented,
especially between white matter and gray matter which often have similar intensity
values; otherwise it may cause failure of the segmentation. A contrast enhancement
step was therefore as essential as the standardization and the non-brain removal

before the segmentation.
In this chapter, three sections describe these steps respectively.

5.3 IMAGE STANDARDIZATION

As we know, one of the great advantages of MRI is that a variety of MRI modalities
are available to set up the different contrasts to different tissues. However, this
advantage also causes a major problem in that the signal intensities of MRI do not
have a fixed value, not even in the same body region of the same patient obtained on
the same scanner [Nyul and Udupa, 1999]. It indicates that the same tissue type
cannot be represented by the same scale of signal intensities in the different MR
images. Due to this, the intensities in different images are not comparable with each
other. It also implies that MR 1mages cannot be displayed using similar formats and
images are unable to be segmented automatically. The comparison of tissue
intensities can quantify the analysis, which is crucial in many image analyzing
systerﬁs. Intensity normalization is thus necessary. The automation of the analyzing
systems also requires normalized intensity scales, otherwise the system parameters

may be modified for each image. So, the standardization of intensity scales for MR

images must firstly be applied.
Attempts have been proposed to calibrate MR signals using phantoms during

acquisition. However, post-processing on MR images is more attractive using a

number of ever stored MR images. A standardizing method was presented by Nyul

and Udupa (1999). It offers a two step process consisting of a training step for each

type of MR image and body region, and a transformation step on each given image.
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It scales the original MR images into the same maximum and minimum intensity

values. However, this method is not suitable to images which include pathological
abnormalities especially in intensity-based analysis. For example, as we are working
on diagnosing brain tumour types based on tissue intensities, if each image has the
same maximum and minimum intensity, then the tumours in different images are
unable to be represented because they have similar intensities. To overcome this
problem, an easy post-standardization method is presented in this thesis which can

retain the basic intensity features of the images and standardize the intensity scales.
Fig.5.1 shows the histograms of two general MR images. One image had a
range of intensities from 0 to 800 and the other one was from 0 to 1800. Without
standardization, the first image may be displayed clearly by means of either unsigned
8-bit or 16-bit format. However, using the former the image may be too bright and
using the latter the image may be too dark. The second image probably has the same

type of problems, but it is obvious that the tissues in both images have rather distinct

intensity values.
From viewing of the histograms, the first peak usually represents the number of

background pixels, which is of no interest. Additionally, due to the high number of
background pixels in MR 1mages and their zero or very low intensities, they must be

excluded 1in standardization otherwise their existence may dominate the

standardization. The background pixels compose of the first peak of the histogram

which generally ends at around 5% of the maximum intensity value in the image.
However, this percentage may be variable for different images. It must be adjusted

interactively to improve the accuracy. Assume that the threshold percentage of the

maximum ranges from 1% to 10%. The histogram of the foreground pixels is

initially obtained without the intensities lower than the 1% of the maximum. If the
number of pixels at the first several low intensity values is not greater than 100 (this
number 1s especially used for 256x256 images and 400 for 512x512 images) in the
new histogram, the background peak is considered to be eliminated completely.
Otherwise, by increasing the percentage of the maximum intensity that the first peak
ends, 1% per loop, until the pixel number at the first several low intensities is lower

than 100. A simple implementation of discarding the background pixels is given by

Fig.5.2.

62



Chapter 5 MR Image Preprocessing

4
x 10
2.5 —— ] ) [ ] ] T | "1
2 i -
background pixels
) /
g 1.5 ~ -
= /
e ~
P
E 1 -
Z
0.5 -
0 200 400 600 800 1000 1200 1400 1600 1800
Pixel intensity
x 10*
25— 11— R 1 I S E—
2 -

—h
on

andh
7

Number of pixels

0.5 ]_

background pixels

il
100 200 300 400 500 600 700 800

Pixel intensity

Figure 5.1 Histograms of two MR 1images.
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i=0;
Threshold percentage= 0; New histogram= Original histogram;
While
[The total number of pixels of the lowest ten intensity values in the new
histogram >100}
and [Threshold percentage <10%],
i=i+1;
Threshold percentage=1% + (i-1)x1%;
Threshold= Threshold percentage x maximum intensity

New histogram= The histogram starting at the value of Threshold,;
End,

Figure 5.2 Implementation of removing background pixels.

With the background pixels excluded, the histograms of foreground pixels in
Fig.5.1 are shown in Fig.5.3. In order to find a curve to fit the distribution trend, the

number of pixels is normalized to between 0 and 1. Let o be the standard deviation
and 4 be the mean of the foreground pixel intensities in an MR image. Assume the
fitting line of the intensity distribution satisfy a normal distribution (‘*’ line) with the

standard deviation oy and the mean z4. Their relationship can approximately be

expressed as follows:

Oy ==, lty = i+ (5.1)

n

where 7 is the amplitude and typically chosen to be 4. dis a linear displacement. On
that account, this specific type of distribution is named “sub-normal distribution” in
this thesis. A data set which is satisfied as a normal distribution is that where about
05% of the data are within a distance of two standard deviations on either side of the
mean. The standard deviation therefore can be interpreted as the degree of the data
spreading from the mean [Siegel and Morgan, 1996]. As stated above, the foreground

pixel intensities in MR images satisfy a sub-normal distribution. Its histogram has a
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Figure 5.3 Histograms of foreground pixels in Fig.5.1 (top) (bottom).

similar shape to a normal distribution with a standard deviation four times higher
than that of the sub-normal distribution. It implies that the sub-normal distribution of
the foreground pixel intensities have about 95% of the intensities falling between
half the standard deviations on either side of the mean. The distribution can, however,
sometimes be displace to some extent from the mean. Therefore, the standard

deviation can also be described as the degree of spread of intensities from the mean.

The formula of the standard deviation is as follows:
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(5.2)
Where x; (i=1...N) is the intensity of any foreground pixel; N is the number of
foreground pixels in each image. orepresents the standard deviation and u represents

the mean of the data set. If the values of o and u are known, the shape of the

intensity histogram can then be determined which then indicates that the intensity

scale is approximately fixed. According to this idea, the standardization of intensities

can be implemented by transforming the foreground pixel intensities which will

result in each MR image having the same o and u.

Initially, the mean x and the standard deviation o are transformed as zero and

one. Dividing o on both sides of Eq. (5.2) gives:

(5.3)

It can also be expressed as follows:

(5.4)
This equation can be regarded as a new intensity value which has a zero mean and a

standard deviation of one. The new intensity has a form of:

x =Ji_H (i=1...N) (5.5)

However, the new intensities mostly cannot supply good contrasts in MR images.

More appropriate values of the mean and the standard deviation must be chosen for

the intensity scale standardization of all MR images.

Suppose X, o x, (i=1...N) are the final intensities after the standardization

and they have a mean as y; and a standard deviation as o;. They can be also

expressed similarly as in Eq. (5.4):

(5.6)
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Equaling Eq. (5.4) and Eq. (5.6),

xi—ﬂ___xsi_ﬂs
o o,
O
X, =——(Xx, = 1)+
si O'( / #) ﬂs (57)

So, Eq. (5.7) gives the relationship between the original intensities and the

standardized intensities. The chosen values of x;and oy should be those that give the

best contrasts in most MR images.

The MR images acquired for this thests were all unsigned 16 bit images; the
range of the intensities was between 0 and 65535. However, most images only had a
maximum intensity lower than 5000. To enhance the image contrast while
standardizing, x4 and o; were chosen to be 32500 and 10000 which enabled the
images to occupy the full range of intensities. After the transformation for

standardization, the intensities of foreground pixels in each MR image satisfy a

sub-normal distribution with the mean of 32500 and the standard deviation of 10000.

The process of standardization is summarized as follows:

(1) Determine the value of o; and 4 (o; =10000 and 4, =32500 for unsigned

16 bit images) -
(2) Eliminate the background pixels from an original MR image as in Fig.5.2.

(3) Compute the mean and the standard deviation of the foreground pixel

intensities for the original MR 1mage.
(4) Standardize the foreground pixel intensities according to Eq. (5.7).

(5) Add the background pixels back to the standardized pixels and obtain a new

MR image.
Fig.5.4 shows the standardized histograms of Fig.5.3. It is clear that these two

histograms still retain their original shapes and features as in Fig.5.3; but the

intensities in two images have similar scales.
Two example images are given to clarify these results. A Tj-weighted MR

image is shown in Fig.5.5, displayed as a binary image (0 to 1) and an unsigned 8-
bit image (0 to 255). However, this image has an intensity scale from 0 to 619. Both

displays cannot show its details. If the image is displayed as unsigned 16-bit (0 to

65535), it becomes completely dark and does not show any contours. Fig 5.6 shows
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Figure 5.4 Standardized histograms of Fig.5.3.

another T;-weighted MR 1mage also displayed as a binary and an unsigned 8-bit

image. It has intensities ranging from 0 to 904. The latter image has a relatively good
contrast and it is too dark if displayed as an unsigned 16-bit image. It demonstrates

that MR images cannot be displayed uniformly as described above.

Using the standardization process, both images above can be standardized and
displayed as unsigned 16-bit images. Their standardized images are shown in Fig.5.7.
Both of them can be displayed similarly with good contrasts. F1g.5.8 compares the
histogram of the original image in Fig.5.5 with the histogram after the

standardization. It also shows the histograms of the foreground pixels before and
after the standardization. It demonstrates the capability of this standardization

method which can standardize the intensity scales without affecting the original

features of MR 1mages.

All MR images in our study were displayed as unsigned 16-bit images after

standardization with good definition. Their intensities therefore have similar scales

which will be useful for later comparison.
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(a) binary display (b) unsigned 8-bit display

Figure 5.5 Example 1: A T;-weighted MR 1mage using different
display.

(a) binary display (b) unsigned 8-bit display

Figure 5.6 Example 2: A T -weighted image using different display.

(a) standardized image of Fig.5.5 (b) standardized image of Fig.5.0

Figure 5.7 Standardized results.
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Figure 5.8 Histograms of original and standardized MR image.
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5.4 REMOVAL OF NON-BRAIN REGIONS

Non-brain regions include structures such as the skull, fat, meninges and scalps,
which are not of interest in this thesis. However, their intensities may lie in a similar
range to other brain tissues such as brain tumours and consequently will affect the
segmentation results. Therefore the removal of the non-brain regions is an essential

step in image preprocessing. The most popular technique proposed for this task is

morphological processing.

5.4.1 Morphological Processing

Morphological processing is a non-linear image processing technique which is built
on the foundation of set theory. The basic idea 1s to extract relevant structures of the

image by probing the image with another set of known shape called structuring

element (SE) [Soille, 1999]. The shape of SE is usually symmetric, such as squares,

rectangles and circles. Commonly, this technique is applied to binary images whose

pixel values are only 0 (black) or 1 (white).
Logic operators, ‘AND’ and ‘OR’ are the basic blocks in morphological

processing. They consist of major morphological operators such as erosion and

dilation.

54.1.1 Erosion

Erosion is a morphological operator which is used to reduce the size of an image by
removing ‘on’ pixels from the boundaries of objects and also to increase the size of

holes by removing pixels around the perimeter of the hole. Consequently, it can help

to break down the connections between objects [Gaborski, 2001]. The symbol of

erosion is AG®B where A is the image and B is the SE. Let A be an image with pixels
a, and B be the SE with elements b. The erosion of A by B 1s defined as:
A®OB={ae A|la+be A,b e B} (5.8)

The function of erosion includes removing noise and other small objects,
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breaking the weak connections between objects, and increasing the size of holes

within an object.

Since it usually operates on binary images, erosion can be simply described as

follows:

AOB ={Va:anb # b= a=0,othwise,a =1} (5.9)
where A represents a binary image and B is still the SE.
Fig.5.9 shows an illustration of erosion. The object in the image 1s finally

eroded by the SE into a smaller one.

54.1.2 Dilation

Dilation is another major morphological operator. It 1s used to enlarge the size of

images by adding ‘on’ pixels to the boundaries of objects and decrease the size of

holes by adding the pixels around the perimeter of the holes. Dilation can be

regarded as a dual operation to erosion which can enhance the connections between

objects. The symbol used to denote dilation 1s A®B, where A is the image and B is
the SE. Let A be an image with pixels a, B be the SE with elements b, and ¢ represent

the new pixels in A after dilation. The dilation of A by B 1s defined as:
ADB={ce A|lc=a+b,ae A,b e B} (5.10)

The function of dilation 1s enlarging the objects, filling the holes and thickening

the connections between objects.

.!!!lll # |||iI||||

AGB

Figure 5.9 Illustration of erosion [Larsen 2000].
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The simple expression for binary dilation can be described as following:

ADB={Va:anb+ ® = a=1,otherwise,a =0} (9.11)

where @ 1s an empty set. Fig.5.10 shows an 1llustration of dilation. The object 1n the

image 1s enlarged after dilation.

S5.4.2 Removal of Non-brain Regions Using Morphological

Processing

Generally, there always exists some space between the non-brain regions and the
brain which has lower intensities than other parts of MR images. It leads to a dark
gap between the non-brain regions and the brain and the non-brain regions can be
removed using the morphological processing.

Since the morphological processing is commonly applied to binary images, a
threshold must be selected initially to obtain the binary mask of the images. The

optimal value of the threshold can enhance the gap between the non-brain regions

and the brain in the binary mask, thereby simplifying removal.

As stated above, the distribution of foreground pixel intensities in MR images is

a sub-normal distribution. The center of the histogram approximately represents the
mean of the intensities which approaches the intensity value with the maximal

number of pixels. As the gap between the non-brain and the brain always has lower

il
III . N

A B ADB
Figure 5.10 Illustration of dilation [Larsen 2000].
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Intensitjes than the mean. the threshold for the binary mask 1s chosen practically to
be the Intensity value corresponding to the most number of pixels in the histogram of
foreground pixels. The ideal threshold can let a binary mask have a pixel value of 0
for the gap and not have connected pixels within it. Fig.5.11 shows a standardized

T"'Weighted MR image and its foreground pixel histogram pointed to the threshold.

The process of the non-brain region removal can be summarized in five steps:

thresholding., erosion, labeling, dilation and masking.

(1) The threshold, the intensity value corresponding to the most number of pixels in

the foreground pixel histogram, is applied to create a binary MR image.

(2) Erosion is then employed to break down the connections between the brain and

the non-brain regions.
(3) Labeling finds the non-brain regions and isolates them from the binary image.

(4) Dilation recovers the non-brain regions as they are thinned down by erosion.

(5) Masking removes the dilated non-brain regions from the original MR image.

In this thesis. the SE of the erosion is composed of two ‘on’ pixels horizontally

S [T 1]. The SE of the dilation is a little larger than that of erosion. It is a square
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(a)
Figure 5.11 (a) a standardized T,-weighted MR 1mage (b) histogram of

foreground pixels.
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composed of four pixels . So the dilated non-brain region is slightly larger than

the corresponding one 1n the binary mask. It assures the entire non-brain region can

be removed completely.

F1g.5.12 shows the process of the non-brain region removal for the MR 1mage in
Fig.5.11. A binary mask (Fig.5.11 (a)) was obtained using the threshold 32128. Then.
the non-brain region was labeled (The peripheral section was the non-brain) followed
by an erosion operation (Fig.5.11 (b)); thereafter it was expanded through the dilation
(F1g.5.11 (¢)). The dilated non-brain region 1s clearly larger than the real non-brain
region. The brain region only image was acquired after removing the non-brain

region from the original image (Fig.5.11 (d)).

(¢)
Figure 5.12 Process of non-brain region removal.

(a) binary mask (b) non-brain region after erosion (c¢) non-brain region

after dilation (d) brain only
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The morphologic processing can deal with most MR images but it may fail in

certain types of images. For example, T>-weighted MR images display CSF with

high intensities, thus the number of pixels with high intensities accounts for a higher
proportion of an 1mage. However, the standardized mean was 10000 for any type of
image and this makes the non-brain regions in T>-weighted images exhibit a rather
thin layer. As a result, the non-brain regions are easily broken apart in the erosion and
may not be labeled completely. For this, a higher threshold may be chosen which was
the mean plus a standard deviation of the foreground pixel intensities. In addition, a
simple supplementary method was developed for this thesis to handle the non-brain
region removal for the unsuccessful examples. Some other types of problems

encountered in the non-brain region removal are also described.

5.4.3 Removal Using A Supplementary Method

As stated above, T;-weighted MR images have high intensities for CSF which
thinned the non-brain regions due to the equal standardized mean for every MR
image. The non-brain regions are hence very difficult to label if they are broken apart

in the erosion. In respect that the labeling is the main reason causing the failure of the

removal, its exclusion from the removal process may solve the problem.

An 1]lustration of brain images is shown in Fig.5.13. It represents a 256x256
brain MR 1mage. It was assumed that the non-brain regions have higher intensities
than the background; the intensities of the gap are lower than both the non-brain and
the brain. A threshold was chosen according to the determination of the threshold for
binary masks in morphological processing. The image was divided into four
quadrants as labeled in Fig.5.13. The pixel intensities were compared with the
threshold. The comparison started at the first column of the first quadrant from top to
bottom, and then from left to right; whereas 1n the second quadrant it was from top to
bottom, right to left. In the third quadrant the comparison started from bottom to top,
left to right and in the fourth quadrant it was from bottom to top, right to left. In each
column, the comparison stopped when the border of the quadrant was reached or

when the first pixel with a lower intensity than the threshold, right after a pixel with a

higher intensity than the threshold, was met. The reason was that the pixel intensities
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Figure 5.13 Illustration of brain image
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“'_l__

(a) binary mask (b) labeled 1image after erosion

Figure 5.15 Removal by morphological processing.

(a) original T|-weighted MR 1mage (b) brain region only

Figure S.16 Non-brain region removal by the supplementary method.

An example 1s given 1n Fig.5.14 to demonstrate the supplementary method. It shows
a standardized T>-weighted MR 1mage and 1ts brain only image obtained through the
supplementary removal method. After the removal, all background pixels are set to
zero. F1g.5.15 shows the morphological processing applied to the same T,-weighted
MR 1mage whose non-brain regions could not be labeled completely.

Beside T;-weighted MR 1mages, the supplementary method can be applied to
other images with thin or non-uniformed non-brain regions. Fig 5.16 shows a
T,-weighted MR image and the result of 1ts removal using the supplementary
method. Since the anterior part of the non-brain region has lower intensities than its
posterior part, it cannot be removed using the morphological processing. Fig.5.17

shows the failed removal using the morphological processing. This supplementary
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(a) binary mask (b) labeled 1image after erosion

Figure 5.17 Removal by morphological processing.

method could be applied to the most images whose non-brain regions cannot be

labeled as a whole.

5.5 TISSUE CONTRAST ENHANCEMENT

The intensities of white matter and gray matter in MR images are usually quite
similar leading to the difficu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>