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ABSTRACT 

Detecting and diagnosing brain tumour types quickly and accurately is essential to 

any effective treatment. The general brain tumour diagnosis procedure, biopsy, not 

only causes a great deal of pain to the patient but also raises operational difficulty to 

the clinician. In this thesis, a non-invasive brain tumour diagnosis system based on 

MR images is proposed. The first part is image preprocessing applied to original MR 

images from the hospital. Non-uniformed intensity scales of MR images are 

standardized relying on their statistic characteristics without requiring prior or post 

templates. It is followed by a non-brain region removal process using morphologic 

operations and a contrast enhancement between white matter and grey matter by 

means of histogram equalization. The second part is image segmentation applied to 

preprocessed MR images. A new image segmentation algorithm named IFCM is 

developed based on the traditional FCM algorithm. Neighbourhood attractions 

considered in IFCM enable this new algorithm insensitive to noise, while a neural 

network model is designed to determine optimized degrees of attractions. This 

extension can also estimate inhomogenities. Brain tissue intensities are acquired from 

segmentation. The final part of the system is brain tumour classification. It extracts 

hidden diagnosis information from brain tissue intensities using a fuzzy logic based 

GP algorithm. This novel method imports a fuzzy membership to implement a 

multi-class classification directly without converting it into several binary 

classification problems as with most other methods. Two fitness functions are defined 

to describe the features of medical data precisely. 

The superiority of image analysis methods in each part was demonstrated on 

synthetic images and real MR images. Classification rules of three types and two 

grades of brain tumours were discovered. The final diagnosis accuracy was very 

promising. The feasibility and capability of the non-invasive diagnosis system were 

testified comprehensively. 
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Chaptcr I Introduction 

Chapter I 

INTRODUCTION 

UBACKGROUND 

Brain turnours are composed of cells that exhibit unrestrained growth in the brain. It 

is a complex disease that affects more than 100,000 annually in the USA, and it is 

still on the increase. Worldwide this number is much higher. Although the incidence 

rate of brain tumours is lower than other cancers, it is still the most serious disease 

threatening human lives. The survival rate of brain tumours is significantly lower 

than that for most other types of cancers, as their cause is unknown. It is not clear 

how to reduce the risk of having brain tumours [The Brain Tumour Society, 2002]. 

Brain tumours are generally divided into two categories, primary and 

secondary. Primary tumours are tumours that begin in the brain. Secondary tumours 

I 



Chapter I Introduction 
start elsewhere in the body such as the lung, kidney, breast, or skin and spread, or 

metastasize, to the brain. Gliomas are the most common type of primary brain 

tumours which arise from the connective tissue of the brain. Types of gliomas 
include astrocytomas, glioblastomas, oligodendrogliomas and ependymomas. These 

tumours make up approximately 50% of all primary brain tumours. Meningiomas 

comprise approximately 25% of brain tumours, with pituitary tumours making up 

10% and acoustic neuromas comprising 7.5%. Other tumour types including 

chondrosarcomas, germinomas, hemangiomas, teratomas, and chordomas, make up 

the remaining 7.5% [The Wallace-Kettering Neuroscience Institute, 2003]. 

Detecting and diagnosing brain tumours quickly and accurately is essential to 

the effective treatment. Clinical brain tumour diagnosis normally includes three steps: 

neurological exam, brain image analysis and biopsy. When a brain tumour is 

suspected from the patient's medical history and symptoms, a neurological exam is 

used to check, for example, the eye movement, eye reflex, pupil reaction, sensation, 
hearing, balance and coordination of the patients. These can imply the signs of 
diminished mental function. The next step involves a brain image scan of the patients. 
It may detect the presence of a brain tumour and its exact size and location. The most 

common imaging techniques for brain turnour diagnosis are: 
Computed Tomouraphy (CT) CT is an established technique which uses 

X-rays or gamma rays to reconstruct cross-sectional image of the human body. It 

uses the different attenuation coefficients of different tissues after absorbing the rays 

to produce the anatomical structure of the body [Cho, 1975]. A CT scan often gives 

the location of the tumour and can detect swelling, bleeding and other associated 

conditions. 
Magnetic Resonance Imaging (MRD MRI does not involve ionizing radiation 

but provides information on the number and position of hydrogen nuclei within the 
body by detecting the Radio Frequency (RF) signals which are emitted following 

excitation by magnetic fields. It can often distinguish more accurately between 

healthy and abnormal tissue than CT [Liang, 2000]. MRI can generate images from 

various angles which enable 3D brain images to be constructed. It can supply a better 

view of turnours located near bone, smaller turnours, brainstern tumours, and 
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Chapter I Introduction 

low-grade tumours. However, the running cost of MRI scanner is high and a long 

scanning time is required. 

Positron Emission Tomographv (PET) PET yields transverse tomographic 

images of the distribution of positron-emitting radionuclides systemically 

administered to the human body. It provides an image of brain activity rather than 

structure by measuring levels of injected glucose (sugar) or methionine (amino acid) 

that have been labeled with a radioactive tracer [Robb, 1985]. Recent studies have 

shown that it may be easier to detect recurrent brain turnours with PET rather than 

CTand MRI. Fig. 1.1 shows CT, MRI and PET images of the brain. 

The final step of brain tumour diagnosis is a biopsy. A biopsy is a surgical 

procedure used to take a sample tissue from the suspected tumour to determine an 

exact diagnosis such as malignance and tumour types [The Brain Tumour Society, 

2002]. Generally, biopsies can be performed "open" or "closed". An open biopsy 

usually implies that a small window of bone is temporarily removed from the skull to 

allow the surgeon to remove a small portion of the suspected turnour under direct 

visualization. A closed biopsy is usually performed through a tiny hole, often no 
larger than one eighth of an inch. The tumour is not directly seen by the surgeon, 

rather a CT scan or MRI is used to determine from where the biopsy should be 

obtained. The suspected tumour sample can then be vic"ed Linder the microscope 

and a diagnosis is made. 

Figure 1.1 (I. cft) UI jAlvii-a 19971, (middle) MRI 113eardsley 20041 and (I-Ight) 
IIET[Mcdica. de 2004] images. 
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Chapter I Introduction 

A biopsy, however, can cause a great deal of pain to the patients and an open or 

closed biopsy is also a dangerous procedure, particularly the open biopsy. This raises 

the difficulty of diagnosis. Further more, not all brain tumours can be biopsied, for 

example brain stem gliomas, as it is too hazardous, as removing any healthy tissue 

from the brain stem can affect vital functions. So, a basic question arises "Is it 

possible to diagnose brain tumour types without an invasive procedure? " There are 

new developing techniques that may provide an answer to the question. 

1.2 AIMS 

The development of imaging techniques has greatly extended the range of human 

vision into realms that would otherwise be inaccessible, such as the anatomical 

structure inside the human body. In fact, much of what we know about ourselves and 

the world around us has been derived from images produced by various imaging 

devices. These imaging techniques may supply much more knowledge than we can 
imagine. 

To answer the question we stated above 'how to diagnose brain turnour types 

without an invasive procedureT again, the consideration needs to be given to 

imaging techniques. 

The main brain imaging techniques include CT, MRI, PET, functional MRI 

(fMRI) and magneto-encephalography (MEG). CT and MRI provide images of the 

brain structure. PET mainly focuses on the chemistry of brain activities and fMRI 

records physiological changes like blood flow in the brain. MEG supplies images of 

nerve activity. All these techniques need to be considered, but which one is the most 

suitable to our problem? 

Siromoney et al. (2000) first discriminated two types of brain tumours, 

meningioma and astrocytoma, using MR images analysis. Hence the possibility of 

using MRI for brain tumour diagnosis has been established. Besides the successful 

precedent, MRI has advantages over other imaging techniques. MRI scanner 

produces multi-dimensional images representing the spatial distribution of some 

measured physical quantity like other imaging techniques. However, unlike many of 
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Chapter I Introduction 
them, it can generate, two-dimensional sectional images in any orientation, 

three-dimensional volumetric images or even four-dimensional images representing 

spatial-spectral distributions [Liang and Lauterbur, 2000]. Secondly, MRI does not 

use ionizing radiation like CT and requires no injection of radioactive isotopes like 

PET. It is considered very safe for biological systems as there are no known harmful 

effects [Siromoney et al., 2000]. Finally, the most important advantage of MRI over 

other techniques is its high spatial resolution and contrast resolution [Wells et al., 

1996]. MR images can supply excellent discrimination of soft tissues, such as white 

matter and gray matter in the brain. Taking into account these factors, MRI is the 

most appropriate and most promising technique for non-invasive diagnosing brain 

turnours. 

Signal intensities are important information in an MRI scan. Different tissues in 

the brain MRI have different signal intensities and therefore have distinctive 

displays. Siromoney et aL (2000) utilized the measurements of MR signal intensities 

of brain tumour and white matter to diagnose tumour types. A pre-prepared data set 

of signal intensities for white matter, gray matter, cerebrospinal fluid (CSF) and brain 

tumours measured manually were applied in diagnosis. Two types of brain tumours 

were diagnosed merely just by using these intensities. Their results demonstrated the 

ability of MRI to diagnose brain tumours. The aim of this thesis was to set up an 

automatic system to diagnose the brain tumour types from MR images, instead of 

taking a biopsy. This system would be much more comprehensive than the work of 
Siromoney et al. It would use original MR images and make a decision on the 

tumour types from them. 

According to above statement, it is reasonable to assume that the brain tissue 

intensities and brain tumour intensities, or their relations in MR images may indicate 

the brain tumour type. To obtain the intensities of MR images, an image 

segmentation procedure and a preprocessing procedure are required which enable the 

original images to be segmented and meet other related requirements. The acquired 
intensities can constitute the classification rules for each tumour type. The structure 

of the automatic diagnosing system may therefore contain three major parts: image 

preprocessing, image segmentation and brain tumour classification (Fig. 1.2). 

Segmenting brain tissues precisely is a key step which determines the direction 
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Chapter I Introduction 
of our fin-ther work. However, the original MR images usually have various signal 
intensities. This makes the intensities in different images impossible to compare. 
Therefore the preprocessing procedure before segmentation is crucial, as it must 

standardize the signal intensities. This is the first major difficulty that needs to be 

addressed in this work. In addition, the preprocessing procedure must remove the 

non-brain regions from MR images due to the redundancy of the non-brain regions in 

the brain analysis. Presenting an easily manipulated method for the accurate removal 

of the non-brain regions should also be part of this system. Contrast enhancement is 

another important consideration in preprocessing because it may reduce the difficulty 

of the following segmentation. 

Tissue segmentation is an imperative step before measuring tissue intensities. 

Manual segmentation by an expert operator is too time-consuming. It involves not 

only a large amount of work, but also a mass of data and its accuracy may be 

degraded by different human operators. An automatic segmentation method is 

therefore an important part of this work. A number of algorithms based on 

approaches such as histogram analysis, region growing, edge detection and clustering 
have been proposed in the literature [Pal and Pal, 1993; Robb, 2000]. However, they 

Brain 
Tumour MRI 
Patients Scan 

Original MR Images 

Image Image Brain Tumour 
Preprocessing Segmentation Classification T 

Figure 1.2 Structure of brain tumour diagnosing system. 
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Chapter I Introduction 
all have some shortcomings. Therefore, the most important task in this thesis is to 

develop a robust algorithm for brain MR image segmentation, which should be 

robust for most types of MR images. The average intensities of different tissues 

should be easy to obtain in each image after segmentation. 

The initial purpose of this thesis was to discover the rules for predicting the 

brain turnours using the tissue intensities acquired. A large number of data (tissue 
intensities) can be collected from previous processing. In order to discover useful 
rules from this data, data mining and knowledge discovery techniques would be 

employed. Tumour diagnosis may be categorized as a classification problem which 
aims to find classification rules for each brain tumour type and classify the tumour 

correctly. Classification methods used by data mining and knowledge discovery 

techniques include for example, decision tree induction, neural networks, Bayesian 

classification, genetic algorithms, genetic programming, and rough sets. Selecting a 
proper classification method can greatly improve the accuracy of tumour diagnosis 

and save computing time. This is iherefore another important aspect of the thesis. 
Necessary improvements to match the features of the medical data must also be 

considered. 
In summary, the primary goal of this thesis is to present a new method to 

diagnose brain turnours non-invasively. Three major parts will be needed for this. 

The first part is image preprocessing, from which the signal intensities of the brain 

tissues can be prepared for the following process of segmentation, by standardizing, 

non-brain removal and tissue contrast enhancement. The second one is segmentation. 
A powerful segmentation method needs to be developed to overcome the 

shortcomings of other segmentation methods. The last part is a data mining and 
knowledge discovery step. This is required to discover the classification rules for 

each brain tumour type using an appropriate classification method. It is expected that 

good accuracy of tumour diagnosis would be achieved. 
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Chapter I Introduction 

1.3 THESIS ORGANIZATION 

The first four chapters of this thesis cover the fundamental description of all fields 

involved in this thesis. The next three chapters review present work and propose 

novel procedures to diagnose brain turnours non-invasively. The last chapter presents 

conclusions. 
Chapter 2 reviews the basic principle of MRI technique, the characteristics of 

MRI and the artifacts in MR images. 

Chapter 3 introduces an overview of brain tumours. It includes tumour 
definition, types of brain turnours and the common diagnosis methods. 

Chapter 4 presents a general introduction of data mining and knowledge 

discovery techniques. Fuzzy clustering and genetic programming, two essential 

methods in this approach, are fully described in this chapter and then provides the 
foundation of the later work. 

Chapter 5 details the methodology applied in image preprocessing. It comprises 
three main sections: image standardization, the non-brain region removal and tissue 

contrast enhancement. The first section describes the standardization process for 

image intensities by means of statistical features of intensities. The second section 

presents the techniques for the removal of non-brain regions using morphological 

operations. The third section proposes the technique for tissue contrast enhancement, 

especially between white matter and gray matter, using the histogram equalization. 
Chapter 6 introduces an improved fuzzy clustering algorithm developed for MR 

image segmentation. Neural networks are also used to decide the optimized 

parameters for this algorithm. The robustness of the proposed method to noise is 

evaluated by various types of images and also compared to other segmentation 

methods described in the literature. 

Chapter 7 presents a fuzzy logic based genetic programming method to deal 

with the data mining task of brain tumour classification. It overcomes the drawback 

in present classification methods in multi-class classification problems. The 

characteristics of medical data are comprehensively considered during the 
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Chapter I Introduction 
classification. Its performance is compared and evaluated with other classification 

methods by applying it to Iris data and Wisconsin breast cancer data. The 

classification rules for different MRI modalities and different brain tumour types are 
described. 

Chapter 8 summarizes the thesis with the main conclusions and 

recommendation for future work. 

t 
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Chapter 2 

MAGNETIC RESONANCE IMAGING 

2.1 INTRODUCTION 

2.1.1 History of MRI 

Magnetic resonance imaging (MRI) has become the primary technique in the routine 
diagnosis of many diseases, replacing and sometimes surpassing computed 
tomography (CI). MRI has particular advantages because it is non-invasive, using 

non-ionizing radiation, and has a high soft-tissue resolution and discrimination in any 
imaging plane. It may also provide both morphological and functional information. 

The resultant MR image is based on multiple tissue parameters used, any of which 
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Chapter 2 Magnetic Resonance Imaging 
can modify tissue contrast. In its development MRI has incorporated a 

multi-disciPlinary team of radiologists, technicians, clinicians and scientists who 

have made, and are continuing to make combined efforts to further extend the 

clinical usefulness and effectiveness of this technique. 

The first successful nuclear magnetic resonance (NMR) experiment was made 
in 1946 independently by two scientists in the United States [Ellard, 2003]. Felix 
Bloch, working at Stanford University, and Edward Purcell, from Harvard University, 
found that when certain nuclei were placed in a magnetic field they absorbed energy 
in the radiofrequency range of the electromagnetic spectrum, and re-emitted this 

energy when the nuclei returned to their original state. The strength of the magnetic 
field and the radiofrequency matched each other as earlier demonstrated by Sir 
Joseph Larmor (Irish physicist 1857-1942) and is known as the Larmor relationship 
(i. e., the angular frequency of precession of the nuclear spins being proportional to 
the strength of the magnetic field). This phenomenon was termed as NMR. 

With this discovery, NMR spectroscopy was invented and soon became an 
important analytical method in the study of the composition of chemical compounds. 
For this discovery Bloch and Purcell were awarded the Nobel Prize for Physics in 

1952. Interestingly, Dr Isidor Rabi, an American physicist who was awarded the 

Nobel Prize for Physics in 1944 for his invention of the atomic and molecular beam 

magnetic resonance method of observing atomic spectra, came across the NMR 

phenomenon in the late 1930's but considered it to be an artifact of his apparatus and 
disregarded its importance [Ellard, 2003]. During the 50's and 60's NMR 

spectroscopy became a widely used technique for the non-destructive analysis of 

small samples. Many of its applications were at the microscopic level using small (a 

few centimeters) bore high field magnets. 
In the late 60's and early 70's Raymond Damadian, an American medical doctor 

at the State University of New York in Brooklyn, demonstrated that a NMR tissue 

parameter (termed T, relaxation time) of tumour samples, measured in vitro, was 

significantly higher than normal tissue. Although not confirmed by other workers, 
Damadian intended to use this and other NMR tissue parameters not for imaging but 

for tissue characterization (i. e., separating benign from malignant tissue). This has 

remained the "Holy Grail" of NMR which is yet to be achieved due mainly to the 



Chapter 2 Magnetic Resonance Imaging 
heterogeneity of tissue. His description of relaxation time changes in cancer tissue 

was one of the main impetuses for the introduction of NMR into medicine. 

In 1973, a short paper was published in Nature entitled "Image formation by 

induced local interaction; examples employing magnetic resonance" by Paul 

Lauterbur, a professor of Chemistry at the State University of New York. In this 

seminal paper Lauterbur proposed using magnetic field gradients to distinguish 

between NMR signals originating from different locations. He termed this new 
imaging technique as zeugmatography (from the Greek zeugmo meaning yoke or a 
joining together) [McRobbie et al., 2003]. This referred to the joining together of a 

weak gradient magnetic field with the stronger main magnetic field allowing the 

spatial localization of two test tubes of water. This imaging experiment moved from 

the single dimension of NMR spectroscopy to the second dimension of spatial 

orientation being the foundation of MRI. The technique was called NMR imaging 

rather than MRI. The 'N' was dropped because the term 'nuclear' implied a 

connection with nuclear energy. 
Lauterbur's idea revolutionized NMR because it opened the field to imaging. As 

a result, selective excitation or sensitization of tomographic image slices was 
invented at the University of Nottingham, England in 1974 by Alan N. Garroway, 

Peter K. Granncll, and Peter Mansfield [EMRF Foundation, 2003]. In 1975, Richard 

Ernst's group in Zurich invented two-dimensional Fourier transform imaging (21) 

FT). The first practical 2D FT imaging method, dubbed 'spin warp', was developed 

by Bill Edelstein and Jim Hutchison at the University of Aberdeen, Scotland in 1980. 

There are other milestones in the development of MRI for medical applications. 
By 1975, Peter Mansfield and Andrew A. Maudsley proposed a line technique which, 
in 1977, led to the first image of in vivo human anatomy, a cross section through a 
finger. In 1978, Mansfield presented his first image through the abdomen. In 1977, 

Hinshaw, Paul Bottomley, Neil Holland, Moore, and Brian Worthington and 

collaborators succeeded with an image of the wrist. More human thoracic and 

abdominal images followed, and by 1978, Hugh Clow and Ian R. Young, working at 
EMI, reported the first transverse NMR image through a human head. Two years 
later, William Moore and colleagues presented the first coronal and sagittal images 

through a human head. 
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Chapter 2 Magnetic Resonancc finaging 

All of the research described above contributed to a completely new imaging 

technique. Nowadays, MRI is one of the most popular techniques for clinical 

imaging where the potential contrast between normal tissues and abnormal tissues is 

many times greater than that offered by X-ray technology and ultrasound. 

2.1.2 Basic Principles of MRI 

Clinical MRI uses the magnetic properties ofhydrogen and its interaction with both a 

large external magnetic field and a radio frequency (RF) to produce highly detailed 

images of the human body. Fig. 2.1 shows a sketch of MRI device. MRI is a dynamic 

and flexible technology that allows one to tailor MR images to the anatomical part of 

interest and to abnormal changes in the body. 

In order to understand MRI, it is necessary to understand the properties ofatorns. 
The atom consists of a central nucleus and orbiting electrons. The nucleus contains 

nucleons which are subdivided into protons and neutrons; protons are positive 

charged. neutrons have no charge and electrons are negatively charged. The atomic 

number is the number of protons in the nucleus which determines the type ofelement 

the atoms make up. Mass number is the sum of the neutrons and protons in the 

nucleus. In a stable atom, the number of negatively charged electrons equals the 

number of positively charged protons. Atorns with a deficit or excess number of 

electrons are called ions I Westbrook, 2002 1. 

Figure 2.1 MRI machine [Wilson Memorial I lospital 2003 1. 
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Chapter 2 Magnetic Resonance Imaging 

Three types of motion are present within the atom. Electrons spin on their own 

axis and orbit the nucleus, the nucleus itself spin on its own axis. The principles of 
MRI rely on the spinning motion of specific nuclei in biological tissues, known as 
MR active nuclei. The hydrogen nucleus is the MR active nucleus used in clinical 
MRI because it is abundant in the human body (in fat and water, 70% of' the body is 

made up of water). The simple hydrogen nucleus consists of one proton, and no 

neutrons. Due to the presence of only one proton, the hydrogen atom has a positive 

charge and an atomic number of 1. Any electrically charged particle which moves 

creates a magnetic field called a magnetic moment. Therefore the hydrogen nucleus 
induces a magnetic field around itself. The other reason for the use of hydrogen 

nucleus is that its solitary proton provides a relatively large magnetic moment. The 

magnetic moment of hydrogen is called the net magnetization vector (NMV) 

[Westbrook and Kaut. 2002]. 

Usually the magnetic moments are randomly orientated without an external 

magnetic ficid. When a human body is placed in a large magnetic field Bo, many of' 

the free hydrogen nuclei align themselves with the direction of the magnetic field and 

constitute the NMV of the human body (Fig. 2.2). Each hydrogen nucleus that makes 

up the NMV spins on its axis. The influence of' the external magnetic ficid Bo 

produces an additional spin, or wobble ofthe NMV around BO. This secondary spin is 

called precession. The speed at which the NMV wobbles around Bo is called tile 

precessional Frccluciicý. The value ol'the precesslotial fi-equeiicy is proportimial to the 

(a) (b) (C) 

Figure 2.2 (a) Spinning proton (b) No magnetic lield present (c) Magnetic field 

present I King 2003]. 
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strength of the applied magnetic field. The stronger the magnetic field, the higher the 

precessional frequency. It is described as follows: 

po = yBo (2.1) 
This expression is stated as the Larmor equation, so the precessional frequency is 

often called the Larmor frequency, where y is the gyromagnetic ratio, which is a 

constant and expressed as the precessional frequency of a specific MR active nucleus 

at 1.0 T. The gyromagnetic ratio of hydrogen is 42.57MHz/T [Mackiewich, 1995]. 

Resonance refers to the property of an atom to absorb energy only at the Larmor 

frequency. Energy at the Larmor frequency of hydrogen at all magnetic field 

strengths in clinical MRI corresponds to the radio frequency (RF). To induce 

resonance in hydrogen, an RF pulse of energy must be applied. The energy must also 

be delivered at 90" to the NMV and main magnetic field (Bo). In the first part of 

resonance, the hydrogen nuclei absorb energy from the RF pulse. As a result, NMV 

moves out of alignment, 90" away from BO, and lies in the transverse plane. Then, the 

magnetic moment of the hydrogen nuclei within the transverse NMV moves into 

phase with each other. 
A receiver coil is situated in the transverse plane. As the NMV rotates around 

the transverse plane as a result of resonance, it passes across the receiver coil 
inducing a voltage in it according to Faraday's law. This voltage is the MR signal. 
Once the RF pulse is removed, the energy of the NMV given by the RF pulse starts 

to decrease because the NMV tries to realign with B0. The amplitude of the MR 

signal consequently decreases. This is called free induction decay (FID). 

Gradients 

The imaging system must be able to locate the detected signal spatially in three 

dimensions, so that it can position each signal at the correct point on the image. This 

task is performed by magnetic field gradients. Gradients are alterations to the main 

magnetic field and are generated by coils of wire located within the bore of the 

magnet through which current is passed. The passage of current through a gradient 

coil induces a gradient magnetic field around it, which either subtracts from or adds 

to the main static magnetic field strength Bo. The strength of Bo is altered in a linear 

fashion by the gradient coils, so that the magnetic field strength and therefore the 
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precessional frequency experienced by nuclei situated along the axis of the gradient 

can be predicted. This is called spatial encoding. 

Slice selection 
Nuclei experience an increased magnetic field strength whose precessional 

frequency increases and vice versa. Therefore the position of a nucleus along a 

gradient can be identified according to its precessional frequency. There are three 

gradient coils situated within the bore of the magnet and these are named according 
to the axis along which they act when they are switched on, i. e. The Z gradient alters 
the magnetic field strength along the Z axis of the magnet. The magnetic centre is the 

centre point of the axis of all three gradients and the magnetic field strength always 

remains the same as Bo. If the Z gradient is on, the magnetic field strength and 

therefore the precessional frequency of nuclei located along the Z axis vary linearly 

from one end of the magnet to the other. Therefore a specific point along the Z axis 
has a specific precessional frequency. In this way, a single transverse slice can be 

selectively excited without the excitation of other slices. If a gradient along the X 

axis were used instead of the Z gradient, the slices selected would be a sagittal slice. 
Similarly, aY gradient would select a coronal slice. By the combination of X, Y and 
Z gradients, any plane may be chosen. 

Frequency encoding 
Once a slice has been selected, the signal coming from the slice must be located 

along both axes of the image. The signal is usually located along the long axis of the 

anatomy by a process known as frequency encoding. When the frequency encoding 

gradient is switched on, the magnetic field strength and therefore the precessional 
frequency of signal along the axis of the gradient vary linearly. The gradient 

produces a frequency difference or shift of signal along its axis. The signal can now 
be located along the axis of the gradient according to its frequency. The direction of 
frequency encoding can be selected by the operator so that it encodes the signal 

along the long axis of the anatomy. In coronal and sagittal images, the Z gradient 

performs frequency encoding. In transverse images, the X gradient performs 
frequency encoding, but the Y gradient for brain images. 
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Phase encoding 
The signal is located along the short axis of the anatomy by a process known as 

phase encoding. When the phase encoding gradient is on, the precessional frequency 

of nuclei along the axis of the gradient is altered. As the speed of precession of the 

nuclei changes, so does the accumulated phase of the magnetic moments along their 

precessional path. Nuclei that have sped up, due to the presence of the gradient, 

move further around their precessional path. Nuclei that have slowed down, due to 

the presence of the gradient, move ftirther back around their precessional path. There 
is now a phase difference or shift between nuclei positioned along the axis of the 

gradient. After. the phase encoding gradient is switched off, the magnetic field 

strength experienced by the nuclei returns to the main field strength BO. Therefore the 

precessional frequency of all the nuclei returns to the Larmor frequency. However, 

the phase difference between the nuclei remains. This difference in phase between 

the nuclei is used to determine their position along the phase encoding gradient. 
The basic principles of MRI have been described [Westbrook and Kaut, 1994; 

Bushong, 1995] and the details of different types of RF pulse sequences are 
described in the next section. 

2.2 MRI PARAMETERS 

Many parameters are introduced in MRI. The most common ones are the strength of 

magnetic field, the Larmor frequency, the relaxation times (TI, T2), the repetition 
time (TR), the echo time (TE). These are all relevant to MR image generation. 

The magnetic field and Larmor frequency has already been described in section 
2.1. The strength of the magnetic field used in most clinical MRI units is 1.5 Tesla or 
above and the corresponding Larmor frequency of the protons is 64 MHz. 

As stated above, after the removal of the RF pulse, the energy of NMV 

decreases. The process is called relaxation. Relaxation then results in the recovery of 
magnetization in the longitudinal plane called T, recovery and decay of 

magnetization in the transverse plane called T2 decay. Different tissues undergo 
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different rates of relaxation which create image contrast. Tj recovery is caused by the 

nuclei emitting their energy to the surrounding lattice known as spin lattice 

relaxation. Energy released to the surrounding lattice causes the nuclei to recover 
their magnetization. The rate of recovery is an exponential process, with a recovery 
time constant called T1. Tj is the time that 63% of the longitudinal magnetization is 

recovered. T2 decay is caused by nuclei exchanging energy with neighbouring nuclei 
known as spin-spin relaxation. It results in a decay of transverse magnetization. The 

rate of decay is also an exponential process with a decay time constant T2. T2 is the 

time that 63% of the transverse magnetization decayed. 

The repetition time (TR) is the time from the application of one RF pulse to the 

application of the next RF pulse, measured in milliseconds (ms). It determines the 

amount of Tj recovery that will occur. The echo time (TE) is the time from the 

application of the RF pulse to the peak of the signal induced in the coil and is 

measured in ms. TE controls the amount of T2 decay that will occur. Fig. 2.3 shows 
the sketch of TR and TE. 

Three types of MR images are commonly used, TI-weighted, T2-weighted and 

proton density (PD) weighted. A Ti-weighted image is an image whose contrast is 

predominated by T, signals. To achieve this, TR must be short in order to exaggerate 
T, and TE must be short in order to diminish T2. A T2-weighted image is created by a 
long TE and a long TR whose contrast in predominately determined by T2 signals, 
because TR is long to diminish Tj and TE is long to exaggerate T2. A PD weighted 
image is an image dependent primarily on the density of protons by minimizing the 

effects of T, and T2. A long TR and short TE are chosen to diminish both T2 and T, 

TR 

Signal 

I I"j 

I TE I 

Figure 2.3 TE and TR. 
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[Fonar Corporation, 2003]. Typical values of TR and TE are [Westbrook and Kaut, 

2002]: 

Long TR: over 2000 ms 
Short TR: 250-700 ms 
Long TE: over 60 ms 
Short TE: 10-25 ms 
In TI-weighted images, tissues with short T, recovery time such as fat are bright 

(high signal). Because they recover most of their longitudinal magnetization during 
TR, more magnetization is available in order to allow them to be flipped into the 
transverse plane by the next RIF pulse. In contrast, they are dark (low signal) in 
T2-weighted images. Tissues with long T2 decay time are bright, such as water, 
because they retain most of their transverse coherence during the TE period. In PD- 

weighted images, tissues with a high proton density, such as cortical bone are bright 
because the high number of protons results in a large component of transverse 

magnetization. Table 2.1 shows the brightness of some typical tissues in different 

types of MR images. 

Table 2.1 Brightness of typical tissues in different MR images [Hesselink, 2003]. 

TI-weighted T2-weighted PD-weighted 

Fat Bright Dark Bright 

Cyst Dark Bright Grey 

White matter Bright Grey Grey 

Gray matter Grey Bright Bright 

CSF Dark Bright Grey 

2.3 MR SIGNALS 

Based on the introduction above, the implementation of MRI required the body to be 

placed in a main, uniform magnetic field which is then is excited with another 
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oscillating magnetic field at the Larmor frequency. An MR signal of a slice is thus 

generated. The signal expression is as following assuming that the nuclear 

magnetization is fully relaxed befoie the following 90' RF pulse applied: 

S(t) =k y)e-(IT2 -""I'd f fp (x, e My (2.2) 

Where ctb is the Lannor frequency, p(xy) is the spin spectral density function which 

is specific to different tissues. (xy) are the spatial coordinates. k is a proportional 
coefficient. The detected magnitude of MR signal is obtained from the real part: 

S, (t) =kf 
fp(X, 

y)e-tIT2 cos co,, tdxdy (2.3a) 

and the imaginary part: 

Si (t) =kf 
fp(x, 

y)e-'IT2 sin w,, tdrdy (2.3b) 

A set of RIF pulses applied to produce a specific form of MR signal is called a 

pulse sequence. Signals are determined by variable parameters based on pulse 

sequences used [Hornak, 1996]. Spin echo (SE) pulse sequences are one of the most 
basic pulse sequences used in MRI. It consists of a 901 excitation pulse followed by a 

180* rephrasing pulse and an echo. An echo is in fact the signal generated in the 

receiver coil as shown in Fig. 2.4. 

The MR signal of repeated SE pulse sequences can be defined as a function of 
TI, T2, TR and TE [Stark and Bradley, 19991. Its maximum amplitude is: 

S =kp(I-e -TRITI )e -TEIT2 (2.4) 
Fast spin echo (FSE) sequence is a simple extension of SE sequence. It uses a 

90' pulse followed by a series of 180' rephrasing pulses to produce multiple echoes 
in a given TR [Westbrook and Kaut, 1994]. 

Inversion recovery (IR) sequences are another type of pulse sequence. They 

begin with a 180" inverting pulse followed by a 90" pulse and a FID is generated 

after them. It is shown in Fig. 2.5. The maximum MR signal of no repeated IR 

sequence can be expressed as follows: 

S= kp(l - 2e-771TI) (2.5) 

Where, TI is the time between the 180* inverting pulse and the following 90' pulse, 

and is known as inversion time. If the IR sequence repeats at every TR seconds, the 

signal becomes: 
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RF 

Signal 

RF 

Signal 

t 

hcno 

Figure 2.4 Spin echo sequence and signal. 

Figure 2.5 Inversion recovery sequence. 

t 

S= kp(l - 2e-7"'l + e"Rlr') (2.6) 

Fluid attenuated inversion recovery (FLAIR) is a variation of IR sequence. It is 

an MRI pulse sequence in which fluids such as CSF appears dark and most lesions 

including MS plaques, other white matter lesions, turnours, edema, and acute infarcts 

appear bright. 

However, this MRI signal is a sum from all parts of the human body. Because 

the human body is not spatially homogeneous, it is necessary to differentiate the 

signals from different parts and reconstruct MR images. By far the most common 

method to reconstruct MR images is 2D FT (2-dimenional Fourier Transform), also 

called 'spin-warp'. The details of MR image reconstruction can be found in [Liang, 

2003]. 
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2.4 MRI ARTIFACTS 

Artifacts are features in MR images produced by various complications of the 
imaging process. They result in an image that does not portray (in the simple visual 

sense) an accurate representation of a slice of tissue [Savoy and Jovicih, 2001]. 

Examples of sources of artifacts include chemical shift, aliasing, RF inhomogeneity, 

motion, flow, truncation, and partial volume. Almost all MR images have to some 

extent artifacts and some of these may significantly affect the quality of MR images 

and even cause incorrect diagnosis. This section presents the most common artifacts 

encountered in MRI [Ballinger, 1996]. 

Chemical shift artifact: 
The chemical shift artifact is commonly noticed in the spine at the vertebral body end 

plates, in the abdomen, and in the orbits where fat and other tissues form borders. It 

is caused by the different chemical environment of fat and water. Although fat and 

water are both made up of hydrogen protons, fat consists of hydrogen linked to 

carbon, whereas hydrogen in water is lined to oxygen. As a result, hydrogen in fat 

resonates at a lower Larmor frequency than that in water. Therefore a frequency shift 
is inherently presented between fat and water, known as chemical shift. Its magnitude 
depends on the magnetic strength. A low magnetic strength for scanning can reduce 
this type of artifact. In Fig. 2.6, the arrow shows the location of a chemical shift 

artifact. 
Aliasint! or wrap around artifact: 
This is a common artifact produced when the field of view (FOV) is smaller than the 

anatomy being imaged. The FOV is the physical size of the imaged region [Siemens, 

2001]. The tissue outside the selected FOV still produces a signal if it is close to the 

receiver coil. This signal is mis-mapped into pixels within the FOV. The primary 

solution to this artifact is oversampling, which is the digitization of a time domain 

signal at a frequency much greater than necessary to record the desired FOV [Aziz 

and Uetani, 2002]. Fig. 2.7 shows the wrap-around of the back of the head on to the 

front of the head. 
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� 

Figure 2.6 Chemical shift artilact 
[MRI-CIIIJQ 20031. 

RF inhomogencitv: 

Figure 2.7 Allasing artifact 
[Balfinger 1996]. 

RF inhomogencity is an intensity variation across an image. It is caused by variable 

sensitivity in an RF coil. Some RF coils, such as surface coils, have natural variations 

in sensitivity and will always display this artifact. The presence of this artifact in 

other coils represents the failure of an element in the RF coil or the presence of 

non-ferromagnetic material in the imaged object. Therefore, the selection of RF coils 

and magnets may reduce this artifact. Superconductive magnets are the most 

commonly used magnets which can maintain a homogenous magnetic field over time 

fAziz and tietani, 2002; Douglas 19981. The transverse image ofthe brain shown in 

Fig. 2.8 contains an RF inhomogcneity artifact in anterior region ofthe brain. 

Motion artifact: 

Aný movement of the patient can cause this artifact. The patient motion during the 

imaging sequence generally results in a blurring of' the entire image with ghost 

images in the phase encoding direction. Movement ofa part ofthe patient results in a 

blurring ofthc corresponding part across the image. The voluntary motion of patients 

can usually be prevented, but the involuntary motion such as heart beating, breathing, 

bowel motion etc cannot be eliminated. The solution flor the first two cases is to gatc 

the imaging sequence to the cardiac or respiratory cycle of-tic patient. Bowel motion 

can be reduced by giving the patient an anti-spasniodic agent prior to the scan when 

imaging the abdomen or pelvis I Westbrook and Kaut, 2002b, Aziz and Uetani, 2002 

Fig. 2.9 shows a head axial image with motion artifact. A blood vessel in the posterior 
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Figure 2.8 RI inhomogcmtý Figure 2.9 Motion artifact 
[Hornak 1996]. [Hornak 1996]. 

side of the head moved in a pulsating motion during the acquisition. This motion 

caused a ghosting across the image. 

Flow artifact: 
This is caused by flow of blood or fluids in the body. A liquid flowing through a slice 

can be subjected to an RF pulse and disappear by the time the signal is recorded. It 

may result in different signal intensities of blood vessels. For example, the intensity 

of' a vessel perpendicular to the image plane changes periodically due to pulsatile 
blood flow I Douglas, 1998, Siemens, 20011. Fig. 2.10 shows a T2-weighted axial 

image ofthe spine. Note the appearance of two spinal cords. The artifacts produced 

extra spinal cord is due to pulsatile flow ofthe CSF. 

Figure 2.10 FIcw artifact Figure 2.11 Truncation artifact 
jl'alola and Coulter 19971.1 Patola and Coulter 19971. 
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Truncation artifact: 

Truncation artifact results from under sampling of data so that interfaces of high and 
low signal are incorrectly represented on the image. Usually bright or dark lines are 

seen parallel and adjacent to borders of abrupt intensity change. A common site for 

this artifact is in the T2-weighted image, where there is bright CSF next to dark 

spinal cord. It is also seen in other locations such as the brain and calvarium interface. 
To reduce this artifact, under sampling should be avoided [Westbrook and Kaut, 

2002b; Ballinger 1996]. The fine lines visible in Fig. 2.11 are due to under sampling 

of the high spatial frequencies. Sharp edged borders between areas of high contrast 

are represented by high spatial frequency data. 

Partial volume: 
A partial volurne artifact is any artifact which is caused by the size of the image 

voxel (the smallest discrete spatial component of the image). For example, a small 

voxel may contain a signal from one tissue type, and a larger voxel may contain a 

combination of two types, whose signal intensity is equal to the weighted average of' 

the quantity of two tissues in the voxel. It may be manifest as a loss of resolution 

caused by multiple 1eatures presenting in the image voxel IDouglas, 1998]. The 

solution to this artifact is to use a smaller voxel; however this may result in poorcr 

signal-to-noise ratios in the image. Fig. 2.12 shows a comparison oftwo axial slices 

through the same location ofthe head. One is taken with a3 nim slice thickness and 

the other with a 10 rnrn slice thickness. The loss ofresolution in the 10 nim image is 

obvious and the detail of'somc structures disappears. 

Figure 2.12 Resolution comparison Oeft): 3mrn slicc thickness 
(right): ]Omm sllcc thickricss [I fornak 19961. 

25 



Chapter 3 Brain Turnour Diagnosis 

Chapter 3 

BRAIN TUMOUR DIAGNOSIS 

3.1 INTRODUCTION 

The brain is the most complex organ in the human body. It is a major part of the 

central nervous system (CNS), which controls our personality - memory, intelligence, 

speech, emotions; senses - vision, hearing, taste, smell and touch; basic functions - 
breathing, heart-beat, blood pressure, movement and balance. The brain is a soft, 
spongy mass of tissue and it is protected by the bones of the skull and three thin 

membranes called meninges. Watery fluid, called cerebrospinal fluid (CSF), cushions 
the brain. This fluid flows through spaces between the meninges and through spaces 
within the brain called ventricles. The simple anatomy of brain is shown in Fig-3-1. 
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Meninges, Skull Brain 

Skull 
Bfain r 

Ventricles- 
(nuid filled) 

Fluid between 
the meninges 

Spinal oord 

Figure 3.1 The brain [National Cancer Institute 2003] 

A network of nerves carries messages back and forth between the brain and the 

rest of the body. Some nerves go directly from the brain to the eyes, ears, and other 

parts of the head. Other nerves run through the spinal cord to connect the brain with 

the other parts of the body. The brain is mainly made LIP oftwo types ofcclls, nerve 

cells (also called neurons) and glial cell. Thcre are two types ofnervous tissue. One 

type of tissue is made up of connected cell bodies known as gray matter. The other 

type oftissue containing mainly long, myclinated (sheathed) axons is known as white 

matter. Fig. 3.2 shows the structure ofwhitc matter and gray matter. Within tile brain 

and the spinal cord, glial cells are the building-block cells of the connective or 

supportive tissues. They surround neurons to hold them and help them carry out then, 

White matter 

Gray matter 

Figure 3.2 Whitc mattcr and gray matta lGalit 20011. 

27 



Chapter 3 Brain -1 umour Diagnosis 
functions. 

A brain tumour is a mass of unnecessary, abnormal cells growing in the brain as 

shown in Fig. 3.3. It is more dangerous and more difficult to treat than other tumours 

because of the brain's vital functions. Brain turnours are the second most common 

type of tumour in children. They account for almost 21% of tumours, and are a 

leading cause of death in children younger than 15 years of age. Most brain turnours 

develop by age 10. The incidence is 2.2-2.5 cases per 100,000 with the peak being 

between birth and 10 years of age. Brain turnours are slightly more common in boys 

[Permstate Children's Hospital, 2003]. 

The particular severity of brain turnours are expressed in terms of the following 

aspects. Firstly, brain turnours occur in the brain which is enclosed in a bony canal. It 

allows little room for growth of the tumour -without compressing and damaging the 

normal brain. Secondly. many brain turnours extensively invade normally 

functioning brain tissues, making complete surgical removal impossible. Thirdly, in 

their early stages, brain turnours are protected behind a blood-brain barrier; even 

when this barrier is disrupted in the bulk of' the turnour, infiltrating turnour cells at 

the growing edge remain protected. Fourthly, disruption of' the blood-brain barrier 

leads to oedema. which the brain tolerates poorly because ol'the limited intracranial 

space and the lack of' lymphatics to rid itself of' tile products of oedenia and other 

debris. Fifthly, the brain is itself' rich in expressed genes and therefore is .1 fertile 

field flor the growth of' both primary turnours and rnetastases. Finally, tile brain and 

brain turnours appear to be less susceptible to attack by the immune system than are 

turnours in other organs I Louls el al.. 2000 

Brain turnours produce a variety ofsymptonis ranging frorn headache to stroke. 

brain tumor 

Figure 3.3 Brain tuniour [ThirdAge 2003 1. 
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A persistent headache can often be the first symptom of a brain tumour. Although 

very rarely a headache is due to a brain tumour, severe, persistent or more frequent 

headaches should be investigated further. It occurs because of the raised intracranial 

pressure. Nausea and vomiting can accompany the headaches, and so can mental 

confusion. Other symptoms of a brain tumour include disturbed vision, impaired 

speech and hearing, drowsiness, reduced movement or loss of balance and 

personality changes and these symptoms depend on the part of the brain that is 

affected. Another sign that sometimes occurs is seizures, which can be as mild as a 

loss of consciousness for a few seconds or may involve severe shaking of the limbs. 

This is due to a build up of abnormal electrical activity in the brain when the nerve 

cells are irritated by the brain tumour [Slevin and Ryan, 1988]. 

3.2 BRAIN TUMOUR TYPES 

Brain tumours can be classified as either benign (non-cancerous) or malignant 
(cancerous). Benign tumours do not invade tissues around them or spread to other 

parts of the body. The border or edge of a benign brain tumour can be clearly seen. 
Malignant tumours contain cancerous cells. They are likely to grow rapidly and 

crowd or invade the surrounding healthy brain tissue. 

Brain tumours can also be divided into primary and secondary. Primary tumours 

are turnours that begin in the brain. Secondary turnours are turnours that start out 

elsewhere in the body and spread, or metastasize, to the brain. For example, 

secondary brain turnours could have begun as breast cancer or lung cancer [Musella 

Foundation, 2003]. 

All benign tumours are primary tumours. They represent half of all primary 
brain tumours. The cells of benign tumours; look normal and grow slowly. Benign 

tumours are not particularly harmful in most parts of the human body, however they 

are dangerous in the brain since any abnormal growth in the brain can place pressure 

on sensitive tissues and impair brain functions. 

Malignant tumours can be either primary or secondary. Secondary malignant 
brain tumours are about three times more common than primary malignant brain 
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tumours. They occur when cancer cells spread to the brain from a primary cancer in 

another part of the body. Mostly, the primary cancer causing the secondary brain 

tumours originates in the lung, breast, kidney or skin. Primary malignant brain 

tumours that originate in the brain rarely spread to other parts of the body [American 

Accreditation HealthCare Commission, 2002]. 

Primary brain tumours are named according to the type of cells or the part of the 

brain in which they begin. 

About half of all primary brain tumours are known collectively as gliomas, 

which come from glial cells. There are several types of gliomas such as astrocytomas 
from astrocytes, oligodendrogliomas from oligodendrocyte glial cells, ependymomas 
from ependymal cells etc. Gliomas can be categorized into different grades 
depending on the degree of their malignancy. They can be either low grade or high 

grade (Other systems: Kernohan grades these turnours on a scale of I to IV and the 

WHO grades on a scale of I to III). Low grade (I and II) is less malignant and high 

grade (III and IV) are more dangerous. Low grade gliomas are almost 

normal-shaped and grow slowly over a long period as solid masses. High grade 

gliomas grow rapidly and can invade surrounding brain tissues. Therefore, low grade 

gliomas are easier to treat and high grade gliomas require more intense therapy [The 

Brain Tumour foundation, 2003]. Other tumour types can also be graded as gliomas. 
In a tumour that contains a mixture of different cell grades, the tumour is graded 

using the highest grade cells even when they are very few. 

Meningioma is another common type of brain tumour. It is usually a benign 

turnour originating from the meninges, or membranes, which cover the brain and the 

spinal cord. Typically, a meningiorna is not recognized until it has become relatively 
large in size. In fact, meningiomas comprise 25% of all primary brain turnours but 

less than 2% of all childhood brain turnours. A meningioma may be classified by its 

constituent cell types (i. e. syncytial, fibroblastic, angioblastic, transitional) 

[American Accreditation HealthCare Commission, 2002; The Hyman-Newman 

Institute for Neurology and Neurosurgery, 2002]. 

Pituitary tumours comprise about 10% of primary brain turnours. They mostly 

develop in the front, or anterior portion of the pituitary gland (the adenohypophysis). 

The term, "pituitary adenoma", describes a tumour of the pituitary gland, the 
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majority of which are benign and curable. Only about 10% of all identified pituitary 

tumours are found in children. There are several types of functioning pituitary 

adenomas, including those which produce prolactin (PRL), growth hormone (GH), 

corticotropin (ACTH), and mixed varieties. 

Other types of primary brain tumours include medulloblastomas, neuronornas, 

craniopharingiornas, pineal tumours, germ cell tumours, and schwannomas. Fig. 3.4 

shows the distribution of brain tumour types. 

3.3 TRADITIONAL DIAGNOSIS METHODS 

As described above there are a great number ol'bram tuniour types. I)Ilt'crcnt brain 

turnours may have different treatments. For instance, a low grade glioma is usually 

treated by surgery and radiotherapy, and a high grade glioma requires surgery, 

radiotherapy, chemotherapy and possibly investigational treatments. Hence, brain 

tumour diagnosis is very important when choosing effective therapies. 

A neurological exam is usuallY the first test given after checking the medical 
history of the patients when they complain ofsymptoms that suggest a brain turnour. 

Part of the exam includes checking the power and strength ofthe arms and legs, knee 

13 GliOlllIS 

0 Meningionias 

ýI Pituitary tumours 
Cl Others 

Figure 3.4 Distribution of brain turnour types. 
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jerks and other reflexes, feeling pin-pricks, distinguishing between heat and cold, and 

also performing some mental exercises. These can indicate whether there are signs of 

diminished mental function. In addition to these, an eye exam using an 

ophthalmoscope can be included. The ophthalmoscope shines light into the lining of 

the eye (the retina) and the optic nerve, which connects the eye to the brain. A brain 

tumour causing raised intracranial pressure may swell part of the optical nerve 

[Slevin and Ryan, 1988]. 

A further test involves a brain image scan of the patient. It may detect the 

presence of a brain tumour and its exact size and location. X-rays ofthe skull were 

once standard diagnostic tools but are now performed only when more advanced 

procedures are not available. Unusually, some turnours may be shown on an X-ray 

image due to them containing calcium (bones). Advanced imaging techniques have 

dramatically improved the diagnosis of brain tumours in recent years. The most 

common imaging techniques for brain turnour diagnosis are CT, MRI and PFT. 

CT uses a sophisticated X-ray machine and a computer to create a detailed 

image ofthe body's tissues and structures. It is not as accurate as an MR image and 

does not detect about half of low-grade gliornas. However, it is still useful In certain 

situations. Often, doctors will inject the patient with an iodine dye, called contrast 

material, to make it easier to see abnormal tissues. A CT scan helps locate the tuniour 

and can sometimes help detect swelling, bleeding, and associated conditions. In 

addition, CT is used to check the efl'ectivcness of' treatments and watch l'or tL11110LIr 

recurrence. Fig. 3.5 shows a CT scan ofa brain tuniour. 

MRI is the gold standard for diagnosing a brain turnour. It does not use radiation 

and provides images from various angles that can enable doctors to construct I 

I luillour 

Figure 3.5 Ct scan ol'bram tumour I Rich and Lasicy 19981. 
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three-dimensional image of the tumour. It gives a clear view of tumours near bones, 

smaller turnours, brainstern turnours, and low-grade turnours. MRI is also useful 

during surgery to show tumour bulk, for accurately mapping the brain and for 

detecting response to therapy. Fig. 3.6 is an MR image of a brain tumour. A variant 

called magnetic resonance spectroscopy (MRS) is capable of providing information 

on the activity of the brain using MRI. MRS is proving to be accurate for 

distinguishing dead (necrotic) tissue caused by previous radiation treatments from 

recurring tumour cells in the brain, which is a difficult diagnostic issue. 

PET provides an image of the brain's activity rather than its structure by 

tracking substances that have been labeled with a radioactive tracer. PET is not 

routinely used for diagnosis, but it may supplement MRI to help determine tumour 

grade after a diagnosis. Fig. 3.7 shows a brain tumour image of PET using 
fluorodeoxyglucose (FDG) as the tracking substance. As with MRS, it is also able to 

'111111mil. 

Figure 3.6 T, -ýýciuhtcd MR iniaL,, c ()I' brain tmnom- 
I SI-cfallm ic 1998 1. 

I (lillmir 

Figure 3.7 PETImage ofbrain tumour [Sabbatini 19971. 
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distinguish between recurrent tumour cells from dead cells or scar tissue, although 

MRS is more widely available. 

The final step for brain tumour diagnosis is a biopsy. A biopsy is a surgical 

procedure to take a sample tissue from the suspected tumour [The Brain Tumour 

Society, 2002]. An imaging scan such as CT, MRI and PET is taken prior to the 

biopsy to determine the position where the biopsy will be performed. Generally, 

biopsies can be performed "open" or "closed" through a craniotomy. An open biopsy 

usually implies that a small window of bone is temporarily removed from the skull to 

allow the surgeon to remove a small portion of the suspected tumour under direct 

visualization. A closed biopsy, also called stereotactic biopsy is a new kind of biopsy. 

It relies on computer guidance to locate the brain tumour and avoid serious 

complications. A tiny hole, no larger than an eighth of an inch, is drilled into the skull 

and a needle is inserted into the brain tissue guided by computcr-assisted imaging 

techniques (CT or MRI). A special head frame is applied to direct the probe into the 

brain and allows the CT and/or MRI to be used along with a highly specialized 

computer (Fig. 3.8) [Rokahr, 1996]. Since the early nineties, it has also been possible 

to perform these biopsies without the frame. Because the frame is attached to the 

skull with screws, it can cause the patient some additional suffering jAccessMed 

Health Information Library, 2002; York Neurosurgical Associate, 2003]. By 

examining the obtained tissue sample under a microscope, the pathologist can 
determine an exact diagnosis such as malignance and tuniour types and discriiiiiiiatc 

Figure 3.8 Stereotactic brain biopsy [Rokahr 19961. 
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a tumour from a brain abscess. 

3.4 DIAGNOSIS PROBLEMS 

According to description above, it is clear that the biopsy is an essential step to 

confirm the diagnosis of brain tumours. However, its drawbacks are also very 

explicit. First of all, although the advance of the biopsy means that it is less invasive 

and better tolerated by the patient, it is still an invasive procedure and can cause a 

great deal of pain. Secondly brain injury may occur due to the removal of brain tissue. 

Because of the vital function of the brain, removing any healthy tissue may affect 

normal functioning. Thirdly, an anesthesia process is necessary before the biopsy to 

relieve the pain. Usually, a general anesthesia is applied to the patient, which further 

increases the risks from the biopsy. Fourthly, the resulting scar, left on the brain has 

the potential to trigger seizures. Fifthly, the patient has to be monitored after the 

biopsy for several hours in case of unexpected complications and is usually required 

to spend a few days in the hospital. Sixthly, because the biopsy is a very precise 

cranial procedure, it must be performed by a specified neurosurgeon. An anesthetist 

and other staff are required as well. It is obvious a very expensive surgical procedure. 
In addition, not all brain tumours can have a biopsy, such as brain stem gliomas, 
because it may be too hazardous. Diagnosis is therefore complicated, risky and can 

result in complications. 
Consequently, a new technique to diagnose brain tumours non-invasively is 

required, which can compensate for the drawbacks in the present diagnosis method. 
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Chapter 4 

DATA MINING AND KNOWLEDGE 

DISCOVERY 

4.1 INTRODUCTION 

In this information age, advances in our capability to both generate and collect data 

can lead to a flood of data. The amount of data is growing exponentially in a wide 

variety of fields. It has been estimated that the amount of data in the world doubles 

every 20 months [Cios, Pedrycz and Swiniarski, 1998]. Databases today can range in 
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size up to the terabytes - more than 1,000,000,000,000 bytes of data [Two Crows 

Corporation, 1999]. A great deal of useful knowledge is hidden within this mass of 
data, however such volumes of data clearly overwhelm the traditional manual 

methods of data analysis. A new generation of techniques and tools is therefore 

required to analyze this amount of data intelligently and automatically. Data mining 

and knowledge discovery techniques are rapidly emerging to satisfy this need. 

The term "knowledge discovery" was coined in 1989. It refers to the overall 

process of discovering useful knowledge from data. It is defined as "the nontrivial 

process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data" [Cios et al., 2000]. Here, it implies that knowledge discovery 

comprises several steps which involve such as data preparation, pattern searching, 

and knowledge evaluation. Extracting a pattern means fitting a model to data, finding 

structure from data or making decisions using data. Data mining is a major step in 

the process of knowledge discovery, consisting of particular data mining algorithms 

under some acceptable computational efficiency limitations, producing a particular 

enumeration of patterns [Fayyad, Shapiro and Smyth, 1996a]. 

Basically, knowledge discovery is the process of using data mining methods 
(algorithms) iteratively to extract what is deemed knowledge according to the 

specifications of measures and thresholds, using the database along with any required 

preprocessing, sub-sampling and transformation. The components of knowledge 

discovery are variable in different description. Here, the process is divided into five 

steps as follows: 

1. Data cleanina and data Preprocessing 
Generally, data cleaning deals with removing noise or outliers if appropriate. 

Data preprocessing covers many fields such as handling missing or wrong data, 

developing an understanding of the application domain and the relevant prior 
knowledge, collecting the necessary information to model, accounting for 

time-sequence information. 

2. Data selection 
Each database may consist of many data sets and each data set may have a 

considerable number of variables or attributes. The objective of this step is to select a 

data set or to focus on a subset of variables or data samples from the data provided 
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according to task requirements. It should greatly decrease the quantity of work so 

that task-relevant data can be obtained. 

3. Data mining 
Data mining is the essential step in the knowledge discovery process. It searches 

for patterns of interests according to the particular task, such as classification, 

regression and summarization. The most commonly used techniques of data mining 

are evolutionary computing, machine Learning (ML), neural networks, rough sets, 
fuzzy logic, and Bayesian method. Many of these have been in use for more than a 
decade in specialized analysis tools that work with relatively small volumes of data. 

Each technique has its particular features tailored to different tasks. 

4. Pattern evaluation 
Since patterns are discovered after data mining, their significance in solving the 

proposed tasks must then be evaluated. This includes understanding and interpreting 

the patterns, from which the novel, particular and interesting ones can be found. 

Sometimes if the patterns do not make sense, advice is sought from experts for 

evaluation. 
5. Knowledge discovery 

The most novel and interesting patterns are chosen from the evaluation. Useful 

knowledge or effective solutions are therefore provided in the final step of 
knowledge discovery. 

The process of knowledge discovery can involve significant iteration due to no 

satisfactory knowledge perceived. Fig. 4.1 shows the diagram of this whole process 
[Cios, Pedrycz and Swiniarski, 1998; Cios et al., 2000; Fayyad et al., 1996b; Shaw et 

al., 2001; Ramirez, 2000; Feelders, Daniels and Holsheimer, 2000]. 
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Figure 4.1 Knowledge discovery process. 

4.2 SIMPLE ILLUSTRATIONS FOR DISCOVERED 

PATTERNS 

For the sake of complete understanding, sorne simple examples in data mining and 

knowledge discovery are described in this section to demonstrate the power ofthese 

techniques. 

4.2.1 Finance 

Credit risk is a crucial criterion flor credit card or financc companies in dcaling with 

their customers. Prompt and exact evaluation of' the credit risk leads to successf LI I 

company operation. However, there is not always a pattern in deciding how to 

determine a credit risk to an individual. Although hundreds and thousands of' 

customer records with many attributes are available, it is not easy to find 
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relationships between them. Table 4.1 lists samples of customer records. 
Notwithstanding there being many attributes, only a few of them are considered 
important, such as income, years ofjob and debt. 

Table 4.1 Samples of customer records [Two Crows Corporation, 1999]. 

Name Age Income ... 
Years of 

job Debt 

John 23 40000 ... 3 High 

Alice 35 32000 ... 5 Low 

In the first step of knowledge discovery, data cleaning and data preprocessing, only 
the past ten years records were included in the dataset, because the credit system was 

much different before then. The incomplete customer records were also removed 
from the data. Tben, the attributes in each customer records such as Name, Telephone 

number were excluded from the dataset in data selection. A particular data mining 
method, such as ID3 [Quinlan, 1986] or C4.5 [Quinlan, 1993], was applied to obtain 
the patterns. The patterns acquired were evaluated according to their accuracy of 

representing the dataset. This is the fourth step, pattern evaluation. The patterns with 
the highest accuracy were selected, known as knowledge discovery. Two best 

IF-THEN patterns (rules) were obtained as follows: 

Pattern I 

IF Income>f4O, OOO AND Age<3 0 AND Debt=High 

THEN Credit risk= Bad Risk 

Pattern 11 

IF Income<40,000 AND Years of Job>5 AND 28<Age<42 
THEN Credit risk= Good Risk 

From the patterns, it is seen that age is a determinant of risk which may have 

been ignored by the analysts [Two Crows Corporation, 1999]. This situation may 
happen in many different circumstances in that some unconsidered attributes are 
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disclosed as being very important. This is the significance of data mining and 
knowledge discovery techniques. 

4.2.2 Medicine 

Example 1 

A historical set of 9,714 medical records describes pregnant women over time. 

The task was to discover rules that predict which future patients will be at high risk 

of requiring an emergency cesarean-section delivery [Mitchell, 1999]. Table 4.2 

gives an example of the patient records. 

Table 4.2 N times records of Patient 103. 

Patient 103 1 st 2nd ... Nth 

Age 23 23 23 

FirstPregnancy No No No 

Anemia No No No 

Diabetes No No No 

PreviousPrematureBirth 0 No No 

Ultrasound ? Abnormal ? 

Elective c-section ? ? No 

Emergency c-section ? ? Yes 

The records with missing attributes were removed in data cleaning and data 

preprocessing step. Some presumably unimportant attributes were excluded in data 

selection. The data mining method used in this example was CN2 [Clark and 

Boswell, 1989]. Pattern evaluation evaluated the ability that a pattern could predict 

whether an emergency c-section was required. The pattern would help to predict the 

probability that pregnant women will need an emergency c-section. This could 

reduce the risk of giving birth. 
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Pattern learned: 

IF No previous vaginal delivery AND Abnormal second trimester Ultrasound 

AND Malpresentation at admission 
THEN Probability of Emergency c-section is 0.6 

7% of all pregnant women in the data set received emergency c-sections, 
however the pattern identified a subclass at 60% risk for requiring c-sections. 

Example 2 

This example is for early diagnosis of rheumatic disease. To simplify the 
description, only the pattern discovered is given which was: 

IF Sex = male AND Age>46 AND Number of painful joints>3 

AND Skin manifestations = psoriasis 
THEN Diagnosis = Crystal induced synovitis 

It assigns the diagnosis of crystal induced synovitis to male patients older than 
46 years that have more than three painful joints and psoriasis as a skin manifestation 
[Lavrac, 1999]. 

All examples given above are concerned with one type of pattern: rule, which is 

the simplest and the most understandable. Data mining methods will be introduced 

later. 

4.3 DATA MINING ALGORITHMS 

As stated above, data mining is extremely important in the knowledge discovery 

process. Many kinds of data mining algorithms exist in the literature which can be 

sorted into different categories by their function or by their method [Cios, Pedrycz 

and Swiniarski, 1998; Fayyad, Shapiro and Smyth, 1996]. 
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4.3.1 By Function 

Classification is Icarning a function that classifies a data item into one of several 

predefined classes [Weiss and Kulikowski, 1991]. The term originated from pattern 

recognition, for which a large number of classifiers were developed. Examples of 

classification using data mining algorithms range from diagnosing diseases 

[Bojarczuk, Lopes and Frcitas, 2000] to classifying trends in financial markets [Apte 

and Hong, 1996]. 

Regression is mapping a data item to a real-valued prediction variable. The 

underlying idea is to construct a linear function explaining the data. The applications 
in regression, which include estimating the probability that a patient will survive, are 

estimated by the results of a set of diagnostic tests, or predicting consumer demand 

for a new product as a function of advertising expenditure. 
Summarization involves methods for finding a compact description for a 

subset of data. It is an approach that characterizes data using a small number of 
attributes. It is often applied to interactive exploratory data analysis and automated 

report generation. 
Dependency consists of finding a model that describes significant dependencies 

between variables. In medicine, discovering related symptoms or must-combined 
physical tests for a disease is an application of this domain. Investigating connected 
retail goods, such as nails and hammers, is another application of dependency 

analysis. 
Deviation detection, focuses on discovering the most significant changes in the 

data from previously measured or normative values. Its prominent application is 

predicting the amelioration and deterioration of diseases, and the quality of products. 

4.3.2 By Method 

Evolutionary computine can be seen as an optimization method driven by a 
biological principle of the survival of the fittest. It exploits an entire population of 

potential solutions and evolves them according to some genetically driven principles. 
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There are three main algorithms used as the basis for evolutionary computing, 

genetic algorithm (GA), genetic evolution strategy (ES), and evolutionary 

programming (EP). GAs use fixed-length character strings to represent the genetic 
information of a population of individuals which undergo genetic operations (for 

example, crossover, reproduction, mutation) in order to find interesting patterns. ES 

and EP share many similar features of GA. However, ES employs real-coded 

parameters and relies on mutation as the genetic operators with a population size one. 
EP dispenses with both genomic representations and with crossover as the genetic 

operator. Genetic programming (GP) is an extension of GA, which is highly valued 
by scientists nowadays. It continues the trend of dealing with the problem of 

representation in GA by increasing the complexity of the individuals in the 

population. Further details of GP are described below [Miettinen, 1999; Cios 1998; 

Hiker and Beasley, 2000]. 

Machine Learning (ML) models the environment or generates a new data 

structure that is different from the old one. The ability of a computer program 
improves its own performance and aims at revealing the relationships within the 
dataset (observations or experimentation), exploiting either deterministic or 
non-deterministic methods [Cios, 1998]. The result of ML is provided in the form of 
decision trees or production rules. ML methods can be classified into two groups: 1. 
inductive learning of symbolic rules, such as induction of rules (CN2, C4.5), decision 
trees (ID3, Assistant-R) and logic programming (FOIL, Progol and Claudien); 2. 

statistical or pattern-recognition methods, such as k-nearest neighbours or 
instance-based learning (IBL) [Cios, 1998; Kukar et aL, 1999; Bergadano, Giordana 

and Saitta,. 1991]. 
Neural networks is an information processing method which models the 

biological nervous system to process numeric data and building nonlinear 
relationships between input and output. It was inspired by the mimicing of the 

structure and function of the biological nervous system, such as the brain. The model 
used in neural networks is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. It is 

able to solve large and complex problems in which there may be hundreds of 

predictor variables that have many interactions. It is very effective in dealing with 
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image data and solving many pattern recognition problems [Cios, 1998; Pudi, 2003; 

Stergiou and Siganos, 1996). 

Rough sets algorithms provide rigorous mathernatic techniques for discovering 

regularities in data and are particularly useful for dealing with imprecise and 
inconsistent information. The principle of rough sets is lowering the precision in data 

representation and making it possible to uncover patterns which may otherwise be 

obscured by too many details. It is a discrete technique, requiring discrete types of 

attributes and providing granular computations of approximations, classification. The 

attribute-oriented rough sets technique reduces the computational complexity of 
learning processes and eliminates the unimportant or irrelevant attributes. This 

method has been shown to be very effective in revealing relationships within 
imprecise data, discovering dependencies among objects and attributes, evaluating 
the classificatory importance of attributes, removing data redundancies and 

generating decision rules [Cios, 1998; Jagielska, Matthews and Whitfort, 1999]. 
Fuzzy logic is a mathematical methodology (and a philosophical ideology) that 

is similar in construct to Boolean algebra and similar in appearance to probability, 
but more general than both in fundamental ideas [Pulo, 1999]. Fuzzy logic extends 
Boolean logic to handle the expression of vague concepts and, as a result, solve the 

problems with imprecise and incomplete data. To express imprecision quantitatively, 
it introduces a membership function which indicates the degree of truth. This 

membership function ranges from zero to one inclusively, where zero implies totally 

untrue and one indicates perfectly true. It concentrates on representation of data at a 
nonnumeric level [Krantz, 1999]. 

Bavesian method is the technique learning the Bayesian networks from the data 

which represents the probabilistic relationships among a set of attributes. It provides 
statistical methods for handling the required probability descriptors of the problem 

and offers an efficient and principled approach for avoiding the over fitting of data. It 

can handle incomplete data and learn about casual relationships [Cios, 1998; 

Heckerman, 1997]. 
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4.4 GENETIC PROGRAMMING 

4.4.1 Introduction 

Genetic Programming (GP) is a relatively recent technology and is an important 

branch in data mining techniques. It was proposed by Koza in 1987 and has grown 

exponentiatly since then [Koza, 1992; Koza, 1994; Spector et al., 1999]. 

GP is based on the Darwinian principle of reproduction and survival of the 

fittest and analogy of naturally occurring genetic operations such as reproduction, 

crossover and mutation. It starts with an initial population of randomly generated 

computer programs (individuals) composed of functional sets and terminal sets 

appropriate to the problem domain. The individuals are usually expressed in tree 

shapes. The functional sets may be, for example, standard arithmetic operations, 

standard programming operations, standard mathematical functions, logical functions, 

or domain-specific functions. Depending on the particular problem, the computer 

program may be Boolean-valued, integer-valued, real-valued, complex-valued, 

vector-valued, symbolic-valucd, or multiple-valued [Kenneth and Kinnear, 1994]. 

Each individual (computer program) in the population is then evaluated with respect 

to its capability performing in the particular problems. This evaluation is called the 
fitness function. The nature of the fitness function varies with the problem. 
Thereafter, the individuals undergo the genetic operations depending on their fitness. 

After applying different genetic operators on the individuals according to given 

probabilities, a new generation of the population is created. The fitness evaluation, 

genetic operation and creation of the new generation are executed iteratively until the 

maximum number of generations is reached. The result of GP is the fittest 

individuals (with highest or lowest fitness) produced along all generations [Koza, 

1992; Bojarczuk, Lopes and Freitas, 1999; Langdon and Poli, 1997]. 

GP has been applied successfully to a large number of difficult problems like 

automatic design, pattern recognition, robotic control, marketing, image processing, 

and medical diagnosis. Koza et aL (1997) showed the ability of GP to automatically 

design electrical circuits. Handley (1993) used GP to predict the shape of proteins 
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using the composition of the proteins. Andre (1994) applied GP in optical character 

recognition problems. Lee et al. evolved mobile robot controllers using GP and a 

simulator and demonstrated the controller running on the physical robot [Lee, 

Hallarn and Lund, 1997]. GP was also employed by Andrews and Prager (1994) to 

create strategies which for trading in simulated commodity and future markets. Poli 

(1996) presented an image analysis method using GP. It was based on the idea that 

image enhancement, feature detection and image segmentation can be re-framed as 
filtering problems. Bojarczuk et al. diagnosed twelve types of chest pains using 

genetic programming which had high accuracy levels [Bojarczuk, Lopes and Freitas, 

2000]. Other applications of GP include using GP to find programs to do location 

independent pattern recognition [Breunig, 1995] and using GP to discover the 

cellular automata rule [Andre, Bennett III and Koza, 1996]. 

4.4.2 Genetic Operators 

Several types of genetic operators have emerged during the evolution. Prior to 
introducing genetic operators in details, the selection methods according to the 
fitness of individuals are described. They determine which individuals can be 

selected to do the particular genetic operation. 
The most popular selection method is fitness-provortionate selection, first 

introduced by Holland (1975). IfAi) is the fitness of an individual i in the population, 
the probability that the individual i will be selected to perform a particular genetic 

operation is as following (assuming the higher the fitness, the better): 

Probability = 
JY) 

Where, M is the number of individuals in the population. 
Another selection method is rank selection. In rank selection, all individuals are 

sorted by ascending fitness: 

f(i) -: 5 f(j), if i<i 
Each individual is assigned a rank r(i), relying on its order in the population, 

where r(l)=I, r(t)=i and r(M=M. So the probability for selection is determined by 

the ranks: 

47 



Chapter 4 Data Mining and Knowledge Discovery 

Probability= (4.2) 

This method can reduce the potential domination of individuals with high fitness and 

also exaggerate the difference between individuals with close fitness. However, this 

may lead to slower convergence [Obitko, 1998; Koza, 1992]. 

Tournament selection can be viewed as an extension of rank selection. It 

randomly picks N (N; -> 2) individuals from the population. A rank selection is then 

carried out on the subgroup with N individuals to select an individual [Smith, 2002; 

Bennett, 2000]. The probability of selection is as follows: 

Probability =N- 
r(i) (4.3) 

m A' 

It may sometimes be described differently as selecting the individuals with the best 
fitness from the subgroup instead of using rank selection [Koza, 1992; Burgess, 
1999]. 
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4AZI Reproduction 

Reproduction is the basic genetic operator of Darwinian natural selection and 

survival of the fittest. It is an asexual operator. A single individual is selected from 

the population according to the selection method and copied into the new generation. 
The individuals with the best fitness in each generation are usually selected to do 

reproduction. This guarantees that the best fitness from a subsequent generation will 

never be worse than the best fitness from the prior generation. 

4.4. Z2 Crossover 

Crossover is a sexual operator which starts with two individuals and produces two 

offspring (new individuals in next generation). The first individual (the first parent) 
is selected from the population by the pre-decided selection method. The second 

parent is generally chosen by means of the same selection method. The operation 

Secon First parent x+ 
Second parent 

C+ C x 

54b2a 

a8 

First offspring 
x+ Second offipring 

C +Cx 

24b a5 

a8 

Figure 4.2 Crossover 
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then chooses a random point in each parent as the crossover point and swaps the 

branches under the crossover points. An example of' crossover is shown ill Fig. 4.2. 

The first parent is an expression: ((, v'8)x5)x(4-h) . the second parent is: 

c+ (2 + u). Both ol'them are described trec-shaped as ill FIg. 4.2 (top). The crossover 

point of the first parent is chosen to be the first 'x' and the crossover point of' the 

second parent is the second *f'. The branches below the crossover points (inchisixe 

the crosso%cr points) are separated t'rom the parents and swapped. Two offspring 

(Fig. 4.22 bottono are finallý produCCd and stored I'Or the next gcneration. 

4.4.2.31fulation 

111LIWtIOll opcrator introduccs random cliangcs into the indmduals in the 

population. It is an asexual operator with only one parent involved and only one 

offspring is prodUCCLI for the next generation. The parent is selected mth the 

particular selection method. The mutation point of this parent is chosen randomly. 
Thereafter, the branch beloN\ the mutation point (including the mutation point) is 

Parent x NexN branch 

+ 

2a4b 

a 

Figure 4.3 Mutation 
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discarded from the parent. A new branch is randomly generated and inserted at the 

position of the discarded branch. Fig. 4.3 shows an example of mutation. The selected 

parent is: (2 + a) x (4 - b) and the mutation point is '-'. The old branch, (4 - b) is 

replaced by a new generated branch, cl(6 - d) in this example. Its offspring is then 

produced for the population of the next generation. 

4.4.3 Individual Structure and Initial Population 

The structure of individuals is a major point in GP which determines the effect of the 

GP algorithm. Each individual is made up of functional sets and terminal sets 

according to the grammar of the target problem. Different problems have specific 

grammar, which represent the way of explaining and solving the problems. 
Functional sets are a set of elementary operators, appropriate to the problem, 

which are available as inner nodes in the tree-shaped individuals of GP. A function 

can have no input but must have an output or outputs. Typical functional sets may 
include [Koza, 1992; Beyer et al., 2002]: 

" Arithmetic operations: {+, -, x. /) 

" Mathernatic operations: (sin, cos, exp, log) 

" Boolean operations: (And, Or, Not) 

" Logical operations: (If-Then-Else, Do-Until) 

" Comparative operations: {<, >, =, : 5, ý!, #) 
Terminal sets are a set of variables or constants which are like leaves in the 

tree-shaped individuals of GP. The format of the terminal sets is depended on the 

various tasks. Terminals must have an input but no output. 
A tree-shaped individual is shown in Fig. 4.4, where '-'and'/' are functions; V, 

Figure 4.4 Structure of individuals. 
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'6' and V are terminals. 

Creating an initial population is the first operation in GP. In this stage, 
functional sets and terminal sets are already decided but are required to be connected. 
Tbree popular techniques of creating the initial population are presented here [Koza, 

1992; Walker, 2001]. One technique is called full method; this method involves 

creating tree-shaped individuals with a certain depth. It does not specify the number 

of nodes in an individual but requires its final depth to be equal to a certain value d. 

The depth means the number of layers in the tree-shaped individual. The individual 

in Fig. 4.4 has a depth of three but it is not a full tree. If a node in each individual has 

a depth less than d, the element of the node is randomly selected from the functional 

sets. If the node has a depth equal to d, the element of the node then is randomly 

selected from the terminal sets. In other words, only the nodes in the deepest layer of 

the individual are selected from the terminal sets and other nodes are chosen from the 

functional sets. 
The gLow method is another technique of creating an initial population. It 

generates tree-shaped individuals with variable shapes and depths up to a specified 

maximum. Every node of the individual can be chosen from either the functional sets 

or the terminal sets. The selection of nodes continues until a terminal is chosen or the 

maximum depth is reached. This method provides a range of structures throughout 

the population and may even produce individuals containing only one (terminal) 

node. Fig 4.3 (top left) gives an individual created by the full method with a depth of 
three; the individual in Fig 4.4 is created by the grow method with a depth of three 

too, however the maximum depth can be greater than three. Noticeably, the grow 

method can still create a full tree, but not vice versa. 
The ramped half-and-half method is a mixture of both 'full' method and 'grow' 

method. It therefore creates individuals having a wide variety of shapes and depths 

which have more possibility of including appropriate solutions for the problems. It 

involves creating an equal number of individuals using a specified depth ranging 
from 2 to the maximum depth. For each value of depth, 50% of individuals are 

created by full method and the other 50% are produced by grow method. 
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4.4.4 Process of Genetic Programming 

Fig. 4.5 is a flowchart of GP. The process of GP breeds computer programs to solve 

problems by executing the following five steps: 
1. Generate an initial population by means of a creating method (full, grow, ramped 

half-and-half). 
2. Compute and evaluate the fitness of each individual in the population. 
3. Create a new population for the next generation using genetic operators 

(reproduction, crossover, and mutation) which are applied to the individuals 

chosen by a specified selection method (fitness proportion, rank selection, and 

tournament selection) and increase the number of generation. 
4. Repeat steps 2 and 3 until the termination criteria are satisfied (The termination 

Generation=O 

I Create initial population I 

Generation =Generation+ 1 
Compute and evaluate 
the individual fitness in 
the population 

Termination 
criteria 
satisfied? 

Yes 
Create a new population 

No using genetic operations: 
reproduction, crossover and 
mutation with a probability 

Figure 4.5 Flowchart of GP. 
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criteria can be the approaching of the maximum generation or the obtaining of 

the best fitness). 

5. Acquire the solution of the target problem which is the individuals with the best 

fitness appearing in any generation. 

4.5 FUZZY LOGIC 

4.5.1 Introduction 

Fuzzy Logic was initiated by Zadeh in 1965 [Zadeh, 1965] at the University of 
California in Berkeley as a way of processing data. However, it did not receive much 

attention until 1974, when Mamdani and Assilian used this technique to regulate a 

steam engine. The next major commercial development occurred in 1985, when 

researchers at Bell laboratories developed the first fuzzy logic chip. This chip led to a 

wide range of products such as cameras, camcorders and rice cookers. In 1993, 

OMRON built the first fuzzy computer [Dutta, 1993]. Nowadays, fuzzy logic has 

already become one of the fastest growing techniques of applied artificial 
intelligence technology [Krantz, 1999]. 

Classic logical is based on Boolean logic, which assumes that every fact is 

either entirely true or false (never both). Unfortunately, the inherent restriction of this 

technique is that it is incapable of representing the imprecise and incomplete 

concepts. For example, suppose that Boolean logic is used to identify whether a 

person is 'tall' or 'short'. If a threshold is given, that over 185cm is regarded as 'tall' 

otherwise is 'short'. Therefore a person is regarded as 'short' if his height is 184cm 

or I 84.9cm, but 0.1 cm or even I cm is too short to be noticeable. 
Fuzzy logic extends Boolean logic to handle this type of problems and provides 

the means of identifying an intermediate value. To express imprecision quantitatively, 
it introduces a membership function that describes the degree of truth using real 

values between zero and one (inclusive). A membership value of zero indicates 

totally untrue and one indicates completely true. Any value between the two 

extremes indicates a degree of partial membership to the truth. Reconsider the 

example discussed above. If fuzzy logic is used to represent the height of a person, 
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185cm would have a membership value of one and 150cm would have a membership 

value of zero. Hence, 184cm would have a membership value very close to one, such 

as 0.97 and 15 5cm would have a membership value close to zero, such as 0.1. 

If Boolean logic is called a binary logic, then ftizzy logic may be called a 

multi-valued logic. Using this logic, notions like 'rather', 'very', 'a little' can be 

formulated mathematically and processed by computers. It enables the computers to 

deal with problems in a more human-like way. 
Fuzzy logic may appear similar to probability and statistics, however the term 

70% has a different meaning in fuzzy logic and statistics. For example, Tom is 70% 

tall. In the probability statement, it means that "There is a 70% chance that Tom is 

tall" which supposes that there is a 70% chance that we know Tom is either tall or he 

is not. But in the ftizzy logic statement, it means that "Tom has a 70% degree of 

membership to be a tall people" which indicates that Tom is rather tall. 

4.5.2 Membership Function 

The membership function in fuzzy logic is a mathernatic function which is variable 

according to the particular problems. For example, the membership function of 
tallness above can be described as: 

0 

Membership 
height - 150 

35 
1 

height < 150cm 
150cm: 5 height: 5185cm 

height > 185cm 

Fig 4.6 shows a graphic representation of this membership function which is a very 

general type. 

Another type of membership function is shown in Fig 4.7. It shows an example 

of the membership function of warmness. Suppose 18-25"C is warm, the temperature 

under this range is considered as cold and over this range is as hot. The membership 
function has a maximum one in the centre and decreases on both sides. The 

membership function is expressed as follows: 
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Figure 4.6 Membership function of height. 

0 T<O*C T 
18 O*C: 5T: 518*C 

Membership I 18*C<T: 925*C T-25 
25*C<T: 550*C 25 

0T> 50*C 

where T represents temperature. 

In practice, the membership functions are much more complicated than in the 

examples above. They are not all linear but non-linear which depends on the type of 

problems. Moreover, the membership functions may be decided by a variety of 
factors rather than one. Many of them are even unable to be described using 

graphics. 

4.5.3 Applications 

As stated above, fuzzy logic is a well-suited technique to handle vague data and 

model imprecise reasoning procedures. Many commercial applications of Rizzy logic 
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Figure 4.7 Membership function of warmness. 

relate to control system, which refer to the management of a mechanical or 

environmental process [Krantz, 1999]. Practical applications of fuzzy logic are 
[Bauer, Nouak and Winkler, 1996]: 

0 Automatic control of dam gates for hydroelectric-power plants (Tokio Electric 

Pow. ) 

" Simplified control of robots (Hirota, Fuji Electric, Toshiba, Omron) 

" Camera aiming for the telecast of sporting events (Omron) 

" Substitution of an expert for the assessment of stock exchange activities 
(Yamaichi, Hitachi) 

N Preventing unwanted temperature fluctuations in air-conditioning systems 
(Mitsubishi, Sharp) 

" Efficient and stable control of car-engines (Nissan) 

" Cruise-control for automobiles (Nissan, Subaru) 

N Improved efficiency and optimized function of industrial control applications 
(Aptronix, Omron, Meiden, Sha, Micom, Mitsubishi, Nisshin-Denki, 

Oku-Electronics) 
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Besides the practical applications listed above, fuzzy logic is also widely 

employed in many other technical fields such as neural networks, genetic 

programming, and clustering. It is also a major technique in this thesis and will be 

used in later chapters. 
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Chapter 5 

MR IMAGE PREPROCESSING 

5.1 IMAGE SOURCE AND IMAGE TYPES 

Before starting the description of image processing techniques developed for this 

thesis, the details of the MR images obtained are introduced in this section. All 
images used in this thesis were acquired from a 1.5T GE NVI scanner in the 
Southern General Hospital, Glasgow, UK. They were from 46 brain tumour patients. 
Each of them has one of four tumour types, gliomas (high/low), meningiomas, 

pituitary tumour, and medullablastma. There were 5 MR image modalities, which 

were described as FLAIR-FSE, TI-SE, T2-FSE, PD-FSE and TI-contrast. TI-SE 
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represents a Ti-weighted MR image produced by the conventional spin echo (SE) 

pulse sequence. T2-FSE and PD-FSE images are T2-weighted and PD-weighted MR 

images generated by a fast spin echo (FSE) pulse sequence. Ti-contrast is a 
TI-weighted acquisition with contrast enhancement i. e. via an injection of 

gadolinium-diethylene triaminopentoacetic acid (Gd-DTPA). A FLAIR-FSE image 

is therefore an MR image acquired by a special FLAIR with FSE MRI sequence 

[Liang, 2003; Fonar, 2003]. Not every patient had all five types of images. All 

techniques introduced in this thesis were applied to every image except blurred ones. 
As images were generated independently, the basic parameters such as TR, TE and 

IR were various. Therefore no such details were given in this thesis. 

5.2 INTRODUCTION 

Image preprocessing was the first part in the automatic brain turnour diagnosis 

system developed for this thesis and comprises three major steps. 
As stated above, the main goal of this thesis was to diagnose brain turnours 

using image techniques alone without using an invasive procedure. The pivotal point 

was to obtain brain tissue intensities through segmentation. However, segmentation 

on raw MR images is not usually available due to their non-standard intensity values. 
Even displaying each MR image using the same window setup is not possible. The 
lack of a meaning for intensities also poses problems in image segmentation and 

quantification. These problems lead to difficulties in continuing this work; thereby 

the original MR images acquired directly from the hospital had to be preprocessed 
before segmentation. The first and the foremost step in image preprocessing part is 

the standardization of intensity scales for MR images. 

The second step is non-brain region removal. Generally, the brain MR images 

contain the non-brain regions which are useless in this analysis since only the brain is 

of interest. However, the existence of the non-brain regions may greatly affect the 

segmentation results because they may have the similar range of intensities to tissues 

of interest. So, the removal of the non-brain regions was also indispensable to the 

image preprocessing part. The removal follows standardization because each image 
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may require a different threshold if the intensity scales were not standardized. 
To measure the tissue intensities, the brain MR images must be segmented into 

different tissues, such as white matter, gray matter, CSF and brain tumours. High 

contrast images enable much easier segmentation processes to be implemented, 

especially between white matter and gray matter which often have similar intensity 

values; otherwise it may cause failure of the segmentation. A contrast enhancement 

step was therefore as essential as the standardization and the non-brain removal 
before the segmentation. 

In this chapter, three sections describe these steps respectively. 

5.3 IMAGE STANDARDIZATION 

As we know, one of the great advantages of MRI is that a variety of MRI modalities 

are available to set up the different contrasts to different tissues. However, this 

advantage also causes a major problem in that the signal intensities of MRI do not 
have a fixed value, not even in the same body region of the same patient obtained on 

the same scanner [Ny6l and Udupa, 1999]. It indicates that the same tissue type 

cannot be represented by the same scale of signal intensities in the different MR 

images. Due to this, the intensities in different images are not comparable with each 

other. It also implies that MR images cannot be displayed using similar formats and 
images are unable to be segmented automatically. The comparison of tissue 

intensities can quantify the analysis, which is crucial in many image analyzing 

systems. Intensity normalization is thus necessary. The automation of the analyzing 

systems also requires normalized intensity scales, otherwise the system parameters 

may be modified for each image. So, the standardization of intensity scales for MR 

images must firstly be applied. 

Attempts have been proposed to calibrate MR signals using phantoms during 

acquisition. However, post-processing on MR images is more attractive using a 

number of ever stored MR images. A standardizing method was presented by NYUl 

and Udupa (1999). It offers a two step process consisting of a training step for each 

type of MR image and body region, and a transformation step on each given image. 
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It scales the original MR images into the same maximum and minimum intensity 

values. However, this method is not suitable to images which include pathological 

abnormalities especially in intensity-based analysis. For example, as we are working 

on diagnosing brain tumour types based on tissue intensities, if each image has the 

same maximum and minimum intensity, then the tumours in different images are 

unable to be represented because they have similar intensities. To overcome this 

problem, an easy post-standardization method is presented in this thesis which can 

retain the basic intensity features of the images and standardize the intensity scales. 

Fig. 5.1 shows the histograms of two general MR images. One image had a 

range of intensities from 0 to 800 and the other one was from 0 to 1800. Without 

standardization, the first image may be displayed clearly by means of either unsigned 
8-bit or 16-bit format. However, using the former the image may be too bright and 

using the latter the image may be too dark. The second image probably has the same 
type of problems, but it is obvious that the tissues in both images have rather distinct 

intensity values. 
From viewing of the histograms, the first peak usually represents the number of 

background pixels, which is of no interest. Additionally, due to the high number of 
background pixels in MR images and their zero or very low intensities, they must be 

excluded in standardization otherwise their existence may dominate the 

standardization. The background pixels compose of the first peak of the histogram 

which generally ends at around 5% of the maximum intensity value in the image. 

However, this percentage may be variable for different images. It must be adjusted 
interactively to improve the accuracy. Assume that the threshold percentage of the 

maximum ranges from 1% to 10%. The histogram of the foreground pixels is 

initially obtained without the intensities lower than the 1% of the maximum. If the 

number of pixels at the first several low intensity values is not greater than 100 (this 

number is especially used for 256x256 images and 400 for 512x512 images) in the 

new histogram, the background peak is considered to be eliminated completely. 
Otherwise, by increasing the percentage of the maximum intensity that the first peak 

ends, I% per loop, until the pixel number at the first several low intensities is lower 

than 100. A simple implementation of discarding the background pixels is given by 

Fig. 5.2. 
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Figure 5.1 Histograms of two MR images. 
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i=O; 

Threshold percentage= 0; New histogram= Original histogram; 

While 

[The total number of pixels of the lowest ten intensity values in the new 
histogram >I 001 

and [Threshold percentage <I 0%1, 

i--i+l; 

Threshold percentage= I%+ (i- I)x I %; 

Threshold= Threshold percentage x maximum intensity 

New histogram= The histogram starting at the value of Threshold; 

End; 

Figure 5.2 Implementation of removing background pixels. 

With the background pixels excluded, the histograms of foreground pixels in 

Fig. 5.1 are shown in Fig. 5.3. In order to find a curve to fit the distribution trend, the 

number of pixels is normalized to between 0 and 1. Let o- be the standard deviation 

and p be the mean of the foreground pixel intensities in an MR image. Assume the 

fitting line of the intensity distribution satisfy a normal distribution ('*' line) with the 

standard deviation co and the mean A. Their relationship can approximately be 

expressed as follows: 

co = 'po =P+5 
n 

where n is the amplitude and typically chosen to be 4.8 is a linear displacement. On 

that account, this specific type of distribution is named "sub-normal distribution" in 

this thesis. A data set which is satisfied as a normal distribution is that where about 
95% of the data are within a distance of two standard deviations on either side of the 

mean. The standard deviation therefore can be interpreted as the degree of the data 

spreading from the mean [Siegel and Morgan, 1996]. As stated above, the foreground 

pixel intensities in MR images satisfy a sub-normal distribution. Its histogram has a 
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Figure 5.3 Histograms of foreground pixels in Fig. 5.1 (top) (bottom). 

similar shape to a normal distribution with a standard deviation four times higher 

than that of the sub-normal distribution. It implies that the sub-normal distribution of 
the foreground pixel intensities have about 95% of the intensities falling between 

half the standard deviations on either side of the mean. The distribution can, however, 

sometimes be displace to some extent from the mean. Therefore, the standard 
deviation can also be described as the degree of spread of intensities from the mean. 

The formula of the standard deviation is as follows: 
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N 
E 

(X, - P), 
N (5.2) 

Where xi (i-- I ... N) is the intensity of any foreground pixel; N is the number of 
foreground pixels in each image. o- represents the standard deviation and p represents 

the mean of the data set. If the values of a and p are known, the shape of the 

intensity histogram can then be determined which then indicates that the intensity 

scale is approximately fixed. According to this idea, the standardization of intensities 

can be implemented by transforming the foreground pixel intensities which will 

result in each MR image having the same a and p. 

Initially, the mean p and the standard deviation a are transformed as zero and 

one. Dividing cr on both sides of Eq. (5.2) gives: 
lý 

(X, - p)2 

11 1-1 U 

N (5.3) 

It can also be expressed as follows: 

X, -JU 
- 

0) 2 

(5.4) 

This equation can be regarded as a new intensity value which has a zero mean and a 

standard deviation of one. The new intensity has a form of. 

Xnew :-x, -/' (i-- 1 ... N) (5.5) 
u 

However, the new intensities mostly cannot supply good contrasts in MR images. 

More appropriate values of the mean and the standard deviation must be chosen for 

the intensity scale standardization of all MR images. 

Suppose X, =) x,, (i--l ... N) are the final intensities after the standardization 

and they have a mean as u, and a standard deviation as q, They can be also 

expressed similarly as in Eq. (5.4): 

0) 

(5.6) 
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Equaling Eq. (5.4) and Eq. (5.6), 

/j = xsi -A, 
u U, 

xsi : -- v (x, - p) + P., u (5.7) 

So, Eq. (5.7) gives the relationship between the original intensities and the 

standardized intensities. The chosen values of p, and o-, should be those that give the 

best contrasts in most MR images. 

The MR images acquired for this thesis were all unsigned 16 bit images; the 

range of the intensities was between 0 and 65535. However, most images only had a 

maximum intensity lower than 5000. To enhance the image contrast while 

standardizing, p, and o-,. were chosen to be 32500 and 10000 which enabled the 

images to occupy the full range of intensities. After the transformation for 

standardization, the intensities of foreground pixels in each MR image satisfy a 

sub-normal distribution with the mean of 32500 and the standard deviation of 10000. 

The process of standardization is summarized as follows: 

(1) Determine the value of a, and p, (q, =10000 and p, =32500 for unsigned 
16 bit images) 

(2) Eliminate the background pixels from an original MR image as in Fig. 5.2. 

(3) Compute the mean and the standard deviation of the foreground pixel 
intensities for the original MR image. 

(4) Standardize the foreground pixel intensities according to Eq. (5.7). 

(5) Add the background pixels back to the standardized pixels and obtain a new 
MR image. 

Fig. 5.4 shows the standardized histograms of Fig. 5.3. It is clear that these two 
histograms still retain their original shapes and features as in Fig. 5.3; but the 
intensities in two images have similar scales. 

Two example images are given to clarify these results. A TI-weighted MR 

image is shown in Fig. 5.5, displayed as a binary image (0 to 1) and an unsigned 8- 

bit image (0 to 255). However, this image has an intensity scale from 0 to 619. Both 

displays cannot show its details. If the image is displayed as unsigned 16-bit (0 to 

65535), it becomes completely dark and does not show any contours. Fig 5.6 shows 
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Figure 5.4 Standardized histograms of Fig. 5.3. 

another TI-weighted MR image also displayed as a binary and an unsigned 8-bit 

image. It has intensities ranging from 0 to 904. The latter image has a relatively good 

contrast and it is too dark if displayed as an unsigned 16-bit image. It demonstrates 

that MR images cannot be displayed uniformly as described above. 

Using the standardization process, both images above can be standardized and 

displayed as unsigned 16-bit images. Their standardized images are shown in Fig. 5.7. 

Both of them can be displayed similarly with good contrasts. Fig. 5.8 compares the 

histogram of the original image in Fig. 5.5 with the histogram after the 

standardization. It also shows the histograms of the foreground pixels before and 

after the standardization. It demonstrates the capability of this standardization 

method which can standardize the intensity scales without affecting the original 

features of MR images. 

All MR images in our study were displayed as unsigned 16-bit images after 

standardization with good definition. Their intensities therefore have similar scales 

which will be useful for later comparison. 
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(a) binary display (b) unsigned 8-bit display 

Figure 5.5 Example 1: A TI-weighted MR image using different 
display. 

(a) binary display (b) unsigncd 8-bit display 

Figure 5.6 Example 2: A TI-weighted image using different display. 

Figure 5.7 Standardized results. 
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Figure 5.8 Histograms of original and standardized MR image. 
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5.4 REMOVAL OF NON-BRAIN REGIONS 

Non-brain regions include structures such as the skull, fat, meninges and scalps, 

which are not of interest in this thesis. However, their intensities may lie in a similar 

range to other brain tissues such as brain tumours and consequently will affect the 

segmentation results. Therefore the removal of the non-brain regions is an essential 

step in image preprocessing. The most popular technique proposed for this task is 

morphological processing. 

5.4.1 Morphological Processing 

Morphological processing is a non-linear image processing technique which is built 

on the foundation of set theory. The basic idea is to extract relevant structures of the 
image by probing the image with another set of known shape called structuring 

element (SE) [Soille, 1999]. The shape of SE is usually symmetric, such as squares, 

rectangles and circles. Commonly, this technique is applied to binary images whose 

pixel values are only 0 (black) or I (white). 

Logic operators, 'AND' and 'OR' are the basic blocks in morphological 

processing. They consist of major morphological operators such as erosion and 
dilation. 

5.4.1.1 Erosion 

Erosion is a morphological operator which is used to reduce the size of an image by 

removing 'on' pixels from the boundaries of objects and also to increase the size of 
holes by removing pixels around the perimeter of the hole. Consequently, it can help 

to break down the connections between objects [Gaborski, 2001]. The symbol of 

erosion is AE)B where A is the image and B is the SE. Let A be an image with pixels 

a, and B be the SE with elements b. The erosion of A by B is defined as: 

AE)B= fa eAIa +b E A, b E B) (5.8) 

The function of erosion includes removing noise and other small objects, 
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breaking the weak connections between objects, and increasing the size of holes 

within an object. 
Since it usually operates on binary images, erosion can be simply described as 

follows: 

AE)B = (Va: a r-)b #b =>a= O, othwise, a= 11 (5.9) 

where A represents a binary image and B is still the SE. 

Fig. 5.9 shows an illustration of erosion. The object in the image is finally 

eroded by the SE into a smaller one. 

5.4.1.2 Dilation 

Dilation is another major morphological operator. It is used to enlarge the size of 

images by adding 'on' pixels to the boundaries of objects and decrease the size of 

holes by adding the pixels around the perimeter of the holes. Dilation can be 

regarded as a dual operation to erosion which can enhance the connections between 

objects. The symbol used to denote dilation is A(@B, where A is the image and 13 is 

the SE. Let A be an image with pixels a, B be the SE with elements b, and c represent 

the new pixels in A after dilation. The dilation of A by B is defined as: 

A@ B=fcc= AI c= a+ b, aE=- A, bE=- BI 

The function of dilation is enlarging the objects, filling the holes and thickening 

the connections between objects. 

A + AOB 
Figure 5.9 Illustration of erosion [Larsen 2000]. 
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The simple expression for binary dilation can be described as following: 
A (D B= tVa: a r-) b# (D =: > a=1, otherwise, a= 01 (5.11) 

where (D is an empty set. Fig. 5.10 shows an illustration of dilation. The object in the 

image is enlarged after dilation. 

5.4.2 Removal of Non-brain Regions Using Morphological 

Processing 

Generally, there always exists some space between the non-brain regions and the 

brain which has lower intensities than other parts of MR images. It leads to a dark 

gap between the non-brain regions and the brain and the non-brain regions can be 

removed using the morphological processing. 
Since the morphological processing is commonly applied to binary images, a 

threshold must be selected initially to obtain the binary mask of the images. The 

optimal value of the threshold can enhance the gap between the non-brain regions 

and the brain in the binary mask, thereby simplifying removal. 

As stated above, the distribution of foreground pixel intensities in MR images is 

a sub-normal distribution. The center of the histogram approximately represents the 

mean of the intensities which approaches the intensity value with the maximal 

number of pixels. As the gap between the non-brain and the brain always has lower 

A + A(BB 

Figure 5.10 Illustration of dilation [Larsen 2000]. 
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Intensities than the mean, the threshold for the binary mask is chosen practically to 
be the intensity value corresponding to the most number of pixels in the histogram of 
foreground 

pixels. The ideal threshold can let a binary mask have a pixel value of 0 

for the gap and not have connected pixels within it. Fig. 5.11 shows a standardized 
TI-weighted MR image and its foreground pixel histogram pointed to the threshold. 

The process of the non-brain region removal can be summarized in five steps: 
thresholding, erosion, labeling, dilation and masking. 
(1) The threshold, the intensity value corresponding to the most number of pixels in 

the foreground pixel histogram, is applied to create a binary MR image. 
(2) Erosion is then employed to break down the connections between the brain and 

the non-brain regions. 
(3) Labeling finds the non-brain regions and isolates them from the binary image. 
(4) Dilation recovers the non-brain regions as they are thinned down by erosion. 
(5) Masking removes the dilated non-brain regions from the original MR image. 

In this thesis, the SE of the erosion is composed of two 'on' pixels horizontally 

as [I I]. The SE of the dilation is a little larger than that of erosion. It is a square 
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(a) (b) 

Figure 5.11 (a) a standardized Ti-weighted MR image (b) histograrn of 
foreground 

pixels. 
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composed of four pixels So the dilated non-brain region is slightly larger than 

the corresponding one in the binary mask. It assures the entire non-brain region can 

be removed completely. 
Fig. 5.12 shows the process of the non-brain region removal for the MR image in 

Fig. 5.1 1. A binary mask (Fig. 5.11 (a)) was obtained using the threshold 32128. Then, 

the non-brain region was labeled (The peripheral section was the non-brain) followed 

by an erosion operation (Fig. 5.11 (b)); thereafter it was expanded through the dilation 

(Fig. 5.11 (c)). The dilated non-brain region is clearly larger than the real non-brain 

region. The brain region only image was acquired after removing the non-brain 

region from the original image (Fig. 5.11 (d)). 

(a) 

(c) 

(h) 

(d) 

Figure 5.12 Process of non-brain region removal. 
(a) binary mask (b) non-brain region after erosion (c) non-brain region 
after dilation (d) brain only 
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The morphologic processing can deal with most MR images but it may fail in 

certain types of images. For example, T2-weighted MR images display CSF with 
high intensities, thus the number of pixels with high intensities accounts for a higher 

proportion of an image. However, the standardized mean was 10000 for any type of 
image and this makes the non-brain regions in T2-weighted images exhibit a rather 
thin layer. As a result, the non-brain regions are easily broken apart in the erosion and 

may not be labeled completely. For this, a higher threshold may be chosen which was 
the mean plus a standard deviation of the foreground pixel intensities. In addition, a 

simple supplementary method was developed for this thesis to handle the non-brain 

region removal for the unsuccessful examples. Some other types of problems 
encountered in the non-brain region removal are also described. 

5.4.3 Removal Using A Supplementary Method 

As stated above, T2-weighted MR images have high intensities for CSF which 
thinned the non-brain regions due to the equal standardized mean for every MR 
image. The non-brain regions are hence very difficult to label if they are broken apart 
in the erosion. In respect that the labeling is the main reason causing the failure of the 

removal, its exclusion from the removal process may solve the problem. 
An illustration of brain images is shown in Fig. 5.13. It represents a 256x256 

brain MR image. It was assumed that the non-brain regions have higher intensities 

than the background; the intensities of the gap are lower than both the non-brain and 
the brain. A threshold was chosen according to the determination of the threshold for 

binary masks in morphological processing. The image was divided into four 

quadrants as labeled in Fig. 5.13. The pixel intensities were compared with the 

threshold. The comparison started at the first column of the first quadrant from top to 

bottom, and then from left to right; whereas in the second quadrant it was from top to 

bottom, right to left. In the third quadrant the comparison started from bottom to top, 

left to right and in the fourth quadrant it was from bottom to top, right to left. In each 

column, the comparison stopped when the border of the quadrant was reached or 

when the first pixel with a lower intensity than the threshold, right after a pixel with a 

higher intensity than the threshold, was met. The reason was that the pixel intensities 
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1,256 

Direction 
of 0-10 
comparison 

Non-brain region 
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El Brain 

256,1 256,256 

Figure 5.13 Illustration of brain image. 

initially were all lower than the threshold when compared with the background 

pixels. Then, the pixel intensities were higher than the threshold when compared 

with the non-brain pixels. When the pixel intensity became lower again than the 

threshold, it indicated that the previous pixel was the last pixel of the non-brain 

regions. Finally, all pixels already compared were set to zero and other pixels 

remained at their intensities in the image. 

(a) original T, -wcighted MR image (b) brain region only 

Figure 5.14 Non-brain region removal by the supplementary method. 
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(a) original TI-weighted MR image (b) brain region only 
Figure 5.16 Non-brain region removal by the supplementary method. 

An example is given in Fig. 5.14 to demonstrate the supplementary method. It shows 

a standardized T2-weighted MR image and its brain only image obtained through the 

supplementary removal method. After the removal, all background pixels are set to 

zero. Fig. 5.15 shows the morphological processing applied to the same T2-WC]glltcd 

MR image whose non-brain regions could not be labeled completely. 

Beside T2-weighted MR images, the supplementary method can be applied to 

other images with thin or non-uniformed non-brain regions. Fig 5.16 shows a 

TI-weighted MR image and the result of its removal using the supplementary 

method. Since the anterior part of the non-brain region has lower intensities than its 

posterior part, it cannot be removed using the morphological processing. Fig. 5.1 7 

shows the failed removal using the morphological processing. This supplementary 
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Figure 5.17 Removal by morphological processing. 

method could be applied to the most images whose non-brain regions cannot be 

labeled as a whole. 

5.5 TISSUE CONTRAST ENHANCEMENT 

The intensities of white matter and gray matter in MR images are usually quite 

similar leading to the difficulty of segmentation for most brain MR images. III this 

section, histogram equalization is applied to enhance the tissue contrasts particularly 
between white matter and gray matter. 

5.5.1 Histogram Equalization 

A histogram is a special type of graph that shows the number ofpIxels with specl I ic 
intensity values in an image. It provides a description of the intensity distribution of' 

the image [Gonzalez and Wintz, 1977]. If r represents the specific Intensity value of' 

pixels in the image, then the histogram of an image can be expressed in the following 

mathematical term: 

(rk (k = 0,1,..., L- 1) 

Where, L is the number of intensity values in the image, NA is the number ol'pixels 
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with the k-th intensity value in the image, and N is the total number of pixels in the 

image. pjrk), therefore describes the probability of that the k-th intensity value 

appears in the image. The histogram is a plot of p,, (rk) againstrk. 

It is assumed that the transformed intensity value is s and its density function is 

p, (s) in the desired image. The target of histogram equalization is to obtain a 

uniformed density function which is given by 

IIL 

The transformation between r and s has the form as following: 

s= T(r) 

To obtain the uniformed density as in Eq. (5.13), the discrete form of the 

transfonnation can be described as: 
k 

'Vk= T(rk 

k 
1: p, 
J-0 

Ideally, the equalized histogram is expected to be perfectly flat. Although this is 

impossible in practice, considerable improvement over the original image can still be 

achieved. 
The histograms appeared in this thesis are not plotted byp, (rk). They are 

composed of Nk, the number of pixels with specific intensity values, not the 

probabilities. Figure 5.18 shows an ideal transformation of histogram equalization. 

lvr, 
k 

'V5 
kj 

Figure 5.18 Histogram equalization (left) original histogram (right) equalized 
histogram. 
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5.5.2 Tissue Contrast Enhancement in MR Images 

In most brain MR images, the intensities of white matter and gray matter are very 

similar. This leads to the difficulty of segmentation. Therefore, a tissue contrast 

enhancement process was developed in this thesis. 

In most types of MR images, the background pixels have the lowest intensities. 

The CSF has almost the lowest intensities in TI-weighted and PD-weighted MR 

images, but the highest intensities in T2-weighted MR images. Brain turnours usually 
have the highest intensities in TI-weighted and T2-weighted images. Whatever the 

MR image types, the intensities of white matter and gray matter are in the middle of 

the intensity range. In this thesis, to maintain the basic features of the images, only 

the intensity range including white matter and gray matter was enhanced using 
histogram equalization which did not affect other tissue intensities. The intensity 

range is specified as follows: 

Threshold - a,, :5x, :: 5 Threshold + a,, (5.16) 

where xj is the pixel intensity in the image. Threshold refers to the same value for 

obtaining the binary brain mask during the removal of non-brain regions. o-,. is the 
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xW 

Figure 5.19 Before and after histogram equalization. 
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standard deviation of the standardized image. 

Fig. 5.19 shows a histogram of foreground pixel intensities from a standardized 
TI-weighted MR image after the removal of the non-brain regions, compared with 

the new histogram after applying histogram equalization to enhance the contrast 

between white matter and gray matter. 
Two images are given in Fig. 5.20 and Fig. 5.21 to demonstrate the enhanced 

results. Fig. 5.20(a) shows a processed TI-weighted MR image and its histogram. 

This image has already been standardized and the non-brain regions have been 

removed. The intensity range selected, [12547 41709], was equalizated using Eq. 

6000 
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(a) 

(c) 
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(b) x 
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Figure 5.20 Contrast enhancement of TI-weightcd MR image. 
(a) original TI-weighted image (b) original histogram (c) enhanced image 
(d) equalized histogram 
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(5.17) and other intensities were not changed. The enhanced image is shown in 

Fig. 5.20(c), in which the contrasts between white matter and gray matter are greatly 
improved. Fig. 5.20(d) gives the equalized histogram. 

Fig. 5.21 shows a T2-weighted MR image after the standardization and the 

removal of non-brain regions. It was equalized in the range of [3630,36533]. Both 

examples demonstrated that the histogram equalization enhaced the contrast between 

white matter and gray matter in MR images. 

Assume the image is enhanced using the histogram equalization in the full range 

of intensites, the result will be dominated by the background pixels. Fig. 5.22(a) 

(a) 

(c) 
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Figure 5.21 Contrast enhancement of T2-weighted MR image. 
(a) original T2-weighted image (b) original histogram (c) enhanced image 
(d) equalized histogram 
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Figure 5.22 Contrast enhancement without specifying an intensity 
range. (left) enhanced the whole intensity range (right) enhanced 
only excluding background pixels 

shows the enhanced results of the T2-weighted image in Fig. 5.21(a), which has 

equalized the whole histogram not only the specific intensity range. It is clear that the 

background intensities dominated the equalization and the contast of brain tissues 

had not improved but became worse. In addition, if the image is enhanced only 

excluding the background pixels, not only the contrasts between white mattar and 

gray matter cannot be enhanced, but also the contrasts of CSF and brain turnour to 

other tissues were reduced, which are normally high enough in MR irnagcs. 

Fig. 5.22(b) gives the enhanced result which excluded only the background pixels for 

enhancement. 

5.6 RESULTS 

A typical MR image from each MR modality in our study, such as FLAW-I'SF, 

TI-weighted, T2-weighted and PD-weighted is shown in this section to illustrate the 

results obtained from the image preprocessing part of the whole brain tLiniour 

diagnosis system (Fig. 5.23-5.26). Since original images from the hospital are LinabIc 

to display uniformly, only the standardized images are shown. 

84 



Chapter 5 MR Image llrcproccssing 

(11) 

(e) 

(h) 

(d ) 

(1) 
Figure 5.23 Illustration of image preprocessing on FLAIR-1-Sfý MR image. 
(a) standardized image (b) binary mask (c) non-brain region after erosion 
(d) non-brain region after dilation (c) brain region only (1) brain region 
after contrast enhancement 
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(c) 

(e) 

1.4- 

(h) 

(d) 

(1) 
Figure 5.24 Illustration of image preprocessing on TI-weighted image. 

(a) standardized image (b) binary mask (c) non-brain region after erosion (d) 
non-brain region after dilation (e) brain region only (0 brain region after 
contrast enhancement 
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(a) 

(c) 

(e) 

(h) 

(d) 

(1) 
Figure 5.25 Illustration of image preprocessing on '1'2-WCighted image. 

(a) standardized image (b) binary mask (c) non-brain region after erosioii (d) 
non-brain region after dilation (e) brain region only (0 brain region after 
contrast enhancement 
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(, I) 

(c) 

(C) 

(h) 

(d 

Figure 5.26 Illustration of image preprocessing on PD-weighted image. 
(a) standardized image (b) binary mask (c) non-brain region after erosion (d) 
non-brain region after dilation (e) brain region only (1) brain region aftcr 
contrast enhancement 
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5.7 CONCLUSIONS 

In this chapter, image preprocessing, the first major part in the brain tumour 

diagnosis system was presented. It included three steps which enabled the original 
MR images from the hospital to be prepared for the further processing used in the 

system. The first step was image standardization; it was completed using statistical 

analysis depending on the statistical features of the pixel intensities in MR images. A 

sub-normal distribution was specifically defined to describe the intensity distribution 

of brain MR images. All MR images acquired for this thesis, were transformed to 

new images, all having a predetermined mean of 32500 and a standard deviation of 
10000. These specific values of mean and standard deviation cannot only scale the 

intensities of MR images into similar distribution shapes but also unify the images 

displayed as unsigned 16-bit forniat with full resolution. 
The second step was non-brain removal by means of morphological processing. 

A threshold corresponding to the intensity value having the most number of pixels 

was chosen to generate the binary image from the standardized image. The binary 

image was then eroded until the non-brain regions could be labeled and separated 
from the brain. Dilation was applied to thicken the non-brain regions that were 
thinned down through erosion, followed by masking the whole non-brain regions out 

of the standardized MR image. The occasional examples which were failed analysed 
by a supplementary method proposed. 

Finally, the contrast between white matter and gray matter, in which there are 

always have difficulties in segmentation due to their similar intensities, was 

enhanced using histogram equalization. Only the intensities lying in a specific range 

referring to white matter and gray matter were treated without changing other pixels 

in the image. 

For each MRI modality included in our study a typical image was presented to 

demonstrate the effectiveness of the processes stated above. 
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Chapter 6 

MR IMAGE SEGMENTATION 

6.1 INTRODUCTION 

Image segmentation is a procedure that spatially partitions an image into a certain 

number of homogeneous regions or isolates specific objects in an image [Robb, 2000; 

Kurz and Benteflifa, 1997]. These homogeneous regions are determined by some 

criteria, such as grey level, color and texture. The segmentation results are various 
depending on the features of the image. 

Image segmentation is a crucial step in image processing and has been applied 

in many fields. In aerial photography recognition, its objective is to exactly identify 

the objects in the scene. In medicine, it is used to distinguish different tissues so that 
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a specific measurement can be done automatically [Li and Gray, 2000]. In industry, it 

is used to recognize the appropriate components for assembly systems on which the 

quality of the final output depends largely on the accuracy of segmentation. 

Inaccurate results can be useless, even damaging. 

A variety of segmentation methods have been proposed in the literature. The 

principal methods include thresholding, region growing, edge-based segmentation 

and clustering. Each of them has its own features. The description of segmentation in 

this chapter specifically refers to grey level images. 

6.1.1 Thresholding 

Thresholding is one of the old, simple and popular techniques for image 

segmentation. Initially, a threshold is chosen based on image histogram or 

co-occurrence matrix [Pal and Pal, 1993] to separate the image into two sub-regions. 
Two thresholds are then chosen for these two sub-regions. It is an iterative process, 
in which a specific threshold is always determined for each sub-region. The 

appropriateness of the threshold is a decisive factor to the success of segmentation. If 

the region of interest has obviously different grey levels from other regions in the 

image, it is easy to find the threshold just by adjusting its maximum and minimum 

and displaying the thresholded image iteratively. However, in most cases, the 
distribution of grey level is complicated, leading to difficulty in threshold 

determination. Cheriet et al. (1998) proposed a thresholding technique which divides 

the pixels into the region of interest and background iteratively. It continuously 

separates the largest peak in the grey level histogram until there are no clear peaks 
left. Nevertheless, in some situations, thresholding is still a difficult method because 

the histogram may have only one peak, which is called unimodal. This is due to the 

large number of background pixels and often happens in medical images. 

Many applications of thresholding on MR image segmentation have been 

developed by researchers all over the world. Suzuki et al. (1991) used iterative 

thresholding to distinguish brain tissues in axial MR slices. The thresholds for the 

brain are iteratively adjusted based on the geometry of the resulting mask. Lemieux 

et al. (1999) presented a three-dimensional technique which used both automated 
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thresholding and morphological operations. It calculated the thresholds of different 

tissues based on the histogram of the whole image and combined the morphological 

operations to disconnect the segmented regions. Since the distribution of tissue 

intensities in brain images is complicated, this leads to difficulty in threshold 

determination and so restricts the application of thresholding. 

6.1.2 Region Growing 

Region growing is an extended method of thresholding. The connectivity condition 
(four or eight connected pixels) is combined with thresholding to perform the 

segmentation [Robb, 2000]. The number of regions and the location of a single pixel 

or several pixels in each region should be known initially. These pixels are called 

seeds and they are decided by the users manually or by computer-based methods 

using some criteria. Starting from the seeds for each region, the pixels are classified 
into this region if they satisfy the thresholding and connectivity condition. The 

number of seeds increases until no connected pixels satisfy the thresholding 

condition. The success of region growing method is decided by seed selection. If 

suitable seeds are chosen, segmentation results will be much better; and if seeds are 

unsuitable, segmentation results will be poor. Generally, seeds can be the brightest 

pixels or can be found from the peaks of histogram. Region growing performs 

segmentation using seeds as well as thresholding. It is therefore more accurate than 

the thresholding method. However, a shortcoming of region growing is that it 

requires rather long computation times. Also segmentation methods in region 

growing category are all sensitive to the initial seeds [Gonzalez and Wintz, 1977]. 

Inappropriate seeds can lead to the complete failure. 

Using the region growing method on medical images requires precise 

anatomical information to choose the location of seeds, for each region and the 

region homogeneity. Pohle and Toennies (2001) presented a region growing 

algorithm based on a model of regions and their homogeneity, assuming that the 
deviation of the grey levels within regions is smaller than that between regions and 
learns its homogeneity criterion. The reliability of the method largely depends on the 

model's assumption on region homogeneity which is not robust to the noisy 
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environment. Law and Heng (2000) developed a segmentation method iteratively 

incrementing the deviation of the regions to search for the optimal thresholds until 

the number of pixels in the regions suddenly increased. However, none of these 

methods can overcome the disadvantages of region growing itself. 

6.1.3 Edge-based Segmentation 

Edge-based segmentation represents a large group of methods based on information 

about edges in the image. It relies on edge detecting operators, such as Roberts, 

Prewitt, Sobel and Laplacian, to extract the edge by initially identifying the grey 
level discontinuity in an image. However, the image resulting from edge detection 

cannot be used as a segmentation result. Supplementary steps must follow to 

combine edges into edge chains. If the edge chains are close, they may correspond to 

the borders in the image. The segmentation can finally be achieved by partitioning 

the region enclosed by these edge chains. A large number of edge-based 

segmentation methods are available nowadays which differ in strategies which 
leading to final border construction, and also differ in the amount of prior 
information that can be incorporated into these methods. The most common 

problems of all edge-based segmentation methods, caused by image noise or 

unsuitable information in an image, are an edge presence in locations where there is 

no border, and no edge presence where a real border exists [Zhang, 1997]. 

Edge-based segmentation is a common approach for medical image 

segmentation. Many researchers are working towards more robust methods. Gibbs el 

al. (1996) developed a method combining morphological edge detection and region 

growing to complete MR image segmentation. Another method using fuzzy object 

extraction and edge detection applied on MR images was proposed by [Lin, Tian and 

He, 2002]. Although these methods are quite promising, they greatly depend on 

methods in other categories and still cannot avoid the disadvantages that exist in 

most edge-based segmentation methods. 
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6.1.4 Clustering 

Clustering is an unsupervised technique which automatically partitions the data into 

meaningful subgroups. It performs the same function as classification without the 

training data. A cluster in the image means ayegion composed of pixels with similar 
features. Clustering methods are based on the minimization of the variance between 

the pixel feature and the so-called cluster means. Feature similarity is thought of as 

similar grey level values in grey level images. The clustering algorithm partitions an 
image into a number of clusters to complete the segmentation. The pixels in the same 

cluster have similar grey level values and those in different clusters have dissimilar 

grey level values. Clustering methods can be generally categorized into three types, 

deterministic, fuzzy and statistical methods. The representative algorithms of these 

three classes are k-means clustering, fuzzy c-means (FCM) clustering, and 

expectation-maximization (EM) algorithm [Cannon et al., 1986]. The k-means 

clustering algorithm clusters data by iteratively computing a centre of grey level for 

each cluster and segments the image by partitioning each pixel into the cluster with 
the closet centre. FCM is the fuzzy equivalent of the k-means clustering algorithm, 

which developed on fuzzy set theory. It takes into account the overlapping of the 

clusters and allows partial belongingness of the pixels to all the clusters [Kettaf et al., 
1996]. Hence, the FCM algorithm is superior to the k-means algorithm for handling 

images with uncertainties, such as medical images. EM algorithm assumes that data 

follows a Gaussian mixture model. It considers the clusters as missing information 

and computes the maximum likelihood estimates of the mean, covariance, and 

mixing coefficients of the mixture model [Coleman and Andrews, 1979; Power, 

20001. 

Clustering is the most popular category for medical image segmentation, 

especially FCM and EM. Wells et aL (1996) reported a new segmentation method 

called adaptive segmentation. It applies the EM algorithm on intensity 

inhomogeneities of different tissues to segment brain images. Leemput et al. (1999) 

also described an automated model-based segmentation method for brain MR images 

based on an iterative EM procedure that interleaves tissue classification with the 
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estimation of tissue-class-specific intensity models. The common disadvantage of the 

EM algorithm is that the intensity distribution of brain images is modeled as a 

normal distribution which is not usually true especially in noisy images. This 

considerably limits the application of the EM algorithm. The FCM algorithm is also 

employed by many researchers on brain MR images. Li et al. (1993) presented a 
knowledge-based classification and tissue labeling approach to initially segment MR 

brain using the FCM algorithm. This was followed by an expert system to locate a 
landmark tissue by matching it with a prior model. Hall et al. (1992) compared the 

FCM algorithm with neural networks in segmenting brain MR images and 
demonstrated FCM performed better on normal brains, but worse on abnormal brains 

with oedema or tumour. Phain and Prince (1999) extended the traditional FCM 

algorithm to deal with MR images corrupted by intensity inhomogeneities. However, 

the greatest shortcoming of FCM is its high sensitivity to noise which is also a flaw 

of many other intensity based segmentation methods. 

6.2 FUZZY C-MEANS CLUSTERING ALGORITHM 

The traditional FCM algoritlun introduced by Bezdek is an improvement of earlier 

clustering methods [Bezdek, 1981]. It is based on minimizing an objective function, 

with respect to ftizzy membership U, and a set of cluster centroids V. 
Nc 

J (U, V) = 2: u»d'(xj, v, ) 
J. i i. 1 

(6.1) 

In the above equation, X=fxl, x2,... xj ... xN ris apxN data matrix, where p 

represents the dimension of each xi 'ý "feature" vector (grey level, colors etc in 

images), and N represents the number of feature vectors (pixel numbers in images). C 

is the number of clusters. u, gU (pZNxC), is the membership function of vector 

C 
xj to the i-th cluster, which satisfies: u. e [0, I] and u 1,2 .... N). The 

higher the membership, the higher the probability that the pixel belongs to the cluster. 
The membership function is expressed as follows: 
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U2 (6.2) 

C M-I I 
d(xjgVk)) kýj 

V=fVI, V2,... Vi ... vc ), which is apxC matrix, and denotes the cluster feature centre: 

IV 

DUU)'"Xi 
J-1 (i = 1,2 ... Q (6.3) N 

Dud' 

J-1 

m r= (I, oo) is a weighting exponent on each fuzzy membership, which controls the 

degree of fuzziness. If m=l, clustering becomes hard. The fuzziness of clustering 

increases with the value of m. d'(x, . v, ) is a measure of similarity between xj and 

Vi: 

d2 (Xjlvi) = 
IIXJ 

_ VI 
112 (6.4) 

11-11 can be defined as either a straightforward Euclidean distance or its generalization 

such as the Mahalanobis distance [Taguchi, Chowdury and Wu, 2002]. 

'Me feature vector X in the FCM algorithm represents grey levels of pixels 
because of our interest in grey level images. So, the feature vector only has one 
dimension where p is equal to one. The membership U and the cluster centre V are 
both reduced to NxC- 

The FCM algorithm iteratively optimizes J. (U, V) with the continuous 

update of 00 and J/ýO, where I is the number of iterations. The basic steps of this 

algorithm are described below: 

(1) Determine the number of clusters C, 2 -S C :5N and m. 

(2) Randomly initialize the ftizzy membership u(I) of xj belonging to the i-th 

cluster. 

(3) At the I-th iteration (1=0,1,2,... ), calculate the cluster feature centre v, (') for 

i=1,2 ... C. 

2(XJ, Vi (4) Calculated (1) 

2(X V(I)). (5) Update u(I) withd J9 

96 



Chapter 6 MR Image Segmentation 

(6) Compare u(') and U"-'), if U(') < c, then stop, otherwise, 1=1+1, go to step 
11 1/ 

11 
// I 

(3) and repeat. 
Finally, each vector has a membership to each cluster and it is allocated to the 

cluster for which it has the highest membership. 
In image segmentation, the cluster number C refers to the number of 

sub-regions into which the image is segmented. The pixel most likely belongs to the 

sub-region in which it has the highest membership. Fig. 6.1 shows an illustration of 

the FCM clustering algorithm. The red labeled uj refers to the fact that the pixel x, 
has the highest membership to the c-th cluster; because x, has the closest grey level 

to the c-th cluster centre. To clarify the illustration, the colours in Fig. 6.1 represent 

the different grey levels. 

The drawback of the FCM algorithm for image segmentation is very obvious. 

Firstly, it is clear from Eq. (6.1 ) that the objective function of FCM does not take into 

consideration any spatial dependence among X, but deals with images the saine as 

Figure 6.1 Illustration of FCM clustcring algorithm. 
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separate points. Secondly, the membership function U (Eq. (6.2)) is mainly decided 

bYd 2(X,, v, ), which measures the similarity between the pixel intensity and the 

cluster centre. Higher membership depends on closer intensity values to the cluster 

centre, thus indicating the sensitivity of the membership function to noise. Suppose 

an MR image contains noise or is affected by artifacts, the pixel intensities may be 

changed by the noise or artifacts. It can result in the incorrect membership and 

improper segmentation. The FCM algorithm must be improved in order to solve this 

problem. 

6.3 RELATED EXTENSIONS TO FUZZY C-MEANS 

CLUSTERING ALGORITHMS 

The most direct way to compensate for the drawback of FCM is to smooth the image 

before segmentation. However, standard smoothing filters can lead to a loss of 
important image details. Various extensions of the FCM algorithm considering the 

noisy environment have been presented by many researchers all over the world. 
Tolias and Panas (1998a) post-processed the membership function to smooth the 

effect of noise. Acton and Mukheijee (2000) and Tolias and Panas (1998b) 

incorporated multi-scale information to enforce spatial constraints. 

The most popular approach for increasing the robustness of FCM to noise in 

clustering is to modify the objective function directly. Dave (1991) proposed the idea 

of a noise cluster to deal with noisy clustering data in the approach known as nosing 

clustering algorithm (NC). The noise was clustered separately and excluded from the 

good clusters. It was represented by a prototype that has a constant distance, 06, from 

all the data points. 

d'(xj, v, )=S2 (6.5) 

The objective function in the original FCM was modified in NC as follows: 

AF C-cU )m 
(6.6) J. (U, V)=2, E'd'(xj, v, )+tg2 IE 

J-1 i-I J-1 

( 

i-I 

where 
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C-1 N 
ZZd'(Xj, vj) 
i-I J-1 (6.7) 

N(C - 1) 

A is the value of the multiplier used to obtain 8 from the average of the distances. The 

C-th cluster refers to the noise. 
The membership function is updated from Eq. (6.2) to: 

U# (6.8) 

ý[d'(xjtVk) 
k=l 

However, the NC algorithm is not suitable for image segmentation since the 

noisy pixels should not be separated from other pixels, but are assigned to the most 

appropriate clusters while reducing the effect of noise. Each pixel can only belong to 

one cluster. The result of segmentation results using NC cannot reflect the complete 
image because noisy pixels are eliminated. 

Another similar method delivered by Krishnapuram and Keller (1993) is called 

possibilistic c-means algorithm (PCM) which interprets the clustering as a 

possibilistic partition. It constructs a new objective function based on (6.1) as 
following: 

NCc IV 

J. (U, V) u; d'(x,, v (6.9) 9 0+2: 17lz I-uu 'n 
1-1 J-1 

where qi are suitable positive numbers. The first term in Eq. (6.9) is equal to the 

objective function of FCM which requires that the distance from the feature vectors 

to the cluster centers be as low as possible. The second term forces the membership 

to be as high as possible without having the maximum limit of one. The value of 171 is 

defined as: 

u. »'d'(x�v 9 j) 

N 
um ý9 J-1 

where K is typically chosen to be 1. Differentiating Eq. (6.9) leads to the expression 

of the membership function in this approach as: 
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I 

uy = ]/(M-I) ( 

171 

Although the PCM algorithm can improve the robustness of clustering in a 
noisy environment, it is incapable of dealing more widely with image segmentation. 

C 
Since the limit of uY is less strict in PCM, it is very likely that the pixels will 

be stuck in one cluster. This means the PCM algorithm needs specific requirements 
for raw data if clustering is to be successful. This therefore weakens its application. 

The Robust Fuzzy C-means Algorithm (RFCM) was presented by Pham. (2001). 
In this method, a new objective function was proposed for incorporating spatial 
context into FCM. It "includes a penalty term that is reminiscent of MRF priors but 
is consistent with the desired behaviour of the membership function... " [Pham, 
2001]. The modified objective function is as follows: 

NcNc 
m )'ZZU# Z JRFCM UY -Vill'+- 

M JJXJ 
# 

J-1 1-1 2 j-, j., leNjkeM, 

where Nj is the set of neighbours of pixelj, and Mi={I,..., C)\{i) representing a set of 
clusters except the i-th one. The parameter 8 controls the trade-off between the 

standard FCM objective function and the smooth membership functions. Its value 
depends on the brightness of the image as well as the variation of the intensity values 
relative to the centroid value of each class. The new penalty term is minimized when 
the membership value for a particular cluster is high and the membership values for 
the other clusters at neighbouring pixels are low, and vice versa. 

The membership function in this approach is therefore expressed as follows: 

(llxj, vi 11' +ß1m -1 
/(M-l) 

,Z 
Ulk) 

z(lixilviii, 
+ßi 

1 
Ulk) 

i-1 leNjkeM, 

The RFCM considers the neighbouring pixels to smooth the effect of noise 
which is more appropriate than NC and PCM for image segmentation. However, the 

modification of the objective function results in a complex variation of the 

membership function. It inevitably complicates the computation and weakens the 
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continuity to the FCM algorithm. 

6.4 IMPROVED FUZZY C-MEANS CLUSTERING 

(IFCM) ALGORITHM 

A new approach is proposed in this thesis in order to overcome the drawbacks of the 

methods (FCM, NC, PCM and RFCM) described above. It considers the attractioll 
between neighbouring pixels to reduce the effect of noise and artifacts ill image 

segmentation, and is named here improved fuzzy c-means clustering (IFCM). 

Usually, one pixel is too small to represent a part in an image. Assume a pixel 
has a completely different intensity from its surrounding pixels, it is reasonable to 

consider that this pixel is affected by noise. Its real intensity should be identical to its 

neighbour pixels. Hence, an attraction is supposed to exist between tile pixels nearby. 
During clustering, each pixel attempts to attract its neighbouring pixels towards its 

own cluster. This attraction is entitled neighbourhood attraction in this thesis. Fig. 6.2 

is an illustration of the neighbourhood attraction. 

The neighbourhood attraction depends on two factors, the pixel 1eature and the 

structure of the neighbourhood. The pixel feature is the pixel intensity in grey level 

images. If a pixel has a very similar intensity to one of its ncighbours, tile attraction 

between them is stronger than the attraction between the pixel and another licighbour 

with rather different intensities. The structure of' the ncighbourhood is the other 

important factor determining the neighbourhood attraction. Obviously, tile closer 

neighbour pixel has a stronger attraction than the farther neighbOUr. The components 

Noise 

( 
1) 

1 

Figure 6.2 Illustration of neighbourhood attraction. 
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of the neighbourhood can also influence the attraction. In other words, who the 

neighbours are is also decisive to the neighbourhood attraction. To summarize, the 
first part of the neighbourhood attraction, depending on the pixel intensities, is called 
feature attraction while the other part of the neighbourhood attraction, depending on 
the position of the neighbours, is called distance attraction. 

From the above description, the membership value of FCM decides the 
segmentation results, while the members 

' 
hip value is determined by the similarity 

measurement d2 (X j. v, ) [Eq. (6.4)]. It is clear that this measurement is the key to 

segmentation. In FCM, d2 (X , v, ) measures the difference between the intensity of 

the pixel itself and the cluster centre without considering the effects of noise. In this 

approach, IFCM considers the neighbourhood attraction in d2 (X , v, ) directly. The 

extended expression is as follows: 

d'(xj . v, ) = llx, 
- v, 11(1 

- AHU - ýFjf ) 

where Hy represents the feature attraction and Fy represents the distance attraction. 
s 

LUikgjk 

Hy = 
k-I 

s 
1: 

9jk 
k-I 

In Eq. (6.15), gjk is the intensity difference between the study pixel j and its 

neighbour pixel k. 

9jk = 
JXJ 

- Xi 
I 

uik is the membership of the neighbour pixel k to the i-th cluster. S is the number of 
neighbour pixels. 

s 2 qj2k 

Fy = 

ýUik 

s 
Z2 qjk 
k-I 

where qjk is the relative location between the pixel j and its neighbour pixel k. In a 
two-dimensional image, j and k only refer to the name of the pixel, not the actual 
location. Fig. 6.3 shows that for neighbourhood attraction the lower the intensity 

difference is, the stronger the feature attraction and vice versa; the closer the pixels 

are, the stronger the distance attraction and vice versa. The width of the arrows 
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0. 
ový', 

'I 

Figure 6.3 Two factors ofneighhourhood attracnioti. 

(left) feature attraction (right) distance attraction 

denotes the strength of attraction. 

The structure of neighbourhood is in the form: 

K, =IkEE NIO< (a, -a, )2 +(b] -bA) , !ý Q) 

Where (a i, bi), (ak, bk )denote the coordinates of pixel, /, k and N is the tot aI numhcr 

of pixels in the image. Q is a constant, equal to 2', '-''. L I,,, the level of' tile 

neighbourhood. For example, if Q Is equal to I (L=1), then Eq. (6.17) describes tile 

first level neighbourhood. It includes four pixels on the top, botton), left and nollt 

adjacently to the study pixel. If Q is equal to 2 (L=2), the eight PIXeIS SUITOUIR11112 tile 

5 

4 11 

3 11 

axis 

2 

0 IF 

Study pixel 
First level 
Secondlevel 
Third level 
Fourth level 

x axis 

Figure 6.4 Stwoui-c ot'neighhow-hood. 
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study pixel compose the neighbourhood, which is called the second level 

neighbourhood. If Q is equal to 8, Eq. (6.17) describes the fourth level (L=4) of the 

neighbourhood which contains two surrounding layers of 24 pixels, and so on. 

Fig. 6.4 shows the structure of the neighbourhood at different levels. 

Therefore, qjk in Eq. (6.16) can be described as follows: 

qjk = (a, - a, )' + (b j_bk 
)2 

Two parameters A and ý in Eq. (6.14), with values between 0 to 1, are used to 

adjust the degree of the two neighbour attractions. Higher A leads to a stronger 

feature attraction and higher ý leads to a stronger distance attraction. The 

determination of these two parameters is described later. 

The original FCM algorithm has been improved in IFCM in that the 

segmentation of images is not only decided by the pixel itself but also decided by its 

neighbouring pixels. Even the noise or artifact changes the intensities of some pixels; 

they can be segmented more appropriately with the help of their neighbour pixels. 
Compared to RFCM and other methods which modified the objective function also 

resulting in the complexity of the membership function, lFCM preserves most 

equations in FCM except d 2(Xj, v, ). There is no doubt that IFCM has a better 

continuity from the traditional FCM algorithm and has more simple computation 

than other extensions. Additionally, the basis of IFCM is more straight forward and 

easier to understand. The superiority of IFCM will be demonstrated in later sections 

by applying it to synthetic and real images. 

The process of IFCM algorithm is similar to the traditional FCM. Besides the 

modification of d(xj,, v, ), the initialization of the membership is not created 

randomly but inherited from FCM. Therefore, a FCM is executed firstly before 

implementing IFCM. The final memberships of FCM are regarded as the initial 

membership of IFCM. This can reduce the computation time dramatically. The steps 
included in IFCM can be listed as follows: 

(1) Determine the number of clusters C (2: 5 C: 5 N) and m 
(2) Execute FCM completely 

(3) Utilize the final membership of FCM as the initial membership u(O)of IFCM 9 

(4) At the 1-th iteration (1=0,1,2,... ), calculate the cluster centre v, (') (i = 1,2 ... Q 
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using the membership u 

(5) Calculate the improved similarity measurement d'(xj . v(1) 

(6) Update u(I) withd'(xj, v(') 

(7)Compare uý! ) and u ifjjuý! ) - u(I-1) 11 < r, then stop, otherwise, 1=1+1, go to step YYY 
4 and repeat 

6.5 PARAMETER ESTIMATION 

From Eq. (6.14), the similarity measurement is modified by considering the 

neighbourhood attraction. Two parameters A and ý are selected to adjust the degree 

of feature attraction and distance attraction. A higher parameter leads to a stronger 

attraction. However, different images require different parameter values. 
Inappropriate A and ý will not improve the segmentation results but can make them 

worse. 
The minimum and maximum limits of A and ý are 0 and 1. Suppose the 

minimum value of them is 0.0 1, the number of possible combinations of A and ý is 

10000. To determine the best value of the parameters, 10000 tests are required. 
Obviously, it is not practical that each image is segmented 10000 times in order to 
find the best results. A simple artificial neural network (ANN) model is therefore 

created for this thesis in order to search for the optimal values of the parameters in 

IFCM. Fig. 6.5 shows the architecture of the model, where wi (i-- 0,1,2) denotes the 

interconnection weights of the network. 

wo 1 

W= Wi 

-W2 

The cost function E of the neural work is defined as: 
)v mim 

N j., DoRate 

wherej=1 ... N (pixel number). 
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mjnl 
Min(J ) 

(6.20) 
Max(J,, ) 

J,, is the objective function in Eq. (6.1), which requires to be minimized. It gradually 

converges during IFCM iteration. Hence, MJ,, describes the degree of the 

convergence. A lower MJ,, represents a better convergence of J, 

I A' 

DoRate =-L Max U, 
N 1=1 

DoRale is defined as the abbreviation of 'Dominating Rate'. Max(J. stands flor the 

highest membership of each pixel to all clusters, which is also the membership of 

each pixel to the cluster that into which is finally segmented. For example, one pixel 

has memberships to five clusters as [0.3 0.1 0.05 0.5 0.05]; another pixel has 10.05 

IFCM 
Membership function 

and 
Cluster centres 

------ ------- 

ýýfio 
Distance Attraction n Featurc Attrac ): n] 

WO W] W2 I 
w W2 

.................. 

Similarity Measurement 
d(X, 

Updated memberships 
and cluster centres 

% ..... ... T .............. 
Cost Function E 

------------------------------ 

Figure 6.5 Architecture of ANN modcl. 
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0.0 1 0.02 0.91 0.0 1]. The former has a MaxU equal to 0.5 and MaxU of the latter is 

0.9 1. Although both pixels can be segmented to the fourth cluster, it is clear the latter 

one is more dominant in its cluster. N is the number of pixels in the image; thus 

DoRate represents the average dominating rate in segmentation. Higher DoRate 

indicates a more definite segmentation result. 

In the cost fimction E, the numerator MJ,, is proposed to be minimized and the 

denominator DoRate is meant to be maximized; hence E must be converged to a 

N 

global minimum in the ANN model. 1: in Eq. (6.19) denotes this is an average 
J-1 

minimum achieved for the whole image. E can be also regarded as a performance 

evaluation parameter for segmentation. Better segmentation has a lower value of E. 

The increasing rate of the weight is defined as: 

Aw = 17 
E 
D 

(6.22) 

CN 
J: ZHU 
1.1 J-1 where D= 

D2 CN HU and FU are the feature attraction and distance 
ZZ Fjj 
J-1 J-1 

attraction in Eq. (6.15) and (6.16). q is the learning rate. 

The update of w is then presented as: 

w (1+1) =w (1) + Aw 

INM. 
-z 

7. 

W(I) + 17 
N j., DoRate 

(6.23) 
D 

where, I is the number of iterations. 
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0 
A' 

2: 
Mj. 

N j., DoRate 
W W() +17 (6.24) 

D, 
-W2 -W2 

IN Mim 

- 
F, 

N j., DoRate 
L D2 j 

The process of parameter estimation consists of the following steps: 
(1) Initialize w(O), where A=O and ý--O, so that the segmentation method becomes 

identical to the traditional FCM 

(2) Obtain the initial membership function and the cluster centers 
(3) Compute the similarity measurement using the present w(l) 
(4) Update the membership function and the cluster centers and compute the cost 

function E 

(5) Update w(7) to w(7+1) using Eq. (6.23) 

(1+1) > 1, If Wr - 
Then w (1+1) =wI where r-- 1,2 

rr 
(6) Stop if both w'+1 reached the value I once, otherwise go to step 3 1,2 

The termination criteria are defined as when both parameters have been 

searched completely from 0 to 1. This helps to find a global minimum rather than a 
local minimum of the cost function. The process usually iterates 20-30 times and 

reduces the validation time dramatically. 

6.6 RESULT EVALUATION 

Several segmentation methods based on FCM were described in section 6.3, such as 

NC, PCM and RFCM. They all arc supposed to be robust in a noisy environment. In 

this section, the synthetic and real images were applied to such methods to compare 

their segmentation performance with our IFCM algorithm. For the sake of precise 

comparison, some definitions are addressed here: 

Ntp: the number of pixels that belong to the cluster and are segmented into this 
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cluster correctly. 
N,,,: the number of pixels that do not belong to the cluster and are not segmented 

into this cluster. 

. /P . A&: the number of pixels that do not belong to the cluster and are segmented 
into this cluster incorrectly. 

NA: the number of pixels that belong to the cluster and are not segmented into 

the cluster. 
Np: the number of all pixels that belong to the cluster 
N,: the number of all pixels that do not belong to the cluster. 
N. the number of all pixels in the image. 

Five evaluation parameters are hence defined as follows: 

N, 
I, First parameter of correct segmentation (Cl): C, =-, representing the NP 

percentage of positive true segmentation. 

N.. Second parameter of correct segmentation (C2): C2 = -)F , representing the Nn- 

percentage of negative true segmentation. 

N 
Under segmentation (UnS): UnS =" f" 

, representing the percentage of N,, 

negative false segmentation. 

Over segmentation (Oi4q: OvS = 
Nfi, 

, representing the percentage of positive NP 

false segmentation. 

Incorrect segmentation (InQ: InC =N, representing the percentage of 

false segmentation. 

The first two parameters (CI, C2) describe correct evaluation, the higher the 
better. The latter three parameters (UnS, OvS, InQ describe incorrect evaluation, the 

lower the better. 
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6.6.1 Square Image 

The first example is a square image. An image of dimension 256 by 256 -, xas creatcd. 
Every 64 pixels consisted of a square with equal grey levels. The structure of first 

four squares is shown in Fig. 6.6. 

There were 1024 squares in total in this image. The grey level of each sqLiare 

was randomly chosen from four grey levels: 0,64,128 and 196. The original image 

is shown in Fig. 6.7 (a). Random noise uniformly distributed in the interval (0,100) 

( I'l ) (1.8) (1,16) 

(8,1) 
(9,1) 

(8,16) 
(9,16) 

(16,1) W 16) 

Figure 6.6 First fiour squares in square image. 

(a) Original image (h) Novsy iniagc 

Figure 6.7 1024-square image. 
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was added onto the original image and the noisy image is shown in Fig. 6.7 (b). 

The noisy image was segmented by FCM, RFCM and IFCM algorithms 

respectively. The implementation of PCM verified its fatal drawback in that pixels 
became trapped in one cluster, and this means that PCM cannot segment multi-class 

completely. Even a modified method in which the similarity measurement was 

assumed to be greater than a certain value did not solve the problem. 
Optimized parameters in RCM were obtained by means of a cross validation 

method presented by Pham (2001). It allowed a fair comparison between RCM and 

IFCM as both methods were optimized. The value of the parameter 8 [Eq. (6.12)] 

can influence the segmentation results dramatically. A cost function Ecv, similar to 

the expression of the objective function in FCM, was deflned to evaluate the 

adaptability of 6 to the image [Pham, 200 1 ]. It was computed for the square image. 

Fig. 6.8 shows a plot of Ecv against, 8 and the minimum of Ecv was achieved atO=-25, 

indicating that 25 was the optimal value of 8 in RFCM applied to the square image. 

In IFCM, A and ý were estimated using the ANN model presented in section 6.5. 

Fig. 6.9 shows the trend of the cost function E with respect to A and ý. The total 

number of iterations was 23. The global minimum of E was achieved when A=0.5125 

and ýý--0.6359 at the eleventh iteration. These values for IFCM were employed in 

segmentation. 

Ecv 
x 105 

8.88 

8.87%' 

8.87 

8.865 

8.86 

8.855 

8.85 

8.845 

8.84 

8.835'- 0 10 20 30 40 50 60 70 80 90 

Figure 6.8 Plot of Ecv against fl in RFCM. 
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Figure 6.9 Cost function with respect to A and in IFCM. 

The segmentation results of FCM, PCM, RFCM and the IFCM algorithms were 

obtained by assigning each pixel to the cluster in which it had the highest 

membership and this is shown in Fig. 6.10 (Tbe NC algorithm was not compared 
because of the flaw addressed above, may lead to the failure of segmentation). 

*A 
value of 2, unless otherwise stated, for the weighting exponent m was employed in 

all fuzzy clustering methods in this thesis, since this value was proven to yield good 

results in practice. The number of clusters (C) was 4 for all methods in this example. 
It was clear the former three results were seriously influenced by noise and only 
IFCM almost overcome this problem. 

Table 6.1 lists the evaluation parameters of these four algorithms used to 

quantify the segmentation performance. The first column of the table represents each 
cluster within four clusters. RFCM had very similar evaluation parameters, both 

correct and incorrect ones, to the FCM algorithm, demonstrating the comparable 

performance of these two algorithms. PCM was the best for two of the clusters but 

the worst for the other two. There is no doubt suggesting that IFCM achieved much 

more improved performance for each cluster and also the best average performance. 
The best evaluation parameters were acquired, showing the highest accuracy of 

segmentation. Fig. 6.1 I is a chart displaying the parameters listed in Table 6.1. 
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(c) (d) 

Figure 6.10 Segmentation results of 1024-square image. 
FCM (b) pCM (c) RFCM (d) I FCM 
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Table 6.1 Segmentation performance evaluation on 1024-square image. 

Class 
ethod Evaluation 

Parameters 
FCM PCM RFCM IFCM 

C, 57.27 100 91.91 98.40 
C2(%) 100 73.76 91.24 99.37 

UnS(%) 0 26.24 8.76 0.63 

OVS (%) 42.73 0 8.09 1.60 

InC (%) 10.64 19.71 8.60 0.87 

C, M 59.78 0 72.94 95.77 
C2(%) 85.94 100 83.58 98.63 

2 UnS(%) 14.06 0 16.42 1.37 

OVS (%) 40.22 100 27.06 4.23 

InC (%) 20.42 24.32 19.01 2.06 

C, M 72.27 100 60.21 95.76 
C2(%) 83.80 100 86.29 98.44 

3 UnS(%) 16.20 0 13.71 1.56 

OVS (%) 27.73 0 39.79 4.24 

InC (%) 19.22 26.17 20.54 2.26 

C, M 91.13 0 58.87 97.57 
C2(%) 90.37 59.17 100 99.37 

4 UnS 9.63 40.83 0 0.63 

OVS(%) 8.87 100 41.13 2.43 

InC (%) 9.44 30.78 10.12 1.07 

C, M 70.11 50.00 70.98 96.87 
C2(%) 90.03 83.23 90.28 98.95 

Average UnS(%) 9.97 16.77 9.72 1.05 

OVS (%) 29.89 50.00 29.02 3.13 

InC (%) 14.93 25.24 14.57 1.57 
-j 
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Figure 6.11 Chart of evaluation parameters of 1024-square image. 

Another example was given to test the algorithm. It was a square image 

comprising 16 squares in total and including four grey levels: 0,100,200 and 300, 

shown in Fig. 6.12. Noise, uniformly distributed in the interval (0,120), was added oil 

the image. 

Fig. 6.13 shows the trends of the cost function and the domination rate against 

and ý during the neural network selection in IFCM for this image. Tbc cost functioll 

achieved a global minimum at A=0.4675 and ýý0.5592 which also maximized the 

Figure 6.12 16-square image (left) original image (right) noisy imagc. 

115 



Chapter 6 MR Image Segmentation 

domination rate. 
The parameter j6 in RFCM was chosen to be 328 in this example. Fig. 6.14 

shows the final segmentation results of the algorithms described above. Again, the 

results of FCM, PCM and RFCM were all seriously influenced by the noise and only 
IFCM obtained almost clear segmentation for each cluster. 

E 
---------- 0.25 -------- - 

0.2 

0.1 

0.1 

---- T-1 
0.05 

0.8 
0.4 

000.2 0.4 0.6 0.8 

(a) 
A 

DR 
0.96 --------- 
0.94 ---- --------- 
0.92 ---- 
0.9 ---- 

0.88 
0.8 ---- ---- --- 
0.8 ---- 

8 
0.8 

0.4 --- 0.6 0.8 0 0.2 0.4 

(b) 

Figure 6.13 Parameter selection of IFCM. 
(a) Cost function minimization (b) Domination rate maximization 
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Table 6.2 enumerates the evaluation parameters for each method. The accuracy 

of IFCM was much higher and the error rate was much lower than for the other 

methods. It again indicated the superiority of IFCM in a noisy environment 

compared to other methods. 

A third example was tested which was a three grey level square image made up 

of 128 squares. It was segmented into 3 clusters by means of all algorithms described 

above. The noise added was Gaussian distributed in the interval (0,100). 8 was 80 in 

P, FCM, and A=0.5466 and ý'--0.6844 in IFCM. Table 6.3 lists the average evaluation 

parameters of results for all algorithms. All these examples verified that any square 

image with any grey level and any noise can be segmented more accurately by the 

IFCM algorithm. 

11 
(a) 

(c) 

" 

.., ""ý 
'i .. ý-. ..: 

(d) 

Figure 6.14 Segmentation results of' I 6-square miage. 
(a) FCM (b) IICM (c) RFCM (d) If-CM 
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Table 6.2 Segmentation perfoimance evaluation on 16-square image. 

--- Mkho& 
Class 

- Evaluation 

Parameters 
FCM PCM RFCM IFCM 

C, (%) 71.53 0 100 99.98 
C2(%) 100 88.78 94.58 100 

I Uns (%) 0 11.22 5.42 0 

OVS (%) 28.47 100 0 0.02 

InC (%) 5.34 27.87 4.40 0.006 

C, (%) 67.33 0 76.51 99.91 
C2(%) 93.43 100 83.30 99.97 

2 Uns (%) 6.57 0 16.70 0.03 

OVS 32.67 100 23.49 0.09 

In C 11.47 18.75 17.97 0.038 

C, M 66.00 0 72.87 99.95 
C2(%) 87.75 100 96.44 99.95 

3 UnS(%) 12.25 0 3.56 0.05 

OVS (%) 34.00 100 27.13 0.05 

InC (%) 23.13 50.00 15.35 0.050 

C, (%) 100 100 85.75 99.95 
C2(%) 80.57 10.42 100 99.99 

4 UnS(%) 19.43 89.58 0 0.01 

OVS (%) 0 0 14.25 0.05 

In C (%) 17 78.38 1.78 0.011 

C, M 76.215 25 83.7825 99.9475 
C2(%) 90.4375 74.8 93.58 99.9775 

Average UnS (%) 9.5625 25.2 6.42 0.0225 

OVS (%) 23.785 75 16.2175 0.0525 

InC (%) 14.235 43.75 9.875 0.02625 
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Table 6.3 Average performance evaluation on 128-square image. 

FCM PCM RFCM IFCM 

cl 57.68 56.02 57.75 80.23 
C2 78.12 77.23 78.15 89.54 

ulls 21.88 22.77 21.85 10.46 

ovs 42.32 43.98 42.25 19.7 7 

In C 28.88 31.12 28.84 13.78 

6.6.2 Facial Image 

Lena image is one of the most popular and famous images for image processing 

available to researchers [David and Munson, 1996]. It was employed in our work to 

test the superiority of IFCM on real images. 

The image was a 256 by 256 grey level image shown in Fig. 6.15 (a). 'I'lie grey 

level was between 0 and 238. Unlike the synthetic square images, the ground truth of' 

segmentation in Lena image is unknown. Therefore, FCM was applied to segniem 

the original Lena image and the results were regarded as the ground trUth 01' 

(a) (b) 

Figure 6.15 Lena image 
(a) original Lena image (b) segmented image 
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segmentation. Fig 6.15 shows both the original Lena image and the segmented 

image. Thereafter, random noise which obeys the uniformed distribution between 0 

and 100 was added to the original Lena image. The noisy image is given in Fig. 6.16 

(a) and the segmented noisy image by FCM is in Fig. 6.16 (b). 

The parameters A and ý in IFCM were estimated using the ANN model for the 

Lena image and were chosen to be 0.4976 and 0.5989, respectively. Fig. 6.17 (a) 

gives the plot of the cost function E with respect to A and ý. Fig. 6.17 (b) shows that 

the average InC of the segmentation results was minimized at the same value. "]'he 

segmentation results of PCM, RFCM and IFCM are shown in Fig. 6.1 8 and the 

evaluation parameters are listed in Table 6.4. This suggests that both visually and 

quantitatively, the segmentation result of IFCM had better quality and higher 

accuracy over all other methods. PCM was stuck in two clusters as it was when 

segmenting synthetic images and RFCM, with P--260 for this image, sliokk, ed an 

improved performance over FCM. 

(a) (h) 

Figure 6.16 (a) Noisy Lena image and (b) segmented noisy image 
by FCM. 
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Figure 6.17 IFCM parameter estimation for Lena image. 
(a) plot of the cost function E (b) plot ofthe average InC 

(a) (b) 
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(C) 

Figure 6.18 Segmentation results of Lena image. 
(a) PCM (b) RFCM (c) IFCM 

Table 6.4 Segmentation performance evaluation on Lena image. 

-`ýethod 
Class 

Evaluation 
Parameters 

FCM PCM RI -('M 11"UM 

cl 88.82 100 91.44 94.27 

C2 95.06 52.96 96.15 97.50 

I UnS (%) 4.94 47.04 3.85 2.50 

OVS (%) 11.18 0 8.56 5.73 

Inc 6.40 36.06 4.95 3.25 

cl (%) 74.51 0 80.97 89.97 

C2 (%) 90.57 100 92.83 94.95 

UnS 9.43 0 7.17 5.05 

OVS 25.49 100 19.03 10.03 

In C 14.63 32.38 11.0 1 6.66 

C/ 79.72 0.01 85.25 91.47 

C, 91.72 99.99 93.83 96.61 

3 Uns (%) 8.28 0.01 6.17 3.39 

OVS 20.28 99.99 14.75 8.53 

III C 12.00 30.97 8.83 4.99 

4 C, (%) 90.59 1 100 1 92.12 92.40 
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C2 (%) 97.10 68.53 98.02 99.35 

UnS (%) 2.90 31.47 1.98 0.65 

ovs (%) 9.41 
-0 

7.88 
1 

7.60 

In C 3.77 27.28 2.77 1.58 

cl (%) 83.41 50.00 87.45 92.03 

C2 (%) 93.61 80.37 95.21 97.10 

Average UnS 6.39 19.63 4.79 2.90 

ovs 16.59 50.00 12.56 7.973 

In C 9.2 31.67 6.89 4.12 

The chart in Fig. 6.19 further illustrates the capability of IFCM in segmentation. 

As a result of the above evaluation it was decided to add two types of noisc 

were added onto the original Lena image. The first one was the unitormly distributed 

random noise in interval (0,100) and the second type was Gaussian distributcd 

random noise also in interval (0,100). Their average segmentation pcrformaiicc is 

listed in Table 6.5. 
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Figure 6.19 Chart of evaluation parameters of noisy Lena image. 
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Table 6.5 Evaluation parqmeters of Lena image with two types of noise. 

Noise Type Evaluation 
Parameters FCM PCM RFCM IFCM 

C, (%) 63.62 50 66.6925 92.1625 

Uniformly C2(%) 86.41 80.5025 87.4225 97.07 
distributed uns (%) 13.59 19.4975 12.5775 2.93 

noise OVS (%) 36.38 50 18.0175 6.8375 

In C (%) 19.435 31.67 87.4225 2.10 

C, (%) 52.51 46.70 53.58 66.01 

Gaussian C2(%) 82.855 79.78 83.19 87.75 
distributed UnS(%) 17.15 20.22 16.81 12.25 

noise OVS (%) 47.49 53.31 46.42 34.00 

In C (%) 24.64 32.92 24.17 17.37 

The parameters indicate Gaussian distributed noise affected segmentation more 
seriously than unifonnly distributed one. However, IFCM conferred the best results 
in all these images. 

6.6.3 Simulated MR Image 

The evaluation above suggested that the IFCM algorithm was the more accomplished 

method on both synthetic and real images with different level of noise. However, as 

we are interested in MR images, we need to answer the question, 'Can IFCM 

algorithm show an improved performance on MR imagesT. 

Since the ground truth of segmentation for real MR images is not usually 

available, it is impossible to evaluate the segmentation perfonnance quantitatively, 
but it is possible visually. Brainweb(httv: //www. bic. mni. mcpill. ca/brainweb) 

provides a simulated brain database (SBD) including a set of realistic MRI data 

volumes produced by an MRI simulator. These data enable us to evaluate the 

performance of various image analysis methods in a setting where the truth is known 

(7be precise regions of white matter, gray matter, CSF) [Brainweb, 2003; Kwan, 
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1999; Collins, 1998; Cocosco, 1997]. 

Firstly, a simulated TI-weighted MR image was downloaded from Brainweb. It 

is a 3D image with dimensions 18lx2l7xl8l (XxYxZ). Fig. 6.20 shows several (Z 

axis) slices of the simulated image. 

The discrete anatomical model of the simulated image consists of background, 

CSF, gray matter, white matter, fat, muscle, skin, skull, glial matter and connective. 

In this thesis, only CSF, white matter and gray matter are of interest and the 

anatomical model is shown in Fig. 6.21. 

7% noise was applied to each slice of the simulated image, and thereafter 

through the non-brain region process (The percentage of noise is the standard 
deviation of noise versus that of the signal of the brightest tissue). The brain region 

only and noisy 100-th slice is shown in Fig. 6.22. The noisy slices were segmemed 

Figure 6.20 Simulated T, -wciglitcd MR iniagc (fi, om left to right, top to 
bottom) including slice 150,140,120,100,80,70,50 30 10. 
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into four clusters, background, CSF, white matter and gray matter using FCM, IFCM, 

PCM and RFCM respectively. Background was neglected from the viewing results. 

Fig. 6.23 (a) plots the tendency of the cost function in IFCM based on the various 

values of A and ý. The cost function was optimized at A=0.7257 and ý--0.4055 where 

the learning rate was i7=0.2. Fig. 6.23 (b) shows a plot of the cross-validation error 

computed for various value of 8 applying RFCM on the noisy slices and this 

demonstrated that )3--29 minimized the error function. 

Figure 6.21 Discrete anatomical model. 
(left) white matter (middle) gray matter (right) CS1' 

Figure 6.22 100-th slice of'siniulatcd'I'l -weighted MR imagc. 
(left) original slice (right) noisy slice with 7% noise 

126 



Chapter 6 MR linage Segmentation 

0.025 

0.02 
0.015 
0.01 

0.005 - 

0.6 
00 4 . 0. 

<2 
ý--- 0.8 1 6 

: -1-0 ýý 
0 0 2 . n4 0.4 

0 . 

(a) 

Ecv 
2.92 

2.9 

2.88 

2.86 

2.84 

2.82. 

2.8 
. 05 10 15 20 25 30 35 40 45 50 fl 

(b) 

Figure 6.23 Parameter estimation for simulated Ti-weighted 
image. (a) IFCM (b) RFCM 

Using the parameters selected, the performance evaluation parameters of FCM, 

RFCM, PCM and JFCM were obtained from the 100-th slice and they are listed in 
Table 6.6. Similar to the conclusions in the above sections, RFCM increased the 

accuracy of FCM marginally, but PCM was stuck in one cluster and IFCM showed 
the highest accuracy compared to other methods. The segmentation results of the 

noisy 100-th slice when applying RFCM and lFCM are shown in Fig. 6.24. It 
demonstrated that although IFCM increased the accuracy by only several percent, it 

eliminated noise completely while RFCM could not overcome the influence of noise. 
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(a) 

(h) 

Figure 6.24 Segmentation results of simulated TI-weighted MR image. 
(a) RFCM (b) IFCM 
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Table 6.6 Segmentation pcrformancc evaluation on simulatcd TI-wcightcd imagc. 

Class Evaluation 
Parameters FCM PCM RFCM IFCM 

C, 92.02 0 92.02 93.18 

C2 99.50 100 99.53 99.80 
CSF UnS(%) 0.50 0 0.47 0.20 

01, S(%) 7.98 100 7.98 6.82 

in c (%) 0.76 34.0 0.73 0.57 

C, (%) 88.92 0 89.08 92.69 

C2 (%) 98.65 100 98.89 99.05 
Gray 

matter UnS(%) 1.35 0 1.11 0.95 

0$'S(%) 11.08 100 10.92 7.31 

In C 2.33 10.16 2.11 1.59 

C, 92.77 100 94.28 97.35 

C2 99.25 84.14 99.24 99.36 
White 
Matter UnS(%) 0.75 15.86 0.76 0.54 

OVS(%) 7.23 0 5.72 2.65 

In C (%) 1.68 13.57 1.47 0.93 

C, (%) 91.24 33.33 91.79 94.41 

C2 (%) 99.13 94.71 99.22 99.40 
Average UnS(%) 0.87 5.29 0.78 

_ __0.56 
01, S(%) 8.76 66.67 8.21 5.59 

In C (%) 1.59 19.24 1.44 1.03 

Different levels (0-18%) of noise were sequentially applied to the simulated 
TI-weigthed MR image. The noisy images were segmented by means of all methods 
described. Fig. 6.25 show their cost function E and InC obtained from FCM, RFCM 

and IFCM. An increase in the level of noise led to an increase of E and InC for all 
methods. Below the 3% noise level, the three methods had similar performance 
describing by E and InC Above the 3% noise level, IFCM showed the most 

robustness to noise. It reduced InC greatly within the noise level 7% to 15%, and 
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Figure 6.25 Cost function E (top) and InC (bottom) with respect to different noise 
levels in TI-weighted MR image 
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even with other noise levels, it obtained a much lower E which reflected a more 
dominant segmentation. RFCM and FCM results were close; although RFCM had a 
lower InC, it was less positive in segmentation. 

Two major modalities of MRI, T2-weighted and PD-weighted shown in Fig. 6.26 

were also used to validate the advantages of IFCM on segmentation. 3% noise was 

added on the original images and they were segmented by both FCM and IFCM. 

Fig. 6.27 and Fig. 6.28 show the segmentation results. The influence of the noise on 
both images was overcome by IFCM, but FCM could not even segment the 

PD-weighted image correctly. 
Fig. 6.29 shows the chart of average evaluation parameters for different MRI 

modalities all with 3% noise. This further denionstrated the advantage ot'll-('M. 

(a) 

(b) 

Figure 6.26 Simulated MR images with 3% noise: the 80-th, 100-th and 
120-th slice (from left to right) (a) T2-weighted (b) PD-weighted. 
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(h) II 'C'M 

Figure 6.27 Segmentation results of T--, -weighted image. 
The first row: the 80-th slice, the second row: the 100-th slice and the third 
row: the 120-th slice 
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FCM 
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(b) I FCM 

Figure 6.28 Segmentation results of PD-weighted image. 
The first row: the 80th slice, the second row: the 100th slice and the third 
row: the 120th slice 
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Figure 6.29 Chart of average evaluation parameters of MR images 
with 3% noise. 

6.7 MR IMAGE SEGMENTATION 

Through a series of tests on various synthetic, facial and simulated MR iinagcs, it 

maybe confirmed beyond all doubt that the IFCM algorithm is sLipcrior at 

segmentation. In this section, real MR images were tested using FCM and 
The performance of IFCM was of most interest to us since our Initial target was to 
develop an algorithm adaptive to real MR images for this thesis. 

An example of a TI-weighted MR image with 11% noise is shmvil iii Fig. 6.30. 

Along with the comparison of segmentation results from FCM aiid IFCM, the 

process of non-brain region removal and tissue contrast enhancement are also g'vcII 
(Fig. 6.30 (a)). The parameters A and ý, in IFCM were chosen as 0.5303 and 0.5707 hý 

the ANN model. Clearly, IFCM acquired more smooth results than FCM. 
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Figure 6.30 T, -weighted MR image %vith 11% noise. (it) (Crom left to right) 
original standardized image, brain region and enhanced image %kith II "o noisc 
(from left to right) segmentation results of' I. VNI arid If. U. M (C) pal, 1111c1cl 
estimation 
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Several levels of noise were applied to the original image. As no ground truth was 

available, the cost function E was employed as a performance evaluation parameter; 

its capability has been explained above. Fig. 6.31 is the plot of the cost function E 

with respect to the noise level. The value of E increased with the noise level. The 

much lower value of E implied a better performance by IFCM than FCM. 

After the testing described above, we can be fairly certain that the IFCM 

algorithm can be applied to the real MR images that we have collected for our study. 
The cluster number was 5 in most images depending on the existence of brain 

tumours. The five clusters were white matter, gray matter, CSF, brain tumour and 
background. Typical images from each type of MRI modality in our study and their 

segmentation results using IFCM are shown in the following figures. Fig. 6.32 is a 
FLAIR-FSE MR image from a patient having high level glioma. Fig. 6.33 is a TI-SE 

MR image from another patient having high level glioma. Brain tumour is not always 

manifested in TI-SE image but has close intensities to white matter. 
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Figure 6.31 Plot of E with respect to noise level. 
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(g) CSF 

Figure 6.32 Preprocessing and segmentation oll I. A IR-l-SF MR inmpc. 
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F 1. 

(c) non-bram region after 
erosion 

(h) hinar\ mask 

(d) non-brain region aftcr 
C111,16011 
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(g) CS F 

(i) white matter 

Figure 6.33 Preprocessing and segmentation of TI-SE, MR image. 

The T2-FSE image shown in Fig. 6.34 was from a meningioma patient. As stated 

above, the non-brain regions in T2-weighted images are quite dilficult to remove (ILIC 
to the high intensities of CSF. The supplementary method presented in Chaptcr 5 wits 
therefore applied to complete the non-brain removal. 
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Figure 6.34 Preprocessing and segmentation OF'1'2-1, 'SE MR image. 
(a) standardized image (b) brain region only (c) enhanccd iniagc (d) 
CSF (e) white matter (0 gray matter (g) brain turnour (1) scgnicntcd 
image 
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Fig. 6.35 gives a PD-FSE MR image from a high level glioma patient and its 

preprocessing and segmentation results. 

crosion 
(d) non-brain rcgion after 
dilation 
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cSI., 

Figure 6.35 Preprocessing and segmentation of PD-I'SE MR image. 
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6.8 RF INHOMOGENEITY ESTIMATION 

Artifacts in MR images can make the conventional intensity-based segmentation 

methods very difficult, especially spatial intensity inhomogeneity induced by the 

radio frequency (RF) coil. The RF field sensitivity variation varies slowly across the 
image. Even advanced techniques such as nonparametric, multi-channel methods 

cannot solve this problem [Dawant, Zijdenbos and Margolin, 1993]. The most 

popular method-to solve this problem is using the expectation-maximization (EM) 

algorithm [Wells III et al., 1996; Zhang, Brady and Smith, 2001]. However, there are 
two main disadvantages of EM approach. First, the EM algorithm is computationally 
intensive, especially for large problems. Second, the EM algorithm requires a good 
initial guess for either the bias field or for the clustering estimate. Otherwise the EM 

algorithm could be easily trapped in a local minimum, resulting in an unsatisfactory 

solution [Ahmed et al., 19991. 

Although MR images which were affected by artifacts were removed at analysis 
in this thesis, an extension of the IFCM algorithm is proposed in this section which, 

can estimate inhomogeneities in MR images. Its capability has been demonstrated on 
both synthetic non-MR images and MR images. 

6.8.1 BIAS FIELD MODEL 

MRI intensity inhomogeneity is modeled as a spatially-varying factor called the gain 

field. Let X=IXI, X2,... Xj 
... 

XN) be the observed MRI intensities (with artifacts) and 

X* = {XI 
9 
X*21 ... 

Xj ... 
XN) be the ideal intensities (without artifacts). N is the total 

number of pixels in the image. The gain field is denoted by B= (B 1, B2, 
... Bj 

... BN)- 

The observed MRI intensity is modeled as a product of the true signal generated by 

the underlying anatomy and the gain field, expressed as follows: 

xi = X; Bj (6.24) 

The application of a logarithmic transformation to the intensities allows the 
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logarithmic artifact, called bias field to be modeled additive to the ideal intensities. 

Let xj and xj* denote the observed and ideal log-transformed intensities at the j-th 

pixel. Pj is the bias field at thej-th pixel. So, 

In X, = In(X, B, ) 

xi =xj +ßj 
(6.25) 

Bias field gj is modeled by an N dimensional zero-mean Gaussian prior 

probability density, which is one of the most successful models [Wells III et al., 
1996]. This model can capture the smoothness of the inhomogeneities. The bias field 

is defined as follows: 

1 
(6.26) -Efli =0 N j., 

6.8.2 BIAS FIELD ESTIMATION 

The objective function of both FCM and IFCM algorithms in Eq. (6.1) is therefore 

extended by considering the definition in Eq. (6.26). A constrained oPtimization of 

the objective function is expressed using Lagrange multipliers, 
NcN 

J. (U, V)=ELu'd'(xj, v (6.27) y0+ 17(-Efli) 
J-1 /-I N J., 

Taking the derivative of J. with respect to Pj and setting the result to zero 

regarding the optimization, 
aim C 

=I Y)2 
17 

um(I-AH, -ýF, . 211x, -, 8, -v, 
ll+-=O (6.28) 

aflj W#N 

Let M. =I- AHjf - ýF,, and substitute)7 = -1.11-11 is regarded as Euclidean distance. 
N 

c 
u mM2 

-211xj -flj -v, 
11+q 

-, 40 (6.29) 

c 
UmM2V Ly91 

X /-I- + 
17 (6.30) 

181 J- cc 
u PsM2 2yu mm2 

According to Eq. (6.26), 
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c 

u mmi v Ar NNLy#IN 

)6j = xj -W 
17 

=0 EEEcc 
j. 1 J-1 J-1 u mM2 i" 2Z Umm2 ý 

if YWu9 

c zumm, 
v, 

i-1 
u9 

--x 2: c Umm2 

(6.31) 
NC 

2: 2 jUmM2 

J. i i=I 
y9) 

Substituting Eq. (6.3 1) into Eq. (6.30), the bias field can be estimated as: 
Ar 

F, (Xi 
- Pi) 

fli = xi -pi c 
J=l 

c 
(6.32) 

Y 
UMM, j.. 

t 
I: 

UmM2) 
, li uy 

i-I J-1 

(1-1 

c 
u mm2V 

where, Pi --'ý c 
u mm2 

y iv 

The extension causes no change of membership function but modify the cluster 

centre as following: 
N 

E(uii)'(xi 
-, 

91) 

J-1 
N (6.33) 

2: (UY)m 
J-1 

6.8.3 EXAMPLES 

The extended IFCM was applied on synthetic images, corrupted multiplicative 
bias field and also on the simulated MR images. The parameters A and ý in Eq. (6.14) 

were set to be 0.47 and 0.53 by trial and error. 
Fig. 6.36 (a) shows a two-cluster synthetic image and (b) is the image corrupted 

by a Gaussian bias field. The segmentation results of both FCM and extended IFCM 

are shown in Fig. 6.36 (c) and (d). Obviously, FCM cannot even segment such a 
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(a) (b) 

(c) (d) 

Figure 6.36 Synthetic image I for bias field estimation. 
(a) original image (b) image corrupted by a Gaussian bias field (c) 
segmentation result of FCM (d) segmentation result of extended 
IFCM 

simple image corrupted by bias field but the extended IFCM can correct the bias 

field completely. 

Fig. 6.37 (a) shows another synthetic image with four clusters and it was also 

corrupted by a Gaussian bias field. The bias field estimated using extended IFCM 

algorithm is shown in Fig. 6.37 (c) and (d) is its segmentation results. 
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(a) 

(c) (d) 

(b) 

Figure 6.37 Synthetic image 11 for bias field estimation. 
(a) original image (b) image corrupted by a Gaussian bias field 

(c) bias field estimated (d) segmentation result of extended IFCM 

To further demonstrate the ability of extended IFCM, a simulated MR iniage 

was downloaded from an MRI simulated brain database [13rainweb, 2003 1. It was a 
TI-weighted image with 1% noise and 40% non-umformity. Fig. 6.38 (a) shows tile 

original corrupted image and (b) shows the corrected image. The image was 

segmented into four classes corresponding to background, gray matter, white inattcr 

and CSF. The segmentation results of FCM and extended JFCM arc given in Fjg. 6.38 

(c) and (d). Similarly, FCM was affected by the bias field while the extended IFCM 

not only succeeded in segmentation but also estimated the bias field correctly. 
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(a) (b) (c) 

(c) (d) 

Figure 6.38 Simulated Tj -weighted MR image for bias field estimation. 
(a) corrupted image (b) segmentation result of I-CM (c) segmentation result of 

extended IFCM (d) corrected image (e) bias field 

I lowever, using the extended IFCM for bias esti ination may lead to loss ofsorne 

image details. Further work will be needed to solve the problem. 
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6.9 CONCLUSIONS 

This chapter introduced the second major part of a brain tumour diagnosis system, 
MR image segmentation. Accurate segmentation of brain tissues can result in proper 
diagnosis of brain tumours. A variety of image segmentation methods in the literature 
have been reviewed, such as thresholding, region growing, edge-based segmentation 
and clustering. Among these, the FCM clustering algorithm belonging to the 

clustering category is one of the most popular segmentation methods for MR images. 
However, the drawback of FCM algorithm, as with many other intensity-based 

segmentation methods, is its sensitivity to noise. Since medical images contain 
uncertain information, noise and even artifacts, the intensity-sensitive methods may 
not segment medical images correctly. On the basis of the traditional FCM algorithm, 
an improved segmentation algorithm called IFCM was developed to solve this 
problem. 

Generally, a pile of pixels may represent details of partial image but a pixel is 
too small to do so. If a pixel has a totally different intensity to its surrounded pixels, 
it may be regarded as noise. As a result, attractions among nearby pixels appear to 
draw others towards their own features. On the basis of this theory, a neighbourhood 
attraction including two factors was considered in our IFCM algorithm. One is called 
feature attraction. The feature in MR images represents to pixel intensity. The other is 
distance attraction. The former indicates that the attraction emerges depending on the 
intensity difference among pixels. The lower the intensity difference is, the stronger 
the feature attraction. The latter indicates that the attraction also emerges depending 

on the spatial distance among pixels. The closer the pixels arc, the stronger the 
distance attraction. By considering neighbourhood attraction, segmentation is 

therefore determined not only by the pixel intensity itself, but also by the intensities 

of neighbouring pixels and the structure of its neighbourhood. This greatly reduces 
the sensitivity of segmentation to noise. A neural network model was presented to 

search the optimized degree for both feature attraction and distance attraction. 

Different images may require various values for the two attractions. 
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Other approaches also based on FCM, such as NCM, PCM and RFCM were 
described and compared to IFCM. Synthetic square images and Lena facial image 

with different noise were used to test all methods for segmentation. Besides the 

better visual effect of IFCM than other methods, five parameters were defined to 

confirm the superiority of lFCM algorithm quantitatively. Due to no ground truth 

available to MR images, simulated brain MR images whose anatomic structure was 
known were downloaded from Brainweb (2003). Typical images from Ti-weighted, 

T2-weighted and PD-weighted categories with different noise levels were segmented 
by IFCM along with other methods. The better performance and higher accuracy of 
IFCM were suggested by visual segmentation results and evaluation parameters 

obtained. After going through all the other tests successfully, real brain MR images 

could finally be segmented using IFCM algorithm. For each MRI modality, only one 
typical image was shown in this chapter. Each brain image was segmented into white 

matter, gray matter, CSF and brain tumour, while some TI-weighted image displayed 

no brain tumour. The average intensity of each part in each image was then easily 
calculated and saved in a database for the purpose Of further diagnosis. 

RF inhomogeneity is one the most prevalent artifacts in MR images. The last 

section of this chapter described how the IFCM algorithm can be extended to 

estimate this inhomogeneity. Its capability has been demonstrated on both synthetic 
images and simulated MR images. 
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Chapter 7 

BRAIN TUMOUR DIAGNOSIS USING 

FUZZY LOGIC BASED GENETIC 

PROGRAMMING 

7.1 INTRODUCTION 

Brain tumour diagnosis is the last major part of the diagnosis system in this thesis. 

From the previous two parts, image preprocessing and image scgmcntation, a 
database was built which comprises intensities of white matter, gray matter, CSF and 

brain tumour from each MR images. The size of the database has no limits but its 

actual size depends upon the number of images and the number of slices of cach 

image. It could contain a huge amount of data making it difficult to read all of them. 

How to dig deeply into this data and discover diagnosis rules for brain turnours is our 
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main concern. As stated above, data mining techniques emerged especially useful for 

excavating interesting knowledge from a large number of data; therefore they are the 

best choice dealing with this kind of problem. On the other hand, in terms of the 

number of tumour types, the diagnosis problem could be regarded as a 

multi-classification problem. The next task is therefore to choose an appropriate 

method from the data mining techniques for multi-class classification. It is worthy of 

note that medical data has its own characteristics which should be considered in the 

processing. 

In this chapter, the literature review of data mining methods in multi-class 

classification is described. Most methods have to convert a multi-class classification 

problem into several two-class classification problems. A fuzzy logic based GP is 

proposed here which can deal with multi-class classification directly. Classification 

rules for brain tumour types are discovered with acceptable accuracies. 

7.2 DATA MINING METHODS IN MULTI-CLASS 

CLASSIFICATION 

Multi-class classification is a popular problem with a number of applications in a 

variety of areas, such as computer vision, bioinformatics, speech recognition, robotic 

control, marketing, drug discovery and medical diagnosis. Usually the classification 

problems have a common feature in that a large amount of data is involved. Due to 

the excellence of data mining in dealing with volumes of data, many attempts have 

been made on classification by means of data mining methods. 

Medical diagnosis has been paid a great attention among all thcsc applications 

of multi-class classification using data mining techniques. An cffectivc classification 

can automatically diagnose the diseases or analyze the conditions of paticnts, Which 

may assist or enhance the clinical decision of doctors. It may also save a great deal of 

time in an urgent case and save lives. For example, chest pain is a symptom rclatcd 
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to several diseases such as cardiovascular, pulmonary, esophageal, and psychogenic. 

In terms of the report of the World Health Organization, cardiovascular diseases 

accounts for about 25% of death rate in the whole world, especially in developed 

countries. A critical problem faced by doctors particularly in emergency room is how 

to discriminate the life threatening diseases from other less serious pathologies 

quickly and effectively, which all have the similar symptom of chest pain. Bojarczuk 

et aL (2000) proposed a paradigm to classify 12 diseases (classes) related to chest 

pain. Many contributions to this problem were also presented by such as Assanelli et 

aL (1993), Mair (1995). Other applications for medical diagnosis using classification 

methods include differentiating the patients with the coronary artery disease from 

healthy people (two-class classification) by Cios et aL (2002), prognostic predicting 

of bilharziasis-rclated bladder cancer by Wei et aL (2003), diagnosing whether the 

solitary pulmonary nodule is cancerous or benign by Kusiak el al. (2000) and 

determining the malignancy of breast cancer by Kovalerchuk, Vityaev and Ruiz 

(2000). 

For solving classification problems, many effective and cfflcicnt methods in 

data mining have been delivered in the literature. Most of them are based on 

mathematic models or theories [Chien, Lin and Hong, 2002]. For example, the 

statistic classifiers were built on the Bayesian theory which provides a probability 

model to assign data to a certain class with the highest probability. The major 
limitation is that effective classification is highly related to the knowledge users have 

of data properties. Neural network is another popular classification method in which 

a multi-layered network is trained with the given training datasct. The drawback of a 

neural network is the opaque representation of the results and the incfflcicncy of the 

training process. Classification problems arc also dealt with traditionally by die 

maximum likelihood classifier (MLC). It measures distances among input data and 

classifies data into a class with the least distance. Ilowcver, a normal distribution is 

generally assumed for the input data, which is not usually true, because it Icads to 
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minimum classification error. 

Genetic programming (GP) is gaining attention in multi-class classification area 

due to its ability to discover the underlying data relationships and express them 

clearly. GP no longer has to encode classifier to sequences of strings as in genetic 

algorithm. It begins with a population of randomly created computer programs which 

represents a potential solution. The primary considerations in applying GP to 

multi-class classification are as following [Kishore el al., 2000]: 

(1) Require no particular data distribution, i. e., no a prior knowledge is needed about 

the statistical distribution of the data as in MLC 

(2) Detect underlying but unknown relationships that exists among data 

(3) Discover the most important discriminative features of a class 

(4) Operate directly on the data in their original form 

However, GP is usually applied to distinguish between just two classes of 

objects [Koza, 1992] as in many other methods. A discriminate function is optimized 

such that for values larger than a certain threshold value, the object is classified as 

classA, and otherwise to class B. Thus, the most common approach in practice is to 

convert the multi-class classification (e. g. N class) problem to binary classirication 

problems and iterate the classifier N times until each class is classified [Kishore, 

2000]. Obviously, it increases the computing time and reduces the efficiency of GP 

incredibly. 

For the sake of solving the problem, a fuzzy logic based GP is proposed in this 

thesis to deal with the multi-class classification problems. It does not request to 

convert N-class classification into Ntwo-class classirication, but classifies all classes 

simultaneously. 

7.3 FUZZY LOGIC BASED GP 

The combination of fuzzy logic and GP has prcviously bccn prcscntcd by diffcrcnt 
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researchers. Edmonds, Burkhardt and Adjei (1995) published a combination method 

which can produce a powerful methodology for the generation of fuzzy production 

rules that are effective and intelligible. Chien, Lin and Hong (2002) introduced 

another combined method for data classification which can increase the accuracy. 

However, none of them tried to combine fuzzy logic and GP for direct multi-class 

classification. 

GP implements a classification task as described in Chapter 4.3. Initially, a 

population of individuals is generated randomly. Each individual in the population of 

GP represents a classifier for a specified class. Generally for GP, the classifier can be 

accomplished in either two ways: classification rules [Fretas, 1997] or classification 

functions [Kishore et aL, 2000]. The latter, also called discrimination functions, is 

more concise and efficient than the former. However, the discrimination functions are 

not easily understood and interpreted directly due to their non-linearity. Due to the 

need for comprehensible results, classification rules are chosen as the modality of the 

classification results, which have the form as: 

IFconditions THENclassification 

The logical combination of conditions on the values of predicting attributes 

composed of the 'IF'part. The 'THEN'part contains the predicted class. 

In a two-class classification problem, the classification rules arc to predict 

whether or not the data belongs to a prior specified class. Tlicrcforc, the individuals 

of GP encode the 'IF' part of the rules; whereas the 'TIIEN' part is the prior spcci ficd 

class. During the evolution of GP, only the 'IF' part (individual) in classification rule 

is operated by genetic operators but the 'THEN' part is ignored. 111c classification 

results can be explained as: if the individual is true, the subject is classificd to the 

specified class; on the contrary, it belongs to the other class. The conventional Gil for 

multi-class classification executes the complete Gil process the number of times 

equal to the number of classes. One class is predicted each time. The diagnosis of the 

chest pain related diseases by Bojarczuk, Lopes and Frcitas (2000) predicted 12 

158 



Chapter 7 Brain Tumour Diagnosis Using Fuzzy Logic Based Genetic Prog=ming 

diseases, so the GP proceeded 12 times. 

In our fuzzy logic based GP, the individual still stands for the 'IF' part of the 

classification rule, the 'THEN' part is not specified in advance but determined in the 

first stage of each generation. Generally, the individual consists of the functional set 

(FS) and the terminal set (TS), which are variable in different applications. Fig. 7.1 

shows the basic structure of classification rules. 

The fitness function in GP evaluates the quality of each individual, or the 

capability to solve the problem. The definitions of fitness function are different 

depending on the features of the problem. The most popular fitness function in 

classification approach consists of following aspects: 

True positive Qp): the number of subjects that the individual predicts belongs to 

a certain class and they do belong to the class. 
False positive ((p): the number of subjects that the individual predicts belongs to 

a certain class but they do not belong to the class. 

True negative (in): the number of subjects that the individual predicts that does 

not belong to a certain class and they indeed do not belong to the class. 

False negative (fn): the number of subjects that the individual prcdicts does not 

belong to a certain class but they do belong to the class. 

FS ) Individual 

IF FS F JS =TRUE 

Classificallon 
rule THEN CLASS 

Figure 7.1 Structure of classification. 
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Two parameters are then defined: 

se = 
lp 

tp + fn 

Sp = 
in 

tn+fp 

Where Se is named sensitivity, and Sp is named specificity. 

So, the fitness function is the product of both Se and Sp. 7le higher the rancss 

is, the bettcr the individual in this case. 

Fitness = Se x Sp (7.3) 

Ilowcver, the fitness function docs not rit for many classification problcms, 

especially in the mcdical diagnosis domain. Suppose several t)TCS of discascs arc to 

be classificd, the sensitivity can be described as the capability that the classification 

rule diagnoses the patient %vith the disease they actually have; the specificity can be 

described as the capability that the classification rule correctly diagnoses the patient 

urithout the disease. Obviously, the former is more important than the latter. It is not 

enough just simply increase the weighted value or the sensitivity to improve the 

performance of the fitness function, but more factors nced to be considcred. 

In our approach. two fitneu functions = employed rather than one to evaluate 

the classification rules more comprchcasi%, cly. The runy logic tcchnique Is idu) 

combined in rancss function determination, %%hich can solve the multi-chas 

classification problem directly uithout converting to binary clusification. 

Assume a population or one generation Is obtaincd. - titc manivaip or mi, 

individual to cach class is dcrined as follows: 

U 
Co 

x' 
(7.4) 

Where 1-1 ... it (class numbcr), J- I ... L (rule numbct). Cw "mcnu Ilw numlvr or 

subjects that thcfith individual can clamiry Into the Mh clits cormily. X, Is 11W 

number of subjects belonging to the Mit class. I'lic liiglwr the mcnibcf3hip Iq It. 11w 
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better the ability of thej-th individual to classify the subjects into the 1-th class. 

Ile first fitness function is therefore cxprcssed as: 

[fitness Ij, Classj I= max(u,,.. ji, ... UV) (7.5) 

Whcrefitnesslj indicates the degree of coffcct classirication (li'tnesslje[0,11), and 

Classj labcls the class cach individual can classify the bcst. If uA is the maximum of 

the memberships, filnessli = u,, and Classj = k. It denotes that thcj. th individual 

has the best ability to classify the k-th class uithfilnesslp 

Previously, thcj-th individual is like 'IFJ-th conditions" N%ithout the 'IIIEN' 

part. Now thej-th classification rulc corrcsponding to thej-th individual has bccn 

completcd as: 'IFJ-th conditions, THEN k-th class. 

A little modification has been made on the definitions or tp, fp. nt, fit statcd 

above and spccificd several new parameters for this particular approach. 
fl, denotes the percentage that the classification rule classifics the subjects into 

the k-th class and they do belong to the k-th class. 

f2i denotes the percentage that the classification rule classifics the subjects into 

the k-th class and they do not belong to the k-th class. 
fjj dcnotcs the pcrccntagc that the classirication rulc docs not clusiry the 

subjects into the k-th class and they do not belong to the k-th class. 
fij denotes the percentage that the classification rule does not clusiry the 

subjccts into the k-th class and thcy do Wong to the A-th clus. 

So, the sccond rancss function is dexribcd as following: 

fl Ilf" 
(7.6) 

a 

+ ofil + ; f4l) 

Whcrc, a,, O, y, g c 10,11, and thcy must satisfy dic rclations 

a+flml 
y+vnl 

(7.7) 

From Eq. (7.6), the higilcr tile nunlcr; ltor anj die Iowa tile dwominitor 16. tile 
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more optimum the fitneSS2. Ideally, if all subjects are classified correctly either 

positively or negatively, then: f1j = f3j = 1, f2j = f4j =0. The optimized value of 

the second fitness is 

fitness2 a+, g 
I 

1+0 

In the worst situation, f1j = f3j = 0, f2j = f4j 
=I and fitness2j=O. So, 

fitness2j e [0,1 ]. 

Similarly as stated above for the sensitivity and specificity, fij is more important 

than f3j because the former classifies positively and the latter classifies negatively. 

Especially in medical diagnosis, it is more crucial to decide if the patient has a 

certain disease than decide if a healthy person does not have this disease. On the 

contrary, f2j describes mis-classification and f4j represents unclassified cases. 

Diagnosing a patient with a disease, rather than the one he really has, is clearly much 

worse than being unable to diagnose. Because if the type of disease is known 

incorrectly; then a totally different therapy may be carried which might lead to fatal 

results. But for the type of disease not being able to determined, a further diagnosis 

can be applied. As a result, usually a>P andv >, p. In summary, each individual is 

decided its class with respect to its fitness] and evaluated its classification ability 

withfitness2. 

Suppose the number of population is 100 in each generation and the maximum 

generation is 100. Only one out of I 00x 100 individuals is useful in the conventional 
GP, because just one classification rule for one class can be discovered at each time 

of GP implementation. For N class classification, Nx I 00x 100 classification rules arc 

created but only N rules arc useful. In our fuzzy based genetic programming, N-class 

classification can be completed in one GP implementation. One individual may be no 

fit to a class but be very fit to another class; whereas the conventional GP discards all 

other rules. So, N out of l00xI00 created rules are valuable. It is a simple 

mathematic question which indicates the significance of the proposed method over 
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the conventional one. 

Fig. 7.2 shows the configuration of the fuzzy logic hascd genctic programming 

for multi-class classification problems. The detailed implementation is as following: 

(1) Select the number of population, the maximum ijcncration or termination 

criteria 

(2) Determine functional set and terminal set 

(3) Generate an initial population at Generation=O by the ramped half-and-ImIl' 

method 

(4) Compute membership functions of each individual using Eq. (7.4) 

(5) Decide fifness] and corresponding class to each individual using Fq. (7.5) 

and complete classification rules 

(6) Decidefilnes, Q of each classification rules using Eq. (7.6) 

(7) Apply genetic operations (reprodLICtiOll. crossover and mutation etc) to the 

individuals chosen by a specified selection method and create a new 

End Generation=O => Random Individuals- 

yes 
no 

Membership function 

Terminated 
? 

-- 

I-I 

Generation eneration+1 

New Individuals 
1 

1* I Classification rules 

Reproduction, 
crossover, 
mutation 

L 

s2 

Figure 7.2 A briefconliguration offuzzy logic hascd ( 11' 
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population for the next generation 

(8) Repeat from step (4) until the termination criteria are satisfied 

7.4 METHODOLGY EVALUATION 

After the description of the ftizzy logic based GP, two classification examples are 

utilized to evaluate the accuracy and efficiency of the method. 

7.4.1 Fisher's Iris Dataset 

Fisher's Iris dataset is a famous dataset to evaluate the performance of classification 

methods [Fisher, 1936]. The dataset consist of three species of Iris flower, sctosa, 

versicolour and virginica. Each species includes 50 subjects and in total 150 subjects 

are in the dataset. The data report four characteristics: sepal width (SW), sepal length 

(SQ, pedal width (PW) and pedal length (PL). Ilie task is to discover the 

classification rules composed by four characteristics for the three species. 

Due to only four attributes involved in the individuals, the maximum numbcr 

of nodes (the number of functions, terminals and constants) in an individual was 

selected as 15. If expressed a rule as a binary tree, 15-node represents a tree with a 

maximum 4 layers. Fig. 7.3 shows the structure of a binary tree representing 

classification rules. Tle functional set was {: 5, Z: j, +9 , x, /). 11c grammar of the rules 

implied that and ' ý: ' are regarded as the first logic functions, and '+', '-', Y, 4/9 

are the second logic functions. Generally, one and only one first logic function must 

be included in an individual. The number of second logic function can be variable 

while satisfying the correct grammar and the number limit of nodes. Fig. 7.4 gives the 

tree structure constructed by grammar. The terminal set was composed of (S%V, SL, 

PW, PL). The probabilities of reproduction, crossover and mutation were 0.1,0.7 

and 0.2, respectively. The population size per generation %%-as 500, and the maximum 
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10 Number of nodes=15 

Depth=4 

1-d 

4 10 13 

12 1 14 1( 15 1 -0 

Figure 7.3 Structure of binary tree representing classification rules. 
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2nd I ic 

Lnd 
logic 
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inal Terminal nal FrT-C rm 

Figure 7.4 Tree structure vvith first and sccond logic functions. 

generation was 500. 

Initially, 150 subjects were randomly divided into two sets with equal number of 

subjects: training set and validation set. The fuzzy logic based GP was applied to the 

training set, where, er = 0.6, fl = 0.4, y=0.8, q=0.2. One classirication rule for each 
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class was therefore discovered. The expressions of the rules and their accuracies 

tested on the validation set are listed in Table 7.1. 

Conventional fitness, sensitivity and specificity in Eq. (7.1-3) of the 

classification rules were also computed, so that they could be more comparable to 

other classification methods. Further comparison can be done by defining two global 

indexes, average accuracy and overall accuracy, which are utilized by many 

classifiers in the literature. They can be expressed as follows: 

I" tp 

Avcrage accuracy= - 'I'l (7.8) 
n 1.1 N, 

lp, 
Ovcrall accuracy-- '!.! ' 

R (7.9) 
EN, 
1-1 

Where n is the total class number and Ni is the number of subjects in each class. 

Table 7.1 Classification rules for Iris data. 

Classification rules Proposed fitness Traditional 
fitness 

fitness2= 100%; 
PLxSW fl=100%, lp=25; 

ý: (SL x PW) - (SJV - 0.30409) IF Se=100%; 
4.5009xPL f2=0%p 

THEN Sctosa f3= 100%, 
SP-100%; 

fi=O%, Fitness- 100%; 

PW-PL SJV +A 
fitness2=94.78%; tp=25; 

IF ý: fl=96.15%, Se= 100%; 
PL - 4.8652 PIV x 7.8654 f2=3.85%, Sp-98%; 

THEN Vcrsicolor f3=l00%, fi=O%; 
I 

Fflness-98%; 

IF 4.6444.! gPlVxSL-SL 
THEN Virginica 

fitness2=97.71%; 
fl-100%, 

f2=0%, 

f3=96.15%, 
f4=3.85%; 

tp-23; 
Se-92%; 

Sp-100%; 
Fitness-92% 
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Table 7.2 lists the accuracies of different classifiers for the Iris data, referring to 

[Hong and Tseng, 1997; Lee et al. 2001; Lin and Chen 2001; Wang ef al. 1999; 

Chien, Lin and Hong 2002]. Since the Iris data has equal number of subjects in each 

class, its average accuracy and overall accuracy are equal to each other. It is evident 

that our fuzzy logic based GP has one of the highest accuracy among other methods. 

7.4.2 Wisconsin Breast Cancer Dataset 

Wisconsin breast cancer dataset is another famous dataset for classification 

evaluation. It was obtained from the University of Wisconsin Hospitals, Madison 

from Dr. William H. Wolberg [Mangasarian and Wolbcrg, 1990; Wolbcrg and 

Mangasarian, 1990; Mangasarian, Setiono, and Wolberg, 1990; Bcnnctt and 
Mangasarian, 1992]. The data set includes 699 instances with breast cancer which 

are either benign (458 instances) or malignant (241 instances). Instances arrived 

periodically, thus the data set therefore reflects the chronological grouping of the 

data. 

Table 7.2 Classification accuracy comparison of Iris data. 

Classifiers Accuracy 

GVS [Hong, Tseng, 1999] 96.0 

FEBFC with 4 features [Lee el al., 200 1 96.7 

FRG with GA [Lin and Chen, 200 1] 96.9 

FEBFC with 2 selected features [Lee el 
al., 20011 

97.1 

FIL [Wang el aL, 19991 97.3 

Fuzzy attributes GP [Chien, Lin and 
Hong, 20021 97.3 

Fuzzy logic based GP 97.3 
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Group 1: 367 instances (January 1989) 

Group 2: 
. 

70 instances (October 1989) 

Group 3: 31 instances (February 1990) 

Group 4: 17 instances (April 1990) 

Group 5: 48 instances (August 1990) 

Group 6: 49 instances (Updated January 1991) 

Group 7: 31 instances (June 199 1) 

Group 8: 86 instances (November 1991) 

Total: 699 instances (as of the donated database on 15 July 1992) 

Nine attributes compose of the data set listed as follows: 

1. Clump Thickncss 

2. Uniformity of CcIl Sizc 

3. Uniformity of CcIl Shapc 

4. Marginal Adhcsion 

5. Singic Epithclial CcIl Sizc 

6. Barc Nuclci 

7. Bland Chromatin 

8. Non-nal Nuclcoli 

Although it only involves a two-class classification problem, it can also be 

applicd to evaluate and comparc the capability of our fuzzy bascd GP since many test 

results of different classification methods arc available in the litcraturc. 

The maximum number of nodes in the classification rules %vas 32, which is 

five layers of a binary trcc, since more attributes are includcd. The functional sct was 

similar as in the previous example: (. -I, ý, - +, -, x, /), so wcrc the rclated pamnictcrs. 

The terminal set was the nine attributcs indicated using thcir abbrcviations: (CT. 

UCSizc, UCShapc, MA, SECSizc, BN, BC, NN, Mit). 71c 699 instances %%, crc 
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randomly divided into the training set and the validation set, thus two classification 

rules were discovered as shown in Table 7.3. 

Table 7.3 Classification rules for Wisconsin breast cancer dataset. 

IF ((UCShape + BC) - (10 - NN)) x (BC x Mit): 5 (2 x AM - UCShape) 
THEN Benign 

Proposed fitness: fitness2=89.79%; fl=95.26%, f2=4.74%, f3=93.16%, fi=6.84%; 

Traditional fitness: Se=96.5 I%, Sp=90.83%; FUness--87.66% 

IF NN > 
10 

UCShape + BN 
THEN Malignant 

Proposed fitness: filness2=89.86%; fj=92.3 I %, f2=7.69%, f3= I 00%, f4=0%; 

Traditional fitness: Se--100%, Sp=95.63%; RIncss--95.63% 

Wei et aL (2003) emphasized the importance of traditional sensitivity for 

classification pcrformancc nicasurcincrit and compared the sensitivity and specificity 

of three classification methods, such as logistic, MLPNN and ANFIS. applied on 
Wisconsin data. Table 7.4 quotes the results in Wei ef at. (2003) along %%ith that or 

our mcthod. 

Table 7.4 Sensitivity and Specificity of Wisconsin breast data. 

Method Sensitivity Specificity (%) 

Logistic 95.0 97.3 

MLPNN 97.5 97.3 

ANFIS 98.3 96.4 

Fuzzy logic based GP 98.2 93.3 
1 

Although the spcciricity obtained in the fuzzy logic based Gp is lower than 
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others, the sensitivity is comparable to other methods. It is also worth noting that its 

classification rules may not have the highest sensitivity and specificity among the 

whole generations, because the selection of the rules depends on fitnessl and 

fitness2. 

7.5 BRAIN TUMOUR DIAGNOSIS 

After processed by the first two parts of the brain tumour diagnosis system, 763 

instances from 45 brain tumour patients were stored in our database. An image from 

a pituitary tumour patient was discarded. The images with high artifacts and with 

resection cavity and post-operative fluid were also removed. The data contains five 

types of MRI modalities, FLAIR-FSE, TI-SE, T2-FSE, PD-FSE and TI-contrast. 

Three types of brain turnours were finally included, meningioma, (high and low) 

glioma and medulloblastoma. The number of attributes was ten which consist of the 

intensities of white matter, gray matter, CSF, brain tumour, and the intensity 

difference between each of them. The terminal set was therefore composed of (IW, 

IQ IC, IT, IWT, IWGý IWC, IGC, IGT, ICT) as in Table 7.5, where '1' rcfcrs to the 

intensity, 'W' is white matter, 'G'is gray matter, 'C' is CSF, 'T' is tumour and 'IWT1 

is the intensity difference between white matter and tumour, and so on. ne number 

of slices for each type of MRI is listed in Table 7.6 

Table 7.5 Terminal sct of brain tumour data. 

IT 

Ic ICT 

IG IGC IGT 

IW IWG 1wc iwr 
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Table 7.6 Number of slices in each MRI modality. 

Scan type-> 
Tumour Flair-FSE TI-SE T2-FSE PD-FSE TI-contrast 

typesý 

meningioma 63 12 84 11 14 

high glioma 60 60 198 32 12 

low glioma 24 58 71 21 10 

medullo- 8 8 9 0 8 
blastoma 

The functional set in this case was (And, Or, Not, 2t,: 5). The tenninating criterion was 

reaching the maximum number of generations (100). The population size of each 

generation was set to 100. The maximum depth of individual was 5 and totally 32 

nodes in each individual. a=0.6, fl=0.4, y=0.8, q=0.2. 

As stated previously, for each tumour class, meningioma, gliorna (low grade and 

high grade) and medulloblastorna, fitness] divided the individuals into the classes 

they classified and completed the classification rules, and filneW selected the best 

individual for each class. The best classification rules arc as follows (all values have 

been divided by 1000 to make the rules more manageable): 

FLAIR-FSE: 

IF (IGC ý: 23.3775)And(IGM 2: 30.9807)And(Not(ITC; -> 12.4049)) 
THEN Meningioma 

fitness2=66.97%; fi=80%, f2=20%, fj=80.67%, f4=19.33%; 

IF (ITW.: 5 17.8935)And(ITI: g 44.6204)And(ITC; -> IGAf), 4nd(ITC -q 34.2346) 

THEN High grade glioma 
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fitness2=87.33%; fi=100%, f2=0%, fi=77.95%, f4=22.05%; 

IF (Not(IWG ý: ITI)Or(IWC: 5 21.1934)) 
THEN Medulla blastorna 

fitness2=89.69%; fi=100%, f2=0%, fi=82.20%, f4=17.80%; 

IF (IGM-:: 9 32.08l8)And(Not(IWM: 5 31.8708 1)) 
THEN Low grade gliorna 

fitness2=88.94%; fi=100%, f2=0%, f3=80.87%, f4=19.13%; 

TI-SE: 

IF (Not(IWC, 2: 28. l206))And((IWM ý: 33.4338)And(IGC 
--5 7.5124)) 

THEN Meningioma 

fitness2=62.88%; fi=66.67%, f2=33.33%, fj=99.32%, f4=0.68%; 

IF (Not(ITC ý! 7.6964))And((IWC: g 8.129 I)And(ITG ý: 29.963 8)) 
THEN High grade gliorna 

fitness2=91.22%; fi=100%, f2=0%, fj=84.93%, f4=15.07%; 

IF ((ITG ý: 26.901)And(IWC ý: l8.24l6))And(N6I(IWC.: 5 10.8082)) 
THEN Medulla blastorna 

fitness2=98.57%; fi=100%, f2=0%, f3=97.60%, f4=2.40%; 

IF ((IGM :5 30.8435)And(IGC --! 5l0.4578))And(ICSF: 5 33.4338) 
THEN Low grade glioma 

fitness2=71.37%; fi=78.50%, f2=21.50%, f. t=93.62%, f4=6.38%; 

T2-FSE: 

IF (Not(IWM ý: 24.3506))And(IGM.: g ITG) 
THEN Meningiorna 

fitness2=92.04%; fi=100%, f2=0%, fj=86.38%, f4=13.62%; 

IF ((IGC.: g 13.9397), 4nd(IWG.: 5 8.023 1))And(IIVAf ý: 26.2 1) 
THEN High grade gliorna 
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fitness2=65.42%; fi=84.62%, f2=15.38%, f3=67.41%, f4=32.59%; 

IF ((ITG ýt 33.6057)And(IGM:! ý 34.118)), 4nd(Not(IWC 2t 25.377)) 
THEN Medulla blastoma 

; =92.13%, f4=7.87%; fitness2=87.36%; fi=93.75%, f2=6.25%, f 

IF (Not(IWM: 5 25.2864))And((IWC 2: 25.741 I)And(ITG ý: 20.2199)) 

THEN Low grade gliorna 

fitness2=71.23%; fi=91.67%, f2=8.33%, f ? =64.94%, f4=35.06%; 

PD-FSE: 

IF (Not((ITG:! ý 34.2609)And(ICSF: 5 23.9588))) 

THEN Meningioma 

fitness2=96.44%; fi=100%, f2=0%, f3=94%, f4=6%; 

IF (Not(ICSF ý! 19.9868)) 
THEN High grade gliorna 

fitness2=93.97%; fi=100%, f2=0%, f3=89.74%, f4=10.26%; 

IF (Not((IGC ý! 15.7559)0r(IGM: 5 34.385 1))) 

THEN Low grade gliorna 

fitness2=70.43%; fi=84.38%, f2=15.63%, f3=78.95%, f4=21.05%; 

TI-Constrast: 

IF (Not(ICSF.: 9 20.6497))And(Not(ICSF: g 8.855 1)) 

THEN Meningiorna 

fitness2=95.78%; fi=100%, f2=0%, fj=92.86%, f4=7.14%; 

IF (Not(Not(M 2: 17.034 1)) 

THEN High grade gliorna 

fitness2=97.87%; fi=100%, f2=0%, fj=96.43%, f4=3.57%; 

IF ((IWG: 5 5.8745)And(ICSF: 5 15.094 1)) 

THEN Medulla blastorna 
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fitness2=93.22%; fi=100%, f2=0%, f3=87.10%, f4=12.90%; 

IF (Not(IWG: 5 5.8745)) 
THEN Low grade gliorna 

i=83.02%, f4=16.98%; fitness2=90.15%; fi=100%, f2=0%, f 

The recognition rate of each MRI modality is summarized in Table 7.6. 

Although certain types of tumour had relatively low accuracy in classification, the 

classification rate in all was quite promising. It suggests that the idea about brain 

turnour diagnosis based on MR images is not only feasible but very effective. 

Table 7.7 Accuracy of brain turnour diagnosis. 

N FLAIR-FSE TI-SE T2-FSE PD-FSE TI-contrast 

Average 
81.50 91.23 78.27 89.54 91.37 

Accuracy 

Overall 
80.24 86.41 72.61 89.31 92.26 

Accuracy 

7.6 CONCLUSIONS 

In this chapter, the final part of brain tumour diagnosis system has been presented. 

The database, including brain tissue intensities obtained from previous two stages, 

was used to provide useful information about diagnosis. Since there was a grcat 

number of data available, data mining and knowledge discovery techniques were 

employed to complete the job. After a brief review in data mining catcgory, GP was 

appealing due to its popular application, especially in medical domain. 

Brain tumour diagnosis was regarded as a multi-class classification problem. 

However, most classifiers, including GP, cannot deal with the multi-class 

classification problem directly but convert it into several binary-class classification 
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problems. It sacrifices the computing time dramatically. 

A new classification method which combined two typical data mining 

techniques, fuzzy logic and GP was developed for this thesis. It can classify 

multi-class directly without any transformation. Fig. 7.5 shows the classification 

strategies of both conventional GP and the proposed fuzzy logic based GP Clearly, 

the conventional GP creates a rule (individual) set only for one class each time and 

finds a classification rule for this class, and requires iterations of GP to classify other 

classes. The fuzzy logic based GP only creates one rule (individual) set during whole 

Class A Rule set 1 GP (reproduction, Classification 
crossover, mutation) rule A 

Class B Rule set 2 GP (reproduction, Classification J-< 

crossover, mutation) rule B 

Class C Rule set 3 GP (reproduction, Classification 
crossover, mutation) rule C 

(a) 

GP Classification 

Class A Fuzzy 
Rule set 1 

rule A 

membership A_,,, 
ý 

Classification Class B 
(>rRule 

set B Rule set 2 
f rule 11 

C 
Clamification 

! TLY 
)4-E 

rule C 

(b) 

Figure 7.5 Classification strategies. (a) conventional GP (b) fuzzy logic based GP 

175 



Chapter 7 Brain Tumour Diagnosis Using Fuzzy Logic Based Gcnctic Progrmming 

classification. A fuzzy membership was defined to measure the classification ability 

of each individual to each class. The individuals are divided into subgroups in terms 

of their highest fuzzy memberships. The highest membership refers to the class that 

the individual should classify. The number of groups is equal to the number of 

classes. One classification rule from each subgroup can be discovered by GP 

operations simultaneously. 

The characteristics of medical data were considered in the ftizzy logic based GP. 

Instead of using the traditional fitness function, two fitness functions were 

introduced. The first fitness was acquired directly from the highest fuzzy 

membership of each individuaL The second fitness contained four factors which 

consider that to diagnose the patient has a disease is more important than to diagnose 

a healthy person having no this disease; to diagnose the incorrect disease is much 

worse than being unable to diagnose a disease. Therefore, more appropriate 

classification rules could be found in medical domain. 

Fisher's Iris data and Wisconsin breast cancer dataset were both employed to 

test the new method. The classification accuracies achieved for both datasets were 

very comparable or better than those of other classification methods. It indicated the 

good classification capability of fuzzy logic based GP and therefore it should be 

applied to the database for brain tumour diagnosis. Classification rules for each MRI 

modalities and each type of brain tumour were discovered. Three types of brain 

tumours, glioma, meningioma and medulloblastoma were diagnosed and the grade of 

glioma was also diagnosed. The accuracies of the classification rules wcrc quitc 

promising. Ultimately, the feasibility of brain tumour diagnosis non-invasivcly but 

based on MR image has been significantly demonstrated. Although the classification 

rules obtained cannot apply in clinics at this stage since more dctails should bc 

considered, their further effectiveness can be highly expected. 
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Chapter 8 

CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 

As we know, a brain tumour is a very serious disease with a very low survival rate. 
Thousands upon thousands people arc struck by this disease each year. Brain tumours 

arc typically categorized by the tissue of origin. The most common brain tumour type 
is glioma which makes up approximately 50% of all primary brain tumours. 

Following arc mcningiorna comprising approximately 25%, pituitary tumour making 

up 10% and acoustic ncuromas comprising 7.5%. Other rare turnour types occupy the 

rcmaining, 7.5%. Detecting and diagnosing brain turnours quickly and accurately is 

essential to carry out cffcctivc treatments. The prevalent diagnosis process in clinics 
is composed of three steps: neurological exam, brain image analysis and biopsy. A 
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biopsy is a surgical procedure to take a sample tissue from the suspected tumour to 

determine the exact diagnosis such as malignance and tumour types. However, this 

procedure can cause a great deal of pain to the patients and is also difficult for 

clinicians to do. Some brain turnours cannot have a biopsy, such as brain stem 

glioma, because removing any healthy tissue from the brain stem can affect vital 

functions. A non-invasive diagnosis method is anyhow a better way to both brain 

turnour patients and clinicians. 
With the development of imaging techniques, it greatly extends the range of 

human vision into realms that would otherwise be inaccessible, such as the anatomic 

structure inside human body. MRI is currently an indispensable diagnostic imaging 

technique for the early detection of any abnormal changes in tissues and organs, due 

to its fairly good resolution for different tissues. The significance of the technique 

indicates that the intensities in MR images may contain more important information 

than we ever expect. It may not only distinguish brain tumours from normal tissues, 

but also distinguish the tumour types. Siromoney et al. (2000) has firstly 

discriminated two types of brain tumours, meningioma and astrocytoma merely 
based on MR images. It substantiated the possibility of using MR image based 

diagnosis of brain tumours. 
In this thesis, a brain tumour diagnosis system based on MR images was 

proposed. The first chapter explained the reasoning behind developing the diagnosis 

system and the organization of the thesis. The second chapter briefly introduced the 

characteristics of MRI. The third chapter reviewed brain turnour types and their 

general diagnosis methods. 

Since a great number of MR images are created everyday in hospitals and addcd 
to those images already stored, it is impossible to extract diagnosis knowlcdgc 

manually. Even so, this would most likely be incomplete. Data mining and 
knowledge discovery techniques were described in the fourth chaptcr, which arc 
ideal methods for excavating useful infon-nation from huge amounts of data. Typical 

methods of data mining and the process of knowledge discovery were introduccd. 

The non-invasivc brain tumour diagnosis system was constructcd by three major 

parts. Each part was presented in following three chapters. The fifth chaptcr 

addressed the first part, image preprocessing. It was applied to the original MR 
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images from the hospital. Generally, MR images have no uniformed intensity scales 

especially on images from different patients. The nonuniformity of intensity scales 

leads to the difficulty of automatic implementation in any image processing stages 

and also the incomparability of tissue intensities in different images. T'hereforc, the 

principal step of image preprocessing is standardizing the intensity scales by means 

of statistical analysis. A novel and simple standardization method based on the 

statistic features of intensities was proposed. The distribution of intensities in brain 

MR images was described using a sub-normal distribution. This distribution has a 

standard deviation four times that of normal distribution. Its mean also sometimes 

has a linear displacement to that of normal distribution. Depending on the 

characteristics of MR intensities, all MR images acquired for this thesis were 

transformed into new images, which had a predetermined mean and standard 

deviation, 32500 and 10000, respectively. These spccific values of mean and 

standard deviation not only scaled the intensities of MR images into similar 

distribution shapes but also unified the images displayed as unsigned 16-bit format 

with full resolution. The standardization did not require a prior or post template as in 

other standardization methods and also greatly retained the major features of 

intensities while transforming them into a similar range. 

Following standardization, the non-brain removal was proposed which was the 

second step of image preprocessing. The existence of non-brain regions can 

extremely influence the diagnosis because they have similar intensity values to brain 

turnours; or CSF in some MRI modalities. Morphological operations were employed 

to complete this task. Since morphological operations always require binary images, 

a threshold corresponding to the intensity value having the most number of pixels 

was chosen to generate the binary images from the standardized imagcs. The binary 

images were then eroded until the non-brain regions could be labeled and separated 

from the brain. Dilation was applied to thicken the non-brain regions that were 

thinned down through erosion, followed by a processing to mask the whole non-brain 

regions out of the original MR images. The occasional failure using this method was 

compensated by the supplementary method. 

The third step of image processing was the enhancement of tissue contrast using 

histogram equalization. The contrast between white matter and gray mattcr is always 
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quite close which may cause difficulty in ftirther segmentation. Only the intensities 

lying in a specified range referring to white matter and gay matter were treated 

without changing other pixels in the image. A typical image from each MRI modality 

used in this thesis was presented to demonstrate the great effects of 6ch step in 

image preprocessing stated above. 

The second major part of the diagnosis system, image segmentation was 

presented in chapter six. It was applied to preprocessed MR images from the first 

part. Accurate segmentation of brain tissues can result in proper diagnosis of brain 

turnours. A variety of image segmentation methods in the literature have been 

reviewed, such as thresholding, region growing, edge-based segmentation and 

clustering. The FCM clustering algorithm, belonging to the clustering category, is 

one of the most popular segmentation methods for MR images. However, the 

drawback of FCM algorithm, as with many other intensity-based segmentation 

methods, is its sensitivity to noise. Since medical images contain uncertain 
information, noise and even artifacts, the intensity-sensitive methods may not 

segment medical images correctly. On the basis of the traditional FCM algorithm, an 
improved segmentation algorithm called IFCM was developed to solve this problem. 
A neighbourhood attraction including two factors was considered in the IFCM 

algorithm. One is called feature attraction. The feature in MR images represents pixel 
intensity. The other is distance attraction. The former indicates that the attraction 

emerges depending on the intensity difference among pixels. The lower the intensity 

difference is, the stronger the feature attraction. The latter indicates that the attraction 

also emerges depending on the spatial distance among pixels. The closer the pixels 

are, the stronger the distance attraction. By considering ncighbourhood attraction, 

segmentation is therefore not only determined by pixel intensity itself but also by the 

intensities of neighbour pixels and the structure of its ncighbourhood. It greatly 

reduces the sensitivity of segmentation to noise. A neural network model was 

presented to search the optimized degree for both feature attraction and distance 

attraction. Different images may require various extents of the two attractions. Other 

approaches also based on FCM, such as NC, PCM and RFCM were dcscdbcd and 

compared to IFCM. Synthetic square images and Lcna facial imagc with diffcrcnt 

noise were used to test all methods for segmentation. Bcsidcs the bcttcr visual cffcct 
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of IFCM than other methods, five parameters were defined to confirm the superiority 

of IFCM algorithm quantitatively. Due to no ground truth being available to MR 

images, simulated brain MR images whose anatomic structure is known were 

downloaded from Brainweb. Typical stimulated images from Ti-weighted, 

T2-weighted and PD-weighted categories with different noise levels were segmented 

using EFCM along with other methods. The best performance and highest accuracy of 

IFCM were suggested by visual segmentation results and the evaluation parameters 

obtained. After completing all tests successfully, the real brain MR images could 

finally be segmented using EFCM algorithm. A typical image of each MRI modality 

from the images acquired was shown. Each brain image was segmented into white 

matter, gray matter, CSF and brain tumour, while some TI-weighted images 

displayed no brain tumour. The average intensity of each part in each image was then 

easily calculated and saved in a database for further diagnosis. The last section of this 

chapter described how the IFCM was extended to estimate the most popular artifacts, 

RIF inhomogeneity in MR images. Its capability has been demonstrated on both 

synthetic images and simulated MR images corrupted by artifacts. 

The seventh chapter outlined the last major part, brain tumour diagnosis. The 

database including brain tissue intensities obtained from the previous two stages was 

used to extract useful information about diagnosis. Since there was a great number of 
data available, data mining and knowledge discovery techniques were employed to 

complete the job. After brief review in data mining category, GP appealed due to its 

popular application especially in medical domain. Brain tumour diagnosis was 

regarded as a multi-class classification problem. However, most classifiers including 

GP cannot deal with multi-class classification problem directly but convert it into 

several binary-class classification problems. It sacrifices the computing timc 

dramatically. A new classification method combining two typical data mining 

techniques, fuzzy logic and GR was developed in this chapter. It can classify 

multi-class directly without any transformation. Conventional GP creates a rulc 

(individual) set only for one class each time and finds a classification rulc for this 

class, and requires iterations of GP to classify other classes. The fuzzy logic bascd 

GP only creates one rule (individual) set during whole classification. A fuzzy 

membership was defined to measure the classification ability of each individual to 
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each class. The individuals are then divided into subgroups in terms of their highest 

fuzzy memberships. The highest membership refers to the class that the individual 

should classify as. The number of groups is equal to the number of classes. One 

classification rule from each subgroup was discovered by GP operations. The 

characteristics of medical data were considered in the fuzzy logic based GP. Instead 

of using traditional fitness function, two fitness functions were defined. The first 

fitness is acquired directly from highest fuzzy membership of each individual. The 

second fitness contains four factors which consider that diagnosing the patient has a 

disease is more important than diagnosing a healthy person has no this disease; and 

diagnosing a disease as another one is much worse than being unable to diagnose a 

disease. Therefore, more appropriate classification rules can be found in medical 

applications. 

Fisher's Iris data and Wisconsin breast cancer dataset were both employed to 

test the new method. The classification accuracies achieved for both datasets were 

comparative or better than those of other classification methods. It indicated the good 

classification capability of fuzzy logic based GP and it therefore should be applied to 

the database for brain tumour diagnosis. Classification rules for each MRI modalities 

and each type of brain tumour were discovered. Their accuracies were quite 

promising. Ultimately, the feasibility of brain tumour diagnosis based on MR image 

has been significantly suggested. Although the classification rules obtained cannot be 

applied in clinics at this stage since more details should be considered, their further 

effectiveness can be highly expected. 

In summary, the primary achievement of this thesis was constructing a thrcc-part 

non-invasive brain tumour diagnosis system. Novel methods were developed in each 

part of the system whose advantages over other methods were demonstrated 

respectively. The diagnosis results greatly enhanced the superiority of this diagnosis 

system with promising accuracies. 
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8.2 FUTURE WORK 

Although the accuracies of brain tumour diagnosis were quite encouraging in this 
thesis, there are still wide gaps to clinical applications. The precision of diagnosis is 

so crucial and any mistakes can lead to serious consequences. Due to complex and 
diversified structure of different brains, more details may be considered to 

manipulate all sorts of circumstances that could happen. Future work may be 

addressed to following aspects: 
(1) More detailed anatomy of brain should be concerned, instead of only 

considering white matter, gray matter, CSF and brain turnours. Perhaps 

some other parts of brain are the sticking points for brain tumour diagnosis. 
(2) The volume and shape of brain turnours may be taken into account. They 

could also imply the tumour types. 

(3) The algorithms in this thesis were applied on 2D independent slices. The 

more practical implementation should be applying the algorithms to 3D 

images. Manually segmentation of 3D MR images by expert may be 

acquired to evaluate the performance of 1FCM. 

(4) If different MRI modalities can be combined, higher diagnosis accuracy 

may be achieved. In the data source for the thesis, every tumour patient 

only had two or three types of MRI scan. These two or three types were 
different between some patients. Therefore, each classification rule of brain 

tumour was discovered just from one type of MRI modality. Supposc cach 

patient has all MRI types involved, the classification rulcs would 
incorporate information from different MRI modalities. Thcy would 

therefore be more comprehensive and meaningful. 
(5) Only transverse images were used in this thesis. Coronal and sagittal images 

should be combined to improve the diagnosis. 

Another addition would be to apply the extended IFCM algorithin on rcal NIR 

images for bias field estimation. MR images affected by artifacts were cxcludcd in 

the processing, but after corrected by the extended IFCM, these images may Ilicn bc 

of use. 
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A similar application of the diagnosis system would be to distinguish benign 

and malignant brain turnours. It is as important as the determination of tumour types, 

because the property of tumours indicate whether the tumours spread out of the brain 

or not. Their severities are not equal. The only difference in applying this system is to 

collect MR images grouped into benign and malignant tumours. Beyond all doubt, it 

would be a great approach to conduct using the diagnosis system proposed. The 

classification of tumour or not (edema, signs of ageing) may be also an application. 

All algorithms were implemented in MATLAB. As MATLAB is only powerful 
in easy mathematical coding, it needs rather long computing time. Programmes may 
be converted to C or C" for speeding up. 

Owing to schedules, high workload and limits of data, the brain tumour 

diagnosis system is not fully automatic, but works in parts. The work involved is 

mainly a feasibility study rather than the development of practical software. The 

most expected development would be to produce an automatic diagnosis system to 

participate in clinical diagnosis. 
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Figure 1.1 CT, MRI and PET images 3 

Figure 1.2 Structure of brain tumour diagnosing system 6 

Figure 2.1 MRI machine 154 

Figure 2.2 
(a) Spinning proton (b) No magnetic field 

present (c) Magnetic field present 
16 

Figure 2.3 TE and TR 18 

Figure 2.4 Spin echo sequence and signal 21 

Figure 2.5 Inversion recovery sequence 21 

Figure 2.6 Chemical shift artifact 23 

Figure 2.7 Aliasing artifact 23 

Figure 2.8 RF inhomogenity 24 

Figure 2.9 Motion artifact 24 

Figure 2.10 Flow artifact 24 

Figure 2.11 Truncation artifact 24 

Figure 2.12 Resolution comparison 25 

Figure 3.1 The brain 27 

Figure 3.2 White matter and grey matter 27 

Figure 3.3 Brain tumour 28 

Figure 3.4 Distribution of brain tumour types 31 

Figure 3.5 CT scan of brain tumour 32 

Figure 3.6 T2-weighted MR image of brain tumour 33 
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Figure 3.7 PET image of brain tumour 33 

Figure 3.8 Stereotactic brain biopsy 34 

Figure 4.1 Knowledge discovery process 39 

Figure 4.2 Crossover 49 

Figure 4.3 Mutation 50 

Figure 4.4 Structure of individuals 51 

Figure 4.5 Flowchart of GP 53 

Figure 4.6 Membership function of height 56 

Figure 4.7 Membership function of warmness 57 

Figure 5.1 Histograms of two MR images 63 

Figure 5.2 
Implementation of removing background 

pixels 
64 

Figure 5.3 
Histogram of foreground pixels in Fig. 5.1 

(top) (bottom) 
65 

Figure 5.4 Standardized histograms of Fig. 5.3 68 

Figure 5.5 
Example 1: AT, -weighted MR image using 

different display 
69 

Figure 5.6 
Example 2: A Ti-weighted MR image using 

different display 
69 

Figure 5.7 Standardized results 69 

Figure 5.8 
Histograms of original and standardizcd MR 

image 
70 

Figure 5.9 Illustration of erosion 72 

Figure 5.10 Illustration of dilation 73 

Figure 5.11 
(a) standardizcd TI-wcightcd MR imagc (b) 

histogram of forcground pixcls 
74 

Figure 5.12 Process of non-brain region rcmoval 75 

Figure 5.13 Illustration of brain image 77 
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Non-brain region removal by the 
Figure 5.14 77 

supplementary method 

Figure 5.15 Removal by morphological processing 78 

Non-brain region removal by the 
Figure 5.16 78 

supplementary method 

Figure 5.17 Removal by morphological processing 79 

Figure 5.18 Histogram equalization 80 

Figure 5.19 Before and after histogram equalization 81 

Contrast enhancement of TI-weighted MR 
Figure 5.20 82 

image 

Contrast enhancement of T2-weighted MR 
Figure 5.21 83 

image 

Contrast enhancement without specifying an 
Figure 5.22 84 

intensity range 

Illustration of image preprocessing on 
Figure 5.23 85 

FLAIR-FSE MR image 

Illustration of image preprocessing on 
Figure 5.24 86 

Ti-wcighted image 

Illustration of image preprocessing on 
Figure 5.25 87 

T2-wcighted image 

Illustration of image preprocessing on 
Figure 5.26 88 

PD-weightcd image 

Figure 6.1 Illustration of FCM clustering algorithm 97 

Figure 6.2 Illustration of neighbourhood attraction 101 

Figure 6.3 Two factors of ncighbourhood attraction 103 

Figure 6.4 Structure of neighbourhood 103 

Figure 6.5 Architecture of ANN model 106 

Figure 6.6 First four squares in square image 110 
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Figure 6.7 1024-square image 110 

Figure 6.8 Plot of Ecv against, # in RFCM ill 

Cost Function with respect to A and ý in 
Figure 6.8 112 

IFCM 

Figure 6.10 Segmentation results of 1024-square image 113 

Chart of evaluation parameters of 
Figure 6.11 115 

1024-square images 

Figure 6.12 16-square image 115 

Figure 6.13 Parameter selection of FCM 116 

Figure 6.14 Segmentation results of 16-square image 117 

Figure 6.15 Lena image 119 

(a) Noisy Lena image and (b) segmented 
Figure 6.16 120 

noisy image by FCM 

Figure 6.17 EFCM parameter estimation for Lena image 121 

Figure 6.18 Segmentation results for Lena image 121-122 

Chart of evaluation parameters of noisy Lena 
Figure 6.19 123 

image 

Figure 6.20 Simulated TI-weighted MR image 125 

Figure 6.21 Discrete anatomical model 126 

100-th slice of simulated TI-wcightcd MR 
Figure 6.22 126 

image 

Parameter estimation for simulatcd 
Figure 6.23 127 

Ti-weighted image 

Segmentation results of simulatcd 
Figure 6.24 128 

Ti-wcightcd MR image 

Cost function E (top) and InC (bottom) with 

Figure 6.25 respect to different noise lcvcls in 130 

TI-weightcd MR image 
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Simulated MR images with 3% noise: the 
Figure 6.26 131 

80-th, 100-th and 120-th slice 

Figure 6.27 Segmentation results of T2-weighted image 132-133 

Figure 6.28 Segmentation results of PD-weighted image 1 34-135 

Chart of average evaluation parameters of 
Figure 6.29 136 

MR images with 3% noise 

Figure 6.30 T, -weighted MR image with I I% noise 137 

Figure 6.31 Plot of E with respect to noise level 138 

Preprocessing and segmentation of 
Figure 6.32 139-140 

FLAIR-FSE MR image 

Preprocessing and segmentation of TI-SE 
Figure 6.33 141-142 

MR image 

Preprocessing and segmentation of T2-FSE 
Figure 6.34 143 

MR image 

Preprocessing and segmentation of PD-FSE 
Figure 6.35 144-145 

MR image 

Figure 6.36 Synthetic image I for bias field estimation 149 

Figure 6.37 Synthetic image 11 for bias field estimation 150 

Simulated TI-weighted MR image for bias 
Figure 6.38 151 

field estimation 

Figure 7.1 Structure of classification rule 159 

Figure 7.2 A brief configuration of fuzzy logic based GP 163 

Structure of binary trcc rcprcscnting 
Figure 7.3 165 

classification rules 

Tree structure with first and second logic 
Figure 7.4 165 

functions 

Figure 7.5 Classification strategies 175 
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APPENDIX 11: List of tables 

Numbering Caption Page 

Brightness of typical tissues in different MR 
Table 2.1 19 

images 

Table 4.1 Samples of customer records 40 

Table 4.2 N times records of Patient 103 41 
Segmentation performance evaluation on 

Table 6.1 114 
1024-square image 

Segmentation performance evaluation on 
Table 6.2 118 

16-square image 

Average performance evaluation on 
Table 6.3 119 

128-square image 

Segmentation performance evaluation on 
Table 6.4 122-123 

Lena image 

Evaluation parameters of Lena image with 
Table 6.5 124 

two types of noise 

Segmentation performance evaluation on 
Table 6.6 129 

simulated TI-weighted MR image 

Table 7.1 Classification rules for Iris data 166 

Classification accuracy comparison of Iris 
Table 7.2 167 

data 

Classification rules for Wisconsin breast 
Table 7.3 168 

cancer datasct 

Sensitivity and Specificity of Wisconsin 
Table 7.4 169 

breast data 

Table 7.5 Terminal set of brain tumour data sct 170 
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Table 7.6 Number of slices in each MRI modality 171 

Table 7.7 1 Accuracy of brain turnour diagnosis 1 174 
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APPENDIX III: COMPUTING 

IMPLEMENTATION 

Hardware: Pentium IV 2. OG 

Platform: Windows XP 

Implementation software: MATLAB 6.1 

Approximate number of lines of coding: 5000 

Approximate running time: 
Image preprocessing; 10 seconds 
Image segmentation: 3 minutes/pcr slice 
Brain turnour classification: 20 minutcs (including training and validation) 

An Examplc of codcs: 

%I Read and open original images 

Filename=input('Plcase input the Mcnamc of im-3gc: ', 's); 

fid=fopcn(Filcname, 'e); % Open the im3ge file. 

[imagcdata, countl=frcad(rid, inf, 'uint 16); % Read the original unsigncd 16 bit data. 

Slicc-input(, Which slice do you nccd7); %Choose the slice. 

sliccdata-imagcdata(l+(Slicc-l)*2560256: 2560256$Slice, l); %Store one slice or image 

data. 

%2 Order sivap 

o/. The scanning system which obtained the data uses a diffcrcnt ordcr of the elcmcnury b)lcl 

O%in binary image data to that of windows, the bpe ordcr Is nccdcd to be swsppcd. 
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low=mod(slicedata, 256); 

high=floor(slicedata/256); 

swapdata=low*256+high; %swapdata is unsigned 16 biL 

clear low high; 

%3 Standardize the intensitie3 of the iMagC3. 

%As a great number of pixels in an image is the background, these background pixels 
occupy a big portion of the histogram. T'heir existence may dominate standardization and 

affect the mean and the standard deviation. Ilercfore they should be cxcludcd initially 

(Fig. 5.2 pp. 63). 

i--1; thrperccnt--O; 

numbcrl=O; 
while iscmpty(numbcri)-O I thrpcrccnt<-O. I, 

thrpcrcent--O. O I +(/-1 )*0.0 1; 

thrcshold I -thrpercent*max(swapdata); 
[numbcr2, b]=f ind(swapdata>-thrcshold 1); 

Ncwhist--hist(swapdata(numbcr2), max(swapdata(number2))). 
[numbcri, b]=f ind(Ncwhist(l: I 0)>- 100); 

h--i+ I; 

end; 
clear number I b; 

%thrperccnt: Threshold percentage 
%threshold 1: 71rcshold for background pixels and foreground pixels. A pixel %% ith Intensity 
%higher than the threshold is a foreground pixel. 
%numbcrl: the number of intensity levels within the loAest ten intensity levels In the new 
%histogram which include over 100 pixels. 
%numbcr2: the number or foreground pixels. 

BW-doublc(im2b"fs"'aPdatalthrcsholdl, i)); %Obtain the binary mask uhich only contains 
%rorcground pixcls. 

StandardData- I 0000"((B%'V. $s%%, apdata)-mcin(s%%ipdata(number2))Ystd(%%%, spdata(nunit)cr2) 
)+32500; %Standardize die im3ge to a new im3gc with a standard deviation Or 10000 and a 
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mean 32500. 

[a, b, s]---fmd(StandardData<O); %Because of standardizing, the intensities of background 

%pixels became negative. 

%Tbc foreground pixels keep the original intensities and the background pixels arc set to bc 

%zero. 

S=full(sparse(a, b, s, 256*256,1)); 

StandardData=StandardData. *(l -S); 
Standardimage=(reshape(StandardData, 256,256)y; 

figure 

imshow(uint I 6(Standard image)) %Display standardized image 
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