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Abstract 

The predictions of composite materials responses in fire environments are important 

in terms of safety. This reality problem can be simplified as a thermal fluid-structure 

interaction problem in terms of mathematical modelling. The thermo-fluid model is 

used to simplify the physical properties of fire. The classical continuum mechanics has 

difficulty in predicting crack propagations because of the singularities of differential 

equations at discontinuities. Therefore, the peridynamic theory which uses the integral 

governing equations is a good choice to predict the damage in composite materials. It 

will bring convenience to simulate the composite response in fire environments using 

a monolithic methodology. Consequently, in the current study, both thermo-fluid 

modelling for fire and thermomechanical damage modelling in composites are 

simulated by using peridynamic theory. Therefore, the following models are 

developed step by step to achieve the final target.  

Firstly, a fully coupled thermomechanical ordinary state-based peridynamic model 

is developed for isotropic materials. Both the deformation effect on the temperature 

field and the temperature effect on deformation are taken into consideration. Then the 

fully coupled ordinary state-based peridynamic model for isotropic materials is 

extended to laminated composites. Besides, a bond-based peridynamic laminate model 

was applied to predict the responses of a 13-ply composite under a pressure shock 

loading.  

Secondly, regarding the fluid model to represent fire, a peridynamic model is 

developed for Newtonian single-phase fluid low Reynold’s number laminar flow.  The 

high temperature should also be considered which is one of the typical properties of 

fire. Therefore, the heat transfer is incorporated into the fluid model to represent the 

thermal properties of fire. Based on the single-phase fluid peridynamic model, 

peridynamic model for multi-phase fluid flows is also developed. The Navier-Stokes 

equations including the surface tension forces are reformulated into their integral 

forms.  



x 

 

Thirdly, by combining the developed single-phase fluid peridynamic model and the 

ordinary state-based peridynamic solid model, a fluid-structure interaction model is 

developed for the simulation of weakly compressible viscous fluid and elastic structure 

interactions. Subsequently, the heat transfer is incorporated into the fluid-structure 

interaction model to predict the composite response under a fire scenario. The ISO 

temperature-time curve is utilized to present the high temperature which is induced by 

fire. The thermal degradation properties of the composite materials are also included 

in the numerical peridynamic composite model. Finally, the composite response under 

fire scenario is predicted.   
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1. Introduction 

This chapter contains four sections. Section 1.1 presents the background of the 

composite materials, fire properties, and damage prediction methods. Section 1.2 

presents the objective of this research, while the thesis structure is provided in Section 

1.3. Finally, a summary of the content in this chapter is given in the last section.  

1.1. Background 

The composite materials are widely applied to construct offshore structures such as 

oil platform and offshore wind turbine etc. due to their high-performance mechanical 

properties [1]. However, the concerns regarding their response to fire come into the 

academic research field since the composite materials are usually flammable. 

Therefore, in terms of safety, it is meaningful to investigate the composite response in 

fire environments [2]. The failure prediction of the composite materials due to fire is 

one of the important aspects. However, it is a quite complex problem since multi-fields 

are involved in this subject, e.g. solid mechanics including composite mechanics, 

thermodynamics, fluid mechanics, thermochemistry and so on [3]. It will be difficult 

to consider every factor of the composite firing process for numerical simulations. 

Therefore, the composite firing process can be simplified as a thermal fluid-structure 

interaction for numerical study. 

The peridynamic theory (PD) [4] is able to predict the failure or damage because its 

governing equations that use an integral form are meaningful even at discontinuities. 

Therefore, the peridynamic theory can be utilized to predict the composite damage in 

the fire environments. However, there is no peridynamic model available in the 

published literature to solve the thermal fluid structure interaction problems.  

Furthermore, one remaining issue is that the PD theory is originally proposed for solid 

mechanics. Hence even the PD fluid model is quite a few in published literature. 

Consequently, the extension of the application field of the PD theory is required firstly. 

Then the coupling of the PD fluid model and PD solid model can be conducted to solve 

the final problem. As a result, several PD models are developed including the 

composite model and fluid models. The coupling approach of the fluid, solid, and heat 
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is developed in the PD form. Finally, the composite response in fire environment is 

predicted by using the developed PD models.             

1.2. Research objective 

The objectives of this research are: 

• Developing an ordinary state-based peridynamic (OSB PD) fully coupled 

thermoelastic model to simulate isotropic materials behaviour under 

thermomechanical loadings. The coupling term between the mechanical 

field and the thermal field is considered bi-directionally. This work forms 

the foundation of the composite model introduced in Chapter 4. The results 

regarding this study are provided in Chapter 3 and published as a journal 

paper [5]. 

• Developing OSB PD fully coupled thermoelastic formulation for laminated 

composites by extending the isotropic material model in Chapter 3. The 

results regarding this study are provided as a part of Chapter 4 and published 

as a journal paper [6]. The formulation is reduced to a bond-based 

peridynamic (BB PD) fully coupled thermoelastic form to investigate the 

behaviour of laminates under extreme loading conditions such as underwater 

explosions. The study provides an application example of the peridynamic 

model provided in Chapter 4 in ocean engineering fields. The results are 

provided as a part of Chapter 4 and published as a journal paper  [7]. 

• Developing a non-local Lagrangian model based on the peridynamic 

differential operator (PDDO) for fluid low Reynold’s number laminar flow. 

This study forms the foundation of the fire model. To the author’s knowledge, 

this is the first time that the peridynamic differential operator is used to solve 

the Navier-Stokes equations. Furthermore, this work is one of the earliest 

researches regarding the peridynamic applications on fluid mechanics. The 

results are provided as a part of Chapter 5 and published as a journal paper 

[8].  

• Developing a non-local Eulerian model based on the peridynamic 

differential operator for fluid flow coupled with heat transfer problems. This 
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work is conducted based on the previous fluid model. The results are 

provided as a part of Chapter 5 and published as a journal paper [9]. 

• Developing a multiphase fluid model based on the developed single-phase 

fluid model in Chapter 5. The surface tension force is included in the 

multiphase fluid model. The method of the surface tension force modelling 

provides the basic idea for the fluid-structure interface numerical treatments. 

Thus, this study provides one of the fundamental models for fluid-structure 

interaction model in Chapter 7. The results are provided in Chapter 6 and the 

related manuscript is under review. 

• Developing a fluid-structure interaction model by combining the previous 

solid model in Chapter 3 and the fluid model in Chapter 5. The coupling 

methodology is developed based on the numerical treatments for the 

multiphase fluid interface in Chapter 6. The corresponding methods and 

simulation results are provided in Chapter 7. And the related manuscript is 

under review.  

• Based on the above PD models, a thermal fluid-structure interaction of 

composites for fire scenario is simulated as a comprehensive case in Chapter 

8. The thermal degradation properties of the composites are taken into 

consideration. The composite damage is predicted by direct fire contact and 

indirect fire contact. The thermal interaction between the fire-heated air and 

composites is simulated via convection and radiation interface boundary 

conditions. And the related manuscript is under review.    

In conclusion, the ultimate goal of this research is to propose a monolithic 

methodology based on the peridynamic theory to simulate the thermal fluid-structure 

interaction, e.g. composite material damage in fire environments.    

1.3. Thesis structure 

This thesis is structured in the following chapters and a brief outline of the content 

of each chapter is given below: 

• Chapter 1 Introduction.  
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This chapter provides basic information regarding the research background, 

the research objective, and the structure of this thesis.  

 

• Chapter 2 Literature Review  

This chapter represents the traditional peridynamic theory and the 

peridynamic differential operator. For the peridynamic theory, the bond-based 

form and the ordinary state-based form are reviewed. As to the peridynamic 

differential operator, the theoretical foundation, the derivation and construction 

process are provided. Furthermore, an accuracy test is performed for the 

peridynamic differential operator to investigate the accuracy of the 

approximation for first and the second derivatives.   

 

• Chapter 3 OSB Fully Coupled Thermomechanical PD Model for Isotropic 

Materials  

This chapter describes the OSB PD thermomechanical model for isotropic 

materials. The non-dimensional form of the PD model is also provided. 

Validation of the model is conducted by solving some benchmark problems 

and comparing the simulation results with other numerical solutions. The three-

point bending problem, plate crack propagation, and the Kolthoff problem are 

simulated in a fully coupled thermoelastic fashion [5].  

     

• Chapter 4 Fully Coupled Thermomechanical PD Model for Composites 

Material 

This chapter presents a fully coupled ordinary state-based peridynamic 

model for laminated composites. The formulation includes a coupling of both 

thermal and mechanical fields. To verify the proposed model, numerical 

simulations for benchmark problems are carried out and their results are 

compared with ANSYS solutions. Various loading conditions, e.g. uniform and 

linear temperature load, pressure shocks are considered for single layer laminar 

and multi-layer laminates. Finally, the crack propagation paths and temperature 

distributions are predicted for shock loading conditions [6, 7]. 
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• Chapter 5 Isothermal and Non-isothermal Fluid Laminar Flow Simulation 

This chapter provides a non-local model for fluid flow both in isothermal 

condition and non-isothermal condition. The fluid flow governing equations, 

i.e. Navier-Stokes equations, are reformulated in the integral formulation by 

using the peridynamic differential operator. Then the numerical simulation 

algorithms in the total Lagrangian description, updated Lagrangian description, 

and Eulerian description are provided. The numerical model is validated by 

solving the benchmark problems in fluid mechanics, e.g. hydrostatic problem, 

Poiseuille flow, Couette flow, shear driven cavity flow, Taylor-Green vortex, 

water dam breakage, natural convection, and mixed convection problems [8, 

9]. 

     

• Chapter 6 Multi-phase Fluid Flow Numerical Simulation 

This chapter provides a non-local model for multi-phase fluid flow based on 

the peridynamic differential operator. This is an extension work based on the 

non-local model for single-phase fluid flow in Chapter 5. The surface tension 

force existing on the interface of different fluids is modelled by the 

peridynamic differential operator. Some benchmark problems for multi-phase 

fluid flows are solved to validate the proposed model, i.e. two-phase 

hydrostatic problem, two-phase Poiseuille flow, two-dimensional droplet 

deformation. 

   

• Chapter 7 Fluid-Structure Interaction Numerical Simulation 

This chapter presents a new monolithic methodology based on the PD theory 

for simulating fluid-structure interactions. The fluid model developed in 

Chapter 5 is adopted. The ordinary state-based PD isotropic material model 

reviewed in Section 2.1.2 is employed. The fluid motion and elastic structure 

deformation are predicted simultaneously by using a novel interaction 

algorithm. To validate the developed fluid-structure interaction model, a dam 

collapsed under a rubber gate is simulated. 
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• Chapter 8 Coupled Thermo-fluid-mechanical Peridynamic Model for 

Analysing Composite under Fire Scenarios 

This chapter presents a thermal fluid-structure simulation of composites in a 

fire environment by using the developed peridynamic model. The thermal 

degradation property of the composites is also taken into consideration. There 

are two simulation cases provided, i.e. composite directly under fire 

temperature boundary condition and the composite indirectly under fire 

boundary condition via fire-heated air. The fluid and composite interact via the 

thermal field by considering the convection and radiation on the interface.      

 

• Chapter 9 Conclusion  

This chapter reviews the research achievements, summarises the research 

novelty and contribution. The gaps and recommended future work are listed. 

The publications from the PhD thesis are provided, and the final remarks are 

drawn. 

1.4. Summary 

Damage prediction is a challenging topic since the classical continuum mechanics 

(CCM) mathematical model is meaningless at discontinuities. Therefore, the 

peridynamic theory is adopted in this study for composite damage modelling to 

overcome the shortcomings of classical continuum mechanics. The fire scenario 

prediction is another challenging topic in fluid mechanics. To solve the composite 

damage under fire scenario in a monolithic methodology, the fire is simplified as a 

heat-conducting fluid and modelled by the PD theory. The following objectives of this 

thesis research are the proposing of 1) OSB PD model for fully coupled 

thermomechanics for isotropic materials, 2) OSB PD model for fully coupled 

thermomechanics for composite materials, 3) single-phase viscous fluid PD model, 4) 

heat-conducting viscous fluid PD model, 5) multi-phase viscous fluid PD model, 6) 

fluid-structure interaction PD model, 7) thermal fluid and structure interaction PD 

model.      
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2. Literature Review 

2.1. Peridynamic theory 

The peridynamics (PD) proposed by Silling and Askari [4] is a non-local, mesh-free 

Lagrangian method, which provides an alternative formulation for the continuum 

mechanics. PD is based on integral-differential equations as opposed to the partial 

differential equations of classical continuum mechanics [4]. Therefore, no singular 

stress or strain will be created at discontinuities. The equation will be valid everywhere 

within the body. This is one of its advantages over the classical numerical simulation 

methods such as the finite element method (FEM). Here, the basic concepts of the PD 

theory are reviewed [10].  

As shown in Fig. 2-1, each material point is identified by its location represented by 

a coordinate x  in an undeformed state. The body region is R , and the interaction 

domain of material point x  is called neighbourhood and is denoted by Hx
. The 

maximum interaction distance is called horizon size and denoted by  . The length of 

the horizon is the measure of nonlocal behaviour. The other material points in Hx
, i.e. 

x , are called the family members of x . Furthermore, y  and y  represent the 

positions of x  and x  in the deformed configuration. Hence, the displacements of 

points x  and family member x  are ( ) = −u x y x  and ( )   = = −u u x y x , 

respectively. As illustrated in Fig. 2-1, the initial relative position vector is denoted as  

 = −ξ x x  (2.1) 

Consequently, the relative displacement between x  and x  can be defined as  

 ( ) ( ) ( ) ( )  = − = − − −η u x u x y y x x  (2.2) 

The equation of motion for point x  in PD form is expressed as [10]  

( ) ( ) ( )( ) ( )( , ) , , , , d ,
H

t t t V t      = − − − − − +
x

x u x t u u x x t u u x x b x  (2.3) 
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where ( ) x  represents density, V   represents the volume of point x , ( ), tu x  

represents the acceleration of point x  at time t , ( ), tb x  represents the volumetric 

body force. The integration on the right-hand side of Eq. (2.3) represents the total PD 

force density acting on point x . The acceleration of the central point is calculated by 

the force exerted from its family members, indicating a non-local behaviour. In the 

deformed configuration, t  is the PD force density function exerted from point x  to 

point x . Similarly, t  is the PD force density function acting at the material point x  

from point x . Depending on the magnitude and direction of the PD forces t  and t , 

the PD theory can be classified into two subdomains, i.e. bond-based peridynamics 

(BB-PD) and state-based peridynamics (SB-PD). The BB-PD and ordinary state-based 

(OSB-PD) theory are used in this study, which will be explained in the following 

subsections.    

 

Fig. 2-1 Interaction of the point of interest x  with its family member x     

2.1.1. Bond-based PD theory 

The material body R  can be discretised by a set of material points. The material 

point i  is the central point and material point j  is one of its family members. The 

coordinates of point i  in the undeformed and deformed configurations are ix  and iy , 

respectively. The corresponding displacement is denoted by iu . The bold symbols are 

used to represent vectors. The same notation is applied to other material points, e.g. j .  

The initial relative position and relative displacement vectors are defined as 

Undeformed Deformed

R

x

ξ

t

y

t

( )u x

( )u x



Hx

Hx

x

y

R

x

y

z
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ij j i= −ξ x x  and ij j i= −η u u . Then the relative position in the deformed configuration 

is j i ij ij− = +y y ξ η .  

It should be noted that in bond-based PD, the pairwise PD forces t  and t  are forced 

to be equal in magnitude and parallel in direction, i.e. = −t t . As a result, the 

discretised form of Eq.(2.3) becomes  

 ( ) ( ) ( )
1

( , ) 2 , , ,
iN

i i j i j i j i

j

t t V t
=

= − − +x u x t u u x x b x  (2.4) 

where 
iN  is the total number of family members for point i . In BB-PD theory, a 

pairwise PD force density f  is defined as  

 ( ) ( )
( )

, , 2 , ,
2

i j j i

j i j i j i j i ij

j i

T T
t t c s 

 + −
 − − = − − = −
  −
 

y y
f u u x x t u u x x

y y
(2.5) 

As a result, the equation of motion Eq.(2.3) is expressed in bond-based PD form as 

[10] 

 ( )
( )

( )
1

( , ) ,
2

iN
i j j i

i i ij j i

j j i

T T
t c s V t 

=

  + −
  = − +

  −
  


y y

x u x b x
y y

 (2.6)  

in which   is the linear thermal expansion coefficient of the material. The term iT  

represents the temperature change of point ix  with respect to the initial temperature, 

( ) ( ), , 0i i iT t t= − =x x . Similarly, jT  is the temperature change of point jx . The 

term ijs  is the PD bond stretch which represents the deformation status of the PD bond 

between material points ix  and jx . It can be defined as [10] 

 
j i j i

ij

j i

s
− − −

=
−

y y x x

x x
  (2.7) 
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The term c  is the PD constant which can be calculated by equalling the strain energy 

densities obtained from PD theory and CCM. The formulations of c  for different 

dimensional problems are provided as [10] 

 

2

3

4

2
, for 1D problems

12
, for 2D problems

18
, for 3D problems

area

thick

E

A

K
c

h

K







 








= 





 (2.8) 

where 
areaA  is the cross-section area for 1D problems and 

thickh  is the thickness for 2D 

problems.   

The BB-PD theory does not distinguish the shear deformation and bulk deformation. 

Hence, the Poisson’s ratio is forced to be 1/3 in two dimensional (2D) analysis and 1/4 

in three dimensional (3D) analysis [10]. 

2.1.2. Ordinary state-based PD theory 

In order to overcome the limitation of BB-PD theory on the material properties, 

state-based peridynamic theory is proposed by Silling et al. [11]. The ordinary state-

based expressions for PD force functions are presented as provided in [12] 

 ( ) ( ) ( )
1

, , 4 4
2

ij j i

j i j i i i ij i

j i j i

ad
t n T b s T    

  −
− − = − + − 

− −  

y y
t u u x x

x x y y
 (2.9a) 

and 

 ( ) ( ) ( )
1

, , 4 4
2

ji i j

i j i j j j ji j

i j i j

ad
t n T b s T    

  −
− − = − − + − 

− −  

y y
t u u x x

x x y y
 (2.9b)                  

with 
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2, for 2D

3, for 3D
n


= 


 (2.9c) 

 
j i j i

ij

j i j i

   − −
    = 
   − −
   

y y x x

y y x x
  (2.9d) 

The dilatations, 
i  for point 

ix  and j  for point jx , are defined as 

 ( )
1

iN

i ij i ij j i

j

d s T V n T   
=

 
= −  + 
 
   (2.10a) 

 ( )
1

jN

j ji j ji i j

i

d s T V n T   
=

 
= −  +  
 
   (2.10b) 

The relationship between the PD material parameters, i.e. a , b  and d , and classical 

material parameters are listed as provided in [12];  

 
3 2

1
0, , for 1D

2 2area area

E
a b d

A A 
= = =   (2.11a) 

 ( ) 4 3

1 6 2
2 , , for 2D

2 thick thick

a K b d
h h






   
= − = =   (2.11b)      

 
5 4

1 5 15 9
, , for 3D

2 3 2 4
a K b d




 

 
= − = = 

 
  (2.11c)      

By plugging Eq. (2.9) into Eq.(2.3), the equation of motion for ordinary state-based 

PD formulation in discretised form can be written as [12] 

( ) ( )( )

( )
( )

1

2

( ) ( , ) ,

4
2

i

ij

i j i j

N j i
j i

i i j i

j i j j i

ij

d
a n T T

t V t
T T

b s


  



 
=

  
+ − +  

−   −
= +  

 + −  
 + −    
   


x x y y

x u x b x
y y

(2.12) 
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2.1.3. Peridynamic failure criteria 

Since PD equations are formulated without any spatial derivatives, PD theory is 

suitable to be applied for failure prediction. Once the stretch between material points 

exceed the critical stretch value, 
cs , the bond will be broken and will be removed 

permanently. At the same time, the force between these two points becomes zero. The 

critical stretch value for bond failure is related to the critical energy release rate 
cG  

[12]; 

 

( )

( )

4

2

for 3D
3

3 2
4

for 2D
6 16

2
9

c

c

c

G

K

s

G

K





  

  
 




  
+ −       = 




  + − 
  

  (2.13) 

A history-dependent damage function ( ), ,i j t x x  is implemented for each 

interaction between the material points [12]. The value of the function ( ), ,i j t x x  

will be set to be zero when the bond is broken. 

 ( )
1,

2
, ,

0,
2

i j

ij c

i j

i j

ij c

T T
s s

t
T T

s s







 + 
−   

  
= 

+ 
−  

 

x x   (2.14) 

The local damage at a point represents the weighted ratio of the number of broken 

interactions to the total number of interactions. Therefore, the crack propagation path 

can be presented by the local damage value as [13] 

 ( )
( )

1

1

, ,

, 1

i

i

N

i j j

j

i N

j

j

t V

t

V




=

=

= −





x x

x   (2.15) 
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2.2. Peridynamic differential operator 

It can be inferred from the previous section that the PD form of the material 

parameters is required for PD material modelling, which is calculated by equalling the 

strain energy density obtained from classical continuum mechanics and PD 

expressions. Based on the PD concepts, a peridynamic differential operator is recently 

proposed by Madenci et al. [14]. It is derived based on Taylor series expansion and 

orthogonal function properties. Being different from the bond-based PD theory, the 

peridynamic differential operator does not have any constraint on material properties. 

Furthermore, it can be directly applied to reformulate the partial differential equations 

to their integral forms. The classical physical parameters can be directly used without 

converting into their PD expressions, which avoids the derivation process required by 

the bond-based and ordinary state-based peridynamic theory. In addition, it does not 

have any limitation on the order of the partial derivatives both for time and space. For 

example, the second-order derivatives can be directly approximated by one integration 

by using the PD differential operator which corresponds to the second-order derivative. 

As a result, the error of the PD result is reduced by using fewer integrations, compared 

to non-ordinary state-based PD. Furthermore, the PD differential operator functions 

are also forced to be orthogonal to each term in the Taylor series expansion [14]. 

Therefore, when determining the expressions of the PD differential operators, both 

lower and higher-order terms are considered. 

The theoretical foundation and derivation of PDDO will be briefly presented for 2D 

problems in Section 2.2.1 and an accuracy test for PDDO is conducted in Section 2.2.2. 

2.2.1. PD differential operator for 2D  

The simulations involved in this thesis are for 2D, therefore peridynamic differential 

operator [14] for two-dimensional space up to second-order derivative is provided in 

an explicit form. 

The Taylor series expansion up to second-order derivatives for two-dimensional 

space is expressed in an explicit form as  
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( ) ( )
( ) ( ) ( )

( ) ( )
( )

2

2

1 2 1 2

1 2 1

2 2

2

2 1 2 ,22

2 1 2

1

2

1

2

f f f
f f

x x x

f f
R

x x x

  

  

  
+ − = + +

  

 
+ + +

  
x

x x x
x ξ x

x x
ξ

  (2.16) 

where 
1 1 2 2 = +ξ e e  with 

1e  and 
2e  representing the unit vectors in x  and y  

directions. The term ( ),2R
x

ξ  is the remainder for Taylor series as 

 ( )
( )

( )1 2

1 2

1 2

3

,2 1 2

3 1 2 1 2

1
, for some 0,1

! !

n n

n n
n n

f
R

n n x x


  

+ =

 +
= 

 
x

x ξ
ξ   (2.17) 

Note that ( ) ( )3

,2R O=x ξ ξ  and it is assumed to be negligible. The non-local form 

with the help of PD differential operator will be derived for following differentials 

[14].  

 
( ) ( ) ( ) ( ) ( )2 2 2

2 2

1 2 1 2 1 2

, , , ,
f f f f f

x x x x x x

    

     

x x x x x
  (2.18) 

Since the derivatives are up to the second-order, PD differential operator ( )1 2p p
g ξ  

will be used to represent the PD nonlocal expressions up to the second-order 

derivatives. 

Multiplying ( )1 2p p
g ξ  by Eq. (2.16) and integrating over the horizon results in [14] 

             

( ) ( ) ( )( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2

2 2

2 2

1 22 2

1 2

2

1 2

1 2

d

d d

1 1
d d

2 2

d

p p

H

p p p p

H H

p p p p

H H

p p

H

g f f V

f f
g V g V

x x

f f
g V g V

x x

f
g V

x x

 

 

 

+ −

 
 = +

 

 
 + +

 


+

 



 

 



x

x x

x x

x

ξ x ξ x

x x
ξ ξ

x x
ξ ξ

x
ξ

      (2.19) 
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where 
1 20 2p p +  . By enforcing the orthogonality conditions for each PD 

differential operator as [14] 

for ( )10g ξ :  

( ) ( ) ( )

( ) ( )

10 10 2 10

1 2 1

2 10 10

2 1 2

1
d 1, d 0, d 0,

2

1
d 0, d 0

2

H H H

H H

g V g V g V

g V g V

  

  

  = = =

 = =

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (2.20a) 

for ( )01g ξ :  

( ) ( ) ( )

( ) ( )

01 01 2 01

1 2 1

2 01 01

2 1 2

1
d 0, d 1, d 0,

2

1
d 0, d 0

2

H H H

H H

g V g V g V

g V g V

  

  

  = = =

 = =

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (2.20b) 

for ( )20g ξ :  

( ) ( ) ( )

( ) ( )

20 20 2 20

1 2 1

2 20 20

2 1 2

1
d 0, d 0, d 1

2

1
d 0, d 0

2

H H H

H H

g V g V g V

g V g V

  

  

  = = =

 = =

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (2.20c) 

for ( )02g ξ :  

( ) ( ) ( )

( ) ( )

02 02 2 02

1 2 1

2 02 02

2 1 2

1
d 0, d 0, d 0,

2

1
d 1, d 0

2

H H H

H H

g V g V g V

g V g V

  

  

  = = =

 = =

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (2.20d) 

for ( )11g ξ : 

( ) ( ) ( )

( ) ( )

11 11 2 11

1 2 1

2 11 11

2 1 2

1
d 0, d 0, d 0,

2

1
d 0, d 1

2

H H H

H H

g V g V g V

g V g V

  

  

  = = =

 = =

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (2.20e) 
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the following relations can be obtained from Eq. (2.19) as [14] 

for ( )10g ξ : ( ) ( ) ( )( )
( )10

1

d
H

f
g f f V

x


+ − =


x

x
ξ x ξ x   (2.21a) 

for ( )01g ξ : ( ) ( ) ( )( )
( )01

2

d
H

f
g f f V

x


+ − =


x

x
ξ x ξ x   (2.21b) 

for ( )20g ξ : ( ) ( ) ( )( )
( )2

20

2

1

d
H

f
g f f V

x


+ − =


x

x
ξ x ξ x   (2.21c) 

for ( )02g ξ : ( ) ( ) ( )( )
( )2

02

2

2

d
H

f
g f f V

x


+ − =


x

x
ξ x ξ x   (2.21d) 

for ( )11g ξ : ( ) ( ) ( )( )
( )2

11

1 2

d
H

f
g f f V

x x


+ − =

 
x

x
ξ x ξ x   (2.21e) 

In conclusion, the differentials in local form are reformulated into their non-local 

form as [14] 

 

( )

( )

( )

( )

( )

( ) ( )( )

( )

( )

( )

( )

( )

1

10

2 01

2

20

2

1 02

2
11

2

2

2

1 2

d
H

f

x

f
g

x
g

f
f f Vg

x
g

f
g

x

f

x x

  
 

 
 
   

   
      

= + −   
   

   
    

 
 
 

   


x

x

x
ξ

ξ
x

x ξ x ξ

ξ
x

ξ

x

  (2.22) 

where the term g  represents the PD differential operator for each derivative, such as 

( )10g ξ  is the PD differential operator for ( ) 1f x x . 

The PD differential operator functions, ( )1 2p p
g ξ , are chosen as [14] 
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for ( )10g ξ : ( ) ( ) ( ) ( ) ( ) ( )10 10 10 10 2 10 2 10

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w     = + + + +ξ   (2.23a) 

for ( )01g ξ : ( ) ( ) ( ) ( ) ( ) ( )01 01 01 01 2 01 2 01

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w     = + + + +ξ  (2.23b) 

for ( )20g ξ : ( ) ( ) ( ) ( ) ( ) ( )20 20 20 20 2 20 2 20

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w     = + + + +ξ (2.23c) 

for ( )02g ξ : ( ) ( ) ( ) ( ) ( ) ( )02 02 02 02 2 02 2 02

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w     = + + + +ξ  (2.23d) 

for ( )11g ξ : ( ) ( ) ( ) ( ) ( ) ( )11 11 11 11 2 11 2 11

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w     = + + + +ξ   (2.23e) 

or expressed in a compact form as [14] 

 

( )

( )

( )

( )

( )

10 10 10 10 10 10
110 01 20 02 11

01 01 01 01 01 01
210 01 20 02 11

220 20 20 20 20 20
110 01 20 02 11

202 02 02 02 02 02
210 01 20 02 11

11 11 11 11 11 11
1 210 01 20 02 11

wg a a a a a

wg a a a a a

wg a a a a a

wg a a a a a

wg a a a a a









 

    
   
   
 

 = 
  
  
     

ξ

ξ
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ξ

ξ


 
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 
 
 
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  (2.24) 

where 1 2

1 2

p p

q qa  represents the coefficients of the polynomials with 1 20 2q q +  . The 

weighted function w  is defined as [14]   

  
( )

2
2 /

w e
−

=
ξ

  (2.25) 

By substituting Eq. (2.23a) into the orthogonality conditions provided in Eq. (2.20a) 

the following equations for ( )10g ξ  can be obtained as  [14] 

 
( ) ( ) ( )

( ) ( )

10 2 10 10 3

10 1 01 1 2 20 1

10 2 10 2

02 1 2 11 1 2

d d d

d d 1

H H H

H H

a w V a w V a w V

a w V a w V

   

   

  + +

 + + =

  

 

x x x

x x

  (2.26a) 

 
( ) ( ) ( )

( ) ( )

10 10 2 10 2

10 1 2 01 2 20 1 2

10 3 10 2

02 2 11 1 2

d d d

d d 0

H H H

H H

a w V a w V a w V

a w V a w V

    

  

  + +

 + + =

  

 

x x x

x x

  (2.26b) 
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( ) ( ) ( )

( ) ( )

10 3 10 2 10 4

10 1 01 1 2 20 1

10 2 2 10 3
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d d 0
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a w V a w V a w V

a w V a w V

   

   

  + +

 + + =

  

 

x x x

x x

  (2.26c) 

 
( ) ( ) ( )

( ) ( )

10 2 10 3 10 2 2
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10 4 10 3

02 2 11 1 2

d d d

d d 0

H H H

H H

a w V a w V a w V

a w V a w V

    

  

  + +

 + + =

  

 

x x x

x x

  (2.26d) 

 
( ) ( ) ( )

( ) ( )

10 2 10 2 10 3

10 1 2 01 1 2 20 1 2

10 3 10 2 2

02 1 2 11 1 2

d d d

d d 0

H H H

H H

a w V a w V a w V

a w V a w V

     

   

  + +

 + + =

  

 

x x x

x x

  (2.26e) 

Similarly, by substituting Eq. (2.23b-e) into the orthogonality conditions provided 

in Eq. (2.20b-e), the following relations can be obtained [14] 

 =Aa b   (2.27) 

with 

 

2 3 2 2

1 1 2 1 1 2 1 2

2 2 3 2

1 2 2 1 2 2 1 2

3 2 4 2 2 3

1 1 2 1 1 2 1 2

2 3 2 2 4 3

1 2 2 1 2 2 1 2

2 2 3 3 2 2

1 2 1 2 1 2 1 2 1 2

d
H

w w w w w

w w w w w

Vw w w w w

w w w w w

w w w w w

       

       

       

       

         

 
 
 
  =
 
 
 
 


x

A   (2.28a) 

 

10 01 20 02 11
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 
 
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 
 

a   (2.28b) 
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 
 
 
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 
 
  

b   (2.28c) 
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After solving for the unknown coefficient a , the non-local form of derivatives of 

function f  can be found. 

2D PDDO can be easily generalized into the 3D PDDO as [14] 
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  (2.29) 

where  
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0 0 0 0 0 0 1 0 0
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0 0 0 0 0 0 0 0 1

 
 
 
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 
 
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 
 
 
 
 
 
 

b   (2.30c) 

 1 1 2 2 3 3  = + +ξ e e e  (2.30d)  

with 1e , 2e  and 3e  representing the unit vectors in the x , y , and z  directions. 

2.2.2. PPDO model accuracy test for 2D 

2.2.2.1 The effect of particle distribution on PDDO accuracy  

The PDDO accuracy is tested for first and second order derivatives both for uniform 

and non-uniform particle distributions. In this way, the effect of the non-uniform 

particle distribution which frequently exists in fluid flow simulation on the PDDO 

accuracy is investigated.   
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In order to test the higher-order derivatives approximation accuracy, a function is 

set as an object   

 ( ) 2 3, 2f x y x y= +   (2.31) 

with the variable domain of  0,2x  and  0,2y . The exact solutions for the 

derivatives are easy to obtain as 

 

( ) ( )

( ) ( ) ( )

2

2 2 2

2 2

, ,
2 ; 6 ;

, , ,
2; 12 ; 0

f x y f x y
x y

x y

f x y f x y f x y
y

x y x y

 
= =

 

  
= = =

   

  (2.32) 

In the numerical implementation, the domain is discretized by 21 21  particles with 

both uniform and non-uniform distributions, as shown in Fig. 2-2. The non-uniform 

distribution is generated from a standard normal distribution [15].  

  
(a) (b) 

Fig. 2-2 (a) Uniform (b) non-uniform particle distributions 

The red point located at ( )1,1  in Fig. 2-2 is set to be the point of interest, whose 

derivatives are shown in Table 1 for exact and PDDO solutions with their relative 

errors. 
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Table 1 Comparison of derivatives at ( , ) (1,1)x y =  with exact value and PDDO 

solution with 21 21  particles 

Method  /f x   /f y   2 2/f x   2 2/f y   2 /f x y    

Exact 

Solution 

 
2 6 2 12 0 

PDDO 

Uniform 

value 2  

(0) 

6.0536 

(0.89%) 

2  

(0) 

12  

(0) 

3.719E-15 

(-) error 

PPDO Non-

uniform 

value 2.0005 

(0.028%) 

6.0572 

(0.95%) 

1.9738 

(1.31%) 

11.9924 

(0.063%) 

-0.06672  

(-) error 

 

  
(a) Uniform (b) Non-uniform 

 
(c) Exact 

Fig. 2-3 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for 

/f x   
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(a) Uniform (b) Non-uniform 

 
(c) Exact 

Fig. 2-4 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for 

/f y   
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(c) Exact 

Fig. 2-5 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for 
2 2/f x   

  
(a) Uniform (b) Non-uniform 

 
(c) Exact 

Fig. 2-6 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for 
2 2/f y   
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(a) Uniform (b) Non-uniform 

 
(c) Exact 

Fig. 2-7 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for 
2 /f x y    

It can be observed from Table 1 that the accuracy of the PDDO both for first and 

second-order derivatives is acceptable. However, the irregularity of the particle 

distribution will increase the numerical error compared to the regular particle 

distribution as shown in Fig. 2-3-Fig. 2-7. Therefore, the techniques that redistribute 

the particles in a nearly uniform fashion is necessary for the PDDO simulations.    

2.2.2.2 PDDO prediction accuracy test for function value prediction 

The non-uniform particles as shown in Fig. 2-2 (b) are treated as the original 

particles. The uniform distributed particles as shown in Fig. 2-2 (a) are set as the new 

particles. The function Eq.(2.31) is given to the non-uniform particles in Fig. 2-2 (b). 
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by using the derivatives on the non-uniform particle positions calculated by PDDO. 

The procedure is provided in Fig. 2-8.  

The positions of the uniform and non-uniform distributed particles are provided in 

Fig. 2-9 (a). The uniform distributed particles are set as the interest points with their 

family members being the non-uniform distributed points, as illustrated in Fig. 2-9 (b). 

Particle i  represents the particle of interest belonging to the uniform distribution 

system, and particle j  represents the particle belonging to the non-uniform 

distribution system within the horizon of particle i . Besides, the particles belonging 

to the uniform distribution are not the family members of particle i , although they are 

located within the horizon.    

 

Fig. 2-8 Function value prediction procedure  
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(a) 

 
(b) 

Fig. 2-9 (a) Uniform and non-uniform distributed particle positions, (b) illustration of 

PDDO interaction between uniform particles and non-uniform particles 

First, the derivatives of function ( ),f x y  on the positions of non-uniform 

distributed particles are predicted by PDDO in the realm of non-uniform distribution 

particle system. For example, for particle j  belonging to the non-uniform particle 

distribution system, the derivatives are calculated according to Eq.(2.33) as  
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jk k j k jx x y y  = + = − + −   (2.33d) 

where superscript nu  represents the non-uniform particle. Particle k  represents the 

family member of particle j  belonging to the non-uniform distributed system. jN  is 

the total number of the family members of particle j  which belongs to the non-

uniform distributed system. The terms 
1

jk  and 
2

jk  are defined as 
1 nu

jk

nu

k jx x −=  and 

2 nu

jk

nu

k jy y −= .   

Subsequently, the function value on the position of particle i  (shown in Fig. 2-9 (b)) 

can be predicted by using the derivatives on the position of particle j   by using Taylor 

series expansion as (as shown in Eq.(2.16)) 
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 (2.34) 

where superscript u  represents the uniform particle and nu represents the non-

uniform particle.  By using Eq. (2.34), and by using the non-uniform family members

( )j  located at ( ),nu nu

j jx y of particle ( )i  located at ( ),u u

i ix y , one corrected function 

value at ( ),u u

i ix y  can be obtained for each family of ( )i  (such as ( )j ). Therefore, the 
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predicted function value at ( ),u u

i ix y  can be obtained by averaging the corrected values 

as   
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where ,i nuN   is the total number of the non-uniform family members of particle located 

at ( ),u u

i ix y .      

The function values assigned to the non-uniform particles, ( ),nu nu

j jf x y  and 

predicted for the uniform particles, ( )( ),
pre

u
d

u

i i

icted

f x y  are plotted in Fig. 2-10 and Fig. 

2-11 for resolutions 21 21  and 51 51 , respectively. 

  
(a)   (b) 

Fig. 2-10 Function value, for (a) non-uniform particles (assigned), ( ),nu nu

j jf x y  and 

(b) uniform particles (predicted), ( )( ),
pre

u
d

u

i i

icted

f x y  for resolution 21 21  
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(a)   (b) 

Fig. 2-11 Function value for (a) non-uniform particles (assigned), ( ),nu nu

j jf x y  and (b) 

uniform particles (predicted), ( )( ),
pre

u
d

u

i i

icted

f x y  for resolution 51 51   

The total L2-norm error of the uniform particle set is calculated as  
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  (2.36)  

By comparing the error for different resolutions as 0.31%r =  for 21 21 , 

0.0670%r =  for 41 41 , and 0.0374%r =  for 51 51 , as shown in Fig. 2-12, it can 

be concluded that a higher resolution results in a more accurate solution.   

 

Fig. 2-12 L2-norm error plot for different resolutions  
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3. Ordinary State Based Fully Coupled Thermomechanical PD 

Model for Isotropic Materials 

3.1. Introduction 

Due to the development of aerospace and mechanical industries in recent years, 

mechanical and thermal shock loadings become typical and important loading types. 

For example, the gas turbine engine casing of an aircraft can experience a temperature 

rise as high as 1700 C  within an extremely short period [16]. In the analyses with such 

loading conditions, the thermomechanical coupling effects often play a crucial role 

and as a consequence, they should be considered both in thermal and structural fields 

[17]. Not only the effect of temperature on deformation but also the effect of 

deformation on the temperature field is non-negligible. Therefore, fully coupled 

thermoelasticity analyses are necessary when dealing with such types of problems. 

The basic theory of linear coupled thermoelasticity is well understood and fully 

developed for many years. Biot [18] first introduced a coupling item in heat conduction 

equation to solve the coupled problem of thermoelasticity. Later, Herrmann [19] 

generalized Biot’s principle to a three-dimensional anisotropic body. Recently, Jabbari 

et al. [20, 21] gave exact equations for classical coupled thermoelasticity in cylindrical 

and spherical coordinates. Although some analytical solutions are provided for some 

simple problems, many complex problems have not been completely solved with 

analytical methods [22]. Therefore, numerical methods such as FEM and boundary 

element method (BEM) have been widely applied to get approximate solutions [23]. 

For example, Cannarozzi and Ubertini [24] conducted FEM analyses for linear coupled 

quasi-static thermoelastic problems with a mixed variation method. Displacement and 

temperature acted as primary variables in their research. On the other hand, stress and 

heat flux acted as dual variables which were also involved directly in their analysis. 

Tehrani and Eslami [25] studied the coupling coefficients and relaxation time effects 

on thermal and elastic wave motion by using BEM. When the fracture is involved in 

the fully coupled analyses, temperature distribution around crack tips becomes a major 

concern. The high energy concentration around a moving crack produces high amount 
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of heat energy and results in unneglectable temperature increase. Atkinson and Craster 

[26] deduced some simple and asymptotic temperature distributions for the region near 

crack tips during crack propagation. Weichert and Schönert [27] investigated the 

temperature near the crack tips in brittle materials with very small plastic zones and 

high crack velocities. The crack tips were simulated as heat generation sources and 

consequently, the temperature distributions were predicted. An experimental study 

conducted by Bhalla et al. [28] estimated the temperature distribution near the crack 

tips. A temperature increase was observed in their experiments. Miehe et.al [29] 

presented a continuum phase-field model for brittle fracture in thermoelasticity. A 

bending numerical simulation test considering the crack growth and dissipative heat 

generation was provided, and its corresponding temperature field was discussed.            

When a discontinuity is involved in thermoelastic problems, the aforementioned 

numerical simulation methods based on the classical mechanical theory predict 

unbounded stresses and energy densities. Even for linear elastic fracture mechanics 

(LEFM) and dislocation dynamics, supplemental constitutive equations are needed to 

determine the motion of a dislocation. On the contrary, peridynamics [4, 30] is a 

nonlocal theory that includes damage as part of the material response. As a 

consequence, the PD equations remain valid where crack or discontinues merges [31]. 

Therefore, PD theory is especially suitable for problems with discontinues, thus it is 

adopted in this study. The crack nucleation and propagation has been investigated by 

many researchers in the realm of PD theory [32-38], but most of them are only in the 

mechanical field. In the thermal field, Oterkus et.al [39] derived the formulation of 

thermal diffusion with PD theory and utilized it to capture the fuel pellet cracking [40]. 

Bobaru and Duangpanya [41, 42] studied the heat conduction in bodies with and 

without discontinuities in bond-based PD theory. Regarding the thermomechanics, 

fully coupled bond-based PD theory was formulated by Oterkus et.al [43], Oterkus 

[44], Madenci and Oterkus [45]. Furthermore, they successfully applied their model to 

predict crack propagation [46, 47]. However, due to the aforementioned limitation of 

the BB-PD model on material properties [13], an ordinary state-based PD model is 

necessary for thermomechanical problems.  
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Regarding the fully coupled thermomechanical analysis, the ordinary state-based 

PD model has not been explicitly provided, only the expression in bond-based theory 

is available in the published literature [44, 48]. Therefore, in this section, ordinary 

state-based fully coupled PD thermoelastic equations with explicit formulations of PD 

parameters are provided in Section 3.2. Then these equations are cast into their 

corresponding non-dimensional forms in Section 3.3. 

3.2. The OSB thermomechanical isotropic PD model 

The ordinary state-based PD model for mechanical deformation prediction is 

provided in Section 2.1.2. In this section, the OSB-PD thermal model is discussed. For 

the point of interested i , the heat conduction equation in the fully coupled 

thermomechanical PD model is [43] 

 ( )
( ) ( )

( ) ( ) ( )0

1

, ,
, ,

iN
j i

v i j i j i j s i

j j i

t t
c T t e V h t  
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  −
 = − − − +
 −
 


x x

x x x x x x
x x

(3.1) 

where ( ),s ih tx  is the rate of heat generation per unit volume. In the above equation, 

  is defined as PD micro-conductivity with its definitions being listed as [39, 43, 49]  
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h
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6
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


=   (3.2c) 

The second term within the summation of Eq. (3.1) represents the deformation 

coupling effect on temperature. The time rate of change of stretch extension, 

( )j ie −x x , can be defined as 
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 ( ) ( )j i

j i j i

j i

e
−

− =  −
−

y y
x x u u

y y
 (3.3) 

The term   is the PD thermal modulus and its formulation in OSB-PD theory is 

derived as follows (details provided in Appendix A). The physical meaning and theory 

foundation of the PD thermal modulus are fully discussed by Oterkus et al. [43]. In 

this section, the same derivation approach is adopted. The initial form of the ordinary 

state-based PD force function for point 
ix  is shown in Eq. (2.9a). In another form, 

being similar to the derivation conducted by Oterkus et al. [43, 44], the PD force 

function can be divided into two parts as [43, 44]  

 T=  −t u B   (3.4) 

The first part on the right-hand side includes only the structural deformation, and 

the second part is related to temperature effect. In Eq. (3.4),  is called the modulus 

state [50], the term TB  represents the effects of thermal state on deformation.  

By plugging the dilatation term in Eq. (2.10a) into the PD force function Eq. (2.9a) 

results 
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(3.5) 

After rewriting the PD force function by splitting into pure mechanical and thermal 

part Eq. (3.5) becomes 
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By comparing Eqs. (3.4) and (3.6), local thermal modulus of the bond between x  

and x  can be obtained as 

 ( )
2 2

1

2
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iN
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j i ij j
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a d
V b
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with 
j i

j i


−

=
−

y y
B

y y
[43, 44]. Substituting the PD parameters provided in Eq. (2.11), 

the explicit form of the local OSB thermal modulus,  , for different dimensions can 

be obtained as 
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Furthermore, for the bond-based restriction ( 0a = ) [10], the OSB-PD thermal 

modulus will reduce to its bond-based form, where 2b b  =  or ( )1/ 2b c =  [43, 

44] with c  being the bond-based PD material constant [10] as provided in Eq. (2.8). 

3.3. Non-dimensional form of OSB PD model 

The governing equation can be put in a non-dimensional form by using non-

dimensional variables [51]. Therefore, the fully coupled PD equations are cast into 

their non-dimensional forms by adopting the approach proposed by Sackman [52] and  

Oterkus et al. [43].  
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Regarding the heat conduction equation, the diffusivity is defined as the 

characteristic length/time quantity and the characteristic length/time is the elastic wave 

speed [52] 
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where   and   are Lame's constants. Combining the characteristic length/time scale 

leads to characteristic length and time as follows [52] 

 /l a =   (3.11a) 

 
2/t a =   (3.11b) 

As explained in [43, 52] following non-dimensional forms can be used  

Length related variables:  
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Displacement:  
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Time: 
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Velocity-related variables:  
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And the temperature: 

 
0T T=    (3.17) 

By using the above non-dimensional parameters and substituting the peridynamic 

parameters listed in Section 2.1.2 into Eq. (2.12) and Eq. (3.1),  the non-dimensional 

form of the fully coupled equations can be achieved by utilizing the non-dimensional 

parameters given in Eq. (3.9)-Eq. (3.17) as 
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3D analysis 
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In the above equations, the non-dimensional variables are denoted with an overscore. 

The parameters iT  and jT  are the rate of temperature changes at material point ix  and 

jx , respectively. The non-dimensional coupling coefficient, , measures the strength 
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of the coupling effect on temperature distribution due to deformation. It can be defined 

as [52] 

 
( )

2

0

2

cl

vc



  


=

+
  (3.21) 

3.4. Numerical implementation 

In a dimensional simulation, the accelerations and temperature changes of PD 

material points are updated according to Eq.(2.12) and Eq.(3.1). In a non-dimensional 

simulation, the accelerations and temperature changes of PD material points are 

updated according to Section 3.3. Explicit time integration is used to find the 

temperature, velocity and displacement profile at each time step [44]. The numerical 

procedure is provided in Fig. 3-1 for dimensional simulations as an example. In Fig. 

3-1, tN  represent the total number of the time step, n  represents the current number 

of the time step, and nodeN  represents the total number of PD points. 
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Fig. 3-1 Flowchart for the numerical procedure   

3.5. Verification simulation cases 

In this section, peridynamic simulations are conducted using the proposed model. 

The validity of the fully coupled thermomechanical equations is established by 

comparing the PD solutions with previously considered BEM and ANSYS solutions. 

Firstly, a dimensionless isotropic plate is imposed with three types of loadings, i.e. 

pressure shock loading, thermal shock loading and their combination. The results from 

PD solution are in agreement with the ones from an existing BEM solution. Secondly, 
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temperature and displacement responses from PD solution coincide very well with 

ANSYS solution. The present two-dimensional PD model is thus validated via these 

numerical simulations both in dimensional and non-dimensional forms. As a next 

verification problem, a block is investigated with a temperature boundary condition. 

Good agreements are obtained by comparing PD and ANSYS solutions. Hence, the 

non-dimensional form of the equations is validated both for two and three-dimensional 

problems.    

3.5.1. Plate subjected to shock loading 

The validity of the non-dimensional thermoelastic PD equations for 2D problems is 

established by constructing PD solutions for an existing BEM solution provided by 

Hosseini-Tehrani and Eslami [53]. The same geometry model, boundary conditions, 

and loading conditions are adopted as in [53]. As shown in Fig. 3-2, a thin plate with 

a non-dimensional geometry 10, 10L W= =  and thickness 1h =  is subject to a shock 

loading on the edge of / 2x L= −  and fixed on the edge of / 2x L= . The edges of 

/ 2y W=  and / 2y W= −  are traction free. Furthermore, at / 2x L= −  the plate is 

subjected to temperature boundary condition and all other three edges are insulated. 

The Poisson’s ratio is set to be 0.17. Regarding the PD discretization, the grid size is 

0.05x =  and the horizon size is chosen as 3.015 x =  . The uniform time step size 

is 
45.0 10−  with total simulation time 6totalt = . The boundary condition is 

implemented by using fictitious layers [54]. The applied loads are implemented on a 

real boundary layer [54]. Since there is no heat source in this simulation case, 0sh = .   

The initial conditions are: 

 ( ) ( ), , 0 , , 0 0x yu x y t u x y t= = = =   (3.22a) 

 ( ), , 0 0T x y t = =   (3.22b) 

with xu  and yu  representing the non-dimensional displacement components in the x  

and y  directions, respectively.  
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The shock loading conditions are: 

Loading 1: Pressure shock 

 ( ) 2/ 2, , 5 tP x L y t te−= − =   (3.23a) 

 ( )/ 2, , 0T x L y t= − =   (3.23b) 

Loading 2: Thermal shock 

 ( )/ 2, , 0P x L y t= − =   (3.24a) 

 ( ) 2/ 2, , 5 tT x L y t te−= − =   (3.24b) 

Loading 3: Combined pressure and thermal shock 

 ( ) 2/ 2, , 5 tP x L y t te−= − =   (3.25a) 

 ( ) 2/ 2, , 5 tT x L y t te−= − =   (3.25b) 

where t  represents the non-dimensional time. The applied pressure load is in the 

positive x  direction, as illustrated in Fig. 3-2.   

 

Fig. 3-2 A thin plate subjected to shock loading conditions 

( )

( )/

P t

T t

y

x
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Fig. 3-3 to Fig. 3-5 provide the thermal and mechanical responses at 3t =  and 

6t =  along the horizontal centreline of the plate for 3 different loading conditions. 

The coupling coefficient 0=  represents the uncoupled case, where the effect of 

deformation on temperature field is ignored. Fig. 3-3(a) represents the temperature 

distribution when the plate is subjected to pure pressure shock loading (loading 

condition 1). As can be seen from the figure, when 0=  no temperature change is 

observed. On the other hand, when 0.1=  both temperature drop and temperature rise 

are observed, which are induced by the applied pressure shock due to coupling effect. 

The magnitude of the temperature change is relatively small, within the range between 

-0.02 to 0.05. As time progresses, the peak position of the temperature distribution 

moves towards a positive x  direction. Fig. 3-3(b) represents the dimensionless axial 

displacement along the horizontal centreline at 3t =  and 6t = . The wave fronts at 

these two time points are observed. There are slight differences between the 

displacement predictions from the coupled and uncoupled cases. As time progresses, 

the difference becomes larger. Therefore, it could be inferred that due to coupling 

effect, the temperature change induced by deformation does affect the deformation. 

The same conclusion is obtained from the simulation cases with loading condition 2 

as can be seen from Fig. 3-4. Due to the heating effect by the applied thermal loading, 

the plate experiences an expansion state. Subsequently, the tension loading creates a 

cooling effect. Therefore, when compared with the uncoupled case, the relatively 

lower temperature change is observed in the coupled case. Consequently, the lower 

temperature change gives rise to a smaller deformation response. This conclusion can 

also be applied to loading condition 3, whose results are presented in Fig. 3-5.   

In conclusion, good agreements are obtained for three types of loadings. For both 

the thermal and mechanical fields, the results from ordinary state-based PD predictions 

agree well with those from BEM solutions obtained by Hosseini-Tehrani and Eslami 

[53]. Therefore, via these numerical simulations, the present non-dimensional PD 

model is validated for 2D problems. 
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(a) 

 

(b) 

Fig. 3-3 Comparison of BEM method [53] and PD solutions (a) Temperature change 

distributions; (b) Displacements along the horizontal centreline of the plate for 

loading condition 1 
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(b) 

Fig. 3-4 Comparison of BEM method [53] and PD solutions (a) Temperature change 

distributions; (b) Displacements along the horizontal centreline of the plate for 

loading condition 2 
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Fig. 3-5 Comparison of BEM method [53] and PD solutions (a) Temperature change 

distributions; (b) Displacements along the horizontal centreline of the plate for 

loading condition 3  

3.5.2. Plate subjected to pressure loading 

Thermal and deformation responses of a square plate under two types of pressure 

shocks are analysed. The geometry dimensions of the plate are 0.1mL W= = , with 

the thickness being 0.001 m. The material is chosen as carbon steel and its material 

properties are given as: elastic modulus 200 GPaE = , Poisson’s ratio 0.17 = , 

thermal expansion coefficient 
6 -111.5 10 K −=  , density 

37870 kg/m = , specific 

heat capacity ( )472 J/ kgKvc = , and thermal conductivity ( )51.9 W/ mKTk = . The 

reference temperature is 0 285 K = . The grid size is 0.0005 mx =  and the horizon 

size is chosen as 3.015 x =  . The time step size is 0.001μs  with total simulation 

time 8 μs . On the other hand, directly coupled plane element PLANE 223 is utilized 

in the ANSYS model. The number of nodes 80 80  and time step size is 0.16 μs  for 

the ANSYS model. 

The initial conditions are: 

 ( ) ( ), , 0 , , 0 0x yu x y t u x y t= = = =   (3.26a) 

 ( ), , 0 0T x y t = =   (3.26b) 

The shock loading conditions are: 

Loading 1: 

 ( ) 20 2/ 2, , 10 PaP x L y t t= − = −   (3.27) 

Loading 2:  

 ( ) 9 6/ 2, , 10 sin 10 Pa
2

P x L y t t
 

= − =  
 

  (3.28) 
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Fig. 3-6 and Fig. 3-7 provide the temperature and deformation responses along the 

horizontal centreline of the plate under two loading conditions. Since only the 

mechanical loadings are applied, the temperature changes are induced due to the 

coupling term in the heat flow equation. As shown in Fig. 3-6(a) and Fig. 3-7(a), there 

is a remarkable agreement between PD and ANSYS solutions. When the plate is 

subjected to loading condition 1, the temperature drop is observed due to tension 

loading as it can be seen from Fig. 3-6(a). As time progresses, temperature change 

increases to a final value of 6.5 K . When the plate is subjected to loading condition 2, 

temperature increases where there is local compression, and temperature drops where 

there is local tension.  

Under both loading conditions displacement fields obtained from PD and ANSYS 

simulations match very well. Furthermore, it should be noted that even though carbon 

steel has a relatively small coupling coefficient, i.e. 0.002861= , the generated 

temperature change due to mechanical shock loading is considerable. Therefore, if a 

large strain rate exists, i.e. shock loading is applied, fully coupled thermomechanical 

analysis should be taken into consideration. 
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(b) 

Fig. 3-6 Comparison of  ANSYS  and PD solutions (a) Temperature change 

distributions (b) Displacements along the horizontal centreline of the plate for 

loading condition 1 
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(b) 

Fig. 3-7 Comparison of  ANSYS  and PD solutions (a) Temperature change 

distributions (b) Displacements along the horizontal centreline of the plate for 

loading condition 2. 

3.5.3. Block subjected to thermal loading 

In order to validate the proposed PD model for 3D problems, a block subjected to 

temperature boundary condition is investigated. As shown in Fig. 3-8, the 

dimensionless length, width and height of the block are 5, 0.15 and 0.15, respectively. 

The Poisson’s ratio is set as 0.33 and the coupling coefficient is 1.0. Regarding the PD 

model, the grid size is 0.0125x =  and the horizon is chosen as 3.015 x =  . The 

integration time step size is 44 10 −  and the total simulation time is  . On the other 

hand, directly coupled solid element type SOLID 226 is adopted with a mesh size of 

0.05  and time step size of 0.02  in ANSYS model.    

The block is clamped at x L= . The block is gradually heated at 0x =  and all other 

surfaces are insulated. The temperature boundary condition is defined as sin( )T t= , 

where t  is the dimensionless time. A fictitious layer is used to implement boundary 

conditions [55]. 

 

Fig. 3-8 Block under thermal loading 

The temperature distributions and horizontal displacements along the line of 

/ 2y W=  and / 2z H=  are presented in Fig. 3-9 (a) and (b) at dimensionless time of 

4, 2, 3 4,t    =  respectively. The results which are obtained from ANSYS 

solutions are also provided for comparison. It could be seen that both the temperature 

and displacement distributions match very well, indicating the capability of the derived 
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PD formulations to accurately predict the thermal and mechanical responses for three-

dimensional problems.   

 
(a) 

 
(b) 

Fig. 3-9 Comparison of  ANSYS  and PD solutions (a) Temperature change 

distributions (b) Horizontal displacements along the centreline of the block 

Derived formulations and explicit expressions of PD parameters including their 

dimensional and non-dimensional forms are validated through these numerical 

simulations.  

3.6. Numerical results for damage prediction 

Peridynamics is a reformulation of classical equations that is better suited for 

modelling bodies with discontinuities. The proposed model is further employed for 
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considered to predict the temperature distribution and deformed shape. Then a plate 

with a pre-existing central crack is subjected to a pressure shock loading condition. 

The temperature and structural responses without crack propagation are verified 

against the ANSYS solution. Then the crack propagation is simulated, and its path is 

compared with the one from a pure mechanical simulation. In this way, the coupling 

term effect on crack propagation is estimated and analysed. Therefore, analysis 

involving cracks are considered in this section by using the developed PD model. 

Finally, a numerical simulation based on Kalthoff experiment [56] is carried out. The 

crack path predicted by the PD model is compared with the result of the experiment.  

3.6.1. Three-point bending simulation 

Three-point bending test of a simply supported beam is simulated under prescribed 

displacement condition as illustrated in Fig. 3-10. The origin of the coordinate system 

is located in the middle of the beam. The material properties are related to rubber-like 

material, the shear modulus is 1MPa , Poisson’s ratio 0.45 = , thermal expansion 

coefficient 3 -11 10 K −=  , thermal conductivity ( )0.1 W/ mKTk = , density 

3906.5 kg/m = , specific heat capacity ( )1103.14 J/ kgKvc =  [57]. The critical 

stretch value is 0.1724cs = . The reference temperature is 0 293 K = . The 

dimensions of the beam are 40mmL = , 10mmW = , and thickness 0.5 mmh =  . A 

pre-existing crack with length being 1 mma =  is located in the middle of the beam at

/ 2y W= − . The supports are placed 4mmb =  inwards from the outer edges. A 

prescribed displacement is applied in the middle of the beam at / 2y W= as 

( ) maxtotalu t t u= , where totalt  is the total simulation time, 0.01stotalt =  and 

max 6 mmu = . The uniform PD grid size is 0.5 mmx =  and the horizon is 

3.015 x =  . The time step size is 
61 10 s−  and the total simulation time is 

0.01stotalt = .  
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Fig. 3-10 Geometry of three-point bending test 

Fig. 3-11 and Fig. 3-12 present the damage plots and corresponding temperature 

distributions at 0.007 st =  and 0.01st = . It can be observed from Fig. 3-11 (a) and 

Fig. 3-12 (a) that the initial crack grows in the vertical direction. Fig. 3-11 (b) and Fig. 

3-12 (b) present the corresponding temperature distributions. As expected, the 

temperature rise is observed where the local compression is expected and the 

temperature drop is observed near the crack surfaces where there is local tension. 

 

(a) 

 

(b) 

Fig. 3-11 (a) Damage plot and (b) temperature change (K) in deformed configuration 

at 0.007 st =  (displacement scale factor is 1) 
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(a) 

 

(b) 

Fig. 3-12 (a) Damage plot and (b) temperature change (K) in deformed configuration 

at 0.01st =  (displacement scale factor is 1) 

3.6.2. Plate with a crack subjected to pressure shock loading 

Based on the previous example in Section 3.5.2, damage propagation is predicted 

for a plate with a pre-existing crack of length 0.02 m, as shown in Fig. 3-13. The 

geometry, material properties, and boundary condition are identical to those in Section 

3.5.2.  
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Fig. 3-13 An isotropic plate with a pre-existing central crack under pressure shock 

loading 

The pressure shock loading is specified as 
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  (3.29) 

where 0 8μst = . The total node number in x  or y  direction for the PD model is set to 

be 500 with a grid size of 0.2 mm. Thus the critical stretch value cs  is calculated as 

0.0213 with cG  being 
242320 J/m . The horizon is 3.015 x =  . The time step size is 

set as 
910 s−

 and the total simulation time is 30 μs . On the other hand, directly coupled 

plane element type PLANE223 is applied in the ANSYS model with the grid size of 

0.00125x =  and time step size of 0.6 μs .   

In order to better understand the existence of crack surface on the temperature and 

deformation field, initial failure is not allowed. The horizontal displacement 

predictions at different time steps are shown in Fig. 3-14, Fig. 3-15, and Fig. 3-16. It 

is observed that the peridynamic results coincide very well with ANSYS solutions. 

The displacement distribution along x  axis propagates uniformly in the vertical 

direction before the elastic wave reaches the crack, as shown in Fig. 3-14. After the 

elastic wave reaches the crack surface, displacements become non-uniform due to the 

crack
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discontinuity of the displacements along the crack surface as it can be seen from Fig. 

3-15 and Fig. 3-16.  

 

(a) 

 

(b) 

Fig. 3-14 Horizontal displacements (m)  (a) ANSYS  and (b) PD results at 7 μst =  

 

(a) 

 

(b) 

Fig. 3-15 Horizontal displacements (m)  (a) ANSYS  and (b) PD results at 15μst =  
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(a) 

 

(b) 

Fig. 3-16 Horizontal displacements (m)  (a) ANSYS  and (b) PD results at 30 μst =  

Fig. 3-17, Fig. 3-18, and Fig. 3-19 present the induced temperature distributions due 

to the applied loading. It is observed that the peridynamic results agree very well with 

ANSYS solutions. The temperature distributions along x  axis propagate almost 

uniformly in the vertical direction before the thermal wave reaches the crack, as shown 

in Fig. 3-17. After the thermal wave reaches or passes the crack, thermal waves get 

disturbed by the existence of the crack. The higher temperature drop is observed near 

the crack tip as can be seen from Fig. 3-18 and Fig. 3-19. This also indicates the stress 

concentration near the crack tips. Besides, the region near the crack tips is under 

tension, indicating a tendency of a crack growing in the vertical direction. The crack 

surfaces experience local compression. Therefore, temperature rises are observed in 

these regions as it can be seen from Fig. 3-19. 
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(a) (b) 

Fig. 3-17 Temperature change distributions (K)  (a) ANSYS  and (b) PD results at 

7 μst =  

 

(a) 

 

(b) 

Fig. 3-18 Temperature change distributions (K)  (a) ANSYS  and (b) PD results at 

15μst =  

 

(a) 

 

(b) 

Fig. 3-19 Temperature change distributions (K)  (a) ANSYS  and (b) PD results at 

30 μst =  

After verification of temperature and deformation field for a plate with a pre-existing 

crack. As a next example, crack propagation is allowed. The crack configurations at 

different time steps are provided in Fig. 3-20 to Fig. 3-22. Crack propagation patterns 

are compared with coupled and uncoupled cases. Temperature distributions at 

corresponding stages from coupled cases are also provided. 

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

y
 (

m
)

x (m)

-1.315

-1.131

-0.9463

-0.7619

-0.5775

-0.3931

-0.2087

-0.02438

0.1600

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

y
 (

m
)

x (m)

-1.315

-1.131

-0.9463

-0.7619

-0.5775

-0.3931

-0.2087

-0.02438

0.1600

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

y
 (

m
)

x (m)

-2.770

-2.324

-1.877

-1.431

-0.9850

-0.5387

-0.09250

0.3538

0.8000

-0.04 -0.02 0.00 0.02 0.04

-0.04

-0.02

0.00

0.02

0.04

y
 (

m
)

x (m)

-2.770

-2.324

-1.877

-1.431

-0.9850

-0.5387

-0.09250

0.3538

0.8000



58 

 

In the early stage, the cracks grow in similar patterns for both simulation cases. 

Crack start to propagate earlier for the uncoupled case (Fig. 3-20). Cracks both begin 

to propagate at around 16 μs . Up to 28 μs , the cracks propagate in a self-similar 

manner for both coupled and uncoupled cases. Cracks start branching at around 28 μs

(Fig. 3-21) and split into visible asymmetrical branches (Fig. 3-22). Besides, the 

branches for uncoupled case grow faster than the coupled case.  

For the coupled case, it is clear that before 16 μs  the temperature distribution is the 

same as the one obtained from the simulation without crack propagation. However, 

temperature drops at the crack tips move as the crack propagates (Fig. 3-21 (c)- Fig. 

3-22 (c)). The cooling region at the crack tips creates temperature-induced local 

compression at these regions. Furthermore, the temperature rise around the crack 

surfaces creates local tension against the compression created by the pressure shock 

loading. In conclusion, the induced temperature change due to deformation influences 

the crack growth in the opposite direction against the applied mechanical loading, 

leading to a reduced degree of crack propagation response. Hence, a different crack 

pattern from the uncoupled simulation is obtained.  

In conclusion, if shock loadings are applied, large strain rates are created, and thus 

the coupling term should be considered for more accurate crack propagation 

predictions.    
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(c) 

Fig. 3-20 Damage plots for (a) uncoupled case, (b) coupled case and (c) 

corresponding temperature change (K) distributions at 16 μst =  
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(b) 

 

(c) 
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Fig. 3-21 Damage plots for (a) uncoupled case, (b) coupled case and (c) 

corresponding temperature change (K) distributions at 28μst =  

 

(a) 

 

(b) 

 

(c) 

Fig. 3-22 Damage plots for (a) uncoupled case, (b) coupled case and (c) 

corresponding temperature change (K) distributions at 30 μst =  

3.6.3. Kalthoff problem simulation 

Kalthoff and Winkler [58] and Kalthoff [56, 59] performed a series of experiments 

where pre-notched plates were subjected to dynamic shear loads. In the experiments, 

a cylindrical projectile impacted on the notched side of the plate with a constant 

velocity 0V  parallel to the axis of the notch. The pre-existing crack in the upper half 

steel plate was observed to grow in an angle of approximately 
o70  counter-clockwise 

with the notch axis. The failure is in a brittle fracture mode under a lower strain rate. 

These experiments have been successfully simulated by numerical methods such as 
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phase-field simulation [60], finite element method [61]. In addition, Silling [62] and 

Dipasquale et al. [63] used PD to numerically simulate the Kalthoff problem within 

the realm of the mechanical field. In this section, a fully coupled thermomechanical 

simulation is conducted based on the Kalthoff experiment.  

The problem is symmetric so that only the upper half plate is modelled. As shown 

in Fig. 3-23, a square plate is modelled with 100 mmL W= =  and its thickness is 

1mm . A pre-existing crack of length being 50 mm  is located above the x  axis with 

the distance of 25 mm . Due to the symmetric conditions, the lower horizontal edge of 

the plate is fixed in the y  direction, i.e. ( ), 0, 0yu x y t= = . The other boundaries are 

free. All the boundaries are thermally insulated. The impact is simulated by imposing 

a constant velocity to the nodes on the left surface between the crack and the lower 

horizontal boundary in the PD model. The velocity is parallel to the x  direction and 

its magnitude is 

 
( )0 0 0

0

0 0

/t t v t t

v t t


= 


v   (3.30) 

where 0v  represent the magnitude of the applied velocity with 0 16.5 m/sv =  and 

0 1μst =  [60]. The properties of the elastic material are 190 GPaE = ,  

38000 kg/m = , 0.3 = , ( )477 J/ kgKvc = , 
6 117.6 10 K − −=  , ( )16.2 W/ mKTk = . 

The critical energy release rate is 4 22.213 10 J/mcG =  . The reference temperature is 

0 285 K = . As to the PD discretization, the mesh size is 0.0005 mx =  and the 

horizon is chosen as 3.015 x =  . The time step size is 0.01μs  and the total 

simulation time is 90 μs . The critical stretch value is calculated as 0.0103cs = .               



62 

 

 

Fig. 3-23 The geometry and boundary conditions for Kalthoff problem 

The crack is observed to propagate at 20 μst = . The crack evolution at different 

times is provided in Fig. 3-24. The angle between the crack path and the positive x  

direction is observed to be o68 , which is close to the corresponding result of the 

Kalthoff experiment. Furthermore, the temperature change distribution evolutions are 

provided in Fig. 3-25. The maximum stretch distributions in deformed configurations 

are presented in Fig. 3-26. It can be observed temperature rises near the crack and 

temperature drops in the crack, which agrees with the conclusions drawn in the last 

two simulation cases.   
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(c) 

Fig. 3-24 Crack evolution at different times, (a) 40 μst = ; (b) 65μst = ;(c) 90 μst =  

 

(a) 

 

(b) 

 

(c) 

Fig. 3-25 Temperature change (K) distributions at different times (displacement scale 

factor is 3), (a) 40 μst = ; (b) 65μst = ;(c) 90 μst = .  
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(a) 

 

(b) 

 

(c) 

Fig. 3-26 Maximum stretch distributions in deformed configurations (displacement 

scale factor is 3) at different times, (a) 40 μst = ; (b) 65μst = ; (c) 90 μst = . 

3.7. Summary 

In this chapter, fully coupled thermoelastic equations in ordinary state-based 

peridynamic theory are provided, including their non-dimensional forms. To verify the 

PD model, some benchmark problems are solved by using both peridynamics and FEM 

solutions. The good agreement between PD and other methods indicates the validity 

of the proposed PD model. Finally, crack propagation patterns are predicted for three-

point bending test, Kalthoff problem, and a plate with a pre-existing crack subjected 

to a pressure load. The following conclusions are drawn:  
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1. The ordinary state-based fully coupled thermomechanical PD model 

introduced in this chapter is capable of predicting temperature and displacement 

responses accurately both for dimensional and non-dimensional problems.  

2. When shock loadings are applied, the coupling effect on displacements and 

temperature should be taken into consideration for more accurate results.  

3. The coupling terms do have an effect on crack propagation when shock 

loadings are applied. Therefore, fully coupled analysis is necessary in such cases. 
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4.   Fully Coupled Thermomechanical PD Model for 

Composites Material 

4.1. Introduction 

In recent years, high-performance composite materials like fibre-reinforced 

composites (FRCs) and carbon-carbon composites (CCCs) are increasingly used in 

aerospace and mechanical industries, especially for the working environments with 

mechanical shocks and large temperature variations [64]. The analyses of this type of 

problems have been carried out in the past using the uncoupled or semi-coupled 

thermoelasticity theory. It is assumed that the deformation induces relatively small 

temperature changes, and hence can be conveniently neglected. Only the effect of the 

temperature on the deformation field is considered. However, the coupling coefficient 

of composites is much larger than the metal materials. Furthermore, the coupling effect 

on temperature is significant under the loading conditions like a sudden change of 

temperature or a mechanical shock. Therefore, the deformation effect on the 

temperature field is crucial in these cases. The uncoupled or semi-coupled analysis 

may not be accurate enough, and the employment of the fully coupled thermoelasticity 

theory is necessary in these cases [65].  

Many research achievements in the realm of fully coupled thermoelasticity are 

presented in the literature regarding composite materials. This problem becomes 

complex because of the anisotropic property of composite materials. Stanley [66] 

presented an experiment to test the thermoelastic constants of composite materials 

under compressive loading. Basic equations of linear thermoelasticity of composite 

material were established in Ene’s work [67]. Besides, a simple form of coupling 

constant was introduced to estimate the coupling effect for composite materials. In 

addition to the analytical and experimental methods, numerical methods are also 

popular in this field. Rao and Sinha [68] dealt with the coupled thermomechanical 

analysis of composites beams using FEM, presenting different results from uncoupled 

analyses. Moreover, the coupled thermoelastic response of a composite plate subjected 

to thermal shock was studied by Mukherjee and Sinha [69] using FEM. Khan et al. 

[70] compared the temperature profiles from different FE models in the 
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thermomechanical analysis of composites. Comparatively, boundary element method 

(BEM) was adopted by Kögl and Gaul [71] to investigate the coupling effect of 

composites. They stated that when linear elements were used, the BEM had an 

improved accuracy than FEM. Fully coupled thermomechanical analyses of one layer 

or equivalent single-layer plate were given by Brischetto and Carrera [72], providing 

a wise approach for multi-layered composites.   

In addition to thermoelasticity, failure analysis is also a hot topic in composite 

research. It is a challenging task to predict damage in composites. Composites can be 

defined as two or more materials combined to form a single material [73].  There are 

several kinds of failure exist in laminated composites materials, e.g. fibre/matrix 

debonding damage, fibre breakage in tension, as well as fibre bulking in compression, 

interlaminar delamination, and penetration due to impact [74]. Therefore, the 

inhomogeneous nature of composites must be taken into consideration in the analysis, 

to predict the corresponding failure modes. Furthermore, the stacking sequence and 

thickness also have an important effect on the failure initiation and evolution [75]. 

Although many mathematical models and computational methods have been 

developed to predict these failure mechanisms, a high challenge still exist because of 

the adoption of continuum damage mechanics. Being different from the 

aforementioned numerical methods, i.e. BEM and FEM, peridynamic (PD) theory is a 

new numerical method based on non-local continuum theory. Therefore, the PD theory 

is suitable for simulating cracks for composite materials. Oterkus and Madenci [76-78] 

successfully applied the bond-based PD theory for composite materials. Kilic et al. [79] 

predicted the crack propagation in centre-cracked composites laminates using a bond-

based PD theory. Although bond-based PD theory has been successfully employed in 

analysing composite materials, the material property is limited to having a fixed 

Poisson’s ratio [4]. Additionally, the major shear stiffness 12G  of a lamina is also 

forced to be a fixed value related to the elastic modulus in fibre direction and transverse 

direction [80]. Consequently, if bond-based peridynamic theory is utilized in analysing 

fibre reinforced composite lamina, four independent material constants 

( )1 2 12 12, , ,E E G   will reduce to two independent constants ( )1 2,E E  [80]. On the other 

hand, state-based peridynamic theory [11] which eliminates these limitations. 
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Although various formulations are available for state-based PD composites modelling, 

most of them are limited to mechanical analysis. Oterkus and Madenci [46] provided 

a fully coupled analysis of a fibre-reinforced lamina. And then the model was extended 

to multi-layer laminates by Gao and Oterkus [7]. But the bond-based peridynamic 

theory is used for both models. To the authors’ knowledge, fully coupled formulas and 

analyses for laminates are currently not available in ordinary state-based peridynamic 

framework.    

To address this concern, the focus of this chapter is on fully coupled analysis of 

composite materials with ordinary state-based peridynamic theory. Oterkus et al. [39] 

derived the heat conduction equation with ordinary state-based peridynamic theory. 

Moreover, fully coupled thermomechanical equations for isotopic materials were 

proposed by Oterkus et al. [43] using bond-based peridynamic theory and extended to 

ordinary state-based peridynamic form by Gao and Oterkus [5]. Based on the previous 

work, in this chapter, both thermal and deformation fields are derived using ordinary 

state-based peridynamic theory. The directional dependency of composite material 

properties, as well as the coupling effect on temperature, is taken into account. Then 

the fully coupled thermomechanical numerical simulations are presented in Section 

4.2. Subsequently, the validation cases are conducted in Section 4.3. Furthermore, the 

bond-based fully coupled thermomechanical PD model is applied to simulate the 

damage of composites under underwater explosion in Section 4.4.      

4.2. PD composite model 

Regarding the fully coupled thermomechanical problems, the PD formulations are 

derived based on irreversible thermodynamics, i.e. the conservation of energy and the 

free energy density function. The general form of the fully coupled thermomechanical 

equations based on peridynamic theory is given in [43-46, 48] and Chapter 3. However, 

the fully coupled thermomechanical composite model in ordinary state-based PD 

framework has not been established so far. The following section represents the 

derivation of fully coupled thermomechanical formulations for ordinary state-based 

peridynamics for composites by taking into account their directional properties. 
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4.2.1. Single-layer PD composite model 

In this section, fully coupled ordinary state-based peridynamic single layer 

composite (lamina) model is developed in which the orthotropic property of lamina is 

taken into consideration. As shown in Fig. 4-1, it is presumed that the PD bonds are 

divided into three types according to their bond directions: fibre direction denoted by 

F , transverse direction denoted by T , and arbitrary direction denoted by FT  [10, 80, 

81]. Besides, the fibre angle is denoted by  . The bond angle with respect to the 

positive x  direction is denoted by  . 

                     

Fig. 4-1 Interaction of a family of material points for a fibre-reinforced lamina. 

PD force density function provided in [10, 82] is modified by including the thermal 

effects as; 
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where   

 
( )1 // fibre direction

0 otherwise

j i

F
 −

= 


x x
 (4.2a) 

with 

 
( )1 fibre direction

0 otherwise

j i

T
 − ⊥

= 


x x
  (4.2b) 

In Eq.(4.1), 1  and 2  represent the thermal expansion coefficients in fibre and 

transverse direction, respectively. Thereby,   represents the thermal expansion 

coefficient in any direction as [76]  

 ( ) ( ) ( ) ( )2 2cos sin sin cosx y xy       = + +  (4.3)     

with [83] 

 ( ) ( )2 2

1 2cos sinx  =  +    (4.4a) 

 ( ) ( )2 2

1 2sin cosy  =  +    (4.4b) 

In Eq.(4.1), i  and j  are the dilatations of point i  and j , respectively [10, 80]. 

The dilatation for a single layer PD model is also modified by including the thermal 

effects as 

 ( ) ( )1 2

1

plyN

i ij i ij j i

j

d s T V T    
=

= −  + +  (4.5)     

with 
3

2

thick

d
h 

=  and plyN  representing the total number of the family members 

within the same layer. The parameters ijs  and ij  [10, 80] are defined in Eq.(2.7) and 

(2.9d). 
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In Eq.(4.1), the peridynamic parameters Fb , Tb  and FTb  are associated with 

deformation of collective points in the fibre, transverse and other directions, 

respectively. The peridynamic parameters in Eq.(4.1) are defined as [10]: 

 ( )12 66

1

2
a Q Q= −   (4.6a) 

 66

4

6
FT

thick

Q
b

h 
=   (4.6b) 

 ( )
( )11 12 66

1

2

2
F

F i N

j i j

j

Q Q Q
b

V
=

− −
=

−
x

x x

  (4.6c) 

 ( )
( )22 12 66

1

2

2
T

T i N

j i j

j

Q Q Q
b

V
=

− −
=

−
x

x x

  (4.6d) 

where FN , TN  are the total number of bonds in the fibre and transverse direction 

respectively (Fig. 4-1). The reduced stiffness matrix,  Q , is defined as [1]  

  
11 12

21 22

66

0

0

0 0

Q Q

Q Q Q

Q

 
 

=
 
  

 (4.7) 

with 

 1 2 12 2
11 22 12 66 12

12 21 12 21 12 21

, , ,
1 1 1

E E E
Q Q Q Q G



     
= = = =

− − −
  (4.8) 

In Eq. (4.8), 1E , 2E , 12G , 12  and 21  represent the elastic modulus in the fibre 

direction, the elastic modulus in the transverse direction, major shear modulus, major 

Poisson’s ratio and minor Poisson’s ratio, respectively.     
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Similarly, the directional dependency properties are also taken into consideration in 

the heat equation given in Eq.(3.1). Therefore, thermal micro conductivity proposed 

by Oterkus and Madenci [46] for a lamina is adopted  as 

 
for fibre direction

otherwise.

f m

m

 




+
= 


  (4.9) 

where m  and f  represent the peridynamic micro conductivities for fibre and other 

directions as [46] 

 2

3

6
m

thick

k

h


 
=   (4.10) 

and 

 ( )
( )1 2

1

2

F
f i N

j i j

j

k k

V



=

−
=

−
x

x x

  (4.11) 

In Eq. (4.10) and Eq.(4.11), 1k  and 2k  represent the thermal conductivities in CCM 

for fibre and transverse direction. 

PD thermal moduli in fibre and other directions are defined as (derivation process 

is provided in Appendix B) 

 
for fibre direction

otherwise.

f m

m

 




+
= 


  (4.12) 

with 
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Q Q
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+
=   (4.13) 

and 
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  (4.14) 

As a summary, the ordinary state-based PD formulation for a single layer is given 

as; 
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( )( ) ( )
1

0
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x xx x

x xx

  (4.16) 

Here j  and k  represent the temperatures at point j  and k , respectively. 

4.2.2. Multi-layer PD composite model 

The PD mechanical model developed by Oterkus and Madenci [10, 76] for 

composite laminates is adopted in this subsection. As illustrated in Fig. 4-2, each ply 

in a laminate is modelled by one-layer PD nodes (shown in blue, red, and yellow colour 

for different plies). The multi-layer laminate is modelled by assembling the single-

layer models according to the stacking sequence. Due to the directionally dependent 

properties of the laminate, four kinds of PD bonds are defined in the model: in-plane 

fibre bonds, in-plane matrix bonds, interlayer normal bonds, and interlayer shear bonds 

[10, 76]. Additional bonds, also called interlayer bonds, are added to connect points 

between neighbouring plies. The in-plane bonds have already been discussed in the 

single-layer model, so only the latter two bonds belonging to interlayer bonds will be 

explained in this section. The grid size is represented by x .    
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Fig. 4-2 Illustration of PD laminate model for 3 x =   and fibre direction, 0 = . 

As illustrated in Fig. 4-2, the equation of motion for material point k  in thn  ply can 

be expressed as [10] 

    ( )
1 1, 1 1, 1 1

2
ply shear

N N
n n n n nm m nm m n

k kj jk j k k kj j k

j m n n m n n j

V V V
= = + − = + − =

= − + + +   u t t P q b         (4.17) 

where nm

kP  represents the PD force density vector due to transverse normal bond and 

nm

kjq  is the force density vector associated with transverse shear deformation. The 

superscripts, n  and m , represent the sequence number of the layer where the material 

point is located. The term shearN  represents the number of family members connecting 

to kx  through interlayer shear bonds. It should be noted that the first term on the right-

hand side of Eq. (4.17) is presented in Section 4.2.1.   
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Fig. 4-3 Representation of interactions of material point k  in multi-layer composite 

model.   

In the transverse normal deformation, the laminate (resin-rich layer) is treated as the 

matrix material in its thickness direction [10]. Therefore, the material properties in the 

thickness direction are assumed the same as the material properties of the matrix, i.e. 

 , andz m z m z mE E G G  = = =   (4.18) 

where the subscript m  represents the matrix material. The transverse normal force 

density function [10] including the thermal effects is represented as 

 ( ),
ˆ4

m n
nm nm nm k k
k N k m avg k m n

k k

b s T 
−

= −
−

y y
P

y y
 (4.19) 

where nm

kP  represents the force density between point k  in 
thn  ply and its 

corresponding point in 
thm  ply with the same in-plane coordinate. The term ̂  is the 

horizon in the transverse normal direction. The term ,

nm

avg kT  is the average temperature 

change of point n

kx  and m

kx . The transverse normal peridynamic parameter, Nb , is 

given as [10]; 

 
( ) ( )1 1

1 1
ˆ

m
N n n

n n k n n k

E
b

h h V h h V + −

+ −

=
 + + + 

  (4.20) 

where 1nh + , nh  and 1nh −  are illustrated in Fig. 4-4(a).   
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Similarly, transverse shear bond force density function can be modified by including 

the thermal effects as; 

 ( ) ( )( ), ,4

m n

j knm nm nm nm nm

kj S kj m avg kj jk m avg jk m n

j k

b s T s T  
−

= − − −
−

y y
q

y y
  (4.21a) 

or 

 
( )

4

nm m n

kj m n j knm

kj S m n m n

j k j k

h h
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
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+ −
=

− −

y y
q

x x y y
  (4.21b) 

with 

 
( ) ( ), ,

nm nm nm nm

kj m avg kj jk m avg jknm m n

kj j k

m n

s T s T

h h

 


− − −
= −

+
x x   (4.21c) 

where mh  and nh  are the thickness of thm  and thn  layer in the laminate, respectively. 

Here 
thm  layer represents the one layer above or one layer below the 

thn  layer (Fig. 

4-4(a)). Thereby, 
nm

kj  represents the average shear angle in the interlayer shear 

direction. 
nm

kjs  is the stretch between nodes n

kx  and 
m

jx , and ,

nm

avg kjT  is the average 

temperature difference between nodes n

kx  and 
m

jx , with respect to the initial 

temperature. The term 
nm

kjq  is the transverse shear force density vector between 

material point k  in 
thn  ply and material point j  in 

thm  ply. The horizon size in 

transverse shear direction,  , is defined as 2 2ˆ  = +  ( Fig. 4-4(b)). The term Sb  

is a PD parameter and it is given as [10]; 
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  (4.22) 

 
(a) 

 
(b) 

Fig. 4-4 (a) Illustration of each lamina in a laminate with N  representing the total 

number of layers; (b) Horizon in transverse shear direction 

In this chapter, the multi-layer laminates composed by uniform thickness ( thickh ) 

plies are considered. As a result, Eq.(4.20) for the expression of Nb  and Eq.(4.22) for 

the expression of Sb  can be simplified as  
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Similarly, the effect of interlayer thermal bonds is considered in the coupled heat 

equation by modifying Eq.(4.16) as  
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  (4.25) 

The second and third terms on the right-hand side of Eq. (4.25) represents the heat 

flow between adjacent layers. interN  is the family member number those connect to n

kx  

through interlayer thermal bonds. Rate of change of bond extension is considered only 

through the thickness direction for interlayer thermal bonds. Interlayer PD micro 

conductivity and PD thermal modulus are given as 

 
( )32

m
inter

thick thick

k

h h
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=

−
  (4.26) 

and 

 
( )34

m m
inter

thick thick

E

h h




 
=

−
  (4.27) 

The derivation process for inter  and inter  is given in Appendix B. And their surface 

correction factor formulations are provided in Appendix C. 

4.2.3. Reduced bond-based model  

Based on the previous state-based PD multilayer laminate model, the reduced bond-

based PD formulation is derived in this section. The discretized form of the PD 

equation of motion for a material point n

kx  in the n  layer of a laminate can be written 

as 
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(4.28)  

The first three terms on the right-hand side of Eq.(4.28) represent the PD forces 

developed by in-plane bonds (including fibre bonds and matrix bonds), interlayer 

normal bonds, and interlayer shear bonds in sequence. If the bond direction is parallel 

to the fibre direction, F  is equal to 1, otherwise, it is 0. fc , mc , inc , and isc  are PD 

material constants associated with in-plane fibre bonds, in-plane matrix bonds, 

interlayer normal bonds, and interlayer shear bonds, respectively. The definitions for 

PD material constants are listed as [10, 76] 
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It is assumed that a material point interacts with other points in adjacent plies 

through interlayer normal bonds and interlayer shear bonds. Therefore, the horizon of 

the interlayer normal bond is taken as equal to the thickness of one-ply, thickh . In 

Eq.(4.29), FN  represents the total number of family members those connect to the 
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material point with fibre bonds. In Eq. (4.31), the value of V  can be calculated as the 

average volume of material points connected through interlayer normal bonds. As to 

the thermal expansion coefficient  , the same formulation Eq.(4.3) developed in [84] 

is utilized. m  represents the thermal expansion coefficient of the matrix material. In 

Eq. (4.28),   represents the shear angle of the diagonal shear bonds. 

It should be noted that because of the adoption of bond-based PD theory, the four 

material constants existing in a laminate, i.e., 1E , 2E , 12 , and 12G , reduce to two 

constants: 1E  and 2E [76, 80]. The major Poisson’s ratio 12  is limited to 1/3, and the 

major shear modulus is 12 2
12

12 211

E
G



 
=

−
 with 12 1 21 2/ /E E = . 

Regarding the bond-based thermal model, the heat conduction equation given for a 

laminate is  
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 (4.33) 

where inter  represents the micro-conductivity for both interlayer normal and shear 

bonds defined by Eq.(4.26). 

The PD thermal modulus   depends on the PD material bond constant [43, 44, 46]. 

PD thermal modulus for in-plane bonds and interlayer bonds can be expressed as 

 
1

2
f fc  =  (4.34) 



81 

 

 
1

2
m mc  =  (4.35) 

 
1

2
in inc  =  (4.36) 

 
1

2
is isc  =  (4.37) 

where f , m , in  and is  are associated with in-plane fibre bonds, in-plane matrix 

bonds, interlayer normal bonds, and interlayer shear bonds. 

4.2.4. Failure criteria 

The general PD failure criteria are provided in Section 2.1.3. Due to the anisotropic 

material properties of the laminates, the failure criteria should be modified 

correspondingly. The mode mixity effects can be captured by the selected failure 

criteria, which is demonstrated by Vazic et al. [38]. The PD predictions for failure 

mode ranging from pure mode I to pure model II are consistent with the experiments 

[85]. Because of the four different types of PD bonds in a multi-layer composites 

model, four different critical stretch values are needed in the failure analyses. The 

critical stretch values are considered as [10, 86]   
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where ms , 
fs , ins , is  are the critical stretch values for matrix bonds, fibre bonds, 

interlayer normal bonds, and interlayer shear bonds, respectively. The material 

constants mK  and m  are bulk modulus and Lamé constant of the matrix material. 

Besides, ICG  and IICG  are critical energy release rate for the first and second failure 

mode in classical fracture mechanics, respectively. The terms 1t  and 1c  are the 

longitudinal tension and compression strength properties of a single ply. The critical 

stretch in Eq.(4.39) has a similar meaning of critical strain in the context of classical 

continuum mechanics. On the other hand, the critical stretches given in Eqs. (4.38), 

(4.40), (4.41) are obtained by equating the energies required to eliminate all PD 

interactions across the crack surfaces to the mode I or mode II critical energy release 

rates. Thus, the failure criteria mentioned in Eqs. (4.38), (4.40), (4.41) are energy-

based [10]. By applying the above failure criteria, it can be observed that the fibre 

bonds can fail both in tension and compression. The matrix bonds, interlayer normal 

bonds, and interlayer shear bonds are only allowed to fail in tension.  

Eq. (4.38) and (4.39) are related to the intralaminar failure mode. Eq. (4.38) 

corresponds to matrix damage and splitting failure mode. Eq. (4.39) corresponds to 

fibre damage. Eq.(4.40) and (4.41) are related to the interlaminar failure mode. Eq. 

(4.40) corresponds to interlaminar mode-I fracture and Eq. (4.41) corresponds to 

interlaminar mode-II fracture as shown in Fig. 4-5. 

 
 

  

(a) (b) 

Fig. 4-5 Interlaminar failure modes: (a) Mode-I Fracture; (b) Mode-II Fracture 

Broken interlayer normal bonds
Broken interlayer shear bonds



83 

 

The history-dependent failure function,   in Eq. (2.14), is defined for each 

interaction to indicate the bond breakage, i.e. being 1 for intact bond and being zero 

for a broken bond, as [10, 40, 86]  
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where f , m , in  and is  are related to fibre bonds, matrix bonds, interlayer normal 

bonds, interlayer shear bonds. As a result, Eqs. (4.1), (4.5), (4.19), and (4.21b) with 

including the failure functions Eq.(4.42)-(4.45) are expressed as  
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Correspondingly, for each kind of PD bond damage the local damage parameter Eq. 

(2.15) becomes as [13]; 
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4.3. Simulation cases 

In order to validate the derived ordinary state-based thermomechanical PD 

formulations, several numerical simulations are conducted, and then the results are 
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mainly compared with those obtained from ANSYS solutions. Firstly, in Section 4.3.1, 

temperature changes are imposed on the composite models to estimate the equation of 

motion which includes the thermal loading. Secondly, heat transfer simulations in 

multi-layer composites are implemented in Section 4.3.2, in order to validate the 

developed PD thermal model for multi-layer composites. Thirdly, pressure shock loads 

are applied in fully coupled thermomechanical analyses in Sections 4.3.3. The 

emphasis is put on the predictions of the displacements and the temperature, which act 

as primary variables in the simulations. And the validity of the fully coupled 

thermomechanical PD model is investigated by the comparisons of the simulation 

results with the ANSYS solution. Finally, in Section 4.3.4, failure analyses with central 

pre-existing cracks on the models are carried out. The crack propagation paths and the 

temperature distribution evolutions are predicted. 

During the numerical simulations, the composite material is chosen as 

graphite/epoxy. The material properties are listed in Table 2 [1]. The length and width 

of the single-layer composite model specified as 0.1m . The thickness of the single-

layer model is 0.001m . The multi-layer composite model is constructed with three 

single-layer models with a ply stacking sequence of 0/90 /0   , as illustrated in Fig. 

4-6. Each ply is modelled as a two-dimensional orthotropic structure with one node in 

the thickness direction. The models are discretized into 200 subdomains both in x  and 

y  directions, leading to a space between material points, x , as 
45 10 m− . High 

accuracy and desired numerical efficiency can be achieved by adopting this grid size. 

The in-plane horizon is chosen as 3.015 x =  , which is recommended by [13] and 

[10]. The origin of the coordinate system is set at the middle of the bottom ply as 

illustrated in Fig. 4-6. The reference temperature is 0 285 K = . 
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Fig. 4-6 Multi-layer composite model with a stacking sequence 0/90 /0   .  

Table 2 Material property of composites [1] 

Mechanical Properties Thermal Properties 

Longitudinal elastic 

modulus ( )1 GPaE  
181 

Longitudinal coefficient of 

thermal expansion 

( )1 μm/m/K  
0.02 

Transverse elastic modulus  

( )2 GPaE  
10.3 

Transverse coefficient of 

thermal expansion 

( )2 μm/m/K  
22.5 

Shear modulus ( )12 GPaG  7.17 
Longitudinal thermal 

conductivity ( )1 W/m/Kk  
8.3075 

Major Poisson's ratio 12   0.28 
Transverse thermal conductivity 

( )2 W/m/Kk  
0.7575 

Mass density ( )3kg/m  1620 Specific heat ( )J/kg/Kvc  1092.728 

Elastic modulus of matrix 

material ( )GPamE  
3.4 

Thermal conductivity of matrix 

material  ( )W/m/Kmk  
0.2 

Shear modulus of matrix 

material ( )GPamG  
1.308 

Thermal expansion coefficient 

of matrix material 

( )μm/m/Km  
63 

4.3.1. Composite subject to temperature change 

In this section, temperature changes are imposed on both the single-layer and multi-

layer composite models. All four edges of both composite models are free to deform, 

and they are insulated. An adaptive dynamic relaxation (ADR) approach introduced 

by Kilic and Madenci [87] is utilized for the quasi-static analyses. A unit time step size 

is used to save computational time [10]. The displacements predictions are compared 

with the ones from ANSYS or classical laminate theory (CLT) [88] solutions. 

x
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z

2

1

Layer #
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90
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3
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4.3.1.1 Constant temperature change 

As a first case, simple loading condition, i.e. a constant temperature change of 50 K , 

being applied to single-layer composite with a fibre orientation of o=0  is considered. 

The analytical solution based on the CLT for a single layer ply can be calculated as 

[89]; 

 ( ) ( )1, 0xu x y T x= =    (4.51a) 

 ( ) ( )20,yu x y T y= =    (4.51b) 

The term xu  and yu  represent the horizontal and vertical components of displacement.   

During the numerical simulations, convergence study is utilised by tracing the 

displacements of a point as shown in Fig. 4-7. The horizontal and vertical 

displacements predictions along the central lines of the single-layer model are 

provided in Fig. 4-8. The good agreements indicate the successful application of the 

state-based PD equation of motion by considering the effect of temperature on the 

mechanical field.  

 

Fig. 4-7 Convergence study by tracing the displacements of the material point at 

0.0495mx = −  and 0.0355my = − .  
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(a) 

 
(b) 

Fig. 4-8 (a) Horizontal (b) Vertical displacements along the central lines of the 

single-layer model subjected to constant temperature change. 

As a second case, the same constant temperature change is imposed on the multi-

layer composite model. The analytical solution based on the CLT for multi-layer 

composite model can be calculated as [89];  

 ( )x xu T x =    (4.52a) 

 ( )y yu T y =    (4.52b) 

 ( )z mu T z=    (4.52c) 

where x   and y 
 are the thermal expansion coefficients of the laminate with respect 

to the global coordinate system. They can be presented as [89] 

      
1

1

kN k

kxyk
A Q h 

−

=
 =      (4.53a) 

with  

    = , ,x y xy          (4.53b) 

and 

  
1

N
k

k

k

A Q h
=

 =      (4.53c) 

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-0.04

-0.02

0.00

0.02

0.04

 

 

u
x
 (


m
)

x (m)

 PD

 Analytical

x

y

x

y

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-60

-40

-20

0

20

40

60

 

 

u
y
 (


m
)

y (m)

 PD

 Analytical

x

y

x

y



89 

 

where 
k

Q    is the reduced transformed stiffness matrix as defined in Eq. (4.7),  
k

xy
  

is the thermal expansion coefficient vector with respect to the global coordinate system 

and kh  is the thickness of the thk  layer. In ANSYS, the solid element type SOLID186 

is utilized in the static analysis. The mesh size in x  and y  directions are 
32 10 m−  

with three elements in the z  direction.       

The displacement components along the midline of the multi-layer composite model 

obtained from PD, ANSYS and analytical simulations are compared and presented in 

Fig. 4-9.  It can be easily observed that the results from these methods agree very well. 

Thus, the PD equation of motion for multi-layer composite under a constant 

temperature change is validated. There is a slight difference between PD results and 

classical ones near the boundary due to the PD surface effect [90]. It should be noted 

that the deformation of multi-layer composite differs significantly from the single-

layer because of the orientation of each ply in the stacking sequence. 
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(b) 

 

(c) 

Fig. 4-9 (a) Horizontal (b) Vertical (c) Out of plane displacements along the central 

lines of the multi-layer model subjected to constant temperature change. 

4.3.1.2 Linear temperature change 

The thermal loading is changed to a linear temperature change, ( )500 KT x =  with 

x  representing the horizontal location. As a first case, the non-uniform temperature 

change is applied for the single-layer composite model. In ANSYS, the plane element 

type PLANE182 with the plane stress assumption is utilized in the static analysis. The 

mesh size is 
31 10 m−  with only one element in the thickness direction. As shown in 
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Fig. 4-10 and Fig. 4-11, the horizontal and vertical displacements predictions from 

peridynamic solutions are in agreement with the ANSYS predictions. 

 
(a) 

 
(b) 

 Fig. 4-10 Horizontal displacements, ( )μmxu  (a) PD and (b) ANSYS results 

 
(a) 

 
(b) 

Fig. 4-11 Vertical displacements, ( )μmyu  (a) PD and (b) ANSYS results 

As a second case, the same linear temperature change is applied to the multi-layer 

composite model. The ANSYS model is the same as described in Section 4.3.1.1. The 

displacements components are compared with ANSYS predictions, as shown in Fig. 

4-12 to Fig. 4-17. Due to symmetric fibre orientations of the composite, the horizontal 

and vertical displacements distributions are the same for top and bottom plies. As 

expected, the displacement in the thickness direction, the top and bottom plies have 

deformation in the opposite direction. The transverse displacement of the middle ply 

is observed as zero. It can be inferred from Fig. 4-16 and Fig. 4-17 that a delamination 
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tendency exists on the right side due to higher temperatures. Good agreements are also 

obtained with ANSYS solutions. 

 
(a) 

 
(b) 

Fig. 4-12 Horizontal displacements, ( )μmxu  (a) PD (b) ANSYS results for bottom 

ply. 

 
(a) 

 
(b) 

  Fig. 4-13 Horizontal displacements, ( )μmxu  (a) PD (b) ANSYS results for middle 

ply 
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(a) (b) 

Fig. 4-14 Vertical displacements, ( )μmyu  (a) PD (b) ANSYS results for bottom ply. 

 
(a) 

 
(b) 

Fig. 4-15 Vertical displacements, ( )μmyu  (a) PD (b) ANSYS for middle ply. 

 
(a) 

 
(b) 

     Fig. 4-16 Transverse displacement, ( )μmzu  (a) PD (b) ANSYS for bottom ply. 
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       Fig. 4-17 Transverse displacement, ( )μmzu  (a) PD (b) ANSYS for top ply. 

4.3.2. Heat transfer in composites  

In this section, pure heat transfer analyses in the single and multi-layer composite 

model are tested in order to validate the proposed multi-layer PD thermal model. 

4.3.2.1 Composite subject to heat flux on the top ply 

Constant heat flux 
25000 W/m  is applied to the top ply of the multi-layer model. 

The composite model is initially at the reference temperature, 0 . The total simulation 

time is 50 st =  and the time step size in PD solution is defined as d 0.01st = . On the 

other hand, the element type SOLID278 is utilized in the transient thermal ANSYS 

analysis. A grid 60 60  in the -x y  plane with three elements in the z  direction is 

chosen in the ANSYS model. In addition, the time step size used in ANSYS model is 

2.5 s . The temperature change distribution predictions during the simulation process 

are compared with those from ANSYS simulations, as shown from Fig. 4-18 to Fig. 

4-20. The remarkable match indicates the successful application of the PD interlayer 

heat flow formulation.  

 
(a) 

 
(b) 

Fig. 4-18 Temperature change distributions at 10 st =  (a) PD (b) ANSYS results 
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(a) 

 
(b) 

Fig. 4-19 Temperature change distributions at 30 st =  (a) PD (b) ANSYS results 

 
(a) 

 
(b) 

Fig. 4-20 Temperature change distributions at 50 st =  (a) PD (b) ANSYS results  

4.3.2.2 Composite subject to a temperature boundary condition  

In order to verify the PD heat conduction model for in-plane and transverse 

directions, a temperature boundary condition ( ) ( )100 KT y z t = +  is applied at 

/2x L= − , where x , y  and z  represent the coordinate components and t  is the 

simulation time. The composite model is initially at the reference temperature, 0 . 

The total simulation time is 300 s  and the time step size in PD solution is d 0.01st = . 

The SOLID278 element type is chosen for the ANSYS model with a time step size 

10 s . The ANSYS model is constructed with 40 elements in x  and y  directions and 

3 elements in z  direction. The PD results of temperature distributions are compared 

with the ANSYS solutions, as shown from Fig. 4-21 to Fig. 4-23. Good agreement is 

achieved, thus the PD thermal model of the laminate is validated.    
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(a) 

 
(b) 

  Fig. 4-21 Temperature change distributions at 50 st =  (a) PD (b) ANSYS results  

 
(a) 

 
(b) 

Fig. 4-22 Temperature change distributions at 100 st =  (a) PD (b) ANSYS results 

 
(a) 

 
(b) 

Fig. 4-23 Temperature change distributions at 300 st =  (a) PD (b) ANSYS results.       
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4.3.3. Composites subject to pressure shock 

In order to validate the fully coupled thermomechanical PD formulations, the 

deformation and thermal responses of single-layer and multi-layer composite models 

under pressure shock loads are investigated. As illustrated in Fig. 4-24, the plate is 

fixed on the right edge and it is subjected to pressure loading on the left edge. The 

plate is insulated at the top, bottom and right edges. 

The initial conditions are: 

( ) ( ) ( ), , , 0 , , , 0 , , , 0 0x y zu x y z t u x y z t u x y z t= = = = = =   (4.54a) 

( ), , , 0 0T x y z t = =    (4.54b) 

The boundary conditions are: 

( ) ( ) ( )/2, , , /2, , , /2, , , 0x y zu x L y z t u x L y z t u x L y z t= = = = = =   (4.55a) 

( ) ( ) ( ), /2, , , /2, , , /2, , 0xx yy zzx y W z t x y W z t x y W z t  =  = =  = =  =  (4.55b) 

( ) ( )/2, ,xx x L y t P t = − =    (4.55c) 

( ), /2, /2, , 0xT x L y W z t=  =  =    (4.55d) 

( ), /2, /2, , 0yT x L y W z t=  =  =    (4.55e) 

( ), /2, /2, , 0zT x L y W z t=  =  =    (4.55f) 

where zu  represents the displacement in z  direction.  
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Fig. 4-24 The top view of composite models under a pressure shock.  

4.3.3.1 Single-layer composite subject to pressure shock 

Pressure shock loading is applied to the single-layer composite model for 2 different 

cases. 

Case 1:  

( ) ( )10 6 o10 sin 10 Pa; for fibre angleΦ=0P t t=    (4.56a) 

Case 2: 

( ) 14 o10 Pa; for fibre angleΦ=90P t t= −    (4.56b) 

The induced temperature changes and horizontal displacements along the central 

line of the ply are predicted with the newly developed fully coupled thermomechanical 

model. The results are compared with ANSYS solutions by using a directly coupled 

method [91]. The directly coupled element PLANE223 is utilized in the transient 

thermomechanical analysis. The mesh size is 
42 10 m−  and the time step size is 

88 10 s−  in ANSYS solution.  

Fig. 4-25 and Fig. 4-26 provide the temperature change distributions and horizontal 

displacements for 2 different cases. In case 1, a compressive wave is generated. As the 

wave moves to the right, the temperature rise is observed where there is local 

compression, on the other hand, the temperature drop is observed where there is local 

L

W( )P t
x

y
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tension. On the other hand, in case 2 temperature drop is observed due to applied 

tension loading. The observed temperatures coincide with the theory and experimental 

results [92]. As seen from Fig. 4-25-Fig. 4-26, the induced temperature changes and 

horizontal displacements match very well with ANSYS solutions. 

 

(a) 

 

(b) 

Fig. 4-25 (a) Temperature change distributions (b) horizontal displacements at 0y =  

for case 1   
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(a) 

 
(b) 

Fig. 4-26 (a) Temperature change distributions (b) horizontal displacements at 0y =  

for case 2 

4.3.3.2 Multi-layer composite subject to pressure shock 

In order to validate the proposed PD fully coupled thermomechanical model for 

multi-layer composites, a pressure shock loading is applied to the multi-layer model 

as:  

 ( ) 1610 PaP t t= −   (4.57) 

The induced temperature changes and displacements along the central lines of all 

three plies are predicted with the proposed PD model. Furthermore, the results are 
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compared with ANSYS solutions by using coupled element type SOLID226. The 

mesh size and time step remain the same with the ones from the multi-layer composite 

as in Section 4.3.1.  

Fig. 4-27 and Fig. 4-28 are the horizontal displacements and temperature change 

distributions of each ply, respectively. Due to the symmetry stacking sequence and 

loading condition, the top ply and bottom behave similarly. As it can be seen in Fig. 

4-27, the displacements of the middle ply are slightly larger than the bottom ply due 

to fibre orientation since the fibres in the middle ply are perpendicular to the loading 

direction, on the other hand, the fibres in the top and bottom plies are in the loading 

direction. Similarly, in terms of the temperature field, temperature changes of the 

middle ply are also much larger than the bottom ply as seen in Fig. 4-28. As time 

progresses, sudden temperature variations are observed near the boundary. Although 

there are little discrepancies between the PD and ANSYS results in the later stage 

especially in the middle ply, such variations are also captured in PD results.  
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(b) 

Fig. 4-27 Horizontal displacements at 0y =  (a) bottom ply (b) middle ply  
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(b) 

Fig. 4-28 Temperature change distributions at 0y =  (a) bottom ply (b) middle ply 

4.3.4.  Crack propagation predictions of composites  

After verifying the developed PD thermomechanical formulations for both single 

and multi-layer composites, in this section, damage patterns and corresponding 

temperature change distributions for single layer and multi-layer composite model at 

different integration times are presented with a pre-existing crack size of 2 2.0 cma =  

as seen in Fig. 4-29. The initial and boundary conditions are identical to those from 

Section 4.3.3. PD discretization is achieved with a uniform grid of 300 300 . The 

critical stretch values are calculated as 0.0177ms =  and 0.03734ins =  with 

32.37 10 MPa/mICG −=   [76]. The critical stretch value of fibre bond is assumed to 

be twice the matrix bond, i.e 0.0354fs = . The critical stretch value of interlayer shear 

bonds is calculated as 0.1043is =  with 37.11 10 MPa/mIICG −=   [86]. The 

simulation time is chosen as 14 μs  with time step size 
910 s−

.  

 

Fig. 4-29 Top view of a composite model with a central crack under a tension 

pressure shock. 

4.3.4.1 Single-layer composite with a central crack 

Pressure shock loading is applied to the single-layer composite with a crack for 2 

different cases. 

( )P t

L

W2a
x

y
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Case 1: 

( ) ( ) ( )( )14 o

0 0 03 10 Pa; for fibre direction =0P t tH t t t H t t= −  − + −   (4.58a) 

Case 2: 

( ) ( ) ( )( )12 o

0 0 05 10 Pa; for fibre direction =90P t tH t t t H t t= −  − + −   (4.58b) 

where 0 4.0 μst = . 

The damage plots and temperature change distributions at different time steps are 

provided from Fig. 4-30 to Fig. 4-32 for case 1. As shown in Fig. 4-30(a), the crack 

begins to propagate at 8μst = . Coinciding with the predictions in previous solutions 

[79, 80], the crack grows along the fibre direction which is perpendicular to the pre-

existing crack direction. From this figure, it can also be noticed that the cracks on either 

side of the pre-existing crack tips grow equally. It indicates the fibre/matrix debonding 

[93] failure mode, which arises from in-plane shear stress in the matrix. A similar 

failure pattern is observed in the experiments conducted by Bogert et al.[94]. As 

presented in Fig. 4-32(b), temperature increases near the crack, which agrees with the 

conclusion in [95]. There is a temperature drop due to local tension near the crack tip. 

On the other hand, there is a temperature rise along the crack surfaces due to local 

compression. The temperature change distribution has a similar pattern as the crack 

growth.  
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Fig. 4-30 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

1 at 8μst = . 

 
(a) 

 
(b) 

Fig. 4-31 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

1 at 11μst = . 

 
(a) 

 
(b) 

Fig. 4-32 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

1 at 14 μst = .  

The crack growth and temperature change predictions at different time steps are 

provided from Fig. 4-33 to Fig. 4-35 for case 2. Similar to case 1, the crack propagates 

along the fibre direction, indicating the fibre/matrix debonding. Only the splitting 

failure mode is observed in the PD prediction, which is consistent with the 

experimental observations from [96, 97]. The temperature drops at crack tips are 

observed from Fig. 4-33 to Fig. 4-35.  
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(a) 

 
(b) 

  Fig. 4-33 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

2 at 7.5μst =  

 
(a) 

 
(b) 

Fig. 4-34 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

2 at 8μst = . 

 
(a) 

 
(b) 

Fig. 4-35 (a) Matrix damage plot (b) Temperature change distributions ( )K  for case 

2 at 10.5μst = . 
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4.3.4.2 Multi-layer composite with a central crack 

In this section, the crack propagation in a multi-layer composite is investigated. The 

load that is applied to investigate the damage pattern is given as; 

 
( ) ( ) ( )( )14

0 0 03 10 PaP t tH t t t H t t= −  − + −  (4.59) 

with 0 4 μst = . 

 
(a) 

 
(b) 

Fig. 4-36 Matrix damage plot of (a) bottom ply and (b) middle ply at 8μst = .  

 
(a) 

 
(b) 

Fig. 4-37 Temperature change distributions ( )K  for (a) bottom ply and (b) middle 

ply at 8μst = . 
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(a) 

 
(b) 

Fig. 4-38 Matrix damage plot of (a) bottom ply and (b) middle ply at 11μst = . 

 
(a) 

 
(b) 

  Fig. 4-39 Temperature change distributions ( )K  for (a) bottom ply and (b) middle 

ply at 11μst = . 

 
(a) 

 
(b) 

Fig. 4-40 Matrix damage plot of (a) bottom ply and (b) middle ply at 14 μst = .  
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(a) 

 
(b) 

Fig. 4-41 Temperature change distributions ( )K  for (a) bottom ply and (b) middle 

ply at 14 μst = . 

The damage plots for in-plane matrix bonds and their corresponding temperature 

change distributions at different time steps are presented from Fig. 4-36 to Fig. 4-41. 

For the laminate, an “H” type splitting failure mode is observed for all plies, which 

agrees with the findings in [76] and the experimental results in [98]. It is observed that 

the matrix breakage in the top or bottom plies shown in Fig. 4-40 (a) is similar to 

damage pattern obtained for a single layer composite model with 0 =  fibre 

direction as shown in Fig. 4-32 (a). However, as shown in Fig. 4-40 (b)), the middle 

ply apparently has a bigger damage zone than the other two plies, which is consistent 

with the conclusions in [99]. This is due to the alignment of the fibres. Since the fibres 

are not aligned with the loading direction in the middle ply, the extent of damage is 

bigger than the other two layers. This is also indicating the different damage levels in 

multi-layer composites. Furthermore, the crack grows both in the fibre direction and 

in the transverse direction in the middle ply, presenting a different crack growth path 

compared with the predictions from the analysis of the single-layer composite model 

with 90 =  as shown in Fig. 4-35 (a). As a result, a complex damage mode is 

presented in the middle ply [93]. The interaction between the plies is taken into account 

through interlayer bonds. It is also observed that the crack pattern has an influence on 

the induced temperature distribution.  
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4.4. Marine composites under shock loads 

Nowadays, composite materials have been increasingly used in marine structures 

because of their high-performance properties. During their service time, they may be 

exposed to extreme loading conditions such as underwater explosions. Temperature 

changes induced by pure mechanical shock loadings cannot be neglected especially 

when smart composite materials are employed for condition monitoring of critical 

systems in a marine structure. Considering this fact, both the thermal loading effect on 

deformation and the deformation effect on temperature need to be taken into 

consideration. Consequently, an analysis conducted in a fully coupled 

thermomechanical manner is necessary. Peridynamics is a newly proposed non-local 

theory which can predict failures without extra assumptions. Therefore, a fully coupled 

thermomechanical peridynamic model is developed for laminated composites 

materials. In this study, numerical analysis of a 13-ply laminated composite subjected 

to an underwater explosion is conducted by using the developed model. The pressure 

shocks generated by the underwater explosion are applied on the top surface of the 

laminate for uniform and non-uniform load distributions. The damage is predicted and 

compared with existing experimental results. The simulation results obtained from the 

uncoupled case are also provided for comparison. Thus, the coupling term effects on 

crack propagation paths are investigated. Furthermore, the corresponding temperature 

distributions are also investigated. 

4.4.1. Introduction 

Laminated composite materials have many outstanding mechanical, physical, and 

chemical properties. For example, they are an easily fabricated and cost-effective 

alternative to some other monolithic materials [100]. Therefore, in recent years, 

composites have become common materials in marine industries. One application is 

for the construction of military vessels [101]. Composite materials can provide low-

radar signatures for stealth operations. In addition, the low electro-magnetic signature 

these materials provide can reduce the possibility of detonating magnetic sea mines 

[102]. However, due to the special working conditions for military vessels, the 

composite materials may be subjected to some severe environments, such as 
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mechanical shock loads, large temperature variations, and exposures [103]. Hence, the 

damage level of composites induced by such extreme loading conditions becomes a 

critical factor with regards to the safety issue in the designation of the vessels. As a 

result, the failure analyses of composite materials under shock loadings draws a lot of 

interest and has been investigated for years. 

In addition to the complexity of the composite material properties, shock loadings, 

which result in high strain rates, also give rise to additional complexity in the analysis. 

Large safety factors are typically used in composite structure design to make sure no 

damage will occur, resulting in a conservative solution or over-design [104]. Therefore, 

a good understanding of the responses of composite materials under shock loadings 

(i.e., explosions) is necessary for the balance between safety and economy issues. 

There are three major methods to investigate the responses of composite materials 

under explosions: the experimental method, the analytical method, and the numerical 

simulation method. As to the experiment method, there are two kinds of experimental 

tests, according to the scale, i.e., a full-scale test and a laboratory-scale test. The full-

scale explosive tests can provide important information on survivability, damage 

tolerance, and failure modes [105]. They are necessary to validate the results of 

analytical and numerical simulations [106]. In 1989, a 3 m × 3 m composite plate was 

tested under an underwater blast, to be investigated in full scale [107]. However, the 

full-scale tests are performed infrequently, due to high costs. For this reason, the 

explosive test in the laboratory scale is adopted for the research. A divergent shock 

tube was designed to investigate the responses of a clamped test plate under shock 

loadings [108]. Thus, plane wave fronts and wave parameters were easily controlled 

and repeated. LeBlanc and Shukla used a tube filled with water to reproduce the 

underwater explosive loads [109]. Wadley [110] developed another test method to 

investigate the compressive responses of multi-layered lattices during underwater 

shock loadings. Analytical methods are generally adopted in the initial design state of 

composite structures, which give relatively faster solutions compared to the other two 

methods. Rabczuk et al. [111] proposed a simplified method to investigate the effects 

of fluid-structure interaction in composite structures subjected to dynamic underwater 

loads. Hoo Fatt and Palla [112] derived analytical solutions for transient response and 
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damage initiation of a composite panel subjected to blast loading. However, analytical 

solutions are mainly limited to special and simple cases. In contrast, numerical 

simulation methods can be applied to various types of loadings, complicated 

geometries of structures, and complex boundary conditions. Kazancı [113] conducted 

a review of the available numerical achievements regarding the simulation of 

composite plates under a blast load. The finite element method (FEM) [114], smooth 

particle hydrodynamics (SPH) [115], and the finite strip method (FSM) [116] have all 

been applied to model composite materials. 

When explosion loads are applied to the test plate, the plate experiences high strain 

rate stages. Therefore, the coupling effect of deformation on temperature cannot be 

neglected, which may have an effect on the crack propagation path with the induced 

temperature changes. Therefore, a fully coupled thermomechanical composite model 

is necessary for the simulation of thermal and mechanical responses of composites 

under shock loadings. Here, a fully coupled approach means both the temperature 

effects on deformation and the deformation effects on temperature are included in the 

simulation [18]. In this section, the responses of a 13-ply composite plate subjected to 

an underwater explosion load are studied, by considering the fully coupled 

thermomechanical effects. The crack propagation evolutions are predicted and 

compared with uncoupled cases. The predicted temperature distributions are also 

provided. 

4.4.2. Numerical simulation 

4.4.2.1 Problem description 

The bond-based PD laminate model provided in Section 4.2.3 is implemented in 

FORTRAN program to predict the responses of a 13 ply laminate subjected to shock 

loading which was previously considered by Diyaroglu et al. [86]. Note that, in this 

study, the temperature changes due to mechanical deformations and their effects on 

damage evolution are taken into account by solving fully coupled thermomechanical 

equations whereas thermal effects are ignored in [86]. The heat conduction equation 

and the equation of motion are solved simultaneously for each time increment by using 

explicit time integration. The composite material properties are provided in Table 3. 
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Table 3. Material properties of 13 plies composite material [86]. 

Mechanical Properties Thermal Properties 

( )1 GPaE  39.3 ( )1 μm/m/K  8.6 

( )2 GPaE  9.7 ( )2 μm/m/K  22.1 

( )12 GPaG  3.32 ( )1 W/mKk  10.4 

Poisson’s ratio 12  0.33 ( )2 W/mKk  0.89 

( )3kg/m  1850 ( )( )J/ kg Kvc   879 

( )GPamE  3.792 ( )μm/m/Km  63 

( )GPamG  1.422 ( )W/mKmk  0.34 

Poisson’s ratio m  0.33 ( )0 K  285 

Because of the adoption of bond-based PD, the major shear modulus changed to be 

3.32 GPa according to the constraint on material constants. As illustrated in Fig. 4-42, 

the 13 ply test plate is in a circle shape with outer radius, 132.715 mmoutR =  and inner 

radius, 114.3 mminR = . The thickness of each ply in the laminate is the same as 

0.254 mmh = . The region between the inner circle and outer circle is constrained in 

top and bottom plies and is left free for other plies. The constraint is implemented by 

applying six bolts with a radius of 4mmr = . Thus the fixed end allows the specimen 

to absorb the full energy of the applied load. The stacking sequence is 

0 / 90 / 0 / 90 / 0 / 90 / 0    (shown in Fig. 4-42). 
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Fig. 4-42 Geometry dimension illustration of the test laminate. (Blue colour 

represents o0  and yellow colour represents o90  plies). 

The PD discretization of one-ply is presented in Fig. 4-43. The grid size is 

32.6543 10 mx − =  . The horizon size is chosen as 3.015 x =  . The material points 

located within the bolt regions are deleted in order to represent the actual shape of the 

test plate. Based on such discretization, the critical stretch value related to bonds 

failures can be calculated [75]. The critical energy release rate for matrix failure is 

311.85 10 MPaICG −=  , thus ms  is calculated as 21.47 10ms −=  . The tension and 

compression strength properties are 1 965 MPat =  and 1 883 MPac = − . Therefore, 

the critical stretch value for fibre failure in tension is 22.46 10fts −=   and in 

compression is 
22.25 10fcs −= −  . As to the interlayer bonds, the critical stretch values 

are calculated as 27.015 10ins −=   with 32.73 10 MPaICG −=  and 0.14is =  with 

37.11 10 MPaIICG −=  . The time step size for explicit time integration is 

87.69 10 st − =  . The total simulation time is set 
30.3641 10 s− . 

 

Fig. 4-43 Illustration of PD discretization for one ply (blue colour represents the 

fixed boundary region and orange colour represents the inner part). 

Several dynamic loadings generated by explosions are modelled by using different 

time-dependent pressure functions. The pressure shock applied in the experiment 

conducted by LeBlanc and Shukla [104] is utilized here. The charge which is 

equivalent to 1.32 g TNT is located at 5.25 m away from the test plate. The pressure 
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wave is caused by the rapid expansion of explosive gases. The speed of these gases 

can be approximated as the speed of sound in water [117]. The pressure linearly 

increases until it reached its peak value, maxP , followed by the exponential decay, 

expressed in Eq.(4.60) and shown in Fig. 4-44. Here maxP  is set to be 9.65 MPa. 

 ( )

( )5 3

max

3 3

max

1000( 0.08)/0.2 3 3

max

/ 4 10 , 0.04 10 s

, 0.04 10 s 0.08 10 s

, 0.04 10 s 1 10 st

P t t

P t P t

P e t

− −

− −

− − − −

    


=    


   

 (4.60) 

 

Fig. 4-44 Pressure load distribution for the test plate. 

Generally, there are two approaches for modelling the shock load depending on the 

distance (stand-off distance) between the charge source and the object of interest [113]. 

The explosion load is assumed to be uniform if the stand-off distance is long enough, 

which is termed as a far-field explosion. On the contrary, the near-field explosion 

adopts non-uniform load distribution. There are also two approaches to simulate the 

non-uniform pressure shock loads, i.e., decoupling the load and the structural response 

and coupling the load and response. In this subsection, a non-uniform pressure load 

simulated and decoupled approach is utilized, i.e., the pressure shock load is in a form 

of ( ) ( ) ( )1 2,P r t P r P t= . A non-uniform distribution of shock loading over the plate is 

simulated by adopting the pressure distribution derived by Turkmen and Mecitoglu 

[118] as  
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 ( ) 4 3 20.0005 0.01 0.0586 0.001 1P r r r r r= − + − − +  (4.61) 

where r  represents the distance from the collective node to the centre of the test plate. 

The test plate adopted here is slightly larger than the one in [118]. Consequently, the 

distribution profile is extended by 0.83 cm correspondingly, as illustrated in Fig. 4-45. 

Finally, the explosion load is defined as 

( )
( )

( ) ( )

( ) ( )

( )

4 3

2

0.0005 0.83 0.01 0.83
, 0.83 cm

, 0.0586 0.83 0.001 0.83 1

, 0.83 cm

r r
P t r

P r t r r

P t r

  − − + −
   

 =  − − − − + 




(4.62) 

  

(a) (b) 

Fig. 4-45 (a) Illustration of non-uniform pressure distribution over the top ply and (b) 

pressure profile. 

4.4.2.2 Subjected to uniform pressure loading 

First, the test laminate is subjected to uniform pressure load, ( )P t  without allowing 

failure. The regions between the inner circle and outer circle are fixed in three 

dimensions for all plies. During the simulation, the central points in each ply 

experience the same vertical (z) displacement evolutions. Therefore, the vertical 

displacement evolution of the central point on the top ply is plotted in Fig. 4-46(a). It 

can be observed that the test plate firstly deforms in the negative z-direction, then it 

will recover to some extent with a velocity in the positive z-direction. The largest 

deformation occurs at approximately 3700 time steps, corresponding to 
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30.28453 10 s− . The vertical displacement distribution over the top ply at 

30.28453 10 s−  is shown in Fig. 4-46(b). 

 
 

(a) (b) 

Fig. 4-46 (a) Variation of the displacement in z direction of the central point as a 

function of time; (b) Vertical displacement distribution for the top ply at 
30.28453 10 s− . 

Fully coupled thermomechanical simulation under the uniform pressure load ( )P t , 

i.e., far-field explosion, is also investigated for further comparison. The crack 

propagations and temperature change distributions at 
30.1538 10 s−  are provided in 

Fig. 4-47 for top ply, Fig. 4-48 for middle ply, and Fig. 4-49 for bottom ply. It can be 

inferred from the matrix damage plots that all the plies in the laminate experience the 

tear failure near the constraint boundary condition. Furthermore, the damage region in 

the bottom ply is larger than the top ply, indicting a combination of tension failure 

mode and tear failure mode. As to the temperature distribution, the temperature 

increases near cracks are observed for all plies, which are more obvious in the top ply 

provided in Fig. 4-47(b). The temperature drop is also observed in a tension state, 

which is obvious in the bottom ply provided in Fig. 4-49(b). 
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(a) (b) 

Fig. 4-47 (a) Matrix damage and (b) temperature change distribution (K) of top ply at 
30.1538 10 s− . 

  

(a) (b) 

Fig. 4-48 (a) Matrix damage and (b) temperature change distribution (K) of middle 

(7th) ply at 
30.1538 10 s− . 

  

(a) (b) 

Fig. 4-49 (a) Matrix damage and (b) temperature change distribution (K) of bottom 

ply at 
30.1538 10 s− . 
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4.4.2.3 Subjected to uniform non-uniform pressure load 

In this section, the test laminate is subjected to non-uniform pressure load ( ),P r t , 

i.e., near field explosion. The matrix damage and temperature distribution in deformed 

shape are provided in Fig. 4-50. Matrix damage predictions at 
30.28453 10 s−  and 

30.3461 10 s−  obtained from coupled and uncoupled cases are shown from Fig. 4-51 

to Fig. 4-56. 

  

(a) (b) 

Fig. 4-50 (a) Matrix damage and (b) temperature change distribution (K) of the 

laminate at 30.3461 10  s− . 

  

(a) (b) 

Fig. 4-51 Matrix damage comparison of top ply for (a) coupled case and (b) 

uncoupled case at 
30.28453 10 s− . 

For the fully coupled simulation case, by comparing the damage of the plies at 

different times, it is obvious that the damaged zone gets larger as time progresses. The 

damage patterns are different for each ply when compared at the same time. The cracks 

mainly occur near the clamped boundary region for the top ply, indicating a tear failure 

mode. On the other hand, the central part experiences the largest level of damage for 
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the bottom ply, indicating a tension failure mode. Consequently, the different force 

states give rise to a different level of damages. However, for all plies, the crack 

propagations present a cross-shaped pattern. It can be explained that the fibre direction 

of each ply is either zero or 90 degrees. The matrix damage occurs parallel to the fibre 

direction. For a ply with fibre direction being zero, the matrix crack will occur along 

the horizontal direction. However, the fibre directions for its adjacent plies are 90 

degrees. Hence, the matrix crack will also occur in the vertical direction due to the 

contribution of the interlayer bonds. Consequently, the final cracks are in cross shapes. 

The damages present highest levels near the central vertical lines for all plies. This 

phenomenon is also observed in the experiment [109], as shown in Fig. 4-57. As it can 

be seen from Fig. 4-47 to Fig. 4-49, there are damages around the bolt holes and these 

damages were also observed in experiments [109] as it can be seen in Fig. 4-57. 

As shown in Fig. 4-51 to Fig. 4-56, different damage patterns are observed for 

coupled and uncoupled cases. As time progresses, temperature change increases and 

the differences in damage plots become more obvious. Considering the small 

temperature changes induced by the applied pressure shock, the coupling term effect 

on damage is significant. It can be inferred that the difference in damage due to 

coupling effect will become more significant with larger strain rates. Temperature 

decreases where there is local tension and as a result, local compression is created due 

to temperature drop which reduces the extent of damage observed by the uncoupled 

cases (Fig. 4-51 to Fig. 4-56).  

 
 

(a) (b) 

Fig. 4-52 Matrix damage comparison of middle (7th) ply for (a) coupled case and (b) 

uncoupled case at 
30.28453 10 s− . 
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(a) (b) 

Fig. 4-53 Matrix damage comparison of bottom ply for (a) coupled case and (b) 

uncoupled case at 
30.28453 10 s− . 

  

(a) (b) 

Fig. 4-54 Matrix damage comparison of top ply for (a) coupled case and (b) 

uncoupled case at 30.3461 10  s− . 

 

 

(a) (b) 

Fig. 4-55 Matrix damage comparison of middle (7th) ply for (a) coupled case and 

(b) uncoupled case at 30.3461 10  s− . 
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(a) (b) 

Fig. 4-56 Matrix damage comparison of bottom ply for (a) coupled case and (b) 

uncoupled case at 30.3461 10  s− . 

 

Fig. 4-57 Material damage during test [109]. 

The extent of damage in interlayer shear bonds was also investigated, and only slight 

differences were observed in the top few plies between the coupled and uncoupled 

cases (Fig. 4-58). The middle ply experienced the most severe damage, as shown in 

Fig. 4-59. Thus, it can be inferred that the interlayer shear bond damages occur mainly 

in the middle plies of the test laminate. Hence, it can be concluded that there is 

delamination failure in the middle plies. 

Temperature changes induced by the applied pressure shock loading are presented 

for different plies in Fig. 4-60 to Fig. 4-62. It is observed that as the loading increased, 

the temperature changes of PD nodes increased. For all plies, the temperature change 

profiles all have similar patterns as the corresponding crack damage patterns. As 

shown in Fig. 4-60 to Fig. 4-62, there is a temperature rise where there is local 

compression, and there is a temperature drop where there is local tension, as explained 
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in [10]. In the top ply, most of the region was under compression and temperature rise 

was observed; on the other hand, the bottom ply was mostly under tension, and a 

consequent temperature drop was observed, as shown in Fig. 4-62. In the cracked 

surfaces, temperature drops were observed because of the local tension; however, the 

temperature rise was observed near the crack tips. Thus, the crack propagation paths 

do have effects on the temperature distributions. 

  

(a) (b) 

Fig. 4-58 Interlayer shear damage comparison for (a) coupled case and (b) uncoupled 

case at 30.3461 10  s− . 

 

Fig. 4-59 Interlayer shear damage of middle ply in coupled case at 
30.3461 10  s− . 
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(a) (b) 

 

(c) 

Fig. 4-60 (a) Distribution of temperature change (K) of top ply at 
30.28453 10 s− ; 

(b) Distribution of temperature change (K) of top ply at 
30.3461 10  s− ; (c) 

Maximum stretch distribution of top ply at 
30.3461 10  s− . 

 

 

(a) (b) 

 

(c) 
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Fig. 4-61 (a) Distribution of temperature change (K) of middle ply at 
30.28453 10 s− ; (b) Distribution of temperature change (K) of middle ply at 

30.3461 10  s− ; (c) Maximum stretch distribution of middle ply at 30.3461 10  s− . 

 
 

(a) (b) 

 

(c) 

Fig. 4-62 (a) Distribution of temperature change (K) of bottom ply at 
30.28453 10 s− ; (b) Distribution of temperature change (K) of bottom ply at 

30.3461 10  s− ; (c) Maximum stretch distribution of bottom ply at 30.3461 10  s− . 

4.5. Summary 

In this chapter, a fully coupled thermomechanical model formulated by ordinary 

state-based peridynamic theory is proposed both for single layer and multi-layer 

composites. Subsequently, numerical simulations of some benchmark problems are 

conducted for the validation of the developed model. The temperature and deformation 

fields are investigated by considering the coupling effects in both fields. Consequently, 

the present model is validated by comparing peridynamic simulations with ANSYS 

results. Finally, failure analyses are conducted with pre-existing cracks on single layer 

and multi-layer models. The progressive crack propagations and temperature 

distribution evolutions are discussed. As an application case, a bond-based PD 
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laminate model was applied to predict the responses of a 13-ply composite under a 

pressure shock loading.   

The following conclusions can be drawn:  

1. The present model in the framework of ordinary state-based peridynamic theory 

is capable of predicting the deformation of multi-layer composites under thermal loads. 

2. The developed PD thermal model can be applied in heat conduction simulations 

for multi-layer composites.  

3. The proposed fully coupled ordinary state-based thermomechanical model can be 

applied to predict the crack propagation for composites. The induced temperature 

distribution evolution can also be predicted. 
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5.  Isothermal and Non-isothermal Fluid Laminar Flow 

Simulation 

5.1. Introduction 

The fluid and structure interaction is often encountered in ocean engineering, e.g. 

floating structures and water waves interactions [119], sloshing in a water tank [120], 

green water impact [121] etc. The fluid motion is a crucial issue because of the fluid-

induced movements such as heaving and rolling of the offshore structures. Sometimes 

the fluid may even also cause considerable pressure loadings on the offshore structure 

and make local damages of these structures [119]. Therefore, an accurate fluid motion 

prediction is necessary for a fluid-structure interaction simulation in the field of ocean 

engineering. Peridynamics [4] has been applied on the numerical simulations of 

offshore structure damage in the ocean engineering field, e.g. the ship-ice interaction 

[122-124]. It will be beneficial to simulate both the structure and fluid with the same 

methodology, e.g. peridynamics. Therefore, a peridynamic fluid model is provided in 

this section which can be further incorporated into the peridynamic solid model to 

simulate the fluid and structure interactions.  

The Eulerian approach is adopted in most computational fluid dynamics (CFD) 

methodologies. Since CFD can solve fluid flow problems with any boundary and 

initial conditions, it has been widely used in academic research [125]. There are two 

types of computational Lagrangian approaches: total Lagrangian approach and 

updated Lagrangian approach. The total Lagrangian approach uses the initial 

configuration as the reference configuration, while the updated Lagrangian approach 

adopts the current configuration as the reference configuration. Smoothed Particle 

Hydrodynamics (SPH), which is an updated Lagrangian approach, is another widely 

used method for fluid flow simulations [126, 127]. SPH is a mesh-free particle method, 

and it does not need a grid to calculate spatial derivatives [128]. In addition, it is easy 

to work with and can give reasonable accuracy. Therefore, it draws a lot of attention 

in recent years. 
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Since the PD is originally proposed for structural mechanical problems, it is 

generally applied to predict fracture in solids [4, 10, 76, 78, 129]. Later on, the 

peridynamic theory has been applied in other fields [130].  However, the application 

of PD on fluid mechanics has not been extensively studied, only a few PD fluid models 

are available in the published literature [55, 131-134]. A state-based peridynamic 

formulation is presented by Katiyar et al.  [135] to simulate the fluid flow in porous 

media. Later on, the model is applied to simulate the growth of fluid-driven cracks in 

porous and fractured media [134]. A fully coupled poroelastic peridynamic 

formulation is introduced by Oterkus et al. [55] to simulate fluid-filled fractures. In 

their model, the coupling effect of porous fluid flow and deformation of porous media 

is considered to predict the behaviour of fluid-filled fractures. However, in these PD 

models, the fluid flow was limited to porous flow. Therefore, the developed PD fluid 

models cannot be utilized for general fluid flow simulations. An Eulerian form of 

peridynamic model is presented to by Silling et al. [133] to simulate the shockwaves. 

In their model, the peridynamic forces are defined in the deformed configuration to 

simulate strong shock waves and fluid response for very large deformations. An 

updated Lagrangian PD model based on the state-based peridynamics concept is 

applied as Updated Lagrangian Particle Hydrodynamics (ULPH) to simulate 

Newtonian fluid flow [132]. In this chapter, the peridynamic differential operator is 

used to simulate low Reynolds number flow problems. Besides, a PPDO model is also 

developed to solve the problems of fluid flow coupled with heat transfer. 

This chapter is organized as follows. Section 5.2 describes the developed non-local 

operator by using the peridynamic differential operator. Section 5.3 describes the non-

local form of Navier-Stokes equations that are derived based on their local forms by 

using non-local velocity operator. Section 5.4 presents the numerical algorithms in the 

total Lagrangian description, updated Lagrangian description, and Euler description. 

In addition, the treatments regarding numerical simulation are explained. Section 5.5 

presents a set of classical isothermal fluid flow problems, i.e. Couette flow, Poiseuille 

flow, Taylor Green vortex, shear driven cavity, and dam collapse problems, which are 

numerically simulated with the developed model. Subsequently, non-isothermal fluid 

flow simulation, i.e. a natural convection problem, a mixed convection problem, and 
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a pure heat conduction problem, are numerically conducted in Section 5.6. Finally, the 

conclusions are drawn in Section 5.7.     

5.2. Non-local operator by using PD differential operator 

In this section, the non-local form of velocity divergence, gradient, and second 

derivatives are developed to approximate their corresponding local operators. The non-

local derivatives will be utilized in the derivation of the non-local form of Navier-

Stokes equations in Section 5.3. PD differential operator tensors which are expressed 

in the matrix form are introduced as 

For 3D   

 ( ) ( ) ( ) ( )100 010 001

1 g g g =  g ξ ξ ξ ξ   (5.1a) 

and 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

200 110 101
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2

101 011 002
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g g g

 
 
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 
 

ξ ξ ξ

g ξ ξ ξ ξ

ξ ξ ξ

  (5.1b) 

For 2D 

 ( ) ( ) ( )10 01

1 g g =  g ξ ξ ξ   (5.1c) 

and 

 ( )
( ) ( )

( ) ( )

20 11

2 11 02

g g

g g

 
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 

ξ ξ
g ξ

ξ ξ
  (5.1d) 

where ( )1g ξ  and ( )2g ξ  represent the first-order and second-order PD differential 

operators up to second-order derivatives, respectively. The components in ( )1g ξ  and 

( )2g ξ  matrices are provided in Eq.(2.24) and Eq.(2.30), respectively. The analytical 
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expression of the 2D PDDO is provided in Appendix D. These matrices can also be 

expressed as  

For 3D 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3

1 1 1 1g g g =
 

g ξ ξ ξ ξ   (5.2a) 

and 
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  (5.2b) 

For 2D 

 ( ) ( ) ( ) ( ) ( )1 2

1 1 1g g =  g ξ ξ ξ   (5.2b) 

and 

 ( )
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2 2
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  (5.2b) 

where the term ( ) ( )1

i
g ξ  represents the elements in ( )1g ξ  vector,  represents 

the elements in ( ) ( ),

2

i j
g ξ  matrix with , 1,2,3i j = . 

Three-dimensional vectoral function for point x  can be denoted as 

 ( ) ( ) ( ) ( )1 1 2 2 3 3f f f= + +f x x e x e x e   (5.3) 

where the scalar values ( )1f x , ( )2f x  and ( )3f x  represent the projections of the 

function vector on the corresponding unit vectors.   

( ) ( ),

2

i j
g ξ
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5.2.1. Non-local form of divergence 

The local form of divergence is defined as  

 ( )
( ) ( ) ( )1 2 3

1 2 3

f f f

x x x

  
 = + +

  

x x x
f x   (5.4) 

As described by Eq.(2.29), by applying the first-order PD differential operator, 

( )1g ξ , the non-local form of the first-order derivatives can be evaluated as  
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f f g V

x


 = −

 
x

x
x x ξ   (5.5c)  

Therefore, the non-local form of divergence can be expressed by using PD 

differential operator as  

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 2

1 1 1 2 2 1

3

3 3 1

d d

d

H H

H

f f g V f f g V

f f g V

     = − + −

 + −

 



x x

x

f x x x ξ x x ξ

x x ξ
 (5.6) 

Eq. (5.6) can also be written as  

 ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

1 1 1

2

2 2 1

3

3 3 1

d
H

f f g

f f g V

f f g

  −
 
    = + −
 
 + −
 


x

x x ξ

f x x x ξ

x x ξ

  (5.7) 

Subsequently, by considering the vector form of PD differential operator in 

Eq.(5.2a), the non-local form of divergence can be expressed in compact form as   
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( ) ( ) ( ) ( ) ( )( )1 d

ii

i i
H

i

f
g f f V

x


 = −

 
x

x
ξ x x   (5.8a) 

or 

 ( ) ( ) ( ) ( )( )1 d
H

V  =  −
x

f x g ξ f x f x   (5.8b) 

Fig. 5-1 presents the relative velocity vector, ( ) ( )( ) −v x v x , first-order PD 

differential operator vector, 1g , and their dot products as a function example.   

 

Fig. 5-1 Illustration of relative velocity vector ( ) ( )( )v −v x x  , first-order PD 

differential operator vector, 1g  and their dot products 

5.2.2. Non-local form of gradient 

The local form of the gradient is defined as 

( ) ( )( )1 1v v −x x

( ) ( )( )2 2v v −x x

( ) ( )( )3 3v v −x x
1g

( )1

1g

( )2

1g

( )3

1g

( ) ( )( ) −v x v x

( ) ( )( ) −v x v x
( )v x

( )−v x

( )v x

( )v x ξ

1x

2x

3x

Hx

1x

2x

3x

( ) ( )( ) ( )1

1 1 1v v g − x x ( ) ( )( ) ( )2

2 2 1v v g − x x ( ) ( )( ) ( )3

3 3 1v v g − x x

+ + =
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

1 1 1

2

2 2 1

3

3 3 1

v v g

v v g

v v g

  − +
 
  − +
 
  −
 

x x ξ

x x ξ

x x ξ

Dot product of

( ) ( )( ) 1
 − v x v x g
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 ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

i

i j

j

f f f

x x x

f f f f

x x x x

f f f

x x x

   
 

   
    

 =  =  
    

 
  
 
    

x x x

x x x x
f x e e

x x x

  (5.9) 

where , 1,2,3i j = . The non-local expressions of the diagonal elements in the gradient 

matrix are already provided in Eq.(5.8a). Similarly, the non-local form derivatives in 

Eq. (5.9) can be expressed as  

 
( )

( ) ( )( ) ( ) ( )1 d
ji

i i
H

j

f
f f g V

x


 = −

 
x

x
x x ξ   (5.10) 

As a result, the non-local form for the gradient can be expressed by using PD 

differential operator as   

 

( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 2 3

1 1 1 1 1 1 1 1 1

1 2 3

2 2 1 2 2 1 2 2 1

1 2 3

3 3 1 3 3 1 3 3 1

d
H

f f g f f g f f g

f f g f f g f f g V

f f g f f g f f g



   − − −
 
    = − − −
 
   − − −
 


x

f x

x x ξ x x ξ x x ξ

x x ξ x x ξ x x ξ

x x ξ x x ξ x x ξ

  

(5.11) 

Subsequently, the matrix form in Eq. (5.11) can be converted to a compact form as  

 ( ) ( ) ( )( ) ( )1 d
H

V  = − 
x

f x f x f x g ξ   (5.12) 

5.2.3. Non-local form for second derivatives  

Based on the non-local form of the first-order derivative provided in Section 5.2.1 

and Section 5.2.2, the non-local form of the second derivatives is provided in this 

section.  

The local form of Laplacian operator is defined as  
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 ( )

2 2 2

1 1 1

2 2 2

1 2 3

2 2 2

2 2 2

2 2 2

1 2 3

2 2 2

3 3 3

2 2 2

1 2 3

f f f

x x x

f f f

x x x

f f f

x x x

   
+ + 

   
   

 =   = + + 
   

 
  
 + +
    

f f   (5.13) 

As described Eq.(2.29), by applying the second-order PD differential operator, 

( )2g ξ , the non-local form of the second-order derivatives can be evaluated as  

 ( ) ( )( ) ( ) ( )
2

,

22
d

j ji
i i

H
j

f
f f g V

x


 = −

 
x

x x ξ   (5.14) 

where , 1,2,3i j = . After substituting Eq.(5.14) into Eq.(5.13), the non-local form of 

Laplacian becomes  

 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

3
,

1 1 2

1

3
,

2 2 2

1

3
,

3 3 2

1

d

j j

j

j j

H
j

j j

j

f f g

f f g V

f f g

=

=

=

  
 −  

  
 

    = −  
  
 

  
 −   

  







x

x x ξ

f x x ξ

x x ξ

  (5.15) 

By considering the operator matrix provided in Eq. (5.2b), the non-local form of 

Laplacian operator in Eq. (5.15) can be expressed in compact form as   

 ( ) ( )( ) ( ) ( )( )2Tr d
H

V  = −
x

f x g ξ f x f x   (5.16) 

By using Eq. (5.9), the transpose of the gradient is defined as 



135 

 

 ( )

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

T

ff f

x x x

ff f

x x x

ff f

x x x

  
 
   
  

 =  
   
  
 
   

f   (5.17) 

Therefore, the divergence of the transpose of the gradient is  

 ( )

22 2

31 2

2

1 1 2 1 3

22 2

31 2

2

1 2 2 2 3

22 2

31 2

2

1 3 2 3 3

T

ff f

x x x x x

ff f

x x x x x

ff f

x x x x x

  
+ + 

     
  

  = + + 
     
 

 
 + +
      

f   (5.18) 

Subsequently, the non-local form derivatives in Eq. (5.18) can be expressed as  

 ( ) ( )( ) ( ) ( )
2

,

2 d
j ki

i i
H

j k

f
f f g V

x x


 = −

  
x

x x ξ   (5.19) 

where , , 1,2,3i j k = . Eq.(5.18) can be converted into its non-local form as  

( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1,1 1,2 1,3

1 1 2 2 2 2 3 3 2

2,1 2,2 2,3

1 1 2 2 2 2 3 3 2

3,1 3,2 3,3

1 1 2 2 2 2 3 3 2

d

T

H

f f g f f g f f g

f f g f f g f f g V

f f g f f g f f g

  =

   − + − + −
 
    − + − + −
 
   − + − + −
 


x

f

x x ξ x x ξ x x ξ

x x ξ x x ξ x x ξ

x x ξ x x ξ x x ξ

  (5.20) 

Eq.(5.20) can be expressed in a compact form as  

 ( )( ) ( ) ( ) ( )( )2 d
T

H
V   =  −

x

f x g ξ f x f x   (5.21) 
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In conclusion, the comparison of the local form and the non-local form of the 

vectoral function derivatives are summarized as  

Table 4 Comparison of local and non-local derivatives 

Velocity 

derivatives 
Local Form Non-local form 

( )f x  
( )3

1

i

i i

f

x=






x
 ( ) ( ) ( )( )1 d

H
V  −

x

g ξ f x f x  

( )f x  
( )

, , 1,2,3
i

i j

j

f
i j

x


 =



x
e e  ( ) ( )( ) ( )1 d

H
V − 

x

f x f x g ξ  

( )f x  
( )23

2
1

, 1,2,3
i

i

j j

f
i

x=


=




x
e  ( )( ) ( ) ( )( )2Tr d

H
V −

x

g ξ f x f x  

( )( )
T

 f x  
( )23

1

, 1,2,3
j

i

j i j

f
i

x x=


=

 


x
e  ( ) ( ) ( )( )2 d

H
V  −

x

g ξ f x f x  

 

In this study, non-local operators both for the first and the second-order derivatives 

are provided. The non-local operators are derived by using second-order Taylor series 

expansion. If only the first-order derivative is considered and first-order Taylor series 

expansion is used, the non-local operators for the first-order derivatives, i.e. non-local 

gradient operator and non-local divergence operator, have the similar form as the ones 

from [132]. However, in the present study, the second-order Taylor series expansion 

is adopted and PD differential operator functions are directly determined by making 

them orthogonal to each term in the Taylor series expansion [14]. Therefore, the 

second-order terms have effects on the first-order operator due to the adoption of the 

orthogonal function properties. As a result, the formulations of the first-order operators, 

i.e. non-local gradient operator and divergence operator, becomes different from the 

ones in [132].            
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5.3. A non-local form of Navier-Stokes equations  

In this section, the non-local form of Navier-Stokes equations which describe the 

Newtonian fluid laminar flow is derived by using the non-local operator developed in 

Section 5.2. The fluid flow is assumed as Newtonian fluid incompressible, viscous, 

laminar, two-dimensional, heat-conducting flow.    

5.3.1. Conservation of mass 

In classical fluid mechanics, the equation that describes the conservation of mass in 

local form is [136]  

 
D

Dt


= −  v  (5.22) 

where   is the fluid density. The non-local form of divergence operator in Table 4 is 

adopted to convert Eq. (5.22) into its non-local form as 

 ( ) ( ) ( )( )1

D
d

D H
V

t


  = −  −

x

g ξ v x v x   (5.23) 

where the left-hand side represents the material derivative of density. In the 

Lagrangian description, the material derivative becomes 

 
D

Dt t

 
=


 (5.24) 

Therefore, the non-local form of the conservation of mass in the Lagrangian 

description is  

 ( ) ( ) ( )( )1 d
H

V
t





 = −  −

 
x

g ξ v x v x  (5.25) 

In Euler description, the material derivative becomes  

 
D

Dt t

 



= + 


v  (5.26) 
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Therefore, the non-local form of the conservation of mass in Euler description is 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1d d
H H

V V
t


  


   = −  − − − 

  
x x

g ξ v x v x x x v x g ξ   (5.27) 

For incompressible flow, the conservation of mass becomes  

 31 2

1 2 3

0
vv v

x x x

 
 = + + =

  
v   (5.28) 

However, the time step size needs to be extremely small in numerical simulations 

[137-139]. As a result, the incompressible fluid flow is simulated as a weakly 

compressible fluid flow [138, 139]. The density is still updated according to Eq.(5.25) 

or Eq.(5.27). 

5.3.2. Constitutive equations 

The stress is defined as 

 2p = − +σ I ε   (5.29) 

where p  is the hydrostatic pressure, I  is the second-order unit tensor,   is the 

dynamic viscosity, and ε  is the shear strain rate. For incompressible fluid and 

compressible fluid flow, the expressions for stress are different. Therefore, the 

constitutive equations are discussed separately.    

5.3.2.1 Incompressible fluid 

The shear strain rate of the incompressible fluid is defined as  

 ( )
1

2

T =  + 
 

ε v v   (5.30) 

Therefore, the stress σ  is defined as [136] 

 ( )( )T
p = − +  + σ I v v   (5.31) 
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By using the non-local operator in Table 4, the non-local form of the shear strain 

rate is  

               ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1

1
+ d

2

TT

H
V   = −   −

 
x

ε v x v x g ξ g ξ v x v x   (5.32) 

As a result, the stress definition in Eq. (5.29) can be expressed as 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1+ d
TT

H
p V    = − + −   −

 
x

σ I v x v x g ξ g ξ v x v x   (5.33) 

Regarding the incompressible fluid flow, a prohibitively small time step size is 

required for stability in the pressure simulation [137]. Therefore, artificial 

compressibility methods [140] are introduced which makes the incompressible fluid 

weakly compressible. The Tait equation of state is adopted to model such flows, in 

which the pressure is an explicit function of local fluid density as [141]   

 
0

1tp B







  
 = − 
   

  (5.34) 

where t  represents the current local density, 0  represents the initial density and 

represents the ratio of specific heat capacity which is 7 =  for water and 1 =  for gas. 

In Eq. (5.34) B  is a parameter which can be defined as [142]  

 
2

0 sc
B




=   (5.35) 

where sc  represents the speed of sound. The speed of sound can be approximated as 

[143] 

 /s fc = v   (5.36) 



140 

 

with 
fv  representing the maximum magnitude of fluid flow velocity. The term   

represents the density variation with a typical value being 0.01, indicating that density 

varies at most 1%. As a result, the speed of sound is assumed as 10 times of the 

maximum fluid velocity. 

5.3.2.2 Compressible fluid 

The shear strain rate for compressible fluid is defined as  

 ( ) ( )
1 1

2 3

T =  +  − 
 

ε v v v I   (5.37) 

By considering the non-local velocity operator in Table 4 and Eq.(5.32), the non-

local form of the shear strain rate can be expressed as  

      

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )

1 1

1

1
+ d

2

1
d

3

TT

H

H

V

V

   = −   −
 

  −  −
 





x

x

ε v x v x g ξ g ξ v x v x

g ξ v x v x I

    (5.38) 

As a result, the stress defined in Eq. (5.29) can be expressed as 

 

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )

1 1

1

+ d

2
d

3

TT

H

H

p V

V





   = − + −   −
 

  −  −
 





x

x

σ I v x v x g ξ g ξ v x v x

g ξ v x v x I

(5.39) 

Regarding compressible fluid flow, the material derivative of pressure is [132]  

 
D

D
f

p
K

t
= −  v  (5.40) 

where fK  is the elastic bulk modulus of fluid.  

The non-local velocity divergence operator in Table 4 is adopted to convert Eq.(5.40) 

into its non-local form as  
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 ( ) ( ) ( )( )( )1

D
d

D
f

H

p
K V

t
 = −  −

x

g ξ v x v x   (5.41) 

5.3.3. Conservation of momentum 

The local form of the equation of motion is  

 
D

Dt
 = +

v
σ b   (5.42) 

where b  represents the body force.  

By using the definitions in Eq. (5.29) into Eq. (5.42), the equation of motion can be 

expressed in terms of pressure and shear strain rate as  

 ( )2
D

p
Dt

  = − + +
v

I ε b   (5.43) 

By applying the Leibniz rule Eq. (5.43) can be written as 

 ( ) ( ) ( )2 2
D

p
Dt

   = − +  +  +
v

I ε ε b   (5.44) 

The viscosity   , in general, is a function of the thermodynamic state of fluid [136]. 

In this chapter, the dynamic viscosity   is assumed to be constant, therefore Eq. (5.44) 

takes the form as  

 ( ) ( )2
D

p
Dt

  = − +  +
v

I ε b   (5.45) 

Similar to the non-local operators in Table 4, the non-local form of the first term on 

the right-hand side of Eq. (5.45) can be expressed as  

 ( ) ( ) ( )( ) ( )1 d
H

p p p V   = − 
x

I x x g ξ   (5.46) 
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5.3.3.1 Incompressible fluid 

By considering the shear strain rate expression provided in Eq.(5.30) for an 

incompressible fluid, the divergence of the shear strain rate can be expressed as  

 ( )
1

2

T  =   + 
 

ε v v   (5.47) 

Eq. (5.47) can also be presented as  

 ( )( )1

2

T
 =  + ε v v   (5.48) 

By applying the non-local second-order operators provided in Table 4, the non-local 

form of divergence of the shear strain rate can be obtained as 

 ( )( ) ( ) ( )( ) ( ) ( ) ( )( )2 2

1
Tr d

2 H
V    = − +  − 

x

ε g ξ v x v x g ξ v x v x        (5.49) 

By substituting Eq.(5.46) and Eq.(5.49) into Eq.(5.45), the non-local form of the 

equation of motion for an incompressible fluid can be obtained as  

 
( )( ) ( ) ( )( ) ( ) ( ) ( )( ) 

( ) ( )( ) ( ) 

2 2

1

Tr d

d

H

H

D
V

Dt

p p V

 



   = − +  − 

 − − +





x

x

v
g ξ v x v x g ξ v x v x

x x g ξ b

 (5.50) 

By using the incompressible flow constraint in Eq.(5.28), it can be proved that 

 ( ) ( ) ( )( ) 2 d 0
H

V  − =
x

g ξ v x v x  (5.51) 

 Then conservation of momentum for incompressible fluid is 

 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 2 1Tr d
H

D
p p V

Dt
    = − − − +

x

v
g ξ v x v x x x g ξ b (5.52) 
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5.3.3.2 Compressible fluid 

By considering the shear strain rate expression provided in Eq.(5.37) for 

compressible fluid, the divergence of the shear strain rate can be expressed as 

 ( )( ) ( )( )
1 1

2 3

T
 =  +  −  ε v v v I   (5.53) 

It can be proved that ( )( ) ( )
T

  = v I v . By considering Eq. (5.49) and 

Table 4, the non-local form of the divergence of shear strain rate for compressible 

fluids can be obtained as 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

2 2

2

2 2

1
Tr d

2

1
d

3

1 1
Tr d

2 6

H

H

H
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V

V

 
     = − +  −  

 

 
 −  − 

 

 
  = − +  − 

 







x

x

x

ε g ξ v x v x g ξ v x v x

g ξ v x v x

g ξ v x v x g ξ v x v x

  (5.54) 

By substituting Eq.(5.46) and Eq. (5.54) into Eq. (5.45), the non-local form of the 

equation of motion for a compressible fluid can be obtained as  

 
( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

2 2

1

1
Tr

3 d
H

D
V

Dt
p p


 

  
 − +  −    = + 

 − − 


x

g ξ v x v x g ξ v x v xv
b

x x g ξ

 (5.55) 

As provided in Eq.(5.50) and (5.55), the conservation equation of momentum is 

directly expressed in terms of velocity and pressure, leading to the existence of the 

second-order derivatives. Due to the adoption of the corresponding PD differential 

operator for the second-order derivatives provided in Table 4, the acceleration can be 

directly calculated with one integration with second-order accuracy. The error 

introduced by the integration can be reduced compared to first-order approximations 

where the integration needs to be performed twice to calculate the acceleration. In 

addition, the computational time can also be reduced by using integration only once.   
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In the Lagrangian description, the material derivatives of velocity in Eq.(5.52) and 

Eq.(5.55) both for incompressible and compressible fluids can be simply replaced with 

the partial derivatives with respect to time, D /D /t t=  v v . On the contrary, in Euler 

description, the material derivative of velocity is defined as [136] 

 
D

Dt t


= + 


v v
v v   (5.56) 

The non-local form of the term v v  can be calculated as  
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d

d

d

H

H
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     
  = + + = −         
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







x

x

x

x

x x v x g ξ

v v x x v x g ξ

x x v x g ξ

v x v x v x g ξ

 (5.57) 

Therefore, the non-local form of the equation for the conservation of momentum in 

Euler description for incompressible and compressible fluids becomes 

Incompressible: 

           
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

2 1

1

Tr
d

H
V

t p p

 
 

   −  −    = + 
 − −  


x

g ξ v x g ξ v x v xv
b

x x g ξ
 (5.58) 

Compressible: 

 

( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

2 1
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Tr

d

3

H
V

t p p

 

 

   −  −   
= + 

  +  − − − 
 


x

g ξ v x g ξ v x v x
v

b
g ξ v x v x x x g ξ

 (5.59) 



145 

 

5.3.4. Conservation of energy 

For the fluid flow coupled with heat transfer simulation, only the incompressible 

fluid flows in Euler description are considered. Therefore, the formulation of the 

conservation of energy here is only derived for incompressible fluids in Euler 

description.  The local form of the conservation of energy is [136]  

 :
e

e Q
t


 

+  = − +  + 
 

v q σ v   (5.60) 

where e  is the internal energy, Q  is the internal heat generation, and q  is the heat flux 

vector defined as  

 ( )k T= − q x   (5.61) 

where ( )k x  is the thermal conductivity. 

For thermodynamic systems, the internal energy assumed to be a function of 

temperature and density, i.e. ( ),e e T = . For constant density, the specific heat 

capacity under constant pressure, pc , is equal to the specific heat capacity under 

constant volume, vc , i.e. v pc c C= =  [136]. Consequently, the time rate of change of 

the internal energy can be evaluated as [136] 

                 1 2 3

1 2 3

e T T T T T
e C T C v v v

t t t x x x

       
+  = +  = + + +  

        
v v   (5.62) 

where C  represents the specific heat capacity. By using the definition of stress in 

Eq.(5.31), the term :σ v  can be written as [136] 

 ( ) ( ) ( ) ( ) ( ): : : :
T

p   = −  +   +  σ v I v v v v v  (5.63) 

or 
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σ v  

(5.64) 

Substituting the incompressible condition Eq. (5.28) into Eq. (5.64) results in [136] 
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:
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σ v   (5.65) 

By substituting Eq.(5.61), Eq.(5.62) and Eq.(5.65) into Eq.(5.60), the conservation 

of energy equation becomes [136] 
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 
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  (5.66) 

Therefore, by substituting the non-local form of the differentials provided in Table 

4, the non-local form of conservation of energy becomes 
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 (5.67) 

If the thermal conductivity ( )k x  is assumed to be uniform and constant, Eq.(5.67) 

reduces to 
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 (5.68) 

5.3.5. Non-dimensional form for 2D problem 

The governing equations in a non-dimensional form can be obtained by using the 

following non-dimensional parameters [144] 
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 

  
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  (5.69) 

where the subscript ( )0  represents the reference variable and the superscript ( )*  

represents the non-dimensional variable.   

The non-dimensional form of the local governing equations in Euler description for 

two-dimensional problems by ignoring the internal heat generation can be written as  

Conservation of mass 
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  
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Conservation of momentum 
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 (5.71) 

Conservation of energy 
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  (5.72) 

The non-dimensional parameters in Eqs. (5.70)-(5.72) are defined as  
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
= = =   (5.73) 
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where Re  is the Reynolds number, Pr  is the Prandtl number, and Ec  is the Eckert 

number.  

Similarly, the non-local governing equations in Eqs.(5.70)-(5.72) can also be written 

into their non-dimensional forms with a constant thermal conductivity as  

Conservation of mass 
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(5.74) 

Conservation of momentum 
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Conservation of energy 
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where the non-dimensional relative position is calculated as 
* * *= −ξ x x .   

The local Nusselt numbers are defined as  

 ( )
*

loc *

loc

Nu =

y

T
x

y
=




  (5.77a) 

 ( )
*

loc *

loc

Nu =

x

T
y

x
=




  (5.77b) 

By applying the PD differential operator into Eq.(5.77), the Nusselt numbers can be 

calculated in the PD approach as  

 ( ) ( ) ( )( ) ( )* * 01 * *

loc
=loc

Nu g d
H

y

x T T V = −
x

x x ξ   (5.78a) 

 ( ) ( ) ( )( ) ( )* * 10 * *

loc
=loc

Nu g d
H

x

y T T V = −
x

x x ξ   (5.78b) 

The average Nusselt numbers are defined as (L and W are the length and width in x 

and y direction, respectively)  

 ( )loc
0

1
Nu = Nu d

L

x x x
L 

  (5.79a) 
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 loc
0

1
Nu = Nu ( )d

W

y y y
W    (5.79b) 

5.4. Numerical implementation 

In this section, the numerical implementation for fluid flow simulation is 

provided. There are two types of Lagrangian descriptions, i.e. total Lagrangian 

description and updated Lagrangian description. Both Lagrangian approaches have 

been discussed in state-based peridynamics [145]. Therefore, non-local Navier-Stokes 

equations are numerically implemented both in total and updated Lagrangian 

approaches. In addition, the Euler approach is provided for fluid flow coupled with 

heat transfer problems.    

5.4.1. Kinematic quantities      

 The related kinematic quantities for numerical implementations are explained as 

follows. As shown in Fig. 5-2, point i  represents the point of interest and point j  

represents one of its family members.  

The definitions of relative kinematic quantities are shown in Fig. 5-2. The terms x  , 

u , and v  represent the position, displacement, and velocity vectors, respectively. The 

subscript ( )0  represents the initial configuration. On the other hand, the subscript ( )n  

represents the current configuration. For example, 0

i
x  and 0

i
v  represent the position 

and the velocity vector for point i  in the initial configuration, respectively. Here, 0ξ , 

nξ , 1n+ξ  represent the relative position vectors in the initial, current, and updated 

configurations, respectively. 
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Fig. 5-2 Initial, current, and updated configurations in the fluid domain, R , for 

Lagrangian approach  

For Euler description, the locations of the PD particles are not updated. The 

discretization for the Euler approach is provided in Fig. 5-3. 

 

Fig. 5-3 PD discretization illustration: central point i  and horizon 3 x =   with x  

being the point spacing distance 
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5.4.2. Total Lagrangian method 

For numerical implementation, the integration is performed by using the discrete 

particles. Based on the derivations in Section 5.3, the algorithm in a total Lagrangian 

description is presented. 

5.4.2.1 Governing equations in total Lagrangian description 

 In the total Lagrangian description, the governing equations in discretized form for 

incompressible fluid flows and compressible fluid flows are summarized as follows.  

Conservation of Mass: 

The discretized form of Eq. (5.23) can be evaluated as  

 ( ) ( )( )1 1 0 0

1

iN
i i i j i j

n n n n n

j

t V  +

=

= −   − g ξ v v  (5.80) 

where the subscript ( )n  represents the time step number, t  represents the time step 

size, iN  represents the total number of family members of point i  (red colour) and 

0

jV  represents the initial volume of point j  (green colour). It should be noted that the 

density remains constant for incompressible fluid flow that is 1 0

i i

n + = .  

Constitutive Equations for Pressure: 

For incompressible fluid flow, the discretized form of Eq. (5.34) can be evaluated 

as  

 1
1

0

1
i

i n
n i

p B






+

+

  
 = − 
   

  (5.81) 

For compressible fluid flow, the discretized form of Eq. (5.41) can be evaluated as  

 ( ) ( )( )1 1 0 0

1

iN
i i j i j

n n f n n

j

p p K t V+

=

= −   − g ξ v v   (5.82) 
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Conservation of Momentum: 

For incompressible fluid flow, the discretized form of Eq. (5.50) can be evaluated 

as  

 ( )( )( )( ) ( ) ( )1 2 0 1 0 0 1

11

1
Tr

iN
i j i j i j i

n n n n n ni
jn

p p V


+ +

=+

 = − − − +
 v g ξ v v g ξ b  (5.83) 

where i
v  represents the acceleration of point i .   

For compressible fluid flow, the discretized form of Eq. (5.55) can be evaluated as  

 
( )( )( ) ( ) ( )

( ) ( )

2 0 2 0

1 0 1

11

1 0

1
Tr1 3

i

j i j i
N

n n n ni j i

n ni
j j in

n n

V

p p




+ +

=+

  
− +  −  

 = + 
 − −
 


g ξ v v g ξ v v

v b

g ξ

(5.84) 

Two kinds of time integration scheme can be utilized in the velocity and 

displacement updating: first-order scheme by using the Euler method and second-order 

scheme by using the Velocity Verlet algorithm [146].  

First-order Euler method 

the Forward Euler Method  for Velocity: 

 1 1

i i i

n n n t+ += + v v v   (5.85) 

the Backward Euler Method for Displacement:  

 1 1

i i i

n n n t+ += + u u v   (5.86) 

Second-order Velocity Verlet method [146] 

 ( )1 1

1

2

i i i i

n n n n t+ += + + v v v v   (5.87) 
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 2

1 1

1

2

i i i i

n n n nt t+ += +  + u u v v   (5.88) 

5.4.2.2 Numerical algorithm for total Lagrangian description 

The numerical algorithm for the total Lagrangian approach is provided in Fig. 5-4. 

Fig. 5-5(a) represents the PD differential operator construction, and Fig. 5-5(b) 

represents the boundary implementation. Since the total Lagrangian approach is 

adopted, the family members of each point remain the same during the time integration. 

The PD differential operator is constructed based on the initial configuration, i.e. 

peridynamic operator, g  is a function of initial relative positions ( )0g ξ . Therefore, 

the PD differential operator is constructed prior to the time integration, as shown in 

Fig. 5-4. During the numerical simulations, the PD differential operator associated 

with each PD bond is stored in a time-independent array. In addition, for PD 

differential operator construction, Math Kernel Library (MKL) [147] is utilized. The 

function ‘DGESV’ [148] which uses LU decomposition with partial pivoting and row 

interchanges is utilized for solving the coefficient matrix, a , in Eq.(2.27). 
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Fig. 5-4 Flowchart of the numerical algorithm for total Lagrangian approach 

Start

Initialize geometry and material 

parameters

Spatial discretization: Generate PD 

nodes

Construct family member array and 

volume correction array for each node

PD differential operator construction

Apply initial conditions

Loop 1: Time 

integration,

n<=Nt

Apply boundary conditions

Loop 2: over PD 

node, i<=Nnode

End

.True.

.True.

i+1

n+1

.False.

.False.

Update displacement according to 

Eq.(5.86) or Eq.(5.88) with respect to R0

Update velocity according to Eq.(5.85) 

or Eq.(5.87) 

Update acceleration according to 

Eq.(5.83) or Eq.(5.84)

Update pressure according to Eq.(5.81) 

or Eq.(5.82)

Update density according to Eq.(5.80)



157 

 

 

 

(a) (b) 

Fig. 5-5 Flowchart for: (a) PD differential operator construction, and (b) boundary 

implementation    

5.4.3. Updated Lagrangian method 

In this section, the numerical algorithm for an updated Lagrangian description is 

developed for fluid flow simulations using the PD differential operator. 

As shown in Fig. 5-6, point x  is treated as the point of interest (shown in red colour) 

in a material body R . Since the long-range force is considered in the PD theory, the 

neighbourhood within which the central point x  can interact with other points is 

denoted as Hx
, e.g.  nH

x
 at nt t=  or 1nH +

x
 at 1nt t += .  The horizon   keeps constant 

within time integration. It can be observed from the figure, at nt t= , point x  (shown 

in green colour) is the family member of point x , On the contrary, point x  locates 

outside the neighbourhood of point x , leading to zero interact force. However, at time 
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the family members of point x  are updated every time step when the updated 

Lagrangian description is adopted.  

 

Fig. 5-6 Interaction of peridynamic central point x  and its family member x  in 

current and updated configurations 

5.4.3.1 Updated Lagrangian equations 

The non-local fluid flow governing equations in the total Lagrangian description is 

already provided in Section 5.4.2. In the updated Lagrangian approach, the initial 

volume of point j , 
0

jV , will be updated by using the current volume, j

nV  as  

 0

j j

n nV J V=  (5.89) 

where nJ  is the determinant of Jacobian which is defined as  

 ( )detn nJ = F   (5.90) 

In Eq.(5.90), nF  is the deformation gradients with respect to the initial configuration, 

which is defined as  

 
0

n
n


=


x
F

x
  (5.91) 
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Similarly, the volume in the updated configuration 
1

j

nV +
 can be expressed in terms 

of initial volume as 1 1 0d dj j

n nV J V+ +=  with ( )1 1detn nJ + += F  and 1 1 0/n n+ +=  F x x . 

The volume in the updated configuration is related to the current configuration as  

 ( )1

1 1d d det dj j j

n n n n nV J J V V−

+ += = F   (5.92) 

where the relative deformation gradient F  is defined as  

 11 1
1/n n n

n n

n

−+ +
+

  
 = = =

  

x x x
F F F

x x x
  (5.93) 

On the other hand, the non-local form of the deformation gradient tensor is defined 

in [149] by using the PD differential operator as 

 
( )

( ) ( )
Tr

dF
H

relF

w V
m

  = −  −
x

I
F y y x x   (5.94) 

with ( )
2

/Fw  = −x x . The parameter I  is the identity matrix with its trace ( )Tr I  

being 2 or 3 depending on the dimensions of the analysis. The parameter relFm  is 

evaluated as [149] 

 2

relF Hm V =   (5.95) 

where HV  represents the volume of a sphere, 34 /3HV =  for 3D and volume of a 

disk, 2

H thickV h =  for 2D with thickh  being the thickness of a disk [149]. Therefore, 

the non-local form of deformation gradient of point i  for current and updated 

configurations are defined as [11, 132, 149]     

 ( ) ( )
Tr( )

d
i
n

j

n F n n n
H

relF

w V
m

= 
I

F ξ ξ   (5.96) 

and 
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 ( ) ( )1 1

Tr( )
d

i
n

j

n F n n n
H

relF

w V
m

+ += 
I

F ξ ξ   (5.97) 

By using the definition in Eq.(5.93), the non-local form of relative deformation 

gradient can be defined as  

 ( ) ( ) ( ) ( )
1

1 d d
i i
n n

j j

F n n n F n n n
H H

w V w V
−

+
    =  
       F ξ ξ ξ ξ  (5.98) 

Based on the developed non-local relative deformation gradient in Eq.(5.98), the 

volume for each material point is calculated by using Eq.(5.92).  

5.4.3.2 Numerical algorithm for updated Lagrangian description  

The numerical algorithm for the updated Lagrangian approach is provided in Fig. 

5-7. And Fig. 5-8 represents the calculation of the relative deformation gradient. 

Within each time integration step, the coordinate of each node is updated as 

0n n= +x x u . Therefore, the family members of each point are updated at each time 

step. The PD differential operator construction process is the same as Fig. 5-5 (a) 

except that the PD differential operator and the weighted function are constructed 

based on the current configuration, i.e. g  and w  are functions of the relative position 

in the current configuration ( )ng ξ  and ( )nw ξ . Consequently, the PD differential 

operator associated with each bond is updated simultaneously for each time step. 

Therefore, in terms of computational time, it could be inferred that the updated 

Lagrangian program is more time consuming than the total Lagrangian program.  
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Fig. 5-7 Flowchart of the numerical algorithm for updated Lagrangian approach 
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Fig. 5-8 Flowchart for relative deformation gradient calculation  

5.4.4. Euler method 

The fluid flow coupled with heat transfer problem is simulated in the Euler 

description. Therefore, in this section, the discretised form of the governing equations 

including the conservation of energy is provided.   

5.4.4.1 Euler equations 

The non-local form of the governing equations provided in Section 5.3 can be 

written in their discrete forms as;  

Conservation of mass:  

( ) ( )( ) ( ) ( )( )1 1 0 1 0

1

iN
i i i j i j i i

n n n n n n n n j

j

t V    +

=

= −  − + −  g ξ v v v g ξ   (5.99) 
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Conservation of Energy:  
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 (5.101) 

5.4.4.2 Numerical algorithm 

The flowchart of the numerical algorithm is provided in Fig. 5-9. Firstly, the 

peridynamic differential operator is constructed as a function of the initial relative 

position. Therefore, the construction of peridynamic differential operator is conducted 

prior to the time integration. Secondly, both the thermal and flow fields are considered 

in the program. Thus, a flag array is constructed to indicate the material point 

interactions belonging to the thermal field or the flow field.  Finally, the thermal field 

and the flow field are considered in a coupled manner.  
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Fig. 5-9 Flowchart for numerical algorithm in Euler description for heat conducting 

fluid flow simulation 
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5.4.5. Boundary implementation 

5.4.5.1 Solid boundary treatment 

The implementation of a solid wall is a crucial issue in flow simulations. Fictitious 

layers [10, 39, 40, 150] can be used to implement the boundary conditions. As 

illustrated in Fig. 5-10, the fictitious layers (shown by red spheres) are located outside 

the boundary to simulate the solid wall. The thickness of the fictitious layers is chosen 

as the size of the horizon [151]. The positions of fictitious particles remain the same 

during the time integration [120, 152]. In Fig. 5-10, particle i  represents the fictitious 

particles. Particle j  represents one of its family members which belongs to fluid 

particles. The acceleration, velocity, and displacement of the fictitious particle i  are 

defined as the same as the solid wall, i.e.  

 i solid wall=v v   (5.102a) 

  i solid wall=v v   (5.102b) 

 i solid wall=u u   (5.102c) 

For the pressure evaluation of particle i , the formulation proposed by Adami et al. 

[152] is utilized. The viscous interaction between particle i  and j  is simply omitted 

[152]. In order to eliminate the penetration of fluid particles into the wall surface, the 

force balance at the wall interface is enforced as [152] 

 
d

d

j j

i

j

p

t 


= − + =

v
b v   (5.103) 

where iv  represents the acceleration of the solid particle i  in the fictitious domain. 

The term jp  is the pressure of the fluid particle and j  is the density of the fluid 

particle. According to [152], Eq. (5.103) can be further calculated as   

 ( )j ip l l  = −  d b v d   (5.104) 
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where ld  is a vectoral length element between fluid and fictitious particles [152].  For 

a single bond between the fluid and the fictitious particle, Eq.(5.104) takes the form as   

 ( )i j j i ijp p − = − b v ξ   (5.105) 

where ijξ  represents the relative position from the fluid particle to the dummy particle 

which can be expressed as ij i j= −ξ x x , shown in Fig. 5-10. Consequently, the pressure 

of the fictitious particle i , 
ip  can be obtained by summation of all contributions of 

neighbouring fluid particles using the weighted function as [152] 

 

( )( ) ( )

( )

,

,

1

1

i fluid

i fluid

N

j j i ij ij

j

i N

ij

j

p w

p

w


=

=

+ − 

=





b v ξ ξ

ξ

  (5.106) 

where ,i fluidN  represents the total number of the family member of particle i  which 

belongs to fluid particles. The weighted function ( )ijw ξ  is defined as in Eq.(2.25).  

Then the density of the fictitious particle i  can be calculated by using Eq. (5.34) as  

 

1/

0 1i
i

p

B



 
 

= + 
 

  (5.107) 

 

Fig. 5-10 Illustration of solid boundary implementation 
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5.4.5.2 Free surface boundary treatment 

Similarly, the free surface boundary conditions are implemented by using dummy 

particles. Fictitious layer with its thickness being equal to the size of the horizon is 

added on the free surfaces. The material properties of the dummy particles are chosen 

the same as the fluid particles. The acceleration, velocity, displacement, and density 

are calculated for both fluid and dummy particles in the free surface. The only 

difference is that free surface pressure is applied to the fictitious layer as 

     0fictitious particles free surfacep p= =   (5.108) 

5.4.5.3 Temperature boundary treatment 

The temperature on the boundary is denoted as wallT . The temperature of the 

fictitious particle i  is implemented as [39, 43, 150] 

 2i wall jT T T= −   (5.109) 

The fictitious particle j  is located at the same distance from the boundary as the 

fluid particles, i  as shown in Fig. 5-11.   

 

Fig. 5-11 Temperature boundary implementation (the pair of the fictitious particle 

and its corresponding fluid particle are shown in the same colour) 
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5.4.6. Numerical treatments 

5.4.6.1 Initial damping  

In order to improve the numerical stability of free surface flow simulation, such as 

dam collapse simulation, extra numerical implementations are used. First, damping 

time 
dampt  is chosen during which the acceleration of each PD node is multiplied by a 

factor ( )t  as [152] 

 ( )
( )( ) ,0.5 sin 0.5 / 1

,1

dampdamp

damp

t tt t
t

t t




   − + +  = 


  (5.110) 

5.4.6.2 Moving least square scheme 

The moving least square (MLS) algorithm is introduced to hydrodynamics by 

Dilts [153]. The MLS method [154] is adopted for every MLSn  time step to smooth the 

velocity and density profiles as  

 ( )
( ) ( )

( )

,

,

j i j

n MLS n n

ji

n i j

MLS n n

j

w

w
=





v x x x

v x
x x

  (5.111) 

 ( ) ( ),i i j

n mass MLS n n

j

m w =x x x   (5.112) 

with massm  representing the initial mass of one PD particle, MLSw  is the smoothing 

weighted function which can be expressed as [154]  

( ) ( ) ( )( ) ( )( ) ( )0 1 , 2 ,, ,i j i i i i j

MLS n n n n n x n n y s n nw w     = + − + −
 

x x x x x x x   (5.113) 

with 

 , 1 , 2n n x n y = +ξ e e   (5.114a) 
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 ( ) ( )
2

2 /
, ni j

s n nw e
−

=
ξ

x x   (5.114e) 

The flowchart for the MLS algorithm is provided in Fig. 5-12. If the remainder of 

the current time step number n  divided by MLSn  is equal to zero, an additional MLS 

part will be added to the algorithm provided in Section 5.4.2 or 5.4.3. The density, 

velocity will be smoothed based on Eq.(5.112) and Eq.(5.111). As a result, the pressure 

and displacement will be recalculated according to the smoothed density and velocity.     
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Fig. 5-12 Flowchart for the MLS algorithm  

5.5. Isothermal fluid flow numerical simulations   

In this section, numerical examples of several classical fluid flow problems are 

presented by using the proposed non-local PD formulations. The validation of the PD 

formulations is conducted by the comparisons between the PD results and those from 

other solutions. In all the following simulation cases, the fluid is water with density 

3 310 kg/m =  and dynamic viscosity 
310 kg/ms −= . Furthermore, the Mach 

numbers in all cases are less than 0.3 ( )0.3M  , leading to incompressible fluid flow. 

Therefore, the weakly compressible technique described in Section 5.3.2 is adopted 

for the pressure calculation.  

Mod (n, nmls)=0

.True.

Loop1:PD node, 

i<=Nnode

Loop 2: family 

member of node i, 

j<=Ni

Initialize matrix b and S

Calculate matrix S associated according 

to Eq.(5.114c,d,e)

.True.

j+1

Utilize MKL to calculate matrix β
according to Eq.(5.114b)

.False.

Loop 3: family 

member of node i, 

j<=Ni

Calculate the smoothing weighted 

function wMLS according to Eq.(5.113)

.True.

.True.

Update velocity according to Eq.(5.111)

Update density according to Eq.(5.112)

Update pressure according to Eq.(5.81) 

j+1
.False.

Start

End

.False.

.False.
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5.5.1. Hydrostatic test 

In the section, a hydrostatic simulation is conducted to study energy conservation. 

The fluid is in an open container with dimensions being 0.05 m 0.03 mL W =  , as 

shown in Fig. 5-13 (a). The gravity acceleration being 
29.8 m/s=g . The analytical 

solution of the hydrostatic pressure is calculated as ( )analyticalp W y= −g  where y  

represents the vertical coordinate. For the PD discretization, as shown in  Fig. 5-13 (b), 

40 24  PD particles are in x  and y  directions with the initial particle spacing being 

31.25 10 mx − =  . In order to save the computational time, only one fictitious layer 

is imposed to simulate the solid wall. The simulation time step size is chosen as 

510 st − =  with total simulation time being 1.5 st = . The Velocity Verlet algorithm 

is adopted.  

  

(a) (b) 

     Fig. 5-13 Schematic of the hydrostatic problem (a) geometry illustration and (b) 

PD discretization 

The time history of the pressure of the measured point is presented in Fig. 5-14 (a), 

with the analytical solution being presented for comparison. The time history of the 

kinetic energy of the whole particles is shown in Fig. 5-14 (b). The pressure profile 

along the mid vertical line 
22.5 10 mx −=   is compared with the analytical solution, 

as shown in Fig. 5-15 (a). Furthermore, the deformed configuration at the final time is 

presented in Fig. 5-15 (b). It can be observed that the PD predicted results agree well 

with the analytical solution. Thus, the capability of the present PD model for 
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simulating hydrostatic problems is demonstrated. In addition, the energy conservation 

of the model is also validated.  

  

(a) (b) 

      Fig. 5-14 Time history of pressure (a) and kinetic history (b) of the measured 

point.  

  

(a) (b) 

Fig. 5-15 Pressure comparison on the mid vertical line 
22.5 10 mx −=   (a) and 

deformed configuration (b) 

5.5.2. Couette flow 

First, the classical Couette flow is considered which involves fluid flow between 

two infinite plates with a stationary initial condition. As illustrated in Fig. 5-16 (a), the 

two plates (shown in orange colour) are located at 0y =  and y W=  with dimensions 

of 
310 mL W −= = . The two vertical edges are free, and the body force is zero. At time 
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0t = , the upper plate suddenly moves at a constant velocity 5

0 2.5 10 m/sv −=   

parallel to the x  direction. The corresponding Reynolds number is;  

 20Re 2.5 10
v W



−= =    (5.115) 

As shown in Fig. 5-16 (b), the mesh size of the PD discretization is represented by 

x . The horizon is chosen as 3.015 x =   [10, 14]. The time step size is chosen as 

610 s−
 and the total simulation time is 0.6 s . Fictitious boundary layers (represented 

by red nodes) with their thickness being 3 x  (horizon) are added to implement the 

solid wall boundary conditions, i.e. 

 ( ) ( ), 0, , 0, 0x yv x y t v x y t =  =   (5.116a) 

 ( ) ( )5, , 2.5 10 m/s, , , 0x yv x y W t v x y W t− =   =   (5.116b) 

where xv  and 
yv  represent the horizontal and vertical velocities, respectively. 

Regarding the implementation of the other two vertical edges, if a PD node flows out 

of the right/left edge, it will immediately re-enter the opposite edge [132]. Therefore, 

the displacement of the material point flowing out from the edges can be modified as 

 , if >modified

x xu u L x L= −   (5.117a) 

 , if <0modified

x xu u L x= +   (5.117b) 

where xu  represents the horizontal displacement. Finally, the total Lagrangian 

algorithm described in Section 5.4.2 is applied to this problem.  
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(a) (b) 

 Fig. 5-16 Couette flow simulation illustration (a) geometry illustration and (b) PD 

discretization 

In order to validate the proposed non-local PD model, the PD predicted results are 

compared with the analytical series solution provided as [137] 

 ( ) ( )
2 2

0 0

2
1

2
, 1 sin exp

n

x

n

v v n n
v y t y y t

W n W W

 






=

  
= + − −  

   
   (5.118) 

First, in order to estimate the sensitivity of mesh size on the accuracy, a mesh 

convergence study is performed by using a n n  mesh where 50,100,200,400n = . 

Fig. 5-17 shows the relative percentage error for the steady-state velocity at /2x L=  

for different mesh sizes. The relative percentage error is calculated as [155] 

 ( )
( )

( )

2

2
% 100

PD Analytical

r

Analytical

v v

v


−
= 



  (5.119) 

As can be seen from the results, as the mesh size increases the velocity value 

converges. Even with coarse meshes, i.e. 50 50 , the relative percentage error is 

approximate 1.5% .  

Next, PD results are compared with analytical solutions provided in Eq.(5.118). Fig. 

5-18 shows the comparison between the velocity profiles obtained by using the PD 

model and the series solution at different times by using 400 400  mesh. The steady-
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state solution is represented at time 0.6 s . It can be observed that the solutions from 

these two methods match very well, confirming the accuracy of the proposed non-local 

PD model. The horizontal velocity field for the steady-state is shown in Fig. 5-19. 

Consequently, the robustness of the proposed non-local PD model in the total 

Lagrangian description is verified.  

 

Fig. 5-17 Convergence study for PD solutions for Couette flow for different grid 

sizes at 0.6 st =     
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Fig. 5-18 Comparison of PD and series solutions for Couette flow    

 

Fig. 5-19 Contour plot of horizontal velocity ( )m/sxv  predicted by PD at 0.6 st =   

5.5.3. Poiseuille flow 

The second simulation case is Poiseuille flow between two stationary infinite plates 

at 0y =  and y W= . The geometry is the same as the one from Couette flow, i.e. 
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310 mL W −= =  as shown in Fig. 5-16. The other two vertical edges are free. The fluid 

is initially at rest. Then a body force 
4 22 10 m/sF −=   parallel to the x  direction is 

applied to drive the fluid to flow gradually, leading to a steady-state flow distribution 

finally.  

In the numerical implementation, the same PD discretization model is adopted by 

using 400 400  mesh in the flow region with the horizon chosen as 3.015 x =  . The 

constant time step size is 
610 s−

 and the total simulation time is 0.6 s . The solid wall 

boundary condition is implemented by using the fictitious layer as illustrated in Fig. 

5-16 (b)  

 ( ) ( ), 0, , 0, 0x yv x y t v x y t =  =   (5.120a) 

 ( ) ( ), , , , 0x yv x y W t v x y W t =  =   (5.120b) 

Besides, the vertical boundary implementation approach provided in Section 5.4.5 

is also utilized. The total Lagrangian method described in Section 5.4.2 is adopted. 

In order to validate the proposed PD model, the simulation results are compared 

with the time-dependent series solution provided as [137]  

 ( ) ( )
( )

( )
( )

2 22

3 23
0

2 14
, sin 2 1 exp

2 2 1
x

n

nF FW y
v y t y y W n t

W Wn




 



=

 + 
= − + + −     +  

  

 (5.121) 

The horizontal velocity profiles obtained by the PD model are compared with the 

analytical solutions provided in Eq. (5.121), as shown in Fig. 5-20. Good agreements 

are also obtained in this case, validating the proposed non-local PD model. The 

horizontal velocity field is provided in Fig. 5-21 at time 0.6 s . As can be seen from 

the results, the maximum velocity is obtained as 5

0 2.5 10 m/sv −=   which corresponds 

to the Reynold number as 
2Re 2.5 10−=  . 
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Fig. 5-20 Comparison of PD and series solutions for Poiseuille flow   

 

Fig. 5-21 Contour plot of horizontal velocity ( )m/sxv   predicted by PD at 0.6 st =  

5.5.4. Taylor-Green vortex 

As a third simulation case, the two-dimensional Taylor-Green vortex at Re=1 is 

simulated by the proposed PD model in a total Lagrangian description. The geometry 
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of the fluid field is set as    0,1 0,1 . The analytical solution of the velocity field is 

given as 

 ( ) ( ) ( )1 0, , cos 2 sin 2btv x y t v e x y = −   (5.122a) 

 ( ) ( ) ( )2 0, , sin 2 cos 2btv x y t v e x y =   (5.122b) 

where the decay rate is 
28 / Reb = −  [156] and 0v  is the maximum initial velocity 

magnitude.     

As shown in Fig. 5-22 (b), four fictitious layers with their thicknesses being horizon 

are added outside the fluid field. The fictitious particles (shown in grey colour) are 

assorted into eight regions (numbered by yellow colour). Their physical parameters 

such as velocity etc. are forced to be equal to the fluid particles (shown in orange 

colour) in the same corresponding numbered region (shown in red colour). Therefore, 

the periodic boundary conditions in both x  and y  directions are implemented. As to 

the initial condition, as shown in Fig. 5-22 (a), the analytical velocity distribution at 

0t =  is used with 0 0.04v =  as  

 ( ) ( ) ( )1 , ,0 0.04cos 2 sin 2v x y x y = −   (5.123a) 

 ( ) ( ) ( )2 , ,0 0.04sin 2 cos 2v x y x y =   (5.123b) 

The time step size is chosen as 
5d 1 10t −=   and the simulation time is 0.05t = . 

Three different mesh sizes are chosen as 1/x n =  with 40, 50,100n =  to conduct the 

convergence study.  
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(a) (b) 

Fig. 5-22 (a) Geometry illustration and initial velocity vector plot and (b) coordinate 

definition and boundary implementation for the Taylor Green vortex PD  

A comparison of the decay of the maximum velocity magnitude is provided in Fig. 

5-23. The exact solution and the remeshed smoothed particle hydrodynamics (rSPH) 

solution [157] are provided for comparison. It can be inferred that the PD predicted 

results agree well with the exact and rSPH solution. For the error analysis of the PD 

simulations, the relative error norm L  is calculated as [156, 157]  
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v
  (5.124) 

with maxT  being the time where ( )0 0 /50btv e v=  [157]. The relative errors obtained by 

40 40 , 50 50 , and 100 100  particles are provided in Fig. 5-24. The PD predicted 

velocity magnitude distributions obtained by PD and exact solutions at 0.05t =  with 

100 100  particles are shown in Fig. 5-25. 
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Fig. 5-23 Comparison of the maximum velocity between exaction solutions, rSPH 

solutions [157] and PD solutions. 

 

Fig. 5-24 Relative error of maximum velocity for different mesh sizes as n=40, 50, 

100  
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(a) (b) 

Fig. 5-25 The velocity magnitude distribution at 0.05t =  with 100 100  particles for 

(a) PD solution and (b) exact solution.    

5.5.5. Shear-driven cavity problem 

The fourth simulation is regarding the shear-driven cavity problem. The fluid is 

initially at rest within a closed square cavity. The fluid flow is generated by moving 

the top side of the square cavity at a constant velocity, 3

0 10 m/sv −=  parallel to the x  

direction. As illustrated in Fig. 5-26, the geometry dimension is set as 
310 mL W −= = . 

The PD mesh size is chosen as /x L n =  with n representing the particle number in 

one direction as 40,100n =  for PD simulations. The horizon size 3.015 x =   is 

adopted. The time step size is chosen as 
410 s−

 and the total simulation time is 0.3 s . 

The solid boundary conditions are implemented as described in Section 5.4.5.1 

(Eq.(5.106), Eq.(5.107)) by using fictitious layer, as shown in Fig. 5-26. During the 

simulation, the updated Lagrangian method described in Section 5.4.3 is adopted.  
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Fig. 5-26 Illustration of PD discretization for the shear-driven cavity problem 

In order to validate the proposed PD model, the velocity profiles in steady-state 

condition, at 0.3 st =  are compared with the previous literature. The reference data in 

[158] obtained by the finite difference method (FDM) and smoothed particle 

hydrodynamics (SPH), in [155] obtained by a Lagrangian gradient smoothing method 

(L-GSM) is provided in Fig. 5-27. In addition, the PD solutions by using different 

mesh sizes 40 40  and 100 100  are also provided. It can be observed that the PD 

results are close to the ones obtained by the other methods, proving the accuracy of 

the proposed PD model for the shear driven cavity problem. Besides, in Fig. 5-27 (a), 

for the non-dimensional vertical velocity profile in the region of 0.5<x<1.0, the 

maximum vertical velocity magnitude predicted by PD is more close to the FDM 

solution than the ones in [155, 158] for the smoothing methods. 
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(a) 

 

(b) 

Fig. 5-27 Comparison of non-dimensional steady state PD velocity profiles with 

FDM and SPH data [158], L-GSM data [155], (a) vertical velocity at / 2y W=  (b) 

horizontal velocity at / 2x L=   

The horizontal velocity distributions for each material point at time 0.05 st =  and 

0.3 st =  are presented in Fig. 5-28. The vertical velocity vector field at time 0.05 st =  

and 0.3 st =  are also provided in Fig. 5-29. It is observed that the fluid flow is in a 

recirculation pattern within the closed square and finally reaches its steady-state form. 
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(a) 

 

(b) 

  Fig. 5-28 Horizontal velocity ( )m/sxv  distribution and the particle positions 

predicted by PD for 100 100  mesh size at (a) 0.05 st =  and (b) at 0.3 st =  

-1.800E-04

-5.375E-05

7.250E-05

1.987E-04

3.250E-04

4.513E-04

5.775E-04

7.037E-04

8.300E-04

-1.800E-04

-5.375E-05

7.250E-05

1.987E-04

3.250E-04

4.513E-04

5.775E-04

7.037E-04

8.300E-04



186 

 

 

(a) 

 

(b) 

Fig. 5-29 Velocity vector field coloured by their vertical component magnitude 

predicted by PD for 100 100  mesh size at (a) 0.05 st =   (b) 0.3 st =   

It can be observed that the particle distribution near the right upper corner is irregular 

to some extent. Therefore, the particle shifting technique (PST) [159] can be utilized 

to optimize the simulation results. Here, the solution of 40 40  particles at the steady-

state with PST utilized is provided and compared with the initial one. The details on 

the application of PST is provided in Section 6.2.3.  
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(a) (b) 

Fig. 5-30 Particle distribution comparison (a) without and (b) with PST [159] 

5.5.6. Dam collapse problem 

To demonstrate the capability of the proposed PD formulations for predicting free 

surface flows, the classical dam collapse problem which has been extensively 

investigated [131, 154] is considered in this section. The dam break experiment 

conducted by S. Koshizuka and Y. Oka [160] is used for comparison. A two-

dimensional flow generated after the breaking of a dam is simulated as shown in Fig. 

5-31 (a). The geometry dimensions of the water column are 0.146 mL =  for the width 

and 2L  for height. The tank is open at the top with its width and height being 4L  and 

L  respectively. The flow is driven by the gravity and it is constraint by an open 

rectangle square. The gravitational acceleration is set as 
29.8 m/sg = . Regarding the 

PD implementation shown in Fig. 5-31(b), the mesh size is chosen as 

34.867 10 mx − =   ( 30 60  fluid particles) and the horizon is chosen as 

4.015 x =  . The time step size is 
5d 2.5 10 st −=   with the total simulation time 

0.4 s . As shown in Fig. 5-31 (b), fictitious layers (thickness being horizon) are added 

to implement the wall boundary conditions (shown in red colour). The acceleration, 

velocity, and displacements of the fictitious wall particles are set to be zero according 

to Eq.(5.102). The pressure and density of these fictitious wall particles are calculated 

according to Eq. (5.106) and Eq.(5.107). In this problem, B  parameter in Eq. (5.34) is 

calculated by approximating the maximum magnitude of a fluid flow velocity as 
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( )2 2 2.39 m/sf g L= =v  [142], leading to 
48.16 10 PaB =  . Also, zero pressure 

condition is applied for the free surface fictitious layers (shown in green colour) 

according to Eq.(5.108). The acceleration, velocity, displacement, and density of these 

free surface particles are calculated as real fluid particles. Besides, the updated 

Lagrangian description in Section 5.4.3 is adopted. The damping time in Eq.(5.110) to 

avoid the initial sudden movement is chosen as 100ddampt t= . The MLS method 

described in Section 5.4.6 is applied with 60MLSn =  for 0.3 st   and 15MLSn =  for 

0.3 st   (when the water splashes the right vertical wall).  

 

    (a)                                                                (b) 

Fig. 5-31 Sketch of the dam collapse problem (a) geometry model and (b) PD 

discretization model 

Snapshots of vertical velocity profiles and the particle positions at different times 

are provided from Fig. 5-32 to Fig. 5-35 for both PD and experimental results. As 

shown in Fig. 5-36, the x position of the dam toe obtained by the PD simulation agrees 

well with the experiment results [161, 162].  It can be concluded that the proposed PD 

model is capable of predicting the classical dam collapse problem. It can be inferred 

from the numerical simulation results that there is void in the lower right corner of the 

fluid. The reason may be due to boundary pressure treatment for free surfaces. The 

pressures of the particles for free surfaces are directly set to be zero, while the pressure 

of the other fluid particles is calculated according to the equation of state. As a result, 
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it may produce discontinuities in the pressure profiles and lead to the voids in the lower 

right corner of the water column. In addition, the utilization of the MLS method may 

also bring some error and discontinuities on the fluid motion. The boundary treatments 

can be further improved by using constrained conditions for the fictitious layers [43, 

44] or by incorporating the boundary conditions into the governing equations [14].      

  

(a) (b) 

Fig. 5-32 Comparison between (a) experimental result [160] and (b) PD predictions 

coloured by vertical velocity (m/s) at 0.1st =   

  

(a) (b) 

Fig. 5-33 Comparison between (a) experimental result [160] and (b) PD predictions 

coloured by vertical velocity (m/s) at 0.2 st =  
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(a) (b) 

Fig. 5-34 Comparison between (a) experimental result [160] and (b) PD predictions 

coloured by vertical velocity (m/s) at 0.3 st =  

  

(a) (b) 

Fig. 5-35 Comparison between (a) experimental result [160] and (b) PD predictions 

coloured by vertical velocity (m/s) at 0.4 st =  
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Fig. 5-36 Comparison of the x position of the dam toe for PD and experiment results 

[161, 162]  

5.6. Non-isothermal fluid flow numerical simulation 

In this section, three numerical simulations are conducted by applying the developed 

PD model. Firstly, heat conduction for a 2-D plate is conducted. The PD predicted 

results are compared with the solutions from ANSYS software. Secondly, natural 

convection in a cavity is simulated. Finally, mixed convection in a cavity is simulated. 

The predicted results from convection problems are compared with the ones from the 

previous literature. 

5.6.1. Introduction 

The problem of fluid flow coupled with heat transfer has been extensively studied. 

The convection problem is one of the typical problems within this field. Convection 

problems are generally divided into two categories, i.e. natural convection and forced 

convection, depending on the different types of driven forces. Temperature-induced 

buoyancy forces are responsible for the fluid flow in natural convection.  On the other 

hand, the fluid flow is driven by lid motion in forced convection. A situation where 

both the natural and the forced convection are comparable is known as mixed 

convection. The natural and mixed convection problems are encountered in many 

engineering applications, e.g. the collection of solar energy, food processing, and 

safety of nuclear reactors et al. [163]. However, the predicting, understanding, and 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 PD

 Exp. (Koshizuka et al.)

 Exp. (Matin and Moyce,1.125in)

 Exp. (Matin and Moyce,2.25in)

t(2g/L)1/2

x/
L



192 

 

controlling of such complex fluid and thermal systems are challengeable [164]. Due 

to the geometrical simplicity, the natural and mixed convection problems within an 

enclosed cavity have been extensively studied in the literature.  

De Vahl Davis [165] provided a benchmark solution for the natural convection in a 

square cavity with constant temperature boundary conditions. The fluid flow was 

assumed to be laminar and the Boussinesq approximation was valid. The velocities, 

temperature, and rates of heat transfer had been obtained for Rayleigh numbers being 

up to 106. According to the experimental study in [166], the fluid flow will switch over 

to turbulence when the Rayleigh number is larger than 106. Later on, the study of the 

natural convection was extended to the turbulent field for Rayleigh number ranging 

from 106 to 1016 [167]. If the natural convection is driven by large temperature 

differences, the Boussinesq approximation is not applicable because of considerable 

density variations. Hence, a non-Boussinesq model was proposed by Szewc et al. [144] 

for such situations. Many numerical simulation methods have been applied for the 

natural convection simulation, i.e. the finite difference method (FDM) [165], the finite 

element method (FEM) and the discrete singular convolution (DSC) [168], the 

smoothed particle hydrodynamics (SPH) [144, 157, 169]. On the other hand, mixed 

convection in a square enclosed cavity is another benchmark problem. Moallemi and 

Jang [170] used the Semi-Implicit Method for Pressure-Linked Equations-revised 

(SIMPLER) [164] algorithm to investigate the effects of the Reynold number and 

Prandtl number on the flow and the heat transfer. The upper lid has a constant velocity 

and the bottom wall was heated. Later on, the situation in which the moving top wall 

was heated and the bottom wall was cooled was discussed by Iwatsu et al. [171]. In 

their work, the FDM was used to study the effect of the Richardson number, which 

provided a measure of the importance of natural convection relative to forced 

convection. FEM with a consistent splitting scheme was used by Wong [172] to 

simulate the buoyancy-opposing and buoyancy-aiding mixed convection problems. In 

addition, this benchmark problem has been discussed in extended configurations, e.g. 

in a two-sided lid-driven cavity [173] or an inclined driven cavity [174]. 
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5.6.2. Pure heat conduction simulation  

First, heat conduction in a 2-D plate is simulated. The length and width of the plate 

are 0.1mL W= = . The thickness is 0.001mh = . The material properties are set as: 

the thermal conductivity ( )8.3075 W/ mKk = ; the density 
31620 kg/m = ; the 

specific heat capacity ( )1092.728 J/ kgKvc = . All four boundaries are subjected to a 

constant temperature 10 KT = . The initial temperature is zero. Without considering 

the velocity and internal heat generation terms, the governing equation Eq. (5.60) with 

a constant thermal conductivity for heat conduction becomes  

 
v

T
c k T

t



= 


  (5.125) 

For PD implementation, the mesh size for the x-y plane is 0.0005 mx = . There is 

one layer in the thickness direction. The horizon is chosen as 3.015 x =  . Similar to 

the derivation performed by Silling and Askari [13] and Oterkus et al. [39], a von 

Newman stability condition is applied. The stability condition of the present model for 

heat conduction problems is obtained as 

 ( ) ( )( )20 02

1

d /
N

v j

j

t c k g g V
=

 
 + 

 
 ξ ξ   (5.126) 

As a result, the time step size is chosen as d 0.01st = . The total simulation time is 

40 s. The heat conduction is also simulated by using ANSYS software. The mesh size 

is chosen as 0.001mx =  and the time step is 0.4 s . The element type is chosen as 

PLANE55. The PD predicted temperature distribution is compared with ANSYS 

results as shown in Fig. 5-37. The good agreement validates the capability of the 

developed model for solving the pure two-dimensional heat transfer problem. 
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(a) (b) 

Fig. 5-37 Temperature (K) distribution comparison between (a) ANSYS and (b) PD  

5.6.3. Natural convection in a square cavity 

Second, natural convection in a closed cavity is simulated in a non-dimensional form. 

A scheme of the two-dimensional natural convection problem, accompanying with the 

coordinate definitions and boundary conditions are shown in Fig. 5-38. For the initial 

state, the fluid is stationary and its temperature is zero. The boundary conditions are 

defined as  

at 0x = : 1T  = , 
1 2 0v v = =                                          (5.127a)                       

at 1x = : 0T  = , 
1 2 0v v = =    (5.127b) 

at 0y = : / 0T y   = , 
1 2 0v v = =   (5.127c) 

at 1y = : / 0T y   = , 
1 2 0v v = =   (5.127d) 
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Fig. 5-38 Illustration for two-dimensional natural convection problem  

For the natural convection in the cavity, the fluid flow is assumed to be weakly 

compressible. The fluid properties are assumed to be constant. Therefore, the viscous 

coefficient   and the thermal conductivity k  are uniform and constant for each PD 

point, i.e. 0 0; k k = = . The energy dissipation due to viscosity is neglected [144]. 

The Péclet number ( Pe=RePr ) is equal to 1 [144]. As a result, the non-dimensional 

parameters in Eq. (5.70) and Eq. (5.74) are  

 
* *1; 1; Ec 0; RePr 1k = = = =   (5.128) 

Furthermore, the Boussinesq approximation [175] is adopted. Hence, the value of 

non-dimensional gravity acceleration is approximated as  

 Ra Prg T =   (5.129) 

where Ra is the Rayleigh number defined as 

 
3 2

0Ra=
g TL C

k

 




  (5.130) 

where   is the thermal expansion coefficient and T  is the temperature difference 

across the cavity.  
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Regarding the PD implementation, the mesh size is chosen as 
* 1/200x = , and the 

horizon is chosen as 
* *3.015 x =  . The time step size is 

* 5d 1 10t −=  . The total 

simulation time is 
* 3t = , leading to a steady-state of the fluid flow at the end of the 

simulation. The boundary implementation is illustrated in Fig. 5-39. Regarding the 

flow field, four fictitious layers are added to simulate the four solid walls. Their 

thicknesses are chosen as the size of the horizon. The accelerations, velocities, and 

displacements of the fictitious particles (shown in red colour) are zero. On the other 

hand, for the thermal field, two fictitious layers are added to implement the constant 

temperature boundary conditions. The temperature of the fictitious particle *x  is set 

as [39] 

( ) ( )* * * * * * * *, , 2 , ,T x y t T x y t = −  for 
* * 0x x + =  and 

* *y y =   (5.131a) 

( ) ( )* * * * * * * *, , , ,T x y t T x y t = −  for 
* * 2x x + =  and 

* *y y =  (5.131b) 

where 
x  represents the corresponding fluid particle.  

 

 

(a) (b) 

          Fig. 5-39 Illustrations of PD discretization and boundary implementation for 

(a) flow field and (b) thermal field 

There are three simulation cases considered. The non-dimensional numbers in the 

mathematical model are set as 
3 4 5Ra 10 ,10 ,10=  and Pr 0.71= . The simulation results 

are compared with the ones from the published literature. Firstly, the flow velocity and 

x

y

*3 x

*x

*3 x
*3 x
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temperature fields at the steady-state are provided in Fig. 5-40 for 
3Ra=10 , Fig. 5-41 

for 
4Ra=10 , and Fig. 5-42 for 

5Ra=10 . The flow patterns and temperature 

distributions agree well with the solutions provided in [144, 165, 167, 168].    

  

(a) (b) 

 

(c) 

Fig. 5-40 Simulation results for Ra=103 and Pr=0.71: (a) horizontal velocity 

distribution, (b) vertical velocity distribution, and (c) temperature distribution  
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(a) (b) 

 

(c) 

Fig. 5-41 Simulation results for Ra=104 and Pr=0.71: (a) horizontal velocity 

distribution, (b) vertical velocity distribution, and (c) temperature distribution   

  

(a) (b) 

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-16.60

-13.28

-9.96

-6.64

-3.32

0.00

3.32

6.64

9.96

13.28

16.60

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-20.20

-16.16

-12.12

-8.08

-4.04

0.00

4.04

8.08

12.12

16.16

20.20

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-45.50

-36.40

-27.30

-18.20

-9.10

0.00

9.10

18.20

27.30

36.40

45.50

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

-71.00

-56.80

-42.60

-28.40

-14.20

0.00

14.20

28.40

42.60

56.80

71.00



199 

 

 

(c) 

Fig. 5-42 Simulation results for Ra=105 and Pr=0.71: (a) horizontal velocity 

distribution, (b) vertical velocity distribution, and (c) temperature distribution   

Later on, the profiles of horizontal velocity, vertical velocity, and temperature on 

the mid-plane are compared with the ones provided in [167] and [169], as shown in 

Fig. 5-43. In addition, the local Nusselt number along the hot wall (
* 0x = ) is compared 

with the reference data provided in [169] obtained by ISPH, as shown in Fig. 5-44. It 

can be inferred from the figures that the PD predicted results agree well with the 

previous ones. 
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(c) 

Fig. 5-43 Comparisons of dimensionless quantities (a) horizontal velocity on 
* 0.5x = , (b) vertical velocity on 

* 0.5y = , and (c) temperature on 
* 0.5y = . 

Reference data is obtained by Danis et al. [169] and Markatos and Pericleous [167].   
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       Fig. 5-44 Comparison of the local Nusselt number along with the hot wall 

(
* 0x = ) for (a) Ra=103, (b) Ra=104, and (c) Ra=105. Reference data is from Danis et 

al. [169].  

Finally, as a summary shown in Table 5, the representative quantities predicted by 

the PD model are compared with the available results obtained from finite difference 

method (FDM) [165], finite volume method (FVM) [167, 176], smoothed particle 

hydrodynamics (SPH) [157, 169], discrete singular convolution (DSC) [168]. 

Table 5 Comparison of the representative quantities.  

 
Present  

Work 
[165] [167] [157] [168] [169] [176] 

Ra=103 

*

1,maxv  3.731 3.649 3.544 3.431 3.643 3.666 4.077 

*

maxy  0.818 0.813 0.832 0.812 0.817 0.813 0.806 

*

2,maxv  3.796 3.697 3.593 3.511 3.686 3.720 4.130 

*

maxx  0.178 0.178 0.168 0.176 0.183 0.175 0.181 

0Nu  1.115 1.117 - 1.033 1.073 1.119 1.114 

maxNu   1.506 1.505 1.496 1.392 1.444 1.511 1.581 

minNu  0.678 0.692 0.720 0.705 0.665 0.689 0.670 

Ra=104 

*

1,maxv  16.423 16.178 16.180 17.312 15.967 16.207 16.263 

*

maxy  0.828 0.823 0.832 0.823 0.817 0.825 0.818 

*

2,maxv  20.082 19.617 19.440 20.051 19.980 19.896 19.717 

*

maxx  0.118 0.119 0.113 0.112 0.117 0.113 0.119 

0Nu  2.253 2.238 - 2.081 2.155 2.257 2.245 

maxNu   3.519 3.528 3.482 3.448 3.441 3.543 3.539 

minNu  0.574 0.586 0.643 0.541 0.528 0.584 0.583 

Ra=105 

*

1,maxv  35.441 34.730 35.730 - 33.510 34.745 35.173 

*

maxy  0.858 0.855 0.857 - 0.850 0.863 0.859 

*

2,maxv  70.987 68.59 69.08 - 70.81 70.448 69.746 

*

maxx  0.063 0.066 0.067 - 0.070 0.063 0.066 

0Nu  4.621 4.509 - - 4.352 4.526 4.51 

maxNu   7.831 7.717 7.626 - 7.662 7.584 7.636 
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minNu  0.707 0.729 0.824 - 0.678 0.743 0.733 

*

1,maxv : the maximum horizontal velocity on the vertical mid-plane 

*

maxy : the corresponding vertical coordinate for the material point with *

1,maxv   

*

2,maxv : the maximum vertical velocity on the horizontal mid-plane  

*

maxx : the corresponding horizontal coordinate for the material point with *

2,maxv  

0Nu : the average Nusselt number on the hot wall ( * 0x = ) 

maxNu : the maximum value of the Nusselt number on the hot wall ( * 0x = ) 

minNu : the minimum value of the Nusselt number on the hot wall ( * 0x = ) 

From the comprehensive comparison between the present simulation results and the 

published literature, it can be concluded that the present model is able to accurately 

predict the two-dimensional natural convection problem in an enclosed square cavity 

for different values of Ra number.    

5.6.4. Mixed convection in a square cavity 

Thirdly, the problem of mixed convection in a lid-driven square cavity is simulated 

in a non-dimensional form. The geometry dimensions and the coordinate definition are 

the same as Fig. 5-38. The fluid is motionless at the initial state. An initial linear 

temperature field in the vertical direction is defined as [171] 

( )* * * * *, ,T x y t y=    (5.132) 

The boundary conditions are defined as 

On 0x = : / 0T x   = , 
1 2 0v v = =                                 (5.133a) 

On 1x = : / 0T x   = , 
1 2 0v v = =   (5.133b) 

On 0y = : 0T  = , 1 2 0v v = =   (5.133c) 
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On 1y = : 1T  = , 
1 21, 0v v = =                       (5.133d) 

Being similar to the natural convection problem, for the mixed convection problem, 

the fluid properties are also assumed to be constant and the viscous dissipation is also 

neglected [171]. As a result, the non-dimensional parameters are  

 
* *1; 1; Ec 0k = = =   (5.134)  

Furthermore, the Boussinesq approximation [175] is also adopted. The non-

dimensional gravity acceleration is approximated as  

 
2

Gr
=Ri

Re
g T T  =   (5.135) 

where Gr and Ri are the Grashof number and the Richardson number defined as   

 
2

Ra Gr
Gr= , Ri=

Pr Re
  (5.136) 

For PD implementation, the mesh size is chosen as 
* 1/100x = . The horizon is 

chosen as 
*3.015 x =  . The time step size is 

* 5d 1 10t −=   and the total simulation 

time is 
* 50t = . The mixed convection problem reaches a steady state at the end of the 

simulation time. The boundary implementation approach is the same as the one in the 

natural convection simulation.  

There are three simulation cases for the mixed convection problem. For all the cases, 

the Prandtl number and the Grashof number are fixed as Pr 0.71=  and Gr 100= . The 

Reynold number is set as Re=10, 100, 400 respectively. As a result, the Richardson 

number becomes Ri=1, 0.01, 0.000625 correspondingly. Therefore, by varying the 

Reynold number, the different Richardson numbers can be obtained. 

In order to demonstrate the capability of the proposed model for solving the two-

dimensional mixed convection in a square cavity problem, the steady solution for 

Re=400 (Ri =0.000625) is compared with the one provided by Iwatsu et al.[171]. The 

velocity profile comparisons are presented in Fig. 5-45. In addition, the comparison of 
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the temperature profiles and the local Nusselt number profiles are shown in Fig. 5-46. 

It can be inferred from the comparisons that the results agree well with the published 

literature [171], validating the present model.  

  

(a) (b) 

Fig. 5-45 Comparison of velocity profiles for Re=400: (a) horizontal velocity on 
* 0.5x =  and (b) vertical velocity on 

* 0.5y = . Reference data is from Iwatsu et al. 

[171] 

  

(a) (b) 

Fig. 5-46 Comparison of thermal quantities for Re=400: (a) temperature profile on 
* 0.5x =  and (b) local Nusselt profile at the top (

* 1y = ) and bottom (
* 0y = ) wall. 

Reference data is from Iwatsu et al. [171] 

Later on, the average Nusselt numbers ( NuPD ) at the top wall of the cavity (
* 1y = ) 

are provided in Table 6 for all the three cases. The comparison with Iwatsu et al. [171] 

( Nuref ) is also provided. As can be seen from Table 6, the relative error between the 

PD and reference results is less than 0.3%.  The relative error is calculated as  
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Nu Nu

Nu

PD ref

r

ref


−

=   (5.137) 

Table 6 Average Nusselt number at the top wall for all the three cases 

Re Ri 
Present work

NuPD  

Iwatsu et al. [171]

Nuref
 

r  

10 1 1.014 - - 

100 0.01 1.937 1.94 0.15% 

400 0.000625 3.849 3.84 0.23% 

Furthermore, the velocity and temperature profiles on the mid-plane are provided in 

Fig. 5-47. The temperature distributions are provided in Fig. 5-48 for the three cases. 

  

(a) (b) 

 

(c) 
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Fig. 5-47 Velocity and temperature profiles for all the three cases: (a) horizontal 

velocity on 
* 0.5x = ; (b) vertical velocity on 

* 0.5y = ; (c) temperature profile on 
* 0.5x = .  

  

(a) (b) 

 

(c) 

Fig. 5-48 Temperature field distribution for all the three cases: (a) Re=10, (b) 

Re=100, (c) Re=400 

For a small value of Ri (Ri=0.000625 and Re=400 in this study), the fluid flow is 

dominated by the lid-driven force. The buoyancy effect is overwhelmed by the shear 

effect. For a low value of Ri (Ri=0.01 and Re=100 in this study), the buoyancy effect 

is comparable to the shear effect, leading to a mixed convection dominate situation. 

For an equivalent value of Ri (Ri=1 and Re=10 in this study), the buoyancy effect 

dominates the fluid flow, leading to a natural convection dominate simulation. The 

observations are consistent with the published literature [171, 177].    
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5.7. Summary 

In this chapter, the fluid flow governing equations, i.e. Navier-Stokes equations, are 

reformulated into an integral form by using the peridynamic differential operator. 

Subsequently, the numerical algorithm in total and updated Lagrangian descriptions a 

well as Euler description are provided. Several classical fluid flow problems, i.e. 

Couette flow, Poiseuille flow, Taylor-Green Vortex, shear-driven cavity problem, are 

simulated by the proposed PD model. Furthermore, the developed PD model is applied 

to solve problems of free-surface flow as presented in the dam collapse problem. In 

addition, the developed model is applied to solve the pure heat conduction, the natural 

convection, and the mixed convection problems. The PD predicted results agree well 

with those obtained from other solutions, validating the capability of the proposed 

model for solving hydrodynamics including free surface flows problems and the 

coupled fluid flow and heat transfer phenomenon. 

The present model can be further developed for other fluid flow problems such as 

multi-phase or multi-component fluid flow problems. Furthermore, since there are 

many existing PD models for solids, the fluid-structure interaction can be 

straightforwardly implemented by using the non-local models both for the fluid and 

the solid. The interaction can be inherently implemented because of the models’ non-

local behaviour. 
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6. Multi-phase Fluid Flow Numerical Simulation 

 Multi-phase fluid flow is a typical phenomenon in the engineering fields, such as 

oil and water flow in a pipe, gas-liquid flow in channels, combustions [178] etc.. 

Therefore, the problem of the multi-phase fluid flow has been intensively and 

extensively investigated for years. 

 For Euler grid-based methods, e.g. the volume of fluid (VOF) [179] and level set 

(LS) method [180], the unphysical re-initialization process is needed for large 

topological deformation [181]. Compared with the Euler methods, the Lagrangian 

particle methods, e.g. smoothed particle hydrodynamics (SPH) [182-185], moving 

particle semi-implicit (MPS) method [160, 186, 187], can simultaneously show and 

move the multi-phase fluid interface because of their intrinsic non-local property. 

Therefore, these particle methods have also been widely applied in the realm of the 

multi-phase fluid flow simulation. Taking the SPH method as an example, Monaghan 

and Rafiee [183] developed a simple SPH algorithm for multi-fluid flow with 

introducing a repulsive force on the interface to maintain the interface sharpness. The 

Incompressible SPH (ISPH) scheme is applied in [188] with a velocity divergence-

free projection algorithm to solve the benchmark multi-fluid problems. The 

comparative study has been conducted for multi-phase fluid flow to estimate the 

available SPH techniques [189, 190]. The state-of-art SPH application for complex 

fluid flows is reviewed in [182, 191].   

The PD can be applied to simulate the multi-phase fluid flows. Updated Lagrangian 

particle hydrodynamics (ULPH) is proposed by Tu et al. by using the non-ordinary 

state-based PD concept and updated Lagrangian scheme [132]. Subsequently, the 

ULPH has been extended to simulate the multi-phase fluid flow [192]. Wang and 

Zhang developed a PD-MPS method for multi-phase fluid flow simulations [187]. In 

the previous chapter, the PDDO has been applied to simulate the laminar fluid flow at 

low Reynold number [8] and heat-conducting fluid flow [9]. In this chapter, the 

previous work is extended for multi-phase fluid flows. 
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6.1. Governing equations for multiphase flow 

In this study, the fluids are assumed to be weakly compressible, viscous, immiscible, 

Newtonian fluids under an isothermal laminar flow condition. The flow governing 

equations are reformulated to a Lagrangian form by using the peridynamic differential 

operator.   

6.1.1. Classical governing equations 

The governing equations for each fluid phase in the Lagrangian description are [193] 

Continuity equation: 

 
t





= − 


v   (6.1) 

Momentum equation: 

 V B SP
t




= − + + +


v
F F F  (6.2) 

where the variables are denoted as density  , time t , fluid velocity vector v , pressure 

P , viscous stress V
F , body force B

F , and surface tension force S
F .  

The viscous stress V
F  is defined as [193] 

 ( )V = F v   (6.3) 

where   represents the dynamic viscosity.  

According to the Continuum Surface Force model [194],  the surface tension force 

is defined as  

 ˆS   = +F n   (6.4) 
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where   is the surface tension coefficient, n̂  is the unit normal towards the interface 

as shown in Fig. 6-1,   is the curvature of the interface, and   is the weight function 

representing the surface tension force magnitude distribution. The surface tension 

coefficient is set as a constant value. Therefore, the second term on the right-hand side 

of Eq. (6.4) which is the gradient of the surface tension coefficient becomes zero, i.e.  

 0 =   (6.5) 

According to the Continuum Surface Force model [194],  a colour function, s , is 

given to fluid n (n=1,2 as two-phase fluid flow) to identify the different phases (shown 

in different colours in Fig. 6-1). For example,  

 
1, for fluid 1

2, for fluid 2
s


= 


  (6.6) 

Then, the gradient of the colour function representing the direction of the interface 

can be calculated as  

 
g s=c  (6.7) 

Consequently, the unit normal direction vector, n̂  in Eq.(6.4), can be calculated 

based on the normal direction vector provided in Eq.(6.7) as  

 ˆ g

g

s

s


= =



c
n

c
  (6.8) 

The curvature of the interface in Eq. (6.4) can be calculated as the negative value of 

the divergence of the unit normal vector [194], i.e. 

 ˆ = −n   (6.9) 

The weighted function   in Eq. (6.4) represents the distribution of the magnitude 

of the surface tension force [193] (the magnitude decays as the distance to interface 

increases). Following the conventional choice, the weighted function is chosen as the 

magnitude of the gradient of the colour function as [193] 
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g s = = c   (6.10) 

As a result, by substituting Eq.(6.5), Eq.(6.8), Eq.(6.9), and Eq.(6.10) into Eq.(6.4), 

the surface tension force can be expressed as  

 ˆ =S s
s s

s
    

  
 = −     

= + 
 





F n   (6.11) 

The above governing equations are closed with the equation of state. In the current 

chapter, two-phase fluid flows are considered, denoted as phase 1 for heavier fluid and 

phase 2 for lighter fluid. Therefore, for each fluid phase (denoted as a subscript n with 

n=1, 2), the equation of state can be expressed as [193] 

 
, 0,

0,

1

n

n
n ref n n

n

P P P







  
 = − +     

  (6.12) 

where 0,n  is the initial density of fluid n, n  is the material constant for fluid n  

ranging from 1 to 7. The term ,ref nP  is the reference pressure as [193] 

 

2

0,

,

n n

ref n

n

c
P




=   (6.13) 

where nc  is the artificial speed of sound for fluid n. For both fluid phases, the reference 

pressures are set to be equal, i.e. ,1 ,2ref ref refP P P= = . Besides, the artificial speed of 

sound for fluid 1, 1c , is chosen as the reference speed of sound. Therefore, the artificial 

speed of sound for fluid 2, 2c , is calculated as ( )2 1 2 0,1 1 0,2/c c    =  [193].  

The term 0,nP  in Eq.(6.12) is referred to as the background pressure to prevent 

negative pressure and tension instabilities [193, 195]. The adoption of the background 

pressure can keep the particle distribution uniformly to some extent. Therefore, it 

should not be too large to create extra particle resettlement and thus induce numerical 
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simulation errors [196]. For both fluids, the background pressure is chosen to be 

identical as 0,1 0,2 0 0.05 refP P P P= = =  for problems with no free surface flow and 

0,1 0,2 0P P= =  for free surface flow problems [195].      

6.1.2. PDDO governing equations   

The non-local mathematical model is developed by reformulating the classical 

mathematical model by using PDDO.  

The non-local form of the continuity equation, the pressure gradient term and the 

viscous force term in the momentum equation remain the same as in the single-phase 

flow as provided by Gao and Oterkus [8], and they can be presented as follows:  

The non-local form of the continuity equation, i.e. Eq.(6.1): 

 
( )

( ) ( ) ( ) ( )( )1 d
H

V
t





 = −  −

 
x

x
x g ξ v x v x   (6.14) 

The non-local form of the pressure gradient in the momentum equation presented in 

Eq.(6.2): 

 ( ) ( ) ( )( ) ( )1 d
H

P P P V  = −
x

x x x g ξ   (6.15) 

The non-local form of viscous force in the momentum equation presented in Eq.(6.3): 

 ( ) ( ) ( )( ) ( )( )2Tr dV

H
V  = −

x

F x v x v x g ξ   (6.16) 

The derivation of the non-local form of surface tension force is presented as follows: 

In order to develop the PDDO form of the surface tension force model, the gradient 

of the colour function, s , should be firstly expressed by using the PDDO formulation 

as 

 ( ) ( ) ( )( ) ( )1 d
H

s s s V  = −
x

x x x g ξ   (6.17) 
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However, due to the considerable density difference, the weighted function  , i.e. 

s ,  can be modified to keep the continuity of the acceleration across the interface 

[193]. As a result, instead of using the colour function difference ( ) ( )( )s s −x x  in 

Eq.(6.17), the inter-particle colour index number can be utilized as [197] 

( ) ( )( ) ( )
,0

,0 ,0

2
, if and belong to different phase

,

0, if and belong to the same phase

s s



  




  +− = = 
 

x

x x

x x
x x x x

x x

 (6.18) 

and Eq.(6.17) becomes [197]   

 ( ) ( ) ( )1, d
H

s V  = 
x

x x x g ξ   (6.19) 

where 
,0

x
 and 

,0 x
 represent the initial densities of particle x  and x , respectively. 

As a result, the colour function gradient in Eq. (6.7) becomes  

 ( ) ( ) ( ) ( )1, dg
H

s V =  = 
x

c x x x x g ξ   (6.20) 

Consequently, the weighted function in Eq. (6.10) which equals the magnitude of 

the normal direction vector becomes 

 ( ) ( ) ( )1, dg
H

s V =   == 
x

c x x x g ξ  (6.21) 

and the unit normal vector n̂  Eq.(6.8) hence can be calculated as  

 ( )
( )

( )

( ) ( )

( ) ( )

1

1

, d
ˆ

, d

Hg

g
H

s V

Vs

 
= = =

 

 



x

x

x x g ξc x
n x

c x x x g ξ

 (6.22) 

The curvature ( ) x  in Eq.(6.9) thus can be calculated by the PDDO formulation as  

 ( ) ( ) ( ) ( )( ) ( )*

1
ˆ ˆ ˆ d

H
V  = − = − − 

x

x n x n x n x g ξ   (6.23) 
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According to the explanation given in [198], the normal vector n  may have 

erroneous direction and small value away from the interface,  therefore a cut-off value 

( 21.0 10 / x −=    as suggested in [198] ) is set for the normal vector ( )gc x , smaller 

than which the unit normal vector ( )n̂ x  is set to be zero. A function ( )x  is defined 

to indicate if the unit normal vector is zero as   

 ( )
( )1, if

0, otherwise

g  
= 


c x
x  (6.24) 

And the calculation of the unit normal vector ( )n̂ x  is set as  

 ( )
( ) ( ) ( )/ , if 1

ˆ
0, otherwise

g g
 =

= 


c x c x x
n x  (6.25) 

Therefore, the PDDO form of the unit normal direction ( )n̂ x  for particle x  in Eq. 

(6.22) becomes as  

 ( )
( )

( )

( ) ( )

( ) ( )
( )

1

1

, d
, if 1

ˆ , d

0, otherwise

H

g

H
g

V

s

s
V

  
 =

= = =  














x

x

x x g ξ
xc x

n x x x g ξ
c x

  (6.26)   

 

Fig. 6-1 Surface tension force in the multi-fluid interface region 
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The approach for curvature calculation provided in [198] is adopted to increase the 

approximation accuracy. An intermediate estimate of the curvature (the divergence of 

the unit normal vector ˆn ) is defined using a sum over neighbouring unit normal 

vectors as  [198]   

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
***

1
ˆ ˆ ˆmin , d

H
V   = −  = − − 

x

x n x x x n x n x g ξ (6.27) 

The width of the multi-fluid interface region is defined as 2 , as shown in Fig. 6-1. 

It can be referred from Fig. 6-1 that if the central point x  is located at the edge of the 

interface transition region, the unit normal vectors of its family members located in the 

shaded region in Fig. 6-1 are forced to be zero. In other words, the neighbourhood of 

the interface region boundary particle is truncated. Being similar to surface correction 

for the boundary particles in peridynamic discretization and the approach adopted in 

[198], a correction factor for ( )** x  is proposed as  

 ( )
( ) ( )( ) ( )

( )

0

0

min , d

d

H

H

w V

w V
 

 
=






x

x

x x ξ
x

ξ
 (6.28) 

where 0w  represents the improved Gaussian weighted function as [154]  

 ( ) ( )( ) ( )( )
2

/ 9 /2 9

0 / 1 10 ,
h d dw e e h e 

− − −= − − 
ξ

ξ ξ   (6.29) 

In Eq.(6.29), h  represents the smoothing length [154] with its value being set as 

1.2h x=  . The parameter d  represents the dimensionality of the problems as 2d =  

for 2D problems. The term ( ) 
x  can reflect the number density of particle x  [198]. 

As a result, the curvature ( ) x  in Eq.(6.23) is modified as [198]  

 ( )
( )

( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

**
1

***

0 0

ˆ ˆmin , d

min , d / d

H

H H

V

w V w V




 

  − 
= = −

  



 
x

x x

x x n x n x g ξx
x

x x x ξ ξ
 (6.30) 
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As shown in Fig. 6-1, it should be noted that the unit normal n̂  always points from 

the fluid phase itself to the other fluid phase. Consequently, for the calculation of the 

curvature, ( ) x  for central point x  , the unit normal direction vector ( )ˆ n x  for the 

family member x   is inverted if point x  and point x  belong to different fluid phases. 

Hence, Eq.(6.30) is modified as  

 ( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

1

0 0

ˆ ˆmin , d

min , d / d

H

H H

V

w V w V




  − 
= −

  



 
x

x x

x x n x n x g ξ
x

x x ξ ξ
  (6.31) 

with an additional parameter being added as [193]  

 
1, if and belong to different phases

1, if and belong to the same phases


−
= 



x x

x x
  (6.32) 

Finally, the surface tension force is expressed in PDDO form as 

 ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( )

1

1
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ˆ ˆmin , d
, d
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w V w V
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  − 
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


 
x

x

x x

F

x x n x n x g ξ
x x g ξ

x x ξ ξ

 

  (6.33) 

In conclusion, the non-local form of the momentum equation Eq.(6.2) becomes 

( )
( )

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )( )

1 2

1

1

0 0

d + Tr d

ˆ ˆmin , d
, d
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H H

H B

H

H H

v

t

P P V V

V
V

w V w V









=



   − − −

  − 
 − +

  

 




 

x x

x

x

x x

x
x

x x g ξ x v x v x g ξ

x x n x n x g ξ
x x g ξ F

x x ξ ξ

 

  (6.34) 
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6.2.   Numerical implementation for multiphase fluid simulation 

6.2.1. Discretised form of PDDO equations 

In the numerical simulation, the updated Lagrangian description provided in Section 

5.4.3 is adopted, as explained in [8]. Therefore, the reference configuration is referred 

to as the current configuration. The PDDO is reconstructed every time step based on 

the updated family member array. Correspondingly, the integral governing equations 

can also be expressed by using the discretized particles. The central point is denoted 

as i  and its family member is denoted as j . Therefore, the continuity equation 

Eq.(6.14) is discretized as 

 ( ) ( )1

1

1

iN
n n n n n n

i i i j i ij j

j

t V  +

=

 = −  − 
  v v g ξ   (6.35a) 

with 

 
n n n

ij j i= −ξ x x   (6.35b) 

where iN  represents the number of family members of point i  and 
n

ijξ  represents the 

relative position between particle i  and j  in the current configuration nt t= .  

The PDDO form of momentum equation, Eq.(6.34) becomes  

 

( ) ( ) ( ) ( )( )

( )( ) ( )
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ij ijj n

ij ij jN N
jn n

i j ij j ij j

j j

P P V V

V

V

w V w V




 



= =

+

=

=

= =

 
− − + − 
 
  

= +  
   −   
  

 
 

 




 

g ξ v v g ξ
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  (6.36) 

where 1n

i

+
a  represents the acceleration of particle i  in the updated configuration at 

1nt t +=  .  
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Interface implementation is a crucial step for the multi-phase fluid flow simulation. 

The discontinuities will present in the interface region. The non-local approximation 

near the discontinuous region will suffer numerical errors which will be more serious 

with higher-order schemes [188]. As a result, in order to prevent numerical oscillations 

and unphysical particle penetrations [191], the viscosity coefficient and the density for 

multi-phase interface interaction are smoothed in a harmonic mean interpolation as 

[152, 199]  

 
2 i j

ij

i j

 


 
=

+
  (6.37) 

 
2 i j

ij

i j

 


 
=

+
  (6.38) 

where i  and 
j  represent the viscosity coefficients of particle i  and j . Similarly, 

i  and 
j  are the densities for particle i  and j , respectively.   

The velocity and displacements can be predicted by using the Euler forward method 

(1st order) or the Velocity Verlet algorithm (2nd order) [200] as  

Euler forward method: 

1 1n n n

i i i t+ += + v v a    (6.39a) 

1 1n n n

i i i t+ += + u u v    (6.39b) 

1 0 1n n

i i i

+ += +x x u    (6.39c) 

Velocity Verlet algorithm: 

( )1 11

2

n n n n

i i i i t+ += + + v v a a    (6.40a) 

1 21

2

n n n n

i i i it t+ = +  + u u v a    (6.40b) 
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1 0 1n n

i i i

+ += +x x u    (6.40c) 

where the displacement of particle i  is denoted by iu . The term 0

ix  represents the 

initial coordinate for particle i , and 1n

i

+
x  represents the updated coordinate at 1nt t += .  

The time step size t  should satisfy the CFL condition for kinetic, viscous, body 

force and surface tension force fields, shown as [195] 

 
( )

( ) 32
0,1 0,2

max 2 1 0,1 2 0,2

min ,1 1 1
min , , ,

8 4 4 2max / , /

hh h h
t

c g

 

   

 
  
 +
 

V
(6.41) 

where h  is the smoothing length, maxV  is the maximum fluid particle velocity,   is 

the viscosity coefficient,   is the fluid density, g  is the gravity acceleration, and   

is the surface tension coefficient. The artificial speed of sound for the lighter fluid is 

larger than the one for the heavier fluid on the condition of same material constants 

1 2 = . Therefore, the value of 2c  is used for the constraints on the time step size.    

6.2.2. Boundary Treatment 

6.2.2.1 Boundary conditions for solid wall 

In the present work, the fictitious particles are employed to represent the solid 

boundaries as described in [8, 9].  

Non-slip boundary conditions 

The velocities of the fictitious wall particles can be calculated based on the velocities 

of the fluid particles. As illustrated in Fig. 6-2, for the non-slip solid boundary 

condition, the velocity of the solid fictitious particle i , is calculated as [152] 

 ( ) ( )
1 2

0 0

1 1

2
N N

n n n n n

i wall ij j ij k

j k

w w
= =

 
= − + 

 
 v v ξ v ξ v   (6.42) 
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where 1N  and 2N  represent the number of family members of material point i  that 

belongs to fluid 1 and 2, respectively. Note that material point k  and j  cannot be 

fictitious wall particles, i.e. in Eq.(6.42) fictitious wall particles are not included in the 

family members of material point i . 

Furthermore, particles j  and  k  represent the family members of the solid particle 

i , where particle j  belongs to fluid 1 and particle k  belongs to fluid 2. Their 

velocities in the current configuration are denoted by 
n

jv  and n

kv , respectively. The 

parameter wallv  denotes the prescribed solid wall velocity. The second term on the 

right-hand side represents the weighted fluid velocity summation. In Eq. (6.42), 0w  

represents the improved Gaussian weighted function as provided in Eq. (6.29). 

 

Fig. 6-2 Boundary and interface illustration 

The pressure of the solid fictitious particle is calculated based on the fluid particles 

according to the formulation provided in [152] as   

( )( ) ( ) ( )( ) ( )

( ) ( )

1 2

1 2
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1 1

0 0

1 1

N N
B n n B n n

j j j wall ij ij k k k wall ik ik

j k

i N N
n n

ij ik

j k

P w P w

P

w w
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= =
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+ −  + + − 
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+

 

 

F a ξ ξ F a ξ ξ

ξ ξ

 (6.43a) 
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 ; ;B B

j j k k = =F g F g   (6.43b) 

where 
jP  and kP   represent the fluid pressure. 

B

jF  and B

kF  represent the body force of 

the fluid particles. In the current chapter, the body force is calculated as Eq. (6.43b) 

with g  representing the gravitational acceleration. 
walla  represents the acceleration of 

the solid wall. Please note that in Eq.(6.43a) fictitious wall particles are not included 

in the family members of material point i . 

Slip boundary condition for solid wall 

For the slip boundary condition, the viscous forces are neglected for fluid-solid 

particle interactions ( )0v =F  and the velocity of the fictitious wall particle is set as 

[152] 

 n

i wall=v v   (6.44) 

The pressure of the fictitious solid particle is calculated according to Eq.(6.43a).  

6.2.2.2 Boundary collision model  

If the fluid particle penetrates the solid wall in the updated configuration, the 

velocity of the fluid particle needs to be corrected [201]. In this case, the boundary 

collision model [201] can be applied where the solid wall is simulated as a reflective 

boundary condition as   

( ) ( ) ( )( ) ( )1 1 1 1ˆ ˆ ˆ2 , if 0
corrected

n n n n

i i i wall wall wall i wall wall

+ + + += − −  −  v v v v n n v v n   (6.45) 

where ˆ
walln  represents the unit normal direction of the solid wall, as shown in Fig. 6-3.  

The velocity correction in Eq.(6.45) is illustrated in Fig. 6-3. 
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Fig. 6-3 Sketch for solid wall collision model 

6.2.3. Particle shifting technology for preventing particle clustering  

For the particle methods such as SPH, the instability problem may occur when the 

particle distribution becomes highly distorted [202]. The numerical errors induced by 

the irregular particle spacing may dominate the results especially in the later stage of 

the numerical simulations. The same problem also happens in the PD field, as 

explained by Silling et al. [133]. To avoid the particle clustering phenomenon or the 

instability problem, the particle shifting technology (PST) [159] is widely applied in 

the fluid flow simulations [202-207]. The particles will be nearly uniformly distributed 

after shifting; thus, the singularity of the particle distribution will be reduced. 

Therefore the particle positions can be modified by using a shifting displacement [159]: 

 ( ) ( )1 0 1
corrected shifted

n n

i i i

+ += +x x u    (6.46) 

The shifting displacement for particle i  can be found as  

 ( ) ( )1 1
shifted PSTn n

i i i+ += +u u u   (6.47) 

In Eq. (6.47), the parameter ( )
PST

iu  represents the shifting distance and it can be 

defined as  

 ( )
PST

i PST PST iC =u U   (6.48) 
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where PSTC  is a predefined constant ranging from 0.01 to 0.1 depending on the specific 

problem and PST  is the shifting magnitude which can be defined as [159]  

 maxPST t = V   (6.49) 

where maxV  can be chosen as the magnitude of the largest velocity overall fluid 

particles or it can be estimated specifically according to the specific problem [159] .  

In Eq. (6.48), the parameter 
iU  represents the displacement shift-vector which can 

be defined as [159] 

 

2

2
1

iN
i

i ij
n

j
ij



=

=U ζ
ξ

  (6.50a) 

with 

 

n

ij

ij n

ij

=
ξ

ζ
ξ

  (6.50b) 

 
1

1 iN
n

i ij

jiN


=

=  ξ   (6.50c) 

where 
i  represents the average spacing between the central point i  and its family 

members (e.g. j ) [159] and ijζ  represents the unit distance vector between particles i  

and j . Note that, the summation of ijζ  in Eq. (6.50a) can reflect the anisotropy of the 

current particle distribution [159] and the term ( )22

/ n

i ij ξ  acts as a weighted function 

in the formulation. According to [203],  numerical errors will be induced if the shifting 

distance is much larger than the initial spacing distance x . Therefore, an upper limit 

for the particle shifting distance, ( )
PST

iu , is imposed as 0.2 x [203]. As an optional 

procedure, the velocity and pressure can also be corrected based on the displacement 
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shifting. The corresponding details are provided in Appendix E. The flowchart of the 

PST is provided in Fig. 6-4 as  

 

Fig. 6-4 Flowchart for PST algorithm  

6.2.4. Moving least square algorithm for multiphase fluids 

It is known that the free movement of the particles may create the “pressure 

instability” problems for Lagrangian particle methods, where the mass is not conserved 

and the great oscillation occurs in density and pressure [208, 209]. In order to 

overcome this problem, velocity, pressure and density values are smoothed by using 

moving least square (MLS) algorithm [153, 210]. The algorithm is introduced to 

hydrodynamics by Dilts [153].  In the present chapter, the first order MLS [154] 
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provided in Section 5.4.6.2 is modified for multi-phase fluids flow density smoothing 

as [208]   

 ( )
( ) ( )

( )

n n

j MLS ij j
smoothed jn

i n

MLS ij j

j

w V

w V



 =





ξ

ξ
  (6.51) 

with 

( )
( )

1

0

0,1
i

n

jn

j i
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P P

P



 
 −
 = +
 
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0,11

0,

0,22

 for fluid 1 for fluid 1
;

 for fluid 2 for fluid 2
i i


 




= = 
 

(6.52) 

where ( )n

MLS ijw ξ  is provided in Eq.(5.113). The parameter 0,i  is the initial density of 

particle i . The correction in Eq. (6.52)  can be considered as converting the phase of 

particle j  into the phase of particle i [208].  

6.2.5. XSPH displacement smoothing  

Compared to the PST introduced in Section 6.2.3 for the large irregular particle 

distributions, a simpler XSPH method can be chosen for less irregular particle 

distributions to save computational time. The formulation in XSPH method [128] is 

adopted here to only update the displacements as   

 ( ) ( )1 1
shifted XSPHn n

i i i+ += +u u u   (6.53a) 

with 

 ( )
( )

( ) ( )0
2

n n

XSPH i j n n n

i i j i ijn n
j i j

m w t
 

 
 

 +
 = − 
 
 
u v v ξ   (6.53b) 

where   is an adjustable parameter as 0 1   [128] and im  is the mass of particle 

i  which can be calculated as 
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 0,i i im V=  (6.53c) 

6.2.6. Artificial viscosity 

To reduce the undesirable oscillations, the artificial viscosity,  , widely applied in 

SPH method [128] can be utilized and incorporated into the current PDDO model. 

According to [128, 211], the momentum equation Eq.(6.2) can be modified by 

including the artificial viscosity form as 

 V B SP
t




= − + + + +


v
F F F  (6.54) 

where the SPH form of the gradient of artificial viscosity, i  for particle i  is 

expressed as [189] 
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( ) ( )2 2

1
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0.1
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v v ξ

v v ξ
ξ       (6.55) 

where ijW  represents a weighted function in SPH method. 

In Eq.(6.55), avgc  is the average value of the artificial speeds of sound of particle i  

and j . Inspired by SPH method [128], the gradient of the artificial viscosity term i  

is reformulated by replacing the SPH gradient operator with PDDO as  

 

( )

( )
( )( ) ( )12 2

1

,   for   0
0.1

0,                                                           otherwise

i
n n nN

avg j i ij n n n n

ij j j i ij
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ji ij
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V

h



=

 − 
 −  

 =  +




v v ξ

g ξ v v ξ
ξ     (6.56) 

where 1.2h x=   (being same with the one in MLS scheme) [212] and the empirical 

constant   which generally ranges from 0.01 to 0.1 [128]. In this chapter, the 

empirical constant is chosen as 0.02 = . Finally, the flowchart of the algorithm 

including surface tension calculation is provided in Fig. 6-5 [8]. 
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Fig. 6-5 Flowchart for the multi-phase fluid flow simulation by the PDDO model 

including the surface tension force calculation 
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6.3. Numerical simulations 

In this section, some multi-phase fluid flow benchmark problems are solved by 

using the newly developed PDDO model. First, the two-phase fluids hydrostatic 

problem is simulated to validate the energy conservation of the PDDO model. Second, 

the two-phase Poiseuille flow simulation is conducted to validate the multi-viscosity 

coefficient treatment. Subsequently, the 2D droplet deformation under the surface 

tension force is simulated to validate the surface tension PDDO formulation.   

6.3.1. Hydrostatic test 

In the section, a hydrostatic simulation is conducted to study the energy conservation 

of the current PDDO model [208]. The stationary fluids with their properties being 

3

0, 3000 kg/mA = ,
3

0, 1000 kg/mB =  and 310 kg/msA B  −= =  [186] are in an open 

container with dimensions being 0.05 m 0.03 mL W =  , as shown in Fig. 6-6 (a). 

The gravitational acceleration is 
29.8 m/s=g . For fluid particle i , it is implemented 

as 

 
0

B

i

i

 
=  

− 
F

g
  (6.57) 

The maximum velocity of the fluid is estimated as max /2 0.383 m/sW= V g

[142] and the material constants are 1A B = = . The artificial speeds of sound are 

hence chosen as 10 times of the maximum velocity as max10 3.83 m/sA Bc c= = =V

[183]. The background pressure is set as 0 0P =  since the free surface is involved [195]. 

As shown in Fig. 6-6 (b), 40 24  PDDO particles are distributed in a uniform form 

with the initial particle spacing is set as 
31.25 10 mx − =  . The horizon size is chosen 

as 3.6 x =  . In order to save the computational time, only one fictitious layer is 

imposed to simulate the solid wall. The solid wall boundary conditions are 

 0, , 0 : 0x yx x L y v v= = = = =   (6.58) 
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where xv  and 
yv  are the horizontal and vertical components of velocity. Consequently, 

the boundary conditions are implemented by forcing the particles in the fictitious layer 

having the velocities calculated according to Eq.(6.42) with 0wall =v . In addition, the 

pressures of the fictitious solid particles are calculated according to Eq.(6.43a).  

The real fluid particles on the free surface are forced to have the constraint as   

 : 0y W P= =   (6.59) 

The velocities of the free surface fluid particles are updated according to Eq.(6.36) 

and Eq.(6.39a).  

The simulation time step size is chosen as 
510 st − =  with total simulation time as 

1.0 st = . The MLS algorithm is performed every 20 time steps, i.e. 20MLSn = [154]. 

The XSPH modification in Section 6.2.5 with the constant being 0.08 = [189]. The 

Velocity Verlet algorithm in Section 6.2.1 is adopted. The PST is not applied in this 

case. The surface tension force is not included since it is neglectable compared with 

the gravity force. The artificial viscosity is not used.  

  

(a)   (b) 

Fig. 6-6 Schematic of hydrostatic problem: (a) Geometry illustration and (b) PDDO 

discretization 

The analytical solution for hydrostatic pressure is calculated as 

 ( ),B analytical Bp W y= −g  (6.60) 
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 ( ) ( ), /2 /2A analytical B Ap W W y = + −g g  (6.61) 

where y  represents the vertical coordinate. The time history of the predicted pressure 

and kinetic energy at ( ) ( ), 0.025,0.015x y =  are presented in Fig. 6-7. The PDDO 

results are compared with analytical solutions. The pressure profile along the mid 

vertical line 22.5 10 mx −=   is compared with the analytical solution, as shown in Fig. 

6-8 (a). Furthermore, the deformed configuration at the final time is presented in Fig. 

6-8 (b). It can be observed that the PDDO results agree well with the analytical 

solutions. Thus, the capability of the present PDDO model for solving the two-phase 

hydrostatic problem is demonstrated. Besides, the energy conservation of the model is 

also validated.        

  

(a)   (b) 

Fig. 6-7 Time history of (a) pressure and (b) kinetic energy at ( ) ( ), 0.025,0.015x y = . 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300

P
re

ss
u

re
 (

P
a
)

t (s)

 PDDO

 Analytical

0.0 0.2 0.4 0.6 0.8 1.0

0.0000

0.0002

0.0004

0.0006

0.0008
K

in
e
ti

c
 e

n
e
rg

y
 (

J)

t (s)

 PDDO

 Analytical



231 

 

  

(a)   (b) 

 Fig. 6-8 Variation of pressure distribution at (a)  
22.5 10 mx −=   (b) deformed 

configuration at 1st =  

6.3.2. Two-phase Poiseuille flow 

The two-phase fluids laminar flow within two infinite plates has been studied [213] 

as a benchmark problem in the field of multi-phase fluid flows. As shown in Fig. 6-9, 

two adjacent immiscible fluids Poiseuille laminar flow is simulated by using the 

developed PDDO model. The flow domain has the dimensions as 
32 10 mL b −= = . 

The top and bottom boundaries are stationary and non-slip. The boundary conditions 

are  

At y b= −     

 0x yv v= =   (6.62) 

At y b=  

 0x yv v= =   (6.63) 

Consequently, the velocities of the fictitious solid particles are calculated according 

to Eq.(6.42) with 0wall =v . In addition, the pressures of the fictitious solid particles 

are calculated according to Eq.(6.43a).  
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The initial conditions for all particles including the fluid particles and the fictitious 

solid particles are: 

 0x yv v= =   (6.64) 

A pressure gradient is applied as a body force per unit mass as 
4 22 10 m/sF −=   

over both fluids in the x  direction, as for particle i    

 
0

iB

i

F 
=  
 

F   (6.65) 

The densities of both fluids are the same as 3

0, 0, 1000 kg/mA B = = . The viscosity 

coefficient of fluid B is fixed as 310 kg/msB
−= . The viscosity coefficient of fluid A 

has three different values, namely, 
32 10 kg/ms− , 

35 10 kg/ms−  and 
310 10 kg/ms− . 

The material constants both for fluid A and B are set as 1A B = = . The maximum 

velocity of the fluid is set as 
6

max 8.7 10 m/s−= V  [188]. Hence, the artificial speeds 

of sound become 58.7 10 m/sA Bc c −= =   [128]. The background pressure is not 

adopted for this simple laminar fluid flow case. In the PDDO simulation, an initial 

particle spacing of 
51 10 mx − =   is adopted. The time step size is chosen as 

51 10 st − =  . The total simulation time is chosen as 0.6 st =  to achieve a steady state 

at the end of the simulation. The fluids are stationary at the initial state. Since the 

surface tension effect is small and neglectable compared to the applied body force, no 

surface tension force is applied. The PST, the MLS, the XSPH, and the artificial 

viscosity are not used in this case. The Euler forward scheme is used.          
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Fig. 6-9 Schematic of two-phase Poiseuille flow 

The analytical solutions of the horizontal velocity for the two fluids are provided by 

Bird et al. [214] as 
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where ,A xv  and ,B xv  represent the horizontal velocity for fluid A  and B  respectively. 

The term y  represents the vertical coordinate. The analytical average velocities are 

calculated as [214]   
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where ,A xv  and ,B xv  represent the average horizontal velocity for fluids A and B 

respectively. The average horizontal velocity over the whole flow domain, i.e. xv , is 

calculated according to Eq.(6.67c).   

The comparison between the PDDO and analytical solutions of the normal velocity 

/x xv v  at the steady-state is provided in Fig. 6-10. It can be inferred from the figure 

that the results agree well.   

 

Fig. 6-10 Comparison of the horizontal velocity profile between the PDDO results 

and analytical solutions in three different viscosity coefficient ratios at 0.6 st = .  

A convergence study is also carried out for different resolutions and viscosity 

coefficients, namely 
55 10 mx − =  , 

53.3 10 m− , 
52 10 m− , and 

51 10 m−  for 

/ 10,5,2A B  = , respectively. The error can be calculated as 
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From Fig. 6-11, it can be observed that the numerical simulation error decreases 

with increasing PDDO particles. Furthermore, the error becomes larger with larger 

viscosity ratios.   

 

Fig. 6-11 Rate of convergence for two-phase Poiseuille flow in three viscosity ratios 

6.3.3. 2D droplet deformation 

To validate the surface tension model, a 2D square droplet deformation simulation 

is conducted as previous ones [186, 192, 195, 197]. A square droplet containing fluid 

A with sides 0.6 mdl =  is located in the centre of a container with its sides being 

1mL = , as shown in Fig. 6-12 (a). The droplet is surrounded by fluid B. The two 

fluids have the same density and viscosity coefficient as 31kg/mA B = =  and 

0.2 Pa sA B = =  . The surface tension coefficient is set as 1 N/m =  [186, 192, 195, 

197].  

The initial condition is  

 at 0 : 0, 0, 0t = = = =a v u   (6.69) 

The non-slip solid boundary condition is applied. As shown in Fig. 6-12 (b), the 

fluid domain is discretized by 80 80  particles and three layers of the fictitious 

particles are imposed to represent the fixed solid boundary as  
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 /2, /2, /2, /2 : 0x yx L x L y W y W v v= − = = − = = =   (6.70) 

Therefore, the velocities of the fictitious solid particles are calculated according to 

Eq.(6.42) with 0wall =v . The pressure of the fictitious solid particles is calculated 

according to Eq.(6.43a). On the fluids interface, the surface tension force is included.  

The horizon size is chosen as 3.6 x =  . The speed of the sound is set as 

10 m/sA Bc c= =  and the material constants are 1A B = = . The maximum velocity 

magnitude thus can be calculated as max /10 1m/sAc= =V [128]. Furthermore, the 

background pressure is calculated as 
2

0 0,0.05 0.05 / 5 Paref B A AP P c = = =  as 

explained in Section 6.1.1. The time step size is chosen as 
41 10 st − =   and the total 

simulation time is 1st = . The MLS algorithm is performed every 20 time steps, i.e. 

20MLSn = [154]. The PST without pressure and velocity correction is performed as 

well. The constant in PST is chosen as 0.01PSTC = . Besides, it can be calculated 

according to Eq.(6.49) as 41 10 mPST −= . The artificial viscosity in Section 6.2.6 is 

adopted to make the simulation more stable.  The velocity Verlet algorithm is used. 

The XSPH is not used in this case.  

  

(a)   (b) 

Fig. 6-12 2D square droplet deformation under surface tension force (a) geometry 

sketch and (b) PDDO discretization with 80 80  nodes 
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The evolution of the droplet configuration is provided in Fig. 6-13. It can be 

observed from the figure that at the equilibrium state, the square droplet is transformed 

in a circular shape. The radius of the final circular droplet can be calculated as 

/ 0.338 mdR l =   ( 2 2

dR l =  with incompressible hypothesis [186, 192, 195, 

197] ). Consequently, the pressure drop between the two phases is calculated according 

to Laplace’s law as [208] 

 2.954 Pap
R


 = =   (6.71) 

where the inner fluid has a higher pressure to balance the surface tension force. The 

pressure profile along the horizontal line 0y =  with different resolutions is provided 

in Fig. 6-14(a). The time history of the average pressure difference A BP P P = −  is 

provided in Fig. 6-14 (b) where AP  and BP  represent the average pressure of the fluid 

particles for fluid A and B which are not in the interface region, respectively. The 

pressure distribution is provided in Fig. 6-14(c). Due to the viscosity force, the kinetic 

energy of the square droplet will decrease with time increasing, leading to a steady 

state finally. The time history of the kinetic energy and the velocity distribution at the 

final stage are provided in Fig. 6-15. With the refinement of the resolution, the 

magnitude of the kinetic energy decreases at the quasi-equilibrium state, within the 

51 10−  level for 80 80  particles. However, it can also be observed from Fig. 6-15 (b) 

that even for the quasi-equilibrium state, the oscillation of the interface still exists. 

This oscillation, also can be noted as the spurious current, may be created by the slight 

variation of curvature because of the discrete nature of numerical approach according 

to the explanation given in [215]. The 1L  norm [215] defined as 1 1
/

nodeN

nodeL N= v  is 

33.3 10− , and 2L  norm [215] defined as 
2

2

2 1
/

nodeN

nodeL N=  v  is 57.9 10−   at the 

final time.        
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(a) (b) 

  

(c) (d) 

Fig. 6-13 Particle distribution at time (a) 0.1st = , (b) 0.3 st = , (c) 0.5 st = , and (d) 

1st =  with 80 80  particles 
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(a) (b) 

 

(c) 

Fig. 6-14 Pressure profile (a) comparison with analytical solution along 0y = , (b) 

time history of the average pressure difference, and (c) pressure distribution with 

80 80  particles 

  

(a) (b) 

Fig. 6-15 (a) Time history of the kinetic energy of the inner droplet and (b) velocity 

distribution at the final state for 80 80  resolution   

The orientation and magnitude of the surface tension force obtained by the current 

PDDO model are provided in Fig. 6-16 (a). Besides, the SPH result [195] is provided 

in Fig. 6-16 (b) for comparison. It can be observed that all the surface tension forces 

are pointing to the centre of the inner droplet, being perpendicular to the interface. 

Because the interparticle index numbers used in this section are always positive, the 
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points to fluid A.  However, the curvatures on the two sides of the interface belonging 

to the two different fluid phases have opposite sign values, one being positive and the 

other being negative. As a result, the final surface tension forces always point to the 

centre. Also, the magnitude of the surface tension force decreases from the interface 

to the edge of the interface region. 

  

(a) (b) 

Fig. 6-16 The direction of the surface tension force and magnitude (a) obtained by 

PDDO for 40 40  nodes and (b) obtained by SPH 40 40  nodes [195] 

Furthermore, two more simulation cases are conducted: case 1 for 

/ / 10ratio B A B AR    = = = , and case 2 for / / 5ratio B A B AR    = = =  , as shown in 

Table 7.  

Table 7 Density and viscosity values for different cases 

Case 

number 
( )3kg/mA   ( )3kg/mB  ( )Pa sA   ( )Pa sB   ratioR  

0 1 1 0.2 0.2 1 

1 1 5 0.2 1 5 

2 1 10 0.2 2 10 

 

The final configurations of the droplet for both cases are provided in Fig. 6-17 (a) 

and (b). The pressure profiles along 0y =  for 1ratioR = ,  5ratioR = , and 10ratioR =  are 

provided in Fig. 6-17 (c) for comparison. It is interesting to see that the case of 
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5ratioR =  has the worst accuracy among all these three cases. According to the 

investigation in [195], both a smaller viscosity coefficient ratio and a larger density 

ratio can give less accurate results. In the current study, the accuracy of case 2 which 

has a relatively smaller viscosity coefficient ratio and a smaller density ratio is less 

than the one of case 1 which has a relatively larger viscosity coefficient ratio and a 

larger density ratio. Therefore, in the present work, the ratio of the viscosity coefficient 

has a larger effect than the ratio of density on the accuracy of the simulation results.   

  

(a) (b) 

 

(c) 

Fig. 6-17 Particle distributions at time 1st =  with 80 80  particles for (a) case 1, 

and (b) case 2. (c) pressure profiles comparison 
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6.4. Summary 

In this chapter, a multi-phase fluid laminar flow model is developed by using the 

peridynamic differential operator. The surface tension force originally from the 

Continuum Surface Force model is converted into a PDDO expression. The developed 

model is applied to solve the multi-phase fluid flow problems, e.g. two-phase 

hydrostatic problem, two-phase Poiseuille flow, 2D droplet deformation. The good 

agreements between the PDDO results and the existing results demonstrate the 

capability of the present model for the multi-phase fluid flow simulations.        
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7. Fluid-Structure Interaction Numerical Simulation 

7.1. Introduction 

 Fluid-structure interaction (FSI) is a class of problems with mutual dependence 

between the fluid and structural mechanics parts [216]. The FSI phenomenon widely 

exists in the engineering field, e.g. liquid sloshing [120], slamming [217], etc.. 

Therefore, it has been extensively and intensively studied for years.  

There are mainly two types of simulation methods, i.e. simultaneous methods and 

partitioned methods. When the coupling between the fluid and structure is strong, or 

the fluid motion and structure deformation are comparable, it is convenient to employ 

a simultaneous solution [218]. One popular method is the Arbitrary-Lagrangian-

Eulerian (ALE) formulation for coupling the fluid described by Eulerian formulation 

and the structure described by Lagrangian formulation [219]. The immersed boundary 

method (IBM) couples the Eulerian fluid and the Lagrangian structure via interpolation 

in a bi-directional way [220]. Another promising solution falls into the category of 

fully Lagrangian description in which both the fluid and the structure are formulated 

in Lagrangian form. Taking the smoothing particle hydrodynamics (SPH) as an 

example, Antoci et al. [218] develop a coupled SPH-SPH model to simulate the 

behaviour of fluid and elastic structure by their SPH form governing equations. The 

SPH-SPH model predicted results are compared with the ones obtained by the 

experiment, achieving a good agreement. A multiphase SPH model has been employed 

by Ruben Paredes and Len Imas [221]  to solve the fluid-structure interaction problems. 

The simulations of the sloshing problems and the elastic gate problem are conducted 

to verify their pure SPH model. Furthermore, a complex fluid-structure dam-breaking 

problem is studied in [222] with using the multi-phase SPH method coupled with 

Adaptive-Particle-Refinement (APR) technique. An enhanced incompressible SPH-

SPH coupled method is proposed by Khayyer et al. [223] to simulate the 

incompressible fluid and elastic structure interactions. The divergence-free property 

of the fluid velocity field is guaranteed by solving the Poisson Pressure Equation (PPE). 

Besides, a dynamic stabilizer technique is employed [224] to overcome the tension 

instability issues. The state-of-art development of the SPH-SPH or SPH coupled with 
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other methods methodology for FSI problems is reviewed by Moubiu Liu and Zhiliang 

Zhang [225]. For example, the discrete element method (DEM) can be coupled with 

the SPH method for solving the FSI problems, where DEM is used for the structure 

modelling while SPH is adopted for the fluid modelling [226]. In the study of Wu et 

al. [226], the free surface flow, as well as the structural failure, is considered. Besides 

the application of SPH on FSI problems, the moving particle semi-implicit (MPS) 

method has also been utilized for the FSI problems. A multi-resolution MPS model is 

developed by Khayyer et al. [227] for the incompressible fluid-elastic structure 

interaction simulations. In their study, the problem of sloshing with an elastic baffle is 

simulated. The good agreement between the numerical results and the experiment 

results validates the accuracy of their model. Furthermore, an MPS model considering 

a dynamic equation of angular momentum conservation is proposed in [228] for FSI 

problems corresponding to the incompressible fluid flow and elastic structures.    

Since the PD theory is initially proposed for solid mechanics, the published PD 

models for FSI problems are rare. A coupled PD-IBM methodology is developed by 

Barba et al. [229] for hydraulic fracture problems. The BB-PD theory is adopted for 

structure behaviour simulation and the open-source CaNS parallel code is utilized for 

fluid modelling [229]. Liu et al. [212] develop a PD model for FSI problems to 

simulate ice-water interactions. The BB-PD is also used for ice modelling with 

including the ice breakage [230-232]. The updated Lagrangian particle hydrodynamics 

(ULPH) proposed by Tu et al. [132] is utilized to simulate the fluid flow. Being 

different from the aforementioned PD models, this chapter discusses an FSI model 

where the elastic structure is simulated by OSB-PD and the fluid is modelled by PDDO. 

As a result, the elastic structure can have any material properties. At the same time, 

the integration of the non-local fluid governing equations, i.e. Navier-Stokes equations, 

can be only performed once since the PDDO can achieve higher-order derivatives 

converting [8].  

7.2. Numerical implementations for fluid-structure simulation 

The algorithm of the interaction implementation between the fluid and the elastic 

structure is a key issue in FSI problems. As illustrated in Fig. 7-1, two different sets of 
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PD particles are used to represent the structure and the fluid, i.e. green particles for 

structure and blue particles for fluid. For the particles near the fluid-structure interface, 

 , there are four kinds of PD interactions between them: structure-structure 

interaction (green colour), fluid-fluid interaction (blue colour), structure (central)-fluid 

(family member) interaction (red colour), and fluid (central)-structure (family member) 

interaction (yellow colour).  

For the first two kinds of interactions (the single-phase interactions, the green one 

and blue one), the OSB-PD model and PDDO model can be utilized to simulate the 

solid and fluid, which is presented in Section 7.2.1. The numerical implementation for 

the other two kinds of PD interactions (the red one and the yellow one) is presented in 

Section 7.2.3. 

 

Fig. 7-1 Fluid-Structure interface illustration  

7.2.1. Discretised form of PD governing equations 

The governing equations are expressed by using the discretized forms.  

Equation of motion for mechanical deformations: 
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where 1

,

n

s i

+
u  is the acceleration of solid particle i  at time step 1n+ . 

,s iN  is the total 

number of the family members belonging to solid of solid particle i . ,s ix  and ,s jx  are 

the initial positions of solid particle i  and j . Correspondingly, ,s iy  and ,s jy  are the 

current positions of particle i  and j . ,s i  and ,s j  are the dilatations of particle i  and 

j , provided in Eq.(2.10). ijs  is the bond stretch between particle i  and j , provided in 

Eq.(2.7). ,s jV  is the volume of the solid particle j . The subscript ( )s  denotes the solid 

particles. The superscript ( )1n+  denotes the updated configuration.      

Navier-Stokes equations for fluid: 
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The subscript ( )f
 denotes that the particles belong to fluids. 

1

,

n

f i +
 and 

1

,

n

f i

+
u  

represent the density and acceleration of fluid particle i  in the updated configuration 

1nt t += . ,f iN  is the total number of the family members belonging to the fluid system 

of particle i . ,

n

f jV  is the volume of fluid particle j  in the current configuration.  

The velocity, displacement, and position for solid and fluid particles are updated by 

the velocity Verlet algorithm (2nd order) [200] as  

 ( )1 1

s, , , ,

1

2

n n n n

i s i s i s i t+ += + + v v u u , ( )1 1

, , , ,

1

2

n n n n

f i f i f i f i t+ += + + v v u u  (7.4) 

 1 1

, , , ,

1

2

n n n n

s i s i s i s it t+ += +  + u u v u  , 1 2

, , , ,

1

2

n n n n

f i f i f i f it t+ = +  + u u v u  (7.5) 
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 1 1

, , ,

n n

s i s i s i

+ += +uy x , 1 1

, , ,

n n

f i f i f i

+ += +y x u  (7.6) 

In the present study, a uniform initial node spacing is adopted for both fluid and 

solid. Hence the horizon size for fluid f  and the horizon size for solid 
s  equal to 

each other, i.e. f s  = = . 

7.2.2. Numerical treatment for the fluid model  

7.2.2.1 Free surface detection 

Similar to MPS scheme number density is calculated for detecting the free surface 

as proposed by Koshizuka et al. [233]. The number density can reflect the number of 

family members where a larger one represents more family members and a smaller 

represents fewer family members. The initial and current number density can reflect 

the level of the number of family members in the initial and current configuration, 

respectively. The initial and current number densities of particle i  are calculated as 

[233] 
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  (7.8) 

where h  is the smooth length defined as 1.2h x=   [139]. Particle i  will become a 

free-surface fluid particle, and its pressure will be forced as 0iP = , if the following 

criterion is satisfied [233] 

 ( ) ( )( ) (0)0.9nd i d i   (7.9) 

7.2.2.2 Fluid-structure interface collision model 

The fluid-structure interface collision model is applied for preventing material 

points to enter the solid structure [234]. The solid wall is simulated as a reflective 

boundary condition. 
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Fig. 7-2 Collision model for fluid-structure interface condition 

In Fig. 7-2, the fluid particle at fy  is located within the fluid-structure interface 

region (defined in Fig. 7-1). The solid particles within the interface-nearest layer (these 

solid particles have the shortest distance to the interface) are considered here as the 

family members of fluid particle at fy , i.e. the solid particle at sy  belongs to the 

family members of fluid particle at fy .  

 A fictitious particle at ( )int,
ˆ0.5s s sx= − y y n y  is defined as the corresponding 

interface particle of solid particle at 
sy , shown as the yellow circle in Fig. 7-2. The 

position int,sy  of this fictitious particle is assumed to be on the fluid-structure interface, 

as shown in Fig. 7-2.    

Then the collision model is applied in two steps: 

Step 1) The first step is to check if the fluid particle at fy  penetrates the interface

 .  

The new position of the fluid particle at fy  is updated according to Eq.(7.6). The 

new location of the fluid particle is denoted as fz . Then for all the solid family 

member particles considered in the collision model, e.g. solid particle at sy , the 

following criteria is checked 

fy
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mind
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ˆ
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 ( ) ( )int,
ˆ 0s f s − n y z y  (7.10) 

If the criterion in Eq.(7.10) is satisfied, it is concluded that the particle at fz  

penetrates the solid (shown as dashed blue circle in Fig. 7-2).  

Step 2) If the fluid particle penetrates the structure, its velocity should be corrected 

accordingly.  

First, find the solid family member obtaining the shortest relative distance with fluid 

particle at fy  and its unit normal as  

 ( ) 1

min min ,
f

n

s f sd H += − 
y

y y y  (7.11a) 

 ( )min , min
ˆ ˆ

d s d=n n y  (7.11b) 

Subsequently, the velocity of the fluid particle at fy  is corrected as 

 ( ) ( )1 1 1 1

min min min
ˆ ˆ ˆ2 , if 0

corrected
n n n n

f f f d d f d

+ + + += −   v v v n n v n  (7.12) 

Here 
1n

f

+
v  is the velocity predicted by Eq.(7.4). The updated corrected displacement 

and position become 

 ( ) ( )1 1 2

, ,

1

2

corrected corrected
n n n n

f i f i f ft t+ += +  + u u v u  (7.13) 

 ( ) ( )1
corrected corrected

n

f f f

+= +z x u  (7.14) 

7.2.3. Boundary and FSI treatment 

For flow simulation, the elastic structure serves as a moving boundary condition 

with the deformed configuration. The solid particle at sy  is treated as the boundary 

particle of fluid ,f boundaryy  which occupies the same position as sy .   
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On the other hand, the fluid effect on the structural deformation is considered via 

the fluid pressure field acting as an external force [218]. The details are provided in 

the following content in this section. 

 

Fig. 7-3 FSI methodology scheme 

7.2.3.1 Interface definition and its normal 

In dealing with the interaction between the elastic structure and fluid particles, the 

definition of the interface domain and its normal is one of the key issues. Since the PD 

is a non-local theory, the interface region between the fluid and the elastic structure 

has a fixed thickness, being twice of the horizon size 2 , as shown in Fig. 7-1. 

Because of the movement of the structure and the fluid particles, the interface, as well 

as its normal direction n̂  (see Fig. 7-1), changes with time integration. The colour 

function method which is adopted in the volume of fraction (VOF) [179] method is 

employed in the present study. The structure and the fluid particles are identified by a 

predefined colour function as 

 ( )
1, for particle belonging to fluid,

2, for particle belonging to solid,

i f

i

i s

c
=

= 
=

x x x
x

x x x
  (7.15) 

The colour function in Eq.(7.15) indicates if a particle belongs to the fluid or the 

structure. However, during the simulation process, particle ix  may move to its new 

position. Therefore, it is necessary to find out if the particle ix  is close to the interface 

region or not. This can be done by calculating the gradient of the colour function at 

point ix  by using the colour function values of its neighbours through PDDO [18] as  

Structure simulation

OSB-PD model

Fluid simulation

PDDO model

Moving Boundary Condition

External Body Force

s fPb

,boundarys f→y y

Fluid-Structure Interaction

, , ,f f f fPx v,s sx u
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 ( ) ( ) ( ) ( )( ) ( )1

1

i

j i

N

g i ji j

j

ic c c V
=

−= = − x x yc x x g y  (7.16) 

It can be inferred from Eq.(7.16) that if the neighbourhood of point 
ix  is fully 

located within the single-phase region, i.e. either the structure domain or the fluid 

domain, the value of the normal direction vector becomes zero ( ) 0g i =c x . On the 

contrary, if the particle is in the interface region, the magnitude of its normal direction 

vector will not be zero, ( ) 0g i c x . This can be used to find out if the material point 

ix  is at the interface region or not. The unit normal direction of the interface can also 

be calculated by using the gradient of colour function as 

 ( )
( )

( )
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i
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=
c x

n x
c x

 (7.17) 

Being similar to Chapter 6, the unit normal direction vector ( )ˆ
in x  can be calculated 

by using PDDO as   
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where 

 ( )
( )1, if

0, otherwise

g i

i

 
= 


c x
x   (7.19) 

Being same as Eq. (6.24), a function ( )x  is defined to indicate if the unit normal 

vector is zero.  A cut-off value 
21.0 10 / x −=    [198] is set for the normal vector, 

smaller than which the unit normal becomes zero. Note that in Eq. (7.18) the term  
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( ) ( )( )j ic c−x x  can be positive or negative which leads to the unit normal direction 

always pointing from the fluid phase to the structure phase.  

7.2.3.2 Effect of fluid flow on structure 

The fluid effect on the structure deformation is simulated in terms of volumetric 

external body force. The similar approach developed by Antoci et al. [218] is adopted.   

 

Fig. 7-4 PD Interactions of the interface structure particle at ,s ay   

The fluid pressure acting on solid particle at ,s ay  can be approximated by the 

pressure of the fluid particles as  
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  (7.20) 

where 
,, s af y

 represents the interaction domain of solid particle at ,s ay  within the fluid 

domain as shown in Fig. 7-4, and 0w  is the improved Gaussian weighted function. 

,f bP  is the pressure, ,f bm  is the mass and ,f b  is the density of fluid particle at ,f by . 

Note that particle at ,f by  belongs to the family members of the point at ,s ax  as 

demonstrated in Fig. 7-4. The mass of the fluid particle, ,f bm , is calculated by using 

( ),
ˆ

s an y

,s ay





f s→b

x

,s a
Vy

,s a

,, s af y

,f by

Fluid Particle

Structure ParticleF-S Interface
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the initial values of density and volume. It’s assumed constant during the time 

integration as 

 ( ), , , 0f b f b f b t
m V

=
=  (7.21) 

As explained by Antoci et al. [218], Eq.(7.20) can also be simplified as 

 ( )
, ,

,

, , 0 , ,

,

2
f s a

f b

s a f b f b s a

b f b

m
P P w



= −
y

y y   (7.22) 

which provides a better and more stable solution.  

The volumetric force exerted from the fluid particles to the structure particle at ,s ay  

can be approximated as 

 ( ) ( ),

, ,
ˆs a

f s s a s a

P

x
→ =


b y n y   (7.23) 

where f s→b  is the body force representing the effect of fluid on structural deformation, 

( ),
ˆ

s an y  is the unit normal direction vector, x  is the uniform initial node spacing 

(which is assumed same both for fluid and solid). In Eq.(7.23), the external volumetric 

pressure force is defined in the interface normal direction. The flowchart for the 

implementation of the fluid to structure effect is provided in Fig. 7-5.  
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Fig. 7-5 Flowchart for calculating the effect of fluid force on the solid particle  

7.2.3.3 Effect of structure on fluid   

The solid in the FSI problems can be categorised as a deformable solid or a rigid 

solid. In the current FSI coupling model, both solid particles, i.e. either deformable 

solid particles or rigid solid particles, serve as a boundary condition for fluid flow. 

Therefore, after finding the structural deformations, the solid particles are treated as 

the fictitious flow boundary particles for flow simulation.  

Non-slip velocity boundary condition for fluid: the effect of rigid wall 

For the non-slip solid boundary condition, the velocity of the rigid wall particle for 

flow boundary is calculated as [152] 

 ( ), 0 , , ,2s c s c f b f b

b fluid

w



 
= − − 

 
v v y y v  (7.24) 

where ,s cv  denotes the velocity of the rigid particle ,s cy , v  denotes the prescribed 

solid wall velocity. ,f bv  is the fluid velocity at ,f by . The second term on the right-

hand side of Eq.(7.24) is the weighted fluid particle velocity summation. The weighted 

function is constructed based on the current configuration.  

Start

Colour function gradient calculation 

Eq.(7.16)

Function calculation, Eq.(7.19)

Unit normal direction calculation 

Eq.(7.18)

Interface pressure calculation Eq.(7.22)

Volumetric external body force 

calculation Eq.(7.23)

End
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slip velocity boundary condition for fluid: the effect of rigid wall 

For the slip boundary condition, the velocity of the rigid particle for flow boundary 

can be set as  

 ,s c =v v   (7.25) 

Slip and non-slip velocity boundary condition for fluid: the effect of deformable 

structure 

The velocity of the elastic structural particle ,s ay  for flow boundary is set as 

 , ,

n

s a s a=v v   (7.26) 

where ,

n

s av  is obtained from the structural model. 

pressure boundary condition for fluid  

The pressure of the solid particles acting on the fluid can be calculated as [152] 
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where ,s ay and ,s cy  are the current positions of solid particles at ,s ax  and ,s cx , 

respectively. In this chapter, ,s au  is set as zero, which means that the acceleration of 

the elastic structure particle is not utilized in the fluid boundary simulation part, or the 

information of the structural acceleration is not transferred to the fluid part.  
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For the slip boundary condition, the viscous force between the fluid-solid particle 

interactions is neglected. 

7.2.4. Numerical Procedure 

The numerical procedure is provided in Fig. 7-6. In the most general fluid-structure 

interaction problems, there is usually a large difference between the initial 

configuration and the final configuration. Consequently, both for a structural particle 

or a fluid particle, the family members of it may change with the time variation. 

Therefore, for the FSI problems, the configuration updating according to Eq.(7.6) is 

performed before the family member array re-construction within each time step.  

From the figure, it can also be observed that the density of the fluid particle changes, 

leading to weakly compressible material property. On the contrary, the density of the 

structure particle keeps constant during the time integration. Furthermore, the densities 

of the fluid and the structure may differ from each other. As a result, in the MLS 

density initialization procedure within the fluid part, the density of the structure 

particle (family member of a fluid particle) is considered to be the same as the fluid 

one, i.e. using a fake density as a fluid moving boundary particle. It also should be 

pointed out that the pressures of the deformable particles are fictitious, they are 

calculated just for the fluid boundary condition. Within the integration, the fluid-

structure coupling is achieved by transferring the pressure information from the fluid 

to the structure as an external body force and transferring the position of the deformed 

structure particle as a moving boundary condition (shown in dashed arrow). 
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Fig. 7-6 Numerical procedure for FSI problems 

Generate PD nodes; apply initial 

condition, colour function Eq.(7.15)
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7.3. Numerical simulations 

7.3.1. Problem description 

In this section, a numerical simulation of a dam collapse under an elastic rubber gate 

[218, 234, 235] is conducted to validate the proposed model. The material properties 

provided in Table 8 both for the fluid and the rubber are set the same as the ones in 

[218]. The geometry illustration of the problem is provided in Fig. 7-7. A fluid with 

dimensions being 0.1m 0.14 mL H =   is within an upper open tank. The bottom, 

left and upper-right sides of the tank are assumed to be rigid. A rubber gate is located 

vertically adjacent to the right bottom corner of the fluid column with its dimensions 

being 0.005 m 0.079 m . The upper end of the rubber is clamped by the right rigid 

wall and the bottom end is free to move. Then under the gravity effect, the fluid will 

move, and the rubber gate will open and deform under the fluid pressure effect.   

Table 8 Fluid and rubber material properties 

Parameters Value 

Fluid density ( )3kg/mf  1000 

Fluid viscosity ( )Pa sf   31 10−  

Fluid material constant f  7 

Rubber density ( )3kg/ms  1100 

Rubber Poisson’s ratio s  0.4 

Rubber elastic modulus ( )MPaE  12.0 
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Fig. 7-7 Geometry illustration of dam collapse under a rubber gate 

As to the PD discretization, the initial particle spacing is set as 0.00125 mx =  

(80 112  nodes for fluid). The horizon size is chosen as 3.6 x =   to be consistent 

with one in the MLS scheme. The gravity acceleration is set as 
29.8 m/s=g . The 

maximum velocity of the fluid is estimated as ,max 1.17 m/sf H= =v g , leading to 

the artificial speed of sound being 
,max10 11.7 m/sf fc = =v . The constant time step 

size is chosen as 
51 10 st − =   with the total simulation time being 0.3 st = . The 

initial damping time is chosen as 100dampt t=  . The MLS scheme is performed every 

20 time steps [154]. All the numerical treatments explained in Section 7.2.2 are 

adopted.  

7.3.2. Numerical results  

The comparison between the experimental results [218], the numerical results 

obtained by SPH method [218], and the PD predicted results are provided from Fig. 

7-8 to Fig. 7-15 for every 0.04s. For the PD simulation results, the particles in blue 

colour represent the fluid, the pink particles represent the rigid wall, and the green 

particles represent the rubber gate. It can be inferred from this qualitative comparison 

that both the fluid motion and the rubber deformation are consistent from these three 

sources.  
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(a) 

 

(b) 

 

(c) 

Fig. 7-8 Comparison between (a) the experiment image [218], (b) SPH results [218], 

and (c) PD result at t=0   

 

(a) 

 

(b) 

 

(c) 

Fig. 7-9 Comparison between (a) the experiment image [218], (b) SPH results [218], 

and (c) PD result at t=0.04 s   

 

(a) 

 

(b) 

 

(c) 

Fig. 7-10 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.08 s  
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(a) 

 

(b) 

 

(c) 

Fig. 7-11 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.12 s 

 

(a) 

 

(b) 

 

(c) 

Fig. 7-12 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.16 s 

 

(a) 

 

(b) 

 

(c) 

  Fig. 7-13 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.2 s 

  



262 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 7-14 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.24 s   

 

(a) 

 

(b) 

 

(c) 

Fig. 7-15 Comparison between (a) the experiment image [218], (b) SPH results 

[218], and (c) PD result at t=0.28 s   

The rubber gate is initiated to open due to the pressure of the stored water, leading 

to the water flowing out of the gate. Then with the decreasing of the water level behind 

the rubber gate, the water pressure acting on the rubber becomes smaller and smaller. 

Hence, the rubber gate gradually moves back under the resultant force of the gravity 

force and the water pressure.   

A quantitative comparison is also performed to validate the proposed PD model. 

The simulation results from the following two PD cases are provided: case 1 for time 

step size 
51 10 st − =   and PD fluid nodes 80 112 ; cases 2 for time step size 

52 10 st − =   and PD fluid nodes 40 56 . The time history of the displacement of the 

end of the plate, the water level near the rigid wall, and the water level with its distance 

from the rubber gate being 0.05 md =  are provided in Fig. 7-16 and Fig. 7-17. 
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Besides, the data obtained from the experiment and the SPH method [218] are 

presented for comparison.  

 

Fig. 7-16 Comparison for horizontal and vertical displacements (m) of the free end of 

the plate between the experiment results [218], SPH simulation result [218], and PD 

simulation results 

  

(a) (b) 

Fig. 7-17 Water level (m) comparison just behind the gate (a) and 5 cm far from it 

(b) between the experiment results [218], SPH simulation result [218], and PD 

simulation results 

It can be observed from Fig. 7-16, the displacements of the free end of the rubber 

gate increase until 0.16 st = , which consistent with the observation from the 

qualitative comparison. Then after this peak point, the displacements both in the 

horizontal and vertical directions decrease until the end of the simulation, indicating 
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the moving back of the rubber gate to its initial shape. By analysing the time history 

of the water levels from the two locations ( 0d =  and 5 cmd = ), the conclusion can 

be drawn that the velocity of the fluid volume increasing out of the rubber gate at the 

end of the simulation becomes much smaller than the one in the early stage. This is 

due to the smaller opening distance between the rubber gate and the bottom rigid plate 

compared with the one in the early stage. The quantitative study here agrees well with 

the previous qualitative study. In conclusion, from the quantitative comparison 

presented in Fig. 7-16 and Fig. 7-17, the current PD model is validated through the 

good agreement between the PD simulation results and the results from the experiment 

and SPH method. Besides, a smaller mesh size can be further utilized to achieve a 

more accurate result.         

However, the discrepancies can also be observed both from PD and other numerical 

techniques. By investigating the sensitivity of the numerical parameters and techniques, 

the discrepancies may come from the following aspects. First, the PD node density and 

time step size may affect the accuracy of the final simulation results. In this case, the 

bending moment of the rubber gate acts an important role in the deformation process. 

For the rubber PD model, only 4 nodes exist in the thickness direction, indicating that 

all the 4 nodes experience the truncated integration domains. Therefore, the surface 

correction approach [10] which can improve the accuracy of the PD simulations, 

especially for the particles near the surface, can be utilized. However, the surface 

correction adopted in this PD equation of motion is a simple volume-based one as 

( ) ( )2

, ,

1,

/
i

s

N

c s i thick s s j

j j

s h V 
= 

= x , which may be not accurate enough. Besides, the 

smaller time step size can reduce the numerical discrepancies existing in the velocity 

Verlet algorithm. By comparing the PD predicted results from the two aforementioned 

different cases, the increasing of the number of the PD nodes and the decreasing of the 

time step size can give more accurate results. Second, the application of the MLS and 

PST provided in Section 7.2.2, on the one hand, can make the current approach more 

stable. On the other hand, they may decrease accuracy. For example, by comparing the 

time history of the displacement of the free rubber gate end, it can be observed that the 

application of the PST enlarges the discrepancy between the PD simulation result and 
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the experiment one. The PST applied in the current study does not have any 

modification regarding the free surface, which may decrease the accuracy of the 

numerical simulation [202].  

The pressure and the velocity snapshots at the final state 0.3 st =  are provided in 

Fig. 7-18. The pressure and velocity predicted by the PD approach present a similar 

distribution compared with the ones provided in [228, 234]. It should be mentioned 

that in Fig. 7-18 (a), the pressure of the rubber represents the fictitious solid pressure 

for boundary implementation, they are not from the constitutive equations of the solid 

rubber. Regarding the fluid pressure, the pressure inside the dam presents a similar 

hydrostatic pressure distribution. When only the free surface detecting approach 

provided in Section 7.2.2.1 is adopted, the fluid pressure outside the rubber gate may 

all become zero because of the over predicted number of free surface particles. The 

utilization of the PST in the current study can overcome this problem, which largely 

improves the accuracy of the pressure distribution of the fluid outside part.         

  

(a) (b) 

         Fig. 7-18 PD simulation results (a) Pressure and (b) velocity magnitude at the 

final state of 0.3 st =      

The configuration at the final stage 0.3 st =  and its close view of the fluid-structure 

interface are provided in Fig. 7-19. The unit normal vector of the solid particles for the 

FSI interface is presented in Fig. 7-19 (b). The good agreement between the unit 

normal vector direction and the geometry indicates the capability of the proposed PD 

approach for accurately predicting the FSI interface. The interface normal direction 

approach provided in [218] has the limitation that it cannot be applied to the boundary 
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corner particles. However, the unit normal vectors of boundary rubber particles in the 

present study are also well represented because of the non-local property of the PD 

theory and the adoption of the colour function. Thus the aforementioned limitation in 

[218] is removed. In addition, it can also be observed from Fig. 7-19 (b) that no 

penetration occurs in the FSI interface region. Hence, the boundary collision model 

proposed in Section 7.2.2.2 is validated which has positive effects on the preventing 

penetration.  

  

(a) (b) 

         Fig. 7-19 PD simulation results (a) configuration and (b) zoom view of the FSI 

interface state of 0.3 st =      

The largest PD bond stretch for each rubber particle at the time 0.3 st =  is presented 

in Fig. 7-20. The regions with higher PD bond stretches show that these regions are 

more prone to failure.  
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Fig. 7-20 The largest PD bond stretch for each rubber particle at time 0.3 st =      

7.4. Summary 

In this chapter, a peridynamic based methodology for fluid-structure interaction 

problems is proposed for simultaneous numerical simulations. The structure model is 

developed by using the ordinary state-based peridynamic theory and the fluid model 

is developed by the peridynamic differential operator. The coupling scheme is 

performed bi-directionally. Then a dam collapse under an elastic rubber gate is 

simulated with the newly developed model. The PD predicted results are compared 

with the ones obtained by the experiment and other numerical simulation methods. 

The good agreement demonstrates the capability of the current model for accurately 

predicting the results of fluid-elastic structure interaction problems. 

As the first PD model using the OSB-PD model for solid and PDDO model for fluid, 

the current study provides an alternative way for solving fluid-structure interaction 

problems. Besides, because of the intrinsic non-local property of PD theory, the FSI 

interface is easier to numerically implement.   
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8. Coupled Thermo-fluid-mechanical Peridynamic Model for 

Analysing Composite under Fire Scenarios  

8.1. Introduction 

The composite material response under fire load is a complex research topic since 

multidisciplinary fields are involved [3], e.g. thermodynamics, fluid mechanics, solid 

mechanics including composite material mechanics, chemical reaction theory, 

etc.[236]. Therefore, it would be a challenging task to numerically simulate this 

phenomenon by considering all aspects.     

Regarding the modelling of the fire, understanding the mechanism and predicting 

the behaviour of fire is important and meaningful [237]. The fire can be considered as 

a summation of numerous flames [178]. Therefore, the flame can be treated as a basic 

element of fire. For the investigation of the flame in a physical aspect, the following 

fields are involved: the fluid field, the thermal field, the chemical reaction theory, and 

the species transport process.  

• Fluid field: the flame can be categorized as being laminar flame and turbulent 

flame. In laminar flames, the burning gas flows in a regular pattern, which is 

contrary to the turbulent flames [237]. For laminar flames, the Navier-Stokes 

equation can be directly adopted by numerical methods to simulate their behaviour. 

On the other hand, the large eddy simulation (LES) method is usually utilized for 

a turbulent flame [238].   

• Thermal field: the heat transfer and chemical reaction heat generation are the main 

two aspects in the numerical thermal model. Enthalpy is considered a primary 

variable in the heat transferring process. While the Arrhenius Law is usually 

employed in the heat generation due to chemical reaction [239]. 

• Chemical Reaction: the reaction model should be chosen which represents the 

reaction mechanism. Besides, the chemical kinetics of the elementary reactions 

[178] and their rates, e.g. chemical time scale, should also be decided [178]. A 

popular way to simulate the chemical reaction process is to use the commercial 
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software Chemkin III [240] and the open-source software Cantera developed by 

Python [241].   

• Species transport: The flame is a multi-phase and multi-component fluid flow 

[242]. Consequently, a mixture fluid model which can predict the species diffusion 

process is required if all the solid components are considered [243].    

As it is introduced above, the flame can be classified as a multi-component, multi-

phase, chemical reactant, and heat transfer fluid flow [244]. As a result, the flames 

mechanism involves the knowledge of thermodynamics, thermochemistry, chemical 

kinetics, and fluid mechanics, etc. [245]. In other words, the mass transfer, heat 

transfer, momentum transfer, and species transfer exist in the flame motion.[246] Since 

the governing equations are often too complicated for analytical solutions, the 

technique of numerical simulation is widely applied [237]. There are various numerical 

methods for flame modelling, i.e. finite element method (FEM) [247], finite volume 

method (FVM)[242], finite difference methods (FDM) [248]. For these grid-based 

approaches, the space discretization should be fine enough for this complex 

combustion system.  On the other hand, because of the presence of a high gradient of 

physical variables in the flame, special attention should be paid to time integration 

stability [242]. The computation time and memory requirements should be taken into 

consideration. On the contrary to the above grid-based approaches (FEM, FVM, FDM), 

Lagrangian methods can predict the non-linear convection term exactly [249]. Direct 

Lagrangian methods have been applied to simulate the reacting flows [250-252]. The 

remeshed smoothed particle hydrodynamics (SPH) in [249] is applied for the chemical 

reacting flows. A hydrogen/air opposed-jet burner numerical simulation is conducted 

with considering the Mach number effect [249]. The current existing numerical flame 

models cannot capture all the aforementioned aspects because of the fire’s complex 

physical and chemical processes [237]. In the current study, the fire model is simplified 

as a heat-conducting single-phase fluid flow, ignoring the chemical reaction process 

and the diffusion of the components. In this way, the non-isothermal fluid flow PDDO 

model developed in [9] thus can be directly utilized to represent the fire physical model. 

As to the investigation of composite response under fire loads which has been 

extensively studied [253-257], the key challenge to the modelling is the complexity of 

the thermal, chemical, physical, and failure process which control the composite 
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structure behaviour [258]. The firing process in the composites can be concluded as 

follows [258]: 

• Thermal process: the heat conduction in composite materials from the fire [259], 

heat generation from decomposition and charring [260], convective heat loss, etc. 

• Chemical process: viscous softening, melting, decomposition, and char-fibre 

reactions, etc.[3]. 

• Physical process: thermal expansion and contraction, matric cracking, fibre-matrix 

interface debonding, softening, delamination damage, etc. 

• Failure process: charring, pores creation (creation of gas from resin decomposition) 

[261], thermal degradation of elasticity properties, micro-cracking, and 

delamination, etc.[2]. 

The current numerical models cannot capture all composites’ responses as explained 

above. Therefore, simplification is applied in the numerical simulations [262]. For 

most researches regarding the composite response for fire scenarios, the decoupling of 

fire from composites is widely adopted in simulation approaches [263]. The fire is 

simply treated as a controlled heat flux or temperature boundary condition. The 

dynamics of fire are usually ignored. However, in the current study, the basic dynamics 

of fire motion, i.e. the thermal fluid flow, are considered during the composite response 

simulation. As a result, the physical problems belong to the field of thermal fluid-

structure simulation of composite materials under the fire load. The thermal 

degradation of the composite properties [264], the matrix damage, and the fibre 

damage are taken into consideration in the composite model.   

PD is originally developed for predicting damages in isotropic materials [4, 13]. 

Then, the formulation is extended for modelling damage in composite materials [10, 

35, 75-78, 82, 86, 265-270]. The original form of PD is also extended for predicting 

thermal damages for both isotropic [40, 271-273] and composite materials [6, 7, 39, 

46, 274]. Moreover, PD is also used for predicting corrosion and oxidation damage for 

both isotropic and composite materials [40, 274-278]. Therefore, due to the prediction 

capability of PD in many different applications, PD is used to predict the composite 

damage under the fire scenarios.  
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This chapter is organized as follows. The fire-induced temperature rising curve is 

provided in Section 8.2 to represent the fire effect in the thermal field. The thermal 

degradation properties of the composite material are also provided in Section 8.2. 

Section 8.3 describes the numerical implementations. Then, Section 8.4 describes the 

numerical simulations. In this section, composite damages due to direct contact with 

fire and composite damages due to hot gas induced by fire are investigated. Finally, 

the summary is provided in Section 8.5. 

8.2. Composite material properties under fire   

In this section, the temperature profile for fire and the thermal degradation properties 

of the composite material are provided.  

8.2.1. Temperature profile of fire 

The fire temperature profile as a function of time is used to represent the fire effect. 

In many thermal modelling approaches, fire is simulated as a controlled heat flux or 

temperature boundary conditions [258, 263], which brings simplification for the 

numerical simulations. Therefore, in the current study, the ISO 834 standard 

temperature-time curve [279] is utilized to represent the temperature fire profile as  

 ( ) ( )20 345log 8 /60 1T t t= + +  (8.1) 

where T  represents the temperature in C  and t  represents the time in s . The 

temperature plot is provided in Fig. 8-1.  
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Fig. 8-1 ISO temperature-time curve represent fire [279] 

8.2.2. Material degradation of composite material caused by fire 

In the current study, a carbon fibre-epoxy composite material is considered. The 

material properties as functions of temperature are considered since material softening 

will occur under high temperature conditions. The thermal degradation properties from 

[280] are utilized and incorporated into the PD model. Regarding the material thermal 

properties, the thermal conductivity in the fibre direction, 
1k , is assumed to be constant 

according to the experiment observation [259, 281].     

The variation of transverse thermal conductivity, 2k , is shown in Fig. 8-2 (a). The 

temperature ranging from 348K to 373K in blue colour represents the glass transition 

region, as _ 348 Kg lowT =  to represent the lower glass transition temperature and 

_ 373 Kg highT =  to represent the higher glass transition temperature. It can be observed 

that the transverse thermal conductivity decreases with temperature increasing in the 

glass transition region. When the temperature is higher than 573K ( 573 KignitedT = ), 

the composite is ignited, and then the material property is assumed to be constant for 

573 KT   due to the lack of measured data. The variation of 2k  is represented as 
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 (8.2) 

The variation of specific heat capacity, vc , is shown in Fig. 8-2 (b) and represented 

as 

 ( )( )

204 3.692 , 273K 348K

2775 11.08 , 348K 373K
J/ Kg K

665+1.858 ,  373K 573K
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v

T T
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 = 
 

 

 (8.3) 

  

(a) (b) 

Fig. 8-2 Temperature dependent (a) transverse thermal conductivity 2k  and (b) 

specific heat capacity vc   

To represent the mechanical material properties, the following function is used [264] 

 ( ) ( )( )0 0
1 _tanh

2 2
g high

C C C C
C T C T T + −

= − −  (8.4) 

where C  represents the material property, 0C  represents the unrelaxed (initial) 

material property and C  the represents the relaxed (final) property. The term 1C  is a 

constant value and _g highT  represents the higher glass transition temperature as 
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_ 373 Kg highT =  in the current composite material. By using the Matlab curve fitting 

tool, the data is presented in Fig. 8-3: 

The elastic modulus in the transverse direction, 2E , is presented as 

( )
( )( )

2

4.645 4.529 tanh 0.02177 373 , 273K 475K
GPa

0.1,  475K

T T
E

T

 − −  
= 



 (8.5) 

The major shear modulus, 12G , is represented as  

 ( ) ( )( )12 GPa 2.29 2.238tanh 0.0199 373G T= − −  (8.6) 

  

(a) (b) 

Fig. 8-3 Temperature dependent (a) transverse elastic modulus 2E  and (b) major 

shear modulus 12G   

Instead of using Eq.(8.4) for fitting the elastic modulus in the fibre direction, 1E  is 

fitted as Eq.(8.7) which can give a better fitting result as  

 ( ) ( )1 /91.34695

146.64937 0.06535 , 273K 475K
GPa

110.86495 905.51983 , 475K 825K
T

T T
E

e T
−
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 (8.7) 
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Fig. 8-4 Temperature dependent elastic modulus in fire direction  

  

(a) (b) 

 Fig. 8-5 Temperature dependent (a) CTE in fibre direction 1 , (b) CTE in transverse 

direction 2   

The coefficients of the thermal expansion (CTE) both in fibre direction 1  and in 

the transverse direction 2  are segmented fitted as Fig. 8-5 and presented as  
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According to the PD failure criterion, the critical energy release rate is an important 

property in the damage simulation. The variation of energy release rate [282] is 

adopted as  

 ( )
2

2 265.568 3.49 0.00745 , 273K 535K
J/m

0, 535K
IC

T T T
G

T

 + −  
= 


 (8.10) 

 

Fig. 8-6 Temperature dependent critical energy release rate ICG   

It is assumed that the bulk modulus ( )mK T  and Lamé constant ( )m T  of the 

matrix material are linked to the transverse elastic modulus as [10] 
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with the major Poisson’s ratio being assumed to be a constant as 12 0.33v = . 

8.3. PD Numerical implementations 

The ordinary state-based thermomechanical PD composite model provided in 

Section 4.2.2 is utilized. The mechanical deformation of the composite is captured by 

using Eq.(4.17). The temperature change is obtained by using Eq.(4.25) with ignoring 

the coupling term in the heat conduction equation. The temperature degradation is 
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incorporated into the model [84], by incorporating temperature dependent material 

properties. The minor Poisson’s ratio, 21v , is calculated at the initial temperature. On 

the other hand, the mechanical properties listed in Section 8.2 such as 1E , 2E , 12G , 1 ,

2  are temperature dependent as provided in Eqs.(8.5)-(8.9). Therefore the PD 

mechanical parameters a , FTb , Fb , and Tb  with their definitions in Eq.(4.6) become 

also temperature dependent. Moreover, the thermal conductivity in the fibre direction,

1k , is assumed constant. On the other hand, the thermal properties, 2k  and vc  are 

temperature dependent as provided in Eqs.(8.2)-(8.3). As a result, the corresponding 

PD thermal parameters m  and f , provided in Eq.(4.10)-(4.11) also become 

temperature dependent. The PD critical stretches ms , fts , ins , and is  provided in 

Eq.(4.38)-(4.41) are functions of temperature due to the temperature dependent 

material properties ICG , 1E , mK , and m  as provided in Eq.(8.10)-(8.12). The critical 

energy release rates for the first and second failure mode are assumed the same, 

IIC ICG G= . On the other hand, the shear modulus for matrix material, mG , is assumed 

constant.  

The non-dimensional form of the PD thermo-fluid model provided in Section 5.3.5 

is adopted to represent the fire heated air. Therefore, in order to couple the thermal-

fluid model and the composite model, the non-dimensional form of the PD composite 

thermal model is used. It should be noted that the length, time, and temperature are 

cast into their non-dimensional values by using the same reference parameters both for 

the composite model and the fluid model. Furthermore, the temperature in the fitting 

functions of thermal degradation properties of composites is in a dimensional form. 

Therefore, the non-dimensional temperature should be converted into its dimensional 

value before the calculation of the composite material properties. The details are 

described as following.  
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8.3.1. Non-dimensional PD thermo-fluid model and composite thermal model  

8.3.1.1 Non-dimensional PDDO fluid model 

The PD thermo-fluid model [9] provided in Chapter 5 is used to represent the fire 

heated air. Furthermore, the fluid flow is assumed to be two-dimensional in the 

Eulerian description. The non-dimensional form of the non-local Naiver-Stokes 

equations [9] with Boussinesq approximation [175] by using the peridynamic 

differential operator [14] is adopted.  

The thermo-fluid governing equations in the discretised form are: 

Conservation of mass: 
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  (8.13) 

Conservation of momentum: 
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  (8.14) 

Conservation of energy: 
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pressure: 

 ( )( )* (n 1) * (n 1)
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The non-dimensional parameters shown with ( )*  are defined with respect to their 

reference parameters shown with ( )0  as [144] 

( )
* * * * * * * *

2

0 0 0 0 ,0 0 0 ,0 ,0

; ; ; ; ; , ,
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f f f f f f f

f f f f f f f
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 (8.17) 

where the parameters fx , fv , f , fP , fT , f , and fk  represent the fluid particle 

position, velocity, density, pressure, temperature, viscous coefficient, and thermal 

conductivity. 0L , 0v , and 0T  are the reference length, velocity, and temperature. ,0f , 

,0f , and ,0fk  are the reference fluid density, viscosity and thermal conductivity. t  

and 
*t  represent the time and non-dimensional time, respectively. 

In Eqs.(8.13)-(8.16), the fluid point of interested is denoted by its coordinate as 
*

,f ix , 

and its family member is denoted by 
*

,f jx . ,f iN  is the total number of the fluid family 

members of fluid point 
*

,f ix . The volume of 
*

,f jx  is denoted by 
*

,f jV . Tr  represents the 

trace of a matrix. The parameters 
*

,f iv , 
*

,f i , 
*

,f i , 
*

,f iT , and 
*

,f ik  are defined at fluid 

location 
*

,f ix . The energy dissipated by the viscous force is ignored in Eq. (8.15) since 

it is too small compared with the energy increased by fire [283]. In Eq.(8.16), f  is 
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the ratio of specific heat capacity, soundc  is the artificial speed of sound. The ratio of 

specific heat capacity is chosen as 1f =  for gas [141].  

Furthermore, Sutherland’s law [284-286] which reflects the temperature effect on 

the viscosity coefficient and the thermal conductivity is adopted in a non-dimensional 

form as  

 ( ) ( )
* *

1.5 1.5
* * * *

, , , ,* * * *

, ,

1 1
;   ;f i f i f i f i

f i f i

S S
T k T

T S T S


+ +
= =

+ +
  (8.18) 

where *

0111/S T=  with 0T  being in unit K [284]. 

In the above equations, the current time step is denoted by the superscript 
( )( )n

 and 

the updated time step is denoted by the superscript 
( )( )1n+

. The non-dimensional time 

step size is denoted by *t . 

8.3.1.2 Non-dimensional OSB PD thermal model for composite 

The non-dimensional parameters for PD composite thermal model are defined as  
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* * * *
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; ; ;
/

s s s
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= = = =

x v
x v   (8.19) 

For both the composite thermal model and the thermo-fluid model, the reference 

velocity is chosen as 

 
,0

0

0

df
v

L


=   (8.20) 

where ,0df  is the initial value of the thermal diffusivity of air as 
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Consequently, the nondimensional diffusivities of composites to the fluid are 

calculated as 

 * * *1 2
1 2

,0 ,0 ,0

; ;ds ds dsm
ds ds dsm

df df df

  
  

  
= = =   (8.22) 

where 
1ds  is the thermal diffusivity in the fibre direction, 2ds  is the thermal 

diffusivity in the transverse direction, and dsm  is the thermal diffusivity of the matrix 

in the composite material. 

By substituting Eqs.(8.19)-(8.22) into Eq.(4.25) and neglecting the coupling term, 

the non-dimensional form of the PD composite thermal model becomes 
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        (8.23) 

The composite point of interested is denoted by its initial coordinate as 
,*

,

n

s ix , where 

the subscript ( )s  denotes the composite and ( )i  denotes the particle number. The 

superscript ( )n  represents the layer number. , ,s ply iN  represents the total number of 

family members which are in the same ply of the interested point 
,*

,

n

s ix . On the other 

hand, , ,s shear iN  represents the total number of the family members which interact with 

,*

,

n

s ix  through the interlayer shear bonds. 
,*

,

n

s jV  represents the volume of material point 

at 
,*

,

n

s jx . By using Eqs.(4.10), (4.11), and (4.26), the non-dimensional PD thermal 

diffusivities are defined by as 
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where the parameters 
,*

,

n

f i , 
,*

,

n

m i , and 
,*

inter,

n

i  are defined at location 
,*

,

n

s ix .  

In Eq. (8.23), 
*

,s ih  is the non-dimensional volumetric heat source, it can be 

represented as 
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The non-dimensional composite temperature is updated according to Eq.(8.23) as: 
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(8.28) 

8.3.1.3 Thermal and mechanical damage parameters 

To represent the extent of damage due to ignition of composite material, a non-

dimensional temperature, T , is defined as  
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where sT  is the temperature of the PD composite points, ,s refT  is the reference 

temperature , 293 Ks refT = , ignitedT  is the ignition temperature 573 KignitedT = , _g lowT  is 

the lower glass transition temperature _ 348 Kg lowT = , and _g highT  is the higher glass 

transition temperature _ 373 Kg highT = [280]. Therefore, 2.5T  −  represents that the 

material is ignited, 1T =  represents composite is at the reference temperature, 0T   

represents the post glass transition period ( ), _

n

s i g highT T  as illustrated in Fig. 8-7. 

 

Fig. 8-7 Different domains distinguished by T  [280]  

Regarding the mechanical damage parameter, the variation of the critical stretch for 

matrix bond, ,cm is  as a function of temperature is plotted in Fig. 8-8. It can be observed 

from the figure that within the range of 273 K< 348 KT  , the material remains as a 

brittle material before the glass transition [3, 287]. Then the composite material 

becomes a rubber like ductile material [3, 287] for the approximate region 
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348 K< 493 KT  . Then when the temperature is larger than the critical value of 493 

K, the critical stretch decreases as shown in Fig. 8-8. Finally the material totally fails 

(critical stretch equals to zero) when the temperature is higher than 535 K [287].  

 

Fig. 8-8 The variation of 1/2

cms   as a function of temperature  

8.3.2. Boundary conditions  

8.3.2.1 Mechanical boundary conditions 

The boundary condition involved in the composite mechanical model is applied by 

setting displacement values in the fictitious layer as [10]  

 , 0s bc =u   (8.31) 

In Fig. 8-9, sR  represents the composite material, and ,s bcR  represents the fictitious 

region. The thickness of the fictitious layer is set as the size of the horizon (shown in 

black nodes in Fig. 8-9 (b)).  
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(a) (b) 

Fig. 8-9 Fixed boundary implementation (a) geometry illustration and (b) PD 

implementation for 3 x =    

8.3.2.2 Flow boundary conditions 

The boundary condition involved in the fluid field is applied by setting non-

dimensional velocity and displacement values in the fictitious layer as   

 ( ) ( )* * * *

, ,0; 0f f bc f f bc= =v x u x   (8.32) 

The pressure values at the fictitious particles in ,f bcR  are defined in the non-

dimensional form as [9, 76]     
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  (8.33) 

where 
*

,f bcx  represents the fictitious rigid wall particle, 
*

,f jx  is its family member 

belonging to the fluid. ,f bcN  represents the total family members of point 
*

,f bcx  

belonging to the fluid field, as shown in Fig. 8-10. ( )* * *

, ,f f jP tx  represents the pressure 

of point 
*

,f jx . The weighted function w  is provided in Eq.(2.25).  



,s bcR

sR
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Fig. 8-10 Boundary condition implementation for fluid field with * *3 x =    

8.3.2.3 Thermal boundary conditions 

The thermal boundary conditions are both involved in the composite model and fluid 

model. The temperature boundary condition is applied by adding fictitious layer as [43, 

44] 

 ( ) ( ) ( )* * * * * *2i bc jT t T t T t= −   (8.34) 

where *

bcT  represents the non-dimensional boundary temperature. The parameters *

iT  

and 
*

jT  represent the non-dimensional temperatures in the fictitious and real regions, 

respectively, as shown in Fig. 8-11.  

No flux (insulated) boundary condition is applied by setting temperatures in the real 

region as [43, 44] 

 ( ) ( )* * * *

j kT t T t=   (8.35) 

fR

,f bcR

*

*

,f jx

*

,f bcx



287 

 

 

 

(a) (b) 

Fig. 8-11 Thermal boundary condition implementation (a) temperature boundary 

condition, and (b) insulated boundary condition   

8.3.3. Interface condition between composite and gas for thermal field 

The convection boundary condition at the composite boundary is implemented by 

setting heat source at the boundary as  [43, 44] 

 ( ) ( )( )* * * ** * *

*

*
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1

s con ss,interface s,interface f localh h T T
x

t t= − −


x x   (8.36) 

where *

conh  is the non-dimensional convective heat transfer coefficient, 

( )* ** ,s,interfacesT tx  is the temperature in the composite region, and 
*

,f localT  is the local fluid 

temperature which is calculated as the average temperature of the fluid particles which 

are within the horizon of 
*

s,interfacex  as  
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where s,interface, fN  represents the total number of the family members of point 
*

s,interfacex  

which belongs to the fluid as shown in Fig. 8-12. ( )* * *,f fT tx  is the non-dimensional 

fluid temperature predicted in the fluid model.  
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Fig. 8-12 Composite-gas interface illustration  

The non-dimensional convection coefficient [286, 288] is  
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where convectionC  is a coefficient for natural convection which is 

( )2 4/31.52 W/ m KconvectionC =  for a horizontal surface and ( )2 4/31.38 W/ m KconvectionC =  

for a vertical surface. The parameter *

sL  is the non-dimensional length of the 

composite ply. vc  is the specific heat capacity of composites provided in Eq.(8.3).  

Similarly, the radiation boundary condition for the composite thermal field is 

implemented by setting heat source at the boundary as [39] 
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where 
*

stefan boltzmann−  is the non-dimensional Stefan Boltzman constant defined as   
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with ( )8 2 45.67 10 W/ m Kstefan boltzmann

−

− =  . The surface emissivity   is assumed to be 

one as 1 =  in the current study. 

8.4. Numerical simulations 

In this section, two cases are presented. The first case investigates the damage in 

composite due to direct contact with fire. This case belongs to the thermomechanical 

analysis where the heat conduction and composite deformation are included. The 

second case investigates the damage in composite due to hot gas induced by fire. The 

fire is simulated as a temperature boundary condition which heats the air. Then the 

heated air transfers the heat energy to the composite material via convection and 

radiation, indicating a one-way coupling thermal fluid and structure interaction. 

8.4.1. Composite damage due to direct contact with the fire 

8.4.1.1 Problem description  

As illustrated in Fig. 8-13, a three-layer laminated composite material is investigated. 

The laminate is 0.1 m in length ( =0.1mL ) and 0.1 m in width ( W=0.1m ). Each layer 

has a uniform thickness as 0.001mthickh = . The fibre direction of each layer is chosen 

as 0/90 /0   . The density of the composite is 31620 kg/ms = . The thermal 

conductivity in the fibre direction, 1k , is assumed constant as ( )1 8.3075 W/ m Kk = 

[259, 281]. The thermal conductivity of matrix material, mk , is assumed constant as 

( )0.2 W/ m Kmk =  [6]. The CTE of matrix material m  is 663 10 /Km
−=   [6]. The 

tension strength in the fibre direction is chosen as 1 2550t MPa =  [289]. mE  and mG  

are the elastic and shear modulus of the matrix material, which have the values as 

3.4 GPamE =  and 1.308 GPamG = [86]. The other composite material properties, 2k , 

vc , 1E , 2E , 12G , 1 , 2 , ICG , mK , m , 12  are provided in Section 8.2.2.  
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(a) (b) 

Fig. 8-13  (a) Three layers laminate geometry illustration and (b) fibre direction 

illustration  

A uniform initial temperature is set for the composites as 
0

, 293 Ks s refT T= = . 

Besides, all composite nodes are static at the initial condition. The boundary conditions 

are provided as follows.    

Thermal boundary conditions: 

As shown in Fig. 8-14, the edge on 0, /2 /8x y W W= −   is under a temperature 

boundary condition induced by a localized fire. The other three edges x L= , 0y = , 

and y W=  are insulated.  
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Mechanical boundary condition: 

As to the mechanical field, the right vertical edge is fixed, and the other three edges 

are free to deform as   

At x L=  

 0s =u  (8.42) 

 

(a) 

 

(b) 

Fig. 8-14  Boundary sketch for composite directly under local fire (top view): (a) 

geometry illustration and (b) PD discretization  

 The top view of the PD discretization is illustrated in Fig. 8-14 (b). For the laminate 

ply, denoted by sR ,  each layer is discretized by 40 40  nodes in the x y−  plane and 

one node in the z direction. Therefore, the laminate totally contains 40 40 3   PD 

points and the initial in-plane node spacing is 0.0025 mx = . The in-plane horizon is 

chosen as 3.015 x =  . The region denoted by ,s tR  is the thermal fictitious layer 
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( 10 3 3   PD points) and ,s bcR  is the fictitious layer ( 40 3 3   PD points) 

representing the fixed boundary condition in the mechanical field. The value of related 

parameters to calculate the critical stretch 1t , ICG , 1E , m  , mK  , mE , and mG  are 

provided in this section and Section 8.2.2.  Hence, the initial value of the critical 

stretches are calculated as 33.39 10cms −= , 
21.99 10fts −= , 21.9 07 1ins −= , and 

22.2 05 1iss −= . 

The time step size for heat conduction analysis is set as 
310 st − = . The mechanical 

deformation analysis is conducted in a quasi-static solution for each 50 seconds by 

using the adaptive dynamic relaxation (ADR) technique [87]. The total simulation time 

is 500 s.  

8.4.1.2 Numerical Procedure 

In this thermomechanical analysis, the heat conduction is performed in a transient 

process, while the mechanical analysis is performed as a static case for each 50 seconds. 

The numerical procedure for the thermomechanical problem 5.1 is provided in Fig. 

8-15.  
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Fig. 8-15  Flowchart for thermo-mechanical model for composite for problem 8.4.1  

8.4.1.3 Numerical results 

The temperature change distributions of the laminate at different times are provided 

in Fig. 8-16. It can be observed that the temperature change distributions for the bottom 

and top plies are identical but differ from the distribution for the middle ply. The fibre 

direction which has a larger thermal conductivity is parallel to x direction for the 

bottom and top plies, leading to a faster heat transfer in the x direction compared to the 

middle ply. Therefore, the heated region of the top and bottom plies in the figure are 

more concentrated in the x direction than the middle ply.  
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(a) 100 s (b) 250 s 

  

(c) 400 s (d) 500 s 

Fig. 8-16 The temperature change distributions at different times  

Fig. 8-17 represents the distribution of T  according to Eq.(8.29) at 500 st = . Red 

colour represents the post glass transition period, the white colour represents the glass 

transition period, and the blue colour represents the period before the glass transition. 

The composite particles where the ignition occurs,  2.5T  −  are removed in the figure. 

It is observed from the figure that the composite is ignited near the location of the 

localized fire.  
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(a) bottom layer (b) middle layer 

 

(c) 3D view of all the three layers 

Fig. 8-17 The distribution of T  at 500 st =  

The matrix damage, interlayer normal damage, and interlayer shear damage in the 

mechanical field predicted at different times are provided in Fig. 8-18 and Fig. 8-19. 

During the early stage of the simulation, the crack does not occur until 55 st = . Then 

the crack starts to propagate both in the plane and in the thickness direction.  
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(a) Interlayer normal damage, in  (b) Interlayer shear damage, is  

 

(c) Interlayer matrix damage, m  

Fig. 8-18 Composite mechanical local damage at 250 s   

   

(a) Interlayer normal damage, in  (b) Interlayer shear damage, is  
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(c) Interlayer matrix damage, m  

Fig. 8-19 Composite mechanical local damage at 500 s   

The displacements distributions at 100 st =  and 500 st =  are plotted in Fig. 8-20 

and Fig. 8-21. Note that, the composite nodes where the ignition occurs, 2.5T  −  and 

damage parameters, m  for matrix damage, in  for interlayer normal damage, and is  

for interlayer shear damage are bigger than 0.5 are removed in both figures. It can be 

observed from the figures that the region near the local fire damages due to high 

temperature and mechanical deformation.   

  

(a)  (b)  
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(c) 

Fig. 8-20 Displacement distributions ( )m  at 100 st = : (a) in x  direction, (b) in y  

direction, and (c) in z  direction 

  

(a)  (b)  

 

(c) 

Fig. 8-21 Displacement distributions ( )m  at 500 st = : (a) in x  direction, (b) in y  

direction, and (c) in z  direction 
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8.4.2. Composite damage due to hot gas induced by fire 

The moving fluid-structure interfaces are one of the typical features in many 

combustion applications, such as burning and melting surfaces [286]. In this example, 

the effect of hot gas induced by fire on the composite material is investigated. The hot 

gas fluid flow and composite model are coupled through the thermal field. 

The composite material properties in Section 8.4.1 are used. The temperature profile 

provided in Eq.(8.1) is implemented at the boundary where fire is implemented. The 

air flow is assumed as two-dimensional. In this section, the one-way coupling approach 

for the thermal field is used. The heat transfer from composite to air is neglected, only 

heat transfer from air to composite is considered. It is assumed that the deformation of 

the composite does not affect the flow field. The composite deformation obtained in 

the previous problem is neglectable compared by its geometry dimensions, thus the 

composite mechanical deformation induced by the heated air is ignored in this problem.  

8.4.2.1 Problem Description 

The geometry of the problem is illustrated in Fig. 8-22. The air  (shown in blue 

colour) is in a square solid cavity with its non-dimensional dimensions as 
* *= =1L W  

and * 0.015thickh = . The three-layer composite laminate with the fibre orientation 

[0/90°/0] is clamped on the left vertical solid boundary (its top layer is illustrated in 

Fig. 8-22 by the green colour). The geometry length and width of the laminate are 

* * 0.5s sL W= = , and the thickness of each layer is 
*

, 0.005thick plyh = . As shown in Fig. 

8-22, the distance between the bottom boundary of the cavity and the bottom of the 

composite is 
* 0.25d = . The length of the local fire region is set as 

* 0.25fired = .  

The horizon size is chosen as * *3.015 x =   where the node spacing is 

* 0.0125x =  for both composite and fluid flow simulations. The total time, 
* 0.25t = , 

and time step size, 
* 51 10t − =   are chosen for simulating gas flow and heat 

conduction in composite material.  
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The non-dimensional parameters are set as Pr=0.713 and Ra=103 for air. The 

reference length is set as L0=0.2 m. The reference velocity is calculated as 

4

0 ,0 0/ 10 m/sfv L −= =  with the viscous coefficient 5 2

,0 =2 10 m /sf −  for air. 

Therefore, the non-dimensional simulation time * 0.25t =  corresponds to 500 s. The 

artificial speed of sound is chosen as 010soundc v=  [142].  

The reference temperature and initial temperature are chosen as 
0

, 293Ks s refT T= = , 

i.e. * 0T =  for the initial condition. The boundary conditions are also provided in Fig. 

8-22 with grey colour representing the insulated boundary condition, the red one 

representing the local fire boundary, and the yellow one representing the composite-

fluid interface, expressed as  

Thermal field: 

* 0x =  and * *x L=  

 
*

*
0

T

x


=


  (8.43) 

* 0y =   

 

( )
( )*

* * * *
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**
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345log 8 2000
:

/60 1
; 0
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x
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T
x d

x

t
T

 = =


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

  +
 

     (8.44) 

* *y W=   

 
*

*
0

T

y


=


  (8.45) 

Mechanical field: 

 
* * * * * * *0; ; 0; : 0x x L y y W= = = = =u   (8.46) 
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Fig. 8-22 Geometry illustration for composite and fluid coupling response under the 

fire scenario 

As observed in Section 8.4.1, the deformation of composites under fire is relatively 

small in the in-plane layers compared to its geometry dimensions. Therefore, the 

composite deformation effect on the fluid field is ignored in the current study for 

simplicity. For flow simulations, the composite-fluid interface is assumed as a rigid 

solid wall, as shown in  Fig. 8-23 (a).  
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(a) (b) 

Fig. 8-23 PD points for (a) fluid flow field and (b) thermal field 

In the mechanical field, all the velocities and displacements of the particles 

belonging to the fictitious solid wall layers keep zero throughout the simulation 

process, i.e. the solid boundary conditions are (grey points in Fig. 8-23 (a)): 

At * *x L= ; 
* 0y = ;

* *y W= ;  
* * *0,x y d=  ; 

* * * *0,x y W d=  − ; 
* * * * * *,sx L d y W d=   − ;  * * * *0 ,sx L y d  =  and * * * * *0 ,sx L y W d  = − :  

 
* 0f =u   (8.47) 

In the fluid thermal field, the thermal boundary conditions are 

At 
* * *0,x y d=  ’; 

* * * *0,x y W d=  − ; * * * * * *,sx L d y W d=   −  and 
* *x L=  

(orange points in Fig. 8-23 (b)): 

 

*

* *

, ,*
points0 : for pairwise

f

f m f n

T
T T

x


= =


 (8.48) 

At * * * *0 ,sx L y d  = ; * * * * *0 ,sx L y W d  = − ; 
* *y W= ; 

* * *0, firey x d=   and 

* *x L=  (orange points in Fig. 8-23 (b)): 

  

*

* *

, ,*
0 : for pairwise points

f

f i f j

T
T T

y


= =


  (8.49) 

At 
* * *0, firey x d=  (for red points in Fig. 8-23 (b)): 

  ( )* * * *

, ,2f p fire f qT T t T= −   (8.50) 

The composite material is the same as the one in Section 8.4.1. Regarding the 

composite PD model, the composite points’ initial spacing is the same as the fluid 

spacing, i.e. 
* 0.0125x =  with 40 40 3   nodes. The location 0z =  is in the 

midplane of the composite model.   
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The front view of the composite model for the mechanical field and thermal field is 

provided in Fig. 8-24, respectively. In Fig. 8-24 (a), the fictitious layers on the left 

represent the vertical solid wall, and the green points represent the composite laminate. 

In Fig. 8-24 (b), no fictitious layer is added in the thermal field. The orange points in 

Fig. 8-24 (b) are under insulated-boundary conditions while the purple points are under 

the convective and radiation condition related to the fluid flow.  

Thermal boundary conditions are: 

At * 0x =   

 
*

* *

, ,*
0 : for pairwaise pointss

s i s j

T
T T

x


= =


  (8.51) 

At * * * *,sx L y d= = , and 
* * *y W d= −   
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Mechanical boundary conditions: 

At * 0x =  

 * 0s =u   (8.53) 
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  Fig. 8-24 PD material points for (a) composite mechanical field, (b) composite 

thermal field 

8.4.2.2 Numerical Procedure 

The flowchart for problem 8.4.2 is provided in Fig. 8-25. First, the thermo-fluid flow 

is simulated in a non-dimensional form under the fire boundary condition. Thus, the 

dimensionless temperature profiles of the fluid are predicted. Subsequently, the heat is 

transferred from the fluid field to the composite through the convection and radiation 

interface boundaries. The dimensionless temperature change in the composite is 

predicted by solving the composite heat conduction equation under the interface 

boundary condition. Then the dimensionless temperature of the composite is converted 

into its dimensional value, in order to update the composite material properties both 

including the thermal properties and the mechanical properties. This procedure, i.e. 

thermo-fluid flow and composite heat conduction, is performed every time step as a 

transient analysis. Subsequently, being same as Section 8.4.1, the deformation of the 

PD composite model due to the temperature change is predicted by using the ADR 

technique [87] for each 100 seconds as a quasi-static analysis. The composite 

mechanical analysis is performed in a dimensional form by using the converted 

dimensional temperature profiles. Besides, it should be noted that the non-dimensional 

values of the composite geometry are used in the composite mechanical analysis, 

which can be treated as a geometry scaled model. Therefore, the predicted deformation 

such as displacement is also scaled.  
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Fig. 8-25 Flowchart for the coupled thermo-fluid model for air and thermo-

mechanical model for composite for problem 8.4.2 
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8.4.2.3 Numerical results 

The temperature profiles in fluid with respect to the reference temperature, 

( )f refT T−  are provided in Fig. 8-26. In order to be comparable to the fire temperature-

time curve, the real values of the temperature at different times are provided. It can be 

observed from Fig. 8-26 that the interface between the composite bottom edge and 

fluid suffers the high temperature while the temperatures around other interfaces are 

relatively low.   

 Non-dimensional velocity profiles of fluid at different times are provided in Fig. 

8-27. The fluid flows due to the temperature difference between boundaries. The 

largest velocity occurs just below the composite bottom edge at 
* 0.05t = . Then the air 

will flow up due to the temperature difference between the high temperature on the 

bottom and the relatively low temperature on the top. In this example 3Ra 10=  is used 

and it is much smaller than 6Ra 10=  for turbulent flow [166], therefore the fluid flow 

shown in Fig. 8-27 is laminar.  
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(c) (d) 

Fig. 8-26 Temperature profiles in fluid with respect to reference temperature,  

( )f refT T−  at time (a) ( )*100 s 0.05t t= = , (b) ( )*200 s 0.1t t= = , (c) 

( )*400 s 0.2t t= = , and (d) ( )*500 s 0.25t t= =  
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(e) *

xv , at * 0.2t =  (f) 
*

yv , at * 0.2t =  

  

(g) *

xv , at 
* 0.25t =  (h) 

*

yv , at * 0.25t =  

Fig. 8-27 Non-dimensional velocity profiles of fluid at different times  

Regarding the thermal field of the composite laminate, the temperature profiles in 

composites with respect to the reference temperature are provided in Fig. 8-28 at 

different times. It can be observed from Fig. 8-28 that due to the anisotropic property 

and different stacking sequence of the laminates, the temperature distributions are 

different for different layers at the same time. The rate of temperature rise is relatively 

small due to the small local fired region and the low thermal conductivity of composite 

materials used in the present study. According to the investigation performed in [280], 

the temperature rising rate of the average temperature of the same composite material 

is only 0.07 K/s [280]. In this example, the rising rate is 0.085 K/s for the bottom layer 

and 0.061 K/s for the middle layer, which is consistent with the investigation in [280]. 

In the previous example in Section 8.4.1, the temperature rising rate of the average 

temperature of laminates is 0.21 K/s. Compared to the previous problem in which the 

composite is directly imposed under the fire-induced temperature boundary condition, 

-0.900

-0.619

-0.339

-0.0579

0.223

0.504

0.784

1.06

1.35

1.50

-0.0300

0.324

0.679

1.03

1.39

1.74

2.10

2.45

2.81

3.00

-0.900

-0.619

-0.339

-0.0579

0.223

0.504

0.784

1.06

1.35

1.50

-0.0600

0.280

0.620

0.960

1.30

1.64

1.98

2.32

2.66

3.00



309 

 

the temperature rise in this simulation case is much smaller. Furthermore, no damage 

due to melting of composite material is observed. 

  

(a) bottom layer, at 100 st =   (b) middle layer, at 100 st =  
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(g) bottom layer, at 500 st =  (h) middle layer, at 500 st =  

Fig. 8-28 Temperature profiles in composite with respect to the reference 

temperature refT , ( )s refT T− , at different times  

The deformation of the composite is predicted for each 100 seconds by using the 

ADR approach [87]. The total number of iterations in one ADR performance is 

4000ADRN = . Fig. 8-29 represents the convergence of displacement fields for ADR 

[87] simulations at time 
* 0.25t = . The non-dimensional displacements of the three-

layer composite at different times are provided in Fig. 8-30-Fig. 8-31. The deformed 

shape at the final stage is provided in Fig. 8-32. It can be observed from the figure that 

the delamination tends to occur in the heated region because of the thermal expansion.  
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Fig. 8-31 Non-dimensional displacement distribution at * 0.25t =   

 

Fig. 8-32 Deformed shape at * 0.25t =  (displacement scale factor 200 for deformed 

shape) 

8.5. Summary  

In this chapter, the developed PD composite model and thermo-fluid model are 

coupled together to predict the composite response under the fire scenario. The thermal 

degradations of composite material properties are incorporated into the peridynamic 

composite model. The ISO standard temperature-time curve is adopted to represent the 

fire-induced high temperature. The fluid model coupled with heat transfer is utilized 

to represent the physical fire model. Two problems are investigated in the present 

chapter, i.e. composite damage due to direct contact with fire and composite damage 

due to hot gas induced by fire. The convective and radiative boundary conditions are 

implemented by coupling the thermo-fluid model with the composite model.  
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9. Conclusion 

9.1. Achievements against the objectives 

The goal of this research is to predict the composite damage under fire scenario by 

using one methodology, i.e. peridynamic theory. Therefore, the peridynamic theory 

which is originally proposed for solid mechanics is extended to the fluid mechanics to 

model the fire physical properties. Furthermore, the fluid-structure interaction 

algorithm in the framework of peridynamic theory is also developed, which can be 

further generally applied to the FSI engineering problems. The main achievements 

against the research objectives are listed as follows: 

• An OSB PD fully coupled thermomechanical model for isotropic material is 

developed. The coupling terms including the thermal effect on solid 

deformation and the mechanical deformation effect on temperature are 

involved in the OSB-PD model. The PD expressions of the thermal modulus 

for 1D, 2D, and 3D problems are first time derived in OSB-PD theory. Then 

several benchmark problems are solved by using the developed model, e.g. 

three-point bending problem, Kalthoff plate problem etc.  

• An OSB PD fully coupled thermomechanical model for laminated composite 

materials is developed. The direction-dependent properties of the composite 

materials are taken into consideration. The PD thermal conductivity 

formulation for interlayer heat conduction is derived for the first time. 

Furthermore, the PD thermal modulus for composite materials in the OSB-PD 

framework is firstly derived.  

• A single-phase fluid model is developed based on the peridynamic differential 

operator. The Navier-Stokes equations are reformulated into a non-local form 

expressed by the peridynamic differential operator. The developed model is 

applied to solve some benchmark problems in fluid mechanics including a free 

surface fluid flow. 

• A heat-conducting fluid model is developed for fluid flow coupled with heat 

transfer problems by using the peridynamic differential operator. The heat 

conduction and fluid flow are simulated in a simultaneously way. The 
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developed model is applied to solve some benchmark problems, i.e. natural 

convection and mixed convection.  

• A peridynamic model is developed for multiphase fluid flow problems by using 

the peridynamic differential operator. The surface tension force is included in 

the fluid flow governing equations. The developed model is applied to solve 

the classical problems, e.g. two-phase hydrostatic problem, two-phase 

Poiseuille flow, and 2D droplet deformation.  

• A peridynamic model is developed for fluid-structure interaction problems. 

The structure is modelled by using the ordinary state-based peridynamic theory, 

while the fluid is modelled by using the peridynamic differential operator. The 

interface between the fluid and the structure is traced by using the colour 

function gradient. Then the developed model is applied to simulate the water 

column collapse under a rubber gate.  

• The composite response under fire scenario is simulated by using the previous 

composite model and fluid model. The thermal degradation properties of the 

composite are incorporated into the original composite model. The problems 

of the composite are directly and indirectly under a fire-induced high-

temperature boundary condition are investigated.         

9.2. Novelty and contribution 

The existing peridynamic model for fully coupled thermomechanical models is in 

the bond-based form. Therefore, the Poisson’s ratio of the solid material is forced to 

be 1/3 for 2D problems and 1/4 for 3D problems. By using the ordinary state-based 

peridynamic theory, an OSB PD fully coupled thermomechanical model is developed 

to fill the gap. The developed model has been successfully applied to solve some 

benchmark problems in a fully coupled thermomechanical fashion, which is published 

in [5]. 

The composite materials are widely used in the engineering field, due to their high 

strength to weight ratio and other high-performance properties. The prediction of crack 

propagation of composite materials is important especially under extremely harsh 

conditions, e.g. high-temperature environments. The fully coupled thermomechanical 
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composite model in ordinary state-based peridynamic theory is not available in the 

published literature.  Therefore, based on the previous fully coupled thermomechanical 

bond-based peridynamic model, an ordinary state-based peridynamic fully coupled 

thermomechanical model is developed for composite materials. In addition to 

involving the coupling terms between the mechanical field and the thermal field, the 

anisotropic material properties of the composites are also included in the developed 

model. The developed model is fully validated and applied to predict crack 

propagation in a fully coupled manner. The relevant study is published in [6]. As an 

application example, the crack propagation and temperature variation of a 13-layer 

laminate are simulated under underwater explosion pressure conditions. This study is 

published in [7].  

The peridynamic theory is originally proposed for solid mechanics. Aa a result, as a 

computational mechanics method, its application on fluid mechanics field is still 

limited. A viscous fluid model in laminar flow condition is developed by using the 

PDDO for the first time. The fluid flow governing equations, i.e. Navier-Stokes 

equations, are reformulated into an integral form. Furthermore, the second-order 

derivatives in the N-S equations can be approximated by one integration with the help 

of high order PDDO. Some benchmark problems in fluid mechanics have been 

successfully solved by using the new PDDO fluid model, validating the capability of 

the developed model. The relevant study is published in [8]. 

The heat-conducting fluid flow is a multi-physics subject, involving the knowledge 

of fluid mechanics and thermodynamics. A peridynamic model which can be applied 

for the fluid flow coupled with heat transfer problems is not available in the published 

literature. Based on the fluid PDDO model, a heat-conducting fluid PDDO model is 

developed for the first time. The fluid flow governing equations and the heat 

conduction equation are coupled in the model. The classical problems, e.g. natural 

convection and mixed convection are solved by using the developed model on different 

Rayleigh numbers. The relevant work is published in [9]. 

The simulation of the multi-phase fluid flow is a complex task. Based on the PDDO 

single-phase fluid model, a multi-phase fluid PDDO model including the surface 
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tension force is developed for the first time. Furthermore, some numerical techniques 

such as particle shifting technique are reformulated by using the PDDO. The interface 

normal direction is calculated by using the colour function gradient which is also 

reformulated to a PDDO form. Some classical multi-fluid problems are solved, 

validating the accuracy of the multi-phase fluid PDDO model. The relevant work is 

written as a journal paper which is under review. 

The fluid-structure interaction is often encountered in the engineering field. It will 

be convenient for one to use a single methodology to simulate these FSI problems. 

Furthermore, when structural damage is involved in the problem, it becomes more 

complex and challenging work. The peridynamic theory has the advantage over the 

classical continuum mechanics on the damage prediction, because of the integral form 

of the equation of motion. However, an FSI PD model which can simultaneously 

predict the solid deformation and fluid motion, as well as including the interactions, is 

not available in the published literature. Therefore, a peridynamic model is developed 

for fluid-structure interaction problems. The existing ordinary state-based PD model 

is adopted for the isotropic solid. The PDDO fluid model is utilized in the FSI PD 

model. Then an algorithm to couple the OSB-PD solid model and PDDO fluid model 

is developed. Furthermore, the interface is tracked simultaneously. The developed PD 

model is successfully applied to solve FSI problems. The relevant work is written as a 

journal paper which is under review.  

The simulation of the response of composite material in fire environments is a 

meaningful research topic in terms of safety. Therefore, a numerical algorithm is 

developed to investigate the composite material response under fire boundary 

condition. However, no PD model is available for this case which belongs to the field 

of thermal fluid-structure interactions. Therefore, a novel PD model is developed for 

this problem. First, the thermal degradation properties of composites are implemented 

into the existing composite PD model. Then the composite response directly under 

fire-induced temperature boundary condition is investigated. The thermal status such 

as glass transition, the thermal expansion as well as the crack propagation of the 

composite is studied. Second, the fluid model is utilized to represent the physical 

model of the fire. The air is heated by the localized fire temperature boundary condition. 
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Then the composite deforms under the heated air. The heat conduction within the 

composite and the deformation of the composite are simulated. The convection and 

radiation between the air and the composite are considered. This study will be the first 

one to investigate the composite response under fire using the peridynamic theory. The 

related study is written as a journal paper which is under review.    

9.3. Publications from PhD thesis 

Journal Papers 

[P1] Y. Gao, S. Oterkus, Peridynamic Analysis of Marine Composites under Shock 

Loads by Considering Thermomechanical Coupling Effects, Journal of Marine 

Science and Engineering, 6 (2018) 38. 

[P2] Y. Gao, S. Oterkus, Ordinary state-based peridynamic modelling for fully 

coupled thermoelastic problems, Continuum Mechanics and Thermodynamics, 31 

(2019) 907-937. 

[P3] Y. Gao, S. Oterkus, Non-local modelling for fluid flow coupled with heat 

transfer by using peridynamic differential operator, Engineering Analysis with 

Boundary Elements, 105 (2019) 104-121. 

[P4] Y. Gao, S. Oterkus, Nonlocal numerical simulation of low Reynolds number 

laminar fluid motion by using peridynamic differential operator, Ocean Engineering, 

179 (2019) 135-158. 

[P5] Y. Gao, S. Oterkus, Fully coupled thermomechanical analysis of laminated 

composites by using ordinary state-based peridynamic theory, Composite Structures, 

207 (2019) 397-424. 

[P6] Y. Gao, S. Oterkus, Multi-phase fluid flow simulation by using the peridynamic 

differential operator. (under review) 

[P7] Y. Gao, S. Oterkus, Fluid-structure interaction simulation by using the 

peridynamic theory. (under review) 
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[P8] Y. Gao, S. Oterkus, Thermal fluid-structure simulation of composites under the 

fire scenario. (under review) 

Conference Papers 

[P9] Y. Gao, S. Oterkus, Thermomechanical Analysis of Composites Under Shock 

Load Using Peridynamics, in:  The 28th International Ocean and Polar Engineering 

Conference, International Society of Offshore and Polar Engineers, Sapporo, Japan, 

2018, pp. 8. 

9.4. Gaps and recommended future work 

Concerning the fully coupled thermomechanical PD models for composite materials, 

parallel computing can be adopted to save the computational time. For example, the 

numerical simulations for the 13 ply laminates take approximately 3 days for 

sequential computing. The computation time can be reduced to less than 1 day when 

parallel computing is used with 4 cores.   

Concerning the PDDO single-phase fluid model, the model can be extended for high 

Reynolds number laminar flow. Even the turbulent flow can be investigated by 

incorporating the turbulent model into the governing equations. It should be noted that, 

for a high Reynolds number laminar flow or turbulent flow, a stable algorithm 

regarding the numerical implementation is required when the peridynamic particles 

are in a highly distorted distribution.  

Concerning the PPDO heat-conducting fluid model, more numerical simulations can 

be done. For example, the effects of different type of boundary conditions, e.g. 

convective boundary, radiative boundary on the fluid flow can be investigated.      

Concerning the PDDO multi-phase fluid model, more numerical simulations can be 

performed to validate the model, e.g. Rayleigh Taylor instability problem, air bubble 

rising in a water column. 

Concerning the fluid-structure interaction PD model, more numerical simulations 

can be performed to validate the model. Furthermore, the structure failure can be 
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simply incorporated into the current model, which can reflect the advantages of the PD 

theory where the integral equations remain valid regardless of discontinuities. Besides, 

the current FSI PD model can be more efficient by setting different mesh sizes for 

critical regions and other regions. For example, the fluid and structure interaction 

region can have a fine mesh while the other parts with less motion or deformation can 

have a relatively coarse mesh, in order to make simulations more efficient.     

The current fluid-related PDDO models, i.e. the single-phase fluid model, the heat-

conducting fluid model, the multi-phase fluid model, and the fluid-structure interaction 

model, are all applied to 2D fluid flow simulations. Therefore, the 3D fluid flow can 

also be simulated by simply extending the current 2D fluid models. 

Concerning the simulation of the composite response under fire scenario, the 

experimental validation is required. In addition, the following aspects can be 

considered for further PD study on this topic. Firstly, the fire can be represented by a 

multi-phase, multi-component, heat-conducting, and chemical reactive fluid flow. 

Currently, only the heat-conducting property is incorporated into the fluid flow to 

represent the fire. Consequently, the current fire model can be extended by involving 

the other properties to represent fire realistic properties. For example, the solid 

components can be considered within the fluid flow by using the multi-species 

fractions and diffusion velocity. The chemical reaction can also be included as a heat-

generating source in the conservation of energy equation. Secondly, the thermal 

coupling between the composite model and the fluid model is considered in a one-way 

approach. Only the temperature of the fluid influences the thermal field of composites. 

Therefore, for further study, the two-way coupling can be considered which will be 

more realistic. Thirdly, because the deformation of the composite under fire is 

negligible, the coupling between the fluid flow and composite deformation is not 

considered in the thermal fluid-structure interaction simulation for composite under 

the fire scenario. Hence, the fluid-structure interaction algorithm developed in this 

thesis can be incorporated into the composite-fire simulation when the deformation 

coupling effect cannot be ignored.    
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9.5. Final remarks 

The ultimate problem to be solved in this thesis is the prediction of the composite 

material response under fire scenario, which is a multifield topic including solid 

mechanics, thermodynamics, fluid mechanics, and their coupling terms. In order to 

solve this problem, the application field of the peridynamic theory is extended to the 

fluid mechanics, i.e. developing a single-phase fluid model, a multi-phase fluid model, 

a fluid flow coupled with heat transfer model, a fluid-structure interaction model. 

Furthermore, the ordinary state-based peridynamic model for fully coupled 

thermomechanics is developed both for isotropic materials and laminated composites. 

Finally, the investigation of composite response under fire scenario is conducted by 

combining the developed PD fluid model and composite model.    
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Appendix A. Thermal Modulus for Isotropic Material   

The thermal modulus for a material point can be obtained by using the PD local 

thermal modulus formulation provided in Eq.(3.8) as follows:  

When small deformation approximation is adopted, ij  provided in Eq. (2.9d) 

results in 1ij = . Consequently, the integration term in Eq. (3.8) becomes 

 
1

iN

ij j H

j

V V
=

 = x
  (A.1) 

with HV
x
 representing the integration volume.  

For 2D problems, the integration domain is a circle disk with its radius,   and 

thickness, thickh . On the other hand, the integration domain for 3D problems is a sphere, 

thus the volume in Eq. (A.1) can be calculated as 
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An average value of relative position can also be evaluated by using weighted 

integration as  
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In Eq. (A.3),   represents the bond angle with respect to x  axis for 2D cases and 

  represents the bond angle with respect to the -x y  plane for 3D cases.     

Recalling the classical material constants   
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2 1 2 1
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− +
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( ) ( )
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− +
  (A.4b) 

Finally, by substituting Eq. (A.2), Eq. (A.3) and Eq. (A.4) into Eq. (3.6), average 

PD thermal modulus for a material point can be calculated as  
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PD thermal modulus for ordinary state-based form reduces to bond-based form by 

plugging in 1 3 =  for 2D  and  1 4 =  for 3D  in Eq. (A.5) [43, 44] as 

 
2

b

c
 =   (A.6) 

with the definition of c  being provided in Chapter 2.1.1. As can be seen from the 

above formulations, bond-based PD has a limitation on Poisson’s ratio [10, 11]. 

Reduced form as Bond-Based PD: 

Equation of motion: 

In bond-based PD by applying the restriction 0a =  in [10], the corresponding PD 

force functions provided in Eq. (2.9) becomes  
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By enforcing the magnitude of PD force density provided in Eq. (A.7a) and 

Eq.(A.7b) to be equal to each other as 
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it results in ( ) ( ), , , ,j i j i i j i jt t− − = − − −t u u x x t u u x x . By plugging Eq. (A.8) into 

Eq.(2.3), the equation of motion becomes [43] 
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with bond-based thermal modulus as 

 2b b =  (A.10a) 

or 
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b
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 =  (A.10b) 
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Heat Equation: 

The form of the heat conduction equation in bond-based peridynamics remain same 

as Eq. (3.1) [43]  
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  (A.11) 

with bond-based thermal modulus provided in Eq. (A.10). 
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Appendix B. PD Thermal Parameters for Composites 

B.1 PD thermal micro conductivities for composites 

The heat conduction equation for a single layer composite provided by Oterkus and 

Madenci [46] is modified for multi-layer composites as 
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       (B.1) 

The first term on the right side of Eq. (B.1) represents the in-plane heat conduction 

in a lamina [46] and the second term represents the heat conduction between the 

neighbouring layers. 

The PD thermal micro conductivities can be determined by applying simple loading 

conditions and by comparing thermal potentials with classical formulations [43, 44]. 

The thermal micro conductivities for a lamina provided by Oterkus and Madenci [46] 

are given in Eq. (4.10)-(4.11). Similarly, the thermal micro conductivity through the 

thickness direction can be calculated by applying simple loading condition as 

 ( ), ,x y z z =   (B.2) 

The thermal potential in the classical formulation can be calculated under the given 

loading condition as [10, 39, 44] 
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1 1

2 2
C m mZ k k
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  (B.3) 

where mk  is the thermal conductivity in the thickness direction. In a resin-rich 

laminate, the material property in the thickness direction can be assumed to be same 

as the matrix material property.  
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The corresponding PD thermal micro-potential developed by the central point x  

and its family member x  can be evaluated as [39]  
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2

2
PD interz 
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=

−x x
  (B.4) 

The PD thermal potential is the summation of all microthermal potential with the 

point, calculated as  
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where inter  is the PD thermal bond constant in the thickness direction. The integration 

domain, H , for the interlayer thermal bonds between 
thn  ply and 

thm  ply is a circular 

disk with the thickness being equal to thickh . For the given loading condition, the 

temperature difference becomes  

 thickh − =   (B.6) 

Therefore, Eq.(B.5) can be evaluated as  
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where ξ  represents the projection of the relative position ξ  on the layer in which x  

is located, i.e. 
2

thickh= +ξ ξ . By equating the thermal potential from both the 

classical theory Eq.(B.3) and peridynamic theory Eq.(B.7), the peridynamic bond 

constant for interlayer interactions can be found as  
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where   is the horizon for interlayer shear bonds with 2 2

thickh = +  (see Fig. 

4-4(b)). 

B.2 PD thermal modulus for composites 

Free Energy density 

The free energy density in classical continuum mechanics for small deformation can 

be represented by the summation of internal energy density or strain energy and  

dissipated energy density into heat [290] as  

M T

CCM CCM CCMW W = −    (B.9a) 

with 
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   (B.9c) 

where  cl  is the thermal modulus vector in classical continuum mechanics,    is 

the stress tensor,    is the strain vector and CCM  is the free energy density. 

Similarly, the PD free energy density can be written [43] as  

M T

PD PD PDW W = −    (B.10a) 

where 
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where B  is the thermal modulus and U  is the displacement in PD theory. Also, K  is 

the modulus state [50]. Eq. (B.9c) and (B.10c) include the coupling term between 

mechanical and thermal field. 

PD mechanical model is developed by equating the strain energy densities from both 

theories as [10, 80, 291, 292] 

M M

CCM PDW W=    (B.11) 

Similarly, PD thermal modulus can be found by equating the free energy densities 

i.e. CCM PD = , which results in  

T T

CCM PDW W=    (B.12) 

PD thermal modulus expression for single-layer/ lamina model 

The peridynamic representation of thermal modulus is determined by applying 2 

simple loading conditions as: 

Loading 1: 

11 22 12, 0   = = =   (B.13a) 

Loading 2:  

22 11 12, 0   = = =  (B.13b) 

According to CCM: 

In classical continuum mechanics, with respect to the material coordinate system, 

the thermal modulus for a lamina is defined as 

    cl Q =   (B.14) 



351 

 

where  Q  is the reduced stiffness matrix given in Eq. (4.7). The thermal expansion 

coefficient vector,   , is defined as 
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Under the given two loading conditions, the first term on the right-hand side of Eq. 

(B.9c) can be obtained as: 

Loading 1: 
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+   
   

= = +  = +   
   
   

  (B.16b) 

According to PD theory: 

Corresponding PD representation can be defined as: 

( )d
H

T T H
  −

=  −   − 


y y
B U u x x

y y
  (B.17) 

By using small-angle approximation Eq. (B.17) becomes as (See Figure B-1): 

( )d dX
H H

T T H T H   = = − − − B U y y x x   (B.18) 

with 
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( )( ) ( )( )cos sinX X X x x y yu u u u u u    = − = − + −  (B.19) 

 

 

(a) (b) 

 

(c) 

Figure B-1 Relative displacement between points x  and x  in different 

coordinates [76].  

The relative distances in deformed configuration between the material points x  and 

x  for given loading conditions are, 

Loading 1:  

( )21 cos   − = + − y y x x   (B.20a) 

Loading 2: 

( )21 sin   − = + − y y x x  (B.20b) 

Eq. (B.18) for given loading conditions can be defined as: 

Loading 1: 

( ) ( )( )2cos dF f m
H

T T H     = + −B U x x   (B.21a) 

x

y
ξ

x

y



x

y

X

Y

u

u

y

+η ξ

x
x

XY

y

X
Y

 −u u

x

x

X

Bond extension
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Loading 2: 

( ) ( )( )2sin dF f m
H

T T H     = + −B U x x   (B.21b) 

By plugging the relative distance between the material points x  and x  into 

Eq.(B.21), Eq.(B.21) becomes 

Loading 1: 

( ) ( )

( ) ( )

2

2
2

0 0

3

1

cos d

cos

3

F

F f m
H

F f m thick

N

thick
f m

T T H

T h d d

h
T V

 

    

     

 
  

=

 = +

= +

 
= + 

 



 


x

B U ξ

ξ ξ ξ

ξ

  (B.22a) 

Loading 2: 

( ) ( )

( ) ( )

2

2
2

0 0

3

sin d

sin

3

F f m
H

F f m thick

thick
m

T T H

T h d d

h
T

 

    

     

 
 

 = +

= +

 
=  

 



 

B U ξ

ξ ξ ξ   (B.22b) 

By equating the expressions Eq. (B.16) and Eq. (B.22), the following relations are 

obtained as  

3

11 1 12 2

1 3

fN

thick
f m

h
V Q Q

 
   

=

 + = +
x

ξ    (B.23a) 

and 

3

12 1 22 2
3

thick
m

h
Q Q

 
  = +    (B.23b) 

Finally, the expressions of f  and f  are defined as  
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( ) ( )11 1 12 2 12 1 22 2

1

F
f N

Q Q Q Q

V

   


=

+ − +
=


x

ξ

   (B.24a) 

and 

( )12 1 22 2

3

3
m

thick

Q Q

h

 


 

+
=    (B.24b) 

PD thermal modulus for a 2D isotropic material Eq. (B.24) becomes  

0f =    (B.25a) 

( )3 3 3

6 33

1

cl
m

thick thick thick

K E

h h h

 


      
= = =

−
   (B.25b) 

with 

1 2 11 22 12, ,Q Q K Q K     = = = = + = −   (B.26) 

where K  and   are bulk modulus and Lamé constant, respectively. The PD 

parameters provided in Eq. (B.25) are consistent with the ones in [5].  

Furthermore, for bond-based peridynamic theory the PD thermal modulus will 

reduce to [43]; 

0f =     (B.27a) 

1

2
m c =    (B.27b) 

with 

3

9

thick

E
c

h 
=  for 2D   (B.27c) 
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PD thermal modulus expression for multi-layer/ laminate model 

In a multi-layer/laminate model, the expressions of the PD thermal modulus 

associated with in-plane bonds remain the same as the ones in the lamina model 

(Appendix B.2). The PD thermal model for multi-layer composites including coupling 

effects can be written as 

( )
( ) ( )

( )

( ) ( )
( )

0

1

0 ,

1, 1 1

, ,

, ,
,

ply

inter

n nN
j kn n n

v k F f m F f m kj jn n
j j k

m nN
j k nm m n

inter inter kj z j b km n
m n n j j k

t t
c T e V

t t
e V q t

      

  

=

= + − =

  −
 = + − +

−  

  −
 + − +

−  



 

x x

x x

x x
x

x x

  (B.28) 

Similarly, PD thermal modulus can be found by equating the free energy densities 

from PD theory and CCM as given in Eq. (B.12) for simple loading conditions.  

In order to derive the expression of PD thermal modulus, a uniform transverse 

normal stretch is applied as  

33 =    (B.29) 

According to CCM: 

Under the given loading condition, the first term on the right-hand side of Eq. (B.9c) 

can be obtained as: 

     cl m m m mT E T E T     = =    (B.30) 

According to PD theory: 

Under the given loading condition, as illustrated in Figure B-2, for the material point  

n

kx  of interest, the relative positions in undeformed and deformed configurations are  

2 2m n

j k thickh l− = +x x    (B.31a) 
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( )
2 2 21m n

j k thickh l− = + +y y    (B.31b) 

with m n

j kl = −y y  and ( )1, 1m n n= + −   

Consequently, the relative displacement becomes 

  ( )
2

2 2 2 2 2

2 2
1m n m n thick

j k j k thick thick

thick

h
h l h l

h l


− − − = + + − + 

+
y y x x  (B.32) 

 

Figure B-2 Illustration of relative positions in undeform and deformed 

configurations. 

The integration domain, H , is a circular disk with radius being   and thickness 

being thickh . Therefore, by considering the two adjacent plies ( )1, 1m n n= + − , Eq. 

(B.17) can be calculated as 

( )

2

2 2

2
2

3

2 20 0

2 d

2 d d 4

thick
inter

H

thick

thick
inter thick inter thick thick

thick

h
T H

h l

h
h l l h h

h l

 





    

 =
+

= = −
+



 

B U

  (B.33) 

By equating Eq.(B.30) and Eq.(B.33), the expression of inter  can be obtained as  

( )34

m m
inter

thick thick

E

h h




 
=

−
    (B.34) 

 

thm Ply

n

kx

m

kx m

jxl

h
2 2h l+

m

ky

n

ky

( )1 h+

m

jyl

( )
2 2 21 h l+ +

thm Ply

thn Ply thn Ply


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Appendix C. Surface Correction Factor for Composites 

 The values of the PD parameters depend on the domain of integration which is 

decided by the horizon. Therefore, surface correction factors are needed when the 

material points are located near the free surface. The surface correction factors for 

mechanical parameters for composite materials and isotropic materials have already 

been provided in [10, 44, 291]. The surface correction factors for PD micro 

conductivity   and PD thermal modulus   will be discussed in here.  

The surface correction factors of the PD micro conductivity are achieved by 

comparing the thermal potential obtained from PD and classical formulations under 

simple loading conditions [43, 44]. The correctors of thermal modulus can be obtained 

by equating the free energy densities calculated from the two theories.    

C.1 Surface correction factors for PD micro conductivity  

Surface correction factors for single-layer/lamina model 

As illustrated in Figure C-1, the coordinates of the material point kx  are denoted as 

( ),k kx y  for the global coordinate system and ( )1 2,k kX X  for the material coordinate 

system. 

 

Figure C-1   Coordinate system illustrations.  

A simple linear temperature field, 
1 2X X= + , is applied to the lamina. The 

corresponding temperature difference between two material points is 

y

x

1

2

kx

kx

ky

1

kX

2

kX

0


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( ) ( )1 2 1 2

j k j j k kX X X X − = + − +    (C.1) 

The PD thermal potential at material point kx  can be expressed as  

, ,

PD PD PD

k k F k MZ Z Z= +   (C.2) 

where ,

PD

k FZ  and ,

PD

k MZ  represent the contributions from fibre thermal bonds and the 

matrix thermal bonds. By using the expression given in Eq.(B.5), the PD thermal 

potential can also be expressed as [39, 43] 

( ) ( )( )
2

1 2 1 2

,

1

1

2 2

FN
j j k kPD

k F f

j j k

X X X X
Z 

=

+ − +
=

−


x x
   (C.3a) 

and 

( )
( ) ( )( )

2
1 2 1 2

,

1

1

2 2

plyN
j j k kPD

k M k m

j j k

X X X X
Z 

=

+ − +
=

−
x

x x
 (C.3b) 

On the other hand, corresponding thermal potential can be calculated as [10, 43, 44] 

( )
2 2

1 2 1 2

1 2

1 1

2 2
Z k k k k

X X

     
 = + = +   
      

  (C.4) 

The lamina will become a matrix material when 1 2k k= , then the corresponding 

thermal potential is 

2 2

2 2 2

1 2

1

2
MZ k k k

X X

     
 = + =   
      

        (C.5) 

Therefore, the thermal potential given in Eq.(C.4) can be expressed as 

M FZ Z Z= +    (C.6) 



359 

 

with 

( )1 2

1

2
FZ k k= −    (C.7a) 

and  

2MZ k=    (C.7b) 

where FZ  and MZ  are the thermal potentials related to the fibre material and matrix 

material, respectively.  

Consequently, the surface correction factors of f  and m  at point kx  can be 

calculated as  

( )
( )

( ) ( )( )

1 2

2
1 2 1 2

,

1

1

2

1

2 2

F

F
F k PD

Nk F
j j k k

f

j j k

k k
Z

S
Z X X X X


=

−

= =
+ − +

−


x

x x

  (C.8a) 

and 

( )
( ) ( )( )

2

2
1 2 1 2

,

1

1

2 2

ply

M
M k PD

Nk M
j j k k

m

j j k

Z k
S

Z X X X X


=

= =
+ − +

−


x

x x

 (C.8b) 

Surface correction factors for multi-layer composite model 

For a multi-layer thermal composite model, the surface correction factors for f  

and m  remain the same. Thus, only the derivation of the surface correction factors 

for the interlayer micro conductivity inter  is explained in this section. A linear 

temperature field ( ), ,x y z z =  is applied to all the plies with respect to the global 

coordinate system. Subsequently, the temperature difference is calculated as  
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m n m n

j k j kz z − = −    (C.9) 

where the point n

kx  is in the thn  and 
m

jx  is in the thm  ply. Therefore, the temperature 

difference is zero between 
n

jx  and n

kx . The thermal potential of point n

kx  can be 

calculated as 

( )
2

1, 1 1

2

1

2

1, 1 1

1

2 2

1
1,

2 2

1
2,3, 1

2 2

inter

inter

inter

m nN
j kPD

inter inter

m n n j

N

thick
inter m n

j j k

N

thick
inter m n

m n n j j k

z z
Z

h
for n N

h
for n N







= + − =

=

= − + =

−
=


=

−
= 
 = −
 −


 



 

ξ

x x

x x

 (C.10) 

where N  is the total number of plies in a laminate (see Fig. 4-4(a)). 

Corresponding thermal potential in CCM can be calculated as 

2

3 3

1 1

2 2
interZ k k

z

  
= =     

   (C.11) 

There is only one adjacent layer for the bottom and top ply. However, the value of 

inter  is calculated by summing the thermal potential energy developed by two plies. 

Therefore, to calculate the surface correction factors for the points in the bottom and 

top plies, the PD thermal potential developed by interlayer thermal bonds are doubled. 

In conclusion, the surface correction factors for inter  are given as  
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( )

3

2

1

3

2

1, 1 1

1

2 for 1,
1

2
2 2

1

2 2,3, 1
1

2 2

inter

inter

N

thick
inter m n

j j kn inter
inter k PD

inter

N

thick
inter m n

m n n j j k

k

n N
h

Z
S

Z
k

for n N
h





=

= − + =




=
 
   −  = = 




= −


−




 

x x
x

x x

 (C.12) 

where thickh  is the thickness of a single layer.  

C.2 Surface correction factors for PD thermal modulus  

Surface correction factors for the single-layer composite model 

The surface correction factors for PD thermal moduli f  and m  are determined by 

applying two different loading conditions as in the fibre direction then in the transverse 

direction as: 

Loading 1:  

 1 1 0x=u  (C.13a) 

Loading 2: 

 2 20 x=u    (C.13b) 

The orthotropic property of a single layer composite is assumed as the summation 

of a matrix material and a fibre material that only exists in the fibre direction. In 

analogy with the PD thermal modulus components, the classical thermal modulus cl  

is assumed to be 

 

11 1 12 2

12 1 22 2

0 0

f m

cl cl

m

cl cl

Q Q

Q Q

   

   

 + + 
   

= = +   
   

  

 (C.14a) 
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with 

( ) ( )11 1 12 2 12 1 22 2

f

cl Q Q Q Q    = + − +    (C.14b)  

12 1 22 2

m

cl Q Q  = +  (C.14c) 

Under given loading conditions, the first term on the right-hand side of Eq. (B.9c) 

can be obtained as: 

Load 1: 

       ( )
11 1 12 2

12 1 22 2 11 1 12 20

0 0

cl

Q Q

T Q T Q Q T Q Q T

  

        

+   
   

= = +  = +   
   
   

  (C.15a) 

with 

   ( ) ( ),1

11 1 12 2 12 1 22 2

f

cl T Q Q Q Q T      = + − +     (C.15b) 

    ,1

12 1 22 2

m

cl T Q Q T    = +     (C.15c) 

Load 2:  

       ( )
11 1 12 2

12 1 22 2 12 1 22 2

0

0 0

cl

Q Q

T Q T Q Q T Q Q T

 

         

+   
   

= = +  = +   
   
   

  (C.16a)

with 

  ,2 0f

cl T  =    (C.16b) 

    ,2

12 1 22 2

m

cl T Q Q T    = +     (C.16c) 

Since there is no deformation in the fibre direction, the fibres do not deform under 

load 2. Therefore, the deformation effect of fibre on temperature is zero.  
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Corresponding PD representation can be defined by using Eq. (B.18) as: 

Load 1:  

( ) ( ) ( )( ),1

1 1

1

fN
f j k

f j k j

j j k

T T V
=

−
= − 

−


y y
B U u x u x

y y
  (C.17a) 

( ) ( ) ( )( ),1

1 1

1

plyN
m j k

m j k j

j j k

T T V
=

−
= − 

−


y y
B U u x u x

y y
  (C.17b) 

Load 2: 

( )
,2

0
f

T =B U    (C.18a) 

 ( ) ( ) ( )( ),2

2 2

1

plyN
m j k

m j k j

j j k

T T V
=

−
= − 

−


y y
B U u x u x

y y
 (C.18b) 

As a result, the surface correction factors are  

( )
  

( )

( ) ( )

( ) ( )( )

,1

11 1 12 2 12 1 22 21

,1

1 1

1
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 (C.19a) 
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  
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 

( ) ( )( )
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12 1 22 21
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1 1

1
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  (C.19b) 

( )2 , 1F k jS =x x    (C.19c) 

( )
  

( )

 

( ) ( )( )

,2

12 1 22 22

,2

2 2

1

,
ply
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M k j m N
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m j k j
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T Q Q
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  (C.19d) 
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It should be noted that these correction factors are validated for the fibre and 

transverse directions. They can act as the principal values of an ellipse [10] to 

approximate the surface corrections in any other directions as  

( ) ( )( ) ( )( )
2 2

1 2

1 2, 1/ / , / ,F k j F k j F k jS n S n S= +x x x x x x   (C.20a) 

and 

( ) ( )( ) ( )( )
2 2

1 2

1 2, 1/ / /M k j M k M kS n S n S= +x x x x ,  (C.20b) 

where 1n  and 2n  are the projections of the relative position vector between kx  and jx  

in fibre and transverse directions.  

Surface correction factors for multi-layer composite model 

For a multi-layer composite model, the surface correction factors for in-plane 

directions remain the same as the ones calculated in lamina model. The surface 

correction factor for the thickness direction is developed. A third loading condition is 

applied as 

Load 3:  

 3 0 0 z=u  (C.21) 

Under the given loading condition, the second term on the right-hand side in Eq. 

(B.9c) can be obtained as: 

  cl m mT E T   =    (C.22) 

Corresponding PD representation can be defined by using Eq. (B.18) as 

( ) ( )( )
1, 1 1

interN
j k m

inter z j z k j

m n n j j k

T T V
= + − =

−
= − 

−
 

y y
B U u x u x

y y
  (C.23) 
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Then the surface correction factor for inter  is 

( )
  

( ) ( )( )

( ) ( )( )

1

1, 1 1

,

for 1,

2

2,3, 1
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N
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inter z j z k j

j j k

m m

N
j k m

inter z j z k j

m n n j j k

T
S

T

E
n N

V

E
n N

V

  

 



 



=

= + − =

=


= −

 − 
−

= 
 = −

−
− 

−



 

x x
B U

y y
u x u x

y y

y y
u x u x

y y

(C.24) 
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Appendix D. Analytical solution for 2D PDDO 

 For 2D PD differential operator, the integration domain, Hx , is set to be a disk with 

its radius being horizon   and thickness being thickh , analytical form of PD differential 

operator can also be calculated.  

By utilizing the weighted function 

 ( ) ( )
2

2 /
w e

 


−
=   (D.1) 

and substituting  = ξ , ( )1 cos  = , and ( )2 sin  =  with   being the bond 

direction with respect to the positive 1x  direction into Eq.(2.28a), the analytical form 

of shape matrix, A , can be obtained as 

( )
2

2 2 2 3 3 3 2 3 2

2 2 2 3 2 3 3 3 2

2 2 / 3 3 3 2 4 4 4 2 2 4 3

0 0
3 2 3 3 4 2 2 4 4 4 3

3 2 3 2 4 3 4 3 4 2 2

c cs c cs c s

cs s c s s cs

d dc c s c c s c s

cs s c s s cs

c s cs c s cs c s

thicke h
   

    

    

      

    

    

−

 
 
 
 =
 
 
 
 

 A  (D.2) 

where ( )c cos =  and ( )s sin = . After performing the integrations, Eq.(D.2) results 

in  

( )

( )

( ) ( )

( ) ( )

( )

4

4

4 2 4 2

4

4
4 2 4 2

4 2

5 0 0 0 0

0 5 0 0 0
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8 8
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8
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 
 −
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 − −
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 − −
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 

− 
  

A (D.3) 
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After substituting A  into Eq.(2.27), the expression of the matrix a  can be obtained 

as 

( )

( )

( ) ( )

( ) ( )

( )

4

4

4

4 2 4 24

4 2 4 2

4 2

1
0 0 0 0

5

1
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5
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13 13

2 6
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e e

e
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 
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 
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 
 
 

−  

a   (D.4) 

Consequently, by substituting Eq. (D.4) and Eq. (D.1) into Eq.(2.24), the analytical 

expression of the PD differential operator for the 2D problem is obtained as 
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  (D.5) 

Finally, the partial derivatives will be converted into their non-local forms as  
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x ξ x   (D.6) 

It should be mentioned that for the numerical simulations, the PD differential 

operator is computed numerically. 
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Appendix E. PST corrections for physical variables except 

displacement 

Regarding the PST, after the particle position being shifted, the fluid velocity 
iv , 

pressure 
iP  and density 

i  for particle i , represented by 
i , can be corrected 

according to the Taylor series expansion. Originally, the Taylor series expansion used 

in the PST [159] only has second-order accuracy. In the present work, the second-

order derivatives are already calculated by using PPDO. Therefore, Taylor series 

expansion with a third-order error term can easily be adopted as [293] 

( ) ( ) ( ) ( )( ) ( ) ( )
3

1 1 1

2

Tcorrected n PST PST PST PSTn n

i i i i i i ii
       + +  

= +   + +  
 

u u H u u (E.1) 

where iH  represents the Hessian matrix as [293] 

 

2 2
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1 1 2
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  
 
   

H  (E.2) 

Consequently, the non-local form of the Hessian matrix can be derived as  
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ξ ξ
H x x

ξ ξ

x x g ξ

 (E.3) 

The PPDO form of Eq.(E.1) can be derived by replacing the PDDO gradient 

operator provided in Eq.(5.1d) and PDDO form of the Hessian matrix in Eq.(E.3), 

resulting in   
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where the expression of ( )
PST

iu  is provided in Eq.(6.48).   

Therefore, the corrected velocity components become 
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The corrected pressure values become 
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  (E.7) 

It should be noted that the corrections for velocity components and pressure have 

limit effects on the accuracy improvement of the numerical results, less than 10% [205]. 

Therefore, the PST corrections for velocity and pressure provided from Eqs. (E.5) to 

(E.7) can be neglected for saving the computational time. Since in this study second-

order PDDO equations are used, the higher-order terms in Eq. (E.1) can be easily 

adopted to increase the numerical accuracy of the PST method. 
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Furthermore, it should be noted that the PST applied here is only applicable to the 

fluid flow without free surface. If the free surface is involved, the improved version of 

PST by using Fick’s law [203] should be adopted.     

 

 

 


