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Abstract

The predictions of composite materials responses in fire environments are important
in terms of safety. This reality problem can be simplified as a thermal fluid-structure
interaction problem in terms of mathematical modelling. The thermo-fluid model is
used to simplify the physical properties of fire. The classical continuum mechanics has
difficulty in predicting crack propagations because of the singularities of differential
equations at discontinuities. Therefore, the peridynamic theory which uses the integral
governing equations is a good choice to predict the damage in composite materials. It
will bring convenience to simulate the composite response in fire environments using
a monolithic methodology. Consequently, in the current study, both thermo-fluid
modelling for fire and thermomechanical damage modelling in composites are
simulated by using peridynamic theory. Therefore, the following models are

developed step by step to achieve the final target.

Firstly, a fully coupled thermomechanical ordinary state-based peridynamic model
is developed for isotropic materials. Both the deformation effect on the temperature
field and the temperature effect on deformation are taken into consideration. Then the
fully coupled ordinary state-based peridynamic model for isotropic materials is
extended to laminated composites. Besides, a bond-based peridynamic laminate model
was applied to predict the responses of a 13-ply composite under a pressure shock

loading.

Secondly, regarding the fluid model to represent fire, a peridynamic model is
developed for Newtonian single-phase fluid low Reynold’s number laminar flow. The
high temperature should also be considered which is one of the typical properties of
fire. Therefore, the heat transfer is incorporated into the fluid model to represent the
thermal properties of fire. Based on the single-phase fluid peridynamic model,
peridynamic model for multi-phase fluid flows is also developed. The Navier-Stokes
equations including the surface tension forces are reformulated into their integral

forms.



Thirdly, by combining the developed single-phase fluid peridynamic model and the
ordinary state-based peridynamic solid model, a fluid-structure interaction model is
developed for the simulation of weakly compressible viscous fluid and elastic structure
interactions. Subsequently, the heat transfer is incorporated into the fluid-structure
interaction model to predict the composite response under a fire scenario. The 1SO
temperature-time curve is utilized to present the high temperature which is induced by
fire. The thermal degradation properties of the composite materials are also included
in the numerical peridynamic composite model. Finally, the composite response under
fire scenario is predicted.
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1. Introduction

This chapter contains four sections. Section 1.1 presents the background of the
composite materials, fire properties, and damage prediction methods. Section 1.2
presents the objective of this research, while the thesis structure is provided in Section

1.3. Finally, a summary of the content in this chapter is given in the last section.
1.1. Background

The composite materials are widely applied to construct offshore structures such as
oil platform and offshore wind turbine etc. due to their high-performance mechanical
properties [1]. However, the concerns regarding their response to fire come into the
academic research field since the composite materials are usually flammable.
Therefore, in terms of safety, it is meaningful to investigate the composite response in
fire environments [2]. The failure prediction of the composite materials due to fire is
one of the important aspects. However, it is a quite complex problem since multi-fields
are involved in this subject, e.g. solid mechanics including composite mechanics,
thermodynamics, fluid mechanics, thermochemistry and so on [3]. It will be difficult
to consider every factor of the composite firing process for numerical simulations.
Therefore, the composite firing process can be simplified as a thermal fluid-structure

interaction for numerical study.

The peridynamic theory (PD) [4] is able to predict the failure or damage because its
governing equations that use an integral form are meaningful even at discontinuities.
Therefore, the peridynamic theory can be utilized to predict the composite damage in
the fire environments. However, there is no peridynamic model available in the
published literature to solve the thermal fluid structure interaction problems.
Furthermore, one remaining issue is that the PD theory is originally proposed for solid
mechanics. Hence even the PD fluid model is quite a few in published literature.
Consequently, the extension of the application field of the PD theory is required firstly.
Then the coupling of the PD fluid model and PD solid model can be conducted to solve
the final problem. As a result, several PD models are developed including the
composite model and fluid models. The coupling approach of the fluid, solid, and heat



is developed in the PD form. Finally, the composite response in fire environment is

predicted by using the developed PD models.

1.2.

Research objective

The objectives of this research are:

Developing an ordinary state-based peridynamic (OSB PD) fully coupled
thermoelastic model to simulate isotropic materials behaviour under
thermomechanical loadings. The coupling term between the mechanical
field and the thermal field is considered bi-directionally. This work forms
the foundation of the composite model introduced in Chapter 4. The results
regarding this study are provided in Chapter 3 and published as a journal
paper [5].

Developing OSB PD fully coupled thermoelastic formulation for laminated
composites by extending the isotropic material model in Chapter 3. The
results regarding this study are provided as a part of Chapter 4 and published
as a journal paper [6]. The formulation is reduced to a bond-based
peridynamic (BB PD) fully coupled thermoelastic form to investigate the
behaviour of laminates under extreme loading conditions such as underwater
explosions. The study provides an application example of the peridynamic
model provided in Chapter 4 in ocean engineering fields. The results are
provided as a part of Chapter 4 and published as a journal paper [7].
Developing a non-local Lagrangian model based on the peridynamic
differential operator (PDDO) for fluid low Reynold’s number laminar flow.
This study forms the foundation of the fire model. To the author’s knowledge,
this is the first time that the peridynamic differential operator is used to solve
the Navier-Stokes equations. Furthermore, this work is one of the earliest
researches regarding the peridynamic applications on fluid mechanics. The
results are provided as a part of Chapter 5 and published as a journal paper
[8].

Developing a non-local Eulerian model based on the peridynamic

differential operator for fluid flow coupled with heat transfer problems. This



work is conducted based on the previous fluid model. The results are
provided as a part of Chapter 5 and published as a journal paper [9].

e Developing a multiphase fluid model based on the developed single-phase
fluid model in Chapter 5. The surface tension force is included in the
multiphase fluid model. The method of the surface tension force modelling
provides the basic idea for the fluid-structure interface numerical treatments.
Thus, this study provides one of the fundamental models for fluid-structure
interaction model in Chapter 7. The results are provided in Chapter 6 and the
related manuscript is under review.

e Developing a fluid-structure interaction model by combining the previous
solid model in Chapter 3 and the fluid model in Chapter 5. The coupling
methodology is developed based on the numerical treatments for the
multiphase fluid interface in Chapter 6. The corresponding methods and
simulation results are provided in Chapter 7. And the related manuscript is
under review.

e Based on the above PD models, a thermal fluid-structure interaction of
composites for fire scenario is simulated as a comprehensive case in Chapter
8. The thermal degradation properties of the composites are taken into
consideration. The composite damage is predicted by direct fire contact and
indirect fire contact. The thermal interaction between the fire-heated air and
composites is simulated via convection and radiation interface boundary
conditions. And the related manuscript is under review.

In conclusion, the ultimate goal of this research is to propose a monolithic
methodology based on the peridynamic theory to simulate the thermal fluid-structure

interaction, e.g. composite material damage in fire environments.

1.3. Thesis structure

This thesis is structured in the following chapters and a brief outline of the content

of each chapter is given below:

e Chapter 1 Introduction.



This chapter provides basic information regarding the research background,

the research objective, and the structure of this thesis.

Chapter 2 Literature Review

This chapter represents the traditional peridynamic theory and the
peridynamic differential operator. For the peridynamic theory, the bond-based
form and the ordinary state-based form are reviewed. As to the peridynamic
differential operator, the theoretical foundation, the derivation and construction
process are provided. Furthermore, an accuracy test is performed for the
peridynamic differential operator to investigate the accuracy of the

approximation for first and the second derivatives.

Chapter 3 OSB Fully Coupled Thermomechanical PD Model for Isotropic
Materials

This chapter describes the OSB PD thermomechanical model for isotropic
materials. The non-dimensional form of the PD model is also provided.
Validation of the model is conducted by solving some benchmark problems
and comparing the simulation results with other numerical solutions. The three-
point bending problem, plate crack propagation, and the Kolthoff problem are

simulated in a fully coupled thermoelastic fashion [5].

Chapter 4 Fully Coupled Thermomechanical PD Model for Composites
Material

This chapter presents a fully coupled ordinary state-based peridynamic
model for laminated composites. The formulation includes a coupling of both
thermal and mechanical fields. To verify the proposed model, numerical
simulations for benchmark problems are carried out and their results are
compared with ANSY'S solutions. Various loading conditions, e.g. uniform and
linear temperature load, pressure shocks are considered for single layer laminar
and multi-layer laminates. Finally, the crack propagation paths and temperature

distributions are predicted for shock loading conditions [6, 7].



Chapter 5 Isothermal and Non-isothermal Fluid Laminar Flow Simulation

This chapter provides a non-local model for fluid flow both in isothermal
condition and non-isothermal condition. The fluid flow governing equations,
I.e. Navier-Stokes equations, are reformulated in the integral formulation by
using the peridynamic differential operator. Then the numerical simulation
algorithms in the total Lagrangian description, updated Lagrangian description,
and Eulerian description are provided. The numerical model is validated by
solving the benchmark problems in fluid mechanics, e.g. hydrostatic problem,
Poiseuille flow, Couette flow, shear driven cavity flow, Taylor-Green vortex,
water dam breakage, natural convection, and mixed convection problems [8,
9].

Chapter 6 Multi-phase Fluid Flow Numerical Simulation

This chapter provides a non-local model for multi-phase fluid flow based on
the peridynamic differential operator. This is an extension work based on the
non-local model for single-phase fluid flow in Chapter 5. The surface tension
force existing on the interface of different fluids is modelled by the
peridynamic differential operator. Some benchmark problems for multi-phase
fluid flows are solved to validate the proposed model, i.e. two-phase
hydrostatic problem, two-phase Poiseuille flow, two-dimensional droplet

deformation.

Chapter 7 Fluid-Structure Interaction Numerical Simulation

This chapter presents a new monolithic methodology based on the PD theory
for simulating fluid-structure interactions. The fluid model developed in
Chapter 5 is adopted. The ordinary state-based PD isotropic material model
reviewed in Section 2.1.2 is employed. The fluid motion and elastic structure
deformation are predicted simultaneously by using a novel interaction
algorithm. To validate the developed fluid-structure interaction model, a dam

collapsed under a rubber gate is simulated.



e Chapter 8 Coupled Thermo-fluid-mechanical Peridynamic Model for
Analysing Composite under Fire Scenarios
This chapter presents a thermal fluid-structure simulation of composites in a
fire environment by using the developed peridynamic model. The thermal
degradation property of the composites is also taken into consideration. There
are two simulation cases provided, i.e. composite directly under fire
temperature boundary condition and the composite indirectly under fire
boundary condition via fire-heated air. The fluid and composite interact via the

thermal field by considering the convection and radiation on the interface.

e Chapter 9 Conclusion
This chapter reviews the research achievements, summarises the research
novelty and contribution. The gaps and recommended future work are listed.
The publications from the PhD thesis are provided, and the final remarks are

drawn.
1.4, Summary

Damage prediction is a challenging topic since the classical continuum mechanics
(CCM) mathematical model is meaningless at discontinuities. Therefore, the
peridynamic theory is adopted in this study for composite damage modelling to
overcome the shortcomings of classical continuum mechanics. The fire scenario
prediction is another challenging topic in fluid mechanics. To solve the composite
damage under fire scenario in a monolithic methodology, the fire is simplified as a
heat-conducting fluid and modelled by the PD theory. The following objectives of this
thesis research are the proposing of 1) OSB PD model for fully coupled
thermomechanics for isotropic materials, 2) OSB PD model for fully coupled
thermomechanics for composite materials, 3) single-phase viscous fluid PD model, 4)
heat-conducting viscous fluid PD model, 5) multi-phase viscous fluid PD model, 6)
fluid-structure interaction PD model, 7) thermal fluid and structure interaction PD

model.



2. Literature Review

2.1. Peridynamic theory

The peridynamics (PD) proposed by Silling and Askari [4] is a non-local, mesh-free
Lagrangian method, which provides an alternative formulation for the continuum
mechanics. PD is based on integral-differential equations as opposed to the partial
differential equations of classical continuum mechanics [4]. Therefore, no singular
stress or strain will be created at discontinuities. The equation will be valid everywhere
within the body. This is one of its advantages over the classical numerical simulation
methods such as the finite element method (FEM). Here, the basic concepts of the PD

theory are reviewed [10].

As shown in Fig. 2-1, each material point is identified by its location represented by
a coordinate x in an undeformed state. The body region is R, and the interaction

domain of material point x is called neighbourhood and is denoted by H,. The

maximum interaction distance is called horizon size and denoted by & . The length of

the horizon is the measure of nonlocal behaviour. The other material pointsin H_, i.e.

!

x", are called the family members of x . Furthermore, y and y’ represent the

positions of x and x’ in the deformed configuration. Hence, the displacements of
points x and family member X' are u(x)=y-x and u'=u(x)=y'-x",

respectively. As illustrated in Fig. 2-1, the initial relative position vector is denoted as
E=x"—X (2.1)
Consequently, the relative displacement between x and x’ can be defined as
n=u(x)-u()=(y'~y)-(x~x) 22)
The equation of motion for point x in PD form is expressed as [10]

p(X)t(x,t) = IH (t(u'—u,x —x,t)-t'(u-u',x=x',t))dV'+b(x,t) (2.3)



where p(x) represents density, V' represents the volume of point X', U(x,t)

represents the acceleration of point x at time t, b(x,t) represents the volumetric

body force. The integration on the right-hand side of Eq. (2.3) represents the total PD
force density acting on point x. The acceleration of the central point is calculated by
the force exerted from its family members, indicating a non-local behaviour. In the
deformed configuration, t’ is the PD force density function exerted from point x’ to
point x. Similarly, t is the PD force density function acting at the material point x’
from point x. Depending on the magnitude and direction of the PD forces t and t’,
the PD theory can be classified into two subdomains, i.e. bond-based peridynamics
(BB-PD) and state-based peridynamics (SB-PD). The BB-PD and ordinary state-based
(OSB-PD) theory are used in this study, which will be explained in the following

subsections.

Undeformed Deformed

Fig. 2-1 Interaction of the point of interest x with its family member x’

2.1.1. Bond-based PD theory

The material body R can be discretised by a set of material points. The material

point i is the central point and material point j is one of its family members. The
coordinates of point i in the undeformed and deformed configurations are x; and vy, ,
respectively. The corresponding displacement is denoted by u, . The bold symbols are

used to represent vectors. The same notation is applied to other material points, e.g. j.

The initial relative position and relative displacement vectors are defined as



&; =X; —X; and n; =u; —u;. Then the relative position in the deformed configuration

is YiYi :Fﬁij +1;-

It should be noted that in bond-based PD, the pairwise PD forces t and t’ are forced
to be equal in magnitude and parallel in direction, i.e. t=—t". As a result, the

discretised form of Eq.(2.3) becomes
p (%) u(x;,t) = ZZt( Up, X; =X, t)V; +b(x;,t) (2.4)

where N, is the total number of family members for point i. In BB-PD theory, a

pairwise PD force density f is defined as

T+T y
f(uj—u,,xj—x,,t)2t(uj—u,,xj—x,,t)c(s”—a( > )J‘yj y‘(25)

As a result, the equation of motion Eq.(2.3) is expressed in bond-based PD form as
[10]

X, )U(x;, t) = [Zc[s (Ti ;Ti)J iThiy ]+b(x,,t) (2.6)

-y

in which « is the linear thermal expansion coefficient of the material. The term T.
represents the temperature change of point x, with respect to the initial temperature,
T. =0(x;,t)-O(x,,t =0). Similarly, T; is the temperature change of point x;. The
term s; is the PD bond stretch which represents the deformation status of the PD bond
between material points x; and x; . It can be defined as [10]

s =Yil=p; =

S. = (2.7)
P =




The term c is the PD constant which can be calculated by equalling the strain energy
densities obtained from PD theory and CCM. The formulations of ¢ for different

dimensional problems are provided as [10]

iz, for 1D problems
c= LKHS for 2D problems (2.8)
7Nk
18—K49, for 3D problems
)
where A, ., is the cross-section area for 1D problems and h,,, is the thickness for 2D
problems.

The BB-PD theory does not distinguish the shear deformation and bulk deformation.
Hence, the Poisson’s ratio is forced to be 1/3 in two dimensional (2D) analysis and 1/4

in three dimensional (3D) analysis [10].
2.1.2. Ordinary state-based PD theory

In order to overcome the limitation of BB-PD theory on the material properties,
state-based peridynamic theory is proposed by Silling et al. [11]. The ordinary state-

based expressions for PD force functions are presented as provided in [12]

1 adA;
t(u; —u;,x; —x,t)= 2{45‘ x‘

(6,—naT,)+4b(s; —aT, )}% (2.9a)
i~ i
and

t(u,—uj,x,—xj,t)—1[45‘xw—l\x“‘(9 naT)+45b(sji_ )L;’- y‘(29b)

with

10



2, for2D

{3, for3D (2.8¢)

A = yj_yi ) Xj_xi (ng)
’ ‘yj_yi‘ ‘Xj_xi‘

The dilatations, 6, for point x; and &, for point x;, are defined as

N;

0 =(Zd5(sij —aTi)Aijvj} na, (2.10a)
j=L
Nj

0, :[Zda(sji —aTj)Ajivi]maTj (2.10b)
i=1

The relationship between the PD material parameters, i.e. a, b and d, and classical

material parameters are listed as provided in [12];

a=0,b= E -, d= 1 > for1D (2.114)
2Aarea5 2Aarea6
a=i(K,~2u)b=—H _d=—% _for2D  (2.11b)
2 7O 7O
1 5 154 9
a=—|K,——u|,b= ,d= for 3D 2.11c
2( 0 3”) 2255 Amd’ (2.11c)

By plugging Eq. (2.9) into Eq.(2.3), the equation of motion for ordinary state-based

PD formulation in discretised form can be written as [12]

[ 25dA,
. m(a(a+91)—na(Tl+TJ)) y y
p()acx, )= > Zhy eb(x, 1) (2.12)
" +45b[sua_<T' ;TJ)] y;-vi

11



2.1.3. Peridynamic failure criteria

Since PD equations are formulated without any spatial derivatives, PD theory is
suitable to be applied for failure prediction. Once the stretch between material points

exceed the critical stretch value, s, the bond will be broken and will be removed

permanently. At the same time, the force between these two points becomes zero. The

critical stretch value for bond failure is related to the critical energy release rate G,

[12];

G

\/’(3;,%3)“(;92#)]5”3[’

G, for2D
6 16
—utg 3 (K-2u) |6

T

(2.13)

A history-dependent damage function ;((xi,xj,t) iIs implemented for each

interaction between the material points [12]. The value of the function ;((xi, xj,t)

will be set to be zero when the bond is broken.

(2.14)

The local damage at a point represents the weighted ratio of the number of broken
interactions to the total number of interactions. Therefore, the crack propagation path

can be presented by the local damage value as [13]

NI

27 (%X 1)V,

o(x,t)=1-1 (2.15)

>,
j=1

12



2.2. Peridynamic differential operator

It can be inferred from the previous section that the PD form of the material
parameters is required for PD material modelling, which is calculated by equalling the
strain energy density obtained from classical continuum mechanics and PD
expressions. Based on the PD concepts, a peridynamic differential operator is recently
proposed by Madenci et al. [14]. It is derived based on Taylor series expansion and
orthogonal function properties. Being different from the bond-based PD theory, the
peridynamic differential operator does not have any constraint on material properties.
Furthermore, it can be directly applied to reformulate the partial differential equations
to their integral forms. The classical physical parameters can be directly used without
converting into their PD expressions, which avoids the derivation process required by
the bond-based and ordinary state-based peridynamic theory. In addition, it does not
have any limitation on the order of the partial derivatives both for time and space. For
example, the second-order derivatives can be directly approximated by one integration
by using the PD differential operator which corresponds to the second-order derivative.
As aresult, the error of the PD result is reduced by using fewer integrations, compared
to non-ordinary state-based PD. Furthermore, the PD differential operator functions
are also forced to be orthogonal to each term in the Taylor series expansion [14].
Therefore, when determining the expressions of the PD differential operators, both
lower and higher-order terms are considered.

The theoretical foundation and derivation of PDDO will be briefly presented for 2D
problems in Section 2.2.1 and an accuracy test for PDDO is conducted in Section 2.2.2.

2.2.1. PD differential operator for 2D

The simulations involved in this thesis are for 2D, therefore peridynamic differential
operator [14] for two-dimensional space up to second-order derivative is provided in

an explicit form.

The Taylor series expansion up to second-order derivatives for two-dimensional

space is expressed in an explicit form as

13



of of o1
()= F(x)=4 8§1X)+52 ) 2 8szx)
o*f (x) o*f (x)
8X22 +86, X%, +R,, (3;)

(2.16)

1
+§§zz

where &=¢&e +&,e, with e, and e, representing the unit vectors in x and y

directions. The term R, (&) is the remainder for Taylor series as

Ra(g)= Y L Tflrat) .,

n 1
n s Ny 10, ! OX[" X

52, forsome o €(0,1) (2.17)

Note that R, (&) :O(|§|3) and it is assumed to be negligible. The non-local form
with the help of PD differential operator will be derived for following differentials

[14].

of (x) of (x) &°f(x) &*f(x) &*f(x)
ox | ox,  ox2 T ok oxox,

(2.18)

Since the derivatives are up to the second-order, PD differential operator g™" (é;)

will be used to represent the PD nonlocal expressions up to the second-order

derivatives.

Multiplying g™* (2’;) by Eq. (2.16) and integrating over the horizon results in [14]

Ji, 9% (B)(f (x+8)= T (x))av’

1 2 ) e ey av A (%) e () gy*
_Ingl o g™ (&)dv +ij§2 o g™ (£)dV

1 262.': X ' 1 2821: X ’ (219)
+, 54 —Xf Jgon (z)av+ 5% —axﬁz Jg»o (&)av

a21:()() PLP2 !
NI R Ol

14



where 0< p,+p,<2 . By enforcing the orthogonality conditions for each PD

differential operator as [14]

for g (&):

J, 69" )V’ =1 [, &g" (E)av'=0, [, ~&g° (€)av' =0,

1 (2.20a)
IHXE§22910 (é)dV':O, J.Hx élgzglo (é)dV'=0
for g*(&):
J, &0 (&)av'=0.[ &g"(8)adv'=1 IHéffg‘Jl(é)dV’:o,
1 (2.20b)
Ju. 559" (8)av'=0, [ 559" (g)dv'=0
for g (&):
[ &o”(&)dv'=0[ &g”(&)dv'=0,] Lergm(g)av=1
) K "2 (2.200)
J 5&0 @)V =0, [, &50 (€)av'=0
for g% (&):
J, 497 (8)av'=0,] &g”(g)dv'=0, IHX%rffg” (§)dv'=0,
1 (2.20d)
J 3807 (@)dv =1 [, £&0” (&)av =0
for g*(&):
[ &g"(g)dv'=0,| &g"(g)av'=0,| %ffg”(?;)dV’zo,
X X : (2.20¢)

Léfﬁgll(é)dwo, J, 460" (8)av' =1

15



the following relations can be obtained from Eq. (2.19) as [14]

for g**(&): ij 9" (&)(f (x+&)—f(x))dV'= afaf:) (2.21a)
for g (&): fl, 91 (x+8)~ f (x))av’= “aix) (2.21b)
for g (&): IHX 9% (&)(f(x+&)—f(x))dv’ :azaf_xfzx) (2.21c)
for g% (&): J, 87 (@) (f (x+8)~f(x))av'= azafx(zx) (2.21d)
for " (2): J, @ g T)av ST i

In conclusion, the differentials in local form are reformulated into their non-local
form as [14]

9°(
g™ (
— =J'Hx(f(x+§)—f(x)) 9% (
g™ (
9" (

)
)
)pdv’ (2.22)
)
)

ox5
0% f (x
OX,0X,

N—"

where the term g represents the PD differential operator for each derivative, such as

9*°(&) is the PD differential operator for of (x)/ox, .
The PD differential operator functions, g™ (&), are chosen as [14]

16



for g*°(&): 9% (&) =(au ) W&, +(ap; ) W&, +(ay )W’ +(ags W& +(ay )wés, (2.23a)

for g*(&): g% (¢)

(a )i, +(a7 ) w, + (a3 ) wes? + (a3 ) wes +(a} ) wisé, (2.230)

for g% (&): 9 (&) =(a%y )wé& + (a5 )Wé, +(as )we +(ag; Jwe; +(aff )wéé, (2.23c)

for goz (é) : goz (é)

(a2 )we + (a2 )w, + (2l )we? +(al )we? +(a Jwéé, (2.23d)

for g*(8): g™ (&) =(al; ) W& +(ag )WE, +(ag )W’ +(ag; )We; +(al} )wée, (2.23e)

or expressed in a compact form as [14]
0°(8)] [ap an an ap ay|[ wh

0" (8)| |aw A ay ap ap || WS

g°(8)(=al a; ap ap ay |y we (2.24)
0”(8)| |aw an ay ap ay || W&

9" (&)

11 11 11 11
L aiO aOl a20 a02 ail Wé:ng

where aq‘jlqzz represents the coefficients of the polynomials with 0<q,+q, <2. The

weighted function w is defined as [14]

w=e ) (2.25)

By substituting Eq. (2.23a) into the orthogonality conditions provided in Eq. (2.20a)

the following equations for g*° (&) can be obtained as [14]

(ajg ) IHX WELAV ' + (aéf ) J-HX wEEAV '+ (a;g ) IHX e \YA

(2.26a)
+(ag) [, wagiav'+(ap) |, weisavi=1

(a0) ], wegav'+(aq;) [, wesdv'+(ay) [, we's,av’

(2.26b)
+(a) [, wetav'+(ai2) [, wegiav' =0

17



(i), weiav"+ (a) [ wezg,dv'+(a) ], weiav’

(2.26¢)

+(ag) [, wergav +(af) [ weigav' =0

(ai0) ], wassav'+(ag ) [, wesdv'+(a) [, wesdv’

+(a$2)IH szl‘dv’+(ailf)l|‘Hx wWEEAV' =0

(aie) ], weisav'+(ai ) [, wagdv'+(ax) [, wee,dv’

+(ai) ], waav'+(ay) |, wegdv =0

(2.264)

(2.26€)

Similarly, by substituting Eq. (2.23b-e) into the orthogonality conditions provided

in Eq. (2.20b-e), the following relations can be obtained [14]

with

18

Aa=b
wWE o WES,  wé
WES,  WE wgg,

|owe wgs wg
WES WG WEE,
(WE'E, WES WES,
A Ay ag

3 ay ay
a=|ay 8y ay
d, A, A

a, a, a

1 0 0

010

b=[0 0 2

0 00O

0 00

W&,

3
We,

2
WE;

02
8yg
02
8o;
02
a‘20

02
8o,
02

8y,

O N O O O

&

4
W,

WEE

R O O O O

117]
A

11
a01

11
a20

11
aOZ

11
8y |

(2.27)
WEZE, |
WE S,
wEE, AV (2.28a)
WEE,
WEE, |
(2.28b)
(2.28c)



After solving for the unknown coefficient a, the non-local form of derivatives of

function f can be found.

2D PDDO can be easily generalized into the 3D PDDO as [14]

of (x)
24
of (x)
0X,
of (x
8)((3 ) g100 (i)
1 (3 )
ox2 9™ (8)
21 (x) 0" (%)
o =0 (10cr8)= () 10™ (&) v
o f (x) gllo (&)
= gm(é)
’ g (&)
o f (X) g011 (é)
OX,0X,
o*f (x)
OX,0X, (2.29)
o*f (x)
OX,0%q
where
9™ (§) W |
9™ (&) we,
9™ () W&,
g200 (a) Wflz
9™ (&) =(Ab)" | W& (2.30a)
g002 (&) W§32
9" (§) W& S,
9" (&) W&, &
9™ (&) | WE,Es |
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&& & L& §&E & &E &5 Gés
R - O 7 S -t A 14

& &S && & &8 &8 &5 86
A= IHX L - {7 ST A 1 = S
- - A A T

o - - X N Y- R 1
G& &&G &4 &4 454 &8 &4s &8
(658 &8 L& §&E &8 &8 464 Sée

(e

Il
O O O O O O O O Bk
O O O O O O o+ O
O O O O O O+ O O
O O O O O NN O O O
O O O O N O O O o
O O O N O O O O o
O O P O OO O o o
O P O O O O O o o
R O O O O O o o o

€= §1e1 + §2e2 + fses

EEE,
&,
&,EL

E2E L,
&& |dVv’
&&

EELE,

51 52 532
& |

(2.30D)

(2.30c)

(2.30d)

with e,, e, and e, representing the unit vectors in the x, y, and z directions.

2.2.2. PPDO model accuracy test for 2D
2.2.2.1 The effect of particle distribution on PDDO accuracy

The PDDO accuracy is tested for first and second order derivatives both for uniform

and non-uniform particle distributions. In this way, the effect of the non-uniform

particle distribution which frequently exists in fluid flow simulation on the PDDO

accuracy is investigated.
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In order to test the higher-order derivatives approximation accuracy, a function is

set as an object

f(x,y)=x"+2y° (2.31)

with the variable domain of x€[0,2] and ye[0,2]. The exact solutions for the

derivatives are easy to obtain as

A (%Y) oy FNY) e

OX oy
f(

(2.32)

In the numerical implementation, the domain is discretized by 21x 21 particles with
both uniform and non-uniform distributions, as shown in Fig. 2-2. The non-uniform

distribution is generated from a standard normal distribution [15].
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Fig. 2-2 (a) Uniform (b) non-uniform particle distributions

The red point located at (1,1) in Fig. 2-2 is set to be the point of interest, whose

derivatives are shown in Table 1 for exact and PDDO solutions with their relative

errors.

21



(4,2) with exact value and PDDO

Table 1 Comparison of derivatives at (X, y)

solution with 21x21 particles

o*fl1o*y  0*floxoy

ofloy  &*flox’

of [ox

Method

12
12
(0)

11.9924

(0.063%)

Exact
Solution

3.719E-15

2
(0)
1.9738
(1.31%)

6.0536
(0.89%)

2
(0)
2.0005
(0.028%)

value
error
value
error

PDDO
Uniform
PPDO Non-

()

-0.06672

6.0572
(0.95%)

()
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Fig. 2-3 (a) Uniform (b) non-uniform particle distributions, and (c) exact values for

of 10x
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It can be observed from Table 1 that the accuracy of the PDDO both for first and
second-order derivatives is acceptable. However, the irregularity of the particle
distribution will increase the numerical error compared to the regular particle
distribution as shown in Fig. 2-3-Fig. 2-7. Therefore, the techniques that redistribute

the particles in a nearly uniform fashion is necessary for the PDDO simulations.
2.2.2.2 PDDO prediction accuracy test for function value prediction

The non-uniform particles as shown in Fig. 2-2 (b) are treated as the original
particles. The uniform distributed particles as shown in Fig. 2-2 (a) are set as the new
particles. The function Eq.(2.31) is given to the non-uniform particles in Fig. 2-2 (b).

The distribution of the function values f(x,y) of these non-uniform particles is

shown in Fig. 2-10 (a). The function values of the uniform particles should be predicted
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by using the derivatives on the non-uniform particle positions calculated by PDDO.

The procedure is provided in Fig. 2-8.

The positions of the uniform and non-uniform distributed particles are provided in
Fig. 2-9 (a). The uniform distributed particles are set as the interest points with their
family members being the non-uniform distributed points, as illustrated in Fig. 2-9 (b).
Particle i represents the particle of interest belonging to the uniform distribution

system, and particle j represents the particle belonging to the non-uniform

distribution system within the horizon of particle i. Besides, the particles belonging
to the uniform distribution are not the family members of particle i, although they are

located within the horizon.

Function Eq.(2.31)  Compare [T VEES O
(exact values) <« uniform particle positions

(predicted values)

Assign Taylor series
Expansion Eq.(2.34)

Derivatives on each non-
uniform particle position
Eq.(2.33a)

PDDO

Fig. 2-8 Function value prediction procedure
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(@)

Uniform particles
Non-uniform particles

Q Uniform particle of interest

—— PDDO interaction

(b)
Fig. 2-9 (a) Uniform and non-uniform distributed particle positions, (b) illustration of
PDDO interaction between uniform particles and non-uniform particles

First, the derivatives of function f(x, y) on the positions of non-uniform

distributed particles are predicted by PDDO in the realm of non-uniform distribution

particle system. For example, for particle j belonging to the non-uniform particle

distribution system, the derivatives are calculated according to Eq.(2.33) as

fPDDO(XJ ,yj ) glo(fjk)
fPDDO(XT ’ ) N 901<§jk)
fPDDO(X;‘U’ ) =2 (f(xlz‘“’y;u)_ f (X?u,y?“)) g% (éjk) V., (233)
f PDDO (X;\u’ ) goz (fjk)
fPDDO(XT“,yJ ) _g1l(§jk)_
with
IRY i W ;k ]
9" (%) 100 0 0]} (5‘2)
9% (&) 01000 w(&)
0® (&) |=| A0 0 2 0 of|| w(&) (2.33b)
02 0 00 20 2
9" ok 2
1 (5 ) 0 0 0 0 1] W(§J )
9" (%). w(&)(2)]
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(&) (@)E) @) (E)E) (E)(E)
GG G R GG B Y B G G
AW (4) (@) @) @)@ (@)@ M

(E)&) (@) @)E) (G (@E)

(E)(E) (@)(E)

(2.33¢)

(8)°(&) @) (8)(E)

1/2

so=((E @) =0 e -] 3

where superscript nu represents the non-uniform particle. Particle k represents the

family member of particle j belonging to the non-uniform distributed system. N; is
the total number of the family members of particle j which belongs to the non-

uniform distributed system. The terms &;, and &7, are defined as &, = x" —x}" and
‘szk =Y - y?u '
Subsequently, the function value on the position of particle i (shown in Fig. 2-9 (b))

can be predicted by using the derivatives on the position of particle j by using Taylor

series expansion as (as shown in Eq.(2.16))

( f (Xi”, ylu ))corrected _f (X?u, y?“)+ f;DDO (X?u, y;\u )(Xiu _ X?u)
n f’;?DDO (X?u’ y;]u )(y| . y;]u)+% f;XDDO (X?u’ yTu )(Xiu _ X?u )2 (234)

_}_% f;yDDo (X?U’ yTu)(ylu _y?u )2 n f’:;DDo (XTUI yTu)(Xlu _X;\u)(yiu _ yTu)

where superscript u represents the uniform particle and nu represents the non-

uniform particle. By using Eq. (2.34), and by using the non-uniform family members

(J) located at (x{*,y}*)of particle (i) located at (x,y'), one corrected function

value at (X', y}') can be obtained for each family of (i) (such as ( j)). Therefore, the
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predicted function value at (xi”, yi”) can be obtained by averaging the corrected values

as

Ni,nu

Y (f ()™

()™ =

i,nu

f (X?u’ y?u)_'_ f’)I:’DDO (X?u, yTu)(X,u _X?u) (235)
_l_f’;’DDO (X?u’ Y?u)(y. y, ) < f PDDO( ?u, y?u)(xiu —X?u )2

2 fPDDO( J ’yJ )(ylu_yT ) fPDDO( J ,yJ )(Xiu_x?u)(yiu_y?u)
N

i,nu
where N, isthe total number of the non-uniform family members of particle located
at (xi”, yi”).

The function values assigned to the non-uniform particles, f(x?”,y;‘”) and

predicted for the uniform particles, ( f(xy ))predmd are plotted in Fig. 2-10 and Fig.

2-11 for resolutions 21x21 and 51x51, respectively.
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Fig. 2-10 Function value, for (a) non-uniform particles (assigned), f (x}",y}") and

(b) uniform particles (predicted),( f (xI A ))predmd for resolution 21x21
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Fig. 2-11 Function value for (a) non-uniform particles (assigned), f (xj”“, y?”) and (b)

redicted
uniform particles (predicted), (f (xi“,yi”))p “ for resolution 51x51

The total Lo-norm error of the uniform particle set is calculated as

Z( f predicted ( X!, y! ) _ g ot ( X!,y ))2

g = |- (2.36)

S ()

By comparing the error for different resolutions as & =0.31% for 21x21,
g, =0.0670% for 41x41,and &, =0.0374% for 51x51, as shown in Fig. 2-12, it can

be concluded that a higher resolution results in a more accurate solution.
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Fig. 2-12 Lz-norm error plot for different resolutions
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3. Ordinary State Based Fully Coupled Thermomechanical PD

Model for Isotropic Materials

3.1. Introduction

Due to the development of aerospace and mechanical industries in recent years,
mechanical and thermal shock loadings become typical and important loading types.
For example, the gas turbine engine casing of an aircraft can experience a temperature
rise as high as 1700°C within an extremely short period [16]. In the analyses with such
loading conditions, the thermomechanical coupling effects often play a crucial role
and as a consequence, they should be considered both in thermal and structural fields
[17]. Not only the effect of temperature on deformation but also the effect of
deformation on the temperature field is non-negligible. Therefore, fully coupled

thermoelasticity analyses are necessary when dealing with such types of problems.

The basic theory of linear coupled thermoelasticity is well understood and fully
developed for many years. Biot [18] first introduced a coupling item in heat conduction
equation to solve the coupled problem of thermoelasticity. Later, Herrmann [19]
generalized Biot’s principle to a three-dimensional anisotropic body. Recently, Jabbari
et al. [20, 21] gave exact equations for classical coupled thermoelasticity in cylindrical
and spherical coordinates. Although some analytical solutions are provided for some
simple problems, many complex problems have not been completely solved with
analytical methods [22]. Therefore, numerical methods such as FEM and boundary
element method (BEM) have been widely applied to get approximate solutions [23].
For example, Cannarozzi and Ubertini [24] conducted FEM analyses for linear coupled
quasi-static thermoelastic problems with a mixed variation method. Displacement and
temperature acted as primary variables in their research. On the other hand, stress and
heat flux acted as dual variables which were also involved directly in their analysis.
Tehrani and Eslami [25] studied the coupling coefficients and relaxation time effects
on thermal and elastic wave motion by using BEM. When the fracture is involved in
the fully coupled analyses, temperature distribution around crack tips becomes a major

concern. The high energy concentration around a moving crack produces high amount
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of heat energy and results in unneglectable temperature increase. Atkinson and Craster
[26] deduced some simple and asymptotic temperature distributions for the region near
crack tips during crack propagation. Weichert and Schénert [27] investigated the
temperature near the crack tips in brittle materials with very small plastic zones and
high crack velocities. The crack tips were simulated as heat generation sources and
consequently, the temperature distributions were predicted. An experimental study
conducted by Bhalla et al. [28] estimated the temperature distribution near the crack
tips. A temperature increase was observed in their experiments. Miehe et.al [29]
presented a continuum phase-field model for brittle fracture in thermoelasticity. A
bending numerical simulation test considering the crack growth and dissipative heat
generation was provided, and its corresponding temperature field was discussed.

When a discontinuity is involved in thermoelastic problems, the aforementioned
numerical simulation methods based on the classical mechanical theory predict
unbounded stresses and energy densities. Even for linear elastic fracture mechanics
(LEFM) and dislocation dynamics, supplemental constitutive equations are needed to
determine the motion of a dislocation. On the contrary, peridynamics [4, 30] is a
nonlocal theory that includes damage as part of the material response. As a
consequence, the PD equations remain valid where crack or discontinues merges [31].
Therefore, PD theory is especially suitable for problems with discontinues, thus it is
adopted in this study. The crack nucleation and propagation has been investigated by
many researchers in the realm of PD theory [32-38], but most of them are only in the
mechanical field. In the thermal field, Oterkus et.al [39] derived the formulation of
thermal diffusion with PD theory and utilized it to capture the fuel pellet cracking [40].
Bobaru and Duangpanya [41, 42] studied the heat conduction in bodies with and
without discontinuities in bond-based PD theory. Regarding the thermomechanics,
fully coupled bond-based PD theory was formulated by Oterkus et.al [43], Oterkus
[44], Madenci and Oterkus [45]. Furthermore, they successfully applied their model to
predict crack propagation [46, 47]. However, due to the aforementioned limitation of
the BB-PD model on material properties [13], an ordinary state-based PD model is

necessary for thermomechanical problems.
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Regarding the fully coupled thermomechanical analysis, the ordinary state-based
PD model has not been explicitly provided, only the expression in bond-based theory
is available in the published literature [44, 48]. Therefore, in this section, ordinary
state-based fully coupled PD thermoelastic equations with explicit formulations of PD
parameters are provided in Section 3.2. Then these equations are cast into their

corresponding non-dimensional forms in Section 3.3.
3.2.  The OSB thermomechanical isotropic PD model

The ordinary state-based PD model for mechanical deformation prediction is
provided in Section 2.1.2. In this section, the OSB-PD thermal model is discussed. For
the point of interested i, the heat conduction equation in the fully coupled

thermomechanical PD model is [43]

N G)(xj,t)—@(xi,t)

pe,T (X t)=>1 x

= X =

—G)(),B’(xj —xi)e(xj —xi) V;+h,(x;,1)(3.1)

where h, (xi,t) is the rate of heat generation per unit volume. In the above equation,

x 1s defined as PD micro-conductivity with its definitions being listed as [39, 43, 49]

K= 2k -~ for1D (3.2a)
Aarea5
K= 6k; - for 2D (3.2b)
7Ny d
6k,
x=—2> for 3D 3.2¢
o ( )

The second term within the summation of Eq. (3.1) represents the deformation

coupling effect on temperature. The time rate of change of stretch extension,

é(x; —x;), can be defined as
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6(x, -x,)= ‘y z" (u,-0,) (3.3)

The term g is the PD thermal modulus and its formulation in OSB-PD theory is

derived as follows (details provided in Appendix A). The physical meaning and theory
foundation of the PD thermal modulus are fully discussed by Oterkus et al. [43]. In
this section, the same derivation approach is adopted. The initial form of the ordinary

state-based PD force function for point x. is shown in Eq. (2.9a). In another form,

being similar to the derivation conducted by Oterkus et al. [43, 44], the PD force

function can be divided into two parts as [43, 44]
t=k-u—BT (3.4)

The first part on the right-hand side includes only the structural deformation, and
the second part is related to temperature effect. In Eq. (3.4), k is called the modulus

state [50], the term BT represents the effects of thermal state on deformation.

By plugging the dilatation term in Eq. (2.10a) into the PD force function Eq. (2.9a)

results

tu; U x; =, 1) = { [ZM( aT, ) AV j+25b(sUaTl)}u

‘yj _yi‘
(3.5

x|

After rewriting the PD force function by splitting into pure mechanical and thermal

part Eq. (3.5) becomes

t{ %va +25bs, }yj_y‘

=[5 = .
2a5%dA, & y -y,

- —'ZAV +25b}£ — ]Ti

{ pxi=x| 3 =z
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By comparing Egs. (3.4) and (3.6), local thermal modulus of the bond between x

and x’ can be obtained as

2
B(x;—x )= MZAV +26b |a (3.7)

px; x| 3

with B = ﬂ

‘ ‘ [43 44]. Substituting the PD parameters provided in Eq. (2.11),
—Yi

the explicit form of the local OSB thermal modulus, £, for different dimensions can

be obtained as

Ea

p= A5 forlD (3.8a)
ba | K,=2u Ny I
L(X: =X AV +3u | for2D (3.8b)
( : ) ”hlhlckgs(ﬂhhlck5 ‘X ‘Z J
3a [ (27K, —45u) A,
X=X )= AV, +5u | for3D (3.8
Ax =) w“{ 16752 \ \Z i ”] or3b (3.8¢)

Furthermore, for the bond-based restriction (a=0) [10], the OSB-PD thermal
modulus will reduce to its bond-based form, where £, =26ba or B, =1/2(ca) [43,

44] with ¢ being the bond-based PD material constant [10] as provided in Eq. (2.8).
3.3.  Non-dimensional form of OSB PD model

The governing equation can be put in a non-dimensional form by using non-
dimensional variables [51]. Therefore, the fully coupled PD equations are cast into
their non-dimensional forms by adopting the approach proposed by Sackman [52] and
Oterkus et al. [43].
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Regarding the heat conduction equation, the diffusivity is defined as the
characteristic length/time quantity and the characteristic length/time is the elastic wave
speed [52]

*2
- ;—C -2 (3.9
ao (Ao 1 (3.10)
P t

where 4 and u are Lame's constants. Combining the characteristic length/time scale

leads to characteristic length and time as follows [52]
I"=y/a (3.11a)
t"=y/& (3.11b)
As explained in [43, 52] following non-dimensional forms can be used

Length related variables:

2 3
x=§x,5=§5,A=(éj AV =(§j v (3.12)
a a a a
Displacement:
u=[%j Pub g (3.13)
a (/1+2,u)
Stretch:
so Pl < (3.14)
(i+2,u)
Time:
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t:(%)t‘ (3.15)

Velocity-related variables:

ﬂcl 90 ﬂcl 00 54 (3 16)

And the temperature:
T=0,T (3.17)

By using the above non-dimensional parameters and substituting the peridynamic
parameters listed in Section 2.1.2 into Eq. (2.12) and Eqg. (3.1), the non-dimensional
form of the fully coupled equations can be achieved by utilizing the non-dimensional
parameters given in Eq. (3.9)-Eq. (3.17) as

1D analysis
T = E\Z_zi{‘;_;“—eg}z +h,for1D (3.18a)
u(x;,t)= == i(gﬁ _ _';_J jgj :;:‘\7J +b(x;,t)for1D (3.18b)

2D analysis
GE ()—h\\z e e
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3v-1 — =
—— A (6 +6.
B 2 N, 7zh5‘?l X,‘ J(I J) V-V =
(x,t)= h5 (17 V) P —V, +b(x;,t)for 2D
" (1 v)[(1+v) ; JJ -y
(3.19b)
with
_ N
6= [(1+V)5;, T, |AV; for 2D (3.19¢)
j=1
3D analysis
_ 20(1-2v)
79 i i <€ 1 A N V. +h_ for 3D
-z > o | ij j s
70" 3 ‘xj—xi‘ 16(1+V) +27(V—ZJW;AM j
(3.20a)
57@_1}%(5@) _
_ N | 8 4)15°%|X, — X V-V - -
u(x,t)= % 7K, L‘ _ X YV +b(x;,t) for3D
(1+V)7T j=1 1+v_ T.+T ‘yj_yi‘
+5(1-2v) 5 — !
i 1-v 2 |
(3.20b)
with
NI
a _Z[“V }AV for3D (3.20c)
=1

In the above equations, the non-dimensional variables are denoted with an overscore.
The parameters T and T_J are the rate of temperature changes at material point X. and

X;, respectively. The non-dimensional coupling coefficient, ¢, measures the strength
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of the coupling effect on temperature distribution due to deformation. It can be defined
as [52]

€ :ﬂ (3.21)
PC, (/1 + 2,u)

3.4. Numerical implementation

In a dimensional simulation, the accelerations and temperature changes of PD
material points are updated according to Eq.(2.12) and Eq.(3.1). In a non-dimensional
simulation, the accelerations and temperature changes of PD material points are
updated according to Section 3.3. Explicit time integration is used to find the
temperature, velocity and displacement profile at each time step [44]. The numerical
procedure is provided in Fig. 3-1 for dimensional simulations as an example. In Fig.

3-1, N, represent the total number of the time step, n represents the current number

of the time step, and N__ . represents the total number of PD points.

node
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Fig. 3-1 Flowchart for the numerical procedure
3.5. Verification simulation cases

In this section, peridynamic simulations are conducted using the proposed model.

The validity of the fully coupled thermomechanical equations is established by

comparing the PD solutions with previously considered BEM and ANSY'S solutions.

Firstly, a dimensionless isotropic plate is imposed with three types of loadings, i.e.

pressure shock loading, thermal shock loading and their combination. The results from

PD solution are in agreement with the ones from an existing BEM solution. Secondly,

a dimensional isotropic square plate is separately subjected to a tension pressure shock

loading and a combination of compression and tension pressure shock loading. The
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temperature and displacement responses from PD solution coincide very well with
ANSYS solution. The present two-dimensional PD model is thus validated via these
numerical simulations both in dimensional and non-dimensional forms. As a next
verification problem, a block is investigated with a temperature boundary condition.
Good agreements are obtained by comparing PD and ANSY'S solutions. Hence, the
non-dimensional form of the equations is validated both for two and three-dimensional
problems.

3.5.1. Plate subjected to shock loading

The validity of the non-dimensional thermoelastic PD equations for 2D problems is
established by constructing PD solutions for an existing BEM solution provided by
Hosseini-Tehrani and Eslami [53]. The same geometry model, boundary conditions,
and loading conditions are adopted as in [53]. As shown in Fig. 3-2, a thin plate with

a non-dimensional geometry L =10,W =10 and thickness h =1 is subject to a shock
loading on the edge of X =—L /2 and fixed on the edge of X =L /2. The edges of
y=W/2 and y=-W /2 are traction free. Furthermore, at X =—L/2 the plate is

subjected to temperature boundary condition and all other three edges are insulated.
The Poisson’s ratio is set to be 0.17. Regarding the PD discretization, the grid size is

Ax =0.05 and the horizon size is chosen as ¢ = 3.015Ax. The uniform time step size
is 5.0x10* with total simulation time t,, =6 . The boundary condition is

implemented by using fictitious layers [54]. The applied loads are implemented on a

real boundary layer [54]. Since there is no heat source in this simulation case, h, =0.
The initial conditions are:

0. (X, ¥y, T=0)=0,(x,y,t =0)=0 (3.22a)

T(X,7,t=0)=0 (3.22b)

with U, and T, representing the non-dimensional displacement components in the x

and y directions, respectively.
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The shock loading conditions are:

Loading 1: Pressure shock

P(x=-L/2,y,T)=5t™ (3.239)
T(x=-L/2,y,T)=0 (3.23b)
Loading 2: Thermal shock
P(x=-L/2,y.,T)=0 (3.24a)
T(x=-L/2,y,T)=5t" (3.24D)

P(x=-L/27,t)=5™ (3.25a)
T(x=-L/2y,T)=5™ (3.25b)

where t represents the non-dimensional time. The applied pressure load is in the

positive x direction, as illustrated in Fig. 3-2.
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Fig. 3-2 A thin plate subjected to shock loading conditions
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Fig. 3-3 to Fig. 3-5 provide the thermal and mechanical responses at t =3 and
t =6 along the horizontal centreline of the plate for 3 different loading conditions.
The coupling coefficient ¢ =0 represents the uncoupled case, where the effect of
deformation on temperature field is ignored. Fig. 3-3(a) represents the temperature
distribution when the plate is subjected to pure pressure shock loading (loading
condition 1). As can be seen from the figure, when ¢ =0 no temperature change is
observed. On the other hand, when ¢ =0.1 both temperature drop and temperature rise
are observed, which are induced by the applied pressure shock due to coupling effect.
The magnitude of the temperature change is relatively small, within the range between
-0.02 to 0.05. As time progresses, the peak position of the temperature distribution
moves towards a positive x direction. Fig. 3-3(b) represents the dimensionless axial
displacement along the horizontal centreline at t =3 and t =6. The wave fronts at
these two time points are observed. There are slight differences between the
displacement predictions from the coupled and uncoupled cases. As time progresses,
the difference becomes larger. Therefore, it could be inferred that due to coupling
effect, the temperature change induced by deformation does affect the deformation.
The same conclusion is obtained from the simulation cases with loading condition 2
as can be seen from Fig. 3-4. Due to the heating effect by the applied thermal loading,
the plate experiences an expansion state. Subsequently, the tension loading creates a
cooling effect. Therefore, when compared with the uncoupled case, the relatively
lower temperature change is observed in the coupled case. Consequently, the lower
temperature change gives rise to a smaller deformation response. This conclusion can

also be applied to loading condition 3, whose results are presented in Fig. 3-5.

In conclusion, good agreements are obtained for three types of loadings. For both
the thermal and mechanical fields, the results from ordinary state-based PD predictions
agree well with those from BEM solutions obtained by Hosseini-Tehrani and Eslami
[53]. Therefore, via these numerical simulations, the present non-dimensional PD

model is validated for 2D problems.
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Fig. 3-3 Comparison of BEM method [53] and PD solutions (a) Temperature change
distributions; (b) Displacements along the horizontal centreline of the plate for

loading condition 1
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Fig. 3-5 Comparison of BEM method [53] and PD solutions (a) Temperature change
distributions; (b) Displacements along the horizontal centreline of the plate for
loading condition 3

3.5.2. Plate subjected to pressure loading

Thermal and deformation responses of a square plate under two types of pressure
shocks are analysed. The geometry dimensions of the plate are L=W =0.1m, with

the thickness being 0.001 m. The material is chosen as carbon steel and its material

properties are given as: elastic modulus E =200GPa , Poisson’s ratio v=0.17 ,
thermal expansion coefficient o =11.5x10° K™, density p =7870 kg/m®, specific
heat capacity ¢, =472 J/(kgK), and thermal conductivity k; =51.9 W/(mK). The

reference temperature is ®, =285 K. The grid size is Ax=0.0005m and the horizon
size is chosen as & =3.015Ax. The time step size is 0.001ps with total simulation
time 8 us. On the other hand, directly coupled plane element PLANE 223 is utilized
in the ANSYS model. The number of nodes 80x80 and time step size is 0.16 us for
the ANSYS model.

The initial conditions are:

u (x y,t=0)=u,(x y,t=0)=0 (3.26a)
T(x y,t=0)=0 (3.26b)
The shock loading conditions are:
Loading 1:

P(x=-L/2,y,t)=-10%t*Pa (3.27)

Loading 2:

P(x=-L/2, y,t):logsin(%txloej Pa (3.28)
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Fig. 3-6 and Fig. 3-7 provide the temperature and deformation responses along the
horizontal centreline of the plate under two loading conditions. Since only the
mechanical loadings are applied, the temperature changes are induced due to the
coupling term in the heat flow equation. As shown in Fig. 3-6(a) and Fig. 3-7(a), there
is a remarkable agreement between PD and ANSYS solutions. When the plate is
subjected to loading condition 1, the temperature drop is observed due to tension
loading as it can be seen from Fig. 3-6(a). As time progresses, temperature change

increases to a final value of 6.5 K. When the plate is subjected to loading condition 2,

temperature increases where there is local compression, and temperature drops where

there is local tension.

Under both loading conditions displacement fields obtained from PD and ANSYS
simulations match very well. Furthermore, it should be noted that even though carbon
steel has a relatively small coupling coefficient, i.e. ¢=0.002861, the generated
temperature change due to mechanical shock loading is considerable. Therefore, if a
large strain rate exists, i.e. shock loading is applied, fully coupled thermomechanical

analysis should be taken into consideration.
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Fig. 3-6 Comparison of ANSYS and PD solutions (a) Temperature change
distributions (b) Displacements along the horizontal centreline of the plate for
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Fig. 3-7 Comparison of ANSYS and PD solutions (a) Temperature change
distributions (b) Displacements along the horizontal centreline of the plate for
loading condition 2.

3.5.3. Block subjected to thermal loading

In order to validate the proposed PD model for 3D problems, a block subjected to
temperature boundary condition is investigated. As shown in Fig. 3-8, the
dimensionless length, width and height of the block are 5, 0.15 and 0.15, respectively.
The Poisson’s ratio is set as 0.33 and the coupling coefficient is 1.0. Regarding the PD
model, the grid size is Ax=0.0125 and the horizon is chosen as & =3.015Ax. The
integration time step size is 7/4x10™* and the total simulation time is 7. On the other
hand, directly coupled solid element type SOLID 226 is adopted with a mesh size of
0.05 and time step size of 0.02z in ANSYS model.

The block is clamped at x = L . The block is gradually heated at x =0 and all other
surfaces are insulated. The temperature boundary condition is defined as T =sin(t),

where t is the dimensionless time. A fictitious layer is used to implement boundary
conditions [55].

Ll
o
=

>
-
A
l
ju

Fig. 3-8 Block under thermal loading

The temperature distributions and horizontal displacements along the line of
y=W /2 and z=H /2 are presented in Fig. 3-9 (a) and (b) at dimensionless time of
t =x/4,7/2,37/4, = respectively. The results which are obtained from ANSYS

solutions are also provided for comparison. It could be seen that both the temperature

and displacement distributions match very well, indicating the capability of the derived
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PD formulations to accurately predict the thermal and mechanical responses for three-

dimensional problems.
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Fig. 3-9 Comparison of ANSYS and PD solutions (a) Temperature change
distributions (b) Horizontal displacements along the centreline of the block
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Derived formulations and explicit expressions of PD parameters including their
dimensional and non-dimensional forms are validated through these numerical

simulations.
3.6.  Numerical results for damage prediction

Peridynamics is a reformulation of classical equations that is better suited for
modelling bodies with discontinuities. The proposed model is further employed for

failure prediction including fully coupled analysis. First, a three-point bending test is
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considered to predict the temperature distribution and deformed shape. Then a plate
with a pre-existing central crack is subjected to a pressure shock loading condition.
The temperature and structural responses without crack propagation are verified
against the ANSYS solution. Then the crack propagation is simulated, and its path is
compared with the one from a pure mechanical simulation. In this way, the coupling
term effect on crack propagation is estimated and analysed. Therefore, analysis
involving cracks are considered in this section by using the developed PD model.
Finally, a numerical simulation based on Kalthoff experiment [56] is carried out. The

crack path predicted by the PD model is compared with the result of the experiment.
3.6.1. Three-point bending simulation

Three-point bending test of a simply supported beam is simulated under prescribed
displacement condition as illustrated in Fig. 3-10. The origin of the coordinate system
is located in the middle of the beam. The material properties are related to rubber-like

material, the shear modulus is 1 MPa, Poisson’s ratio v =0.45, thermal expansion
coefficient «=1x10° K™ , thermal conductivity k; =0.1W/(mK) , density
p=906.5kg/m*, specific heat capacity c,=1103.14J/(kgK) [57]. The critical
stretch value is s, =0.1724 . The reference temperature is ®,=293K . The

dimensions of the beam are L =40mm, W =10mm, and thickness h=05mm . A

pre-existing crack with length being a=1 mm is located in the middle of the beam at

y=-W /2. The supports are placed b=4mm inwards from the outer edges. A

prescribed displacement is applied in the middle of the beam at y=W/2 as
U=(t/tym )Unsx » Where t., is the total simulation time, t,, =0.01s and
U, =6 mm . The uniform PD grid size is Ax=0.5mm and the horizon is

5=3.015Ax . The time step size is 1x10°s and the total simulation time is

1:total = 001S '
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Fig. 3-10 Geometry of three-point bending test

Fig. 3-11 and Fig. 3-12 present the damage plots and corresponding temperature
distributions at t =0.007 s and t =0.01s. It can be observed from Fig. 3-11 (a) and
Fig. 3-12 (a) that the initial crack grows in the vertical direction. Fig. 3-11 (b) and Fig.
3-12 (b) present the corresponding temperature distributions. As expected, the
temperature rise is observed where the local compression is expected and the

temperature drop is observed near the crack surfaces where there is local tension.
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Fig. 3-11 (a) Damage plot and (b) temperature change (K) in deformed configuration
at t=0.007 s (displacement scale factor is 1)
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Fig. 3-12 (a) Damage plot and (b) temperature change (K) in deformed configuration
at t=0.01s (displacement scale factor is 1)

3.6.2. Plate with a crack subjected to pressure shock loading

Based on the previous example in Section 3.5.2, damage propagation is predicted
for a plate with a pre-existing crack of length 0.02 m, as shown in Fig. 3-13. The
geometry, material properties, and boundary condition are identical to those in Section
3.5.2.
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Fig. 3-13 An isotropic plate with a pre-existing central crack under pressure shock
loading

The pressure shock loading is specified as

—-1x10"t (Pa) ,t<t
P(t :{ <107t (Pa) <ty (3.29)

—1x10"t, (Pa),t>t,

where t, =8 ps. The total node number in x or y direction for the PD model is set to
be 500 with a grid size of 0.2 mm. Thus the critical stretch value s, is calculated as
0.0213 with G, being 42320 J/m*. The horizon is & =3.015Ax. The time step size is

setas 10~° s and the total simulation time is 30 us . On the other hand, directly coupled

plane element type PLANE223 is applied in the ANSYS model with the grid size of
Ax =0.00125 and time step size of 0.6 ps.

In order to better understand the existence of crack surface on the temperature and
deformation field, initial failure is not allowed. The horizontal displacement
predictions at different time steps are shown in Fig. 3-14, Fig. 3-15, and Fig. 3-16. It
is observed that the peridynamic results coincide very well with ANSYS solutions.
The displacement distribution along x axis propagates uniformly in the vertical
direction before the elastic wave reaches the crack, as shown in Fig. 3-14. After the

elastic wave reaches the crack surface, displacements become non-uniform due to the
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discontinuity of the displacements along the crack surface as it can be seen from Fig.
3-15 and Fig. 3-16.

-6.100E-05
-5.337E-05
-4.575E-05
-3.812E-05
l -3.050E-05
-2.288E-05
-1.525E-05
-7.625E-06
0.000

(a) (b)
Fig. 3-14 Horizontal displacements (m) (a) ANSYS and (b) PD results at t =7 ps
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Fig. 3-15 Horizontal displacements (m) (a) ANSYS and (b) PD results at t =15 ps
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Fig. 3-16 Horizontal displacements (m) (a) ANSYS and (b) PD results at t =30 us

Fig. 3-17, Fig. 3-18, and Fig. 3-19 present the induced temperature distributions due
to the applied loading. It is observed that the peridynamic results agree very well with
ANSYS solutions. The temperature distributions along x axis propagate almost
uniformly in the vertical direction before the thermal wave reaches the crack, as shown
in Fig. 3-17. After the thermal wave reaches or passes the crack, thermal waves get
disturbed by the existence of the crack. The higher temperature drop is observed near
the crack tip as can be seen from Fig. 3-18 and Fig. 3-19. This also indicates the stress
concentration near the crack tips. Besides, the region near the crack tips is under
tension, indicating a tendency of a crack growing in the vertical direction. The crack
surfaces experience local compression. Therefore, temperature rises are observed in

these regions as it can be seen from Fig. 3-19.
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Fig. 3-17 Temperature change distributions (K) (a) ANSYS and (b) PD results at
t=7ps
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Fig. 3-18 Temperature change distributions (K) (a) ANSYS and (b) PD results at
t=15ps
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Fig. 3-19 Temperature change distributions (K) (a) ANSYS and (b) PD results at
t=30ps

After verification of temperature and deformation field for a plate with a pre-existing
crack. As a next example, crack propagation is allowed. The crack configurations at
different time steps are provided in Fig. 3-20 to Fig. 3-22. Crack propagation patterns

are compared with coupled and uncoupled cases. Temperature distributions at
corresponding stages from coupled cases are also provided.
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In the early stage, the cracks grow in similar patterns for both simulation cases.
Crack start to propagate earlier for the uncoupled case (Fig. 3-20). Cracks both begin

to propagate at around 16 ps. Up to 28 ps, the cracks propagate in a self-similar
manner for both coupled and uncoupled cases. Cracks start branching at around 28 ps

(Fig. 3-21) and split into visible asymmetrical branches (Fig. 3-22). Besides, the
branches for uncoupled case grow faster than the coupled case.

For the coupled case, it is clear that before 16 ps the temperature distribution is the

same as the one obtained from the simulation without crack propagation. However,
temperature drops at the crack tips move as the crack propagates (Fig. 3-21 (c)- Fig.
3-22 (c)). The cooling region at the crack tips creates temperature-induced local
compression at these regions. Furthermore, the temperature rise around the crack
surfaces creates local tension against the compression created by the pressure shock
loading. In conclusion, the induced temperature change due to deformation influences
the crack growth in the opposite direction against the applied mechanical loading,
leading to a reduced degree of crack propagation response. Hence, a different crack

pattern from the uncoupled simulation is obtained.

In conclusion, if shock loadings are applied, large strain rates are created, and thus

the coupling term should be considered for more accurate crack propagation

predictions.
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Fig. 3-20 Damage plots for (a) uncoupled case, (b) coupled case and (c)
corresponding temperature change (K) distributions at t =16 us
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Fig. 3-21 Damage plots for (a) uncoupled case, (b) coupled case and (c)
corresponding temperature change (K) distributions at t =28 us
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Fig. 3-22 Damage plots for (a) uncoupled case, (b) coupled case and (c)
corresponding temperature change (K) distributions at t =30 ps

3.6.3. Kalthoff problem simulation

Kalthoff and Winkler [58] and Kalthoff [56, 59] performed a series of experiments
where pre-notched plates were subjected to dynamic shear loads. In the experiments,
a cylindrical projectile impacted on the notched side of the plate with a constant

velocity V, parallel to the axis of the notch. The pre-existing crack in the upper half

steel plate was observed to grow in an angle of approximately 70° counter-clockwise
with the notch axis. The failure is in a brittle fracture mode under a lower strain rate.

These experiments have been successfully simulated by numerical methods such as
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phase-field simulation [60], finite element method [61]. In addition, Silling [62] and
Dipasquale et al. [63] used PD to numerically simulate the Kalthoff problem within
the realm of the mechanical field. In this section, a fully coupled thermomechanical

simulation is conducted based on the Kalthoff experiment.

The problem is symmetric so that only the upper half plate is modelled. As shown
in Fig. 3-23, a square plate is modelled with L =W =100 mm and its thickness is

1mm. A pre-existing crack of length being 50 mm is located above the x axis with

the distance of 25 mm . Due to the symmetric conditions, the lower horizontal edge of
the plate is fixed in the y direction, i.e. u, (x, y :O,t) =0. The other boundaries are

free. All the boundaries are thermally insulated. The impact is simulated by imposing
a constant velocity to the nodes on the left surface between the crack and the lower
horizontal boundary in the PD model. The velocity is parallel to the x direction and

its magnitude is

<
V| = (t/ty)v, t<t, (3.30)
Vo t>1,

where |v,| represent the magnitude of the applied velocity with v, =16.5m/s and
t,=1ps [60]. The properties of the elastic material are E=190GPa |,
p=8000kg/m®, v=0.3, ¢, =477 J/(kgK), & =17.6x10° K™, k; =16.2 W/(mK).
The critical energy release rate is G, =2.213x10* J/m?. The reference temperature is
0, =285K. As to the PD discretization, the mesh size is Ax=0.0005m and the

horizon is chosen as & =3.015Ax . The time step size is 0.0lus and the total

simulation time is 90 ps . The critical stretch value is calculated as s, =0.0103.
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Fig. 3-23 The geometry and boundary conditions for Kalthoff problem

The crack is observed to propagate at t =20 us. The crack evolution at different
times is provided in Fig. 3-24. The angle between the crack path and the positive x
direction is observed to be 68°, which is close to the corresponding result of the
Kalthoff experiment. Furthermore, the temperature change distribution evolutions are
provided in Fig. 3-25. The maximum stretch distributions in deformed configurations
are presented in Fig. 3-26. It can be observed temperature rises near the crack and

temperature drops in the crack, which agrees with the conclusions drawn in the last

two simulation cases.
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Fig. 3-24 Crack evolution at different times, (a) t=40ps; (b) t=65us;(c) t=90pus
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Fig. 3-25 Temperature change (K) distributions at different times (displacement scale
factoris 3), (a) t=40ps; (b) t=65pus;(c) t=90yps.
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Fig. 3-26 Maximum stretch distributions in deformed configurations (displacement
scale factor is 3) at different times, (a) t=40pus; (b) t=65us; (c) t=90ps.

3.7.  Summary

In this chapter, fully coupled thermoelastic equations in ordinary state-based
peridynamic theory are provided, including their non-dimensional forms. To verify the
PD model, some benchmark problems are solved by using both peridynamics and FEM
solutions. The good agreement between PD and other methods indicates the validity
of the proposed PD model. Finally, crack propagation patterns are predicted for three-
point bending test, Kalthoff problem, and a plate with a pre-existing crack subjected

to a pressure load. The following conclusions are drawn:
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1. The ordinary state-based fully coupled thermomechanical PD model
introduced in this chapter is capable of predicting temperature and displacement

responses accurately both for dimensional and non-dimensional problems.

2. When shock loadings are applied, the coupling effect on displacements and

temperature should be taken into consideration for more accurate results.

3. The coupling terms do have an effect on crack propagation when shock

loadings are applied. Therefore, fully coupled analysis is necessary in such cases.
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4. Fully Coupled Thermomechanical PD Model for

Composites Material

4.1. Introduction

In recent years, high-performance composite materials like fibre-reinforced
composites (FRCs) and carbon-carbon composites (CCCs) are increasingly used in
aerospace and mechanical industries, especially for the working environments with
mechanical shocks and large temperature variations [64]. The analyses of this type of
problems have been carried out in the past using the uncoupled or semi-coupled
thermoelasticity theory. It is assumed that the deformation induces relatively small
temperature changes, and hence can be conveniently neglected. Only the effect of the
temperature on the deformation field is considered. However, the coupling coefficient
of composites is much larger than the metal materials. Furthermore, the coupling effect
on temperature is significant under the loading conditions like a sudden change of
temperature or a mechanical shock. Therefore, the deformation effect on the
temperature field is crucial in these cases. The uncoupled or semi-coupled analysis
may not be accurate enough, and the employment of the fully coupled thermoelasticity

theory is necessary in these cases [65].

Many research achievements in the realm of fully coupled thermoelasticity are
presented in the literature regarding composite materials. This problem becomes
complex because of the anisotropic property of composite materials. Stanley [66]
presented an experiment to test the thermoelastic constants of composite materials
under compressive loading. Basic equations of linear thermoelasticity of composite
material were established in Ene’s work [67]. Besides, a simple form of coupling
constant was introduced to estimate the coupling effect for composite materials. In
addition to the analytical and experimental methods, numerical methods are also
popular in this field. Rao and Sinha [68] dealt with the coupled thermomechanical
analysis of composites beams using FEM, presenting different results from uncoupled
analyses. Moreover, the coupled thermoelastic response of a composite plate subjected
to thermal shock was studied by Mukherjee and Sinha [69] using FEM. Khan et al.

[70] compared the temperature profiles from different FE models in the
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thermomechanical analysis of composites. Comparatively, boundary element method
(BEM) was adopted by Kyl and Gaul [71] to investigate the coupling effect of
composites. They stated that when linear elements were used, the BEM had an
improved accuracy than FEM. Fully coupled thermomechanical analyses of one layer
or equivalent single-layer plate were given by Brischetto and Carrera [72], providing

a wise approach for multi-layered composites.

In addition to thermoelasticity, failure analysis is also a hot topic in composite
research. It is a challenging task to predict damage in composites. Composites can be
defined as two or more materials combined to form a single material [73]. There are
several kinds of failure exist in laminated composites materials, e.g. fibre/matrix
debonding damage, fibre breakage in tension, as well as fibre bulking in compression,
interlaminar delamination, and penetration due to impact [74]. Therefore, the
inhomogeneous nature of composites must be taken into consideration in the analysis,
to predict the corresponding failure modes. Furthermore, the stacking sequence and
thickness also have an important effect on the failure initiation and evolution [75].
Although many mathematical models and computational methods have been
developed to predict these failure mechanisms, a high challenge still exist because of
the adoption of continuum damage mechanics. Being different from the
aforementioned numerical methods, i.e. BEM and FEM, peridynamic (PD) theory is a
new numerical method based on non-local continuum theory. Therefore, the PD theory
Is suitable for simulating cracks for composite materials. Oterkus and Madenci [76-78]
successfully applied the bond-based PD theory for composite materials. Kilic et al. [79]
predicted the crack propagation in centre-cracked composites laminates using a bond-
based PD theory. Although bond-based PD theory has been successfully employed in
analysing composite materials, the material property is limited to having a fixed

Poisson’s ratio [4]. Additionally, the major shear stiffness G,, of a lamina is also

forced to be a fixed value related to the elastic modulus in fibre direction and transverse
direction [80]. Consequently, if bond-based peridynamic theory is utilized in analysing

fibre reinforced composite lamina, four independent material constants

(E..E,,G,,.v;,) will reduce to two independent constants (E,, E,) [80]. On the other

hand, state-based peridynamic theory [11] which eliminates these limitations.
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Although various formulations are available for state-based PD composites modelling,
most of them are limited to mechanical analysis. Oterkus and Madenci [46] provided
a fully coupled analysis of a fibre-reinforced lamina. And then the model was extended
to multi-layer laminates by Gao and Oterkus [7]. But the bond-based peridynamic
theory is used for both models. To the authors’ knowledge, fully coupled formulas and
analyses for laminates are currently not available in ordinary state-based peridynamic

framework.

To address this concern, the focus of this chapter is on fully coupled analysis of
composite materials with ordinary state-based peridynamic theory. Oterkus et al. [39]
derived the heat conduction equation with ordinary state-based peridynamic theory.
Moreover, fully coupled thermomechanical equations for isotopic materials were
proposed by Oterkus et al. [43] using bond-based peridynamic theory and extended to
ordinary state-based peridynamic form by Gao and Oterkus [5]. Based on the previous
work, in this chapter, both thermal and deformation fields are derived using ordinary
state-based peridynamic theory. The directional dependency of composite material
properties, as well as the coupling effect on temperature, is taken into account. Then
the fully coupled thermomechanical numerical simulations are presented in Section
4.2. Subsequently, the validation cases are conducted in Section 4.3. Furthermore, the
bond-based fully coupled thermomechanical PD model is applied to simulate the

damage of composites under underwater explosion in Section 4.4.
4.2. PD composite model

Regarding the fully coupled thermomechanical problems, the PD formulations are
derived based on irreversible thermodynamics, i.e. the conservation of energy and the
free energy density function. The general form of the fully coupled thermomechanical
equations based on peridynamic theory is given in [43-46, 48] and Chapter 3. However,
the fully coupled thermomechanical composite model in ordinary state-based PD
framework has not been established so far. The following section represents the
derivation of fully coupled thermomechanical formulations for ordinary state-based

peridynamics for composites by taking into account their directional properties.
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4.2.1. Single-layer PD composite model

In this section, fully coupled ordinary state-based peridynamic single layer
composite (lamina) model is developed in which the orthotropic property of lamina is
taken into consideration. As shown in Fig. 4-1, it is presumed that the PD bonds are
divided into three types according to their bond directions: fibre direction denoted by
F , transverse direction denoted by T, and arbitrary direction denoted by FT [10, 80,
81]. Besides, the fibre angle is denoted by ® . The bond angle with respect to the

positive x direction is denoted by ¢ .

[ERN

x

Fiber direction, F

Transverse direction, T
——

Arbitrary direction, FT

Fig. 4-1 Interaction of a family of material points for a fibre-reinforced lamina.

PD force density function provided in [10, 82] is modified by including the thermal

effects as;

dA,

——a Hi_ + Ti =V,
t(uj_ui’xj_xi't):25 ‘Xi_xi‘ ( (al a2) ) ‘zj_zl‘ (4.1a)
+(:uFbF (% )+ abor (%) + g )(Sij _a(pTi) P
and
dA;
6. — T _
t(u;—u;,% —x;,t)=-25 ‘Xi_xi‘a(J (exves)T) yj—yi‘(4-1lo)

+(ﬂpbp(xj)+uTbT(xj)+bFT)(5ﬁ_%Tj) yi-y
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where

1 (x. —x. )// fibre direction
P = ( ! ') (4.2a)
0 otherwise
with
1 (x; —x, ) L fibre direction
- (4.2b)
0 otherwise

In Eq.(4.1), o, and «, represent the thermal expansion coefficients in fibre and
transverse direction, respectively. Thereby, «, represents the thermal expansion

coefficient in any direction as [76]

a, = a, c0s* () +a, sin’ (@) +a,, sin () cos(¢) (4.3)

with [83]
a, =, c0s° (D) +a,sin’ (D) (4.43)
a, = o, sin® (®)+a, cos® (D) (4.4b)

In Eq.(4.1), 6, and ¢, are the dilatations of point i and j, respectively [10, 80].

The dilatation for a single layer PD model is also modified by including the thermal

effects as

N ply

0 = d52(sij -a,T, )AijVj +(a+a,)T, (4.5)
=1

with d =

and N, representing the total number of the family members

3 y

T ek
within the same layer. The parameters s; and A; [10, 80] are defined in Eq.(2.7) and
(2.9d).
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In Eq.(4.1), the peridynamic parameters b. , b, and b, are associated with

deformation of collective points in the fibre, transverse and other directions,

respectively. The peridynamic parameters in Eq.(4.1) are defined as [10]:

a=(Qu-Qn) (462
— 6Q66
T 3 W (4.60)

b (x,) = (Qu=Q2~2Qy) (4.6¢)

i Ny
25 |X; —xir\/j
=

o () = (e - Q= 20) (4.6d)

Ny
26 "I, —XaM
-1

where N., N; are the total number of bonds in the fibre and transverse direction

respectively (Fig. 4-1). The reduced stiffness matrix, [Q] is defined as [1]

Q. Q, O
[Q] = Q21 sz 0 (47)
0 0 Qg
with
E v, E
Q11 = El ) sz = —2’ le =_—22 ) Q66 = Glz (4-8)
1-v,vy 1-vy,v, 1-vy,vy,

In Eq. (4.8), E,, E,, G,, v, and v,, represent the elastic modulus in the fibre

direction, the elastic modulus in the transverse direction, major shear modulus, major

Poisson’s ratio and minor Poisson’s ratio, respectively.
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Similarly, the directional dependency properties are also taken into consideration in
the heat equation given in Eq.(3.1). Therefore, thermal micro conductivity proposed
by Oterkus and Madenci [46] for a lamina is adopted as

Kk, + K, for fibre direction
K= (4.9

K otherwise.

m

where x,, and x, represent the peridynamic micro conductivities for fibre and other

directions as [46]

6k,
=2 4.10
i ”hthick53 ( )
and
K (%)= Fz(kl ~ka) (4.11)

In Eq. (4.10) and Eq.(4.11), k, and k, represent the thermal conductivities in CCM

for fibre and transverse direction.

PD thermal moduli in fibre and other directions are defined as (derivation process

is provided in Appendix B)

5 S + B, for fibre direction 412)
- B otherwise. '
with
3
B = (Qﬁ: +§§2a2) (4.13)
hick
and
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) — (Qllal + leaz ) B (leal + szaz )

Ne

2

j=1

B (% (4.14)

xj—xi‘vj

As a summary, the ordinary state-based PD formulation for a single layer is given

as;
_‘ dA; a(@i +¢9j—(a1+a2)(Ti+Tj)) |
N X, —X.
. B ply J ! yj_yi
pU(Xi,t)_§25 +(:U|=b|= (Xi)+luTbT(Xi)+bFT)(Sij_aqui) ‘yj—yi‘vj (4.15)
_+(,uFbF (XJ)+,uTbT (Xj)+bFT)(S"—awTj)_
+b(x;,t)
0. -0,
Ny K (X m —_
peT(x, 0= (et () + ) XJ_Xi‘ V; +p0,(x;,t) (4.16)

=

-0, (/uFﬂf (Xi)+ﬂm)é(xj _Xi)
Here ®; and O, represent the temperatures at point j and k , respectively.

4.2.2. Multi-layer PD composite model

The PD mechanical model developed by Oterkus and Madenci [10, 76] for
composite laminates is adopted in this subsection. As illustrated in Fig. 4-2, each ply
in a laminate is modelled by one-layer PD nodes (shown in blue, red, and yellow colour
for different plies). The multi-layer laminate is modelled by assembling the single-
layer models according to the stacking sequence. Due to the directionally dependent
properties of the laminate, four kinds of PD bonds are defined in the model: in-plane
fibre bonds, in-plane matrix bonds, interlayer normal bonds, and interlayer shear bonds
[10, 76]. Additional bonds, also called interlayer bonds, are added to connect points
between neighbouring plies. The in-plane bonds have already been discussed in the
single-layer model, so only the latter two bonds belonging to interlayer bonds will be

explained in this section. The grid size is represented by Ax.
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s [nterlayer normal bonds m—— [1-plane tratrix bonds

=== Interlayer shear bonds

In-plane fibre bonds

Fig. 4-2 lllustration of PD laminate model for & =3Ax and fibre direction, ® =0.

As illustrated in Fig. 4-2, the equation of motion for material point k in n™ ply can

be expressed as [10]

N ply Nipear

pup=> (Gg-th V[ + X R™V +2 3 > qyV/ +bj (4.17)

j=1 m=n+1,n-1 m=n+1,n-1 j=1
where P" represents the PD force density vector due to transverse normal bond and
dy is the force density vector associated with transverse shear deformation. The

superscripts, n and m, represent the sequence number of the layer where the material

point is located. The term N, represents the number of family members connecting

to X, through interlayer shear bonds. It should be noted that the first term on the right-

hand side of Eq. (4.17) is presented in Section 4.2.1.
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Xr?+1 N
Xn+1 1 N
1l
K (n+1)" Ply
Pkn(n+l)
V4
n —>
Xi t t] x| n™ Ply
pr-y 1) g =
K qr]lén ) q:j(n anl é
i th
n-1 —
X! (n-1)" Ply

Fig. 4-3 Representation of interactions of material point k in multi-layer composite
model.

In the transverse normal deformation, the laminate (resin-rich layer) is treated as the
matrix material in its thickness direction [10]. Therefore, the material properties in the
thickness direction are assumed the same as the material properties of the matrix, i.e.

E,=E_,G,=G,anda, =a, (4.18)

where the subscript m represents the matrix material. The transverse normal force

density function [10] including the thermal effects is represented as

P = 4b, S (5" — a, Tam, ) Y (4.19)

m " avg,k ‘ m n
Y =Y«

th

where P/ represents the force density between point k in n™ ply and its

corresponding point in m" ply with the same in-plane coordinate. The term S is the

horizon in the transverse normal direction. The term T, is the average temperature

change of point x; and x;' . The transverse normal peridynamic parameter, by, is

given as [10];

E
by =— m 4.20
U S[(M )V (V] (4.20)

where h ,, h, and h_, are illustrated in Fig. 4-4(a).

n+l?
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Similarly, transverse shear bond force density function can be modified by including

the thermal effects as;

Ay = 40,5 (5" — e Tom g )= (S — et Tm ))ﬁ (4.21a)
or
qq" = 4bd r}rx(rjnhi ::h") \3):1: :zt (4.21b)
with
o o —x: (55" ~talam )= (S8 ~etalam) 451y

h,+h,

where h_and h_ are the thickness of m™ and n™ layer in the laminate, respectively.

Here m™ layer represents the one layer above or one layer below the n™ layer (Fig.

4-4(a)). Thereby, ¢;" represents the average shear angle in the interlayer shear

direction. s§" is the stretch between nodes x, and x|, and Tj' is the average

m

temperature difference between nodes x; and Xxj ,

with respect to the initial
temperature. The term qy" is the transverse shear force density vector between
material point k in n™ ply and material point j in m™ ply. The horizon size in

transverse shear direction, &, is defined as & =+/62 +3? ( Fig. 4-4(b)). The term b,

is a PD parameter and it is given as [10];
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(4.22)
N
n+1 erH1 ' 9 XrJ?Jr1 hn+1 (5
n f o
Xz_1 . Q X'L1 En n Ply h
n-1 X oo* o X h-1 §~
2 :
R — bl
(a) (b)

Fig. 4-4 (a) lllustration of each lamina in a laminate with N representing the total
number of layers; (b) Horizon in transverse shear direction

In this chapter, the multi-layer laminates composed by uniform thickness (h,,,, )
plies are considered. As a result, Eq.(4.20) for the expression of b, and Eq.(4.22) for

the expression of by can be simplified as

E

T Vv e

N

and

G, ! (4.24)

by = —"%
S 870 2htf1ick ((52 + 2ht$1ick )/\/52 + hliick - 2hthick)

Similarly, the effect of interlayer thermal bonds is considered in the coupled heat

equation by modifying Eq.(4.16) as
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X" =X

it )@o@pﬂf(xs)wm)e-zk]vr

ﬂlnterek z :l

Ninter @ Xm,t —® Xn,t
- z{mw ("Xm)_xn(k .
i k

Oleterekj z :Ivjm PG (XE ’t)

m=n+l,n-1 j=1

(4.25)

The second and third terms on the right-hand side of Eq. (4.25) represents the heat

flow between adjacent layers. N, is the family member number those connect to x;

inter
through interlayer thermal bonds. Rate of change of bond extension is considered only
through the thickness direction for interlayer thermal bonds. Interlayer PD micro

conductivity and PD thermal modulus are given as

k
Kinter = = (4.26)
27t (5 — P )
and
E.o
ﬂinter = i "’m (427)
A7y (5 — Py )
The derivation process for «,,, and B, is given in Appendix B. And their surface

correction factor formulations are provided in Appendix C.
4.2.3. Reduced bond-based model

Based on the previous state-based PD multilayer laminate model, the reduced bond-

based PD formulation is derived in this section. The discretized form of the PD
equation of motion for a material point x; in the n layer of a laminate can be written

as
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N piy

(xk,t) Jl(yF f( ) )(skJ ang])zl zt V!

m n
k

+ Z c, (ng _amTknm) zm — Y
k

n
m=n+1, n-1 - yk

A (4.28)

m

e 2 Y} -V
+ > Y c(ax) v V" +b(x;,1)

j k ‘

m=n+l,n-1 j=1

The first three terms on the right-hand side of Eq.(4.28) represent the PD forces
developed by in-plane bonds (including fibre bonds and matrix bonds), interlayer
normal bonds, and interlayer shear bonds in sequence. If the bond direction is parallel

to the fibre direction, 4 is equal to 1, otherwise, itis 0. c,, C and c, are PD

m? |n !
material constants associated with in-plane fibre bonds, in-plane matrix bonds,
interlayer normal bonds, and interlayer shear bonds, respectively. The definitions for

PD material constants are listed as [10, 76]

2E, (E,-E
¢ (xp)= . . - ) (4.29)
(El—gEzj[Z X" =X vj“j

j=1

¢ - 18E1E2 (4.30)
(El_gEz)”hhick53

¢, = (4.31)

hthickv
c, = %Gy (4.32)

7hya (52 + By In (h‘f‘iCk 167 ))

It is assumed that a material point interacts with other points in adjacent plies

through interlayer normal bonds and interlayer shear bonds. Therefore, the horizon of

the interlayer normal bond is taken as equal to the thickness of one-ply, h, . In

Eq.(4.29), N; represents the total number of family members those connect to the
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material point with fibre bonds. In Eq. (4.31), the value of V can be calculated as the
average volume of material points connected through interlayer normal bonds. As to

the thermal expansion coefficient «, , the same formulation Eq.(4.3) developed in [84]

Is utilized. «,, represents the thermal expansion coefficient of the matrix material. In

Eq. (4.28), ¢ represents the shear angle of the diagonal shear bonds.

It should be noted that because of the adoption of bond-based PD theory, the four

material constants existing in a laminate, i.e., E, E,, v,,, and G,,, reduce to two

constants: E, and E, [76, 80]. The major Poisson’s ratio v;, is limited to 1/3, and the

. . E .
major shear modulus is G,, = 1 "2 \ith v, E =v, IE,.
ViV

Regarding the bond-based thermal model, the heat conduction equation given for a

laminate is

peT (X )=, X? - X" A
j=1
O (e (X7 )+ B )&
+ z I:Kinter ®(X:11 trr? _(i(XE’ t) _®Oﬁiné£m }/km (433)
m=n+1, n-1 ‘Xk = X

+Z K m n

inter
j=1 i Xy

Nshea[ O(x],t)-0(x, 1)

- ®0:Bisélgm ]V]m + P4, (XE vt)

where x

inter

bonds defined by Eq.(4.26).

represents the micro-conductivity for both interlayer normal and shear

The PD thermal modulus S depends on the PD material bond constant [43, 44, 46].

PD thermal modulus for in-plane bonds and interlayer bonds can be expressed as

1
B :ch% (4.34)
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=55t (4.35)
1

B =Ecina8 (4.36)
1

ﬂis = Ecisaél (437)

where g, , 8., B, and f. are associated with in-plane fibre bonds, in-plane matrix

bonds, interlayer normal bonds, and interlayer shear bonds.
4.2.4. Failure criteria

The general PD failure criteria are provided in Section 2.1.3. Due to the anisotropic
material properties of the laminates, the failure criteria should be modified
correspondingly. The mode mixity effects can be captured by the selected failure
criteria, which is demonstrated by Vazic et al. [38]. The PD predictions for failure
mode ranging from pure mode | to pure model Il are consistent with the experiments
[85]. Because of the four different types of PD bonds in a multi-layer composites
model, four different critical stretch values are needed in the failure analyses. The

critical stretch values are considered as [10, 86]

n 5 16 (4.38)
—u +——(K -2 o
(S s ok, -2
o O
Sp = é; Ste :El (4.39)
s = |-2Cic_ (4.40)
hthick Em

GIIC
¢IS ) \4 hthicka (441)
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where s, s,, S, , ¢, are the critical stretch values for matrix bonds, fibre bonds,

interlayer normal bonds, and interlayer shear bonds, respectively. The material

constants K, and g, are bulk modulus and Lameé&constant of the matrix material.
Besides, G,. and G, are critical energy release rate for the first and second failure

mode in classical fracture mechanics, respectively. The terms o, and o,  are the

longitudinal tension and compression strength properties of a single ply. The critical
stretch in Eq.(4.39) has a similar meaning of critical strain in the context of classical
continuum mechanics. On the other hand, the critical stretches given in Egs. (4.38),
(4.40), (4.41) are obtained by equating the energies required to eliminate all PD
interactions across the crack surfaces to the mode | or mode |1 critical energy release
rates. Thus, the failure criteria mentioned in Egs. (4.38), (4.40), (4.41) are energy-
based [10]. By applying the above failure criteria, it can be observed that the fibre
bonds can fail both in tension and compression. The matrix bonds, interlayer normal

bonds, and interlayer shear bonds are only allowed to fail in tension.

Eqg. (4.38) and (4.39) are related to the intralaminar failure mode. Eq. (4.38)
corresponds to matrix damage and splitting failure mode. Eq. (4.39) corresponds to
fibre damage. Eq.(4.40) and (4.41) are related to the interlaminar failure mode. Eq.

(4.40) corresponds to interlaminar mode-I fracture and Eq. (4.41) corresponds to

/

interlaminar mode-II fracture as shown in Fig. 4-5.

I WEL WEL L NI 5555339

--------- Broken interlayer normal bonds

(@) (b)

Fig. 4-5 Interlaminar failure modes: (a) Mode-I Fracture; (b) Mode-I1 Fracture

——— Broken interlayer shear bonds
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The history-dependent failure function, y in Eqg. (2.14), is defined for each

interaction to indicate the bond breakage, i.e. being 1 for intact bond and being zero
for a broken bond, as [10, 40, 86]

1 for (8 = T ) < Sq AN (S = AT 45 ) > Ste

) 4.42
71 06 {O,for(skj_al-ravg,ki)>sﬁ Or(skj_“lTavg,ki)szC( )

1 for(skj -a,T )<s

@ avg kj m

;(m(xj.‘—xﬂ,y’;—yﬂ,t){o, for (g =, Togy ) 2 S (443)

® avg.kj m

m " avg,k in

0, for (" —a, Tow', ) 2 s,

m " avg,k

(4.44)

1 for(s"™—a T™ )<s.
Z-n(XE“XE,yL“y:,t)% (s )

1, for ¢k’}m < @,

(4.45)
0, for ¢i" > @

xis(X’}‘—XE,yT—yE,t)={
where y., x., X, and g, arerelated to fibre bonds, matrix bonds, interlayer normal

bonds, interlayer shear bonds. As a result, Egs. (4.1), (4.5), (4.19), and (4.21b) with
including the failure functions Eq.(4.42)-(4.45) are expressed as

[ dA?
Xn_lj(n a(g ~(ay+a,)T)
j k yr?_yE
Ut X X0 t) = 28 ’ 4.46
t(uj Uy, X5 =X, ) N Zf,uFbF(XE> (Sn—O!Tn) ‘yT_yE ( )
bty (X0) + 20ber )
dA” ]
><"—_J>k<”a(9;”—(0‘1+0‘2)Tin)
K j y“-—YE
(U —u" X" X t) = 25 =1 7% (4.46b
(Uk Uj Xk XJ ) N )(fﬂFbF(X?) (5” —aT.n) ‘yT_yE ( )
A (A D |
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N piy

O =do> x4 (sk”j —a,T, )AE,-VJ-” +(oy+ )T 24 ={

j=1

X for fibre direction
X, for other directions

P = 4b 5, (8" — 2 T )‘yrkn;yk (4.48)

m " avg,k m n
Yy _yk‘

i (N 1) Y7 -y
T x| [yT -y

qy" = 4bsdy, (4.49)

Correspondingly, for each kind of PD bond damage the local damage parameter Eqg.
(2.15) becomes as [13];

Ne
Zﬂ(f (XT _XE’yr; _yE’t)an
j=1

o (xp.t)=1- - (4.50a)

N ply

D 2 (X} XY =YtV
o (X0 1) =1-12 : (4.500)

ply

V7

=1

Z Xin (XLn — X Yie —yE,t)Vkm

n _ _m:n+l,n—l
0. (.0)=1 o (2509
m=n+1,n-1
Nhear
2 2 (X =Xy =YtV
P (X t) =1 — (4.50d)
VA
=

4.3. Simulation cases

In order to validate the derived ordinary state-based thermomechanical PD

formulations, several numerical simulations are conducted, and then the results are
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mainly compared with those obtained from ANSY S solutions. Firstly, in Section 4.3.1,
temperature changes are imposed on the composite models to estimate the equation of
motion which includes the thermal loading. Secondly, heat transfer simulations in
multi-layer composites are implemented in Section 4.3.2, in order to validate the
developed PD thermal model for multi-layer composites. Thirdly, pressure shock loads
are applied in fully coupled thermomechanical analyses in Sections 4.3.3. The
emphasis is put on the predictions of the displacements and the temperature, which act
as primary variables in the simulations. And the validity of the fully coupled
thermomechanical PD model is investigated by the comparisons of the simulation
results with the ANSYSS solution. Finally, in Section 4.3.4, failure analyses with central
pre-existing cracks on the models are carried out. The crack propagation paths and the

temperature distribution evolutions are predicted.

During the numerical simulations, the composite material is chosen as
graphite/epoxy. The material properties are listed in Table 2 [1]. The length and width

of the single-layer composite model specified as 0.1 m. The thickness of the single-
layer model is 0.001 m. The multi-layer composite model is constructed with three
single-layer models with a ply stacking sequence of [0/90"/0], as illustrated in Fig.
4-6. Each ply is modelled as a two-dimensional orthotropic structure with one node in
the thickness direction. The models are discretized into 200 subdomains both in x and
y directions, leading to a space between material points, Ax, as 5x10*m. High

accuracy and desired numerical efficiency can be achieved by adopting this grid size.
The in-plane horizon is chosen as & =3.015Ax, which is recommended by [13] and
[10]. The origin of the coordinate system is set at the middle of the bottom ply as

illustrated in Fig. 4-6. The reference temperature is ®, =285K.
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Fig. 4-6 Multi-layer composite model with a stacking sequence [0/90°/0].

Table 2 Material property of composites [1]

Mechanical Properties Thermal Properties
N : Longitudinal coefficient of
Longitudinal elastic 181 thermal expansion 0.02
modulus E, (GPa) , (um/m/K) '
. Transverse coefficient of
Transverse elastic modulus .
10.3  thermal expansion 22 5

E, (GPa) oz, (nm/mV/K)

Longitudinal thermal

Shear modulus G, (GPa)  7.17 conductivity k, (W/m/K) 8.3075

Major Poisson's ratio v,, 0.28 Transverse thermal conductivity 0.7575
k, (W/mM/K)

Mass density p (kg/m?) 1620  Specific heat c, (J/kg/K) 1092.728

Elastic modulus of matrix 34 Thermal conductivity of matrix 0.2

material E, (GPa) material k, (W/m/K)

Thermal expansion coefficient
1.308 Of matrix material 63

a,, (um/m/K)
4.3.1. Composite subject to temperature change

Shear modulus of matrix
material G, (GPa)

In this section, temperature changes are imposed on both the single-layer and multi-
layer composite models. All four edges of both composite models are free to deform,
and they are insulated. An adaptive dynamic relaxation (ADR) approach introduced
by Kilic and Madenci [87] is utilized for the quasi-static analyses. A unit time step size
is used to save computational time [10]. The displacements predictions are compared
with the ones from ANSYS or classical laminate theory (CLT) [88] solutions.
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4.3.1.1 Constant temperature change

As afirst case, simple loading condition, i.e. a constant temperature change of 50 K,

being applied to single-layer composite with a fibre orientation of ®=0° is considered.
The analytical solution based on the CLT for a single layer ply can be calculated as
[89];

u (X, y=0)=e, (AT)X (4.51a)
u,(x=0,y)=a,(AT)y (4.51b)
Theterm u, and u, represent the horizontal and vertical components of displacement.

During the numerical simulations, convergence study is utilised by tracing the
displacements of a point as shown in Fig. 4-7. The horizontal and vertical
displacements predictions along the central lines of the single-layer model are
provided in Fig. 4-8. The good agreements indicate the successful application of the
state-based PD equation of motion by considering the effect of temperature on the

mechanical field.
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Fig. 4-7 Convergence study by tracing the displacements of the material point at
X =-0.0495m and y=-0.0355m.
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Fig. 4-8 (a) Horizontal (b) Vertical displacements along the central lines of the
single-layer model subjected to constant temperature change.
As a second case, the same constant temperature change is imposed on the multi-
layer composite model. The analytical solution based on the CLT for multi-layer

composite model can be calculated as [89];

u, =a; (AT)X (4.52a)
u, =a;(AT)y (4.52b)
u, =a, (AT)z (4.52c)

where a, and «, are the thermal expansion coefficients of the laminate with respect

to the global coordinate system. They can be presented as [89]

{a'}=[A]" ZL[QT {a} h, (4.53)

with
{e'}={a, o, o | (4.53b)

and
[A]= g[@]khk (4.53¢)
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where [Q]k is the reduced transformed stiffness matrix as defined in Eq. (4.7), {a}ty

is the thermal expansion coefficient vector with respect to the global coordinate system

and h,_is the thickness of the k™ layer. In ANSYS, the solid element type SOLID186

is utilized in the static analysis. The mesh size in x and y directions are 2x107° m

with three elements in the z direction.

The displacement components along the midline of the multi-layer composite model
obtained from PD, ANSYS and analytical simulations are compared and presented in
Fig. 4-9. It can be easily observed that the results from these methods agree very well.
Thus, the PD equation of motion for multi-layer composite under a constant
temperature change is validated. There is a slight difference between PD results and
classical ones near the boundary due to the PD surface effect [90]. It should be noted
that the deformation of multi-layer composite differs significantly from the single-
layer because of the orientation of each ply in the stacking sequence.
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Fig. 4-9 (a) Horizontal (b) Vertical (c) Out of plane displacements along the central
lines of the multi-layer model subjected to constant temperature change.

4.3.1.2 Linear temperature change

The thermal loading is changed to a linear temperature change, AT =500x (K) with

X representing the horizontal location. As a first case, the non-uniform temperature
change is applied for the single-layer composite model. In ANSYS, the plane element

type PLANE182 with the plane stress assumption is utilized in the static analysis. The

mesh size is 1x107> m with only one element in the thickness direction. As shown in

90



Fig. 4-10 and Fig. 4-11, the horizontal and vertical displacements predictions from
peridynamic solutions are in agreement with the ANSY'S predictions.
-0.04 -0.02 0.00 0.02 0.04

0.04 )
0.02 :
0.00 I s
-0.02
-0.04
004 002 0.00 0.02 0.04
X (m)

X (m)
(a) (b)
Fig. 4-10 Horizontal displacements, u, (um) (a) PD and (b) ANSYS results

y (m)
y (m)

y (m)
y (m)

-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04
X (m) X (m)
(@) (b)
Fig. 4-11 Vertical displacements, u, (um) (@) PD and (b) ANSYS results

As a second case, the same linear temperature change is applied to the multi-layer
composite model. The ANSY'S model is the same as described in Section 4.3.1.1. The
displacements components are compared with ANSY'S predictions, as shown in Fig.
4-12 to Fig. 4-17. Due to symmetric fibre orientations of the composite, the horizontal
and vertical displacements distributions are the same for top and bottom plies. As
expected, the displacement in the thickness direction, the top and bottom plies have

deformation in the opposite direction. The transverse displacement of the middle ply
is observed as zero. It can be inferred from Fig. 4-16 and Fig. 4-17 that a delamination
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tendency exists on the right side due to higher temperatures. Good agreements are also

obtained with ANSYS solutions.
-0.04 -0.02 0.00 0.02 0.04
x (m)

y (m)
y (m)

X (m)

(a) (b)
Fig. 4-12 Horizontal displacements, u, (um) (@) PD (b) ANSYS results for bottom

ply.
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Fig. 4-13 Horizontal displacements, u, (um) (a) PD (b) ANSYS results for middle

ply
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Fig. 4-14 Vertical displacements, u, (um) (@) PD (b) ANSYS results for bottom ply.
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Fig. 4-17 Transverse displacement, u, (um) (a) PD (b) ANSYS for top ply.

4.3.2. Heat transfer in composites

In this section, pure heat transfer analyses in the single and multi-layer composite

model are tested in order to validate the proposed multi-layer PD thermal model.

4.3.2.1 Composite subject to heat flux on the top ply

Constant heat flux 5000 W/m? is applied to the top ply of the multi-layer model.
The composite model is initially at the reference temperature, ®,. The total simulation
time is t =505 and the time step size in PD solution is defined as dt =0.01s. On the

other hand, the element type SOLID278 is utilized in the transient thermal ANSYS
analysis. A grid 60x60 in the x-y plane with three elements in the z direction is
chosen in the ANSYS model. In addition, the time step size used in ANSY'S model is
2.5s. The temperature change distribution predictions during the simulation process
are compared with those from ANSYS simulations, as shown from Fig. 4-18 to Fig.
4-20. The remarkable match indicates the successful application of the PD interlayer

heat flow formulation.

(@) (b)
Fig. 4-18 Temperature change distributions at t =10s (a) PD (b) ANSYS results
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(a) (b)
Fig. 4-19 Temperature change distributions at t =30s (a) PD (b) ANSY'S results

(@) (b)
Fig. 4-20 Temperature change distributions at t =50s (a) PD (b) ANSY'S results

4.3.2.2 Composite subject to a temperature boundary condition

In order to verify the PD heat conduction model for in-plane and transverse
directions, a temperature boundary condition AT =(y+100z)t(K) is applied at
x=-L/2, where x, y and z represent the coordinate components and t is the
simulation time. The composite model is initially at the reference temperature, ®,.
The total simulation time is 300 s and the time step size in PD solution is dt =0.01s.

The SOLID278 element type is chosen for the ANSYS model with a time step size

10s. The ANSYS model is constructed with 40 elements in x and y directions and

3 elements in z direction. The PD results of temperature distributions are compared
with the ANSYS solutions, as shown from Fig. 4-21 to Fig. 4-23. Good agreement is

achieved, thus the PD thermal model of the laminate is validated.
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(a) (b)
Fig. 4-21 Temperature change distributions at t =50s (a) PD (b) ANSYS results

(@) (b)
Fig. 4-22 Temperature change distributions at t =100s (a) PD (b) ANSY'S results

(a) (b)
Fig. 4-23 Temperature change distributions at t =300s (a) PD (b) ANSY'S results.
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4.3.3. Composites subject to pressure shock

In order to validate the fully coupled thermomechanical PD formulations, the
deformation and thermal responses of single-layer and multi-layer composite models
under pressure shock loads are investigated. As illustrated in Fig. 4-24, the plate is
fixed on the right edge and it is subjected to pressure loading on the left edge. The

plate is insulated at the top, bottom and right edges.

The initial conditions are:

u (x,y,2,t=0)=u,(x,y,z,t=0)=u,(x,y,z,t=0)=0 (4.54a)
T(xy,2,t=0)=0 (4.54b)

The boundary conditions are:

u (x=L/2,y,z,t)=u,(x=L/2,y,2,t)=u,(x=L/2,y,2,t)=0 (4.55a)

O (X y=2W/2,2,t)=0,, (X, y=4W/2,2,t) =0, (X, y=4W/2,2,t)=0  (4.55b)

o (x=-L/2,y,t)=P(t) (4.55¢)
T, (X=+L/2,y=4W/2,7,t)=0 (4.55d)
T, (x=%L/2,y=4W/2,2,t)=0 (4.55€)
T,(x=%L/2,y=4W/2,7,1)=0 (4.55f)

where u, represents the displacement in z direction.
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Fig. 4-24 The top view of composite models under a pressure shock.

4.3.3.1 Single-layer composite subject to pressure shock

Pressure shock loading is applied to the single-layer composite model for 2 different

cases.
Case 1:

P(t)=10"sin 2t x10° ) Pa; for fibre angle ®=0°" (4.56a)
Case 2:

P(t) =-10"t Pa; for fibre angle ®=90° (4.56b)

The induced temperature changes and horizontal displacements along the central
line of the ply are predicted with the newly developed fully coupled thermomechanical
model. The results are compared with ANSY'S solutions by using a directly coupled
method [91]. The directly coupled element PLANE223 is utilized in the transient

thermomechanical analysis. The mesh size is 2x10™ m and the time step size is

8x107% s in ANSYS solution.

Fig. 4-25 and Fig. 4-26 provide the temperature change distributions and horizontal
displacements for 2 different cases. In case 1, a compressive wave is generated. As the
wave moves to the right, the temperature rise is observed where there is local

compression, on the other hand, the temperature drop is observed where there is local
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tension. On the other hand, in case 2 temperature drop is observed due to applied
tension loading. The observed temperatures coincide with the theory and experimental
results [92]. As seen from Fig. 4-25-Fig. 4-26, the induced temperature changes and

horizontal displacements match very well with ANSY'S solutions.
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Fig. 4-25 (a) Temperature change distributions (b) horizontal displacements at y =0
for case 1
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Fig. 4-26 (a) Temperature change distributions (b) horizontal displacements at y =0
for case 2

4.3.3.2 Multi-layer composite subject to pressure shock

In order to validate the proposed PD fully coupled thermomechanical model for
multi-layer composites, a pressure shock loading is applied to the multi-layer model
as:

P(t)=-10"t Pa (4.57)

The induced temperature changes and displacements along the central lines of all
three plies are predicted with the proposed PD model. Furthermore, the results are
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compared with ANSYS solutions by using coupled element type SOLID226. The
mesh size and time step remain the same with the ones from the multi-layer composite

as in Section 4.3.1.

Fig. 4-27 and Fig. 4-28 are the horizontal displacements and temperature change
distributions of each ply, respectively. Due to the symmetry stacking sequence and
loading condition, the top ply and bottom behave similarly. As it can be seen in Fig.
4-27, the displacements of the middle ply are slightly larger than the bottom ply due
to fibre orientation since the fibres in the middle ply are perpendicular to the loading
direction, on the other hand, the fibres in the top and bottom plies are in the loading
direction. Similarly, in terms of the temperature field, temperature changes of the
middle ply are also much larger than the bottom ply as seen in Fig. 4-28. As time
progresses, sudden temperature variations are observed near the boundary. Although
there are little discrepancies between the PD and ANSYS results in the later stage

especially in the middle ply, such variations are also captured in PD results.
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(b)
Fig. 4-28 Temperature change distributions at y =0 (a) bottom ply (b) middle ply

4.3.4. Crack propagation predictions of composites

After verifying the developed PD thermomechanical formulations for both single
and multi-layer composites, in this section, damage patterns and corresponding
temperature change distributions for single layer and multi-layer composite model at

different integration times are presented with a pre-existing crack size of 2a=2.0cm

as seen in Fig. 4-29. The initial and boundary conditions are identical to those from

Section 4.3.3. PD discretization is achieved with a uniform grid of 300x300. The

critical stretch values are calculated as s,6=0.0177 and s, =0.03734 with
G, =2.37x10° MPa/m [76]. The critical stretch value of fibre bond is assumed to
be twice the matrix bond, i.e s, =0.0354 . The critical stretch value of interlayer shear
bonds is calculated as ¢ =0.1043 with G, =7.11x10"° MPa/m [86]. The

simulation time is chosen as 14 ps with time step size 10°° s.

-
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Fig. 4-29 Top view of a composite model with a central crack under a tension
pressure shock.

4.3.4.1 Single-layer composite with a central crack

Pressure shock loading is applied to the single-layer composite with a crack for 2

different cases.
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Case 1:

P(t)=-3x10"(tH (t, —t)+t,H (t—t,)) Pa; for fibre direction ®=0° (4.584)
Case 2:
P(t)=-5x10%(tH (t, —t)+t,H (t—t,)) Pa; for fibre direction ®=90° (4.58b)

where t, =4.0us.

The damage plots and temperature change distributions at different time steps are
provided from Fig. 4-30 to Fig. 4-32 for case 1. As shown in Fig. 4-30(a), the crack

begins to propagate at t =8 us. Coinciding with the predictions in previous solutions

[79, 80], the crack grows along the fibre direction which is perpendicular to the pre-
existing crack direction. From this figure, it can also be noticed that the cracks on either
side of the pre-existing crack tips grow equally. It indicates the fibre/matrix debonding
[93] failure mode, which arises from in-plane shear stress in the matrix. A similar
failure pattern is observed in the experiments conducted by Bogert et al.[94]. As
presented in Fig. 4-32(b), temperature increases near the crack, which agrees with the
conclusion in [95]. There is a temperature drop due to local tension near the crack tip.
On the other hand, there is a temperature rise along the crack surfaces due to local
compression. The temperature change distribution has a similar pattern as the crack

growth.

0,000 -0.6050

0.04 007625 0.04+ -0.3894
0.1525 01738

02288 004187
0.3050 0024 02575
03812 04731
04575 - 0.6887

05387 09044
. 06100 0.00 l 1120

-0.02

0.02

0.00

y (m)
y (m)

-0.02

-0.04 -0.04 4

T T T T T
004 002 000 002 004 004 002 000 002 004
X (m) X (m)

(@) (b)

104



Fig. 4-30 (a) Matrix damage plot (b) Temperature change distributions (K) for case
latt=8ups.
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Fig. 4-31 (a) Matrix damage plot (b) Temperature change distributions (K) for case
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Fig. 4-32 (a) Matrix damage plot (b) Temperature change distributions (K) for case

lat t=14ps.

The crack growth and temperature change predictions at different time steps are
provided from Fig. 4-33 to Fig. 4-35 for case 2. Similar to case 1, the crack propagates
along the fibre direction, indicating the fibre/matrix debonding. Only the splitting
failure mode is observed in the PD prediction, which is consistent with the
experimental observations from [96, 97]. The temperature drops at crack tips are

observed from Fig. 4-33 to Fig. 4-35.
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Fig. 4-34 (a) Matrix damage plot (b) Temperature change distributions (K) for case

2att=8ups.
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Fig. 4-35 (a) Matrix damage plot (b) Temperature change distributions (K) for case

2at t=10.5ps.
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4.3.4.2 Multi-layer composite with a central crack

In this section, the crack propagation in a multi-layer composite is investigated. The

load that is applied to investigate the damage pattern is given as;
P(t)=-3x10"(tH (t, —t)+t,H (t—t,)) Pa (4.59)
with t, =4 ps.
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Fig. 4-36 Matrix damage plot of (a) bottom ply and (b) middle ply at t =8 ps.
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Fig. 4-37 Temperature change distributions (K) for (a) bottom ply and (b) middle
ply at t =8 ps.

107



y (m)

0.000
0.07625
0.1525

0.000
0.07625
0.1525

y (m)

0.2288 0.2288
0.3050 0.3050
0.3812 0.3812
0.4575 0.4575
05337 05337
. 0.6100 ,E\ . 0.6100
=
-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04
x (m) x (m)
(a) (b)
Fig. 4-38 Matrix damage plot of (a) bottom ply and (b) middle ply at t =11ps.
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Fig. 4-39 Temperature change distributions (K) for (a) bottom ply and (b) middle

plyat t=11ps.
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Fig. 4-40 Matrix damage plot of (a) bottom ply and (b) middle ply at t =14 ps.
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Fig. 4-41 Temperature change distributions (K) for (a) bottom ply and (b) middle

plyatt=14ps.

The damage plots for in-plane matrix bonds and their corresponding temperature
change distributions at different time steps are presented from Fig. 4-36 to Fig. 4-41.
For the laminate, an “H” type splitting failure mode is observed for all plies, which
agrees with the findings in [76] and the experimental results in [98]. It is observed that

the matrix breakage in the top or bottom plies shown in Fig. 4-40 (a) is similar to

damage pattern obtained for a single layer composite model with ®=0" fibre
direction as shown in Fig. 4-32 (a). However, as shown in Fig. 4-40 (b)), the middle
ply apparently has a bigger damage zone than the other two plies, which is consistent
with the conclusions in [99]. This is due to the alignment of the fibres. Since the fibres
are not aligned with the loading direction in the middle ply, the extent of damage is
bigger than the other two layers. This is also indicating the different damage levels in
multi-layer composites. Furthermore, the crack grows both in the fibre direction and
in the transverse direction in the middle ply, presenting a different crack growth path
compared with the predictions from the analysis of the single-layer composite model
with @ =90" as shown in Fig. 4-35 (a). As a result, a complex damage mode is
presented in the middle ply [93]. The interaction between the plies is taken into account
through interlayer bonds. It is also observed that the crack pattern has an influence on

the induced temperature distribution.
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4.4. Marine composites under shock loads

Nowadays, composite materials have been increasingly used in marine structures
because of their high-performance properties. During their service time, they may be
exposed to extreme loading conditions such as underwater explosions. Temperature
changes induced by pure mechanical shock loadings cannot be neglected especially
when smart composite materials are employed for condition monitoring of critical
systems in a marine structure. Considering this fact, both the thermal loading effect on
deformation and the deformation effect on temperature need to be taken into
consideration. Consequently, an analysis conducted in a fully coupled
thermomechanical manner is necessary. Peridynamics is a newly proposed non-local
theory which can predict failures without extra assumptions. Therefore, a fully coupled
thermomechanical peridynamic model is developed for laminated composites
materials. In this study, numerical analysis of a 13-ply laminated composite subjected
to an underwater explosion is conducted by using the developed model. The pressure
shocks generated by the underwater explosion are applied on the top surface of the
laminate for uniform and non-uniform load distributions. The damage is predicted and
compared with existing experimental results. The simulation results obtained from the
uncoupled case are also provided for comparison. Thus, the coupling term effects on
crack propagation paths are investigated. Furthermore, the corresponding temperature
distributions are also investigated.

4.4.1. Introduction

Laminated composite materials have many outstanding mechanical, physical, and
chemical properties. For example, they are an easily fabricated and cost-effective
alternative to some other monolithic materials [100]. Therefore, in recent years,
composites have become common materials in marine industries. One application is
for the construction of military vessels [101]. Composite materials can provide low-
radar signatures for stealth operations. In addition, the low electro-magnetic signature
these materials provide can reduce the possibility of detonating magnetic sea mines
[102]. However, due to the special working conditions for military vessels, the

composite materials may be subjected to some severe environments, such as
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mechanical shock loads, large temperature variations, and exposures [103]. Hence, the
damage level of composites induced by such extreme loading conditions becomes a
critical factor with regards to the safety issue in the designation of the vessels. As a
result, the failure analyses of composite materials under shock loadings draws a lot of

interest and has been investigated for years.

In addition to the complexity of the composite material properties, shock loadings,
which result in high strain rates, also give rise to additional complexity in the analysis.
Large safety factors are typically used in composite structure design to make sure no
damage will occur, resulting in a conservative solution or over-design [104]. Therefore,
a good understanding of the responses of composite materials under shock loadings

(i.e., explosions) is necessary for the balance between safety and economy issues.

There are three major methods to investigate the responses of composite materials
under explosions: the experimental method, the analytical method, and the numerical
simulation method. As to the experiment method, there are two kinds of experimental
tests, according to the scale, i.e., a full-scale test and a laboratory-scale test. The full-
scale explosive tests can provide important information on survivability, damage
tolerance, and failure modes [105]. They are necessary to validate the results of
analytical and numerical simulations [106]. In 1989, a 3 m <3 m composite plate was
tested under an underwater blast, to be investigated in full scale [107]. However, the
full-scale tests are performed infrequently, due to high costs. For this reason, the
explosive test in the laboratory scale is adopted for the research. A divergent shock
tube was designed to investigate the responses of a clamped test plate under shock
loadings [108]. Thus, plane wave fronts and wave parameters were easily controlled
and repeated. LeBlanc and Shukla used a tube filled with water to reproduce the
underwater explosive loads [109]. Wadley [110] developed another test method to
investigate the compressive responses of multi-layered lattices during underwater
shock loadings. Analytical methods are generally adopted in the initial design state of
composite structures, which give relatively faster solutions compared to the other two
methods. Rabczuk et al. [111] proposed a simplified method to investigate the effects
of fluid-structure interaction in composite structures subjected to dynamic underwater

loads. Hoo Fatt and Palla [112] derived analytical solutions for transient response and
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damage initiation of a composite panel subjected to blast loading. However, analytical
solutions are mainly limited to special and simple cases. In contrast, numerical
simulation methods can be applied to various types of loadings, complicated
geometries of structures, and complex boundary conditions. Kazanci [113] conducted
a review of the available numerical achievements regarding the simulation of
composite plates under a blast load. The finite element method (FEM) [114], smooth
particle hydrodynamics (SPH) [115], and the finite strip method (FSM) [116] have all

been applied to model composite materials.

When explosion loads are applied to the test plate, the plate experiences high strain
rate stages. Therefore, the coupling effect of deformation on temperature cannot be
neglected, which may have an effect on the crack propagation path with the induced
temperature changes. Therefore, a fully coupled thermomechanical composite model
is necessary for the simulation of thermal and mechanical responses of composites
under shock loadings. Here, a fully coupled approach means both the temperature
effects on deformation and the deformation effects on temperature are included in the
simulation [18]. In this section, the responses of a 13-ply composite plate subjected to
an underwater explosion load are studied, by considering the fully coupled
thermomechanical effects. The crack propagation evolutions are predicted and
compared with uncoupled cases. The predicted temperature distributions are also

provided.

4.4.2. Numerical simulation

4.4.2.1 Problem description

The bond-based PD laminate model provided in Section 4.2.3 is implemented in
FORTRAN program to predict the responses of a 13 ply laminate subjected to shock
loading which was previously considered by Diyaroglu et al. [86]. Note that, in this
study, the temperature changes due to mechanical deformations and their effects on
damage evolution are taken into account by solving fully coupled thermomechanical
equations whereas thermal effects are ignored in [86]. The heat conduction equation
and the equation of motion are solved simultaneously for each time increment by using

explicit time integration. The composite material properties are provided in Table 3.
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Table 3. Material properties of 13 plies composite material [86].

Mechanical Properties Thermal Properties
E, (GPa) 39.3 o (nm/m/K) 8.6
E, (GPa) 9.7 a, (um/m/K) 221
G,, (GPa) 3.32 k, (W/mK) 10.4

Poisson’s ratio v,,  0.33 k, (W/mK) 0.89
p(kg/m?) 1850 ¢, (J(kg-K)) 879
E. (GPa) 3.792 o, (pm/m/K) 63
G, (GPa) 1.422 Ky, (W/mK) 0.34

Poisson’s ratio v, 0.33 0, (K) 285

Because of the adoption of bond-based PD, the major shear modulus changed to be
3.32 GPa according to the constraint on material constants. As illustrated in Fig. 4-42,
the 13 ply test plate is in a circle shape with outer radius, R, =132.715 mm and inner
radius, R, =114.3mm. The thickness of each ply in the laminate is the same as
h=0.254 mm. The region between the inner circle and outer circle is constrained in

top and bottom plies and is left free for other plies. The constraint is implemented by

applying six bolts with a radius of r =4mm. Thus the fixed end allows the specimen
to absorb the full energy of the applied load. The stacking sequence is

[0/90/0/90/0/90/0 | (shown in Fig. 4-42).
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Fig. 4-42 Geometry dimension illustration of the test laminate. (Blue colour
represents 0° and yellow colour represents 90° plies).

The PD discretization of one-ply is presented in Fig. 4-43. The grid size is
AX =2.6543x10"° m. The horizon size is chosen as & =3.015Ax. The material points

located within the bolt regions are deleted in order to represent the actual shape of the
test plate. Based on such discretization, the critical stretch value related to bonds
failures can be calculated [75]. The critical energy release rate for matrix failure is

G,. =11.85x10° MPa , thus s, is calculated as s, =1.47x107. The tension and
compression strength properties are o,, =965 MPa and o,, =—-883 MPa . Therefore,
the critical stretch value for fibre failure in tension is s, =2.46x107 and in
compression is s, =-2.25x107. As to the interlayer bonds, the critical stretch values
are calculated as s, =7.015x107 with G,. =2.73x10° MPa and ¢, =0.14 with
G,. =7.11x10° MPa . The time step size for explicit time integration is

At =7.69x10°% s. The total simulation time is set 0.3641x107°s.
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Fig. 4-43 Illustration of PD discretization for one ply (blue colour represents the

fixed boundary region and orange colour represents the inner part).

Several dynamic loadings generated by explosions are modelled by using different
time-dependent pressure functions. The pressure shock applied in the experiment
conducted by LeBlanc and Shukla [104] is utilized here. The charge which is
equivalent to 1.32 g TNT is located at 5.25 m away from the test plate. The pressure
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wave is caused by the rapid expansion of explosive gases. The speed of these gases

can be approximated as the speed of sound in water [117]. The pressure linearly

increases until it reached its peak value, P, , followed by the exponential decay,

expressed in Eq.(4.60) and shown in Fig. 4-44. Here P, is set to be 9.65 MPa.

P X(t/4x10°), 1 <0.04x10° s

P(t) =1 Prax; 0.04x102s<t<0.08x10°s  (4.60)
Pmaxe—lOOO(t—O.OS)IO.Z' 004x102s<t<1x102s

10

Pressure (MPa)

0 T T T T 1
0.0 0.2 04 0.6 0.8 1.0

Timex1000 (s)
Fig. 4-44 Pressure load distribution for the test plate.

Generally, there are two approaches for modelling the shock load depending on the
distance (stand-off distance) between the charge source and the object of interest [113].
The explosion load is assumed to be uniform if the stand-off distance is long enough,
which is termed as a far-field explosion. On the contrary, the near-field explosion
adopts non-uniform load distribution. There are also two approaches to simulate the
non-uniform pressure shock loads, i.e., decoupling the load and the structural response
and coupling the load and response. In this subsection, a non-uniform pressure load

simulated and decoupled approach is utilized, i.e., the pressure shock load is in a form

of P(r,t)=R,(r)R,(t). A non-uniform distribution of shock loading over the plate is

simulated by adopting the pressure distribution derived by Turkmen and Mecitoglu
[118] as
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P (r) =-0.0005r* +0.01r° —0.0586r> —0.001r +1 (4.61)

where r represents the distance from the collective node to the centre of the test plate.
The test plate adopted here is slightly larger than the one in [118]. Consequently, the
distribution profile is extended by 0.83 cm correspondingly, as illustrated in Fig. 4-45.
Finally, the explosion load is defined as

~0.0005(r —0.83)" +0.01(r —0.83)’
P(t , , r>0.83cm
P(r.t)= —~0.0586(r —0.83)" —0.001(r —0.83) +1 (4.62)
P(t), r<0.83cm
0.83 cm - "1
P\r |
NP0
— F
— 0 2 4 6 8 10 12
Distance, r (cm)
(@) (b)

Fig. 4-45 (a) Ilustration of non-uniform pressure distribution over the top ply and (b)
pressure profile.

4.4.2.2 Subjected to uniform pressure loading

First, the test laminate is subjected to uniform pressure load, P(t) without allowing
failure. The regions between the inner circle and outer circle are fixed in three
dimensions for all plies. During the simulation, the central points in each ply
experience the same vertical (z) displacement evolutions. Therefore, the vertical
displacement evolution of the central point on the top ply is plotted in Fig. 4-46(a). It
can be observed that the test plate firstly deforms in the negative z-direction, then it
will recover to some extent with a velocity in the positive z-direction. The largest

deformation occurs at approximately 3700 time steps, corresponding to
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0.28453x107°%s . The vertical displacement distribution over the top ply at

0.28453x107 s is shown in Fig. 4-46(b).
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Fig. 4-46 (a) Variation of the displacement in z direction of the central point as a
function of time; (b) Vertical displacement distribution for the top ply at

0.28453x107%s.

Fully coupled thermomechanical simulation under the uniform pressure load P(t),

i.e., far-field explosion, is also investigated for further comparison. The crack
propagations and temperature change distributions at 0.1538x107° s are provided in
Fig. 4-47 for top ply, Fig. 4-48 for middle ply, and Fig. 4-49 for bottom ply. It can be
inferred from the matrix damage plots that all the plies in the laminate experience the
tear failure near the constraint boundary condition. Furthermore, the damage region in
the bottom ply is larger than the top ply, indicting a combination of tension failure
mode and tear failure mode. As to the temperature distribution, the temperature
increases near cracks are observed for all plies, which are more obvious in the top ply
provided in Fig. 4-47(b). The temperature drop is also observed in a tension state,

which is obvious in the bottom ply provided in Fig. 4-49(b).
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Fig. 4-47 (a) Matrix damage and (b) temperature change distribution (K) of top ply at

0.1538x10°s.
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Fig. 4-48 (a) Matrix damage and (b) temperature change distribution (K) of middle
(7th) ply at 0.1538x107°s.
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Fig. 4-49 (a) Matrix damage and (b) temperature change distribution (K) of bottom
ply at 0.1538x10°s.
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4.4.2.3 Subjected to uniform non-uniform pressure load

In this section, the test laminate is subjected to non-uniform pressure load P(r,t),
I.e., near field explosion. The matrix damage and temperature distribution in deformed
shape are provided in Fig. 4-50. Matrix damage predictions at 0.28453x107s and

0.3461x10°° s obtained from coupled and uncoupled cases are shown from Fig. 4-51

to Fig. 4-56.
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Fig. 4-50 (a) Matrix damage and (b) temperature change distribution (K) of the
laminate at 0.3461x10° s.
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Fig. 4-51 Matrix damage comparison of top ply for (a) coupled case and (b)
uncoupled case at 0.28453x107°s.

For the fully coupled simulation case, by comparing the damage of the plies at
different times, it is obvious that the damaged zone gets larger as time progresses. The
damage patterns are different for each ply when compared at the same time. The cracks
mainly occur near the clamped boundary region for the top ply, indicating a tear failure

mode. On the other hand, the central part experiences the largest level of damage for
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the bottom ply, indicating a tension failure mode. Consequently, the different force
states give rise to a different level of damages. However, for all plies, the crack
propagations present a cross-shaped pattern. It can be explained that the fibre direction
of each ply is either zero or 90 degrees. The matrix damage occurs parallel to the fibre
direction. For a ply with fibre direction being zero, the matrix crack will occur along
the horizontal direction. However, the fibre directions for its adjacent plies are 90
degrees. Hence, the matrix crack will also occur in the vertical direction due to the
contribution of the interlayer bonds. Consequently, the final cracks are in cross shapes.
The damages present highest levels near the central vertical lines for all plies. This
phenomenon is also observed in the experiment [109], as shown in Fig. 4-57. As it can
be seen from Fig. 4-47 to Fig. 4-49, there are damages around the bolt holes and these

damages were also observed in experiments [109] as it can be seen in Fig. 4-57.

As shown in Fig. 4-51 to Fig. 4-56, different damage patterns are observed for
coupled and uncoupled cases. As time progresses, temperature change increases and
the differences in damage plots become more obvious. Considering the small
temperature changes induced by the applied pressure shock, the coupling term effect
on damage is significant. It can be inferred that the difference in damage due to
coupling effect will become more significant with larger strain rates. Temperature
decreases where there is local tension and as a result, local compression is created due
to temperature drop which reduces the extent of damage observed by the uncoupled
cases (Fig. 4-51 to Fig. 4-56).
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Fig. 4-52 Matrix damage comparison of middle (7th) ply for (a) coupled case and (b)

uncoupled case at 0.28453x107°s.
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Fig. 4-53 Matrix damage comparison of bottom ply for (a) coupled case and (b)
uncoupled case at 0.28453x107°s.
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Fig. 4-54 Matrix damage comparison of top ply for (a) coupled case and (b)
uncoupled case at 0.3461x107° s .
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Fig. 4-55 Matrix damage comparison of middle (7th) ply for (a) coupled case and

(b) uncoupled case at 0.3461x107° s.
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Fig. 4-56 Matrix damage comparison of bottom ply for (a) coupled case and (b)
uncoupled case at 0.3461x107° s .

Fig. 4-57 Material damage during test [109].

The extent of damage in interlayer shear bonds was also investigated, and only slight
differences were observed in the top few plies between the coupled and uncoupled
cases (Fig. 4-58). The middle ply experienced the most severe damage, as shown in
Fig. 4-59. Thus, it can be inferred that the interlayer shear bond damages occur mainly
in the middle plies of the test laminate. Hence, it can be concluded that there is

delamination failure in the middle plies.

Temperature changes induced by the applied pressure shock loading are presented
for different plies in Fig. 4-60 to Fig. 4-62. It is observed that as the loading increased,
the temperature changes of PD nodes increased. For all plies, the temperature change
profiles all have similar patterns as the corresponding crack damage patterns. As
shown in Fig. 4-60 to Fig. 4-62, there is a temperature rise where there is local
compression, and there is a temperature drop where there is local tension, as explained
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in [10]. In the top ply, most of the region was under compression and temperature rise
was observed; on the other hand, the bottom ply was mostly under tension, and a
consequent temperature drop was observed, as shown in Fig. 4-62. In the cracked
surfaces, temperature drops were observed because of the local tension; however, the
temperature rise was observed near the crack tips. Thus, the crack propagation paths

do have effects on the temperature distributions.
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Fig. 4-58 Interlayer shear damage comparison for (a) coupled case and (b) uncoupled
case at 0.3461x10° s.
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Fig. 4-59 Interlayer shear damage of middle ply in coupled case at 0.3461x107° s .
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Fig. 4-60 (a) Distribution of temperature change (K) of top ply at 0.28453x107°s
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Fig. 4-61 (a) Distribution of temperature change (K) of middle ply at
0.28453x107 s ; (b) Distribution of temperature change (K) of middle ply at

0.3461x1072 s ; (c) Maximum stretch distribution of middle ply at 0.3461x107° s
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Fig. 4-62 (a) Distribution of temperature change (K) of bottom ply at

0.28453x107 s; (b) Distribution of temperature change (K) of bottom ply at
0.3461x107° s; (c) Maximum stretch distribution of bottom ply at 0.3461x107 s.

4.5. Summary

In this chapter, a fully coupled thermomechanical model formulated by ordinary
state-based peridynamic theory is proposed both for single layer and multi-layer
composites. Subsequently, numerical simulations of some benchmark problems are
conducted for the validation of the developed model. The temperature and deformation
fields are investigated by considering the coupling effects in both fields. Consequently,
the present model is validated by comparing peridynamic simulations with ANSYS
results. Finally, failure analyses are conducted with pre-existing cracks on single layer
and multi-layer models. The progressive crack propagations and temperature

distribution evolutions are discussed. As an application case, a bond-based PD
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laminate model was applied to predict the responses of a 13-ply composite under a

pressure shock loading.
The following conclusions can be drawn:

1. The present model in the framework of ordinary state-based peridynamic theory

is capable of predicting the deformation of multi-layer composites under thermal loads.

2. The developed PD thermal model can be applied in heat conduction simulations

for multi-layer composites.

3. The proposed fully coupled ordinary state-based thermomechanical model can be
applied to predict the crack propagation for composites. The induced temperature

distribution evolution can also be predicted.
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5. Isothermal and Non-isothermal Fluid Laminar Flow

Simulation

5.1. Introduction

The fluid and structure interaction is often encountered in ocean engineering, e.g.
floating structures and water waves interactions [119], sloshing in a water tank [120],
green water impact [121] etc. The fluid motion is a crucial issue because of the fluid-
induced movements such as heaving and rolling of the offshore structures. Sometimes
the fluid may even also cause considerable pressure loadings on the offshore structure
and make local damages of these structures [119]. Therefore, an accurate fluid motion
prediction is necessary for a fluid-structure interaction simulation in the field of ocean
engineering. Peridynamics [4] has been applied on the numerical simulations of
offshore structure damage in the ocean engineering field, e.g. the ship-ice interaction
[122-124]. It will be beneficial to simulate both the structure and fluid with the same
methodology, e.g. peridynamics. Therefore, a peridynamic fluid model is provided in
this section which can be further incorporated into the peridynamic solid model to

simulate the fluid and structure interactions.

The Eulerian approach is adopted in most computational fluid dynamics (CFD)
methodologies. Since CFD can solve fluid flow problems with any boundary and
initial conditions, it has been widely used in academic research [125]. There are two
types of computational Lagrangian approaches: total Lagrangian approach and
updated Lagrangian approach. The total Lagrangian approach uses the initial
configuration as the reference configuration, while the updated Lagrangian approach
adopts the current configuration as the reference configuration. Smoothed Particle
Hydrodynamics (SPH), which is an updated Lagrangian approach, is another widely
used method for fluid flow simulations [126, 127]. SPH is a mesh-free particle method,
and it does not need a grid to calculate spatial derivatives [128]. In addition, it is easy
to work with and can give reasonable accuracy. Therefore, it draws a lot of attention

in recent years.
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Since the PD is originally proposed for structural mechanical problems, it is
generally applied to predict fracture in solids [4, 10, 76, 78, 129]. Later on, the
peridynamic theory has been applied in other fields [130]. However, the application
of PD on fluid mechanics has not been extensively studied, only a few PD fluid models
are available in the published literature [55, 131-134]. A state-based peridynamic
formulation is presented by Katiyar et al. [135] to simulate the fluid flow in porous
media. Later on, the model is applied to simulate the growth of fluid-driven cracks in
porous and fractured media [134]. A fully coupled poroelastic peridynamic
formulation is introduced by Oterkus et al. [55] to simulate fluid-filled fractures. In
their model, the coupling effect of porous fluid flow and deformation of porous media
is considered to predict the behaviour of fluid-filled fractures. However, in these PD
models, the fluid flow was limited to porous flow. Therefore, the developed PD fluid
models cannot be utilized for general fluid flow simulations. An Eulerian form of
peridynamic model is presented to by Silling et al. [133] to simulate the shockwaves.
In their model, the peridynamic forces are defined in the deformed configuration to
simulate strong shock waves and fluid response for very large deformations. An
updated Lagrangian PD model based on the state-based peridynamics concept is
applied as Updated Lagrangian Particle Hydrodynamics (ULPH) to simulate
Newtonian fluid flow [132]. In this chapter, the peridynamic differential operator is
used to simulate low Reynolds number flow problems. Besides, a PPDO model is also

developed to solve the problems of fluid flow coupled with heat transfer.

This chapter is organized as follows. Section 5.2 describes the developed non-local
operator by using the peridynamic differential operator. Section 5.3 describes the non-
local form of Navier-Stokes equations that are derived based on their local forms by
using non-local velocity operator. Section 5.4 presents the numerical algorithms in the
total Lagrangian description, updated Lagrangian description, and Euler description.
In addition, the treatments regarding numerical simulation are explained. Section 5.5
presents a set of classical isothermal fluid flow problems, i.e. Couette flow, Poiseuille
flow, Taylor Green vortex, shear driven cavity, and dam collapse problems, which are
numerically simulated with the developed model. Subsequently, non-isothermal fluid

flow simulation, i.e. a natural convection problem, a mixed convection problem, and
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a pure heat conduction problem, are numerically conducted in Section 5.6. Finally, the

conclusions are drawn in Section 5.7.
5.2.  Non-local operator by using PD differential operator

In this section, the non-local form of velocity divergence, gradient, and second
derivatives are developed to approximate their corresponding local operators. The non-
local derivatives will be utilized in the derivation of the non-local form of Navier-
Stokes equations in Section 5.3. PD differential operator tensors which are expressed

in the matrix form are introduced as

For 3D
0,(8)=[ 9 (&) 9™ (&) g (&) ] (5.1a)
and
9" (&) 9™(&) 9" (8)
9,(8)=] g™°(8) 9™ (&) 9™ (2) (5.1b)
g™ (&) 9”(&) 9™ (&)
For 2D
0,(8)=[9" (&) 9"(&)] (5.1¢c)
and
gz(é){zifg 38} (5.10)

where g,(&) and g, (&) represent the first-order and second-order PD differential
operators up to second-order derivatives, respectively. The components in gl(a) and

gz(g) matrices are provided in Eq.(2.24) and Eq.(2.30), respectively. The analytical
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expression of the 2D PDDO is provided in Appendix D. These matrices can also be

expressed as

For 3D
0.(8)=[0”(8) 9”8 o’(¥)] (5.2a)
and
;" (&) 0?(8) o (g)
9,(8)=| 9" (&) a¥?(8) o) (8) (5.2b)
v (8) 95?(8) 9P (e)
For 2D
g.(8)=[o () o?(2)] (5.20)
and
A I

where the term gl“)(a) represents the elements in gl(é) vector, gg’j)(i) represents

the elements in g{" (&) matrix with i, j =1,2,3.
Three-dimensional vectoral function for point X can be denoted as
f(x)=f(x)e,+ f,(x)e, + f;(x)e, (5.3)

where the scalar values f,(x), f,(x) and f,(x) represent the projections of the

function vector on the corresponding unit vectors.
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5.2.1. Non-local form of divergence

The local form of divergence is defined as

VA (x) = afé)((lx) . afgx(zx) . afgx(;) (54)

As described by Eq.(2.29), by applying the first-order PD differential operator,

9, (&), the non-local form of the first-order derivatives can be evaluated as

af(;—fq)() =, (1.0 fu(x) g (B)av’ (5.5a)
af(;)g:() =], (£.(X)-£,(x)) g (g)av’ (5.50)
af;g ) =[, (:0)- £ (x) g (&)av’ (5.5¢)

Therefore, the non-local form of divergence can be expressed by using PD

differential operator as

IH ) (g)dv'+ij(f2(x')_ f,(x)) g (&)av’
+IH )gl (&)dV'

Eg. (5.6) can also be written as
,(x))9? (&) [av (5.7)

Subsequently, by considering the vector form of PD differential operator in

Eq.(5.2a), the non-local form of divergence can be expressed in compact form as
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%ix) = J,,, 0" (©)(fi (x) = i (x))av’ (5.82)
VT ()= [, 9:(8)-(F () =F (x))av’ (5.8b)

Fig. 5-1 presents the relative velocity vector, (v(x')—v(x)), first-order PD

differential operator vector, g,, and their dot products as a function example.

(v (x)=v,(x))- g (v () =v, (%)) 97 (va(x)=V5(x))- 0t Dot product of

(V(x)=v(x)-8,

Fig. 5-1 llustration of relative velocity vector (v(x’)—v(x)) , first-order PD
differential operator vector, g, and their dot products

5.2.2. Non-local form of gradient

The local form of the gradient is defined as
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of (x) of(x) of,(x)]
OX, OX, OX,
of,(x) of,(x) of,(x)
OX; 0%, 0X, 0%,
o, (x) oy (x) oy (x)
OX, OX, OX,

(5.9)

where 1, j =1,2,3. The non-local expressions of the diagonal elements in the gradient

matrix are already provided in Eq.(5.8a). Similarly, the non-local form derivatives in
Eq. (5.9) can be expressed as

=J, ()= 1,(x)) 9! (g)av’ (5.10)

As a result, the non-local form for the gradient can be expressed by using PD

differential operator as

Vef(x
(L0)-100)e (@) (L()-100)e? (@) (<)~ 1.(0)9? (®)
:IHX (f,(x)=,(x))a” (&) (f,(x)= (X))o (&) (f,(x)-f,(x))a (&) |dv’
(60)-6(0)a () (5()-6)a” @) (£,(x)-£,())e” ()

(5.11)

Subsequently, the matrix form in Eq. (5.11) can be converted to a compact form as
V@)f(x):JH (f(x)-f(x))®g,(&)dV"’ (5.12)

5.2.3. Non-local form for second derivatives

Based on the non-local form of the first-order derivative provided in Section 5.2.1
and Section 5.2.2, the non-local form of the second derivatives is provided in this

section.

The local form of Laplacian operator is defined as
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62f1+82f1+82f1

OX;

2
OX,

2
0%,

Af=V-(VOFf)=

2

24
o1,

2
OX;

o1,

ot o, o't

2
0X,

Mt

| X

ox5

ox;

(5.13)

As described Eq.(2.29), by applying the second-order PD differential operator,

d, (&) the non-local form of the second-order derivatives can be evaluated as

E;X]; - J-Hx( fi(x) = fi(x)) gy (g)av’ (5.14)

where i, j =1,2,3. After substituting Eq.(5.14) into Eq.(5.13), the non-local form of

Laplacian becomes

(1,00)- n(@)(iggiﬂ(aj
J(00-1.00) Zat 0)
(1,(x)- f3<x>)[iggiv” <a>j

j=1

Af (5.15)

Il
—_—
I

By considering the operator matrix provided in Eq. (5.2b), the non-local form of

Laplacian operator in Eq. (5.15) can be expressed in compact form as

(5.16)

AF (x) =, Tr(0, (&) (F (x) - (x))av"

By using Eq. (5.9), the transpose of the gradient is defined as
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of, of, of,
x o o
of, of, o,
of of, o,

(Vef) = (5.17)

Therefore, the divergence of the transpose of the gradient is

_62f1+ o'f, | o,
x> OXO0X, OX0X,
o1, +82f2+ 0’1,
OX0X, OX:  OX,0%,
i I ia

| OXOX,  OX,0%, 0% |

V. (Vef) = (5.18)

Subsequently, the non-local form derivatives in Eq. (5.18) can be expressed as

o (100 = £,00) ol (2)av! 519

where i, j,k =1,2,3. Eq.(5.18) can be converted into its non-local form as

®f) =

V(v
(£.0¢)=£.(%)) 98 () +(f, (x') = £, (%)) 98" (&) +( £, () = £, (x)) 95" (8)
(
(

Ju

f(¢) = 1.(x) 07 (&) (F2 () = £ (x)) 85" (&) + (£ () = £ (x)) 5" (&) [V
()= £,(3)) 85" (&) + (£ (x) = £ (%)) 5™ (&) + (£ () = . (x)) 0™ (&)

1

Eq.(5.20) can be expressed in a compact form as

V- (Vef(x)) = [, 9.(8)-(F(x)~F (x))av" (5.21)
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In conclusion, the comparison of the local form and the non-local form of the

vectoral function derivatives are summarized as

Table 4 Comparison of local and non-local derivatives

loGi
Ye O_Clty Local Form Non-local form
derivatives
3 of , '
v-1(x) > A J, 8&)-(F60) T ()av
v &f(x) aféix)e. ®e,i i=123 [ (F(X)-f(x)®g;(5)dV’

g ST iios ] Tr(e,@)(F00)-F(0)av

V- (Vef(x)) ia;:jag)ei, i=1,2,3 ij 9, (&)-(F(x)—f(x))dv’

=1 Y%

In this study, non-local operators both for the first and the second-order derivatives
are provided. The non-local operators are derived by using second-order Taylor series
expansion. If only the first-order derivative is considered and first-order Taylor series
expansion is used, the non-local operators for the first-order derivatives, i.e. non-local
gradient operator and non-local divergence operator, have the similar form as the ones
from [132]. However, in the present study, the second-order Taylor series expansion
is adopted and PD differential operator functions are directly determined by making
them orthogonal to each term in the Taylor series expansion [14]. Therefore, the
second-order terms have effects on the first-order operator due to the adoption of the
orthogonal function properties. As a result, the formulations of the first-order operators,
i.e. non-local gradient operator and divergence operator, becomes different from the
ones in [132].
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5.3. A non-local form of Navier-Stokes equations

In this section, the non-local form of Navier-Stokes equations which describe the
Newtonian fluid laminar flow is derived by using the non-local operator developed in
Section 5.2. The fluid flow is assumed as Newtonian fluid incompressible, viscous,

laminar, two-dimensional, heat-conducting flow.
5.3.1. Conservation of mass

In classical fluid mechanics, the equation that describes the conservation of mass in
local form is [136]

Do__ vy (5.22)

where p is the fluid density. The non-local form of divergence operator in Table 4 is

adopted to convert Eq. (5.22) into its non-local form as

%/t’:_pjw 0, (8)-(v(X')=v(x))aVv’ (5.23)

where the left-hand side represents the material derivative of density. In the

Lagrangian description, the material derivative becomes

Dp_op (5.24)
Dt ot

Therefore, the non-local form of the conservation of mass in the Lagrangian

description is

D], 6.1 (v() V() (5.2

In Euler description, the material derivative becomes

Dp op
L =-""_4vVv-V 5.26
pt ot P (.20)
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Therefore, the non-local form of the conservation of mass in Euler description is

L =—pf, 0. (v0)~v(0)AV' =, ()= p(x))(v(x)-6,(2))aV" (52)

For incompressible flow, the conservation of mass becomes

X 0%, OX

V-v (5.28)

However, the time step size needs to be extremely small in numerical simulations
[137-139]. As a result, the incompressible fluid flow is simulated as a weakly
compressible fluid flow [138, 139]. The density is still updated according to Eq.(5.25)
or Eq.(5.27).

5.3.2. Constitutive equations
The stress is defined as
o=—pl+2us (5.29)

where p is the hydrostatic pressure, | is the second-order unit tensor, x is the

dynamic viscosity, and ¢ is the shear strain rate. For incompressible fluid and
compressible fluid flow, the expressions for stress are different. Therefore, the

constitutive equations are discussed separately.
5.3.2.1 Incompressible fluid

The shear strain rate of the incompressible fluid is defined as
.1 T
s=E[V®V+(V®V) ] (5.30)
Therefore, the stress o is defined as [136]

c=—p|+y(V®V+(V®V)T) (5.31)
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By using the non-local operator in Table 4, the non-local form of the shear strain

rate is
: :% I, [(v()-v(x) @, (&) +0, (&) @(v(x)-v(x) |av'  (5:32)
As a result, the stress definition in Eq. (5.29) can be expressed as
o =—pl+uf, | (v(x)-v(x))®8,(8)+9,(8) @(v(x)-v(x))' |av' (533)

Regarding the incompressible fluid flow, a prohibitively small time step size is
required for stability in the pressure simulation [137]. Therefore, artificial
compressibility methods [140] are introduced which makes the incompressible fluid
weakly compressible. The Tait equation of state is adopted to model such flows, in

which the pressure is an explicit function of local fluid density as [141]

4
p=B (ﬂ] 1 (5.34)
Po
where p, represents the current local density, p, represents the initial density and »

represents the ratio of specific heat capacity which is y =7 for water and y =1 for gas.

In Eq. (5.34) B is a parameter which can be defined as [142]

2
B = £ (5.35)
y

where ¢, represents the speed of sound. The speed of sound can be approximated as

[143]

¢, =|v,|/\n (5.36)
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with ‘vf‘ representing the maximum magnitude of fluid flow velocity. The term 7

represents the density variation with a typical value being 0.01, indicating that density
varies at most 1%. As a result, the speed of sound is assumed as 10 times of the

maximum fluid velocity.
5.3.2.2 Compressible fluid

The shear strain rate for compressible fluid is defined as
é:l[V®v+(V®v)T}—l(V-v)l (5.37)
2 3

By considering the non-local velocity operator in Table 4 and Eq.(5.32), the non-

local form of the shear strain rate can be expressed as

5= [, [ (vO)-v(x)) 99, ()49, () @ (v(x)-v(x)) o
L, (@@ (o)) ov:

(5.38)

As a result, the stress defined in Eq. (5.29) can be expressed as

o=—pl o, [(v0X)~v(x))®8,(€) 45, &) S(v(x)-v(x)) Jav
20 (0.0 (v()-v0)) Jov

(5.39)

Regarding compressible fluid flow, the material derivative of pressure is [132]

Dp
—=-K,V-v 5.40
Dt f (5.40)

where K, is the elastic bulk modulus of fluid.

The non-local velocity divergence operator in Table 4 is adopted to convert Eq.(5.40)

into its non-local form as
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o= K1, (62 (v00)-v(9))ov 641

5.3.3. Conservation of momentum

The local form of the equation of motion is

Dv
—~ —-V.6+pb 5.42
P o P (5.42)

where b represents the body force.

By using the definitions in Eq. (5.29) into Eq. (5.42), the equation of motion can be

expressed in terms of pressure and shear strain rate as

p%=v-(—pl+2,ué)+pb (5.43)

By applying the Leibniz rule Eq. (5.43) can be written as

p%=—V~(p|)+2,u(V-é:)+éV~(2,u)+pb (5.44)
The viscosity u , in general, is a function of the thermodynamic state of fluid [136].
In this chapter, the dynamic viscosity x isassumed to be constant, therefore Eq. (5.44)

takes the form as

p[l;—\t/:—v-(pl)+2,u(v-é)+pb (5.45)

Similar to the non-local operators in Table 4, the non-local form of the first term on
the right-hand side of Eq. (5.45) can be expressed as

v-(p) =], [(P(x)=p(x))a(5) Jav’ (5.46)

X
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5.3.3.1 Incompressible fluid

By considering the shear strain rate expression provided in Eq.(5.30) for an

incompressible fluid, the divergence of the shear strain rate can be expressed as
v-szév-[vc@w(vc@vﬂ (5.47)
Eq. (5.47) can also be presented as
V-é=%(AV+V-(V®V)T) (5.48)

By applying the non-local second-order operators provided in Table 4, the non-local
form of divergence of the shear strain rate can be obtained as

Vei=— [, [Tr(: () (v(¥)-v(x))+8: (&) (v(x)-v(x)) OV (549)

By substituting Eq.(5.46) and Eq.(5.49) into Eq.(5.45), the non-local form of the

equation of motion for an incompressible fluid can be obtained as

D

o 50 = I LT (0 @) (V00 -v() 0. 8)-(v(x) v () v
_IHX {( p(X,)_ p(x))gl (é)} dv'+ pb

(5.50)

By using the incompressible flow constraint in Eq.(5.28), it can be proved that
i 19:(8)-(v(x)~v(x))}dv'=0 (5.51)

Then conservation of momentum for incompressible fluid is

P2 = [ {aTr(0: (€)) (v()~V(x))~(P() - P(x))a,(£)} V" + b (552
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5.3.3.2 Compressible fluid

By considering the shear strain rate expression provided in Eq.(5.37) for

compressible fluid, the divergence of the shear strain rate can be expressed as

V-é:%(Av+V-(V®V)T)—%V-((V-v)l) (5.53)

It can be proved that V-((V-v)1)=V-(V®v)'. By considering Eq. (5.49) and

Table 4, the non-local form of the divergence of shear strain rate for compressible

fluids can be obtained as

Veg=|

H %Wgz<%>><v<x'>—v<x>>+gz<a>-<v<x'>—v<x>>}}dv'

X

—LX{E(gZ<a>-<v<x’>—v<x>))}dw 55
=], { Tr (9, (8 (X')—V(X))Jr%gz(%)-(V(x')—v(x))}dv'

By substituting Eq.(5.46) and Eq. (5.54) into Eq. (5.45), the non-local form of the

equation of motion for a compressible fluid can be obtained as

dV'+ pb (5.55)

~(P(x)=p(x))a.(8)

As provided in Eq.(5.50) and (5.55), the conservation equation of momentum is
directly expressed in terms of velocity and pressure, leading to the existence of the
second-order derivatives. Due to the adoption of the corresponding PD differential
operator for the second-order derivatives provided in Table 4, the acceleration can be
directly calculated with one integration with second-order accuracy. The error
introduced by the integration can be reduced compared to first-order approximations
where the integration needs to be performed twice to calculate the acceleration. In

addition, the computational time can also be reduced by using integration only once.
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In the Lagrangian description, the material derivatives of velocity in Eq.(5.52) and
Eq.(5.55) both for incompressible and compressible fluids can be simply replaced with
the partial derivatives with respect to time, Dv/Dt =ov/ot. On the contrary, in Euler

description, the material derivative of velocity is defined as [136]

Dv_&,\.w (5.56)
Dt ot

The non-local form of the term v-Vv can be calculated as

8\/1 8Vl avl - _
Vi —+V, —+V, —

0X, OX, 0X, I :

ov ov ov

V-V = vla—XjJrVZa—XjJrvsa—Xz = IHX(VZ(x')—v2(x))(V(x)~gl(§))dV'

b Oy v || (60~ () (V000 () v
| OX 0X, OX |

=(v(x)=v(x))[, (v(x)-0,(8))av’

(5.57)

Therefore, the non-local form of the equation for the conservation of momentum in

Euler description for incompressible and compressible fluids becomes

Incompressible:

o {[ﬂTf(gz(é))—p(V(X)-gl(é))](V(X’)—V(X))

dV'+ pb (5.58)
ot (p(x)- p(x) . (8) } g

Compressible:

~ o [T (e ()= £ (v(x)- 6. (8) J(v(x) - v(x)

dV'+ pb (5.59)
596 (V) =V () =(p(x)-p(x)8: (&) ’
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5.3.4. Conservation of energy

For the fluid flow coupled with heat transfer simulation, only the incompressible
fluid flows in Euler description are considered. Therefore, the formulation of the
conservation of energy here is only derived for incompressible fluids in Euler
description. The local form of the conservation of energy is [136]

p(%+v-Vej:—V-q+c:V®v+Q (5.60)
where e isthe internal energy, Q is the internal heat generation, and q is the heat flux
vector defined as

q=—k(x)-VT (5.61)
where k(x) is the thermal conductivity.

For thermodynamic systems, the internal energy assumed to be a function of

temperature and density, i.e. e=e(T,p). For constant density, the specific heat

capacity under constant pressure, c_, is equal to the specific heat capacity under

p i)

1 My

constant volume, ¢, i.e. ¢, =c, =C [136]. Consequently, the time rate of change of

the internal energy can be evaluated as [136]

@+V-VG=C(§+V-VT)=C ﬂ+vlﬂ+v2£+v3ﬂ (5.62)
ot ot ot oX, OX, OX,

where C represents the specific heat capacity. By using the definition of stress in
Eq.(5.31), the term &:V ® Vv can be written as [136]

6:Vv=-—pl :(V@V)+y(V®V):(V®V)+/¢(V®V)T ((V®v) (5.63)

or
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2 2
L Ny | [ | [V, OV
oX, OX OX;  OX OX;  OX,
(5.64)
Substituting the incompressible condition Eq. (5.28) into Eq. (5.64) results in [136]

2 2 2
{34343
X, OX OX

®V=pu , | (5.69)
oy 8v oV, 8v 8v2 oV,
+ — —= 4+
8x ax1 OX, c’ix1 8x3 OX,
By substituting Eq.(5.61), Eq.(5.62) and Eq.(5.65) into Eq.(5.60), the conservation

of energy equation becomes [136]

or _okaoT ok oT ok aT T 0T 0T
— K| Sttt
£l ax1 8x1 6x OX, OX; OX, X, OX, OX,

X, o
2 av 2 ov 2
(at) () 43)
X, OX OX
v o) (v ov) (ov, ov)
+ —=+==| +| = + =2+
X, OX OX, 6x1 OX;  OX,

Therefore, by substituting the non-local form of the differentials provided in Table

—,oC(vlﬁ—T+v2 al +V. a—TJ+Q (5.66)
0%,

ov.

0

4, the non-local form of conservation of energy becomes
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+ 4

(v, () =V, (%)) 0¥ (&) + (v (X') -V (x)) 0 (8) ) av ,)2 (5.67)

If the thermal conductivity k(x) is assumed to be uniform and constant, Eq.(5.67)

reduces to

+u (5.68)

—p(x)CjHX(T (x)=T(x))(v(x)-9,(&))dv'+Q
5.3.5. Non-dimensional form for 2D problem

The governing equations in a non-dimensional form can be obtained by using the

following non-dimensional parameters [144]
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Xi*=ﬁ,vi*=i,t*=%,p*=£,ﬂ*=ﬁ,k*=£,-’-*—l,p*= pz,g*=gI;0
Ly Vo L Po Hy Ko T PoVo Vo
(5.69)

where the subscript (,,) represents the reference variable and the superscript ()

represents the non-dimensional variable.

The non-dimensional form of the local governing equations in Euler description for

two-dimensional problems by ignoring the internal heat generation can be written as

Conservation of mass

% +£vl*a'0 +V*8pj:_p*[ﬁvl+%J (5.70)

Conservation of momentum

N LA LA op’ I *(azv* oA, j

STV otV * H 2 T *
ot OX, X |_ | X S ox° 0%, +|:b1
* . * R * * Re 2 % 2 % b*
aVervlﬁiJrv2 avi 8p* RCAZINCA” 2
ot 0%, OX, OX,

} (5.71)

Conservation of energy

JoT" Lo or” 1 (ok"oT" ok™ oT” k* (oT" 0°T"
* +Vl * +V2 * = * * + * * + *2 + *2
ot OX, OX, RePr{ox, ox, ©0OX, oX, ] RePr{ ox* 0x,

+E,u* 2 8vl* +2 8vi + %+%
Re o, OX, OX, OX

The non-dimensional parameters in Egs. (5.70)-(5.72) are defined as

(5.72)

2
Re= Vb pr_ #C g Yo (5.73)
Hy ko CoTo
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where Re is the Reynolds number, Pr is the Prandtl number, and Ec is the Eckert

number.

Similarly, the non-local governing equations in Egs.(5.70)-(5.72) can also be written

into their non-dimensional forms with a constant thermal conductivity as

Conservation of mass

ap;t(*x*) 7 (X)IH <(V1* (x7)=v; (x))g® (&) + (w3 (x") -3 (X)) o™ (i*))dv "
_jH; (2" (x7)=p (X)) (v (") g (&) +v, (X ) g™ (&) )av "

(5.74)

Conservation of momentum

Conservation of energy
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Ecu” wf o o U* 0L (g* '*2
B ], ()i ) 0% (€ )ov 76

where the non-dimensional relative position is calculated as & =x" —X.

The local Nusselt numbers are defined as

oT’

NUIOC(X)= y (577&)
y=loc
oT’
Nuloc(y): v (5.77h)
x=loc

By applying the PD differential operator into Eq.(5.77), the Nusselt numbers can be
calculated in the PD approach as

Nu,,. (X) = IHX(T(X’*)—T(x*))gm(é*)dv” (5.78a)

y=loc

Nu,. (¥)= jHX (T(x")-T (x*))gm (g7)av” (5.78D)

x=loc

The average Nusselt numbers are defined as (L and W are the length and width in x

and y direction, respectively)

1 ¢eL
NuX:EIO Nu,, (x)dx (5.79a)
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1 ew
Nu, = |, Nug (y)dy (5.79b)

5.4. Numerical implementation

In this section, the numerical implementation for fluid flow simulation is
provided. There are two types of Lagrangian descriptions, i.e. total Lagrangian
description and updated Lagrangian description. Both Lagrangian approaches have
been discussed in state-based peridynamics [145]. Therefore, non-local Navier-Stokes
equations are numerically implemented both in total and updated Lagrangian
approaches. In addition, the Euler approach is provided for fluid flow coupled with

heat transfer problems.
5.4.1. Kinematic quantities

The related kinematic quantities for numerical implementations are explained as

follows. As shown in Fig. 5-2, point i represents the point of interest and point j

represents one of its family members.

The definitions of relative kinematic quantities are shown in Fig. 5-2. The terms x ,

u, and v represent the position, displacement, and velocity vectors, respectively. The
subscript (,) represents the initial configuration. On the other hand, the subscript ()
represents the current configuration. For example, x| and v| represent the position
and the velocity vector for point i in the initial configuration, respectively. Here, &,
€., &, represent the relative position vectors in the initial, current, and updated

configurations, respectively.
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X, Current
R
t=t "

Initial
Updated
t = tn+1

R

n+1

S

X3

Fig. 5-2 Initial, current, and updated configurations in the fluid domain, R, for
Lagrangian approach

For Euler description, the locations of the PD particles are not updated. The

discretization for the Euler approach is provided in Fig. 5-3.

000000000

0P 0DeT000
000000000

Fig. 5-3 PD discretization illustration: central point i and horizon & =3Ax with Ax
being the point spacing distance
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5.4.2. Total Lagrangian method

For numerical implementation, the integration is performed by using the discrete
particles. Based on the derivations in Section 5.3, the algorithm in a total Lagrangian

description is presented.
5.4.2.1 Governing equations in total Lagrangian description

In the total Lagrangian description, the governing equations in discretized form for

incompressible fluid flows and compressible fluid flows are summarized as follows.
Conservation of Mass:

The discretized form of Eq. (5.23) can be evaluated as

Pha =P =PI (0, () (Vi - Vi)W (5.80)

=t

where the subscript (n) represents the time step number, At represents the time step
size, N, represents the total number of family members of point i (red colour) and
V, represents the initial volume of point j (green colour). It should be noted that the

density remains constant for incompressible fluid flow that is p. , = o} .

Constitutive Equations for Pressure:

For incompressible fluid flow, the discretized form of Eq. (5.34) can be evaluated

Pra = E{[ﬂ] 1} (5.81)
Po

For compressible fluid flow, the discretized form of Eq. (5.41) can be evaluated as

as

Pl = P — K, ALY (0, (8)- (V! — V4 ) Ve (5.82)

=L

153



Conservation of Momentum:

For incompressible fluid flow, the discretized form of Eq. (5.50) can be evaluated

as

Ni

V:m = :.I- Z[ﬂ(Tr(gz (‘tao ))(Vr{ _Vin ))_( p,f - p;)gl (go )}Voj + bin+1 (5-83)

n+l j=1

where V' represents the acceleration of point i.

For compressible fluid flow, the discretized form of Eq. (5.55) can be evaluated as

oL T EN () ) (v

pn+1 =1 _(p[{ — p;)gl(é())

)j V) +b! , (5.84)

Two kinds of time integration scheme can be utilized in the velocity and
displacement updating: first-order scheme by using the Euler method and second-order

scheme by using the Velocity Verlet algorithm [146].
First-order Euler method

the Forward Euler Method for Velocity:

Vha = Vo + VAL (5.85)
the Backward Euler Method for Displacement:
ul, =ul +v At (5.86)

n+l — n+1

Second-order Velocity Verlet method [146]

vV =V +%(\'/i +\'/i)At (5.87)

n+1 n
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u,=u +v! At+%\'/‘nAt2 (5.88)

n+l n+1

5.4.2.2 Numerical algorithm for total Lagrangian description

The numerical algorithm for the total Lagrangian approach is provided in Fig. 5-4.
Fig. 5-5(a) represents the PD differential operator construction, and Fig. 5-5(b)
represents the boundary implementation. Since the total Lagrangian approach is
adopted, the family members of each point remain the same during the time integration.

The PD differential operator is constructed based on the initial configuration, i.e.

peridynamic operator, g is a function of initial relative positions g(@o). Therefore,

the PD differential operator is constructed prior to the time integration, as shown in
Fig. 5-4. During the numerical simulations, the PD differential operator associated
with each PD bond is stored in a time-independent array. In addition, for PD
differential operator construction, Math Kernel Library (MKL) [147] is utilized. The
function ‘DGESV’ [148] which uses LU decomposition with partial pivoting and row

interchanges is utilized for solving the coefficient matrix, a, in Eq.(2.27).

155



Start

}

Initialize geometry and material
parameters

}

Spatial discretization: Generate PD
nodes

!

Construct family member array and
volume correction array for each node

!

PD differential operator construction

}

Apply initial conditions

|
v

Loop 1: Time
integration,
n<=N,
| .True.
Apply boundary conditions
1
)

.False. Loop 2: over PD
node, i<=N,qe

| True.
Update density according to Eq.(5.80)

}

Update pressure according to Eq.(5.81)
or Eq.(5.82)

|
Update acceleration according to
Eq.(5.83) or Eq.(5.84)
'
Update velocity according to Eq.(5.85)
or Eq.(5.87)
v

.False.

n+1

Update displacement according to
Eq.(5.86) or Eq.(5.88) with respect to R,

End

Fig. 5-4 Flowchart of the numerical algorithm for total Lagrangian approach

156



PD differential operator construction Apply boundary conditions
Start Start
1 '
v
Loop 1: over PD .False. Boundary True
node, i<=N,qe False. condition solid —
. True. Free Surf wall?
ree Surface i
. Initialize: matrix A, a, and b Solid wall
i+1 Update pressure Update pressure
False Loop 2: family' according t(f Eq.(5.108) according th Eq.(5.106)
member of node i, . - -
j<=N, 1 Update density Update density
L True. according to Eq.(5.80) according to Eq.(5.107)
Calculate shape matrix A associated ! .
with each bond Upitito el o Update acceleration
accorgrlr:zg R()SE%S'SB) according to Eq.(5.102a)
Utilize MKL to solve equation Aa=b ql '
| Update velocity . .
- Update velocity accordin
=1 according to Eq.(5.85) p 1o Eq.(5 )1/02b) 9
I ‘ or qu(5.87) ‘ l.
Loop 3: family -
-False. member of node i, i+l Updz;t_e dligaliee et Update displacement
i<=N; AEEEITD 5 41 according to Eq.(5.102¢)
True. or Eq.(5.88)
Calculate PD operator g(&;)
associated with bond i-j End
End
(a) (b)

Fig. 5-5 Flowchart for: (a) PD differential operator construction, and (b) boundary
implementation

5.4.3. Updated Lagrangian method

In this section, the numerical algorithm for an updated Lagrangian description is

developed for fluid flow simulations using the PD differential operator.

As shown in Fig. 5-6, point x is treated as the point of interest (shown in red colour)
in a material body R . Since the long-range force is considered in the PD theory, the
neighbourhood within which the central point x can interact with other points is

denoted as H , e.g. H att=t or H'™ att=t _,. The horizon & keeps constant
within time integration. It can be observed from the figure, at t =t_, point X" (shown

in green colour) is the family member of point x, On the contrary, point x" locates
outside the neighbourhood of point x, leading to zero interact force. However, at time

t=t_,, point X' goes out of the horizon domain and point x” comes into. Therefore,
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the family members of point x are updated every time step when the updated

Lagrangian description is adopted.

X
X' S
W u /
X X
H . H)r<1+l XH
XH. y R

z/ X

Fig. 5-6 Interaction of peridynamic central point x and its family member x’ in
current and updated configurations

5.4.3.1 Updated Lagrangian equations

The non-local fluid flow governing equations in the total Lagrangian description is
already provided in Section 5.4.2. In the updated Lagrangian approach, the initial

volume of point j, V', will be updated by using the current volume, V. as
VAERAVA (5.89)
where J, is the determinant of Jacobian which is defined as
J, =det(F,) (5.90)

In Eq.(5.90), F, isthe deformation gradients with respect to the initial configuration,

which is defined as

0 (5.91)
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Similarly, the volume in the updated configuration V

n+1

can be expressed in terms

of initial volume as dV.!, = J

) =3,.,0V) with J_, =det(F,,,) and F,,, =0X,.,/0X,.

n+1
The volume in the updated configuration is related to the current configuration as

dvi =]

n+1 n+1

JldV) =det(AF)dV, (5.92)
where the relative deformation gradient AF is defined as

AF = axml _ axml / aXn — |:m1|:n—l (5.93)
OX OX  OX

n

On the other hand, the non-local form of the deformation gradient tensor is defined

in [149] by using the PD differential operator as

|:=-Ir-nr_(|)J'H W (Y -y)® (X' —x)dV’ (5.94)

X

with w =(5/|x’—x|)2. The parameter | is the identity matrix with its trace Tr(1)

being 2 or 3 depending on the dimensions of the analysis. The parameter m. is

evaluated as [149]

mreIF = VH 52 (595)

where V,, represents the volume of a sphere, V,, = 475°/3 for 3D and volume of a

disk, V,, = h,,,#5° for 2D with hy;, being the thickness of a disk [149]. Therefore,

the non-local form of deformation gradient of point i for current and updated
configurations are defined as [11, 132, 149]

T w28, (5.96)

F =
n
mreIF "

and
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LV j
I:n+1 - m -[H' WF (ém—l) ®(én )dvn (597)

relF "

By using the definition in Eq.(5.93), the non-local form of relative deformation

gradient can be defined as

AF = [ [RACHEICHEY }[ Jl, e (5)®(&,)av,) T (5.98)

Based on the developed non-local relative deformation gradient in Eq.(5.98), the

volume for each material point is calculated by using Eq.(5.92).
5.4.3.2 Numerical algorithm for updated Lagrangian description

The numerical algorithm for the updated Lagrangian approach is provided in Fig.
5-7. And Fig. 5-8 represents the calculation of the relative deformation gradient.
Within each time integration step, the coordinate of each node is updated as

X, =X, +U,. Therefore, the family members of each point are updated at each time

step. The PD differential operator construction process is the same as Fig. 5-5 (a)
except that the PD differential operator and the weighted function are constructed

based on the current configuration, i.e. g and w are functions of the relative position
in the current configuration g(&,) and w(|g,|). Consequently, the PD differential

operator associated with each bond is updated simultaneously for each time step.
Therefore, in terms of computational time, it could be inferred that the updated

Lagrangian program is more time consuming than the total Lagrangian program.
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Start
'
Initialize geometry and material
parameters
!
Spatial discretization: Generate PD
nodes

!
Apply initial conditions
-
.False. L_oop ~ ‘I_'lme
— integration
n<=N;
| True.
Update the configuration
. ! n+1
Update the family member array and
volume correction array for each node

!
Apply boundary conditions

|
v

Loop 2: over PD
node, i<=Nq4e

| True.

i+1 MLS algorithm: .True.
Mod (n,n,s)=0 ?

| .False.
| PD differential operator construction |
!
| Calculate relative deformation gradient |
!
Update volume according to Eq.(5.92)
!
Update density according to Eq.(5.80)
!

Update pressure according to Eq.(5.81)
or Eq.(5.82)

.False.

Update acceleration according to
Eq.(5.83) or Eq.(5.84)
!

Update velocity according to Eg.(5.85) MLS procedure
or Eq.(5.87)

|

Update displacement according to
Eq.(5.86) or Eq.(5.88) with respect to R,

End

Fig. 5-7 Flowchart of the numerical algorithm for updated Lagrangian approach
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Relative deformation gradient

Start

|
v

Family member of .False.
node i, j<=N;

l .True.

Current deformation gradient according
to Eq.(5.96)

j+1 l

Updated deformation gradient according
to Eq.(5.97)

l

Relative deformation gradient according
to Eq.(5.98)

End
Fig. 5-8 Flowchart for relative deformation gradient calculation
5.4.4. Euler method

The fluid flow coupled with heat transfer problem is simulated in the Euler
description. Therefore, in this section, the discretised form of the governing equations

including the conservation of energy is provided.
5.4.4.1 Euler equations

The non-local form of the governing equations provided in Section 5.3 can be

written in their discrete forms as;

Conservation of mass:

Prr = Ph —Ati(pl (9:(80)-(vi=V2)) +(Pd =21 Va0 (80))V, (5.99)

i=L

Conservation of momentum:
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N.

> (Pl =p})a(

P —PriHlZ(Vr{ _\/in)(vin .gl(io))Vj

j=1

Conservation of Energy:

N.

(=1
To=Ti 4| b
pn+lC

5.4.4.2 Numerical algorithm

N
_pri1+lC Z (Tn
=t

kZ(Tnj ~T)Tr(9, (&)Y,

j _Tni)<v:1 0 (&.,o))vj +Q

a())vjwi(vg—va)Tr(gz(a))w

(5.100)

(5.101)

The flowchart of the numerical algorithm is provided in Fig. 5-9. Firstly, the

peridynamic differential operator is constructed as a function of the initial relative

position. Therefore, the construction of peridynamic differential operator is conducted

prior to the time integration. Secondly, both the thermal and flow fields are considered

in the program. Thus, a flag array is constructed to indicate the material point

interactions belonging to the thermal field or the flow field. Finally, the thermal field

and the flow field are considered in a coupled manner.
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Start
v
Initialize geometry and material
parameters
'
Spatial discretization: Generate PD
material points
'
Construct family member array for each
material point

Construct flag array for each material
point interaction belongs to thermal or
flow‘field

PD differential operator construction
¥
Apply initial conditions for acceleration,
velocity, displacement, and temperature

v
Loop 1: Time False.
integration

n<=N,
v .True.

Apply mechanical boundary conditions:
n+1 acceleration according to Eq.(5.102a)
'

Apply mechanical boundary conditions:
velocity according to Eq.(5.102b)
'

Apply mechanical boundary conditions:
displacement according to Eq.(5.102c)
'

Apply mechanical boundary conditions:
pressure according to Eq.(5.106)
'

Apply mechanical boundary conditions:
density according to Eq.(5.107)

Apply thermal boundary condition
according to Eq.(5.109)

.False. Loop 2: over PD
nodes, i<=N ¢
+.True.
Update density according to Eq.(5.99)

!
Update acceleration according to
Eq.(5l.100)

Update velocity according to Eq.(5.85) i+1
'
Update displacement according to
Eq.(5.86)
'

Update pressure according to Eq.(5.81)
i
Update temperature according to
Eq.(5.101)
!

End

Fig. 5-9 Flowchart for numerical algorithm in Euler description for heat conducting
fluid flow simulation
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5.4.5. Boundary implementation

5.4.5.1 Solid boundary treatment

The implementation of a solid wall is a crucial issue in flow simulations. Fictitious
layers [10, 39, 40, 150] can be used to implement the boundary conditions. As
illustrated in Fig. 5-10, the fictitious layers (shown by red spheres) are located outside
the boundary to simulate the solid wall. The thickness of the fictitious layers is chosen
as the size of the horizon [151]. The positions of fictitious particles remain the same
during the time integration [120, 152]. In Fig. 5-10, particle i represents the fictitious

particles. Particle j represents one of its family members which belongs to fluid

particles. The acceleration, velocity, and displacement of the fictitious particle i are

defined as the same as the solid wall, i.e.

Vi = Vsolid wall (5-1023)
Vi = Volid wall (5-102b)
Ui = Uggiig wall (5-102C)

For the pressure evaluation of particle i, the formulation proposed by Adami et al.

[152] is utilized. The viscous interaction between particle i and j is simply omitted

[152]. In order to eliminate the penetration of fluid particles into the wall surface, the

force balance at the wall interface is enforced as [152]

dv. vp.
Gl B B (5.103)
dt P

where Vv, represents the acceleration of the solid particle i in the fictitious domain.
The term p; is the pressure of the fluid particle and p; is the density of the fluid

particle. According to [152], Eq. (5.103) can be further calculated as

[vp-di=p,[(b-v;)-dl (5.104)
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where dl is a vectoral length element between fluid and fictitious particles [152]. For

a single bond between the fluid and the fictitious particle, Eq.(5.104) takes the form as
Pi — P :pj(b_vi)'gij (5.105)

where &; represents the relative position from the fluid particle to the dummy particle
which can be expressed as &; = x; —X;, shown in Fig. 5-10. Consequently, the pressure

of the fictitious particle i, p, can be obtained by summation of all contributions of

neighbouring fluid particles using the weighted function as [152]

> (b, +p, (b=,)-&, )w(f,
p, == — (5.106)
ZW(‘%D

j=1

where N; 4,4 represents the total number of the family member of particle i which

belongs to fluid particles. The weighted function w(‘gij‘) is defined as in Eq.(2.25).

Then the density of the fictitious particle i can be calculated by using Eq. (5.34) as
Uy
p= Py (& +1j (5.107)

@ © © o

|dq°ea0°: geo“’
Flui

%0 9 @ 0o9
@90 m 9

Solid Wall N\ O]V oY o

[ o4

9 00@00 00000
Fictitiouslayers0000000000000 o
9000000000000

Fig. 5-10 Illustration of solid boundary implementation
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5.4.5.2 Free surface boundary treatment

Similarly, the free surface boundary conditions are implemented by using dummy
particles. Fictitious layer with its thickness being equal to the size of the horizon is
added on the free surfaces. The material properties of the dummy particles are chosen
the same as the fluid particles. The acceleration, velocity, displacement, and density
are calculated for both fluid and dummy particles in the free surface. The only

difference is that free surface pressure is applied to the fictitious layer as

=0 (5.108)

pfictitious particles = pfree surface

5.4.5.3 Temperature boundary treatment

The temperature on the boundary is denoted as T,,, . The temperature of the

all *

fictitious particle i is implemented as [39, 43, 150]

T, = 2Ty =T

1 wa

(5.109)

i

The fictitious particle j is located at the same distance from the boundary as the

fluid particles, i as shown in Fig. 5-11.

o
ylrall o
Solid Wall ; y
Q-
o i
Fictitious layers Q
Q

Fig. 5-11 Temperature boundary implementation (the pair of the fictitious particle
and its corresponding fluid particle are shown in the same colour)
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5.4.6. Numerical treatments

5.4.6.1 Initial damping

In order to improve the numerical stability of free surface flow simulation, such as
dam collapse simulation, extra numerical implementations are used. First, damping

time t,___is chosen during which the acceleration of each PD node is multiplied by a

damp

factor £'(t) as [152]

1 12>t

damp

£()- {O.S[Sin((—0.5+t g )7 )41 £ < iy 6,110

5.4.6.2 Moving least square scheme

The moving least square (MLS) algorithm is introduced to hydrodynamics by

Dilts [153]. The MLS method [154] is adopted for every n,, s time step to smooth the

velocity and density profiles as

_Zv(x,{) MLS(xn,x,{)
L )

v(x (5.111)

p(Xln) = meassWMLS (Xn’Xn) (5112)

j

with m__ representing the initial mass of one PD particle, w,, s is the smoothing

mass

weighted function which can be expressed as [154]

Ws (X0 x0) = B (0)+ B (%0 ) (=€) + B () (=&, ) W (X)) (5.113)
with

én = é:n,xel + gn,yez (51143.)
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B(x,)=| B |=S"(x;)|0 (5.114b)
B, 0
S(x) =2 w(x;.x3)S(x.x}) (5.114c)
1 _é:n,x _gn,y
S00x)=| =6 (S0) Ennby (5.114d)

_gn,y é:n,xé:n,y (gﬂ,Y)z

w, (xh,x}) = e 0o (5.114e)

The flowchart for the MLS algorithm is provided in Fig. 5-12. If the remainder of

the current time step number n divided by n,, s is equal to zero, an additional MLS

part will be added to the algorithm provided in Section 5.4.2 or 5.4.3. The density,
velocity will be smoothed based on Eq.(5.112) and Eq.(5.111). As a result, the pressure
and displacement will be recalculated according to the smoothed density and velocity.
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.False.
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member of node i, j+1
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| . True.
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function wy,, according to Eq.(5.113)

.False.

Update velocity according to Eq.(5.111)
|

Update density according to Eq.(5.112)
|

Update pressure according to Eq.(5.81)

!
End

Fig. 5-12 Flowchart for the MLS algorithm

5.5. Isothermal fluid flow numerical simulations

In this section, numerical examples of several classical fluid flow problems are
presented by using the proposed non-local PD formulations. The validation of the PD
formulations is conducted by the comparisons between the PD results and those from

other solutions. In all the following simulation cases, the fluid is water with density

p=10°kg/m® and dynamic viscosity =107 kg/ms . Furthermore, the Mach
numbers in all cases are less than 0.3 (M < 0.3), leading to incompressible fluid flow.

Therefore, the weakly compressible technique described in Section 5.3.2 is adopted

for the pressure calculation.
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5.5.1. Hydrostatic test

In the section, a hydrostatic simulation is conducted to study energy conservation.

The fluid is in an open container with dimensions being LxW =0.05mx0.03m, as

shown in Fig. 5-13 (a). The gravity acceleration being |g|=9.8 m/s*. The analytical

solution of the hydrostatic pressure is calculated as p,,ica = p|g|(W —y) where y

represents the vertical coordinate. For the PD discretization, as shown in Fig. 5-13 (b),
40x24 PD particles are in x and y directions with the initial particle spacing being
AXx=1.25x10"° m. In order to save the computational time, only one fictitious layer
Is imposed to simulate the solid wall. The simulation time step size is chosen as

At =107 s with total simulation time being t=1.5s. The Velocity Verlet algorithm

is adopted.
0.05
Free surface ool
/ 0.04
004 F
003 |
l g Eo.oz -
>‘0.02 - E
y . 0.01 E
\ 0.01 E
Measure point oo1p
X 0.00 E
O.IOO O.IO]. O.E)Z 0.:)3 O.:J4 0.2)5
X (m)
(@ (b)

Fig. 5-13 Schematic of the hydrostatic problem (a) geometry illustration and (b)
PD discretization

The time history of the pressure of the measured point is presented in Fig. 5-14 (a),
with the analytical solution being presented for comparison. The time history of the
kinetic energy of the whole particles is shown in Fig. 5-14 (b). The pressure profile
along the mid vertical line x=2.5x107 m is compared with the analytical solution,

as shown in Fig. 5-15 (a). Furthermore, the deformed configuration at the final time is
presented in Fig. 5-15 (b). It can be observed that the PD predicted results agree well
with the analytical solution. Thus, the capability of the present PD model for
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simulating hydrostatic problems is demonstrated. In addition, the energy conservation
of the model is also validated.
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Fig. 5-14 Time history of pressure (a) and kinetic history (b) of the measured
point.
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Fig. 5-15 Pressure comparison on the mid vertical line x =2.5x107? m (a) and
deformed configuration (b)

5.5.2. Couette flow

First, the classical Couette flow is considered which involves fluid flow between
two infinite plates with a stationary initial condition. As illustrated in Fig. 5-16 (a), the

two plates (shown in orange colour) are located at y=0 and y =W with dimensions

of L=W =107 m. The two vertical edges are free, and the body force is zero. At time
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t=0, the upper plate suddenly moves at a constant velocity v, =2.5x10° m/s

parallel to the x direction. The corresponding Reynolds number is;

Re=YV _ 554102 (5.115)

14

As shown in Fig. 5-16 (b), the mesh size of the PD discretization is represented by
Ax . The horizon is chosen as ¢ =3.015Ax [10, 14]. The time step size is chosen as

10°° s and the total simulation time is 0.6s. Fictitious boundary layers (represented

by red nodes) with their thickness being 3Ax (horizon) are added to implement the

solid wall boundary conditions, i.e.

v, (x,y<0,t)=v,(x,y<0,t)=0 (5.116a)

V, (X, y>W,t)=2.5x10" m/s, v, (x,y >W,t)

0  (5.116b)

where v, and v, represent the horizontal and vertical velocities, respectively.

Regarding the implementation of the other two vertical edges, if a PD node flows out
of the right/left edge, it will immediately re-enter the opposite edge [132]. Therefore,
the displacement of the material point flowing out from the edges can be modified as

uredted —y L, if x>L (5.117a)

urded — 4L x<0 (5.117b)

where u, represents the horizontal displacement. Finally, the total Lagrangian

algorithm described in Section 5.4.2 is applied to this problem.
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Fig. 5-16 Couette flow simulation illustration (a) geometry illustration and (b) PD
discretization

In order to validate the proposed non-local PD model, the PD predicted results are

compared with the analytical series solution provided as [137]

2_2

vx(y,t):\\//—\‘;y+n§;i_\;;(_1)”sin(3v_ﬂy)exp(—v r:/\;z tj (5.118)

First, in order to estimate the sensitivity of mesh size on the accuracy, a mesh
convergence study is performed by using a nxn mesh where n=50,100,200,400.
Fig. 5-17 shows the relative percentage error for the steady-state velocity at x=L/2

for different mesh sizes. The relative percentage error is calculated as [155]

Z (VPD - VAnaIyticaI )2 %100

Z (VAnaIyticaI )2

& (%)= (5.119)

As can be seen from the results, as the mesh size increases the velocity value
converges. Even with coarse meshes, i.e. 50x50, the relative percentage error is

approximate 1.5%.

Next, PD results are compared with analytical solutions provided in Eq.(5.118). Fig.
5-18 shows the comparison between the velocity profiles obtained by using the PD

model and the series solution at different times by using 400x400 mesh. The steady-
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state solution is represented at time 0.6s. It can be observed that the solutions from

these two methods match very well, confirming the accuracy of the proposed non-local
PD model. The horizontal velocity field for the steady-state is shown in Fig. 5-19.
Consequently, the robustness of the proposed non-local PD model in the total

Lagrangian description is verified.

1.6

0.0 T T T T T T T T
0 50 100 150 200 250 300 350 400 450

Node number

Fig. 5-17 Convergence study for PD solutions for Couette flow for different grid
sizesat t=0.65
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Fig. 5-19 Contour plot of horizontal velocity v, (m/s) predicted by PD at t=0.6s

5.5.3. Poiseuille flow

The second simulation case is Poiseuille flow between two stationary infinite plates

at y=0 and y=W . The geometry is the same as the one from Couette flow, i.e.
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L =W =10 m as shown in Fig. 5-16. The other two vertical edges are free. The fluid

is initially at rest. Then a body force F =2x10* m/s’ parallel to the x direction is

applied to drive the fluid to flow gradually, leading to a steady-state flow distribution

finally.

In the numerical implementation, the same PD discretization model is adopted by

using 400x 400 mesh in the flow region with the horizon chosenas 6 =3.015Ax. The

constant time step size is 10° s and the total simulation time is 0.6's. The solid wall

boundary condition is implemented by using the fictitious layer as illustrated in Fig.
5-16 (b)

v, (x,y<0,t)=v,(x,y<0,t)=0 (5.120a)
v, (X y>W,t)=v, (x,y>W,t)=0 (5.120b)

Besides, the vertical boundary implementation approach provided in Section 5.4.5
is also utilized. The total Lagrangian method described in Section 5.4.2 is adopted.

In order to validate the proposed PD model, the simulation results are compared

with the time-dependent series solution provided as [137]

= = AFW? (ﬂy j (2n+1)27r2
v, (y,t)=— W)+ » ————sin| —(2n+1) |exp| -v——F——t
(yt)=-y(y-W) ;V”B(Znﬂ)g W (20+1) Jexp e

(5.121)

The horizontal velocity profiles obtained by the PD model are compared with the
analytical solutions provided in Eq. (5.121), as shown in Fig. 5-20. Good agreements
are also obtained in this case, validating the proposed non-local PD model. The

horizontal velocity field is provided in Fig. 5-21 at time 0.6s. As can be seen from

the results, the maximum velocity is obtained as v, = 2.5x10"° m/s which corresponds

to the Reynold number as Re =2.5x107°.
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Fig. 5-20 Comparison of PD and series solutions for Poiseuille flow
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Fig. 5-21 Contour plot of horizontal velocity v, (m/s) predicted by PD at t =0.6 s
5.5.4. Taylor-Green vortex

As a third simulation case, the two-dimensional Taylor-Green vortex at Re=1 is

simulated by the proposed PD model in a total Lagrangian description. The geometry
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of the fluid field is set as [0,1]><[0,1]. The analytical solution of the velocity field is

given as

v, (X, y,t) =-v,e” cos(27zx)sin (27y) (5.122a)
v, (X, y,t)=v,e” sin(27zx)cos(2ry) (5.122b)

where the decay rate is b=-87°/Re [156] and v, is the maximum initial velocity

magnitude.

As shown in Fig. 5-22 (b), four fictitious layers with their thicknesses being horizon
are added outside the fluid field. The fictitious particles (shown in grey colour) are
assorted into eight regions (numbered by yellow colour). Their physical parameters
such as velocity etc. are forced to be equal to the fluid particles (shown in orange
colour) in the same corresponding numbered region (shown in red colour). Therefore,
the periodic boundary conditions in both x and y directions are implemented. As to
the initial condition, as shown in Fig. 5-22 (a), the analytical velocity distribution at

t =0 is used with v, =0.04 as
v, (x,y,0)=-0.04cos(27x)sin(27y) (5.123a)
v, (X, y,0)=0.04sin(27x)cos(2ry) (5.123b)

The time step size is chosen as dt =1x10™ and the simulation time is t=0.05.

Three different mesh sizes are chosen as Ax =1/n with n=40, 50,100 to conduct the

convergence study.
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Fig. 5-22 (a) Geometry illustration and initial velocity vector plot and (b) coordinate
definition and boundary implementation for the Taylor Green vortex PD

A comparison of the decay of the maximum velocity magnitude is provided in Fig.
5-23. The exact solution and the remeshed smoothed particle hydrodynamics (rSPH)
solution [157] are provided for comparison. It can be inferred that the PD predicted

results agree well with the exact and rSPH solution. For the error analysis of the PD

simulations, the relative error norm L is calculated as [156, 157]

bt

(5.124)

with T,.,, being the time where (v,e” ) =v,/50 [157]. The relative errors obtained by

40x40, 50x50, and 100x100 particles are provided in Fig. 5-24. The PD predicted
velocity magnitude distributions obtained by PD and exact solutions at t =0.05 with

100100 particles are shown in Fig. 5-25.
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100
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Fig. 5-25 The velocity magnitude distribution at t =0.05 with 100x100 particles for
(a) PD solution and (b) exact solution.

5.5.5. Shear-driven cavity problem

The fourth simulation is regarding the shear-driven cavity problem. The fluid is
initially at rest within a closed square cavity. The fluid flow is generated by moving

the top side of the square cavity at a constant velocity, v, =10~° m/s parallel to the x

direction. As illustrated in Fig. 5-26, the geometry dimension is setas L =W =10°m.
The PD mesh size is chosen as Ax = L/n with n representing the particle number in
one direction as n=40,100 for PD simulations. The horizon size ¢ =3.015Ax is
adopted. The time step size is chosen as 10 s and the total simulation time is 0.3s.

The solid boundary conditions are implemented as described in Section 5.4.5.1
(Eq.(5.106), Eq.(5.107)) by using fictitious layer, as shown in Fig. 5-26. During the

simulation, the updated Lagrangian method described in Section 5.4.3 is adopted.
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Fig. 5-26 Illustration of PD discretization for the shear-driven cavity problem

In order to validate the proposed PD model, the velocity profiles in steady-state

condition, at t =0.3s are compared with the previous literature. The reference data in

[158] obtained by the finite difference method (FDM) and smoothed particle
hydrodynamics (SPH), in [155] obtained by a Lagrangian gradient smoothing method
(L-GSM) is provided in Fig. 5-27. In addition, the PD solutions by using different
mesh sizes 40x40 and 100x100 are also provided. It can be observed that the PD
results are close to the ones obtained by the other methods, proving the accuracy of
the proposed PD model for the shear driven cavity problem. Besides, in Fig. 5-27 (a),
for the non-dimensional vertical velocity profile in the region of 0.5<x<1.0, the
maximum vertical velocity magnitude predicted by PD is more close to the FDM

solution than the ones in [155, 158] for the smoothing methods.
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Fig. 5-27 Comparison of non-dimensional steady state PD velocity profiles with
FDM and SPH data [158], L-GSM data [155], (a) vertical velocity at y=W /2 (b)

horizontal velocity at x=_L/2

The horizontal velocity distributions for each material point at time t=0.05s and

t =0.3s are presented in Fig. 5-28. The vertical velocity vector field at time t=0.05s

and t=0.3s are also provided in Fig. 5-29. It is observed that the fluid flow is in a

recirculation pattern within the closed square and finally reaches its steady-state form.
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Fig. 5-28 Horizontal velocity v, (m/s) distribution and the particle positions

predicted by PD for 100x100 mesh size at (a) t =0.05s and (b) at t =0.3s
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Fig. 5-29 Velocity vector field coloured by their vertical component magnitude
predicted by PD for 100x100 mesh size at (a) t =0.05s (b) t=0.3s

It can be observed that the particle distribution near the right upper corner is irregular
to some extent. Therefore, the particle shifting technique (PST) [159] can be utilized
to optimize the simulation results. Here, the solution of 40x40 particles at the steady-
state with PST utilized is provided and compared with the initial one. The details on

the application of PST is provided in Section 6.2.3.
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Fig. 5-30 Particle distribution comparison (a) without and (b) with PST [159]

5.5.6. Dam collapse problem

To demonstrate the capability of the proposed PD formulations for predicting free
surface flows, the classical dam collapse problem which has been extensively
investigated [131, 154] is considered in this section. The dam break experiment
conducted by S. Koshizuka and Y. Oka [160] is used for comparison. A two-
dimensional flow generated after the breaking of a dam is simulated as shown in Fig.
5-31 (a). The geometry dimensions of the water column are L =0.146 m for the width
and 2L for height. The tank is open at the top with its width and height being 4L and
L respectively. The flow is driven by the gravity and it is constraint by an open
rectangle square. The gravitational acceleration is set as g =9.8 m/s>. Regarding the

PD implementation shown in Fig. 5-31(b), the mesh size is chosen as

Ax=4.867x10°m ( 30x60 fluid particles) and the horizon is chosen as

5 =4.015Ax. The time step size is dt =2.5x10"° s with the total simulation time
0.4s. As shown in Fig. 5-31 (b), fictitious layers (thickness being horizon) are added

to implement the wall boundary conditions (shown in red colour). The acceleration,
velocity, and displacements of the fictitious wall particles are set to be zero according
to Eq.(5.102). The pressure and density of these fictitious wall particles are calculated
according to Eq. (5.106) and Eq.(5.107). In this problem, B parameter in Eq. (5.34) is

calculated by approximating the maximum magnitude of a fluid flow velocity as
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‘vf‘:ﬂ/ZQ(ZL) =2.39 m/s [142], leading to B =8.16x10" Pa. Also, zero pressure

condition is applied for the free surface fictitious layers (shown in green colour)
according to Eq.(5.108). The acceleration, velocity, displacement, and density of these
free surface particles are calculated as real fluid particles. Besides, the updated
Lagrangian description in Section 5.4.3 is adopted. The damping time in Eq.(5.110) to

avoid the initial sudden movement is chosen as t,, =100dt. The MLS method

described in Section 5.4.6 is applied with n,,, =60 for t<0.3s and n,, =15 for

t > 0.3s (when the water splashes the right vertical wall).

L=0.146m
—

-

2L -

rimj

(@) (b)

Fig. 5-31 Sketch of the dam collapse problem (a) geometry model and (b) PD
discretization model

Snapshots of vertical velocity profiles and the particle positions at different times
are provided from Fig. 5-32 to Fig. 5-35 for both PD and experimental results. As
shown in Fig. 5-36, the x position of the dam toe obtained by the PD simulation agrees
well with the experiment results [161, 162]. It can be concluded that the proposed PD
model is capable of predicting the classical dam collapse problem. It can be inferred
from the numerical simulation results that there is void in the lower right corner of the
fluid. The reason may be due to boundary pressure treatment for free surfaces. The
pressures of the particles for free surfaces are directly set to be zero, while the pressure

of the other fluid particles is calculated according to the equation of state. As a result,
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it may produce discontinuities in the pressure profiles and lead to the voids in the lower
right corner of the water column. In addition, the utilization of the MLS method may
also bring some error and discontinuities on the fluid motion. The boundary treatments
can be further improved by using constrained conditions for the fictitious layers [43,
44] or by incorporating the boundary conditions into the governing equations [14].
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Fig. 5-32 Comparison between (a) experimental result [160] and (b) PD predictions
coloured by vertical velocity (m/s) at t =0.1s

o
o
o
o

0.1350
-0.005625
-0.1462

P ey = R

-0.2869
04275
-0.5681
-0.7087
-0.8494
-0.9900

o o B mwm EN-

(b)

Fig. 5-33 Comparison between (a) experimental result [160] and (b) PD predictions
coloured by vertical velocity (m/s) at t =0.2s
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Fig. 5-34 Comparison between (a) experimental result [160] and (b) PD predictions
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Fig. 5-35 Comparison between (a) experimental result [160] and (b) PD predictions
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5.6. Non-isothermal fluid flow numerical simulation

In this section, three numerical simulations are conducted by applying the developed
PD model. Firstly, heat conduction for a 2-D plate is conducted. The PD predicted
results are compared with the solutions from ANSYS software. Secondly, natural
convection in a cavity is simulated. Finally, mixed convection in a cavity is simulated.
The predicted results from convection problems are compared with the ones from the

previous literature.

5.6.1. Introduction

The problem of fluid flow coupled with heat transfer has been extensively studied.
The convection problem is one of the typical problems within this field. Convection
problems are generally divided into two categories, i.e. natural convection and forced
convection, depending on the different types of driven forces. Temperature-induced
buoyancy forces are responsible for the fluid flow in natural convection. On the other
hand, the fluid flow is driven by lid motion in forced convection. A situation where
both the natural and the forced convection are comparable is known as mixed
convection. The natural and mixed convection problems are encountered in many
engineering applications, e.g. the collection of solar energy, food processing, and

safety of nuclear reactors et al. [163]. However, the predicting, understanding, and
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controlling of such complex fluid and thermal systems are challengeable [164]. Due
to the geometrical simplicity, the natural and mixed convection problems within an

enclosed cavity have been extensively studied in the literature.

De Vahl Davis [165] provided a benchmark solution for the natural convection in a
square cavity with constant temperature boundary conditions. The fluid flow was
assumed to be laminar and the Boussinesq approximation was valid. The velocities,
temperature, and rates of heat transfer had been obtained for Rayleigh numbers being
up to 108. According to the experimental study in [166], the fluid flow will switch over
to turbulence when the Rayleigh number is larger than 10°. Later on, the study of the
natural convection was extended to the turbulent field for Rayleigh number ranging
from 10° to 10'® [167]. If the natural convection is driven by large temperature
differences, the Boussinesq approximation is not applicable because of considerable
density variations. Hence, a non-Boussinesq model was proposed by Szewc et al. [144]
for such situations. Many numerical simulation methods have been applied for the
natural convection simulation, i.e. the finite difference method (FDM) [165], the finite
element method (FEM) and the discrete singular convolution (DSC) [168], the
smoothed particle hydrodynamics (SPH) [144, 157, 169]. On the other hand, mixed
convection in a square enclosed cavity is another benchmark problem. Moallemi and
Jang [170] used the Semi-Implicit Method for Pressure-Linked Equations-revised
(SIMPLER) [164] algorithm to investigate the effects of the Reynold number and
Prandtl number on the flow and the heat transfer. The upper lid has a constant velocity
and the bottom wall was heated. Later on, the situation in which the moving top wall
was heated and the bottom wall was cooled was discussed by Iwatsu et al. [171]. In
their work, the FDM was used to study the effect of the Richardson number, which
provided a measure of the importance of natural convection relative to forced
convection. FEM with a consistent splitting scheme was used by Wong [172] to
simulate the buoyancy-opposing and buoyancy-aiding mixed convection problems. In
addition, this benchmark problem has been discussed in extended configurations, e.g.

in a two-sided lid-driven cavity [173] or an inclined driven cavity [174].
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5.6.2. Pure heat conduction simulation

First, heat conduction in a 2-D plate is simulated. The length and width of the plate

are L=W =0.1m. The thickness is h=0.001m. The material properties are set as:
the thermal conductivity k =8.3075W/(mK) ; the density p=1620kg/m® ; the

specific heat capacity c, =1092.728 J/(kgK). All four boundaries are subjected to a

constant temperature T =10 K. The initial temperature is zero. Without considering

the velocity and internal heat generation terms, the governing equation Eq. (5.60) with
a constant thermal conductivity for heat conduction becomes

€, % =KAT (5.125)

For PD implementation, the mesh size for the x-y plane is Ax=0.0005m. There is

one layer in the thickness direction. The horizon is chosen as ¢ = 3.015Ax. Similar to
the derivation performed by Silling and Askari [13] and Oterkus et al. [39], a von
Newman stability condition is applied. The stability condition of the present model for

heat conduction problems is obtained as

N
dt < pcv/(kZ(gzo (&)+g” (g))v,) (5.126)
j=1

As a result, the time step size is chosen as dt =0.01s. The total simulation time is
40 s. The heat conduction is also simulated by using ANSYS software. The mesh size
is chosen as Ax=0.001m and the time step is 0.4s. The element type is chosen as

PLANES5. The PD predicted temperature distribution is compared with ANSYS
results as shown in Fig. 5-37. The good agreement validates the capability of the

developed model for solving the pure two-dimensional heat transfer problem.
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Fig. 5-37 Temperature (K) distribution comparison between (a) ANSYS and (b) PD

5.6.3. Natural convection in a square cavity

Second, natural convection in a closed cavity is simulated in a non-dimensional form.
A scheme of the two-dimensional natural convection problem, accompanying with the
coordinate definitions and boundary conditions are shown in Fig. 5-38. For the initial

state, the fluid is stationary and its temperature is zero. The boundary conditions are

defined as
at X’ =0:T"=1, vy =v, =0 (5.127a)
at X’=1:T"=0, vj =v; =0 (5.127b)
at y'=0:0T"/oy" =0, v, =v; =0 (5.127¢)
at y'=1: T /oy" =0, v; =v, =0 (5.127d)
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Fig. 5-38 Illustration for two-dimensional natural convection problem

For the natural convection in the cavity, the fluid flow is assumed to be weakly
compressible. The fluid properties are assumed to be constant. Therefore, the viscous

coefficient 4 and the thermal conductivity k are uniform and constant for each PD
point, i.e. 1= u,; K=K,. The energy dissipation due to viscosity is neglected [144].

The Pe&let number (Pe=RePr) is equal to 1 [144]. As a result, the non-dimensional

parameters in Eq. (5.70) and Eq. (5.74) are
1 =1k =1,Ec=0;RePr=1 (5.128)

Furthermore, the Boussinesq approximation [175] is adopted. Hence, the value of

non-dimensional gravity acceleration is approximated as
g"=RaPrT” (5.129)

where Ra is the Rayleigh number defined as

3 .2
Ra= M (5.130)
U

where f is the thermal expansion coefficient and AT is the temperature difference

across the cavity.
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Regarding the PD implementation, the mesh size is chosen as AX" =1/200, and the
horizon is chosen as & =3.015Ax . The time step size is dt” =1x10°. The total
simulation time is t” =3, leading to a steady-state of the fluid flow at the end of the
simulation. The boundary implementation is illustrated in Fig. 5-39. Regarding the
flow field, four fictitious layers are added to simulate the four solid walls. Their
thicknesses are chosen as the size of the horizon. The accelerations, velocities, and
displacements of the fictitious particles (shown in red colour) are zero. On the other
hand, for the thermal field, two fictitious layers are added to implement the constant

temperature boundary conditions. The temperature of the fictitious particle x” is set
as [39]

T*(x’*,y*,t*):Z—T*(x*,y*,t*) for X" +x =0and y" =y" (5.131a)
T*(x'*, y*,t*):—T*(x*, y*,t*) for X"+x =2 and y" =y (5.131b)

where x* represents the corresponding fluid particle.

3AX 3AX
f—> fe—>
(b)

Fig. 5-39 Illustrations of PD discretization and boundary implementation for
(@) flow field and (b) thermal field

There are three simulation cases considered. The non-dimensional numbers in the
mathematical model are set as Ra =10°,10* 10° and Pr =0.71. The simulation results

are compared with the ones from the published literature. Firstly, the flow velocity and
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temperature fields at the steady-state are provided in Fig. 5-40 for Ra=10°%, Fig. 5-41

for Ra=10*, and Fig. 5-42 for Ra=10°. The flow patterns and temperature
distributions agree well with the solutions provided in [144, 165, 167, 168].
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Fig. 5-40 Simulation results for Ra=10° and Pr=0.71: (a) horizontal velocity
distribution, (b) vertical velocity distribution, and (c) temperature distribution
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Fig. 5-41 Simulation results for Ra=10* and Pr=0.71: (a) horizontal velocity
distribution, (b) vertical velocity distribution, and (c) temperature distribution
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Fig. 5-42 Simulation results for Ra=10° and Pr=0.71: (a) horizontal velocity

distribution, (b) vertical velocity distribution, and (c) temperature distribution
Later on, the profiles of horizontal velocity, vertical velocity, and temperature on
the mid-plane are compared with the ones provided in [167] and [169], as shown in
Fig. 5-43. In addition, the local Nusselt number along the hot wall (x” =0) is compared
with the reference data provided in [169] obtained by ISPH, as shown in Fig. 5-44. It
can be inferred from the figures that the PD predicted results agree well with the

previous ones.
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Fig. 5-43 Comparisons of dimensionless quantities (a) horizontal velocity on
X =0.5, (b) vertical velocity on y" =0.5, and (c) temperature on y" =0.5.
Reference data is obtained by Danis et al. [169] and Markatos and Pericleous [167].
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Fig. 5-44 Comparison of the local Nusselt number along with the hot wall
(x" =0) for (a) Ra=10°%, (b) Ra=10% and (c) Ra=10°. Reference data is from Danis et
al. [169].

Finally, as a summary shown in Table 5, the representative quantities predicted by
the PD model are compared with the available results obtained from finite difference
method (FDM) [165], finite volume method (FVM) [167, 176], smoothed particle
hydrodynamics (SPH) [157, 169], discrete singular convolution (DSC) [168].

Table 5 Comparison of the representative quantities.

Present
Work [165] [167] [157] [168] [169] [176]
Ra=10%
Vi max 3.731 3.649 3.544 3.431 3.643 3.666 4.077
Yrax 0.818 0.813 0.832 0.812 0.817 0.813 0.806
Vi, max 3.796 3.697 3.593 3.511 3.686 3.720 4.130
X max 0.178 0.178 0.168 0.176 0.183 0.175 0.181
Nu, 1.115 1.117 - 1.033 1.073 1.119 1.114
NU oy 1.506 1.505 1.496 1.392 1.444 1.511 1.581
NuU i, 0.678 0.692 0.720 0.705 0.665 0.689 0.670
Ra=10*
V1 max 16.423 16.178 16.180 17.312 15.967 16.207 16.263
Y max 0.828 0.823 0.832 0.823 0.817 0.825 0.818
V. max 20.082 19.617 19.440 20.051 19.980 19.896 19.717
X 0.118 0.119 0.113 0.112 0.117 0.113 0.119
Nu, 2.253 2.238 - 2.081 2.155 2.257 2.245
NU,. 3.519 3.528 3.482 3.448 3.441 3.543 3.539
Nu i, 0.574 0.586 0.643 0.541 0.528 0.584 0.583
Ra=10°
Vi max 35.441 34.730 35.730 - 33.510 34.745 35.173
Yrax 0.858 0.855 0.857 - 0.850 0.863 0.859
Va max 70.987 68.59 69.08 - 70.81 70.448 69.746
X max 0.063 0.066 0.067 - 0.070 0.063 0.066
Nu, 4,621 4.509 - - 4.352 4.526 451
NU o 7.831 7.717 7.626 - 7.662 7.584 7.636
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NU i, 0.707 0.729 0.824 - 0.678 0.743 0.733

v, : the maximum horizontal velocity on the vertical mid-plane

1,max

yi.. . the corresponding vertical coordinate for the material point with v,

max

v; .. - the maximum vertical velocity on the horizontal mid-plane

*

2,max

X - the corresponding horizontal coordinate for the material point with v
Nu, : the average Nusselt number on the hot wall (x" =0)

Nu,, : the maximum value of the Nusselt number on the hot wall (x" =0)

m

Nu,,,, : the minimum value of the Nusselt number on the hot wall (x" =0)

mi

From the comprehensive comparison between the present simulation results and the
published literature, it can be concluded that the present model is able to accurately
predict the two-dimensional natural convection problem in an enclosed square cavity
for different values of Ra number.

5.6.4. Mixed convection in a square cavity

Thirdly, the problem of mixed convection in a lid-driven square cavity is simulated
in a non-dimensional form. The geometry dimensions and the coordinate definition are
the same as Fig. 5-38. The fluid is motionless at the initial state. An initial linear

temperature field in the vertical direction is defined as [171]
T (XY )=y (5.132)

The boundary conditions are defined as

On x'=0: dT"/ox" =0, v, =v, =0 (5.133a)
On x"=1: aT"/ox" =0, v, =v, =0 (5.133b)
Ony =0:T"=0, v =v,=0 (5.133c)
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ony =1:T'=1, v =1V, =0 (5.133d)

Being similar to the natural convection problem, for the mixed convection problem,
the fluid properties are also assumed to be constant and the viscous dissipation is also

neglected [171]. As a result, the non-dimensional parameters are
1 =LK =1LEc=0 (5.134)

Furthermore, the Boussinesq approximation [175] is also adopted. The non-

dimensional gravity acceleration is approximated as

Gr ]
= —T"=RiT" 5.135
9 =r ( )

where Gr and Ri are the Grashof number and the Richardson number defined as

Gr=&, Ri= Gr2
Pr Re

(5.136)

For PD implementation, the mesh size is chosen as AX" =1/100. The horizon is
chosen as & =3.015AX . The time step size is dt” =1x10" and the total simulation

time is t* =50. The mixed convection problem reaches a steady state at the end of the
simulation time. The boundary implementation approach is the same as the one in the

natural convection simulation.

There are three simulation cases for the mixed convection problem. For all the cases,
the Prandtl number and the Grashof number are fixed as Pr=0.71 and Gr =100. The
Reynold number is set as Re=10, 100, 400 respectively. As a result, the Richardson
number becomes Ri=1, 0.01, 0.000625 correspondingly. Therefore, by varying the
Reynold number, the different Richardson numbers can be obtained.

In order to demonstrate the capability of the proposed model for solving the two-
dimensional mixed convection in a square cavity problem, the steady solution for
Re=400 (Ri =0.000625) is compared with the one provided by Iwatsu et al.[171]. The

velocity profile comparisons are presented in Fig. 5-45. In addition, the comparison of
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the temperature profiles and the local Nusselt number profiles are shown in Fig. 5-46.
It can be inferred from the comparisons that the results agree well with the published
literature [171], validating the present model.
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Fig. 5-45 Comparison of velocity profiles for Re=400: (a) horizontal velocity on
X =0.5 and (b) vertical velocity on y" =0.5. Reference data is from Iwatsu et al.
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Fig. 5-46 Comparison of thermal quantities for Re=400: (a) temperature profile on
X =0.5 and (b) local Nusselt profile at the top (y =1) and bottom (y" =0) wall.
Reference data is from Iwatsu et al. [171]

Later on, the average Nusselt numbers (Nu,,) at the top wall of the cavity (y =1)

are provided in Table 6 for all the three cases. The comparison with Iwatsu et al. [171]

(Nu, ) is also provided. As can be seen from Table 6, the relative error between the

PD and reference results is less than 0.3%. The relative error is calculated as
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Nu,, —Nu
g =2 (5.137)
Nuref

Table 6 Average Nusselt number at the top wall for all the three cases

Present work Iwatsu et al. [171]
Re Ri &,
NU PD NU ref
10 1 1.014 - -
100 0.01 1.937 1.94 0.15%
400 0.000625 3.849 3.84 0.23%

Furthermore, the velocity and temperature profiles on the mid-plane are provided in
Fig. 5-47. The temperature distributions are provided in Fig. 5-48 for the three cases.

* *
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Fig. 5-47 Velocity and temperature profiles for all the three cases: (a) horizontal
velocity on X" =0.5; (b) vertical velocity on y" =0.5: (c) temperature profile on

X =0.5.
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Fig. 5-48 Temperature field distribution for all the three cases: (a) Re=10, (b)
Re=100, (c) Re=400
For a small value of Ri (Ri=0.000625 and Re=400 in this study), the fluid flow is
dominated by the lid-driven force. The buoyancy effect is overwhelmed by the shear
effect. For a low value of Ri (Ri=0.01 and Re=100 in this study), the buoyancy effect
is comparable to the shear effect, leading to a mixed convection dominate situation.
For an equivalent value of Ri (Ri=1 and Re=10 in this study), the buoyancy effect
dominates the fluid flow, leading to a natural convection dominate simulation. The

observations are consistent with the published literature [171, 177].
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5.7.  Summary

In this chapter, the fluid flow governing equations, i.e. Navier-Stokes equations, are
reformulated into an integral form by using the peridynamic differential operator.
Subsequently, the numerical algorithm in total and updated Lagrangian descriptions a
well as Euler description are provided. Several classical fluid flow problems, i.e.
Couette flow, Poiseuille flow, Taylor-Green Vortex, shear-driven cavity problem, are
simulated by the proposed PD model. Furthermore, the developed PD model is applied
to solve problems of free-surface flow as presented in the dam collapse problem. In
addition, the developed model is applied to solve the pure heat conduction, the natural
convection, and the mixed convection problems. The PD predicted results agree well
with those obtained from other solutions, validating the capability of the proposed
model for solving hydrodynamics including free surface flows problems and the

coupled fluid flow and heat transfer phenomenon.

The present model can be further developed for other fluid flow problems such as
multi-phase or multi-component fluid flow problems. Furthermore, since there are
many existing PD models for solids, the fluid-structure interaction can be
straightforwardly implemented by using the non-local models both for the fluid and
the solid. The interaction can be inherently implemented because of the models’ non-

local behaviour.
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6. Multi-phase Fluid Flow Numerical Simulation

Multi-phase fluid flow is a typical phenomenon in the engineering fields, such as
oil and water flow in a pipe, gas-liquid flow in channels, combustions [178] etc..
Therefore, the problem of the multi-phase fluid flow has been intensively and

extensively investigated for years.

For Euler grid-based methods, e.g. the volume of fluid (VOF) [179] and level set
(LS) method [180], the unphysical re-initialization process is needed for large
topological deformation [181]. Compared with the Euler methods, the Lagrangian
particle methods, e.g. smoothed particle hydrodynamics (SPH) [182-185], moving
particle semi-implicit (MPS) method [160, 186, 187], can simultaneously show and
move the multi-phase fluid interface because of their intrinsic non-local property.
Therefore, these particle methods have also been widely applied in the realm of the
multi-phase fluid flow simulation. Taking the SPH method as an example, Monaghan
and Rafiee [183] developed a simple SPH algorithm for multi-fluid flow with
introducing a repulsive force on the interface to maintain the interface sharpness. The
Incompressible SPH (ISPH) scheme is applied in [188] with a velocity divergence-
free projection algorithm to solve the benchmark multi-fluid problems. The
comparative study has been conducted for multi-phase fluid flow to estimate the
available SPH techniques [189, 190]. The state-of-art SPH application for complex
fluid flows is reviewed in [182, 191].

The PD can be applied to simulate the multi-phase fluid flows. Updated Lagrangian
particle hydrodynamics (ULPH) is proposed by Tu et al. by using the non-ordinary
state-based PD concept and updated Lagrangian scheme [132]. Subsequently, the
ULPH has been extended to simulate the multi-phase fluid flow [192]. Wang and
Zhang developed a PD-MPS method for multi-phase fluid flow simulations [187]. In
the previous chapter, the PDDO has been applied to simulate the laminar fluid flow at
low Reynold number [8] and heat-conducting fluid flow [9]. In this chapter, the

previous work is extended for multi-phase fluid flows.
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6.1. Governing equations for multiphase flow

In this study, the fluids are assumed to be weakly compressible, viscous, immiscible,
Newtonian fluids under an isothermal laminar flow condition. The flow governing
equations are reformulated to a Lagrangian form by using the peridynamic differential

operator.
6.1.1. Classical governing equations
The governing equations for each fluid phase in the Lagrangian description are [193]

Continuity equation:
%0 =—pV-Vv (6.1)

Momentum equation:
,o%=—VP+FV+FB+FS (6.2)

where the variables are denoted as density p, time t, fluid velocity vector v, pressure

P, viscous stress F', body force F®, and surface tension force F°.
The viscous stress F' is defined as [193]
F' = u(Av) (6.3)
where 4 represents the dynamic viscosity.

According to the Continuum Surface Force model [194], the surface tension force

is defined as

F° = BxNA+Vf (6.4)
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where f is the surface tension coefficient, A is the unit normal towards the interface

as shown in Fig. 6-1, x is the curvature of the interface, and A is the weight function
representing the surface tension force magnitude distribution. The surface tension
coefficient is set as a constant value. Therefore, the second term on the right-hand side

of Eq. (6.4) which is the gradient of the surface tension coefficient becomes zero, i.e.
VB=0 (6.5)

According to the Continuum Surface Force model [194], a colour function, s, is
given to fluid n (n=1,2 as two-phase fluid flow) to identify the different phases (shown
in different colours in Fig. 6-1). For example,

(6.6)

B 1, for fluid 1
2, for fluid 2

Then, the gradient of the colour function representing the direction of the interface
can be calculated as

c,=Vs (6.7)

g

A

Consequently, the unit normal direction vector, A in Eq.(6.4), can be calculated

based on the normal direction vector provided in Eq.(6.7) as

A=—=— (6.8)

The curvature of the interface in Eq. (6.4) can be calculated as the negative value of
the divergence of the unit normal vector [194], i.e.

k=-V-A (6.9)

The weighted function 4 in Eq. (6.4) represents the distribution of the magnitude
of the surface tension force [193] (the magnitude decays as the distance to interface
increases). Following the conventional choice, the weighted function is chosen as the

magnitude of the gradient of the colour function as [193]
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A=|cy|=|Vs| (6.10)

As a result, by substituting Eq.(6.5), Eq.(6.8), Eq.(6.9), and Eq.(6.10) into Eq.(6.4),

the surface tension force can be expressed as

F° = BxNA+VB=pKVs = ﬂ[—v-m—z'DVs (6.11)

The above governing equations are closed with the equation of state. In the current
chapter, two-phase fluid flows are considered, denoted as phase 1 for heavier fluid and
phase 2 for lighter fluid. Therefore, for each fluid phase (denoted as a subscript n with
n=1, 2), the equation of state can be expressed as [193]

n
Pn = Pref,n & _l + PO,n (612)
pO,n

where p,, is the initial density of fluid n, y, is the material constant for fluid n

ranging from 1to 7. The term P,

ref ,n

is the reference pressure as [193]

2
— pO,nCn

Pref n
Vn

(6.13)
where ¢, is the artificial speed of sound for fluid n. For both fluid phases, the reference

pressures are set to be equal, i.e. B, =P ,=P

r ref *

Besides, the artificial speed of

sound for fluid 1, c,, is chosen as the reference speed of sound. Therefore, the artificial

speed of sound for fluid 2, c,, is calculated as ¢, =c¢ (72/30,1/71/30,2) [193].

The term R, in Eq.(6.12) is referred to as the background pressure to prevent

negative pressure and tension instabilities [193, 195]. The adoption of the background
pressure can keep the particle distribution uniformly to some extent. Therefore, it

should not be too large to create extra particle resettlement and thus induce numerical
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simulation errors [196]. For both fluids, the background pressure is chosen to be

identical as P, =P, =P, =0.05P

ref

for problems with no free surface flow and

R =R, =0 for free surface flow problems [195].

6.1.2. PDDO governing equations

The non-local mathematical model is developed by reformulating the classical

mathematical model by using PDDO.

The non-local form of the continuity equation, the pressure gradient term and the
viscous force term in the momentum equation remain the same as in the single-phase

flow as provided by Gao and Oterkus [8], and they can be presented as follows:

The non-local form of the continuity equation, i.e. Eq.(6.1):

apa(tX) =P (X)IHX 9,(8)-(v(x')=v(x))dv’ (6.14)

The non-local form of the pressure gradient in the momentum equation presented in
Eq.(6.2):

VP(x) =jH (P(x)=P(x))g,(&)dv"’ (6.15)

X

The non-local form of viscous force in the momentum equation presented in Eq.(6.3):

FY = [, 1) (v(x)=v(x))Tr(g (8))av" (6.16)

X

The derivation of the non-local form of surface tension force is presented as follows:

In order to develop the PDDO form of the surface tension force model, the gradient
of the colour function, Vs, should be firstly expressed by using the PDDO formulation

as

Vs(x) :IH (s(x)—s(x))g, (&)dv"’ (6.17)

X
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However, due to the considerable density difference, the weighted function A, i.e.

|Vs|, can be modified to keep the continuity of the acceleration across the interface

[193]. As a result, instead of using the colour function difference (s(x’)—s(x)) in

EQ.(6.17), the inter-particle colour index number can be utilized as [197]

pr 0 H H
——————if xand x’ belong to different phase
(s(x)=5(X))=C(X,X) =1 Po + e (6.18)
0, if x and x’ belong to the same phase
and Eq.(6.17) becomes [197]
Vs(x) =IH C(x',x)g,(&)dV’ (6.19)

X

where p,, and p, , represent the initial densities of particle X and x’, respectively.

As a result, the colour function gradient in Eq. (6.7) becomes

Cy (x):Vs(x):IH C(x',x)g, (&)dV’ (6.20)

X

Consequently, the weighted function in Eq. (6.10) which equals the magnitude of

the normal direction vector becomes

A=[c, (x)|=|Vs =‘ij C(x,x)g,(&)dV" (6.21)

and the unit normal vector A EQ.(6.8) hence can be calculated as

A(x) = 2o (X) _vs _ IHXC(XCX)gl(a)de
( )_\cg (x)| v [ c(xx)g, (é)dv" (6.22)

X

The curvature «(x) in Eq.(6.9) thus can be calculated by the PDDO formulation as

K (X)=-V-A(x)= —J.H (A(x)-N(x))-g,(&)dV"’ (6.23)

X
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According to the explanation given in [198], the normal vector n may have

erroneous direction and small value away from the interface, therefore a cut-off value

(¢ =1.0x10"?/Ax as suggested in [198] ) is set for the normal vector ¢, (x), smaller

than which the unit normal vector f(x) is set to be zero. A function N(x) is defined

to indicate if the unit normal vector is zero as

0, otherwise

1 if
N(x) :{ i ey (X)) > & (6.24)
And the calculation of the unit normal vector ﬁ(x) is set as

ﬁ(x):{cg (x)/‘cg (x)‘ if N(x)=1 (6.25)

0, otherwise

Therefore, the PDDO form of the unit normal direction ﬁ(x) for particle x in Eq.

(6.22) becomes as

0, otherwise

>
—

Fig. 6-1 Surface tension force in the multi-fluid interface region
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The approach for curvature calculation provided in [198] is adopted to increase the
approximation accuracy. An intermediate estimate of the curvature (the divergence of
the unit normal vector V-n) is defined using a sum over neighbouring unit normal

vectors as [198]
K" (x)=—(V- ﬁ(x))* = —IHX min(N(x),N(x'))(A(x")-A(x))-g, (&)dV' (6.27)

The width of the multi-fluid interface region is defined as 26, as shown in Fig. 6-1.
It can be referred from Fig. 6-1 that if the central point X is located at the edge of the
interface transition region, the unit normal vectors of its family members located in the
shaded region in Fig. 6-1 are forced to be zero. In other words, the neighbourhood of
the interface region boundary particle is truncated. Being similar to surface correction

for the boundary particles in peridynamic discretization and the approach adopted in

[198], a correction factor for &~ (x) is proposed as

IHX min (N (x),N(x'))w, (&)dV"

6.28
jHX w, (&)dV’ (6.28)

s (x)=
where w, represents the improved Gaussian weighted function as [154]

EE ( ~(glmy’ e9)/(hdﬂd/z(1_1oe9)),|g|<5 (6.29)

In Eq.(6.29), h represents the smoothing length [154] with its value being set as

h=1.2Ax. The parameter d represents the dimensionality of the problems as d =2

for 2D problems. The term ¢* (x) can reflect the number density of particle x [198].
As aresult, the curvature x(x) in Eq.(6.23) is modified as [198]
K(x) S, MIn(N(X),N(X))(A(x)=A(x))- gl(é)dV’

< (x)= - jHX min (1N (x), N (X)) w, (€)aV /], wy (&) V" (630
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As shown in Fig. 6-1, it should be noted that the unit normal A always points from

the fluid phase itself to the other fluid phase. Consequently, for the calculation of the

curvature, x(x) for central point x , the unit normal direction vector A(x') for the

family member x" is inverted if point x" and point x belong to different fluid phases.
Hence, Eq.(6.30) is modified as

TN A A g €
K(X)=——-=F .
IH min(N(x),N(x'))w, (&)dV'/IH w, (&)dV’
with an additional parameter being added as [193]
{—1, if x and x’ belong to different phases
p= . (6.32)
1, if xand x" belong to the same phases

Finally, the surface tension force is expressed in PDDO form as

F° = BxVs
5 .[Hx min(N(x),N(xX))(pA(x')-A(x))-g, (&)dV’
J-HX min(N(x),N(X))w, (&)dV '/J‘Hx w, (2)dV’

(], c(¢x)g (&)ev')
(6.33)

In conclusion, the non-local form of the momentum equation Eq.(6.2) becomes

X) - (x)-0, (V"
v 1w, &)V’

(JHX C(x, X)gl(%)dv')+ e

(6.34)
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6.2.  Numerical implementation for multiphase fluid simulation
6.2.1. Discretised form of PDDO equations

In the numerical simulation, the updated Lagrangian description provided in Section
5.4.3 is adopted, as explained in [8]. Therefore, the reference configuration is referred
to as the current configuration. The PDDO is reconstructed every time step based on
the updated family member array. Correspondingly, the integral governing equations
can also be expressed by using the discretized particles. The central point is denoted

as i and its family member is denoted as j. Therefore, the continuity equation

Eq.(6.14) is discretized as

R 3 [ AR S PR

j=1
with

& =X —x (6.35b)

i — 7N i

where N; represents the number of family members of point i and & represents the

relative position between particle i and j in the current configuration t =t .

The PDDO form of momentum equation, Eq.(6.34) becomes

(R R)a 5V, s D) (e 8V,
n+l l S 1 A A 1 ’
al - (._ mln(Ni,Nj)(¢nr}'nin)'gl(éir})vi] N, +EF
| 52 ——(Sea)
min (N, N, )wg (&5 )V, /2 we (& )V, N

(6.36)

where a** represents the acceleration of particle i in the updated configuration at

t=t
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Interface implementation is a crucial step for the multi-phase fluid flow simulation.
The discontinuities will present in the interface region. The non-local approximation
near the discontinuous region will suffer numerical errors which will be more serious
with higher-order schemes [188]. As a result, in order to prevent numerical oscillations
and unphysical particle penetrations [191], the viscosity coefficient and the density for
multi-phase interface interaction are smoothed in a harmonic mean interpolation as
[152, 199]

214 1
M+ U
2p,p;
py=—— (6.38)
Pt P,

where 4 and u; represent the viscosity coefficients of particle i and j. Similarly,

p, and p; are the densities for particle i and j, respectively.

The velocity and displacements can be predicted by using the Euler forward method
(1% order) or the Velocity Verlet algorithm (2" order) [200] as

Euler forward method:

Vit =v! +aAt (6.392)
ut =ul + vIrAL (6.39b)
XM =x) +u (6.39c)

Velocity Verlet algorithm:

1
vt =y = (a™ +a" ) At 6.40a
(e +2) (6.402)
n+1 n n 1 n 2
u'"” =u, +viAt+§aiAt (6.40Db)
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X =x+u (6.40c)

where the displacement of particle i is denoted by u;. The term x’ represents the

initial coordinate for particle i, and x["** represents the updated coordinate at t =t , .

The time step size At should satisfy the CFL condition for Kinetic, viscous, body

force and surface tension force fields, shown as [195]

2 min( pyy, P4, )N°
At <min h 1 h 1\/5 1\/ (po,1 /70,2) (6.41)

|Vmax|+C2 ’g max('ul/po,l’ﬂzlpoz), o "4 273

where h is the smoothing length, |Vmax| is the maximum fluid particle velocity, u is

the viscosity coefficient, p is the fluid density, g is the gravity acceleration, and S
is the surface tension coefficient. The artificial speed of sound for the lighter fluid is
larger than the one for the heavier fluid on the condition of same material constants

7, =7, . Therefore, the value of c, is used for the constraints on the time step size.

6.2.2. Boundary Treatment

6.2.2.1 Boundary conditions for solid wall

In the present work, the fictitious particles are employed to represent the solid

boundaries as described in [8, 9].
Non-slip boundary conditions

The velocities of the fictitious wall particles can be calculated based on the velocities
of the fluid particles. As illustrated in Fig. 6-2, for the non-slip solid boundary

condition, the velocity of the solid fictitious particle i, is calculated as [152]

i

S

v?:2vwa||—£iwo( )v?+iw0( )v’k‘j (6.42)
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where N, and N, represent the number of family members of material point i that
belongs to fluid 1 and 2, respectively. Note that material point k and j cannot be

fictitious wall particles, i.e. in Eq.(6.42) fictitious wall particles are not included in the

family members of material point i.

Furthermore, particles j and k represent the family members of the solid particle

i, where particle j belongs to fluid 1 and particle k belongs to fluid 2. Their
velocities in the current configuration are denoted by v/ and v, respectively. The

parameter v, ., denotes the prescribed solid wall velocity. The second term on the

wall

right-hand side represents the weighted fluid velocity summation. In Eqg. (6.42), w,

represents the improved Gaussian weighted function as provided in Eq. (6.29).

Interface region  Fluid-fluid interface

\
1

\
\
\
1
I
1
1
1
1
1
1
1
1
1
1

\
1
l
1
1
1
1
1
1
1
1
1
1

Fluid 2
,/ k ,'l
};IQ E.O Solid-fluid
; ik ;
Fictitious I interface
wall particle
AX

Fig. 6-2 Boundary and interface illustration

The pressure of the solid fictitious particle is calculated based on the fluid particles

according to the formulation provided in [152] as

N

Z(Pj +(FjB _pjawau)'éir} )Wo (é:})+i(Pk +(FkB = P@yan )'éink)wo ( E.unk )
p =i kel (6.43a)

> )+ S ()

j=t
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Ff =00 F =pn9; (6.43b)

where P, and B represent the fluid pressure. FjB and F? represent the body force of

the fluid particles. In the current chapter, the body force is calculated as Eq. (6.43b)

with g representing the gravitational acceleration. a,, represents the acceleration of

wall
the solid wall. Please note that in Eq.(6.43a) fictitious wall particles are not included

in the family members of material point i.
Slip boundary condition for solid wall

For the slip boundary condition, the viscous forces are neglected for fluid-solid

particle interactions (FV = O) and the velocity of the fictitious wall particle is set as

[152]

V' =V (6.44)

i = Ywall
The pressure of the fictitious solid particle is calculated according to Eq.(6.43a).
6.2.2.2 Boundary collision model

If the fluid particle penetrates the solid wall in the updated configuration, the
velocity of the fluid particle needs to be corrected [201]. In this case, the boundary
collision model [201] can be applied where the solid wall is simulated as a reflective
boundary condition as

(vpﬂ)”’"e“‘e":(v.“+1)—2((v.“+l—vwa”)-ﬁwa,,)ﬁ if (V)™ Vo ) Py <O (6.45)

i i wall ? wall

where f,,, represents the unit normal direction of the solid wall, as shown in Fig. 6-3.

wal

The velocity correction in Eq.(6.45) is illustrated in Fig. 6-3.
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ﬁ ( ! ) na1 \corrected
wall ( i )
corrected 4 \
Vn+1 ’\\/;\_ Vn+1 n
i Vi X;

Solid wall

1 : .
X, ’ (Particle Penetration)

Fig. 6-3 Sketch for solid wall collision model

6.2.3. Particle shifting technology for preventing particle clustering

For the particle methods such as SPH, the instability problem may occur when the
particle distribution becomes highly distorted [202]. The numerical errors induced by
the irregular particle spacing may dominate the results especially in the later stage of
the numerical simulations. The same problem also happens in the PD field, as
explained by Silling et al. [133]. To avoid the particle clustering phenomenon or the
instability problem, the particle shifting technology (PST) [159] is widely applied in
the fluid flow simulations [202-207]. The particles will be nearly uniformly distributed
after shifting; thus, the singularity of the particle distribution will be reduced.

Therefore the particle positions can be modified by using a shifting displacement [159]:
(Xim_l )corrected _ X.O 4 (u.m'l )shifted (646)
The shifting displacement for particle i can be found as

(U™ =urt +(su,)™ (6.47)

In Eq. (6.47), the parameter (5u;)” represents the shifting distance and it can be

defined as

(6u;

) PST

= Cosr psr U, (6.48)
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where C,; is apredefined constant ranging from 0.01 to 0.1 depending on the specific

problem and a,; is the shifting magnitude which can be defined as [159]
ot = |V | At (6.49)

where |V, | can be chosen as the magnitude of the largest velocity overall fluid

particles or it can be estimated specifically according to the specific problem [159] .

In Eq. (6.48), the parameter U, represents the displacement shift-vector which can

be defined as [159]

U, =i‘ ;‘2 i (6.50a)
with
&i
o= 6.50b
g'J glr] ( )
1 Gy
“fu‘ = WZ Si (6.50c¢)

where ‘E, ‘ represents the average spacing between the central point i and its family
members (e.g. J) [159] and ¢; represents the unit distance vector between particles i

and j. Note that, the summation of ¢; in Eq. (6.50a) can reflect the anisotropy of the

current particle distribution [159] and the term (‘5_,‘2 /

i

2) acts as a weighted function

in the formulation. According to [203], numerical errors will be induced if the shifting

distance is much larger than the initial spacing distance Ax . Therefore, an upper limit
PS

for the particle shifting distance, (Su, ) " is imposed as 0.2Ax [203]. As an optional

procedure, the velocity and pressure can also be corrected based on the displacement
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shifting. The corresponding details are provided in Appendix E. The flowchart of the
PST is provided in Fig. 6-4 as

Start
'
Loop1:PD node, .False.
i<:Nnode
| True.
.False. Loop 2: family
member of node i, DE—
j<=N; j+1

| True.
Calculate average spacing, Eq.(6.50c) J

3
False. Loop 3: family
member of node i, —
j<=N; j+1

| True.
Calculate U; according to Eq.(6.50a)

Calculate shifting distance according to
Eq.(6.48)

Shift displacement according to
Eq.(6.47)

Correct particle position according to
Eq.(6.46)

Correct velocity components according
to Eq.(E.5) and Eq.(E.6) (optional)

Correct pressure according to Eq.(E.7)
(optional)

End

Fig. 6-4 Flowchart for PST algorithm

6.2.4. Moving least square algorithm for multiphase fluids

It is known that the free movement of the particles may create the “pressure
instability” problems for Lagrangian particle methods, where the mass is not conserved
and the great oscillation occurs in density and pressure [208, 209]. In order to
overcome this problem, velocity, pressure and density values are smoothed by using
moving least square (MLS) algorithm [153, 210]. The algorithm is introduced to
hydrodynamics by Dilts [153]. In the present chapter, the first order MLS [154]
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provided in Section 5.4.6.2 is modified for multi-phase fluids flow density smoothing
as [208]

227 whs (55)V,

n smoothed [
p = n (6.51)
( ) ZWMLS (aij )Vj
]
with
(Fr)-R )
P')-PR |7 for fluid 1 for fluid 1
~n j 0 71 Poz
"= —L — +1 cand v, = L0y = ’ . 6.52
(PJ) [ 3 ] Poi 4 {]/2 for fluid 2" ! {,00’2 for fluid 2( )

where w,,,; (&} ) is provided in Eq.(5.113). The parameter p, is the initial density of

particle i. The correction in Eq. (6.52) can be considered as converting the phase of

particle j into the phase of particle i[208].

6.2.5. XSPH displacement smoothing

Compared to the PST introduced in Section 6.2.3 for the large irregular particle
distributions, a simpler XSPH method can be chosen for less irregular particle
distributions to save computational time. The formulation in XSPH method [128] is

adopted here to only update the displacements as

(ui"”)ShiftEd =u™ 4 (5u,)" (6.53a)
with
(5 )XSPH _ Zm (pin+p?)(vn_vn)w (én) At (653b)
i - i 2pin ;1 j i 0 ij )

where y is an adjustable parameter as 0< y <1 [128] and m. is the mass of particle

i which can be calculated as
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m =,V (6.53c)

6.2.6. Artificial viscosity

To reduce the undesirable oscillations, the artificial viscosity, [1, widely applied in
SPH method [128] can be utilized and incorporated into the current PDDO model.
According to [128, 211], the momentum equation Eq.(6.2) can be modified by
including the artificial viscosity form as

p%=—VP+FV +FP+F° +VII (6.54)

where the SPH form of the gradient of artificial viscosity, [, for particle i is

expressed as [189]

o ahcavg ( -V ) .gi]
N —v.)-& <0
VIIL = Jz—ll “%ij‘ +(0.1h)* (VIW“ )V’ or (VJ V') & <

0, otherwise

(6.55)

where W;, represents a weighted function in SPH method.

In Eq.(6.55), c,,, is the average value of the artificial speeds of sound of particle i
and j. Inspired by SPH method [128], the gradient of the artificial viscosity term [,

is reformulated by replacing the SPH gradient operator with PDDO as

-ahcavg(T v)é‘; or (V'-V! <
I VRIER

0, otherwise

VIl = (6.56)

where h=1.2Ax (being same with the one in MLS scheme) [212] and the empirical
constant « which generally ranges from 0.01 to 0.1 [128]. In this chapter, the
empirical constant is chosen as « =0.02 . Finally, the flowchart of the algorithm

including surface tension calculation is provided in Fig. 6-5 [8].
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Start

v
Initialize geometry and material
parameters such as density, viscosity

etc.
+

Spatial discretization: Generate PD
nodes
|
Apply initial conditions
b
.False. Loop 1: Time
integration
n<=N,
| .True.
Update the configuration according to
Eq.(6.40c) n+1
4
Update the family member array for
each node
12
Loop 2: over PD
node, i<=N g4
I True.

MLS algorithm:
Mod (n,n,s)=0 ?

| .False.
PD differential operator construction
!
Apply solid boundary conditions

|

Calculate Pressure gradient according to
Eq.(6.15)

.False.

.True.

Calculate viscous force according to
Eq.(6.16)
|

Calculate surface tension force
according to Eq.(6.33)

Calculate artificial viscosity according
to Eq.(6.56) (optional)
|

Update density according to Eq.(6.35a) MLS procedure

|

Update pressure according to Eq.(6.12)

Update acceleration according to
Eq.(6.36) or Eq.(6.54) when artificial
viscosityxincluded

Update velocity according to Eq.(6.39a)
or Eq.(6.40a)
!

Update displacement according to
Eq.(6.39b) or Eq.(6.40b)

PST as Fig. 6-4 or XSPH as Eq.(6.53)
(optifnal)

Apply boundary collision model,
Eq.(6.45) (optional)

End

Fig. 6-5 Flowchart for the multi-phase fluid flow simulation by the PDDO model
including the surface tension force calculation
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6.3. Numerical simulations

In this section, some multi-phase fluid flow benchmark problems are solved by
using the newly developed PDDO model. First, the two-phase fluids hydrostatic
problem is simulated to validate the energy conservation of the PDDO model. Second,
the two-phase Poiseuille flow simulation is conducted to validate the multi-viscosity
coefficient treatment. Subsequently, the 2D droplet deformation under the surface

tension force is simulated to validate the surface tension PDDO formulation.
6.3.1. Hydrostatic test

In the section, a hydrostatic simulation is conducted to study the energy conservation
of the current PDDO model [208]. The stationary fluids with their properties being

Po 4 =3000 kg/m®, p, ; =1000 kg/m® and x, = u, =107 kg/ms [186] are in an open
container with dimensions being LxW =0.05mx0.03m, as shown in Fig. 6-6 (a).
The gravitational acceleration is |g|=9.8 m/s®. For fluid particle i, it is implemented

as

FB—{ 0 } (6.57)
L _pi|g| .

The maximum velocity of the fluid is estimated as |V, |=|g|W /2 ~0.383 m/s

[142] and the material constants are y, =y, =1. The artificial speeds of sound are

hence chosen as 10 times of the maximum velocity as ¢, =c; =10V, 3.83m/s

[183]. The background pressure is setas P, =0 since the free surface is involved [195].
As shown in Fig. 6-6 (b), 40x24 PDDO particles are distributed in a uniform form
with the initial particle spacing is set as Ax =1.25x10° m. The horizon size is chosen

as 0 =3.6Ax. In order to save the computational time, only one fictitious layer is

imposed to simulate the solid wall. The solid wall boundary conditions are

x=0,x=L,y=0:v,=v, =0 (6.58)
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where v, and v, are the horizontal and vertical components of velocity. Consequently,

the boundary conditions are implemented by forcing the particles in the fictitious layer

having the velocities calculated according to Eq.(6.42) with v, =0. In addition, the

wall

pressures of the fictitious solid particles are calculated according to Eq.(6.43a).
The real fluid particles on the free surface are forced to have the constraint as
y=W:P=0 (6.59)

The velocities of the free surface fluid particles are updated according to Eq.(6.36)
and Eq.(6.39a).

The simulation time step size is chosen as At =107 s with total simulation time as
t=1.0s. The MLS algorithm is performed every 20 time steps, i.e. n,, s =20[154].
The XSPH modification in Section 6.2.5 with the constant being y =0.08 [189]. The
Velocity Verlet algorithm in Section 6.2.1 is adopted. The PST is not applied in this

case. The surface tension force is not included since it is neglectable compared with

the gravity force. The artificial viscosity is not used.

0.05 |
0.04 |
Fluid B
W/2 o8
P Hp W = | RESEESSESEE:
x P
0.00 | :: : :
I |
! L ! 0.‘00 O.I01 0.2)2 0.2)3 0.‘04 O.E)S
x (m)
(@) (b)

Fig. 6-6 Schematic of hydrostatic problem: (a) Geometry illustration and (b) PDDO
discretization

The analytical solution for hydrostatic pressure is calculated as

pB,anaIyiicaI = Ps |g|(W - y) (660)
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pA,anaIyticaI = pB |g| (W/Z) +,0A |g|(W/2 - y)

(6.61)

where y represents the vertical coordinate. The time history of the predicted pressure

and kinetic energy at (x,y)=(0.025,0.015) are presented in Fig. 6-7. The PDDO

results are compared with analytical solutions. The pressure profile along the mid

vertical line x =2.5x10> m is compared with the analytical solution, as shown in Fig.

6-8 (a). Furthermore, the deformed configuration at the final time is presented in Fig.

6-8 (b). It can be observed that the PDDO results agree well with the analytical

solutions. Thus, the capability of the present PDDO model for solving the two-phase

hydrostatic problem is demonstrated. Besides, the energy conservation of the model is

also validated.
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Fig. 6-7 Time history of (a) pressure and (b) kinetic energy at (X, y)=(0.025,0.015).
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Fig. 6-8 Variation of pressure distribution at (a) x =2.5x107 m (b) deformed
configuration at t =1s

6.3.2. Two-phase Poiseuille flow

The two-phase fluids laminar flow within two infinite plates has been studied [213]
as a benchmark problem in the field of multi-phase fluid flows. As shown in Fig. 6-9,

two adjacent immiscible fluids Poiseuille laminar flow is simulated by using the
developed PDDO model. The flow domain has the dimensions as L=2b=10"m.

The top and bottom boundaries are stationary and non-slip. The boundary conditions
are

At y=-D

vV, =V, =0 (6.62)
At y=b

V=V, =0 (6.63)

Consequently, the velocities of the fictitious solid particles are calculated according
to Eq.(6.42) with v, =0. In addition, the pressures of the fictitious solid particles

are calculated according to Eq.(6.43a).
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The initial conditions for all particles including the fluid particles and the fictitious

solid particles are:

v.=v, =0 (6.64)

A pressure gradient is applied as a body force per unit mass as F =2x10* m/s?

over both fluids in the x direction, as for particle i

B _ pF
o o5

The densities of both fluids are the same as p, , = p,  =1000 kg/m®. The viscosity
coefficient of fluid B is fixed as z, =107 kg/ms . The viscosity coefficient of fluid A

has three different values, namely, 2x107° kg/ms, 5x107 kg/ms and 10x10~° kg/ms.
The material constants both for fluid A and B are set as y, =y, =1. The maximum

velocity of the fluid is set as |V 8.7x10° m/s [188]. Hence, the artificial speeds

of sound become c, =c, =8.7x10° m/s [128]. The background pressure is not
adopted for this simple laminar fluid flow case. In the PDDO simulation, an initial

particle spacing of Ax=1x10"m is adopted. The time step size is chosen as

At =1x10"° s. The total simulation time is chosen as t = 0.6 s to achieve a steady state

at the end of the simulation. The fluids are stationary at the initial state. Since the
surface tension effect is small and neglectable compared to the applied body force, no
surface tension force is applied. The PST, the MLS, the XSPH, and the artificial

viscosity are not used in this case. The Euler forward scheme is used.
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Fig. 6-9 Schematic of two-phase Poiseuille flow

The analytical solutions of the horizontal velocity for the two fluids are provided by
Bird et al. [214] as

o ( 24, j{m—ﬂsj(zj_(ijz (6.664)
AX .
2, Hp+ Mg Hp T Hg b b |

v LeFD ( 2u, ) {m—%}(l}(lj (6.66h)
T 2u Hp+ Mg Hat g )\ b b .

where v, . and v, , represent the horizontal velocity for fluid A and B respectively.

The term y represents the vertical coordinate. The analytical average velocities are

calculated as [214]

2
vAx :lJ.O VA xdy = pr 7ﬂA +IUB (6673.)
©obde ™ 12410 \ pa+ Mg
2
\7Bx=1 bVBxdy=pr Ha Ty (6.67b)
" b0 ™ 125\ pp+ 4
v =(v, +v, )2 (6.67¢)
X A X B,x
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where v, and v, represent the average horizontal velocity for fluids A and B

respectively. The average horizontal velocity over the whole flow domain, i.e. V,, is

calculated according to Eq.(6.67c).

The comparison between the PDDO and analytical solutions of the normal velocity

v, /V, at the steady-state is provided in Fig. 6-10. It can be inferred from the figure

that the results agree well.
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Fig. 6-10 Comparison of the horizontal velocity profile between the PDDO results
and analytical solutions in three different viscosity coefficient ratios at t =0.6s.

A convergence study is also carried out for different resolutions and viscosity

coefficients, namely Ax=5x10°m, 3.3x10°m, 2x10°m, and 1x10° m for

Ul =10,5,2, respectively. The error can be calculated as

&

2
Z(VX,PDDO — Vy analytical )

(6.68)
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From Fig. 6-11, it can be observed that the numerical simulation error decreases
with increasing PDDO particles. Furthermore, the error becomes larger with larger

viscosity ratios.
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Fig. 6-11 Rate of convergence for two-phase Poiseuille flow in three viscosity ratios

6.3.3. 2D droplet deformation

To validate the surface tension model, a 2D square droplet deformation simulation
is conducted as previous ones [186, 192, 195, 197]. A square droplet containing fluid

A with sides |, =0.6 m is located in the centre of a container with its sides being
L=1m, as shown in Fig. 6-12 (a). The droplet is surrounded by fluid B. The two
fluids have the same density and viscosity coefficient as p, = p, =1kg/m*® and
U, = 1y =0.2 Pa-s. The surface tension coefficientis setas £ =1N/m [186, 192, 195,
197].

The initial condition is
att=0:a=0,v=0,u=0 (6.69)

The non-slip solid boundary condition is applied. As shown in Fig. 6-12 (b), the
fluid domain is discretized by 80x80 particles and three layers of the fictitious

particles are imposed to represent the fixed solid boundary as
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X=—L/2,x=L/12,y=-W/2,y=W/2:v,=v, =0 (6.70)

Therefore, the velocities of the fictitious solid particles are calculated according to

Eq.(6.42) with v, =0. The pressure of the fictitious solid particles is calculated

wall

according to Eq.(6.43a). On the fluids interface, the surface tension force is included.

The horizon size is chosen as 6 =3.6Ax . The speed of the sound is set as

c, =Cz =10 m/s and the material constants are y, =y, =1. The maximum velocity

c,/10=1m/s [128]. Furthermore, the

max|_

magnitude thus can be calculated as |V
background pressure is calculated as P,=0.05P, =0.05p,,Ci/y, =5Pa as
explained in Section 6.1.1. The time step size is chosen as At =1x10™ s and the total
simulation time is t =1s. The MLS algorithm is performed every 20 time steps, i.e.
Nys =20 [154]. The PST without pressure and velocity correction is performed as
well. The constant in PST is chosen as C.; =0.01. Besides, it can be calculated

according to Eq.(6.49) as a,s; =1x107* m. The artificial viscosity in Section 6.2.6 is

adopted to make the simulation more stable. The velocity Verlet algorithm is used.
The XSPH is not used in this case.

yA
Fluid B
I, .
X
FludA |}
e |_ >
(a) (b)

Fig. 6-12 2D square droplet deformation under surface tension force (a) geometry
sketch and (b) PDDO discretization with 80x80 nodes
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The evolution of the droplet configuration is provided in Fig. 6-13. It can be
observed from the figure that at the equilibrium state, the square droplet is transformed
in a circular shape. The radius of the final circular droplet can be calculated as
R=1,/\Jz ~0.338m ( 7R*=12 with incompressible hypothesis [186, 192, 195,

197]). Consequently, the pressure drop between the two phases is calculated according
to Laplace’s law as [208]

Ap = fx ===~ 2.954 Pa (6.71)

T ™

where the inner fluid has a higher pressure to balance the surface tension force. The

pressure profile along the horizontal line y =0 with different resolutions is provided
in Fig. 6-14(a). The time history of the average pressure difference AP =P, —P, is

provided in Fig. 6-14 (b) where P, and P, represent the average pressure of the fluid

particles for fluid A and B which are not in the interface region, respectively. The
pressure distribution is provided in Fig. 6-14(c). Due to the viscosity force, the kinetic
energy of the square droplet will decrease with time increasing, leading to a steady
state finally. The time history of the kinetic energy and the velocity distribution at the
final stage are provided in Fig. 6-15. With the refinement of the resolution, the
magnitude of the kinetic energy decreases at the quasi-equilibrium state, within the
1x10°° level for 80x80 particles. However, it can also be observed from Fig. 6-15 (b)
that even for the quasi-equilibrium state, the oscillation of the interface still exists.
This oscillation, also can be noted as the spurious current, may be created by the slight

variation of curvature because of the discrete nature of numerical approach according

to the explanation given in [215]. The L, norm [215] defined as L, = Zi“

V|IN e 1S

2 -
v| /N2 is 7.9x107° at the

node

3.3x10°°, and L, norm [215] defined as L, =\/ZlN

final time.
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Fig. 6-13 Particle distribution at time (a) t=0.1s, (b) t=0.3s, (c) t=0.5s, and (d)
t=1s with 80x80 particles
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Fig. 6-14 Pressure profile (a) comparison with analytical solution along y =0, (b)
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Fig. 6-15 (a) Time history of the kinetic energy of the inner droplet and (b) velocity
distribution at the final state for 80x80 resolution

The orientation and magnitude of the surface tension force obtained by the current
PDDO model are provided in Fig. 6-16 (a). Besides, the SPH result [195] is provided
in Fig. 6-16 (b) for comparison. It can be observed that all the surface tension forces
are pointing to the centre of the inner droplet, being perpendicular to the interface.
Because the interparticle index numbers used in this section are always positive, the
normal vector always points out to the other fluid phase. In other words, the normal
vector of fluid particle A points to fluid B and the normal vector of fluid particle B
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points to fluid A. However, the curvatures on the two sides of the interface belonging
to the two different fluid phases have opposite sign values, one being positive and the
other being negative. As a result, the final surface tension forces always point to the
centre. Also, the magnitude of the surface tension force decreases from the interface

to the edge of the interface region.
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Fig. 6-16 The direction of the surface tension force and magnitude (a) obtained by
PDDO for 40x40 nodes and (b) obtained by SPH 40x40 nodes [195]

Furthermore, two more simulation cases are conducted: case 1 for
R.aio = Ma!tta = pslp, =10, and case 2 for R, = 1/ 14s = pg/ps =5, as shown in
Table 7.

Table 7 Density and viscosity values for different cases

nurcr:li)seer pa(kom®)  p (kgm®)  p(Pass) g (Pas) Reto
5 1 1 0.2 0.2 1
1 1 5 0.2 1 5
5 1 10 0.2 2 10

The final configurations of the droplet for both cases are provided in Fig. 6-17 (a)

and (b). The pressure profiles along y=0 for R . =1, R _. =5 andR . =10 are

ratio ratio ratio

provided in Fig. 6-17 (c) for comparison. It is interesting to see that the case of
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R.., =5 has the worst accuracy among all these three cases. According to the

ratio
investigation in [195], both a smaller viscosity coefficient ratio and a larger density
ratio can give less accurate results. In the current study, the accuracy of case 2 which
has a relatively smaller viscosity coefficient ratio and a smaller density ratio is less
than the one of case 1 which has a relatively larger viscosity coefficient ratio and a
larger density ratio. Therefore, in the present work, the ratio of the viscosity coefficient

has a larger effect than the ratio of density on the accuracy of the simulation results.
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Fig. 6-17 Particle distributions at time t =1s with 80x80 particles for (a) case 1,
and (b) case 2. (c) pressure profiles comparison
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6.4. Summary

In this chapter, a multi-phase fluid laminar flow model is developed by using the
peridynamic differential operator. The surface tension force originally from the
Continuum Surface Force model is converted into a PDDO expression. The developed
model is applied to solve the multi-phase fluid flow problems, e.g. two-phase
hydrostatic problem, two-phase Poiseuille flow, 2D droplet deformation. The good
agreements between the PDDO results and the existing results demonstrate the

capability of the present model for the multi-phase fluid flow simulations.
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7. Fluid-Structure Interaction Numerical Simulation

7.1. Introduction

Fluid-structure interaction (FSI) is a class of problems with mutual dependence
between the fluid and structural mechanics parts [216]. The FSI phenomenon widely
exists in the engineering field, e.g. liquid sloshing [120], slamming [217], etc..

Therefore, it has been extensively and intensively studied for years.

There are mainly two types of simulation methods, i.e. simultaneous methods and
partitioned methods. When the coupling between the fluid and structure is strong, or
the fluid motion and structure deformation are comparable, it is convenient to employ
a simultaneous solution [218]. One popular method is the Arbitrary-Lagrangian-
Eulerian (ALE) formulation for coupling the fluid described by Eulerian formulation
and the structure described by Lagrangian formulation [219]. The immersed boundary
method (IBM) couples the Eulerian fluid and the Lagrangian structure via interpolation
in a bi-directional way [220]. Another promising solution falls into the category of
fully Lagrangian description in which both the fluid and the structure are formulated
in Lagrangian form. Taking the smoothing particle hydrodynamics (SPH) as an
example, Antoci et al. [218] develop a coupled SPH-SPH model to simulate the
behaviour of fluid and elastic structure by their SPH form governing equations. The
SPH-SPH model predicted results are compared with the ones obtained by the
experiment, achieving a good agreement. A multiphase SPH model has been employed
by Ruben Paredes and Len Imas [221] to solve the fluid-structure interaction problems.
The simulations of the sloshing problems and the elastic gate problem are conducted
to verify their pure SPH model. Furthermore, a complex fluid-structure dam-breaking
problem is studied in [222] with using the multi-phase SPH method coupled with
Adaptive-Particle-Refinement (APR) technique. An enhanced incompressible SPH-
SPH coupled method is proposed by Khayyer et al. [223] to simulate the
incompressible fluid and elastic structure interactions. The divergence-free property
of the fluid velocity field is guaranteed by solving the Poisson Pressure Equation (PPE).
Besides, a dynamic stabilizer technique is employed [224] to overcome the tension

instability issues. The state-of-art development of the SPH-SPH or SPH coupled with
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other methods methodology for FSI problems is reviewed by Moubiu Liu and Zhiliang
Zhang [225]. For example, the discrete element method (DEM) can be coupled with
the SPH method for solving the FSI problems, where DEM is used for the structure
modelling while SPH is adopted for the fluid modelling [226]. In the study of Wu et
al. [226], the free surface flow, as well as the structural failure, is considered. Besides
the application of SPH on FSI problems, the moving particle semi-implicit (MPS)
method has also been utilized for the FSI problems. A multi-resolution MPS model is
developed by Khayyer et al. [227] for the incompressible fluid-elastic structure
interaction simulations. In their study, the problem of sloshing with an elastic baffle is
simulated. The good agreement between the numerical results and the experiment
results validates the accuracy of their model. Furthermore, an MPS model considering
a dynamic equation of angular momentum conservation is proposed in [228] for FSI

problems corresponding to the incompressible fluid flow and elastic structures.

Since the PD theory is initially proposed for solid mechanics, the published PD
models for FSI problems are rare. A coupled PD-IBM methodology is developed by
Barba et al. [229] for hydraulic fracture problems. The BB-PD theory is adopted for
structure behaviour simulation and the open-source CaNS parallel code is utilized for
fluid modelling [229]. Liu et al. [212] develop a PD model for FSI problems to
simulate ice-water interactions. The BB-PD is also used for ice modelling with
including the ice breakage [230-232]. The updated Lagrangian particle hydrodynamics
(ULPH) proposed by Tu et al. [132] is utilized to simulate the fluid flow. Being
different from the aforementioned PD models, this chapter discusses an FSI model
where the elastic structure is simulated by OSB-PD and the fluid is modelled by PDDO.
As a result, the elastic structure can have any material properties. At the same time,
the integration of the non-local fluid governing equations, i.e. Navier-Stokes equations,
can be only performed once since the PDDO can achieve higher-order derivatives

converting [8].
7.2.  Numerical implementations for fluid-structure simulation

The algorithm of the interaction implementation between the fluid and the elastic
structure is a key issue in FSI problems. As illustrated in Fig. 7-1, two different sets of

244



PD particles are used to represent the structure and the fluid, i.e. green particles for
structure and blue particles for fluid. For the particles near the fluid-structure interface,
I' , there are four kinds of PD interactions between them: structure-structure
interaction (green colour), fluid-fluid interaction (blue colour), structure (central)-fluid
(family member) interaction (red colour), and fluid (central)-structure (family member)

interaction (yellow colour).

For the first two kinds of interactions (the single-phase interactions, the green one
and blue one), the OSB-PD model and PDDO model can be utilized to simulate the
solid and fluid, which is presented in Section 7.2.1. The numerical implementation for
the other two kinds of PD interactions (the red one and the yellow one) is presented in
Section 7.2.3.

0.

/
/
S/
B
/

Fig. 7-1 Fluid-Structure interface illustration

7.2.1. Discretised form of PD governing equations
The governing equations are expressed by using the discretized forms.
Equation of motion for mechanical deformations:

Nsi

il 26.ad A V.
TRl o SO0 (g, +0,,)+45s, RATIR TRV W )
Ps j=1 Xs,j —X ys,j —Ysi P

S,i S
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san+l

where U} is the acceleration of solid particle i at time step n+1. N, is the total
number of the family members belonging to solid of solid particle i. x; and x ; are
the initial positions of solid particle i and j. Correspondingly, y,; and y_ ; are the
current positions of particle i and j. 6,; and &, ; are the dilatations of particle i and
j, provided in Eq.(2.10). s; is the bond stretch between particle i and j, provided in
Eq.(2.7). V ; is the volume of the solid particle j. The subscript (5) denotes the solid

particles. The superscript (”*1) denotes the updated configuration.

Navier-Stokes equations for fluid:

Ny

P = =LA (Vi Vi) 6

yr;,j _y?,i ):|an,j (7.2)

Nt
U?Jrul :ﬁ[ﬂf Z(V?,j _Vrf],i)Tr(gz(y?,j -Yi, ))an,jJ

fi j=1

1 Nf’i n n n n n 1 n+1
T T Z(Pf,j _Pf,i)gl(yf,j —Yi.i )Vf,j +be,i

fli =1 fli

(7.3)

n+l rin+l

The subscript (f) denotes that the particles belong to fluids. pf7 and UY

represent the density and acceleration of fluid particle i in the updated configuration

t=t .. N, is the total number of the family members belonging to the fluid system

n+

of particle i. V{, is the volume of fluid particle j in the current configuration.

The velocity, displacement, and position for solid and fluid particles are updated by
the velocity Verlet algorithm (2" order) [200] as

1 1
Vit =V, +§(U2’Tl +0y, )At V=V +E(U’;fil +U7 )At (7.4)

1 1
ultt =ul, + VoAt + > Ul,At Uty =uf, + Vi At+ > uj.At? - (7.5)

si S,i
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Yeor =Xgi+Ug, YiT =X +UTy (7.6)
In the present study, a uniform initial node spacing is adopted for both fluid and

solid. Hence the horizon size for fluid &, and the horizon size for solid &, equal to

each other, i.e. 5, =5,=0.

7.2.2. Numerical treatment for the fluid model

7.2.2.1 Free surface detection

Similar to MPS scheme number density is calculated for detecting the free surface
as proposed by Koshizuka et al. [233]. The number density can reflect the number of
family members where a larger one represents more family members and a smaller
represents fewer family members. The initial and current number density can reflect
the level of the number of family members in the initial and current configuration,
respectively. The initial and current number densities of particle i are calculated as
[233]

dO (i Z( (s ¢/’ egj/(nhz(l—loeg)) (7.7)

dm (I) — 'Ni [e(yjy‘/h)z —egj/(ﬂh2 (1—10679 )) (7.8)

where h is the smooth length defined as h=1.2Ax [139]. Particle i will become a

free-surface fluid particle, and its pressure will be forced as P =0, if the following

criterion is satisfied [233]
d™(i)<0.9d (i) (7.9)

7.2.2.2 Fluid-structure interface collision model

The fluid-structure interface collision model is applied for preventing material
points to enter the solid structure [234]. The solid wall is simulated as a reflective
boundary condition.
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Fig. 7-2 Collision model for fluid-structure interface condition

In Fig. 7-2, the fluid particle at y, is located within the fluid-structure interface

region (defined in Fig. 7-1). The solid particles within the interface-nearest layer (these
solid particles have the shortest distance to the interface) are considered here as the

family members of fluid particle at y, , i.e. the solid particle at y. belongs to the

family members of fluid particle at vy, .

A fictitious particle at y,,, =y, —0.5AxA(y,) is defined as the corresponding
interface particle of solid particle at y., shown as the yellow circle in Fig. 7-2. The
position y;, , of this fictitious particle is assumed to be on the fluid-structure interface,

as shown in Fig. 7-2.
Then the collision model is applied in two steps:

Step 1) The first step is to check if the fluid particle at y, penetrates the interface
r.

The new position of the fluid particle at y, is updated according to Eq.(7.6). The
new location of the fluid particle is denoted as z, . Then for all the solid family

member particles considered in the collision model, e.g. solid particle at y,, the

following criteria is checked
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A(Ye) (2 —Yins) >0 (7.10)

If the criterion in Eq.(7.10) is satisfied, it is concluded that the particle at z,

penetrates the solid (shown as dashed blue circle in Fig. 7-2).

Step 2) If the fluid particle penetrates the structure, its velocity should be corrected

accordingly.

First, find the solid family member obtaining the shortest relative distance with fluid

particle at y, and its unit normal as

d.. =min(

Y, —Yil). ¥, e Hy? (7.11a)

Iﬁdmin =ﬁ(ys,dmin) (711b)

Subsequently, the velocity of the fluid particle at y, is corrected as

n+l corrected nal Nl A R B ol &
(Vi*) ™ =Vt =2V Ay ), B VT g >0 (7.12)

n+l

Here vi™ is the velocity predicted by Eq.(7.4). The updated corrected displacement

and position become

n+1

corrected
( n+l) :ur;’i_'_(vf

corrected
fi )

At+%U?At2 (7.13)

(Zf )corrected _ Xf +(ur;+1 )corrected (714)

7.2.3. Boundary and FSI treatment

For flow simulation, the elastic structure serves as a moving boundary condition

with the deformed configuration. The solid particle at y, is treated as the boundary

particle of fluid y; .4, Which occupies the same position as y. .
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On the other hand, the fluid effect on the structural deformation is considered via
the fluid pressure field acting as an external force [218]. The details are provided in
the following content in this section.

/ Fluid-Structure Interaction \

Structure simulation External Body Force Fluid simulation

b,«P
OSB-PD model s f PDDO model

ys - y f ,boundary

X, U

s1Ug X¢ Vi, o5, Py

Moving Boundary Condition

Fig. 7-3 FSI methodology scheme

7.2.3.1 Interface definition and its normal

In dealing with the interaction between the elastic structure and fluid particles, the
definition of the interface domain and its normal is one of the key issues. Since the PD
is a non-local theory, the interface region between the fluid and the elastic structure
has a fixed thickness, being twice of the horizon size 26, as shown in Fig. 7-1.
Because of the movement of the structure and the fluid particles, the interface, as well
as its normal direction n (see Fig. 7-1), changes with time integration. The colour
function method which is adopted in the volume of fraction (VOF) [179] method is
employed in the present study. The structure and the fluid particles are identified by a

predefined colour function as

1, for particle x belonging to fluid, x, =X
(% ={ P I f (7.15)

2, for particle x belonging to solid, x; = X

The colour function in Eq.(7.15) indicates if a particle belongs to the fluid or the

structure. However, during the simulation process, particle x, may move to its new
position. Therefore, it is necessary to find out if the particle x; is close to the interface

region or not. This can be done by calculating the gradient of the colour function at

point x; by using the colour function values of its neighbours through PDDO [18] as
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N;

c, (X, )=Vve(x )= Z(c(xj)—c(xi))gl(‘yj —yiDVj (7.16)

j=1

It can be inferred from Eq.(7.16) that if the neighbourhood of point x; is fully
located within the single-phase region, i.e. either the structure domain or the fluid

domain, the value of the normal direction vector becomes zero ¢, (x;)=0. On the

contrary, if the particle is in the interface region, the magnitude of its normal direction

vector will not be zero, c, (x;)#0. This can be used to find out if the material point

X; is at the interface region or not. The unit normal direction of the interface can also

be calculated by using the gradient of colour function as

A(x )= S, (x) (7.17)

Being similar to Chapter 6, the unit normal direction vector fi(x;) can be calculated

by using PDDO as

cy (%) i(C(xj)—c(xi))gl(‘yj—yi‘)vj _
. vt Jif N(x,)=1
(%)=1 e, (%) __1(c(xj)—c(xi))gl(\y,.—yi\)v,. (7.18)
0,if N(x;)=0
where
I

Being same as Eq. (6.24), a function N(x) is defined to indicate if the unit normal

vector is zero. A cut-off value & =1.0x1072/Ax [198] is set for the normal vector,

smaller than which the unit normal becomes zero. Note that in Eq. (7.18) the term
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(c(xj)—c(xi)) can be positive or negative which leads to the unit normal direction

always pointing from the fluid phase to the structure phase.
7.2.3.2 Effect of fluid flow on structure

The fluid effect on the structure deformation is simulated in terms of volumetric

external body force. The similar approach developed by Antoci et al. [218] is adopted.

V,

Ysa

Fluid Particle

Fig. 7-4 PD Interactions of the interface structure particle at y, ,

The fluid pressure acting on solid particle at y,, can be approximated by the

pressure of the fluid particles as

. 2:: Pf,bwo (‘yf,b ~Ysa )
P.= 5 o (‘ - ) (7.20)
ol prb 0 yf,b ys,a

where Q; represents the interaction domain of solid particle at y, , within the fluid
domain as shown in Fig. 7-4, and w, is the improved Gaussian weighted function.
P, , is the pressure, m,  is the mass and p; , is the density of fluid particle at y .
Note that particle at y,, belongs to the family members of the point at x,, as

demonstrated in Fig. 7-4. The mass of the fluid particle, m, , is calculated by using
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the initial values of density and volume. It’s assumed constant during the time

integration as
M b =(pf,bvf,b )t=0 (7.21)

As explained by Antoci et al. [218], Eq.(7.20) can also be simplified as

Pa=2 Y 2P w Iy, -.a) (7.22)

bEvaYS,a pf,b

which provides a better and more stable solution.

The volumetric force exerted from the fluid particles to the structure particle at y, ,

can be approximated as

P
ﬁ(ys’a) (7.23)

bfas (ys,a) = AX

where b, __ isthe body force representing the effect of fluid on structural deformation,

fos

A(Y,,) is the unit normal direction vector, Ax is the uniform initial node spacing

(which is assumed same both for fluid and solid). In Eq.(7.23), the external volumetric
pressure force is defined in the interface normal direction. The flowchart for the

implementation of the fluid to structure effect is provided in Fig. 7-5.
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Colour function gradient calculation
Eq.(7.16)
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Function N calculation, Eq.(7.19)
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Unit normal direction calculation
Eq.(7.18)

Interface pressure calculation Eq.(7.22)

|

Volumetric external body force
calculation Eq.(7.23)

l
End

Fig. 7-5 Flowchart for calculating the effect of fluid force on the solid particle

7.2.3.3 Effect of structure on fluid

The solid in the FSI problems can be categorised as a deformable solid or a rigid
solid. In the current FSI coupling model, both solid particles, i.e. either deformable
solid particles or rigid solid particles, serve as a boundary condition for fluid flow.
Therefore, after finding the structural deformations, the solid particles are treated as

the fictitious flow boundary particles for flow simulation.
Non-slip velocity boundary condition for fluid: the effect of rigid wall

For the non-slip solid boundary condition, the velocity of the rigid wall particle for

flow boundary is calculated as [152]

be fluid

V., =2V, —[ > WO(

Vi —yf,b\)vf,b} (7.24)

where v, . denotes the velocity of the rigid particle y, ., v. denotes the prescribed
solid wall velocity. v, is the fluid velocity at y, . The second term on the right-

hand side of Eq.(7.24) is the weighted fluid particle velocity summation. The weighted

function is constructed based on the current configuration.
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slip velocity boundary condition for fluid: the effect of rigid wall

For the slip boundary condition, the velocity of the rigid particle for flow boundary

can be set as
Vi, =Vp (7.25)

Slip and non-slip velocity boundary condition for fluid: the effect of deformable

structure

The velocity of the elastic structural particle y, , for flow boundary is set as

s,a Q,a (726)

where v, is obtained from the structural model.

pressure boundary condition for fluid

The pressure of the solid particles acting on the fluid can be calculated as [152]

b;d(Pf,b +(bf,b _Pf,bus,a)'(yf,b _ys,a))wo (‘yf,b “Ysa ) Zﬁb
P.=— — b (7.27a)
2oyl
b;d(Pf,b +(bf,b _pf,bus,c)'(yf,b _ys,c ))WO (‘yf,b _ys,c ) 2”)
Po="— b (7.27h)
z Wo (‘yf,b ~Yse ) ik
be fluid fb

where y,, and y,  are the current positions of solid particles at x,, and X,

a

respectively. In this chapter, U, is set as zero, which means that the acceleration of

the elastic structure particle is not utilized in the fluid boundary simulation part, or the

information of the structural acceleration is not transferred to the fluid part.
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For the slip boundary condition, the viscous force between the fluid-solid particle

interactions is neglected.
7.2.4. Numerical Procedure

The numerical procedure is provided in Fig. 7-6. In the most general fluid-structure
interaction problems, there is usually a large difference between the initial
configuration and the final configuration. Consequently, both for a structural particle
or a fluid particle, the family members of it may change with the time variation.
Therefore, for the FSI problems, the configuration updating according to Eq.(7.6) is

performed before the family member array re-construction within each time step.

From the figure, it can also be observed that the density of the fluid particle changes,
leading to weakly compressible material property. On the contrary, the density of the
structure particle keeps constant during the time integration. Furthermore, the densities
of the fluid and the structure may differ from each other. As a result, in the MLS
density initialization procedure within the fluid part, the density of the structure
particle (family member of a fluid particle) is considered to be the same as the fluid
one, i.e. using a fake density as a fluid moving boundary particle. It also should be
pointed out that the pressures of the deformable particles are fictitious, they are
calculated just for the fluid boundary condition. Within the integration, the fluid-
structure coupling is achieved by transferring the pressure information from the fluid
to the structure as an external body force and transferring the position of the deformed

structure particle as a moving boundary condition (shown in dashed arrow).
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condition, colour function Eq.(7.15)
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‘I Time integration, Loop 1 n=1,...N; ‘
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’ PDDO construction ‘
|
! .
Fluid Part  Structure Part
MLS weight function construction p T N
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Eq.(7.24) or Eq-f7-25)' Eq.(7.26) { Interface pressure calculation Eq.(7.22) J
Fluid boundary: pressure calculation ] .
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'
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'
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No

End of integration?

Fig. 7-6 Numerical procedure for FSI problems
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7.3.  Numerical simulations
7.3.1. Problem description

In this section, a numerical simulation of a dam collapse under an elastic rubber gate
[218, 234, 235] is conducted to validate the proposed model. The material properties
provided in Table 8 both for the fluid and the rubber are set the same as the ones in
[218]. The geometry illustration of the problem is provided in Fig. 7-7. A fluid with

dimensions being LxH =0.1mx0.14 m is within an upper open tank. The bottom,

left and upper-right sides of the tank are assumed to be rigid. A rubber gate is located
vertically adjacent to the right bottom corner of the fluid column with its dimensions
being 0.005mx0.079 m. The upper end of the rubber is clamped by the right rigid
wall and the bottom end is free to move. Then under the gravity effect, the fluid will
move, and the rubber gate will open and deform under the fluid pressure effect.

Table 8 Fluid and rubber material properties

Parameters Value
Fluid density p, (kg/m®) 1000
Fluid viscosity z, (Pa-s) 1x1073
Fluid material constant y, 7
Rubber density p, (kg/m°) 1100
Rubber Poisson’s ratio v 04
Rubber elastic modulus E (MPa) 12.0
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Fig. 7-7 Geometry illustration of dam collapse under a rubber gate

As to the PD discretization, the initial particle spacing is set as Ax=0.00125m
(80x112 nodes for fluid). The horizon size is chosen as & =3.6Ax to be consistent

with one in the MLS scheme. The gravity acceleration is set as |g|=9.8 m/s*. The
maximum velocity of the fluid is estimated as |V, . |= JlolH =1.17 m/s,, leading to

the artificial speed of sound being c, =10‘v 11.7 m/s. The constant time step

f,max‘ =
size is chosen as At =1x10"s with the total simulation time being t=0.3s. The

initial damping time is chosen as t, _ =100At. The MLS scheme is performed every

damp
20 time steps [154]. All the numerical treatments explained in Section 7.2.2 are

adopted.
7.3.2. Numerical results

The comparison between the experimental results [218], the numerical results
obtained by SPH method [218], and the PD predicted results are provided from Fig.
7-8 to Fig. 7-15 for every 0.04s. For the PD simulation results, the particles in blue
colour represent the fluid, the pink particles represent the rigid wall, and the green
particles represent the rubber gate. It can be inferred from this qualitative comparison
that both the fluid motion and the rubber deformation are consistent from these three

sources.
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Fig. 7-8 Comparison between (a) the experiment image [218], (b) SPH results [218],
and (c) PD result at t=0

(a) (b) (©)

Fig. 7-9 Comparison between (a) the experiment image [218], (b) SPH results [218],
and (c) PD result at t=0.04 s

(a) (b) (©)

Fig. 7-10 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.08 s
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Fig. 7-11 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.12 s

(a) (b) (©)

Fig. 7-12 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.16 s

(a) (b) (©)

Fig. 7-13 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.2 s
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Fig. 7-14 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.24 s

(a) (b) (©)

Fig. 7-15 Comparison between (a) the experiment image [218], (b) SPH results
[218], and (c) PD result at t=0.28 s

The rubber gate is initiated to open due to the pressure of the stored water, leading
to the water flowing out of the gate. Then with the decreasing of the water level behind
the rubber gate, the water pressure acting on the rubber becomes smaller and smaller.
Hence, the rubber gate gradually moves back under the resultant force of the gravity
force and the water pressure.

A quantitative comparison is also performed to validate the proposed PD model.
The simulation results from the following two PD cases are provided: case 1 for time

step size At=1x10"s and PD fluid nodes 80x112; cases 2 for time step size

At =2x10"s and PD fluid nodes 40x56 . The time history of the displacement of the

end of the plate, the water level near the rigid wall, and the water level with its distance
from the rubber gate being d =0.05m are provided in Fig. 7-16 and Fig. 7-17.
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Besides, the data obtained from the experiment and the SPH method [218] are
presented for comparison.
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Fig. 7-16 Comparison for horizontal and vertical displacements (m) of the free end of
the plate between the experiment results [218], SPH simulation result [218], and PD
simulation results
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Fig. 7-17 Water level (m) comparison just behind the gate (a) and 5 cm far from it
(b) between the experiment results [218], SPH simulation result [218], and PD
simulation results

It can be observed from Fig. 7-16, the displacements of the free end of the rubber

gate increase until t=0.16s, which consistent with the observation from the

qualitative comparison. Then after this peak point, the displacements both in the

horizontal and vertical directions decrease until the end of the simulation, indicating
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the moving back of the rubber gate to its initial shape. By analysing the time history

of the water levels from the two locations (d =0 and d =5cm), the conclusion can

be drawn that the velocity of the fluid volume increasing out of the rubber gate at the
end of the simulation becomes much smaller than the one in the early stage. This is
due to the smaller opening distance between the rubber gate and the bottom rigid plate
compared with the one in the early stage. The quantitative study here agrees well with
the previous qualitative study. In conclusion, from the quantitative comparison
presented in Fig. 7-16 and Fig. 7-17, the current PD model is validated through the
good agreement between the PD simulation results and the results from the experiment
and SPH method. Besides, a smaller mesh size can be further utilized to achieve a

more accurate result.

However, the discrepancies can also be observed both from PD and other numerical
techniques. By investigating the sensitivity of the numerical parameters and techniques,
the discrepancies may come from the following aspects. First, the PD node density and
time step size may affect the accuracy of the final simulation results. In this case, the
bending moment of the rubber gate acts an important role in the deformation process.
For the rubber PD model, only 4 nodes exist in the thickness direction, indicating that
all the 4 nodes experience the truncated integration domains. Therefore, the surface
correction approach [10] which can improve the accuracy of the PD simulations,
especially for the particles near the surface, can be utilized. However, the surface
correction adopted in this PD equation of motion is a simple volume-based one as

N

S (%o ) = (02 )1 Z V. ;, which may be not accurate enough. Besides, the
i=L je
smaller time step size can reduce the numerical discrepancies existing in the velocity
Verlet algorithm. By comparing the PD predicted results from the two aforementioned
different cases, the increasing of the number of the PD nodes and the decreasing of the
time step size can give more accurate results. Second, the application of the MLS and
PST provided in Section 7.2.2, on the one hand, can make the current approach more
stable. On the other hand, they may decrease accuracy. For example, by comparing the
time history of the displacement of the free rubber gate end, it can be observed that the

application of the PST enlarges the discrepancy between the PD simulation result and
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the experiment one. The PST applied in the current study does not have any
modification regarding the free surface, which may decrease the accuracy of the

numerical simulation [202].

The pressure and the velocity snapshots at the final state t =0.3s are provided in

Fig. 7-18. The pressure and velocity predicted by the PD approach present a similar
distribution compared with the ones provided in [228, 234]. It should be mentioned
that in Fig. 7-18 (a), the pressure of the rubber represents the fictitious solid pressure
for boundary implementation, they are not from the constitutive equations of the solid
rubber. Regarding the fluid pressure, the pressure inside the dam presents a similar
hydrostatic pressure distribution. When only the free surface detecting approach
provided in Section 7.2.2.1 is adopted, the fluid pressure outside the rubber gate may
all become zero because of the over predicted number of free surface particles. The
utilization of the PST in the current study can overcome this problem, which largely

improves the accuracy of the pressure distribution of the fluid outside part.

1215 1,000

1063 08750
0113 07500

S

(@) (b)

Fig. 7-18 PD simulation results (a) Pressure and (b) velocity magnitude at the
final state of t=0.3s

The configuration at the final stage t =0.3s and its close view of the fluid-structure
interface are provided in Fig. 7-19. The unit normal vector of the solid particles for the
FSI interface is presented in Fig. 7-19 (b). The good agreement between the unit
normal vector direction and the geometry indicates the capability of the proposed PD

approach for accurately predicting the FSI interface. The interface normal direction

approach provided in [218] has the limitation that it cannot be applied to the boundary
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corner particles. However, the unit normal vectors of boundary rubber particles in the
present study are also well represented because of the non-local property of the PD
theory and the adoption of the colour function. Thus the aforementioned limitation in
[218] is removed. In addition, it can also be observed from Fig. 7-19 (b) that no
penetration occurs in the FSI interface region. Hence, the boundary collision model
proposed in Section 7.2.2.2 is validated which has positive effects on the preventing
penetration.

s

(a) (b)

Fig. 7-19 PD simulation results (a) configuration and (b) zoom view of the FSI
interface state of t =0.3s

The largest PD bond stretch for each rubber particle at the time t =0.3s is presented

in Fig. 7-20. The regions with higher PD bond stretches show that these regions are

more prone to failure.
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Fig. 7-20 The largest PD bond stretch for each rubber particle at time t =0.3s

7.4. Summary

In this chapter, a peridynamic based methodology for fluid-structure interaction
problems is proposed for simultaneous numerical simulations. The structure model is
developed by using the ordinary state-based peridynamic theory and the fluid model
is developed by the peridynamic differential operator. The coupling scheme is
performed bi-directionally. Then a dam collapse under an elastic rubber gate is
simulated with the newly developed model. The PD predicted results are compared
with the ones obtained by the experiment and other numerical simulation methods.
The good agreement demonstrates the capability of the current model for accurately

predicting the results of fluid-elastic structure interaction problems.

As the first PD model using the OSB-PD model for solid and PDDO model for fluid,
the current study provides an alternative way for solving fluid-structure interaction
problems. Besides, because of the intrinsic non-local property of PD theory, the FSI

interface is easier to numerically implement.
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8. Coupled Thermo-fluid-mechanical Peridynamic Model for

Analysing Composite under Fire Scenarios
8.1. Introduction

The composite material response under fire load is a complex research topic since
multidisciplinary fields are involved [3], e.g. thermodynamics, fluid mechanics, solid
mechanics including composite material mechanics, chemical reaction theory,
etc.[236]. Therefore, it would be a challenging task to numerically simulate this

phenomenon by considering all aspects.

Regarding the modelling of the fire, understanding the mechanism and predicting
the behaviour of fire is important and meaningful [237]. The fire can be considered as
a summation of numerous flames [178]. Therefore, the flame can be treated as a basic
element of fire. For the investigation of the flame in a physical aspect, the following
fields are involved: the fluid field, the thermal field, the chemical reaction theory, and

the species transport process.

e Fluid field: the flame can be categorized as being laminar flame and turbulent
flame. In laminar flames, the burning gas flows in a regular pattern, which is
contrary to the turbulent flames [237]. For laminar flames, the Navier-Stokes
equation can be directly adopted by numerical methods to simulate their behaviour.
On the other hand, the large eddy simulation (LES) method is usually utilized for
a turbulent flame [238].

e Thermal field: the heat transfer and chemical reaction heat generation are the main
two aspects in the numerical thermal model. Enthalpy is considered a primary
variable in the heat transferring process. While the Arrhenius Law is usually
employed in the heat generation due to chemical reaction [239].

e Chemical Reaction: the reaction model should be chosen which represents the
reaction mechanism. Besides, the chemical kinetics of the elementary reactions
[178] and their rates, e.g. chemical time scale, should also be decided [178]. A

popular way to simulate the chemical reaction process is to use the commercial
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software Chemkin 111 [240] and the open-source software Cantera developed by
Python [241].

e Species transport: The flame is a multi-phase and multi-component fluid flow
[242]. Consequently, a mixture fluid model which can predict the species diffusion
process is required if all the solid components are considered [243].

As it is introduced above, the flame can be classified as a multi-component, multi-
phase, chemical reactant, and heat transfer fluid flow [244]. As a result, the flames
mechanism involves the knowledge of thermodynamics, thermochemistry, chemical
kinetics, and fluid mechanics, etc. [245]. In other words, the mass transfer, heat
transfer, momentum transfer, and species transfer exist in the flame motion.[246] Since
the governing equations are often too complicated for analytical solutions, the
technique of numerical simulation is widely applied [237]. There are various numerical
methods for flame modelling, i.e. finite element method (FEM) [247], finite volume
method (FVM)[242], finite difference methods (FDM) [248]. For these grid-based
approaches, the space discretization should be fine enough for this complex
combustion system. On the other hand, because of the presence of a high gradient of
physical variables in the flame, special attention should be paid to time integration
stability [242]. The computation time and memory requirements should be taken into
consideration. On the contrary to the above grid-based approaches (FEM, FVM, FDM),
Lagrangian methods can predict the non-linear convection term exactly [249]. Direct
Lagrangian methods have been applied to simulate the reacting flows [250-252]. The
remeshed smoothed particle hydrodynamics (SPH) in [249] is applied for the chemical
reacting flows. A hydrogen/air opposed-jet burner numerical simulation is conducted
with considering the Mach number effect [249]. The current existing numerical flame
models cannot capture all the aforementioned aspects because of the fire’s complex
physical and chemical processes [237]. In the current study, the fire model is simplified
as a heat-conducting single-phase fluid flow, ignoring the chemical reaction process
and the diffusion of the components. In this way, the non-isothermal fluid flow PDDO

model developed in [9] thus can be directly utilized to represent the fire physical model.

As to the investigation of composite response under fire loads which has been
extensively studied [253-257], the key challenge to the modelling is the complexity of
the thermal, chemical, physical, and failure process which control the composite
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structure behaviour [258]. The firing process in the composites can be concluded as
follows [258]:

e Thermal process: the heat conduction in composite materials from the fire [259],
heat generation from decomposition and charring [260], convective heat loss, etc.

e Chemical process: viscous softening, melting, decomposition, and char-fibre
reactions, etc.[3].

e Physical process: thermal expansion and contraction, matric cracking, fibre-matrix
interface debonding, softening, delamination damage, etc.

e Failure process: charring, pores creation (creation of gas from resin decomposition)
[261], thermal degradation of elasticity properties, micro-cracking, and
delamination, etc.[2].

The current numerical models cannot capture all composites’ responses as explained
above. Therefore, simplification is applied in the numerical simulations [262]. For
most researches regarding the composite response for fire scenarios, the decoupling of
fire from composites is widely adopted in simulation approaches [263]. The fire is
simply treated as a controlled heat flux or temperature boundary condition. The
dynamics of fire are usually ignored. However, in the current study, the basic dynamics
of fire motion, i.e. the thermal fluid flow, are considered during the composite response
simulation. As a result, the physical problems belong to the field of thermal fluid-
structure simulation of composite materials under the fire load. The thermal
degradation of the composite properties [264], the matrix damage, and the fibre

damage are taken into consideration in the composite model.

PD is originally developed for predicting damages in isotropic materials [4, 13].
Then, the formulation is extended for modelling damage in composite materials [10,
35, 75-78, 82, 86, 265-270]. The original form of PD is also extended for predicting
thermal damages for both isotropic [40, 271-273] and composite materials [6, 7, 39,
46, 274]. Moreover, PD is also used for predicting corrosion and oxidation damage for
both isotropic and composite materials [40, 274-278]. Therefore, due to the prediction
capability of PD in many different applications, PD is used to predict the composite

damage under the fire scenarios.
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This chapter is organized as follows. The fire-induced temperature rising curve is
provided in Section 8.2 to represent the fire effect in the thermal field. The thermal
degradation properties of the composite material are also provided in Section 8.2.
Section 8.3 describes the numerical implementations. Then, Section 8.4 describes the
numerical simulations. In this section, composite damages due to direct contact with
fire and composite damages due to hot gas induced by fire are investigated. Finally,

the summary is provided in Section 8.5.
8.2. Composite material properties under fire

In this section, the temperature profile for fire and the thermal degradation properties

of the composite material are provided.
8.2.1. Temperature profile of fire

The fire temperature profile as a function of time is used to represent the fire effect.
In many thermal modelling approaches, fire is simulated as a controlled heat flux or
temperature boundary conditions [258, 263], which brings simplification for the
numerical simulations. Therefore, in the current study, the 1SO 834 standard

temperature-time curve [279] is utilized to represent the temperature fire profile as

T (t)=20+345log(8/60+1) (8.1)

where T represents the temperature in “C and t represents the time in s. The

temperature plot is provided in Fig. 8-1.
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Fig. 8-1 ISO temperature-time curve represent fire [279]

8.2.2. Material degradation of composite material caused by fire

In the current study, a carbon fibre-epoxy composite material is considered. The
material properties as functions of temperature are considered since material softening
will occur under high temperature conditions. The thermal degradation properties from
[280] are utilized and incorporated into the PD model. Regarding the material thermal

properties, the thermal conductivity in the fibre direction, k;, is assumed to be constant

according to the experiment observation [259, 281].

The variation of transverse thermal conductivity, k,, is shown in Fig. 8-2 (a). The

temperature ranging from 348K to 373K in blue colour represents the glass transition

region, as T, ,,, =348K to represent the lower glass transition temperature and

_low

T

o nign =373 K to represent the higher glass transition temperature. It can be observed

that the transverse thermal conductivity decreases with temperature increasing in the

glass transition region. When the temperature is higher than 573K (T ;.. =573 K),

the composite is ignited, and then the material property is assumed to be constant for

T >573K due to the lack of measured data. The variation of k, is represented as
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0.362+7.57x107'T, 273K < T < 348K
1.488-2.48x107°T, 348K < T <373K

k, (W/(m-K))= . (8.2)
0.104+1.23x10°°T, 373K <T <573K

0.809, 573K <T

The variation of specific heat capacity, c,, is shown in Fig. 8-2 (b) and represented

as
—204+3.692T, 273K <T <348K
—2775+11.08T, 348K <T <373K
¢, (J/(Kg-K))= (8.3)

665+1.858T, 373K <T <£573K
1730, S7T3K <T
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Fig. 8-2 Temperature dependent (a) transverse thermal conductivity k, and (b)
specific heat capacity c,

To represent the mechanical material properties, the following function is used [264]

c,+C, C,-C
— 0; . 02 wtanh(Cl(T—Tg_high)) (8.4)

c(T)

where C represents the material property, C, represents the unrelaxed (initial)
material property and C_ the represents the relaxed (final) property. The term C, is a

constant value and T

o ngn TEPresents the higher glass transition temperature as
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T

o nign =373 K in the current composite material. By using the Matlab curve fitting

tool, the data is presented in Fig. 8-3:

The elastic modulus in the transverse direction, E,, is presented as

4.645—4.529tanh (0.02177(T —373)), 273K <T < 475K
E,(GPa)= (8.5)
0.1, 475K <T
The major shear modulus, G, , is represented as
G,, (GPa)=2.29-2.238tanh (0.0199(T —373)) (8.6)
B Fitting E, ’ Fitting G,,
= E, K.S.ouetal.(2015) | = G,, K.S.ou et al.(2015)

E, =4.645—4.529tanh (0.02177 (T —373)) G,, =2.29—2.238tanh(0.0199(T —373))

5
o) S/
&7

E, (GPa)

475
T T T T T T T T T T T T
200 300 400 500 600 700 800 900 200 300 400 500 600 700 800 900
T(K) T(K)

(a) (b)
Fig. 8-3 Temperature dependent (a) transverse elastic modulus E, and (b) major
shear modulus G,,

Instead of using Eq.(8.4) for fitting the elastic modulus in the fibre direction, E, is

fitted as Eq.(8.7) which can give a better fitting result as

146.64937 —0.06535T, 273K <T < 475K

8.7
110.86495 + 905.51983eT/°1%4%) 475K < T < 825K ®.7)

. (cpa)- |
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Fitting curve E;

E, =146.64937 - 0.06535T

1
/

475

= E, K.S.ouetal.(2015)

E, =110.86495+ 905.51983¢( "/**%

)

T T T T
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Fig. 8-4 Temperature dependent elastic modulus in fire direction
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Fig. 8-5 Temperature dependent (a) CTE in fibre direction ¢, , (b) CTE in transverse

direction «,

The coefficients of the thermal expansion (CTE) both in fibre direction ¢, and in

the transverse direction «, are segmented fitted as Fig. 8-5 and presented as

1.38,

273K <T <293K

&, (x10°/K ) =136.71-0.2116T +0.0003106T %, 293K <T < 413K

a, (xlO’GlK) =1388.9-2.401T +0.004T %, 313K < T < 413K

-10.95+0.032T,

29.263,

-231.966+0.75431T,
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273K <T <313K

413K <T <623K
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According to the PD failure criterion, the critical energy release rate is an important
property in the damage simulation. The variation of energy release rate [282] is

adopted as

_ 2 <
G, (J/mz):{265.568+3.49T 0.00745T <, 273K <T < 535K (8.10)

0, 535K <T

Fitting, G,¢
® G, X.Huang et al. (1997)

300 - G, =265568+3.49T —0.00745T 2

Gyc (Im?)

T T T T T T T
250 300 350 400 450 500 550 600
T(K)

Fig. 8-6 Temperature dependent critical energy release rate G,;

It is assumed that the bulk modulus K (T) and Lamé constant s, (T) of the

matrix material are linked to the transverse elastic modulus as [10]

Ko (T) =2(Ef+2) (8.11)
4o(T) =% (612

with the major Poisson’s ratio being assumed to be a constant as Vv;, = 0.33.

8.3.  PD Numerical implementations

The ordinary state-based thermomechanical PD composite model provided in
Section 4.2.2 is utilized. The mechanical deformation of the composite is captured by
using Eq.(4.17). The temperature change is obtained by using Eq.(4.25) with ignoring

the coupling term in the heat conduction equation. The temperature degradation is
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incorporated into the model [84], by incorporating temperature dependent material

properties. The minor Poisson’s ratio, V,,, is calculated at the initial temperature. On
the other hand, the mechanical properties listed in Section 8.2 suchas E, ,E,,G,,, «;,
a, are temperature dependent as provided in Eqgs.(8.5)-(8.9). Therefore the PD

mechanical parameters a, b, , b, and b, with their definitions in Eq.(4.6) become

also temperature dependent. Moreover, the thermal conductivity in the fibre direction,

k., is assumed constant. On the other hand, the thermal properties, k, and c, are

temperature dependent as provided in Egs.(8.2)-(8.3). As a result, the corresponding

PD thermal parameters «,, and x, , provided in Eq.(4.10)-(4.11) also become

temperature dependent. The PD critical stretches s, s,, S, , and ¢, provided in

EQ.(4.38)-(4.41) are functions of temperature due to the temperature dependent
material properties G,., E;, K, and g, as provided in Eq.(8.10)-(8.12). The critical
energy release rates for the first and second failure mode are assumed the same,

G,c =G, . On the other hand, the shear modulus for matrix material, G,,, is assumed

constant.

The non-dimensional form of the PD thermo-fluid model provided in Section 5.3.5
is adopted to represent the fire heated air. Therefore, in order to couple the thermal-
fluid model and the composite model, the non-dimensional form of the PD composite
thermal model is used. It should be noted that the length, time, and temperature are
cast into their non-dimensional values by using the same reference parameters both for
the composite model and the fluid model. Furthermore, the temperature in the fitting
functions of thermal degradation properties of composites is in a dimensional form.
Therefore, the non-dimensional temperature should be converted into its dimensional
value before the calculation of the composite material properties. The details are

described as following.
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8.3.1. Non-dimensional PD thermo-fluid model and composite thermal model
8.3.1.1 Non-dimensional PDDO fluid model

The PD thermo-fluid model [9] provided in Chapter 5 is used to represent the fire
heated air. Furthermore, the fluid flow is assumed to be two-dimensional in the
Eulerian description. The non-dimensional form of the non-local Naiver-Stokes
equations [9] with Boussinesq approximation [175] by using the peridynamic

differential operator [14] is adopted.
The thermo-fluid governing equations in the discretised form are:

Conservation of mass:

P =pi"
AT f“>2( R A CHES o\ (813)
- Ny

DAL A ACARN)

Conservation of momentum:

* (n+1)
Vf i

*(n)
=Vi

_Z( - fl(n))gl(x:,j_x:,i)vf*,j

. Pr i T i X [ .
+At +NZ:(V’;F?) _V?(in)) r;uf n r(gz (Xf,J * X, )) f*’j (8 14)
j=1 ( ( ) gl( Xf,i ))

Conservation of energy:
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j=1 _(Vfﬁn) gl(xf j Xf I))
pressure:
c 2
* (n+ soun = (n+1) \!
T (T BT

The non-dimensional parameters shown with () are defined with respect to their

reference parameters shown with () as [144]

. X N VR . . P . T . .k
X, ==tov,=—t" = t ;pfzpf P = fz;sz—f,,uf:i,kf=—f
Ly Vo (LO/VO) Pio PV T Hi o kf,o
(8.17)

where the parameters X,, v,, o, P;, T, , u,, and Kk, represent the fluid particle

position, velocity, density, pressure, temperature, viscous coefficient, and thermal

conductivity. Ly, vy, and T, are the reference length, velocity, and temperature. p; ,,
4 o, and Kk, o are the reference fluid density, viscosity and thermal conductivity. t

and t~ represent the time and non-dimensional time, respectively.

In Egs.(8.13)-(8.16), the fluid point of interested is denoted by its coordinate as X i
and its family member is denoted by X} ;. N, is the total number of the fluid family
members of fluid point X} ;. The volume of X ; isdenoted by V ;. Tr represents the
trace of a matrix. The parameters V., p;;, u;;, T;,, and ki are defined at fluid
location X:,i . The energy dissipated by the viscous force is ignored in Eg. (8.15) since

it is too small compared with the energy increased by fire [283]. In Eq.(8.16), y, is
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the ratio of specific heat capacity, c,,, is the artificial speed of sound. The ratio of

specific heat capacity is chosen as y, =1 for gas [141].

Furthermore, Sutherland’s law [284-286] which reflects the temperature effect on
the viscosity coefficient and the thermal conductivity is adopted in a non-dimensional

form as

) ) e

* * f’|:

T +S
where S”=111/T, with T, being in unit K [284].

In the above equations, the current time step is denoted by the superscript ((”)) and

the updated time step is denoted by the superscript ((“”)). The non-dimensional time

step size is denoted by At”.
8.3.1.2 Non-dimensional OSB PD thermal model for composite

The non-dimensional parameters for PD composite thermal model are defined as

o X x Vo o T
S =« S S

X, ===, v, =—;T, ==
L, v, Ty

= (8.19)

For both the composite thermal model and the thermo-fluid model, the reference

velocity is chosen as

V, = Lo‘ (8.20)
where a , is the initial value of the thermal diffusivity of air as
k
Ay o = —— (8.21)
P oCs
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Consequently, the nondimensional diffusivities of composites to the fluid are

calculated as

* a * a * a
_ dsl . _ ds2 . _ dsm
adsl - ’ adsz - ’ adsm - (822)

df .0 At 0 At o

where ¢, is the thermal diffusivity in the fibre direction, o, is the thermal
diffusivity in the transverse direction, and ¢, is the thermal diffusivity of the matrix

in the composite material.

By substituting Eqgs.(8.19)-(8.22) into Eq.(4.25) and neglecting the coupling term,

the non-dimensional form of the PD composite thermal model becomes

b

n*  Ngowi n* n* nx nx n*_Tn*
ot oly. Ki'y TR Kpii + K| (Ts,j T, )
He Xt +

ot 2 A X —Xgp
(12 -1)
g A Sy me 8.23
+mr§nlllmxmter,l X::n —X;'i* ] S,i ( )

N

s, shear i T m_’* —T n_'*)
n* ( S, ] S, m,* n*
+ Z Z {lis’(inter,i X*’m n* Vs,j + hs,i

m=n+l,n-1 j=1 X

S, j S,i

n*
S,i !

The composite point of interested is denoted by its initial coordinate as x:. , where

the subscript () denotes the composite and (;) denotes the particle number. The

sy TEPresents the total number of

superscript (“) represents the layer number. N
family members which are in the same ply of the interested point x;'i*. On the other

hand, N represents the total number of the family members which interact with

s,shear,i

x;‘f through the interlayer shear bonds. Vs'?j* represents the volume of material point

at x;’j. By using Egs.(4.10), (4.11), and (4.26), the non-dimensional PD thermal

diffusivities are defined by as
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2( Xya _a;sz,i) (824)

S, J

S, ] S,i

n* 6y,
Kni ==, .3 (8.25)
ik (5 )3
nx a; m
inyer,i = * S~* * (826)
t Zﬂ(hthick )3 (5 — i )

K

where the parameters &%, xy;, and ., are defined at location X’ .

In Eq. (8.23), h:]i is the non-dimensional volumetric heat source, it can be

represented as

. h!.
h:’i = LLO (8.27)
’ PC TV,

The non-dimensional composite temperature is updated according to Eq.(8.23) as:

n* (n+l) _ 1 n*(n)
Ts,i _Ts,i

NS i '* '* ’* ’* n’* (n) _ n’* (n)
Gl K?,i ™4 K?,j(n) Krl:w,i ™ +Krl:1,j(n) (Ts,j T, ) v
Z He Xt 5 T X 5 P s,
j=1 Xs,j - Xs,i
TmAm _ s (n))
* n* (n) ( S,1 S,i m*
+At + Z ZinKinter,i *m n* Vs,i +
m=n+1, n—-1 Xs,i _Xs,i
Ns,shear,l (T m_’* (m) —T n_'* (n) )
n* (n) S,) S, m* n* (n)
z ZisKinter,i *m n* Vs,j +hs,i
m=n+1,n-1 j=1 Xs,j _Xs,i

(8.28)

8.3.1.3 Thermal and mechanical damage parameters

To represent the extent of damage due to ignition of composite material, a non-

dimensional temperature, T , is defined as
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T T

T=_ohoh si (8.29)
Tg_high _Ts,ref
and
Tignited —>T=-25

T., —>T=1
n= et (8.30)

Tg_high —->T=0

L —T =0.3125

where T is the temperature of the PD composite points, T, . is the reference

S

temperature T,

s,ref

=293K, T

iniea 1S the ignition temperature T,

ignited

=573K, T is

g_low

=348K,and T

the lower glass transition temperature T, ]

“nigh 1S the higher glass

_low

transition temperature T, ., =373 K[280]. Therefore, T <-2.5 represents that the

material is ignited, T =1 represents composite is at the reference temperature, T <0

represents the post glass transition period (Ts'?i >T

5 nign) @ illustrated in Fig. 8-7.

Glass transition .
Initial

N l

Post glass transition

Pre-glass
transition

Ignited

—

—1,

-2.5 0 0.3215 1

Fig. 8-7 Different domains distinguished by T [280]

Regarding the mechanical damage parameter, the variation of the critical stretch for

matrix bond, s, ; as a function of temperature is plotted in Fig. 8-8. It can be observed

from the figure that within the range of 273 K<T <348 K, the material remains as a

brittle material before the glass transition [3, 287]. Then the composite material

becomes a rubber like ductile material [3, 287] for the approximate region
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348 K<T <493 K. Then when the temperature is larger than the critical value of 493

K, the critical stretch decreases as shown in Fig. 8-8. Finally the material totally fails

(critical stretch equals to zero) when the temperature is higher than 535 K [287].

0.0015 | Ductile \ 493 Fail
(rubber like)
/'
&70.0010 | Brittle /.
F'\E/ | ]
. /
X
<80.0005 |- /
213 | \
\ 553
0.0000 e
T ‘ T T T T T T T |: T T T T

—— -
250 300 350 400 450 500 550 600 650 700
T (K)

Fig. 8-8 The variation of s, 6" as a function of temperature

8.3.2. Boundary conditions
8.3.2.1 Mechanical boundary conditions

The boundary condition involved in the composite mechanical model is applied by

setting displacement values in the fictitious layer as [10]

=0 (8.31)

In Fig. 8-9, R, represents the composite material, and R, . represents the fictitious
region. The thickness of the fictitious layer is set as the size of the horizon (shown in

black nodes in Fig. 8-9 (b)).
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Fig. 8-9 Fixed boundary implementation (a) geometry illustration and (b) PD
implementation for & = 3Ax

8.3.2.2 Flow boundary conditions

The boundary condition involved in the fluid field is applied by setting non-

dimensional velocity and displacement values in the fictitious layer as
Vi (Xt ) =00 U7 (X ) =0 (8.32)

The pressure values at the fictitious particles in R, . are defined in the non-

dimensional form as [9, 76]

Py (X et )= (8.33)

where X . represents the fictitious rigid wall particle, x| ; is its family member
belonging to the fluid. N, . represents the total family members of point X,
belonging to the fluid field, as shown in Fig. 8-10. P;'(X; ;,t") represents the pressure

of point x’}’j . The weighted function w is provided in Eq.(2.25).
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Fig. 8-10 Boundary condition implementation for fluid field with & =3Ax
8.3.2.3 Thermal boundary conditions

The thermal boundary conditions are both involved in the composite model and fluid
model. The temperature boundary condition is applied by adding fictitious layer as [43,
44]

T (1) =27 () -T/ (1) (8.34)

! ]

where T, represents the non-dimensional boundary temperature. The parameters T,”
and TJ.* represent the non-dimensional temperatures in the fictitious and real regions,

respectively, as shown in Fig. 8-11.

No flux (insulated) boundary condition is applied by setting temperatures in the real
region as [43, 44]

T (1) =T/ (1) (8.35)
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Fig. 8-11 Thermal boundary condition implementation (a) temperature boundary
condition, and (b) insulated boundary condition

8.3.3. Interface condition between composite and gas for thermal field

The convection boundary condition at the composite boundary is implemented by
setting heat source at the boundary as [43, 44]

S s,interface ! con S s,interface ! f,local

e (x; t*)=—§ h: (T*(x* t)-T, ) (8.36)

where h°_ is the non-dimensional convective heat transfer coefficient,

con

T*(x* t*) is the temperature in the composite region, and T; ..., is the local fluid

S s,interface ?

temperature which is calculated as the average temperature of the fluid particles which

are within the horizon of x_

s,interface

as

* ZN T:(X?,t*)

s,interface, f
Tf,local = IN (837)
sinterface, f
where N e ¢ TEPresents the total number of the family members of point X e ace

which belongs to the fluid as shown in Fig. 8-12. T/ (x| ,t") is the non-dimensional

fluid temperature predicted in the fluid model.
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s, interface

Fig. 8-12 Composite-gas interface illustration

The non-dimensional convection coefficient [286, 288] is

1/3

U3 (* * * *
h;n — max CconvectionTO Ts (Xs,interface’t )_Tf,i 1 kf 0 k—i00037 Reo's Prllg
pszVO pscvaf 0 Ls
(8.38)
where C is a coefficient for natural convection which s

convection

C ~1.52 W/(m2K4’3) for a horizontal surface and C ~1.38 W/(m2K4’3)

convection convection

for a vertical surface. The parameter L, is the non-dimensional length of the

composite ply. c, is the specific heat capacity of composites provided in Eq.(8.3).

Similarly, the radiation boundary condition for the composite thermal field is

implemented by setting heat source at the boundary as [39]

h: (X:,interface ' t*) = cS’sctefanboltzmann'gﬁ ((Tf*,local )4 - (Ts (X:,interface ’ t*))4) (839)

where o is the non-dimensional Stefan Boltzman constant defined as

stefan—boltzmann

3
* _ Gstefan—boltzmannTO LO

stefan—boltzmann — C
p S vaf ,0

. (8.40)
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with o =5.67x107° W/(m2K4) . The surface emissivity ¢ is assumed to be

stefan—boltzmann

one as ¢ =1 in the current study.
8.4. Numerical simulations

In this section, two cases are presented. The first case investigates the damage in
composite due to direct contact with fire. This case belongs to the thermomechanical
analysis where the heat conduction and composite deformation are included. The
second case investigates the damage in composite due to hot gas induced by fire. The
fire is simulated as a temperature boundary condition which heats the air. Then the
heated air transfers the heat energy to the composite material via convection and

radiation, indicating a one-way coupling thermal fluid and structure interaction.

8.4.1. Composite damage due to direct contact with the fire
8.4.1.1 Problem description

As illustrated in Fig. 8-13, a three-layer laminated composite material is investigated.
The laminate is 0.1 m in length (L=0.1m) and 0.1 m in width (W=0.1m). Each layer

has a uniform thickness as h,;, =0.001m. The fibre direction of each layer is chosen
as [0/90°/0] . The density of the composite is p, =1620kg/m®. The thermal
conductivity in the fibre direction, k,, is assumed constant as k, =8.3075 W/(m-K)
[259, 281]. The thermal conductivity of matrix material, k_ , is assumed constant as
k,=0.2 W/(m-K) [6]. The CTE of matrix material «,, is «, =63x10°/K [6]. The

tension strength in the fibre direction is chosen as o, =2550MPa [289]. E_ and G,

are the elastic and shear modulus of the matrix material, which have the values as

E.,=3.4GPa and G, =1.308 GPa [86]. The other composite material properties, k,,

¢, B, B, G, o, a,, G, K, u,, vy, are provided in Section 8.2.2.
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Fig. 8-13 (a) Three layers laminate geometry illustration and (b) fibre direction
illustration

A uniform initial temperature is set for the composites as T =T, =293K .

s,ref
Besides, all composite nodes are static at the initial condition. The boundary conditions
are provided as follows.

Thermal boundary conditions:

As shown in Fig. 8-14, the edge on x=0, |y—W/2| <W/8 is under a temperature

boundary condition induced by a localized fire. The other three edges x=L,y =0,

and y=W are insulated.

At x=0
ly-W/2|<W/8:T, =T, (t)=345log(8t/60+1)+T.
(8.41q)
ly-wrz=wg: T —o
OX
At x=L
LI, (8.41b)
OX
At y=0and y=W
Q:O (8.41c)
oy

290



Mechanical boundary condition:

As to the mechanical field, the right vertical edge is fixed, and the other three edges

are free to deform as

At x=L
u, =0 (8.42)
y
/ Insulated Insulated
"
L
L~
T e
L
/
Vv\\///: ?Fixed
L
L
L
L
\Insulated X
(a)
...........E
...........;
__________________ 000000 0000
0000000000 OOOSN
'R?.............i
Y S |
000000 0000
000000 00006
.......R...R.i
S Lol 's,he
(b)

Fig. 8-14 Boundary sketch for composite directly under local fire (top view): (a)
geometry illustration and (b) PD discretization

The top view of the PD discretization is illustrated in Fig. 8-14 (b). For the laminate
ply, denoted by R,, each layer is discretized by 40x40 nodes in the x—y plane and

one node in the z direction. Therefore, the laminate totally contains 40x40x3 PD

points and the initial in-plane node spacing is Ax =0.0025 m. The in-plane horizon is

chosen as 6 =3.015Ax. The region denoted by R, is the thermal fictitious layer
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(10x3x3 PD points) and R, . is the fictitious layer ( 40x3x3 PD points)

representing the fixed boundary condition in the mechanical field. The value of related

parameters to calculate the critical stretch o, G, E;, ., K., , E,, and G, are

m !

provided in this section and Section 8.2.2. Hence, the initial value of the critical

stretches are calculated as s, =3.39x10°, s, =1.99x107, s, =1.97x107, and

s, =2.25x10°7.

The time step size for heat conduction analysis is set as At =107 s. The mechanical
deformation analysis is conducted in a quasi-static solution for each 50 seconds by
using the adaptive dynamic relaxation (ADR) technique [87]. The total simulation time
is 500 s.

8.4.1.2 Numerical Procedure

In this thermomechanical analysis, the heat conduction is performed in a transient
process, while the mechanical analysis is performed as a static case for each 50 seconds.
The numerical procedure for the thermomechanical problem 5.1 is provided in Fig.
8-15.
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4.2
Calculate initial PD parameters J
| No Loop 2: Sub ADR
— integration:

Apply initial conditions

| Yes nn:I,l..,NADR

Mechanical field: calculate

N Loop 1: Time No S
integration: n=1, .., N;? dilatation of Pli) node Eq.(4.5)
| Yes L
. Mechanical field: calculate force
Thermal field: calculate thermal density Eq.(4.1), (4.19), (4.21b)
properties k, Eq.(8.2) and ¢, N —————
Eq.(8.3) Mechanical field: apply ADR for
" Eq.(4.17)
Thermal field: calculate PD thermal .
parameters x; and «;,, Eq.(4.10)- End loop 2: ADR sub
(4-}1) integration
v
Thermal field: apply fire boundary Mechanical field: break bond,
condition, Eq.(8.41a) Eqs.(4.42)-(4.45)
!

! o
Mechanical field: update local

Thermal field: apply insulted ey e BT ) ]
boundary condition, Eq.(8.41b,c) gep  E0s.(4.50)
' End loop 1: time
Thermal field: calculate time rate of integration
temperature change, Eq.(4.25) '
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Fig. 8-15 Flowchart for thermo-mechanical model for composite for problem 8.4.1

8.4.1.3 Numerical results

The temperature change distributions of the laminate at different times are provided
in Fig. 8-16. It can be observed that the temperature change distributions for the bottom
and top plies are identical but differ from the distribution for the middle ply. The fibre
direction which has a larger thermal conductivity is parallel to x direction for the
bottom and top plies, leading to a faster heat transfer in the x direction compared to the
middle ply. Therefore, the heated region of the top and bottom plies in the figure are
more concentrated in the x direction than the middle ply.
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Fig. 8-16 The temperature change distributions at different times

Fig. 8-17 represents the distribution of T according to Eq.(8.29) at t =5005s. Red

colour represents the post glass transition period, the white colour represents the glass
transition period, and the blue colour represents the period before the glass transition.
The composite particles where the ignition occurs, T <—2.5 are removed in the figure.

It is observed from the figure that the composite is ignited near the location of the
localized fire.
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(c) 3D view of all the three layers

Fig. 8-17 The distribution of T at t =500

The matrix damage, interlayer normal damage, and interlayer shear damage in the
mechanical field predicted at different times are provided in Fig. 8-18 and Fig. 8-19.
During the early stage of the simulation, the crack does not occur until t=55s. Then

the crack starts to propagate both in the plane and in the thickness direction.
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(@) Interlayer normal damage, ¢,

(c) Interlayer matrix damage, ¢,

Fig. 8-18 Composite mechanical local damage at 250 s

(a) Interlayer normal damage, @, (b) Interlayer shear damage, ¢,
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(c) Interlayer matrix damage, ¢,

Fig. 8-19 Composite mechanical local damage at 500 s

The displacements distributions at t =100s and t =500s are plotted in Fig. 8-20
and Fig. 8-21. Note that, the composite nodes where the ignition occurs, T <—-2.5 and
damage parameters, ¢, for matrix damage, ¢,, for interlayer normal damage, and ¢,

for interlayer shear damage are bigger than 0.5 are removed in both figures. It can be
observed from the figures that the region near the local fire damages due to high

temperature and mechanical deformation.
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(c)
Fig. 8-20 Displacement distributions (m) at t=100s: (a) in x direction, (b) in y
direction, and (c) in z direction
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Fig. 8-21 Displacement distributions (m) at t=5005s: (a) in x direction, (b) in y
direction, and (c) in z direction
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8.4.2. Composite damage due to hot gas induced by fire

The moving fluid-structure interfaces are one of the typical features in many
combustion applications, such as burning and melting surfaces [286]. In this example,
the effect of hot gas induced by fire on the composite material is investigated. The hot
gas fluid flow and composite model are coupled through the thermal field.

The composite material properties in Section 8.4.1 are used. The temperature profile
provided in Eq.(8.1) is implemented at the boundary where fire is implemented. The
air flow is assumed as two-dimensional. In this section, the one-way coupling approach
for the thermal field is used. The heat transfer from composite to air is neglected, only
heat transfer from air to composite is considered. It is assumed that the deformation of
the composite does not affect the flow field. The composite deformation obtained in
the previous problem is neglectable compared by its geometry dimensions, thus the

composite mechanical deformation induced by the heated air is ignored in this problem.
8.4.2.1 Problem Description

The geometry of the problem is illustrated in Fig. 8-22. The air (shown in blue
colour) is in a square solid cavity with its non-dimensional dimensions as L'=W"=1
and h;., =0.015. The three-layer composite laminate with the fibre orientation

[0/9070] is clamped on the left vertical solid boundary (its top layer is illustrated in
Fig. 8-22 by the green colour). The geometry length and width of the laminate are

*

L, =W, =0.5, and the thickness of each layer is hy,, ,, =0.005. As shown in Fig.

8-22, the distance between the bottom boundary of the cavity and the bottom of the

=0.25.

*

composite is d” =0.25. The length of the local fire region is set as d

fire

The horizon size is chosen as & =3.015AX  where the node spacing is
AX =0.0125 for both composite and fluid flow simulations. The total time, t~ =0.25,

and time step size, At"=1x10" are chosen for simulating gas flow and heat

conduction in composite material.
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The non-dimensional parameters are set as Pr=0.713 and Ra=10° for air. The

reference length is set as Lo=0.2 m. The reference velocity is calculated as

Vo=@ /L, =10" m/s with the viscous coefficient o, ,=2x10"° m?*/s for air.

Therefore, the non-dimensional simulation time t* =0.25 corresponds to 500 s. The

artificial speed of sound is chosen as ¢, =10v, [142].

sound

The reference temperature and initial temperature are chosen as T =T, ., =293K,

i.e. T~ =0 for the initial condition. The boundary conditions are also provided in Fig.
8-22 with grey colour representing the insulated boundary condition, the red one
representing the local fire boundary, and the yellow one representing the composite-
fluid interface, expressed as

Thermal field:

X =0and X' =L

_=0 (8.43)

345l0g(8x 2000xt°/60+1)

X <dy, T =T (1) :0<t <0.25
To (8.44)
X >d5,: aT* =0
OX
y =W’
LI, (8.45)
oy
Mechanical field:
X =0;X =Ly =0,y =W :u =0 (8.46)
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Fluid-composite interface

Fig. 8-22 Geometry illustration for composite and fluid coupling response under the

fire scenario

As observed in Section 8.4.1, the deformation of composites under fire is relatively

small in the in-plane layers compared to its geometry dimensions. Therefore, the

composite deformation effect on the fluid field is ignored in the current study for

simplicity. For flow simulations, the composite-fluid interface is assumed as a rigid

solid wall, as shown in Fig. 8-23 (a).

00000000000 0OCOCGCOOS
000000000000 OQC0OC®OOO
00000000000 OCOEOGOOOO
090000000000 OCPOGEOGOOOO
00000 O0OCOOOOOOOOOO
00000O0OCOONOGOOGOOOOOOO
00000O0OCGOOOOOOOOOO®O
ee00000000000000O0
o000 £

XXX
XXX (XXX
eeeo XXX
XXX XXX
(XXX (XXX
XXX eeccoo e
XXX XXX XXX
ee 0o CICRCXC NN
(XXX 0c0eo0ele0e
(=2 o

=

o000 00000OQCO 0000000 O@OO
« 00| XX
0000000000 0000000000
y.......... 000000000
00 00000C0OQOOO o000 000 Q0O

301



(@ (b)
Fig. 8-23 PD points for (a) fluid flow field and (b) thermal field

In the mechanical field, all the velocities and displacements of the particles
belonging to the fictitious solid wall layers keep zero throughout the simulation

process, i.e. the solid boundary conditions are (grey points in Fig. 8-23 (a)):

At x' =L ; y=0; y=W ; XxX=0y<d ; x=0y>W-d ;
X =L,d" <y <W'—d"; 0<x <L,y =d and 0<x <L,y =W"—-d":

u, =0 (8.47)

In the fluid thermal field, the thermal boundary conditions are

* *

At X =0,y <d ’; X =0,y >W —d"; X' =L,d"<y"<W'—d” and X =L
(orange points in Fig. 8-23 (b)):

oT;

Ki =0:T,, =T, , for pairwise points (8.48)
At 0<x <L,y =d"; 0<x <L,y =W —d"; y =W"; y =0,x >dj, and
X =L (orange points in Fig. 8-23 (b)):
oT; e o :
- =0:T;,; =T, ; for pairwise points (8.49)
At vy =0, X <d;, (for red points in Fig. 8-23 (b)):
T, =2Te (1)-T/, (8.50)

The composite material is the same as the one in Section 8.4.1. Regarding the

composite PD model, the composite points’ initial spacing is the same as the fluid

spacing, i.e. AX =0.0125 with 40x40x3 nodes. The location z=0 is in the

midplane of the composite model.
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The front view of the composite model for the mechanical field and thermal field is
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provided in Fig. 8-24, respectively. In Fig. 8-24 (a), the fictitious layers on the left
Fig. 8-24 (b) are under insulated-boundary conditions while the purple points are under

the convective and radiation condition related to the fluid flow.
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Fig. 8-24 PD material points for (a) composite mechanical field, (b) composite
thermal field

8.4.2.2 Numerical Procedure

The flowchart for problem 8.4.2 is provided in Fig. 8-25. First, the thermo-fluid flow
Is simulated in a non-dimensional form under the fire boundary condition. Thus, the
dimensionless temperature profiles of the fluid are predicted. Subsequently, the heat is
transferred from the fluid field to the composite through the convection and radiation
interface boundaries. The dimensionless temperature change in the composite is
predicted by solving the composite heat conduction equation under the interface
boundary condition. Then the dimensionless temperature of the composite is converted
into its dimensional value, in order to update the composite material properties both
including the thermal properties and the mechanical properties. This procedure, i.e.
thermo-fluid flow and composite heat conduction, is performed every time step as a
transient analysis. Subsequently, being same as Section 8.4.1, the deformation of the
PD composite model due to the temperature change is predicted by using the ADR
technique [87] for each 100 seconds as a quasi-static analysis. The composite
mechanical analysis is performed in a dimensional form by using the converted
dimensional temperature profiles. Besides, it should be noted that the non-dimensional
values of the composite geometry are used in the composite mechanical analysis,
which can be treated as a geometry scaled model. Therefore, the predicted deformation

such as displacement is also scaled.
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!
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!
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!
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!
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Eq.(8.39)
}
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boundary, Eq.(8.51)
+
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'
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ﬂ No y
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mechanical Part
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'
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'
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)

End: Composite thermal Part

Fig. 8-25 Flowchart for the coupled thermo-fluid model for air and thermo-
mechanical model for composite for problem 8.4.2
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8.4.2.3 Numerical results

The temperature profiles in fluid with respect to the reference temperature,

(Tf —T ) are provided in Fig. 8-26. In order to be comparable to the fire temperature-

time curve, the real values of the temperature at different times are provided. It can be
observed from Fig. 8-26 that the interface between the composite bottom edge and
fluid suffers the high temperature while the temperatures around other interfaces are

relatively low.

Non-dimensional velocity profiles of fluid at different times are provided in Fig.
8-27. The fluid flows due to the temperature difference between boundaries. The

largest velocity occurs just below the composite bottom edge at t* = 0.05. Then the air

will flow up due to the temperature difference between the high temperature on the
bottom and the relatively low temperature on the top. In this example Ra=10° is used

and it is much smaller than Ra =10° for turbulent flow [166], therefore the fluid flow

shown in Fig. 8-27 is laminar.
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Fig. 8-26 Temperature profiles in fluid with respect to reference temperature,
(T, ~T, ) attime (a) t=100s (t"=0.05), (b) t=200s(t" =0.1), (c)

t=400s(t"=0.2), and (d) t=500s(t"=0.25)

(@) v,,att" =0.05 (b) v, ,at t"=0.05

0.456.
0.387
0.319
0.250
0.181
0.113
0.0440
-0.0247
-0.0933
-0.162

(c)v,,att =0.1 (d) v,,att" =0.1

307



150

135
0.784

0.504

0.223

-0.0579
-0.339
-0.619
-0.900

m)

(e) v,,att =0.2 (f)v,,att =02

)

(@) v,,att =0.25 (h) v,,at t"=0.25

0.784
0.504
0.223

-0.0579 0.960

0339 0.620

-0.619 0.280

3.00
2.81
245
2.10
174
139
1.03
0.679
0.324
-0.0300

-0.900 -0.0600

Fig. 8-27 Non-dimensional velocity profiles of fluid at different times

Regarding the thermal field of the composite laminate, the temperature profiles in
composites with respect to the reference temperature are provided in Fig. 8-28 at
different times. It can be observed from Fig. 8-28 that due to the anisotropic property
and different stacking sequence of the laminates, the temperature distributions are
different for different layers at the same time. The rate of temperature rise is relatively
small due to the small local fired region and the low thermal conductivity of composite
materials used in the present study. According to the investigation performed in [280],
the temperature rising rate of the average temperature of the same composite material
is only 0.07 K/s [280]. In this example, the rising rate is 0.085 K/s for the bottom layer
and 0.061 K/s for the middle layer, which is consistent with the investigation in [280].
In the previous example in Section 8.4.1, the temperature rising rate of the average
temperature of laminates is 0.21 K/s. Compared to the previous problem in which the
composite is directly imposed under the fire-induced temperature boundary condition,
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the temperature rise in this simulation case is much smaller. Furthermore, no damage

due to melting of composite material is observed.
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Fig. 8-28 Temperature profiles in composite with respect to the reference
temperature T, , (TS —T ) at different times

The deformation of the composite is predicted for each 100 seconds by using the

ADR approach [87]. The total number of iterations in one ADR performance is

N,or =4000. Fig. 8-29 represents the convergence of displacement fields for ADR

[87] simulations at time t” =0.25. The non-dimensional displacements of the three-
layer composite at different times are provided in Fig. 8-30-Fig. 8-31. The deformed
shape at the final stage is provided in Fig. 8-32. It can be observed from the figure that
the delamination tends to occur in the heated region because of the thermal expansion.
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Fig. 8-29 Convergence of non-dimensional displacement fields for ADR [87] at
t'=0.25
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Fig. 8-31 Non-dimensional displacement distribution at t” = 0.25

Fig. 8-32 Deformed shape at t* = 0.25 (displacement scale factor 200 for deformed
shape)

8.5. Summary

In this chapter, the developed PD composite model and thermo-fluid model are
coupled together to predict the composite response under the fire scenario. The thermal
degradations of composite material properties are incorporated into the peridynamic
composite model. The ISO standard temperature-time curve is adopted to represent the
fire-induced high temperature. The fluid model coupled with heat transfer is utilized
to represent the physical fire model. Two problems are investigated in the present
chapter, i.e. composite damage due to direct contact with fire and composite damage
due to hot gas induced by fire. The convective and radiative boundary conditions are
implemented by coupling the thermo-fluid model with the composite model.
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9. Conclusion

9.1.

Achievements against the objectives

The goal of this research is to predict the composite damage under fire scenario by

using one methodology, i.e. peridynamic theory. Therefore, the peridynamic theory

which is originally proposed for solid mechanics is extended to the fluid mechanics to

model the fire physical properties. Furthermore, the fluid-structure interaction

algorithm in the framework of peridynamic theory is also developed, which can be

further generally applied to the FSI engineering problems. The main achievements

against the research objectives are listed as follows:

An OSB PD fully coupled thermomechanical model for isotropic material is
developed. The coupling terms including the thermal effect on solid
deformation and the mechanical deformation effect on temperature are
involved in the OSB-PD model. The PD expressions of the thermal modulus
for 1D, 2D, and 3D problems are first time derived in OSB-PD theory. Then
several benchmark problems are solved by using the developed model, e.g.
three-point bending problem, Kalthoff plate problem etc.

An OSB PD fully coupled thermomechanical model for laminated composite
materials is developed. The direction-dependent properties of the composite
materials are taken into consideration. The PD thermal conductivity
formulation for interlayer heat conduction is derived for the first time.
Furthermore, the PD thermal modulus for composite materials in the OSB-PD
framework is firstly derived.

A single-phase fluid model is developed based on the peridynamic differential
operator. The Navier-Stokes equations are reformulated into a non-local form
expressed by the peridynamic differential operator. The developed model is
applied to solve some benchmark problems in fluid mechanics including a free
surface fluid flow.

A heat-conducting fluid model is developed for fluid flow coupled with heat
transfer problems by using the peridynamic differential operator. The heat

conduction and fluid flow are simulated in a simultaneously way. The
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developed model is applied to solve some benchmark problems, i.e. natural
convection and mixed convection.

e Aperidynamic model is developed for multiphase fluid flow problems by using
the peridynamic differential operator. The surface tension force is included in
the fluid flow governing equations. The developed model is applied to solve
the classical problems, e.g. two-phase hydrostatic problem, two-phase
Poiseuille flow, and 2D droplet deformation.

e A peridynamic model is developed for fluid-structure interaction problems.
The structure is modelled by using the ordinary state-based peridynamic theory,
while the fluid is modelled by using the peridynamic differential operator. The
interface between the fluid and the structure is traced by using the colour
function gradient. Then the developed model is applied to simulate the water
column collapse under a rubber gate.

e The composite response under fire scenario is simulated by using the previous
composite model and fluid model. The thermal degradation properties of the
composite are incorporated into the original composite model. The problems
of the composite are directly and indirectly under a fire-induced high-

temperature boundary condition are investigated.
9.2. Novelty and contribution

The existing peridynamic model for fully coupled thermomechanical models is in
the bond-based form. Therefore, the Poisson’s ratio of the solid material is forced to
be 1/3 for 2D problems and 1/4 for 3D problems. By using the ordinary state-based
peridynamic theory, an OSB PD fully coupled thermomechanical model is developed
to fill the gap. The developed model has been successfully applied to solve some
benchmark problems in a fully coupled thermomechanical fashion, which is published
in [5].

The composite materials are widely used in the engineering field, due to their high
strength to weight ratio and other high-performance properties. The prediction of crack
propagation of composite materials is important especially under extremely harsh

conditions, e.g. high-temperature environments. The fully coupled thermomechanical
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composite model in ordinary state-based peridynamic theory is not available in the
published literature. Therefore, based on the previous fully coupled thermomechanical
bond-based peridynamic model, an ordinary state-based peridynamic fully coupled
thermomechanical model is developed for composite materials. In addition to
involving the coupling terms between the mechanical field and the thermal field, the
anisotropic material properties of the composites are also included in the developed
model. The developed model is fully validated and applied to predict crack
propagation in a fully coupled manner. The relevant study is published in [6]. As an
application example, the crack propagation and temperature variation of a 13-layer
laminate are simulated under underwater explosion pressure conditions. This study is
published in [7].

The peridynamic theory is originally proposed for solid mechanics. Aa a result, as a
computational mechanics method, its application on fluid mechanics field is still
limited. A viscous fluid model in laminar flow condition is developed by using the
PDDO for the first time. The fluid flow governing equations, i.e. Navier-Stokes
equations, are reformulated into an integral form. Furthermore, the second-order
derivatives in the N-S equations can be approximated by one integration with the help
of high order PDDO. Some benchmark problems in fluid mechanics have been
successfully solved by using the new PDDO fluid model, validating the capability of
the developed model. The relevant study is published in [8].

The heat-conducting fluid flow is a multi-physics subject, involving the knowledge
of fluid mechanics and thermodynamics. A peridynamic model which can be applied
for the fluid flow coupled with heat transfer problems is not available in the published
literature. Based on the fluid PDDO model, a heat-conducting fluid PDDO model is
developed for the first time. The fluid flow governing equations and the heat
conduction equation are coupled in the model. The classical problems, e.g. natural
convection and mixed convection are solved by using the developed model on different

Rayleigh numbers. The relevant work is published in [9].

The simulation of the multi-phase fluid flow is a complex task. Based on the PDDO

single-phase fluid model, a multi-phase fluid PDDO model including the surface
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tension force is developed for the first time. Furthermore, some numerical techniques
such as particle shifting technique are reformulated by using the PDDO. The interface
normal direction is calculated by using the colour function gradient which is also
reformulated to a PDDO form. Some classical multi-fluid problems are solved,
validating the accuracy of the multi-phase fluid PDDO model. The relevant work is

written as a journal paper which is under review.

The fluid-structure interaction is often encountered in the engineering field. It will
be convenient for one to use a single methodology to simulate these FSI problems.
Furthermore, when structural damage is involved in the problem, it becomes more
complex and challenging work. The peridynamic theory has the advantage over the
classical continuum mechanics on the damage prediction, because of the integral form
of the equation of motion. However, an FSI PD model which can simultaneously
predict the solid deformation and fluid motion, as well as including the interactions, is
not available in the published literature. Therefore, a peridynamic model is developed
for fluid-structure interaction problems. The existing ordinary state-based PD model
is adopted for the isotropic solid. The PDDO fluid model is utilized in the FSI PD
model. Then an algorithm to couple the OSB-PD solid model and PDDO fluid model
is developed. Furthermore, the interface is tracked simultaneously. The developed PD
model is successfully applied to solve FSI problems. The relevant work is written as a

journal paper which is under review.

The simulation of the response of composite material in fire environments is a
meaningful research topic in terms of safety. Therefore, a numerical algorithm is
developed to investigate the composite material response under fire boundary
condition. However, no PD model is available for this case which belongs to the field
of thermal fluid-structure interactions. Therefore, a novel PD model is developed for
this problem. First, the thermal degradation properties of composites are implemented
into the existing composite PD model. Then the composite response directly under
fire-induced temperature boundary condition is investigated. The thermal status such
as glass transition, the thermal expansion as well as the crack propagation of the
composite is studied. Second, the fluid model is utilized to represent the physical

model of the fire. The air is heated by the localized fire temperature boundary condition.
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Then the composite deforms under the heated air. The heat conduction within the
composite and the deformation of the composite are simulated. The convection and
radiation between the air and the composite are considered. This study will be the first
one to investigate the composite response under fire using the peridynamic theory. The

related study is written as a journal paper which is under review.

9.3. Publications from PhD thesis

Journal Papers

[P1] Y. Gao, S. Oterkus, Peridynamic Analysis of Marine Composites under Shock
Loads by Considering Thermomechanical Coupling Effects, Journal of Marine
Science and Engineering, 6 (2018) 38.

[P2] Y. Gao, S. Oterkus, Ordinary state-based peridynamic modelling for fully
coupled thermoelastic problems, Continuum Mechanics and Thermodynamics, 31
(2019) 907-937.

[P3] Y. Gao, S. Oterkus, Non-local modelling for fluid flow coupled with heat
transfer by using peridynamic differential operator, Engineering Analysis with
Boundary Elements, 105 (2019) 104-121.

[P4] Y. Gao, S. Oterkus, Nonlocal numerical simulation of low Reynolds number
laminar fluid motion by using peridynamic differential operator, Ocean Engineering,
179 (2019) 135-158.

[P5] Y. Gao, S. Oterkus, Fully coupled thermomechanical analysis of laminated
composites by using ordinary state-based peridynamic theory, Composite Structures,
207 (2019) 397-424.

[P6] Y. Gao, S. Oterkus, Multi-phase fluid flow simulation by using the peridynamic

differential operator. (under review)

[P7] Y. Gao, S. Oterkus, Fluid-structure interaction simulation by using the
peridynamic theory. (under review)
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[P8] Y. Gao, S. Oterkus, Thermal fluid-structure simulation of composites under the

fire scenario. (under review)
Conference Papers

[P9] Y. Gao, S. Oterkus, Thermomechanical Analysis of Composites Under Shock
Load Using Peridynamics, in: The 28th International Ocean and Polar Engineering
Conference, International Society of Offshore and Polar Engineers, Sapporo, Japan,
2018, pp. 8.

9.4. Gaps and recommended future work

Concerning the fully coupled thermomechanical PD models for composite materials,
parallel computing can be adopted to save the computational time. For example, the
numerical simulations for the 13 ply laminates take approximately 3 days for
sequential computing. The computation time can be reduced to less than 1 day when

parallel computing is used with 4 cores.

Concerning the PDDO single-phase fluid model, the model can be extended for high
Reynolds number laminar flow. Even the turbulent flow can be investigated by
incorporating the turbulent model into the governing equations. It should be noted that,
for a high Reynolds number laminar flow or turbulent flow, a stable algorithm
regarding the numerical implementation is required when the peridynamic particles
are in a highly distorted distribution.

Concerning the PPDO heat-conducting fluid model, more numerical simulations can
be done. For example, the effects of different type of boundary conditions, e.g.
convective boundary, radiative boundary on the fluid flow can be investigated.

Concerning the PDDO multi-phase fluid model, more numerical simulations can be
performed to validate the model, e.g. Rayleigh Taylor instability problem, air bubble

rising in a water column.

Concerning the fluid-structure interaction PD model, more numerical simulations

can be performed to validate the model. Furthermore, the structure failure can be
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simply incorporated into the current model, which can reflect the advantages of the PD
theory where the integral equations remain valid regardless of discontinuities. Besides,
the current FSI PD model can be more efficient by setting different mesh sizes for
critical regions and other regions. For example, the fluid and structure interaction
region can have a fine mesh while the other parts with less motion or deformation can

have a relatively coarse mesh, in order to make simulations more efficient.

The current fluid-related PDDO models, i.e. the single-phase fluid model, the heat-
conducting fluid model, the multi-phase fluid model, and the fluid-structure interaction
model, are all applied to 2D fluid flow simulations. Therefore, the 3D fluid flow can

also be simulated by simply extending the current 2D fluid models.

Concerning the simulation of the composite response under fire scenario, the
experimental validation is required. In addition, the following aspects can be
considered for further PD study on this topic. Firstly, the fire can be represented by a
multi-phase, multi-component, heat-conducting, and chemical reactive fluid flow.
Currently, only the heat-conducting property is incorporated into the fluid flow to
represent the fire. Consequently, the current fire model can be extended by involving
the other properties to represent fire realistic properties. For example, the solid
components can be considered within the fluid flow by using the multi-species
fractions and diffusion velocity. The chemical reaction can also be included as a heat-
generating source in the conservation of energy equation. Secondly, the thermal
coupling between the composite model and the fluid model is considered in a one-way
approach. Only the temperature of the fluid influences the thermal field of composites.
Therefore, for further study, the two-way coupling can be considered which will be
more realistic. Thirdly, because the deformation of the composite under fire is
negligible, the coupling between the fluid flow and composite deformation is not
considered in the thermal fluid-structure interaction simulation for composite under
the fire scenario. Hence, the fluid-structure interaction algorithm developed in this
thesis can be incorporated into the composite-fire simulation when the deformation
coupling effect cannot be ignored.
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9.5. Final remarks

The ultimate problem to be solved in this thesis is the prediction of the composite
material response under fire scenario, which is a multifield topic including solid
mechanics, thermodynamics, fluid mechanics, and their coupling terms. In order to
solve this problem, the application field of the peridynamic theory is extended to the
fluid mechanics, i.e. developing a single-phase fluid model, a multi-phase fluid model,
a fluid flow coupled with heat transfer model, a fluid-structure interaction model.
Furthermore, the ordinary state-based peridynamic model for fully coupled
thermomechanics is developed both for isotropic materials and laminated composites.
Finally, the investigation of composite response under fire scenario is conducted by

combining the developed PD fluid model and composite model.
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Appendix A. Thermal Modulus for Isotropic Material

The thermal modulus for a material point can be obtained by using the PD local

thermal modulus formulation provided in Eq.(3.8) as follows:

When small deformation approximation is adopted, A; provided in Eq. (2.9d)

results in A; =1. Consequently, the integration term in Eg. (3.8) becomes

N;
DAV, =V, (A1)
j=1

with V,, - representing the integration volume.

For 2D problems, the integration domain is a circle disk with its radius, 6 and
thickness, hy;, . On the other hand, the integration domain for 3D problems is a sphere,

thus the volume in Eq. (A.1) can be calculated as

Vy, = 7hy6° for 2D (A.23)

3
v, = Vi¥/7o)

for 3D (A.2b)

X

An average value of relative position can also be evaluated by using weighted

integration as

j|§|dV' 27 05
o [E|d[E|d g 3
G i :L [ el o [E]d[E] L2325 on g
0 J- av’ VHX 7S 3
Hy
J‘|§|dV’ S p21 o1 2 .
sin(¢)dg¢d9d 4
A N X - LT ™ PR
o [dv’ V. 475°13 4
HX
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In Eq. (A.3), 4 represents the bond angle with respect to x axis for 2D cases and

¢ represents the bond angle with respect to the x-y plane for 3D cases.

Recalling the classical material constants

E E

K, = = for 2D A4

YO ST (%)
E E

K, = = for 3D Adb

PT3—2) T2 (A49)

Finally, by substituting Eq. (A.2), Eq. (A.3) and Eqg. (A.4) into Eq. (3.6), average
PD thermal modulus for a material point can be calculated as

B 3E%  toop (A.53)

i (1-v)

SE2 forap (A.5b)

= =2

PD thermal modulus for ordinary state-based form reduces to bond-based form by

plugging in v =1/3 for 2D and v =1/4 for 3D in Eq. (A.5) [43, 44] as

ﬂb =5 (A-G)

with the definition of ¢ being provided in Chapter 2.1.1. As can be seen from the

above formulations, bond-based PD has a limitation on Poisson’s ratio [10, 11].
Reduced form as Bond-Based PD:
Equation of motion:

In bond-based PD by applying the restriction a =0 in [10], the corresponding PD

force functions provided in Eq. (2.9) becomes
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yj_yi

‘y ™ (A.7a)
j i

t(u; —u;, X; -, t)=25b(s; —T,)

yj_yi

t(ui—uj,xi—xj,t):—25b(sij—aTj)‘y y
i~ i

(A.7b)

By enforcing the magnitude of PD force density provided in Eq. (A.7a) and
Eq.(A.7b) to be equal to each other as

Ti+T) Y-y
t(uj—ui,xj—xi,t)_25b[sij—a( 5 ')]‘yj_yi‘ (A.8a)

T+T) 1y, -y
t(u,—uj,x,—xj,t)—25b(s”—a( 5 J)]‘YjY.‘ (A.8b)
it results in t(u; —u,, x; —x;,t)=-t(u,—u;, x, —x;,t). By plugging Eq. (A.8) into

Eq.(2.3), the equation of motion becomes [43]

j=1

pii(x,, )= 3" (4bs, 208 (T, +T, ))[ﬁ}vj +b(x,,1) (A9a)

or

pu(x;,t)= i(csij - B, (Ti +T, ))[gj :yi‘]vj +b(x;,t)  (A.9b)

with bond-based thermal modulus as

B, = 2ba (A.10a)
or
B, = C?“ (A.10b)
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Heat Equation:

The form of the heat conduction equation in bond-based peridynamics remain same
as Eq. (3.1) [43]

N O(x,t)-0(x,,t)

pc,T (Xi ,t) = z K

i1 ‘Xj_xi‘ ~©uB(x; =, Je(x; =) IV, +h. (x,1)

(A.11)

with bond-based thermal modulus provided in Eq. (A.10).
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Appendix B. PD Thermal Parameters for Composites

B.1 PD thermal micro conductivities for composites

The heat conduction equation for a single layer composite provided by Oterkus and

Madenci [46] is modified for multi-layer composites as

et

X" =X

Npiy

peTy Z[(M:Kf LS ) (

=

N[ O(X",1)—O(X",t
+ Z Z[Kinter (XJ ) (Xk ):lvjm"'qu(xﬂ,t)

m n
m=n+1,n-1 j=1 ‘Xj — X,

(B.1)

The first term on the right side of Eq. (B.1) represents the in-plane heat conduction
in a lamina [46] and the second term represents the heat conduction between the

neighbouring layers.

The PD thermal micro conductivities can be determined by applying simple loading
conditions and by comparing thermal potentials with classical formulations [43, 44].
The thermal micro conductivities for a lamina provided by Oterkus and Madenci [46]
are given in Eq. (4.10)-(4.11). Similarly, the thermal micro conductivity through the

thickness direction can be calculated by applying simple loading condition as
O(x,y,z)=1 (B.2)

The thermal potential in the classical formulation can be calculated under the given
loading condition as [10, 39, 44]

e (acaj L (B.3)
2 0z 2

where k. is the thermal conductivity in the thickness direction. In a resin-rich

laminate, the material property in the thickness direction can be assumed to be same

as the matrix material property.
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The corresponding PD thermal micro-potential developed by the central point X

and its family member x" can be evaluated as [39]

[0-0T
2x-x'

ZPD - Kinter

(B.4)

The PD thermal potential is the summation of all microthermal potential with the

point, calculated as

1 [G)_@']z '
Zpp = EIH Kinter mdv (B.5)

where x

inter

is the PD thermal bond constant in the thickness direction. The integration

domain, H , for the interlayer thermal bonds between n™ ply and m™ ply is a circular
disk with the thickness being equal to h,, . For the given loading condition, the

temperature difference becomes
©' -0 =hyg (B.6)

Therefore, Eq.(B.5) can be evaluated as

1 p2n o hthick2 ' !
Zop =2 2 [ [ Ky —=2 e, . [&]d & d o
PD 2.[0 J.o ! 2 /|§,|2+hthid(2 hick (B.7)

= TKinter hthick3 (5 - hthick )

where &' represents the projection of the relative position & on the layer in which x

is located, i.e. |§|=«f|§’|+hjﬂck . By equating the thermal potential from both the

classical theory Eq.(B.3) and peridynamic theory Eq.(B.7), the peridynamic bond

constant for interlayer interactions can be found as

km
270" (S — i )

Kimer -

(B.8)
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where § is the horizon for interlayer shear bonds with 5:«j62+hfhick (see Fig.
4-4(b)).

B.2 PD thermal modulus for composites

Free Energy density

The free energy density in classical continuum mechanics for small deformation can
be represented by the summation of internal energy density or strain energy and
dissipated energy density into heat [290] as

Yeem :WC'\éM _WCTCM (B.93)
with
1
WL, =§{O'}{S} (B.9b)
C
W, = {{ﬂcl}{g}T +2_GV)OT2} (B.9¢)

where {£,} is the thermal modulus vector in classical continuum mechanics, {c} is

the stress tensor, {&} is the strain vector and W, is the free energy density.

Similarly, the PD free energy density can be written [43] as

Yoo :Wp“é', —WF,TD (B.10a)
where
w;g =%L_J-K-l_J (B.10b)
C
WL =| BeUT +—LT? B.10c
oo ] o109
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where B is the thermal modulus and U is the displacement in PD theory. Also, K is

the modulus state [50]. Eq. (B.9c) and (B.10c) include the coupling term between

mechanical and thermal field.

PD mechanical model is developed by equating the strain energy densities from both
theories as [10, 80, 291, 292]

Widw =Wep (B.11)

Similarly, PD thermal modulus can be found by equating the free energy densities

i.e. Yeen =¥pp, Which results in
WCTCM :WPTD (B.12)

PD thermal modulus expression for single-layer/ lamina model

The peridynamic representation of thermal modulus is determined by applying 2
simple loading conditions as:

Loading 1:
E1=C,Ep =0 =0 (B.13a)
Loading 2:
Ep=C,6,=0,=0 (B.13b)

According to CCM:

In classical continuum mechanics, with respect to the material coordinate system,

the thermal modulus for a lamina is defined as

{4} =[Ql{e) (B.14)
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where [Q] is the reduced stiffness matrix given in Eq. (4.7). The thermal expansion

coefficient vector, {a}, is defined as

{a}=1a, (B.15)

Under the given two loading conditions, the first term on the right-hand side of Eq.
(B.9c) can be obtained as:

Loading 1:

Quay +Qpar, | £
{ﬂcl}{g}T :[Q]{a}{g}T = Q12a1+Q22a2 10T :(Q11a1+Q12a2)§T (BlGa)
0 0

Loading 2:

Qua +Qpa, 0
{ﬂd}{g}T =[Q]{0€}{8}T = Q120(14_Q226¥2 ) é/ T =(Q12a1+Q22a2)§T (Ble)
0 0

According to PD theory:

Corresponding PD representation can be defined as:

B-UT :TIH,B[ z::zd-u(x’—x)dH (B.17)

By using small-angle approximation Eq. (B.17) becomes as (See Figure B-1):
B.UT :T_[H B, dH =TjHﬁ(|y'—y|—|x'—x|)dH (B.18)

with
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75 = Uy —Uy =cos(¢)(u; —u,)+sin(e)(u; —u, ) (B.19)

7y Ty

(b)

T1x

Bond extension

(©)

Figure B-1 Relative displacement between points x and X in different
coordinates [76].

The relative distances in deformed configuration between the material points x and

x" for given loading conditions are,

Loading 1:

X' —X (B.20a)

y'-y|= [1+ ¢ cos? (gp)]

Loading 2:

ly' =y =[1+sin* (¢) ||x' - (B.20b)

Eqg. (B.18) for given loading conditions can be defined as:

Loading 1:

B-UT :TIH(yFﬂf + By )X =X|(¢ cos® (¢))dH (B.21a)
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Loading 2:

B-UT =T[ (1 +5, )X -

(¢sin?(p))dH (B.21b)

By plugging the relative distance between the material points x and X' into
Eq.(B.21), Eq.(B.21) becomes

Loading 1:
B-UT =T[ (8, +5,)< cos () fe|aH
T[7 [ (e B, + B,) € 05 (9) e ] d el 0 (.223)

Z ,Bf 72. hIhICk ﬂm

Loading 2:

B-UT =T/ (s, + )¢ sin’ ()[g]dH
=T [} (e + B, )¢ sin? (0) el [ d €] do (B.22b)

é’T [ﬂ.hthlcké‘ ﬂmj

By equating the expressions Eq. (B.16) and Eqg. (B.22), the following relations are

obtained as
N¢ 7Z'hl ) 53
2 B[V + I = Quen + Que, (B.232)
x'=1
and
T o°
hthnck ﬂ leal +Q22a2 (BZ3b)

Finally, the expressions of g, and g, are defined as
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_ (Qllal +Qpa, ) - (leal +Q,a, )

B, % (B.24a)
2 JEV’
x'=1
and
By = 3Qutt Q§2a2) (B.24b)
7O
PD thermal modulus for a 2D isotropic material Eq. (B.24) becomes
S =0 (B.25a)
6K, o 3Ea 3
po= K 3Ea Sk (B.25b)
g™ hy o (1_‘/) 7hyigd
with
ag=0,=0,Q;=0Q, =K, +1,Q, =K, - u (B.26)

where K, and g are bulk modulus and Lamé constant, respectively. The PD

parameters provided in Eq. (B.25) are consistent with the ones in [5].

Furthermore, for bond-based peridynamic theory the PD thermal modulus will
reduce to [43];

B, =0 (B.27a)
1
B, = ECO{ (B.27b)
with
c=9—E3 for 2D (B.27¢)
7y O
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PD thermal modulus expression for multi-layer/ laminate model

In a multi-layer/laminate model, the expressions of the PD thermal modulus
associated with in-plane bonds remain the same as the ones in the lamina model
(Appendix B.2). The PD thermal model for multi-layer composites including coupling
effects can be written as

N piy

pCkan = Z{(ﬂFKf +Km)

@(xj,tn)—(a(

n
.—Xk

=1

. NZ[Kt o(x",t)-0(

)—®o(ﬂFﬂf + By )€ ]V,-”

)

X, t
(B.28)
X, t

m n
‘x. — X

m=n+1,n-1 j=1 i

- ®Oﬁintere.lzr,nz }ij + P4, (XE ’t)

Similarly, PD thermal modulus can be found by equating the free energy densities
from PD theory and CCM as given in Eq. (B.12) for simple loading conditions.

In order to derive the expression of PD thermal modulus, a uniform transverse

normal stretch is applied as
£5=C (B.29)
According to CCM:

Under the given loading condition, the first term on the right-hand side of Eq. (B.9c)

can be obtained as:
{Bi e T ={Ena ST = BT (B.30)

According to PD theory:

Under the given loading condition, as illustrated in Figure B-2, for the material point

x, of interest, the relative positions in undeformed and deformed configurations are

— e 12 (B.31a)

m n
‘xj - Xy
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= O R +1° (B:310)

T -y

with | = ‘VT -y

and m=(n+1,n-1)

Consequently, the relative displacement becomes

=L O R 17 R+ % (B.32)

m n
—‘xj — Xy

T -y

Yi I Y]
m" Ply x>
(1+¢)h -
' (1+&) h2+1?
Yk
n" Ply n" Ply V4

Figure B-2 Illustration of relative positions in undeform and deformed
configurations.

The integration domain, H, is a circular disk with radius being ¢ and thickness

being hy,, . Therefore, by considering the two adjacent plies m=(n+1,n-1), Eq.

(B.17) can be calculated as

2
B . L_JT — 2.[ ﬂinter ;nhick dH
" htiick + |2

Ch (B.33)
=2 LﬁmaJﬁf%ﬁ?mMMM¢=4m@mgﬁm(5_mw)

hick

By equating Eq.(B.30) and Eq.(B.33), the expression of g__ can be obtained as

inter

Emam

A7k (S — i )

Biner = (B.34)
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Appendix C. Surface Correction Factor for Composites

The values of the PD parameters depend on the domain of integration which is
decided by the horizon. Therefore, surface correction factors are needed when the
material points are located near the free surface. The surface correction factors for
mechanical parameters for composite materials and isotropic materials have already
been provided in [10, 44, 291]. The surface correction factors for PD micro

conductivity x and PD thermal modulus £ will be discussed in here.

The surface correction factors of the PD micro conductivity are achieved by
comparing the thermal potential obtained from PD and classical formulations under
simple loading conditions [43, 44]. The correctors of thermal modulus can be obtained

by equating the free energy densities calculated from the two theories.
C.1 Surface correction factors for PD micro conductivity
Surface correction factors for single-layer/lamina model

As illustrated in Figure C-1, the coordinates of the material point X, are denoted as
(X, ¥, ) for the global coordinate system and (X, X;) for the material coordinate

system.

Yi

Figure C-1 Coordinate system illustrations.

A simple linear temperature field, ® = X"+ X?, is applied to the lamina. The

corresponding temperature difference between two material points is
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@, -0, =(Xj+X})=(X¢+X?) (C.1)

J
The PD thermal potential at material point X, can be expressed as
Z° =70 +Z), (C.2)

where Z? and Z.}, represent the contributions from fibre thermal bonds and the

matrix thermal bonds. By using the expression given in Eq.(B.5), the PD thermal
potential can also be expressed as [39, 43]

L ((x}+xf)—(x§+xf))z

PD _ —
g = > ;Kf Z‘Xj _Xk‘ (C.39)
and
2
Zew (xk)=1%f<m (x5 x}) = 7)) (C.3b)

23 Z‘Xj—Xk‘

On the other hand, corresponding thermal potential can be calculated as [10, 43, 44]

1 (e0Y ®)) 1
z _E[k{a_xlj +k2[axj ]_E(kl+k2) (C.4)

The lamina will become a matrix material when k =k, , then the corresponding

thermal potential is

2 2
1 00 00
Z,==|k,|—1| +k =k C5
M 2[ 2{8le 2(@(2)] 2 (C.5)

Therefore, the thermal potential given in Eqg.(C.4) can be expressed as

Z=2,+Z. (C.6)
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1
Z. =§(kl—k2) (C.7a)
and
Z, =k, (C.7b)

where Z. and Z,, are the thermal potentials related to the fibre material and matrix

material, respectively.

Consequently, the surface correction factors of x, and x,, at point x, can be

calculated as

1
=(k -k
. (Xk): ZP,:D i 2( 1 2) : (C.83)
Zyr 1 ((X}eriz)_(x'ijokz))
24 f Z‘Xi_xk‘
and
7 k
e 2 (C.8b)
M( k) Zf’?,, 1 Ny ((X}+Xj2)_(xli+xkz))2
25" 2[x; =]

Surface correction factors for multi-layer composite model

For a multi-layer thermal composite model, the surface correction factors for «,

and x, remain the same. Thus, only the derivation of the surface correction factors

for the interlayer micro conductivity x

inter

is explained in this section. A linear
temperature field @(x, y,z): z is applied to all the plies with respect to the global

coordinate system. Subsequently, the temperature difference is calculated as
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07 -0; =z -z (C.9)

where the point x{ is in the n” and Xj isin the m™ ply. Therefore, the temperature

difference is zero between x| and x; . The thermal potential of point x; can be

calculated as

2
1 Ninter (Zm — Zl?)
Z_PD — _ 3 A LA
inter m:,;nfl 2 ; Kinter 2|é|

Ninter 2
1 % forn=1,N (C.10)

Kinter

2 = Z‘Xj —XE‘
1 o ht2hick

Z — ik forn=2,3,---N -1

— K.
t
2 e inter Z‘XT _XE‘

m=n-1, n+1 j

where N is the total number of plies in a laminate (see Fig. 4-4(a)).

Corresponding thermal potential in CCM can be calculated as

1, (e@Y) 1
Z. =—lk|—| |==k C.11
inter 2( 3( 62) J 2 3 ( )

There is only one adjacent layer for the bottom and top ply. However, the value of

K, ... IS calculated by summing the thermal potential energy developed by two plies.

inter

Therefore, to calculate the surface correction factors for the points in the bottom and

top plies, the PD thermal potential developed by interlayer thermal bonds are doubled.

K are given as

In conclusion, the surface correction factors for
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1y
2 forn=1 N
Nimer 2
2 1 Z Kinter %
n Zinter 2 j=t Z‘Xi _Xk
Sinter (Xk ) = ZT = 1 (C12)
inter
it k3
N 2 > forn=2,3,---N -1
1 inter bick
Py Kinter m n
m=n-1, n+1 2 j=1 Z‘Xj — X

where h,, is the thickness of a single layer.

C.2 Surface correction factors for PD thermal modulus
Surface correction factors for the single-layer composite model

The surface correction factors for PD thermal moduli g, and £, are determined by

applying two different loading conditions as in the fibre direction then in the transverse

direction as:
Loading 1:
u ={&x 0 (C.13a)
Loading 2:
u,={0 ¢x} (C.13b)

The orthotropic property of a single layer composite is assumed as the summation
of a matrix material and a fibre material that only exists in the fibre direction. In

analogy with the PD thermal modulus components, the classical thermal modulus /£,

is assumed to be

ﬁc: + 43 Quay +Qp,a,
By = ﬂcrln =1Q,2 +Q,,a, (C.14q)
0 0
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with
ﬂc: = (Qllal +0Q,a, ) - (QlZal +Qpa, ) (C.14b)

B = Qe + Qe (C.14¢)

Under given loading conditions, the first term on the right-hand side of Eq. (B.9c)

can be obtained as:

Load 1:

Quay +Qpa, | &
{ﬂcl}{g}T - [Q]{a}{g}T = Qpay + Qe - 0T :(Qnal +Q12a2)§T (C.153)

0 0
with
(B HeT =[(Quay +Que, ) —(Quey + Qe ) | 4T (C.15b)
1B el T =[Quon +Que J<T (C.15¢)
Load 2:

{ﬂd}{g}T =[Q]{0€}{8}T = Q120(14_Q226¥2 ) é/ T =(Q12a1+Q22a2)§T (ClGa)

0 0
with
187 HejT=0 (C.16b)
(B }{e} T =[Quan +Que, |¢T (C.16c)

Since there is no deformation in the fibre direction, the fibres do not deform under

load 2. Therefore, the deformation effect of fibre on temperature is zero.
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Corresponding PD representation can be defined by using Eq. (B.18) as:

Load 1:
Ny o

(g.L_J)f’lT =TZ,Bf (ul(xj)—ul(xk))wy’fykvj (C.17a)
j=1 Yi Yk‘
Npiy o

(g.L_J)m‘lT :TZ,Bm (ul(xj)—ul(xk))-‘y’fykvj (C.17b)
= yj yk‘

Load 2:

(B-U)"*T=0 (C.18a)
N piy -

(B.L_J)m’ZT :TZﬂm (u2(xj)—uz(xk))-‘y‘fykVj (C.18b)

j=1 yj yk‘

As a result, the surface correction factors are

S (Xk 1 X ) = {ﬂCfl Yl} {3}T = [(Qllal * Qut, ) _(Ql2al + Q0 )]§

B.UYIT L Yy -y (C.199)
(_._) Zﬂf (ul(xj)_ul(xk))' — \Z
i=t ‘yj _yk‘
S (X%, ) = {ZTU} {mg,l}TT =W, [Q”al+Q22a2]§y_ =y (C.19b)
(_ _) zﬂm (ul(xj)_ul(xk))' J ‘ Vj
I ‘yj _yk‘
S (%, %;)=1 (C.19¢)
S (x0%;) = {ﬁu}i‘i}: =Ty [Q”aﬁQ”%]gy_ =y (C.19d)
(_ _) Z:;'Bm (UZ(Xi)_uz(Xk))'MVj
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It should be noted that these correction factors are validated for the fibre and
transverse directions. They can act as the principal values of an ellipse [10] to

approximate the surface corrections in any other directions as

S, (xk,xj ) :l/\/(nlls:; (xk,xj ))2 +(n2/S§ (xk,xj ))2 (C.209)
and
S, (xk,xj):lj\/(nllsﬁ,, (xk))2 +(n2/5,6| (xk))2 : (C.20b)

where n, and n, are the projections of the relative position vector between x, and x;

in fibre and transverse directions.
Surface correction factors for multi-layer composite model

For a multi-layer composite model, the surface correction factors for in-plane
directions remain the same as the ones calculated in lamina model. The surface
correction factor for the thickness direction is developed. A third loading condition is
applied as

Load 3:
u,={0 0 ¢z} (C.21)

Under the given loading condition, the second term on the right-hand side in Eq.

(B.9c) can be obtained as:
{ﬂcl } {E}T = Emaméﬂr (C22)
Corresponding PD representation can be defined by using Eq. (B.18) as

BUT =T 3 3 A U, (%,)-U (x,)) 2y (C.23)
m=n+1,n-1 j=1 ‘yj yk‘
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Then the surface correction factor for .. is

T
ookl
Cunl o
_ ZJZ—;ﬂi"ter(uz(xj)_uz(xk)).‘yz—Yt‘vjm
Ninger “n%n$ y —y n=2,3---N-1
Z Zﬂinter(uz(xj)—uz(xk)). J_ k ij
m=n+1,n-1 j=1 ‘yj yk‘

(C.24)
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Appendix D. Analytical solution for 2D PDDO

For 2D PD differential operator, the integration domain, H,, is set to be a disk with

its radius being horizon § and thickness being h,,, , analytical form of PD differential

operator can also be calculated.

By utilizing the weighted function

w(g)=e

(D.1)

and substituting &=[¢|, & =¢&cos(6), and &, =¢&sin(9) with 6 being the bond

direction with respect to the positive x, direction into Eq.(2.28a), the analytical form

of shape matrix, A, can be obtained as

A= I2”I567(2§/5)2
o Jo

£2cs

52 SZ

B é;z C2
£2cs
53 C3 §3 CZ S
63 CSZ 653 S3

| &c’s Ees?

53 c3 53 cs? 53 c?s T
53 c2s 53 g3 53 cs?
954 ct 54 02 g2 54 s
684 02 g2 54 g 54 cs®
54 s 54083 54 c2 Sz_

Ny sd5do

(D.2)

where c=cos(#) and s=sin(@). After performing the integrations, Eq.(D.2) results

in

A= ”hthickf4
32e

e'-5) 0
0 (e'-5)
0
0
0 0

0 0

0 0
3(e'-13)5° (e'-13)5

8 8
(e'-13)5*  3(e'-13)s"

8 8

0 0
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After substituting A into Eq.(2.27), the expression of the matrix a can be obtained

as
_(641_5) 0 0 0 o
0 (641_5) 0 0 0
3222154 ° ° G —23)52 (e __123)52 0 (D.4)
’ ° G —_123)52 (e* —is) 5° °
_ 0 0 0 0 ﬁ_

Consequently, by substituting Eq. (D.4) and Eqg. (D.1) into Eq.(2.24), the analytical

expression of the PD differential operator for the 2D problem is obtained as

3¢ 26197+ | 26 (4cos? ( )-1)

)

> (

; ) 7Z'hthick54 (64 -13 )
) (

(D.5)

Finally, the partial derivatives will be converted into their non-local forms as
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cos(0)

of (X) (64—5)

%, .

of (x) (S;?E‘?)

0X,
o1 3pce %107+ | 2&(4cos’ (0)-1) :
% -1 % e ) (f(x+8)-f(x))dv'  (D6)
0% f (x) 2¢(4sin® (0)-1)

O%; (e* -13) 7
o) 8¢ cos(6)sin(6)

X, e ~13)5”

It should be mentioned that for the numerical simulations, the PD differential

operator is computed numerically.
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Appendix E. PST corrections for physical variables except

displacement

Regarding the PST, after the particle position being shifted, the fluid velocity v, ,
pressure P and density p. for particle i, represented by ¢ , can be corrected

according to the Taylor series expansion. Originally, the Taylor series expansion used
in the PST [159] only has second-order accuracy. In the present work, the second-
order derivatives are already calculated by using PPDO. Therefore, Taylor series
expansion with a third-order error term can easily be adopted as [293]

(¢In+1)°°rrecwd _ ¢In+1 +(V¢)In '(5Ui )PST +%((5Ui )PST )T Hi (5Ui )PST +0(‘(5Ui )PST

3) E.1)

where H, represents the Hessian matrix as [293]

i/ K
2
H. = OX, OX,0X, (E2)
04 4
oX0X,  OX5

Consequently, the non-local form of the Hessian matrix can be derived as

- ) ()
6X12 aX;LaXz i n n gzo &"lr} gll %:}
H, = ) ) = P(X; )= P(Xi 1 {en 02 (wn Vi
o' 4 JZ;(( )4 ))L (&) o (F,.,)] (E.3)
XX,  OX

The PPDO form of Eq.(E.1) can be derived by replacing the PDDO gradient
operator provided in Eg.(5.1d) and PDDO form of the Hessian matrix in Eq.(E.3),

resulting in
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(ﬂwl)"""emd ="+ {i@(x’} ) — 4175(X!1 )) 0, (& )VJ } (6u,)™

j=1

+2((ou)™ ) {NZ(¢(x?)—¢(xr))gz &)V, }(5% )

where the expression of (su,)™" is provided in Eq.(6.48).

Therefore, the corrected velocity components become

(™ v B () v ), o)™

Loy {Z(() () (5 )Vl}wu.)”
(vfﬂcmwed =V, + {%“(Vy (XT ) -V, (Xin ))91 (é:} )Vj } (6u)™
(C R Do A PG

(o = S (p )Pl 00

L)) {Nz‘(p(xg)_ p())aa &)V, |5,

(E.4)

(E.5)

(E.6)

It should be noted that the corrections for velocity components and pressure have

limit effects on the accuracy improvement of the numerical results, less than 10% [205].

Therefore, the PST corrections for velocity and pressure provided from Egs. (E.5) to

(E.7) can be neglected for saving the computational time. Since in this study second-

order PDDO equations are used, the higher-order terms in Eq. (E.1) can be easily

adopted to increase the numerical accuracy of the PST method.

370



Furthermore, it should be noted that the PST applied here is only applicable to the
fluid flow without free surface. If the free surface is involved, the improved version of
PST by using Fick’s law [203] should be adopted.
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