
3/3k7a

Scheduling In Dynamic Environments

By

Peter Burke

Submitted To The University Of Strathclyde

For

The Degree Of Doctor Of Philosophy

Department Of Computer Science
University Of Strathclyde

Glasgow 1989

To Mum and Dad, for their long standing support and sacrifice. Without it, this work would not

have been possible.

Acknowledgements

I wish to express sincere thanks to my supervisor, Professor J. T. Buchanan, for his speed of

response and invaluable guidance throughout the course of my work. I am also greatly indebted to

Patrick Prosser, a fellow group member, for his constructive criticism and comments at vital stages

in my project.

My thanks are also due to all members and research students of the Department of Computer

Science. Collectively they provided the working environment required to complete a task such as

this. In particular thanks must go to Derek Masson, John Costello, David Pritty and Andrew

Watson. I would also like to thank those of my industrial collaborators who contributed in some

way to the project as a whole.

Finally, I would like to thank my family and friends for their constant support and

encouragement. The most important member of this final group is undoubtedly Pauline Berry, for

whose understanding and silent suffering I am extremely grateful.

i

Abstract

Much of the work in the area of automated scheduling systems is based on the assumption

that the intended execution environment is static and deterministic. The work presented in this

thesis is motivated by recognition of the fact that most real world scheduling environments are

dynamic and stochastic. It views the scheduling task as one of satisfaction rather than

optimisation, and maintenance over creation.

This thesis reviews existing work in the area and identifies an opportunity to combine recent

advances in scheduling technology with the power of distributed processing. Within a suitable

problem-solving architecture it is argued that this combination can help to address the fundamental

problems of execudonal uncertainty, conflicting objectives and combinatorial complexity. A

scheduling system, DAS, which employs such a problem-solving architecture, is presented. It is

distributed, asynchronous and hierarchical, and requires careful management of problem-solving

effort. DAS adopts an opportunistic approach to problem-solving and the management of

problem-solving effort. The mechanisms which manage problem-solving effort within DAS are

also presented. In conclusion it is argued that the architecture and mechanisms presented lend

themselves very well to the view taken of the scheduling task.

ü

Table Of Contents

1. Introduction ...

1.1 The Scheduling Problem ..

1.2 Difficulties Inherent In Scheduling ..

1.3 Economics of Manufacturing ..

1.4 Traditional Approaches To Manufacturing Management ...

1.5 Contributions of This Work ..

1.6 Context of Work .. »»............ » ... »..................

1.7 Thesis Plan

2. A Review of Problem-Solving Techniques and Scheduling Systems

2.1 Introduction ...

2.2 Techniques ...

2.2.1 Evaluation Functions ...

2.2.2 Means-end Analysis

2.2.3 Least Commitment ..

2.2.4 Constraint Analysis ...

2.2.5 Opportunistic Reasoning .. ».............

2.3 Scheduling Systems ..

2.3.1 ISIS . »................. .. »......

2.3.2 SOJA

2.3.3 OPIS 0 ...

2.3.4 OPIS

i
1

3

4

6

12

13

13

15

15

17

17

18

20

22

23

24

25

32

36

40

lll

iv

2.3.5 SONIA .. »... 45

2.3.6 S2 ...
48

2.3.7 ENTERPRISE .. 51

2.3.8 YAMS .. 55

2.3.9 CSS ..
60

2.4 Conclusions ... »..
65

3. DAS: A Distributed Asynchronous Scheduler ...
68

3.1 DAS Philosophy »..... »... »ý..
68

3.2 DAS Representation .. »..... »..
72

3.2.1 Knowledge Bases ... ».....................
72

3.2.2 Resources .. 75

3.2.3 Operations .. 79

3.2.4 Plans ... 83

3.3 DAS Architecture ... 85

3.3.1 A Distributed Asynchronous Architecture ...
85

.................................. 3.3.2 Motivations For The DAS Architecture .
96

...

.......................... 3 Evaluation of Architecture .. 3 3 101
.

4. Managing Problem-Solving Effort In DAS ...
105

4.1 Introduction ...
105

4.2 Background Information ..
107

4.2.1 Temporal Constraints ... ».. 107

4.2.2 Constraints and Consistency ...
108

4.2.3 Constraint Propagation - »..........................
111

4.2.4 The Complexity of Label Inferencing »... ». »....... ».............. 114

V

4.2.5 Related Work ... 116

4.3 The Constraint Maintenance System of DAS ... 120

4.3.1 Role of The CMS .. 120

4.3.2 Unary Constraints ..
122

4.3.4 Propagation Messages ...
124

4.3.4 Requirements of Constraint Propagation ..
125

4.3.5 Constraint Representation ...
129

4.3.6 Constraint Propagation Algorithm ..
132

4.3.7 Complexity Analysis ...
135

4.4 Conflict Resolution Mechanisms ..
138

4.4.1 Operation Priority .. 139

4.4.2 Operational Level .. 140

4.4.3 Tactical Level .. 142

4.4.4 Strategic Level ...
146

4.5 Predictively Coordinating Problem-Solving Effort ...
150

4.5.1 Strategic Level ..
151

4.5.2 Tactical Level ..
152

4.5.3 Operational Level ..
152

5. Case Analysis of DAS ...
153

5.1 Introduction ...
153

5.2 Schedule Creation Vs. Maintenance ..
153

5.3 Reactive Strategies ...
154

5.4 The Scheduling Process ..
163

6. Future Work and Conclusions
... » ...

169

vi

6.1 Thesis Summary
.. 169

6.2 Future Work .. 172

6.2.1 Extensions .. 172

6.2.2 Empirical Analysis .. 175

6.3 Concluding Remarks
... 177

References .. 179

CHAPTER 1

Introduction

Whether the motive be survival or simply an improved return on capital investment, the vast

majority of industry is interested in improving its manufacturing performance. Poor methods of

production scheduling have for a long time been recognised as a major deterrent to achieving this

goal. The potential rewards offered by this area of research have attracted much interest from a

number of disciplines. Despite the fact that significant progress has been made in scheduling

theory, industry has benefited little. This is largely a consequence of the fact that much of the

early scheduling work assumes a static execution environment. The issues addressed by this thesis

arise out of a recognition that the real world execution environment is highly dynamic.

I. I. The Scheduling Problem

Many attempts have been made to define clearly and concisely what is meant by the term

scheduling. Most people would claim to have an understanding of what is meant, but detailed

accounts vary a great deal. Within the Artificial Intelligence (AI) community it would appear that

much of the confusion arises out of the unclear relationship between scheduling and planning.

This confusion shows itself in everyday English where the terms planning and scheduling are used

interchangeably and in fact, the New Collins Thesaurus identifies the word plan as a synonym for

schedule. It is not surprising therefore, that it is often difficult to know exactly where to draw the

line between planning and scheduling. Unfortunately, this is not a simple demarcation problem

and some authors feel that the tasks are so interdependent that one cannot be performed in isolation

of the other. M. S. Fox states that the tasks are inseparable [Fox M. S. '83] and he describes

scheduling as a two stage process. The first stage, to generate a process routing, is defined as the

product of a planning process while the second stage, the allocation of times and resources is

I

2

defined as the product of a scheduling process. This definition serves to enhance the view that the

distinction between planning and scheduling is indeed a vague one.

To add further confusion, the degree of coupling necessary between the two tasks is

dependent on the domain. In the job-shop, the domain with which M. S. Fox is primarily

concerned, a very tight coupling is required. In such an environment it is sensible to iterate

through the planning and scheduling processes. However, in heavy manufacturing industries which

have a much higher momentum, it is not desirable to have such tight coupling. The planning

horizon in such industries must often be much longer than would be sensible to perform a detailed

allocation of resources.

There is no attempt within this thesis to provide absolute definitions of these terms; however

it is appropriate to identify working definitions. The definitions given in [Fox B. R. et al '85b]

have been adopted because they allow for maximum opportunism within the scheduling process.

Justifications for the desirability of opportunism within scheduling are deferred until later. The

definitions are shown below:

Planning:

given an initial world, a goal world, and a set of operators (a task and a set of facility

capabilities), select a set of operators which will achieve the goal, and generate a minimal

set of ordering constraints on operator application (a plan).

Scheduling:

given a set of operators and minimal ordering constraints (a plan), and detailed knowledge of

the execution environment (a set of facility availabilities), enforce further ordering

constraints on operator application to achieve robust and tine-efficient execution of the task

(a schedule).

This thesis is not concerned with planning, only with scheduling as defined above. This definition

makes no attempt to identify desirable qualities of a schedule other than that it be robust and time-

efficient. It does not concern itself with resource-efficiency or any other potential measure of

3

quality. As will be discussed shortly, it is not a trivial task to identify a measure of schedule

quality.

1.2. Difficulties Inherent In Scheduling

Production scheduling, regardless of the domain, is a difficult task from both theoretical and

practical standpoints. Theoretically, the combinatorics of all but the most trivial of scheduling

tasks prohibit searching for an optimal solution. Even if it were possible, via some super

computer, to circumvent the combinatorial problems of scheduling, significant practical obstacles

remain. Any serious attempt to schedule in a real world environment must address both the

theoretical and practical issues.

From a theoretical point of view, the problem is one of combinatorial complexity with most

scheduling problems having an exceedingly large number of potential solutions. For example,

ignoring the possibility of alternative routings and gaps in a schedule, the number of possible

schedules which result from sequencing 10 orders through 5 processes is (10!)s. The number of

possible solutions to a problem grows exponentially with the number of orders, alternative

production plans, alternative resources and the many other parameters which form a scheduling

problem. In fact, except for some highly specific cases, finding an optimal solution to a

scheduling problem has been shown to be NP-complete [Ullman '76]. A very effective

demonstration of the combinatorial complexity of apparently trivial scheduling tasks is given by

French in his introductory text [French '82] on the subject.

The practical obstacles to effective production scheduling in the real world are just as

daunting as the problem of combinatorial complexity. Scheduling in real world domains

introduces at least two additional difficulties, that of executional uncertainty and the more

fundamental problem of measuring the quality of a schedule. There are many sources of

executional uncertainty in any industrial scheduling application, with machine failures, delayed jobs

and scrapped jobs all being inevitable occurrences. In order to be able to deal with such

4

unforeseen events, a scheduling system must be integrated with some form of shop-floor reporting

system. However even with the necessary infrastructure, there is no guarantee that operatives on

the shop-floor will report events correctly and timeously, or that they will execute the instructions

passed to them correctly and timeously.

Identifying the scheduling objectives of an organisation, and therefore a measure of schedule

quality, is not a simple task. This is due partly to the fact that there are numerous candidate

objectives and partly to the fact that the various candidates are generally conflicting in nature.

Mellor [Mellor '66] identifies 27 distinct scheduling objectives most of which conflict with each

other. The task of defining the criteria by which a schedule can be considered optimal is

therefore very difficult. In most environments a compromise of the various identifiable objectives

is desired. Unfortunately, this compromise is highly dynamic in nature as it is influenced by many

factors such as the state of the shop-floor, the order book and the current organisational objectives.

1.3. Economics of Manufacturing

The primary objective of manufacturing organisations is to make a profit in financial terms.

Net Profit, Return on Investment and Cash Flow are commonly used as financial measures to

indicate the state of health of a company. Although very useful in company performance analysis,

such measures are generally very difficult to monitor on a daily basis. This renders them of little

value as aids in the day to day running of the shop-floor. Many attempts have been made to

convert these clearly defined financial measures into useful operational measures which can be used

to guide control of the shop-floor. As discussed above, many operational measures can be

identified but the problem of resolving conflicts between the various measures presents considerable

difficulties. Despite the fact that it is not clear how best to use such measures, it is useful to

identify some of the more commonly used measures and to discuss the rationale behind them, in

order to gain an understanding of the economics of the shop-floor.

5

Inventory levels, which includes raw materials, work in progress (WIP) and finished products

are commonly used as indicators of shop-floor performance. Inventory is viewed as a useful

metric because it is a measurable quantity and has an impact on financial performance. When

considered in isolation the relationship is simple, since financial measures which penalise stock

levels will improve as inventory levels decrease. This view of the relationship between inventory

levels and financial performance can be supported by several arguments, the most prominent being

that the higher inventory levels are maintained the more capital is tied up as inventory.

Maintaining low inventory levels has the beneficial effect of permitting reduced space requirements

in both storage and shop-floor which, in turn, has financial consequences in terms of heating,

maintenance and transportation costs.

Manufacturing throughput is another commonly used operational measure. It is interesting

to note that two apparently similar measures, throughput and output, exist within the operations

management vocabulary. Throughput is defined as the production of items which will immediately

generate revenue through sales, making the link between throughput and financial performance

clear. The distinction between throughput and output, that finished items are produced for a

customer and not for inventory, shows a commonality in the rationale behind both inventory levels

and throughput as operational measures.

Unfortunately, the two measures are not quite as compatible as this suggests and there is a

fine balance to be struck between minimising inventory levels and maximising throughput. As

inventory levels drop, throughput performance becomes vulnerable to disruptions on the shop-floor.

A shop-floor disruption which results in a drop in throughput may undo the financial benefits

gained by operating with low inventory levels. Conversely, to achieve high throughput levels in

the face of executional uncertainty may require unacceptably high inventory levels. The point at

which to balance inventory and throughput is difficult to identify, let alone achieve on the shop-

floor as it is influenced by uncontrollable variables such as interest rates, taxation levels, exchange

rates, raw materials and energy costs.

6

1.4. Traditional Approaches To Manufacturing Management

Over the years, production managers have adopted a variety of strategies to the highly

complex task of controlling a manufacturing environment. Unfortunately, none of the approaches

tried so far have provided a satisfactory solution to the problem. This section reviews traditional

approaches to manufacturing management in order to identify the need for a scheduling component.

In the course of this review it will also be made apparent at which point in the manufacturing

management structure a scheduling component is required.

Inventory Control

The earliest mechanisms used to manage manufacturing relied on the monitoring of inventory

levels of finished products. Whenever the inventory level of a particular product fell below a

certain level, a new batch was ordered. The interested reader is referred to [Whitin '57] which

gives a good introduction to the underlying principles of inventory control techniques. All

inventory level mechanisms have three basic parameters which must be given optimal values if

they are to be successful in producing the required products efficiently and on time. The first

parameter to be set is the frequency with which inventory is monitored. Depending on the level of

automation on the shop-floor, this can be a time consuming and relatively expensive exercise. On

the other hand, if it is not performed frequently enough to ensure reasonably accurate data for

inventory levels, it becomes a pointless exercise.

The second parameter which must be set is the level at which it is deemed necessary to order

a new batch of a particular product. The optimal setting for this parameter is one which ensures

that the new batch will be produced just before demand for the product in question exceeds the

available inventory. In order to give this parameter an optimal value, it is necessary to have

accurate figures for both the lead time and demand for each product being manufactured.

The third parameter, the size of the batch to reorder, is the one which has received most

attention from production managers. The optimal value for batch size is a function of the cost of

storing and the cost of manufacturing a product. As batch sizes increase, setup costs and other

7

manufacturing costs which are fixed will decrease per item produced. On the other hand, large

batches must eventually be completed and become part of the finished goods inventory, therefore

boosting inventory holding costs. Perhaps the most commonly used technique to calculate a value

for batch size is the Harris-Wilson Lot-Size Formula shown below:

I 2RC3
Q

C1

where

Q- optimum reorder quantity

R- average demand (items/year)

C3 - cost of setup and reordering

Cl - inventory holding cost (costlitem/year)

Just as in the case of setting the re-order level, accurate data are required for product demand,

setup costs and inventory holding costs when calculating re-order batch size.

In practice, inventory control techniques rely on several simplifying assumptions to make

them workable. These assumptions include the notion that each product can be considered in

isolation and that both product demand and lead times are constant. Unfortunately, these

assumptions do not hold in a typical manufacturing environment. For many applications,

inventory control approaches do not perform well, suffering from problems of high inventory

holding costs and a lack of responsiveness to changing demand. Further, as a result of being slow

to respond to change, there is always a risk of inventory becoming obsolete. ' These problems are a

consequence of the fact that inventory control approaches only respond to changes as and when

they occur; they make no attempt to anticipate change. These weaknesses aside, it should be

noted that inventory control approaches do not address the issue of detailed scheduling at all.

MRP

By the 1970s, fierce competition from Japan combined with soaring interest rates forced

managers in the West to adopt strategies aimed at reducing inventory levels while at the same time

8

increasing manufacturing responsiveness. To this end, managers turned to predictive methods of

managing production, and Materials Requirement Planning (MRP) [Orlicky '75] in particular. The

rationale behind MRP systems is that they enable managers to look to the future, thus allowing

them to increase inventory levels only when a perceived need justifies it. Activities in an MRP

system fall into three basic stages, as shown below:

(1) Produce a Master Production Schedule (MPS)
(2) Perform Materials Requirements Planning (MRP)
(3) Perform detailed scheduling.

Producing an MPS, which is usually performed as a manual task, gives a forecast of the required

quantities of products for some period in the future. It is derived after considering expected

customer demands, available capacity and the levels of inventory currently available for each

product. It is obviously very difficult to achieve a high degree of accuracy when producing an

MPS.

The output of the MPS stage and the required bills of materials, information concerning the

materials and components necessary to make a particular product, is fed into the MRP stage. The

MRP system then delivers a list of required components and for each component specified, states

the quantity required and at what time manufacture should commence. This stage of the process

also suffers from inaccuracies, the most serious being in the figures used for lead times. Lead

times are assumed to be constant, regardless of the situation on the shop-floor. Over time, the bill

of materials can also become a source of inaccuracy when products are modified and the bill of

materials is not updated to reflect the modification.

The final stage in an MRP system is detailed scheduling. This is the task of allocating

resources to jobs over time. This is a very complex problem, made more difficult by errors fed

into the system at the higher levels. It is not unusual for the scheduling task set by the higher

levels to be a problem with no solution. Once again, the task of detailed scheduling has been

omitted from the set of automated processes.

9

As experience of MRP systems grew, it became evident that overall performance could be

improved if the system was expanded to cover other aspects of company activities such as business

and production planning. At the same time, increases in computing power made detailed capacity

analysis feasible. This expanded system, called Manufacturing Resource Planning or MRP II

[Wight '81], with an ability to perform detailed capacity analysis, should have made the scheduling

tasks passed to the lowest level of the system more solvable. Unfortunately, like other stages in the

MRP system, this additional stage served only to highlight the need for good quality data if any

potential benefit is to be realised. As in MRP, the detailed scheduling problem is not dealt with in

MRP IL

OPT
By the 1980s it was apparent that MRP systems would not provide all the answers. The

early part of the decade saw the introduction of an alternative methodology for managers,

Optimised Production Technology (OPT) [Harrison '85]. OPT provides the functionality of

traditional MRP systems in a manner which attempts to overcome some of the fundamental

problems associated with MRP systems. Like MRP II, OPT recognises the need to take account of

available capacity before performing detailed scheduling. However, unlike MRP II it does

recognise that it is not sufficient to prioritise the release of orders by their predicted lead times and

subsequently consider capacity constraints. The lead time of an order is dependent on the capacity

requirements of other orders in the schedule and therefore must be considered in conjunction with

capacity constraints. OPT views capacity constraints in terms of bottleneck resources, based on

the premise that if bottleneck resources achieve 100 % utilisation throughput will be maximised.

OPT implements these concepts in a software package which first schedules bottleneck

resources in an "optimal' manner, possibly resulting in alterations to predicted lead times, and later

deals with non-bottleneck resources. It is the OPT literature which claims that bottleneck

resources are scheduled in an optimal manner. However, as has been discussed already, it is very

difficult to define what is actually meant by schedule optimality therefore casting doubt on this

to

claim. It is highly likely that what is meant is that OPT achieves some local form of optimality

with respect to bottleneck resource utilisation. Although it provides an improvement to traditional

MRP systems, OPT retains the notion that scheduling is essentially an off-line task. Bottleneck

resources are not static entities as assumed by OPT, since in the face of real world uncertainty they

become highly dynamic. A schedule which achieves maximum throughput for a predicted set of

bottlenecks is likely to become highly suboptimal when the set of bottlenecks change.

AT

Despite large scale investment in technologies to support manufacturing management,

Western industry remains significantly less efficient than its Japanese counterpart. It is not

surprising then, that the West has taken an interest in the manufacturing methods used by the

Japanese. The methodology, or some would say philosophy, creating most interest in the West at

the moment is Just-In-Time (JIT) manufacture. The JIT philosophy [0' Grady '88] is based on

the four objectives shown below:

(1) Attack fundamental problems.
(2) Eliminate waste.
(3) Strive for simplicity.
(4) Devise systems to identify problems.

The first objective is concerned with removing problems such as bottleneck resources, unreliable

machines, high scrap rates and poor quality suppliers. It is argued that having removed these

fundamental problems both WIP levels and product lead times can be significantly reduced. For

the second objective, any process which does not add value to the product, such as transportation,

inspection, setup and storage is defined as waste. To achieve the third objective of simplicity, two

areas are targeted, the first being material flow. A JIT philosophy requires a move away from

traditional process layout, where resources are located near similar resources, to a product flow line

where the resources to produce a family of products are located together. The second area

targeted concerns the control of flow of materials through the shop-floor. The method favoured by

proponents of JIT is the pull/Kanban system. This requires work to be pulled through the factory

11

by demand rather than the traditional approach which pushes work through. Work centres,

organised in flow lines, only produce work when there is a demand for it upstream. The

pull/Kanban system is one of two systems commonly used to satisfy the fourth objective, the other

being the use of statistical quality control to identify problems.

Presented in this manner, JIT appears to remove the need for complex production scheduling.

Indeed, this has been shown to be the case in several successful applications such as the Toyota

Corolla production line in Japan and at Harley Davidson in the USA. However. for many

applications JIT may not be a workable manufacturing methodology. It is not always possible to

reduce scrap rates significantly; there may be technological problems. Cost or space limitations

may be inhibiting factors when the prescribed solution is to increase capacity at bottleneck

resources. Poor quality suppliers may be a fact of life if the supplier in question has no

competition. Where many resources are shared between product lines, it is unlikely to be feasible

to convert from a process layout to product flow lines. Within such a framework a simple

pull/Kanban system to production scheduling is unlikely to be effective and therefore does not

remove the need for detailed production scheduling.

Conclusion

With a single exception, the approaches to manufacturing management discussed in this

section present a common view of the scheduling problem. JIT, the odd one out, takes the view

that it is possible to create an environment in which scheduling becomes a trivial task while all the

others view scheduling as a static and deterministic optimisation problem to be performed off-line.

Within this framework, the link between the contributions made by the Operational Research (OR)

community to the scheduling problem and the traditional view held by industrial management

becomes clear. Traditional applications of techniques such as Dynamic Programming, Branch and

Bound Search and Integer Programming share this traditional view of scheduling.

This thesis, and a growing number in the Artificial Intelligence community, perceive

scheduling to be a dynamic and stochastic satisfaction problem The traditional view fosters the

12

false notions that a static model of the problem is adequate and that the resulting schedule will be

executed precisely as specified. These are not the only problems facing traditional approaches.

The techniques developed within the OR community suffer from an inability to represent the

information necessary to solve scheduling problems and are computationally very expensive. The

consequence of having an inadequate problem representation is that when a solution is produced, it

solves the modelled problem and not the real one. In an attempt to circumvent the problems of

computational expense, the model of the problem being addressed is often simplified, thus

aggravating the discrepancy between the generated and desired solution.

1.5. Contributions of This Work

Perhaps the largest contribution which Artificial Intelligence makes to any problem, is an

ability to represent significantly more of the available knowledge relating to the task.

Representations of both the problem and scheduling heuristics can be much richer. Through the

1980s there has been a growing realisation that richer knowledge representations alone are not

sufficient to solve the difficulties present in real world scheduling problems. The real world

scheduling environment is dynamic and stochastic, not static and deterministic. For an automated

scheduling system to be successful in real world domains it must address the issues of executional

uncertainty, conflicting scheduling objectives and combinatorial complexity. Consequently, it is

necessary to review the very nature of the scheduling task. This thesis holds the view that the

scheduling problem in general and manufacturing in particular is an on-line, dynamic and stochastic

satisfaction problem.

The contributions of the work presented in this thesis are twofold. Firstly, a problem-solving

architecture suitable for addressing the scheduling problem when viewed in this way is presented.

The architecture is hierarchical, asynchronous and distributed in nature. This has obvious benefits

in manufacturing domains which are themselves hierarchical, asynchronous and distributed. The

task of managing problem-solving effort appropriately is a major concern for any problem solver.

13

This is particularly true for a distributed asynchronous problem-solver. The second contribution of

this thesis concerns the issues of managing problem-solving effort within such a problem-solver

effectively. This thesis proposes an opportunistic approach to the difficult task of managing

problem-solving effort. The approach presented here was shaped largely by the requirements of a

scheduling system which must operate in real world scheduling domains.

1.6. Context of Work

ALVEY project, IKBS Production Control in Heavy Manufacturing Industry provided

financial support for the work described in this thesis. The project was a collaborative effort

involving the University of Strathclyde, British Alcan Plate Ltd. and YARD Ltd.. British Alcan

Plate Ltd. provided the project with a demonstrator site on which to develop and test the work

being carried out at Strathclyde. The site selected is an aluminium plate manufacturing plant

located at Kitts Green in Birmingham. This site was chosen for two reasons. Firstly, it already

had the infrastructure necessary to support an IKBS scheduler. This includes integrated systems

to perform tasks such as sales order handling, process planning and shop-floor reporting.

Secondly, it has very real scheduling problems.

1.7. Thesis Plan

Chapter 2 presents a review of work considered necessary for a full appreciation of the

remainder of this thesis. It views scheduling as a specialisation of problem-solving and starts by

reviewing techniques available for focusing problem-solving effort. As many of the techniques

reviewed were introduced before scheduling had established itself as a research area in Al, the

development of these techniques is traced largely through the planning literature. Having reviewed

the techniques available, the application and extension of these techniques in scheduling systems is

considered in some detail. It is argued that recent advances in scheduling technology should be

combined with advances in distributed computing technology to address the difficulties of the

14

dynamic, stochastic and distributed nature of the real world.

Having identified the potential benefits of such a combination, chapter 3 introduces DAS, a

scheduler with a problem-solving architecture which facilitates this. A detailed account of how

DAS views the scheduling problem is presented before a description of the system itself. Both the

motivation for the architecture and the architecture itself are discussed.

In order to gain any benefit from the problem-solving architecture introduced in chapter 3, it

is necessary to support it with mechanisms capable of managing problem-solving effort effectively.

The mechanisms which focus and co-ordinate problem-solving effort in DAS are presented in

chapter 4. Problem-solving effort is managed by a constraint maintenance system, conflict

resolution techniques, an operation priority mechanism and agent communication via message-

passing.

Chapter 5 presents a case analysis of DAS. It demonstrates that DAS has both an

appropriate problem-solving architecture and the mechanisms necessary to manage problem-solving

effort in real world scheduling environments.

Finally, chapter 6 summarises chapters 1 to 5, considers areas of future work and presents the

conclusions of this thesis. The future work section discusses both extensions and empirical

analysis, and is followed by a few concluding remarks. Here it is concluded that the architecture

and mechanisms presented lend themselves very well to the opportunistic approach required to

address the problem of scheduling in a dynamic environment.

CHAPTER 2

A Review of Problem-Solving Techniques and Scheduling Systems

2.1. Introduction

Scheduling is an example of a problem-solving activity, and as such has a great deal in

common with other specialisations of problem-solving. It is appropriate therefore to review some

general problem-solving techniques, their application to scheduling, and individual scheduling

systems. This review deals first with some established techniques, followed by a detailed analysis

of specific scheduling systems.

The terms Problem, Algorithm and Heuristic, formalised in papers describing the Logic

Theory (: I) machine [Newell et al '571, are now commonly used throughout the problem-solving

literature. Generally speaking, an algorithm can be defined as a generator of solutions which is

guaranteed to find a solution to a problem if one exists. A heuristic, on the other hand, is defined

as a process that may solve a given problem if a solution exists, but offers no guarantee of doing

so. In both heuristic and algorithmic cases, the computational cost of generating and evaluating

potential solutions is significant. For problems of combinatorial complexity such as scheduling,

this computational cost is a major source of concern. It is not the computational cost associated

with each individual potential solution that is of significance, but rather the combined cost of the

many potential solutions.

Efficient algorithms exist for only a very few problem-solving activities. Finding the

maxima for simple differentiable functions or special case scheduling tasks involving one or two

machines (eg. Moores's algorithm [Moore '68], Lawlers's Algorithm [Lawler '73] and Johnson's

algorithm [Johnson '54]) provide examples of problem-solving activities with known algorithmic

solutions. Complete enumeration, or the British Museum algorithm as it is sometimes known,

offers an algorithmic solution to all problem-solving activities. Unfortunately, the computational

15

16

cost of the British Museum Algorithm is prohibitive for all but the most trivial of problems.

Consequently, problem-solving research, including scheduling, has concentrated mainly on methods

of improving the performance of heuristic search.

Casting a problem as a state-space search involves traversing a search space made up of

nodes in an attempt to find a solution. Each node is different to every other node in the search

space and corresponds to one partial solution to the problem. When viewing scheduling as an

example of state-space search, each node of the search space corresponds to an instantiation of a

possible schedule. Many nodes, sometimes all, will correspond to illegal schedule solutions. It is

the aim of heuristic search mechanisms to focus problem-solving effort on areas of the search space

which contain legal solutions to the problem at hand, thereby improving search performance.

Within state-space search, it is possible to identify two fundamental tactics available to such

mechanisms. They can attempt to focus effort either by reducing the number of nodes to be

visited, or by determining the order in which they are to be visited. Both can have a major impact

on the efficiency of a search mechanism, and ideally should be used together to achieve maximum

benefit.

This review regards scheduling as a heuristic search process and discusses techniques and

systems with respect to their ability to effectively focus problem-solving effort by means of the two

tactics mentioned above. In section 2.2, significant developments in the techniques available for

focusing problem-solving effort which existed prior to the establishment of scheduling as a field in

Al are discussed. The development of these techniques is traced largely through the planning

literature for two reasons. Firstly because it is an established field and secondly because of its

close relationship to scheduling. Existing scheduling systems are reviewed in section 2.3 giving an

insight into how the techniques discussed in section 2.2 have been applied to, and extended within,

the scheduling domain.

17

2.2. Techniques

2.2.1. Evaluation Functions

The use of evaluation functions to augment blind search techniques such as depth-first and

breadth-first, represents one of the earliest attempts to utilise heuristic information to enhance

search performance. Evaluation functions provide a means of rating the individual nodes of a

search space. A rated search space is one for which an evaluation function exists. An evaluation

function attempts to give a measure of how similar the state represented by a node is to a goal

node. A goal node is a node which represents a state considered to be a solution to the search.

Within algorithms A* [Nilsson '71] and B* [Berliner '79] evaluation functions are used to improve

search order. Evaluation functions are also employed within the branch-and-bound [Land et al

'60] search technique. While heuristic methods provide no guarantee of success, it is hoped that

by using evaluation functions a goal node will be found earlier than if a blind search technique was

used.

The most obvious use of an evaluation function is as a guide when selecting which node to

expand next. However, they can also be used to select the most promising operator to apply at

any given point in the search [Fox M. S. '83], thus guiding the method of expansion. Later search

algorithms, such as Beam Search [Winston '77a], use evaluation functions to both order and prune

the search space. Within a beam search, pruning is achieved by expanding only the n nodes which

are rated most highly at each ply in the search. A general theory of the use of evaluation

functions to guide search is given in [Hart et al '68].

In [Nilsson '71], a general problem-solving text, a distinction is made between state-space

search methods and problem-reduction search methods. Incremental state-space search methods

deal only with problem states and the operators which generate one state from another. On the

other hand, problem-reduction methods attempt to reason backwards from the problem to be solved

using problem-reduction operators, to establish subproblems. Problem-reduction methods are

discussed here because they provide further examples of the use of evaluation functions. The

18

problem-reduction process is applied iteratively until the original problem is resolved into a set of

primitive problems. In order to maintain a common metric with which to compare the various

techniques, this review considers problem-reduction as a technique aimed at enhancing the

performance of state-space search and views state generation within state-space methods as a trivial

form of problem reduction. This is not wholly inconsistent with Nilsson's view. He suggests that

problem-reduction methods can be viewed as a means of enumerating the separate searches for

subpaths between proposed stepping stones in the state-space, and for monitoring the progress

towards assembling subpaths into complete solutions.

Problem-reduction methods are used to search AND/OR graphs rather than state-space

graphs. Algorithms such as mini-max [Winston '77b] and Alpha-Beta [Knuth et at '75] use

evaluation functions during the search for a solution tree, a structure which identifies a set of

possible "stepping stones" for a state-space search. As in state-space methods, evaluation

functions attempt to select the node whose expansion is most likely to succeed in leading to a

solution.

While evaluation functions can perform a useful role during problem-solving, they are of

limited use in complex problem domains. As the degree of domain complexity increases, so too

do the problems of encoding the appropriate heuristic knowledge into an evaluation function.

2.2.2. Means-end Analysis

Means-end analysis is a technique commonly used by human problem solvers when

performing tasks such as route planning or theorem proving in elementary symbolic logic. It is a

problem-reduction type search method based upon detecting the difference between the current state

and the desired goal state. Having detected the difference, this knowledge is then used to generate

subgoals which, if achieved, will reduce the difference between the current state and the goal state.

This subgoal generation mechanism is applied repeatedly until the generated subgoal matches the

desired goal state.

19

Although other researchers, for example [Duncker '45], had previously reported the use of

means-end analysis by subjects solving problems, it was Newell, Shaw and Simon who first

specified the technique rigorously and implemented it on a computer. It was in their work in

developing the General Problem Solver (GPS) [Newell et al '59] that they implemented means-end

analysis as a problem-solving approach. A simple example of the use of means-end analysis to

prove a theorem in elementary symbolic logic is given below. For the example, one axiom and

two rules of inference are required.

Axione (p OR p) implies p

Substitution: any aptaeioa may be substituted for any variable in any theorem, provided that

the substitution is made throughout the theorem.

Replacement a connective can be replaced by its definition, and vice vela, in any of its

occurrences. (ea. p implies q is defined as Not-p OR 0

Examples

(p implies Na-p) implies Not-p

1. (A OR A) implies A

2. (Not-A OR Not-A) implies Not-A

3. (A Implies Not-A) implies Not-A

4. (p implies N(t-p) Implies Not-p

(Meoeem to be proved)

(axiom)

(Subs. of Nat-A for A)

(Kepi. of OR with implies)

(Subs. of p for A; QED)

At each step of the proof, an attempt is made to reduce the difference, measured in some ad-hoc

way, between the current expression and the desired goal expression.

Means-end analysis is a heuristic search mechanism which employs both search space

pruning and search ordering to good effect. The search is guided from node to node in an order

which reduces the difference between the current node and the goal node. As mentioned in the

preceding section, problem-reduction search methods such as means-end analysis make use of

AND/OR graphs rather than state-space graphs, thereby assisting in the task of pruning of the

search space. When searching an AND/OR graph, some nodes can be identified as being solved or

unsolvable. A solved node is a terminal node which corresponds to a primitive problem, a

nonterminal node with a number of OR successors at least one of which is solved, or a nonterminal

node with a number of AND successors all of which are solved. An unsolvable node is a

20

nonterminal node with no successors, with a number of OR successors all of which are insolvable,

or with a number of AND successors at least one of which is unsolvable. Pruning is achieved by

noting that it is never necessary to visit a node which is a descendant of a solved node, or a

descendant of a node which has already been established to be unsolvable.

This technique relies on two implicit assumptions which may be justifiable when performing

tasks such as elementary symbolic logic theorem proving, but not when scheduling in a

manufacturing environment. The first assumption is that the problem solver is given a well

defined goal state. A statement such as "(p implies Not-p) implies Not-p" is a well defined goal

state, whereas "produce a schedule which satisfies as many constraints as possible" is not. The

second assumption is that it is possible to measure the difference between the current state and goal

state in a meaningful way. Within a complex scheduling task, it is necessary to use grossly over-

simplified metrics when measuring the difference, resulting in misguided searches at anything other

than a fairly high level. Perhaps it is an inability to measure effectively the difference between

the current schedule state and a goal state which makes scheduling a difficult task for humans.

Without this ability, the "default problem-solving approach" of humans, means-end analysis,

becomes an unguided search.

2.2.3. Least Commitment

The term, least commitment, is perhaps one of the most overused terms within Al. In its

broadest sense, a least commitment approach is one which allows decisions to be deferred until

some time in the future in the hope that more information, relevant to the decision, will become

available. The goals of such a technique are typically twofold, firstly to avoid committing to poor

decisions prematurely and secondly to factor the problem in such a way as to make it more

manageable. Within scheduling applications, the two most common forms of a least commitment

approach are hierarchical search and non-linear planning.

Hierarchical search provides a method for dealing with very large search spaces. When

searching in a hierarchical manner, the search proceeds from the highest, least detailed level to the

21

lowest, most detailed level. The first explicit use of hierarchical search within planning was in

ABSTRIPS [Sacerdoti '74]. Like STRIPS [Fikes et al '71], ABSTRIPS represents operators as

rules with pre-conditions and post-conditions. Pre-condition variables are separated into levels of

importance. The hierarchical effect is achieved by having the pre-conditions contain only

variables considered important at the current level of planning.

Hierarchical search takes place in a stratified, rated search space in which nodes are

partitioned into levels. A particular level in a stratified search space completely dominates a lower

level only if the sum of ratings of nodes along any search path in the lower level is less than any

rating for any node in the higher level. Therefore, a top down search of a stratified, rated search

space will have the same results as a complete search of the collapsed space if and only if the

space is completely dominated from the top level down. Unfortunately, it is rarely possible to

identify these conditions prior to search. It should also be noted that a stratified, rated search

space which is completely dominated for one evaluation function may not be for others.

Search ordering within a hierarchical search is explicitly from the highest level down to the

lowest level. This says nothing about search order within levels or the quality of this top down

ordering for the problem being addressed. Only in the situation in which each level completely

dominates its lower levels can this search ordering be considered ideal. However, in most

situations, despite a lack of complete dominance, an appropriate hierarchical decomposition will

give a reasonable search ordering, and more importantly will greatly prune the search space.

Pruning is achieved by excluding all nodes in the search space which are not consistent with

existing, higher level decisions.

Another prominent implementation of a least commitment approach comes in the form of

non-linear planners. Non-linear planning systems such as NONUN [Tate '75] and NOAH

[Sacerdoti '75] introduced this technique. A non-linear planner is one which does not sequence

tasks until forced to do so. It reduces the amount of backtracking required to produce a legal plan

because no unnecessary sequencing decisions are taken. Non-linear planning systems also offer

22

benefits to the scheduling task which often follows plan generation. The output of a non-linear

planner may well be a non-linear plan. A non-linear plan is one in which at least two of the

activities in the plan can be performed either before or after each other. A strictly linear plan is

not capable of representing this opportunity, thus depriving the scheduling system of a degree of

discretion when solving its task. Non-linear plans do not actually help order search during

scheduling. However, viewing planning and scheduling as part of a larger task, it can be argued

that non-linear planning does perform a search ordering function by deferring certain decisions until

during the scheduling phase where they can be more effectively dealt with.

The least-commitment approach as a whole, and hierarchical search and non-linear planning

in particular, is a useful technique within scheduling. In general it helps to factor the problem in

some way, while also leading to a reduction in the number of backtracks required during search.

2.2.4. Constraint Analysis

There are many examples of the use of constraint analysis to improve the performance of

heuristic search. By examining the constraints imposed on a problem, it is often possible to

exclude a great number of nodes from the search space and occasionally to identify a preferred

search order. The majority of the early work on constraint analysis concentrates very much on

pruning the search space rather than ordering the search.

REF-ARF [Files '70] represents one of the earlier works in constraint analysis. It is a

heuristic problem-solving program which accepts problems stated in REF, a nondeterministic

programming language. ARF, the problem-solving component, applies constraint satisfaction and

heuristic search techniques to solve problems presented to it in this way. Rather than performing a

search over the entire search space, REF-ARF utilises the constraints of the problem to exclude

certain nodes. Although not removing the combinatorial nature of the problem, constraint analysis

is being used to reduce the search space to be traversed. CONSTRAINTS [Steele '801, a more

recent work, provides another example of constraint analysis. It provides a language for

representing hierarchical constraint networks. Within such networks, constraint propagation and

23

dependency analysis can be used to identify inconsistent subsets of constraints. Constraint analysis

of this nature allows both search space pruning and ordering.

Moving closer to the scheduling domain, MOLGEN [Stefik '81] combines planning with

constraint analysis. MOLGEN decomposes its problem into subproblems, therefore introducing a

requirement for communication between subproblems. Communication is achieved by constraint-

posting, a technique of propagating constraints from one subproblem to another subproblem. In

this way constraints from related subproblems are utilised to reduce the search space of each other,

while at the same time ensuring mutual compatibility.

As will become clear in section 2.3, constraint analysis can play a significant role in search

ordering as well as search pruning. For example, one reasonable search ordering heuristic would

be to deal with the most constraining constraints first. This corresponds directly to the fail first

principle of Haralick [Haralick et al '80].

2.2.5. Opportunistic Reasoning

The fail first principle referenced above is an example of an opportunistic approach to

problem-solving. The earliest example of a system which performs opportunistic reasoning is

Hearsay II [Erman et al '80]. It does so by allowing problem-solving to be both data and goal

directed, as well as permitting island-driving search as opposed to left to right search. This

combination of features is identified as opportunistic reasoning in [Hayes-Roth et al '791.

Hearsay II also introduced the blackboard architecture, an enabling vehicle for opportunistic

reasoning. Hearsay II has policy modules which focus the attention of the system in an

opportunistic manner. They dynamically determine what parts of the search space require

attention and sequence knowledge source executions accordingly.

Opportunistic reasoning can achieve both search ordering and effective search space pruning.

By focusing effort in areas requiring attention, a search order is dynamically generated in

accordance with the current problem-solving state. The act of instantiating a scheduling decision

24

can be used to eliminate areas of the search space which are not compatible with that decision.

Therefore it seems reasonable to focus the attention of the system in such a way that decisions in

highly contended areas of the schedule are dealt with first. By doing this, decisions in highly

contended areas of the schedule are allowed to constrain less highly contended areas, thus pruning

the search space. It is hoped that nodes pruned in this way are representative of a number of

similarly rated nodes, and that not all of these nodes have been pruned.

Opportunistic reasoning is a very useful approach to problem-solving. However, it is not

always a simple task to detect the most appropriate opportunity to focus on. Nor is it easy to

identify the appropriate response to the selected opportunity. This will be discussed in greater

detail later.

2.3. Scheduling Systems

This section reviews the major Al-based scheduling systems in order to determine how well

they manage problem-solving effort when searching for a solution. Due to the dynamic nature of

most scheduling environments, it is necessary to consider their performance in two situations. The

first situation, during schedule synthesis, has received most attention within existing scheduling

systems. The second, much less investigated situation occurs when static world assumptions

(SWA) fail. The later is now recognised as being as least as important as the former in both

planning and scheduling communities.

A recent article from the planning literature [Sanborn et al '88], introducing a model of

reaction for planning in dynamic environments, gives a useful description of SWAs and how they

fail in a dynamic domain. The SWAs listed include assumptions that the domain remains static

during the period in which a schedule is being generated, that no other agents act on the domain

and that the physical world can be completely modelled by the scheduler. A dynamic domain fails

to satisfy these assumptions in a number of ways. Since it does change over time, it is unlikely to

be completely specified at any point in time and it does change due to the actions of other agents.

25

Conspicuous by its absence from this list is the assumption that things will go according to plan.

Within a manufacturing environment, executional uncertainty is a major problem which must be

addressed by any scheduling system designed to be of use at the operational level. Responding to

executional uncertainty requires an ability to focus attention dynamically on the appropriate area(s)

of a schedule. It is against this backdrop that the following reviews should be considered.

Scheduling as a research area within AI began in earnest with the development of ISIS [Fox

M. S. '83], the first scheduling system to address the issues arising out of the complexities of typical

real world scheduling domains. It is from this point that this review begins its trace of the

development of scheduling in Al.

2.3.1. ISIS [Fox MS. '83]

ISIS is of significance to the Al scheduling community for several reasons, not least of which

being that it moved scheduling research into real world domains. The domain chosen for ISIS was

a Westinghouse Electric Corporation Turbine Component Plant (WTCP), the task to generate

workable schedules in near real-time for the WTCP job-shop in which there are typically 100 to

200 orders in process at any time, with each order requiring 10 or more operations. The task is

complicated by the fact that many of the available resources are shared resources. ISIS views the

scheduling problem as a constraint-directed search and as a result, the bulk of its contribution is

concentrated on constraint classification and representation. It combines a rich constraint

representation with many of the techniques discussed in section 2.2 in order to both prune the

search space and guide the order in which it is explored. It is the techniques used to bound and

order the search of ISIS which is of relevance to this thesis, rather than the constraint

representations developed.

Overview

ISIS performs a hierarchical search in which constraints are utilised to focus problem-solving

effort. The complete scheduling task is decomposed over a four tier hierarchy in which constraints

26

are passed between adjacent levels in a manner similar to the constraint-posting of MOLGEN

[Stefik '811. However, contrary to the practice in MOLGEN, constraints passed to lower levels in

the hierarchy are relaxable and serve only to guide the search not restrict it.

As well as passing constraints between levels to direct search, intra-level constraint analysis

is performed to improve search efficiency. This takes the form of a three stage process comprising

pre-search analysis, search and post-search analysis. The role of pre-search analysis is to bound

the search space, while the post-search analysis serves to determine if the results of the search stage

are acceptable. The first and third stages are not implemented at all four levels of the hierarchy

and, where they are, it is generally in the form of a rule base. The development of both the pre

and post search stages to make more intelligent use of the knowledge available is cited as an area

for future work.

The four tier hierarchy shown below, evolved out of experience gained with prototype

versions of ISIS.

Level 1: Lot Selection
Level 2: Capacity Analysis
Level 3: Resource Analysis
Level 4: Reservation Selection

Hg. 2.1

Initially, ISIS viewed scheduling as a two stage process consisting only of levels 1 and 3.

Capacity Analysis, level 2, was considered a necessary addition in order to achieve acceptable

solutions in the presence of bottleneck resources. Without this additional level, the Resource

Analysis level tended to produce schedules which created bottlenecks near the end of the schedule.

This is an example of the horizon effect identified in [Berliner '73]. The final level, Reservation

Selection, was added to improve the quality of schedules with respect to the work in process time

of lots. Instead of the Resource Analysis level making reservations for resources, it generates time

bounds on when the resources should be made available to perform an operation. The Reservation

Selection level takes cognisance of these time bounds when making reservations for the resources,

while trying to satisfy the objective of reducing the work in process time of the lot being

27

scheduled.

A detailed description of all four levels is given, followed by a discussion of how effective

the mechanisms are at focusing-problem solving effort.

Level 1: Lot Selection

This level of ISIS is responsible for selecting which lots to schedule, and in what order, from

the set of known lots. Both the priority class and due date of a lot are used to calculate its

.
priority and hence its position in the sequence indicating the order in which to process selected lots.

The priority classification of a lot, for example forced outage, critical replacement, shop orders and

stock orders, corresponds in some way to the urgency with which it must be produced. As the due

date of a lot approaches, the urgency with which it must be produced increases and this is reflected

in its priority rating. Lots are prioritised first by priority class and then within each class by

nearness to due date. There does not appear to be any pre or post search analysis at this level.

Level 2: Capacity-Based Analysis

As stated earlier, level 2 was introduced to counter a horizon effect [Berliner '73]. Fox

states that "Because of the resource analysis level's inability to generate enough alternative states, it

was not able to "see" machine bottlenecks near the end of a schedule". Level 2 counters the

horizon effect by performing a simple analysis of available capacity and from this, generating

temporal constraints bounding the start times of the operations which constitute the lot being

scheduled. The temporal bounds passed by level 2 are intended to direct the search at the

Resource Analysis level in a manner which inhibits the creation of bottlenecks.

Within this level, the notions of pre-search analysis, search and post-search analysis are very

tightly coupled. Pre-search analysis is required to identify all possible starting points for the actual

search. The search is a two phase process, the first searching forwards and the second backwards

through the operations of a lot. Therefore, pre-search analysis consists of identifying all possible

first and last operations.

28

The search itself is performed in a simple breadth-first manner. The first phase, to identify

the earliest start time of each operation in the lot, proceeds forwards through the operations of the

lot plan. It starts by assuming the release date given to the lot by level 1 to be the start time of

the first operation and proceeds to calculate earliest start times for each operation, taking

cognisance of existing reservations. The second phase, to generate latest finish times for each

operation, is performed in a similar manner, only this time starting at the end of the lot plan and

using the finish time allocated to the lot by level 1 as the starting point for the search.

Post-search analysis consists of passing the generated time bounds for earliest start and latest

finish times for each operation to level 3.

Level 3: Resource Analysis

The role of this level is to generate time bound constraints for the machines and other

resources required to produce the lot currently being scheduled. It is a detailed search in a three

dimensional search space. The three dimensions to be searched concern the sequence in which to

perform the operations of the lot, the machine to be used for each operation and the queue position

at each machine. There are other possible dimensions which can be searched, such as the shift

patterns operated on a machine, but these are considered only in exceptional circumstances.

Pre-search analysis, implemented by means of a rule base, is used to determine the direction

of scheduling (forwards or backwards), the need for any additional constraints and the search

operators which will be used to generate the search space. As indicated above, only three

operators, namely choose-operation, choose-machine and choose-que-position are normally

specified. However, if pre-search analysis discovers that a previous attempt at scheduling has

failed and a subsequent attempt with a relaxed due date has also failed, a fourth operator, machine

shift. is added to increase the search space. The pre-search analysis rules are not able to determine

what the search space operators should be. For example, there are two types of choose-que-

position operator available, the eager-reserver which reserves the earliest time allowed by the

finishing time of the previous operation and the wait-and-see-reserver which tentatively reserves a

29

large block of time and leaves the actual choice of reservation to level 4. The eager-reserves will

result in increased work in process time for lots in the presence of bottlenecks, whereas the wait-

and-see-reserver leaves scope for bottlenecks to be alleviated at level 4. The choice of which type

of choose-que position operator to use is made manually.

The bulk of search in ISIS takes place within level 3. It is performed using a beam search

in a collapsed rated space. The motivation for dealing with a collapsed rather than stratified

search space is that none of the potential strata are dominant. Each state in the search space is

rated according to the number of relevant constraints it satisfies. After each application of an

operator, the resulting states are rated with only the best "n" (typically n -9) states being retained

for the next iteration of operator application.

ISIS represents a large number of problem constraints, only some of which are considered

relevant at any given point in the search space. The relevant constraints, and hence those which

should be fed to the evaluation function, are determined by several features of the constraint

representation. Constraints can have a limited period of applicability, specified by the duration

slot of the constraint in question. Constraint residency, the attachment of constraints to objects

(eg. resources, orders), also serves to indicate the relevance of a constraint to a given decision. A

final "catch-all" facility is provided by the context slot of a constraint which contains a lisp

function. The function takes the search state and a constraint as input parameters and returns a

non nil value if the constraint should be used.

Post-search analysis is again implemented as a rule base. Within the Resource Analysis

level, post-search analysis has the task of determining whether a satisfactory solution has been

found and, if not, determine whether the system should continue searching or alternatively pursue a

different search strategy. An alternative search strategy can be achieved by posting the failed lot

for re-scheduling. This time, pre-search analysis would possibly add an extra operator to explore

new machine centre shifts.

30

Level 4: Reservation Selection

This level is responsible for selecting a time reservation for all resources required to produce

the lot being scheduled. There is no notion of pre or post search analysis at this level. Time

reservations are selected to satisfy the time bounds passed from level 3. Where there is discretion,

an attempt is made to reduce the work in process time of the lot.

Comment

ISIS employs various mechanisms to focus problem-solving effort during search, most

significantly hierarchical decomposition and search space rating. Both serve to prune and order

search during schedule synthesis. Schedule maintenance is not a major feature of ISIS.

As stated previously, there are four levels within the ISIS hierarchy which are used to prune

and guide search. Levels 2,3 and 4 are fairly successful in achieving this goal, an essential

feature being the ability to relax constraints imposed by higher levels. However, the constraint

ordering imposed by level 1. ie: that all constraints associated with a given lot are considered in

isolation of lots which remain to be scheduled, is almost certainly a feature aimed at problem

simplification rather than as an effective mechanism for focusing problem-solving effort. Having

lot selection as the top level in the hierarchy is not justifiable other than in terms of problem

simplification as it does not exhibit complete dominance over levels Z, 3 and 4.

ISIS creates schedules in an incremental manner. Once a decision has been made it is not

altered to accommodate subsequent scheduling decisions. Consequently, the order in which

decisions are taken implicitly defines their importance. Both the practice of scheduling by lot and

in process plan order serve to prioritise decisions in a pre-specified manner. It would be better to

allow the current set of problem constraints to guide the decision ordering. This would preclude

the need for the time bounds generated by the Capacity-Based Analysis level which are only

required because scheduling decisions within a process plan are made in an artificially imposed

order ignoring the current set of problem constraints.

31

Rating the search space by means of relevant constraints and their importance is an essential

idea in ISIS as the bulk of search, performed in the Resource Analysis level, uses a beam search

technique. The beam search requires a means of evaluating the various points in a search, a

facility provided by a traditional evaluation function which accepts satisfied constraints as its

parameters. We are not interested in the merits of the beam search technique, but rather the

effectiveness of the evaluation function.

The effectiveness of the evaluation function is largely dependent on the constraints it is fed

as input parameters. The mechanisms of constraint duration and residency provide effective static

constraint filters. That is, they provide an effective means of eliminating constraints considered to

be irrelevant to the evaluation of particular search states. The context facility, geared towards

identifying constraints whose applicability to a particular decision varies dynamically with the

larger problem-solving state, is likely to be less effective. In order to perform its task, the

function held within the context slot must be given an accurate account of the problem-solving state

which takes into account detailed constraint interactions. It is unlikely that all the knowledge

required to identify the problem-solving state accurately can be captured in a simple procedural

representation, or that it could be passed in a parameterised form to the function held in the context

slot. It is far more likely that the analysis is performed at an aggregate level which allows simple

aggregate heuristics to be used to determine constraint relevance. This will lead either to too

many constraints being included in a cautious approach, or relevant constraints being excluded in

an optimistic approach.

When static world assumptions fail, as a result of unforeseen opportunities or conflicts, the

schedules produced by ISIS move progressively further and further out of step with the real world

until the schedule finally fails completely. When this occurs the difference between the real world

and schedule is considered sufficient to merit the rescheduling of affected lots. During

rescheduling, ISIS attempts to maintain shop stability by treating the now corrupt scheduling

decisions as preference constraints when rescheduling.

32

When the order being rescheduled is of the same priority classification as an order which. is

already scheduled there is an implicit assumption that orders already scheduled are more important

than the one currently being scheduled. This failing to prioritise decisions dynamically is

compounded by rescheduling in process plan order. No attempt is made to take cognisance of the

cause of schedule failure. If the source of failure was investigated it may lead to a change in the

focus of problem-solving effort.

2.3.2. SOJA [LePape'85]

SOJA, a scheduling system run daily for a sheet-iron workshop (Althsom-Atlantique), views

the scheduling task as a two stage process. The first stage is to select the orders to be performed

the next day and the second, to schedule them to resources. However, unlike in ISIS [Fox M. S.

'83], there is no requirement to consider all the constraints relevant to an order in isolation of other

orders or in process-plan order. Rather, constraints are dealt with in an order which attempts to

satisfy those with the least number of admissible values first.

Overview

SOJA takes as its input the state of the workshop in the evening and a list of the operations

waiting to be performed It produces as output a schedule which covers each resource in the

workshop for the following day. It does this by first selecting the operations to be scheduled and

then scheduling them. The interest in selecting a particular operation depends strongly on the state

of the workshop, the other operations to be selected from and those operations already selected.

To capture these dependencies, SOJA builds a selection graph which it then uses to select the

operations to be scheduled. Constraints are represented as disjunctions of facts. Each member of

the disjunction represents a choice which may be selected to satisfy the constraint. The scheduling

task is viewed as a constraint-directed search in which each scheduling decision consists of

choosing one fact from a disjunction of facts. Heuristic scheduling rules and constraint

propagation techniques are utilised to enhance the search performance.

33

Order Selection

As stated above, operations are selected for scheduling by constructing a selection graph

G(X, U) and using it to select operations in a way which takes cognisance of dependencies between

operations. In the selection graph, X is a set of nodes which contains a root R and particular

operations that have been pre-selected, where pre-selection involves selecting only those operations

which are ready to be selected. The set of value tagged arcs is denoted by U in which arcs are of

the form (op] opt val tag) meaning that if opl is selected, then the selection of opt is of interest

with respect to criterion tag with val quantifying the degree of interest.

The selection graph is constructed using weighted heuristic production rules of the form "IF

conditions THEN pre-selections". Conditions refer to the state of the workshop and the available

operations. Pre-selections consist of adding new nodes and arcs to the graph. An example is

shown below:

Rule 1 (Wdgfd 17)
IF op must be performed before the and of the week
THEN add op sod an we (R op 17 due date) to the gzaph

Figure 2.2

The graph is built up by iteratively applying the rule having the highest weight at each iteration.

The graph, initially containing only node R, is allowed to grow until a constraint imposed by the

capacity of the workshop is violated.

Operations are then selected from the graph until there are no "under-loaded" machines in the

workshop. The algorithm used to perform this task is shown below:

WILLE (there are under-loaded machines)
(Select an are R -> OP)
IF (Op c be selected withott overloading Its machine)
TH (Select it)

(Record LM tag of the arc)
(Replace each we Op -> Op' by an we R> Op')
(rake Op out of the selection graph)

Figure 2.3

34

Constraint-Directed Scheduling

Constraint-Directed scheduling in SOJA is the process of sequencing operations through

machine centres, utilising the constraints of the problem to guide the search to a solution which is

both legal and "good". To do this, SOJA partitions constraints into two classes, hard constraints

and preference constraints. Hard constraints are necessary to define the set of legal solutions,

whereas preference constraints are used to define a subset of "good" solutions.

Hard constraints such as operation precedence and resource requirements are represented as a

disjunction of facts and a scheduling decision consists of choosing a fact from the legal possibilities

defined within the constraint. When a decision is made, SOJA propagates the effects of the

decision to other constraints. Each hard constraint can be in any one of four states during the

scheduling process. If it is satisfied then one of the facts of the constraint is implied by previous

decisions. If it is impossible then each fact belonging to the disjunction is banned. If it is

imperative then only one fact belonging to the disjunction is not banned. Finally, if it is

disjunctive then two or more facts can be chosen to satisfy the constraint.

Preference constraints, concerning objectives such as due date requirements and shop

stability, are represented as heuristic scheduling rules. These rules have been extracted from

problem domain experts and the field of operational research. This is in contrast to ISIS in which

preference constraints are represented as relaxable constraints.

Schedules are constructed incrementally, satisfying one constraint at a time until all

constraints are satisfied, at which point a solution is inferred. The scheduling algorithm used

embodies the principle that problem-solving effort should be focused on areas of high contention in

the schedule. This is achieved by algorithmically encoding the following three rules:

(1) When a constraint becomes impossible, a selective backtrack procedure is called which

selects a decision to be retracted.

35

(2) When a constraint becomes imperative, the only remaining fact is immediately asserted and

propagated.

(3) When there are no impossible or imperative constraints, a fact is chosen, guided by the

heuristic scheduling rules, to satisfy a disjunctive constraint.

Comment

SOJA offers certain improvements over ISIS in terms of mechanisms for focusing problem-

solving effort. This is most obvious during the selection phase in which SOJA considers both

inter-lot and intra-lot dependencies. In ISIS, after a lot is selected for scheduling it is scheduled in

detail before subsequent lots are selected, therefore precluding consideration of lots still to be

selected. The approach used in SOJA will lead to a more effective search order because it groups

constraints relevant to the selection problem together allowing consideration of all lots which may

be selected.

Within the actual scheduling process itself, SOJA employs another search ordering technique.

The scheduling algorithm is geared to address the most constraining constraints first. A constraint

(a disjunction of facts) is ranked according to the number of facts from its disjunction which are

not banned. This is again more responsive to the characteristics of the given scheduling problem

than in ISIS, where search order through a plan is pre-determined.

As well as ordering the search space to focus problem-solving effort, SOJA incorporates

mechanisms which prune the search space. The two stage hierarchy comprising order selection

followed by constraint-directed scheduling serves to prune a considerable area of the search space.

Although this is a useful technique, in more complex problems such as that considered in ISIS, the

fact that order selection does not exhibit complete dominance over the scheduling level can lead to

problems. The use of the selection graph does however help to minimise the occurrence of such

problems. The search space is further pruned by a constraint propagation technique. This serves

to remove nodes from the search-space which are inconsistent with the scheduling decisions made

36

so far.

Although the features noted above represent tangible improvements as far as focusing

problem-solving effort is concerned by ordering the search in a way which is responsive to the

problem at hand, it should be noted that SOJA deals with a considerably simpler problem than

ISIS. It would appear from the selection algorithm that operations are pre-allocated to specific

machines, thus precluding the need for such decisions and a significant degree of combinatorial

complexity. Furthermore, as scheduling in SOJA is synonymous with sequencing, this seems to

imply that an earliest dispatch strategy is always used However, the most serious weakness of

SOJA is one shared by ISIS. Neither SOJA or ISIS provide a reactive capability.

From the literature available on SOJA, two questions about how it functions remain

unanswered. Firstly, what generates the heuristic production rules used to construct the selection

graph? Secondly, what evaluation functions are used to select an arc from the selection graph?

23.3. OPIS 0 [Smith et al '86b]

OPIS 0 is of interest primarily because it was the first system to solve its problem using

multiple scheduling perspectives. The scheduling perspective of a system is determined by the

manner in which it decomposes the problem. For example, ISIS is said to use an order-based

perspective because it views the complete schedule as a collection of order schedules. An

alternative possibility is a resource-based perspective, in which the complete schedule is viewed as

a collection of resource schedules. Experience gained during the development of ISIS led to the

recognition that multiple scheduling perspectives were needed. Some members of the ISIS team

went on to confirm their intuitions by developing OPIS 0.

Each scheduling perspective advocates a specific local and incomplete view of the overall

scheduling problem in terms of more tractable subproblems. A consequence of this is that a given

scheduling perspective is more or less suited to resolving certain classes of constraint conflict An

order-based perspective is well suited to dealing with order-centred constraint conflicts which might

37

involve the operation precedence constraints of an order and its due date. On the other hand, a

resource-based perspective is well suited to dealing with resource-centered constraint conflicts

which arise from the need to share resources and involve constraints associated with several orders.

The objective of the designers of OPIS 0 was to provide experimental justification to support the

claim that it is beneficial to apply both scheduling perspectives as and when appropriate.

Overview

In order to gain any benefit from using multiple scheduling perspectives, it is necessary to

partition effort between perspectives such that the most important constraint conflicts can be

addressed by the appropriate perspective. A reasonable heuristic, adopted by OPIS 0, suggests that

the most important resource-centred conflicts are likely to occur at the bottleneck resources.

Therefore a resource scheduler should be applied to bottleneck resources after which an order

scheduler can be applied to complete the schedules of each individual order. Because OPIS 0 was

developed to provide experimental justification for the value of multiple-perspective scheduling, it

was considered acceptable to place some rather severe limitations on system flexibility. The most

obvious limitations are that only one pre-specified bottleneck resource is catered for and that effort

between the two scheduling perspectives is partitioned statically. As suggested by the heuristic, a

resource scheduler is first applied to the single pre-specified bottleneck resource, after which an

order scheduler is invoked to work outward from this established portion of the shop schedule to

complete the schedules of each individual order.

Resource Scheduler

The resource scheduler of OPIS 0 takes as its input, a set of machines (a work area) and a set

of operations to be scheduled on those machines. Each operation belongs to a different order and

typically must be scheduled on one of a specific group of substitutable machines in the work area.

The scheduling method used is basically one of iterative selection which terminates when

there are no more operations to be scheduled. On each iteration, a set of scheduling decisions is

38

made, serving to constrain the way in which the remaining operations can be scheduled. Within

each iteration there are four distinct phases, the first three of which involve the selection of an

element from a set. The selected element in each phase is best with respect to some criteria

expressed by heuristic rules. The final phase, resource reservation, is not viewed as a selection

process. This will be discussed later. The four phases of each iteration are shown below:

(1) Resource Assignment
(2) Resource Selection
(3) Resource Dispatching
(4) Resource Reservation

In the Resource Assignment phase, the best machine assignment for all remaining operations

is chosen from the set of alternative machine assignments. Two criteria, earliest start time and the

number of machine setups, are used to determine the best machine assignment The Resource

Selection phase reviews all machines that have one or more assignments from the previous phase.

It does this in order to remove machines which are considered unsuitable for scheduling on this

iteration. Machines are considered unsuitable if it is feared that if they were scheduled a

premature scheduling decision leading to a poor schedule may result. The factors considered when

selecting machines to exclude from a particular iteration are machine availability, characteristics of

the resource assignment and the length of queue of operations already assigned to a machine. The

role of Resource Dispatching is to select one operation for each of the machines which have had

operations assigned to them and have not been excluded in the previous phase. The dominant

criteria used for selection in this phase is tardiness. The final phase, Resource Reservation,

reserves a time interval for each dispatched operation. This results in new temporal constraints for

operations which have still to be scheduled.

Order Scheduler

The order scheduler (OS) of OPIS 0 operates in a manner similar to ISIS [Fox M. S. '83]. It

has three identifiable phases which can be recognised as the bottom two levels of ISIS, Resource

Analysis and Reservation selection. In OPIS 0, the OS is invoked to schedule a specific portion of

39

the production plan of an order, either the operations preceding or following the bottleneck

resource. It selects resources and makes temporal reservations on these resources for the

appropriate operations. The three identifiable phases, Search Initialisation, Beam Search and

Temporal Reservations are discussed below.

The Search Initialisation phase is responsible for selecting both search direction, forward or

backward, and the time anchor, either earliest start time or latest end time. This corresponds to

the pre-search phase of Resource Analysis in ISIS. The previously scheduled "bottleneck

operation" of the order is utilised to determine both search direction and time anchor. If the

operations to be scheduled precede the bottleneck, the OS schedules backwards from the start time

of the "bottleneck operation". Conversely, if the operations to be scheduled follow the bottleneck,

the OS schedules forwards from the end time of the "bottleneck operation".

The search space traversed by the OS during the beam search phase, corresponding to the

search and post-search phase of Resource Analysis in ISIS, is composed of states which represent

alternative sets of schedule decisions. The degree of satisfaction of the relevant preference

constraints (eg. work-in-process constraints and sequencing preferences) is evaluated to provide the

basis for state comparison. The output of the search is a specific routing for the given operations

along with an associated interval of time for the chosen resources.

The final phase, corresponding to Reservation selection in ISIS, involves making actual

resource reservations within the time bounds provided by the beam search. The time bounds

provided are typically larger than the actual time needed to perform the operation in order to allow

for local optimisation. Operating within the imposed time bounds, final allocations are made that

attempt to minimise the work-in-process time of the order.

Comment

The limitations imposed on OPIS 0 were considerable. The provision for only one pre-

specified bottleneck resource, the domination of the resource-based perspective and static

partitioning of scheduling effort combine to greatly limit system flexibility. Despite these

40

limitations, OPIS 0 performed better than both ISIS and COVERT in laboratory tests (Smith et al

'86a], thus providing experimental weight to the claims for multi-perspective scheduling.

In OPIS 0, the search order is arranged in a way which considers first high contention

decisions (around the bottleneck resource), followed by initially less constrained decisions. This

has obvious parallels with Haralick's fail first principle [Haralick et al '80]. By imposing the

decisions of the resource scheduler on the order scheduler, the search space can be pruned in an

effective manner. In more complex domains, sequencing and hence prioritising decision making

in such an aggregate way is almost certain to lead to problems.

The final phase of the resource scheduler, resource reservation, is not regarded as a selection

process. This is because it is assumed that the earliest possible reservation is always made. The

justification for this is that if the resource scheduler is being applied, then the resource in question

is in high contention and therefore there is no need to consider introducing slack time between

operations. In view of the complete dominance of the resource-based perspective, this is a

potentially dangerous heuristic to use.

2.3.4. OPIS [Smith '87]

As stated in the previous section, OPIS 0 accepted some rather severe limitations on system

flexibility. OPIS, a direct descendant of OPIS 0, began life as an extension to OPIS 0, motivated

by a desire to take the multi-perspective scheduling strategy into more realistic domains. Realistic

scheduling domains include things like time-varying bottlenecks and primary/secondary bottleneck

configurations, significantly different from the idealised view assumed in OPIS 0. To facilitate this

transition, it was recognised that OPIS must be able to decompose the scheduling problem

dynamically in accordance with the current set of problem constraints. To do this OPIS requires

the ability to detect areas of the schedule which are currently perceived to be in high contention.

In OPIS 0 this was not necessary as the area of high contention had been pre-determined as the

pre-specified bottleneck resource.

41

Giving OPIS the discretion to decompose the problem dynamically presents new difficulties.

Because of the static nature of OPIS 0, it was possible to perform a crude form of forward

scheduling to ensure that solutions generated for subproblems would be compatible. By removing

the OPIS 0 limitations, it is no longer possible to simply allow earlier decisions to dominate

subsequent decisions. Within OPIS, the integration of solution components requires the ability to

renegotiate specific decisions in the light of subsequent decisions.

The two features of OPIS not present in OPIS 0, namely the ability to recognise important

areas of the schedule and to renegotiate earlier scheduling decisions in the light of subsequent

events, enabled it to achieve its goal and move into more realistic domains. However, these

facilities are also precisely what is required to allow reactive maintenance of schedules. OPIS

grew into a system which viewed both predictive and reactive scheduling as an opportunistic

process. It merges top down dynamic problem decomposition with bottom up reaction to problems

encountered during the synthesis of solution components, or unanticipated events which occur in

the production environment. It is this unified view of both predictive and reactive scheduling as

an opportunistic process which makes OPIS of interest.

Overview

The OPIS architecture is essentially that of a standard blackboard system (Erman et al '80].

It is motivated by a desire to focus scheduling effort dynamically according to current problem

constraints and presumes the existence of a collection of knowledge sources (KS) that can be

selectively employed to generate, revise and analyse specific components of the overall schedule.

Unlike standard blackboard systems, in which KS are self activating, OPIS has a search manager

KS responsible for planning and co-ordinating the scheduling actions to be taken in response to a

given scheduling problem. Scheduling proceeds via the formulation and initiation of scheduling

tasks which specify a particular scheduling KS and a portion of the current factory schedule to be

worked on. The search manager KS maintains a queue of pending subtasks, which constitutes its

current plan for solving the scheduling problem at hand. Changes in the factory status and the

42

execution of scheduling tasks are integrated into the current schedule by a schedule maintenance

subsystem. The search manager KS is informed of any changes through the posting of control

events which require to be interpreted and converted into modifications to the queue of pending

subtasks if appropriate. Thus the manager implements a reactive approach to control, continually

revising its "scheduling plan" as the constraint set changes.

Representing and Maintaining the Schedule

In order to permit the opportunistic approach to scheduling advocated by OPIS, it is

necessary to maintain a representation of the current schedule and hence the current problem

constraints. The schedule is represented in terms of an underlying factory model which includes

resources and the operations to be performed. This representation is implemented using frame-

based knowledge representation techniques and provides a hierarchical description of the constraints

of the production environment. Hard constraints, such as operation precedence, duration and

required resources are catered for, as are preference constraints which serve to characterise factory

objectives such as minimising WIP or tardiness. This representation allows reasoning over the set

of possible schedules rather than prematurely committing to a single schedule, the opportunistic

approach proposed in [Fox B. R. et al '85a].

Given this factory model, the schedule is made explicit by instantiating an appropriate

production plan for each order to be produced. The current state of the schedule is provided by

incrementally maintaining a representation of the temporal constraints on each instantiated

operation and the availability of each required resource. These representations are maintained by a

set of propagation processes that combine newly imposed constraints with both model defined

constraints and those resulting from previous decisions to derive any additional constraints.

As well as making the current set of problem constraints available to scheduling KSs during

schedule synthesis, representing the current state of the schedule also provides the basis for

detecting conflicts in the schedule. OPIS recognises three basic constraint conflict types. Time

conflicts in which operation precedence constraints have been violated, Capacity conflicts in which

43

resource availability constraints have been violated and Time Vs Capacity conflicts which

corresponds to the situation in which a given set of scheduling decisions cannot coexist due to the

combined effect of temporal and resource availability constraints. Conflicts are introduced into the

schedule by changes that impose additional constraints via the propagation process.

Strategic Alternatives

The strategic alternatives available to OPIS include two general scheduling methods, two

schedule revision methods and a single analysis method. The two general scheduling methods, an

order scheduler and a resource scheduler, are not discussed here as they have already been covered

in the section on OPIS 0. The two schedule revision methods are implemented by a schedule

shifter KS and a demand swapper KS.

The schedule shifter implements a reactive method which simply moves the scheduled

execution times of designated operations forward in time by a specified amount. Any

inconsistencies resulting from these operation shifts are immediately resolved by additional shifting.

Demand swapping is a specialised reactive method applicable in situations where an

operation has become unexpectedly and significantly delayed. It implements an exchange of the

remaining portion of the schedule of the affected order with the corresponding portion of the

schedule of another order of the same type. Heuristic criteria that estimate the relative flexibility

of current temporal constraints are used to identify potential swapping candidates and, if at least

one exists, select a particular candidate.

The analysis method available in OPIS is implemented as a Capacity Analyser KS. It

provides information relating to the current factory load, identifying likely areas of high resource

contention. It always operates at an aggregate level in the factory model, constructing a schedule

which satisfies the current temporal constraints, using a line balancing heuristic in situations where

a choice between resources is necessary. The demand for capacity reflected by this schedule is

then compared with the actual capacity available to identify likely bottleneck areas.

44

Co-ordinating Scheduling Activity

Co-ordination of scheduling activity is based on response to control events which are posted

as a result of both externally initiated scheduling updates and internally initiated scheduling actions.

Event descriptions provide the search manager KS with an abstract view of the current state of the

schedule. The search manager KS draws on two types of control heuristics when responding to

posted events on a given control cycle. It first applies a collection of event aggregation heuristics

followed by event processing heuristics.

Event aggregation heuristics are employed to formulate the most appropriate set of problems

to address. In many cases, there are relationships between events that suggest they should be

considered simultaneously rather than individually. Event aggregation heuristics define the

circumstances under which two or more events should be reformulated as an aggregate event.

Event processing heuristics are applied to determine how the system should proceed. It is

these rules that encode knowledge of the applicability and capabilities of the various strategic

alternatives available to the system. Once all events have been processed, the queue of pending

subtasks is updated and the highest priority pending subtask is initiated. Subtask prioritisation is

a function of the triggering event type and the characteristics of the event itself.

Comment

OPIS certainly achieved its goal of taking the multiple scheduling perspective methodology

into more realistic domains. Initially, the objective was to attain opportunistic problem

decomposition and through this deal with more complex domains. However, as OPIS developed

another form of opportunism emerged, one which is almost certainly required in real world

domains. By adopting the opportunistic approach advocated in [Fox B. R. et al '85a], OPIS was

able to provide a reactive capability, necessary in the face of unexpected events. Reacting to

unforeseen events is not always a fire fighting situation. The unforeseen event may generate an

opportunity as in the case of a machine being repaired sooner than expected.

45

OPIS provided significant advances in methods for focusing problem-solving effort, most

notably through opportunistic problem decomposition and the detection of high contention areas of

the schedule. To do this it distributes problem-solving knowledge amongst the various KSs, but it

does not address the issue of distributed processing.

Within OPIS, the tasks of predictive and reactive scheduling remain distinct. Event

aggregation and event processing heuristics are employed to determine which course of action to

follow at any given point in the search. This thesis argues that the applicability of the heuristics

used is likely to be domain dependent. Regardless of the loss of generality incurred by the use of

domain dependent heuristics, it is further argued that identical mechanisms should be employed for

both predictive and reactive scheduling. Separating the tasks requires two things. Firstly, an

ability to determine the type of reaction required in a particular conflict situation, and secondly a

reactive mechanism to resolve the conflict It is considered unlikely that the full complexity of all

possible conflicts can be captured within a set of heuristics. The prospect of having a reactive

mechanism ideally suited to each conflict situation is considered equally unlikely.

2.3.5. SONIA [Collinot et al '88]

SONIA provides another example of the trend towards scheduling systems which take a

unified view of predictive and reactive scheduling. It builds on experience gained with SOJA, one

of the predictive scheduling systems discussed earlier. The designers of SONIA cite the fact that

both predictive and reactive components appear to refer to common pieces of knowledge as the

prime motivation for integration.

Overview

Like OPIS, SONIA utilises a blackboard architecture to manage the focus of problem-solving

effort. It has a predictive component, two reactive components and two analysis components. As

in OPIS, the reactive capability makes it necessary to maintain the current set of problem

constraints. The predictive component of SONIA is provided by SOJA and will therefore not be

46

discussed below.

Management of Schedule Descriptions

Within SONIA, a schedule is represented as a set of resources, manufacturing orders and

operations to which constraints are attached. Resources are described at various levels of

aggregation. The production plan of an order consists of a hierarchy of operations within which it

is possible to specify that operations can be performed in parallel or that they are a set of exclusive

alternatives. Each operation has an associated actual status and a schedule status. Relational

temporal constraints of the form "event-I must precede event-2 by period X" are generated in

accordance with the status information. When the actual and schedule status become different it

signifies the need to repair the schedule. This representation serves to describe implicitly the set

of schedules which are consistent with the current set of problem constraints.

As in OPIS, maintaining the current set of problem constraints serves two purposes. It

enables problem decomposition without neglecting interactions between subproblems and it enables

detection of inconsistencies. Constraint propagation techniques are used to maintain the current set

of problem constraints. The constraint propagation system system employed in SONIA is

interesting in that it is flexible in the degree of propagation that is performed. This is discussed

further in chapter 4.

Strategic Alternatives

SONIA provides three alternatives to resolving inconsistencies arising from ill-considered

decisions or shop-floor deviations. In extreme cases it may be considered appropriate to invoke

the predictive component to generate a whole new schedule. This can be viewed as a form of

reaction. The reactive components which provide the remaining two options can take decisions to

reject operations, select new operations to be scheduled, slightly extend work shifts, relax due date

constraints and permute operations.

47

A less drastic form of reaction than producing a completely new schedule involves

rescheduling forward from the current date, modifying the existing schedule rather than creating

one from scratch. Two versions of such a global rescheduling algorithm exist. The first

corresponds to a simple right shifting strategy in which the operations to be performed remain in

the same sequence and the schedule is moved forward from the current date. The second attempts

to permute operations in order to remove the conflicts.

Although the global rescheduler can be used in any circumstances, local methods are more

appropriate when conflicts concern a particular order or work area. At the moment, the only form

of local rescheduling is provided by an algorithm which deals with part of the production plan of

an order. A resource scheduler is cited as the most likely form of reactive method to be

introduced next.

To facilitate appropriate use of the reactive methods available to SONIA, analysis

components capable of identifying the problem-solving context are needed. SONIA has two such

components, a capacity analyser and an analyser of conflicts. The capacity analyser of SONIA was

"inspired" by the shop-level capacity analyser of OPIS (already discussed) and shall therefore not

be described here.

The analyser of conflicts is used to examine a set of conflicts and generate proposals to solve

some or all of the detected conflicts. It may decide that it is appropriate to consider certain related

conflicts simultaneously, performing much the same role as the event aggregation heuristics of

OPIS. The proposed solutions are currently confined to specifying which reactive component to

use and in what manner to use.

Co-ordinating Scheduling Activity

As stated earlier, SONIA employs a blackboard architecture to co-ordinate problem-solving

activity. It actually uses two blackboards, a domain blackboard and a control blackboard. The

domain blackboard is partitioned into three areas, results, capacity and conflicts, which relate to the

evolution of the schedule. Results of the activities of the predictive and reactive components are

48

held in the results partition, the results of the capacity analyser (ie: bottlenecks, under-load) in the

capacity partition and any conflicts which are detected are recorded in the conflicts partition of the

domain blackboard.

The control blackboard is used to record information relating to the focusing of problem-

solving effort. Several partitions exist including an area for sub problems, an area for strategies

made up of heuristics used by the various components of SONIA, an area for the agenda of

pending actions, an area to hold the policies used to select amongst pending actions and finally, an

area chosen actions, a history of actions already performed. As in OPIS, there is a control KS

responsible for selecting the next KS activation. This KS refers to information in the policies

partition of the control blackboard when making its decision. There is also another control KS

responsible for updating the agenda partition of the control blackboard.

Comment

SONIA is very close in both architecture and functionality to OPIS. This is probably a

result of the fact that Claude LePape worked on the development of both systems. While sharing

the strengths of the opportunistic approach of OPIS by reasoning with a set of schedules, SONIA

does not provide a resource scheduling component to permit an alternative scheduling perspective

and hence allow opportunistic problem decomposition.

As in OPIS, the basic approach to reaction is to analyse, via a set of heuristics, the current

set of conflicts in order to determine the most appropriate form of schedule reaction. In both OPIS

and SONIA, there is an attempt to patch the existing schedule using either a right shifter or a

demand swapper algorithm, rather than to reschedule the affected parts of the schedule. The

criticisms of this approach made in the comment section on OPIS apply equally to SONIA.

2.3.6. S2 [Elleby et al '88]

S2 is a knowledge-based scheduling system designed to perform operational level scheduling

in VLSI wafer fabrication domains. It views scheduling as an incremental constraint satisfaction

49

problem, and like OPIS and SONIA, takes a unified view of predictive and reactive scheduling.

As well as being reactive, S2 is also adaptive, ie: it keeps the human scheduler in the schedule

generation loop to allow criticism of the proposed schedule to be incorporated.

Overview

The domain in which S2 must operate is typical of many manufacturing domains in that it

does not conform to the static world view of scheduling. Two particular difficulties have had a

significant effect on the design of S2. Firstly, due to the conflicting and dynamic nature of

scheduling objectives, it is difficult to define the criteria by which a schedule can be considered

optimal. Secondly, the domain in which S2 must operate is itself highly dynamic with unexpected

events such as machine breakdowns occurring at frequent intervals.

In response to the first problem, conflicting and changing objectives, S2 was designed to be

adaptive. In an adaptive scheduling system, the automated scheduler initially suggests a feasible

schedule which a human scheduler then judges. These judgements are communicated to the

automated scheduler which is expected to propose a more suitable schedule incorporating the

human criticisms. As well as producing improved schedules, this approach can have a beneficial

side-affect in that the human scheduler can learn from the suggested schedules about the

relationships between various scheduling objectives.

An automated scheduling system can only take account of information it has been given

initially. Unfortunately, acquiring all the relevant information for a scheduling system is not a

simple task. Typically, information concerning hard constraints which define the set of legal

schedules is more readily available than information concerning soft constraints. Soft constraints,

such as scheduling objectives, define the subset of legal schedules which are considered desirable.

By being adaptive, S2 allows the human scheduler to intervene during schedule synthesis and add

additional soft constraints to the scheduling problem. This alleviates some of the burden from the

very difficult knowledge acquisition phase of the development of a knowledge-based scheduling

system.

SO

To cater for the dynamic nature of the wafer fabrication environment, S2 adopts the least

commitment approach proposed in [Fox B. R. et al '85c]. The proposed approach advocates

reasoning with the set of schedules which satisfy all existing commitments, rather than prematurely

committing to a single schedule. This allows for both opportunism, the exploitation of a resource

becoming available, and contingency, the reduction of the consequences of a resource becoming

unavailable.

Architecture

S2 has three major components, a constraint maintenance system ,a reactive schedule

generator and a request interpreter. The set of constraints defining the class of feasible schedules

is stored in the constraint maintenance system. It is through this representation of the class of

feasible schedules that the least commitment approach described above is implemented. The

constraint maintenance system is able to reason with constraints representing the duration

requirements of the fabrication process and precedence relationships between resources. This is

discussed further in [Elleby '87].

The reactive schedule generator ensures that the set of constraints recorded in the constraint

maintenance system are satisfied during schedule synthesis. It can be considered reactive in that it

reacts to new constraints by modifying an existing solution, rather than by scheduling from scratch.

In the prototype version, the schedule generator consists of a rule base of various dispatch

procedures. Later versions of S2 employ a schedule generator which performs constraint

satisfaction problems incrementally with the aid of a tailored form of an assumption based truth

maintenance system [de Kleer '86].

The request interpreter provides a means of communicating additional constraints to the

constraint maintenance system. Additional constraints can originate from two sources. They can

either be the result of criticisms made by the human scheduler or events occurring on the shop

floor. S2 operates in conjunction with a work-in-progress tracking system which provides the

input to the request interpreter corresponding to events occurring on the shop-floor.

51

Comment

S2 addresses a major difficulty experienced by most knowledge-based system designers, the

knowledge acquisition phase, by being adaptive. This, combined with the highly dynamic nature

of its problem domain, dictates that S2 must be a truly reactive system. Conflict analysis

heuristics used in conjunction with schedule revision algorithms would quickly become an

inadequate form of reaction in such an environment. The designers of S2 view the scheduling

problem as one of incremental constraint satisfaction and make use of an assumption-based truth

maintenance system (AIMS) to allow a truly reactive approach. S2 does not distinguish between

the tasks of schedule generation and maintenance and employs the same mechanisms for both.

A similar use of ATMS technology can be seen in FLYPAST [Mott et al '88], a system that

performs the allocation of flight crews and aircraft to pre-scheduled flights for Naval flying

programmes. FLYPAST is not reviewed in this thesis because it does not actually perform a

scheduling task and its domain is significantly far removed from manufacturing. However, its

domain does share a need for a reactive capability and it is interesting to note a common approach

through the use of an ATMS.

2.3.7. ENTERPRISE [Malone et at '831

Until now, this review has been concerned only with systems which take a centralised

approach to scheduling. At this point, decentralised scheduling systems are considered, hence the

diversion from chronological ordering. The first decentralised system considered is ENTERPRISE,

a system which provides a facility for sharing tasks among available processors on a network of

personal computers. Although the scheduling problem dealt with by Enterprise is not from a

manufacturing domain and is significantly simpler than that found in most manufacturing domains,

it is worthy of mention because it is one of the earliest systems to consider the use of decentralised

scheduling techniques.

52

Overview

In most computer networks, nodes are dedicated to a single user. Whenever a node is not

being utilised by its user. the norm is for that node and its available processing power to lie idle.

The purpose of Enterprise is to harness the maximum processing power available on a computer

network by distributing tasks among available nodes. Therefore, the basic function required of

Enterprise is to allocate computational tasks to the processor best suited to performing it at the time

it is required. This scheduling problem is considerably simpler than most manufacturing

scheduling problems because the tasks to be scheduled are largely independent of one and other

and the criteria for selecting a particular processor is well defined. The criteria used is a function

of the estimated task completion time, a value which is readily available and provides a uniform

measure with which to compare all potential processors, and task priorities. Enterprise is not

concerned with the particular global scheduling objective which dictates the allocation of priorities

to the tasks to be scheduled, but rather with the mechanism which sequences tasks according to the

allocated priorities. By varying the method of allocating priority to tasks, Enterprise can be made

to achieve different global objectives.

Motivation For Decentralisation

A decentralised scheduling technique was adopted primarily because it was recognised that in

highly parallel systems much of the information used in scheduling is inherently distributed and

rapidly changing, for example, instantaneous system load. In such an environment it is sensible to

"take the decisions to the information" rather than to transmit the information to a centralised

decision maker. Another benefit of decentralised scheduling is the enhanced reliability of a system

which degrades gradually rather than suffering total failure in the event of one or more scheduling

nodes failing.

Decentralised scheduling in Enterprise is based on the metaphor of a market in which

processors (clients) send out requests for bids on tasks to be performed, and other processors

(contractors) respond with bids giving estimated completion times. The estimated completion

53

times which are returned reflect machine speed and the files currently loaded on the contractor

processor making the bid. This protocol has much in common with the contract net metaphor

[Davis et al '83] discussed in the next section, the most important difference being that the protocol

used in Enterprise restricts the criteria for mutual selection by clients and contractors to two

primary dimensions, task priorities and estimated completion times.

Scheduling Strategies

Simulations of Enterprise were performed to compare three distributed scheduling strategies,

lazy assignment, eager assignment and random assignment. In the lazy assignment strategy, idle

contractors respond with bids immediately, while busy contractors acknowledge the request for bids

and add the task to their prioritised queues. Whenever a contractor becomes idle, it submits a bid

for the next task on its queue. Clients defer assigning a task to a specific contractor until the

contractor is actually ready to start. It is this last feature, the deferring of decision-making, which

earns the strategy its name.

In the eager assignment strategy, tasks are assigned to contractors as soon as possible and

then reassigned as necessary. All contractors bid on all tasks even if they are currently busy.

Contractors may subsequently notify clients of changes to their bid if tasks are added to their

queues or if a task takes longer than expected.

In the random assignment strategy, clients select the first contractor to respond to their

request for bids and contractors pick the first task they receive after an idle period. Contractors do

not bid at all when they are executing a task. and answer all requests for bids when idle.

Whenever a contractor receives a task after commencing execution of an earlier task, the new task

is rejected and the client who submitted it must attempt to schedule it elsewhere.

Based on the similarities of the scheduling task and job-shop scheduling, the designers of

Enterprise expected the eager assignment method to perform best. Surprisingly, it performed very

poorly in the simulation tests and two factors were suggested. The first, termed the stable world

illusion, occurs because tasks are assigned to machines on the assumption that no further tasks will

54

arrive. If tasks of a higher priority do arrive later, they will displace the first task to later and later

start times with the effect that the displaced task might well have completed earlier on another

processor. The second factor, unexpected availability, occurs when a task takes less time than

expected. This can result in fast processors lying idle while high priority jobs wait in queues on

slower processors. This occurs because clients are not notified of the fact that a machine has

become available early, and therefore cannot reschedule to take advantage of the opportunity. The

authors of [Malone et al '83] conclude that the lazy assignment method, despite being simpler to

implement and less expensive in terms of message traffic, is a superior strategy.

Comment

Although distributed computing and heavy manufacturing environments appear to have little

in common, they do share some common motivations for adopting a decentralised approach to their

respective scheduling problems. The concept of "bringing the decisions to the information" rather

than constantly transmitting information to a centralised decision maker has obvious relevance to

manufacturing environments which are often spread over large areas. This is particularly true in

heavy manufacturing industries in which there are typically several distinct manufacturing units on

any given site. The benefits of enhanced reliability derived from a distributed system will also be

welcome in a manufacturing environment.

The factors which resulted in the lazy assignment strategy performing better than the eager

assignment strategy have parallels in manufacturing domains. The stable world illusion can fail

due to the arrival of a rush order or indeed the addition of any order into the system. A job

finishing earlier than expected or alternatively, a machine being repaired sooner than expected both

give rise to the unexpected availability factor. This appears to suggest that the lazy assignment

approach is suitable for manufacturing domains, though the domains may be sufficiently different to

invalidate this conclusion. In a manufacturing environment the tasks to be scheduled tend not to

be independent, since they are often related through precedence relations and share common

resources. When sharing resources, it is often desirable to batch or sequence tasks in a way which

55

reduces machine setup costs or minimises scrap wastage. In such an environment, the buffer

provided by a lazy assignment strategy is likely to be ineffective. What is really required is a

strategy which considers the global solution while providing the ability to react opportunistically to

events which alter the assumptions upon which it is based.

2.3.8. YAMS [Parunak et al '86]

The scheduling systems discussed which utilise blackboard style control architectures, OPIS

and SONIA, are examples of distributed problem-solvers. In such systems, problem-solving

knowledge is distributed throughout specialised knowledge sources which may be invoked, one at a

time, to contribute to the current solution hypothesis. Blackboard control architectures address the

issue of distributed problem-solving, not distributed processing.

It is possible to distinguish between systems which distribute only problem-solving

knowledge and those which also distribute processing by noticing that in the former case,

knowledge sources contribute to the current hypothesis in a synchronised manner, whereas, in the

latter, several knowledge sources can contribute simultaneously in an asynchronous manner. The

ENTERPRISE system reviewed in the previous section is an example of an asynchronous

scheduling system. YAMS, a scheduling system for controlling a flexible manufacturing facility,

provides probably the best known example of an asynchronous scheduling system. It is described

below.

Overview

YAMS (Yet Another Manufacturing System) is a cooperative scheduling system used to

control a flexible manufacturing facility. The negotiation protocol used during schedule synthesis

is based on the contract net metaphor [Davis et al '83]. Initially, a global schedule is produced

using a technology such as MRP or OPT. This schedule assigns fairly broad time windows for the

completion of operations for all work orders at a high level of abstraction. This time window is

refined through the negotiation of team schedulers and their subordinates who act on behalf of

.ý ý.

56

individual work-cells. A team scheduler broadcasts a message to its subordinates signaling that an

operation is to be scheduled. Those subordinates that are able and willing to perform the

operation compete for it by returning bids, giving an indication of when they can perform it. The

team scheduler selects from these bids to schedule the operation.

YAMS models the factory environment as a hierarchy of work-cells, corresponding closely to

the traditional view of a manufacturing organisation. Each node in the hierarchy corresponds to a

node in the contract which can negotiate with its parent, children and sibling nodes. Each node

has a library of process plans describing the processes which it knows how to perform. These

process plans refer in turn to other processes, some of which are not known to the node hosting the

main process. Nodes use negotiation to find other nodes to perform processes which they cannot

deal with themselves.

Motivation For Decentralisation

The motivation to use distributed AI techniques in general, and the contract net in particular,

is as a result of several characteristics of the typical manufacturing domain. A distributed system

is able to control not just a single localised set of resources, but several aggregate resources which

may be remote from one another. It is not unusual in a manufacturing domain for each set of

aggregate resources to require to be controlled faster than is possible if communication to a central

scheduling processor is required. The stochastic nature of the manufacturing environment also

suggests the suitability of a distributed system. Static models of the capabilities of individual

resources are not sufficient, making it necessary to monitor the status of resources if reaction to

change is to be feasible. While it is necessary to monitor resource status at a local level, it is

desirable to hide as much of the local state of each resource as possible to reduce pathological

coupling between components of the system. This is feasible in an appropriately distributed

system.

57

The Contract Net

The contract net [Davis et al '83] models transfer of control in a distributed system with the

metaphor of negotiation among autonomous agents. The net consists of a set of nodes that

negotiate with one another through a set of messages. Three classes of node can be identified.

The manager node identifies a task to be performed and assigns it to other nodes for execution. A

bidder node offers to perform tasks, while the contractor node of a negotiation is the successful

bidder, the one whose bid is accepted by the manager.

Nodes communicate by means of, different classes of messages. Manager nodes issue Task

Announcement and Award messages during the process of establishing a contract. The manager

node may also send a Termination message to a contractor to interrupt its performance of a contract

prematurely. Bidders send bids, while contractors send Acknowledgements to accept or reject

awards and Reports indicating the status of a contract. Idle nodes may broadcast their availability

with a Node Availability Announcement.

The Contract Net In Manufacturing

Certain aspects of the domain in which YAMS operates generate a need for modifications to

the pure contract net metaphor. These modifications are required in the interests of problem-

solving efficiency and the quality of schedules produced. In both instances, the need for

modification can be viewed in terms of system volatility, a measure of how likely the system is to

change during operation. For example, if a typical operation takes a few minutes to perform and

the system remains stable for days at a time, it has a low volatility. On the other hand, if the

durations of operations and period of stability are reversed, then the system is said to have a high

volatility. Manufacturing domains have features which are highly volatile while at the same time

other features of the domain have a very low volatility. Features such as load on a particular

machine, product mix and machine tooling are highly volatile while others like the arrangement of

machinery on the shop-floor, machine capabilities and basic resource costs have a low volatility.

58

In a pure contract net implementation, task announcements are made by broadcasting to all

nodes in the net. Because the shop-floor configuration has low volatility, this approach wastes

communication bandwidth. To overcome this inefficiency, YAMS adopts a strategy of audience

restriction, in which a set of nodes called an audience is maintained for each task class. The

audience consists of nodes which have responded to announcements for previous tasks of the same

class. The audience is redefined after each round of bidding to include only those nodes that

participated in that round. Later announcements for similar tasks go only to nodes in the

appropriate audience.

The contract net metaphor is an efficient mechanism for managing highly volatile systems.

In such a system, only local knowledge is likely to be accurate, and there is little point in gathering

global knowledge as it will be obsolete before it can be used. Negotiation offers a reasonable way

of using local knowledge to achieve acceptable performance. However, adopting a local

scheduling approach, as in the contract net, can have a detrimental affect on the quality of the

global schedule. Obviously, in a highly volatile domain, a system which runs at all is an

achievement and optimality is not a central issue. The fact that manufacturing domains exhibit

features of both high and low volatility give rise to two types of scheduling anomaly [Davis et al

'83] which occur when using the contract net metaphor. Firstly, nodes can only see task

announcements and bids that have already arrived and not those about to arrive. This is a result of

temporal ignorance. a limited knowledge of the temporal constraints on operations in the schedule.

The second anomaly, the compromise anomaly, concerns the situation in which global objectives

are sacrificed to achieve local objectives. This is a result of both spatial and loading ignorance.

Spatial ignorance is the result of limited knowledge of where operations in the schedule may be

performed, while loading ignorance is the result of limited knowledge of the load on other

resources in the factory.

Within YAMS, an attempt has been made to reduce the levels of temporal, spatial and

loading ignorance, and therefore the impact of the scheduling anomalies introduced by the contract

59

net. This is achieved by distributing copies of a global schedule throughout the net, an approach

which suffers from the very stochastic problems which motivated the use of the contract net in the

first place. This is countered in YAMS in two ways, by adopting a policy of turnpike scheduling

and utilising the fact that some subsets of the information in the global schedule are less likely to

become wrong than others. Turnpike scheduling defines an approach for reacting to unexpected

events. It suggests that in the face of such events, it is best to return to the previous schedule as

quickly as possible rather than rescheduling. By doing this, it is hoped that the global schedule

will remain valid longer.

Comment

The benefits of a distributed asynchronous architecture with respect to the focusing of

problem-solving effort are significant. It allows effort to be focused on well defined local

problems easily, thus permitting faster response times than would be possible in a centralised

system. Also important is the ability to deal with multiple foci of attention simultaneously, a

feature often required in a complex manufacturing domain.

While successful in a flexible manufacturing environment, the contract net is not suitable to

all manufacturing domains. When using the contract net metaphor, the quality of the schedule

produced is maintained by the existence of a competitive environment. Without competition, a

single bidder may dominate the schedule to achieve its own local objectives. The approach

adopted in YAMS to deal with this, the compromise anomaly, seems to highlight the fact that this

really is not a suitable method of co-ordinating effort in an environment in which there is

insufficient competition for tasks.

While the focused addressing mechanism employed in YAMS is aimed at reducing overheads

incurred by broadcast addressing, it itself seems to be an unnecessary overhead. Due to the low

volatility of the number of machines and their capabilities, it would seem sensible to give manager

nodes a priori knowledge of potential bidders and their static capabilities. In this way manager

nodes could easily determine where to send requests for bids by identifying the class of task to be

60

scheduled.

2.3.9. CSS [Ow et al '881

The CSS (Cooperative Scheduling System) project provides another example of the trend

towards distributed scheduling systems. It solves its problem in a manner which mimics a group

of human schedulers cooperating to develop a schedule, and thus provides a vehicle to study the

process by which such groups operate. The CSS project was motivated by the fact that while

scheduling in a complex manufacturing environment is typically performed by a group of decision-

makers, little is known about the process by which such groups operate.

Overview

The manufacturing facility studied is a large job-shop with about 1000 machines grouped into

work-centres of similar machines. Work-centres operate under the supervision of shop foremen

who work with shop expediters and schedulers to develop a daily production schedule. In

addition, there is a supervisor who works with the foremen and schedulers to estimate completion

dates of potential jobs. The job-shop builds orders to customer specification, and therefore the

design and. manufacturing process required for each job may vary greatly.

As in YAMS and ENTERPRISE, co-ordination of problem-solving activity is based on a

contract negotiation process. However, as has been discussed, the contract negotiation mechanism

employed in YAMS and ENTERPRISE is dependent on the existence of sufficient numbers of

similar resources to generate competition in order to achieve a reasonable level of satisfaction for

the goals of the manager. A lack of competition allows a single bidder to monopolise the

schedule in a manner which satisfies its own local objectives. The mechanism employed in CSS is

appropriate regardless of whether sufficient numbers of similar resources exist to compete for

contracts.

CSS is comprised of two types of KS, a work order manager (WOM) and a resource broker.

The WOM is responsible for co-ordinating the scheduling of a work-order, which is assumed to

61

have a pre-determined route, and estimating the completion time of potential jobs. It does this by

requesting bids from the appropriate brokers. For each work-centre there is one resource broker

which decides on how to bid after inspecting the current schedule at its work-centre. When a

WOM receives bids from brokers, it selects the best set of bids to meet the objectives of the work-

order.

Motivation For Decentralisation

Again, as in ENTERPRISE and YAMS, there are several reasons cited as the motivation for

considering a distributed rather than a centralised system. The first concerns problem complexity.

The complexity of most scheduling tasks demands that the problem be decomposed into more

tractable subproblems. The structure of the job-shop scheduling domain suggests a natural

decomposition around orders and work-centres. The degree of overlap between subproblems is

relatively small, making the task of decoupling them easier.

By designing a distributed system, it is possible to retain the existing organisational structure

of the human scheduling team. This has the benefit of providing the opportunity for the system to

be used interactively by team members in a decision-support mode. It also tends to make the

system more acceptable to its users.

In CSS, computational costs are reduced by adopting distributed processing as well as

distributed problem-solving. Decomposing the problem into a set of more tractable subtasks

permits the use of low cost hardware. Very often, networking a collection of standard low cost

devices is considerably less expensive than a powerful specialised machine capable of solving the

original non-decomposed task. Further, the introduction of concurrent processing can lead to a

reduction in computation time.

Co-ordinating Scheduling Activity

The medium for communication between a WOM and brokers is modelled as a contract.

Establishing a contract is a three stage process initiated by the first stage, a call which specifies a

62

request for work from a client (WOM) to a contractor (broker). A call contains information about

the operation to be performed including the earliest time at which the operation may start. The

second stage of a contract is typically a bid, which specifies a candidate time slot for the operation.

The final stage, an award, represents the finalised contract. An award message, giving the

temporal constraints of the operation concerned, is sent to indicate that a bid has been accepted.

The calls sent out by a WOM are directed only to brokers that can perform the operations in

question, rather than broadcasted as in YAMS and ENTERPRISE. This performs a role similar to

that of the focused addressing mechanism found in YAMS. A WOM does not send out Calls to

the appropriate brokers simultaneously, rather they are staggered according to the precedence

constraints imposed by the process plan. That is, a WOM will request bids for the first operation

in a process plan and award a contract before requesting bids for the second operation in the

process plan. This process is repeated in a left to right manner through the process plan.

As stated previously, the communication mechanism adopted by CSS does not rely on the

existence of similar resources to generate competition for operations. It is not so much a need for

competition between brokers that is required, but rather that the WOM should be provided with a

number of options to select from when awarding a contract. This is provided for in CSS by

allowing contractors to submit more than one bid, thus allowing the WOM greater flexibility in

building a good work-order schedule.

Work Order Manager

The WOM provides estimated completion dates for prospective orders and is additionally

responsible for finalising contracts with brokers, which results in an order being scheduled, when an

order is accepted. Orders are accepted into the system by a human shop-floor supervisor. The

objectives of the WOM are to minimise both the completion time and work-in-process time of the

work order it is currently dealing with. The WOM has access to information about the capabilities

of the various brokers and the manufacturing requirements of work orders.

63

A WOM processes only one work order at a time, sending out calls to brokers in a manner

indicated by the precedence constraints of the process plan. The rationale for scheduling in

process plan order is to avoid the generation of irrelevant bids. That is, a call is made only when

all information regarding the constraints on the bids is known. Although synchronising decisions

in process plan order will avoid the generation of irrelevant bids, it may do so at the cost of

imposing artificial constraints on the problem. For example, if resource brokers are motivated to

schedule operations as late as possible, the task of all but the first broker will be made more

difficult by this approach. Only if brokers schedule operations as early as possible will this

approach not over-constrain their tasks.

The WOM begins by sending out calls for all possible first operations, selecting the bid

which best meets its objectives and tentatively scheduling the selected operation in accordance with

the accepted bid. A similar process is initiated for all possible second operations, and so on until

all operations have been tentatively scheduled. In order to choose between bids, the WOM

constructs an AND/OR search tree which it searches using a two-pass best-first search strategy.

In making awards, the WOM tries to provide a degree of slack to each broker to give them

some flexibility in scheduling its operation to meet the terms of the award. It does this by

allocating longer than is needed to perform the operation. After examining the tentative schedule

it has developed to estimate a completion date, the WOM can re-distribute queueing time as slack

in the awards, thus providing brokers with a degree of flexibility.

Resource Broker

The resource broker represents a set of resources which can perform similar operations. The

role of the resource broker is to find a resource and time slot which meets the constraints of the

calls it receives. The WOM is not concerned with, and therefore does not need to know, the

specific resource selected to perform an operation.

When a broker receives a call from a WOM, bids are generated which satisfy three hard

constraints. The first requires that selected resources must be capable of performing the operation.

64

The second requires that the physical capacity constraints of the resource should not be exceeded

and, finally, operation precedence constraints must not be violated. The candidate time slots

generated, within the boundaries imposed by these constraints, are then evaluated against the local

objectives of the resource broker. A subset of these are then returned to the WOM as bids.

Comment

The problem of multiple conflicting objectives is a major issue for most problem-solvers, and

certainly for schedulers. By adopting a cooperative distributed framework, CSS permits the

distribution of objectives amongst the various problem-solving agents. These agents can then

negotiate a compromise solution among the conflicting objectives present. Such an approach has

the benefit of highlighting the local objectives of the decision-makers throughout the system. By

making local objectives accessible as parameters, they can be varied in order to investigate their

effect on the global solution.

Another positive feature of CSS concerns the integration of order scheduling and the

estimation of delivery dates for potential orders. In many applications, the scheduling task defined

by an order book and promised delivery dates is impossible to satisfy even before executional

uncertainty is introduced into the equation. This occurs because the delivery dates promised by

sales staff very often do not take cognisance of the existing shop load or predicted product mix.

Integrating the tasks of scheduling and estimating delivery dates greatly increases the likelihood

that the scheduling problem posed does in fact have a solution.

Despite the fact that CSS does support distributed processing, it does not support complete

asynchronicity. While bidders may operate concurrently, there is at most one WOM operating at

any given moment. By considering only one order at a time, a WOM is unable to compromise

between the objectives of multiple orders. This, coupled with the fact that only one WOM

operates at a time, generates a situation similar to that found in ISIS, that is, all constraints relating

to a particular order are considered in isolation of orders which are yet to be scheduled.

65

Further synchronisation is enforced by ensuring that scheduling decisions are made in process

plan order. Bidders are only notified of an order when it is considered the correct time to do so.

This technique, aimed at reducing the amount of backtracking performed during search, is only

appropriate if operations are being scheduled using an early dispatch strategy. If, for example,

operations are scheduled using a JIT strategy, it would be more appropriate to schedule backwards

rather than forwards through the process plan.

In CSS, in order to ensure that a broker can meet the terms specified in a bid, it is necessary

to ensure that only one bid is outstanding, awaiting a reply from a WOM at any given time. This

is achieved by cancelling all unawarded bids whenever a call for a new prospective work-order is

issued or an award is made for that work-order. Therefore, even if multiple WOMS are permitted

to operate concurrently, individual brokers may only deal with one WOM at a time. In the

situation where a broker is in a position to bid for operations from more than one order, this is

another limitation on asynchronous behaviour. This is a consequence of the localised view of

problem-solving encouraged when using the contract net as a means of co-ordinating distributed

activity.

2.4. Conclusions

This chapter has given a detailed account of the major scheduling systems of interest to the

AI community. It is appropriate to recap, in the form of a brief history, before presenting

concluding remarks. This section gives that history, draws a conclusion from it and states briefly

its relevance to the work presented in the remainder of this thesis.

Scheduling as a research area within Al began in earnest with the development of ISIS [Fox

M. S. '83], the first scheduling system to address the issues arising out of the complexities of typical

real world scheduling domains. ISIS was developed at CMU and brought a rich constraint

representation and knowledge intensive search techniques to the scheduling problem. However,

ISIS and its immediate successors (eg. SOJA [LePape '85]), view scheduling as a predominantly

66

predictive task, with little or no attention being paid to reactive requirements. It was again a

research group based at CMU, many of whom had been involved with the ISIS project, which

made the next significant step towards scheduling in real world domains. They developed OPIS

[Smith '87], a scheduling system which embraces the opportunistic problem-solving approach

advocated by Fox and Kempf [Fox B. R. et al '85a]. OPIS provides a reactive scheduling

capability, viewing both predictive and reactive scheduling as an opportunistic process. Both OPIS

and SONIA [Collinot et at '88], a system similar in nature to OPIS, attempt to integrate closely the

tasks of predictive and reactive scheduling. Despite recognising that "predictive and reactive

components appear to refer to common pieces of knowledge" [Collinot et at '88], both OPIS and

SONIA employ separate mechanisms for predictive and reactive scheduling. S2 [Elleby et at '88]

was the first scheduling system to view the task as being predominantly one of schedule

maintenance rather than creation. Within S2, the same mechanisms are employed to perform

predictive and reactive scheduling.

At the same time as the developments described above were taking place, advances in

computing technology stimulated work in the area of distributed processing. As discussed earlier,

a distributed processing capability offers many potential benefits to the scheduling problem One

of the earliest systems to recognise this fact was ENTERPRISE [Malone et al '83], a system which

provides a facility for sharing tasks among available processors on a network of personal

computers. The communication protocol used by ENTERPRISE has much in common with the

contract net metaphor of [Davis et al '83]. YAMS [Parunak et al '86] is perhaps a better known

example of a decentralised scheduling system. It too bases its communication protocol on the

contract net metaphor. When using the contract net metaphor, the quality of solution produced is

maintained by the existence of a competitive environment. Without competition a single bidder

may dominate the solution to achieve its own local objectives. CSS [Ow et al '88] is a distributed

scheduling system which also bases its communication protocol on the contract net. However, the

variation of contract net employed in CSS is not dependent on competing resources to maintain

schedule quality.

67

There has not been a great deal of research in the area of distributed scheduling, but as has

been shown, the existing work is based largely on the contract net metaphor. For a great many

scheduling domains, and manufacturing in particular, this is not a good method of co-ordinating

problem-solving effort. A more suitable approach to this problem for many applications is offered

by communication via message passing [Hewitt '77]. Smith and Hynynen [Smith et al '87]

present a scheduling framework based on cooperative problem-solving, distributed according to a

hierarchical factory model and co-ordinated via message-passing. DAS shares some of the features

of the Smith and Hynynen model, most notably its hierarchical architecture and message-passing as

a negotiation protocol. This is discussed further in chapter 3.

The advances made in scheduling technology over the past decade have been significant.

Techniques which permit multiple-perspective scheduling, opportunistic problem decomposition,

reactive scheduling and adaptive scheduling bring nearer the possibility of an automated system

which can deal with both the complexity and stochastic nature of the real world. At the same

time, advances in computing technology have made distributed processing feasible. The benefits

which distributed processing can offer the scheduling problem are numerous. There is an

opportunity to combine the benefits of distributed processing, which can deal with the distributed

asynchronous nature of the real world, with the recent advances in automated scheduling

techniques. Together, this combination can address the fundamental problems of combinatorial

complexity, executional uncertainty and conflicting scheduling objectives.

The remaining chapters of this thesis present DAS, a distributed asynchronous scheduler.

DAS relies on message-passing for inter-agent communication and incorporates many of the

advances discussed in relation to the centralised scheduling systems reviewed. Consequently, DAS

owes much to the developments over the past decade in both centralised and decentralised

scheduling techniques. In particular, the remaining chapters demonstrate how DAS caters for

scheduling in a dynamic environment, and how it deals with the issue of managing problem-solving

effort.

CHAPTER 3

DAS: A Distributed Asynchronous Scheduler

This chapter presents DAS, a distributed asynchronous scheduler which combines recent

advances in scheduling techniques with the power of distributed processing. Because DAS has

been designed to cope with the harsh reality of manufacturing scheduling environments, it does not

conform to the traditional view of scheduling, and, in fact, has its own philosophy concerning the

very nature of the task. The DAS philosophy is presented first, as it is fundamental to an

understanding of some of the design decisions which are be presented later. Having established

how DAS views the scheduling problem, representational issues within it are discussed. A detailed

description of how factory resources, items of work and the schedule itself are represented within

DAS is given and, where appropriate, the influence of the DAS philosophy on representational

issues is highlighted. The final section of this chapter presents the architecture which supports

DAS and its view of scheduling. The main features of the architecture are that it is distributed,

asynchronous and hierarchical. A detailed argument in favour of these features follows a

description of the architecture itself. The section concludes by commenting on the relationship

between the architecture and other work in the area.

3.1. DAS Philosophy

Scheduling Environment

Traditional views of the scheduling problem have to a large extent been influenced by the

static world assumptions discussed in chapter 2. Unfortunately, neither these assumptions nor the

traditional views they encourage hold true in the real world. Unlike a large proportion of existing

work in the scheduling area, DAS caters for scheduling problems which occur in real world

environments, and consequently views the scheduling environment as a stochastic rather than a

68

69

deterministic one. Executional uncertainty, which can manifest itself in the form of machine

breakdowns, late arrival of work or simply an operative not adhering to the specified schedule, is

the primary source of the stochastic nature of the environment. Even if it were possible to exclude

executional uncertainty and hence stochasticity, the static world view of scheduling remains

inaccurate. Scheduling is a highly dynamic task with external factors combining to change the

problem and its objectives. In the short term, the introduction of new work via the order book

may significantly change the problem, while in the longer term interest rates, raw material costs

and other economic factors may alter its objectives.

Objective

Traditionally, the scheduling task has been viewed as an optimisation problem. There are

several reasons why DAS prefers to view the task primarily as one of satisfaction, with

opthnisation a secondary consideration. As discussed in chapter 1, defining the criterion to be

used as a measure of schedule merit is a very difficult, if not impossible, task. Even if it were

possible to define a suitable measure of schedule merit, the dynamic and stochastic nature of the

scheduling environment combine to ensure that generating a satisfactory solution, let alone an

"optimal" one, is a far from trivial exercise. A third problem concerns the fact that many of the

problems posed to a scheduling system, human or automated, are infeasible at the outset.

Infeasible scheduling problems are set because salesmen, often responsible for setting delivery

dates, are generally unaware of the state of the shop floor and the existing order book, and

therefore cannot give realistic delivery dates. Even with an accurate view of the shop floor and

the order book, it is not an easy task to estimate a delivery date. The difficulties described above

lead to the conclusion that it is reasonable to view scheduling as a satisfaction rather than

optimisation problem.

70

Predictive Vs. Reactive

Traditionally, most scheduling systems, IKBS or conventional, attempt to schedule some time

into the future to what is considered to be a sensible or desirable time horizon. Assuming that the

generated schedule remains workable for the period it covers, the temporal horizon serves to define

the frequency with which a new schedule should be created. Unfortunately, in most situations,

the period for which a schedule remains an accurate account of what has actually happened is a

small fraction of the period it is intended to cover. As the schedule drifts further from reality, it

becomes more difficult and less beneficial to adhere to it. One approach to this problem is to

completely recreate the schedule whenever it drifts beyond a certain point. The time required to

create a fresh schedule every time this, happens makes this approach prohibitive in many

applications. The most common alternative is to repair or "patch" the existing schedule, manually

or otherwise, as and when things go wrong. Automated versions of such an approach rely mainly

on a range of ad hoc techniques, the relevance of which is usually determined by some fairly high

level heuristics. More typically, human schedulers find themselves engaged in a near constant

stream of "fire-fighting" tasks in an attempt to maintain the schedule in a usable form. This is a

poor situation for two reasons. Firstly, humans are not particularly good at dealing with this low

level type of task, and secondly it generally prevents them from dealing with the higher level

scheduling issues to which they are better suited. DAS prefers to take the view that schedule

creation and schedule maintenance are essentially the same task, and should be performed using

the same mechanisms. Both appear to require the same knowledge and have the same objectives,

namely to produce a schedule which satisfies the current set of problem constraints.

Systems which produce schedules periodically are essentially predictive. with some

occasionally possessing a limited reactive capability. In order to survive in a highly dynamic

environment, DAS is predominantly reactive. Like OPIS [Smith '871, DAS merges top down

dynamic problem decomposition with bottom up reaction to problems encountered during schedule

synthesis or unanticipated events in the production environment. DAS takes a unified view of both

71

predictive and reactive scheduling and can therefore use exactly the same techniques and

knowledge for both. The concept that schedules should be maintained rather than recreated at

regular intervals is completely consistent with the view that scheduling in a highly dynamic

environment should be primarily reactive and event-driven. However, taking a predominantly

reactive approach in no way suggests that there is nothing to be gained from taking a predictive

approach at a higher level where things are generally less dynamic.

The requirement for regular schedule maintenance and a reactive rather than predictive

approach to scheduling strongly suggests that it is an on-line rather than off-line task. In order to

react to problems in an appropriate and timeous manner, and hence maintain schedule workability

and quality, it is necessary to have an accurate and up-to-date knowledge of shop-floor events. To

derive maximum benefit from a scheduling system such as DAS, it must be integrated with some

form of shop-floor reporting system and be run on-line.

Problem-Solving Approach

Opportunistic problem-solving [Fox B. R. et al '85a], made appropriate by the highly dynamic

and stochastic nature of the task, forms an integral part of the DAS philosophy. DAS subscribes

to the view that it is better to maintain a representation of the set of all possible schedules than to

commit prematurely to a single schedule. This approach exploits executional uncertainty in a

partial solution to the inherent problem of combinatorial complexity while at the same time

exploiting the problem of combinatorial complexity in a partial solution to the problem of

executional uncertainty. On the one hand, it allows executional uncertainty to reduce the size of

the search space to be traversed. On the other hand, the inherently large size of the search space

is utilised to provide alternative solutions when executional uncertainty excludes the current

solution. Dynamic problem decomposition, introduced by OPIS [Smith '87], represents another

form of opportunism which is also embodied within the DAS philosophy. This form of

opportunism is again made appropriate by the dynamic and stochastic nature of scheduling

problems found in manufacturing domains. As will be discussed further in chapter 4, DAS

72

introduces further opportunism in its approach to identifying difficult, and therefore important, areas

of the schedule. The mechanisms used for co-ordinating problem-solving effort within DAS also

operate in a completely opportunistic manner.

Another component of the DAS problem-solving approach concerns the impact of events to

which DAS must react. It is reasonable to expect that many events which require reaction will be

relatively benign. They are benign in the sense that, although they may cause the schedule to drift

from reality, the deviation needs only local reaction in order to return to a feasible schedule. DAS

always attempts to localise the impact of any reaction in the interests of system responsiveness,

computational efficiency and schedule stability.

3.2. DAS Representation

Scheduling is a knowledge-intensive activity in terms of both domain knowledge and general

scheduling expertise. The representation of this knowledge is a major issue for all scheduling

systems and is one of the major areas in which AI-based approaches offer benefits over more

traditional operational research approaches. DAS employs frame-based knowledge representation

techniques supported by KEE [Intellicorp '86], the software development environment within which

DAS was constructed. The frame-based representation facility provided by KEE also supports

procedural attachment and hence object-oriented programming. Both these features have been

used extensively to deal with the representational issues present within DAS. This section gives a

detailed account of how DAS models its environment and the schedules it produces within a

frame-based structure. It describes the various knowledge-bases in DAS followed by the major

representation elements, namely resources, operations and plans. The use of access-oriented

programming within DAS is discussed in chapter 4.

3.2.1. Knowledge Bases

One of the requirements imposed on the design of DAS is that it should, as far as possible,

be a generic scheduler. To this end, there has been an attempt to separate domain-specific

73

knowledge from general scheduling knowledge. This has resulted in a design comprising four

knowledge bases, as shown in figure 3.1.

Shop
Domain DAS Agents

Floor
Reporting Management
System SFI Core nterfece Operative

Figure It

As well as showing the four knowledge bases of DAS, figure 3.1 also includes a shop-floor

reporting (SFR) system and a management operative as external interfaces. Both place very

different needs on DAS and highlight the dual nature of its functionality. On one hand, the SFR

system, and ultimately the shop-floor, views DAS as an operational level scheduling system which

produces work-to-lists for operatives and resources on the shop floor. On the other hand, a

management operative may view DAS more as a strategic level tool which provides assistance

when making management decisions about labour requirements, preventive maintenance schedules

and even general scheduling policies. Additionally, a management operative may also wish to

intervene and over-ride some of the decisions made by DAS if it is felt that DAS lacks knowledge

in a specific area and is consequently making poor decisions.

The final component of figure 3.1 is a box marked "DAS agents". DAS decomposes the

scheduling task across a three tier hierarchy. Each node in the hierarchy corresponds to a

subproblem and has an associated problem-solving agent. At the lowest level in the hierarchy, the

operational level, each problem-solving agent is an O-agent. At the intermediate level of the

hierarchy, the tactical level, each problem-solving agent is a T-agent. The highest level, the

strategic level, has a single S-agent as its problem-solving agent. Section 3.3.1 presents a full

description of each type of problem-solving agent.

74

SF

The SF! (shop floor image) knowledge base is required to perform the translation from a shop

floor view of the world which is highly domain-specific, to a DAS view which is domain-

independent. In the case of the demonstrator site, British Alcan at Kitts Green, the shop-floor

deals in terms of aluminium plates, collections of plate referred to as lots, and process plans. DAS

deals in terms of plans and operations. Constraints are attached to plans and operations in order to

create an accurate model of the plates, lots and process plans they represent. Work enters DAS

from the order book through the SF! knowledge base in the form of plates, lots and process plans

and is subsequently converted into DAS operations and plans. Whenever DAS makes a scheduling

decision, it does so on its representation of the world. Therefore, there is a need to convert

scheduling decisions made on DAS operations back into the entities recognised by the SFR. This

process is again performed by means of the SF! knowledge-base.

Core

Operations and plans generated via the SF! knowledge-base are introduced into the core

knowledge-base. The core knowledge-base views jobs only in terms of operations and plans, and

is the only knowledge-base accessed by DAS when making scheduling decisions. Other than plans

and operations, the core knowledge-base contains a hierarchical structure to which scheduling-

specific rather than domain-specific knowledge is attached. More will be said about this structure

in section 3.3. The core knowledge-base, and the objects held within it, collectively represent the

current set of problem constraints.

Interface

The interface knowledge-base, as its name suggests, deals with the MMI aspects of DAS. A

management operative will almost certainly want to have the ability to display schedules, partial

schedules and numerous other aspects of the scheduling environment. All objects created in order

to display the desired information are held within the interface knowledge-base. Examples of the

75

various displays available are given in chapter 5. As well as fulfilling an MMI requirement, the

interface knowledge-base and the functionality it supports also provided a very useful development

debugging tool.

Domain

The fourth and final knowledge-base, the domain knowledge-base, holds all the domain

specific-knowledge required by DAS. This is used by the SFI knowledge-base when performing

the translation from a domain-specific representation to the domain-independent representation.

The domain knowledge-base knows nothing about the representations used by DAS and would

require to be entirely rebuilt for each individual scheduling site. The SFI knowledge-base would

require only partial rebuilding, whereas the active elements of DAS, the core and interface

knowledge-bases would remain intact from site to site as long as there is no requirement for

additional functionality.

3.2.2. Resources

The resources with which DAS is primarily concerned are shop-floor resources, and machine

centres in particular. Shop-floor resources are modelled at two levels of abstraction, ie: at an

individual resource level and at an aggregate resource level. Each individual resource on the

shop-floor has an associated frame in the core and domain knowledge-bases. A typical frame from

each knowledge-base is shown in figures 3.2 and 3.3 respectively. Within the core knowledge-

base, the frame associated with a particular resource contains slots which indicate scheduling

preferences, facilitate a dual representation for agents and give details of the local scheduling

problem. The scheduling preference information concerns choices such as how to select the next

operation to schedule and how to choose a value to give the selected operation a start time. For

example, on a particular machine it may be best to schedule operations using a JIT strategy,

whereas on others it may be better to adopt an earliest dispatch strategy.

76

Each agent in the system exists as a unique software process operating asynchronously with

respect to other agents in the system. 0-agents are attached to specific resources via its process

slot. The value in slot process of a particular resource corresponds directly to the software process

being used to implement its associated O-agent. O-agents have their own internal view of the

world. held within the internal. representation slot of a resource. The message. buffer slot of a

resource is crucial to the maintenance of this internal representation. It is through messages sent

to this buffer that an agent updates its internal representation. The each. tick slot on a resource

allows the granularity of time considered at a resource to be varied in accordance with the typical

duration of the operations processed there. For example, it is not appropriate to schedule an

operation of duration twenty four hours to an accuracy of one second. The value held in the

each. tick slot identifies the smallest unit of time considered to be significant at a resource. An 0-

agent can therefore reduce the size of an operation's domain by a factor of each. tick. thus reducing

the scale of the scheduling problem at an operational resource.

Each specific resource represented within the core knowledge-base has both a scheduled. ops

slot and an unscheduled. ops slot. The scheduted. ops slot contains a list of operations which have

been given start times on that resource. The unscheduled. ops slot contains a list of operations

which have been allocated to this resource but as yet have not been given start times. Together

the scheduled. ops and unscheduled. ops slot define the scheduling problem at a resource.

oTh

EAQLTICK:
INT RNALREPRESEPTfA11ON:
MESSAGEBUFFFR:
PROCESS:
QUANTUM
SCIEDUL ED. OPS:
SELECf. OP
SEL. ECF. VALUE:
REST:
UNscHEDULED. OPS:

180
N<Otource" 374055175>
unknown
8<procau SAW. 20. FCOT 15442365>
2000
L1238. saw, L2341. saw, 12441. uw,
mosLccni rained

S
L8412. saw

Figure 3.2

Figure 32 presents a frame from the core knowledge-base which is used to represent resources on

the shop floor. Only the more relevant slots are shown, including some to be discussed later.

77

Within the domain knowledge-base, the frame representing a specific resource contains non-

negotiable technological constraints. These include physical dimension constraints, weight

constraints and the range of processes which can be performed on the resource. Methods used to

calculate machine setup times required between different types of work, the time required to load

an item of work and the time required to process an item of work are also held here.

amNMER 0T:

CONSTRAINf. FEIIOHI:
CONSTRAIN LENGTH:
PROCESSES:
TIAMTOJAAD:
TA E. TO. PROCESS:
TWETO. SETUP.

3 foot
20 foot
final. awing
saw-20-lo d-method
uw"20"pcoc s-mdhod

flguro 3.3

The aggregate representation of resources exists only in the core knowledge-base. An

aggregate resource is a collection of similar resources. For example, if there are three annealing

furnaces in the factory, there will be a single frame in the core knowledge base representing the

aggregation. The information held here is a combination of scheduling preferences, an internal

representation of the agent's problem and a partial definition of the local schedule. Each

aggregate resource has an associated temporal horizon, defined in slot look. a. head, and a preferred

method for selecting the next operation to delegate, held in the select. strategy slot.

T-agents are attached to aggregate resources via the process slot of the appropriate aggregate

resource. In exactly the same way as for individual resources, the value held in slot process of an

aggregate resource corresponds directly to the software process being used to implement its

associated T-agent. T-agents also have their own internal view of the world held within the

internal. representation slot of an aggregate resource. The message. buffer slot of an aggregate

resource is again essential to the maintenance of this internal representation.

The scheduling problem at an aggregate resource is partially defined by the list of operations

held in the op. store slot. For any particular aggregate resource, this slot holds a list of all the

78

operations which must be processed by one of its subordinate resources but which have not yet

been allocated to a specific resource. Figure 3.4 shows the relevant slots present in a frame used

to represent aggregate resources in the core knowledge-base.

UNrF: u. »

IN[ERNALREPRESFNTA'nGN: #< tactical-Taourcc 25633113
LOOKAHEAD: 30
MESSAGE. UFFER: (saw. wesux complde), (add LI412. saw)
OP. STGRE L1412. uw. L8331. uw
PROCESS: #<process saws 15442505>
REST: 10
SELECT. STRATEGY: latest

Figure 3.4

In addition to operational and aggregate resource representations, DAS also has a

strategic. unit. The strategic. unit is concerned with the scheduling problem as a whole. It contains

the slots necessary to provide the S-agent with a dual representation of its problem. These include

process, internal. representation and message. buffer slots. The scheduling problem at the strategic

level deals with plans (discussed in section 3.2.4) rather than operations. This is reflected in the

representation of the scheduling problem maintained at the strategic. unit. It has a plan-store slot

containing a list of plans which have not yet been delegated to the tactical level, and a

started. plans slot containing a list of plans which have either been partially or wholly delegated to

the tactical level. The only scheduling preference information currently held at the strategic. unit

concerns the selection strategy used when deciding which plan to delegate to the tactical level next.

It is envisaged that preferences which affect the nature of the generated schedule will also be held

here. The strategic unit is shown in figure 3.5.

UNIT: strategic. umt
MEMER OF, entitles

MESSAGE. BUFFER:
PLANSTORE:
PROCESS:

SELECr. SfRATEGY:
STARTED. PLºNS:

unknown
P1419, P1347
process stntegic. unit 15442567>
20
fiat
P1258, P2541, P2411, P1412, P8331

Fours 3.5

79

Supporting or secondary resources for these main resources, with the exception of labour, are

not catered for in the current version of DAS. To include such a feature requires an extension to,

rather than a re-design of, DAS. Within the demonstrator site, secondary resources, such as

loading cranes and transportation pallets, do exist. However, as they do not represent a limiting

resource in terms of scheduling, it was considered reasonable to treat them as infinite resources.

For all the resources which are to be scheduled, labour is assumed to be a necessary supporting

resource.

3.2.3. Operations

An operation represents a particular process which must be performed during the manufacture

of a specific work item. For example, the ultrasonic scanning process of lot B514 will be

represented by an operation, as will any other process carried out on lot B514 during its

manufacture. Operations satisfy three vital representation requirements within DAS. Firstly,

they collectively model the order book of work to be scheduled, or more precisely the part of the

order book which has been released into the system. Secondly, they implicitly define the current

schedule and finally, they provide a means of representing unavailable resources through special

operations.

Each operation is represented by a frame which has slots containing technological and

temporal constraints. The major temporal constraints imposed on an operation are its duration,

and the release date and due date of the lot it represents. Since the duration of an operation may

vary according to whichever specific resource it is assigned, this variation in temporal constraints

must also be represented.

The technological constraints imposed on an operation by the size, weight and processing

requirements of the work item it represents are condensed into a single slot at the time the

operation is created. The SF! knowledge-base accesses the domain knowledge-base when creating

an operation to determine which resources are capable of performing the required process on the

80

work item it represents. The slot possible. resources contains a list of resources capable of

performing the operation and effectively represents the technological constraints acting on the

operation. Each entry in the list is a pair of the form (Resource Duration), the second element

being the duration of the operation on that particular resource.

Two further slots on an operation, start. time and resource, implicitly define the current

schedule. When every operation in the system has been allocated to a resource and given a start

time, the schedule is complete. As stated previously, the opportunistic nature of DAS requires that

the set of all schedules allowed by the current set of problem constraints be maintained and not just

the current schedule. The possible. resources and Iegal. starts slots of operations combine to

achieve the desired representation. The legal. starts slot of an operation contains an ordered list of

intervals indicating when it is possible to schedule this operation and remain consistent with all

intra-plan scheduling decisions and other sources of temporal constraints. The value held in the

legal. starts slot is maintained by a constraint maintenance system discussed in chapter 4.

The final slot to be discussed here is the priority slot of an operation. The priority of an

operation provides a measure of the degree of difficulty experienced when trying to schedule this

operation. This should not be confused with a user-defined metric such as customer importance.

The value held in this slot is maintained by the appropriate T-agent. This is discussed further in

chapter 4. Figure 3.6 shows the more important slots present in a frame used to represent an

operation.

81

UNIT: 1.2541
MEMBER OF:

BEFORE: 12541. st: etch
COMPOSITB. OP unknown
CONSTPIIJENT. OPS: unknown
DURATION: 3960
END. OUESS: 2832520319
EXPERNALLEGALSTARTS: ((2832516360 2832516360))
LEOALSTARTS: ((L2341. packing start) (0 2832516360)),

((1.2541. stretch start) (2832516360 999999999)),
((L2541. anneal start) (2832516360 9999999999)),
((12341. packing due) (0 2956996798)),
((L2S41. anneal Qum) (2832514737 9999999999))

NOT. DURIN43 unknown
OP. TYPE. simple
PLAN: P2S41
POSSIBLE. RESOURCES: (uw20. foot 3960),

(saw. tyxman. 1 2700),

PRIORITY
(saw. wmex 3600)
0 :

PROCESS: ww'
RESOURCE: nw. 20. foot
sELEcr. vALÜE jic
START. TIME 2832516360
TYPE: work

Figum 3.6

Unavailable Resources

Within DAS, resources are assumed to be available twenty four hours a day, seven days a

week unless otherwise specified. In the current implementation, three situations which invalidate

this assumption are catered for. A resource can be unavailable due to lack of labour, preventive

maintenance or as a result of machine failure. All three are represented as a special type of

operation, thus retaining a consistent view of the scheduling task for DAS. A lack of labour is

represented by a no-shift operation which has a single value in both its possible. resources and

legal. starts slot. Preventive maintenance tasks are represented by a maintenance operation which

has a single value in its possible. resources slot but may have a range of values in its legal. starts

slot. A machine failure is represented by a repair operation which has a single value in its

possible. resources slot and a single value indicating the time of machine failure in its legal-starts

slot. All three of these operations are identical to the operations which represent work items with

the exception of the values held in slot type. Slot type is used to specify the class of operation

from a range of work, no. shift, maintenance or repair. It is possible to schedule non-work

operations in exactly the same manner as work operations because the technological and temporal

82

constraints attached to these operations ensure that they are scheduled appropriately.

Composite Operations

Until now, the operations discussed have all been simple operations representing exactly one

lot on the shop floor. In certain situations there is a requirement to group work from different

orders for processing. Batching work for a furnace treatment or a particular sawing operation are

both examples of such situations. Grouping work for processing effectively creates implicit

temporal relationships between operations from different lots which were hitherto unrelated. This

may be represented within DAS via the concept of a composite operation, a structure which makes

explicit the additional implicit temporal relations. In the furnace batching example, each lot,

which is a member of the batch, is represented as an operation and the furnace load as a whole is

represented as a composite operation.

There are three types of composite operation available in DAS, namely concurrent, sequential

and permutable. A concurrent composite operation is one in which all the constituent operations

must be performed simultaneously, as is the case in furnace batching. A sequential composite

operation is one which specifies the sequence in which constituent operations must be performed, a

useful structure when attempting to minimise machine setups. A permutable composite operation

is one which places no additional temporal relations between the constituent operations, but does

specify that they should be performed together with respect to other operations. This may be

useful in order to allow some shop-floor operative discretion, while maintaining overall control of

the schedule.

All operations have an op. rype slot which specifies whether it is a simple, concurrent,

sequential or permutable operation. They also have a constituent. ops slot and a composite. op slot.

In the case of simple operations, the constituent. ops slot is always empty. The co, r posite. op slot

of an operation contains the name of any composite operation of which this operation is a

constituent. It should be noted that composite operations can be cascaded together to create a

hierarchy of operations, that is, there is no requirement for constituent operations to be simple

83

operations.

The main reason for introducing composite operations into the representational repertoire of

DAS was to cater for the need to batch work for particular resources. Initially it was thought that

batches would be created, and represented by composite operations, at either the strategic or tactical

level. However, after some considerable effort, it was recognised that creating batches at any level

other than the operational level would impose artificial constraints on the problem and rob DAS of

a great deal of its reactivity. As a result, batches are created and maintained by 0-agents (see

section 3.3.1 and [Burke et al '89]). Composite operations are no longer required to make explicit

the relations formed during batch creation because the 0-agent writes its decision to every

operation in the batch; thus intra-plan constraint propagation is sufficient.

3.2.4. Plans

Each lot in the system is represented by a process plan consisting of a collection of

operations linked together by temporal precedence constraints. The temporal precedence

constraints may describe a non-linear process plan. A non-linear plan is one which specifies that

at least two of its operations may be permuted. The definition of planning given in chapter 1 was

selected because it allows maximum opportunism within the scheduling process. Essentially it

embodies the principle that if there is no technological reason for one operation to precede another,

the output of the planning stage should be a non-linear plan which defers sequencing of operations

until there is a good reason to do so.

Although the temporal relations used within plans are based on Allen's theory of action and

time [Allen '84], only a subset of these relations are currently employed. Allen [Allen '84]

identifies seven temporal relations, growing to thirteen if inverses are included. Due to the

granularity of representation, ie. DAS does not cater for secondary resources, the before relation

and its inverse after are sufficient to represent the majority of temporal relationships within a plan.

Non-linearity is represented within DAS via the not. during relation. The relation A not. during B

is defined to mean that A may be executed before or after B and vice-versa, but that the execution

84

of A and B must not overlap. Within Kitts Green, the processes of ultransonic scanning and

precipitation treatment may be performed in any order. Having the ability to represent non-linear

plans allows DAS to defer the sequencing decision until it has a good idea of the respective

machine loads at the appropriate time and make a more informed decision.

Relations such as meets, overlaps, during, etc would be a necessary addition to DAS if it

were extended to deal with secondary resources. For example, if a crane is to be scheduled to

perform a loading operation immediately before a furnace treatment process is initiated, the loading

operation may be linked to the furnace operation by the meets relation rather than the before

relation. All other relations identified by Allen (and excluded from DAS) also deal with situations

in which operations must overlap in time or run contiguously, typical of the relationship between

primary and secondary operations.

Each plan represents a planned lot which has a release date and a due date. Lots also have

a release-guess slot which provides an estimate of the release date, before the exact release date is

known. The release date of a lot is given by the time the lot actually enters the shop-floor. The

due date of a lot specifies the date on which it is desirable to complete the lot. These temporal

constraints, imposed on lots and the plans used to represent them, are also represented on the

operations which constitute a plan. The first operation in a plan is given the release date while the

last operation is given the due date of the lot being represented. Dummy first and last operations

can be introduced to cater for the situation where there are multiple possible first and last

operations. The effective temporal constraint on an operation is held within, its legal. starts slot.

Figure 3.7 shows the more important slots in a frame used to represent a process plan. The

slot decision. order shown in the figure allows a decision-making ordering to be imposed on the

operations within the plan. It does this by dictating a sequence for the release of operations into

the lower levels of the scheduling system. This is discussed in more detail later.

85

UNPC P2541

DUEDATE unknown
OPERATION: L2541. itretch, L2541. anneal.

L2541. pocking, 1.2S41. saw
RELEASEDATE: unknown
RELEASE. GTJESS: unknown

Figaro 3.7

3.3. DAS Architecture

In order to realise the goal of a scheduling system which combines recent advances made in

the field of scheduling with the power of distributed processing, it is first necessary to develop an

architecture capable of supporting it. This section discusses the benefits of adopting a distributed

asynchronous approach to scheduling, and gives a detailed account of the DAS architecture.

Having presented the architecture, arguments for the design decisions taken are then presented.

3.3.1. A Distributed Asynchronous Architecture

The architecture presented here is an analogue of an idealised management structure in that it

is hierarchical, distributed, and depends heavily on communication for success. It is a three tier

hierarchy consisting of a strategic, tactical and operational level as shown in figure 3.8.

Strategic level

Tactical Level

Operational Level

Figum 3.8

Each level in the hierarchy defines one or more scheduling focal points, within which decision-

making may proceed asynchronously with respect to all other focal points. Each focal point has

an associated scheduling agent responsible for all activity at that point in the hierarchy. The type

of scheduling agent associated with a node is dependent upon the level of the node in the

86

hierarchy. Communication between nodes in the hierarchy is achieved via message-passing and

may occur in both directions across manager/subordinate relations defined by the hierarchy, and on

a peer-to-peer basis within levels of the hierarchy. Much of this communication is supported by a

constraint propagation system.

As the functionality of each level is dependent on the functionality of the levels below it, it

will be easier to describe the components of the hierarchy in a bottom-up manner. Therefore, the

operational level will be considered first, followed by the tactical level, then the strategic level.

Operational Level

The operational level of DAS corresponds to the shop-floor level within the management

structure analogy. Each shop-floor work-centre constitutes a scheduling focal point and has an

associated 0-agent to deal with its scheduling needs. An 0-agent takes a fairly local, short-term

view of its scheduling problem, but is kept informed of external events through regular

communication. As is the case with shop-floor operatives, 0-agents take part in considerably

more peer-to-peer communication than manager/subordinate communication, except in times of

difficulty. The 0-agent is not part of the work being presented in this thesis. It is described here

in order to allow a fuller understanding of the work which is.

Problem Definition

The role of an O-agent is to generate a schedule for its associated work-centre. This

involves giving start times to all the operations allocated to its associated work-centre. By the

time work has filtered down the hierarchy to the operational level, all the hard and the majority of

soft constraints associated with it have been converted into temporal constraints. Therefore, when

producing a schedule, the 0-agent is concerned only with giving operations start times which

satisfy the temporal constraints acting on them and the capacity constraints of its resource.

Despite reducing the task of an O-age t to one in which it need only consider a well-defined

set of temporal and capacity constraints, the task which remains is not a trivial one. The primary

87

source of difficulty for an O-agent arises from the fact that its problem is open rather than closed.

It is open in the sense that work may be added to or deleted from its problem the temporal

constraints on operations within its problem may change and executional uncertainty on the shop

floor has the potential to render any scheduling decisions invalid. The actual operations it must

schedule may vary as new work is added into the system, orders are scrapped or work is load-

balanced onto other resources in order to resolve a conflict. The temporal constraints on the

operations to be scheduled vary in accordance with the scheduling decisions of other 0-agents and

the reporting of when events actually occur as opposed to when they were expected to occur. As

well as causing modifications to the temporal constraints of the problem, executional uncertainty

can manifest itself in the form of machine breakdowns, early machine repairs or simply an

operative not adhering to the specified schedule, thus invalidating existing scheduling decisions.

Reactivity and Explanation

An O-agent views its task as an instance of the constraint satisfaction problem (CSP).

However, unlike most traditional forms of the CSP, an 0-agent views its problem as a dynamic or

open CSP. This is an important distinction in situations where it is necessary to produce solutions

in near real-time, as is typically the case in factory scheduling problems. Whenever a fast

response to change is required, it makes sense not to throw away the knowledge that was gathered

when generating what is now a corrupt solution. In fact, it is extremely likely that there is a great

deal of overlap between the previous problem, for which a solution exits, and the slightly modified

problem which must now be solved. In order to take advantage of this fact, the O-agent employs

truth maintenance system technology to allow it to decide which parts of its knowledge learned

while solving earlier problems remains valid.

As well as supporting a reactive capability, the use of truth maintenance technology provides

another major benefit in the form of an explanation facility. Whenever an 0-agent is posed a

problem which it cannot solve, it has the ability to identify which operations in its problem are the

source of difficulty. In a reactive mode constraint conflicts first show themselves in the form of

88

difficult operational level problems, and an explanation facility for such problems is therefore a

very useful feature when resolving conflicts. A more detailed account of the 0-agent can be found

in [Burke et at '891.

0-agent Parameters

The temporal constraints acting on the operations allocated to a resource along with the value

held in the constraint slot of the resource serve to define the set of legal solutions to the associated

O-agent's problem. Although DAS views the scheduling task essentially as one of satisfaction,

soft constraints can be utilised to control the nature of local solutions. Each 0-agent has a number

of parameters which can be varied to strive for some local objective. The two most important

parameters are held in the select. op and select. value slots of a resource. The value of the select-op

slot specifies how to select for scheduling the next operation from the unscheduled. ops slot. The

select. value parameter has a more direct impact on the nature of the schedule produced as it

specifies how to select a start time from the set of legal values. There are a suite of values for

this slot ranging from earliest dispatch through to JIT.

The precise nature of the temporal constraint acting between operations which must be

satisfied by an 0-agent is specified in the constraint slot of a resource. The value held in this slot

identifies the function to be used by the 0-agent when performing forward checking [Haralick et at

'80] during search. Forward checking is a method of removing solutions from the search space

which are inconsistent with the decisions made so far. Typically the function specified in this slot

is encoded to ensure that no two operations are scheduled to be performed simultaneously on the

same resource. This is specified by placing a value of single. server in the constraint slot of the

resource. In situations where it is appropriate to perform operations simultaneously, at a large

furnace for example, a value of batch. server is placed in the constraint slot. Other types of

capacity constraint which can be coded as functions may also be passed to the 0-agent via the

constraint slot.

89

Tactical Level

The tactical level of DAS is viewed as being similar in nature to the level at which a shift

leader or perhaps shop foreman operates in a factory management structure. Both the scheduling

problem and resources at the tactical level are of a higher level of abstraction than those at the

operational level. Each aggregation of resources defines a scheduling focal point, to which a T-

agent is attached. A T-agent has a set of subordinate O-agents and is itself subordinate to the S-

agent. Unlike 0-agents, T-agents tend to communicate more up and down the hierarchy than

across it, in keeping with the analogy drawn between T-agents and shift leaders.

Problem Definition

The role of a T-agent is essentially to co-ordinate activity within its sphere of influence,

defined by the set of aggregate resources to which it is attached. It is responsible for delegating

work to its subordinate 0-agents and resolving conflict situations for them as and when the need

arises. Discussion of the role of a T-agent within conflict resolution is deferred until chapter 4,

where it is dealt with in the context of other mechanisms used to co-ordinate problem-solving

effort. In much the same way as an O-agent is primarily concerned with satisfying temporal

constraints, a T-agent is primarily concerned with satisfying technological constraints. Examples

of technological constraints are the weight, temperature or perhaps a size limit of a resource.

A T-agent's problem is a dynamic constraint satisfaction problem. As discussed earlier, the

technological constraints imposed on an operation are condensed into the value held in its

possible. resources slot at the time it is created. Therefore, ignoring temporal considerations, the

contents of the possible. resources slot defines the set of legal solutions to the technological

constraints acting on the operations within a T-agent's problem. As is the case at the operational

level, the T-agent does not deal with a closed, static problem. The problem of a T-agent can be

changed by the introduction of work via the strategic level. The T-agent's problem also changes

when it loses one of its subordinates through machine failure, machine maintenance or labour

shortage. Although a T-agent is responsible for resolving conflicts which occur within its sphere

90

of influence, it is not always possible for it to do so. In such situations work may be pulled out of

its problem, thus providing another source of change within its problern.

T-agent Parameters

The T-agent has a number of parameters, or soft constraints, which can be varied in order to

control the nature of the solution generated. Resources have two slots which affect the solutions

produced by its associated T-agent, namely the look. a. head and select. strategy slots. The value in

the look. a. head slot determines the temporal horizon of a T-agent, while select. strategy determines

how to select the next operation for delegation. Different types of resources may require different

temporal horizons depending on their typical processing times. Varying circumstances on the

shop-floor may also require different temporal horizons. For example, if a resource which

normally has a temporal horizon of one week is known to be going down for preventive

maintenance sometime in the next fortnight, it makes sense to extend the temporal horizon of its

T-agent far enough into the future to allow it to take cognisance of the expected down-time.

Operations may be selected for delegation on the basis of tardiness, user-priority, perceived system

priority or any other heuristic which is considered appropriate at a particular resource. The chosen

criteria is identified via the select. strategy slot.

Internal Representation

The T-agent, like other agents in the hierarchy, maintains its own internal representation of

the world. This representation is concerned largely with the operations currently within the T-

agent's problem and the resources to which it can delegate. In addition it has a rest attribute, a

T-assistant and a temporal-capacity list. The rest attribute and T-assistant are discussed in the

following section. The temporal-capacity list is used to maintain information about unavailable

subordinate resources. It acts as a record of machines which are either unmanned or in need of

repair, thus assisting the T-agent in delegating work.

91

The internal representation has three lists of operations. It has an opstore, a list of

operations awaiting delegation, a delegated-ops list, a list of operations which have been delegated,

and finally a conf-ops list, a list of operations currently involved in a constraint conflict. The T-

agent selects operations for delegation from the opstore and adds operations to the delegated-ops

list when they are delegated. The delegated-ops list is necessary to maintain an internal

representation of all the operations in a T-agent's problem. The conf-ops list is used by a T-agent

to prevent it from sending redundant pleas for assistance to the S-agent. Operations in this list

have already been the subject of messages sent to the S-agent and are therefore awaiting some form

of conflict resolution activity. They are removed in response to some action taken by the S-agent

aimed at resolving the conflict in which they are involved.

Finally, the internal representation contains two lists of subordinate resources. The first,

resource-list, is initialised to be a list of all the resources to which the associated T-agent may

delegate. Whenever work is delegated to a particular resource, the resource is removed from the

resource-list. This has the effect of inhibiting further delegations to it as only resources in the

resource-list are considered for delegation. A resource is put back onto the resource-list when its

associated O-agent signals that it has solved its current scheduling problem. The second list is the

res-in-conf list, a list of resources which are currently in a state of conflict. This is used by the

T-agent to determine which subproblems may have benefited from a recently completed action

aimed at conflict resolution.

Method

Once initialised, a T-agent enters a three step loop. It reads and processes messages

received since the last time it read its message buffer, attempts to delegate work to its subordinates

and finally sleeps for a pre-specified period of time. The rest attribute of an agent's internal

representation indicates for how long it should sleep. The messages which a T-agent might

receive, and its response to these messages are discussed in the next section. Delegation, the

second step of the loop, is discussed below.

92

When selecting work from its opstore for delegation, a T-agent gives precedence to repair.

unmanned and maintenance operations. Every time it enters the delegation step of its loop, a T-

agent delegates all such operations without considering the current state of the recipients. This

policy is justified by the fact that the operations in question represent non-negotiable events which

must be scheduled. If the recipients find themselves in difficulty as a result of this, they will

request assistance from their superior T-agent.

It is more common for the opstore of a T-agent to contain only work operations. In this

situation the T-agent performs its task in two stages. It first selects an operation to delegate, and

then selects a resource on which to perform it. The selection of an operation for delegation must

take cognisance of the "looka. head constraint" in effect at a particular aggregate resource. This

acts as a filter, removing all operations with temporal constraints which preclude them from being

scheduled within the required temporal horizon. There are various methods of choosing an

operation from those which successfully pass through the filter. The criteria to be used by a

particular T-agent is specified in the select-strategy slot of its associated aggregate resource.

Having selected the next operation for delegation by whatever means, the T-agent must next

select a subordinate resource to perform it. Each T-agent in the system has its own T-assistant.

One of the functions performed by a T-assistant is to help its T-agent make delegation decisions.

In response to a request from its T-agent, a T-assistant will return a list of possible resources for an

operation. The returned list will be a subset of the list held in the possible. resources slot of the

operation. Any resources found in the possible. resources slot but not in the list returned by the T-

assistant have been omitted as a result of a learning process. That is, previous scheduling

decisions, conflict situations and current beliefs lead the T-assistant to the conclusion that

delegating the operation in question to one of the omitted resources will give rise to a conflict.

Essentially, the T-assistant acts to prevent its T-agent from re-grouping work which has earlier been

established to be a bad combination. In order to perform its task, a T-assistant must be kept

informed of relevant events by its master T-agent. A detailed account of the T-assistant can be

93

found in [Burke et al '89].

The T-agent makes use of other information about its problem to improve the "quality" of its

decision. The T-agent is aware of both the temporal constraints acting on the operation to be

delegated and the periods during which its subordinate resources are unavailable. It uses this

information when selecting a resource for the operation in an attempt to minimise backtracking.

In this way the T-agent improves the quality of its local decision-making, where the measure of

quality is search efficiency.

T-agent Messages

To achieve co-ordinated problem-solving activity from a distributed problem-solver requires

communication. Message passing between scheduling agents provides DAS with one form of

communication. Consequently, a T-agent must send and receive a variety of message types.

Many of the messages a T-agent must deal with occur as a result of conflict situations. Discussion

of such messages is deferred to chapter 4. In addition to messages sent by problem-solving agents,

a constraint maintenance system (CMS) also generates message traffic. Discussion of the CMS, a

mechanism for co-ordinating problem-solving effort, is also deferred to chapter 4. Some of the

messages which a T-agent may send are listed below.

<add op, >

A T-agent does not actually send this message to its subordinate agents directly. The act of

delegating op; to a particular resource causes the CMS to send it to the appropriate O-agent.

<delete opi >

Like the <add op, > message, this message is sent by the CMS as a consequence of a T-agent

removing an operation from a particular resource.

Due to its position in the hierarchy a T-agent receives messages from both superior and subordinate

agents. Additionally. it receives messages generated via the CMS. Subordinate O-agents have a

range of messages which they can send depending on their current state. The S-agent also has a

94

number of messages at its disposal. Many of the messages the S-agent sends to its subordinate T-

agents are necessary to allow the T-agent to keep its T-assistant adequately informed. Some of

the message types received by a T-agent are listed below.

<complete>

Sent by an O-agent to notify its superior that it has solved its problem. The T-agent

responds by putting the appropriate resource back into its resource-list and informing its T-

assistant that the resource is now in a consistent state.

<new-op opj>

Sent by the S-agent when it introduces a new operation into a T-agent's problem. The T-

agent must add the operation to its opstore and inform its T-assistant that the new operation

exists.

<end opi>

The T-agent receives this message via the CMS in response to an operation being marked as

complete. The T-agent removes op; from its internal representation, including the T-

assistant. If opi is an unmanned or repair operation, the T-agent must also update its

temporal-capacity list.

<modify op; >

This message is generated by the CMS. The T-agent must update its internal representation

of op;.

Strategic Level

The strategic level of DAS corresponds to the factory manager within the management

structure analogy and " therefore there is only one scheduling focal point at this level. The

scheduling focal point at the strategic level has an S-agent associated with it. The S-agent takes a

very high level view of the scheduling problem, leaving the detailed scheduling activity to the

lower levels. It communicates with its subordinate agents and receives messages informing it of

the introduction of new work.

95

Role of the S-agent

The S-agent performs several functions. These include delegation of work to the tactical

level, conflict resolution and synchronising particular aspects of problem-solving behaviour. The

S-agent is responsible for resolving conflicts which cannot be dealt with at tactical level. It is also

envisaged that it may perform the task of interpreting management objectives in order to fine tune

the operation of the lower levels. Both its role as conflict resolver and problem-solving activity

synchroniser fall within the scope of chapter 4, and are therefore not discussed here.

The task of delegating work to the tactical level is a simple one because each item of work

can only be dealt with within one of the focal points at the tactical level. This is not a function of

the architecture, but rather of the domain for which the exemplar system is being developed. The

choice of which plan to select next represents the only discretion available to the S-agent when

passing work to the tactical level. The criteria used to select a plan, for example the latest or most

important, is specified via the select. strategy slot on the strategic. unit.

Internal Representation

The S-agent maintains its own internal representation of the world. It consists of two lists, a

planstore and a startedplans list. The planstore contains a list of all the plans in the system which

are awaiting delegation to the lower levels. That is, none of their operations have been delegated

to the tactical level. As will be discussed further in chapter 4, it is not necessary to delegate all

the operations from a process plan to the tactical level at the same time.

The srartedplans list contains an entry for each plan which has one or more operations at the

tactical or operational levels. When the S-agent delegates an operation from a plan for the first

time it removes the plan from the planstore and creates an entry for it in the startedplans list. An

entry in the startedplans list contains information identifying the corresponding plan and the

operations within that plan which have been scheduled. This information is required by the S-

agent when co-ordinating problem-solving effort.

96

S-agent Messages

Like other agents in the hierarchy, the S-agent is capable of sending and receiving messages.

Only those which are not directly concerned with resolving conflict situations are listed below.

The messages it can send are listed before those that it can receive.

<new-op op; >

Sent by the S-agent to a T-agent informing the T-agent that op; has been introduced into its

problem.

anew-plan plan, >

The S-agent receives this informing it that a new plan has been introduced into its problem

<end opi>

Received by the S-agent informing it that op; has been completed. The S-agent assumes

that op; had been scheduled and updates the appropriate entry in the startedplans list

accordingly.

3.3.2. Motivations For The DAS Architecture

The main features of the DAS architecture are that it is hierarchical, distributes problem-

solving activity, and permits the various subproblems to be solved asynchronously. These features

address a number of important issues including system response to executional uncertainty, the

problem of conflicting scheduling objectives and combinatorial complexity. This section argues in

favour of a hierarchical, distributed, asynchronous architecture and highlights how the issues

identified above are catered for by such an architecture.

Benefits Of A Distributed Architecture

Manufacturing organisations are coming under increasing pressure to be more responsive to

both market forces and the dynamics of the shop-floor. In order to become more responsive to

97

market forces, there is a need to shorten often long and bureaucratic decision-making chains, and at

the same time move towards a JIT style of production. Distributing decision-making

responsibility, while ensuring horizontal cooperation between problem-solvers, can assist with both

these objectives. The distribution of responsibility serves to shorten decision-making chains, while

decision-making based on horizontal cooperation is consistent with operating in a JIT manner.

The executional uncertainty present in the vast majority of manufacturing environments

ensures that there is also a need to be responsive to events such as machine failures, scrapped

orders and many other potential problems. A distributed architecture offers benefits over its

centralised counterpart by permitting unanticipated events to be dealt with locally. Localising the

impact of an unanticipated event allows a quick local response to the problem as well as improved

global performance. The improvement in global performance results from the fact that decisions

which are not affected by the event, and their associated problem-solvers are not involved in the

reaction process.

Whether the scheduling task is performed by a human or a computer, conflicting scheduling

objectives present a very real and difficult problem. The task of resolving conflicting objectives

cannot be dealt with simply by allocating static priorities to the various objectives. Scheduling

objectives and their relative priorities change with many things, among them market forces and

executional uncertainty. DAS allows conflicting objectives to be distributed throughout the various

nodes of the architecture, which can then negotiate a compromise solution. Details of how the

various nodes are coerced into generating a favourable compromise solution are given in chapter 4.

Distributing local objectives throughout the system ensures that they are represented far more

explicitly than if they are embedded in a large algorithmic compromise. This makes it much

easier to vary local objectives and measure the impact of these variations on the overall solution.

Another difficulty inherent in scheduling, i. e. problem complexity, also benefits from a

distributed architecture. Scheduling is a very complex task requiring problem decomposition in

the interests of problem tractability. DAS takes advantage of the necessity for problem

98

decomposition by permitting individual problem-solvers to operate independently on their more

tractable local subproblems. While it is beneficial to allow independent problem-solving, it is also

important to support communication among the various problem-solvers as and when appropriate.

The provision for subproblem communication within DAS is important for two reasons. Firstly,

because it is in the nature of the task being decomposed that there will be subproblem interactions,

and secondly because unexpected events on the shop floor may give rise to additional subproblem

interactions.

Benefits Of An Asynchronous Architecture

As mentioned earlier, there are many problem-solving architectures, including the blackboard

architecture, which deal with distributed problem-solving, but not distributed processing.

Essentially, the various problem-solving nodes in a blackboard-like system contribute to the global

hypothesis in a synchronised manner, whereas in DAS they contribute in an asynchronous manner.

The asynchronous nature of the DAS architecture permits concurrent processing.

In terms of pure computational considerations, an asynchronous architecture offers a more

inviting solution than a synchronised architecture. With an appropriate problem decomposition

and concurrent processing, an asynchronous architecture offers the possibility of reducing the time

required to generate a solution. Perhaps of more significance, concurrencY provides the

opportunity to expand scheduler processing power in accordance with any shop floor expansion.

In this way, at least in principle, the time required to generate a schedule can be maintained at a

relatively constant value independently of fluctuations in plant size. Obviously, as the plant size

and the number of subproblems increase, the number of subproblem interactions also increase.

This may result in an increase in the time required to generate a solution.

As well as reducing computational expense in terms of execution time, a distributed

asynchronous architecture can reduce the financial cost of the computational facilities required by a

scheduling system. The combined cost of several low cost, standard devices plus a communication

medium to inter-connect them is often lower than the cost of a centralised device powerful enough

99

to deal with the scheduling task as a whole. Furthermore, if a centralised solution is to attempt to

provide a reactive capability, it too will need communication links to terminals on the shop floor,

adding additional expense to the already high cost of a centralised device. Regardless of the size

of the initial capital outlay, the majority of organisations are more likely to embrace familiar

technology than high cost unfamiliar technology. Also, a high cost device is likely to have

correspondingly high training and maintenance costs, whereas there is a distinct possibility that the

existing staff of an organisation will have a degree of familiarity with the low cost device selected

for an implementation, thus reducing both the time and cost required for training.

Automated scheduling systems are charged with the responsibility of deciding how best to

utilise the available resources of an organisation. The resources it deals with, machinery, products

and labour, represent a very large capital investment on the part of that organisation. It is not

surprising then, that system reliability is an important consideration when developing an automated

scheduler. In terms of system reliability, a distributed asynchronous architecture is again superior

to a centralised system. Whenever a centralised system suffers a hardware failure, the scheduler it

supports suffers a complete failure. In a genuinely distributed system supported by an

asynchronous architecture, a hardware failure does not result in total failure, but rather a graceful

degradation of service. It may be possible to transfer the tasks from a failed processor to other

processors, thereby maintaining a complete scheduling service at a somewhat reduced rate of

response. Alternatively, a human scheduler could be introduced into the system to play the role of

the failed processor without ever informing the other problem-solvers of the failure.

When dealing with shop floor dynamics, concurrent processing supported by an asynchronous

architecture offers another major benefit. In manufacturing environments it is not uncommon for

several unexpected events to occur at once. By permitting concurrency, an asynchronous

architecture can deal with multiple local problems simultaneously. This is obviously a much

better situation than being faced with the task of prioritising the current set of problems.

100

Benefits Of A Hierarchical Architecture

It would have been entirely possible to implement a DAS-like scheduling system within a

single-level, distributed, asynchronous architecture. However, the decision to impose a

hierarchical structure upon what was already a distributed and asynchronous architecture has several

justifications. The most obvious justification is that the decision-making process within production

scheduling is naturally hierarchical. Having a hierarchical structure provides benefits when

addressing the issues of problem decomposition, focusing problem-solving attention, applying

appropriate scheduling methods and regulating communication.

A hierarchical model allows the scheduling task to be decomposed in several ways. Firstly,

it allows the task itself to be viewed at varying levels of abstraction from a very detailed level up

to a fairly aggregate view of the task. The temporal horizon considered by the various levels in

the hierarchy may also be varied, ranging from a very short-term view at the lowest level to a

long-term view at the highest. Executional uncertainty argues against maintaining the detailed

schedules found at the lowest level of the hierarchy over a long period of time. As well as

complicating the reaction process, the probability of a detailed schedule remaining workable

diminishes as the time to execution increases. However, to avoid resource contention, it is

necessary to maintain a predictive view over a longer temporal horizon. This can be achieved

within the higher levels of the hierarchy in which a less detailed view of the schedule is

maintained. Finally, within manufacturing facilities there is usually some natural decomposition of

the problem across major resources. Resouces can be represented by a single node at the lowest

level, and aggregated as appropriate at the higher levels.

By allowing the problem to be viewed at various levels of abstraction, over varying temporal

horizons at particular areas in the factory, a hierarchical architecture allows problem-solving effort

to be focused at the most appropriate level along all three of these dimensions. In a reactive

mode, DAS attempts to localise its problems by keeping them as low as possible in the hierarchy

and only involving other areas of the factory if necessary. When acting predictively, DAS prefers

101

to deal at as high a level as possible, avoiding detailed scheduling decisions. Having scheduling

agents distributed throughout a hierarchical structure satisfies the requirements of both these desires.

As noted above, a hierarchical structure allows the scheduling problem to be viewed at

multiple levels of abstraction. The type of scheduling decision to be made, and hence the

appropriate scheduling methodology is dependent on the level within the hierarchy at which that

decision is being made. Distributing agents throughout the hierarchy allows the most appropriate

scheduling method to be applied to any given problem. Within DAS there is one type of agent for

each level in the hierarchy. The behaviour of each individual agent can be further tailored to

adopt a scheduling methodology appropriate to the particular area of the factory it is dealing with.

To achieve a similar effect within a centralised architecture would result in considerable complexity

in the control heuristics necessary to invoke the appropriate scheduling methodology.

Due to its distributed nature, the DAS architecture relies heavily on communication amongst

its subproblems for success. While communication is necessary, it is also important to regulate it

in such a way that prevents irrelevant communications swamping the system. The hierarchical

structure of DAS provides a mechanism for regulating communication between levels and thus

blocking a significant amount of irrelevant communication.

3.3.3. Evaluation of Architecture

This section has presented and argued in favour of a hierarchical, distributed, asynchronous

scheduling architecture. This architecture is now reviewed with respect to recent research in the

area of distributed scheduling. The major obstacle to be overcome within a distributed,

asynchronous scheduler is the requirement to co-ordinate problem-solving activity of the various

components of the system in a globally consistent manner. One aspect of an architecture which

has most bearing on its ability to co-ordinate problem-solving activity is its provision for inter-node

communication.

102

As discussed in chapter 2, there has not been a great deal of research in the area of

distributed scheduling, with the majority of existing work being based largely on the contract net

metaphor. For a great many scheduling domains, and heavy manufacturing in particular, this is

not a particularly good metaphor for co-ordinating problem-solving activity. Although it is usual

for there to be clearly defined manager/contractor relationships in the domain, as required by the

contract net, the communication mechanism offered by the contract net is not appropriate for two

reasons. Firstly, it is dependent on the existence of a sufficient number of similar resources to

generate competition for work in order to avoid the situation in which a single contractor

monopolises the schedule in a manner which satisfies its own local objectives at the expense of

global objectives. The second weakness of the contract net communication mechanism in

manufacturing domains is more of an efficiency concern than a functionality problem. The

strength of the contract net lies in its ability to manage highly volatile systems. While many

aspects of the manufacturing domain are highly volatile, features such as factory layout and

machine capabilities are fairly static. The pure contract net metaphor makes poor use of this low

volatility knowledge by adopting a broadcast strategy to communication. While the introduction

of mechanisms such as focused addressing to cater for this weakness do help, they appear to be an

unnecessary overhead.

A more suitable approach to communication in a distributed asynchronous scheduler

operating within a heavy manufacturing domain is offered by message passing [Hewitt '77].

Activity in message-passing systems occurs in response to messages sent by other agents in the

system. Ideally, agents in a message-passing system should know which other agents in the

system are potentially affected by local events, but need not know what such an event means to

affected agents. In manufacturing domains, the areas of a schedule potentially affected by local

events are generally known from fairly static relations within the factory model and the most

appropriate response to such an event is often best formulated by the receiving agent. These

characteristics make message-passing a suitable means of communication in a distributed

asynchronous scheduling system.

103

Message-passing has been used as a communication mechanism within a distributed

scheduling system before DAS. Smith and Hynynen [Smith et al '87] present a scheduling

framework based on cooperative problem-solving, distributed according to a hierarchical factory

model and co-ordinated via message-passing. The DAS architecture and the modelling framework

proposed in [Smith et al '87] have several things in common, the most obvious being that they both

perform problem distribution based on a hierarchical structure. Also common to both is the

motivation for problem distribution and the method of communication between nodes in the

hierarchy. However, as will be discussed shortly, [Smith et al '87] suggests the contract net as a

suitable method of communication for the task with which DAS deals.

Despite the common framework, there are significant differences between the model proposed

by Smith and Hynynen and the DAS architecture. The most notable difference concerns the node

structures found within DAS and the Smith and Hynynen model. Unlike DAS, which has a

different node structure at each level in the hierarchy, the Smith and Hynynen model proposes that

the same node structure be used throughout the hierarchy. In fact it suggests that each node

should consist of an OPIS-like scheduler. This is acknowledged within [Smith et al '87] as not

being a suitable node structure at the level of real-time control of actual machines and material

flows, ie: the level at which DAS operates. The tasks performed at the various levels of the

hierarchy, within the scheduling portion of the larger production management hierarchy addressed

by Smith and Hynynen, are sufficiently diverse to justify specialised node structures.

Smith and Hynynen suggest that communication based on the contract net metaphor is

suitable for the real-time scheduling task performed by DAS. For the reasons cited above,

message-passing is considered to be a superior mechanism even at this task level within heavy

manufacturing domains. Perhaps in domains such as flexible manufacturing systems or large job-

shops in which machines can perform many functions and there are many machines which can

perform each task, the contract net metaphor may be more appropriate.

104

Representation of the global hypothesis is another area in which DAS and the model

proposed by Smith and Hynynen differ. Within DAS, each node has its own internal

representation of its portion of the schedule and additionally there is an external representation of

the global schedule. Within the Smith and Hynynen model there appears to be only one version

of the schedule distributed throughout the hierarchy. The significance of the concept of a node

having its own internal view of its world and an external view shared by other nodes will be made

apparent in chapter 4.

CHAPTER 4

Managing Problem-Solving Effort In DAS

4.1. Introduction

The scheduling architecture introduced in chapter 3 offers the possibility, at least in principle,

of focusing problem-solving effort in a highly effective manner. It permits multiple focal points of

scheduling activity, each of which can have varying degrees of abstraction and temporal horizon, to

be considered simultaneously. However, if any benefit is to be gained from the flexibility afforded

by the DAS architecture, it is necessary to supplement it with mechanisms capable of managing

problem-solving effort in a globally consistent manner. In a distributed problem-solver, this

requires co-ordination as well as focusing of problem-solving effort. This chapter presents the

mechanisms which manage problem-solving effort in DAS.

In order to co-ordinate problem-solving effort effectively, it is necessary to maintain the

current global hypothesis and make it accessible to all problem-solving agents. The global

hypothesis is a data structure used to represent the current problem-solving state. It is implicitly

defined by operations, resources, plans and the constraints attached to them as described in chapter

3. Both the scheduling decisions of agents and events from the scheduling environment considered

to be significant are recorded in the global hypothesis. It is not uncommon for constraints

(scheduling decisions and significant events) added in this way to have implications for the global

hypothesis which are not fully represented within the constraint itself. A constraint maintenance

system (CMS) is employed to perform the inferencing necessary to make such implications explicit.

As well as maintaining a consistent view of the global hypothesis, the CMS also provides a means

of highlighting conflicts between problem-solving nodes in the system. In this way it also acts to

focus problem-solving effort.

105

106

An agent accesses relevant parts of the global hypothesis in order to obtain an external view

of the world. As noted earlier, each agent in DAS also maintains an internal representation of its

world. Initially, an agent creates its internal representation by making a direct copy of the

appropriate parts of the global hypothesis. After initialisation an agent maintains its internal

representation entirely via message passing. The fact that each agent maintains its own internal

representation allows a situation to arise where one agent can be out of step with other agents in

the system. If used in a controlled manner, this facility can be a useful tool when focusing

problem-solving effort.

Executional uncertainty, infeasible scheduling problems and incompatible scheduling

decisions are just a few of the factors which combine to ensure that conflicts will arise in the global

hypothesis. It is not sufficient merely to detect the existence of a conflict, but to be able to

identify its cause and have mechanisms available to resolve it. Scheduling agents at each level in

the DAS hierarchy have the ability to both identify the potential cause of certain classes of conflict

and the mechanisms necessary to resolve the identified conflicts. The class of conflict which can

be dealt with by any particular agent is dependent on its level within the hierarchy. Conflict

resolution often requires the co-ordination of problem-solving effort.

Due to the predominantly reactive nature of DAS, co-ordination of problem-solving effort

occurs mainly in response to conflict recognition. DAS reacts to all conflicts in a manner which is

independent of whether the conflict occurred as a result of executional uncertainty or in the process

of schedule synthesis. Despite placing the emphasis on a reactive capability, DAS does provide

some mechanisms which permit predictive co-ordination of effort. That is, it is possible to

perform a pre-analysis of the problem in order to enforce an appropriate co-ordination of problem-

solving effort. Predictive co-ordination of effort is considered to be appropriate only where it can

offer a significant improvement in performance for a relatively low cost. Such mechanisms are

only useful in dynamic environments when they are supported by reactive mechanisms capable of

resolving the situation which occurs on failure of one or more of the underlying assumptions of the

107

predictive phase.

This chapter first presents information considered necessary to allow a full understanding of

the CMS. This includes a discussion of appropriate techniques, their complexity, and a review of

related work. The CMS is then presented, followed by a detailed account of the conflict resolution

mechanisms available. The chapter concludes with a discussion of the facilities provided for

predictive coordination of effort.

4.2. Background Information

This section presents information considered appropriate for a full understanding of the CMS

described in section 4.3. Temporal constraints, the concept of network consistency and the

constraint propagation techniques employed to achieve it are discussed. The complexity of label

inferencing, the particular form of constraint propagation employed by the CMS, is considered

before a brief history of related work is presented.

4.2.1. Temporal Constraints

The constraints with which the CMS must deal are temporal in nature. Many of the

constraints found in scheduling problems are temporal in nature, for example the release date and

due date of an order. It is not only work items as a whole which are subject to temporal

constraints, since the processes which must be performed to produce a work item (represented by

operations in DAS) also have associated temporal constraints in the form of expected duration and

required temporal precedences. Temporal constraints are by far the most volatile in a scheduling

problem and play a significant role when deciding how to satisfy other non-temporal constraints.

The CMS is therefore primarily concerned with maintaining consistency amongst temporal

constraints, and consequently amongst scheduling agents.

It is possible to identify two distinct classes of temporal constraint, namely symbolic and

numeric. Symbolic representations, such as those presented in (Allen '83], emphasise temporal

relations between events. For example, the temporal precedence constraint which specifies that

108

during the manufacture of aluminium plate, the annealing process must precede the ultrasonic

scanning process is a symbolic temporal constraint. Generally speaking, symbolic representations

do not handle numeric data such as event start times and durations efficiently, whereas numeric

representations do. On the other hand, numeric representations, which put the emphasis on the

description of events, are unable to explicitly represent relationships between events. The list (S

10), representing the fact that an operation is restricted to start somewhere between time 5 and time

10, is an example of a numeric temporal constraint. Both classes of temporal constraint are

integrated within DAS, a situation which allows the numeric representation to act as a refinement

of the relations expressed by the symbolic representation.

4.2.2. Constraints and Consistency

The CMS is mainly concerned with maintaining the temporal constraints acting on the

operations of a process plan in a consistent manner. The process plan of an order can be modelled

as a constraint network comprised of nodes and arcs, or in terms of events and sets of possible

occurrences (SOPOs) as proposed in [Rit '86]. When representing a process plan as a constraint

network, nodes of the network correspond to operations of the plan and arcs correspond to the

temporal precedence relations acting between operations. Each node has an associated domain

defining the legal values of that node. Rit presents a model for the propagation of temporal

constraints in which the basic objects are events which are linked by symbolic temporal relations.

Within this model events are characterised by SOPOs, where an occurrence is defined as the

interval during which an event happens. Obviously, when representing a process plan within this

framework, operations become events, temporal precedence constraints become symbolic temporal

relations and SOPOs act as a refinement of the symbolic temporal precedence relations. Both

models have been introduced here because it will be convenient to switch between the two when

reviewing related work later on.

Using Rit's terminology, the task of maintaining the temporal constraints on the operations

within a plan in a consistent manner is referred to as the constrained occurrences problem. He

109

defines it as the task of modifying the SOPOs used to characterise events in such a way as to make

them compatible with the symbolic relations acting as constraints between the events. In

constraint network terminology, the forward inferencing which achieves the desired level of

consistency within a network is referred to as assimilation. Whether it is viewed as an example of

the constrained occurrences problem or assimilation, the task of forward inferencing is usually

performed using constraint propagation techniques. The degree of consistency achieved by

constraint propagation within a constraint network is determined by the correspondence between the

values allowed by the domain of each node and the constraints acting between nodes. Mackworth

[Mackworth '77] identifies three levels of consistency, namely node, arc and path consistency.

They are described below.

(i) Node Consistency

Node i is node consistent iff for any value x in Di, the domain of 1. P; (x), the unary

predicate on node i holds. For example, if a variable has a constraint (unary predicate)

which requires it to take only values greater than ten, then that variable is node consistent if

its domain contains no values less than or equal to ten. A network is node consistent if all

the variables in the network are node consistent.

(ii) Arc Consistency

Arc (1j) is arc consistent iff for any value x in D. such that Pj (x) holds, there is a value y

in Dj such that both Pj (y) and P; 1(x. y) hold. P, (x, y) holds if the binary predicate Pi j is

satisfied when node i has the value x and node j has the value y. A network is arc

consistent if all the arcs in the network are arc consistent. An example of a consistent arc

is shown in figure 4.1.

vi V2

{2,4}

el--ý
°Y

less than

Figure al

However, if the domain of V1 included a value of 4 or greater, this arc would not be arc

110

consistent as there would be no value of V2 which could satisfy the predicate P 12 if VI was

assigned this value.

(iü) Path Consistency

A path of length m through the nodes is path consistent if for any values x in

Di,, and y in D,. such that Pia(x) and P;. (y) and Pid. (x, y) hold, there is a sequence of

values zl in D,
1,..., zm_t in D;.

_1
such that:

(a) Pi, (z1) and ... P;,
_1(zm-i)

(b) P;
0;,

(x, z1) and P;
li2(zl, z2) and ... Pjm_ij (zm_Iy).

Montanani [Montanart '74] has shown that if every path of length two in a network is path

consistent then the network is path consistent. Mackworth presents the following example,

shown in figure 4.2 of a path inconsistency. The path is of length m-2, and the binary

predicate denotes strict lexicographic ordering.

3

{a, b}

4S
(a, b) {a, b}

Figure 4.2

He states that a path inconsistency appears on path 3-5-4. Condition (a) is irrelevant

because there are no unary predicates in the network, while condition (b) requires that two

binary predicates P3,5 and P54 hold. Additionally, P3.4 must hold with the same sequence

of values for variables V3, Vs and V4. P3,4 can be satisfied by giving V3 a value of a and

V4 a value of b, and P3, can be satisfied by again giving V3 a value of a and Vs a value of

b. However, there is no value in Ds which can simultaneously satisfy P3, and P3,4, hence

the path is path inconsistent. Path consistency is preferable to arc consistency because it

detects inconsistencies which would otherwise go undetected. For example, if the portion

of the network shown in figure 42 was made arc consistent, it would look late the network

shown in figure 4.3. In this network all the variables have at least one possible value, thus

111

the inconsistency has gone undetected. If the network had been made path consistent, the

inconsistency would be highlighted by the fact that V4 would have a null domain.

3

{aM

43 &---8

Figure 4.3

4.2.3. Constraint Propagation

Constraint propagation techniques date back to the Waltz filtering algorithm [Waltz '72].

Many subsequent constraint propagation systems, including those used for temporal constraint

propagation, are based on this algorithm. Constraint propagation algorithms operate by first

deducing the implications of a change in the area of the network which is local to the induced

change. If these deductions have implications for other nodes in the network, further deductions

are performed and recorded- In this way the consequences of a change gradually spreads

throughout the network. A Waltz-like constraint propagation algorithm, AC-2 from. [Mackworth

'77], is shown in figure 4.4.

Procedure AC-2
For each node in the network do

make it nods coasiatat
Q 4- all arcs Incident ca nods

While Q not empty do
White Q not empty do

get that arc (k, m) from Q
If (k m) needs modified
Ihm

modify it
Q' 4. - all arcs incident an It

Q F- Q'
empty

end
and

end
end.

Figure 4.4

Constraint propagation has many characteristics which make it a popular method of forward

inferencing. Firstly, it is based on a simple control structure which makes it easy to code, extend

112

and analyse. Secondly, it degrades well under time limitations because interrupting the process

does not invalidate inferences already established. It is amenable to parallel implementation and

well suited to incremental systems in which not all constraints are known at the outset. Finally,

the concept of propagating gradually through a network until quiescence, is consistent with locality

assumptions often found in Al. For example, within physical reasoning programs (eg. [Davis '83])

it is often assumed that physical effects propagate across connections between components.

Another example is found in the scheduling domain where it is assumed that temporal effects

propagate to adjacent operations in a process plan.

Having introduced the notion of constraint propagation, it is appropriate to consider some

classification of constraint propagation systems. Davis [Davis '87] distinguishes six categories of

constraint propagation, using the type of information propagated as a basis for discrimination. The

interested reader is referred to [Davis '87] for a detailed account of his six categories which are

constraint inference, label inference, value inference, expression inference, relaxation and

relaxation labeling. At a grosser level than this it is possible to identify two classes of constraint

propagation, namely those which deal with temporal constraints and those which deal with non-

temporal constraints. Not surprisingly, temporal constraint propagation can be further classified as

being either symbolic or numeric. Symbolic systems combine temporal relations using a temporal

logic, such as that given in [Allen '811, to infer additional relationships and to detect contradictions

within a network. They are suitable for tasks in which the relative occurrence of events in time is

important. Numeric systems allow for the deduction of new temporal equalities and inequalities,

and are better suited to tasks which involve placing events at an absolute position on the time line

rather than a relative one. Therefore, symbolic systems are appropriate in applications such as

planning, whereas numeric systems are better suited to tasks such as scheduling. Using the

categorisation identified by Davis, symbolic temporal propagation is described as constraint

inference, while numeric temporal propagation is referred to as label inference. The CMS performs

label inferencing.

113

As the CMS performs label inferencing, it is appropriate to consider this form of constraint

propagation in more detail and to identify its main characteristics. [Davis '87] identifies several

characteristics including constraint language, query language, query answering language, node type

and label type. He goes on to conclude that the label language and constraint language of a label

inferencing system are the key characteristics for categorisation. Label languages tend to use

either signs or intervals within their representation. Sign labeling is often sufficient in applications

where the reasoning is qualitative rather than quantitative and there is an interest in the sign rather

than the magnitude of the quantities being reasoned over. ENVISION [de Kleer et al '84] is an

example of a system which uses sign labeling to perform qualitative reasoning about the behaviour

of physical systems over time. Interval labeling must be used when sign labeling is too coarse a

measurement, or when it is difficult to identify a zero point around which signs should change. In

interval labeling, intervals may be open, closed or half-open, with or without an ability to represent

non-contiguous intervals. They are sufficiently flexible to permit representation of both an

approximate value or a degree of uncertainty and are inexpensive to represent. The choice of

which interval representation is most suitable is application-dependent. As is the case with label

languages, there are many possible constraint languages ranging from simple unary predicates

through systems of equations and up to transcendental equations. Within the scheduling domain,

unary predicates and binary predicates capable of expressing temporal precedence relations are the

most common.

As can be inferred from the characteristics of label inferencing systems listed above, a

constraint network used to support assimilation may also be used to support query answering. The

majority of systems are designed such that most of the inferencing takes place during assimilation,

thereby allowing queries to be answered quickly from the quiescent state of the network.

Obviously, information used to answer queries must pass from the constraints to the queries via the

node labelings, ie: the domains of the nodes. Unfortunately, node labels provide only a "narrow

bandwidth communication channel" which makes it difficult to ensure that information is not lost

during query answering. Consequently, label inferencing systems are rarely complete, leaving

114

most system designers to strive for the more achievable goal of ensuring that the assimilation and

query answering processes are each separately complete. An example demonstrating a loss of

information during query answering is given below.

Iwipal Cop4rtowr
A is initially labelled as {1,2,3}
B is initially labelled as {2,3,4}
With constraint A-B

Ater As ila on
A is labelled as (2,3)
B is labelled as {2,3}

Figure 4. J

If the system is now presented with the query Is A equal to B ?, the best answer which can be

derived from the labels is maybe. The correct answer is yes because the constraint A-B

excludes the possibility of A being equal to 2 while B is 3 and vice-versa. There are a number of

ways round this problem, including using nodes which correspond to complex terms, though this

increases the complexity of both assimilation and query answering. An alternative approach,

adopted by McDermott in an early version of SPAM [McDermott '80], is to use conservative labels

such that all selections of values from the labels satisfy the constraints. This approach is also

problematic because unlike label inferencing it is not deductively sound, ie: it permits inferences

which are not warranted by the constraints.

4.2.4. The Complexity of Label Inferencing

As is the case in most areas of artificial intelligence, combinatorial explosion is a major

concern for the designers of label inferencing systems, particularly when the label language is

quantitative rather than qualitative. The efficiency of algorithms which perform label inferencing

to ensure consistency within a constraint network has therefore received considerable attention.

Unfortunately, it has been shown that the task of determining consistency within a temporal

constraint network is an instance of the consistent labeling problem [Tsang '87], a task which is

known to be NP-hard [Mackworth '77].

115

Vilain and Kautz [Vilain et al '86] are interested in constraint propagation algorithms for

temporal reasoning, and consider the computational aspects of both point-based and interval-based

representations. They show that achieving path consistency in a network represented within the

interval algebra of Allen [Allen '83] is NP-hard. On the other hand, an algorithm is given which

determines path consistency in the point based algebra in 0 (n3) time and 0(n2) space, where n is

the number of points about which assertions have been made. However, the computational

benefits afforded by the time point algebra have a cost in terms of its expressive power. A point-

based representation is not capable of representing many of the relationships which are desirable in

a scheduling context. Most significantly, it is not able to represent any relation in which there is

ambiguity concerning the relative position of whole intervals rather than points on the time line

(eg. the not. during relation). [Tsang '87] points out that it is the presence of disjunctive temporal

relations, which cannot be represented within the point-based representation, and not the chosen

representation which makes consistency checking NP-hard.

Given the exponential nature of determining consistency within the interval algebra, Vilain

and Kautz suggest several practical solutions to this problem. One option would be to limit the

number of intervals dealt with to something of the order of a dozen. With such a small problem

size, the asymptotically exponential performance need not be noticeably poor. Alternatively,

where it is not possible to limit the problem size sufficiently, it is possible to trade completeness

for polynomial performance. For example, Allen [Allen '83] presents a polynomial time constraint

propagation algorithm for the interval algebra which is sound but not complete, ie: it will not

generate inferences not warranted by the constraints of the network but it may not remove all

inconsistencies. It may also be acceptable to use an algorithm which is exponential in asymptotic

complexity, but which generaly performs much better that this. [Valdes-Perez '87] presents just

such an algorithm which is sound and complete for the full interval algebra. In practice, the

improved performance of the Valdes-Perez algorithm is achieved through heuristic pruning and

clever backtracking.

116

Not all applications require the full interval algebra, a fact which it may be possible to

exploit when developing a consistency checking algorithm. Rit [Rit '86] states that if the temporal

constraints being propagated over can be represented by windows, and disjunctive relations are

eliminated by enumerating the different terms, the task of determining consistency can be solved

using an arc consistency algorithm. Polynomial algorithms, such as Mackworth's AC-3 algorithm

[Mackworth '77] can be applied to determine consistency. A detailed account of the complexity

of several polynomial consistency checking algorithms can be found in [Mackworth et al '85].

4.2.5. Related Work

As is true of all the mechanisms discussed in this chapter, the primary motivation for having

a CMS is to improve search efficiency. This, allied with its more specific objectives of

consistency maintenance, conflict detection and an ability to cater for non-monotonic inferencing,

could easily lead to the conclusion that the truth maintenance system technology of Doyle [Doyle

'79] and de Kleer [de Kleer '86] is appropriate. However, two characteristics of the inferencing

performed by the CMS make it unwise to maintain inferences within a computationally expensive

truth maintenance system. Bear in mind that the fundamental question addressed by truth

maintenance systems can be summarised loosely as "Which of the inferences made so far remain

valid after certain asswnptions have altered ? ", an instantiation of the frame problem [McCarthy et

al '69]. This is not a major issue for the CMS because firstly, the inferences generated are

relatively inexpensive to generate and secondly the possibility of an inference recurring within a

given problem is fairly remote. Therefore, although it may appear to be functionally similar to a

TMS at a high level, the CMS does not resemble a TMS internally. The CMS owes considerably

more to the constraint propagation literature than to the truth maintenance system literature.

Temporal constraint propagation dates back to the CPM algorithm [Johnson et al '74], the

forerunner of PERT. Despite the fact that the majority of work discussed here is from the

scheduling literature, it should be noted that temporal constraint propagation is not limited to

117

scheduling applications. In fact, the term window, commonly used to refer to the domain of a

variable within interval label inferencing, was introduced by Vere in DEVISER [Vere '83], a

planning system which attempts to take cognisance of time when generating plans. DEVISER is

similar in nature to NOAH [Sacerdoti '77] and NONLIN [Tate '76] in that it is a non-linear

planner, but has additional functionality which permits it to consider the start times and durations

of the activities to be planned. Within DEVISER, windows are used to provide an upper and

lower bound on the time when an activity may occur. A window is represented as a triple of the

following format: (Earliest-start-time Ideal Latest-start-time) in which Ideal is considered to be

the most desirable start time from the range allowed by the other two fields. This representation is

not capable of representing non-contiguous intervals and therefore cannot support disjunctive

constraints. Constraint propagation, or window compression as Vere refers to it, is invoked during

plan generation whenever nodes are linked, expanded or ordered to resolve a conflict. (The reader

is assumed to be familiar with terminology used by Tate [Tate '76] regarding plan generation).

Any one of these events modifies the existing plan, thus generating a new constrained occurrences

problem, which is then solved using window compression.

The constraint propagation module of ISIS, reported in [Smith '83], like DEVISER also

assumes contiguous start time intervals for activities. It employs a critical path method to

compute the earliest and latest bounds of an activity. As in DAS, activities can be represented at

various levels of abstraction, therefore requiring an ability to propagate temporal constraints up and

down the abstraction hierarchy. Within ISIS, composite operations exist which represent exclusive

alternatives, an ordered sequence of activities or operations that can be performed in parallel. The

constraint propagation module of ISIS propagates through all three types of composite operation as

well as linear plans.

TMM [Dean '85] provides another example of the use of constraint propagation outside of

the scheduling domain. The main concern of TMM is to keep track of how the facts that it knows

about become true or false over time. It takes as its input a number of time tokens, assertions,

118

rules and constraints. Time tokens denote instants of interest, assertions concern facts or events,

rules describe relationships among events and facts, and constraints identify the times at which the

various time tokens take place. Temporal constraints are represented as contiguous intervals which

bound the time difference between two tokens. The constraint propagation mechanism within

TMM performs both label and constraint inferencing. Although the ability to perform both label

and constraint inferencing may be desirable, the computational expense of such an approach is

likely to place practical limitations on the problems which can be addressed. Furthermore,

applications such as scheduling do not derive a great deal of benefit from the power of such a

mechanism. Scheduling applications tend to deal with static pre-calculated process plans, and

therefore do not require constraint inferencing.

Until now, the constraint propagation systems which have been discussed have represented

temporal constraints as a contiguous interval. This representation is not flexible enough to permit

the inclusion of disjunctive constraints within the constraint network. Disjunctive constraints,

such as OpA not. during OpB, are common in manufacturing scheduling domains and necessitate a

representation of temporal constraints which permits non-contiguous intervals. As discussed

earlier, [Rit '86] represents temporal constraints as SOPOs and states that they can be considered as

a disjunctive clause in which each part of the clause is a single occurrence. There is no restriction

preventing SOPOs from representing non-contiguous intervals, and in fact Rit goes on to present a

constraint propagation algorithm capable of propagating disjunctive constraints. The algorithm is a

variation of the Waltz filtering algorithm [Waltz '72].

As discussed in chapter 2, OPIS evolved out of experience gained during the ISIS project.

As OPIS increased in sophistication to support its opportunistic and reactive characteristics, it

became necessary to enhance the existing constraint propagation system. Within OPIS, the

computation and maintenance of operation time bounds is accomplished by an object oriented

propagation process. Each propagation message contains the temporal constraint itself, the origins

of the constraint and the required level of precision. As in ISIS, operations are represented at

119

various levels of abstraction. The required level of precision field of a propagation message

indicates how far down the hierarchy it is necessary to propagate this message. The origin of a

constraint in the propagation message is included to aid in conflict resolution. Despite these

enhancements to the constraint propagation module of ISIS, the more advanced version employed

in OPIS continues to cater only for temporal constraints which can be represented as a contiguous

interval.

Other work in the area of temporal constraint propagation, which may become relevant to

DAS if it were to be modified for other domains, concerns methods for controlling constraint

propagation and the propagation of local preferences. Much of the work which investigates

techniques for controlling constraint propagation has been carried out by Collinot and LePape.

[Collinot et al '87] discusses techniques for dynamically varying the amount of computational

effort spent during constraint propagation, while the constraint propagation system described in

[LePape et al '87] allows the amount of propagation to be varied through the specification of levels

of precision. In the latter case, the variation is defined with respect to a predetermined set of

parameters. Collinot and LePape argue that the amount of effort expended during propagation

should be proportional to the amount of interaction that propagation is expected to detect or avoid,

and that the knowledge required to regulate this mechanism is available.

Until now, the propagation systems discussed in this section all attempt to achieve a degree

of consistency between the constraints acting on a network and the values permitted by the domains

of the nodes of the network. [Sadeh et al '88] propose a constraint propagation mechanism which

attempts to give some indication of local scheduling preferences as well as excluding values which

are inconsistent with the constraints acting on the network. That is, preference propagation strives

not only for admissibility but also for optimality by reflecting preference interactions locally. It is

proposed that this may be achieved by representing temporal constraints as probability distribution

functions rather than by intervals. The notion of representing local preferences is not new, for

example, the Ideal field of a window in DEVISER is used to represent a local preference.

120

However, unlike the approach proposed by Sadeh and Fox, the window compression algorithm

employed in DEVISER takes no account of the Ideal field which is statically fixed.

4.3. The Constraint Maintenance System of DAS

This section presents the constraint maintenance system of DAS. The role of the CMS and

the requirements imposed upon it by DAS are considered. Following this, a detailed account of

the algorithm and constraint representations used by the CMS is given. A complexity analysis of

the CMS concludes the section.

The CMS has three main features to recommend it. Perhaps most importantly for its

application within DAS is its ability to cater for the retraction of constraints both correctly and

efficiently. Secondly, it permits propagation over constraint networks representing non-linear

process plans in time polynomial with the number of operations in the plan. Finally, it performs

its task of maintaining consistency in a manner which allows it to assist in the task of conflict

resolution.

4.3.1. Role of The CMS

The constraint maintenance system (CMS) of DAS performs two major functions, both of

which are necessary in order to manage problem-solving effort effectively. Firstly, it must ensure

that the various agents in the system share a common view of the world. Secondly, it is

responsible for highlighting constraint conflicts which occur either during schedule synthesis or as a

result of executional uncertainty.

Within DAS, the subset of the current set of problem constraints considered by an agent

constitutes its view of the world. The current set of problem constraints are a function of the

initial problem specification, the decisions of scheduling agents and significant events from the

scheduling environment. In order for agents to co-operate effectively, and thus not waste

problem-solving effort, it is important to ensure that each agent has a view of the world which is

consistent with the views held by the other agents in the system. The CMS performs this role,

121

allowing each agent to adopt a local view of its problem while retaining a reasonable guarantee of

global consistency. To achieve this, the CMS makes explicit the implicit effects of constraints

added to the system. That is, it infers constraints which occur as a consequence of the addition of

new constraints and adds them to the current set of problem constraints. The reactive and

opportunistic characteristics of DAS make it essential that agents are kept informed of the impact

of the currently active constraints on their local subproblems.

As well as providing problem-solving agents with a consistent view of the world, maintaining

the current set of problem constraints and their consequences presents an opportunity to detect

conflict By making the consequences of all known constraints explicit, the CMS is able to

highlight incompatible constraints. Constraints need not necessarily be completely incompatible

for the CMS to provide useful information; it also helps in the detection of highly contended areas

of the schedule.

There are a number of reasons why conflicts occur in a schedule, of which incompatible

scheduling decisions and poor problem specifications are only two. For example, a scheduling

problem which includes an order having a due date earlier than its release date obviously contains

conflicting constraints. Conflicts may also arise as a result of the non-monotonic inferencing

performed by the CMS. Inferencing is non-monotonic if the addition of new knowledge about the

world can decrease the set of inferences which can be drawn. For example, the act of reporting

the actual completion time of an operation may cause a previously calculated estimate to be

invalidated. The inferencing performed by the CMS is necessarily non-monotonic in order to cater

for the use of defaults and the highly dynamic nature of the scheduling environment. Both default

reasoning and executional uncertainty permit the possibility that additional knowledge about the

world can cause existing inferences to be invalidated. The interested reader is referred to [Ramsay

'88] for a good introduction to non-monotonic reasoning.

As discussed in chapter 2, mechanisms which attempt to focus problem-solving effort within

a heuristic search can do so either by reducing the number of nodes to be visited or by determining

122

a suitable order in which they are to be visited. The CMS incorporates both techniques to achieve

this objective. Maintaining consistency within the global hypothesis serves to prune the search

space of a great many illegal solutions, while conflict recognition assists in the ordering of the

search.

4.3.2. Unary Constraints

The constraint networks to be propagated over contain both unary and binary constraints.

Binary constraints are required to represent temporal precedence relations between operations, while

unary constraints, described below, are used to represent various attributes of individual operations.

Change is always introduced into the network via a unary constraint. A change in the value of a

unary constraint results in a modification to the domain of the affected operation, thus initiating

propagation between operations over binary constraints.

The unary constraints associated with an operation which may initiate temporal constraint

propagation fall into one of four categories. The four categories, scheduling decisions, preference

constraints, real world events and predictively generated constraints are listed below in figure 4.6

along with the specific constraints which are members of each category. Each of the unary

constraints listed is implemented as a slot within the frame representing an operation.

CATEGORY INSTANCE
Scheduling Decisions Start Time, Rnowce
Preference Constraints Due Data
Real World Events Release Date, Actual End Time
Predictive Comtnin4 Release Quest

Figure 4.6

of course, other preference constraints, real world events and non-negotiable constraints are catered

for by DAS. However as they do not constitute sources of temporal constraint propagation they

are not listed in figure 4.6. Examples of such constraints are particular machine preference for an

operation, machine failure, scrapped orders and technological constraints. Each of the unary

constraints listed is discussed below.

123

An operational-level scheduling decision, that of giving an operation a start time, introduces a

new unary constraint to the problem and may initiate temporal constraint propagation. The

introduction of such a unary constraint has the same effect as giving the operation in question a

single point domain. Although the domain of the operation is not actually modified, the effects of

giving it a start time must be propagated over the binary constraints representing temporal

precedence relations.

A tactical-level scheduling decision, that of allocating an operation to a particular resource,

may also initiate temporal constraint propagation. Allocating an operation to a particular resource

may cause its duration to be modified, thus invalidating any earlier propagation based on the old

value. This can occur because operations are initialised to have their worst-case duration prior to

being allocated to a particular resource. If an operation is subsequently delegated to a resource on

which it has a shorter duration, it is necessary to undo the earlier propagation and re-propagate

using the new, more accurate value for the duration of the operation.

Giving an order a due date has the effect of constraining each operation within the process

plan of that order to complete before a certain date. The required completion date of each

operation is dependent on the duration of other operations in the plan. Similarly, giving an order

an expected release date allows an "earliest start" constraint to be calculated for each operation in

the process plan of that order. However, the task of accurately predicting when a work item will

be released onto the shop floor is not trivial. To accommodate this, the actual release date of an

order is accepted as a refinement of the expected release date. As is the case when the duration of

an operation is refined, any earlier propagation based on the estimated value is undone, and a new

propagation is initiated using the correct release date.

Estimating the release date of an order is not the only source of uncertainty catered for by

the constraint propagation system, since the duration of an operation is also subject to variation.

The variation being discussed here concerns the actual execution time of an operation on a

particular resource rather than a variation which is dependent on the resource used to perform an

124

operation. To cope with this, DAS accepts a completion message indicating the actual

completion time of an operation as a refinement of the expected completion time. On receipt of a

completion message, propagation based on an estimated completion time, calculated from the

scheduled start time of the operation plus its expected duration, is undone and a new round of

propagation based on the reported value is initiated.

4.3.3. Propagation Messages

The CMS is mainly concerned with maintaining the global hypothesis in a consistent manner.

The global hypothesis is used by an agent as its external representation of the world. As discussed

in chapter 3, an agent maintains its internal representation via message passing. Many of the

events which cause the CMS to update the global hypothesis also require an agent to update its

internal representation. To cater for this, the CMS generates messages in accordance with the

various sources of constraint propagation. It is important to note that communication via message

passing in DAS operates on the basis of addressed messaging rather than a broadcast arrangement.

That is, messages are only sent to agents who have an interest in the message in question. In all

cases it is left to the receiving agent to determine the appropriate action to take on receipt of a

message.

The most common message generated by the CMS is the anodify opj priority> message. It

is sent to an agent whenever one of the operations in its problem has a modification to the value in

its legal. starts slot. The CMS sends the message to the agent identified by the value held in the

resource slot of the affected operation. The value of the priority field of a< modify op; priority>

message is determined by the source of the modification. A message sent as a result of a non-

negotiable event such as the late completion of an operation, is given a priority of -1. This is

interpreted by the receiving agent as a message which cannot be ignored. A more interesting use

of the priority field occurs when the message is sent as a result of a negotiable event such as an

operational level scheduling decision. The messages generated as a result of an operation being

125

given a start time take on a priority equal to that of the operation which has just been scheduled.

Operation priority is discussed further in section 4.4.1.

An <add op, > message is sent to an agent to inform it that op; has been introduced to its

problem. Similarly, a <delete op; > message is sent to an agent to inform it that op; is no longer

part of its problem. The CMS sends these messages in response to a change to the value in the

resource slot of an operation. It sends a <delete op; > to the agent identified by the old value in

the slot, and an <add op; > to the agent identified by the new value in the slot.

As will be discussed further in section 4.4.4, one of the conflict resolution mechanisms

available to the S-agent is the synchronisation of decision-making through process plans. To

facilitate this, the CMS sends <dec-made op; > and <dec-cancelled op; > messages to the S-agent.

A <dec-made opi> message is sent in response to op; being given a start time. This informs the

S-agent that a scheduling decision has been made on op,. A <dec-cancelled op; > message is sent

whenever a start time is removed from op,. indicating the cancellation of an earlier decision.

4.3.4. Requirements of Constraint Propagation

The two main requirements imposed upon the design of the CMS concern its ability to deal

with constraint retractions and the non-linearity of process plans. Both requirements have

implications for the representation and propagation of temporal constraints. The need to cater for

constraint retractions is a consequence of the dynamic and stochastic nature of its intended

operating environment coupled with the inherently asynchronous nature of DAS itself. The need

to cater for non-linear process plans is simply another manifestation of the opportunistic ethos of

DAS.

The earlier discussion of potential sources of constraint propagation should provide sufficient

supporting evidence for the statement that constraint retraction is a major issue within DAS.

Additionally, by permitting 0-agents to become temporarily out of step with one and other, the

asynchronous nature of DAS allows incompatible scheduling decisions to be made, thus providing

126

another source of constraint retraction. The type of constraint retraction being discussed here

concerns only unary constraints rather than the binary constraints of the constraint network being

propagated over. It concerns constraints such as start times, release dates and due dates rather

than temporal relations such as before, after and not. during. However, the temporal constraint

representation and method of propagation employed by DAS does permit efficient addition and

retraction of temporal relations. This was an important feature in an early version of DAS in

which composite operations were explicitly created, modified and destroyed. The act of modifying

a composite operation changes the constraint network being used to represent process plan(s)

involved in the composite operation.

Obviously, the degree to which constraint retraction is expected to occur within DAS makes

the efficiency of this activity a major concern. However, it is perhaps more important to ensure

that the network is returned to the state it would have been in had the constraint never been

imposed, a feature apparently not considered by traditional constraint propagation algorithms.

Most existing algorithms, such as those analysed by Mackworth and Freuder [Mackworth et al '85],

are founded on the premise that the merit of an algorithm is inversely proportional to the number

of redundant variable domain revisions attempted during propagation. However, when incremental

constraint retraction is necessary, some apparently redundant revisions are necessary to ensure that

constraints and their propagated effects are retracted correctly. This is demonstrated by the

example of figure 4.7 ((a) to (d)) in which OpA is before OpB which is before OpC in the same

linear process plan.

Within figure 4.7 a grey box associated with an operation indicates the domain of that

operation, ie: the interval during which it is legal to schedule this operation to start. The domains

shown are all contiguous intervals because the process plan being used in the example is a linear

plan. A white box within a grey box indicates the duration of the associated operation, while its

position is of no significance as the operation has not yet been scheduled. Upon allocation of a

start time, the white box of an operation is changed to a black box and is positioned to reflect the

127

allocated start time.

OpA (Dur-5)

Figure 4.7 (a)

Figure 4.7 (a) shows the initial temporal constraints acting on the operations of the process plan.

They are calculated from the release date, due date and temporal precedence relations of the

process plan. Figure 4.7 (b) shows the temporal constraints acting on the network after OpB has

been allocated a start time of 10. The significant change to note here is that the earliest time at

which it is legal to schedule OpC to start is no longer 8, but 13.

OpC (Dur-4)
17

Figure 4.7 (b)

Figure 4.7 (c) shows the temporal constraints acting on the network after a second scheduling

decision has been made,. that of starting OpA at time 2. Although this pushes the earliest temporal

constraint on OpB from 5 to 7, it has no affect on the earliest temporal constraint acting on OpC.

This is because the decision to start OpB at time 10 is more constraining on OpC than the decision

to start OpA at time 2. It is therefore redundant, at least for the time being, to propagate the

consequences of the scheduling decision on OpA to OpC.

128

QpA Starts at Time 2

OpA (Dur-5)
RP5

Figure 4.7 (c)

However, if the decision to start OpB at time 10 is subsequently withdrawn, the temporal constraint

acting on OpC is dependent on the scheduling decision on OpA. There are several possible

approaches to dealing with the retraction of the scheduling decision on OpB, the simplest being not

to propagate the affects of the retraction at all. This leaves OpC over constrained by requiring it

to start after time 13. Alternatively, the earliest start constraint of OpC could be removed entirely

leaving OpC under constrained. Neither of these options are particularly attractive as they both

leave the constraint network in a state in which the domains of its nodes are inconsistent with the

constraints acting on the network.

QpB is UnschedL

OpA (Dur=3)

Figure 4.7 (d)

Ideally, the temporal constraints acting on the network should be transformed to look like

those shown in figure 4.7 (d), which represent accurately the consequences of current scheduling

decisions. Again there are two possible approaches to achieving this. Either the temporal

constraints acting on the network can be completely recalculated or, an incremental calculation

129

based on the old state of the network and the recent change can be performed. In a system in

which constraint retraction is extremely common, the incremental approach is likely to be more

efficient. On the other hand, when constraint retraction is an unusual occurrence, the additional

overhead required to permit incremental recalculation may be more expensive than the cost of

occasional complete recalculation. The level of constraint retraction required within DAS certainly

favours an incremental approach.

In order to calculate incrementally the consequences of a constraint retraction it is necessary

to perform what are apparently redundant propagations. This is highlighted in the example of

figure 4.7 in which it is necessary to propagate a constraint precluding OpC from starting before

time 10 as a consequence of the scheduling decision on OpA. At the time of propagation this is

redundant as OpC is already constrained to start no earlier than time 13. The temporal constraint

representation described shortly is designed make this an efficient process.

As discussed in chapter 3. DAS caters for plans which include the not. during (before OR

after) relation in order to permit maximum opportunism. Essentially, this permits the scheduler to

decide on a particular linearisation of a plan based on a detailed knowledge of existing shop floor

work load and current scheduling decisions. This has implications for constraint propagation

because, as [Collinot et al '871 points out, " as soon as disjunctive constraints are considered, the

problem of determining whether a given set of constraints is consistent is NP-hard ". The

temporal constraint representation employed within DAS is designed with this in mind.

43.5. Constraint Representation

It was stated at the outset of this section that the CMS of DAS had three main features to

recommend it. These were noted as being an ability to propagate over networks containing

disjunctive constraints in time polynomial with the number of nodes in the network, an ability to

deal with constraint retraction efficiently and an ability to assist in conflict resolution. The data

structures developed to represent temporal constraints are of prime importance in achieving all

130

three of these objectives. The first two, polynomial time performance and efficient constraint

retraction, had the most influence on the representation selected for temporal constraints.

As noted earlier, determining consistency within a constraint network containing disjunctive

constraints is known to be NP-hard [Collinot et al '871. It would appear from this that the

objective of polynomial performance from a consistency algorithm operating on a network

containing the not-during relation is at best optimistic. However, as [Rit '86] points out, if the

constraints involved can be represented by windows and disjunctive relations enumerated,

consistency can be achieved using an arc consistency algorithm. If it were possible to cast the

problem in this way, the objective of polynomial performance becomes possible as there are several

known polynomial algorithms (eg. AC-I, AC-2 and AC-3 from [Mackworth '77]) for achieving arc

consistency. The requirement to enumerate disjunctive constraints to their component parts does

not pose a problem in the case of the not. during relation which expands to before or after. Neither

does the requirement that temporal constraints be represented as a window or a disjunction of

windows. This second requirement is perhaps somewhat misleading. It is the ordered nature of

the domain rather than that it be represented as a window that is of significance.

The notion that a temporal constraint may be composed of its various component constraints

is not peculiar to a representation of disjunctive constraints. In fact, the effective temporal

constraint acting on the majority of operations in the system is almost certainly composed of

several component constraints. Consider an operation which is restricted to start sometime

between time 5 and time 10. It may be the subject of a temporal constraint composed of a release

time constraint and a due date constraint. The desire to perform constraint retraction in an

efficient manner requires that the various component constraints be tagged with their source

constraint. In the event of a constraint retraction all that is required is the removal of the

appropriately tagged component constraints.

So far, an argument has been presented in favour of a representation which is made up of

multiple windows, each of which is tagged with its source and represents a contiguous interval.

131

However, when an O-agent needs to know when it can schedule an operation, it is not interested in

the various sources of the temporal constraint, nor does it require the constraint to represent a

contiguous interval. For this reason, it was decided to maintain a dual representation for temporal

constraints. Externally, temporal constraints are represented as a list of integer pairs, where each

integer pair represents a closed contiguous interval. By permitting any number of pairs within the

list, any level of non-contiguity can be represented. An example is shown in figure 4.8.

External Rernzcentatlon"

((2 5)(8 10))

258 10

Internal RiMmentatinn-
(Releese-Guess (2 mexint))

(Due-date (0 10))

(Start OpX (0 5»

(Start OpX (8 maxint))

Figure 4.8

Internally, a temporal constraint is represented as a collection of component constraints which are

combined to generate the external representation. A component constraint is of the form (Source

(X Y)) in which Source identifies the source of the component constraint and (X Y) the interval of

time allowed by the constraint. The effective constraint on an operation is calculated by

intersecting the intervals allowed by all component constraints. The source may be a scheduling

decision on another operation, the due date of a lot or indeed any of the sources listed in figure 4.6.

In addition to permitting two of the major objectives of the CMS, the temporal constraint

representation described above offers a number of other benefits, the most important being in

conflict resolution and computational efficiency. The internal representation of a temporal

constraint assists in conflict resolution by identifying the various unary constraints which play a

132

part in a conflict. In addition to identifying candidate constraints for relaxation, the internal

representation makes it simple to determine the local implications of particular constraint

relaxations.

Another important feature of this dual representation of temporal constraints is its

contribution to computational efficiency in a highly uncertain environment. Rather than

calculating a new external representation every time its internal representation is modified, it is

more efficient to calculate the external representation on demand. That is, calculate the internal

representation during assimilation and only generate an up-to-date external representation in

response to a query. In addition to the computational effort required to propagate constituent

constraints, the act of calculating a value for the external representation of a constraint incurs

significant computational expense. The highly volatile nature of temporal constraints makes it

extremely likely that many of the states that a temporal constraint passes through in the course of

schedule synthesis will never actually be accessed. In particular the temporal constraints on

operations which are not yet at the operational level are likely to take on many values which are

never accessed by a scheduling agent. For example, consider the case of the last operation to be

scheduled of a five operation process plan. As will be discussed in section 4A. 4, the last operation

may remain at the strategic level until after scheduling decisions have been made on the other four.

Therefore, the temporal constraint on the last operation will take on at least four values which will

never be accessed by a scheduling agent. Additionally, late or early completions of any of the

other four operations may add to this figure.

4.3.6. Constraint Propagation Algorithm

The DAS constraint propagation algorithm differs from traditional algorithms in that it

intentionally performs apparently redundant propagations. As discussed earlier, this is required to

deal with incremental constraint retraction. The algorithm used in the initial implementation of

the CMS, in which each constraint is propagated throughout the complete plan regardless of its

133

current implications, is shown below in figure 4.9.

Procedure prop-l(op comp-co-t)
1. allowed-interval 4- nil

action 4- add or retwct as specified by comp-tand
2. opa 4- beforo(op)

if action - add
then allowed-interval F- calc-before(comp-court opx)
updatelegal-staits(opa action sauren allowed-interval)

3. opx +- aller(op)
if action - add
then allowed-interval t- talc-ater(comp-coal opx)
update-legal-swts(opu action source allowed-interval)

4, loop for opx in not-during(op)
do begin

if action - add
then allowed-interval 4-- tale-before(comp-conß opx)
update-legal-sta ta(opn action source allowed-interval)
if action - add
then allowed-interval a- tale-aftez(comp-tonst opx)
updatalegal-stacts(opx action source allowed-interval)
end

Figure 4.9

The procedure PROP-1 is given as arguments an object representing an operation, Op, and a

component constraint. Op is the operation receiving the component constraint The component

constraint is either of the form described in the preceding section or (Retraction, Source). The

latter form specifies the retraction of a particular source of constraint propagation. The source of

propagation specified in comp-const will affect the temporal domains (legal. starts) of related

operations. In step 2 the interval allowed in the temporal domain of the operation related to Op

by the before relation is calculated. The temporal domain of the operation is then updated, via a

call to function update-legal-starts. An active value is attached to the legal. starts slot of each

operation. When the legal. starts slot of an operation is updated a call is made to the attached

procedure, in this case PROP-1. In this way recursion is invoked via access-oriented

programming techniques. If the component constraint specifies a retraction, update -legal -starts

retracts the temporal constraint tagged by source. Step 3 deals with the after relation in a similar

way as step 2 deals with the before relation. In step 4 the not. during relation is elaborated as the

disjunction before OR after, ie: step 4 resembles the concatenation of steps 2 and 3.

The fact that this algorithm propagates constraints regardless of their current impact on the

constraint network gives rise to some concern about its applicability to very large constraint

134

networks. Within the exemplar site for DAS, the size of the constraint networks being propagated

over is sufficiently small for this not to be a major concern. However, a potentially more efficient

version of PROP-i may be encoded (PROP-2) in which propagation halts after the first unaffected

node is reached. A node is said to be unaffected by propagation if the change induced in the

internal representation of its temporal constraint has no effect on its external representation.

PROP-2 is modified such that the call update-legal-starts makes a call to PROP-2 if, and only if,

the legal. starts of the operation changes. Although this is likely to reduce the number of

constraint propagations performed, it is not necessarily more efficient. In fact, it introduces two

additional sources of computation. The first is a consequence of the fact that it is now necessary

to test the effect of a propagation at each stage in the process. The second occurs in the event of

a constraint retraction from a node. It is now necessary to determine if there are any propagation

processes which halted at this node earlier. If there are any, a further test must be applied to each

process in turn to determine if they should be re-initiated. When choosing between the two

algorithms it is necessary to consider the size of the constraint network, the cost of testing versus

the expected number of redundant propagations and the expected number of constraint retractions.

It is worth noting a few of the more significant implementation details of the CMS for the

sake of comparison with other constraint propagation algorithms. The first thing to notice is that

algorithms PROP-1 and PROP-2 are both recursive rather than iterative. Traditional constraint

propagation algorithms (eg. the algorithm shown in figure 4.4) are iterative in nature and

concentrate on maintaining a list of relations which are waiting to be updated. This list grows and

shrinks as it is processed during propagation. Within DAS, object-oriented and access-oriented

programming techniques have been utilised to provide a simple implementation of PROP-1.

Within this implementation it is not necessary to explicitly maintain a list of pending relations.

Representing each node in the network as an object and attaching a demon (active value) to the slot

on an object representing its domain is sufficient to ensure that all relations requiring modification

are modified. The simplicity of this technique is extremely valuable when implementing, testing

and extending the constraint propagation mechanism.

135

4.3.7. Complexity Analysis

It has been stated that the CMS of DAS can determine consistency of a constraint network

containing disjunctive constraints in polynomial time. This section presents an analysis of the

performance of the PROP-1 algorithm to show that it does achieve consistency in time polynomial

with the number of nodes in the network. Like Mackworth and Freuder in [Mackworth et al '85],

the time unit used as a measure of complexity is the application of a unary or binary predicate.

The CMS, following the advice of Rit [Rit '86], enumerates disjunctive constraints and

determines consistency using an arc consistency algorithm. Although the statement made by Rit is

strictly speaking correct it may be somewhat misleading. It does not describe a technique for

determining consistency in general constraint networks containing disjunctions in polynomial time.

It simply means that consistency can be achieved by invoking a polynomial arc consistency

algorithm on the various linear portions of the network generated by the enumeration. The

problem remains combinatorial because the number of enumerations required to remove disjunctive

constraints remains exponential. Therefore, the following analysis of PROP-I can show

polynomial performance for no more than a restricted class of constraint networks. As the

networks being discussed increase in complexity so too does the measure of their computational

complexity.

Traditionally, network consistency algorithms have been used to pre-process constraint

networks before backtrack search is applied. However, it is intended that the constraint

propagation algorithm of the CMS be used alternately with variable instantiation, ie: a scheduling

decision is made followed by constraint propagation followed by a scheduling decision and so on.

The importance of the distinction here is that any analysis of PROP-1 should take cognisance of its

ability to determine consistency within a constraint network incrementally, rather than always

starting anew. Most constraint propagation algorithms start by placing all the relations of the

network into a queue of relations waiting to be checked. In the worst case scenario, this does not

introduce an inefficiency as all relations of the network must be updated. However, in any other

136

situation this approach necessarily leads to the redundant testing of unaffected relations. Because

PROP-1 is intended to be used incrementally, it initially tests only those relations involving the

node immediately affected by the unary constraint which has been modified, thus initiating

constraint propagation.

Before embarking on an analysis of PROP-i, it is appropriate to highlight two significant

points. The first is a feature of the domain (temporal constraint propagation) in which the CMS

operates and the second an important implementation detail. Within the CMS it is possible to take

advantage of the strict ordering of values in a node's domains to achieve a figure of one predicate

application per relation propagated over. For example, if nodes A and B are related by the before

relation and A is given an end time of 10, it is not necessary to test each value in the domain of B

individually to determine whether it should be removed or not. It is sufficient to remove all the

values to the left of 10 in the domain of B. his holds for constraint networks representing non-

linear process plans if the various intervals representing a disjunctive constraint are ordered

numerically.

The second point, an implementation detail, concerns how constraints are propagated over

operations related by the not. during relation. Consider the portion of a constraint network shown

in figure 4.10, in which OpB and OpC are related by the not. during relation and OpD is related to

both by the after relation.

B

AjD
C

Fywe 4.10

The act of giving OpA a start time causes a new constraint to propagate directly to OpB and to

OpC. Both constraints will further propagate to OpD. However, the two constraints which arrive

at OpD are equal, and therefore only the first to arrive will propagate further. They are equal

because the calculation which determines the constraint to be added takes cognisance of the

137

duration of other operations related by the not. during relation. However, it should be noted that if

propagation is initiated at a disjunction, redundant component constraints will be propagated. For

example, if OpB is given a start time, the component constraint which is propagated directly to

OpA may not be equal to the one which arrives via OpC. Consequently, both component

constraints will be propagated further.

In the diagrams which follow, a dotted line denotes the disjunctive not-during relation. The

integer beside a node indicates the number of component constraints added (predicate applications)

to that node in response to the constraint propagation initiated at the node marked with an arrow.

The total number of component constraints added throughout the network is used as a measure of

computational complexity, C. For each case considered C is described in terms of n, the number of

nodes in the network.

I111

e) n=5 ; C=4

11

b)
12121

n. 10; C- 11

11

22
242222

c) O-O n= 10; C=20

2

Figu, e 4.11

The simplest case is the linear network shown in figure 4.11 (a), for which C-n-1. Each

node to the left of the source receives one component constraint via the before relation and each to

the right receives one via the after relation. The next case, a network containing non-linearities is

shown in figure 4.11 (b). A redundant component constraint is propagated for every disjunction in

the network. However, as discussed earlier, the redundant component constraint is not propagated

138

further, giving a value of (n - 1) + the number of disjunction for C. This analysis is only correct

if the propagation was not initiated at one of the disjunctions. Figure 4.11 (c) shows an example

in which propagation is initiated at a disjunction. In this case, redundant component constraints

are propagated further, resulting in a value of 2 {(n - 2) + number of disjunction} for C.

This analysis does not take account of networks with adjacent non-linearities, shown in figure

4.12 (a), or non-linearities involving more than two nodes shown in figure 4.12 (b).

22
2242

e) a--O O-O n=8; C= 16

2

D) n=7; C= 16

Figure 4.12

It is possible to extend the analysis to cater for such networks. It is obvious however, that such

extensions will increase in complexity as the degree of non-linearity allowed in a network

increases. Unfortunately, the task of determining consistency in the general case remains

exponential. On a more positive note though, the ability to inhibit duplicate propagations does

help to reduce the exponential effect in networks which are only "slightly" non-linear. This may

be sufficient for many applications, Alcan Plate at Kitts Green for example.

4.4. Conflict Resolution Mechanisms

Realistic scheduling problems are fraught with conflict for a variety of reasons. Executional

uncertainty, conflicting scheduling objectives and poorly specified problems are only a few of the

factors which make conflict an inevitable feature of schedule generation and maintenance. The

a

139

CMS, discussed in the previous section, plays an important role in the handling of conflicts by

highlighting areas of conflict within the schedule. This section discusses the mechanisms available

to alleviate identified conflicts.

Conflict resolution within DAS is built upon three basic principles. The first is that the

action appropriate to resolve a particular type of conflict is independent of whether the conflict

occurred during schedule synthesis or as a result of executional uncertainty. That is, exactly the

same conflict resolution mechanisms are invoked in both cases. The second basic principle is that

conflicts should be dealt with as locally as possible. This is in the interests of computational

efficiency and is consistent with the analogy drawn between the DAS architecture and traditional

idealised management structures. The third basic principle is that the course of action most

appropriate to alleviate a given conflict can only be determined accurately by analysis of the origins

of the conflict.

4.4.1. Operation Priority

The ability to recognise areas of high contention within a schedule is essential to the

effective focusing of problem-solving effort. Intuitively, it is those areas of a schedule which are

highly contended which should receive most effort. Having expended effort both in the

identification and subsequent resolution of a conflict it seems appropriate to protect that investment

of effort. On the other hand, it is not appropriate to cast any particular solution in stone, as

subsequent events may render that solution invalid. DAS has an operation priority mechanism,

integral to conflict resolution at all levels in the hierarchy, which addresses both these concerns.

All operations introduced into the current scheduling problem are initialised to have a priority

of zero. During the course of schedule synthesis or maintenance, any operation which is found to

be in conflict has its priority incremented by one. In this way the priority of an operation acts as a

measure of the degree of difficulty experienced in arriving at a particular scheduling decision. The

quality of this as a measure of difficulty is dependent on the amount of effort expended in

140

determining which operations are actually involved in a conflict. How this is utilised to protect

partial solutions while retaining a degree of flexibility is discussed in the following sections.

It may be of interest to note that this was not the first attempt at a solution to the problem of

protecting expensive scheduling decisions. Initially, priority was associated with resources rather

than operations. This is an appropriate method for measuring the degree of difficulty of

scheduling decisions only if all the operations at the resource in question are involved in the

conflict which is giving rise to increased priority. However, it is often the case that only a small

number of the operations within a given subproblem are in conflict, while decisions on the

remaining operations can be made with relative ease. The benefits of adopting the finer

granularity offered by associating priority with operations rather than resources will become

apparent through the following sections.

4.4.2. Operational Level

When change is introduced into the problem of an 0-agent, whether by execudonal

uncertainty or in the normal course of schedule synthesis, it attempts to reschedule without

affecting any other subproblems. If it can find a solution which satisfies the temporal constraints

acting on the new problem. it will not cause conflict elsewhere in the schedule. This is not to say

that it will have no effect on other subproblems. It may modify the temporal constraints acting on

operations in other subproblems while remaining consistent with existing scheduling decisions.

Any change to the temporal constraints of operations are made by the CMS, while the appropriate

0-agents are notified by lateral message passing. It is important to notify effected O-agents

because despite the fact that their existing solutions remain valid, the notified changes may effect

their ability to react to further change.

The priority of an operation is employed within the informal lateral communication between

0-agents to focus scheduling effort. The type of message used to communicate a change to the

temporal constraint of an operation contains a priority field. The value in the priority field

141

indicates the priority of the operation which has just been given a start time, i. e. the scheduling

decision which resulted in the modification message. The receiving 0-agent will only accept

messages concerning an operation if the message is of a higher priority than its effected operation,

or if the message relaxes the temporal constraint on the effected operation. In this way, problem-

solving effort is focussed on difficult areas of the schedule. For example, consider the situation in

which two 0-agents A and B are working on separate subproblems, both involving operations from

a common process plan. Assume that OpB has appeared in more conflict sets than OpA and is

therefore of a higher priority. It is possible that due to a lack of conflict, a scheduling decision

can be made on OpA quicker than on OpB, thus allowing O-agent A to dominate a portion of the

search space being investigated by 0-agent B. By allowing O-agent B to ignore constraining

messages about OpB from 0-agent A, 0-agent B can retain its solution space. When 0-agent B

eventually arrives at a scheduling decision on OpB, O-agent A must listen to the resulting message

and modify its solution to be consistent. At this point, the internal representations of both 0-

agents are consistent with the external representation.

The priority mechanism allows constrained areas of the schedule to dominate less constrained

areas. It does however remain flexible because operation priority is always used on a relative

basis. Thus, if a previously unconstrained portion of the schedule suddenly becomes highly

constrained, due to a machine failure for example, its importance may rise above that of an area

which previously dominated it. In addition to being flexible enough to cope with changing

conditions, the priority mechanism operates at a level of granularity which allows it to deal with

partial subproblem interaction. Had priority remained associated with resources, O-agent B would

be allowed to completely dominate O-agent A in the above example. This may not always be

appropriate because there may be other plans with which both 0-agents must deal and in which 0-

agent A has the more constrained operations.

The CMS helps in the identification of conflict by maintaining the temporal constraints

associated with operations in a consistent manner. However, it is the 0-agent, in the course of its

142

search for a solution that identifies operations which are in conflict as a result of their temporal

domains. Whenever an O-agent cannot find a solution to its problem, it does not simply fail. It

generates a conflict set, a subset of the operations in its problem which it currently believes cannot

be given mutually consistent start times. When an O-agent fails to solve its problem, it requests

help by messaging its superior T-agent, giving it this conflict set as part of the message. The

conflict set is a by-product of the mechanism used by the 0-agent to perform dependency directed

backtracking. Dependency directed backtracking requires that the constraints imposed on one

operation by another during the process of forward checking be recorded. Forward checking in

turn requires the O-agent to analyse the topology of the constraint graph of its problem, and apply

constraints accordingly. The way in which an O-agent analyses its constraint graph is discussed

more fully in [Burke et al '89].

4.4.3. Tactical Level

In the majority of cases, a T-agent is informed that a conflict is present within its sphere of

influence via a message from one of its subordinate O-agents. This message takes the form of a

plea for assistance by the 0-agent, in which it specifies a set of operations (a conflict set) which it

believes to be at the root of the conflict. Regardless of whether the conflict occurs as a result of a

poor tactical level scheduling decision, executional uncertainty or any other reason, the T-agent is

informed in exactly the same manner. As noted earlier, conflicts may be present in the problem

specification, in which case it would be better if a T-agent had the ability to detect conflicts prior to

delegation to the operational level. In fact, it would be more appropriate for the S-agent to detect

some built-in conflicts, such as process plans which have due dates preceding their release dates.

In the current implementation, conflicts are passed down through the hierarchy, recognised at the

operational level and thereafter contained as locally as possible. While this may be in keeping

with the traditional idealised management structure analogy, it is highly likely that scheduler

performance would be enhanced if an attempt was made to detect and resolve conflicts as early as

possible. However, despite the fact that the current implementation is not the most efficient

143

possible, it does demonstrate an ability to pass conflicts back to the level most appropriate for

conflict resolution.

On receiving a plea for help, a T-agent has two options available to it. It can either deal

with the problem itself or pass it up to the strategic level for resolution. In keeping with the

principle of localising conflict as much as possible, a T-agent will endeavour to resolve a conflict

itself if at all possible. The only local strategy available to a T-agent is one of load balancing,

that is to redistribute the work load amongst its subordinate 0-agents. Obviously, there is a danger

of falling into a "load-balancing loop" in which a T-agent repeatedly swaps work from one resource

to another, only to swap it back later attempting to resolve what it considers to be a new conflict.

As discussed in chapter 3, each T-agent has its own T-assistant. One of the tasks of a T-assistant

is to ensure that looping does not occur, and in fact to guide load balancing decisions. Whenever

a T-agent receives a conflict set, it informs its assistant of the conflict and asks for a list of possible

courses of action it may take to alleviate the conflict. Therefore, it is the T-assistant and not the

T-agent which performs conflict analysis at the tactical level. When queried in this way, the T.

assistant returns a list of actions in disjunctive normal form which it believes will resolve the

conflict. The actions specify either the retraction of certain operations to the tactical level with a

view to load balancing, modifications to the temporal constraints acting on certain operations or a

combination of both. Essentially the later type of action involves passing an operation to the

strategic level for temporal relaxation. The decision-making process followed by the T-agent

when selecting from the options available to it is a two-stage process. The first stage involves

invoking the locality principle by removing courses of action which require temporal relaxation of

an operation at the strategic level. The second stage involves selecting from choices which

involve only load balancing or alternatively, if all available options involve some temporal

relaxation, passing a set of options to the strategic level. If the T-agent must select from

possibilities involving only load balancing, the priority of the operations involved in the various

actions is used to discriminate between them. The combined priority of all the operations involved

in the execution of each option is calculated. The option with the lowest combined priority, and

144

hence "cost", is then selected.

In the course of conflict resolution the T-agent sends and receives a variety of messages.

The messages it may send are listed below.

<conflict>

A T-agent sends this message to an 0-agent to acknowledge that the O-agent is in a state of

conflict. This causes the O-agent to wait until it receives a <continue> message before

attempting to solve its problem again.

<help options>

Sent by a T-agent to the S-agent when it cannot resolve a conflict within its sphere of

influence by load balancing alone. The options field, provided by the T-assistant, gives the

S-agent a set of actions to choose from to resolve the conflict.

<continue>

Sent by a T-agent to an 0-agent. This causes the 0-agent to continue its search for a

solution.

Conflict resolution activity by a T"agent is always initiated by the arrival of a message from one of

its subordinate agents. The T-agent employs the suite of messages listed above when dealing with

a conflict. The various messages a T-agent may receive notifying it of a potential conflict

situation are listed below. The action taken in response to each message is also given.

<impossible conf-set>

Sent by an O-agent to notify its superior that it has one or more operations, specified by

conf-set, with a null temporal domain. The T-agent responds by putting the appropriate

.f
list, incrementing the priority of the operations in the conf-set and resource in the res-in-con

asking the S-agent for assistance. Messages are sent to the S-agent only for those operations

which are not already in the conf-ops list.

<quantum conf-set>

Sent by an O-agent to its superior when it has expended a pie-specified amount of search

145

effort. The T-agent checks to see if the subordinate has used up all the quantums it is

allowed on its current problem. If not, it sends the subordinate a <continue> message. If it

has, it sends it a <conflict> message, adds the resource to the res-in-conf list, increments the

priority of the operations identified in the conf-set and makes a call to DEAL-WITH-

CONFLICT. This last action is the one which attempts to resolve the conflict. It involves

passing the conflict set to the T-assistant and querying it for a set of options which may

resolve the conflict. The T-agent must then select an option and implement it.

<exhausted conf-set>

The O-agent sends this message when it has, through exhaustive search, established that there

is no solution to its current problem. The T-agent responds by sending it a <conflict>

message, adding the resource to the res-in-conf list, incrementing the priority of the

operations identified in the conf-set and calling DEAL-WITH-CONFLICT.

ae1axed op; >

Sent to inform the T-agent that an operation within its problem is part of a process plan

which has had its due date relaxed. In effect, this means that op, has been removed from

the T-agent's problem. The T-agent responds by removing op; from its internal

representation, including its T-assistant. It then asks its T-assistant if the relaxation has

helped any of its subordinates which are currently in a state of conflict. If so, it sends

<continue> messages to the appropriate 0-agents.

<undone op; >

Sent to notify the T-agent that one of its operations has been withdrawn to the strategic level

in attempt to resolve a conflict. The T-agent's response is exactly the same as its response

to the <relaxed opi> message. That is, both messages could be replaced by a single

message.

<benefitted opi>

Sent to inform the T-agent that opi has been significantly temporally relaxed in an attempt to

146

resolve a conflict within its problem. The T-agent must remove the operation from its conf-

ops list and notify its T-assistant. Having done this, it then asks its T-assistant if the

relaxation has helped any of its subordinates which are currently in a state of conflict. If so,

it sends <continue> messages to the appropriate O-agents.

4.4.4. Strategic Level

Like the T-agent. the S-agent is informed of the presence of a conflict by one of its

subordinate agents. A T-agent asks for assistance from the S-agent by sending it a message

detailing the alternative courses of action which its T-assistant has advised may resolve the conflict.

The various options specified consist of requests for the temporal relaxation of one or more

operations. The S-agent can achieve temporal relaxation of an operation in one of two ways. It

can either invoke inter-agent backtracking, ie: have one O-agent undo a scheduling decision in

order to benefit another, or perform due-date relaxation, in which case an order is allowed to run

late. It is considered appropriate to send conflicts requiring temporal relaxation to the S-agent

because it is necessary to consider whole process plans in order to make intelligent relaxation

decisions. Only the S-agent has access to complete process plans.

Given a choice, the S-agent always selects a course of action in which it can achieve all

necessary temporal relaxations by inter-agent backtracking rather than by due-date relaxation.

This is consistent with the view that conflicts should be contained as locally as possible. If the S-

agent is left with no option other than due-date relaxation, it is required to modify the problem

specification. Modifying the problem specification may allow the conflict to influence decisions

beyond the scope of the scheduling problem Containing conflicts at this level is obviously more

than just a matter of computational efficiency, but rather concerns the whole subject of schedule

acceptability.

As is the case with the other agents in the hierarchy, the S-agent must analyse the cause of a

conflict before deciding on a course of action to resolve that conflict. Initially it must determine

147

whether or not inter-agent backtracking is appropriate, and if it is, which decision within a process

plan it should undo. Inter-agent backtracking involves two operations from the same process plan,

one of which has been identified by a subordinate T-agent as being in need of temporal relaxation.

Whenever a scheduling decision on an operation is undone during inter-agent backtracking, the

operation in question has its start time removed and is retracted to the strategic level until such

times as the relaxed operation is actually scheduled. The S-agent must consider two factors when

deciding whether or not to invoke inter-agent backtracking. Firstly, it must consider the relative

difficulty experienced in making each decision in the plan, and secondly, it must consider the

temporal constraints acting throughout the plan.

A measure of the difficulty experienced in making each scheduling decision in a process plan

is given by its associated priority. Therefore, it seems reasonable that only decisions on operations

of a lower priority than the one requiring temporal relaxation should be considered as candidates

for being undone. Also, the position of an operation within a process plan can exclude it from

being a candidate for inter-agent backtracking depending on the priority of it and other operations.

This is shown by example in figure 4.13.

A

Pr=3 Pr-5 Pr-t

Figure 4.13

In the linear process plan above, if OpA is in conflict, it would be possible to undo the scheduling

decision on OpC. However, this cannot result in the temporal relaxation of OpA because, due to

the high priority of OpB, its decision cannot be undone to benefit OpA. Having removed candidate

operations which are of a higher priority than the operation to be relaxed, and others which offer

no hope of temporal relaxation because of their position with respect to such high priority

operations, the S-agent next considers the impact of each remaining candidate on the temporal

domain of the operation in conflict. This is made possible by the maintenance of a dual

148

representation of the temporal constraint acting on an operation as described earlier. The S-agent

elects to undo the decision which will result in the greatest relaxation on the temporal domain of

the operation to be relaxed.

Inter-agent backtracking effectively imposes an ordering on decision-making through part of a

process plan by allowing a decision to be made on one operation, and its effects propagated, before

a decision on another. As is the case with load balancing, there is a danger of entering into an

infinite loop in which the S-agent undoes a decision on one operation to benefit another, only later

to repeat the process in the opposite direction. In order to inhibit looping, the S-agent must record

the decision-making sequencing enforced as a result of inter-agent backtracking. This record of

previously enforced decision-making sequences is inspected by the S-agent when considering inter-

agent backtracking to ensure that it does not repeat a decision which was enforced earlier and has

apparently failed. If at any point in the process of eliminating candidates for inter-agent

backtracking there are no remaining candidates, the S-agent concludes that the process plan in

conflict cannot benefit from inter-agent backtracking and resorts to due-date relaxation.

Due-date relaxation is the ultimate weapon available to the S-agent. It guarantees that DAS

will find a solution, if not to the precise scheduling problem presented to it, then at least to a very

closely related problem. If due-date relaxation is to be an effective conflict resolution mechanism

in all situations, it must involve significantly more than a simple extension of the due date on a

process plan and propagation of the effects. Certainly, this would be sufficient in some instances,

but as in the inter-agent backtracking example of figure 4.13, the position of an operation in a

process plan may inhibit this from being an effective solution. For example, extending the due

date of the process plan shown in figure 4.14 has no impact on the temporal constraint of OpB as

long as OpC remains scheduled.

149

OpA (Dur. S)

6

OpB (Dur=3)
5 11

OpC (Dur-4)
14 17

Figwe 4.14

What is actually required is that all the operations in the process plan be unscheduled and

subsequently re-scheduled in left to right order through the process plan. In the case of non-

linearities, an arbitrary decision-making sequence is enforced. The same decision-making

sequencing mechanism as is used within inter-agent backtracking is employed to guarantee the

required left to right sequencing.

There is naturally concern over the degree of tardiness of an order which has had its due dace

relaxed. This is particularly true when the due date constraint in question has effectively been

removed from the scheduling problem, rather than incrementally extended. This would appear to

give 0-agents operating a JIT strategy a license to schedule relaxed operations some time very far

into the future. To counter this possibility, the S-agent associates a selection strategy of earliest

dispatch with each operation in a relaxed process plan. This selection strategy overrides the

selection strategy currently active at the resource to which an operation is delegated, thus ensuring

that such orders are completed in reasonable time.

Like the T-agent, the S-agent employs a variety of message types during conflict resolution in

order to coordinate its activity with other agents. The messages it may receive inform it of the

existence of conflict or of progress towards conflict resolution. They are listed below.

<dec-cancelled op; >

The S-agent updates the appropriate entry in the startedplans list.

150

<dec-made op; >

The S-agent updates the appropriate entry in the startedplans list and delegates any operation

released by this decision to the tactical level.

<help options>

The options field, provided by the T-assistant, gives the S-agent a set of actions to choose

from to resolve the conflict. The S-agent must decide which of the options to implement

and then implement it.

Messages are sent to subordinate agents informing them of the actions taken by the S-agent in an

attempt to resolve current conflicts. The messages which may be sent are listed below.

<relaxed op, >

Sent by the S-agent to inform one of its subordinate T-agents that an operation within its

problem is part of a process plan which has had its due date relaxed. In effect, this means

that op; has been removed from the T-agent's problem.

<undone op, >

Sent by the S-agent to notify the T-agent that one of its operations has been withdrawn to the

strategic level in an attempt to resolve a conflict.

<benefitted op; >

Sent by the S-agent to inform a T-agent that op; has been significantly temporally relaxed in

an attempt to resolve a conflict within its problem.

4.5. Predictively Coordinating Problem-Solving Effort

Throughout this thesis it has been stated that due to the dynamic nature of the target

environments, DAS is primarily a reactive scheduler and that problem-solving effort should be co-

ordinated opportunistically. However, it is also recognised that if an investment is made in some

top-down predictive effort, there may be a resulting improvement in computational efficiency when

generating rather than maintaining schedules. Additionally, it may also have a positive effect on

151

the quality of the schedules produced. Because DAS has evolved in a bottom up manner to

specifically address reactive issues, much of the work discussed in this section could equally well

appear in the future work section of chapter 6. Nevertheless, it was considered appropriate within

this chapter to give a brief overview of the features available within DAS which may be utilised in

a predictive role.

4.5.1. Strategic Level

Perhaps it is at the strategic level, where the problem is fairly abstract and correspondingly

static, that predictive techniques can be applied to greatest effect. This investment in "top-down

effort" could take the form of both attempting to detect conflicts as early as possible and, taking an

aggregate view of the problem in order to detect trends within the job set. For example, the S-

agent could fairly easily be modified to detect items of work which cannot possibly satisfy their

due date constraint. Having identified such orders, the S-agent can perform due-date relaxation

immediately, thus avoiding the computationally expensive process of delegating work down through

the hierarchy only to have it passed back up for the inevitable relaxation.

The improved performance made possible by the early detection of obvious conflicts such as

extremely late jobs may appear relatively small when set against the potential savings offered by

tuning the DAS hierarchy to its job set. DAS has several features which are currently configured

reactively, but which could be configured predictively in order to tune it to its job set. Some of

the features available for tuning DAS include forcing a decision-making sequence onto a plan, the

selection strategy of an O-agent, the selection strategy of a T-agent and the look-a-head facility of

a T-agent. However, it is not clear that the predictive techniques required to tune DAS to its job

set are either available or computationally cost effective.

Assuming that the required predictive techniques do exist, consider the following possibilities.

An aggregated analysis of the scheduling problem may identify several bottleneck resources or

perhaps that the manufacturing facility as a whole is overloaded. In the later case, the S-agent

152

may decide to relax the due date constraint on an appropriate proportion of the job set, rather than

wait for the inevitable requests for assistance from subordinate agents. In the former case, the S-

agent may choose to ensure, via decision-making sequencing, that bottleneck resources are

scheduled before non-bottleneck resources. Before allowing the S-agent to take such action, it

would be necessary to have a high degree of confidence in the results of the aggregate analysis.

4.5.2. Tactical Level

At the tactical level, T-agents could also provide enhancements to the efficiency of DAS if

they were to analyse their tasks with a view to early conflict detection. For example, if a T-agent

could detect a general overloading within its sphere of influence, it could select work to pass back

to the strategic level for temporal relaxation without involving the operational level in an expensive

conflict detection and analysis exercise.

The current implementation of the T-agent does perform some predictive analysis of its

problem with a view to saving computational effort. As described earlier, a T-agent considers the

existence of idle periods due to lack of labour or machine failures at its subordinate 0-agents and

the temporal constraints acting on its operations before making a delegation decision. This

decision is geared to avoiding conflict at the operational level.

4.5.3. Operational Level

The scheduling subproblems which reside at the operational level are extremely dynamic and

therefore have less to gain from predictive analysis than at other levels. Perhaps the most

appropriate form of pre-analysis at this level is one which can determine problem feasibility. This

could save the 0-agent from expending a great deal of effort searching for a non existent solution.

The current implementation of the O-agent does perform some primitive pre-analysis of this type.

This is fully reported in [Burke et al '89].

CHAPTER 5

Case Analysis of DAS

S. l. Introduction

It has been stated that DAS views the tasks of schedule creation and maintenance as being

essentially the same. It has also been stated that DAS provides mechanisms capable of managing

problem-solving effort effectively in both situations. This chapter substantiates these claims

through a series of examples. The following section discusses the issue of schedule creation

versus schedule maintenance, and shows them to be the same within DAS. Section 5.3 contains

examples demonstrating the various forms of reaction available to DAS whenever change is

introduced into the current global hypothesis. The final section describes the scheduling process

and shows, again by example, the flexibility of a distributed asynchronous approach during

schedule synthesis. Collectively, the examples demonstrate an ability to manage problem-solving

effort opportunistically.

5.2. Schedule Creation Vs. Maintenance

The scheduling problem has traditionally been viewed as a predictive task. Recently it has

been recognised that there is a need for a reactive capability to repair predictively generated

schedules in the face of executional uncertainty. More recently, there has been a great deal of

interest in integrating predictive and reactive scheduling techniques. Alternatively, scheduling can

be viewed as a problem of continuous reaction. This view is supported by the fact that a schedule

is rarely created from an initial condition where all resources are available and the complete job set

has been identified. It is more common for work to be on-going with new work being introduced

into an existing schedule. In the later case, the introduction of new work becomes merely another

source of reaction. Within such a scenario, schedule generation can be viewed as a series of

153

154

reactive events executed in order to maintain an existing schedule. DAS holds this view, a fact

highlighted by the inclusion of Introduction of new work in the list of events requiring reaction

given in figure 5.1.

Events Requiring Reaction
Las Compldiou of Work
Ea1y Completion of Work
Introduction of New Work
Introduction of Maintenance
Madtine Failure
Lana of Labour

I gun 3.1

Of the six events listed, two take the form of modifications to the temporal constraints of the

operations involved, while the other four appear as new operations. Both the late and early

completion of a work item have an effect on the temporal constraints of other operations in the

same process plan. The former case represents a possible conflict situation whereas the latter

represents an opportunity. The other four events requiring reaction are modelled by the

introduction of an operation to the tactical level. The only difference between the way new work

is introduced into the schedule and the way the other three sources of reaction are introduced is the

level at which they enter. New work is introduced to the tactical level by the S-agent, whereas the

other types of operation are added directly into the tactical level.

5.3. Reactive Strategies

The fundamental principle behind the mechanisms used to manage problem-solving effort in

DAS is that effort should be focused on a problem only to the degree required by the scale of that

problem. The decision to associate priority with individual operations rather than resources is a

prime example of this philosophy. Whenever DAS reacts to a change in the global hypothesis, it

does so in a manner which attempts to ensure that the impact of the change is localised as much as

possible. DAS employs four reactive strategies to achieve this. In order of severity they are,

local rescheduling within a resource, load balancing between similar resources, inter-agent

backtracking within a process plan and finally due-date relaxation of an order. A particular

reactive strategy is only invoked to solve a problem after all less severe strategies have failed.

155

The examples which follow combine to demonstrate the use of each of the four reactive

strategies. Two forms of diagram are used for clarification. The first represents a partial schedule

at an operational resource and the second, the partial schedule on the process plan of an order. In

both cases each operation in the diagram is represented by two boxes; a grey box indicating the

temporal domain (legalstarts) of the operation and a black or white box corresponding to the

operational level scheduling decision on the operation. A white box signifies that no start time has

been allocated to the operation, while a black box signifies that a decision has been made and that

the box is aligned with the x-axis (time) accordingly. When an operation is reported as being

complete, it's associated black box turns grey in colour. In the diagrams representing a partial

schedule at a resource the names of the operations in the diagram appear at the appropriate point

on the y-axis. The y-axis of a process plan diagram is used to identify processes, some of which

may not be present within a particular plan, rather than particular operations. In both cases the x-

axis represents time, with partial schedule diagrams having an additional summary line. Black

areas on the summary line represent periods of time when the associated resource is in use.

Example 1

This example demonstrates both local rescheduling and load balancing. Figures 5.2 (a) and

5.2 (b) show partial schedules on resources ultrasonic. scanner. 1 and ultrasonic. scanner. 2

respectively. The resources are similar in that the work on one could equally well be done on the

other.

tu4IU4 tUs. I
LISCU3u. vs.

Luauuun. M

Al 1'4 11N
1! OCTOUIZ as

tu4ix3lave.
tuuuýtan. M
t: 441u30? U$. 1

iI 13 ti 2A I 13 tO
1

is OCTOfl= Is

gum 5.2 (1) Fgum 3.2 (b)

156

Both diagrams, 5.2 (a) and (b) contain operations from non-linear process plans. The

operations in question, L254126324. US and L254125151. US from 5.2 (a) and operation

L244126307. US from 5.2 (b) can be identified by the disjunctive nature of their temporal domains.

A vertical dotted line in the temporal domain of an operation, eg. L254126324. US and

L254125151. US from 5.2 (a), indicates that this portion of the domain is one time unit wide.

The first step of this example is to disrupt the existing schedule by introducing a requirement

for maintenance on ultrasonic. scanner2. The maintenance period is to last an estimated twenty

four hours and be scheduled to start some time between 18: 00 and 23: 00 on the 18th of October.

This requirement is represented by a maintenance operation with the appropriate temporal and

technological constraints. The T-agent responsible for the ultrasonic scanners delegates the

maintenance operation to ultrasonic. scanner. 2. As can be seen from figure 5.3, local rescheduling

is sufficient to accommodate the disruption. All that is required is to reschedule operation

L254126358. US within its existing temporal constraints. By remaining within the existing

temporal constraints the new scheduling decision cannot possibly invalidate any existing decisions

at other resources.

MAXNTENANCE
L2$41U150. Ui
L2S412411(US.

. Z$41U2$?. Ug.
L2N1U30f. U$.

SUMMARY

1l 3ý tl 3t

to ocroeit is

Figure s. 3

The second step of the example is to further disrupt the current hypothesis by reporting that

resource ultrasonic. scanner2 has failed, and that the task of repairing it is expected to take four

hours. This is represented by the introduction of a repair operation of appropriate duration and a

single point temporal domain. It has a single point temporal domain to represent the fact that the

start time of the resource failure is not negotiable. Unfortunately, in the face of this second

157

disruption there is insufficient room to manoeuvre within the subproblem at ultrasonic. scanner2 for

local rescheduling to succeed. However, it is possible to contain the disruption within the

ultrasonic scanning area of the factory by performing load balancing between the two ultrasonic

scanners. This is demonstrated by figures 5.4 (a) and 5.4 (b).

L244126301. Ui. " Il
ALPAILUl. 2 "

L2s, 1u406. US. MAUTMANCE
L2S412i323. U$. L2S4IU35L. U$.
L2S*12i321US. I

L234IU314. Ut.
L2S412S151. U$. QM

L2SI12629f. U:.

I1N" t3 A Ný
II

I L' 'N
1! OCäODit 2" s1 1ý

to OCTOBER as

Figure 5.4 (a) Figure 3.4 (b)

In fact all that is required is to move operation L244126307. US from ulrrasonic. scanner2. to

ultrasonic. scanner. l, thus containing the problem. In addition to altering its operational resource,

operation L244126307. US has also had its start time modified. However, the new start time falls

within its existing temporal constraints, thus leaving current scheduling decisions at other resources

in tact.

Example 2

This example concentrates on the reactive strategy of inter-agent backtracking within a process

plan. In the example which follows it is invoked to resolve a conflict caused by the late

completion of an operation. It could equally well be invoked to resolve a conflict caused by the

introduction of new work, loss of a resource or any of the other events listed in figure 5.1. The

process plan of lot L254145825 is shown in figure 5.5.

Curront
Tim

ANNEALING

STRCLQflNG
PR
USSCANN! NG
PWALEAWING

PACKING

l 21 13 li N 17 1" 24
1

I2
A

24 i 12 I 24 li 3 IY 2i
u OCTOSQ 21 OCTOR 21 OCTOBER 22 OCTOBER » 0CTOBZR 24 OCTOBER 25

Figure 5.5

158

Figure 5.5 shows the lot to be completely scheduled and due to complete almost five days ahead of

its required due date. Despite this "slack" in the plan, it is obvious that the decision on the start

time of the final sawing process is susceptible to executional uncertainty. That is, operation

L254145825. FINALSAWING has a single point temporal domain leaving no opportunity for a

reschedule within the existing temporal constraints if required.

To demonstrate inter-agent backtracking, operation L254145825. P/T is reported to complete

one hour late. This has the effect of leaving operation L254145825. FTNAL. SAWING with a null

temporal domain, and hence in conflict. The 0-agent responsible for operation

L254145825. FINAL. SAWING can notify its superior T-agent of the conflict immediately because

due to the existing temporal constraints, ie: a null domain on operation

L254145825. FINAL. SAWING, the 0-agent cannot possibly resolve the conflict by local

rescheduling. In this instance technological constraints prevent the T-agent from resolving the

conflict by load balancing. The only option in such a case is to relax the temporal constraints

acting on the operation in conflict, operation L254145825. FINAL. SAWING. This can be done

either by inter-agent backtracking or due-date relaxation. Inter-agent backtracking is preferable,

and from the diagram of figure 5.5 looks likely to succeed. Unfortunately, the diagrams generated

to record the completion of an operation are potentially confusing. The black box used to identify

the start time and duration of an operation changes colour to grey indicating that the operation has

been completed. However, the grey box does not maintain a position which indicates when the

operation was processed. Instead it reverts to the position it would occupy if it had not been

159

scheduled at all, ie: the left hand side of its temporal domain. Despite this, the grey boxes used to

represent the temporal constraints acting on operations remain accurate. Figures 5.6 and 5.7

contain operations which have been completed.

c rr. M
Ti-

ANNEALING

STRETCHING
PIT
USSCANNING
PINALSA WING
PACKING tw

'ý"
12 OCTOBER

N
as OCTOBER

.
7.21

`OCIOLftt N
22 OCTOBER 23

`OCI
OCTOBER 24

A

2S

FiQuro 5.6

The S-agent elects to undo the scheduling decision on L254145825. PACKING in order to relax the

temporal constraint on operation L254145825. FINAL. SAWING. Figure 5.6 shows the process

plan of lot L254145825 after both the stretching and precipitation treatment operations have been

completed (one hour late) and the S-agent has undone the scheduling decision on

L254145825. PACKING. This has significantly enlarged the temporal domain of

L254145825. FINAL. SAWING allowing it to be scheduled. Once the S-agent has been notified

that the final sawing operation has been successfully scheduled it allows a decision to be made on

operation L254145825. PACKING. Figure 5.7 shows the resulting process plan with both

L254145825. FINAL. SAWING and L254145825. PACKING having been rescheduled one hour

forward in time.

Curr. nt
TIM

ANNEALING

STRETCHING
P/T
USUCANNING
FINALSAWNG
PACKING

1 13 lý N6A 10 N1AAA16A 34 it 13 li 24
19 OCTOBER 31 OCTOBER 21 OCTOBER 22 OCTOBER 23 OCTOBER 24 OCTOBER 25

Figure s. 7

160

Example 3

Example 3 demonstrates both load balancing and temporal relaxation. The temporal

relaxation performed includes due-date relaxation. Figure 5.8 shows the partial schedule on

furnace. h, a batching resource, at the start of the example. It is legal for L234123211. P/T and

L254126314. P/T to share the same start time because furnace. h is a batching resource . However,

operations sharing the same start time must be capable of having the same duration. That is, one

of L234123211. P/T and L254126314. P/T may have had its duration extended to permit batching.

This fact is reflected in the temporal constraints acting on other operations in the same process

plan.

L234123211. P/f
L2341232211/T r�.. "
L244124 32Jfr yh
L244124101JR
L2J41263 t4. P/T
L2J412i32U. PfT

SUMMART

"6 12 14 24 6 12 19 24 6 12 18 24 6 12
to OCTOHI 2$ OCTOBER 21 OCTO

Figure 5.8

Initially, it is assumed that furnace. h is manned twenty four hours a day. Introducing a

"nine to five" work pattern on furnace. h causes a major disruption to the existing schedule. In

fact, because an operator is required throughout the precipitation treatment process, none of the

work currently scheduled on furnace. h can be performed with the new manning level. That is,

local rescheduling failed. Fortunately, it is possible to redistribute all the displaced work onto two

similar resources furnace. n and furnace j. The resulting schedules on furnace. n and furnace j are

shown in figures 5.9 (a) and (b) respectively.

161

L24412 301PfT
L2S41243l4. P/Y
L24 IZ4 32P T w"
L2S412 S20. P/f
L234123211PR
L2MUNüP/! I

L2341231SIP/T I

L2SII2N00P/! I

"" 13 liN L
71-17,21.7

u OCTOBER as

Figure 3.9 (a)

Li14t2SU"fr
L23112p3$IIT
LUS4t43u21, P, r

"{ lý li 2" 12 li N" 13 4
is ocroRQ as ocroslt

Figure 3.9 (b)

In order to force due-date relaxation, further disruption is introduced to the current hypothesis

by requiring maintenance work on furnace. n. It is specified that furnace. n be maintained. a task

expected to last four hours, starting some time between 16: 00 and 18: 00 on the 18th of October.

Once again this is represented by introducing a maintenance operation into the subproblem at

furnace. n. The resulting schedules on resources furnace. n. furnace .j and furnace. h are shown in

figures 5.10 (a), (b) and (c) respectively. In figure 5.10 (c) the vertical grey bands identify the

periods during which the resource is unmanned.

L25412 lS1. P/T
MADrftNASCE p.

LZ"1246$2. r/T
L23N2472"/f

SUMMARY
41! N" 13 AA1

to OClODLZ as OCTO

Spre 5.10 (a)

L244tU307DR
L24Il0346ODR o-ý

L2S41U314. PR m, p, a al
L2241232W/r nnM uu, uýrhNli
tssuuuIPft
tisau12&PIT

" 13 fi 2. A 13 Il 24 { 13 Il 24
1! OCTOBER 21 OCTO$LI

Figure 5.10 (b)

162

Figum 5.10 (c)

Out of all the operations on furnace. n before the introduction of the maintenance period, only two

L244124632. PIT and L254126324. P/T retained their existing scheduling decisions. For the

remainder, local rescheduling and load balancing proved unsuccessful, leaving temporal relaxation

as the only option. For some, inter-agent backtracking provides sufficient temporal relaxation to

resolve the conflict, but for others due-date relaxation is necessary. For example, it was necessary

to relax the due date constraint on lot L254126406 in order to reschedule operation

L254126406. P/T. The resulting process plan is shown in figure 5.11.

, Plan of Lot L254126406

CWIW&
Tim.

ANNEALING
STRrTCMNG
PIT Id . iAi MA t Pml

USZCANNING m'" m" "' . ný j'j

? INAttwwwG Iý

PACKING 77 -

I 'T lý iý 11 34 2 13
A

i. i 13 to N14 21 1 1" 24 11N
1! OCTOBER "OCTOBER 21 OCfODER 22 OCTODER 23 OCTODER 24 OCi'OSER 2S

Figure S. 11

The process plan of L254126406 exhibits the consequences of due-date relaxation. There is no

longer an effective due date constraint acting on the plan and all the operations are scheduled as

early as possible. In addition to this it is necessary to sequence decision-making from left to right

through the process plan to guarantee successful conflict resolution. It is not clear from the

diagram whether a decision was taken on operation L254126406. P/T or operation L254126406. US

first. Either can be the first operation in this process plan, and both have been prevented from

163

being scheduled as early as they might be by other constraints present at their operational resource.

Neither operation L254126406. FINAL. SAWING or L254126406. PACKING have been prevented

from being scheduled as early as possible by constraints at their operational resource, hence the

single point temporal domain of L254126406. FINAL. SAWING.

5.4. The Scheduling Process

This section is concerned with the asynchronous nature of decision-making within the

scheduling process of DAS. Having argued in favour of an asynchronous approach, a description

of the scheduling process is presented. This description pays particular attention to the progression

from asynchronous to synchronous decision-making as and when it is considered appropriate. The

examples of this progression which follow provide further demonstrations of the reactive strategies

discussed in section 5.3.

In keeping with the principle that problem-solving effort should only be focused on a

problem to the degree merited by that problem, DAS allows decision-making to occur

asynchronously unless it has learned of some reason to synchronise. That is, decision-making is

synchronised in an opportunistic manner. Initially it allows both inter-plan and intra-plan

decision-making to occur asynchronously, and only moves towards synchronisation if necessary.

In a distributed system this approach offers the opportunity of maximum concurrency in situations

where there is no underlying requirement for synchronisation. It also assists in the problem-

solving process by not enforcing arbitrary synchronisations which can make the problem to be

solved more difficult by adding artificial constraints. Perhaps more importantly, it acts as a source

of learning by allowing conflicts arising out of asynchronous decision-making to guide the search.

An asynchronous approach is also required to accommodate various scheduling horizons throughout

the hierarchy. It is necessary to permit inter-plan decision-making to occur asynchronously

because maintaining a variety of scheduling horizons may make it appropriate to only partially

schedule an order.

164

The scheduling of an order begins when it is introduced into the system at the strategic level.

The S-agent is notified and proceeds to delegate each operation in the process plan of the job to the

appropriate T-agents. Each T-agent then delegates its operation to a particular resource and

informs its T-assistant of this decision. This action of delegation generates a message which is

sent to the relevant 0-agent. On receipt of the message, the 0-agent attempts to introduce the new

operation into its local schedule. If it succeeds it writes out a start time for the operation. At this

point in the process there is no inter-plan or intra-plan decision ordering, ie: decisions can be made

asynchronously. If an 0-agent cannot produce a consistent schedule it generates an intra-resource

conflict set, a set of operations that the O-agent believes cannot be given mutually consistent start

times on its resource. This conflict set is sent to its superior T-agent who informs its T-assistant

of the conflict set. The T-assistant interprets this as a consequence of the delegations made to the

subordinate resource. The T-agent then asks its T-assistant for advice on what load-balancing

options remain. The T-agent acts on this advice by retracting operations from some resources and

delegating operations to others as appropriate. If there are no load-balancing options available, the

T-agent concludes that its problem is over-constrained and delivers an inter-resource conflict set to

theS-agent. The S-agent analyses the inter-resource conflict sets received from its subordinates

and decides upon a course of action. The selected action may be inter-agent backtracking,

constraint relaxation or a combination of both. Load balancing involves synchronising inter-plan

decision-making by allowing operations from one plan to be scheduled before operations from

another. Both inter-agent backtracking and due-date relaxation involve synchronising intra-plan

decision-making. Due-date relaxation requires complete synchronisation of decision-making

through a process plan, whereas inter-agent backtracking requires only partial synchronisation. An

example demonstrating opportunistic coordination of problem-solving effort, ie: the progression

from asynchronous to synchronous decision-making follows.

Example 4

When a process plan is first introduced to the strategic level, decision-making may occur on

the various operations within it, asynchronously of each other. In fact, decision-making may also

165

occur asynchronously with respect to operations of other process plans. This example

demonstrates an ability to move from asynchronous to synchronous decision-making as required by

the current problem-solving state. Figure 5.12 shows the process plan of order L254145825 before

any scheduling decisions have been imposed on it.

Currwnt
Time

ANNEALING b

STEMCHIN6
PR
U$ZCANNING
FINAL AWING
PACKING ..,...,.,,, ý.,,..... l,..,, .,.,,, ý... .

1 Ii 2L 11 l$ 24 ti 2 1! 2s t2 1"
21 OCTOBER 22 OCTOBER 23 OCTOBER

Figure 5.12

Figure 5.13 (a), (b), (c) and (d) trace the decision-making sequence of this plan. They show that

the final sawing process was scheduled, then the stretching process, then the precipitation treatment

process and finally the packing process. No decision ordering was imposed on this plan because at

the time the decisions were being made DAS had no reason to suggest that one ordering would be

better than another. The ordering which did evolve is a direct result of the speed with which the

relevant O-agents made their scheduling decisions. The speed with which an 0-agent makes a

decision is a function of many factors including its quantum, rest interval, difficulty of task. access

to the processor in a single processor system and the speed with which its superior T-agent

delegates the operation to it.

C-t
Tim

ANNEALING

STRETCHING
P/T
USSCANNING
FINALSAWING r
PACKING

Ill 214 A 1111
74

2tOarosnt 21OCTOBER 3304

cwrýt
Tim

ANNEALING

STzMCMN6
P! [
USECANNING
PINALEAW! NC 'U 7-71

PACKING

l 1ý 1 1% i. 1 13 II "a .
21 OCCOUEIt 32 OCTOBER 23(X

Figum 3.13 (a) Figure 5.13 (b)

166

Wrrmt
TIM

ANNEALING

STRETCHING
P/T Lý..... _T
USSCANNING
FINALSAWING

ý-ý---^. ý
PACKING Y.. il

1 li 22
Ll

t" 2s 1 10
714--l-

21 OCTOBER 23 OCTOBER 23 04

Figure 5.13 (c)

Curr"t
Tlw0

ANNEALING

STRETCHING
PR
USSCANNING
FINAL SAWING]
PACKING

i IT671 S1 10 24 1 t" 14 12 I"
21 OCTOBER 22 OCTOBER 23 OCTOBER

Figure 5.13 (d)

In many instances no synchronisation of decision-making is required to schedule a process

plan. However executional uncertainty and the introduction of new work may generate a

requirement for a degree of synchronisation. Throughout this example, decision-making on the

process plan of lot L254145825 will become progressively more synchronised. In figure 5.13 the

precipitation treatment operation of the plan is scheduled on furnace j. The introduction of new

work causes DAS to remove operation L254145825. P/T from furnace j and place it on furnace. n

(ie: load balancing). This is viewed as inter-plan synchronisation as a decision on an operation

from one plan is undone in order to allow a decision on an operation from another plan. Figure

5.14 (a) shows the plan after the precipitation treatment operation has been unscheduled from

furnace j and 5.14 (b) shows it after it has been rescheduled on furnace. n.

cvrr. t
Tim

ANNEALING
STRETCHING ai
PPT -7

USSCANNING
FINALSAWING
PACKING

li 18 24 t'! 16 2.
St OCTOBER 22 OCTOBER 33 OC

Figure 5.14 (a)

a.. ýc
ra.

ANNEALING
STRETCHING
PR
USSCANNING

PINALSAWING

PACKING

31 OCTOBER 22 OCTOBER 23 OCTOBER

Figure $. 14 (b)

At this stage in the example there is still no intra-plan decision-making synchronisation.

The next step of this example involves invalidating the schedule shown in figure 5.14 (b) by

causing a disruption, at the resource of operation L254145825. PACKING. An artificially severe

167

disruption was introduced for the sake of example. The disruption eliminated all three packing

resources from use any time after 17: 00 on October the 22nd. This was necessary to exclude load

balancing as an effective method of rescheduling operation L254145825. PACKING. Despite the

severity of this disruption it was still possible to reschedule the operation within the existing

problem constraints. If a decision on operation L254145825. PACKING is allowed to take place

before a decision on L254145825. FINAL. SAWING the problem can be resolved. This partial

synchronisation of decision-making through the plan is viewed as inter-agent backtracking.

Figures 5.15 (a), (b), (c) and (d) trace the sequence of events during inter-agent backtracking on

plan L254145825.

curront
TIM

ANNEALING

STRETCHING
P/T
USSCANNING

PINALJAWINO

PACKING 57

17 16 12 1.34 12 1 24
1 it OCTOBER 22 OCTOBER :3 04

Figure 5.15 (a)

Wrr t
Tim

ANNEALING

STRETCHING
PR
USSCANNING

SINALEAWING

PACKING

l It 22 l i" 2ý i iý 2s I 12 li
2*000ODEI 22OCTOBER 23 OCTODER

C. rrw. t
Tim

ANNEALING

1IT12TO11NQ a" A

P/T
US SCANNING

[INALZAWINO

PACKING 9

li . I. 24 1
13 il 2.

T

11 OCTOBER 22 OCTOBER 2J 04

Figure 5,15 (b)

Current
Tint

ANNEALING

STRETCHING v
P?
USSCANNING
FU(ALEAWING
PAQUNG "

f 1ý , 1. N11i.
T

21 OCTOBER 22 OCTOBER 33 04

Figure 3.15 (c) Figure 5.15 (d)

Figure 5.15 (a) shows the plan after operation L254145825. PACKING has been unscheduled to

alleviate the conflict situation at its operational resource. Figure 5.15 (b) shows the first step in

the inter-agent backtracking process with operation L254145825FINAL. SAWING unscheduled.

This relaxes the temporal constraints acting on operation L254145825. PACKING sufficiently to

168

allow it to be scheduled. This is shown in figure 5.15 (c). In response to a scheduling decision

being made on the packing operation, the S-agent allows a decision to be made on operation

L254145825. FINALSAWING. This completes the inter-agent backtracking process demonstrated

by the fully scheduled process plan in figure 5.15 (d).

Further intra-plan decision-making synchronisation may occur in the form of inter-agent

backtracking in response to other conflict situations. However, if a large enough disruption occurs,

or if too much new work is introduced it may not be possible to resolve the situation by

synchronisation alone. As discussed in section 5.3, it is possible to invoke temporal constraint

relaxation in conjunction with complete synchronisation through a process plan. To demonstrate

the effects of this, all packing resources were reported to be out of commission for an estimated

three days. In order to resolve the resulting conflict it was necessary to relax the due date

constraint on the plan of lot 2254145825 and synchronise decision-making from left to right

through the plan. This is shown in figure 5.16.

Wrrad
Ti..

ANNEALING

STRETCHING
P/T
US. SCANNING

FWALEAWINO 17 7;

PACKING wnp,

Iui 1% li 2a 12 16 24
1

12 11 2!

22 OCiOELZ 22 OCTODLI 23 OCTOBER 24

Figure 5.16

The diagram shows that each operation in the plan was prevented from starting as early as allowed

by the intra-plan temporal constraints acting on it. This first three operations have not fared too

badly, but the severity of the disruption at the packing resources is witnessed by the fact that the

packing operation is scheduled to start two and a half days later than permitted by intra-plan

temporal constraints.

CHAPTER 6

Future Work and Conclusions

Chapter 6, the final chapter of this thesis, has three purposes; to summarise the preceding

chapters, to consider areas of future work and to present conclusions. The summary presented

closely follows the structure of the thesis and aims to bring out the most significant points made in

each chapter. The sources of future work range from identifiable weaknesses with the current

implementation of DAS, through to work only made possible by the existence of a system such as

DAS. Consequently, the future work section has been divided into two sections; Extensions and

Empirical Analysis. Finally, the concluding remarks are intended to reaffirm the statement being

made by this thesis as a whole.

6.1. Thesis Summary

Chapter 1

Scheduling is a difficult task for both theoretical and practical reasons. Theoretically, the

combinatorial complexity of the task makes it a challenging one, while executional uncertainty and

the difficulties associated with identifying a clear scheduling objective make it difficult from a

practical point of view. Traditional approaches within manufacturing include techniques based on

inventory control, MRP systems, OPT and recently JIT. Unfortunately, none of these techniques

provide a satisfactory solution in real-world environments.

This thesis holds the view that in general, the scheduling task is a dynamic and stochastic

satisfaction problem. Further, scheduling in a manufacturing environment must be an on-line task

in order to cater for the presence of executional uncertainty. The contributions of the work

presented in this thesis are a problem-solving architecture suitable for addressing the scheduling

problem when viewed in this way, and more particularly, the mechanisms required to manage

169

170

problem-solving effort effectively within such an architecture.

Chapter 2

Chapter 2 presents a two-part review of work considered necessary for a full appreciation of

the remainder of the thesis. The first section presents a summary of existing techniques which are

intended to enhance the performance of heuristic search, and the second the application of these

techniques within particular scheduling systems. It concludes that there is an opportunity to

combine recent advances in scheduling techniques with advances in distributed computing

technology. DAS evolved out of a recognition that this combination could offer a partial solution

to both the theoretical and practical difficulties associated with scheduling in manufacturing

domains.

Chapter 3

Chapter 3 introduces DAS, a distributed aysnchronous scheduling system. It deals with the

DAS philosophy, representations employed and gives a detailed account of the DAS architecture.

DAS recognises the scheduling environment to be dynamic and stochastic in nature. It

views satisfaction, rather than optimisation, as its primary objective. Within this framework,

reactive techniques geared to schedule maintenance are considered more appropriate than off-line

predictive techniques. Due to its intended operating environment, DAS approaches its problems in

an opportunistic manner. Another consequence of the nature of its intended operating environment

is that, in the presence of conflict, problem-solving activity is organised in order to localise the

effects of the conflict.

A frame-based representation is used to model the environment, the current set of problem

constraints and the schedules produced by DAS. The main representational components of the

model are resources, operations and plans. Resources are modelled at two levels of abstraction;

individual resource level and aggregate resource level. Plans represent particular orders from the

order book and consist of temporally-related operations. An operation represents a particular

process which must be performed during the manufacture of a specific work item. Constraints are

171

attached to these major components in order to describe the scheduling problem, the order book

and the current hypothesis. In addition to this frame-based representation, scheduling agents have

their own internal representation of the world.

The DAS architecture is based on an analogue of an idealised management structure in that it

is hierarchical, distributed, and depends heavily on communication for success. It is a three-tier

hierarchy consisting of strategic, tactical and operational levels. The distributed, asynchronous and

hierarchical features of the DAS architecture offer many benefits when addressing the fundamental

difficulties of the scheduling problem. Each level in the hierarchy defines one or more scheduling

focal points, within which decision-making may proceed asynchronously with respect to all other

focal points. Each focal point has an associated scheduling agent responsible for all activity at

that point in the hierarchy. The activity performed by an agent is dependent on its level in the

hierarchy. Communication between agents is achieved via message passing.

Chapter 4

Chapter 4 presents the mechanisms required to manage problem-solving effort in DAS in a

globally consistent manner. The major components are a constraint maintenance system (CMS),

the conflict resolution strategies available to the various classes of scheduling agent and inter-agent

communication via message passing. The chapter begins by presenting information considered

necessary for a full understanding of the CMS.

The CMS performs two very important roles in DAS. Firstly, it maintains the global

hypothesis in a consistent manner, thus allowing scheduling agents to share a common view of the

world and secondly, it assists in highlighting conflict within a schedule. The three most important

features of the CMS are its ability to deal with constraint retraction correctly and efficiently, to

propagate over certain classes of constraint network in polynomial time and to assist in the task of

conflict resolution. A complexity analysis of the performance of the CMS concludes that in

general the task of determining consistency in a network containing disjunction is NP-hard.

However, for a restricted class of networks the CMS can determine consistency in time polynomial

172

with the number of nodes in the network.

Conflict resolution strategies exist at all three levels of the hierarchy. DAS has an

operation priority mechanism, integral to conflict resolution throughout the hierarchy, aimed at

protecting parts of a solution which were difficult to generate. The priority attribute of an

operation allows problem-solving effort to be focused opportunistically. At the operational level,

conflict resolution takes the form of local rescheduling. At the tactical level, conflict resolution is

achieved via load balancing between similar resources. Conflict resolution at the strategic level

involves either partial or complete temporal relaxation of a process plan. This is performed via

inter-agent backtracking or due-date relaxation respectively. Whatever the level of conflict

resolution, message passing is used to co-ordinate the activity of agents to ensure that they operate

in a globally consistent manner. The various conflict resolution strategies act to coordinate

problem-solving effort opportunistically.

Chapter 5

Chapter 5 presents a case analysis of DAS which justifies, by example, the claims made by

this thesis.

6.2. Future Work

6.2.1. Extensions

An obvious area for future work on any project is to correct weaknesses which have become

apparent during system development and testing. There are two known weaknesses with the

current implementation of DAS. Both are considered weaknesses because they result in an

unnecessary waste of problem-solving effort. The first concerns the way in which agents

throughout the hierarchy process their message buffers. An agent processes its message buffer by

reading and acting on the message at the top of the list, ie: it processes messages in strict

chronological order. There are opportunities at all levels in the hierarchy to reduce the amount of

problem-solving effort required to solve a problem by performing an analysis of all the messages

173

currently in the message buffer. Consider for example an 0-agent which has a message buffer

containing the messages shown in figure 6.1.

1) nnod+f9 Opi priority>

a) <detete Opi >

Figure ä1

In the current implementation, the 0-agent in question would update its internal representation in

accordance with message 1, try to solve the modified problem, and then continue to process the

remaining messages in chronological order until it arrives at message n. On processing message n,

it will remove op; from its internal representation and try to solve the resulting problem. If the

contents of the message buffer were analysed as a whole, it would be possible to detect that

message 1 is nullified by message n and is therefore redundant. Any problem-solving effort

expended in an attempt to solve the problem containing the modified opj is obviously wasted effort.

There are potentially greater savings at the strategic and tactical levels. In addition to detecting

redundancy, messages could be processed together with a view to identifying symptoms of a

common conflict. This offers the possibility of an improvement in the efficiency of conflict

resolution.

The second known weakness concerns the way in which the priority of an operation is

calculated. The present method encourages relatively unconstrained areas of the schedule to

temporarily dominate more constrained areas. This is quickly corrected when the priority of the

operations in the highly contended areas rises sufficiently to allow them to dominate the schedule.

The problem-solving effort wasted in arriving at and correcting the temporary solution gives cause

for concern. The root of the problem is that it takes longer for an 0-agent to request and receive

assistance with its problem than it takes another O-agent to schedule a relatively unconstrained

operation. As a result of this, decisions on unconstrained operations are written out and can

constrain operations which have not yet had their priority increased by the relevant T-agent. A

better arrangement would be to have individual O-agents maintain the priority of an operation

174

during the course of search. For example, it could increment the priority of an operation after

every 2000 comparisons during search. In this way, highly constrained operations would receive

the protection of an increased priority at an early stage, thus avoiding the temporary situation

discussed above.

Perhaps the most natural extension of the work presented here would be to re-implement it as

a multi-processor system. DAS is designed to be a multi-processor system capable of taking

advantage of the benefits offered by concurrent processing. It already has in place the mechanisms

required to manage problem-solving effort across a collection of processors. Such an

implementation would provide a useful vehicle for experimental analysis of both distributed

problem-solving and distributed processing.

There is a growing feeling within the Al community (eg. [ESPRIT '89]) that future research

in the problem-solving area should consider a marriage of numeric and symbolic techniques. The

ideal situation is one in which each technique is applied to the tasks to which it is best suited. By

providing an architecture and the mechanisms necessary to coerce its active components, scheduling

agents, into generating a globally consistent solution, DAS offers an opportunity to experiment with

a mix of symbolic and numeric techniques. Problem-solving agents could easily be replaced by

functionally similar components implemented using alternative technology. Another potential area

of future work is to augment DAS with more predictive scheduling capabilities. Perhaps numeric

techniques provide the most appropriate implementation of these functions.

Two other prominent candidate areas for further work involve extensions to the CMS. The

first is to enhance the range of temporal relations which can be propagated over, and the second is

to cater for capacity constraint propagation. It is desirable to extend the range of temporal

relations in order to allow DAS to represent, and therefore cater for, a wider range of problems.

Ideally the range of temporal relations should be extended to include all seven (thirteen including

inverses) identified in [Allen '84]. In the current implementation, DAS is unable to represent the

need for secondary resources within a process plan. The fact that a particular process requires an

175

operator in attendance at the beginning of the process to initiate it cannot be represented within the

existing range of temporal relations. The two processes, one representing an action on a work

item and the other the presence of an operator, should be linked by the starts temporal relation.

Another example, not involving secondary resources, concerns the requirement to take samples of a

product at intermediate stages of the manufacturing process in the interests of quality control.

Often all that is required is that a sample be taken sometime during a process, thus requiring

inclusion of the during relation in the CMS. Extensions to the range of temporal relations

permitted would enable DAS to cater for activities such as quality control and secondary resource

processes, thus allowing it to schedule at a lower level of detail.

In the current implementation, scheduling agents have the sole responsibility for satisfying

capacity constraints. The fact that the CMS does not support them in this task is considered

acceptable at the operational level because only the O-agent making decisions at a resource needs

to know the consequences of those decisions. This is also considered acceptable at the tactical

level because the T-agent has access to the current schedule at each of its subordinate resources.

The strategic level is not concerned with capacity constraints at individual resources. However, it

is potentially useful to propagate the capacity constraint consequences of scheduling decisions

directly to operations by modifying their possible. resources slot in accordance with current

scheduling decisions. Whether this form of constraint propagation saves more problem-solving

effort than it expends is an area for investigation. It may be appropriate in certain areas of a

factory model and not in others, or possibly not at all.

6.2.2. Empirical Analysis

It has been argued that, in the majority of real world scheduling applications, the scheduling

task is predominantly one of maintenance rather than creation. Furthermore, it has been

demonstrated that it is possible to approach the task, posed as a satisfaction rather than an

optimisation problem, in an entirely opportunistic manner. While this thesis has demonstrated

"proof of concept" and argued in favour of this approach, it has not investigated performance-

176

related issues. The two most interesting performance indicators are problem-solving efficiency and

the quality of solutions produced.

As noted in section 6.2.1, there are known weaknesses in the current version of DAS which if

corrected would certainly enhance its problem-solving efficiency. However, there are other aspects

of its operation where relationship to problem-solving efficiency is not so easily identified. For

example, the degree to which scheduling agent behaviour is synchronised up and down the

hierarchy affects problem-solving efficiency. This should not be confused with decision-making

synchronisation which deals with synchronisation across the hierarchy. One extreme is to allow all

agents to operate completely asynchronously at all times, while the other is to allow only one agent

to be active at a time. While the second extreme defeats the purpose of having a distributed,

asynchronous architecture, the first is not without fault. Is it wise to allow subordinate agents to

continue working on a difficult problem at the same time as a superior agent is in the process of

simplifying the problem? Similarly, is it wise to introduce new work to lower levels of the

hierarchy until the work already there has been scheduled? Various degrees of agent

synchronisation should be experimented with, to identify the best point of balance between

completely asynchronous behaviour and completely synchronous behaviour.

Another important trade-off worthy of empirical analysis concerns the distribution of effort

between pre-analysis of a problem and the actual search for a solution. For example, how much

effort should a T-agent expend when deciding to which resource to delegate an operation ? It may

go to a great deal of trouble to select a resource which it thinks is marginally more suitable than

the rest, only to have its subordinate inform it that it cannot be scheduled. Alternatively, it would

be equally unsatisfactory to have a T-agent delegate work to a resource it knows is currently being

repaired. Similarly, how much effort should an O-agent expend trying to determine whether or

not there is a solution to its problem before actually trying to solve it? How much effort should

an O-agent expend trying to solve a problem before asking for help? The selection of a conflict

resolution strategy presents itself as another example of this trade-off. Are there efficient methods

177

for identifying reactive strategies which will not succeed in certain situations?

The other major performance indicator of a scheduling system is the quality of the solutions

it generates. DAS has many variable parameters which effect the nature of the solution it

generates. As discussed earlier, it is very difficult to identify a single measure with which to

judge the quality of a schedule. It is not being suggested that any attempt be made to identify a

measure of schedule optimality, simply that the consequences of various parameter settings on the

nature of the solution generated be analysed. Each scheduling agent has its own suite of

parameters which can be configured to strive for a local objective. It would be interesting to

investigate the effects of conflicting objectives and how they are resolved. The task of selecting

one option from a number of options during conflict resolution is another degree of freedom with

which to experiment.

6.3. Concluding Remarks

The work presented in this thesis was motivated by a desire to address the practical as well

as theoretical difficulties of the scheduling problem. The practical difficulties originate mainly

from the dynamic and stochastic nature of typical scheduling environments. It has been argued

that within such environments the task is predominantly one of schedule maintenance rather than

creation, and that the objective is satisfaction rather than optimisation. Viewing the task in this

way has led to the conclusion that an opportunistic approach to both problem-solving and the

management of problem-solving effort is appropriate. If an opportunistic approach is not

employed, it is difficult to see how else to manage problem-solving effort without the introduction

of unwarranted artificial constraints.

This thesis has ' presented a problem-solving architecture suitable for addressing the

scheduling problem when viewed in this way. It has been recognised that if any benefit is to be

gained from the architecture introduced, it is necessary to supplement it with mechanisms capable

of managing problem-solving effort. DAS, a scheduling system based on this architecture, views

the tasks of schedule creation and schedule maintenance to be essentially the same. It has been

178

demonstrated that DAS has the mechanisms necessary to manage problem-solving effort effectively

in an opportunistic manner. In conclusion, both the architecture and the mechanisms presented

lend themselves very well to the opportunistic approach required to address the problem of

scheduling in real world environments.

While DAS has demonstrated "proof of concept", it leaves a great deal of scope for future

work. It provides a good starting point for an investigation into the combination of numeric and

symbolic problem-solving techniques. It also provides a vehicle to examine the trade-off between

pre-analysis and search in problem-solvers operating in uncertain environments. Additionally,

there are a number of natural extensions and areas of experimental analysis worthy of future work.

References

(1) [Allen '81]

Allen J. F.

An Interval Based Representation of Temporal Knowledge.

Proceedings of the Seventh International Joint Conference on Artificial Intelligence (pp. 221-

226), Vancouver, Canada, August 1981.

(2) [Allen '83]

Allen J. F.

Maintaining Knowledge About Temporal Intervals.

Communications of the ACM, Vol. 26, No. 11, November 1983, pp. 832-843.

(3) [Allen '84]

Allen J. F.

Towards a General Theory of Action and Time.

Artificial Intelligence Vol. 23 (1984) pp. 123-154.

(4) [Berliner '73]

Berliner HJ.

Some Necessary Conditions for a Master Chess Program.

Proceedings of the Third International Joint Conference on Artificial Intelligence (pp. 77-85),

Stanford University, California, August 1973.

(5) [Berliner '79]

Berliner HJ.

The B* Tree Search Algorithm: A Best First Proof Procedure.

179

180

Artificial Intelligence Vol. 12 (1979) pp. 23-40.

(6) [Burke et al '89]

Burke P. and Prosser P.

A Distributed Asynchronous System for Predictive and Reactive Scheduling.

Technical Report: AISL-42-89, Knowledge Engineering Group, Department of Computer

Science, University of Strathclyde, Glasgow U. K..

(7) (Collinot et al '87]

Collinot A. and LePape C.

Controlling Constraint Propagation.

Proceedings of the Tenth International Joint Conference on Artificial Intelligence (pp. 1032-

1034), Milan, Italy, August 1987.

(8) [Collinot et al '88]

Collinot A.. Le Pape C. and Pinoteau G.

SONIA: a knowledge-based scheduling system.

Artificial Intelligence in Engineering, Vol. 3, No. 2,1988, pp. 86-94.

(9) [Davis '83]

Davis R.

Diagnosis Via Causal Reasoning: Paths of Interaction and The Locality Principle.

Proceedings AAAI-83, Washington, DC (1983) pp. 88-92.

(10) [Davis et al '83]

Davis R. and Smith R. G.

Negotiation as a Metaphor for Distributed Problem Solving.

Artificial Intelligence Vol. 20 (1983) pp. 63-109.

181

(11) [Davis '87]

Davis E.

Constraint Propagation With Interval Labels.

Artificial Intelligence Vol. 32 (1987) pp. 281-331.

(12) [Dean '85]

Dean T.

Temporal Imagery: An Approach to Reasoning About Time for Planning and Problem

Solving.

Research Report 433, Yale University, New Haven, Cr..

(13) [de Kleer et al '84]

de Kleer J. and Brown J. S.

A Qualitative Physics Based on Confluences.

Artificial Intelligence Vol. 24 (1984) pp. 7-83.

(14) [de Kleer '861

de Kleer J.

An Assumption-Based Truth Maintenance System.

Artificial Intelligence Vol. 28 (1986) pp. 127-161.

(15) [Doyle '79]

Doyle J.

A Truth Maintenance System.

Artificial Intelligence Vol. 12 (1979) pp. 231-272.

(16) [Duncker '45]

Duncker K.

182

On Problem Solving.

Psychological Monographs, Vol. 58 (270).

(17) [Elleby '87]

Elleby P.

Problem Solving With Temporal Constraints.

Technical Report, Knowledge Systems Group, Department Of Computer Science, Reading

University U. K..

(18) [Elleby et al '88]

Elleby P., Fargher H. E. and Addis T. R.

A Constraint-Based Scheduling System for VLSI Wafer Fabrication.

Technical Report, Knowledge Systems Group, Department of Computer Science, Reading

University U. K..

(19) [Erman et al '80]

Erman L. D., Hayes-Roth F., Lesser V. R. and Reddy D. R.

The HEARSAY-H Speech Understanding System: Integrating Knowledge To Resolve

Uncertainty.

Computing Surveys, Vol. 12 No. 2, June 1980, pp. 213-253.

(20) [ESPRIT '89]

Commission Of The European Communities.

1989 ESPRIT Work Programme, Brussels, 25 July 1989.

(21) [Fikes '70]

Fikes R. E.

REF-ARF: A System for Solving Problems Stated as Procedures.

183

Artificial Intelligence Vol. 5 (1970) pp. 1.50.

(22) [Fikes et al '71]

Fikes R. E. and Nilsson NJ.

STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving.

Artificial Intelligence Vol. 2 (1971) pp. 189-208.

(23) [Fox M. S. '831

Fox M. S.

Constraint-Directed Search. A Case Study of Job-Shop Scheduling (Phd. Thesis).

Technical Report: CMU-RI-TR-83-22, Department of Computer Science, Carnegie-Mellon

University, Pittsburgh, Pa..

(24) [Fox B. R. et al '85a]

Fox B. R. and Kempf K. G.

Complexity, Uncertainty and Opportunistic Scheduling.

IEEE International Conference on Artificial Intelligence (1985), pp. 487-492.

(25) [Fox B. R. et al '85b]

Fox B. R. and Kempf K. G.

Opportunistic Scheduling For Robotic Assembly.

IEEE International Conference on Robotics and Automation (1985), pp. 880-889.

(26) [Fox B. R. et al '85c]

A Representation for Opportunistic Scheduling.

Robotics Research, The Third International Symposium (Editors Faugeras OD. and Giralt G.)

The MIT Press, Cambridge Massachusetts.

184

(27) [French '82]

French S.

Sequencing and Scheduling.

John Wiley and Sons.

(28) [Haralick et al '80]

Haralick R. M. and Elliot G. L.

Increasing Tree Search Efficiency for Constraint Satisfaction Problems.

Artificial Intelligence Vol. 14 (1980) pp. 263-314.

(29) [Harrison '85]

Harrison M. C.

The Concepts of Optomized Production Technology OPT - The Way Forward.

BPICS CONTROL,, June/July 1985, pp. 7-15.

(30) [Hart et al '68]

Hart P., Nilsson N. and Raphael B.

A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Transactions on Systems and Science Cybernetics, Vol. SSC4, No. 2, pp. 100-107, July

1968.

(31) [Hayes-Roth et al '79]

Hayes-Roth B. and Hayes-Roth F.

A Cognitive Model of Planning.

Cognitive Science, Vol. 3, No. 4,1979, pp. 275-310.

(32) [Hewitt '771

Hewitt C.

185

Control As Message Passing.

Artificial Intelligence Vol. 8 (1977) pp. 323-363.

(33) [Intellicorp '86]

KEE 3.0 Technical Manuals Volumes (1-3).

(34) [Johnson '54]

Johnson S. M.

Optimal two- and three-stage production schedules with set up times included.

Naval Research Logistics, Quarter 1, pp. 61-68.

(35) [Johnson et al '74]

Johnson L. A. and Montgomery D. C.

Operations Research in Production Planning, Scheduling, and Inventory Control.

John Wiley and Sons.

(36) [Knuth et al '75]

Knuth D. and Moore R.

An Analysis of Alpha-Beta Pruning.

Artificial Intelligence Vol. 6 (1975) pp. 293-326.

(37) [Land et al '60]

Land A. H. and Doig A. G.

An Automatic Method for Solving Discrete Programming Problems.

Econometrica Vol. 28,1960, pp. 497-520.

(38) [Lawler '73]

Lawler E. L.

Optimal Sequencing of a single machine subject to precedance constraints.

186

Management Science, Vol. 19,1973, pp. 544-546.

(39) [LePape '85]

LePape C.

SOJA: a Daily Workshop Scheduling System.

Proceedings of the Fifth Technical Conference of the British Computer Society Specialist

Group on Expert Systems, Warwick, Great Britain.

(40) [LePape et al '87]

LePape C. and Smith S. F.

Management of Temporal Constraints for Factory Scheduling.

In Proceedings IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information

Systems (TATS 87) (Editors Rolland C., Leonard M., and Bodart F.).

Held in Sophia Antipolis, France, May 1987.

Elsevier Science Publishers.

(41) [McCarthy et al '69]

McCarthy J. and Hayes PJ.

Some Philosophical Problems From The Standpoint of Artificial Intelligence.

In Machine Intelligence 4 (Editors Meltzer B. and Michie D.)

Edinburgh University Press.

(42) [McDermott '80]

McDermott D. V.

Spatial Inferences With Ground. Metric Formulas on Simple Objects.

Research Report 173, Yale University, New Haven, Cr..

187

(43) [Mackworth '77]

Mackworth A. K.

Consistency in Networks of Relations.

Artificial Intelligence Vol. 8 (1977) pp. 99-118.

(44) [Mackworth et al '85]

Mackworth A. K. and Freuder E. C.

The Complexity of Some Polynomial Network Consistency Algorithms for Constraint

Satisfaction Problems.

Artificial Intelligence Vol. 25 (1985) pp. 65-74.

(45) [Malone et al '83]

Malone T. W., Fikes RE. and Howard M. T.

Enterprise: A Market-like Scheduler for Distributed Computing Environments.

Working Paper: CISR WP 111 (Sloan WP 1537-84), Center for Information Systems

Research, MIT.

(46) [Mellor'66]

Mellor P.

A Review of Job Shop Scheduling.

Operational Research, Vol. 17,1966, pp. 161-171.

(47) [Montanani '74]

Montanani U.

Networks of Constraints: fundamental properties and applications to picture processing.

Information Science, Vol. 7,1974, pp. 95-132.

188

(48) [Moore '68]

Moore J. M.

An n -job, one machine sequencing algorithm for minimising the number of late jobs.

Management Science, Vol. 15,1968, pp. 102-109.

(49) [Mott et al '88]

Mott D. H., Cunningham J., Kelleher G. and Gadsden J. A.

Constraint-Based Reasoning For Generating Naval Flying Programmes.

Expert Systems, Vol. 5, No. 3, August 1988, pp. 226-246.

(50) [Newell et al '57]

Newell A., Shaw J. C. and Simon H. A.

Empirical Explorations of the Logic Theory Machine.

In Computers and Thought (Editors Feigenbaum E. and Feldman J.)

New York, McGraw-Hill.

(51) [Newell et al '59]

Newell A., Shaw J. C. and Simon H. A.

Report on a General Problem Solving Program.

Proceedings of the International Conference on Information Processing (ICIP), 1959 (pp.

256-264), Paris: UNESCO HOUSE.

(52) [Nilsson '71]

Nillson N. J.

Problem Solving Methods in Artificial Intelligence.

McGraw-Hill, New York.

189

(53) [0' Grady '88]

0' Grady P. J.

Putting The Just In Time Philosophy Into Practice.

Kogan Page, 120 Pentonville Road London NI.

(54) [Orlicky '75]

Orlicky J.

Material Requirements Planning.

McGraw Hill.

(55) [Ow et al '88]

Ow P. S., Smith S. F. and Howie R.

A Cooperative Scheduling System.

In Expert Systems and Intelligent Manufacturing (Editor Oliff MD.).

Elsevier Science Publishing Co., Inc..

(56) [Parunak et al '86]

Parunak H. V. D., White J. F., Lozo P. W., Judd R., Irish B. W. and Kindrick J.

An Architecture for Heuristic Factory Control.

Proceedings of the American Control Conference, Seatle, 1986.

(57) (Ramsay '881

Ramsay A.

Formal Methods in Artificial Intelligence, Cambridge Tracts in Theoretical

Computer Science 6.

Cambridge University Press.

190

(58) [Kit '86]

Rit J-F.

Propagating Temporal Constraints For Scheduling.

Proceedings AAAI-86, Philadelphia, Pa. (1986) pp. 383-388.

(59) [Sacerdoti '741

Sacerdoti E. D.

Planning in a Hierarchy of Abstraction Spaces.

Artificial Intelligence Vol. 5 (1974) pp. 115-135.

(60) [Sacerdoti '75]

Sacerdoti E. D.

A Structure for Plans as Behaviour (Phd. Thesis).

Computer Science Departmen% Stanford University.

(61) [Sacerdoti '77]

Sacerdoti E. D.

A Structure for Plans and Behaviour.

New York: Elsevier, North-Holland

(62) [Sadeh et al '88]

Sadeh N. and Fox M. S.

Preference Propagation in Temporal/Capacity Constraint Graphs.

Technical Report: CMU-CS-88-193, Department of Computer Science, Carnegie-Mellon

University, Pittsburgh, Pa..

(63) [Sanborn et al '88]

Sanborn J. C. and Hendler J. A.

191

A Model of Reaction For Planning in Dynamic Environments.

Artificial Intelligence in Engineering, Vol. 3, No. 2,1988, pp. 94-101.

(64) [Smith '83]

Smith S. F.

Exploiting Temporal Knowledge to Organise Constraints.

Technical Report: CMU-RI-TR-83-12 , The Robotics Institute, Carnegie-Mellon University,

Pittsburgh, Pa..

(65) [Smith et al '86a]

Smith S. F., Fox M. S., Ow P. S.

Constructing and Maintaining Detailed Production Plans: Investigations into the Development

of Knowledge-Based Factory Scheduling Systems.

Al Magazine Vol. 7 No. 4, Fall, 1986, pp. 45-61.

(66) [Smith et al '86b]

Smith S. F., Ow P. S., LePape C., McLaren B. and Muscettola N.

Integrating Multiple Scheduling Perspectives to Generate Detailed Production Plans.

Proceedings SME Conference on Al in Manufacturing (pp.. Long Beach, CA, September

'86.

(67) [Smith '87]

Smith S. F.

A Constraint-Based Framework for Reactive Management of Factory Schedules.

Proceedings International Conference on Expert Systems and the Leading Edge in Production

Planning and Control Charleston, South Carolina, May, 1987

192

(68) [Smith et at '87]

Smith S. F. and Hynynen J. E.

Integrated Decentralisation of Production Management: An Approach for Factory Scheduling.

Proceedings 1987 Symposium on Integrated and Intelligent Manufacturing, ASME Annual

Winter Conference, Boston (Massachusetts, U. S. A.), December 1987.

(69) [Steele '80]

Steele G. L.

The Definition and Implementation of a Computer Programming Language Based on

Constraints (Phd Thesis).

Technical Report: AI-TR-595, MIT, Cambridge MA..

(70) [Stefik'81]

Steffk M.

Planning With Constraints (MOLGEN: Part 1).

Artificial Intelligence Vol. 16 (1981) pp. 111.140.

(71) [Tate '75]

Tate A.

Using Goal Structure to Direct Search in a Problem Solver (Phd Thesis).

Machine Intelligence Research Unit, Edinburgh.

(72) [Tate '761

Tate A.

Project Planning Using a Hierarchic Non-linear Planner.

Technical Report: 25, Department of Artificial Intelligence, University of Edinburgh U. K..

193

(73) [Tsang '87]

Tsang E. P. K.

The Consistent Labeling Problem In Temporal Reasoning.

Proceedings AAAI-87, Seattle, Washington (1987) pp. 251-255.

(74) [Ullman '76]

Ullman J. D.

Complexity of Sequencing Problems.

In Computer and Job-Shop Scheduling Theory (Editor Coffman E. G.).

Wiley and Sons, New York.

(75) [Valdes-Perez '87]

Valdes-Perez R. E.

The Satisfiability of Temporal Constraint Networks.

Proceedings AAAI-87, Seattle, Washington (1987) pp. 256-260.

(76) Were '83]

Vere S. A.

Planning In Time: Windows and Durations for Activities and Goals.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 3, pp.

246-267, May 1983.

(77) [Vilain et al '86]

Vilain M. and Kautz H.

Constraint Propagation Algorithms for Temporal Reasoning.

Proceedings AAAI-86, Philadelphia, Pa. (1986) pp. 377-382.

194

(78) [Waltz '72]

Waltz D. L.

Generating Semantic Descriptions From Drawings of Scenes With Shadows.

Technical Report: AI-TR-271, MIT, Cambridge MA..

(79) [Whitin '57]

Whitin T. M.

The Theory of Inventory Management.

Princeton University Press.

(80) [Wight '81]

Wight O. W.

Manufacturing Resource Planning: MRP H- Unlocking Americas Productivity Potential.

Oliver Wight Ltd Publications Inc.

(81) [Winston '77a]

Winston P. H.

Artificial Intelligence (Second Edition) pp. 96-97.

Addison-Wesley Publishing Company.

(82) [Winston '77b]

Winston P. H.

Artificial Intelligence (Second Edition) pp. 119-122.

Addison-Wesley Publishing Company.

