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ABSTRACT 

 

 
Fatigue assessment is one of the significant factors to be considered for a 

design life of structure and estimation of structural reliability during operation. 

Especially, for welded structures, various welding effects, such as stress concentration, 

residual stresses, weld geometry and weld quality, make the structure more vulnerable 

to fatigue failures. This requires more effective approaches for estimating fatigue 

performances of welded structures. 

Existing classical methods to predict the crack propagation under cyclic 

loadings have some difficulties in treating complicated patterns of crack growth. A 

peridynamic theory, however, has powerful advantage on discontinuities. A 

peridynamic fatigue model, which is a bond damage model of remaining life, is used 

to demonstrate two phases of fatigue failure, crack nucleation and crack growth. Two 

types of numerical tests are conducted to validate the peridynamic fatigue model. One 

is tensile test for the phase of crack nucleation and the other is compact tension test for 

the phase of crack growth. All results from numerical tests are compared with 

experimental test data to validate the peridynamic fatigue model. 

After validation of peridynamic fatigue model, numerical tests with 

peridynamic fatigue model are performed to investigate a weld effect of the length of 

unwelded zone on the fatigue performance of load-carrying fillet welded joint. 

Numerical results of fatigue performance and path of fatigue crack growth are 

compared with existing experimental data.  

 In this thesis, the peridynamic fatigue model is validated by two different 

fatigue tests which are uniaxial tension-compression tests for the crack nucleation and 

ASTM E647 standard compact tests for the crack growth. After validation, the fatigue 

performance of the fillet welded joint is estimated with respect to the length of 

unwelded zone by simulating the fatigue crack growth under cyclic load conditions 

with the peridynamic fatigue model. 
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1) INTRODUCTION 

 

 
1.1 Overview 

In the recent years, large ships and offshore structures are produced by joining 

processes and the most commonly used method for joining processes is welding. In 

welded structures, however, there are some effects to make their welding zone 

vulnerable in fatigue failures, such as residual stresses, weld geometry and weld 

quality [1-3]. Particularly, many welded joints have inherently poor fatigue 

performance, since the crack growth can easily initiate at embedded cracks where there 

are high stress concentrations. The fatigue performance of many welded joints is 

typically estimated based on empirical data obtained from fatigue tests for different 

weld details. It requires much effort both in time and cost to establish the fatigue 

performance of many types of welded joints. 

 Instead of experimental fatigue tests, computational approaches are available 

to save time and cost. A finite element method is one of the major computational 

methods to estimate the fatigue performance of structures. In finite element method, 

all calculations are based on partial differential equations of classical continuum 

mechanics, which means there is inherent limitation of singularities when treating 

discontinuities, such as a crack. To overcome this limitation, a cohesive model is 

introduced for tracking of dynamically growing cracks [4-5]. However, it requires a 

priori knowledge of the path of crack propagation and cracks in cohesive model are 

mesh-dependent, which means crack propagations occur only along element 

boundaries. For the problem of mesh-dependency in the cohesive model, an extended 

finite element method is introduced as an alternative to the cohesive model [6-8]. The 

extended finite element method can treat cracks independent of mesh, but there are 

still difficulties to determine the direction of crack propagation in three-dimensional 

models and it requires additional failure criteria. 

A meshless method of an alternative to methods based on the classic continuum 

mechanics, peridynamic theory, is introduced by Silling [9]. In peridynamics, it is 

assumed that particles in a body interact with all particles within the body, as in 

molecular dynamics. The peridynamic theory can treat discontinuities and material 
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failures without additional necessaries for dictating the crack growth. Peridynamic 

equations do not involve partial derivatives, instead it involves integral equations. 

Therefore, it is possible to predict accurately crack initiation and crack propagation 

without any special techniques, and also it can predict complex patterns of crack in 

structures [10-12]. 

 

1.2 Motivation 

 The fatigue performance is generally estimated from fatigue tests, and results 

are expressed as Stress-Life curves. Particularly, since welded structures have 

inherently poor fatigue performance, it is necessary to consider carefully fatigue 

performances of many types of welded joints in structures. However, there are many 

factors effecting on the fatigue performance. Even small factors can effect on the 

fatigue performance significantly. Considering all these factors fatigue tests are costly 

and time-consuming. Alternatively, computational approaches, such as a finite 

element method, are available, but there are still difficulties to predict the accurate 

crack growth and complex crack growth patterns in structures. Consequently, it is 

necessary to develop a new computational approach for simulating fatigue failures and 

estimating the fatigue performance of various welded structures. 

 

1.3 Objectives 

Objectives of this study are to suggest and demonstrate a new computational 

approach with the peridynamic fatigue model to estimate the fatigue performance of 

welded joints. This study has two main objectives: 

 

• To validate the peridynamic fatigue model proposed by Silling and Askari [13] 

in each phase of fatigue failure including the crack nucleation and crack growth.  

 

• To estimate the fatigue performance of fillet welded joints by predicting the 

fatigue crack growth in fillet welded joints. 
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In this study, a computational approach is developed by using the peridynamic fatigue 

model proposed by Silling and Askari [13]. Numerical results are compared with 

existing experimental results. Finally, the effect of unwelded zone on the fillet welded 

joint is investigated by simulating the fatigue crack growth in the fillet welded joints.  
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2) LITERATURE REVIEW 

 

 
2.1 Review of fatigue analysis 

Fatigue is a process of structural damage occurring in a material by cyclic 

loadings, which can develop cracks and complete fracture in the material after 

sufficient number of cycles. There are generally three phases of fatigue failure: crack 

initiation, crack growth and final fracture. 

 

2.1.1 Stress-Life curve assessment 

At the design stage, for structures without flaws, Stress-Life curves are 

typically used to predict the design life of structures. The Stress-Life curve is an 

empirical data obtained from fatigue tests of large number of specimens. Typical 

examples of Stress-Life curves are represented in Fig. 2.1, which show stress range 

versus number of cycles to failure. The general shape of Stress-Life curve is expressed 

as 

 

𝑁𝑓∆𝑆
𝑚𝑓 = 𝐶𝑓 (2.1a) 

 

 

Figure 2.1. Stress-Life curves for fillet welds [14] 
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and 

 

𝑙𝑜𝑔𝑁𝑓 = 𝑙𝑜𝑔𝐶𝑓 −𝑚𝑓𝑙𝑜𝑔∆𝑆 (2.1b) 

 

where 𝑁𝑓  is the number of cycles to failure, ∆𝑆 is the stress range, 𝐶𝑓  and 𝑚𝑓  are 

constants. 

To establish the required fatigue life, it is necessary to estimate the resulting 

stress history. A general method to count the cycles of stress history is rainflow 

counting method, which converts the stress history into number of cycles with respect 

to the stress range [15]. After counting, the fatigue damage is calculated by using 

Miner’s rule which is a cumulative damage model. The Miner’s rule is described as 

[15] 

 

𝐷 =∑
𝑛𝑖
𝑁𝑖

𝑇

𝑖=1

 (2.2) 

 

where 𝐷 is the fatigue damage, 𝑇 is the number of different stress range, 𝑛𝑖  is the 

number of cycles of the 𝑖𝑡ℎstress range, and 𝑁𝑖 is the number of cycles to failure of the 

𝑖𝑡ℎ stress range. 𝑛𝑖  is obtained from the stress history and 𝑁𝑖  is obtained from the 

Stress-Life curve. When the fatigue damage 𝐷 becomes 1, the fatigue failure occurs. 

 

2.1.2 Fatigue crack assessment 

Strain-life curves are typically used in safe-life design, which establish a finite 

fatigue life for each design component. For example, if a structure with multiple 

components is subjected to loading and if one of the components fails, the whole 

system may not fail. Similarly, the Strain-Life curve can provide information to predict 

the crack initiation at a specific point, not for failure of the whole system. Once a crack 

is present in a material, the Strain-Life curve approach is not valid. Instead, the fracture 

mechanics is used for fatigue assessment of the material with a pre-existing crack. 
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In the fracture mechanics, for a material with cracks under a static or monotonic 

loading, the stresses near the crack tip are proportional to the stress intensity factor 

[16]. The stress intensity factor 𝐾 is given by 

 

𝐾 = 𝑓(𝜎, √𝑎) (2.3) 

 

where 𝜎 is the stress applied to the material, and 𝑎 is the crack length. The material 

can withstand a stress field at a crack tip below a critical value of stress intensity factor 

𝐾𝑐 which is a fracture toughness derived from fracture tests. 

To predict the fatigue crack growth in structures, the fatigue crack growth rate 

of many types of materials has been investigated both theoretically and experimentally. 

The results of tests are compiled into Paris curves, which are plots of crack growth rate 

versus stress intensity range. A typical example of Paris curve is represented in Fig. 

2.2. The Paris curve is typically divided into three regions. In region 1, there is a 

threshold of stress intensity range ∆𝐾𝑡ℎ. If the stress intensity range is not greater than 

this threshold, the crack will not propagate. In region 2, Paris [17] discovered that the 

instantaneous crack growth rate is linearly proportional to the stress intensity range in 

the logarithmic scale plot given in Figure 2.2. The relation between crack growth rate 

and stress intensity factor is provided as [17] 

 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑀 (2.4) 

 

where 𝑎 is the instantaneous crack length, 𝑁 is the number of cycles, ∆𝐾 is the stress 

intensity range, 𝐶 and 𝑀 are the fatigue crack growth constants. In region 3, the crack 

growth is accelerated and when the stress intensity factor reaches the critical stress 

intensity factor 𝐾𝑐, the fracture of final failure will occur.  



7 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Typical Paris curve in materials [16] 
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2.2 Fatigue performance of welded joints 

The fatigue performance of welded joints can be determined experimentally by 

considering various effects such as [15] 

 

• Structural stress concentrations due to the weld geometry 

• Weld imperfections 

• Direction of loading 

• Residual stresses 

• Metallurgical conditions 

• Welding process 

• Post weld treatments 

 

The effect of weld geometry has been investigated on various weld 

configurations such as weld flank angle, thickness, and weld toe radius. Ferreira and 

Branco [18] investigated the effect of geometric ratio (distance between weld toes over 

the material thickness) and the toe curvature on the fatigue performance of T-joints 

and cruciform joints. They predict fatigue performances based on linear elastic fracture 

mechanics (LEFM). The results showed that the fatigue performance of welded joints 

decreases as the geometric ratio increases and the increase in toe curvature led to 

higher fatigue performance. Nguyen and Wahab [19] evaluated the influence of the 

weld geometry on the fatigue performance of butt welded joints based on LEFM and 

finite element analysis. The results showed that the increase in weld toe radius led to 

improvement of fatigue strength of the butt welded joints. As the weld flank angle, 

thickness, edge preparation angle and tip radius of undercut at weld toe decrease, the 

fatigue strength of butt welded joints is improved. Lee and Chang [20] investigated 

the effect of weld geometry on the fatigue performance of cruciform fillet welded 

joints. Considering three welded geometry parameters such as weld flank angle, weld 

toe radius, and weld throat thickness, they assessed contributions of each parameter to 

their fatigue performance. The results showed that the fatigue strength was improved 

with increasing weld flank angle and weld toe radius, but the weld throat thickness has 

little contribution to fatigue performance. 
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There are several types of imperfection on welded joints. For example, 

misalignment can increase stresses in welded joints due to occurrence of secondary 

bending stresses. Weld imperfections, such as porosity, decrease the fatigue 

performance of welded joints. Wahab and Alam [21] investigated effects of various 

weld imperfections on the fatigue performance based on finite element method. The 

results showed that the crack and embedded porosity reduce significantly fatigue 

performances. 

 In general, residual stresses occur in welded joints as a result of thermal strains 

caused by heating and cooling cycles, which also affect the fatigue performance of 

welded structures. Ninh and Wahab [22] investigated the effect of residual stresses and 

weld geometry on the fatigue performance of butt welded joints. They made an 

analytical model based on LEFM, superposition principle and finite element method. 

The results of theoretical analysis showed that compressive residual stresses on weld 

toes improved the fatigue performance, while the increase in tensile residual stresses 

on weld toes deteriorated the fatigue performance. Teng and Chang [23] investigated 

an effect of residual stresses on the fatigue performance of butt welded joints based on 

finite element method. They simulated welding residual stresses at critical locations of 

butt welded joints and predicted the fatigue crack initiation based on the Strain-Life 

approach. The results showed that localized heating due to welding caused tensile 

residual stresses at weld toes and deteriorated the fatigue performance of butt welded 

joints. 

The welding process has a significant effect on the fatigue life of the weld metal. 

This has a direct influence on the tensile properties and toughness of the fatigue crack 

growth. Magudeeswaran et al. [24] investigated the effect welding processes on fatigue 

crack growth behaviour of steel joints. Welding heat input and cooling rate play the 

decisive role in determining the microstructure of the weld metal in the welding 

process. They estimated the fatigue performance of joints fabricated by 

SMAW(Shielded Metal Arc Welding) and joints fabricated by FCAW(Flux-Cored Arc 

Welding), which the FCAW process is relatively higher heat input as compared with 

the SMAW process. The joints fabricated by SMAW process exhibited better fatigue 

performance compared to FCAW process. The results showed that the welding process 

with higher heat input condition decreased the fatigue performance of the welded joints. 
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The fatigue performance of the welded joints can be improved by post weld 

techniques. There are post-welded weld improvement methods: grinding, 

TIG(tungsten inert gas) dressing, hammer and needle peening [15]. The grinding and 

TIG dressing are methods to remove imperfection and create a smooth transition 

between weld for reducing the stress concentration. The hammer and needle peening 

deform the material plastically to introduce beneficial compressive residual stress at 

the weld toe. 

 

2.3 Computational approaches for fatigue crack growth 

One of the most popular methods for fatigue crack analysis is a finite element 

method which is based on the classical continuum mechanics for fatigue crack 

problems by introducing numerical techniques such as a cohesive element method, and 

an extended finite element method (XFEM).  

First, cohesive laws have been introduced into finite element analysis as mixed 

boundary conditions by Hillerborg [25]. De-Andrés et al. [26] proposed a three-

dimensional cohesive element model for an approach to fatigue life prediction, which 

is possible to track three-dimensional fatigue crack fronts and lead to the formation of 

free surfaces. They demonstrated simulations of fatigue crack growth in a three-

dimensional model and compared the results with experimental test data. Nguyen et 

al. [27] developed a two-dimensional cohesive element model to predict fatigue life. 

They used the cohesive element model to predict fatigue crack growth. They also 

investigated effects of overloads on crack growth rates for long cracks. 

Belytschko and Black [28] proposed a remeshing finite element method, which 

is called as XFEM, for modelling crack growth in materials. The XFEM has been 

developed to analyse the crack growth in a three-dimensional model which allows 

arbitrary crack growth [29-30]. Sukumar and Chopp [31] proposed a numerical 

technique for simulations of fatigue crack growth in a three-dimensional XFEM model. 

They demonstrated simulations of fatigue crack growth along planner surfaces and 

compared XFEM results with exact solutions. Their results showed good agreement 

with the theory. 

Alternative to the cohesive element method and XFEM, in this study, 

peridynamics is introduced to solve the fatigue crack growth problems. The 
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peridynamic theory can treat discontinuities and material failures without additional 

necessaries for dictating the crack growth. Therefore, it is possible to predict fatigue 

crack growth without any special techniques.  
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3. PERIDYNAMIC THEORY 

 

 
Peridynamic theory is an alternative theory of classical continuum mechanics 

to overcome limitations of discontinuity, which was proposed by Silling [32]. It is 

assumed that all points in a body are represented by material points which occupy a 

certain volume and interact with other material points within a finite distance called 

horizon 𝛿. In peridynamic theory, there is physical interaction between the material 

points called bond which interacts with each other within the horizon as a force 

function. The equation of motion of any material can be expressed as [9] 

 

𝜌(𝐱)𝐮̈(𝐱, 𝑡) = ∫ 𝐟(𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡), 𝐱′ − 𝐱)𝑑𝑉𝐱′
 

𝐻𝐱

+ 𝐛(𝐱, 𝑡) (3.1) 

 

where 𝐻𝐱 is the neighbourhood of material point 𝐱 within the horizon 𝛿, 𝜌 is the mass 

density field, 𝐱 is the position vector field, 𝐮 is the displacement vector field, 𝑡 is time, 

𝐟 is the pairwise force function which the material point 𝐱′ exerts on the material point 

𝐱, and 𝐛 is prescribed body force density field. The interaction of material points in 

peridynamic theory is shown in Fig. 3.1. 

For a linear elastic material, the pairwise force function is given as [9] 

 

𝐟(𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡), 𝐱′ − 𝐱) =
𝛏 + 𝛈

|𝛏 + 𝛈|
𝑐𝑠 (3.2a) 

 

 

Figure 3.1. Deformation and interaction of material points 𝒙 and 𝒙′ [33] 
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𝛏 = 𝐱′ − 𝐱 (3.2b) 

 

𝛈 = 𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡) (3.2c) 

 

𝑠 =
|𝛏 + 𝛈| − |𝛏|

|𝛏|
 (3.2d) 

 

where 𝛏 is the relative position between material points 𝐱 and 𝐱′ , 𝛈 is the relative 

displacement between material points 𝐱 and 𝐱′, 𝑠 is the bond stretch, and 𝑐 the is bond 

constant which is determined by considering the strain energy density in the classical 

continuum mechanics for the same material and same deformation [9]. In three-

dimensional linear elastic materials, the bond constant can be expressed as [9] 

 

𝑐 =
18𝐾𝐵
𝜋𝛿4

 (3.3) 

 

where 𝐾𝐵 is the bulk modulus and 𝛿 is the horizon. 

 When the bond stretch is greater than critical stretch, bond breakage occurs. 

The critical stretch 𝑠0 is determined by considering the fracture energy, which is the 

energy that is  required to create a unit crack surface [9]. For the linear elastic material, 

the critical stretch 𝑠0 is expressed as [9] 

 

𝑠0 = √
5𝐺0
9𝐾𝐵𝛿

 (3.4) 

 

where 𝐺𝟎 is the energy release rate, 𝐾𝐵 is the bulk modulus, and 𝛿 is the horizon. To 

represent material failure, a history-dependent scalar-valued function 𝜇 is defined as 

 

𝜇 = { 
1  𝑖𝑓 𝑠(𝑡′, 𝛏) < 𝑠𝟎     𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝑡

′ ≤ 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 
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where 𝑠0 is the critical bond stretch where failure occurs. A moment of bond failure is 

described in Fig. 3.2 [9]. 

 Local damage at a material point is expressed as the ratio of the number of 

bond breakage to the total number of initial connected bonds of the material point. The 

local damage 𝜑 at the material point 𝑘 can be quantified as below [9] 

 

𝜑(𝐱, 𝑡) = 1 −
∫ 𝜇(𝐱, 𝑡, 𝛏)𝑑𝑉𝐱′
 

𝐻𝐱

∫ 𝑑𝑉𝐱′
 

𝐻𝐱

 (3.6) 

 

A range of local damage changes from 0 to 1. When the local damage is 0, all bonds 

are intact, while the local damage of 1 means that all bonds are broken. It can be used 

as an indicator of crack formation in the material. 

 To solve the peridynamic equation of motion of Eq. (3.1), it is necessary to be 

expressed in discretized form as 

 

𝜌(𝑘)𝐮̈(𝑘)
𝑛 =∑𝐟(𝐮(𝑗)

𝑛 − 𝐮(𝑘)
𝑛 , 𝐱(𝑗) − 𝐱(𝑘))

𝑄

𝑗=1

𝑉(𝑗) + 𝐛(𝑘)
𝑛  (3.7) 

 

 

Figure 3.2. Pairwise force as a function of bond stretch and the value of μ with respect 

to s [9] 
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where 𝜌(𝑘) is the mass density of the material point 𝑘, 𝑛 is the 𝑛𝑡ℎ time step number, 

𝑄 is the number of material points within the horizon of the material point 𝑘, 𝐮(𝑘)
𝑛  is 

the displacement of the material point 𝑘 at the 𝑛𝑡ℎ time step, 𝑉(𝑗) is the volume of the 

material point 𝑗, and 𝐛(𝑘)
𝑛  is the body force density of the material point 𝑘 at the 𝑛𝑡ℎ 

time step. 

The velocity at the next time step can be calculated based on explicit forward 

difference formulations. The velocity at the (𝑛 + 1)𝑡ℎ time step is determined by the 

acceleration calculated from Eq. (3.7), and the velocity at the 𝑛𝑡ℎ time step can be 

expressed as 

 

𝐮̇(𝑘)
𝑛+1 = 𝐮̈(𝑘)

𝑛 ∆𝑡 + 𝐮̇(𝑘)
𝑛  (3.8) 

 

where ∆𝑡  is the time step size. The displacement at the (𝑛 + 1)𝑡ℎ  time step is 

determined by the velocity calculated from Eq. (3.8), and can be found by using 

backward difference formulation as 

 

𝐮(𝑘)
𝑛+1 = 𝐮̇(𝑘)

𝑛+1∆𝑡 + 𝐮(𝑘)
𝑛  (3.9) 

 

 To obtain convergent results, it is necessary to consider a stability condition 

for the explicit time integration. The stability condition for the time step size ∆𝑡 is 

derived based on von Neumann stability analysis as [9] 

 

∆𝑡 <
√

2𝜌(𝑘)

∑
𝑐

|𝐱(𝑗) − 𝐱(𝑘)|
𝑄
𝑗=1 𝑉(𝑗)

 (3.10) 
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4. PERIDYNAMIC FATIGUE MODEL 

 

 
A first peridynamic fatigue model has been proposed by Oterkus, et al [34]. 

Their study represented the crack growth of a pre-existing crack by assuming a critical 

stretch which decreases with cyclic loading, but their fatigue model was only for phase 

of crack growth. To deal with all phases of fatigue failure, Silling and Askari [13] has 

proposed a single peridynamic fatigue model called the “remaining life” consumed by 

repeated loadings. The developed model can be applied for both phases of crack 

nucleation and crack growth by using different fatigue parameters in each phase of 

fatigue failure. This peridynamic fatigue model is bond-based peridynamic model for 

a linear elastic material.  

 

4.1 Remaining life 

In peridynamics, local damage in a material is quantified by the number of 

broken bonds. Bond breakage occurs when the bond stretch between two material 

points exceeds its critical value. By considering the fatigue behaviour of a material, a 

concept of remaining life has been introduced by Silling and Askari [13]. This 

peridynamic fatigue model assumed that the life of bond connected between two 

material points is consumed by cyclic loadings. The life reduction ratio of remaining 

life is determined by following relation [13] 

 

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴(𝜀(𝑘)(𝑗))

𝑚 (4.1a) 

 

and 

 

𝜆(𝑘)(𝑗)
0 = 1 (4.1b) 

 

where 𝜆(𝑘)(𝑗) is the remaining life of bond between material points 𝑘 and 𝑗, 𝑁 is the 

number of cycles, 𝐴  and 𝑚  are peridynamic fatigue parameters, 𝜆(𝑘)(𝑗)
0  is the 

remaining life at the initial condition at 0𝑡ℎ load cycle and 𝜀(𝑘)(𝑗) is the cyclic bond 
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strain of the bond between material points 𝑘 and 𝑗. The cyclic bond strain is defined 

as [13] 

 

𝜀(𝑘)(𝑗) = |𝑠(𝑘)(𝑗)
+ − 𝑠(𝑘)(𝑗)

− | (4.2) 

 

where 𝑠(𝑘)(𝑗)
+  and 𝑠(𝑘)(𝑗)

−  are the maximum and minimum bond stretches between 

material points 𝑘 and 𝑗, respectively. They represent two extreme loading conditions 

in a cycle. For an elastic material, it is assumed that [13] 

 

𝑠(𝑘)(𝑗)
− = 𝑅𝑠(𝑘)(𝑗)

+
 (4.3) 

 

where 𝑅 is defined as the load ratio. Substituting Eq. (4.3) into Eq. (4.2) leads to 

 

𝜀(𝑘)(𝑗) = |𝑠(𝑘)(𝑗)
+ − 𝑠(𝑘)(𝑗)

− | = |(1 − 𝑅)𝑠(𝑘)(𝑗)
+ | (4.4) 

 

If a material is subjected to repeated loadings, it is assumed that the cyclic bond strain 

is independent of number of cycles 𝑁 and peridynamic fatigue parameters 𝐴 and 𝑚 

are independent of the position in the material [13]. 

 Bonds in two different phases are represented in Fig. 4.1. Bonds near a crack 

tip within a boundary are involved in the crack growth phase, and the other bonds out 

of the boundary are involved in the crack nucleation phase. The boundary is defined 

as the horizon of material points on pre-existing crack tips [13]. 

 

 

Figure 4.1 Bonds in two different phases of crack nucleation and crack growth 
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4.2 Crack nucleation 

Remaining life of each bond in a material inherently has an initial value (Eq. 

(4.1b)) and is gradually consumed by cyclic loadings. When the remaining life reaches 

0 or is less than 0, bond breakage occurs. Once the bond breaks, it cannot be 

reconnected. 

For the peridynamic fatigue parameters 𝐴 and 𝑚 provided in Eq. (4.1a), the 

parameters have different values in each phase of fatigue failure, such as crack 

nucleation and crack growth. The life reduction ratio of bond in the phase of crack 

nucleation can be described as 

 

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴1(𝜀(𝑘)(𝑗))

𝑚1 (4.5) 

 

where 𝐴1 and 𝑚1 are peridynamic fatigue parameters for crack nucleation. 

 The parameters 𝐴1  and 𝑚1  can be calibrated from experimental data. For a 

bond with the largest cyclic bond strain 𝜀1 in a material undergoing repeated loadings, 

the bond will be broken, and the damage will initiate at this broken bond. The number 

of cycles to the first bond breakage 𝑁1 can be calculated by integrating Eq. (4.5) over 

𝑁 as 

 

∫ 𝑑𝜆1

0

1

= ∫ −𝐴1(𝜀1)
𝑚1𝑑𝑁

𝑁1

0

 (4.6a) 

 

and 

 

0 − 1 = −𝐴1(𝜀1)
𝑚1𝑁1 (4.6b) 

 

which results in 

 

𝐴1𝜀1
𝑚1𝑁1 = 1 (4.7) 
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where 𝜆1 is the remaining life of the bond which will break first and 𝜀1 is the cyclic 

bond strain of the bond which will break first. Therefore, the crack nucleation occurs 

at 

 

𝑁1 =
1

𝐴1𝜀1
𝑚1

 (4.8) 

 

Eq. (4.8) can be represented on logarithmic scale as 

 

𝑙𝑜𝑔𝑁1 = −𝑙𝑜𝑔𝐴1 −𝑚1𝑙𝑜𝑔𝜀1 (4.9a) 

 

and 

 

𝑙𝑜𝑔𝜀1 = −
1

𝑚1
𝑙𝑜𝑔𝑁1 −

1

𝑚1
𝑙𝑜𝑔𝐴1 (4.9b) 

 

The parameters 𝐴1 and 𝑚1 can be determined by fitting a straight line to experimental 

data, which is a Strain-Life curve on logarithmic scale as shown in Fig. 4.2 [13]. 

 

 

Figure 4.2. Calibration of peridynamic fatigue parameters 𝐴1 and 𝑚1 [34] 
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The expression of Eq. (2.1b) can be expressed in terms of strain rather than 

stress as 

 

𝑙𝑜𝑔𝑁𝑓 = 𝑙𝑜𝑔𝐶𝑓 −𝑚𝑓𝑙𝑜𝑔∆𝜀 (4.10) 

 

where 𝑁𝑓  is the number of cycles to failure, ∆𝜀  is the strain range, 𝐶𝑓  and 𝑚𝑓  are 

constants. If the fatigue constants 𝐶𝑓 and 𝑚𝑓 of the strain-life curve for a material are 

provided, the parameters 𝐴1 and 𝑚1 can be easily obtained by comparing Eq. (4.9a) 

with Eq. (4.10). the parameters 𝐴1 and 𝑚1 are represented as 

 

𝑚1 = 𝑚𝑓 (4.11a) 

 

and 

 

𝐴1 =
1

𝐶𝑓
 (4.11b) 

  



21 

 

4.3 Crack growth 

For a material with a pre-existing crack undergoing repeated loadings, the 

remaining life of all bonds in the vicinity of a crack tip is calculated by rewriting Eq. 

(4.1a) as 

 

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴2(𝜀(𝑘)(𝑗))

𝑚2 (4.12) 

 

where 𝐴2 and 𝑚2 are the peridynamic fatigue parameters for the phase of crack growth. 

The parameters 𝐴2 and 𝑚2 are only valid for bonds within the horizon of the crack tip. 

It is assumed that the crack propagates a constant crack growth rate in each 

load cycle [13]. Therefore, the bond cyclic strain and the remaining life of bonds near 

the crack tip are represented as a function of position relative to the crack tip as [13] 

 

𝜀 = 𝜀(̅𝑧) (4.13) 

 

and 

 

𝜆 = 𝜆̅(𝑧) (4.14) 

 

where 𝑧 is the position coordinate based on the crack tip along the mode-1 crack axis, 

which is shown in Fig. 4.3, 𝜀̅ is the cyclic bond strain and 𝜆̅ is the remaining life 

functions of position relative to the crack tip. 

 

 

Figure 4.3 z-coordinate along the mode-1 crack axis of x-coordinate 
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As the crack grows, the position of crack tip can be expressed as [13] 

 

𝑧 = 𝑥 −
𝑑𝑎

𝑑𝑁
𝑁 (4.15) 

 

where 𝑥 is the spatial coordinate along the mode-1 crack axis, and 𝑎 is the crack length. 

The remaining life of bonds at the boundary 𝑧 = 𝛿 (Fig. 4.1) can be calculated 

by integrating the derivative of Eq. (4.14) over 𝑧 as 

 

∫ 𝑑𝜆̅
𝛿

0

= ∫
𝑑𝜆̅

𝑑𝑧

𝛿

0

𝑑𝑧 (4.16a) 

 

and 

 

𝜆̅(𝛿) − 𝜆̅(0) = ∫
𝑑𝜆̅

𝑑𝑧

𝛿

0

𝑑𝑧 (4.16b) 

 

which results in 

 

𝜆̅(𝛿) = 𝜆̅(0) + ∫
𝑑𝜆̅

𝑑𝑧

𝛿

0

𝑑𝑧 = 𝜆̅(0) + ∫
𝑑𝜆̅

𝑑𝑁

𝛿

0

𝑑𝑁

𝑑𝑧
𝑑𝑧 (4.17) 

 

Differentiating Eq. (4.15) with respect to 𝑧 leads to 

 

𝑑𝑁

𝑑𝑧
= −

1

𝑑𝑎/𝑑𝑁
 (4.18) 

 

Substituting Eq. (4.12), (4.13) and (4.18) into Eq. (4.17) leads to 

 

𝜆̅(𝛿) = 𝜆̅(0) +
𝐴2

𝑑𝑎/𝑑𝑁
∫ (𝜀(̅𝑧))𝑚2

𝛿

0

𝑑𝑧 (4.19) 
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For a bond at the boundary of crack tip area, because Eq. (4.12) is only valid 

for bonds within a crack tip area, the remaining life of bonds at the boundary 𝑧 = 𝛿 is 

not reduced by the phase of crack growth. Therefore, the remaining life of bonds at the 

boundary becomes 

 

𝜆̅(𝛿) = 1 (4.20) 

 

For a bond at the crack tip, because the bond is on the verge of breakage, it is 

considered as the most recently broken bond. Therefore, the remaining life of the bond 

at the crack tip 𝑧 = 0 becomes 

 

𝜆̅(0) = 0 (4.21) 

 

Silling and Askari [13] assumed that the cyclic bond strain can be expressed as 

 

𝜀 = 𝜀(̅𝑧) = 𝜀(̅0)𝑓(𝑧) (4.22) 

 

where 𝑓 is the function to represent the distribution around a crack tip, which, for the 

mode-1 crack tip, the function is independent of loading, and has a value of zero 

sufficiently near the origin 𝑧 = 0 [13]. Substituting Eq. (4.20), (4.21) and (4.22) into 

Eq. (4.19) leads to 

 

1 = 0 +
𝐴2

𝑑𝑎/𝑑𝑁
∫ (𝜀(̅0)𝑓(𝑧))𝑚2

𝛿

0

𝑑𝑧 (4.23) 

 

From Eq. (4.23), the crack growth rate can be represented as below 

 

𝑑𝑎

𝑑𝑁
= 𝛽𝐴2(𝜀(̅0))

𝑚2 (4.24a) 

 

and 
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𝛽 = ∫ (𝑓(𝑧))𝑚2𝑑𝑧
𝜏

0

 (4.24b) 

 

The parameter 𝑚2 can be determined by comparing Eq. (4.24a) with Eq. (2.4). 

Because, 𝜀(̅0) is proportional to the cyclic stress intensity factor ∆𝐾 in Eq. (2.4), and 

𝐶 and 𝑀 are constants in Eq. (2.4), the exponents of Eq. (4.24a) and (2.4) are same in 

both expressions as [13] 

 

𝑚2 = 𝑀 (4.25) 

 

the parameter 𝑚2 is easily calibrated from experimental data of Paris curve, which the 

fatigue constants 𝐶 and 𝑀 are values calibrated by experimental tests. However, it is 

difficult to calibrate directly the parameter 𝐴2  from the Paris curve because of 

unknown parameters 𝛽 and 𝜀(̅0). To calibrate the parameter 𝐴2 , it is necessary to 

perform a peridynamic simulation with an arbitrary parameter 𝐴2
′ . A numerical result 

of fatigue crack growth rate (
𝑑𝑎

𝑑𝑁
)
′
can be obtained from the peridynamic simulation 

with an arbitrary parameter 𝐴2
′ . 

The relation between the authentic parameter 𝐴2 and the arbitrary parameter 

𝐴2
′  can be derived from Eq. (4.24a) as 

 

𝑑𝑎/𝑑𝑁

𝐴2
= 𝛽(𝜀(̅0))𝑚2 (4.26a) 

 

and 

 

(𝑑𝑎/𝑑𝑁)′

𝐴2
′ = 𝛽(𝜀(̅0))𝑚2 (4.26b) 
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which results in 

 

𝐴2 = 𝐴2
′
𝑑𝑎/𝑑𝑁

(𝑑𝑎/𝑑𝑁)′
 (4.27) 

 

From Eq. (2.4) and (4.27), the parameter 𝐴2 is expressed as below [13] 

 

𝐴2 = 𝐴2
′
𝑑𝑎/𝑑𝑁

(𝑑𝑎/𝑑𝑁)′
= 𝐴2

′
𝐶∆𝐾𝑀

(𝑑𝑎/𝑑𝑁)′
 (4.28) 

 

A process of peridynamic simulation to calibrate the parameter 𝐴2  is described in 

Chapter 5.3.3.1.  
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5. FATIGUE DAMAGE SIMULATION 

 

 
This chapter presents peridynamic computational approaches to simulate two 

phases of fatigue failure: crack nucleation and crack growth by using peridynamic 

fatigue model proposed by Silling and Askari [13]. All simulations are treated as quasi-

static bond-based peridynamic theory. Also, it is assumed that all material behaviour 

in peridynamic calculations are linear elastic material behaviour. 

Typically, the peridynamic motion equation takes dynamic forms and can be 

solved by using explicit time integration as described in Chapter 3. However, for a 

stable calculation, a small time step is generally required. Since the fatigue processes 

generally take place for a long period, it is too heavy to simulate fatigue failures with 

an extremely small time step. Therefore, to avoid computational costs, all simulations 

are treated as quasi-static. 

 

5.1 Peridynamic static solution 

There are some techniques to obtain static or quasi-static solutions. One of the 

most common methods is the adaptive dynamic relaxation (ADR) technique. Kilic and 

Madenci [35] proposed this method by introducing an artificial damping to the 

peridynamic equation to obtain static or quasi-static solutions, which a static solution 

can be considered as a part of steady-state in dynamic solution. The other technique is 

solving directly a peridynamic static equation, which is available only in solving a 

linear system equation as a matrix form [36]. In this study, all peridynamic quasi-static 

solutions are obtained by using a direct static solution method. 

 The static equation of peridynamic theory can be obtained by setting the 

acceleration term to 0 in Equation (3.1) as 

 

∫ 𝐟(𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡), 𝐱′ − 𝐱)𝑑𝑉𝐱′
 

𝐻𝐱

+ 𝐛(𝐱, 𝑡) = 0 (5.1) 
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where 𝐻𝐱 is the horizon of the material point 𝐱, 𝐮 is the displacement vector field, 𝐟 is 

the pairwise force function which represents the force per unit volume, which the 

material point 𝑘 exerts on the material point 𝑗, and 𝐛 is a exerted body force density. 

 For a linear elastic material, the peridynamic force can be expressed in a 

linearized function as [32] 

 

𝐟(𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡), 𝐱′ − 𝐱) = 𝐂(𝛏)𝜼 (5.2a) 

 

𝛏 = 𝐱′ − 𝐱 (5.2b) 

 

𝛈 = 𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡) (5.2c) 

 

where 𝛏  is relative position between material points 𝐱  and 𝐱′ , 𝛈  is relative 

displacement between material points 𝐱  and 𝐱′  and 𝐂  is a second-order material’s 

micromodulus tensor given by [32] 

 

𝐂(𝛏) =
𝜕𝐟

𝜕𝜼
(0, 𝛏) (5.3) 

 

The micromodulus tensor can be expressed as [37] 

 

𝐂(𝛏) =
𝑐

|𝛏|
𝐌⊗𝐌 (5.4) 

 

where 𝑐 is the bond constant, ⊗ is the operator of dyadic product, and 𝐌 is the unit 

vector of bond direction in the reference configuration, which is given as [36] 

 

𝐌 =
𝛏

|𝛏|
 (5.5) 
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Substituting Eq. (5.4) and (5.5) into Eq. (5.2a) leads to [36] 

 

𝐟 = 𝑐
𝛏 ⊗ 𝛏

|𝛏|3
𝜼 (5.6) 

 

which 𝐟 is the peridynamic force in the microelastic material. It can be expressed in a 

matrix form as [36] 

 

 

 

{

f𝑥
f𝑦
f𝑧

} =
𝑐

|𝛏|3
[

ξ𝑥ξ𝑥 ξ𝑥ξ𝑦 ξ𝑥ξ𝑧
ξ𝑦ξ𝑥 ξ𝑦ξ𝑦 ξ𝑦ξ𝑧
ξ𝑧ξ𝑥 ξ𝑧ξ𝑦 ξ𝑧ξ𝑧

] {

η𝑥
η𝑦
η𝑧
} (5.7) 

 

Where 𝑐 is the bond constant and subscripts of f, ξ, and η indicate components of 𝑥, 𝑦 

and 𝑧 axis. Eq. (5.7) can be expressed in two dimensional as [36] 

 

 

{
f𝑥
f𝑦
} =

𝑐

|𝛏|3
[
ξ𝑥ξ𝑥 ξ𝑥ξ𝑦
ξ𝑦ξ𝑥 ξ𝑦ξ𝑦

] {
η𝑥
η𝑦
} (5.8) 

 

where ξ𝑥 and ξ𝑦 can be represented as below 

 

 

ξ𝑥 = |𝛏|𝑐𝑜𝑠𝜃 (5.9a) 

 

and 

 

ξ𝑥 = |𝛏|𝑠𝑖𝑛𝜃 (5.9b) 

 

where 𝜃 is the angle of bond from the 𝑥-axis in the reference configuration.  
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Substituting Eq. (5.9a) and (5.9b) into Eq. (5.8) leads to 

 

{
f𝑥
f𝑦
} =

𝑐

|𝛏|
[ 𝑐𝑜𝑠2𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛2𝜃

] {
η𝑥
η𝑦
} (5.10) 

 

To solve the peridynamic static equation, it is necessary to be represented in 

discretized form for numerical calculation as 

 

∑𝐟(𝐮(𝑗) − 𝐮(𝑘), 𝐱(𝑗) − 𝐱(𝑘))𝑉(𝑗)

𝑄

𝑗=1

+ 𝐛(𝑘) = 0 (5.11) 

 

where 𝑄 is the number of material points within the horizon of the material point 𝑘. 

Substituting Eq. (5.10) into Eq. (5.11) leads to 

 

∑
𝑐

|𝛏(𝑘)(𝑗)|
[

𝑐𝑜𝑠2𝜃(𝑘)(𝑗) 𝑐𝑜𝑠𝜃(𝑘)(𝑗)𝑠𝑖𝑛𝜃(𝑘)(𝑗)

𝑠𝑖𝑛𝜃(𝑘)(𝑗)𝑐𝑜𝑠𝜃(𝑘)(𝑗) 𝑠𝑖𝑛2𝜃(𝑘)(𝑗)
] {
η(𝑘)(𝑗)𝑥
η(𝑘)(𝑗)𝑦

}𝑉𝑗

𝑄

𝑗=1

+ {
b(𝑘)𝑥
b(𝑘)𝑦

}

= 0 

(5.12) 

 

where 𝜃(𝑘)(𝑗) is the angle of bond between two material points 𝑘 and 𝑗 from the 𝑥-axis 

in the reference configuration, b(𝑘)𝑥
 and b(𝑘)𝑦

 are the 𝑥-component and 𝑦-component 

of 𝐛(𝑘), respectively. η(𝑘)(𝑗)𝑥
 and η(𝑘)(𝑗)𝑦

 can be represented as 

 

 

η(𝑘)(𝑗)𝑥
= u(𝑗)𝑥

− u(𝑘)𝑥
 (5.13a) 

 

and 

 

η(𝑘)(𝑗)𝑦
= u(𝑗)𝑦

− u(𝑘)𝑦
 (5.13b) 
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where u(𝑘)𝑥
 and u(𝑘)𝑦

 are the 𝑥-component and 𝑦-component of 𝐮(𝑘) , respectively. 

By using Eq. (5.13a) and (5.13b), Eq. (5.12) can be expressed in a matrix form 

consisting of each component displacement of material points 𝑘 and 𝑗 as [36] 

 

∑
𝑐

|𝛏(𝑘)(𝑗)|
[ 𝑐𝑜𝑠2𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛2𝜃

−𝑐𝑜𝑠2𝜃 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛2𝜃

]

{
 
 

 
 
u(𝑘)𝑥
u(𝑘)𝑦
u(𝑗)𝑥
u(𝑗)𝑦}

 
 

 
 

𝑉𝑗

𝑄

𝑗=1

= {
b(𝑘)𝑥
b(𝑘)𝑦

} 

(5.14a) 

 

and 

 

[
𝐊(2𝑘−1)(2𝑘−1) 𝐊(2𝑘)(2𝑘−1)
𝐊(2𝑘)(2𝑘−1) 𝐊(2𝑘)(2𝑘−1)

𝐊(2𝑘−1)(2𝑗−1) 𝐊(2𝑘−1)(2𝑗)
𝐊(2𝑘)(2𝑗−1) 𝐊(2𝑘)(2𝑗)

]

{
 
 

 
 
u(𝑘)𝑥
u(𝑘)𝑦
u(𝑗)𝑥
u(𝑗)𝑦}

 
 

 
 

= {
b(𝑘)𝑥
b(𝑘)𝑦

} 

(5.14b) 

 

where 𝜃 = 𝜃(𝑘)(𝑗). Considering all material points with Eq. (5.14b) leads to a global 

matrix form as 

 

[
 
 
 
 
 
 
𝐊(1)(1) 𝐊(1)(2)
𝐊(2)(1) 𝐊(2)(2)

𝐊(1)(3) 𝐊(1)(4)
𝐊(2)(3) 𝐊(2)(4)

⋯
⋯

𝐊(1)(2𝑁𝑡)
𝐊(2)(2𝑁𝑡)

𝐊(3)(1) 𝐊(3)(2)
𝐊(4)(1) 𝐊(4)(2)

𝐊(1)(3) 𝐊(1)(4)
𝐊(2)(3) 𝐊(2)(4)

⋯
⋯

𝐊(3)(2𝑁𝑡)
𝐊(4)(2𝑁𝑡)

⋮     ⋮
𝐊(2𝑁𝑡)(1) 𝐊(2𝑁𝑡)(2)

⋮      ⋮
𝐊(2𝑁𝑡)(3) 𝐊(2𝑁𝑡)(4)

⋱
⋯

⋮
𝐊(2𝑁𝑡)(2𝑁𝑡)]

 
 
 
 
 
 

{
 
 
 

 
 
 
u(1)𝑥
u(1)𝑦
u(2)𝑥
u(2)𝑦
⋮

u(𝑁𝑡)𝑥
u(𝑁𝑡)𝑦}

 
 
 

 
 
 

=

{
 
 
 
 

 
 
 
 
b(1)𝑥
b(1)𝑦
b(2)𝑥
b(2)𝑦
⋮

b(𝑁𝑡)𝑥
b(𝑁𝑡)𝑦}

 
 
 
 

 
 
 
 

 (5.15) 

 

where 𝑁𝑡  is the total number of material points in the material, and 𝐊𝑖𝑗  is the 

component of global stiffness matrix. 
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The global matrix equation of Eq. (5.15) can be expressed as 

 

𝐊G𝐔G = 𝐅G  (5.16) 

 

where 𝐊G is the global stiffness matrix, 𝐔G is the global displacement matrix, and 𝐅G 

is the global body force vector. The global displacement matrix 𝐔G can be directly 

obtained by taking the inverse of global stiffness matrix as 

 

𝐔G = 𝐊G
−1𝐅G  (5.17) 
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5.2 Fatigue crack nucleation 

 To validate the peridynamic fatigue model in crack nucleation phase, the 

fatigue crack nucleation is simulated. Fatigue tensile tests are simulated with a two-

dimensional numerical model under uniaxial tension-compression loadings for 7075-

T651 aluminium alloy. 

 

5.2.1 Numerical model for crack nucleation 

A two-dimensional plate model which is made of 7075-T651 aluminium alloy 

is used to represent crack nucleation. Mechanical material properties of 7075-T651 

aluminium alloy are given in Table.5.1. A geometry of the numerical model is 

represented in Fig. 5.1. The numerical model is subjected to uniaxial tension-

compression cyclic loadings at the top and bottom. Loading conditions are described 

in Table 5.2 and Fig. 5.2. 

 

Boundary conditions: 

- 𝑢𝑦 = 0 at 𝑦 = 0 

- 𝑢𝑥 = 0 at 𝑦 = 0 and 𝑥 = 0  

Loading conditions: 

- Uniaxial cyclic loading 𝜎 (MPa) at 𝑦 = ±54.75 𝑚𝑚 

Thickness of the plate: 

- 3.6 𝑚𝑚 

 

 

 

Table 5.1. Mechanical properties of 7075-T651 aluminium alloy [38] 

Elasticity modulus, 𝐸 71.7 GPa 

Poisson’s ratio,   0.33 

Yield stress, 𝜎𝑌 501 MPa 

Ultimate strength, 𝜎𝑢 561 MPa 
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Figure 5.1. Geometry of numerical model for fatigue crack nucleation under uniaxial 

tension-compression cyclic loading 
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Table 5.2.  Loading conditions for numerical fatigue tensile tests [38] 

Case 
Stress amplitude 

(MPa) 

Mean stress 

(MPa) 
Frequency (Hz) 

Load ratio 

1 368.8 -54.4 1 -1 

2 333.2 -22.2 2 -1 

3 299.3 1.3 4 -1 

4 262.4 1.2 5 -1 

5 222.1 1.0 10 -1 

6 210.2 15.5 10 -1 

7 191.4 0.7 10 -1 

8 157.0 0.7 5 -1 

 

 

 

 

Figure 5.2 Fully reversed uniaxial loadings (𝑅 = −1) as a function of time for crack 

nucleation 
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5.2.2 Numerical procedure for crack nucleation simulation 

  A numerical procedure for simulating crack nucleation is described in Fig. 5.3. 

 

 

Figure 5.3. Flowchart for simulation of fatigue crack nucleation 
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The numerical procedure for simulating crack nucleation is described as 

 

1) Create a model 

Firstly, it is necessary to discretize a geometry of model into material points 

for the peridynamic calculation. Also, peridynamic parameters for the 

peridynamic calculation should be identified based on material properties, such 

as bond constant, critical bond stretch and peridynamic fatigue parameters. 

 

2) Assign the initial remaining life 

All bonds in a material have an initial value of remaining life at the initial state 

before applying cycle loads (Eq. (4.1b)).  

 

3) Identify extreme loads of the 𝑁𝑡ℎ load cycle 

In order to calculate the fatigue damage during the 𝑁𝑡ℎ  load cycle, it is 

necessary to identify two extremes in the 𝑁𝑡ℎ load cycle. Fig. 5.4 shows the 

maximum and minimum points in each load cycle, which the only two 

extremes are required to calculate the 𝑁𝑡ℎ cyclic bond strain in the 𝑁𝑡ℎ load 

cycle. 

 

4) Compute two static solutions under each extreme load condition 

Peridynamic static solutions under each extreme load condition can be 

calculated by direct solution as described in Chapter 5.1. 

 

 

Figure 5.4 Maximum and minimum loads in each load cycle 
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5) Calculate the cyclic bond strain of each bond at the 𝑁𝑡ℎ load cycle 

The maximum and minimum bond stretches 𝑠(𝑘)(𝑗)
+  and 𝑠(𝑘)(𝑗)

−  between 

material points 𝑘 and 𝑗 at the 𝑁𝑡ℎ  load cycle can be calculated respectively 

based on the peridynamic static solutions. With the maximum and minimum 

bond stretches, the cyclic bond strain of each bond at the 𝑁𝑡ℎ load cycle can 

be calculated from Eq. (4.2). 

 

6) Calculate the remaining life of each bond at the 𝑁𝑡ℎ load cycle 

The remaining life of each bond at the 𝑁𝑡ℎ load cycle can be calculated by 

integrating Eq. (4.5) as 

 

∫ 𝑑𝜆(𝑘)(𝑗)

𝜆(𝑘)(𝑗)
𝑁

𝜆(𝑘)(𝑗)
𝑁−1

= ∫ −𝐴1(𝜀(𝑘)(𝑗)
𝑁 )

𝑚1
𝑁

𝑁−1

𝑑𝑁 (5.18a) 

 

and 

 

𝜆(𝑘)(𝑗)
𝑁 = 𝜆(𝑘)(𝑗)

𝑁−1 − 𝐴1(𝜀(𝑘)(𝑗)
𝑁 )

𝑚1
 (5.18b) 

 

where 𝑁  is the number of cycles, 𝜆(𝑘)(𝑗)
𝑁  and 𝜀(𝑘)(𝑗)

𝑁  are remaining life and 

cyclic bond strain of bond between material points 𝑘  and 𝑗 at the 𝑁𝑡ℎ  load 

cycle, respectively. 𝐴1 and 𝑚1 are the peridynamic fatigue parameters. When 

the remaining life of bond is 0 or less than 0, (𝜆(𝑘)(𝑗)
𝑁 ≤ 0), a new bond 

breakage occurs. 

 

7) Crack initiation 

When the local damage of any material points 𝜑(𝑘)
𝑁  is 0.35 or greater than 0.35, 

it is assumed that the crack has occurred at that material point [39]. Once the 

crack occurs in the material, it is required to be treated as the pre-existing crack 

problem. Therefore, it is necessary for bonds near crack tips to be shifted to the 

crack growth phase for the proper simulation. 
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5.2.3 Peridynamic simulation for crack nucleation 

A discretization of two-dimensional model is represented in Fig. 5.5, which the 

𝑅𝑏  indicates the material points where body forces are applied. Peridynamic 

parameters are represented as 

  

• Total number of material points: 7385 

• Spacing between material points: ∆= 0.5 mm 

• Thickness: 𝑡 = 3.6 mm 

• Incremental volume of material points: ∆𝑉 = 𝑡 × ∆ × ∆= 0.9 mm3 

• Horizon: 3.015 × ∆= 1.5075 mm 

• Critical bond stretch: 𝑠0 = 0.01 

• Static solution: Direct solution 

 

 

Figure 5.5. Geometry of numerical model for fatigue crack nucleation and its 

discretization 
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5.2.3.1 Calibration of peridynamic fatigue parameters for crack nucleation 

The 7075-T651 aluminium alloy has a special material property called as 

fatigue limit, which is the minimum threshold causing the fatigue damage [38]. If the 

loading is less than the fatigue limit, regardless of how many loadings are applied, 

there is no fatigue damage. Incorporating the fatigue limit into the peridynamic fatigue 

model, Silling and Askari [13] modified Eq. (4.5) as below 

 

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= {

−𝐴1(𝜀(𝑘)(𝑗) − 𝜀0)
𝑚1
, if 𝜀(𝑘)(𝑗) > 𝜀0

   0,                                    otherwise
 (5.19) 

 

where 𝜆(𝑘)(𝑗) is the remaining life of bond between material points 𝑘 and 𝑗, 𝑁 is the 

number of cycles, 𝐴1  and 𝑚1  are the peridynamic fatigue parameters, 𝜀(𝑘)(𝑗)  is the 

cyclic bond strain between material points 𝑘 and 𝑗, 𝜀0 is the fatigue limit. 

 To calibrate the parameters 𝐴1 and 𝑚1, fatigue results of Zhao and Jiang [38] 

are used to create a Strain-Life curve of 7075-T651 aluminium alloy. The fatigue 

results of Zhao and Jiang [38] and the resulting best fitting curve for the Strain-Life 

curve of 7075-T651 aluminium alloy are represented in Fig. 5.6. The peridynamic 

fatigue parameters 𝐴1 and 𝑚1 are calibrated by plotting the fatigue results of Zhao and 

Jiang [38] on logarithmic scales as shown in Fig. 5.7. The value of fatigue limit of 

7075-T651 aluminium alloy is obtained from fatigue test results of Zhao and Jiang 

[38]. The resulting peridynamic fatigue parameters 𝐴1 and 𝑚1, and the fatigue limit of 

7075-T651 aluminium alloy 𝜀0 are listed in Table 5.3. 

 

 

 

Table 5.3. Peridynamic fatigue parameters for crack nucleation of 7075-T651 

𝐴1 4824.11 

𝑚1 2.8901 

𝜀0 [38] 0.0015 
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Figure 5.6. Fatigue results by Zhao and Jiang [38] and a fitting curve for Strain-Life 

curve 

 

 

Figure 5.7. Calibration of peridynamic fatigue parameter 𝐴1 and 𝑚1 in logarithmic 

scales 
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5.2.4 Numerical results and validation 

 To validate peridynamic static solutions, first a peridynamic static solution is 

compared with FEM by using ANSYS software. In FEM, a plane stress element with 

thickness is used. 

Fig. 5.8 and 5.9 show comparison between the peridynamic and the FEM static 

solutions under a uniaxial tension in opposite directions with forces 𝜎 = 157.7 MPa. 

These results show that the peridynamic results have similar displacement 

distributions with FEM solutions.  

 

 

Figure 5.8. Displacement distribution in x-direction under a uniaxial tension in 

opposite directions with forces 𝜎 = 157.7 MPa, (a) peridynamic static solution (b) 

FEM static solution 
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Figure 5.9. Displacement distribution in y-direction under a uniaxial tension in 

opposite directions with forces 𝜎 = 157.7 MPa, (a) peridynamic static solution (b) 

FEM static solution 
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After verifying the peridynamic results, simulations of fatigue crack nucleation 

are performed with the simulation procedure described in Chapter 5.2.2. Numerical 

results show that the crack nucleation occurs where there are high stress concentrations, 

and the fatigue damage is developed from where the crack nucleation occurs. The 

development of the fatigue damage is represented in Fig. 5.10. All numerical results 

are represented and compared with the fatigue test results by Zhao and Jiang [38] as 

shown in Fig. 5.11. The peridynamic fatigue model damage is calculated based on the 

breakage of first peridynamic bond. 

 

 

 

 

Figure 5.10. Development of fatigue damage under case 3 loading condition (Table 

5.2), (a) 𝑁 = 0, (b) 𝑁 = 2473, (c) 𝑁 = 3863 
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Figure 5.11. Peridynamic numerical results and comparison with fatigue test results of 

Zhao and Jiang [38] 
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5.3 Fatigue crack growth 

 To validate the peridynamic fatigue model in crack growth phase, the fatigue 

crack growth is simulated. ASTM E647 standard compact tests are simulated with a 

two-dimensional numerical model for 7075-T651 aluminium alloy. 

 

5.3.1 Numerical model for crack growth 

 A two-dimensional plate model which is made of 7075-T651 aluminium alloy 

is used to represent crack growth. Mechanical material properties of 7075-T651 

aluminium alloy are given in Table.5.1. A geometry of the numerical model is 

represented in Fig. 5.12. The numerical model is subjected to a uniaxial tension cyclic 

load in opposite directions at two pins of top and bottom with extreme forces 𝑃+ =

1500 N and 𝑃− = 150 N resulting in a load ratio of 𝑅 = 0.1. 

 

Boundary conditions: 

- 𝑢𝑥 = 𝑢𝑦 = 0 at 𝑦 = 0 and 𝑥 = 0 

Loading conditions: 

- Uniaxial cyclic loading 𝑃 (MPa) at 𝑥 = 50 𝑚𝑚 and 𝑦 = ±14 𝑚𝑚 

Thickness of the plate: 

- 6.11 𝑚𝑚 

 

Figure 5.12. Geometry of numerical model for fatigue crack growth under uniaxial 

tension cyclic load 
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5.3.2 Numerical procedure for crack growth simulation 

 For a structure having a pre-existing crack, it is not suitable to simulate with 

the numerical procedure for crack nucleation as described in Chapter 5.2.2. Materials 

near a crack tip has a different mechanism from the crack nucleation phase. Crack 

nucleation and crack propagation are two different mechanisms. Crack propagation 

occurs when there is crack in the structure, and high stress concentration occurs near 

the crack tip which drives the crack growth. However, the crack nucleation occurs 

when there is no initial crack in the structure. Therefore, two different procedures are 

used to simulate crack initiation and propagation. The procedure for crack growth 

simulation is represented in Fig. 5.13. 
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Figure 5.13. Flowchart for simulation of fatigue crack growth 
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The numerical procedure for simulating crack growth is described as 

 

1) Create a model 

Firstly, it is necessary to discretize a geometry of model into material points 

for the peridynamic calculation. Also, peridynamic parameters for the 

peridynamic calculation should be identified based on material properties, such 

as bond constant, critical bond stretch and peridynamic fatigue parameters. 

 

2) Assign the initial remaining life 

All bonds in a material have an initial value of remaining life at the initial state 

before applying cycle loads (Eq. (4.1b)).  

 

3) Define crack tip areas 

In order to distinguish bonds near crack tips from other bonds located far from 

the crack tips, it is essential to define the crack tip areas. Firstly, the crack at 

the 𝑁𝑡ℎ load cycle is defined in material points as [39] 

 

𝜑(𝑘)
𝑁 ≥ 0.35 (5.20) 

 

where 𝜑(𝑘)
𝑁  is the local damage of material point 𝑘 at the 𝑁𝑡ℎ load cycle. Any 

material points with the local damage 𝜑(𝑘)
𝑁 ≥ 0.35 is considered as the crack. 

Fig. 5.14 shows some kind of crack tip areas in the material, which the 

boundary radius of crack tip areas is typically defined as the horizon 𝛿 [13]. 
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Figure 5.14. Cracks and crack tip area defined in material points (red points ∙  is 

material points with local damage 𝜑(𝑘)
𝑁 ≥ 0.35) 

 

 

4) Identify extreme loads of the 𝑁𝑡ℎ load cycle 

In order to calculate the fatigue damage during the 𝑁𝑡ℎ  load cycle, it is 

necessary to identify two extremes in the 𝑁𝑡ℎ load cycle. Fig. 5.4 shows the 

maximum and minimum points in each load cycle, which the only two 

extremes are required to calculate the 𝑁𝑡ℎ cyclic bond strain in the 𝑁𝑡ℎ load 

cycle. 

 

5) Compute two static solutions under each extreme load condition 

Peridynamic static solutions under each extreme load condition can be 

calculated by the direct solution as described in Chapter 5.1. 

 

6) Calculate the cyclic bond strain of each bond at the 𝑁𝑡ℎ load cycle 

The maximum and minimum bond stretches 𝑠(𝑘)(𝑗)
+  and 𝑠(𝑘)(𝑗)

−  of between 

material points 𝑘 and 𝑗 at the 𝑁𝑡ℎ  load cycle can be calculated respectively 

based on the peridynamic static solutions. With the maximum and minimum 

bond stretches, the cyclic bond strain of each bond at the 𝑁𝑡ℎ load cycle can 

be calculated from Eq. (4.2). 
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7) Calculate the remaining life of each bond at the 𝑁𝑡ℎ load cycle 

The remaining life of each bond at the 𝑁𝑡ℎ load cycle can be calculated by 

integrating Eq. (4.12) as below 

 

∫ 𝑑𝜆(𝑘)(𝑗)

𝜆(𝑘)(𝑗)
𝑁

𝜆(𝑘)(𝑗)
𝑁−1

= ∫ −𝐴2(𝜀(𝑘)(𝑗)
𝑁 )

𝑚2
𝑁

𝑁−1

𝑑𝑁 (5.21a) 

 

and 

 

𝜆(𝑘)(𝑗)
𝑁 = 𝜆(𝑘)(𝑗)

𝑁−1 − 𝐴2(𝜀(𝑘)(𝑗)
𝑁 )

𝑚2
 (5.21b) 

 

where 𝑁 is the number of cycles, 𝜆(𝑘)(𝑗)
𝑁  is the remaining life of bond between 

material points 𝑘 and 𝑗 at the 𝑁𝑡ℎ load cycle, 𝜀(𝑘)(𝑗)
𝑁  is the cyclic bond strain 

between material points 𝑘  and 𝑗  at the 𝑁𝑡ℎ  load cycle, 𝐴2  and 𝑚2  are the 

peridynamic fatigue parameters. 

The bond breakage occurs when 

 

𝜆(𝑘)(𝑗)
𝑁 ≤ 0 (5.22) 

 

or 

 

𝑠(𝑘)(𝑗)
+ ≥ 𝑠0  (5.23) 

 

where 𝑠0 is the critical bond stretch for failure under static loading. 

 

8) Fracture 

By cyclic loadings, multiple new bond breakages occur, which cause the crack 

growth. Finally, when the crack growth reaches surfaces of the material or the 

material is totally divided into two materials, the final fracture occurs, and the 

simulation is ends. 
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5.3.3 Peridynamic simulation for crack growth 

 A discretization of two-dimensional model is represented in Fig. 5.15, which 

the 𝑅𝑏  indicates volume of boundary layers applied body forces. Peridynamic 

parameters are represented as 

 

• Total number of material points: 15100 

• Spacing between material points: ∆= 0.5 mm 

• Initial length of the pre-existing crack: 𝑎 = 12.5 mm 

• Thickness: 𝑡 = 6.11 mm 

• Horizon: 3.015 × ∆= 1.5075 mm 

• Critical bond stretch: 𝑠0 = 0.01 

• Static solution: Direct solution 

• Incremental volume of material points: ∆𝑉 = 𝑡 × ∆ × ∆= 1.5275 mm3 

 

 

 

 

Figure 5.15. Geometry of numerical model for fatigue crack growth and its 

discretization 
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5.3.3.1 Calibration of peridynamic fatigue parameters for crack growth 

 The fatigue crack growth rate of common metallic materials is largely 

influenced by material microstructure, thickness of component, and load ratio [40]. 

The fatigue crack growth of 7075-T651 aluminium alloy is also greatly influenced by 

load ratio. Considering the load ratio effect on the fatigue crack growth rate, Kujawski 

[41] proposed the modified Paris law as 

 

𝑑𝑎

𝑑𝑁
= 𝐶′(𝐾∗)𝑀

′
 (5.24a) 

 

and 

 

𝐾∗ = (𝐾𝑚𝑎𝑥)
𝛾(∆𝐾+)1−𝛾  (5.24b) 

 

where 𝐶′, 𝑀′ and 𝛾 are the material fatigue constants calibrated by fatigue tests, 𝐾𝑚𝑎𝑥 

is the maximum stress intensity factor in a loading cycle, ∆𝐾+ is the positive part of 

the range of the stress intensity factor in a loading cycle. These parameters 𝐾𝑚𝑎𝑥 and 

∆𝐾+ are represented in Fig. 5.16. 

 

 

Figure 5.16. Representation of ∆𝐾+, 𝐾𝑚𝑎𝑥, 𝜀(𝑘)(𝑗)𝑚𝑎𝑥
and ∆𝜀(𝑘)(𝑗)

+in each load cycle 
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To consider the load ratio effect in the peridynamic fatigue model, Silling and 

Askari [13] modified Eq. (4.12) by assuming that bond strains near crack tips are 

proportional to the stress intensity factor, which is given as below [13] 

 

𝑑𝜆(𝑘)(𝑗)

𝑑𝑁
= −𝐴2(𝜀(𝑘)(𝑗)

∗)
𝑚2

 (5.25a) 

 

and 

 

𝜀(𝑘)(𝑗)
∗ = (𝜀(𝑘)(𝑗)𝑚𝑎𝑥

)
𝛾

(∆𝜀(𝑘)(𝑗)
+)

1−𝛾
 (5.25b) 

 

where 𝛾 is the fatigue constant in Eq. (5.24b), 𝜀(𝑘)(𝑗)𝑚𝑎𝑥
 is the maximum cyclic bond 

strain between material points 𝑘 and 𝑗 at each cycle, and ∆𝜀(𝑘)(𝑗)
+ is the positive part 

of the range of cyclic bond strain between material points 𝑘 and 𝑗 at each cycle. These 

parameters 𝜀(𝑘)(𝑗)𝑚𝑎𝑥
 and ∆𝜀(𝑘)(𝑗)

+ are represented in Fig. 5.16. 

To calibrate the peridynamic fatigue parameters 𝐴2 and 𝑚2, experimental data 

[40] are used to describe the Paris curve of 7075-T651 aluminium alloy. In this study, 

the modified Paris curve (Eq. (5.24)) is used to consider the load ratio effect. The 

fatigue constants of 7075-T651 aluminium alloy for Eq. (5.24) are represented in Table 

5.4. In this case, the fatigue constants of modified Paris raw can be easily obtained 

from the material properties in Table 5.4. If there were no the fatigue constants of 

modified Paris raw, it is possible to calculate the fatigue constants from the crack 

growth test data for a material. A process of the calculation for the fatigue parameters 

𝐶′, 𝑀′ and 𝛾 are described in Chapter 6.1.1. 

 

 

Table 5.4. Fatigue constants of 7075-T651 aluminium alloy [40] 

𝐶′ 6.0 × 10−8 

𝑀′ 3.32 

𝛾 0.35 
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The crack growth rate of the ASTM E647 standard compact specimen can be 

calculated in the analytical way based on Eq. (5.24), which the stress intensity factor 

of the ASTM E647 standard compact specimen can be calculated by an equation as 

[40] 

 

𝐾 =
𝑃(2 +

𝑎
𝑊
)

𝐵√𝑊 (1 −
𝑎
𝑊
)
3/2
(0.886 + 4.64 (

𝑎

𝑊
) − 13.32 (

𝑎

𝑊
)
2

+ 14.72 (
𝑎

𝑊
)
3

− 5.6 (
𝑎

𝑊
)
4

) (5.26) 

 

where 𝑃 is the applied force, 𝐵 is the thickness of the compact specimen, 𝑊 is the 

distance between the right edge of the specimen and the vertical line of the applied 

force 𝑃, and 𝑎 is the length of crack measured from the line of the applied force 𝑃. Fig. 

5.17 shows the ASTM E647 standard compact specimen. 

 

 

 

 

Figure 5.17. ASTM E647 standard compact specimen 
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 The peridynamic fatigue parameter 𝑚2  can be determined by the fatigue 

constant 𝑀′  in Eq. (4.25). The numerical procedure to calibrate peridynamic fatigue 

parameter 𝐴2 in Eq. (4.12) is described in Fig. 5.18. 

 

 

 

 

 

Figure 5.18. Flowchart for calibration of peridynamic fatigue parameter 𝐴2 
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The numerical procedure for calibrating the peridynamic fatigue parameter 𝐴2  is 

described as 

 

1) Assign an arbitrary peridynamic fatigue parameter 𝐴2
′  

To determine the peridynamic fatigue parameters A2, it is necessary to assign 

an arbitrary peridynamic fatigue parameter 𝐴2
′ . In this study, the arbitrary 

peridynamic fatigue parameter 𝐴2
′  is defined as 

 

𝐴2
′ = 10,000 (5.39) 

 

2) Simulate fatigue crack growth with 𝐴2
′  

To calculate crack growth rate of 𝐴2
′ , A peridynamic simulation is performed 

with peridynamic fatigue parameters 𝐴2
′ , 𝑚2  and 𝛾  with the simulation 

procedure for fatigue crack growth as described in Chapter 5.3.2. 

 

3) Define crack length as a function of number of cycles 

The crack length can be represented as a function of number of cycles from 

peridynamic results. Fig. 5.19 shows crack length versus number of cycles. 

 

 

Figure 5.19. Crack-Cycle curve of peridynamic simulation by using 𝐴2
′  
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4) Calibrate crack growth rate  (
𝑑𝑎

𝑑𝑁
)
′
 

The crack growth rate (
𝑑𝑎

𝑑𝑁
)
′
 can be calibrated by slopes of the Crack-Cycle 

curve as shown in Fig. 5.19. The crack growth rate (
𝑑𝑎

𝑑𝑁
)
′
 with respect to crack 

length is represented in Fig. 5.20. 

 

5) Calculate crack growth rate 
𝑑𝑎

𝑑𝑁
 

Authentic crack growth rate 
𝑑𝑎

𝑑𝑁
 can be obtained from the fatigue test results of 

Zhao and Jiang [40]. The crack growth rate 
𝑑𝑎

𝑑𝑁
 with respect to crack length is 

represented in Fig. 5.20. 

 

6) Determine an authentic peridynamic fatigue parameter 𝐴2 

The peridynamic fatigue parameter 𝐴2 can be calculated by Eq. (4.28). Fig. 

5.21 shows results of calculation. Finally, a mean value of 𝐴2 in the Fig. 5.21 

is determined as a final peridynamic fatigue parameters 𝐴2. After determining 

the peridynamic fatigue parameter 𝐴2, Eq. (4.20) will be used for crack growth 

simulation. The resulting peridynamic fatigue parameters for crack growth 

phase are represented in Fig. 5.22 and Table 5.5. 

 

 

Figure 5.20. Crack growth rate 
𝑑𝑎

𝑑𝑁
 and (

𝑑𝑎

𝑑𝑁
)
′
 with respect to crack length 
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Figure 5.21. Calculated peridynamic fatigue parameter 𝐴2 with respect to crack length  

 

 

Figure 5.22. Crack growth rate of 𝐴2 = 54,139 with respect to crack length 

 

Table 5.5. Peridynamic fatigue parameters for crack growth of 7075-T651 

𝐴2 54138.96 

𝑚2 3.32 

𝛾 [41] 0.35 
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5.3.4 Numerical results and validation 

To validate peridynamic static solutions, first a peridynamic static solution is 

compared with FEM by using ANSYS software. In FEM, a plane stress element with 

thickness is used. 

Fig. 5.23 and 5.24 show comparison between the peridynamic static solution 

and the FEM static solution under a uniaxial tension in opposite directions at two pins 

of top and bottom with forces 𝑃+ = 1500 N. These results show that the peridynamic 

static solution has similar displacement distributions with the FEM static solution. 

 

 

Figure 5.23. Displacement distribution in x-direction under uniaxial tension in 

opposite directions at two pins of top and bottom with forces 𝑃+ = 1500 𝑁 , (a) 

peridynamic static solution (b) FEM static solution 

 

 

Figure 5.24. Displacement distribution in y-direction under uniaxial tension in 

opposite directions at two pins of top and bottom with forces 𝑃+ = 1500 𝑁 , (a) 

peridynamic static solution (b) FEM static solution 
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After verifying the peridynamic results, a simulation of fatigue crack growth is 

performed with the simulation procedure of crack growth described in Chapter 5.3.2. 

The fatigue crack growth is demonstrated in Fig. 5.25, which the fatigue damage is 

represented in the local damage (Eq. (3.6)).  The numerical result of fatigue crack 

growth is represented and compared with the fatigue test results of Zhao and Jiang [40] 

in Fig. 5.26. 

 

 

Figure 5.25. Fatigue damage of numerical results, (a) 𝑁 = 0 and crack length is 12.5 

mm, (b)  𝑁 = 233706 and crack length is 17.24 mm, (c) 𝑁 = 352196 and crack 

length is 22.24 mm 
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(a) 

 

(b) 

Figure 5.26. Numerical results of peridynamic calculation with peridynamic fatigue 

parameter 𝐴2 and fatigue test results of Zhao and Jiang [40], (a) crack length as a 

function of number of cycles, (b) crack growth rate as a function of crack length 
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5.4 Conclusion 

 In this chapter, two phases of fatigue failure are simulated with the peridynamic 

fatigue model. One is the fatigue tensile test for the crack nucleation and the other is 

the compact test for the crack growth. 

In the fatigue tensile test, the numerical results show that the crack nucleation 

occurs where the stress is concentrated, and the fatigue damage is developed based on 

the crack nucleation. Also, comparing the numerical results with the fatigue test results 

of Zhao and Jiang [38], it is seen that the peridynamic fatigue model is capable of 

predicting the fatigue crack nucleation. The Fig. 5.8 show that the occurrence of first 

bond breakage at the various bond cyclic strain is matched with the fatigue results of 

Zhao and Jiang [38]. 

In the compact test, the numerical result shows that the peridynamic fatigue 

model is capable of predicting the fatigue crack growth. The results of crack length 

and the crack growth rate from the numerical test are matched with the fatigue results 

of Zhao and Jiang [40]. However, it is seen that errors between the numerical results 

and the fatigue results of Zhao and Jiang [40] increase as the crack length increases. 

The reason for the errors are considered that all material behaviours in peridynamic 

calculations are assumed as the linear elastic material behaviour. 7075-T651 

aluminium alloy is a ductile material which shows the nonlinear plastic material 

behaviour near the crack tip. 
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6. FATIGUE ASSESSMENT OF FILLET WELDED 

JOINTS 

  
In this section, a new computational approach to fatigue assessment of fillet 

welded joints is demonstrated. The effect of unwelded zone in fillet welded joints is 

investigated by estimating the fatigue performance with respect to the length of 

unwelded zone. Fatigue failures by crack growth and the path of crack growth in fillet 

welded joints are simulated by using the peridynamic fatigue model. It is assumed that 

all material behaviour in peridynamic calculations are linear elastic. 

 

6.1 Numerical model for fillet welded joint 

A two-dimensional numerical model for fatigue assessment of fillet welded 

joints is shown in Fig. 6.1, where 2𝑎 represents the length of unwelded zone. Two 

different materials are used in this numerical model. The SWS 490B mild carbon steel 

is used as a material of main member and the AWS A5.18 ER70S-6 is used as a 

material of weld metal. The model is subjected to cyclic loading at the top and it is 

fixed at the bottom. Loading and weld geometry conditions of all cases for fatigue 

assessment are described in Table 6.1. 

 

Boundary conditions: 

- 𝑢𝑦 = 0 at 𝑦 = 0 

- 𝑢𝑥 = 0 at 𝑦 = 0 and 𝑥 = 0 

Loading conditions: Uniaxial cyclic loading 𝜎 (MPa) at 𝑦 = 26 𝑚𝑚  

 

 
Figure 6.1. Geometry of a fillet welded joint under uniaxial cyclic loading 
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Table 6.1.  Loading conditions for fatigue assessment of fillet welded joints 

Case 

Length of 

unwelded zone 

(2a) 

(mm) 

Stress 

amplitude 

(MPa) 

Mean 

stress 

(MPa) 

Load 

ratio 

Frequency 

(Hz) 

1 2.4 60 60 0 10 

2 2.4 70 70 0 10 

3 2.4 80 80 0 10 

4 2.4 90 90 0 10 

5 2.4 100 100 0 10 

6 4.8 60 60 0 10 

7 4.8 70 70 0 10 

8 4.8 80 80 0 10 

9 4.8 90 90 0 10 

10 4.8 100 100 0 10 

11 7.2 60 60 0 10 

12 7.2 70 70 0 10 

13 7.2 80 80 0 10 

14 7.2 90 90 0 10 

15 7.2 100 100 0 10 

 

6.1.1 Material properties of numerical model 

 Mechanical properties of SWS 490B mild carbon steel and AWS a5.18 

ER70S-6 are given in Table 6.2 and 6.3, respectively. 

 

Table 6.2. Mechanical properties of SWS 490B mild carbon steel [42] 

Elasticity modulus, 𝐸 200 GPa 

Poisson’s ratio,   0.33 

Yield stress, 𝜎𝑌 368 MPa 

Ultimate strength, 𝜎𝑢 529 MPa 

Elongation 23.0 % 
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Table 6.3. Mechanical properties of AWS A5.18 ER70S-6 [43] 

Elasticity modulus, 𝐸 250 GPa 

Poisson’s ratio,   0.33 

Yield stress, 𝜎𝑌 360 MPa 

Ultimate strength, 𝜎𝑢 485 MPa 

Elongation 26.0 % 

 

For the material of AWS A5.18 ER70S-6, there are no the fatigue constants of 

modified Paris raw. Therefore, the fatigue constants 𝐶′ , 𝑀′  and 𝛾  are calculated 

directly in this thesis. Fatigue constants for AWS A5.18 ER70S-6 are calibrated by 

using fatigue test results of DeMarte [43]. To calibrate the fatigue constants of 

modified Paris law 𝐶′ , 𝑀′  and 𝛾, fatigue test results performed under at least two 

different load ratio conditions are necessary. The fatigue test results of DeMarte [43] 

are represented in Fig. 6.2, which is the results of two different load ratio 𝑅1 = 0.05 

and 𝑅2 = 0.6. 

 

 

Figure 6.2. Fatigue crack growth test results of DeMarte [43]  



66 

 

To consider the influence of load ratio, it is necessary for all test results of 

DeMarte [43] to be converted and expressed into the modified Paris curve of  Eq. 

(5.24). The fatigue constant 𝛾 in Eq. (5.24b) is determined by the following relation 

[41] 

 

𝛾 =
𝑙𝑜𝑔(∆𝐾1

+/∆𝐾2
+)

𝑙𝑜𝑔 (
1 − 𝑅1
1 − 𝑅2

)
 (6.1) 

 

where 𝑅 is the load ratio, and ∆𝐾+ is the positive part of the range of the applied stress 

intensity factor represented in Fig. 5.16. 

Fig. 6.3 shows calibration for ∆𝐾1
+ and ∆𝐾2

+ of test results of DeMarte [43]. 

The fatigue constant 𝛾 with respect to the crack growth rate can be calculated from Eq. 

(6.1). Fig. 6.4 shows a final fatigue constant 𝛾 is determined as a mean value of 𝛾. 

The modified Paris curve of AWS A5.18 ER70S-6 of Eq. (5.24) is represented 

in Fig. 6.5. The fatigue constants of the AWS A5.18 ER70S-6 are represented in Table 

6.4. 

 

 

Figure 6.3. Calibration of ∆𝐾1
+ and ∆𝐾2

+ from test results of DeMarte [43] 
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Figure 6.4. Values of fatigue constant 𝛾 with respect to crack growth rate and mean 

value 

 

 

Figure 6.5. Modified fatigue crack growth data by using test results of DeMarte [43] 

 

Table 6.4. Fatigue constants of AWS A5.18 ER70S-6 

𝐶′ 1.167 × 10−9 

𝑀′ 3.43 

𝛾 0.3998 
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6.2 Peridynamic simulation for fillet welded joint 

The discretization of two-dimensional fillet welded joint numerical model is 

shown in Fig. 6.6. In this figure, 𝑅𝑏 indicates material points to apply body forces and 

𝑅𝑐  indicates material points for boundary conditions. Peridynamic parameters are 

described as 

 

• Total number of material points: 12530 

• Spacing between material points: ∆= 0.2 mm 

• Thickness: 𝑡 = 25 mm 

• Horizon: 3.015 × ∆= 0.603 mm 

• Critical bond stretch of the material ①: 𝑠10 = 0.0113 

• Critical bond stretch of the material ②: 𝑠20 = 0.0091 

• Static solution: Direct static solution 

• Incremental volume of material points: ∆𝑉 = 𝑡 × ∆ × ∆= 1 mm3 

 

 

 

Figure 6.6. Geometry of fillet welded joint and its discretization 

  



69 

 

The peridynamic model is comprised of two different materials, which one is for main 

members and the other is for the weld metal. Material points near interfaces between 

materials of the main member and the weld metal are required to be corrected by 

surface effects [33]. The bond constant of each material is achieved by integrating 

strain energy density at each material point within the horizon [33]. However, material 

points near material interfaces include material points of the other material within their 

horizon. A material point 𝐱(𝑖) interacting with material points 𝐱(𝑗) and 𝐱(𝑚) is shown 

in Fig. 6.7. The bond constant between material points 𝐱(𝑖)  and 𝐱(𝑗)  is 𝑐(𝑖)(𝑗)  is 

different from the bond constant 𝑐(𝑖)(𝑚)  between material points 𝐱(𝑖)  and 𝐱(𝑚) , 

because the material points 𝐱(𝑖) and 𝐱(𝑚) are embedded in two different materials. The 

bond constant 𝑐(𝑖)(𝑚) can be expressed as [44] 

 

𝑐(𝑖)(𝑚) =
𝑙1 + 𝑙2
𝑙1
𝑐1
+
𝑙2
𝑐2

 

(6.2) 

 

where 𝑙1  is the segment of the distance between material points 𝐱(𝑖)  and 𝐱(𝑚)  in 

material 1, 𝑙2 is the segment of the distance between material points 𝐱(𝑖) and 𝐱(𝑚) in 

material 2, 𝑐1 is the bond constant of material 1, and 𝑐2 is the bond constant of material 

2. 

 

 

Figure 6.7. Interactions of material point 𝒙(𝑖) with material points 𝒙(𝑗) and 𝒙(𝑚) [44] 
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6.2.1 Calibration of peridynamic fatigue parameters 

 It is necessary to calibrate peridynamic fatigue parameters for the simulation 

of fatigue crack growth in the fillet welded joint. The fillet welded joint involves an 

unwelded zone, which is considered as a pre-existing crack in the material. Therefore, 

the only peridynamic fatigue parameters 𝐴2  and 𝑚2  of crack growth phase are 

necessary. 

 The peridynamic fatigue parameter 𝑚2 can be obtained easily from Eq. (4.25). 

For the peridynamic fatigue parameter 𝐴2, a simulation of fatigue crack growth is 

performed with a two-dimensional numerical model, which is represented in Fig. 6.8. 

Two materials are used in the numerical model. One is the ASTM A36 as a main 

material and the other is the AWS A5.18 ER70S-6 as a weld material. Mechanical 

properties of ASTM A36 are given in Table 6.5. The fatigue crack growth in the 

specimen is demonstrated in Fig. 6.9, and the result of simulation is compared with the 

fatigue test results of DeMarte [43] in Fig. 6.10. The resulting peridynamic fatigue 

parameters of AWS A5.18 ER70S-6 are represented in Table. 6.6. 

 

 

Figure 6.8. Numerical model for calibration of peridynamic fatigue parameter 𝐴2 
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Table 6.5. Mechanical properties of ASTM A36 [43] 

Elasticity modulus, 𝐸 200 GPa 

Poisson’s ratio, 𝜈 0.33 

Yield stress, 𝜎𝑌 250 MPa 

Ultimate strength, 𝜎𝑢 400 MPa 

Elongation 23.0 % 

 

 

 

 

 

Figure 6.9. Fatigue damage of numerical results, (a) 𝑁 = 0 and crack length is 12.5 

mm, (b) 𝑁 = 114,915 and crack length is 17.11 mm, (c) 𝑁 = 171,468 and crack 

length is 22.11 mm 

 

 

 

Table 6.6. Peridynamic fatigue parameters of AWS A5.18 ER70S-6 

𝐴2 1.39 × 105 

𝑚2 3.43 

𝛾 0.3998 
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(a) 

 

(b) 

Figure 6.10. Numerical results of peridynamic calculation with peridynamic fatigue 

parameter 𝐴2 and fatigue test results of DeMarte [43], (a) crack length as a function of 

number of cycles, (b) crack growth rate as a function of crack length 
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6.3 Numerical results and validation 

 To validate peridynamic static solutions, first a peridynamic static solution is 

compared with FEM by using ANSYS software. In FEM, a plane stress element with 

thickness is used.  

Fig. 6.11 and 6.12 show comparison between the peridynamic static solution 

under a uniaxial tension loading at the top with forces 𝜎 = 200 MPa. These results 

show that the peridynamic static solution has similar displacement distributions with 

the FEM static solution. 

 

 

 

Figure 6.11. Displacement distribution in x-direction under a uniaxial tension loading 

at top with forces 𝜎 = 200  MPa, (a) peridynamics static solution (b) FEM static 

solution 

 

 

 

Figure 6.12. Displacement distribution in y-direction under a uniaxial tension loading 

at top with forces 𝜎 = 200  MPa, (a) peridynamics static solution (b) FEM static 

solution 
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  After verifying the peridynamic results, peridynamic simulations for fatigue 

assessment of fillet welded joints are performed by using the simulation procedure 

provided in Fig. 5.13. The fatigue crack growth in the fillet welded joint is 

demonstrated in Fig. 6.13, 6.14, and 6.15, which show the fatigue crack growth in fillet 

welded joints according to the length of unwelded zones for different conditions. Crack 

patterns are different for different length of unwelded zone. However, the crack 

patterns are similar for same length of unwelded zone even for different loading 

conditions. 

Numerical results of the peridynamic simulation are shown in Fig. 6.16. The 

numerical results are fatigue performances of fillet welded joints under different 

conditions as described in Table 6.1. In Fig. 6.16, the number of cycles is when the 

fillet welded joint model is totally divided into two materials. 

Lee [45] investigated the characteristics of fatigue failure with respect to the 

length of unwelded zone. The fatigue tests were performed with the fillet welded joint 

specimen comprised of the SWS 490B welded with the weld wire of AWS A5.18 

ER70S-6 by the GMAW welding method. To validate the numerical results, the results 

are compared with fatigue test results of Lee [45] as shown in Fig. 6.17 and 6.18. 
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Figure 6.13. Fatigue damage in numerical model with the length of unwelded zone 2.4 

mm for case 3 (a) 𝑁 = 0 (b) 𝑁 = 481,468 (c) 𝑁 = 674,095 (d) 𝑁 = 699,623 

 

 

 

Figure 6.14. Fatigue damage in numerical model with the length of unwelded zone 4.8 

mm for  case 8, (a) 𝑁 = 0 (b) 𝑁 = 183,637 (c) 𝑁 = 227,882 (d) 𝑁 = 233,606 

 

 

 

Figure 6.15. Fatigue damage in numerical model with the length of unwelded zone 7.2 

mm for case 13, (a) 𝑁 = 0 (b) 𝑁 = 74,308 (c) 𝑁 = 96,210 (d) 𝑁 = 100,834 
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Figure 6.16. Numerical results of fatigue assessment of fillet welded joints 
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Figure 6.17. Comparison of fatigue performance with fatigue test results of Lee [45] 

 

 

         

(a)                                                                      (b) 

Figure 6.18. Fatigue crack growth path with the length of unwelded zone 7.2 mm, (a) 

peridynamic fatigue model (b) fatigue test result of Lee [45] 
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6.5 Conclusion 

 The fatigue crack growth in fillet welded joints according to the length of 

unwelded zone is simulated by using the peridynamic fatigue model. The numerical 

results show that the increase in length of unwelded zone decreases the fatigue 

performance of fillet welded joints. By comparing the numerical results with the 

fatigue test results of Lee [45], it is observed that the computational approach with 

peridynamic fatigue model is capable of estimating the fatigue performance of fillet 

welded joints. The Fig. 6.17 and 6.18 show that the results of fatigue performance 

estimated by peridynamic simulations is agreed very well with the fatigue results of 

Lee [45]. Both results show that increasing the length of unwelded zone deteriorates 

the fatigue performance of fillet welded joints. In addition, the simulation results of 

fatigue crack growth path in fillet welded joints are matched very well with the 

experimental results [45]. The crack is initiated at the pre-existing root crack of 

unwelded zone and is propagated to both end of weld material sides. Overall, it is 

confirmed that the peridynamic fatigue model can be used to simulate the actual 

behaviour of fatigue crack growth for welded joints. 
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7. CONCLUSION 

 

 
7.1 Achievements against the objectives 

The main objective of this study is to simulate the fatigue crack growth with 

the peridynamic fatigue model in fillet welded joints and to estimate the fatigue 

performance by considering the weld geometry effect of the unwelded zone. 

Achievements of this study are described as below 

 

• The peridynamic fatigue model proposed by Silling and Askari [13] in the 

crack nucleation phase is validated by numerical fatigue tensile tests with two-

dimensional dog-bone shaped specimens under uniaxial tension-compression 

loadings. The results of peridynamic fatigue model are compared with the 

fatigue test results of Zhao and Jiang [38]. It is confirmed that the peridynamic 

fatigue model is capable of predicting the fatigue crack nucleation. 

 

• The peridynamic fatigue model proposed by Silling and Askari [13] in the 

crack nucleation phase is validated by numerical compact tests with two-

dimensional ASTM E647 standard compact specimens under the tension 

loading. The results of peridynamic fatigue model are compared with the 

fatigue test results of Zhao and Jiang [40]. This numerical result shows that the 

peridynamic fatigue model is capable of predicting the fatigue crack growth. 

 

• The fatigue crack growth in fillet welded joints according to the length of 

unwelded zone is simulated with the peridynamic fatigue model. The 

numerical results show that the increase in length of unwelded zone in fillet 

welded joints decreases the fatigue performance. Also, by comparing the 

numerical results with the fatigue test results of Lee [45], it is confirmed that 

the computational approach with peridynamic fatigue model is capable of 

estimating the fatigue performance of fillet welded joints.  
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7.2 Recommendation for Future studies 

There are few future studies as below 

 

• In this study, all material behaviours in peridynamic calculations are assumed 

as the linear elastic material behaviour. It makes significant errors for ductile 

materials, which the material behaviour near the crack tip is generally 

involving the nonlinear plastic material behaviour. It is expected that 

considering the nonlinear plastic material behaviour in peridynamic 

calculations can improve prediction capability of simulations. 

 

• The peridynamic fatigue model can be applied to other types of welded joints, 

and more complicated structure, which the three-dimensional peridynamic 

model can treat more various types of crack growth. Not only the longitudinal 

root crack but also other types of crack, such as toe crack, transverse crack, 

underbead crack, are possible to be simulated. 
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