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ABSTRACT 

Predicting crack propagation and fracture is still a challenging research area. There 

are various methods for this, and the finite element method (FE method) is the most popular 

approach. The FE method is a powerful technology that can be used across multiple problems. 

However, because it is based on classical continuum mechanics (CCM), there are several 

disadvantages. Since the governing equation of CCM is a partial differential equation with a 

differential term for space, it is impossible to find the exact solution of the governing equation 

when spatial discontinuities exist which is caused by a crack. As an alternative approach 

Peridynamics is a method introduced to overcome the drawbacks of CCM. The governing 

equation of Peridynamics is form of an integral equation without spatial differentiation. 

Therefore, it is possible to analyse structures with cracks in which discontinuity in space exists. 

Peridynamics is a mesh-free method in which each node interacts with other nodes in 

its vicinity. Because of this, researchers often use language-based programs that can easily 

calculate numerical values of parameters of interest. This feature make it difficult to attempt 

to apply peridynamics to various simulation fields. However, if a model is made by FE 

software based on peridynamic theory, it is possible to expand the simulation fields by utilizing 

functions of FE software. 

In this thesis, various analyses are performed by implementing peridynamics in FE 

software. From the most basic isotropic material to an orthotropic plate, the simulations of the 

crack propagation were carried out. In addition, a peridynamic structure based on beam and 

plate theory were also modelled, and this model was compared with the results of the 

referenced papers. Furthermore, the buckling and free vibration analyses are performed for 

several cases to consider the effect of each parameter of the crack geometries on characteristics 

and stiffness of the plate. 
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1. INTRODUCTION 

1.1 Overview 

Fatigue and fracture caused by cracks are a prevalent problem in marine structures, 

and the damage is significant. Since the equation of motion of classical continuum mechanics 

(CCM) is based on the differential equations, it is not suitable for structures with 

discontinuities such as crack. There are several methods introduced to solve this problem, such 

as extended finite element method (XFEM), phase-field method (PFM), cohesive zone model 

(CZM) and Peridynamics. Above all, peridynamics was introduced by Silling [1] and the 

differential term of the equation of motion was reformulated as an integration term. 

1.2 Motivation 

Peridynamics was introduced to overcome the limitations of CCM. Therefore, it has 

the advantage of being able to analyse what cannot be done using CCM. Conversely, however, 

verification through comparisons with other method outcomes is essential because a different 

approach has been used. It is also possible to expand into a variety of fields by performing 

analyses on models containing discontinuities. By doing this, peridynamic model can use the 

analysis algorithms attached to FE software, such as modal and buckling analysis. In case of 

static analysis, the solution can be driven quicker than language-based program. In this thesis, 

the research an implementation of Peridynamics in FE framework was carried out. 

1.3 Objectives 

Peridynamics is suitable for analysis of cracking damage and fracture in ships and 

offshore platforms. It is possible to model a structure containing a crack and make various 

analyses. In this thesis, the main objective is the implementation of Peridynamics into a finite 

element framework and validation of its model. In particular, free vibration and buckling 

analyses were performed to show the change in characteristics of the plates containing crack. 

Besides, the influence of parameters on the properties of the plate was determined using 

various variables related to cracking.  
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2. LITERATURE REVIEWS 

2.1 Free Vibration and Buckling of Cracked Plates 

As the industry develops, various mechanical structures tend to become light and high-

strength. The structures such as ships, offshore platforms and airplanes are severely damaged 

by buckling and have a significant impact on the stability of structures if cracks exist inside 

them. Therefore, reliability assessment is required for structures with defects to be used below 

the design load. Defects, such as cracks, not only change the vibration characteristics of a 

structure but are also critical factors that cause instability in the structure. 

Krawczuk [2] studied the changes in eigenfrequencies of the supported and the 

cantilever plate according to the location of a crack. The influence of crack parameters was 

compared for not only the 1st mode but also the 6th mode. The eigenfrequency of plates 

affected by boundary conditions as well as the effect of the crack. Khedmati et al. [3] studied 

how the buckling load varies with the length, orientation and location of the crack. This paper 

shows that the change of plate characteristic is completely different depending on where the 

crack is located in centre or edge of a plate. Also, there are many types of research about 

buckling behaviour and free vibration analysis of a cracked plate. [4] [5]. Nerantzaki [6] used 

the analogue equation method (AEM) to get the buckling coefficient of plates with variable 

thickness. Also, there are studies about simulation of buckling and free vibration using the 

phase-field method. Minh [7] studied the cracked plate considering various factors and Doan 

[8] studied the cracked rectangular plate with variable thickness. Moreover, Zeng [9] studied 

side crack based on classical thin plate theory using the popular Ritz method. Kumar [10] used 

hierarchical trigonometric functions to estimate the buckling loads of cracked plates with 

various types of cracks and boundary conditions. 

2.2 Implementation of Peridynamics in FE software 

The implementation of peridynamic theory is generally done using language-based 

programmes such as FORTRAN, MATLAB and C++. Although this method is usually useful, 

it limits the expansion of the peridynamic theory because there are various available popular 

FE software packages. Peridynamics begin with changing the fundamental differential 

equation into an integral equation, not deviating from the existing dynamics. It means that the 
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peridynamic theory can be applied to FE software based on FE methods. Macek and Silling 

[11] presented how to implement peridynamics in ABAQUS, a commercial finite element 

software [12] and demonstrated this using several examples. Yang et al [13] also attempted to 

apply the peridynamic beam and plate theories into the FE framework. In this thesis, 

simulations of various cases were attempted based on this. Moreover, Madenci et al [14] 

developed the peridynamic model for deformation of orthotropic material.   
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3. PERIDYNAMIC THEORY 

3.1 Basic Theory 

 

Figure 3.1 Undeformed and deformed state of peridynamic material points [15] 

Peridynamic theory is one of the meshless methods introduced by S. Silling [1] to 

overcome the limitation of classical continuum mechanics (CCM). The most prominent feature 

of the peridynamic theory is that it replaces the spatial differential term of the equation of 

motion with an integral term. It assumes that the model consists of infinite nodes called 

material points. These points represent the unit volume of the model and interact with each 

other. As shown in Figure 3.1, it is assumed that when a model is deformed, the interaction 

force between the two points is equal and opposite, and this is called a bond-based 

peridynamics. In bond-based peridynamics, a material point only interacts with the material 

points within the horizon (δ). The material points that belong to the horizon is called family 

members. Due to these features, peridynamics has the advantage of being able to analyse 

various complex problems including a structure containing non-continuous geometry such as 

crack. 

3.2 Equation of Motion 

The peridynamic equation of motion can be derived from the principle of virtual work. 

The principle of virtual work is that when the system is at static equilibrium, the virtual work 

done by virtual displacement becomes zero. In the calculus of variation, the Lagrange's 

equation can be obtained, and it can derive the peridynamic equation of motion for material 

point (𝑘). 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�(𝑘)
) −

𝜕𝐿

𝜕𝒒(𝑘)
= 0 (3.1) 

where Lagrangian (𝐿) is defined as total kinetic energy (𝑇) minus total potential energy (𝑈). 

The total kinetic energy and total potential energy are calculated by summation of kinetic 

energy and potential energy of all material points. The substitution Lagrangian (𝐿) in Eq. (3.1) 

for each material point results in the bond-based peridynamic equation of motion 

 𝜌�̈� = ∫ 𝒇(𝒖(𝒙′, 𝒕) − 𝒖(𝒙, 𝒕), 𝒙′ − 𝒙)𝑑𝑉
𝐻𝑥

+ 𝒃(𝒙, 𝑡) (3.2) 

in which 𝜌 is the mass density, 𝐻x represent the neighbourhood region within the horizon of 

material point (𝐱), 𝐮 and 𝐱 are displacement vector and position vector, respectively, and 𝐛 

represents the body force density exerting on the material point (𝐱). Moreover, 𝐟 is a force 

density vector of the pairwise interaction which can be expressed as 

 𝒇(𝒖′ − 𝒖, 𝒙′ − 𝒙) = 𝑐𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙)
𝒚′ − 𝒚

|𝒚′ − 𝒚|
 (3.3a) 

with 

 𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙) =
|𝒚′ − 𝒚| − |𝒙′ − 𝒙|

|𝒙′ − 𝒙|
=

|𝝃 + 𝜼| − |𝝃|

|𝝃|
, (3.3b) 

 𝝃 = 𝒙′ − 𝒙, (3.3c) 

and 

 𝜼 = 𝒖′ − 𝒖 (3.3d) 

where 𝐲 is deformation vector that is summation of position vector (𝐱) and displacement 

vector (𝐮), 𝒔 represents the stretch between material points, that is the ratio of distance change 

to the original distance between two material points, and 𝛏 and 𝛈 are relative position vector 

and relative displacement vector, respectively. The 𝑐 parameter is a peridynamic parameter 
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called bond constant. It has a different value depending on the dimension of the model and is 

determined based on CCM that makes a material point has the same strain energy density with 

CCM [1]. The bond constant value of three-dimensional structure can be expressed as 

 𝑐 =
18𝜅

𝜋𝛿4
 (3.4) 

in which 𝜅 is bulk modulus and 𝛿 is the radius of the horizon. As expressed in Eq. (3.3a), the 

bond constant 𝑐 is multiplied with stretch, and the value represents the force between the two 

points. 

To solve the peridynamic equation of motion, the model should be discretised into 

finite number of material points. Based on Eq. (3.2). The equation of motion at material point 

(𝑘) can be expressed in discretised form as 

 𝜌(𝑘)�̈�(𝑘) = ∑ 𝒇(𝒖(𝑗) − 𝒖(𝑘), 𝒙(𝑗) − 𝒙(𝑘))𝑉(𝑗)

𝑁

𝑗=1

+ 𝒃(𝑘) (3.5) 

where 𝝆(𝑘) is a mass density of material point (𝑘), 𝑁 is the number of the family members 

within the horizon, 𝒖(𝑘) is displacement at point (𝑘), 𝑉(𝑗) is a unit volume of family member 

point (𝑗), and 𝐛(𝑘) is body force density at point (𝑘). 

When the bond stretch exceeds a particular value, called critical stretch, the bond 

disappears, that means removing of pairwise force between two material points. The critical 

stretch value is related to the energy release rate, which is required to break the bonds that are 

initially connected to separate the two halves of the body [1]. The critical stretch of elastic 

material can be expressed as 

 𝑠𝑐 = √
5𝐺𝐼𝐶

9𝜅𝛿
 (3.6) 

in which 𝐺𝐼𝐶 represents the energy release rate, 𝜅 is bulk modulus and 𝛿 is the radius of the 

horizon. In order to consider the crack propagation as a response to deformation, a history-

dependent scalar-valued function is introduced as 
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 𝜇(𝒙(𝑗) − 𝒙(𝑘), 𝑡) = { 
1 if  𝑠(𝑘)(𝑗)(𝑡′) < 𝑠𝑐 for all 0 < 𝑡′

0 otherwise
 (3.7) 

where 𝑠𝑐 represents the critical stretch value and 𝑠(𝑘)(𝑗) represents the stretch value between 

two material points (𝑘) and (𝑗) calculated by (3.3a). The local damage at a material point is 

defined by the ratio of the number of broken bonds to initially connected bond. Moreover, 

each bond is weighted with unit volume. 

 𝜑 = 1 −
∫ 𝜇(𝒙′ − 𝒙, 𝑡)𝑑𝑉′

𝐻

∫ 𝑑𝑉′
𝐻

 (3.8) 

This value ranges from 0 to 1. Zero means all bond connections are maintained and one means 

all connections are removed. When calculating the value from the plate having the initial crack, 

the value 0.3986 is obtained from the point near the crack. Therefore, it can be considered that 

the cracks have propagated when the value is greater than about 0.4. 

3.3 Boundary conditions 

 

Figure 3.2 Application of boundary conditions in peridynamic theory 

In peridynamic theory, the equation of motion does not contain spatial derivative 

terms. To apply boundary conditions, the model needs additional material points inside a 

fictitious material layer, 𝑅𝑐. This layer has a thickness equal to the radius of the horizon and 

boundary conditions such as displacement or rotation constraints can be applied. On the other 

hand, loading conditions like transverse load or moment, can be applied on a layer, 𝑅𝑙, within 

an actual solution domain. [15]  
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3.4 Surface Correction Factor 

 

Figure 3.3 Peridynamic material points and horizon 

The surface correction is required to get an accurate result in Peridynamics. The 

peridynamic theory is based on the relationships between the material points within the 

horizon. If the shape of the horizon is incomplete because a point is located near the surface 

of a model, as point 2 shown in Figure 3.3, that point cannot perform well as point 1. Because 

peridynamics satisfy all the conservation laws of the continuum mechanics, every material 

point should have the same strain energy at every location if uniform strain and stress 

conditions are satisfied. To satisfy these conditions, the surface correction factor are used in 

peridynamic theory. These correction factors are calculated as the ratio of peridynamic strain 

energy density to classical continuum mechanics strain energy density. 

 𝑔(𝑘) =
𝑊𝐶𝑀

𝑊(𝑘)
𝑃𝐷  (3.9a) 

 �̅�(𝑘)(𝑗) =
𝑔(𝑘) + 𝑔(𝑗)

2
 (3.9b) 

where 𝑊𝐶𝑀  and 𝑊(𝑘)
𝑃𝐷  represent strain energy at material point (𝑘)  based on classical 

continuum mechanics and peridynamics, respectively. Also, 𝑔(𝑘) is the surface correction 

factor at material point (𝑘). The peridynamic force exerts between two interacting material 

points. Thus, these surface correction factors are used by calculating the average value �̅�(𝑘)(𝑗) 

of two interacting material points (𝑘) and (𝑗). If the peridynamic model is two or three 

dimensional, the surface correction factor should be calculated for all directions, as x, y and z. 
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 𝑔𝛼(𝑘) =
𝑊𝛼

𝐶𝑀

𝑊𝛼(𝑘)
𝑃𝐷  (3.10a) 

 �̅�𝛼(𝑘)(𝑗) =
𝑔𝛼(𝑘) + 𝑔𝛼(𝑗)

2
 (3.10b) 

 �̅�(𝑘)(𝑗) = [(
𝑛𝑥

�̅�𝑥(𝑘)(𝑗)
)

2

+ (
𝑛𝑦

�̅�𝑦(𝑘)(𝑗)
)

2

+ (
𝑛𝑧

�̅�𝑧(𝑘)(𝑗)
)

2

]

−
1
2

 (3.10c) 

where �̅�(𝑘)(𝑗) represents surface correction factor of the bond between material points (𝑘) 

and (𝑗) with (𝛼 = 𝑥, 𝑦, 𝑧). And 𝑛𝛼  corresponds to the unit relative position vector in 𝛼 

direction which is calculated as 𝑛𝛼 = (𝐱𝛼(𝑗) − 𝐱𝛼(𝑘)) |𝐱(𝑗) − 𝐱(𝑘)|⁄ .  
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3.5 Implementation of Peridynamics in ANSYS 

The peridynamic modelling is usually done by language-based programs such as 

MATLAB and FORTRAN. These methods are still useful in many cases. However, in some 

cases, it can be beneficial to use a commercial FE software to perform peridynamic 

simulations. In bond-based peridynamic theory, the material points only interact with the other 

points within their horizon. The interaction between two material points is called a bond and 

the interaction can be substituted by a spring for elastic interaction [11]. 

To convert the peridynamic parameters into FE parameters, the equation of motion of 

two approaches should be compared. This procedure can be derived using micro modulus 

tensor [16]. The unit of peridynamic equation of motion is based on force density, so the Eq. 

(3.5) should be multiplied with unit volume of material point (𝑘). 

 𝜌(𝑘)𝑉(𝑘)�̈�(𝑘) = ∑ 𝑐
|𝝃(𝑘)(𝑗) + 𝜼(𝑘)(𝑗)| − 𝜉(𝑘)(𝑗)

𝜉(𝑘)(𝑗)
𝑉(𝑗)𝑉(𝑘)

𝑁

𝑗=1

+ 𝒃(𝑘)𝑉(𝑘) (3.11) 

 𝑀(𝑘)�̈�(𝑘) = 𝑭(𝑘)
𝑖 + 𝑭(𝑘)

𝑒  (3.12) 

where 𝜌(𝑘)𝑉(𝑘) represent the mass of the material point (𝑘), 𝑀(𝑘). The force density vector 

𝐟 in Eq. (3.5) can be substituted by Eq. (3.3a). 𝐅(𝑘)
𝑖  represents the internal force caused by 

interaction force with family points, and 𝐅(𝑘)
𝑒  represents the external force that is acting on 

material point (𝑘) . If the bond interaction forces are considered as spring forces, a 

peridynamic spring constant can be obtained. 

 𝑭(𝑘)
𝑖 = ∑ 𝑓(𝑘)

𝑁

𝑗=1

 (3.13a) 

 𝑓(𝑘) = 𝑐
𝑉(𝑗)𝑉(𝑘)

𝜉(𝑘)(𝑗)
× (|𝝃(𝑘)(𝑗) + 𝜼(𝑘)(𝑗)| − 𝜉(𝑘)(𝑗)) (3.13b) 

where the first term on the right side of Eq. (3.13a) can be expressed as a summation of spring 

forces. According to Hooke's law, the spring force equals to a spring constant 𝑘 times change 
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in length. Therefore, the peridynamic spring constnat of the bond between material points (𝑘) 

and (𝑗) is described as 

 𝑘(𝑘)(𝑗) =
𝑐

𝜉(𝑘)(𝑗)
𝑉(𝑗)𝑉(𝑘) (3.14) 

where 𝜉(𝑘)(𝑗) represents the length of the interaction bond. This peridynamic spring constant 

should be multiplied with surface correction factor and volume correction factor of each bond.  

ANSYS, a commercial finite element software, is used for peridynamic simulations. 

It has various element types to analyse. The two-dimensional plate can be modelled using 

COMBIN14 element. It is a uniaxial tension-compression element with three degrees of 

freedom at each node. The bending and torsion are not considered, and the only information 

that this element needs is spring constant given in Eq. (3.14). This element has no mass. 

Therefore to solve the time-dependent dynamic problems, the mass should be added using 

mass element, MASS21. When generating a peridynamic model, firstly nodes are created 

equally spaced as material points. Subsequently, each node is connected with the family nodes 

by COMBIN14 element. Each element has different spring constant because of correction 

factors. As shown in Figure 3.4, every node interacts with other nodes through a network of 

web. 

 

Figure 3.4 Peridynamic connections of material points with family members 
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4. PERIDYNAMIC BEAM AND PLATE FORMULATION 

The classical peridynamic theory is only considers translational degrees of freedom 

(DOF). To derive the kinematic equations of beams and plates requires to take into account 

out-of-plane deformation and rotations [17]. The approach is similar to the original 

peridynamic theory. Every material point has each transverse displacement and rotation as 

DOF and interacts with other material points located inside their horizon. In this chapter, the 

process of deriving the equation of motion of Timoshenko beam and Mindlin plate is 

described. 

4.1 Timoshenko Beam Equation of Motion  

 

Figure 4.1 Initial and deformed configurations of peridynamic Timoshenko beam [17] 

There are two different peridynamic interaction force densities between material 

points; transverse shear force and bending moment, respectively, 

 𝑓(𝑘)(𝑗) = 𝑐𝑠𝜑(𝑘)(𝑗) (4.1a) 

 𝑓(𝑘)(𝑗) = 𝑐𝑏𝜅(𝑘)(𝑗) (4.1b) 

in which 𝑐𝑠 and 𝑐𝑏 are peridynamic parameters called bond constants that are related with 

shear angle 𝜑(𝑘)(𝑗)  and curvature 𝜅(𝑘)(𝑗) , respectively, between material points (𝑘) and 

(𝑗). The shear angle and curvature arising from the interaction between material points can be 

described as  
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 𝜑(𝑘)(𝑗) = (
𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
−

𝜙(𝑗) + 𝜙(𝑘)

2
𝑠𝑔𝑛(𝑥(𝑗) − 𝑥(𝑘))) (4.2a) 

 𝜅(𝑘)(𝑗) =
𝜙(𝑗) − 𝜙(𝑘)

𝜉(𝑗)(𝑘)
 (4.2b) 

As referred above, the peridynamic equation of motion of the Timoshenko beam can be 

derived from Lagrange’s equation given in Eq. (3.1). The peridynamic total kinetic energy is 

summation of kinetic energy caused by vertical translation and rotation, and peridynamic total 

potential energy is summation of strain every caused by shear distortion and bending of all 

material points. The total kinetic energy (𝑇) and total potential energy (𝑈) of the Timoshenko 

beam can be expressed as 

 𝑇 =
1

2
∑ 𝜌 [(�̇�(𝑘))

2
+

𝐼

𝐴
(�̇�(𝑘))

2
] 𝑉(𝑘)

∞

𝑘=1

 (4.3a) 

and 

 

𝑈 = ∑
1

2
{∑

1

2
[�̂�(𝑘)(𝑗)(𝜑(𝑘)(𝑗)) + �̂�(𝑗)(𝑘)(𝜑(𝑗)(𝑘))]𝑉(𝑗)

∞

𝑗=1

− �̂�(𝑘)𝑤(𝑘)} 𝑉(𝑘)

∞

𝑘=1

   

+ ∑
1

2
{∑

1

2
[�̃�(𝑘)(𝑗)(𝜅(𝑘)(𝑗)) + �̃�(𝑗)(𝑘)(𝜅(𝑗)(𝑘))]𝑉(𝑗)

∞

𝑗=1

− �̃�(𝑘)𝜙(𝑘)} 𝑉(𝑘)

∞

𝑘=1

 

(4.3b) 

in which 𝜌 , 𝐼  and 𝐴  are mass density, moment of inertia and cross-sectional area, 

respectively. �̂�(𝑘)(𝑗)  and �̃�(𝑘)(𝑗)  are micro-potentials, that is strain energy density of 

material point (𝑘) caused by family point (𝑗) arising from shear deformation and bending. 

Substituting Eqs. (4.3a) into (3.1), and replacing 𝐪(𝑘)  with 𝑤(𝑘)  or 𝜙(𝑘) , result in two-

equations of motion 

 𝜌�̈�(𝑘) = ∑ 𝑐𝑠 (
𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
−

𝜙(𝑗) + 𝜙(𝑘)

2
𝑠𝑔𝑛(𝑥(𝑗) − 𝑥(𝑘))) 𝑉(𝑗)

∞

𝑗=1

+ �̂�(𝑘) (4.4a) 

and 
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𝜌
𝐼

𝐴
�̈�(𝑘) = ∑ 𝑐𝑏 (

𝜙(𝑗) − 𝜙(𝑘)

𝜉(𝑗)(𝑘)
) 𝑉(𝑗)

∞

𝑗=1

+
1

2
∑ 𝑐𝑠 (

𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
𝑠𝑔𝑛(𝑥(𝑗) − 𝑥(𝑘)) −

𝜙(𝑗) + 𝜙(𝑘)

2
) 𝜉(𝑗)(𝑘)𝑉(𝑗)

∞

𝑗=1

+ �̃�(𝑘) 

(4.4b) 

In the case of Timoshenko beam, the peridynamic bond constant values, 𝑐𝑠 and 𝑐𝑏, can be 

defined as [17] 

   𝑐𝑠 =
2𝑘𝑠𝐺

𝐴𝛿2
 (4.5a) 

 𝑐𝑏 =
2𝐸𝐼

𝐴2𝛿2
 (4.5b) 

where 𝐸, 𝐺 are Young’s modulus and shear modulus, respectively, and 𝐴, 𝐼 and 𝑘𝑠 are 

cross-sectional area, moment of inertia and shear correction factor of the beam. When the 

cross-sectional area is rectangular, the shear correction factor, 𝑘𝑠, is equal to 5 6⁄  [18]. 
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4.2 Mindlin Plate Equation of Motion 

 

Figure 4.2 Initial and deformed configurations of peridynamic Mindlin plate [17] 

The equation of motion of the Mindlin plate can be derived by the same procedure 

used for the Timoshenko beam. However, in the case of the plate, the shear angle is separated 

into x- and y-directions 

 
𝜙(𝑘) = 𝜙𝑥(𝑘) 𝑐𝑜𝑠 𝜃 + 𝜙𝑦(𝑘) 𝑠𝑖𝑛 𝜃 

𝜙(𝑗) = 𝜙𝑥(𝑗) 𝑐𝑜𝑠 𝜃 + 𝜙𝑦(𝑗) 𝑠𝑖𝑛 𝜃 
(4.6) 

where 𝜃 is the orientation of the bond between material points (𝑘) and (𝑗). The total kinetic 

energy and total potential energy of the Mindlin plate is given as 

 
𝑇 =

1

2
ℎ𝜌 ∑ [

ℎ2

12
�̇�2

𝑥(𝑘) +
ℎ2

12
�̇�2

𝑦(𝑘) + �̇�2
(𝑘)] 𝐴(𝑘)

∞

𝑘=1

 
(4.7a) 

and 

 

𝑈 = ∑
1

2
{∑

1

2
[�̂�(𝑘)(𝑗)(𝜑(𝑘)(𝑗)) + �̂�(𝑗)(𝑘)(𝜑(𝑗)(𝑘))]𝑉(𝑗)

∞

𝑗=1

− �̂�(𝑘)𝑤(𝑘)} 𝑉(𝑘)

∞

𝑘=1

   

+ ∑
1

2
{∑

1

2
[�̃�(𝑘)(𝑗)(𝜅(𝑘)(𝑗)) + �̃�(𝑗)(𝑘)(𝜅(𝑗)(𝑘))]𝑉(𝑗)

∞

𝑗=1

− �̃�𝛼(𝑘)𝜙𝛼(𝑘)} 𝑉(𝑘)

∞

𝑘=1

 

(4.7b) 
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in which ℎ is the thickness of the plate, 𝐴(𝑘) is the cross-sectional area of the material point 

(𝑘), and 𝛼 can be 𝑥 or 𝑦. The three equations of motion can be obtained by substituting 

Eqs. (4.7a) into (3.1) and replacing 𝐪(𝑘) with 𝑤(𝑘), 𝜙𝑥(𝑘) and 𝜙𝑦(𝑘) as 

 

𝜌ℎ�̈�(𝑘) = ∑ 𝑐𝑠 (
𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
−

𝜙𝑥(𝑗) + 𝜙𝑥(𝑘)

2
𝑐𝑜𝑠 𝜃 −

𝜙𝑦(𝑗) + 𝜙𝑦(𝑘)

2
𝑠𝑖𝑛 𝜃) 𝑉(𝑗)

∞

𝑗

+ �̂�(𝑘)ℎ, 

(4.8a) 

 

𝜌ℎ3

12
�̈�𝑥(𝑘) = 𝑐𝑏 ∑ (

𝜙𝑥(𝑗) − 𝜙𝑥(𝑘)

𝜉(𝑗)(𝑘)
𝑐𝑜𝑠 𝜃 +

𝜙𝑦(𝑗) − 𝜙𝑦(𝑘)

𝜉(𝑗)(𝑘)
𝑠𝑖𝑛 𝜃) 𝑐𝑜𝑠 𝜃 𝑉(𝑗)

∞

𝑗

+
1

2
𝑐𝑠 ∑ 𝜉(𝑗)(𝑘) (

𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
−

𝜙𝑥(𝑗) + 𝜙𝑥(𝑘)

2
𝑐𝑜𝑠 𝜃

∞

𝑗

−
𝜙𝑦(𝑗) + 𝜙𝑦(𝑘)

2
𝑠𝑖𝑛 𝜃) 𝑐𝑜𝑠 𝜃 𝑉(𝑗) + �̃�𝑥(𝑘)ℎ 

(4.8b) 

and 

 

𝜌ℎ3

12
�̈�𝑦(𝑘) = 𝑐𝑏 ∑ (

𝜙𝑥(𝑗) − 𝜙𝑥(𝑘)

𝜉(𝑗)(𝑘)
𝑐𝑜𝑠 𝜃 +

𝜙𝑦(𝑗) − 𝜙𝑦(𝑘)

𝜉(𝑗)(𝑘)
𝑠𝑖𝑛 𝜃) 𝑠𝑖𝑛 𝜃 𝑉(𝑗)

∞

𝑗

+
1

2
𝑐𝑠 ∑ 𝜉(𝑗)(𝑘) (

𝑤(𝑗) − 𝑤(𝑘)

𝜉(𝑗)(𝑘)
−

𝜙𝑥(𝑗) + 𝜙𝑥(𝑘)

2
𝑐𝑜𝑠 𝜃

∞

𝑗

−
𝜙𝑦(𝑗) + 𝜙𝑦(𝑘)

2
𝑠𝑖𝑛 𝜃) 𝑠𝑖𝑛 𝜃 𝑉(𝑗) + �̃�𝑦(𝑘)ℎ 

(4.8c) 

Peridynamic parameters  𝑐𝑠 and 𝑐𝑏 can be expressed as 

 𝑐𝑠 =
9𝐸

4𝜋𝛿3
𝑘𝑠

2 and 𝑐𝑏 =
3ℎ2𝐸

4𝜋𝛿3
 (4.9) 

where 𝑘𝑠  represent the shear correction factor, and the value 𝜋2 12⁄  is used in most of  

plate [18]. 
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Because the beam and plate peridynamic formulations use different displacement 

factor, 𝜅(𝑘)(𝑗) and 𝜑(𝑘)(𝑗), it needs different critical factor that determines the failure timing. 

The critical curvature and shear angle to define the failure of bonds can be expressed as [17] 

 𝜅𝑐 = √
4𝐺𝐼𝑐

𝑐𝑏ℎ𝛿4
 and 𝜑𝑐 = √

4𝐺𝐼𝐼𝐼𝑐

𝑐𝑠ℎ𝛿4
 (4.10) 

where 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝐼𝑐 are Mode-I and Mode-III failure energy release rate, respectively. 
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4.3 Implementation of Timoshenko Beam and Mindlin Plate in ANSYS 

To analyze the Timoshenko beam and Mindlin plate using ANSYS, a different 

element type is needed rather than using COMBIN14, because this element type can only 

consider translational DOF. However, the beam and plate formulations require rotational 

DOFs. The element type BEAM4 is suitable for these type of formulations. It is a uniaxial 

element with tension, compression, torsion, and bending capabilities. It has six degrees of 

freedom at each node, not only translations but also rotations. The peridynamic parameters 

can be converted through a similar procedure as in chapter 3.5. The Eqs. (4.4a) can be rewritten 

by multiplying with unit volume of point (𝑘) as 

 𝜌𝑉(𝑘)�̈�(𝑘) = ∑ 𝑐𝑠𝜑(𝑘)(𝑗)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+ �̂�(𝑘)𝑉(𝑘) (4.11a) 

and 

 
𝜌𝑉(𝑘)

𝐼

𝐴
�̈�(𝑘) = ∑ 𝑐𝑏𝜅(𝑘)(𝑗)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+
1

2
∑ 𝑐𝑠𝜑(𝑘)(𝑗)𝜉(𝑗)(𝑘)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+ �̃�(𝑘)𝑉(𝑘) 
(4.11b) 

where 𝜌𝑉(𝑘) is the mass of the material point, 𝑐𝑠 and 𝑐𝑏 represent the shear bond constant 

and bending bond constant, respectively. The shear force and bending moment arising from 

the interactions can be described as   

 𝑓(𝑘) = 𝑐𝑠𝑉(𝑗)𝑉(𝑘)𝜑(𝑘)(𝑗) (4.12a) 

 𝑓(𝑘) = 𝑐𝑏𝑉(𝑗)𝑉(𝑘)𝜅(𝑘)(𝑗) (4.12b) 

According to classical continuum mechanics, the shear force and bending moment of 

Timoshenko beam can be described as 

 𝑓(𝑘)(𝑗) = 𝑘𝑠𝐴𝐺(𝑘)(𝑗)𝜑(𝑘)(𝑗) (4.13a) 

 𝑓(𝑘)(𝑗) = 𝐸(𝑘)(𝑗)𝐼𝑦𝜅(𝑘)(𝑗) (4.13b) 
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where 𝐺(𝑘)(𝑗) and 𝐸(𝑘)(𝑗) represent peridynamic shear modulus and Young’s modulus of 

the bond between material points (𝑘) and (𝑗). 𝑘𝑠 , 𝐴 and 𝐼𝑦  represent shear correction 

factor, cross-sectional area and moment of inertia of beam, respectively. These three 

parameters, i.e. 𝑘𝑠, 𝐴 and 𝐼𝑦, are geometrical properties that are calculated based on the 

space between material points and plate thickness. Therefore, these values cannot be changed 

𝐺(𝑘)(𝑗) and 𝐸(𝑘)(𝑗) can be converted into peridynamic parameters. Using Eqs. (4.12a) and 

Eqs. (4.13a), the peridynamic shear modulus and Young’s modulus of Timoshenko beam can 

be expressed as 

 𝐺(𝑘)(𝑗) =
𝑐𝑠

𝑘𝑠𝐴
𝑉(𝑗)𝑉(𝑘) (4.14a) 

and 

 𝐸(𝑘)(𝑗) =
𝑐𝑏

𝐼𝑦
𝑉(𝑗)𝑉(𝑘) (4.14b) 

in which these material parameters do not represent actual material parameters. Instead, they 

are calibration parameters for peridynamic simulations. 

The peridynamic material parameters of the Mindlin plate for FEM can be obtained 

using the same process based on the equation of motion (EOM) of Mindlin plate, Eqs. (4.8a). 

The only difference is the unit of the equation of motion. The unit of EOM of Timoshenko 

beam, Eqs. (4.4a), is N/m3 that of the force density, while unit of EOM of Mindlin plate, Eqs. 

(4.8a), is N/m3·m that of the force density times length. Therefore, every term in Eqs. (4.8a) 

should be multiplied with unit volume 𝑉(𝑘) and divided by plate thickness ℎ, 

 𝜌𝑉(𝑘)�̈�(𝑘) = ∑
𝑐𝑠

ℎ
𝜑(𝑘)(𝑗)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+ �̂�(𝑘)𝑉(𝑘), (4.15a) 

 

𝜌𝑉(𝑘)

𝐼

𝐴
�̈�𝑥(𝑘) = ∑

𝑐𝑏

ℎ
𝜅(𝑘)(𝑗)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+
1

2
∑

𝑐𝑠

ℎ
𝜑(𝑘)(𝑗)𝜉(𝑗)(𝑘) 𝑐𝑜𝑠 𝜃 𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+ �̃�𝑥(𝑘)𝑉(𝑘), 

(4.15b) 

and 
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𝜌𝑉(𝑘)

𝐼

𝐴
�̈�𝑦(𝑘) = ∑

𝑐𝑏

ℎ
𝜅(𝑘)(𝑗)𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+
1

2
∑

𝑐𝑠

ℎ
𝜑(𝑘)(𝑗)𝜉(𝑗)(𝑘) 𝑠𝑖𝑛 𝜃 𝑉(𝑗)𝑉(𝑘)

∞

𝑗=1

+ �̃�𝑦(𝑘)𝑉(𝑘) 

(4.15c) 

Peridynamic bond forces can be expressed same way with Eqs. (4.12a) as 

 𝑓(𝑘) =
𝑐𝑠

ℎ
𝑉(𝑗)𝑉(𝑘)𝜑(𝑘)(𝑗) (4.16a) 

 𝑓(𝑘) =
𝑐𝑏

ℎ
𝑉(𝑗)𝑉(𝑘)𝜅(𝑘)(𝑗) (4.16b) 

Therefore, the peridynamic material parameters of the Mindlin plate for FEM are described as 

 𝐺(𝑘)(𝑗) =
𝑐𝑠

𝑘𝑠𝐴ℎ
𝑉(𝑗)𝑉(𝑘) (4.17a) 

 𝐸(𝑘)(𝑗) =
𝑐𝑏

𝐼𝑦ℎ
𝑉(𝑗)𝑉(𝑘) (4.17b) 

As mentioned above, these coefficients are calibration parameters for peridynamic simulation. 
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5. PERIDYNAMICS FOR LAMINATED COMPOSITE 

MATERIAL 

Composite material is a combination of two or more materials to make improvement 

in properties compared to individual components used alone. The primary purposes of these 

combinations are high strength. Composite material consists of a reinforcement and a matrix 

phase. The matrix phase has low strength and stiffness but high ductility, and it plays a role 

that keeps reinforcements together. The reinforcements function is to provide strength and 

stiffness. There are different types of composite materials. This chapter describes the 

unidirectional fibre-reinforced composite material.  

 

Figure 5.1 Natural and reference coordinate systems for fibre-reinforced lamina [15] 

The fibre-reinforced material has extreme strength and stiffness in the fibre direction 

but very weak in the perpendicular direction to the fibre. In Figure 5.1, θ is the fibre orientation 

angle. One layer (ply) of a composite material is called a lamina. When multiple plies are 

stacked together, it is called laminate. 

5.1 Laminated Composite 

A lamina can be idealized into a two-dimensional plate. Each ply is discretized single 

layer of material points in the direction of its thickness. As shown in Figure 5.2, the material 

point 𝑖 interacts with family points within its horizon. Fibre reinforced lamina has different 

peridynamic parameters according to the bond direction. The interaction bond in fibre 

direction and other directions are called fibre bond and matrix bond, respectively. 
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Figure 5.2 PD horizon for a lamina with a fibre orientation of θ, fibre and matrix bonds [19] 

 𝑐 = {
𝑐𝑓 + 𝑐𝑚 for 𝜙 = 𝜃

𝑐𝑚 for 𝜙 ≠ 𝜃
 (5.1) 

in which 𝜃 is the fibre orientation and 𝜙 is the bond angle of each bond interaction. 𝑐𝑓 and 

𝑐𝑚 are fibre bond constant and matrix bond constant, respectively. If the plate is isotropic 

material, the fibre bond constant 𝑐𝑓  becomes zero and only the matrix bond constant 𝑐𝑚 

exists. Bond constants can be described as 

 𝑐𝑓 =
2(𝑄11 − 𝑄22)

∑ 𝜉𝑞𝑖𝑉𝑞
𝑄
𝑞=1

 (5.2a) 

 𝑐𝑚 =
24𝑄12

𝜋ℎ𝛿3
 (5.2b) 

where 𝑉𝑞  is the unit volume of the material points in the fibre direction, and 𝜉𝑞𝑖  is the 

distance from the reference point to family material points, especially along the fibre direction. 

𝑄  represents the number of material points in the fibre direction, and ℎ  represents the 

thickness of each ply. 𝑄𝛼𝛼  is the components of stiffness matrix 𝐐 related to stress and 

strain, 
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 {

𝜎11

𝜎22

𝜎12

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

] {

𝜀11

𝜀22

𝛾12

} (5.3) 

where 

 

𝑄11 =
𝐸1

1 − 𝜈21𝜈12
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈21𝜈12
 

𝑄22 =
𝐸2

1 − 𝜈21𝜈12
 

𝑄66 = 𝐺12 

(5.4) 

The strain energy density of material point (𝑘) in single layer lamina for a uniaxial 

strain condition can be expressed by summation of the strain energy density of fibre bond and 

matrix bond as 

 𝑊 = 𝑊𝑓 + 𝑊𝑚 (5.5a) 

 𝑊𝐶𝑀 =
1

2
(𝑄11 − 𝑄22)𝜁2 +

1

2
𝑄22𝜁2 (5.5b) 

 𝑊𝑃𝐷 =
1

2
∑

1

2
𝑐𝑓𝑠(𝑖)(𝑞)

2 𝜉(𝑖)(𝑞)𝑉(𝑞)

𝑄

𝑞=1

+
1

2
∑

1

2
𝑐𝑚𝑠(𝑖)(𝑗)

2 𝜉(𝑖)(𝑗)𝑉(𝑗)

𝑁

𝑗=1

 (5.5c) 

where 𝑊𝑓  and 𝑊𝑚  are strain energy densities arising from fibre bond and matrix bond. 

𝑊𝐶𝑀  and 𝑊𝑃𝐷  represent the strain energy density of a single material point based on 

classical continuum mechanics and peridynamics, respectively. The 𝑠(𝑖)(𝑗) and 𝜉(𝑖)(𝑗) are 

the stretch and distance between material points (𝑖) and (𝑗), respectively.  
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5.2 Implementation of Peridynamic Formulation for a Lamina Plate in 

ANSYS 

The peridynamic implementation in ANSYS for composites is similar to the basic 

application described in chapter 3.5. Each bond is represented with a spring element. In this 

thesis, the application of ANSYS is performed only for a composite lamina. The equation of 

motion can be expressed as  

 
𝜌(𝑘)𝑉(𝑘)�̈�(𝑘) = ∑(𝑐𝑚 + 𝛼𝑐𝑓)

|𝝃(𝑘)(𝑗) + 𝜼(𝑘)(𝑗)| − 𝜉(𝑘)(𝑗)

𝜉(𝑘)(𝑗)
𝑉(𝑗)𝑉(𝑘)

𝑁

𝑗=1

+ 𝒃(𝑘)𝑉(𝑘) 
(5.6) 

In which 𝜌(𝑘)𝑉(𝑘) represent the mass of material point 𝑘. The 𝑐𝑚 and 𝑐𝑓 are peridynamic 

bond constants of matrix bond and fibre bond, respectively. 𝛼 is value that depending on 

bond type. 

 𝛼 = {
1 for 𝜙 = 𝜃
0 for 𝜙 ≠ 𝜃

 (5.7) 

This means if the bond angle and fibre orientation match, the material has a stronger 

connection than the other directions. The procedure to calculate the peridynamic spring 

constant is the same as described in chapter 3.5. The peridynamic spring constant of 

connection between material points 𝑘 and 𝑗 for a lamina can be expressed as 

 
𝑘(𝑘)(𝑗) =

𝑐𝑚 + 𝛼𝑐𝑓

𝜉(𝑘)(𝑗)
𝑉(𝑗)𝑉(𝑘) 

(5.8) 
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5.2.1 Numerical Results 

 

Figure 5.3 The geometry of the unidirectional lamina with a crack under tension loading  

The fibre-reinforced lamina with a fibre orientation of 0°, 45° and 90° are considered 

as shown in Figure 5.3. The length and width of the plate are specified as L = 152.4mm and 

W = 76.2mm. It has a thickness of h = 0.1651mm. Young’s modulus in fibre and transverse 

directions are 𝐸11 = 159.96 GPa and 𝐸22 = 8.96 GPa, respectively. The shear modulus 

and Poisson’s ratio are 𝐺12 = 3.0054  GPa and 1 3⁄ . The material properties of matrix 

element which determine the peridynamic bond constants are 𝐸𝑚 = 3.7919 GPa and 𝐺𝑚 =

1.4220 GPa. The plate has a vertical crack at the centre, and its length is 17.78mm. The plate 

is subjected to velocity boundary conditions of 𝑣0 = 2.02 × 10−7m/s in opposite directions 

along each edge. [19] 

The results calculated by MATLAB and ANSYS are shown in Figure 5.4 and Figure 

5.5, respectively. 28,800 material points are used in MATLAB and 20,000 points in ANSYS 

to reduce the computational time. The crack propagated along the fibre direction, and this is 

because the bond in the transverse direction is weaker than others. Thus, the bond 

perpendicular to hardening direction is broken first, which means that the force in that direction 

is lost. Continuously, the two points which belong to broken bond gradually move away from 

each other, and the crack progresses in the direction of the fibre. 
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(a) 

 

(b) 

 

(c) 

Figure 5.4 MATLAB results for the damage the plot of cracked lamina plate with fibre 

orientation of (a) 𝜃 = 0°, (b) 𝜃 = 45° and (c) 𝜃 = 90° 
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(a) 

  

(b) 

 

(c) 

Figure 5.5 ANSYS results for the damage the plot of cracked lamina plate with fibre 

orientation of (a) 𝜃 = 0°, (b) 𝜃 = 45° and (c) 𝜃 = 90°  
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6. FREE VIBRATION AND BUCKLING OF CRACKED 

PLATE 

In this chapter, the simulation of free vibration and buckling of the cracked plate is 

performed by the peridynamic model using ANSYS. The plates is modelled based on Chapter 

3.5. A BEAM4 element in ANSYS represents every bond between material points, and the 

MASS21 element represents the mass of each material point. The various crack conditions are 

considered and compared the effect of crack length, crack direction and plate thickness. The 

peridynamic results are compared with experimental and numerical results from the referenced 

papers such as Krawczuk [2], Seifi and Khoda-Yari [20], Barton [21] and Qian et al. [22] In 

several cases, the verifications are done by comparing intact plate peridynamic results with 

results of FEM.  

6.1 Buckling of Cracked Plate 

 

Figure 6.1 The geometry of a clamped-clamped plate with a crack 

The plate illustrated in Figure 6.1 is subjected to a clamped-clamped condition (CFCF) 

with thickness ℎ, crack length 𝑐 and crack angle 𝛼. As mentioned above, the various states 

are considered, such as thickness from 8 to 12 mm, crack angle as 0°, 30° and 60°, and crack 

length ratio (𝑐 𝑊⁄ ) as 0.1, 0.3 and 0.5. The plate shown in Figure 6.2 has the same conditions 

as in Figure 6.1. The difference is that the crack is located at the side of the plate. 

The critical buckling loads of cracked plates are compared with results of Seifi et al. 

[20]. The plate dimensions are 240×240×12 mm3, and the two opposite sides of the plate are 
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clamped, and the other sides are free, as shown in Figure 6.1. The Young’s modulus is 70 MPa 

and Poisson’s ratio is 0.33. The compressive load is acting on one side of the clamped edge. 

As explained in chapter 3.3, the peridynamic model has fictitious layers on both clamped sides 

of the plate. Compressive load is acting on material points within the real body as shown in 

Figure 6.3. 

 

Figure 6.2 The geometry of a clamped-clamped plate with a side-crack 

 

Figure 6.3 The boundary conditions of CFCF plate based on peridynamics  
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6.1.1 Results of the cracked plate with various parameters 

The comparison of results is collected in Table 6.1. As shown in this the table, the 

critical buckling load increases with the initial crack angle. On the other hand, as the crack 

length increases the critical load decreases. Moreover, the longer crack length, the higher the 

effect of the crack angle. The errors between experimental and peridynamic values are within 

8%, which means that the other results obtained by peridynamics can be considered as reliable. 

The effect of plate thickness is also investigated. Before analysing the cracked plate, 

the results of the plate without a crack using peridynamics and FEM are compared to verify 

whether the peridynamic results are reliable or not in various thickness conditions. The FEM 

results are obtained by using shell element in ANSYS, and these results are summarized in 

Table 6.2. The differences between the two approaches are small and negligible, that is within 

3%. So, it can be said that the peridynamic results of the plate with a crack can be considered 

reliable. When a plate is under compression, the plate produces internal energy. However, the 

part where the crack is present releases that energy. Therefore, it makes the plate easier to 

buckle. When a crack exists perpendicular to the load, this energy is released more quickly. It 

means that when the angle of the crack is zero degrees, and the length is long, it is easily 

buckled even for smaller forces. 

Table 6.1 Comparison of experimental results for the critical buckling load of the cracked 

plate  

Crack length 

ratio 

(𝑐 𝑤⁄ ) 

Crack angle 

(𝛼) 

Ref. [20] 

Experimental [N] 

Peridynamics 

[N] 
% Diff 

0.1 0° 1627 1746.4 7.34 

 30° 1651 1762.1 6.73 

 60° 1674 1777.1 6.16 

0.3 0° 1531 1562.6 2.06 

 30° 1551 1631.7 5.20 

 60° 1660 1729.4 4.18 

0.5 0° 1317 1311.7 0.40 

 30° 1396 1471.6 5.42 

 60° 1636 1683.5 2.90 
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Table 6.2 Validation of peridynamic critical buckling load of the intact plate using FEM 

Thickness 

[mm] 

FEM 

buckling load 

[N] 

Peridynamic 

buckling load 

[N] 

% Diff 

8 533.14 547.55 2.70 

10 1033.2 1053.0 1.92 

12 1768.9 1792.0 1.31 

 

The results of a cracked plate are summarised in Table 6.3, and these results values 

are presented in graphs in Figure 6.4 and Figure 6.5. To see, the effect of each parameter, the 

non-dimensional critical buckling load (NCBL) 𝑘𝑀 is used. 

 𝑘𝑀 =
𝑁𝑥𝑊2

𝜋2𝐷
    with 𝐷 =

𝐸ℎ3

12(1 − 𝜈2)
 (6.1) 

where 𝐷 is flexural rigidity of plate which is the resistance caused by a structure in 

bending. In Table 6.3, it can be seen that the increase of thickness and initial crack angle cause 

an increase in critical buckling load. 

According to Figure 6.4 and Figure 6.5, the NCBL decreases as the thickness 

increases. It is evident if the thickness increases at the same length and width of the plate, it 

means an increase of stiffness of the plate. NCBL is calculated as critical buckling load divided 

by stiffness. Thus as thickness increases, stiffness increases and, higher critical buckling load 

and lower NCBL should be expected. 

Furthermore, regardless of the length of the crack, it can be seen that the thickness has 

similar effect on NCBL. This can be seen from the similar gradient of all NCBL-thickness 

graph. In addition, while the initial crack angle increases from 0° to 90°, the influence of crack 

length on NCBL decline. When the plates have same thickness, as the angle increases, the 

difference in value of NCBL depending on the crack length is reduced gradually. 

When a plate is under compression, the plate produces internal energy but the part 

where the crack is a present release that energy. It makes the plate easier to buckle. If a section 

of a crack is perpendicular to the direction of compression force, the internal energy is released 

more easily. It means that when the angle of the crack is zero degrees, and the length of the 

crack is long, it is easily bent even for smaller forces. 
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Table 6.3 Peridynamic results for critical buckling load of a cracked plate 

Thickness 

[mm] 

Crack length 

ratio 

(𝑐 𝑊⁄ ) 

Crack angle 

(𝛼) 

Peridynamics 

[N] 

8 0.1 0° 536.33 

  30° 539.04 

  60° 543.37 

  90° 545.86 

 0.5 0° 404.17 

  30° 454.09 

  60° 517.29 

  90° 536.97 

10 0.1 0° 1028.3 

  30° 1036.0 

  60° 1044.6 

  90° 1049.7 

 0.5 0° 772.81 

  30° 868.77 

  60° 991.91 

  90° 1032.1 

12 0.1 0° 1746.4 

  30° 1762.1 

  60° 1777.1 

  90° 1786.4 

 0.5 0° 1311.7 

  30° 1471.6 

  60° 1683.5 

  90° 1755.7 
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(a) 

  

(b) 

Figure 6.4 Effect of thickness on the non-dimensional critical buckling load 

((a) 𝛼 = 0°, (b) 𝛼 = 30°) 

  



34 

 

 

 

(a) 

 

(b) 

Figure 6.5 Effect of thickness on the non-dimensional critical buckling load 

((a) 𝛼 = 60°, (b) 𝛼 = 90°) 
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(a) 

 

Figure 6.6 Variation of NCBL by crack length ((a) central crack, (b) side-edge crack) 
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Table 6.4 Peridynamic results for critical buckling load of side-edge cracked plate 

Thickness 

[mm] 

Crack angle 

(𝛼) 

Crack length 

ratio 

(𝑐 𝑊⁄ ) 

Crack location 

ratio (𝑑 𝐿⁄ ) 

Peridynamics 

[N] 

8 0° 0.1 0.5 532.26 

   0.7 542.96 

   0.9 537.28 

  0.5 0.5 355.16 

   0.7 378.17 

   0.9 398.41 

 60° 0.1 0.5 543.28 

   0.7 545.59 

   0.9 546.56 

  0.5 0.5 487.68 

   0.7 486.02 

   0.9 470.39 

12 0° 0.1 0.5 1733.99 

   0.7 1768.68 

   0.9 1750.75 

  0.5 0.5 1154.36 

   0.7 1223.19 

   0.9 1291.62 

 60° 0.1 0.5 1771.34 

   0.7 1778.73 

   0.9 1781.68 

  0.5 0.5 1587.05 

   0.7 1580.10 

   0.9 1533.00 
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Figure 6.7 Effect of crack location on non-dimensional critical buckling load of side cracked 

plate 

In Figure 6.6, the NCBL changes for each buckling mode according to the crack length 

for the central and side-edge cracked plate. The thickness of each plate is equal to 8mm and 

the material properties are the same as the plate considered earlier. The critical buckling load 

decreases as the length of the crack increases. It is evident that the NCBL is gradually reduced 

in the central crack case, and the side-edge crack results are slightly different from the central 

crack results. 

The critical buckling loads of side cracked plate with different thickness, crack 

location, angle and size are summarized in Table 6.4. When the crack angle is zero degrees, 

the more the crack was placed in the middle of the plate (𝑑 𝐿⁄ = 0.5), the smaller the buckling 

load was required. In addition, when the crack is significantly large (𝑐 𝑊⁄ = 0.5), the critical 

buckling load gradually increases as the location of the crack moves away from the centre of 

the plate. When the size of the crack was small (𝑐 𝑊⁄ = 0.1), there was little change in 

buckling load with respect to its position. 

As shown in Figure 6.7, the effect of the crack position on the NCBL compared. The 

length and position of the crack were changed in a plate having 8mm and 12mm thickness. As 

shown in the graph, NCBL increased as the crack is getting closer to the edge of the plate. 

Moreover, the slope shows that the shorter the length of the crack, the less the impact of the 

position. There is no significant difference between the two different thickness plates.  
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6.1.2 Results of the cracked plate with variable thickness 

 

Figure 6.8 The geometry of a plate with a variable thickness along the length of the plate  

In this section, the buckling analysis was performed for a plate with linearly increased 

thickness. The size of the plate is 240×240mm2. As shown in Figure 6.8, the plate has a 

different thickness in the direction of width. The ℎ1 and ℎ2 are the minimum and maximum 

thickness of the plate, respectively. The plate is studied with different thickness ratio (ℎ2 ℎ1⁄ ) 

changing from 1.1 to 2.0. Other crack-related constants, such as crack length and angle, are 

considered the same as the previous section. The material properties are also the same as the 

previous section, which is Young's modulus is 70 MPa and Poisson’s ratio is 0.33. 

Table 6.5 Comparison of FEM and peridynamic critical buckling load of the plate with 

variable thickness 

Thickness ratio 

(h2/h1) 

FEM 

buckling load 

[N] 

Peridynamic 

buckling load 

[N] 

% Diff 

1.1 260.41 271.48 4.25 

1.2 294.85 306.66 4.01 

1.5 404.02 417.68 3.38 

1.75 506.00 520.90 2.94 

2.0 621.06 636.95 2.56 
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Firstly, the peridynamic model results of the plate was compared with the FEM results 

for verification purposes. The shell element of ANSYS was used for FEM results. The results 

are summarized in Table 6.5. It can be seen that the differences between peridynamics and 

FEM results are smaller than 5%. The critical buckling load increases as the thickness ratio is 

increases. This is because the more substantial the thickness ratio, the thicker the plate is, 

making the plate stronger. It means that greater load is needed, which increases the buckling 

load. 

The critical buckling loads of cracked plate are recorded in Table 6.6. Similar to the 

intact plate case, the load increased as the ratio of thickness increased. The higher the thickness 

ratio, the more significant decrease in buckling load as the size of the crack increases. The 

change in crack angle with the same thickness ratio and length of the crack was not significant 

compared to other factors. 

According to Figure 6.9 and Figure 6.10, the values of NCBL show that the crack 

affects the stiffness of the plate. The thickness ratio has a significant effect, as with other 

factors, in buckling analysis. The value of NCBL decreases as the ratio of thickness increases. 

As with the previous results, the smaller angle of crack, the more significant impact of the 

length of the crack. The gradient of all graphs is similar, indicating that the influence of the 

ratio of thickness is constant regardless of the crack length and angle. 
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Table 6.6 Peridynamic results for critical buckling load of the cracked plate with variable 

thickness 

Crack angle 

(𝛼) 

Crack length ratio 

(𝑐 𝑊⁄ ) 

Thickness ratio 

(ℎ2 ℎ1⁄ ) 
Peridynamics [N] 

0° 0.1 1.1 265.45 

  1.2 299.82 

  1.5 408.32 

  2.0 622.63 

 0.5 1.1 200.11 

  1.2 224.61 

  1.5 300.01 

  2.0 448.36 

30° 0.1 1.1 267.39 

  1.2 302.05 

  1.5 411.47 

  2.0 627.54 

 0.5 1.1 226.80 

  1.2 254.36 

  1.5 339.33 

  2.0 506.74 

60° 0.1 1.1 269.62 

  1.2 304.60 

  1.5 415.05 

  2.0 633.03 

 0.5 1.1 256.84 

  1.2 288.73 

  1.5 387.41 

  2.0 579.96 

  



41 

 

 

 

(a) 

  

(b) 

Figure 6.9 Effect of thickness ratio on the non-dimensional critical buckling load 

((a) α=0°, (b) α=30°)  
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(a) 

 

(b) 

Figure 6.10 Effect of thickness ratio on the non-dimensional critical buckling load 

((a) α=60°, (b) α=90°) 
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6.2 Free Vibration of Cracked Plate 

In this section, the free vibration simulation is performed to obtain the natural 

frequencies of the plate. At first, the validation procedure is performed by comparing with the 

results of other papers. 

 

Figure 6.11 The geometry of a cantilever plate with a crack 

6.2.1 Results of the cracked plate with various parameter 

The natural frequency of the cantilever plate with dimensions of 240×240mm2 and 

thickness of 2.75mm are summarized in Table 6.7 and Table 6.8. The plate is made of 

aluminium with Young’s modulus of 67 GPa, Poisson’s ratio of 1/3 and mass density of 

2800kg/m3. The Table 6.7 contains the natural frequencies of the plate without crack. The 

peridynamic results are compared with numerical, theoretical results of Krawczuk, M. [2], 

Barton, M. [21], respectively, and the finite element results using ANSYS shell element. In all 

four cases, the natural frequencies are similar to each other and the differences between FE 

and peridynamic results are smaller than 3%. 

In Table 6.8, the ratios of natural frequencies of cracked plated to intact plate are 

compared with values from referenced papers. The crack is parallel with fixed edge and length 

is 34 mm, and centre of cracked is located 90 mm apart from the lower right corner of the plate 

(𝑥 = 𝑦 = 90 mm). This model is illustrated in Figure 6.11. The good agreement between 

peridynamic results and the others are obtained. Therefore, it can be said that the peridynamic 

natural frequencies are reliable in other similar cases as well. 
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Moreover, an analysis to investigate the effect of crack length, crack angle and plate 

thickness is performed. The material properties are the same as Table 6.7. The plate is 

subjected to a clamped-clamped condition, like Figure 6.1, and the results are shown in Table 

6.9. Likewise, in the simulation of free vibration, we used the non-dimensional value of 

frequency. 

  Ω = 𝜔𝑊2√
𝜌

𝐸ℎ3
 (6.2) 

In Table 6.9 and Figure 6.12, similar information is obtained with Figure 6.4, Figure 

6.5 and Table 6.3. Similar to buckling results, the thicker plate has higher rigidity, which 

causes higher natural frequencies and lower non-dimensional frequencies. It also shows that 

the increase of crack angle and decrease of crack length caused an increase in natural 

frequency. Additionally, as shown in Figure 6.13, the line of 𝑐 𝐿⁄ = 0.1 have similar non-

dimensional frequency regardless of a crack angle. It means that the shorter crack length, the 

lower impact of crack angle. As the crack angle increases, the interval of each graph line 

decreases. This means that the larger the angle of the crack, the smaller the influence of the 

crack length. 

Table 6.7 Validation of peridynamic result with other methods of intact plate  

Mode Ref. [2] [Hz] Ref. [21] [Hz] FEM [Hz] 
Peridynamics 

[Hz] 
% Diff 

1 41.49 40.39 39.36 40.452 2.70 

2 99.87 96.94 94.89 101.10 1.92 

3 255.91 242.36 239.92 249.77 1.31 

Table 6.8 The ratio of natural frequencies of cracked plate to intact plate 

Mode 
Ref. [2] 

numerical 

Ref. [22] 

theoretical 

Ref. [22] 

experimental 
Peridynamics 

1 0.9891 0.9931 0.9917 0.9909 

2 0.9985 0.9989 0.9981 0.9978 

3 0.9826 0.9837 0.9807 0.9899 
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The Figure 6.14, Figure 6.15 and Figure 6.16 show the first five-mode shapes for three 

cases of crack angle (0°, 30° and 60°). Each figure represents the central cracked plate, the 

central cracked plate with variable thickness and side-edge crack plate, respectively. All plates 

are under clamped-clamped condition (CFCF) and have the same material properties. In Figure 

6.14, it can be seen that each mode changes as the crack angle increases. In particular, there 

are significant differences in modes of third or higher. The Figure 6.15 shows the mode shape 

for the plate with linearly varying thickness as described in Figure 6.8. The thickness ratio is 

2, and the right side of the plate is the thick side. Overall, it can be seen that the centre of each 

vibration mode shape is tilted to the left, which is the thin side of the plate. Other than this, it 

has a very similar mode shape to Figure 6.14.  
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Table 6.9 Peridynamic results for natural frequencies of the cracked plate (CFCF)  

Thickness 

[mm] 

Crack length 

ratio 

(𝑐 𝑊⁄ ) 

Crack angle 

(𝛼) 

Peridynamics 

[Hz] 

8 0.1 0° 706.18 

  30° 707.99 

  60° 709.99 

 0.3 0° 676.32 

  30° 686.03 

  60° 703.15 

 0.5 0° 631.05 

  30° 657.55 

  60° 695.31 

10 0.1 0° 874.09 

  30° 874.30 

  60° 879.50 

 0.3 0° 837.09 

  30° 848.17 

  60° 870.63 

 0.5 0° 780.83 

  30° 812.47 

  60° 860.72 

12 0.1 0° 1040.0 

  30° 1038.9 

  60° 1045.87 

 0.3 0° 994.86 

  30° 1007.3 

  60° 1035.1 

 0.5 0° 927.95 

  30° 964.54 

  60° 1022.98 
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(a) 

 

(b) 

Figure 6.12 Effect of thickness on non-dimensional frequency 

((a) 𝛼 = 0°, (b) 𝛼 = 60°) 
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(a) 

 

(b) 

Figure 6.13 Effect of crack angle on non-dimensional frequency 

((a) ℎ = 8 mm, (b) ℎ = 12 mm) 
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Figure 6.14 First five vibration mode shape of central cracked plate (CFCF) 

(Mode: from top to bottom; 1st, 2nd, 3rd, 4th and 5th) 

(Crack angle: from left to right; 0°, 30° and 60°) 
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Figure 6.15 First five vibration mode shape of a variable thickness cracked plate (CFCF) 

(Mode: from top to bottom; 1st, 2nd, 3rd, 4th and 5th) 

(Crack angle: from left to right; 0°, 30° and 60°) 
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Figure 6.16 First five vibration mode shape of the side-edge cracked plate (CFCF) 

(Mode: from top to bottom; 1st, 2nd, 3rd, 4th and 5th) 

(Crack angle: from left to right; 0°, 30° and 60°)  



52 

7. CONCLUSION 

In this thesis, a research about peridynamics, which has the advantage of being able 

to analysis the cracked structures, is performed. The peridynamic theory was implemented to 

a commercial finite element analysis tool, and various structural analyses that may be required 

in the offshore platforms and ship structures are carried out. In particular, the changes in the 

characteristics of the cracked structure, which are the most common problems, are discussed. 

The investigation about changes of critical buckling loads and natural frequencies according 

to the location, size, and angle of the crack is conducted and how each factor affects the 

characteristic value of the structure is determined. In addition, various analyses were attempted 

using finite element analysis software based on peridynamics such as crack propagation of 

fibre reinforced material. 

• It can be seen that the crack propagation of the fibre reinforced material has different 

crack propagation results depending on the fibre direction of the plate, as described in 

chapter 0. Very similar results can be obtained both using MATLAB and ANSYS, i.e. 

the language-based program and finite element software, respectively. 

• In chapter 6, a case study was conducted on changes in cracked structures due to factors 

such as the location, inclination and size of cracks. First, the peridynamic model results 

are compared with experimental results of other papers to prove the validity of it, and 

it gave good results with a margin of error of 8%. Besides, the critical buckling load 

and natural frequencies of the non-cracked plates are investigated and compared with 

the finite element analysis results. It also showed that accuracy that has an error of less 

than 5%, and it can be said that the reliability of peridynamic model is validated. 

• Changes in the length, angle and position of crack and thickness and thickness change 

ratio of the plate were considered as research parameters, and the effects of each 

element on the critical buckling load and natural frequency of the plate were analysed. 

The thicker the plate, the greater buckling load was required, the longer the length of 

the crack and the more perpendicular the crack was to the direction of the force, the 

easier it was to be buckled even in smaller forces. Natural frequency also had a higher 

value as the stiffness of the plate increases, and it can be seen that the position and 

angle of the crack affect mode shape of the plate.  
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