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Abstract

The ability to reliably transport ultracold atoms is a highly sought feature in a range of

fields including quantum and ultracold atomic sciences. Here, we merge the typically

separate fields of ultracold atomic physics and nonlinear optical systems, proposing to

use light that carries orbital angular momentum (OAM) as a reliable atomic guide.

By theoretically and numerically considering atom-light interactions where the two in-

volved fields co-propagate, we open several novel approaches to structure formation,

atomic localisation, trapping, and atomic guiding. By additionally considering a phys-

ical setup in which the interactions occur within a driven optical cavity, we extend

this work to outline the capacity for further atomic transport, rich pattern formation,

alternative mechanisms for atomic vortex lattice formation, and persistent current gen-

eration. These results are of significant prospective interest across a range of settings in

which ultracold atomic systems are studied and applied, including in atomic transport,

atomtronics, quantum and superfluid simulation, and vortex simulation.
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Chapter 1

Thesis Introduction

The ability to control and direct the dynamics of ultracold atoms is highly sought after,

with applications across a range of scientific fields including quantum technologies,

simulation, condensed matter physics, and measurement sciences. This thesis proposes

a new approach to atomic control: by directing them with light that has structured

phase, we outline the capacity for customised, dynamic atomic localisation, trapping,

and transport. We start by providing a broad introduction to the relevant scientific

fields of ultracold atoms and light with structured phase.

1.1 Ultracold Atoms

In common parlance the word ‘atom’ connotes the fundamental building block of the

world around us. Indeed, it derives from classical Greek ‘atomos’ meaning ‘uncut’, a

reflection of the contemporary belief in the fundamental nature of atoms [1]. Since

then, a sub-atomic realm has, of course, been identified [2], but studies at the atomic

scale remain broad, active physical fields [3]. One such field of study is in the collective

behaviour of ensembles of atoms at very low temperatures. The development of evapo-

rative cooling techniques in the late 1980s, a process by which atomic ensembles, much

2



Chapter 1: Thesis Introduction

like a cup of tea, are progressively cooled (though with magnetic fields) enabled the

realisation of collections of ‘cold’, localised atoms [4–7]. This approach, acting upon

pre-cooled atoms from a magneto-optical trap [8–11], enabled, in the mid 1990s, the fa-

mous initial realisations of atomic ensembles occupying solely the thermal ground state:

a Bose-Einstein condensate (BEC) of ‘ultracold’ atoms [12–16]. Two of these studies

were fundamental to the award of the Nobel Prize for Physics in 2001 [14, 16, 17].

At ultracold temperatures individual atoms within an ensemble become indistinguish-

able and the ensemble acts as a single coherent, wave-like structure: an effective atomic

superfluid [18]. Following the initial realisation of BECs, the field of ultracold atomic

sciences grew rapidly [19], and their (relative) accessibility for probing quantum me-

chanical properties has since found many applications in quantum simulation [20], atom

lasers [21], atomic clocks [22], and, due to their high sensitivity to forces, weak field

sensing [23].

An electromagnetic field may produce a range of impactful forces upon coupled atomic

ensembles [24, 25], including the optomechanical force, arising from interactions be-

tween atomic and coherent optical fields [26–29]. In such a scheme, the difference in

oscillation frequencies between the two fields is known as their detuning. If the detun-

ing is significantly larger than the natural linewidth of the atoms - a condition referred

to as far detuned - then the optomechanical force may be used to alter the collective

behaviour of atoms within a BEC [30–33]. The nature of such a force depends on the na-

ture of the detuning: red-detuned fields will transport atoms to bright optical regions,

whilst blue-detuned fields transport them to regions of optical darkness [29, 33–35].

This capability to reliably manipulate atoms by virtue of the nature of the atom-field

detuning has been of great utility in laser cooling and optomechanical schemes.

1.2 Light with Structured Phase

In this thesis we consider atom-light interactions, focusing on cases where the optical

field carries orbital angular momentum (OAM) [36]. Light, as well as having an am-

plitude that has homogeneous [37] or structured [38] form, may have a helical phase

3



Chapter 1: Thesis Introduction

front, and therefore carry OAM of index m [36]. Such fields with helical phase are

often referred to as ‘structured light’, having both structured amplitude and phase [39–

42]. Optical fields carrying OAM have extensive applications in trapping and rotating

macroscopic objects [43], microscopy [44], optical and radio communications [45], low-

loss optical fibre creation [46], quantum entanglement and communication [47], chiral

light-matter interactions [48], and in electron dynamics [49, 50].

OAM has also been used extensively in interactions between light and various forms

of matter [51]. Demonstrations of the capacity of OAM-carrying beams to manipu-

late physical media have included rotating particles held at the centre of an optical

beam [52–57], acoustically swirling water-microparticle mixes [58], and rotating the

entire propagation medium of the beam [59]. More recently, the impact of beams with

OAM in atomic media has been explored, with studies proposing controlled nonlin-

ear propagation in hot rubidium vapours [60], the optomechanical transport of cold

atoms [61], the formation of optical ‘compasses’ [62] or ‘Ferris wheels’ [63], and the

generation of persistent atomic flow in toroidal traps [64].

Here, we extend the last of these applications of OAM-carrying light, considering beams

carrying OAM within ultracold atomic ensembles. We build on the ability of atom-light

detuning to transport ultracold atoms to bright or dark optical regions [32, 33], intro-

ducing OAM to the system, and explore its potential to induce additional azimuthal

motion upon such dynamics [36].

1.3 Layout of the Thesis

The main subject matter of this thesis is split into five Parts I - V, which are further

divided into shorter Chapters 1 - 12 for ease of reading.

Throughout, we consider the interactions of ultracold matter and optical fields, gen-

erally (but not exclusively) with structured intensity and phase. These are typically

separate fields, each with a wealth of existing research but limited overlap, and so in

Part I we introduce the theoretical background of each field, used as the basis of the

4



Chapter 1: Thesis Introduction

research presented here. It consists of

• Chapter 2, which outlines the field of Bose-Einstein condensation, and how such

collective ultracold atomic ensembles may be numerically modelled;

• Chapter 3, which considers the approaches behind structuring the intensity and

phase of optical beams, and how such fields may be numerically modelled; and

• Chapter 4, which discusses a range of existing nonlinear dynamics observed in

a variety of ultracold atomic and optical fields.

In Part II, we consider a physical setup where the coupled, interacting ultracold atomic

and optical fields co-propagate alongside one another, building directly on Refs. [32, 33].

Part II contains

• Chapter 5, which outlines a theoretical description of such a physical setup

through coupled nonlinear equations for the two fields;

• Chapter 6, which discusses the ability of these light-matter interactions to form

coupled filamentation patterns on initially homogeneous fields;

• Chapter 7, which considers similar pattern formation on intensity structured

fields, before developing the nonlinear model used to describe this process; and

• Chapter 8, which employs the revised model to investigate the ability of optical

fields carrying OAM to guide ultracold atoms for controllable atomic transport.

In Part III, we consider an alternative physical configuration of light-matter inter-

actions, envisaging a stationary BEC interacting with an optical field within a driven

optical cavity. Part III contains

• Chapter 9, which discusses the theoretical alterations required to describe such

atom-light interactions within a driven optical cavity;

• Chapter 10, which considers the capability of such a system to realise a wealth

of spontaneous patterns on initially homogeneous atomic and optical fields;

• Chapter 11, which extends such patterns to intensity and phase structured

5



Chapter 1: Thesis Introduction

fields, generating high-index atomic vortex arrays; and

• Chapter 12, which outlines the creation of dynamic atomic persistent currents

from optical vortex beams carrying OAM.

In Part IV, we conclude by comparing the OAM-induced atomic transport across the

two physical configurations studied. We consider potential applications of the results

outlined, and provide a brief discussion on the next steps that future research should

take in this direction.

Part V, which provides further details of the two model derivations outlined in Chap-

ters 5 and 9 in addition to a lookup table, is followed by a bibliography.

1.4 Field Visualisation

In this thesis, we regularly show two-dimensional (2D) field amplitude distributions,

with a colour assigned to each point on the grid representing the amplitude of that

point in the field. Our approach is summarised by Fig. 1.1, where the ‘top-down’ view

typically considered here is shown under a three-dimensional (3D) profile, with the

third dimension corresponding to the field’s amplitude. Given that we consider coupled

atomic and optical fields simultaneously, we assign each a different colour scheme, and

so in Fig. 1.1 we show the same Gaussian as an (a) atomic and (b) optical field.

(a) (b)

Figure 1.1: Transverse field plotted as an (a) atomic or (b) optical field. Bottom: ‘top-
down’ transverse amplitude profiles used in this thesis. Top: equivalent 3D field, with
the third dimension the field amplitude. Fields indicative of Gaussians, of beam waist
thirty-five percent of the total transverse domain, where the beam waist represents the
position at which the field amplitude falls to 1/e of its maximal value.

6



Chapter 1: Thesis Introduction

We also consider the phase structure of fields, a measure of the orientation difference

between the electric and magnetic components, assigning it a separate cyclic colour

scheme to differentiate it from amplitude distributions. Again, this is presented in

a ‘top-down’ view, as summarised by Fig. 1.2 which demonstrates (a) the amplitude

distribution of a Laguerre-Gaussian optical beam, and (b) its corresponding phase

structure, both in 3D (upper) and 2D (lower), equivalently to Fig. 1.2.

(a) (b)

Figure 1.2: Transverse field phase visualisation procedure used throughout this thesis,
showing (a) an optical field’s amplitude, and (b) the same field’s phase distribution. The
bottom row shows the ‘top-down’ profiles used throughout, with the top row showing a
three-dimensional equivalent visualisation, with the third dimension given by the field
amplitudes or phase values, respectively. The field is an indicative Laguerre-Gaussian,
of OAM index m = 1 and beam waist half the total transverse domain, and contains a
helical phase of 0→ 2π in the azimuthal direction around its amplitude ring.
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Chapter 2

Bose-Einstein Condensation

In this chapter, we outline the essential background theory of the behaviour of atomic

ensembles at ultracold temperatures. In Section 2.1, we outline the origins of such Bose-

Einstein Condensates (BECs), considering the broad experimental cooling procedures

required to create such a state of matter. In Section 2.2 we introduce the Gross-

Pitaevskii equation as a means of modelling such structures, deriving this model from

the mean-field Hamiltonian describing atomic interactions within the BEC subject to

an external trapping potential. Finally, in Section 2.3, we discuss how this description

of the condensate’s dynamics also gives an expression for the BEC’s ground state; a

Thomas-Fermi distribution, providing a description of the system’s zero-energy state.

2.1 Origins

The fundamental requirement for BEC formation is that the collection of atoms involved

exclusively occupies the system’s ground energy state, and thus displays a single, co-

herent velocity [14, 18]. The advanced atomic cooling techniques required to reach

such a state pre-date the initial realisations of condensates significantly, therefore in

this section we briefly review the origins of ultracold atomic sciences.
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The theoretical origins of BECs trace to the mid 1920s, when Einstein developed Bose’s

theory that a phase transition would occur in a non-interacting bosonic medium at the

appropriate thermal conditions, leading to a collection of atoms solely in the ground

state of the system [12, 13]. A qualitative description of the dynamics of an atomic

ensemble undergoing this procedure is given in Fig. 2.1 [65, 66]. Panel (a) represents

a generic system at a ‘high’ temperature T � 10−4K [67]. Under such conditions, the

behaviour of individual atoms within a collective medium may simply be thought of

as ‘billiard ball’-like, and they have a significant thermal velocity, v, and low ensemble

density, proportional to the mean distance separating atoms, d.

(a) (b) (c) (d)

Figure 2.1: General concept of the behaviour of an ensemble of bosonic atoms as
temperature decreases (a)-(d). After Refs. [65, 66].

To obtain quantum mechanical dynamics, the atomic temperature and hence the ther-

mal velocity must be reduced substantially. Under these conditions, the atomic de

Broglie wavelength, λdB, a measure of an atom’s ability to display wave-like features,

becomes significant. This is defined [68] as

λdB =

√
h2

2πmakBT
, (2.1)

with h the Planck constant, kB the Boltzmann constant, and ma the atomic mass.

With decreased thermal velocity, the wave-like nature of atoms becomes significant,

and they act as individual wave-packets, Fig. 2.1(b).

At a critical temperature TC, where the distance separating the atoms is comparable to

their de Broglie wavelength (Fig. 2.1(c)) the matter waves overlap and act as a single

coherent wavefunction rather than as many constituent atoms. Finally, at an idealised

zero temperature, represented by Fig. 2.1(d), one no longer discerns individual atoms,

either as particles or individual matter waves, but instead observes a single, collective
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matter wave. In these conditions, the entire atomic medium has condensed to the

thermal ground state of the system.

The approach to condensation has a number of requirements. Fundamentally, the

atomic medium must be bosonic, enabling an integer spin and avoiding the Pauli ex-

clusion principle of fermions [14]. We note that although fermions may also condense to

realise a molecular BEC, more complex schemes are required (see, e.g., Refs. [69–72]).

In addition to this bosonic condition, Eqn. (2.1) requires the atomic ensemble to be at

low temperatures. If we consider TC as the temperature at which condensation begins

to occur, then we may write the condition that

λdB ≈
1
3
√
n
, (2.2)

with n the condensate atom number density, related to the mean atomic separation by

1
3
√
n

= d. (2.3)

Using Eqn. (2.1), we may equate Eqn. (2.2) to the required critical temperature

TC(n) =
h2

2πmakB
n2/3. (2.4)

Taking n ≈ 1014 cm−3, typical for a dilute atomic gas [19], and selecting an appropriate

ma for caesium (see Appendix C), one finds a critical temperature on the order of 10−7K:

a free-space ultracold threshold. We note that this threshold may be significantly altered

through the application of external potentials upon the atomic medium [73].

As such, before the first experimental realisation of a BEC became possible, there

was a requirement to cool atoms beneath such a threshold. To this end, the authors

of Ref. [14], the first reported BEC realisation, followed a combination of methods,

beginning by directing room temperature Rubidium atoms into a magneto-optical trap

(MOT). This device uses a succession of counter-propagating circularly polarized optical

beams which act as a molasses on interference, cooling and slowing atoms to the ∼mK
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scale [8, 74], a procedure that led to the award of the Nobel Prize for Physics in

1997 [75].

Following this initial period of cooling within the MOT, the optical field gradients were

increased, with this compressed trap further cooling the atomic cloud to ∼ 20µK [76].

From this stage, the optical portion of the MOT was removed, and the magnetic trap

set to rotate [10], an approach enabling evaporative cooling controlled by progressively

weakening the strength of the trap and rotational frequency [4–7, 10]. Though a lossy

approach, with the most thermally excited atoms escaping with each trap alteration,

the remaining atoms will have a lower mean temperature. The authors of Ref. [14]

utilised such a procedure, and, as shown in Fig. 2.2, observed an increasing central

condensate fraction in the velocity distribution of their atomic ensemble for trapping

frequencies below 4.25MHz.

(M
H
z)

4.06

4.11

300μm

4.16

4.19

4.21

4.23

4.25

4.71

Figure 2.2: Evaporative cooling of Rb87 atoms for magnetic trap frequencies vevap high
(top) to low (bottom). Onset of condensate when vevap < 4.25MHz signified by the
narrow central uniform velocity fraction. From Ref. [14]. Reprinted with permission
from AAAS.
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This first BEC realisation in Rubidium-87 vapours [14] was quickly followed by addi-

tional independent realisations in both Lithium-7 [15] and Sodium-23 [16]. Each was

also significant: the Li7 BEC was the first with attractive interatomic interactions, and

the Na23 BEC significantly increased the total condensate atom number, facilitating

a later demonstration of the coherent nature of BECs by interfering two condensates

that had been split [77]. Two of these works, Refs. [14, 16], were subsequently awarded

the Nobel Prize for Physics in 2001 [17].

The field of ultracold atomic sciences has grown significantly and developed since the

first BECs were generated [78, 79]. Further atomic media have been condensed, includ-

ing potassium [80], sodium [81], rubidium [82], and caesium [83], with the Feshbach

resonance, a phenomenon occurring when a two-atom collision leads to mixing between

typically open and closed molecular channels, of the latter three atomic species also

enabling the nature and strength of BEC interatomic collisions to be altered through

an applied magnetic field [84]. Hydrogen [85] and helium [86] BECs have also been

created, in addition to more complex spinor BECs, multi component structures each

with a different spin, in rubidium [87, 88] and sodium [89]. These structures paved

the way for mixed BEC states for a variety of isotopic and atomic combinations [90–

94], dipolar Chromium [95], Dysprosium [96], and Erbium [97] BECs, or BEC-Fermi

gas mixes [98]. Condensates have wide applications given their exhibition of quantum

mechanical properties [77]. They have been employed for quantum simulation [20],

the creation of atom lasers [21], atomic clocks for accurate timekeeping [22], and in

the high sensitivity sensing of gravitational, rotational and magnetic fields [23]. Ultra-

cold atomic science continues to be an evolving field, with the first condensate having

recently been created in space [99].

2.2 Nonlinear Modelling

The dynamics of the matter-wave that describes the evolution of a BEC may be mod-

elled by a nonlinear partial differential equation. The derivation of such a model is

integral to the work of this thesis, and although a commonly accepted procedure, we
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provide here a brief summary of the derivation. We follow the methods of Ref. [100],

and so begin by considering N interacting bosons, confined by an external trapping po-

tential, Vext. In such a scheme, a many-body Hamiltonian to describe the interactions

of the atomic ensemble is given by

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2ma
∇2 + Vext(r)

]
Ψ̂(r) +

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r),

(2.5)

where Ψ̂† and Ψ̂ are particle creation and annihilation operators respectively, r repre-

sents the position where the operation takes place, and V (r− r′) provides a potential

arising from two-body collisions between atoms.

The time evolution of the matter-wave may be written in terms of the system’s Hamil-

tonian using the Heisenberg equation [101]:

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂, Ĥ

]
, (2.6)

which, applying Eqn. (2.5), becomes

i~
∂

∂t
Ψ̂(r, t) =

[∫
drΨ̂†(r, t)

[
− ~2

2ma
∇2 + Vext(r)

]
Ψ̂(r, t)

+
1

2

∫
drdr′Ψ̂†(r, t)Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)Ψ̂(r, t)

]
Ψ̂(r, t). (2.7)

It follows that

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2ma
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.8)

We introduce a complex wave function to describe the matter wave ψ(r, t), which may

be related to the field operator Ψ̂(r, t) through its expectation value

ψ(r, t) ≡ 〈Ψ̂(r, t)〉 . (2.9)

We note also the condition that the BEC density n(r, t) = |ψ(r, t)|2.
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Considering the new complex wave function ψ(r, t), Eqn. (2.8) may be recast into

i~
∂

∂t
ψ(r, t) =

[
− ~2

2ma
∇2 + Vext(r) +

∫
dr′V (r′ − r)|ψ(r′, t)|2

]
ψ(r, t). (2.10)

Finally, we identify that, in the case of a dilute, cold gas of atoms, two-body atomic

collisions represented by the term V (r′− r) are directly given by the s-wave scattering

length. As such, we re-write this term as

V (r′ − r) = gδ(r′ − r), (2.11)

where g =
4π~2as

ma
, (2.12)

acting as a scattering parameter, controlled by as, the scattering length of the atomic

medium. This term may be positive, negative, or zero, correspond to repulsive, attrac-

tive, or non-interacting atomic scattering, respectively [100, 102]. Inserting Eqn. (2.11)

into Eqn. (2.10), we reach

i~
∂

∂t
ψ(r, t) =

[
− ~2

2ma
∇2 + Vext(r) + g|ψ(r, t)|2

]
ψ(r, t). (2.13)

Eqn. (2.13) is the Gross-Pitaevskii equation [103–105], and describes the temporal dy-

namics of a BEC matter-wave subject to an external trapping potential Vext(r). It takes

a similar form to the nonlinear Schrödinger equation in optics [106, 107], in recognition

of the parity between light and ultracold matter. The dynamics of the condensate

are strongly determined by the sign and strength of the scattering parameter g, which

determines whether its nonlinearity is focusing (attractive interatomic interactions) or

defocusing (repulsive interatomic interactions).
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2.3 Ground State

It is possible to proceed from the Gross-Pitaevskii equation and obtain a ground state

of the system, which the atoms will ideally occupy before evolution. Again, we follow

the approach of Ref. [100], partitioning the temporal and spatial components of the

wave function according to

ψ(r, t) = ψ(r) exp (−iµCt/~) , (2.14)

with µC the chemical potential of the system. Eqn. (2.13) then becomes

µCψ(r) =

[
− ~2

2ma
∇2 + Vext(r) + g|ψ(r)|2

]
ψ(r). (2.15)

If we neglect the term in∇2 corresponding to the atomic kinetic energy from Eqn. (2.15)

to obtain a stationary ground state, in the limit of large total atom numbers N & 104

we find [108–110]

µCψ(r) =
[
Vext(r) + g|ψ(r)|2

]
ψ(r),

⇒ |ψ(r)|2 = g−1 [µC − Vext(r)] . (2.16)

Eqn. (2.16) is referred to as the Thomas-Fermi approximation, and gives the transverse

ground state density of a BEC described by the Gross-Pitaevskii equation. It will have

a non-zero density when µC > Vext(r), and otherwise an atomic density |ψ(r)|2 = 0

when µC < Vext(r).

We may write a generalised expression for a Thomas-Fermi distribution, of a similar

form to Eqn. (2.16), that depends on a maximum initial amplitude Aψ and a customis-

able transverse field width wψ with r2 = x2 + y2, as:

ψ(r) = Aψ
[
1− r2/

(
2w2

ψ

)]
. (2.17)

Note that from Eqn. (2.17) we consider ψ(r) < 0→ 0, as standard.
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Fig. 2.3 shows a Thomas-Fermi distribution of maximum amplitude Aψ and wψ =

50µm, on a total 2D grid of size 400×400µm, as well as a 1D cross section of this field.

We also plot, on the right hand side of Fig. 2.3, its phase, homogeneous as expected

from Eqn. (2.17).

Amplitude Phase

400μm [μm]

Figure 2.3: Typical Thomas-Fermi distribution of Eqn. (2.17), for a maximum BEC
amplitude of Aψ and transverse width wψ = 50µm, on a total 2D grid of size 400µm×
400µm. Left shows field amplitude, centre shows 1D cross section of field, and right
shows 2D field phase.
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Chapter 3

Propagating Structured Light

In this chapter, we outline the behaviour of an optical field propagating within a nonlin-

ear medium. In Section 3.1, we show how such a system may be modelled numerically,

beginning from the familiar Maxwell equations to derive a nonlinear Schrödinger (NLS)

equation that describes the behaviour of the field within such a medium. In the rest of

the chapter, we consider solutions of the linear paraxial wave equation, used to derive

the NLS, and initially outline in Section 3.2 the simplest case, a homogeneous field,

with no structure in amplitude or phase. In Section 3.3 we consider a Gaussian field,

which has a structured amplitude, before finally employing both Laguerre-Gaussian

and Bessel-Gaussian modes, with their simultaneously structured amplitude and phase,

in Section 3.4.

3.1 Light in a Nonlinear Medium

Before outlining the various forms of structure that light may hold, we must first

consider the typical approach used to theoretically describe a propagating optical field.

Therefore, we first study optical fields evolving within a generic nonlinear medium,

which will be extended to propagation through a BEC in later chapters. We begin by
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outlining the procedure to derive the paraxial nonlinear wave equation, also referred to

as the nonlinear Schrödinger equation, and explore its similarities with, and differences

from, the Gross-Pitaevskii equation (Eqn. (2.13)).

3.1.1 Nonlinear Wave Equation

For an optical beam propagating through a medium, Maxwell’s equations take the

general form

∇ · D̃ = ρ̃, (3.1)

∇ · B̃ = 0, (3.2)

∇× Ẽ = −∂B̃

∂t
, (3.3)

∇× H̃ =
∂D̃

∂t
+ J̃, (3.4)

where E and H represent the electric and magnetic fields, respectively, D and B rep-

resent the electric displacement and magnetic induction fields, ρ and J represent the

free charge and current densities, and we indicate quantities fluctuating rapidly in time

with a tilde.

Assuming that there are no free charges, such that ρ̃ = 0, that there are no free currents,

such that J̃ = 0, and that any material is non-magnetic, we can write B̃ = µ0H̃. We

relate the fields D̃ and Ẽ with the relationship

D̃ = ε0Ẽ + P̃, (3.5)

where P̃ describes the polarisation of the medium. Typically, this can be written as

P̃ = ε0

[
χ(1)Ẽ + χ(2)Ẽ2 + χ(3)Ẽ3 + ...

]
, (3.6)

= P̃(1) + P̃(2) + P̃(3) + ..., (3.7)

where the first term represents the linear response, the second the second-order non-

linear response, and the third the third-order nonlinear response, of the medium.
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Making use of Eqn. (3.5), we transform Eqn. (3.3) through

∇×
(
∇× Ẽ

)
= − ∂

∂t

(
∇× B̃

)
,

= −µ0
∂

∂t

(
∇× H̃

)
,

= −µ0
∂2

∂t2
D̃,

= −µ0
∂2

∂t2

(
ε0Ẽ + P̃

)
,

= − 1

c2

∂2Ẽ

∂t2
− 1

ε0c2

∂2P̃

∂t2
,

(
as ε0µ0 =

1

c2

)
⇒ ∇×

(
∇× Ẽ

)
+

1

c2

∂2Ẽ

∂t2
= − 1

ε0c2

∂2P̃

∂t2
. (3.8)

Eqn. (3.8) is a general form of the wave equation, which describes the behaviour of an

optical field within a medium. It may be further simplified by writing the first term on

the left hand side as

∇×
(
∇× Ẽ

)
= ∇

(
∇ · Ẽ

)
−∇2Ẽ, (3.9)

and recognising that, as we consider no free charges, ∇
(
∇ · Ẽ

)
= 0. This transforms

the wave equation into the more familiar form

∇2Ẽ− 1

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃

∂t2
. (3.10)

Recalling from Eqn. (3.6) that the medium may have both a linear and nonlinear

response, we consider these two contributions separately, assigning

P̃ = ε0χ
(1)Ẽ + P̃NL, (3.11)

where (to third order nonlinearity)

P̃NL = ε0

[
χ(2)Ẽ2 + χ(3)Ẽ3

]
. (3.12)

The second-order nonlinear response, ε0χ
(2)Ẽ2, is typically zero if the propagation
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medium does not show inversion symmetry. We then consider that

P̃NL = ε0χ
(3)Ẽ3. (3.13)

Combining Eqns. (3.10), (3.11) and (3.13), a nonlinear wave equation is obtained for

propagation within a nonlinear, isotropic medium of

∇2Ẽ− 1

c2

∂2Ẽ

∂t2
=
χ(1)

c2

∂2Ẽ

∂t2
+

1

ε0c2

∂2P̃NL

∂t2
,

⇒ ∇2Ẽ− 1 + χ(1)

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃NL

∂t2
,

⇒ ∇2Ẽ− ε(1)

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃NL

∂t2
. (3.14)

In Eqn. (3.14), we define the relative permittivity of the medium ε(1) = 1 + χ(1) to

reach a description of the propagation of an optical field in a nonlinear medium.

3.1.2 Paraxial Wave Equation

If we consider the case of ε(1) = n2, where n is the medium’s refractive index, then

we find that each frequency component of the optical field propagating through the

nonlinear medium will satisfy the wave equation

∇2Ẽ− n2

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃NL

∂t2
. (3.15)

We make the ansatz that the field has rapidly fluctuating spatial (z) and temporal (t)

components. These components may be separated as

Ẽn(r, t) = An(r) exp (i(knz − ωnt)) + c.c., (3.16)

P̃n(r, t) = pn(r) exp (i(knz − ωnt)) + c.c., (3.17)

where the fields are assigned complex amplitudes An and pn, wavevectors kn, and

angular frequencies ωn, with kn = (ωnn)/c. Applying this to Eqn. (3.15), and splitting
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the Laplacian into its transverse (⊥= (x, y)) and longitudinal (z) components, we

obtain

∇2
⊥Ẽ +∇2

zẼ−
n2

c2

∂2Ẽ

∂t2
=

1

ε0c2

∂2P̃NL

∂t2
,[

∇2
⊥+ ∂2

z + 2ikn∂z − k2
n +

n2

c2
ω2
n

]
An exp (i(knz − ωnt)) = − ω2

n

ε0c2
pn exp (i(knz − ωnt)),

∇2
⊥An + 2ikn∂zAn = − ω2

n

ε0c2
pn, (3.18)

where ∆k accounts for any difference between k′n and kn. This ignores second order

temporal derivatives, since for slowly varying amplitudes ∂2
z << kn∂z. Considering the

linear case, such that pn = 0,

∂zAn =
i

2kn
∇2
⊥An. (3.19)

This is a form of the paraxial wave equation to describe an electromagnetic wave prop-

agating along the z-axis.

3.1.3 Nonlinear Schrödinger Equation

Eqn. (3.18) may be further simplified to obtain a relationship depending solely on the

field amplitude An. To do this, we again consider the nonlinear components of the

polarisation response, defined in Eqn. (3.13) as

P̃NL = ε0χ
(3)Ẽ3

Applying Eqn. (3.16), the nonlinear polarisation component takes the form

P̃NL = ε0χ
(3)
[
A3
n exp (3i(knz − ωnt)) + 3|An|2An exp (i(knz − ωnt)) + c.c.

]
. (3.20)

Considering only the term at frequency ω in Eqn. (3.20), the nonlinear polarisation

component becomes

P̃NL = ε0χ
(3)
[
3|An|2An exp (i(knz − ωnt))

]
,
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= 3ε0χ
(3)|An|2Ẽn. (3.21)

Using Eqns. (3.11) and (3.21), the total polarisation may be written as

P̃ = ε0χ
(1)Ẽ + P̃NL,

= ε0χ
(1)Ẽ + 3ε0χ

(3)|An|2Ẽ,

= ε0

[
χ(1) + 3χ(3)|An|2

]
Ẽ,

= ε0χ
(eff)Ẽ, (3.22)

with χ(eff) = χ(1) + 3χ(3)|An|2. This gives a total medium refractive index of

n2 = 1 + χ(eff),

= 1 + χ(1)Ẽ + 3χ(3)|An|2,

= n2
0

(
1 +

3χ(3)

n2
0

|An|2
)
,

and, as such,

n ≈ n0 +
3χ(3)

2n0
|An|2, (3.23)

where n2
0 = 1 + χ(1).

In Eqn. (3.23) the refractive index consists of linear and nonlinear components, n0 and

n2 = 3χ(3)

2n0
, respectively. It has previously been shown that for waves of the form in

Eqn. (3.16), χ(3) may be related to n2 through the relationship [107]

χ(3) =
n2

0ε0c

3
n2. (3.24)

From this,

pn = n2
0ε

2
0cn2, (3.25)

leading to the alternative form of the paraxial wave equation

∇2
⊥An + 2ikn∂zAn = −n

2
0ε0n2

c
ω2
n|An|2An, (3.26)
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which can be written as

∂zAn =
i

2kn
∇2
⊥An +

i

2
kncε0n2|An|2An, (3.27)

where k2
n =

n2
0w

2
n

c2
.

Eqn. (3.27) is the nonlinear Schrödinger equation [106, 107], and describes the propa-

gation of an optical beam through a third order nonlinear medium. When n2 < 0, the

field is subject to a defocusing nonlinearity, whilst for n2 > 0, the field is subject to a

focusing nonlinearity. This is similar to Eqn. (2.13), which describes the dynamics of

a BEC subject to an external potential. Here, there is no external potential, but the

other terms may be mapped directly, with the atomic parameter g having a similar role

to the optical parameter n2.

3.2 Homogeneous Fields

The linear paraxial wave equation, Eqn. (3.19), admits several field solutions through

the ansatz of Eqn. (3.16). The simplest of these solutions is a homogeneous optical

field, given simply by

An(r, z) = A, (3.28)

where A is the mode amplitude and r2 = x2 + y2. Such a field will have uniform

amplitude and phase, as represented by Fig. 3.1 on a two-dimensional (x, y) grid.

400μm

Amplitude Phase

Figure 3.1: Typical homogeneous field, as in Eqn. (3.28), for a field amplitude of A, on
an arbitrary 2D 400µm× 400µm grid. Left shows field amplitude, right shows phase.
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3.3 Structured Amplitude

An alternative form of optical field that satisfies the ansatz of Eqn. (3.16) is a Gaussian

field. This introduces structure to the amplitude of the optical field. We define a mode

with a transverse beam waist w0 and a radius r as [111]

An(r, z) = A w0

w(z)
exp

(
−r2

w(z)2

)
exp

(
ikr2

2R(z)

)
exp (iΦ(z)), (3.29)

with

w(z) = w0

√√√√[1 +

(
z

zR

)2
]
, (3.30)

R(z) = z

[
1 +

(zR

z

)2
]
, (3.31)

Φ(z) = − arctan

(
z

zR

)
. (3.32)

Here, w(z) represents the 1/e radius of the field distribution, R(z) is the radius of

curvature of the wavefront, and Φ(z), the Gouy phase, represents the spatial variation

of the phase of the wave as it propagates. zR is the Rayleigh range of the beam,

zR =
πw2

0

λ
, (3.33)

with λ the wavelength of the optical field. This is the z-distance at which the beam

waist increases to
√

2w0 as a result of diffraction, see Fig. 3.2.

0

1/

1

fie
ld

 a
m

pl
itu

de

Phasefront(b) (c)(a)

Figure 3.2: Typical Gaussian distribution characteristics from Eqns. (3.29)-(3.33) for
A = 1. (a) 1D cross section of field amplitude distribution at z = 0. (b) Beam
radius w(z) and radius of curvature R(z) variation with position z. (c) Comparison
between the beam waist w0 and Rayleigh range zR. Used with permission of Elsevier
Science & Technology Journals, from Ref. [107]; permission conveyed through Copyright
Clearance Center, Inc.
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Throughout this thesis, initial optical distributions are considered to be at the beam

waist at z = 0, i.e. w(0) = w0. The Gaussian distribution is then given by

G (r) = A exp

(
− r

2

w2
0

)
, (3.34)

where a field amplitude A has been introduced. This form of field is shown in Fig. 3.3.

400μm

Amplitude Phase

Figure 3.3: Typical Gaussian field distribution of Eqn. (3.34), for a maximum field
amplitude of A and beam waist w0 = 50µm, on a total 2D grid of size 400µm×400µm.
Left shows field amplitude, right shows field phase.

3.4 Structured Phase

In this section we consider beams which may also have a structured helical phase and

therefore possess an orbital angular momentum (OAM) of index m [36, 39].

3.4.1 Laguerre-Gaussian Modes

A Laguerre-Gaussian (LG) mode is given by [39, 112–114]

An(r, z) = LGm
p (r, z), (3.35)

where

LGm
p (r, z) =

√
2p!

π(p+ |m|)!
1

w(z)

(
r
√

2

w(z)

)|m|
exp

(
−r2

w(z)2

)
L|m|p

(
2r2

w(z)2

)
exp (imϕ)

exp

(
ik0r

2z

2
(
z2 + z2

R

)) exp

(
−i (2p+ |m|+ 1) arctan

(
z

zR

))
, (3.36)
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and w(z) is as defined in Eqn. (3.30). Introducing p and m indices that represent the

number of radial nodes and the azimuthal index respectively of the beam, the Gouy

phase is now given by (2p+ |m|+ 1) arctan (z/zR), whilst L
|m|
p represents an associated

Laguerre polynomial controlled by the two mode indices. This may be related to the

standard Laguerre polynomials Ln [115, 116] by

L|m|p (x) = (−1)|m|
d|m|

dx|m|
Lp+|m|(x). (3.37)

At the beam waist, Eqn. (3.36) has the form

LGm
p (r, ϕ) = A

(
r
√

2

w0

)|m|
exp

(
− r

2

w2
0

)
L|m|p

(
2r2

w2
0

)
exp (imϕ). (3.38)

Depending on the selection of p and m indices, Eqn. (3.38) permits a wide range of

structured beams that (when m 6= 0) also have helically structured phase. Fig. 3.4

gives examples of several LG modes for a variety of p and m selections.

400μm

Phase

Amplitude

Figure 3.4: Typical Laguerre-Gaussian modes from Eqn. (3.38), for a field amplitude
of A and beam waist w0 = 50µm, on a 2D grid of 400µm× 400µm. Top (bottom) row
shows field amplitude (phase), for p and m combinations indicated.

The LG modes of Fig. 3.4 display a number of characteristic features, determined by the

p and m-indices. The p, radial index controls the number of off-axis rings present, given

by p+1. The m, azimuthal index introduces a topological charge to the mode, seeding a
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helical phase gradient through the final term of Eqn. (3.38), exp (imϕ), which provides

an OAM of m~ per photon [36]. In Fig. 3.4, the first two panels show a switch in the

gradient direction, reflecting the difference between m = ∓1, whilst as m increases for

LG1
0 → LG2

0 an additional 2π phase jump occurs and the phase gradient doubles. The

phase gradient of each mode also introduces a central phase singularity: an on-axis

optical vortex, with an undefined phase at the mode centre, providing the ring-like

profiles observed.

Importantly, the phase gradient of an LG mode causes the Poynting vector of the beam

to spiral along the direction of propagation, as illustrated in Fig. 3.5. This induces an

azimuthal flow around each ring and, as the phase gradient’s magnitude is controlled

by m, the azimuthal flow rate therefore depends on the m-index of the beam.

Figure 3.5: Poynting vector of a Laguerre-Gaussian mode propagating along z. After
Ref. [36].

We note that, as the m-index of an LG mode increases, the radius of its maximum

intensity ring also increases - see LG1
0 → LG2

0 in Fig. 3.4. From Eqn. (3.38),

∂r (LGm
0 (r, ϕ)) = A

(
r
√

2

w0

)|m| [
|m| (r)−1 − 2r

w2
0

]
exp

(
− r

2

w2
0

)
exp (imϕ). (3.39)

The position of maximum radial intensity, rmax, occurs when ∂r (LGm
0 ) = 0. From

Eqn. (3.39) this leads to the condition that

|m|
rmax

=
2rmax

w2
0

,

⇒ rmax =

√
|m|
2
w0. (3.40)
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A change in topological charge ∆m therefore requires a beam waist alteration propor-

tional to
√

2/|∆m| to preserve the ring’s maximum intensity radius.

Experimentally, there are numerous approaches to creating beams with helical phase

gradients, such as an LG mode. The most common of these are using spiral phase plates

to transform Gaussian modes into LG modes [117], using q-plates based on spin and

orbital angular momentum coupling [118], and using either a spatial light modulator

(SLM) with a diffraction grating or a digital mirror device to convert a Gaussian beam

to a helically phased beam [119–121].

3.4.2 Bessel-Gaussian Modes

All of the beams considered so far diffract as they propagate. In order to minimise

diffraction we also consider Bessel-Gaussian (BG) modes, which encompass as limiting

cases the diffraction-free Bessel beam and the Gaussian beam, leading to diffractionless

propagation dynamics. Their spatial distribution may be described by [122–125]

BGm(r, ϕ, 0) = AJm (κBGr) e
− r2

wG eimϕ, (3.41)

with Jm the mth order Bessel function, wG representing a transverse width control of

the spatial coverage of the Bessel rings, and κBG an optional parameter used to ensure

maximal overlap between the central ring of the BG and equivalent LG optical mode.

Again a term related to OAM, eimϕ, has been included such that the BG modes may

possess an azimuthal phase, with topological charge depending on the selection of m.

Fig. 3.6 provides a comparison between matched LG1
0 and BG1 modes. The presence

of the additional radial rings, which act to confine the field and suppress diffraction, is

clear in both the amplitude and phase distribution of the BG mode.

BG modes have been realised experimentally, typically by directing a Gaussian beam

upon an axicon to obtain a beam resembling the zeroth order Bessel function. This is

shown in Fig. 3.7 where, in the shaded area, the resultant beam has a profile similar

to, and acts in the expected non-diffractive manner of, a Bessel beam [126].
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800μm

Phase

Amplitude

[μm]

Figure 3.6: LG (left) and BG (right) modes of m = 1 and w0 = 50µm, on a 800µm ×
800µm grid, with κBG = 0.084 and wG ≈ 267µm. Top (bottom) row shows 2D field
amplitude (phase), with central panel a 1D cross section of both modes.

Higher order Bessel beams, such as those of Fig. 3.6, may be generated through a

similar scheme based on holograms mimicking the effect of an axicon [127]. Such beams

have found extensive uses due to their diffractionless properties, including in optical

tweezing [128, 129] and in particle rotation [130]. Furthermore, their tendency for self-

healing after perturbation has additional applications for propagation in turbulent and

scattering media [131].

Bessel beam

A
xicon

Gaussian beam

Figure 3.7: A Gaussian beam meets an axicon, creating a Bessel beam within the region
zBG. Insets above give field distributions in same region. Adapted from Ref. [126], with
permission from Elsevier.
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Chapter 4

Dynamics in Kerr Media

This thesis studies ultracold atomic dynamics led by prior research of optical fields

subject to a third order ‘Kerr’ nonlinearity. In this chapter, we consider this setting,

inherently similar to Eqns. (2.13) and (3.27), outlining two potential dynamical features.

In Section 4.1, we consider the formation of spatial solitary structures, self-trapped fea-

tures that arise with a balancing of competing focusing and defocusing effects, before in

Section 4.2 introducing the ability of the systems to form spontaneous Turing patterns,

arising from the interplay between diffraction and nonlinearity. We then consider a

further two features that arise both in Kerr media and in other settings. In Section 4.3

we outline the dynamics of vortices, a defined minimum with an associated phase sin-

gularity, and in Section 4.4 review persistent currents as a fixed, constant azimuthal

rotation of a material around a central point.

4.1 Spatial Solitons

Spatial solitons are localised fields that maintain their spatial profile as they propa-

gate [132]. They exist thanks to a precise balance of focusing and defocusing effects

such as a self-focusing Kerr nonlinearity and diffraction. As conceptually summarised
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in the bottom row of Fig. 4.1, a solitary structure is self-trapped with an idealised bal-

ancing between competing phenomena [133]. Initially observed by John Scott Russell

in the fluid dynamics of the Union Canal [134, 135], solitons have since been inves-

tigated and observed in fields as diverse as optical fibres [136], hydrodynamics [137],

(anti-)ferromagnetic systems [138], superconductors [139] and cosmology [132].

Focusing

Diffraction

Soliton

(a)

(b)

(c)

Figure 4.1: Typical behaviour for self-focusing (top), diffraction (centre) and soliton
propagation (bottom). Increased evolution left to right. From Ref. [133]. Reprinted
with permission from AAAS.

Spatial solitons also arise within ultracold atomic fields, as described by Eqn. (2.13),

when the defocusing effects of atomic kinetic energy (incorporated within the term in

∇2) are balanced by an attractive interatomic scattering (the term in g, which may

be focusing or defocusing depending on the sign of the scattering). Various atomic

solitary structures have been observed, including bright (an intensity maximum) [140]

and dark (an intensity minimum) [141, 142] structures, in addition to lattices of multiple

solitons [143]. In non-ideal conditions breathers, bright solitons with fluctuating total

intensity, have recently been observed, coupled with signatures of higher-order soliton

formation [136, 144–146].

For optical fields within a nonlinear medium, as described by Eqn. (3.27), similar bright

spatial optical solitons arise when the diffraction of a Gaussian beam (the term in ∇2)

is balanced by self-focusing due to a Kerr nonlinear medium (the term in n2) [132, 147].

If the optical field carries an OAM of index m [36], its ring-like intensity distribution

will fragment into spatial optical solitons. These solitons are subsequently tangentially
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ejected from the ring, thereby conserving angular momentum within the field [148, 149].

These dynamics are summarised in Fig. 4.2, adapted from Ref. [148], which predicted

tangential ejection for a Laguerre-Gaussian optical mode (Eqn. (3.38)) of indices p = 0,

m = 1, in a self-focusing, saturating Kerr medium.

(a) (b) (c) (d)

Figure 4.2: Optical soliton formation with a Laguerre-Gaussian mode with m = 1.
Panels: transverse (a) real, (b) intensity, and (c) phase field distributions during radial
fragmentation and soliton formation; (d) superposition of field intensities during propa-
gation, showing soliton formation and ejection. Note that the transverse domain in (d)
is ∼ 2.5 times greater than (a)-(c). Reprinted figure with permission from Ref. [148].
Copyright (1997) by the American Physical Society.

In this system, the number of solitons formed depends, in general, on the OAM index,

m, of the beam. This ‘rule’ arises as a result of the real part of the field (panel (a))

having 2|m| peaks. Under modulational instability these peaks grow, leading to an or-

dered azimuthal fragmentation into 2|m| peaks, which is reflected by the relative phases

of each soliton in panel (c) [148, 149]. This process has been observed experimentally,

using hot rubidium [60] and sodium vapours [150] as the Kerr medium, as well as in

nonlinear colloidal suspensions [151, 152].

In this thesis, we study the dynamics of numerous spatial solitons, including coupled

atom-light solitons in Chapter 8. We also consider solitons within an optical cavity, in

Chapter 10, where their presence is restricted to either an atomic or optical field, and

again in Chapter 12, where their presence is mutual across both fields.

4.2 Turing Patterns

The spontaneous formation and growth of Turing-like patterns has been shown in

a range of settings [153]. Arising from the interplay of activating and inhibiting
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forces [154, 155], such patterns are most familiar in biological systems [156]. Their pres-

ence is clearest as a growth on initially homogeneous fields, such as those of Fig. 4.3(a),

which demonstrates patterns in both activator and inhibitor fields.

(a) (b) (c)

Figure 4.3: Pattern formation in an activator-inhibitor model. (a) Small spatial domain
pattern growth (time increasing left to right) for activator (top) and inhibitor (bottom).
(b,c) Pattern varieties on larger spatial grid sizes. Reprinted figure with permission from
Ref. [156]. Copyright (1994) by the American Physical Society.

A variety of pattern types, including peak and labyrinth patterns, may form as shown

in Fig. 4.3(b-c). This mechanism is evidently integral to many natural phenomena,

including animal skin markings [157], in cell development [158], vegetation patterns

and desertification [159], and the development of ecosystems [160]. Similar growth

behaviour also arises in areas as diverse as thin solid [161] and liquid [162] films, in

chemical systems [163, 164], cardiovascular settings [155], snowflake crystals [165], and

in hydrodynamics [166, 167].

There have been several optically-based observations of spontaneous pattern formation,

typically occurring when the optical field evolves within a driven optical cavity, placing

the dynamics within a feedback loop that meets the activator and inhibitor requirement

for formation [168–170]. A vast range of patterns is possible, including rolls, hexagons,

labyrinths, honeycombs, and domain wall growths [171–173].

If the optical field has structure, such as a LG mode, pattern formation in an optical

cavity will still occur around its ring of maximum intensity. With its helical phase front,

these patterns will azimuthally rotate [174]. One such structure is shown in Fig. 4.4, a

rotating lattice of optical peaks on a ring of radius R.

Atomic fields, when coupled to optical fields, have also exhibited pattern formation,
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0

Max.

R

Figure 4.4: Rotating Turing pattern formation in the presence of OAM on an LG mode,
of radius R, for increasing time left to right. After Ref. [174].

including in hot atomic vapours [175–177] or cold atoms [67, 178–182]. In these cases,

the atom-light coupling provides the required activator-inhibitor role, and the patterns

formed are coupled across the two media. Within ultracold atoms, complex BEC

setups have been required to return only partial subsets of the rich range of patterns

attained in other media. To date observations have been restricted to domain growth in

ferromagnetic condensates [183] and pattern formation in polariton [184], driven [185],

mixed [186], and dipolar [187–190] condensates.

Typically, a system exhibiting pattern formation is likely to display hysteresis [191].

Hysteresis, which arises is many systems, may be illustrated by the case shown in

Fig. 4.5(a). Within a singly resonant optical parametric oscillator (SPORO), when the

value of the seed intensity |EIN|2 is altered, the intensity of the output SPORO field,

IS, changes in turn. When 20 . |EIN|2 . 28 the strength of the field follows different

paths depending on whether |EIN|2 increases or decreases, with the pattern varieties

obtained (Fig. 4.5(b-d)) varying in turn. The bistability of the system creates a ‘closed

loop’ trajectory as it transitions between various pattern varieties within these limits:

a hysteresis cycle occurring between the two accessible branches [192].

Hysteresis is a widespread phenomenon in a range of settings, including in ferromagnetic

materials, mechanical gears, smart materials, and in regulatory systems [193, 194]. In

nonlinear systems, cycles arise in vehicles in motion, magneto-rheological systems, and

fault diagnosis in mechanical systems [195]. The presence of hysteresis in ultracold
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Figure 4.5: Hysteresis cycle arising from pattern formation within a SROPO when 20 .
|EIN|2 . 28, between a seed intensity parameter |EIN|2 and SROPO intensity IS. (a)
System stability analysis. (b)-(d) patterns in SPORO intensity distributions when; (b)
|EIN|2 = 22, hexagons: H+, (c) |EIN|2 = 24, rolls: R, (d) |EIN|2 = 27, honeycombs: H−.
Reprinted figure with permission from Ref. [192]. Copyright (2013) by the American
Physical Society.

atomic settings promises potential atomtronic-based control systems [196–198].

In this thesis, we consider the formation of patterns within ultracold atoms where,

much like in the case of cold atoms, patterns may arise through a coupled optical beam

within a driven cavity. We consider such structures in Chapter 10, where we outline the

wealth of pattern varieties accessible, in addition to the hysteresis displayed. We also

consider pattern formation in Chapter 11, in this case on spatially structured fields,

and in Chapter 12, where we consider coupled atom-light pattern formation in the

additional presence of structured optical phase.

4.3 Vortices

Typically, when modelling the collective effects of an ensemble as a single field, any

transverse motion will lead to the generation of vortices, a defined point of singularity

representing an absence of the ensemble constituent [199]. Such structures are ubiqui-

tous in nature, appearing in settings including ensembles of animals (e.g. Fig. 4.6) [199],

fluid dynamics [200], turbulent optical dynamics [201], and have been theorised in black

holes [202]. Vortices are also intrinsically linked to optical beams carrying OAM that

possess a central phase singularity, in other words a vortex, of similar structure to those

seen elsewhere.

36



Chapter 4: Dynamics in Kerr Media

(a) (b) (c)

Figure 4.6: Vortex-like structures in animal populations: (a) a mill in army ants, (b)
a flying doughnut in bats, (c) a mill in jack fish. Used with permission of University
of Chicago Press - Journals from Ref. [199]; permission conveyed through Copyright
Clearance Center, Inc.

The generation of vortices in ultracold atomic ensembles is typically spontaneous with

motion [198], and obtaining a vortex with a central charge of m = 1 is possible by con-

densate stirring [203, 204] or interconversion between two component condensates [205].

Additionally, higher numbers of vortices may be obtained using alternative motion di-

rections, which may show random spatial organisation [206–208], or may follow more

organised, lattice-style arrangements in stirred, [204, 209, 210], pumped [211, 212], and

box-trapped condensates [213].

As we go on to consider the effects of optical beams with OAM-induced transverse

motion interacting with a ultracold atoms, many of the fields considered contain vor-

tices. Those that include helically structured phase contain optical vortices (covered

in Chapters 3, 8, 11, and 12). Within the atomic field, we also consider the formation

of vortices as a by-product of atom-light soliton formation in Chapter 8, and report on

the formation of uniform atomic vortex arrays in Chapter 11.

4.4 Persistent Currents

Persistent currents arise in several areas of physics as a constant azimuthal rotation of

a substance around a central fixed point. They take the general form shown in Fig. 4.7;

a schematic of their realisation in a mesoscopic metal ring induced by a magnetic

quantum flux, Φ [214, 215]. They have been demonstrated in several settings, including
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in metallic objects [215, 216] and superconducting solenoids [217], but their presence

in most materials is improbable as a result of their high susceptibility to destruction

due to natural material resistance [218].

Figure 4.7: Schematic of a metallic persistent current, I, realised using a magnetic flux
Φ. Reproduced from Ref. [214] with permission of APS/Alan Stonebraker.

BECs provide a promising potential medium to realise a persistent current of ultracold

atoms, thanks to the resistance free matter-wave description of such neutral atoms.

The promised quantised circulation and topological protection of such a current [219]

would have significant applications toward matter-wave interferometry [220], and in the

growing field of atomtronic device generation [197, 198]. Several attempts have been

made to realise such circulation, including in arrays of ring-shaped BECs [221], in spinor

BECs subject to a trapping potential [219, 222, 223], and in toroidal BECs [64, 196, 224,

225]. As with spontaneous pattern formation, such current realisations require either

complex BEC forms, or utilise sensitive static trapping potentials, leaving currents

susceptible to circulation decay from excitations, thermal fluctuations, vortices and

vortex rings [197], or dynamic phase imperfections [198].

In this thesis, we consider short-term current formation in Chapter 8, induced by the

optical field upon the atoms. We then study atomic persistent currents in Chapter 12,

obtaining dynamic currents by exploiting characteristic features of a driven optical

cavity.
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Part II

Co-Propagating Ultracold

Atomic and Optical Fields



Chapter 5

Theory

In this chapter, we derive a theoretical model describing coupled, co-propagating optical

and ultracold atomic fields. In Section 5.1, we provide a general schematic, discussing

its viability for current state-of-the-art experimental techniques. In Section 5.2, we

present a complete derivation of a model of the dynamics of the co-propagating fields.

Following existing work, we reach coupled evolution equations for both fields, and

outline their analogy with a Kerr-like description of an optical field.

5.1 System of Interest

A proposed schematic of co-propagating ultracold atomic and optical fields is given in

Fig. 5.1. We consider a coherent optical beam, either initially homogeneous (Chapter 6)

or with structured intensity and phase (Chapters 7-8). If helical phase structure is

required, then it may be incident upon a spatial light modulator (SLM), which contains

an ‘m’-forked diffraction grating [120], converting the beam into an optical vortex beam:

a Laguerre-Gaussian (LG) mode carrying an orbital angular momentum (OAM) of m~

per photon [36].

The optical beam is focused onto a Bose-Einstein condensate (BEC). We envisage a
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Laser Detector

SLM

BEC

Figure 5.1: Proposed schematic for co-propagating ultracold atomic, of velocity va, and
optical fields.

cigar-shaped, elongated matter wave, and include additional horizontal and vertical

magnetic trapping fields, one of several ways to seed a matter-wave velocity va, with

which the ultracold atomic beam moves [21, 226]. The two fields co-propagate along the

longitudinal axis for a distance controlled by the dimensions of the BEC and the relative

wavelengths, and therefore k-vectors, of the two fields. Following this, the optical field

exits the BEC and is focused onto an arbitrary detector to image its spatial profile,

which, as a result of the coupling between the fields, will be inherently related to the

distribution of the ultracold atomic field.

5.2 Theoretical Model

In this section, we provide a derivation of the numerical models used throughout Part II.

Supplementary details are provided in Appendix A.

5.2.1 Co-Propagating BEC and Optical Fields

To describe the coupled evolution of the co-propagating fields outlined in Section 5.1,

we follow Ref. [33], a development of Ref. [32]. We consider the atomic ensemble to be

a Bose gas comprising two-level atoms, described by the collective wavefunction

Φ
′

= Φ
′
g exp

(
−iEgt

~

)
+ Φ

′
e exp

(
−iEet

~

)
, (5.1)

where g signifies the ground state and e the excited state, with energies Eg and Ee and

wavefunctions Φ
′
g and Φ

′
e, respectively. We assume throughout that the excited atomic

state population is small, with the large majority of the atoms contained in the ground
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state, enabling adiabatic elimination of the excited state in due course.

The atomic ensemble, of frequency ωa, evolves in an optical field at frequency ωL that

has the form

ATOT =
1

2

(
A

′
e−iωLt +A

′∗eiωLt
)
. (5.2)

The atomic dynamics, when at ultracold temperatures, will follow coupled Schrödinger

equations for ground and excited states of the form [31, 227, 228]

i~∂tΦ
′
g = − ~2

2ma
∇2Φ

′
g −

1

2
µA

′∗Φ
′
ee
i∆t +

4π~2agg

ma
|Φ′

g|2Φ
′
g, (5.3)

i~∂tΦ
′
e = − ~2

2ma
∇2Φ

′
e −

1

2
µA

′
Φ

′
ge
−i∆t − i~γ

2
Φ

′
e, (5.4)

where µ is the matrix element of the atomic dipole moment, ma is the mass of the

atom, ∆ represents the field detuning (∆ = ωL − ωa), γ is the spontaneous decay rate

of the excited atoms, agg is the scattering length of the ground state atoms, and the

∇2 term represents the atomic kinetic energy (∇2 = ∇2
⊥ + ∂2

z = ∂2
x + ∂2

y + ∂2
z ). Use

of Eqns. (5.3)-(5.4) leads to a field normalisation condition
∫
d3x (|Φ′

g|2 + |Φ′
e|2) = N ,

the total number of atoms in the BEC. We note that, assuming far detuned fields and

a small excited state population, a term reflecting spontaneous excited state decay has

been neglected in Eqn. (5.3).

Eqn. (5.3) resembles Eqn. (2.13), where the external potential acting on the atomic en-

semble arises from both the excited atomic state and the coupled optical field. Turning

to this optical field, its slowly varying amplitude will be given by

2iωLn
2

c2
∂tA

′
= −∇2A

′ −
ω2

Ln
2

c2
A

′ −
ω2

L

c2ε0
P

′
, (5.5)

with c the speed of light in a vacuum, ε0 the vacuum permittivity, and n the refractive

index of the medium. Dipole forces between the atomic and optical fields will influence

the final polarization term,

P
′

= µΦ
′∗
g Φ

′
ee
i∆t, (5.6)
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and so Eqn. (5.5) takes the form

2iωLn
2

c2
∂tA

′
= −∇2A

′ −
ω2

Ln
2

c2
A

′ −
ω2

L

c2ε0
µΦ

′∗
g Φ

′
ee
i∆t. (5.7)

Returning to Eqns. (5.3)-(5.4), including corrections due to induced polarization in

dense atomic media through the substitution [30, 31, 229]

A
′ → A

′
+
P

′

3ε0
(5.8)

causes the atomic equations to take the form (see Appendix A.1)

i~∂tΦ
′
g = − ~2

2ma
∇2Φ

′
g −

1

2
µA

′∗Φ
′
ee
i∆t − 1

2

µ2Φ
′
g

3ε0
|Φ′

e|2 +
4π~2agg

ma
|Φ′

g|2Φ
′
g, (5.9)

i~∂tΦ
′
e = − ~2

2ma
∇2Φ

′
e −

1

2
µA

′
Φ

′
ge
−i∆t − 1

2

µ2Φ
′
e

3ε0
|Φ′

g|2 − i~
γ

2
Φ

′
e. (5.10)

We assume that both optical and atomic fields are monochromatic, paraxial beams.

We therefore introduce an atomic wavenumber, ka = mava/~ where va is the atomic

beam velocity and ~ω = mav
2
a/2, and an optical wavenumber, kL = ωLn/c. At this

stage we make no inherent assumptions about the magnitudes of ka and kL, but note

that later in this chapter we specify limits upon these terms, whilst in Chapter 9 they

remain unrestricted. We therefore substitute

A
′
(x, y, z, t)→ A(x, y, z)eikLz, (5.11)

Φ
′
g(x, y, z, t)→ Φg(x, y, z)e

i(kaz−ωt), (5.12)

Φ
′
e(x, y, z, t)→ Φe(x, y, z)e

i((kL+ka)z−(ω+∆
′
)t), (5.13)

with ∆
′

= ∆− kLva from the Doppler shift resulting around the mean atomic motion.

From Eqns. (5.11)-(5.13), the spatial and temporal derivatives of the fields may be

obtained.

∂2A′

∂z2
= ∂2

zAe
ikLz + 2ikL∂zAe

ikLz − k2
LAe

ikLz, (5.14)
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∂2Φ′g
∂z2

= ∂2
zΦge

i(kaz−ωt) + 2ika∂zΦge
i(kaz−ωt) − k2

aΦge
i(kaz−ωt), (5.15)

∂2Φ′e
∂z2

=
(
∂2
zΦe + 2i(kL + ka)∂zΦe − (kL + ka)2Φe

)
ei((kL+ka)z−(ω+∆

′
)t), (5.16)

∂Φ′g
∂t

= −iωΦge
i(kaz−ωt), (5.17)

∂Φ′e
∂t

= −i(ω + ∆
′
)Φee

i((kL+ka)z−(ω+∆
′
)t). (5.18)

As we consider slowly varying amplitudes, ∂2
zα << k∂zα, Eqns. (5.14)-(5.16) become

∂2A′

∂z2
≈ 2ikL∂zAe

ikLz − k2
LAe

ikLz, (5.19)

∂2Φ′g
∂z2

≈ 2ika∂zΦge
i(kaz−ωt) − k2

aΦge
i(kaz−ωt), (5.20)

∂2Φ′e
∂z2

≈
(
2i(kL + ka)∂zΦe − (kL + ka)2Φe

)
ei((kL+ka)z−(ω+∆

′
)t). (5.21)

With these substitutions we can write

Eqn. (5.9) as i~
(
−iωΦge

i(kaz−ωt)
)

= − ~2

2ma

[
∇2
⊥Φg + 2ika∂zΦg − k2

aΦg

]
ei(kaz−ωt)

− 1

2
µA∗e−ikLzΦee

i((kL+ka)z−(ω+∆
′
)t)ei∆t − 1

2

µ2Φge
i(kaz−ωt)

3ε0
|Φe|2

+
4π~2agg

ma
|Φg|2Φge

i(kaz−ωt), (5.22)

Eqn. (5.10) as i~
(
−i(ω + ∆

′
)Φee

i((kL+ka)z−(ω+∆
′
)t)
)

= − ~2

2ma

[
∇2
⊥Φe

+ 2i(kL + ka)∂zΦe − (kL + ka)2Φe

]
ei((kL+ka)z−(ω+∆

′
)t)

− 1

2
µAeikLzΦge

i(kaz−ωt)e−i∆t − 1

2

µ2Φee
i((kL+ka)z−(ω+∆

′
)t)

3ε0
|Φg|2

− i~γ
2

Φee
i((kL+ka)z−(ω+∆

′
)t), (5.23)

and Eqn. (5.7) as
2iωLn

2

c2
∂tAe

ikLz = −
[
∇2
⊥A+ 2ikL∂zA− k2

LA
]
eikLz −

ω2
Ln

2

c2
AeikLz

−
ω2

L

c2ε0
µΦ∗ge

i(−kaz+ωt)Φee
i((kL+ka)z−(ω+∆

′
)t)ei∆t. (5.24)
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Since ∆ >> kLva, and thus e∆
′
≈ e∆, we simplify Eqns. (5.22)-(5.24) to reach

i
~2ka

ma
∂zΦg = − ~2

2ma

(
∇2
⊥Φg − k2

aΦg

)
− ~ωΦg −

1

2
µA∗Φe

− 1

2

µ2

3ε0
|Φe|2Φg +

4π~2agg

ma
|Φg|2Φg, (5.25)

i
~2(kL + ka)

ma
∂zΦe = − ~2

2ma

(
∇2
⊥Φe − (kL + ka)2Φe

)
− ~(ω + ∆

′
)Φe

− 1

2
µAΦg −

1

2

µ2

3ε0
|Φg|2Φe − i~

γ

2
Φe, (5.26)

2iωLn

c

(n
c
∂tA+ ∂zA

)
= −∇2

⊥A−
ω2

L

c2ε0
µΦ∗gΦe, (5.27)

with full details provided in Appendix A.2.

Introducing

ζ = z +
c

n
t, (5.28)

it follows that
∂

∂ζ
=

∂

dz
+
n

c

∂

∂t
, (5.29)

and on applying Eqn. (5.29) to Eqn. (5.27) we obtain

2iωLn

c
(∂ζA) = −∇2

⊥A−
ω2

L

c2ε0
µΦ∗gΦe. (5.30)

We now consider, as discussed around Eqns. (5.11)-(5.13), that the atomic and optical

fields have similar effective wavelengths, and therefore similar k-vectors, such that

ka/kL ≈ 1. Under these conditions, the atomic velocity, va, is given by (with ka =

mava/~ and kL = ωLn/c)

mavac

~ωLn
≈ 1,

⇒ va ≈
~ωLn

mac
. (5.31)
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Taking λ = 720nm, n = 1, and using atomic parameters for Caesium from Ref. [230],

we find that va ≈ 10−3m s−1. Under such conditions, ζ ≈ z unites the two propagation

dimensions [33], and Eqns. (5.25)-(5.27) become

i
~2ka

ma
∂zΦg = − ~2

2ma

(
∇2
⊥Φg − k2

aΦg

)
− ~ωΦg −

1

2
µA∗Φe −

1

2

µ2

3ε0
|Φe|2Φg

+
4π~2agg

ma
|Φg|2Φg, (5.32)

i
~2(kL + ka)

ma
∂zΦe = − ~2

2ma

(
∇2
⊥Φe − (kL + ka)2Φe

)
− ~(ω + ∆

′
)Φe −

1

2
µAΦg

− 1

2

µ2

3ε0
|Φg|2Φe − i~

γ

2
Φe, (5.33)

2iωLn

c
∂zA = −∇2

⊥A−
ω2

L

c2ε0
µΦ∗gΦe. (5.34)

We now re-scale the propagation and transverse domains using wL, a characteristic

beam waist. Generally, we consider wL ≡ w0, the initial beam waist of the optical field.

The longitudinal and transverse scalings are given by

ζ =
z

kLw2
L

, (5.35)

(ξ, η) =

√
2(x, y)

wL
, (5.36)

respectively [33]. From Eqn. (5.35), propagation to ζ = 1 is equivalent to 2zR, with

zR = (kLw
2
L)/2, the Rayleigh range.

Applying Eqns. (5.35)-(5.36) to Eqns. (5.32)-(5.34) gives (see Appendix A.3)

i∂ζΦg = −∇2
⊥Φg +

k2
aw

2
L

2
Φg −

maw
2
Lω

~
Φg −

maw
2
Lµ

2~2
A∗Φe −

maw
2
Lµ

2

6~2ε0
|Φe|2Φg

+ 4πw2
Lagg|Φg|2Φg, (5.37)

i∂ζΦe = −∇2
⊥Φe +

w2
L(kL + ka)2

2
Φe −

maw
2
L

~
(ω + ∆)Φe −

maw
2
Lµ

2~2
AΦg

−
maw

2
Lµ

2

6~2ε0
|Φg|2Φe − i

maw
2
Lγ

~
Φe, (5.38)

i∂ζA = −∇2
⊥A−

ω2
Lw

2
Lµ

2c2ε0
Φ∗gΦe. (5.39)
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We now renormalise the optical field F :

F =
µA

2~
kLw

2
L

va

1√
|δ|
,

⇒ A =
2~va

√
|δ|

µkLw2
L

F, (5.40)

where we have introduced

δ =
w2

Lma∆

~
. (5.41)

Applying Eqn. (5.40) to Eqns. (5.37)-(5.39) gives (see Appendix A.4)

(i∂ζ +∇2
⊥)Φg = −

√
|δ|F ∗Φe +

maw
2
L

~2

(
− µ

2

6ε0
|Φe|2 +

4π~2agg

ma
|Φg|2

)
Φg, (5.42)

(i∂ζ +∇2
⊥)Φe = −

√
|δ|FΦg −

maw
2
L

~2

µ2

6ε0
|Φg|2Φe − δ

(
1 + i

maw
2
L

~
γ

2δ

)
Φe, (5.43)

(i∂ζ +∇2
⊥)F = −

k2
Lw

4
Lmaµ

2

4ε0~2
√
|δ|

Φ∗gΦe. (5.44)

We now eliminate the excited atomic state from the model, in recognition of its small

population in comparison to the ground state. As we are in the regime of large field

detuning, we can neglect the imaginary part of the final term of Eqn. (5.43) corre-

sponding to spontaneous emission and, by taking Φe to be fast with respect to Φg, an

adiabatic elimination of Eqn. (5.43) gives (see Appendix A.5)

Φe = −sFΦg√
|δ|

[
1− 1

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)
+O

(
1

|δ|2

)]
, (5.45)

where s represents the sign of δ, and therefore that

|Φe|2 ≈
|F |2|Φg|2

|δ|
, (5.46)

when neglecting higher order terms in 1/|δ|.
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We apply Eqns. (5.45)-(5.46) to Eqn. (5.42) to obtain atomic dynamics described by

(i∂ζ +∇2
⊥)Φg = s|F |2Φg −

s|F |2

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)
Φg

+
maw

2
L

~2

(
− µ

2

6ε0

|F |2|Φg|2

δ
+

4π~2agg

ma
|Φg|2

)
Φg. (5.47)

Rescaling Φg through

ψ = Φg
kLw

2
Lµ

2~

√
ma

ε0|δ|
,

⇒ Φg =
2~

kLw2
Lµ

√
ε0|δ|
ma

ψ, (5.48)

with

|Φg|2 =
4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2, (5.49)

and applying these two relationships to Eqn. (5.47), we obtain (see Appendix A.6.1)

(i∂ζ +∇2
⊥)ψ= s|F |2ψ− 2s2|F |2

3k2
Lw

2
L

|ψ|2ψ−s |F |
4

|δ|
ψ− 2|F |2

3k2
Lw

2
L

|ψ|2ψ+
16π~2ε0|δ|agg

k2
Lw

2
Lmaµ2

|ψ|2ψ.

(5.50)

We introduce the parameters

βdd =
2

3k2
Lw

2
L

, (5.51)

βcol =
16πε0~2agg|δ|
k2

Lw
2
Lmaµ2

, (5.52)

and transform Eqn. (5.50) into

(i∂ζ +∇2
⊥)ψ = s

(
1− |F |

2

|δ|

)
|F |2ψ − 2βdd|F |2|ψ|2ψ + βcol|ψ|2ψ. (5.53)
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Turning to the optical field, Eqn. (5.44), we again eliminate the excited atomic state,

before introducing the new atomic state ψ given by Eqn. (5.49). This gives an optical

field whose dynamics are described by (see Appendix A.6.2)

(i∂ζ +∇2
⊥)F = s

(
1− |F |

2

|δ|

)
|ψ|2F − βdd|ψ|4F. (5.54)

As |δ| is large, we can neglect the Kerr parameter (|Ω|2/|δ|) in both Eqns. (5.53)-(5.54).

This leaves the coupled equations

∂ζψ = i∇2
⊥ψ − i

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2

)
ψ, (5.55)

∂ζF = i∇2
⊥F + i

(
−s|ψ|2 + βdd|ψ|4

)
F, (5.56)

which describe the co-propagation of an optical field F coupled to an ultracold atomic

beam ψ that moves with a velocity va, where we have assumed ka ≈ kL. The model

has a ‘2D+1’ dimensionality, where the two transverse dimensions (ξ, η) evolve in the

space-time domain ζ, defined in Eqn. (5.28). We summarise the various terms and

parameters within Eqns. (5.55)-(5.56) in Appendix C.

The terms in Eqns. (5.55)-(5.56) represent physical processes whose interplay deter-

mines the field dynamics. In Eqn. (5.55), an effective Gross-Pitaevskii description of

the atomic dynamics, ∇2
⊥ψ represents the kinetic energy atomic contributions, s|F |2

represents a focusing or defocusing nonlinearity (dependent on the sign of the detun-

ing s) that arises from the dipole field forces, 2βdd|F |2|ψ|2 represents a higher order

dipole-dipole correction, and finally βcol|ψ|2 represents interatomic scattering, focusing

or defocusing depending on βcol, which is related to the BEC’s scattering length, agg.

In Eqn. (5.56), an effective nonlinear Schrödinger description of the optical dynamics,

∇2
⊥F represents diffraction, whilst s|ψ|2 represents a focusing or defocusing nonlinearity

dependent on the sign of the detuning s, again arising from dipole forces between the

fields. Finally, βdd|ψ|4 represents a dipole-dipole correction that gives a higher order

focusing nonlinearity.
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5.2.2 Optical-Only Reduction

The model of Eqns. (5.55)-(5.56) may be reduced through a further adiabatic procedure

that assumes an instantaneous atomic medium, akin to a Kerr-based approach. This

gives a single equation that describes the propagation of the optical field through a

non-responsive BEC, which acts as a potential upon the atomic field rather than a

fully dynamic, coupled field.

From Eqn. (5.55), setting ∂ζψ → 0 and ∇2
⊥ψ → 0 in an adiabatic elimination gives

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2

)
ψ = 0,

⇒ 2βdd|F |2|ψ|2 − βcol|ψ|2 = s|F |2. (5.57)

Eliminating the term in βdd, as it is significantly smaller than the term in βcol, gives

|ψ|2 = − s

βcol
|F |2, (5.58)

which links a propagating optical field F and an instantaneous atomic medium ψ. We

note that, when using this reduction, it should be ensured that selections of s and βcol

satisfy the requirements of Eqn. (5.58).

Substituting Eqn. (5.58) into Eqn. (5.56) for βdd → 0 and s2 ≡ 1 gives

∂ζF = i∇2
⊥F +

i

βcol
|F |2F. (5.59)

Eqn. (5.59) has the form of a nonlinear Schrödinger equation, Eqn. (3.27). When

βcol > 0, the optical field propagates in a self-focusing medium, and in a self-defocusing

medium when βcol < 0. It follows that the BEC is acting like a Kerr medium with

nonlinear strength proportional to 1/βcol.
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5.3 Conclusions and Outlook

In this chapter, we have derived coupled nonlinear equations that model the dynamics

of the co-propagation of ultracold atomic and optical fields, and outlined a reduction

of this model to a single differential equation for the assumption of a ‘static’ BEC field,

showing that it was equivalent to the nonlinear Schrödinger equation.

This model will be used throughout Chapters 6 - 8, considering both a range of forms

of initial optical fields and parameter regimes, before discussing some prospective ap-

plications of the obtained dynamics.
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Homogeneous Fields

In this chapter, we consider the case of initially homogeneous atomic and optical fields.

In Section 6.1, we outline the form of these initial fields. In Sections 6.2 - 6.3, we

consider their evolution, and discuss the realisation of coupled atom-light patterns for

blue (6.2) and red (6.3) atom-field detuning. Finally, in Section 6.4, we analyse the

stability of these patterns for various potential operating regimes.

6.1 Initial Field Form

We now consider homogeneous atomic and optical fields of initial form

ψ(ξ, η, ζ(0)) = Aψ, (6.1)

F (ξ, η, ζ(0)) = AF , (6.2)

where Aψ and AF are the initial amplitudes of the atomic and optical fields, respectively.

We begin by considering the parameters used in Ref. [33], and so select Aψ = 4 and

AF = 6, along with βdd = 1.6 × 10−4 and βcol = 3.5. For Caesium atoms, this

reflects a weakly repulsive condensate with a scattering length as ≈ 15a0, with a0 the
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Bohr radius [33, 230]. Random noise is applied to both fields to seed a modulational

instability, and we select a 1% level of the initial maximal amplitude for this to match

Ref. [33], but emphasise that the selected level is largely arbitrary. We consider the

effect of the atom-light detuning, as in Figs. 2 and 3 of Ref. [33].

6.2 Blue Atom-Field Detuning

Considering first blue atom-field detuning, i.e. s = +1 as in Fig. 2 of Ref. [33],

the atoms can be described as ‘dark-seeking’, with the dipole forces leading them to

positions of optical darkness. This is shown in Fig. 6.1, the transverse amplitude

distributions of the atomic and optical fields at propagation distances ζ = 0.0, 0.5, 1.0,

and 2.0, with the far-fields shown as insets for each panel.

Atoms

Light

200

Figure 6.1: Main panels: Blue-detuned initially homogeneous BEC (upper) and optical
(lower) amplitude distributions at ζ = 0, 0.5, 1 and 2 (left to right). Insets: Far-field of
each panel. Parameters: Aψ = 4, AF = 6, s = 1, βdd = 1.6× 10−4, βcol = 3.5.

The noise fluctuations on the initially homogeneous fields are amplified by the dipole

forces, leading to the development of mutual structures in both fields. As a result of

the blue detuned fields, a pattern maximum in one field corresponds to a minimum in

the other, and the patterns may be described as ‘interleaved’. These structures grow
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progressively as the propagation distance increases: at ζ = 0.5 in Fig. 6.1, the patterns

are barely discernible in each field, but at ζ = 1 they are clearly visible. Soon after

their formation however, the patterns begin to filament, and their clarity is lost. At

ζ = 2 structures remain in both fields, but without their prior order.

The formation of far-field ring-like structures corresponds to the emergence of structure

in the near-field. Ring onset occurs in advance of the near-field formation, being clear at

ζ = 0.5 whilst the near-field patterns only become evident closer to ζ = 1. With further

propagation, the far-field structures break down as the near-field spatial patterns begin

to filament, in good agreement with prior studies of pattern formation in a range of

systems, see, for example, Refs. [32, 173, 231].

The near- and far-field dynamics of Fig. 6.1 are particularly like those of Ref. [32], which

also numerically modelled co-propagating ultracold atomic and optical fields through

∂ζψ = iα1∇2
⊥ψ − is1|F |2ψ, (6.3)

∂ζF = i∇2
⊥F − is1(1− |F |2)|ψ|2F. (6.4)

Comparing Eqns. (6.3)-(6.4) to Eqns. (5.55)-(5.56), s1 is equivalent to s, the sign of the

atom-light detuning, whilst the optical dipole-dipole force (the final term in Eqn. (6.4))

is dependent on both the sign of the detuning and the intensity of both fields. Notably,

terms relating to dipole-dipole coupling and interatomic scattering in Eqn. (6.3) are ne-

glected in Ref. [32], meaning that any dynamics obtained are driven by the dipole force

between the fields. Selecting Aψ = AF = 0.1 and setting s1 = 1 and α1 = 0.1, Ref. [32]

obtains similar near- and far-field pattern formation as in Fig. 6.1. This suggests that

the dipole term is the dominant nonlinearity, and our parameter selection provides a

self-focusing BEC medium that, through the dipole force, enables coupled pattern for-

mation. The significant additional benefit of the model provided by Eqns. (5.55)-(5.56)

is that, by varying the additional atomic and optical parameters largely neglected by

Ref. [32], we may explore other operating regimes to obtain alternative dynamics.
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6.3 Red Atom-Field Detuning

For red atom-field detuning, i.e. s = −1 as in Fig. 3 of Ref. [33], the atoms may be

considered as ‘light-seeking’, with the dipole forces transporting them to positions of

optical intensity. In an otherwise identical procedure to the blue atom-field detuning

case, we obtain the formation of coupled patterns across both fields shown in Fig. 6.2.

Atoms
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Figure 6.2: Main panels: Red-detuned initially homogeneous BEC (upper) and optical
(lower) amplitude distributions at ζ = 0→ 0.82 (left to right). Insets: Far-field of each
panel. Parameters: Aψ = 4, AF = 6, s = −1, βdd = 1.6× 10−4, βcol = 3.5.

The patterns again grow from the noise fluctuations in both fields, becoming visible in

both amplitude distributions at ζ = 0.5, a slightly smaller ζ-value than the equivalent

blue-detuned case. Again, structure is clear in both far field distributions, further

verifying the ongoing pattern formation. At ζ = 0.8, the patterns dominate both fields

where, due to the red atom-field detuning, both fields have coincident structure. The

ring structure again exists in the far fields, remaining notably well defined. However,

for red-detuned fields the reinforcing effect of coincident atomic and optical maxima

further enhances the self-focusing BEC effect on the optical field, and filamentation

occurs very rapidly, as shown for ζ = 0.82 in Fig. 6.2, with structures rapidly localising

before undergoing mutual collapse. We find that with red atom-field detuning there is

little possibility of achieving pattern formation with stable subsequent dynamics.
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6.4 Parameter Stability Regimes

In this section we explore potential regimes conducive to pattern formation.

Initial Field Amplitudes

Altering the amplitudes of the initial homogeneous BEC and optical fields, Aψ and

AF , respectively, we vary each parameter between 0 ≤ Ax ≤ 12, and co-propagate both

fields to a distance of ζ = 1 before analysing the strength of any patterns through the

size of modulation in the atomic field’s amplitude.

For blue atom-field detuning, i.e. interleaved patterns, the result is shown in the left

panel of Fig. 6.3.
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Figure 6.3: Pattern stability in atomic field for 0 ≤ Aψ, AF ≤ 12 at ζ = 1 with (a) blue
and (b) red atom-field detuning. Regions show: (1) pattern formation; (2) homogeneous
field return; (3) field collapse. Other parameters as in Figs. 6.1 - 6.2 respectively.

The upper left central section of Fig. 6.3(a) indicates a reasonably large parameter

space available for pattern formation (1), where the green coloured squares indicate the

presence of well-defined patterns. The depth of colour reflects the strength of pattern,

with a darker green signifying a larger modulation in field amplitude. Considering the

selection of Aψ = 4, AF = 6 as used in Section 6.2, indicated by the blue cross, the

reported patterns are in the lower limits of the parameter space, with more distinct

patterns accessible through moderate increases to one, or both, of the initial field
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amplitudes. The lightly shaded region marked (2) corresponds to conditions where

the amplitudes of the two initial fields are not sufficient to cause pattern formation

through the dipole force by ζ = 1, and so the fields remain homogeneous, with only

small additional fluctuations. Finally, the area indicated by black dots (3) reflects

filamentation and collapse of the field. In this region, the initial strength of the fields

has contributed to localisation which overwhelms the system, leading to collapse.

Fig. 6.3(b) is the equivalent plot for the s = −1, red-detuned configuration. The region

of patterns at ζ = 1 is far smaller, reflecting the coincident nature of BEC and optical

structures in this case, which are far more susceptible to localisation and instability.

Indeed, considering the case where Aψ = 4, AF = 6 as used in Section 6.3, indicated by

the red cross, this lies in a region of fragmentation by ζ = 1, unlike the pattern region

of the blue-detuned case. Fig. 6.3(b) suggests that almost any region of red-detuned

pattern formation will lead to a mutual collapse (3), with all non-collapsed regions

restricted to homogeneous fields with small fluctuations (2).

We emphasise that in Fig. 6.3, regions not marked as exhibiting a particular feature may

do so at increased ζ values. The maps shown here simply are to provide an indication

of the nature of the fields at ζ = 1.

BEC Scattering Length

By tuning the Feshbach resonance, the atomic scattering length, agg, of Caesium atoms

may be controlled to transition between repulsive and attractive interactions [232].

Here, we consider changes of around −23 < agg < 45 which, considering atomic transi-

tion parameters for Caesium atoms [230], corresponds to alterations of −5 ≤ βcol ≤ 10.

These changes cause the collisional nonlinearity to transition from focusing to defocus-

ing across this range, and we examine how this affects the formation of patterns for

both blue and red atom-field detuning.

Initially, we consider the relative sizes of the nonlinear terms contributing to Eqn. (5.55),

the description of the atomic field evolution. The absolute magnitude of these terms

is plotted against βcol in Fig. 6.4, where |ψ| = 4 and |F | = 6. We find that the
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interatomic scattering term becomes the dominant nonlinearity for either βcol . −2.5,

when it provides a focusing effect, or βcol & 2.5, when it provides a defocusing effect.
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Figure 6.4: Relative nonlinear term sizes (dotted: absolute magnitude) of Eqn. (5.55)
for −5 ≤ βcol ≤ 10, with βdd = 1.6× 10−4.

Propagating homogeneous fields within the same scattering length range, we find similar

pattern stability thresholds to those predicted by Fig. 6.4. For blue atom-field detuning,

we obtain patterns in the regions indicated in the top row of Fig. 6.5, for Aψ = 4 and

AF = 6 between 0.5 ≤ ζ ≤ 2.

We again observe several regions (1)-(3), dependent on both βcol and ζ. For βcol < 0,

both fields almost exclusively have collapsed by ζ = 0.5, region (3). Such a phenomenon

occurs significantly earlier than previously discussed as a result of the transition to at-

tractive interatomic interactions where, with βcol < 0, the respective term in Eqn. (5.55)

becomes focusing, further enhancing the other focusing forces in localising structures

and causing collapse to occur at smaller ζ values. We note that this occurs for values

of βcol < −2.5, the threshold predicted by Fig. 6.4, demonstrating the rapid cascading

impact of the focusing nonlinearity provided by attractive atomic interactions.

Upon reaching βcol ≥ 0, where the sign of the scattering changes, we enter a regime

of pattern formation, region (1), enabled by the scattering nonlinearity in Eqn. (5.55)

being first negligible for βcol ≈ 0, and then increasingly defocusing for βcol > 0. This
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Figure 6.5: Pattern stability for −5 ≤ βcol ≤ 10 between 0.5 ≤ ζ ≤ 2 for atomic (a,c)
and optical (b,d) fields with blue (a-b) and red (c-d) atom-field detuning. Regions
show: (1) pattern formation; (2) homogeneous field return; (3) field collapse. Other
parameters as in Figs. 6.1 - 6.2 respectively. Colour scales as in Fig. 6.3.

additional repulsive force stabilizes the dynamics, with patterns present for a variety

of βcol selections when ζ > 0.5. If βcol is too large, the pattern formation is entirely

suppressed by a dominant defocusing scattering nonlinearity which overwhelms the

dipole forces, region (3). As reflected by the colour depths, we also note the relative

strengths of the pattern formation regimes in each field: for increasing βcol values,

the optical map pattern is stronger than the atomic pattern. This represents the

increasingly repulsive nature of the BEC suppressing first its own patterns, but not yet

having such a strong suppressive effect on the optical field through the dipole force. It
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is only when βcol ≈ 0 that the atomic patterns dominate over the optical field’s.

For red atom-field detuning, shown in the bottom row of Fig. 6.5, no stable pattern

formation is observed. The large region (1) of pattern formation present for blue-

detuned fields is now destroyed by the additional self-focusing of coincident patterns

leading to filamentation, region (3) here. Again, the region of homogeneous fields

(suppressed pattern formation due to large βcol, region (2)) remains largely unaffected

by the detuning selection, suggesting that here the dominant force is the interatomic

scattering.

Dipole-Dipole Forces

Finally, we briefly consider changes to βdd, representing higher-order corrections due

to dipole-dipole coupling between the fields. Given the modest nature of this term,

we consider its contributions on a logarithmic scale between 10−4 < βdd < 10−1, and

plot the relative strength of the competing nonlinear terms in Eqns. (5.55)-(5.56) in

Fig. 6.6.
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Figure 6.6: Relative nonlinear term sizes (dotted: absolute magnitude) of (a)
Eqn. (5.55) and (b) Eqn. (5.56), for 10−4 < βdd < 10−1, with βcol = 3.5.

In both cases, we observe exponential growth of the dominance of the term corre-

sponding to dipole-dipole interactions. For this parameter selection, we find that in

Eqn. (5.55) the dipole-dipole forces exceed the dipole nonlinearity when βdd & 0.03,

and become the dominant nonlinear force when βdd & 0.05, whilst in Eqn. (5.56) they

dominate over the dipole force when βdd & 0.06. As it is always a focusing term, this
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will further contribute to the localisation dynamics previously described. We again

consider varying 10−4 < βdd < 10−1 for homogeneous fields. The results are shown for

blue atom-field detuning, across ζ = 0.5→ 2, in Fig. 6.7.

(a) (b)

(1)

(2)

(3)

(1)

(2)

(3)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 6.7: Pattern stability for 10−4 < βdd < 10−1 with blue-detuned atomic (a)
and optical (b) fields between 0.5 ≤ ζ ≤ 2. Regions show: (1) pattern formation; (2)
homogeneous field return; (3) field collapse. Other parameters as in Fig. 6.1. Colour
scales as in Fig. 6.3.

Within region (1) of Fig. 6.7, contributions from the dipole-dipole corrections are negli-

gible, the fixed colour representing an unchanged pattern modulation strength. Above

βdd ≈ 10−2, region (2), the increasingly dominant dipole-dipole term suppresses pat-

tern formation, before its focusing nature causing numerical instability and breakdown,

region (3), in agreement with Fig. 6.6. We see similar behaviour when s = −1, and

therefore may conclude that when βdd < 10−2, its contributions remain negligible

within the system.

6.5 Conclusions and Outlook

In Chapter 6, we studied the dynamics of initially homogeneous co-propagating optical

and ultracold atomic fields. In agreement with Refs. [32, 33], we obtained coupled

interleaved or coincident filamentation patterns depending on the sign of the atom-light

detuning. The appearance of ring structures in the far field, again in good agreement
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with Ref. [32], gave an indication as to the presence and clarity of spatial structures

in the near field. The patterns were shown to be short-lived to ζ . 2 and, for several

interleaved and most coincident patterns, were shown to be prone to instability and

collapse from self-focusing, despite exploring large potential operating regimes.

If nonlinear self-focusing effects can be suppressed, there is the potential for significant

impacts through such structures. If such phenomena occur on physically defined fields,

representative of experimental BEC [100] and optical [39, 112] transverse distributions,

then the guidance of atoms into bright and dark regions of the optical field according

to the sign of the detuning may be employed for atomic trapping [25], manipulation

into alternative transverse structures [198], or soliton generation [32, 33].

62



Chapter 7

Structured Fields I: Patterns

In this chapter, we build on the results of Chapter 6, introducing intensity structure

to the initial atomic and optical fields. In Section 7.1, we consider replicating these

patterns on structured fields for both forms of field detuning, again discussing the rel-

ative stability regimes of patterns obtained, and the analogies between the systems. In

Section 7.2, we develop the model outlined in Chapter 5, providing a case by case justi-

fication of the alterations made, to extend the parameter regime for stable propagation

whilst continuing to obtain mutual structure formation.

7.1 Pattern Formation on Spatial Structures

Our intensity structured initial atomic and optical fields are as outlined in Chapters 2-3.

The initial optical field is a Gaussian at the beam waist, defined in Eqn. (3.34) as

F (r, ζ(0)) = AF exp

(
− r2

2w′F
2

)
,

where the optical field’s beam waist wF is set by w′F = wF /wL, wL is the characteristic

beam waist introduced through Eqns. (5.35)-(5.36), and r2 = ξ2+η2. The initial atomic
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field is a Thomas-Fermi distribution, given in Eqn. (2.17) as

ψ(r, ζ(0)) = Aψ

(
1− r2

2w′ψ
2

)
,

with w′ψ controlling the transverse size of the BEC through w′ψ = wψ/wL. Such struc-

ture is typical of transverse ultracold atomic distributions [100].

To allow comparison with Chapter 6 and Ref. [33], we again set Aψ = 4 and AF = 6,

with noise applied at the 1% level. We select transverse domains of wF = wψ =

100µm, ensuring that the fields have cross-sectional areas large enough, with sufficient

amplitudes, for the dipole force to dominate the dynamics. This gives initial fields of

the form shown in Fig. 7.1.
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Figure 7.1: Initial transverse BEC (left) and optical (right) amplitude distributions.
Centre: 1D cross-section of distributions. Parameters: Aψ = 4, AF = 6, and wF =
wψ = 100µm according to Eqns. (3.34) and (2.17). Colour scales from zero to maximum
field amplitude of each panel.

As before, we investigate the co-propagation of these fields using Eqns. (5.55)-(5.56)

for both signs of the atom-field detuning.

7.1.1 Blue Atom-Field Detuning

For the case of blue atom-field detuning (s = 1), above a required amplitude threshold

and on a sufficiently large transverse area, one obtains the formation of mutual struc-

tures in both fields, similar to those on homogeneous fields as outlined in Chapter 6.

Such structures are shown in Fig. 7.2, which, like Fig. 6.1, shows the two transverse

domains at ζ = 0.5, 1, and 2.
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Figure 7.2: Transverse BEC (upper) and optical (lower) amplitude distributions at ζ =
0.5, 1 and 2 (left to right) for initially Thomas-Fermi and Gaussian beams, respectively,
and blue atom-field detuning. Parameters: s = 1, Aψ = 4, AF = 6, βcol = 3.5, βdd =
1.6× 10−4, and wF = wψ = 100µm. Colour scales from zero to max. field amplitude.

We again observe interleaved structures across the atomic and optical fields, arising

through the dipole nonlinearity that links the fields. At ζ = 0.5 in Fig. 7.2, the

patterns are early in their formation, manifest as slight modulations upon the distri-

butions, forming despite a developing minimum in the central atomic field as atoms

are transported away from bright optical regions. At ζ = 1, the formation of mutual

interleaved structures is evident in both fields. These structures are limited to regions

of the fields with sufficient overlap above a threshold amplitude for pattern formation,

and as such they only form in the central regions of the field, with additional uniform

surrounding structures. The transport of atoms outward from the optically intense

region has continued, with a ring of relative intensity surrounding the patterns as this

process combines with the kinetic energy contributions. The optical field also shows

diffraction, with its transverse extent having increased notably.

At ζ = 2, both fields show clear evidence of their respective kinetic energy and diffrac-
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tion contributions, and though mutual structures remain, they are broader in spatial

scale and weaker in amplitude. From this point, the defocusing contributions from

a combination of atomic kinetic energy, interatomic scattering and optical diffraction

continue to dominate, and the mutual interleaved structures persist but continue to spa-

tially broaden. These dynamics replicate the results of Ref. [33], which first reported

such patterns. Although not discussed here, we have also replicated other results of

Ref. [33], where an atomic region of zero intensity guides optical solitons in a blue

detuned regime.

For the dynamics of Fig. 7.2 stability maps may again be produced, displaying the

nature of interleaved patterns formed for a range of initial field amplitudes at ζ = 1,

Fig. 7.3(a).
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Figure 7.3: Pattern stability in atomic field for 0 ≤ Aψ, AF ≤ 12 with blue (a) and red
(b) atom-field detuning for initially intensity structured fields at ζ = 1. Regions show:
(1) pattern formation; (2) homogeneous field return; (3) field collapse. Dotted dividing
lines indicate equivalent regions for homogeneous fields (Fig. 6.3)). Other parameters
as in Fig. 7.2.

The addition of spatial structure to both fields opens new parameter spaces for pattern

formation compared to the homogeneous equivalent, Fig. 6.3, where the uniformity

of the fields across the spatial domain prevents kinetic and diffractive contributions.

Here, such terms provide a loss of atomic and optical intensity from the pattern forming

regime, with patterns from previously unstable high-amplitude initial field combinations
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now realisable thanks to the lesser amplitudes involved after mutual field ejection.

7.1.2 Red Atom-Field Detuning

For red atom-field detuning, with ‘light-seeking’ atoms and coincident patterns, col-

lapse, manifest as numerical instability and breakdown from overwhelmingly focus-

ing nonlinearities, was observed for homogeneous fields across a widespread operating

regime. Similar pattern formation on intensity structured fields is shown in Fig. 7.4.

Again coupled coincident structure formation occurs in both fields, evident as minor

perturbations on top of both fields at ζ = 0.5, and then as distinct structures by ζ = 0.7.

The formation process is similar to the blue detuned case in the previous section, and

agrees well with the patterns of homogeneous fields, with an atomic peak corresponding

to an optical peak. We also find a rapid filamentation process occurring, with filaments

present after ζ = 0.8, and the fields having mutually collapsed by ζ = 0.85.
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Figure 7.4: Transverse BEC (upper) and optical (lower) amplitude distributions at
ζ = 0.5, 0.7, and 0.8 (left to right) for initially Thomas-Fermi and Gaussian beams,
respectively, and red atom-field detuning. Parameters: s = −1, Aψ = 4, AF = 6, βcol =
3.5, βdd = 1.6× 10−4, and wF = wψ = 100µm.
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To explore further the stability of these patterns, an equivalent atomic parameter map

at ζ = 1 for various initial field amplitudes is shown in Fig. 7.3(b). These again show

a significant narrowing of pattern forming regions arising from the change of detuning

and associated breakdown from increased focusing nonlinearities. Comparing this to the

homogeneous field equivalent, Fig. 6.3(b), we see a similar growth in parameter spaces

not displaying a collapse as for blue-detuning, which is again due to the additional

contributions of the kinetic energy and diffraction terms for spatially defined fields.

However, we note that for the majority of the parameter space studied, collapse from

filamentation is observed for red-detuned fields.

7.2 Model Developments

For both interleaved and coincident patterns, we have reported several instances of

collapse from filamentation after pattern formation. In this section, we alter the model

used to describe each field in an effort to increase the propagation of these patterns

further than previously possible. We firstly outline each change individually, verifying

that pattern formation occurs unchanged as a benchmark of the model against existing

literature studies, before combing the changes and verifying that the alterations acting

in parallel both permit pattern formation and enable further stable co-propagation.

7.2.1 Importance of Dipole-Dipole Contributions

We first consider the importance of the dipole-dipole corrections in Eqns. (5.55) and

(5.56), ie. the terms −2βdd|F |2|ψ|2 and βdd|ψ|4, respectively. In Chapter 6.4, these con-

tributions were found to be negligible for βdd . 10−2. Recalling that from Eqn. (5.51),

βdd =
2

3k2
Lw

2
L

,

with wL equating to the optical beam waist. Taking λ ≈ 10−7m, for this term to become

the dominant term a beam waist on the order of µm or smaller would be required. Such

a waist size is an order of magnitude smaller than the smallest value that we consider,

and so we exclude this term from the dynamics.
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7.2.2 Inclusion of Optical Saturation

We now consider the inclusion of optical saturation in the model. This accurately

captures regions of high optical intensity, and has been shown to be important for

avoiding the collapse of optical beams within a Kerr medium [60, 233]. We introduce a

new parameter σsat, representing the strength of the saturating nonlinearity experienced

by the optical field. Eqn. (5.56) becomes

∂ζF = i∇2
⊥F + i

(
−s|ψ|2 + βdd|ψ|4

1 + σsat|F |2

)
F. (7.1)

In the Kerr case σsat = (4PL)/(3Isatw
2
F ) ≈ IL/Isat, where PL is the power of the incident

laser beam, IL is the beam’s intensity, and Isat is the saturation intensity [60]. From

this, we set σsat ≈ 10−3 [148], and under these conditions obtain near-identical pattern

formation with Eqns. (5.55)-(7.1), shown in the upper row of Fig. 7.5.

Atoms Light Atoms Light
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Figure 7.5: Transverse BEC and optical patterns for blue (left) and red (right) atom-
field detuning with σsat ≈ 10−3 (top) and L3 ≈ 10−4 (bottom). ζ-values as indicated
above panels. Parameters: Aψ = 4, AF = 6, βcol = 3.5, and wF = wψ = 100µm.
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7.2.3 Inclusion of Three-Body Atomic Loss

Finally, we account for three-body atomic losses in the model. These arise due to three-

body collisions within the BEC and are significant for dense atomic regions [234, 235].

These collisions can lead to the thermal ejection of one (or more) atoms which escape

the ground state, leading to a reduction in the total atom number [236]. Following the

procedure of Refs. [232, 237], Eqn. (5.55) becomes

∂ζψ = i∇2
⊥ψ − i

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2 − iL3|ψ|4

)
ψ, (7.2)

where L3 represents a three-body loss parameter. We find that L3 ≈ 10−4, in agreement

with previous estimates for Caesium [232, 237, 238]. The result is shown in the bottom

row of Fig. 7.5, which demonstrates near-identical coupled patterns to Figs. 7.2 and 7.4

respectively.

7.2.4 Enhanced Model Stability

We now consider all the outlined model alterations simultaneously, namely neglecting

dipole-dipole contributions whilst including optical saturation and atomic three-body

losses. These contributions transform Eqns. (5.55)-(5.56) into [239–242]

∂ζψ = i∇2
⊥ψ − i

(
s|F |2 + βcol|ψ|2 − iL3|ψ|4

)
ψ, (7.3)

∂ζF = i∇2
⊥F + i

(
−s|ψ|2

1 + σsat|F |2

)
F. (7.4)

When evolving coupled BEC and optical fields according to Eqns. (7.3)-(7.4), we again

obtain coupled patterns, as shown in Fig. 7.6 [239–241]. The formation of these patterns

at the same ζ-values as previously reported verifies the parallel alterations to the model.

The full benefit of these alterations becomes apparent after pattern formation, as sig-

nificantly enhanced propagation stability is obtained. To demonstrate this, we again

produce stability maps for various initial field amplitude combinations, with the map

for blue atom-field detuning, comparable to that obtained prior to the alterations in
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Atoms Light

400

Atoms Light

Figure 7.6: Transverse atomic and optical pattern formation for blue (left) and red
(right) atom-field detuning, with the model of Eqns. (7.3)-(7.4). Parameters: Aψ = 4,
AF = 6, βcol = 3.5, wF = wψ = 100µm, σsat = 0.0011, and L3 = 0.00022.

Fig. 7.3, see Fig. 7.7(a). The regions of stable pattern formation at ζ = 1 have grown

substantially from those previously obtained. Remarkably, for 0 ≤ Aψ, AP ≤ 12, we

find no numerical breakdown occurring, with the additional terms of Eqns. (7.3)-(7.4)

enabling the system to remain entirely stable under propagation whilst still displaying

the familiar pattern formation effects.
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Figure 7.7: Pattern stability in atomic field for 0 ≤ Aψ, AF ≤ 12 with blue (a) and
red (b) field detuning at ζ = 1 according to Eqns. (7.3)-(7.4). Regions show: (1)
pattern formation; (2) homogeneous field return; (3) field collapse. Dotted dividing
lines indicate equivalent regions for model of Eqns. (5.55)-(5.56) (Fig. 7.3)). Other
parameters as in Fig. 7.6.

For red atom-field detuning, s = −1, an equivalent map is given in Fig. 7.7(b). Again,
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we find that Eqns. (7.3)-(7.4) have a profound effect on the stability of both fields, with

a large parameter space returning stable pattern formation at ζ = 1. Unlike in the

blue-detuned case, here some regions still demonstrate collapse, but are significantly

smaller than previously reported. In particular, the model alterations successfully

restrict atomic driven instabilities, and it is only when AF > 10 that instability occurs

consistently.

Fig. 7.7 demonstrates that the alternative model provides significant stability enhance-

ment for both forms of field detuning, whilst maintaining the known pattern formation

dynamics. We therefore use the model of Eqns. (7.3)-(7.4) in the rest of Part II.

7.3 Conclusions and Outlook

We have demonstrated that the patterns reported in Chapter 6 are realisable on phys-

ical, spatially structured initial atomic and optical fields. Although some additional

stability was obtained with this alteration, under many conditions instability and col-

lapse was still obtained, particularly for red detuned fields. By including several ad-

ditional terms, we reached an updated set of coupled nonlinear equations which we

demonstrated are capable of obtaining patterns as reported in Ref. [33], but with the

significant advantage of avoiding subsequent numerical instability and breakdown, in-

stead achieving stable propagation.

With stable propagation of both atomic and optical fields now achievable, the model

provided by Eqns. (7.3)-(7.4) may be used with a wide variety of initially structured

optical and atomic fields, which we shall consider in subsequent chapters. Particular

emphasis will be placed upon the effects of field detuning to lead to the movement

of ultracold atoms to regions of bright or dark optical intensity. With these dipole

forces now accessible on longer propagation scales, a particular focus of this model for

controllable atomic transport shall be explored [51, 243]. As discussed previously, there

are also potential applications of these dynamics on more complex structured fields for

atomic manipulation into counter intuitive transverse structures [198], or for soliton

generation [32, 33].

72



Chapter 8

Structured Fields II: Atomic

Guiding

In this chapter, we introduce more complex structure to the initial optical fields than

was considered in Chapter 7. In Section 8.1, we consider alternative forms of intensity

structure using optical ring modes, and again report on a strong influence of the field de-

tuning on the co-propagation dynamics. In Section 8.2, we introduce structured phase

to the optical field, considering Laguerre-Gaussian modes, Bessel-Gaussian modes, and

scalar mode superpositions. We report on profound alterations to the dynamics arising

from structured phase, and consider the optically-induced re-shaping and sculpting of

atomic transverse intensity distributions, the formation of controllable atom-light clus-

ters, atomic vortex ring creation, and dark atomic cluster trapping.

8.1 Intensity Structured Optical Beams

We now apply the model of Eqns. (7.3)-(7.4) to a range of initial optical intensity

profiles. We use Eqn. (3.38), the definition of a Laguerre-Gaussian mode at the beam

waist, to create intensity-only optical ring modes, disregarding the OAM of the beam.
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Such modes may be created several ways experimentally. Routes include following

a similar scheme to creating beams with fractional OAM [244], and through beam

shaping [245]. Eqn. (3.38) is modified to obtain initial optical modes of the form

|LGm
p (r) | = A r|m|e−

r2

2 L|m|p

(
r2
)
. (8.1)

8.1.1 Patterns on Intensity Rings

Initially, we consider pattern formation on optical ring-modes. We retain the param-

eters used in Chapter 7, with AF = 4, Aψ = 6, and wF = wψ = 100µm, but consider

the initial optical field to be a |LG1
0| ring mode from Eqn. (8.1). Again we observe

pattern formation in regions of sufficient field intensity for both s = ±1, Fig. 8.1. For

red detuned fields such behaviour is expected, given the dipole attraction of atoms to

bright optical regions, but the pattern formation is also present in blue-detuned fields,

along with an expected central region of uniformly trapped atoms, with the light acting

as an effective lens upon the atoms in this region.

400

Atoms

Light

Figure 8.1: Patterns on atomic (upper) and optical (lower) fields with an |LG1
0| optical

mode at ζ = 0 (left) and 0.7 for s = 1 (centre) and -1 (right). Parameters: Aψ = 4,
AF = 6, wF = wψ = 100µm, βcol = 3.5, σsat = 0.0011, and L3 = 0.00022.
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We observe pattern formation like that shown in Fig. 8.1 across a wide range of pa-

rameters and initial field sizes, suggesting that any desired configuration of patterns

is possible, assuming sufficient transverse size and amplitude overlap between the two

initial fields.

8.1.2 Optically Induced Atomic Reshaping

Building on the central region of trapped atoms in Fig. 8.1 with blue detuning, we

now explore the ability of more complex optical structures to re-shape ultracold atoms.

Setting wψ = 50µm for a more straightforward experimental setup [246, 247] and wF =

25µm to ensure that the initial optical field remains captured within the transverse

domain of the BEC, other parameters are maintained at their previous values.

Blue Atom-Field Detuning

When the atoms are dark seeking, we find that optical intensity rings act as effective

atomic traps. In Fig. 8.2, therefore, we consider optical modes with amplitude config-

urations that derive from Eqn. (8.1). For the simplest case of a single initial optical

ring, a large atomic population is trapped in the central dark regime by ζ = 1. Though

diffraction causes the spatial domain of this trap to grow, atomic trapping and locali-

sation is realised, despite repulsive interatomic interactions. With p 6= 0, the number

of optical rings increases, and superpositions of atomic rings formed in surrounding

regions of darkness are observed. In both cases a highly effective multi-ringed atomic

trap is realised, again overcoming repulsive interactions. This suggests a novel and

straightforward means of sculpting complex atomic distributions is possible by shaping

the initial optical distribution. This offers an alternative to current approaches with

fixed trapping fields that enables more complex distributions to be realised.
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Atoms Atoms Light

300

Figure 8.2: Blue-detuned propagation of various intensity-only LG optical modes, as
defined in Eqn. (8.1), within a BEC, at ζ = 0 (left hand side) and ζ = 1 (right hand
side). Parameters: Aψ = 4, AF = 6, wψ = 50µm, wF = 25µm, βcol = 3.5, σsat = 0.0011,
and L3 = 0.00022.

Red Atom-Field Detuning

For bright-seeking atoms, we initially observe a rapid optically-induced re-shaping of

the atomic field to optically intense areas. Following this, unlike in the blue-detuned

case where diffraction dominated the dynamics, the now coincident fields self-localise,

forming mutual intense central peaks, see the right hand side of Fig. 8.3. When m = 0,

due to the central peak of the optical field, localisation occurs rapidly. When m 6= 0,

coincident structures first form around the off-axis ring(s). If the ring lies close to the

field centre, as is the case with |LG2
2|, then it collapses into a central peak, but if the

ring lies further from the field centre, for example with |LG2
0|, it entirely fragments,

with subsequent filaments collapsing into the field centre. In all cases, the fields will

collapse by ζ = 1.
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Atoms Atoms Light

150

Figure 8.3: Red-detuned propagation of various intensity-only LG optical modes, as
defined in Eqn. (8.1), within a BEC, at ζ = 0.2 (left) and indicated distances (right).
Initial fields as given in Fig. 8.2 (note domain change). Parameters otherwise as in
Fig. 8.2.

8.2 Intensity and Phase Structured Optical Beams

We now consider the introduction of phase structure to the optical field.

8.2.1 Laguerre-Gaussian Modes

Re-introducing the phase of the Laguerre-Gaussian optical modes, exp (imϕ) in Eqn.

(3.38), we maintain the same ring-like amplitude distributions as in the previous section,

but find that the introduction of helical phase, so that the optical beam now carries

OAM, has a profound impact on the dynamics depending on the sign of the atom-light

detuning.
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Blue Atom-Field Detuning

Fig. 8.4 is the counterpart to Fig. 8.2 with OAM included. Introducing OAM does not

significantly alter the dynamics when considering dark-seeking atoms, with the atoms

again directed to such regions. When p 6= 0, we find the relative amplitudes of the

optical rings differs with OAM under co-propagation and the second optical ring acts

as the strongest atomic trap, but diffraction again dominates, with OAM causing no

significant alteration here.

300

Atoms Atoms Light

Figure 8.4: Blue-detuned propagation of various LG optical modes, as defined in
Eqn. (3.38), within a BEC, at ζ = 0 (left hand side) and ζ = 1 (right hand side).
Phase profile inset in each panel. Parameters as in Fig. 8.2.

As discussed in Chapter 3.4, OAM introduces an azimuthal velocity upon bright optical

structures. To establish if such motion is transferred to the atomic field through dipole

coupling, we extract one dimensional (1D) rings, Φ(Υ), from the transverse fields. To

quantify the rate of azimuthal flow, we evaluate the flux of probability (probability

current) along these 1D fields, defined [242, 248] as

j(Υ, ζ) =
~

2mΦi
(Φ∗∂ΥΦ− Φ∂ΥΦ∗) (8.2)

where mΦ is the total field density around the extracted field ring. For both fields of
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Fig. 8.2, we calculate the mean j(Υ) around the first optical intensity ring between

ζ = 0→ 1, as shown in Fig. 8.5 for atomic (black) and optical (blue) fields.

Figure 8.5: Average flux of probability around the first optical ring from the centre for
blue-detuned LG2

0 (left) and LG2
2 (right) initial optical modes within a BEC, between

ζ = 0→ 1. Optical (atomic) flux values in blue (black). Parameters as in Fig. 8.4.

A significant average flux of probability, indicative of azimuthal flow, is clear in the

optical field for both panels of Fig. 8.5. The steady decay in its value reflects diffraction,

with the angular velocity decreasing with ring radius. The equivalent atomic ring shows

no clear rotational motion, with the flux remaining at the level of noise. For dark-

seeking atoms, this optically intense ring corresponds to a region of low atomic density,

and so we also evaluate the flux in areas of adjacent atomic density. We find that the

average flux in these regions also remains below the noise threshold, suggesting limited

OAM transfer to the atomic medium for blue-detuned co-propagation.

Red Atom-Field Detuning

The presence of OAM has far greater impact when considering bright seeking atoms

when, without OAM, central collapse would occur in both fields (Fig. 8.3). The equiv-

alent results with OAM are shown in Fig. 8.6.

Much like the blue detuned case, we initially observe optically-induced atomic reshap-

ing, with the atomic field matching optically intense regions at ζ = 0.2. We then find

that the central phase singularity of the optical field prevents the mutual field collapse

previously observed. Instead, we observe mutual fragmentation of transverse rings into

coupled atom-light intensity clusters that propagate radially outward, similar to the

fragmentation of an optical beam propagating in a self-focusing Kerr medium [148, 149].
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150

Atoms Atoms Light

Figure 8.6: Red-detuned propagation of various LG optical modes, as defined in
Eqn. (3.38), within a BEC, at ζ = 0.2 (left hand side) and ζ = 0.8 (right hand side).
Phase profile inset in each panel. Parameters otherwise as in Fig. 8.2.

The atomic phase at ζ = 0.8 in Fig. 8.6 suggests a transfer of phase to the atoms. To

ascertain if azimuthal motion is also transferred to the atoms, we again calculate the

flux of probability, now at the first maximal coincident atom-light ring from the field

centre, as shown in Fig. 8.7.

(a) (b) (c) (a) (b) (c)

Figure 8.7: Average flux of probability around the first optical ring from the centre for
red-detuned LG2

0 (left) and LG2
2 (right) initial optical modes within a BEC, between

ζ = 0→ 0.8. Optical (atomic) flux values in blue (black). Parameters as in Fig. 8.6.

We observe a clear exponential increase of atomic flux between (a)-(b), reflecting a

transfer of OAM from light to atoms leading to an azimuthal rotation around the

mutually intense ring. The period (b) of exponential growth, occurring after ring

formation, (a), precedes fragmentation, (c). After fragmentation, diffractive dynamics
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begin to dominate, and the clusters propagate radially outwards. As the 1D reduction

is on a fixed ring radius it is unable to capture the full dynamics.

Coupled Atom-Light Clusters

Given the analogy with prior studies of Kerr media [148, 149], we refine our parameter

selection to optimise the fragmentation dynamics. We set AF = Aψ = 9.5, equating

the initial dipole forces between fields. We also decrease the optical beam waist to

wF = 10µm, ensuring transverse capture of the optical field by the BEC whilst having

zR ≈ 0.44mm to capture several zR lengths during co-propagation [246, 247]. Finally,

we restrict p = 0 for the initial optical LG mode, studying the dynamics around a single

mutual intensity ring. The new initial fields for m = 1 are shown in Fig. 8.8.

Atoms

100

Light

Figure 8.8: Transverse TF BEC amplitude with wψ = 50.0µm (left), and LG optical
field amplitude for m = 1 and wF = 10µm (right). Centre panel shows transverse cross
sections, with comparison to wF = 25µm,AF = 6,LG2

0 of previous section.

As with wF = 25µm (Fig. 8.6), we find that fields configured as in Fig. 8.8 undergo a

mutual localisation around the single optical ring, after which the dynamics of the BEC

is closely coupled to that of the light. With the initial field amplitudes now matched, an

ordered mutual fragmentation is observed, reliably forming two distinct solitons rather

than filaments in spite of repulsive BEC interactions. Although both field amplitudes

increase significantly within these peaks no collapse of the wave function occurs, even

with negligible three-body loss, unlike without an optical vortex. Following the forma-

tion of coupled atom-light solitons, we again observe tangential ejection as shown in

Fig. 8.9 [239–241].
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Atoms

Light

75

Figure 8.9: Atomic (upper) and optical (lower) intensity distributions at indicated
ζ-values. Initial conditions as in Fig. 8.8.

We again apply the analogy of the ‘around ring’ dynamics to a 1D system to propagate

homogeneous fields designed to match the rings present in the left hand panel of Fig. 8.9.

We summarise these results in Fig. 8.10, which gives the dynamics of both atomic and

optical 1D fields under further propagation. Like the 2D case, the fields fragment into

coupled atom-light clusters which move diagonally, displaying azimuthal motion. As

diffraction is not captured in this model, the clusters continue their radial progression,

moving at constant angular velocity. The real part of the optical field demonstrates

that each cluster forms at a local maximum, which is susceptible to growth under

modulational instability for soliton formation as discussed in Chapter 4.1. In agreement

with Ref. [148], we see the formation of the two solitons expected for m = 1. Unlike the

examples of matter-wave soliton formation in ultracold atoms discussed in Chapter 4.1,

there is no requirement here for attractive atomic interactions, or restriction to a single

dimension for stability purposes [140–143, 146].

The behaviour of the optical field here is very similar to a vortex beam propagating in

a self-focusing Kerr medium, predicted in [148, 149] and demonstrated experimentally

in [60]. Such behaviour, assuming an instantaneous atomic medium, may be described
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Atoms

Light

Light (real)

Figure 8.10: 1D ‘around ring’ atomic (upper), optical (centre) intensity, and real optical
(lower) field distributions for ζ = 0→ 1. Initial conditions to match Fig. 8.9.

by Eqn. (5.59). With optical saturation, this relationship becomes

∂ζF = i∇2
⊥F +

i

βcol

(
|F |2

1 + σsat|F |2

)
F, (8.3)

describing optical propagation in an effective ‘saturating-Kerr’ medium. We compare

the evolution of identical optical fields subject to both a saturating-Kerr medium

(Eqn. (8.3)) and dynamical BEC (Eqns. (7.3)-(7.4)) in Fig. 8.11, displaying in both

cases the cross section of the optical field. We consider here the radially-averaged cross

section, in r rather than transverse x or y, in order to capture the ejection dynam-

ics within the cross-section regardless of 2D ejection direction. The similarity of both

panels suggests that, under the considered parameters, the dynamic BEC acts as a

Kerr-like superfluid [249], providing a self-focusing medium for the optical field. We

note the slight ζ-mismatch between the position of strongest focusing in each panel,
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which for the saturating-Kerr case is controlled solely by the strength of the Kerr non-

linearity, but within the dynamical BEC case is also impacted by the time taken for

the BEC to re-shape from its initial Thomas-Fermi distribution to match the position

of optical intensity, a process not captured by the idealised saturating-Kerr model.

Saturating Kerr

In BEC

Figure 8.11: Transverse cross sections of an optical field propagating in a saturating
Kerr medium (top) and within a BEC (bottom). For both, βcol = 3.5.

We now return to considering solely the model with a dynamic BEC (Eqns. (7.3)-

(7.4)) and expand the OAM selection of the initial mode. In all cases, we observe

the formation of 2|m| coupled BEC and optical soliton peaks, following the outlined

mechanism for m = 1. Panels (a)-(d) and (i)-(l) of Fig. 8.12 show these 2|m| atomic

and optical solitons, respectively, at ζ = zR. For all m-values, we see the same two

distinct regimes of atomic motion described for m = 1, initially observing an azimuthal

motion of the atomic peaks around the ring, analogous to persistent currents [217].

By extracting the fields around their radii of maximum intensity and calculating the

gradient of any peak motion along these trajectories, we obtain approximations for the

angular velocity of the solitons, and find that across the cases of |m| = 1 → 3 this
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velocity is inversely proportional to m2 and that, in general, this ‘atomic current’ lasts

for ∼ 0.75zR, corresponding to a time period of ∼ 0.1s for the selected parameters.

This suggests a means of realising atomic currents within a BEC over a wide range of

longitudinal propagation distances as determined by the optical Rayleigh range.

(i)(a)
LightBEC

(m)(e)

(j)(b) (n)(f)

(k)(c) (o)(g)

(l)(d) (p)(h)

Figure 8.12: Atom-light cluster formation for m = −1, 1, 2, 3 (top to bottom). Panels
(a)-(d) & (i)-(l): Transverse amplitude distributions of BEC and optical fields, respec-
tively, at ζ = zR. Panels (e)-(h) & (m)-(p): superimposed transverse BEC and optical
amplitude distributions, respectively, ζ = 0.5zR → 4zR. Adapted from Ref. [239].

The atoms then enter a second regime where diffractive dynamics begins to dominate

and the peaks are ejected tangentially to the ring, thus carrying away the angular

85



Chapter 8: Structured Fields II: Atomic Guiding

momentum [148]. This is demonstrated in panels (e)-(h) and (m)-(p) by overlaying a

succession of transverse amplitude distributions from ζ = 0.5zR to 4zR. We superim-

pose rainbow contours to highlight the propagation distance (blue at ζ = 0.5zR, red at

ζ = 4zR). We find that the solitons move with a constant transverse velocity that is

inversely proportional to m. This is particularly evident for the m = −1 and m = 1

cases where the solitons move in opposite directions and agrees very well with previous

studies of fragmentation of OAM beams propagating in Kerr self-focusing media, pre-

dicted in Refs. [148, 149] and more recently demonstrated experimentally in Ref. [60].

The number of atomic solitons formed, and their tangential velocity, which we define

simply as the speed of ejection of the solitons once their period of radial dynamics

finishes, depends on the OAM of the optical input field meaning that it is possible to

realise these controllable atomic transport dynamics across a wide range of longitudinal

propagation distances, transverse field sizes and OAM values.

The overall behaviour of the system is summarised in Fig. 8.13, which shows in 3D (the

two transverse dimensions, (ξ, η), and the propagation dimension ζ) the re-distribution

of the atoms as the far-red-detuned light propagates along the length of the BEC. The

atoms, initially in a Thomas-Fermi distribution, are focused onto a ring before splitting

into 2|m| channels that twist as they propagate.

Figure 8.13: Three-dimensional (ξ, η, ζ) BEC distributions for m = 1 (top), and 2
(bottom), as in Fig. 8.12, between ζ = 0zR → 2.5zR. Transverse scales as in Fig. 8.8.
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The coupled off-axis soliton formation process is robust across a wide range of OAM

values, initial field amplitudes, beam sizes, and BEC scattering parameters for both

weakly attractive and repulsive interactions in the range −20a0 < agg < 50a0 corre-

sponding to −4 < βcol < 11. Three-body loss contributions are negligible for repulsive

scattering, βcol > 0, but become more important for increasingly attractive scattering

interactions. Both optical and atomic solitons propagate tangentially to the ring, car-

rying away its angular momentum, with little change to their shape or amplitude until

they reach the transverse limits of the BEC [239–241].

8.2.2 Bessel-Gaussian Modes

In order to reduce diffraction and therefore increase the duration of the azimuthal

rotation of the coupled atom-light solitons, we replace the LG optical mode with a

matching Bessel-Gaussian mode, as defined in Eqn. (3.41). κBG is chosen so that the

size of the central ring of the BG mode matches that of the equivalent LG mode, as

shown in Fig. 8.14.

150μm

LG BG

Figure 8.14: Transverse amplitude and phase distributions of a LG0
1 mode (left, blue),

as in Fig. 8.8, and matched BG mode (right, yellow). Centre shows comparison of mode
cross sections.

BG beams are solutions to the paraxial wave equation that, by controlling the width

of the Gaussian, encompass as limiting cases the diffraction-free Bessel beam and the

Gaussian beam [122, 123]. Again, the formation of 2|m| coupled solitons is observed.
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The diffractionless optical characteristics of the BG mode obtained when a minimum

of three rings are present in the optical field, in comparison to the LG mode which

diffracts, lead to a 1.2 factor increase of the length that the atoms are confined to the

ring, and a decrease by more than a factor of 2 the radial spread of the solitons at

ζ = 1, shown in Fig. 8.15.

150μm

𝜁 = 1

Figure 8.15: Atomic amplitude distributions, for initial modes of Fig. 8.14, at ζ = 1.
Soliton radius indicated for BG (yellow) and LG (blue) modes, with ratio 1:2.12.

If the scattering length of the BEC moves into moderately attractive interactions

βcol < 0, radial soliton suppression is enhanced, with large portions of atomic density

held around the optical ring. The solitons formed rotate azimuthally with constant

velocity along the entire length of the atomic medium. Such a structure is reminis-

cent of a persistent current, with possible applications in the controllable generation of

atomtronic devices such as atom-SQUIDs [198].

8.2.3 Scalar Mode Superpositions

The ability of coupled optical fields to guide ultracold atoms may be used to create

counter-intuitive, customized atomic transverse distributions through tailored optical

scalar mode superpositions. To exemplify the possibilities we consider two cases: cre-

ation of a ring mode of atoms, analogous to the intensity structure of a vortex soliton,

and natural trapping of atomic clusters in optical darkness. In both cases, we consider

‘dark-seeking’ atoms arising from blue atom-field detuning.
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Atomic Ring Mode Creation

To generate an atomic ring mode, we superimpose two LG modes: a Gaussian of waist

30µm, and a ring mode, constructed with p = 0 and m = 5, of beam waist 60µm.

The initial amplitude for the Gaussian remains unchanged, with the outer ring half as

intense, and Aψ = 0.2AF to ensure the dipole forces are optically driven. The initial

fields are shown in Fig 8.16.

150μm

Atoms

Light

Atoms

Light

Figure 8.16: Atomic ring mode creation in optical darkness for blue atom-field detuning.
Left and right: atomic (upper) and optical (lower) amplitude distributions at ζ = 0zR

(left) and 5zR (right). Centre: atomic 3D distribution between ζ = 0zR → 5zR.

From the 3D rendering of the atomic dynamics for ζ = 0zR → 5zR, the BEC initially

moves rapidly to optical darkness, before its repulsive interatomic collisions and natural

kinetic dispersion drive it to the outer optical ring. Some atoms tunnel past this optical

barrier and are ejected, but a large proportion (∼ 75%) reflect back to become uniformly

trapped in optical darkness, forming a uniform atomic vortex ring. This ring remains

largely propagationally invariant up to 5zR ≈ 2mm, with this mechanism effectively

seeding an intensity structure akin to a 2D atomic vortex soliton [250, 251].

Dark Atomic Cluster Trapping

To generate naturally trapped atomic clusters in optical darkness, we superimpose two

optical ring modes of beam waists 30µm and 60µm, applying OAMs of m = 2 and

8, respectively. This generates six optical vortices around the mode minima, shown

in Fig. 8.17, similar to an optical ‘Ferris wheel’ [63, 252]. When subjected to this

initial optical field, the atomic field again moves to positions of optical darkness, in
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this case forming seven clusters in the positions of the optical vortices. The atoms

then begin to rotate, spiralling around the centre of each cluster in a similar manner

to their red-detuned counterparts of Fig. 8.13, but in this case in atomic darkness.

This phenomenon does not occur without OAM (propagating the modulus of the fields

only), when the atoms are simply trapped in non-rotating clusters.

Atoms

Light

Atoms

Light

150μm

Figure 8.17: Atomic clusters trapped in optical darkness for blue atom-field detuning.
Left and right: atomic (upper) and optical (lower) amplitude distributions at ζ = 0zR

(left) and 5zR (right). Centre: atomic 3D distribution between ζ = 0zR → 5zR.

Our method therefore provides a means of re-shaping a BEC into a custom number of

clusters, which are either coupled atom-light clusters in optical brightness, or atomic

clusters in optical darkness. The dipole driven dynamics lead to a transfer of phase

to the atoms, as summarised by Fig. 8.18, and cause the clusters to follow azimuthal

rotational dynamics [242].

Figure 8.18: Atomic cluster amplitude and phase (inset) profiles at ζ = 5zR for various
optical OAM combinations indicated.
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8.3 Conclusions and Outlook

In Chapter 8, we have built on the capacity for optically-induced atomic reshaping,

showing how intensity-only optical ring modes enabled large atomic densities to be

trapped in off-axis rings. By introducing structured helical phase to the optical field,

cases of azimuthal atomic transport have been realised, using dipole forces to seed

atomic azimuthal motion. With bright-seeking atoms, the atomic medium was ob-

served to be acting as a Kerr-like superfluid, creating numbers of atom-light clusters

proportional to 2|m|. With dark seeking atoms, tailored scalar superpositions of opti-

cal modes were used to realise either atomic ring modes, or a customisable number of

self-trapped atomic clusters, rotating due to the presence of OAM.

Our findings have immediate applications in any cases where a highly tuneable method

of guiding ultracold atoms is required. This includes atomic trapping [25, 33, 253],

where this method offers an alternative approach for guiding and holding atoms in po-

sitions of optical brightness or darkness, potentially offering an additional mechanism

for matter wave Bessel beam creation [254]. Our results also suggest a customisable

means of atomic transport [51, 243]. If additional control of the diffractive optical dy-

namics can be realised to extend the lifetime of such rotational behaviour, as suggested

by findings with optical Bessel-Gaussian beams, atomic transverse manipulation into

fixed radius rotating rings may become possible, for applications towards atomtronic

device generation [198, 255, 256].
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Chapter 9

Theory

In this chapter, we consider the evolution of coupled atomic and optical fields within a

driven optical cavity. In Section 9.1, we introduce such a physical setup, outlining the

differences with the co-propagation case considered in Chapters 5-8. In Section 9.2, we

outline the changes to the nonlinear coupled equations required to model this system.

We show that if the atomic response is instantaneous, the model again reduces to a

single equation, equivalent to that for a Kerr cavity.

9.1 System of Interest

In Chapters 5-8, we considered the co-propagation of optical and ultracold atomic fields

(Fig. 5.1). Now, we consider a driven optical cavity containing a stationary ultracold

atomic medium. A schematic of the system of interest is given in Fig. 9.1.

An optical pump beam, FP, enters a ring-cavity, comprising four highly reflective mir-

rors constructed in such a way that the circulating optical field encounters the station-

ary BEC, ψ, once per round trip. The BEC in the cavity takes a disk geometry in the

transverse plane and is considered ‘thin’ in the longitudinal dimension, Lψ ≈ 10−5m.

It is held stationary in the centre of the optical cavity by additional trapping fields
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Laser

BEC, 

Figure 9.1: Proposed schematic of a driven optical ring cavity containing a BEC.

so that it has no mean atomic velocity, va = 0. In Chapter 10, we consider its initial

structure to be homogeneous, whilst in Chapters 11-12 initial transverse structure is

considered. We again consider a system of Caesium atoms, as in previous chapters,

facilitating a variable scattering length. During the evolution of the optical field there

is a small amount of optical field loss from the mirror interactions, but the continuously

driven pump beam compensates for this during the evolution of the two fields.

We find that a transition to atom-light interactions occurring within a driven optical

cavity, and the temporal control that this setup offers, opens a breadth of further

realisations of atomic transport and trapping. However, before discussing them, we first

consider the required alterations to the model for this second physical configuration.

9.2 Theoretical Model

To derive a model describing the interactions between the ultracold atomic and optical

fields in a driven optical cavity, we follow the mean field approach of Refs. [107, 168].

First, it is necessary to re-derive the coupling between optical and atomic fields, de-

scribed in Part II, for the case of a stationary ultracold atomic medium.
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9.2.1 Coupling Between Optical and Atomic Fields

As outlined in Chapter 5, we consider an ultracold atomic medium consisting of ground

and excited states as described by Eqns. (5.3)-(5.4), and an optical field as described

by Eqn. (5.7). By making the substitution (5.8) to account for dense atomic media, we

arrive at Eqns. (5.9)-(5.10), reproduced here for convenience:

(5.7) :
2iωLn

2

c2
∂tA

′
= −∇2A

′ −
ω2

Ln
2

c2
A

′ −
ω2

L

c2ε0
µΦ

′∗
g Φ

′
ee
i∆t, (9.1)

(5.9) : i~∂tΦ
′
g = − ~2

2ma
∇2Φ

′
g −

1

2
µA

′∗Φ
′
ee
i∆t − 1

2

µ2Φ
′
g

3ε0
|Φ′

e|2 +
4π~2agg

ma
|Φ′

g|2Φ
′
g,

(9.2)

(5.10) : i~∂tΦ
′
e = − ~2

2ma
∇2Φ

′
e −

1

2
µA

′
Φ

′
ge
−i∆t − 1

2

µ2Φ
′
e

3ε0
|Φ′

g|2 − i~
γ

2
Φ

′
e. (9.3)

As the atoms are now considered stationary, with a mean atomic velocity va = 0, we

now assume that the atomic ground and excited states can be written as

Φg
′ → Φg(x, y, z, t), (9.4)

Φe
′ → Φe(x, y, z, t)e

−i∆t (9.5)

where ∆ = ωL − ωa is the detuning between the optical and atomic fields.

From Eqn. (9.5), we obtain

∂Φ′e
∂t

=

(
∂Φe

∂t
− i∆Φe

)
e−i∆t,

and Eqns. (9.1)-(9.3) then become

2iωLn
2

c2
∂tA

′
= −∇2A

′ −
ω2

Ln
2

c2
A

′ −
ω2

L

c2ε0
µΦ∗gΦe, (9.6)

i~
∂Φg

∂t
= − ~2

2ma
∇2Φg −

µ

2
A

′∗Φe −
µ2

6ε0
|Φe|2Φg +

4π~2agg

ma
|Φg|2Φg, (9.7)

i~
∂Φe

∂t
= − ~2

2ma
∇2Φe −

µ

2
A

′
Φg −

µ2

6ε0
|Φg|2Φe − i~

γ

2
Φe − ~∆Φe. (9.8)
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As before (Eqn. (5.11)), the optical field takes the form

A
′ → A(x, y, z, t)eikLz,

with kL = ωLn/c. The three field equations then become

2iωLn
2

c2

∂A

∂t
= −∇2

⊥A− 2ikL
∂A

∂z
−
ω2

Lµ

c2ε0
Φ∗gΦee

−ikLz, (9.9)

i~
∂Φg

∂t
= − ~2

2ma
∇2Φg −

µ

2
AΦee

−ikLz − µ2

6ε0
|Φe|2Φg +

4π~2agg

ma
|Φg|2Φg, (9.10)

i~
∂Φe

∂t
= − ~2

2ma
∇2Φe −

µ

2
AΦge

ikLz − µ2

6ε0
|Φg|2Φe − i~

γ

2
Φe − ~∆Φe. (9.11)

Performing an adiabatic elimination of the excited atomic state from the dynamics

and again neglecting the term corresponding to spontaneous emission, we arrive at a

description of the excited atomic state

Φe = −µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0~∆
|Φg|2

)
. (9.12)

Details of the procedure used to reach this expression are given in Appendix B.1.

Substituting Eqn. (9.12) into the equations for the optical and ground state atomic

fields, Eqns. (9.9) and (9.10), respectively,

i
n

c

∂A

∂t
+ i

∂A

∂z
+

1

2kL
∇2
⊥A =

skLµ
2

4n2ε0~|∆|

(
1−

(
µ

2~|∆|

)2

|A|2 − µ2

6sε0
|Φg|2

)
|Φg|2A,

(9.13)

i
∂Φg

∂t
+

~
2ma
∇2Φg =

[
s|∆|

(
µ

2~|∆|

)2
(

1−
(

µ

2~|∆|

)2

|A|2 − µ2

6ε0
|Φg|2

)
|A|2

− µ2

6~ε0

(
µ

2~|∆|

)2(
1−

( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)2

|A|2|Φg|2 +
4π~agg

ma
|Φg|2

]
Φg,

(9.14)

where s now represents the sign of ∆. Full details are provided in Appendix B.2.
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We now introduce several re-scalings to simplify the form of Eqns. (9.13)-(9.14). We

re-define a new atomic field variable, ψ, given by

ψ =
µ

2n

√
kL

ε0~|∆|
Φg, (9.15)

and a new optical field variable, F , given by

F =
µ

2~

√
1

|∆|
A. (9.16)

Eqns. (9.13)-(9.14) then become

i
n

c

∂F

∂t
+ i

∂F

∂z
+

1

2kL
∇2
⊥F = s

(
1− |F |

2

|∆|

)
|ψ|2F − 2n2

3kL
|ψ|4F, (9.17)

i
∂ψ

∂t
+

~
2ma
∇2ψ = s

(
1− |F |

2

|∆|
− 2n2

3kL
|ψ|2

)
|F |2ψ

− 2n2

3kL

(
1− |F |

2

|∆|
− 2n2

3kL
|ψ|2

)2

|F |2|ψ|2ψ +
16πn2ε0~2agg|∆|

kLmaµ2
|ψ|2ψ.

(9.18)

Finally, we introduce the parameters

βdd =
2n2

3kL
, (9.19)

and βcol =
16πn2ε0~2agg|∆|

kLmaµ2
, (9.20)

corresponding to the dipole-dipole and interatomic forces, respectively, to arrive at a

set of coupled equations:

i
n

c

∂F

∂t
+ i

∂F

∂z
+

1

2kL
∇2
⊥F = s

(
1− |F |

2

|∆|

)
|ψ|2F − βdd|ψ|4F, (9.21)

i
∂ψ

∂t
+

~
2ma
∇2ψ = s

(
1− |F |

2

|∆|
− βdd|ψ|2

)
|F |2ψ

− βdd

(
1− |F |

2

|∆|
− βdd|ψ|2

)2

|F |2|ψ|2ψ + βcol|ψ|2ψ. (9.22)

97



Chapter 9: Theory

As in the propagation case, we consider terms in |∆|−1 to be negligible, and recognise

that β2
dd → 0. This leaves us with the coupled equations

i
n

c

∂F

∂t
+ i

∂F

∂z
+

1

2kL
∇2
⊥F = s|ψ|2F − βdd|ψ|4F, (9.23)

i
∂ψ

∂t
+

~
2ma
∇2ψ = s|F |2ψ − 2βdd|F |2|ψ|2ψ + βcol|ψ|2ψ. (9.24)

These equations take a similar form to Eqns. (5.55)-(5.56) of Ref. [33], as derived in

Part II, but contain different scalings of the fields, and different definitions of the system

parameters.

9.2.2 Atom-Light Interactions in a Driven Optical Cavity

We now perform a mean field derivation, following the procedures of Refs. [107, 168]

to describe the interactions of a stationary ultracold atomic medium and an optical

field, as described by Eqns. (9.23)-(9.24), where the interactions occur within a driven

optical cavity.

We consider a cavity of length L, with the ultracold atomic medium of length L, where

L >> L, ensuring a BEC of disk-like geometry. For simplicity we write Eqn. (9.23) as

n

c

∂F

∂t
+
∂F

∂z
= iν∇2

⊥F − iςF, (9.25)

where ν =
1

2kL
, (9.26)

and ς = s|ψ|2 − βdd|ψ|4, (9.27)

providing a generic nonlinear Schrödinger equation description of the optical field dy-

namics, similar to Eqn. (3.27).

The cavity is driven with an injected transverse field FP(x, y), as outlined in Fig. 9.1.

The output mirror has very high reflectivity R, and so the transmittivity, T , defined

as T = 1−R, will be very close to 0.
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Setting z = 0 to be the entry point to the atomic medium, we apply the longitudinal

boundary condition that

F (x, y, 0, t) = eDA

(
x, y, L, t− L− L

c

)
+
√
TFP(x, y), (9.28)

where D = ln
√
R− iδ + i(L − L)ν∇2

⊥, (9.29)

δ =
(ωc − ωP)L

c
, (9.30)

and ωc is the longitudinal cavity mode frequency closest to the input frequency ωP.

We now perform the mean field transformation on temporal and longitudinal variables

z and t, respectively. We define

z′ = z, (9.31)

t′ = t+

[
L − L
c

]
z

L
. (9.32)

The partial derivatives of these transformations are given by

∂z′ = ∂z −
[
L − L
c

]
1

L
∂t′ , (9.33)

∂t′ = ∂t. (9.34)

Using Eqn. (9.28), we define

Γ = exp

(
Dz
L

)
(9.35)

to introduce a new circulatory optical field

F ′ = ΓF +

√
Tz

L
FP. (9.36)

Combining Eqn. (9.25) with Eqns. (9.35)-(9.36),

n

c
∂tF

′ + ∂zF
′ =

n

c
∂t

[
ΓF +

√
Tz

L
FP

]
+ ∂z

[
ΓF +

√
Tz

L
FP

]
,
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=
n

c
Γ∂tF +

D
L

ΓF + Γ∂zF +

√
T

L
FP,

=
D
L

ΓF + Γ
(n
c
∂tF + ∂zF

)
+

√
T

L
FP,

=
D
L

(
F ′ −

√
Tz

L
FP

)
+ Γ

(
iν∇2

⊥F − iςF
)

+

√
T

L
FP, (9.37)

which, applying Eqns. (9.31)-(9.34), gives

(
n

c
+

[
L − L
c

]
1

L

)
∂t′F

′ + ∂z′F
′ =
D
L

(
F ′ −

√
Tz

L
FP

)
+ Γ

(
iν∇2

⊥F − iςF
)

+

√
T

L
FP,

⇒
[
L+ L(n− 1)

cL

]
∂t′F

′ + ∂z′F
′ =
D
L

(
F ′ −

√
Tz

L
FP

)
+ Γ

(
iν∇2

⊥F − iςF
)

+

√
T

L
FP. (9.38)

The mean field limit requires that T is very small, and so
√
R ≈

√
1− T ≈ 1 − T/2

and ln
√
R ≈ ln(1− T/2) ≈ −T/2. Eqn. (9.29) then becomes

D ≈ −T
2
− iδ + i(L − L)ν∇2

⊥, (9.39)

and Eqn. (9.35) becomes

Γ ≈ 1 +
Dz
L
. (9.40)

Using Eqns. (9.39)-(9.40), we may re-write Eqn. (9.38) as

[
L+ L(n− 1)

cL

]
∂t′F

′ + ∂z′F
′ =
D
L

(
F ′ −

√
Tz

L
FP

)
+ Γ

(
iν∇2

⊥F − iςF
)

+

√
T

L
FP,

=
1

L

(
F ′ −

√
Tz

L
FP

)(
−T

2
− iδ + i(L − L)ν∇2

⊥

)
+
(
iν∇2

⊥ΓF − iςΓF
)

+

√
T

L
FP,
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and by again applying Eqn. (9.36) to the second line, we obtain

[
L+ L(n− 1)

cL

]
∂t′F

′ + ∂z′F
′ =

1

L

(
F ′ −

√
Tz

L
FP

)(
−T

2
− iδ + i(L − L)ν∇2

⊥

)

+

(
iν∇2

⊥

(
F ′ −

√
Tz

L
FP

)
− iς

(
F ′ −

√
Tz

L
FP

))
+

√
T

L
FP.

(9.41)

Considering only the first order terms in Eqn. (9.41),

[
L+ L(n− 1)

cL

]
∂t′F

′ + ∂z′F
′ =

1

L

(
−T

2
− iδ + i(L − L)ν∇2

⊥

)
F ′ + iν∇2

⊥F
′ − iςF ′

+

√
T

L
FP,

=
1

L

(
−T

2
− iδ

)
F ′ + i

L
L
ν∇2
⊥F
′ − iςF ′ +

√
T

L
FP,

=
T

2L

(
−1− i2δ

T

)
F ′+ i

L
L
ν∇2
⊥F
′−iςF ′+

√
T

L
FP.

(9.42)

Expanding Eqn. (9.42) in longitudinal Fourier modes, and retaining only the mode

closest to wP, where the term ∂z′F
′ = 0, gives

[
L+ L(n− 1)

c

]
∂t′F

′ =
T

2

(
−1− i2δ

T

)
F ′ + iLν∇2

⊥F
′ − iςLF ′ +

√
TFP,

=
T

2

[(
−1− i2δ

T

)
F ′ + i

2Lν
T
∇2
⊥F
′ − i2Lς

T
F ′ +

2√
T
FP

]
,

⇒ ∂t′F
′ = κ

[
− (1 + iθ)F ′ + iν ′∇2

⊥F
′ − i2Lς

T
F ′ + F ′P

]
, (9.43)

where we have introduced the terms

κ =
cT

2 (L+ L(n− 1))
, (9.44)

θ =
2δ

T
, (9.45)

ν ′ =
2Lν
T

, (9.46)
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and F ′P =
2√
T
FP (9.47)

to obtain a generic form of the Lugiato-Lefever equation [168].

For the specific case of a BEC, we now re-introduce the nonlinear contributions to the

optical field from the atomic field in a parameter ζ, Eqn. (9.27). In this case, Eqn. (9.43)

takes the form

∂t′F
′ = κ

[
− (1 + iθ)F ′ + iν ′∇2

⊥F
′ − i2L

T

(
s|ψ|2 − βdd|ψ|4

)
F ′ + F ′P

]
. (9.48)

The coupled atomic field was last described in Eqn. (9.24) as

i
∂ψ

∂t
+

~
2ma
∇2ψ = s|F |2ψ − 2βdd|F |2|ψ|2ψ + βcol|ψ|2ψ.

We recall that the optical field was transformed from F → F ′ according to Eqn. (9.36),

and, as we went on to expand in longitudinal modes, terms in ∂z will be zero. Further-

more, as in the mean field limit T is small, the definition of Γ may be approximated

subject to Eqn. (9.40). The second term is again neglected by the mode expansion,

which leads to a simple relationship linking the two fields:

F ′ ≈ F. (9.49)

Transforming the temporal derivative of Eqn. (9.24) from t → t′, and applying Eqn.

(9.34), gives

i∂t′ψ +
~

2ma
∇2
⊥ψ = s|F ′|2ψ − 2βdd|F ′|2|ψ|2ψ + βcol|ψ|2ψ. (9.50)

Finally, as in Part II, we introduce a term in the atomic dynamics corresponding to

three-body atomic losses. The evolution of the atomic field is then given by

∂t′ψ = i
~

2ma
∇2
⊥ψ − i

(
s|F ′|2ψ − 2βdd|F ′|2|ψ|2ψ + βcol|ψ|2ψ − iL3|ψ|4ψ

)
. (9.51)
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Combining Eqns. (9.48) and (9.51) provides the dynamics of a stationary ultracold

atomic field and an optical field, within a driven optical cavity, described by

∂t′F
′ = κ

[
− (1 + iθ)F ′ + iν ′∇2

⊥F
′ − i2L

T

(
s|ψ|2 − βdd|ψ|4

)
F ′ + F ′P

]
, (9.52)

∂t′ψ = i
~

2ma
∇2
⊥ψ − i

(
s|F ′|2ψ − 2βdd|F ′|2|ψ|2ψ + βcol|ψ|2ψ − iL3|ψ|4ψ

)
. (9.53)

For the consideration of spatially defined fields in later sections of this thesis, we now

scale the transverse spatial variables as in Part II:

(ξ, η) =

√
2(x, y)

wL
, (9.54)

with wL a characteristic waist size of the optical beam. Eqns. (9.52)-(9.53) then become

∂t′F
′ = κ

[
− (1 + iθ)F ′ + i

2ν ′

w2
L

∇2
⊥F
′ − i2L

T

(
s|ψ|2 − βdd|ψ|4

)
F ′ + F ′P

]
, (9.55)

∂t′ψ = i
~

maw2
L

∇2
⊥ψ − i

(
s|F ′|2ψ − 2βdd|F ′|2|ψ|2ψ + βcol|ψ|2ψ − iL3|ψ|4ψ

)
. (9.56)

We also introduce a rescaled time τ = κt′, where for n = 1

τ =
cT

2L
t′, (9.57)

to arrive at the coupled equations

∂τF
′ = − (1 + iθ)F ′ + i

2ν ′

w2
L

∇2
⊥F
′ − i2L

T

(
s|ψ|2 − βdd|ψ|4

)
F ′ + F ′P, (9.58)

∂τψ = κ−1

[
i

~
maw2

L

∇2
⊥ψ − i

(
s|F ′|2ψ − 2βdd|F ′|2|ψ|2ψ + βcol|ψ|2ψ − iL3|ψ|4ψ

)]
.

(9.59)

By rescaling the two fields according to

F ′′ = wL

√
ma

~
F ′, (9.60)
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ψ′ = wL

√
kLψ, (9.61)

we obtain the coupled equations

∂τF
′′ = − (1 + iθ)F ′′ + i

2ν ′

w2
L

∇2
⊥F
′′ − i2L

T

1

kLw2
L

(
s|ψ′|2 − 1

kLw2
L

βdd|ψ′|4
)
F ′′

+ wL

√
ma

~
F ′P, (9.62)

∂τψ
′ =

~
maw2

L

κ−1

[
i∇2
⊥ψ
′ − i

(
s|F ′′|2ψ′ − 2

kLw2
L

βdd|F ′′|2|ψ′|2ψ′ +
ma

~kL
βcol|ψ′|2ψ′

− i ma

~k2
Lw

2
L

L3|ψ′|4ψ′
)]
. (9.63)

We now introduce the new parameters

β′col =
ma

~kL
βcol, β′dd =

1

kLw2
L

βdd, L′3 =
ma

~k2
Lw

2
L

L3,

αψ′ =
~

maw2
L

, αF ′′ =
2ν ′

w2
L

, F ′′P = wL

√
ma

~
F ′P, (9.64)

and, for convenience, neglect prime notation to obtain coupled nonlinear equations that

describe the temporal evolution of an optical field F , within a driven (FP ) optical ring

cavity, which interacts with a stationary ultracold atomic field ψ once per round trip:

∂τF = − (1 + iθ)F + iαF∇2
⊥F − i

2L

TkLw2
L

(
s|ψ|2 − βdd|ψ|4

)
F + FP, (9.65)

∂τψ =
αψ
κ

[
i∇2
⊥ψ − i

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2 − iL3|ψ|4

)
ψ

]
. (9.66)

The model provided by Eqns. (9.65)-(9.66) again has a ‘2D+1’ dimensionality, as in

Part II, but with the two transverse dimensions (ξ, η) now evolving in the temporal

domain τ , defined in Eqns. (9.32) and (9.57). We summarise the various terms and

parameters within this model in Appendix C.
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We note that it is generally optimal, but not necessary, to consider αF , αψ/κ ≈ 1.

Under these limits, we see that

2L
kLw2

LT
= 1,

⇒ L
zRT

= 1, (9.67)

and
2~L

maw2
LcT

= 1, (9.68)

which places conditions upon the experimental parameters. For example, with a se-

lection of L ≈ 10−2m, T ≈ 10−2, and wL ≈ 480µm, αF remains unitary with realistic

parameter selections. We emphasise that this is not a physical requirement of the

system, and simply represents one potential operating regime.

As in Eqn. (7.3), Eqn. (9.66) provides a Gross-Pitaevskii based description of the tem-

poral dynamics of the ultracold atomic field ψ. Again, it includes the terms i∇2
⊥ψ

representing the kinetic energy contributions of the BEC atoms, s|F |2 representing a

dipole induced focusing or defocusing dependent on the sign of the detuning s, βcol|ψ|2

representing interatomic scattering between the BEC atoms controlled by βcol, and

−iL3|ψ|4 representing the contributions of three-body atomic loss.

Eqn. (9.65) provides a Lugiato-Lefever based description of the temporal evolution of

the circulating optical field F [107, 168]. As in Eqn. (7.4), it includes the term i∇2
⊥F

representing the field’s diffraction, with s|ψ|2 representing a dipole induced focusing or

defocusing nonlinearity dependent on the sign of the detuning s. However, it also now

includes a term in FP, which represents contributions from an optical pump that drives

the cavity, and the terms [− (1 + iθ)F ], loss and detuning terms respectively.

9.2.3 Optical-Only Reduction

In a similar approach to that outlined in Chapter 5.2.2, Eqns. (9.65)-(9.66) may be

reduced through a further adiabatic procedure that assumes an instantaneous atomic

medium. Under these conditions, the atomic medium may be related to the optical
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field through Eqn. (5.58):

|ψ|2 = − s

βcol
|F |2.

We emphasise that, as discussed around Eqn. (5.58), restrictions upon the selections of

s and βcol exist when applying this reduction to ensure that Eqn. (5.58) remains valid.

Substituting this into Eqn. (9.65), we obtain

∂τF = FP − (1 + iθ)F + i∇2
⊥F + i

|F |2

βcol
F, (9.69)

where we recognise that s2 ≡ 1.

Eqn. (9.69) provides a Kerr-like description of the circulating optical field [107, 168],

with the medium’s nonlinear strength again proportional to 1/βcol. When βcol > 0, the

optical field evolves in a self-focusing Kerr cavity, and, when βcol < 0, the optical field

evolves in a self-defocusing Kerr cavity. This relationship is analogous to the familiar

Lugiato-Lefever description of optical dynamics within a driven optical cavity [168].

9.3 Conclusions and Outlook

In Chapter 9, we considered an alternative physical setup of a driven optical ring cavity

containing a BEC. Following the mean-field approach, we derived Eqns. (9.65)-(9.66)

that describe the evolution of the two optical and atomic fields involved.

In the remaining chapters of this section, we will consider the effects of a variety of

initial field structures. We begin by considering the dynamics of both fields when

initially homogeneous (Chapter 10), before considering a variety of initially structured

field forms, grouped predominantly with blue atom-field detuning (Chapter 11) and

then latterly red atom-field detuning (Chapter 12).

106



Chapter 10

Homogeneous Fields

In this chapter, we consider the coupled dynamics of atomic and optical fields under

initially homogeneous conditions, with the interactions occurring within an optical cav-

ity as described by Chapter 9. In Section 10.1, we report on the realisation of coupled,

interleaved spontaneous pattern formation in both fields for blue atom-field detuning.

In Section 10.2, we specifically consider regions of bistability between homogeneous and

pattern states within the system, and report on several realisations of hysteresis cycles

in both atomic and optical fields. In Section 10.3, we consider the far broader regions

of monostable solutions within the system, and report on the breadth of spontaneous

pattern types we realise in both atomic and optical fields. Finally, in Section 10.4, we

report on the realisation of coupled, or interleaved, atom-light cavity solitons, for both

blue and red atom-field detuning.

10.1 Spontaneous Pattern Formation

We consider the co-evolution of optical and atomic fields, described by Eqns. (9.65)-

(9.66), with initially homogeneous BEC and optical pumps, similar to the procedure

followed for co-propagating homogeneous fields in Chapter 6. Here, the optical pump
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amplitude is decreased to AP = 3 given its driven, rather than single pass, nature. We

also lower the initial BEC amplitude to Aψ = 0.1, thereby accounting for the updated

atomic field normalisation condition of Eqn. (9.61) to maintain a similar atom number

to that considered in Part II. We again apply noise to the initial BEC, ψ, and optical,

F , fields at the 1% level of Aψ in both cases (such that the initial optical field solely

contains noise).

Our parameter selection remains designed to represent a BEC of Caesium atoms, allow-

ing exploitation of the wide range of scattering lengths accessible around its Feshbach

resonance [232, 238]. We initially select βcol = 0.25, corresponding to weakly repul-

sive interactions of agg ≈ 1.5a0, to ensure that repulsive atomic interactions do not

dominate the system. We maintain a three body loss selection of L3 ≈ 10−4, and se-

lect s = 1, representing blue atom-field detuning, with atoms (as in the propagation

case) attracted to positions of optical darkness. We begin by considering the case of

L ≈ 10−2m and T ≈ 10−2, such that κ−1 ≈ 10−8.

Under these conditions, the fields behave as shown in Fig. 10.1, where we observe

signatures of coupled spontaneous pattern formation in both atomic and optical fields

for a range of different selections of the cavity detuning parameter, θ.

Light

Atoms

400

Figure 10.1: BEC (upper) and optical (lower) transverse distributions at τ and θ-values
indicated. Fixed parameters: βcol = 0.25, AP = 3, L3 = 0.00022, s = 1, Aψ = 0.1. Each
field is plotted between minimum and maximum amplitude.
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Although pattern formation clearly occurs in Figure 10.1, their clarity is rather limited,

particularly for θ selections that lie closer to zero. We find that the κ parameter within

the numerical model of Eqns. (9.65)-(9.66) acts as an effective control upon the pattern

clarity, with this improved the closer κ−1 lies to 1. From Eqn. (9.57),

κ−1 =
2L
cT
, (10.1)

and it follows that the limit κ−1 → 1 may be realised by either a decrease in the

transmittivity of the mirrors forming the cavity (T ), an increase in the length of the

cavity (L), or a combination of both.

We now justify our selection of this regime by demonstrating the potential capabilities

for enhanced ultracold atomic pattern formation within it. Increasing the initial BEC

amplitude to Aψ = 2 to ensure that it also contributes to the dipole nonlinearity

between the fields, returning the scattering length to an initially similar value to that

used in Part II of βcol = 2, corresponding to weakly repulsive interactions of agg ≈ 12a0,

and with all other procedures remaining as already outlined, we find that significantly

enhanced pattern formation becomes readily accessible, as shown in Fig. 10.2 for the

case of κ−1 ≈ 10−1.

Light

Atoms

400

Figure 10.2: BEC (upper) and optical (lower) transverse distributions at τ -values indi-
cated. Fixed parameters: θ = −1, βcol = 2, AP = 3, L3 = 0.00022, s = 1, Aψ = 2. Each
field is plotted between 0 and maximum amplitude.
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For this specific parameter selection, we observe a progressive pattern evolution through

transient coupled spots and stripes, then labyrinths, before settling on a steady pattern

of broad atomic clusters and coupled optical hexagons by τ = 2000. We find that these

patterns persist past τ = 104.

We also consider the same dynamics in a one dimensional (1D) reduction, in a similar

approach to that used in Ref. [155] where peaks and holes formed, providing an indi-

cation of the pattern wavelength of the full two 2D system throughout its evolution.

Unlike in earlier chapters of this thesis, where a reduction to 1D reflected a reduction

to a single azimuthal dimension around a transverse ring, here it simply represents

a reduction to one transverse dimension, still of length 400µm, which we label as ξ.

Again, we use the description provided by Eqns. (9.65)-(9.66) and identical parameters

to those of Fig. 10.2. The evolution of such 1D atomic and optical fields to τ = 2000

are shown in Fig. 10.3.

Atoms

Light

Figure 10.3: BEC (upper) and optical (lower) 1D field evolution between τ = 0→ 2000
to match 2D panels of Fig. 10.2. Fixed parameters: θ = −1, βcol = 2, AP = 3, L3 =
0.00022, s = 1, Aψ = 2. Each field is plotted between 0 and maximum amplitude.

We find that the 1D reduction here provides an excellent analogue of the full 2D process,
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and observe the onset of patterns for τ ≈ 175 in both cases. In 2D, these patterns are

spots and stripes, whereas in 1D they are a set of optical peaks and atomic minima. The

region of these patterns grows in 1D, similar to 2D, with further peak-minima structures

spontaneously appearing. Shortly before τ = 500, the system enters a new regime in

both 2D and 1D. In 2D, this corresponded to the onset of a larger, labyrinth-like

pattern, with the stripes progressively joining together. In 1D, we have entered a more

organised region of peak-minima structures. Over the remaining evolution to τ = 2000

the spacing between the peak-minima structures in 1D steadily becomes more uniform,

reflective of the 2D re-organisation into atomic cluster and optical hexagon structures,

with the number of 1D structures closely matching the number of 2D cluster-hexagons.

The ability of the system to form spontaneous coupled atom-light patterns in both

2D and 1D, as demonstrated across Figs. 10.1-10.3, opens the potential of a number of

physical phenomena to also be accessible within this system, including bistable solutions

that demonstrate hysteresis, a plethora of transverse pattern formations across both

coupled fields, and the presence of cavity solitons. Over the next sections of this chapter,

we explore each case in turn.

10.2 Bistability

Considering further the presence of potential bistable solutions between homogeneous

and pattern states within Eqns. (9.65)-(9.66) when κ−1 ≈ 10−1, we now use the static

assumption reached in Eqn. (9.69) to obtain stationary solutions following the form

AP = (1 + iθ)FS − i
|FS|2

βcol
FS,

⇒ |AP|2 = |FS|2
(

1 +

[
θ − |FS|2

βcol

]2
)
. (10.2)

As with the Lugiato-Lefever description of an optical field evolving within a self-

focusing, driven optical cavity [168], these solutions provide an analytical link between

the intensity of the pump |FP|2 and a stationary optical field |FS|2, with the self-focusing

strength now given by the inverse of βcol. We therefore use Eqn. (10.2) to plot |FP|2
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against |FS|2 for several θ and βcol combinations in Fig. 10.4.

(b) (c)(a)

Figure 10.4: Stationary solutions of Eqn. (10.2) for indicated θ-values and βcol = (a)
-3.5, (b) 1.5, and (c) 2.5.

As in Ref. [168], the presence of sigmoidal curves in Fig. 10.4 suggest that, for all

values of βcol considered, there are regions of bistability present within the system,

meaning that at a certain fixed value of pump strength FP there exists (at least)

two stable solutions of the system. As can be seen from Fig. 10.4(b)-(c), the region of

bistability steadily grows as |βcol| increases, with the amplitude of optical pump strength

required to reach bi-stable regions also growing in turn. There is also an inversion in

the relationship, with positive cavity detuning selections exhibiting hysteresis when

βcol > 0, and negative cavity detuning selections exhibiting hysteresis when βcol < 0.

To test whether such regions of bistability occur for the dynamically evolving BEC of

Eqns. (9.65)-(9.66), we alter the cavity detuning in a cyclic progression whilst maintain-

ing a fixed value of the input pump amplitude. The cavity detuning is increased from

θ = −7.5→ 7.5 linearly over a period τ = 105, before the identically inverse procedure

is followed. We plot the average optical field intensity |F |2 against θ in Fig. 10.5 for

various selections of AP.

In regions of bistability, one would expect to see that the positive and negative paths of

Fig. 10.5 follow separate trajectories, with them following a similar trajectory in regions

of monostability [257]. The yellow shaded region in Fig. 10.5(c), which considers the

previously studied case of AP = 3, shows such a divergence for small positive θ-values
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(b) (c)(a) (d)

Figure 10.5: Average optical field intensity |F |2 against the cavity detuning θ in the
progression θ = −7.5 → 7.5 (blue) and θ = 7.5 → −7.5 (red). Windows show (fixed)
AP = (a) 1.0, (b) 2.0, (c) 3.0, and (d) 4.0.

present in Fig. 10.4. The average value of the field for increasing cavity detuning (shown

in blue) lies above the average value obtained when decreasing cavity detuning (shown

in red). This is indicative of a bistable solution, with the lower branch corresponding

to a homogeneous field jumping to a patterned state at a threshold cavity detuning.

The upper branch in this region shows instead a steady decay of pattern intensity,

eventually returning to homogeneous solutions and a region of monostability. In this

region the system follows a hysteresis cycle; altering the cavity detuning in this region

will follow the cyclic passage shown in Fig. 10.5(c).

We also find a second clear region of bistability within the system for moderately

negative cavity detuning, indicated by the pink shading in Fig. 10.5(c). This time

the negatively changing cavity detuning path sits above the positively changing path.

Bistability was predicted for such values of θ in the case of an instantaneous BEC, but

only with negative βcol, as shown in Fig. 10.4. We find that the alteration to dynamically

evolving atoms widens this parameter space, with the system also demonstrating a

hysteresis cycle in this region with βcol = 2.

Considering all panels of Fig. 10.5, representing equivalent studies for various static

pump amplitudes, we find that the pump amplitude provides an effective control over

the presence and size of bistability, and thus hysteresis behaviour, obtained. We find

that for too low a pump strength, AP = 1, both regions of bistability are closed, and

the system is entirely monostable. As AP is increased to AP = 2, the first region clearly
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visible is the region of negative detuning. It is only for AP > 2 that we observe a bistable

regime for positive cavity detuning, indicative of the requirement for a patterned state

and thus a need to exceed a threshold pump strength. This suggests that there is an

analogy between changes in the pump strength and changes in the atomic scattering

length in the model of Eqns. (9.65)-(9.66), given the ability of each to realise regions

of bistability.

To further demonstrate the behaviour of the system, we perform an alternative cyclic

operation now with the pump strength, initially increasing AP from |AP|2 = 0 → 10

with an initial optical field of noise, each step for τ = 5000 round trips. We then

decrease the pump strength, returning it iteratively to |AP|2 = 0 in the same number

of intervals and time progression, with the initial optical field now being the previous

pattern. Before each AP change, we plot the maximal optical field power, |Fmax|2,

against |AP|2, shown in Fig. 10.6.

The two trajectories of Fig. 10.6 are again indicative of a bistable solution, causing

the system to follow a hysteresis cycle. When the pump power is steadily increased, as

shown by the upward arrowhead markers, an initially noisy system follows a path where

the maximum value of the final field amplitude is notably lower than at the equivalent

pump strength of starting from a pattern state, given by the downward arrowhead

markers. These two different trajectories occur as the system follows the two paths of

a sigmoidal trajectory, similar to those of Fig. 10.4. When |AP|2 > 8, a monostable

regime is reached, indicated by the coalescing of both upward and lower cycles to form

one combined trajectory.

Also shown in Fig. 10.6 are the transverse distributions of the BEC and optical fields,

normalised to the same maximum amplitude, for various pump strengths. These dis-

tributions further clarify certain features. Initially, when starting from noise (lower

distributions), the system follows a branch of homogeneous solutions, with the rapid

jump before |AP|2 = 8 corresponding to the jump to the pattern state. When start-

ing from a pattern state (upper distributions), the system follows a different branch,

with patterns organised into a much more uniform structure of peaks and holes. These
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Figure 10.6: Hysteresis from Eqns. (9.65)-(9.66), for |AP|2 = 0 → 10, at τ = 5000
for each step. Central section: final maximum optical power |Fmax|2 starting from
initial optical noise (up arrow) and starting from initial optical pattern (down arrow).
Upper (from noise) and lower (from pattern) portions: BEC (upper rows) and optical
(lower rows) transverse intensity distributions for indicated |AP|2 and |Fmax|2. Fixed
parameters: θ = 0.4, βcol = 1.5, L3 = 0.00022, s = 1, Aψ = 2. Fields plotted between 0
and maximum amplitude of all panels.
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patterns also remain for much lower |AP|2 values than previously, with the BEC spots

steadily growing as the pump strength decreases, becoming a single stripe, and finally

dropping to the homogeneous solution branch for |AP|2 ≈ 3. We find that larger θ-

values cause the cycle to grow wider and occur at progressively higher pump strengths.

10.3 Monostable Pattern Varieties

In addition to the holes, peaks and stripes already outlined in pattern regimes, we

find a far greater wealth of patterns accessible within alternative, typically monostable,

regions when κ−1 ≈ 10−1. To demonstrate this, we sequentially vary a series of experi-

mentally accessible ‘control parameters’ (the BEC scattering length βcol, optical pump

strength AP or cavity detuning θ), holding all other parameters values static, reporting

on the patterns achieved with each change.

10.3.1 Atomic Scattering Length

We begin by considering the variety of patterns obtained as the BEC scattering length,

βcol, is altered. Such a change is possible by altering the magnetic field that the

atoms are subject to over time [232]. We find several transitions between different

pattern regimes, as shown in Fig. 10.7, which gives the optical and BEC transverse

field distributions at τ = 2000.

Initially, with the BEC’s scattering length weakly negative, βcol = −2, the atoms

are subjected to attractive interactions with one another, naturally localising. These

interactions are the dominant force in the dynamics, and so the BEC organises into

narrow, localised solitary peaks. With blue atom-field detuning, the optical field re-

organises into a series of hole clusters in an otherwise uniform field. With βcol = 0,

and the BEC not being subject to any inter-atomic forces, we find that the region of

coupled structure formation narrows, and the region of uniform optical field presence

grows. The spatial scales of the BEC’s peaks also grow, becoming broader clusters with

the BEC’s tendency to localise no longer a consideration.

If the BEC is subject to repulsive inter-atomic interactions, βcol ≈ 2, we obtain the
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Figure 10.7: BEC (upper) and optical (lower) transverse distributions at τ = 2000
for BEC scattering lengths indicated. Fixed parameters: θ = −1, AP = 3, L3 =
0.00022, s = 1, Aψ = 2. Each field is plotted between 0 and maximum amplitude.

familiar broad atomic cluster and optical hexagons, as outlined in Fig. 10.7. With

stronger repulsive scattering, we again transition to different pattern regimes, first

passing through a region of rolls at βcol = 4, before obtaining an organised distribution

of atomic holes, with corresponding optical peaks, for βcol = 6. Such a structure is

approximately the inverse of that obtained for βcol = 2, though the spatial scales are

somewhat altered.

We emphasise that for βcol = 2 → 6 there are a wealth of accessible patterns, and

we observe the transient dynamics of various pattern transitions across the transverse

planes of both fields. We summarise such behaviour in Fig. 10.8, where we consider

the evolution of the coupled fields between τ = 0 → 2000, where various pattern

progressions are exhibited as the system seeks a steady state.

Considering again Fig. 10.7, we find that pattern formation remains attainable until

βcol > 8, when repulsive interactions entirely suppress formation. We also inset, for

all patterns considered, the far fields of each distribution. We find that, similarly to

Ref. [179], the number of peaks in the far field reflects the pattern variety, with the

clarity of the far field peaks reflecting the clarity of the near field. In the majority of

cases in Fig. 10.7, we obtain six far field peaks, corresponding to a hexagonal pattern
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400

Figure 10.8: BEC (lower diagonal) and optical (upper diagonal) transverse distributions
between τ = 0 → 2000 for BEC scattering lengths as indicated, displaying various
transient pattern progressions. Fixed parameters: θ = −1, AP = 3, L3 = 0.00022, s =
1, Aψ = 2. Each field is plotted between 0 and maximum amplitude.

instability seeded by quadratically nonlinear terms [171, 258, 259]. There are also cases

where we observe two peaks in the far field, characteristic of the roll pattern instability

observed. Significantly, we find that with excellent near-field pattern clarity (e.g. when

βcol ≥ 2), the far field peak pattern is also present in the atomic field. In this way,

the far field distributions provide an excellent means of characterising the nature and

clarity of patterns in both fields.

10.3.2 Optical Pump Strength

We now return to βcol = 1.5 and consider altering AP, experimentally possible simply

by altering the power of the laser providing the pump. The results of such a procedure

are given in Fig. 10.9, and we observe a range of pattern varieties again across the

various pump strengths.
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Figure 10.9: BEC (upper) and optical (lower) transverse distributions at τ = 2000
for pump strengths indicated. Fixed parameters: θ = −1, βcol = 2, L3 = 0.00022, s =
1, Aψ = 2. Each field is plotted between 0 and maximum amplitude.

Initially, with the pump strength AP = 1.75, we obtain a squares pattern consisting of a

uniform atomic distribution with holes corresponding to optical peaks. In this regime,

the relatively weak optical pump strength is on the threshold of pattern formation,

and the dipole forces between both fields are relatively equal. Such a distribution is

reflected by a four-peak structure in the far-fields of both atoms and light, in excellent

agreement with Ref. [179]. This structure is reasonably short-lived in terms of pump

strength, and we find that by AP = 2.25, with the optical field beginning to dominate

the dipole forces, we obtain instead modulated stripes in both fields, adjacent to one

another, with a corresponding drop to two peaks in the far fields.

As the pump strength continues to increase and the optical field further dominates the

dipole nonlinearity, we return to more familiar patterns, observing first the expected

peak-hexagon combination for AP ≈ 3, followed by a narrowing of the atomic pattern

wavelength as the optical field becomes increasingly dominant for stronger pump pow-

ers. Again, we also see a restriction in the transverse domains of the patterns, with

ever-growing homogeneous optical regions returned. In all cases, the optical far fields

show six peaks that indicate a hexagonal system, with these peaks also appearing in

the atomic far field when AP is not significantly dominant over Aψ.
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The pattern progression of Fig. 10.9 is very similar to that observed when varying βcol

in Fig. 10.7, suggesting that these two parameters have broadly opposite effects on the

dynamics, enabling pattern variety control with either parameter. Such findings agree

well with the behaviour reported in bistable regimes at Fig. 10.5, where the alterations

to the pump strength had equivalent effects to those expected of the atomic scattering

length under the assumption of an instantaneous BEC medium. This suggests there

is a mapping between βcol and AP, with both parameters having similar, but inverse,

effects on the coupled system dynamics.

10.3.3 Cavity Detuning

We now return the value of AP to 3 and study the effects of changing the cavity detuning

θ. Such an alteration is possible by altering the frequency of the input pump beam in

time [260]. From Eqn. (9.30), as the magnitude of the cavity detuning increases from

zero, the difference between the cavity mode frequency and the input frequency grows,

minimising the effectiveness of the pump on the system. We find that such changes

have significant effects on the pattern varieties formed, as demonstrated in Fig. 10.10.
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Figure 10.10: BEC (upper) and optical (lower) transverse distributions at τ = 2000
for cavity detuning values indicated. Fixed parameters: βcol = 2, AP = 3, L3 =
0.00022, s = 1, Aψ = 2. Each field is plotted between 0 and maximum amplitude.

Initially, we find for strongly negative cavity detuning a short-lived regime of pattern

formation, which typically follows the procedure of atomic holes coupled to bright
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optical peaks coalescing into coupled labyrinths, after which the patterns are destroyed

by increasingly turbulent behaviour driven by the atomic field. For the case of θ = −2

we find that the turbulent behaviour occurs for τ > 500, and by τ = 2000 the fields are

sufficiently modulated to show little trace of the prior patterns.

As the strength of cavity detuning decreases, we find that the patterns become signifi-

cantly more robust. Around θ = −1.5, the fields predominantly return coupled stripes,

with some evidence of a cluster-hexagon combination. This is reflected in the light’s

far field, which predominantly shows two peaks indicating stripes, but with a weaker

series of four additional peaks indicating hexagons. With further decreases in cavity

detuning, the cluster-hexagon combination becomes dominant and we pass through the

outlined regime of θ ≈ −1, Fig. 10.2.

By θ ≈ −0.5 we find, analogously to other parameter alterations, the growth in spatial

scales of the atomic clusters, along with the restriction of their appearance to smaller

transverse regions of the total fields. However, on crossing θ = 0, we find the dynamics

significantly differ from previously observed patterns, and a region of strong atomic

channelling is entered. The majority of atoms become enclosed in a very narrow spatial

region, the parallel ‘stripe’ shown in Fig. 10.10, with only a small trace of the previously

dominant cluster-hexagon combinations. The far field reflects these changes, with the

loss of the six peaks to a dominant stripe. With further θ-increases, we find that the

patterns begin to be suppressed, with the atomic stripe increasing in size. We find that

during this transition a final pattern configuration is obtained around θ = 0.6, where

the optical field occupies a large circular domain rather than a rectangular configuration

surrounding a stripe. From this point, further small increases in θ lead to the entire

suppression of pattern formation, with homogeneous fields being returned for θ > 1.

10.4 Cavity Solitons

We are able to realise densely localised, solitonic structures, as first introduced in

Chapter 4.1, in either / both fields, depending on the parameter selection used. For

blue-detuned fields, we find that these structures are restricted to the extremes of
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parameter ranges, outwith the spontaneous patterns reported on. For red-detuned

fields and therefore bright-seeking atoms, we find the formation of solitonic structures

to be much more widespread, and thus we consider each case separately here.

10.4.1 Blue Atom-Field Detuning

As discussed around Fig. 10.7, we observe, when κ−1 ≈ 10−1, the formation of lattices

of atomic peaks and optical holes when atoms naturally want to localise through attrac-

tive interatomic atomic interactions, βcol < 0. In these regimes, the atomic structures

formed are localised solitonic peaks with characteristic distribution, occurring within

optical holes. We find that changes to the scattering length change many of their phys-

ical characteristics, including their intensities, widths and transverse domain coverage,

which we summarise in Fig. 10.11, showing these solitonic distributions at τ = 1000 for

a variety of βcol selections.
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Atoms

Figure 10.11: Atomic (upper) and optical (lower) transverse distributions at τ = 1000
for indicated βcol-values, realising atomic solitonic structures with blue atom-field de-
tuning. Fixed parameters: AP = 3, L3 = 0.00022, s = 1, Aψ = 2. Each field variety
plotted between 0 and maximum amplitude of all panels. Position of 1D amplitude
trace indicated on each panel by dotted line.

From Fig. 10.11, there is a clear narrowing of the bright atomic structures as the
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scattering length decreases, indicative of the increasingly attractive atomic interactions

influencing the dynamics. The combination of this force combined with the channelling

of atoms into optically dark regions, thanks to the blue atom-field detuning, leads to the

presence of these solitonic structures. However, these forces also contribute to disorder

in the distribution of these localised structures, with some transverse regions of the field

presenting a largely homogeneous optical field. The underlying pattern instability is

clearly hexagonal, reflected in the far field distributions, which for all cases of Fig. 10.11

returns six peaks, as expected.

10.4.2 Red Atom-Field Detuning

We may obtain similar atomic soliton structures on considering red atom-field detuning,

so that the atoms are light-seeking and will form coupled atom-light solitons. To

exemplify this, we now return all other parameters to those used in Fig. 10.2, and test

the cavity detuning values of θ = -2, -1, 0, 2, and 3. With blue-detuned fields one would

expect turbulent behaviour, followed by interleaved spontaneous pattern formation, and

finally homogeneous field return across this range. For the case of light-seeking atoms,

the equivalent distributions are given in Fig. 10.12.

We obtain well organised coupled atom-light solitonic distributions for θ = 0 and red

atom-field detuning, shown in Fig. 10.12. These structures do not require attractive

atomic interactions to form, unlike their blue-detuned atomic equivalents. Their trans-

verse scales are similar to the blue-detuned case, suggesting that a similar mechanism

lies behind their formation, with the lack of attractive atomic interactions now com-

pensated by the switch in the nature of the dipole force between the fields.

Beyond the range −1 < θ < 1, one enters new dynamical regimes, where the fields

take on alternative transverse forms. When θ ≤ −1, this is reflected in an earlier onset

of turbulence than in the blue-detuned case, and for θ = −1, we observe a clearly

turbulent field in a regime that supported pattern formation for blue detuning. The

trace of a pattern remains visible within the optical field, reflecting this lower bound of

pattern formation. However, by θ = −2, evidence of patterns are lost, with both fields
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Light

400

Atoms

Figure 10.12: Atomic (upper) and optical (lower) transverse distributions at τ = 1000
for indicated cavity detuning selections, realising turbulence, atom-light cavity solitons
and isolated vortices for red atom-field detuning. Insets for θ = 3.0 shows corresponding
field phase distributions. Fixed parameters: βcol = 2, AP = 3, L3 = 0.00022, s =
−1, Aψ = 2. Each field variety plotted between 0 and maximum amplitude of all
panels. Position of 1D amplitude trace indicated on each panel by dotted line.

simply turbulent.

When θ > 1, like the blue-detuned case, the pattern forming dynamics are largely sup-

pressed, and so the coupled solitonic structures steadily fade to broadly homogeneous

fields, as shown for θ = 2. However, we also observe the spontaneous formation of

dark solitonic structures across both fields, as shown for θ = 3, clearest in the atomic

field, and somewhat visible in the optical. The phase of each field shows that these are

atomic driven vortices, with two linked singularities in the atomic field but a homoge-

neous phase profile in the optical field.

Returning to the case of θ = 0, which gives the clearest lattices of coupled solitonic

structures, we find that they remain robust to a wide range of input parameters. As ex-

pected, such patterns form readily for attractive atomic interactions (βcol < 0) with the

atoms simply reinforcing the light-seeking nature of the dipole coupling. For repulsive
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interactions (βcol > 0) they remain to βcol ≈ 6, gradually increasing in transverse size

as the repulsive nature of the BEC interactions strengthens. Eventually, for βcol > 6,

their formation is entirely suppressed, and the fields remain largely homogeneous, with

small fluctuations failing to form distinct patterns. Like the blue-detuned case, altering

the optical pump strength has the broadly opposite effect to changing the atomic scat-

tering length, with a minimum threshold of AP ≈ 2.5 to obtain patterns, beneath which

one again obtains homogeneous fields with small fluctuations. As the pump strength

increases above threshold, the solitonic structures become further localised, narrow-

ing in transverse size and increasing in amplitude in a way analogous to increasingly

attractive atomic interactions.

Finally, we note that, much as was the case for blue-detuned fields, when κ−1 ≈ 10−8

we obtain signatures of the richer dynamics outlined in Fig. 10.12. We summarise this

in Fig. 10.13, which considers the equivalent case to Fig. 10.1, with identical physical

parameters, for red atom-field detuning. There is a transition from a region of largely

suppressed pattern formation when θ . −2.0, to relatively organised coincident pattern

formation when θ ≈ 0, which then leads to the formation of isolated, mutual cavity

solitons that originate from these structures when θ & 2.0.

Light

Atoms

400

Figure 10.13: BEC (upper) and optical (lower) transverse distributions at τ = 1000 for
θ-values indicated. Fixed parameters: βcol = 0.25, AP = 3, L3 = 0.00022, s = −1, Aψ =
0.1. Each field is plotted between minimum and maximum amplitude.
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10.5 Conclusions and Outlook

We have considered the co-evolution of initially homogeneous ultracold atomic and op-

tical fields within a driven optical cavity. With blue atom-field detuning, and therefore

dark-seeking atoms, signatures of spontaneous coupled pattern formation across both

fields were found. By considering the model parameter κ−1 → 1, attainable through

alterations to the mirror reflectivity, cavity length, or both, the pattern formation

dynamics have been optimised. We demonstrated that the system may exhibit both

bistable and monostable regions, and hysteresis cycles in bistable regimes and a wealth

of pattern varieties in monostable regimes were shown. Outside of pattern formation,

we reported on the ability to obtain atomic cavity solitons. For red atom-field detun-

ing (light-seeking atoms), far wider regimes of coupled cavity soliton generation were

found.

These findings may guide the realisation of a wealth of pattern varieties within a BEC

that is more varied than those currently demonstrated [183, 184, 187, 188], whilst also

requiring a relatively straight forward ultracold atomic setup. Additionally, there are

clear links to ongoing research in the demonstration and application of hysteresis cycles

within ultracold matter [196]. If these hysteresis cycles, arising through pattern for-

mation, are realisable on spatially defined, physical atomic and optical profiles, there

may be the potential to apply these cycles in the field of atomtronics [198], building

on the control applications hysteresis enables within conventional electronics [261–264].

Significant applications also become possible in areas such as BEC atomic manipula-

tion [25, 33, 253], and for guiding and trapping atoms to dark-regions, less vulnerable

to optically-induced heating from a coincident beam [265].
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Structured Fields I: Spatial

Patterns and Vortex Lattices

In this chapter, we build on the results of Chapter 10, and in Section 11.1 consider

spontaneous pattern formation on initially spatially structured fields. For blue atom-

field detuning, the ultracold atoms are trapped in clusters in optical darkness, and

in Section 11.2 we introduce OAM to such structures, realising rotating optical and

atomic patterns before increasing the OAM to obtain asymmetrical atomic reshaping

and atomic vortex formation. Finally, in Section 11.3, we consider this approach as a

mechanism for vortex lattice formation of any desired vortex order within a BEC.

11.1 Spatially Defined Spontaneous Patterns

We now seek to replicate the spontaneous pattern formation discussed in Chapter 10.1,

but with atomic and optical fields possessing structured spatial intensity. Such pattern

formation dynamics have the strict condition that a large enough overlapping area is

provided, where both fields have amplitudes of sufficient magnitude, across a sufficiently

large transverse region, in order to replicate the dynamics previously discussed.
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For the ultracold atomic field, we return to considering an initial Thomas-Fermi distri-

bution, Eqn. (2.17). To ensure optimal overlap, we utilise an optical pump given by a

‘top-hat’-style distribution [174]. We define this here as

FP(r) = AP

[
1

2

(
1− tanh

(
S (r − wF ′)

))]
, (11.1)

where S represents the steepness of the edges of the top-hat, wF ′ = wF /wL, and wF

represents the physical transverse size of the optical pump. We set wF = wψ = 200µm

to ensure that the transverse diameter of the optical pump matches the transverse

diameter of the BEC. The initial optical field itself, as standard, remains simply noise.

Such fields are shown in the first column of Fig. 11.1.

We consider both positive and negative values of s, representing blue and red atom-

field detuning, respectively. All other system parameters remain unchanged from the

selections discussed in Chapter 10.1 and 10.4. Depending on the selection of κ, we

find that the range of patterns reported in Chapter 10 may also be realised on initially

spatially defined fields, and so we consider one case of each detuning in turn below,

enabling comparison with their homogeneous field equivalents.

11.1.1 Blue Atom-Field Detuning

For blue atom-field detuning, and dark-seeking atoms, one would expect to see the

formation of coincident patterns similar to those of Chapter 10.1. Under the limits

of both κ−1 ≈ 10−8 and κ−1 ≈ 10−1, we again obtain similar structures across both

spatially defined fields, as shown in Fig. 11.1. As in Chapter 10, the pattern clarity is

significantly enhanced for the larger selection of κ−1, and so we continue to focus our

discussion on that case.

There are notable differences between the patterns of Fig. 11.1 and their homogeneous

equivalents (Fig. 10.1 for κ−1 ≈ 10−8 and Fig. 10.2 for κ−1 ≈ 10−1). The hexagonal-hole

patterns are distinctly more circular than the transverse patterns formed on homoge-

neous fields. This reflects the change in initial conditions: a circularly bounded optical

pump leading to circular patterns. Atoms on the outer edge of the optical pump are
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Pump
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600

Figure 11.1: Blue-detuned pattern formation on spatially bounded initial atomic (up-
per) and optical (lower) fields (left) and associated cross sections with absorbing bound-
ary location (centre left) for varying κ selection. wψ = wF = 200µm, with parameters
otherwise as in Fig. 10.1 (κ−1 ≈ 10−8, θ = −4) and Fig. 10.2 (κ−1 ≈ 10−1, θ = −1).

able to tunnel out of the spatial domain of the pump through their kinetic energy

contributions and tendency to move towards dark regions, being lost from the system

through the absorbing boundaries. We are able to largely eliminate this atomic loss

and sustain pattern formation on spatially defined fields if the dipole force upon the

atoms is increased relative to their kinetic term. An optical pump with AP = 4, with

all other conditions maintained as in Fig. 11.1, meets this criterion and sustains pattern

formation, as shown in Fig. 11.2.

For both pump strengths, we note that the entire formation procedure happens quicker

in the case of spatially defined fields, as the dark-seeking atoms are subject to an

additional intensity gradient in this configuration, and they are driven to regions of

darkness in the optical field. The forces arising from this motion cause the fields to

mutually structure significantly quicker than in the homogeneous case, with the fields

developing interleaved spots and stripes by τ = 50, and signatures of cluster patterns

by τ = 100, with homogeneous equivalents at τ ≈ 150 and τ ≈ 350, respectively.
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Light

Atoms

600

Figure 11.2: Blue-detuned pattern formation on spatially bounded initial atomic (up-
per) and optical (lower) fields between τ = 0 → 500, using a stronger optical pump
than in Fig. 11.1. Fixed parameters: βcol = 2, θ = −1, L3 = 0.00022, s = 1, AP =
4, Aψ = 2, wψ = wF = 200µm.

11.1.2 Red Atom-Field Detuning

Now considering red atom-field detuning, we return the pump strength to AP = 3, and

set the cavity detuning to θ = 0, matching the procedure to obtain coupled atom-light

cavity solitons on homogeneous fields outlined in Fig. 10.12. All other aspects remain

the same as in the preceding blue-detuned pattern case. As expected, we obtain coupled

atom-light solitons across the bright area of the top hat, Fig. 11.3.

The coupled atom-light solitons that appear in this case again follow a radial distri-

bution, organising into approximate ring structures, of increasing width, reflective of

the circular boundary of the optical pump. Similar to their homogeneous counterparts,

formation occurs swiftly as the strength of the optical field circulating within the cavity

increases, being aided by the light-seeking nature of the atoms. Unlike the blue-detuned

case, a pump strength of AP = 3 is sufficient to overcome the atomic kinetic energy

contributions and realise the expected coupled cavity soliton formation.

Transverse structures like those in Fig. 11.3 have analogues in many systems, including
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Light
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Figure 11.3: Red-detuned pattern formation on spatially structured initial atomic (up-
per) and optical (lower) fields between t = 0 → 1000, comparable with homogeneous
field equivalent in Fig. 10.12. Fixed parameters: βcol = 2, θ = 0, L3 = 0.00022, s =
−1, AP = 3, Aψ = 2, wψ = wF = 200µm.

those recently studied in a variety of optical cavity configurations with a cold atomic

medium, for example in Refs. [61, 178, 179]. Throughout the rest of this chapter, we

restrict ourselves to further exploration of the blue-detuned, dark-seeking atomic case,

but we return to considerations of a red-detuned, light-seeking cavity in Chapter 12.

11.2 Azimuthal Motion

Focusing on the dark atom trapping with blue detuning (Fig. 11.2), we now consider the

effects of adding an azimuthal velocity to the pumped optical field through OAM [36].

Following the example of Ref. [174], the pumped optical field becomes

FP(r,m) = AP

[
1

2

(
1− tanh

(
S (r − wF ′)

))]
eimϕ, (11.2)

where m is an integer representing the desired OAM index of the pump field, applied

using a spatial light modulator on the pump before it enters the cavity, as shown in

Fig. 9.1.
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11.2.1 Small OAM Indices

We initially study small m values in the range −2 ≤ m ≤ 2, applying the additional

OAM to the pump beam, which otherwise remains unchanged in transverse size and

amplitude. The results are shown in Fig. 11.4, which presents transverse intensity

distributions of both fields at both τ = 250 (left) and τ = 300 (right), along with

the continuous temporal evolution of each field around an unwrapped ring of 100µm

radius (the radial centre of each field, marked for m = 0) between τ = 0→ 500, for all

outlined m-values.

600

Figure 11.4: Rotating (when m 6= 0) atomic (left panel / left diagonal) and optical
(right panel / right diagonal) patterns when the optical pump is seeded with OAM
m = −2→ 2 (top to bottom). Left panels at τ = 250, right panels at τ = 300 (indicated
on central panel). Central panel shows the temporal evolution for τ = 0 → 500 of a
ring of radius 100µm from the centre of each field, dotted for m = 0. Fixed parameters:
βcol = 2, θ = −1, L3 = 0.00022, s = 1, AP = 4, Aψ = 2, wψ = wF = 200µm.

From Fig. 11.4, the familiar interleaved patterns again form between both optical and

BEC fields in regions of strong field intensities for all m-values. However, with m 6= 0,

there are some clear differences in the patterns. With OAM present, a phase singu-
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larity develops in the optical field, creating a new regime of coupled dynamics where

previously there were simply hexagon-cluster patterns. Now, the optical field forms a

large central dark region which the dark-seeking BEC atoms move to fill. In this way,

a naturally occurring BEC trap has formed, within which the atoms are tightly held

for long time periods. As |m| increases, the size of the optical field phase singularity

increases, and thus the total transverse proportion of the trapped BEC cluster grows

noticeably.

Another notable alteration to the dynamics when OAM is included in the pump field

is the seeding of azimuthal motion in both BEC and optical fields. As was shown in

Ref. [174], the presence of OAM within a driven, self-focusing optical cavity leads to

an azimuthal motion of any optical intensity structures formed. Here, such motion

is clearest from the central column of Fig. 11.4, which shows the temporal evolution

of a central ring in both fields. For m = 0 it may be noted that, although there

are fluctuations in the placement of peaks owing to the settling of patterns with time,

there is no prevailing diagonal motion, which would be indicative of angular momentum.

Whenm 6= 0, a diagonal motion is clear. This indicates a transfer of angular momentum

from the pump field to both the optical field and the BEC, and radial transport of the

BEC atomic clusters at constant angular velocity. As the blue-detuned atoms are held

in positions of optical minima, we find that they are effectively ‘pushed’ radially by

neighbouring regions of (typically hexagonal) optical intensity.

11.2.2 Larger OAM Indices

We now consider the application of larger m-indices upon the optical pump. As previ-

ously highlighted, when m increases, the size of the phase singularity at the centre of

the pump also increases. As both optical and BEC fields are spatially bounded, rather

than homogeneous as in Chapter 10, there is a limit to the transverse area that pat-

terns can form upon, and as m increases we find that the pattern formation, rotational,

and kinetic nonlinear forces all combine to present a novel means of exotic transverse

reshaping of a BEC. This is summarised in Fig. 11.5, which gives the transverse fields

at τ = 50 for a variety of larger OAM indices m = 6→ 12.
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Figure 11.5: Transverse atomic (upper) and optical (lower) profiles, demonstrating
exotic BEC reshaping at τ = 50 for optical pumps with m = 6→ 12 left to right. Fixed
parameters: βcol = 2, θ = −1, L3 = 0.00022, s = 1, AP = 4, Aψ = 2, wψ = wF = 200µm.

We find that at these larger |m|, the BEC transverse distribution rapidly reshapes into

striking asymmetrical transverse distributions. In all cases considered in Fig. 11.5,

the previously uniform Thomas-Fermi BEC distribution has localised more centrally,

with additional protruding ‘arms’ spreading from the centre of the field towards the

outer edges. These structures arise from the interplay in the optical field between the

central phase singularity, which continues to expand spatially with increased m, and the

tendency of the two fields to form coupled patterns from the dipole forces wherever the

field amplitudes allow. This leads to a new regime where in part of the field ‘snaking’

structures are observed, a region in which distinct patterns do not quite form, but a

highly asymmetric BEC cluster sits adjacent to optical regions of twisting labyrinth-like

stripe patterns. The breaking of radial symmetry is an effect of the OAM of the optical

pump which causes a rotation of both optical and atomic fields.
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11.3 Vortex Lattices

In Fig. 11.5, for m = 12 two atomic ‘holes’ are formed. For greater τ , the number

of holes increases until reaching a steady value, and by τ = 500 such structures are

observed for all m values considered in Fig. 11.5. To demonstrate the formation mech-

anism, we now plot the transverse field profiles for m = 12 to τ = 500, showing in

Fig. 11.6 the eventual formation of six atomic holes, rotating in an otherwise uniform

atomic distribution naturally trapped within the central vortex of the optical field.

Light

600

Atoms

Figure 11.6: Transverse atomic (upper) and optical (lower) profiles, demonstrating the
formation and natural trapping of atomic holes between τ = 50 → 500 for an optical
pump with m = 12. Fixed parameters: βcol = 2, θ = −1, L3 = 0.00022, s = 1, AP =
4, Aψ = 2, wψ = wF = 200µm.

Fig. 11.6 suggests that, for this particular selection of m, not only does the number of

atomic vortices settle for longer run times, but that these structures appear to spatially

self-organise, with an isolated hole in the centre of the field and five fairly equally spaced

holes surrounding it radially. Most notable, however, are the corresponding atomic field

phase portraits, which demonstrate that these are not only atomic holes with a lack of

atoms, but in fact well defined BEC vortices, with a corresponding phase singularity at

each field minimum. Additionally, these singularities demonstrate a transfer of OAM
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from the optical field to the BEC, with a 2π phase wrap occurring at each BEC vortex.

This leads to a rapid azimuthal rotation of the vortices (and the uniformly distributed

atoms surrounding them), with the direction of rotation controlled by the sign of m

applied to the optical pump. Though they rotate rapidly, the vortex structures formed

appear robust to this motion, maintaining their spatial structures for τ > 104. To

demonstrate this, we again increase the m-index of the optical pump to higher values,

and allow the fields to evolve to τ = 2500. Such atomic fields for m = 15 → 30 are

shown in Fig. 11.7.

600

Figure 11.7: Transverse atomic field profiles, demonstrating the formation of rotating
atomic vortex lattices at τ = 2500 for optical pumps with m = 15 → 30. Fixed
parameters: βcol = 2, θ = −1, L3 = 0.00022, s = 1, AP = 4, Aψ = 2, wψ = wF = 200µm.

In all cases of Fig. 11.7, we see a clear organisation in the vortex lattices by τ = 2500,

creating two or three rings of rotating vortices depending on the total number of vortices

present within the field. This suggests that, as a cascading effect of the pump’s OAM

seeding azimuthal motion in bright optical regions, the subsequent motion of atoms

trapped in adjacent positions of optical darkness leads to the development of vortices

arising from this quantised circulation induced in the atomic field. In the correspond

phase profiles, we again see a clear transfer of phase between optical and atomic fields,

and each vortex position has a clear 2π phase wrap, as in the case with m = 12 in

Fig. 11.6.

In Fig. 11.7, we also observe a clear dependence on the total number of vortices formed

in the atomic field, which we label Nv, with the OAM index m of the optical pump. This

relationship is shown in Fig. 11.8, where Nv is plotted against m for both positive (red
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markers) and negative (blue markers) values of m between |m| = 0 → 40, indicating

the direction of azimuthal rotation of the vortices with the marker head.

Figure 11.8: Observed number of vortices Nv for |m| = 0 → 40. Red (blue) arrow-
heads represent positive (negative) m-value results, with the arrowhead pointing in the
direction of azimuthal motion of the vortices. Fixed parameters as in Fig. 11.5.

Across all m-values considered, we find that the number of vortices that will be formed

increases with increasing |m|. There is no clear upper bound to the size of vortex

lattice formed with this method, beyond the obvious requirement to ensure that as the

transverse size of the optical vortex increases with larger OAM, the transverse domain

of the optical pump should increase accordingly to ensure that the entire vortex core

of the beam is captured within the considered domain.

11.4 Conclusions and Outlook

In Chapter 11, we demonstrated the spontaneous pattern formation first reported in

Chapter 10 on spatially structured atomic and optical fields, assuming a large enough

transverse overlap at sufficient values of AP and Aψ. Introducing OAM to the optical

pump, we seeded an azimuthal motion of these patterns in both fields, with the atomic
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clusters formed being ‘pushed’ around by the surrounding optical maxima, whilst re-

maining themselves in dark optical regions. With higher OAM indices, we demonstrated

the unusual transverse reshaping of large ultracold atomic distributions, and demon-

strated the ability to form vortex lattices, of vortex number related to the OAM of the

optical pump, within ultracold atoms trapped in the central optical singularity.

The findings we report here have many potential applications, including in generating

patterns within a simpler BEC setup than in existing approaches whilst simultaneously

realising a richer range of pattern formats than previously observed [183, 184, 187–190].

Additionally, there are significant potential applications in areas such as BEC transverse

atomic manipulation [266], and for guiding and trapping atoms, transporting them in

dark-regions without the impact of optical heating from a coincident bright optical

region [51, 243, 266].

Most important, however, is the ability of our method to spontaneously generate vortex

arrays in BECs, without the requirement for an external stirring potential [204, 209,

210, 267], and with the number of vortices within the array related to the OAM of the

optical pump. This alternative approach to vortex array formation allows for potential

applications in advancing quantum simulations in areas including modelling the be-

haviour of vortex matter within superconductors [268], cosmology [269], and quantum

droplets [270].
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Structured Fields II: Atomic

Persistent Currents

In this chapter, we explore further the formation of coupled atom-light Turing patterns,

reported in Chapter 11.1.2 with red detuned fields. In Section 12.1, we consider such

patterns with ring shaped optical pumps, before introducing OAM in Section 12.2,

generating ultracold atomic persistent currents. In Section 12.3, we consider dynamic

variation, before exploring alternative transverse current forms in Section 12.4, includ-

ing co- or counter-rotating current superpositions: an ‘atomic peppermill’. Finally, in

Section 12.5, we consider altering the cavity detuning to realise a mechanism to obtain

either coupled peak lattices, cavity solitons, or uniformly rotating rings. On top hat

pumps, we introduce radial and azimuthal phase gradients to realise spiralling atomic

cavity solitons.

12.1 Static Turing patterns

We now consider the formation of coupled atom-light structures within a driven optical

cavity, as suggested in Chapter 11.1.2. We consider these structures forming around a

139



Chapter 12: Structured Fields II: Atomic Persistent Currents

radial ring of intensity, and as such the pump becomes

FP (r) = LGm
0 (r) ,

where LGm
0 (r) = APr

|m|e−r
2/(2w2

F ′), (12.1)

equivalent to Eqn. (3.38) after transverse scaling, taking p = 0, and disregarding OAM.

We allow for an optical beam of beam waist wF different to the domain transverse

scaling size wL through the relationship wF ′ = wF /wL, giving an intensity profile

equivalent to a Laguerre-Gaussian mode, but with homogeneous phase profile. The

initial BEC is a Thomas-Fermi distribution (Eqn. (2.17)).

We select wF = 40µm and wψ = 50µm to ensure an overlap between the optical pump

and the transverse BEC domain. The initial optical field is simply noise at the 1%

level of the maximal pump amplitude. Both initial BEC and optical pump fields have

maximal amplitudes Aψ and AP, respectively, where we select Aψ = 0.1, AP = 4. The

atomic parameters selected continue to represent a Caesium BEC, and we consider

βcol ≈ 2, representing weakly repulsive interactions of agg ≈ 12a0, with a0 the Bohr

radius. All other system parameters remain as considered within Chapters 10-11 for

the case of κ−1 ≈ 10−8, giving an initial atomic field and optical pump field as shown

in the left column of Fig. 12.1.

300

Atoms

Pump Light

Figure 12.1: BEC (upper) and optical (lower) field transverse distributions between
τ = 0→ 2000. Parameters: θ = 0, Aψ = 0.1, AP = 4, wψ = 50µm, wF = 40µm.
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As these fields evolve within the driven optical cavity, the atomic field initially moves

to the optical field ring. Both rings then undergo mutual pattern formation, forming

coupled atom-light structures in a similar mechanism to that of Section 11.1.2. For

the system outlined above, this process begins around τ = 500, with six evenly spaced

peaks apparent by τ = 1000. The system dynamics are largely confined to a single

radial ring, and so we consider the continuous evolution around this ring of radius R,

unwrapped as a 1D distribution, in both fields in Fig. 12.2, which shows the initial

atomic ring formation, mutual fragmentation, and peak evolution of Fig. 12.1.
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Figure 12.2: BEC (upper) and optical (lower) field evolution between τ = 0 → 5000
around an ‘unwrapped’ maximum intensity ring (centre) and transverse profiles at
τ = 500 (left) and τ = 5000 (right), with position of maximum intensity ring indicated.
Parameters: θ = 0, Aψ = 0.1, AP = 4, wψ = 50µm, wF = 40µm.

These dynamics are a further manifestation of Turing pattern formation [174], now oc-

curring coincidently in the atomic field with red field detuning. Like previous chapters,

we again find that changes to the pump strength AP enable control over the temporal

scale of formation, and clarity of, the patterns, with a larger AP quickly forming pat-

terns of increased clarity, and a smaller AP more slowly forming patterns of decreased

clarity. Below a threshold AP, pattern formation is entirely suppressed to deliver a

uniform atomic ring.
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12.2 Introducing OAM

We now consider introducing OAM through a helical phase profile, exp (imϕ). The

optical pump becomes

FP (r, ϕ) = LGm
0 (r, ϕ) ,

where LGm
0 (r, ϕ) = APr

|mP|e−r
2/(2w2

F ′)eimϕ, (12.2)

equivalent to Eqn. (3.38) after transverse scaling and taking p = 0. Here, mP enables

a mode transverse size different to the OAM of the pump if mP 6= m. For ease of

comparison we fix mP = 2, altering the OAM index, m, to ensure that patterns form

on the same ring profile irrespective of the applied OAM.

On introducing a helical phase profile, we again find similar initial dynamics, and cou-

pled atomic and optical radial rings undergo pattern formation. With OAM introduced,

the lattices rotate with their speed controlled by the OAM; in Fig. 12.3 rotating lattices

of seven and eight atom-light clusters with m = 1 and 2, respectively, are seen to form

on otherwise identical rings.

300

Figure 12.3: Atomic and optical ring evolution between τ = 0→ 5000 (left), and field
transverse profiles at τ = 5000 (right), for optical pumps with m = 1 (upper) and 2
(lower). Parameters: θ = 0, Aψ = 0.1, AP = 4, wψ = 50µm, wF = 40µm.

These dynamics strongly suggest that the BEC is again acting as a Kerr-like super-

fluid [174], as was the case for co-propagating fields in Chapter 8. We find that these
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atomic rotational dynamics persist, as shown in Fig. 12.4 for the m = 2 configuration

at τ = 105, where we note the eventual settling on a lattice of nine peaks, with the

rotation speed unchanged throughout. This rotating atomic lattice is a form of atomic

persistent current of constant azimuthal rotation, and we find no evidence of an upper

current lifetime before the typical BEC lifetime. Typically, the only conditions required

to be satisfied for the creation of such a current are an optical pump of AP & 2Aψ and

field widths such that (wF /wψ) & 0.5 [271, 272].
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Figure 12.4: BEC (left) and optical (right) amplitude distributions at τ = 105. Initial
fields and parameters as m = 2 in Fig. 12.3.

As in the Kerr case, the velocity of the atomic current may be related to the OAM

of the input light. Considering the initial optical fields as a ring of fixed radius R,

expressing the transverse Laplacian in polar coordinates (R,ϕ) with R a constant such

that ∂R → 0, Eqns. (9.65)-(9.66) may be written in one transverse dimension (1D):

∂τψ =
i

R2

∂2ψ

∂ϕ2
− i
(
s|F |2 + βcol|ψ|2 − iL3|ψ|4

)
ψ, (12.3)

∂τF = FP − (1 + iθ)F +
i

R2

∂2F

∂ϕ2
− is|ψ|2F. (12.4)

The evolution of 1D uniform fields, described by Eqns. (12.3)-(12.4), successfully pre-

dicts the number of 2D peaks, their widths, and rotation speed.

By assuming an instantaneous atomic medium with |ψ|2 = −(s|F |2)/(βcol), Eqn. (12.4)

becomes

∂τF = FP − (1 + iθ)F +
i

R2

∂2F

∂ϕ2
+ i
|F |2

βcol
F. (12.5)
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Following the procedures of Ref. [174], Eqn. (12.5) will involve a pump that carries

OAM, and will therefore have solutions which take the form

F (m, τ)→ F(m, τ)eimϕ, (12.6)

meaning that Eqn. (12.5) becomes

∂τF +
2m

R2
∂ϕF = FP −

[
1 + i

(
θ +

m2

R2

)]
F +

i

R2

∂2F
∂ϕ2

+ i
|F|2

βcol
F . (12.7)

If we consider the travelling solutions of Eqn. (12.7) of the form F (q) to depend on ϕ

and τ through q = ϕ− ωτ , then we may write that

∂τF +
2m

R2
∂ϕF = ∂qF(q)

(
−ω +

2m

R2

)
. (12.8)

The bracket on the right hand side of Eqn. (12.8) is zero when

ω =
2m

R2
, (12.9)

providing a prediction for the angular velocity, ω, of solutions satisfying Eqn. (12.5).

Eqn. (12.9) suggests that the characteristics of the current may be altered by the OAM

and waist size of the pump. Testing this in Fig. 12.5, we form, in 2D, a range of current

configurations, using a LG mode as the optical pump with various OAM selections and

beam waists, before calculating the average current velocity in each case.

Applying Eqn. (12.9) to an LG mode, which increases its transverse size as m increases,

one would expect the same angular velocity for each m [174]. However, in Fig. 12.5,

we observe notable variation of ω with m for the various beam waists, suggesting that

the atomic field introduces a ‘drag’ upon the idealised optical dynamics within a Kerr

medium, in a similar way to that observed in cold atoms [61]. Further investigation

is required to quantify this drag factor, but we note that, in the case of κ−1 ≈ 10−1,

little atomic drag is observed, with the current velocity instead closely following the

relationship of Eqn. (12.5). We also note that, as expected, the average current velocity
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Figure 12.5: Atomic current velocities when using pumps of a LG mode with m = 1→ 6
and wF = 20→ 60µm. Parameters as in Fig. 12.3.

decreases with increasing R. Taking the results for wF = 40µm and converting τ to

physical units through Eqns. (9.32) and (9.57), we calculate an approximate rotation

speed of 2ms−1 across the considered m-values and their respective ring sizes.

This approach therefore enables the creation of an atomic current, of customisable

velocity and rotation direction, related to the OAM and radius of the pump. As will

be shown in the next section, this enables dynamic control of the direction, size, and

strength of the current, providing a simple way to tailor ultracold atomic currents.

12.3 Dynamic Current Reconfigurability

In this section, we outline three examples of dynamic atomic persistent current forma-

tion as an indication of the possibilities opened by our proposed mechanism.

12.3.1 Direction Switching Atoms

We first consider switching the direction of current rotation throughout its evolution.

It is readily possible to switch the OAM applied to a pump by dynamically changing

the hologram applied to an SLM [120, 121]. As the sign of the OAM directly alters the
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phase ramp, which in turn alters the direction of atomic rotation, this allows dynamic

switching of the current direction [272].

We again consider the m = 2 case of Fig. 12.3, but now switch the OAM of the pump

between m = 2,−2, 2, ... at τ = 0, 2000, 4000, ... . This results in the current dynamics

given in Fig. 12.6, which shows the rotational motion around a ring of maximum radial

intensity, with the phase switching positions indicated by small arrows.

300

Figure 12.6: Atomic (lower) and optical (upper diagonal) fields between τ = 0→ 20000
around the current ring (left), and at τ = 20000 (right), for a pump switching between
m = ±2 at intervals of τ = 2000 (each arrow). Other parameters as Fig. 12.3.

Fig. 12.6 demonstrates that altering the pump’s OAM provides an excellent mechanism

to switch the rotational direction of the current at any time after lattice formation. The

transition from eight to nine lattices around τ = 15000 (as discussed around Fig. 12.4) is

still observed in this case, regardless of any change to the pump’s OAM. Crucially, this

means that the ability to change the direction of the current will have no impact upon

the lattice structure outside its motion, as demonstrated by the final field amplitude

distributions at τ = 20000.

12.3.2 Accelerating Atoms

As well as switching the sign of the OAM applied to the pump, we may also change its

magnitude using a SLM [120, 121]. For a pump of a fixed radius, increasing the OAM

will lead to an acceleration in the rotational motion of the atomic current.

To demonstrate this, we ramp the change of OAM over a time period, providing an

acceleration upon the atoms, rather than an immediate motion switch. We consider,

between τ = 0 → 10000, an initially stationary lattice of peaks (m = 0), with the
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pump then increased to m = 1 uniformly over a period of τ = 500. The results of this

procedure are shown in Fig. 12.7, with the arrows now indicating the onset and end of

the phase ramp (i.e. the final / initial times where the optical pump has an OAM of

m = 0 / m = 1).

300

Figure 12.7: Atomic (lower) and optical (upper diagonal) fields between τ = 0→ 10000
around the current ring (left), and at τ = 10000 (right), for a pump changing from
m = 0→ 1 in the central τ = 500 interval (arrows). Other parameters as Fig. 12.3.

An acceleration of the atom-light lattice peaks from their stationary state to the ex-

pected m = 1 velocity is observed, at which point they settle upon a fixed velocity.

The introduction of OAM in the pump leads to a temporary minimum being created

around the ring as the phase singularity forms in the optical field, leading to a restric-

tion and redistribution of the lower two peaks. After the singularity has formed in the

optical field, the lattice settles and we observe six evenly distributed peaks, now also

rotating. For the peaks unaffected by the optically-induced temporary redistribution, a

clear acceleration is observed as they commence a radial motion. For further evolution

as an m = 1 current, the upper peaks fragment, forming an additional peak to obtain

a final lattice of seven rotating peaks, as previously obtained with m = 1 in Fig. 12.3.

12.3.3 Decelerating Atoms

Finally we exemplify the deceleration of an initially rotating current lattice. To realise

this, we perform roughly the inverse procedure of that used to obtain accelerating

atoms, ramping down the optical pump driving the cavity from an initial m = 1 state

to a final m = 0 state. We select a different temporal period to demonstrate the

flexibility of this method, and consider ramping the phase over a central τ = 25 period,
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significantly quicker than previously considered. The result of such a procedure is

shown in Fig. 12.8.

300

Figure 12.8: Atomic (lower) and optical (upper diagonal) fields between τ = 0→ 10000
around the current ring (left), and at τ = 10000 (right), for a pump changing from
m = 1→ 0 in the central τ = 25 interval (arrows). Other parameters as Fig. 12.3.

With the pump initially at m = 1, we observe the formation of an atom-light lattice of

six peaks that rotates at the expected rate. Slightly before τ = 5000, with the phase

of the optical pump progressively being ramped down, we see a rapid deceleration of

the peaks, with the position of phase interference temporarily impacting the behaviour

of some lower peaks, though this impact is much less clear here than with accelerating

atoms due to the more rapid ramp rate. As the m = 0 pump becomes dominant,

the lattice positions self-regulate to realise six evenly distributed lattice peaks that no

longer exhibit rotational motion.

12.4 Transverse Current Alterations

Having shown that we can tailor the ‘switching’ on or off of azimuthal atomic motion

whenever desired simply by altering the OAM of the optical pump driving the cavity,

we now focus on altering the transverse current characteristics.

12.4.1 Lattice Number

Considering again the 1D description of Eqn. (12.5), its stationary solutions will satisfy

FP =

(
1 + i

[
θ +

m2

R2
+
|F |2

βcol

])
F. (12.10)
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Following Ref. [174], these solutions will have a number of lattice peaks, NP, given by

NP =

√
2|F |2
βcol

R2 −m2, (12.11)

for the case of θ = 0.

We test Eqn. (12.11) against a variety of pumps of waist wF ≡ R = 15 → 80µm,

fixing the BEC to wψ = 100µm to ensure atomic coverage across all optical modes.

For each selected wF , we plot the result of several runs, reflecting the variation of the

exact number of peaks in the lattice obtained from each run. Plotting the obtained

current lattice number, NP, against wF in the left hand side of Fig. 12.9, the expected

dependence on R ≡ wF from Eqn. (12.11) is observed.

300

Figure 12.9: Left: number of lattice peaks NP obtained in an atomic persistent current
for different pump waist sizes wF = 15 → 80µm when m = 2. Right: selected 2D
transverse atomic currents for indicated wF . Other parameters as in Fig. 12.4.

It may be noted that wF ≈ 15µm acts as a minimum optical beam waist for Turing

pattern formation for this initial field and parameter combination, beneath which the

pattern wavelength is mismatched with respect to the ring size, returning instead a

uniform ring. On the right hand side of Fig. 12.9 we indicate selected transverse forms

of atomic currents for the considered values of wF , demonstrating the range of lattice

numbers attainable.
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12.4.2 Dynamically Varying Waist Sizes

Building on the ability to change the velocity characteristics of the atomic current

through the optical pump driving the cavity, we now consider similar dynamic changes

to the pump’s beam waist [272]. In this case, we again consider evolving a pump as

outlined for m = 2 in Fig. 12.3, now to τ = 30000, and change its beam waist from

wF = 40 → 60µm between τ = 5000 → 15000. The results are shown in Fig. 12.10,

where we show the evolution around both rings.
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Figure 12.10: Atomic (lower) and optical (upper diagonal) field evolution between
τ = 0→ 30000 around a maximum intensity ring (left), and selected atomic transverse
amplitude distributions (right), for an optical pump uniformly changing from wF =
40→ 60µm between τ = 5000→ 15000 (indicated by arrows). Other parameters as in
Fig. 12.4.

From Fig. 12.10, dynamically altering the pump’s waist size leads to the expected

dynamic alterations in the position of the atomic patterns in the transverse field. We

observe an excellent transport of atoms, with the lattice moving entirely from the

40µm radius ring to the 60µm ring by τ = 30000, reflected in the relative fade and

growth in the upper and lower ring evolution, respectively. Furthermore, as the lattice

moves radially outwards, the spacing between peaks self-regulates through instances of

peak splitting, and by the end of the evolution period we observe the formation of a

further two peaks, in agreement with Fig. 12.9, despite having not followed the idealised

formation mechanism.

The same approach also works for decreasing the transverse waist size of the atomic
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current, as demonstrated in Fig. 12.11, where we alter the beam waist from wF =

40 → 20µm between τ = 3000 → 7000. In this case, as well as the transverse size of

the current decreasing as expected, we also observe a period of peak merging, even-

tually returning seven uniformly spaced rotating peaks around the atomic current, in

agreement with Fig. 12.9.
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Figure 12.11: Atomic (lower) and optical (upper diagonal) field evolution between τ =
0 → 20000 around a maximum intensity ring (left), and atomic transverse amplitude
distributions (right), for an optical pump uniformly changing from wF = 40 → 20µm
between τ = 3000→ 7000 (indicated by arrows). Other parameters as in Fig. 12.4.

This method of altering the pump’s waist size therefore provides another dynamic

means of tailoring the transverse size of any atomic current formed.

12.4.3 Atomic Peppermill

Having shown how the optical pump may be used to control the size, velocity, and direc-

tional characteristics of the atomic current formed, we now consider creating multiple

concentric currents by using a customised SLM that superimposes a number of optical

rings with sufficiently different OAM-values to prevent overlap [174]. The optical pump

becomes a superposition of LG modes, each of which has an independent phase applied.

These scalar modes are then summed to form the total pump that enters the cavity.

Fig. 12.12 exemplifies three such setups, showing the optical pump (top row) and the

resultant field profiles after evolution to τ = 104 (bottom row), where the flow direction

of any atomic current is indicated with an arrow.

As a result of the m and wF selections, the rings may counter-rotate (left), co-rotate

anti-clockwise (centre), or co-rotate clockwise (right), with the respective speeds of
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300
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Atoms Light

Figure 12.12: Top row: optical pump amplitude (left) and phase (right). Bottom
row: BEC (left) and optical (right) amplitude at τ = 104, arrow indicating current
direction. Pump parameters indicated beneath top row of each set of four panels.
Other parameters as in Fig. 12.4.

each ring continuing to observe Eqn. (12.9). We coin the term ‘atomic peppermills’ to

describe such structures, which are an extension of those previously observed inside an

optical Kerr cavity [174]. Our method realises independent control over each atomic

current ring through the optical pump. We emphasise that, similarly to previous sec-

tions of this chapter, our selection of optical pump here is simply indicative, with a far

wider range of transverse setups, sizes and rotational directions available by changing

the respective control parameters outlined.

12.5 Cavity Solitons

Throughout this chapter, we have reported on various realisations of atomic persis-

tent currents with increasing dynamical complexity, considered without cavity detun-

ing (θ = 0). Previous studies using the Lugiato-Lefever equation have shown that such

pattern formation is related to the cavity detuning, which modifies the dominant pat-

tern wavevector as the difference between ωc and ωP in Eqn. (9.30) grows, and so in

this section we consider the alternative cases of θ 6= 0.
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12.5.1 Solitons on a Ring

We return to the setup of Fig. 12.4, where an LG pump led to the formation of a single

rotating atom-light lattice. By changing the cavity detuning such that θ < 0, we find

that the only effect is that the clarity of the rotating patterns decreases. For θ . −1.5,

the lattice formation is inhibited and both fields simply return uniform rings without

any evidence of current formation.

By increasing the cavity detuning to moderately positive values however, we may realise

rotating atomic currents with a wide range of lattice numbers, or uniform rings of

(rotating) atomic current, without requiring a change in the beam waist of the optical

pump. Considering Eqn. (12.10), when θ 6= 0 the number of lattice peaks, NP, of this

solution may be written as [174]

NP =

√(
2|F |2
βcol

− θ
)
R2 −m2. (12.12)

This suggests that, as θ increases, we would expect the pattern formation to remain, but

with a decreasing number of peaks as θ increases, before eventually entering a regime

of no peak formation. In Fig. 12.13, we therefore consider several positive θ-values to

test this prediction, as indicated in the panels.

200

Figure 12.13: BEC transverse amplitude distributions at τ = 104 for θ = 0.5, 0.7, 1.0,
4.0, and 5.0 left to right. Other parameters as Fig. 12.4. 1D radial profiles around the
maximum intensity ring of the atomic field included above 2D panels.

Such changes to the cavity detuning lead to a transition through atomic lattices of

lessening peak numbers, to isolated solitary peak(s) with recognisable tails in the op-
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tical field, to a uniform atomic ring: a rotating, uniform ultracold atomic ring, with

many analogies in nature [199]. For fields as described here, we find that we obtain

cavity solitons between θ = 1.0 → 4.0, but these values vary according to the initial

fields and transverse current sizes. Our method therefore provides a means of current

generation, not only of any desired speed and transverse size, but also with the capacity

to determine whether the current forms on a customisable number of peaks, or entirely

uniform, intensity structure.

12.5.2 Spiralling Solitons

We may also obtain cavity solitons, equivalent to those obtained on Laguerre-Gaussian

modes, when we alter the optical pump to a top hat field, as defined by Eqn. (11.2).

We maintain m = 2, but increase wF = wψ = 100µm and select θ = 1.5 to obtain, as

expected by this detuning selection, a single rotating cavity soliton, now on a broader

transverse background than when using a ring-based optical pump. The initial atomic

field, pump, and coupled atom-light fields at τ = 10000 are shown in Fig. 12.14.
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Figure 12.14: Atom-light cavity soliton formation on a top hat pump, with wF = wψ =
100µm and θ = 1.5. Left pair: initial atomic and optical pump. Right pair: Atomic
and optical fields at τ = 10000. Other parameters as in Fig. 12.4.

We may introduce an additional, radial, phase gradient into the top hat pump by

altering Eqn. (11.2) into the form

FP(r,m) = AP

[
1

2

(
1− tanh

(
S (r − wF ′)

))]
ei(mϕ+αr), (12.13)

where α represents the strength of the applied gradient. Throughout, we consider
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|α| ≤ 0.1, ensuring that it contributes to, but does not overwhelm, the system dynamics.

When α > 0, the phase gradient transports the atom-light soliton radially out from

the centre of the field, only stopping on reaching the edge of the pump. The speed at

which this alteration in radial position occurs is also, as expected, controlled by the

size of α. Fig. 12.15 exemplifies dynamics where we evolve the final fields of Fig. 12.14

for a further τ = 105 period with different applied α values left to right, in each case

displaying the superposition of the fields across this temporal range to allow for the

azimuthal motion of the soliton to be tracked.
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Figure 12.15: Superimposed atomic (upper) and optical (lower) fields over a τ = 105

period for positive α phase gradients indicated applied to the optical pump. Initial
fields from right hand of Fig. 12.14. Parameters otherwise as Fig. 12.14.

When α = 0, the coupled soliton rotates azimuthally around a fixed ring radius. As

α increases, the strength of the phase gradient steadily increases, and with a larger

radial phase gradient there is a faster outward radial motion of the soliton, leading to

an outward spiralling of the coupled structure. Due to its increasing ring radius, the

velocity of the soliton slows, and the radial distance travelled progressively decreases as

α increases. By α = 0.05, the soliton reaches the outer transverse edge of the pump’s

domain within the considered evolution period, and so the gradient causes it to simply

continue rotating around this extreme radius with further evolution.
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If α < 0, the radial phase gradient now causes the solitons to spiral inward, shown in

Fig. 12.16, which again evolves the fields of Fig. 12.14 for a further τ = 105 period.
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Figure 12.16: Superimposed atomic (upper) and optical (lower) fields over a τ = 105

period for negative α phase gradients indicated applied to the optical pump. Initial
fields from right hand of Fig. 12.14. Parameters otherwise as Fig. 12.14.

Again, as the magnitude of α increases, the strength of the gradient increases, which in

this case leads to an inward spiralling motion of the solitons due to the negative value

of α. With a weak gradient of α = −0.01 there is little inward spiralling observed,

but as α decreases, we observe a dramatic inward spiralling of the solitary peak as it

falls into the centre of the field, gaining a quicker azimuthal velocity, before rotating

around the central optical phase singularity. The effect of an increased strength of

α = −0.1 is apparent here too, with the final radius upon which the soliton rotates

notably narrower and closer to the central singularity than the α = −0.05 case.

12.6 Conclusions and Outlook

In Chapter 12, the formation of coupled atom-light lattices of Turing patterns have

been investigated, enabled by red atom-field detuning and the dipole forces between

the two fields. With OAM in the optical pump, rotational motion was added to these

patterns, and the transfer of rotational motion arising from the optical pump’s helical
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phase to both the optical and atomic fields was observed. We propose this as a method

for atomic persistent current formation, producing a highly tuneable current without

the need for complex trapping potentials.

As the behaviour of the atomic current depends on the optical pump, we outlined

the capacity for direction switching, accelerating, and decelerating atomic currents,

as well as alterations in the number of lattice peaks. Building on this, the ability to

superimpose several current rings was demonstrated, the speed, size, and direction of

which can be controlled independently, forming an ‘atomic peppermill’ superposition

of currents. Achieving such structures, with the level of control outlined here, would

be highly challenging using current trap-based setups.

Finally, it has been demonstrated that changes to the cavity detuning provide a mecha-

nism to change the intensity structure of the current, obtaining either coupled lattices,

small numbers of coupled cavity solitons, or uniformly rotating rings. On broader op-

tical top hat pumps, phase gradients have been applied to the optical pump to obtain

spiralling inward or outward atom-light cavity solitons.

As such, our method provides a means of dynamically reconfigurable ultracold atomic

current generation of a desired speed, size, and atom number, on either lattice or uni-

form intensity structures. This complete control, building on prior work [61, 174, 273],

enhances the capabilities of existing approaches to ultracold atomic persistent current

generation, in particular with the now possible realisation of dynamically reconfigurable

dynamics, with obvious links to the field of atomtronic current generation [197, 198].

In addition to enhanced control of a single current ring, our method also allows for

the superposition of currents, a challenging prospect with conventional trapping ap-

proaches [206, 207, 219, 222, 274] - an ‘atomic peppermill’, a red-detuned equivalent of

the ‘optical revolver’ of Ref. [252], demonstrating the powerful ability of our method

to superimpose several transverse currents. The independent control over each current

ring that our method allows has many potential applications, including in simulta-

neous or interleaved cog-like atomic SQUIDs for atomtronics [197, 198], and current

interactions for phase-slip qubit realisation [275, 276].
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Conclusions



Findings Within This Thesis

Throughout this thesis, we have considered various approaches to study the capacity

of light to control the behaviour of ultracold atoms. In the majority of cases, we have

specifically considered structured light - light structured in both intensity and phase

such that the atoms are subjected to phase gradients, in addition to confinement and

transport through the typical intensity gradient-based approach.

We studied two physical configurations within which such atom-light interactions can

occur. The first, considered in Part II, was the co-propagation of ultracold matter waves

and optical fields, initially focusing upon extending the viability of existing models in

the literature describing mutual self-structuring of homogeneous atomic and optical

fields, through the dipole force felt by each from the other, into coupled filamentation

patterns [32, 33]. The nature of these coupled patterns was controlled by the detuning

between the fields, enabling light- or dark-seeking atoms with a selection of red- or

blue-atom-field detuning, respectively.

We extended these studies to fields with intensity structure, again obtaining coupled

patterns as expected from Ref. [33]. With the addition of further nonlinear terms

to the model, we presented a means of avoiding subsequent numerical collapse whilst

still exhibiting self-structuring. Crucially, such a model leads to subsequent stable

co-propagation, allowing the investigation of these dipole-led interactions between the

fields at significantly longer co-propagation scales.

Applying the extended model to structured optical fields, we presented cases of coupled

field dynamics where the optical field acted as a highly effective mechanism to guide the

co-propagating ultracold atomic beam. We outlined a number of configurations in which

atoms may be trapped in optical brightness or darkness, with the precise configuration

of this atomic trapping defined by the distribution of the optical field and field detuning

selection. Notably, we outlined a scheme by which, using Laguerre-Gaussian optical

rings and red atom-field detuning (bright-seeking atoms), Kerr-like fragmentation in

both fields permitted the formation of coupled atom-light clusters, which behaved like
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spatial optical solitons [148, 149]. Crucially, the number of coupled clusters formed was

exclusively determined by the OAM of the optical beam: for a beam of OAM ±m, one

obtained 2|m| clusters in each field. This approach thus provides a simple means of con-

fining an ultracold atomic beam into a pre-determined number of clusters. Additionally,

the clusters were shown to begin to rotate before eventual ejection: a mechanism of

OAM rotational transfer from the optical to the atomic field. Alternatively, with blue

atom-field detuning, we outlined a means of producing broader atomic clusters, now in

positions of optical darkness, through the scalar superposition of LG optical beams. In

this case, the clusters rotated around their centres, ‘pushed’ by the surrounding optical

field. For both the blue- and red-detuned cases, we realised a method of atomic cluster

generation, of customisable number determined purely through the initial optical field’s

characteristics: a powerful mechanism of atomic confinement and trapping.

In Part III, we considered atom-light interactions within a driven optical cavity. With

the optical field now circulatory and encountering the atomic medium on many oc-

casions, additional temporal control of the dynamics was realised, along with greater

capacity to design the transverse characteristics of the atomic medium. Initially, we out-

lined an updated numerical description of the involved atom-light interactions within a

driven optical cavity, based around a Lugiato-Lefever description of the optical dynam-

ics [168]. In this case, the ultracold atomic medium was considered static in the centre

of the cavity, rather than co-propagating with an optical field as in Part II. The nature

of atom-field interactions remained determined by the atom-field detuning, enabling

similar differentiation between light- and dark-seeking atoms as in Part II.

Before considering structured optical and atomic fields, we first studied the dynamics of

homogeneous fields, similar to the procedure followed for co-propagating fields. Within

a driven optical cavity, coupled patterns were again obtained, but their dynamics were

significantly richer, and we observed the formation of spontaneous Turing-like patterns

with blue atom-field detuning [153]. Observing both bistable and monostable regimes

within the system, we demonstrated that bistable regimes permit hysteresis behaviour

between a homogeneous and patterned state in both atomic and optical fields. Within
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monostable regimes, we demonstrated a wide breadth of possible pattern varieties across

both fields. Additionally, we demonstrated the formation of atomic cavity solitons,

restricted to regions of attractive interatomic BEC interactions for blue atom-field

detuning, but far more widespread for the case of red atom-field detuning, and therefore

light-seeking atoms.

Moving to initially structured optical and atomic fields, we initially considered a direct

extension of the coupled Turing pattern formation, and demonstrated their presence

for spatially structured fields in the form of optical ‘top hat’ modes. By introducing a

structured optical phase to the optical pump through OAM, the patterns azimuthally

rotated with their rotation rate and direction determined by the OAM index, m. Con-

sidering larger values of |m| we demonstrated that the interplay of nonlinear forces leads

to a complex transverse reshaping of the ultracold atomic field, providing a highly ef-

fective atomic trap in the central portion of the optical field. At longer run times,

we observed that the OAM of the optical field becomes completely transferred to the

atomic field, and that such rotational atomic motion leads to the formation of atomic

vortices, unique to the atomic field. The vortices formed organised themselves into

grid-like, rotating structures, with the total number of vortices proportional to the

OAM of the optical pump.

Finally, we considered an alternative formation mechanism for Turing patterns, occur-

ring as a lattice of peaks atop an off-axis ring of optical intensity. With Laguerre-

Gaussian optical pumps, we confirmed that, akin to behaviour within a self-focusing

Kerr cavity, atom-light interactions within a driven optical cavity of this nature will

lead to the formation of rotating Turing patterns [174]. With red atom-field detuning

the atoms are captured by the light, and also rotate around the ring of fixed radius: a

form of atomic persistent current, guided by the optical field. Like the Kerr case, we

reported that the characteristics of these currents are set by the OAM and ring radius

selections.

Crucially, we also reported on the dynamic capabilities of this method of atomic persis-

tent current generation. Through alterations to the profile of the optical pump in time,
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we established that it was variously possible to: switch the direction of the rotation

of the current; accelerate the current from a stationary configuration; decelerate the

current to a stationary configuration; or progressively vary the transverse size of the

current, leading to the formation of additional lattices from the previous background

of the ring structure as appropriate. Alternatively, with an optical pump of a scalar

superposition of LG modes, we outlined that an ‘atomic peppermill’ - a co- or counter-

rotating transverse current distribution (depending on the OAM index selection) was

also possible.

A final capability of this method of current generation was outlined through its depen-

dence on the cavity detuning. We showed that with increased cavity detuning, it was

possible to alter the lattice structure without adapting its ring size, realising transitions

from evenly distributed lattices to small numbers of cavity solitons and uniformly ro-

tating current rings. Employing this technique to realise isolated atomic cavity solitons

on optical top hat pumps, we used an additional phase gradient within the pump to

cause inward or outward spiralling of the atomic cavity solitons, observing the expected

variation in its velocity as its ring radius altered.

Prospective Applications

The work within this thesis was designed to explore the capacity of light, typically

structured in both intensity and phase, to control the behaviour of ultracold atoms.

We have realised many such methods of control and this work is potentially applicable

in a variety of settings, which we now consider.

The primary findings of the co-propagation scheme outlined the ability of ultracold

atoms to be directed towards positions of optical intensity or darkness depending on

the nature of the field detuning. Such a mechanism may be applied in the field of atomic

trapping, where the ability to trap atoms in particular spatial regions is sought [25,

33, 253]. Specifically for the trapping of atomic clusters within the dark optical regime

demonstrated here, there are additional attractions to this scheme, given the thermal-

free properties of regions outside of optical intensity [63, 265]. Alternatively, with the
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scheme outlined for the generation of coupled atom-light solitons with red atom-field

detuning, there are clear applications to the fields of atomic transport, forming a pre-

determined number of solitons in a typically prohibitive regime, with expectation of

their rotational and ejection characteristics [51, 243].

There are many additional applications for the light-induced control of ultracold atomic

dynamics outlined within a driven optical cavity. Again, atomic transport was realised

to dark optical regions within Turing patterns on homogeneous fields. However, unlike

in the co-propagation case, OAM was shown to add rotational dynamics to these atoms

confined in darkness, with the rotational characteristics set by the optical pump. This

scheme again opens further applications available for atomic trapping, manipulation,

and transport in thermal-free regions of the field [25, 33, 51, 63, 243, 253, 265, 266].

With red atom-field detuning, we outlined the capacity to create ultracold atomic per-

sistent currents. Such a continuous flow of neutral atoms, acting as an effective current,

is highly applicable to the field of atomtronics, with this optically-led formation pro-

cess acting as an alternative to the typically used static trapping field approach to cre-

ate structures analogous to atomtronic superconducting quantum interference devices

(SQUIDs) [197, 198]. Many of the structures that we outlined, such as the ‘atomic

peppermill’ realised through scalar superpositions of optical LG modes, are signifi-

cantly more complex transverse forms than those accessible through trapping-based

approaches [64, 206, 207, 219, 222, 274], with applications in studying the interac-

tions between current rings for phase-slip qubit realisation [275, 276]. Crucially, our

approach also enables the formation of a dynamic atomic current, in an approach pro-

hibited when using static trapping fields. This opens the exciting prospect of future

atomtronic devices, enabled through the guiding of a structured optical beam within a

cavity, adapting itself dynamically in time to suit various current requirements.

In addition to these numerous applications of light-induced control of ultracold atomic

dynamics, additional applications outside of this immediate scope may be conceived.

Fundamentally, the additional control of ultracold atomic dynamics with structured

light promises to advance a range of areas of ultracold atomic sciences. Areas include
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quantum and superfluid simulation [20] and quantum computation [277]. Additionally,

there are applications within fundamental BEC research [78], particularly consider-

ing the ability of structured light to seed the creation of atomic solitons in repulsive,

typically prohibitive, regimes [146, 278].

We have demonstrated in this work an alternative approach to realise a wide range

of ultracold atomic Turing patterns, by applying a driven optical cavity. Such an ap-

proach utilises a far more straightforward BEC setup than currently outlined, with

prior observations of ultracold atomic Turing patterns occurring in configurations in-

cluding ferromagnetic [183], polariton [184], or dipolar [187–190] condensates. By using

the coupling to the optical field to realise the required activator-inhibitor conditions,

we may observe Turing patterns in a straightforward, single-species, single-component

condensate, in addition to a wider diversity of patterns than those previously reported.

We also outlined that Turing patterns, under appropriate conditions, may realise hys-

teresis cycles within ultracold atoms. Though such behaviour has previously been

demonstrated [196], its realisation here, in a system that may be seeded with angu-

lar momentum towards atomtronic applications [197, 198], opens the possibility of the

direct application of hysteresis cycles for atomtronics. Building on the applications

of hysteresis within electronic systems [261–264], similar applications may be enabled

through this approach to an atomic current.

Finally, our work outlined an alternative approach to the formation of organised vortex

arrays within ultracold atoms without the requirement to use trapped atoms subjected

to a stirring potential [204, 209, 210, 267] if the atoms are guided by a coupled optical

field carrying OAM within a driven optical cavity. We also demonstrated that such

an approach defines the eventual properties of the array, with the OAM index of the

optical pump related to the final number of vortices obtained and large numbers of

vortices becoming accessible through this method. Such an alternative method, with

its additional array control, may enable advancements in the modelling of vortex matter

within superconductors [268], cosmology [269], or quantum droplets [270].
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Future Research Directions

There are a number of lines indicated for future research. Most obviously, the results

presented here should be experimentally realised, using the schemes as outlined in

Chapters 5 and 9. Though certain results related to those of this thesis have been

verified in a range of alternative media, including in hot atomic vapours [60, 150,

176], nonlinear colloidal suspensions [151, 152], or cold atoms [178, 181, 182], it is

our hope that, building on such realisations, the results presented here will be applied

experimentally to realise the additional benefits of such processes unique to the ultracold

atomic realm.

Moving forward, further numerical study should focus on the specific application of

the findings outlined in Part III to the atomtronic field. Particular focus should be

given to the adaptation of this scheme for atomtronic SQUID-like devices, given the

relative ease of atomic persistent current geometry realisation for light-seeking atoms.

Studies to discern the particular transverse current geometries enabled by the dynamic

capabilities of the methods outlined here should also be conducted. Additionally, work

should focus on alternative current configurations, particularly for rotating dark-seeking

atoms trapped in Turing patterns, free from coincident optical heating.

A further form of structured light is possible, outside of the scope of this thesis. A vector

superposition of orthogonally polarized OAM beams may provide structured polariza-

tion, in addition to the structured intensity and phase considered within this work.

Such light, typically referred to as fully structured light [39], should also be considered

in the atom-light configurations outlined within this work. Light with structured polar-

ization propagating within a Kerr medium leads to more stable propagation, delaying

fragmentation similar to that reported in this thesis [60, 279]. Additionally, within a

self-focusing Kerr cavity, it enables additional customisation over the transverse and

rotational characteristics of the dynamics [174]. If such benefits were realised when

this light interacts with ultracold atoms, the resulting atomic dynamics may also be

significantly more rich and applicable for application in fields such as atomtronics, and

as such this promises a potentially fruitful vein of research.
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Finally, work should consider more complex BEC varieties than the single-species,

single-component condensate considered in this thesis. Though the simplicity of such a

condensate is beneficial in potentially realising the results presented here, a number of

additional dynamical considerations may be introduced by using condensate varieties

such as dipolar quantum mixtures and spinor condensates [18]. By introducing a multi-

species BEC, and then subjecting it to interaction with structured light in the ways

considered here, the additional interactions between atomic components may be used as

a tool to alter factors such as the number of atomic clusters realised, or their transverse

behaviour under evolution, in addition to other unforeseen benefits through alteration

to the dynamics obtained.
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Part V

Appendix



Appendix A

Additional Propagation Model

Derivation Details

This section contains fuller details of procedures followed when deriving the propagation

model outlined in Chapter 5.2.

A.1 Polarization Corrections for Dense Atomic Media

We proceed from Eqn. (5.8), the point at which we make the substitution

A
′ → A

′
+
P

′

3ε0

into the atomic wavefunctions (Eqns. (5.3)-(5.4)) in order to include corrections due to

induced polarization in dense atomic media [30, 31, 229]. The atomic equations now

take the form

i~∂tΦ
′
g = − ~2

2ma
∇2Φ

′
g −

1

2
µ

(
A

′∗ +
P

′∗

3ε0

)
Φ

′
ee
i∆t +

4π~2agg

ma
|Φ′

g|2Φ
′
g,

i~∂tΦ
′
e = − ~2

2ma
∇2Φ

′
e −

1

2
µ

(
A

′
+
P

′

3ε0

)
Φ

′
ge
−i∆t − i~γ

2
Φ

′
e,
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i~∂tΦ
′
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′
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2ma
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where Eqns. (A.1)-(A.2) are Eqns. (5.9)-(5.10) of Chapter 5.2.

A.2 Rotating Wave Procedure

We consider the simplification of Eqns. (5.22)-(5.24). We identify that, when ∆
′

=

∆− kLva, ∆ >> kLva and thus exp (∆
′
) ≈ exp (∆), and so write
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which, on cancelling the exponents, gives
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where Eqns. (A.3)-(A.5) are Eqns. (5.25)-(5.27) of Chapter 5.2.

A.3 Dimensional Scalings

We apply the scalings of Eqns. (5.35)-(5.36) to Eqns. (5.32)-(5.34):
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where Eqns. (A.6)-(A.8) are Eqns. (5.37)-(5.39) of the main text.
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A.4 Optical Field Transformations

We apply the optical field transformation, defined in Eqn. (5.40) as
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successively to the three fields.

A.4.1 Optical Field

Using a slightly rearranged version of Eqn. (5.39), the description of the optical field

becomes (taking n = 1)
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Eqn. (A.10) is both Eqn. (5.44) of Section 5.2 and Eqn. (5c) of Ref. [33].

A.4.2 Ground State Atomic Field

Using Eqn. (5.37), the description of the atomic ground state is now given by
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Eqn. (A.11) is both Eqn. (5.42) of Section 5.2 and Eqn. (5a) of Ref. [33].

A.4.3 Excited State Atomic Field

Using Eqn. (5.38), the description of the atomic excited state becomes
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~
⇒ (i∂ζ +∇2

⊥)Φe =
w2

L(kL + ka)2

2
Φe −

maw
2
L

~
(ω + ∆)Φe −

ka

√
|δ|

kL
FΦg

−
maw

2
Lµ

2

6~2ε0
|Φg|2Φe − i

maw
2
Lγ

2~
Φe,

ka = kL ⇒ =
w2

L(kL + ka)2

2
Φe −

maw
2
L

~
(ω + ∆)Φe −

√
|δ|FΦg

−
maw

2
Lµ

2

6~2ε0
|Φg|2Φe − i

maw
2
Lγ

2~
Φe,

⇒ (i∂ζ +∇2
⊥)Φe =

w2
L(kL + ka)2

2
Φe −

maw
2
L

~
(ω + ∆)Φe −

√
|δ|FΦg

−
maw

2
Lµ

2

6~2ε0
|Φg|2Φe − i

maw
2
Lγ

2~
Φe. (A.12)

The first two right hand terms of Eqn. (A.12) may be written as

=
w2

L(kL + ka)2

2
Φe −

maw
2
L

~
(ω + ∆)Φe,

~ω =
mav

2
a

2
⇒ =

w2
L

2
k2

LΦe + w2
LkLkaΦe +

w2
L

2
k2

aΦe −
maw

2
L

~

(
mav

2
a

~
+ ∆

)
Φe,

⇒ =
w2

L

2
k2

LΦe + w2
LkLkaΦe +

w2
L

2
k2

aΦe −
m2

aw
2
Lv

2
a

~2
Φe −

maw
2
L

~
∆Φe,

ka =
mava

~
⇒ =

w2
L

2
k2

LΦe + w2
LkLkaΦe +

w2
L

2
k2

aΦe − k2
aw

2
LΦe −

maw
2
L

~
∆Φe,

⇒ =
w2

L

2
k2

LΦe + w2
LkLkaΦe −

w2
L

2
k2

aΦe −
maw

2
L

~
∆Φe,

ka = kL ⇒ = w2
LkLkaΦe −

maw
2
L

~
∆Φe.

Applying this to Eqn. (A.12) gives

(i∂ζ+∇2
⊥)Φe = −

√
|δ|FΦg−

maw
2
Lµ

2

6~2ε0
|Φg|2Φe +

maw
2
L

~

(
~kLka

ma
−∆− iγ

2

)
Φe. (A.13)

Rearranging the bracketed right hand terms of Eqn. (A.13),

=
maw

2
L

~

(
~kLka

ma
−∆− iγ

2

)
Φe,
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⇒ = w2
L

(
kLka −

ma∆

~
− imaγ

2~

)
Φe,

⇒ = k2
Lw

2
L

(
ka

kL
− ma∆

~k2
L

− i maγ

2~k2
L

)
Φe,

ka = kL, ωR =
~k2

L

2ma
⇒ = k2

Lw
2
L

(
1− ∆

2ωR
− i maγ

2~k2
L

)
Φe,

and so Eqn. (A.13) becomes

(i∂ζ+∇2
⊥)Φe = −

√
|δ|FΦg−

maw
2
L

~2

µ2

6ε0
|Φg|2Φe−k2

Lw
2
L

(
∆

2ωR
− 1 + i

maγ

2~k2
L

)
Φe. (A.14)

Finally, if we let δ = k2
Lw

2
L

(
∆

2ωR
− 1
)

, as in Ref. [33], we obtain

(i∂ζ +∇2
⊥)Φe = −

√
|δ|FΦg −

maw
2
L

~2

µ2

6ε0
|Φg|2Φe − δ

(
1 + i

maw
2
L

~
γ

2δ

)
Φe. (A.15)

Eqn. (A.15) is both Eqn. (5.43) of Chapter 5.2 and Eqn. (5b) of Ref. [33].

A.5 Adiabatic Elimination of Excited Atomic State

Proceeding from Eqns. (5.42)-(5.44), neglecting the final term in Eqn. (5.43) assuming

large detuning and under a first order adiabatic assumption, we obtain

i∂ζΦg = −
√
|δ|F ∗Φe +

maw
2
L

~2

(
− µ

2

6ε0
|Φe|2 +

4π~2agg

ma
|Φg|2

)
Φg, (A.16)

i∂ζΦe = −
√
|δ|FΦg −

maw
2
L

~2

µ2

6ε0
|Φg|2Φe − δΦe, (A.17)

i∂ζF = −
k2

Lw
4
Lmaµ

2

4ε0~2
√
|δ|

Φ∗gΦe. (A.18)

Writing Eqn. (A.17) as

(
maw

2
L

~2

µ2

6ε0
|Φg|2 + δ

)
Φe = −

√
|δ|FΦg − i∂ζΦe,

⇒ Φe = −α
√
|δ|FΦg − iα∂ζΦe, (A.19)
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with α−1 = δ +
maw

2
L

~2

µ2

6ε0
|Φg|2, (A.20)

we recognise that Eqn. (A.19) takes a similar form to Eqn. (19) of Ref. [280]. We then

identify a zero order term of

Φe = −α
√
|δ|FΦg (A.21)

which leads to a definition of ∂ζΦe given by

∂ζΦe = −α
√
|δ| [Φg∂ζF + F∂ζΦg] . (A.22)

From Eqn. (A.16),

∂ζΦg = i
√
|δ|F ∗Φe − i

maw
2
L

~2

(
− µ

2

6ε0
|Φe|2 +

4π~2agg

m
|Φg|2

)
Φg,

⇒ ∂ζΦg ≈ i
√
|δ|F ∗Φe + i

maw
2
Lµ

2

6ε0~2
|Φe|2Φg, (A.23)

and from Eqn. (A.18),

∂ζF = i
k2

Lw
4
Lmaµ

2

4ε0~2
√
|δ|

Φ∗gΦe. (A.24)

Applying Eqns. (A.23)-(A.24) to Eqn. (A.22),

∂ζΦe = −α
√
|δ|

[
Φg

(
i
k2

Lw
4
Lmaµ

2

4ε0~2
√
|δ|

Φ∗gΦe

)
+F

(
i
√
|δ|Ω∗Φe +i

maw
2
Lµ

2

6ε0~2
|Φe|2Φg

)]
,

⇒ = −iα
√
|δ|

[
k2

Lw
4
Lmaµ

2

4ε0~2
√
|δ|
|Φg|2 +

√
|δ||F |2 +

maw
2
Lµ

2

6ε0~2
|Φe|ΦgF

]
|Φe|. (A.25)

Substituting Eqn. (A.25) into Eqn. (A.17),

−
√
|δ|FΦg −

maw
2
L

~2

µ2

6ε0
|Φg|2Φe − δΦe = α

√
|δ|

[
k2
Lw

4
Lmaµ

2

4ε0~2
√
|δ|
|Φg|2

+
√
|δ||F |2 +

mw2
Lµ

2

6ε0~2
|Φe|ΦgF

]
|Φe|. (A.26)
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Recognising that, in Eqn. (A.20), the term in δ dominates over the term in |Φg|2,

α−1 ≈ δ, (A.27)

and Eqn. (A.26) becomes

−
√
|δ|FΦg −

maw
2
L

~2

µ2

6ε0
|Φg|2Φe − δΦe =

1√
|δ|

[
k2

Lw
4
Lmaµ

2

4ε0~2
√
|δ|
|Φg|2

+
√
|δ||F |2 +

maw
2
Lµ

2

6ε0~2
|Φe|ΦgF

]
|Φe|,

⇒ −|δ|FΦg −
√
|δ|
maw

2
L

~2

µ2

6ε0
|Φg|2Φe − δ

√
|δ|Φe =

k2
Lw

4
Lmaµ

2

4ε0~2
√
|δ|
|Φg|2|Φe|

+
√
|δ||F |2|Φe|+

maw
2
Lµ

2

6ε0~2
ΦgF |Φe|2. (A.28)

Now using Eqn. (A.21),

|Φe|2 = |α|2|δ||F |2|Φg|2,

⇒ =
|F |2|Φg|2

|δ|
. (A.29)

Eqn. (A.29) is Eqn. (5.46) of Chapter 5.2. Applying it to Eqn. (A.28) gives

−|δ|FΦg −
maw

2
Lµ

2

6ε0~2|δ|
|Φg|2|F |2ΦgF =

√
|δ|
(
δ +

maw
2
L

~2

µ2

6ε0
|Φg|2

+
k2

Lw
4
Lmaµ

2

4ε0~2|δ|
|Φg|2 + |F |2

)
|Φe|,

⇒ −|δ|FΦg =
√
|δ|
(
δ +

maw
2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)
|Φe|,

(A.30)

where we have identified that the two terms in 1/|δ| may be neglected.
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From Eqn. (A.30), we may reach a description of the atomic excited state, under an

adiabatic assumption, given by

−|δ|FΦg = s|δ|
√
|δ|
(

1 +
1

s|δ|

(
maw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

))
|Φe|,

⇒ |Φe| = −
s|δ|

δ
√
|δ|
(

1 + 1
s|δ|

(
maw2

L
~2

µ2

6ε0
|Φg|2 + |F |2

))FΦg,

= − s√
|δ|
(

1 + 1
s|δ|

(
maw2

L
~2

µ2

6ε0
|Φg|2 + |F |2

))FΦg,

≈ −sFΦg√
|δ|

(
1− 1

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

))
,

⇒ Φe = −sFΦg√
|δ|

(
1− 1

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

))
, (A.31)

where s represents the sign of δ, and as such s2 ≡ 1. Eqn. (A.31) is equivalent to both

Eqn. (5.45) of Chapter 5.2 and Eqn. (7) of Ref. [33].

A.6 Atomic Field Transformations

A.6.1 Atomic Field

Applying the atomic field transformations outlined in Eqns. (5.48)-(5.49) to Eqn. (5.47),

(i∂ζ +∇2
⊥)Φg = s|F |2Φg −

s|F |2

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)
Φg

+
maw

2
L

~2

(
− µ

2

6ε0

|F |2

δ
|Φg|2 +

4π~2agg

m
|Φg|2

)
Φg,

⇒ (i∂ζ +∇2
⊥)ψ = s|F |2ψ − s|F |2

|δ|

(
smaw

2
L

~2

µ2

6ε0

4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2 + |F |2

)
ψ

+
maw

2
L

~2

(
− µ2

6ε0

|F |2

δ

4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2 +

4π~2agg

ma

4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2

)
ψ,

= s|F |2ψ − s|F |2

|δ|

(
2s|δ|

3k2
Lw

2
L

|ψ|2 + |F |2
)
ψ

+
maw

2
L

~2

(
− 2~2|F |2

3mak2
Lw

4
L

|ψ|2 +
16π~4ε0|δ|agg

k2
Lw

4
Lm

2
aµ

2
|ψ|2

)
ψ,
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⇒ = s|F |2ψ − 2s2|F |2

3k2
Lw

2
L

|ψ|2ψ − s |F |
4

|δ|
ψ − 2|F |2

3k2
Lw

2
L

|ψ|2ψ

+
16π~2ε0|δ|agg

k2
Lw

2
Lmaµ2

|ψ|2ψ, (A.32)

where Eqn. (A.32) is equivalent to Eqn. (5.50) of Chapter 5.2.

A.6.2 Optical Field

We also perform a similar operation to Eqn. (5.44), the optical field. Using the rela-

tionship for the excited state as outlined in Eqn. (5.45), this becomes

(i∂ζ +∇2
⊥)F = −

k2
Lw

4
Lmaµ

2

4ε0~2
√
|δ|

Φ∗g

[
−sFΦg√

|δ|

[
1− 1

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)]]
,

=
sk2

Lw
4
Lmaµ

2

4ε0~2|δ|
|Φg|2F

[
1− 1

|δ|

(
smaw

2
L

~2

µ2

6ε0
|Φg|2 + |F |2

)]
,

⇒ =
sk2

Lw
4
Lmaµ

2

4ε0~2|δ|
|Φg|2F

[
1−

smaw
2
Lµ

2

6ε0~2|δ|
|Φg|2 −

|F |2

|δ|

]
. (A.33)

Applying the atomic transfer of Eqn. (5.49), Eqn. (A.33) becomes

(i∂ζ +∇2
⊥)F =

sk2
Lw

4
Lmaµ

2

4ε0~2|δ|
4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2F

[
1

−
smaw

2
Lµ

2

6ε0~2|δ|
4~2

k2
Lw

4
Lµ

2

ε0|δ|
ma
|ψ|2 − |F |

2

|δ|

]
,

= s|ψ|2F
[
1− 2s

3k2
Lw

2
L

|ψ|2 − |F |
2

|δ|

]
,

= s|ψ|2F
[
1− |F |

2

|δ|
− sβdd|ψ|2

]
,

⇒ (i∂ζ +∇2
⊥)F = s

(
1− |F |

2

|δ|

)
|ψ|2F − βdd|ψ|4F. (A.34)

Eqn. (A.34) is equivalent to Eqn. (5.54) of Chapter 5.2 and Eqn. (8b) of Ref. [33].
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Additional Cavity Model

Derivation Details

This section contains the full details of certain mathematical procedures contained

within the derivation of the cavity model outlined in Chapter 9.2.

B.1 Adiabatic Elimination of Excited Atomic State

In this section, we adiabatically eliminate the excited atomic state from the dynamics.

We neglect the term in Eqn. (9.11), (i~γ)/2, as for significantly large detuning, of ap-

proximately ten times the line-width and larger, spontaneous emission is negligible [33].

With these alterations and under an adiabatic assumption, Eqns. (9.9)-(9.11) become

(9.9) :
2iωLn

2

c2

∂A

∂t
= −

ω2
Lµ

c2ε0
Φ∗gΦee

−ikLz, (B.1)

(9.10) : i~
∂Φg

∂t
= −µ

2
AΦee

−ikLz − µ2

6ε0
|Φe|2Φg +

4π~2agg

ma
|Φg|2Φg, (B.2)

(9.11) : i~
∂Φe

∂t
= −µ

2
AΦge

ikLz − µ2

6ε0
|Φg|2Φe − ~∆Φe. (B.3)
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By grouping like terms in Eqn. (B.3), we may write that

(
µ2

6ε0
|Φg|2 + ~∆

)
Φe = −µ

2
AΦge

ikLz − i~∂tΦe,

⇒ Φe =
1(

µ2

6ε0
|Φg|2 + ~∆

) [−µ
2
AΦge

ikLz − i~∂tΦe

]
. (B.4)

As µ2

6ε0
|Φg|2 << ~∆, it can be neglected and we can write

Φe ≈
1

~∆

[
−µ

2
AΦge

ikLz − i~∂tΦe

]
. (B.5)

Similarly to Eqn. (A.19), Eqn. (B.5) has a zero order term, given by

Φe = − µ

2~∆
AΦge

ikLz, (B.6)

and its temporal derivative will therefore be given by

∂tΦe = ∂t

(
− µ

2~∆
AΦge

ikLz
)

= − µ

2~∆
eikLz [Φg∂tA+A∂tΦg] . (B.7)

We may calculate both of the derivatives in Eqn. (B.7) from Eqns. (B.2) and (B.1). In

the case of the optical field, this is given by

∂tA = i
ωLµ

2n2ε0
Φ∗gΦee

−ikLz, (B.8)

and, for the ground atomic state, is given by

∂tΦg = i
µ

2~
AΦee

−ikLz + i
µ2

6~ε0
|Φe|2Φg − i

4π~2agg

ma
|Φg|2Φg. (B.9)
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Combining these, we obtain that the temporal derivative of the atomic excited state,

Eqn. (B.7), may be written as

∂tΦe = − µ

2~∆
eikLz

[
Φg

(
i
ωLµ

2n2ε0
Φ∗gΦee

−ikLz
)

+A

(
i
µ

2~
AΦee

−ikLz + i
µ2

6~ε0
|Φe|2Φg − i

4π~2agg

ma
|Φg|2Φg

)]
,

= −i µ

2~∆

[
ωLµ

2n2ε0
|Φg|2Φe +

µ

2~
|A|2Φe +

µ2

6~ε0
|Φe|2ΦgAe

ikLz − 4π~2agg

ma
|Φg|2ΦgA

]
,

≈ −i µ2

4~2∆
|A|2Φe, (B.10)

where we neglected smaller terms to reach Eqn. (B.10).

Finally, we substitute Eqn. (B.10) back into Eqn. (B.3), which gives

−µ
2
AΦge

ikLz − µ2

6ε0
|Φg|2Φe − ~∆Φe =

µ2

4~∆
|A|2Φe,

⇒ ~∆

(
1 +

µ2

4~2∆2
|A|2 +

µ2

6ε0~∆
|Φg|2

)
Φe = −µ

2
AΦge

ikLz,

⇒ Φe = − µAΦge
ikLz

2~∆
(

1 + µ2

4~2∆2 |A|2 + µ2

6ε0~∆ |Φg|2
) .

As the terms in µ2 will be much smaller than 1, we approximate the denominator as

(1 + ε), such that (1 + ε)−1 ≈ (1− ε). Applying this, we obtain

Φe ≈ −
µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0~∆
|Φg|2

)
. (B.11)

Eqn. (B.11) is identical to Eqn. (9.12) in Chapter 9.2, and is the equivalent of Eqn. (7)

of Ref. [33] for the case of a stationary atomic medium.
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B.2 Ground Atomic and Optical Fields After Adiabatic

Elimination

In this section, we use the adiabatically eliminated optical state, given by Eqn. (9.12),

to transform the remaining optical and ground atomic fields, given by Eqns. (9.9)

and (9.10), respectively. These three relationships are

Φe = −µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)
, (B.12)

2iωLn
2

c2

∂A

∂t
= −∇2

⊥A− 2ikL
∂A

∂z
−
ω2

Lµ

c2ε0
Φ∗gΦee

−ikLz, (B.13)

i~
∂Φg

∂t
= − ~2

2ma
∇2Φg −

µ

2
AΦee

−ikLz − µ2

6ε0
|Φe|2Φg +

4π~2agg

ma
|Φg|2Φg. (B.14)

The coupled optical field, Eqn. (B.13), on substitution of Eqn. (B.12), becomes

2iωLn
2

c2

∂A

∂t
= −∇2

⊥A− 2ikL
∂A

∂z

−
ω2

Lµ

c2ε0
Φ∗ge

−ikLz
[
− µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)]
,

= −∇2
⊥A− 2ikL

∂A

∂z

+
ω2

Lµ
2

2~∆c2ε0

(
1−

( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)
|Φg|2A,

⇒ 2ikLn

c

∂A

∂t
= −∇2

⊥A− 2ikL
∂A

∂z

+
k2

Lµ
2

2~∆n2ε0

(
1−

( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)
|Φg|2A,

⇒ i
n

c

∂A

∂t
= − 1

2kL
∇2
⊥A− i

∂A

∂z

+
kLµ

2

4~∆n2ε0

(
1−

( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)
|Φg|2A,

with kL = ωLn/c. Using ∆ = s|∆|, with s representing the sign of ∆, we arrive at

i
n

c

∂A

∂t
+ i

∂A

∂z
+

1

2kL
∇2
⊥A =

skLµ
2

4n2ε0~|∆|

(
1−

(
µ

2~|∆|

)2

|A|2 − µ2

6sε0
|Φg|2

)
|Φg|2A.

(B.15)
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Appendix B: Additional Cavity Model Derivation Details

The atomic ground state, Eqn. (B.14), on substitution of Eqn. (B.12), becomes

i~
∂Φg

∂t
= − ~2

2ma
∇2Φg −

µ

2
Ae−ikLz

[
−µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)]
− µ2

6ε0

∣∣∣∣−µAΦg

2~∆
eikLz

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)∣∣∣∣2 Φg

+
4π~2agg

ma
|Φg|2Φg,

⇒ i~
∂Φg

∂t
+

~2

2ma
∇2Φg =

µ2

4~∆
|A|2

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)
Φg

− µ4

24ε0~2∆2
|A|2|Φg|2

(
1− µ2

4~2∆2
|A|2 − µ2

6ε0
|Φg|2

)2

Φg

+
4π~2agg

ma
|Φg|2Φg,

= ~∆
( µ

2~∆

)2
(

1−
( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)
|A|2Φg

− µ2

6ε0

( µ

2~∆

)2
(

1−
( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)2

|A|2|Φg|2Φg

+
4π~2agg

ma
|Φg|2Φg,

=

[
s|∆|

(
µ

2~|∆|

)2
(

1−
(

µ

2~|∆|

)2

|A|2 − µ2

6ε0
|Φg|2

)
|A|2

− µ2

6~ε0

(
µ

2~|∆|

)2(
1−

( µ

2~∆

)2
|A|2 − µ2

6ε0
|Φg|2

)2

|A|2|Φg|2

+
4π~agg

ma
|Φg|2

]
Φg, (B.16)

where we have recognised that s2 ≡ 1.

Eqns. (B.15)-(B.16) are identical to Eqns. (9.13)-(9.14) of the main text, and provide a

coupled description of optical and ultracold atomic fields, with the atomic field station-

ary in the longitudinal dimension, and the excited atomic state adiabatically eliminated

from the dynamics.
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Appendix C

Lookup Table

This section summarises the physical constants, models, and parameter definitions used

in the thesis.

C.1 Throughout the Thesis

Parameter Definition Unit

Free space permittivity, ε0 8.85× 10−12 F m−1

BEC refractive index, n 1 -

Reduced Planck constant, ~ 1.054× 10−34 J s

Bohr radius, a0 0.529× 10−10 m

Optical wavelength, λ 720× 10−9 m

Optical wavenumber, kL
2π
λ m−1

Speed of light in vacuum, c 3× 108 m s−1

Optical angular frequency, ωL
kLc
n rad s−1

Caesium atomic mass, ma 2.207× 10−25 kg

Transition dipole matrix element, µ 2.7× 10−29 C m

Transition linewidth, Γ 2π × 5.234× 106 Hz

Field detuning magnitude, |∆| 102 × Γ Hz

Adjusted field detuning magnitude, |δ| w2
Lma∆
~ -
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Appendix C: Lookup Table

C.2 Part II (Propagation)

Atoms: ∂ζψ = i∇2
⊥ψ − i

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2

)
ψ. (5.55)

Light: ∂ζF = i∇2
⊥F + i

(
−s|ψ|2 + βdd|ψ|4

)
F. (5.56)

Parameter Definition Reference

Atomic beam velocity, va
~ωLn
mac

(5.31)

Optical field amplitude, F µ
2~
kLw

2
L

va
1√
|δ|
A

wLµ
2~

√
ma
~|∆|A

(5.40)

Atomic field amplitude, ψ
kLw

2
Lµ

2~

√
ma
ε0|δ|Φg

kLwLµ
2

√
1

ε0~|∆|Φg

(5.48)

Dipole-dipole nonlinearity, βdd
2

3k2Lw
2
L

(5.51)

Interatomic scattering nonlinearity, βcol
16πε0~2agg|δ|
k2Lw

2
Lmaµ2

16πε0~agg|∆|
k2Lµ

2

(5.52)

C.3 Part III (Cavity)

Atoms: ∂τψ =
αψ
κ

[
i∇2
⊥ψ − i

(
s|F |2 − 2βdd|F |2|ψ|2 + βcol|ψ|2 − iL3|ψ|4

)
ψ

]
. (9.66)

Light: ∂τF = − (1 + iθ)F + iαF∇2
⊥F − i

2L

TkLw2
L

(
s|ψ|2 − βdd|ψ|4

)
F + FP. (9.65)

Parameter Definition Reference

Atomic field amplitude, ψ kLwLµ
2n

√
1

ε0~|∆|Φg (9.15) & (9.61)

Optical field amplitude, F wLµ
2~

√
ma
~|∆|A (9.16) & (9.60)

Dipole-dipole nonlinearity, βdd
2n2

3k2Lw
2
L

(9.19) & (9.64)

Interatomic scattering nonlinearity, βcol
16πn2ε0~agg|∆|

k2Lµ
2 (9.20) & (9.64)

Optical Laplacian pre-factor, αF
L
T

2
kLw

2
L

(9.26), (9.46) & (9.64)

Cavity detuning, θ 2(ωc−ωP)L
cT (9.30) & (9.45)

Time re-scaling parameter, κ cT
2L (9.44) & (9.57)

Optical pump, FP 2wL

√
ma
~T FP (9.47) & (9.64)

Three-body atomic loss, L3
ma

~k2Lw
2
L
L3 (9.64)

Atomic Laplacian pre-factor, αψ
~

maw2
L

(9.64)
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