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Abstract

This thesis describes an unaveraged 3D mathematical model and parallel code

of the free electron laser. It is unique in that it is a 3D model which does not

perform limiting assumptions performed by commonly used FEL codes. This

allows it to model the FEL with a higher resolution, and to model effects which

other codes cannot.

The code is written in Fortran 90. The enhanced frequency range results

in an increased memory and process uptake, and so the code is written for use

on parallel processors using the MPI standard. The problems associated with

finding an efficient method of parallelization of the FEL system are described

and solutions are considered. The enhanced frequency range also results in a

model of diffraction in the transverse dimensions which is frequency dependant,

which becomes problematic at low frequencies. To solve this, a low frequency

cut-off is defined, and the frequencies below the cut-off are filtered out during the

simulations.

Several simulations are presented to test the code against previously published

results with the enhanced frequency range in 1D. Then 3D simulations are pre-

sented showing the amplification arising from effects which cannot be predicted

in more commonly used codes. Finally, a new effect is reported involving the

evolution of short chirped electron bunches in an undulator.
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Chapter 1

Introduction

The Free Electron Laser [1] is a source of intense, spatially coherent radiation,

with devices operating at wavelengths ranging from microwave through to X-ray.

It has been of interest for decades now as a promising source of high brightness,

short pulse hard X-rays, being referred to as a Fourth Generation Light Source.

Here the term “Light Source” refers to a source of synchrotron radiation.

Synchrotron radiation is produced when a charged particle is accelerated. When

a relativistic charged particle travels in the arc of a circle it emits radiation

tangential to the direction of propagation focused into a narrow cone of angle

≈ 1

γ
[2], γ being the relativistic Lorentz factor associated with energy E =

γm0c
2. To produce synchrotron radiation for experimental purposes, beams of

electrons are accelerated through circular orbits in large toroidal devices, known

as synchrotrons or storage rings. Electrons are used due to their low rest mass.

1.1 Brief History of Synchrotron Radiation

Synchrotron radiation takes its name from the machine in which it was first ob-

served, at the 70MeV electron synchrotron at General Electric in Schenectady,

New York in 1947 [3]. It was several years, however, until it was thought to be

used experimentally, and was first considered an irritating energy loss. After the

spectral and polarization properties of the radiation were measured both at Gen-
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eral Electric and at the 250MeV synchrotron at the Lebedev Institute in Moscow,

Tomboulian and Harteman used it experimentally for the first time in 1956, at the

320MeV electron synchrotron at Cornell [4]. Soon after, throughout the 1960’s

a number of synchrotron, and later, storage ring facilities began operation world-

wide with access to users to exploit the radiation for experimental purposes, such

as characterization of absorption spectra in solids. These are now known as the

1st generation sources, and were used in parasitic mode, meaning the technology

was not expressly designed with the purpose of producing radiation.

Thus, the so-called 2nd generation of dedicated sources began with the SRS

(Synchrotron Radiation Source) at Daresbury Laboratory in the UK in 1981.

Others which were completed soon after included the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory, USA, the Photon Factory at

the KEK laboratory in Tsukuba, Japan, and the 800MeV SuperACO at Orsay

LURE, France. They were now specifically designed to produce synchrotron

radiation, resulting in more useful spectral output.

The next generation, the 3rd, brought yet higher intensities, with lower emit-

tance electron beams resulting in higher brightness radiation output. The emit-

tance is a measure of the divergence of the electron and photon beams. A lower

emittance means a higher quality beam. The 3rd generation facilities specialize

in either V-UV and soft X-ray or hard X-ray radiation [4]. By now, devices

called wigglers and undulators were commonly used in straight sections between

the bends of the storage rings to produce radiation of higher intensities. These

devices are composed of a periodic array of magnetic dipoles which force a rel-

ativistic electron beam to oscillate in a direction transverse to its direction of

propagation, and were first proposed and operated by Motz in [5] and [6]. The

multiple transverse oscillations result in an output many times greater than the

output of just one bend. Additionally undulators produce output with narrow

spectral lines, enhancing the intensity. The improvements in output led to pre-

viously unattainable results, using the radiation for X-ray microscopy and spec-

tromicroscopy experiments on a sub-picosecond time scale. 3rd generation facili-

ties include the European Synchrotron Radiation Facility (the first) in Grenoble,
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the Advanced Photon Source at Argonne Laboratory in the US, and Diamond

Light Source at Rutherford Appleton Laboratory in the UK. Experiments at

Diamond involve characterizing magnetic and electronic properties of materials

at the atomic level, probing material under extreme pressure and temperature

conditions, and understanding the structure of biological samples.

1.2 The Free Electron Laser

The previous generations of light sources produced radiation by accelerating elec-

trons to force them to spontaneously radiate. The electrons’ energy loss due to

producing this radiation is negligible. The FEL brings an improvement in output

intensity and temporal coherence over previous sources because the electrons give

up a significant amount of their kinetic energy to the radiation, resulting in an

exponential amplification of the radiation. The interaction is described in the

next chapter, but for now it is noted that the desired amplification is achieved

by passing both a high quality (low emittance, low energy spread) electron beam

and a radiation field through a sufficiently long undulator, and the amplification

results from an induced periodic density modulation of the electron beam.

The theory was first described by Madey in 1971 [1], which described what

is now known as the low-gain regime of FEL operation. The first lasing and

amplification from an FEL was then demonstrated at Stanford [7, 8]. That FEL

was a low gain infrared oscillator, where the undulator, enclosed in an optical

cavity, amplified radiation over many passes of the device.

The theory of the high gain FEL, in which an exponential amplification of

the radiation is achieved within a single pass of the undulator, was subsequently

developed in the late 1970’s [9, 10, 11, 12, 13, 14]. An important theoretical de-

velopment showed how the initial synchrotron radiation produced by an electron

beam at the start of a long undulator could be subsequently amplified in the high

gain regime further along the undulator. This opened the possibility for a high

gain X-ray FEL, as no suitable mirrors or seeds existed for these wavelengths.

Most current existing VUV/X-ray FEL’s exploit this effect, and so are composed
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of a long linear electron accelerator followed by a long undulator. The full length

of these devices is approximately 1 or a few km, depending on the technology,

which varies from one machine to the next. The Japanese XFEL/SPring-8 source

is 750m, and is considered a compact source, due to its unique accelerator and

compact undulator [15].

A single pass, high gain X-ray FEL generates peak powers on the order of

1010W with pulses 10’s of femtoseconds in duration. FLASH was the world’s

first VUV/soft X-ray FEL, and was completed in 2005, lasing at the wavelength

range 6.5 → 50nm, with pulse durations 10 − 50fs. The LCLS is the first hard

X-ray FEL, and reported first lasing in 2009 [16]. Hard X-ray FEL’s due to

be completed in the near future include (but are not limited to) the European

XFEL at DESY in Hamburg, Germany [17], the XFEL/SPring-8 in Japan [15],

and SwissFEL in Switzerland [18]. The short, fast radiation pulse durations will

enable time-resolved investigations of ultra-fast processes at the atomic scale [19].

1.3 FEL Simulation Codes

Of great importance in the prediction of FEL phenomena and the design of facili-

ties are simulation codes. The most commonly used codes, for example GINGER

[20], GENESIS 1.3 [21] and FAST [22], typically make a number of similar as-

sumptions, one of which, known as the Slowly Varying Envelope Approximation

or Eikonal Approximation [23], limits the time and spatial resolution of the codes.

This is not a severe restriction for describing most FEL’s currently in operation

[24]. It may be, however, that a code with this assumption will not be adequate to

describe FEL’s using electron pulses which have a quickly varying current profile,

or radiation seeds with a quickly varying intensity profile, with respect to a ra-

diation wavelength [25]. These situations have been previously unattainable, but

may soon become a reality in the push towards FEL’s either exhibiting greater

temporal coherence or of a smaller size.

This thesis presents a 3D theory and Fortran 90 simulation code which is free

of this limiting assumption. The resulting code presents significant computational
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challenges due to the increased resolution of the model, and these problems are

explained and the solutions arrived at described. First of all though, the basic

principles behind the theory of the FEL are described.
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Chapter 2

Basic Theory of the FEL

2.1 Qualitative Discussion

Synchrotrons are large devices which accelerate electrons around a circular orbit,

and the transverse acceleration causes the electrons to radiate. Undulators and

wigglers, so-called since they provide a spatially varying magnetic field which

causes the electrons to “wiggle” or “undulate,” produce radiation of even higher

intensities since the electron beam undergoes many transverse oscillations in one

pass of the device [2].

By distinction, in the Free Electron Laser, or FEL, radiation is amplified

by the electron beam. In the most basic terms, the FEL converts a relativistic

electron beam’s energy into coherent, intense radiation.

The Free Electron Laser consists of an electron beam with energy γmc2 and

Figure 2.1: Electrons propagating a planar wiggler.
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a radiation field copropagating in a spatially varying magnetic field transverse to

the direction of propagation. The magnetic field is conventionally supplied by an

undulator or wiggler (see figure 2.1). In their simplest configuration, these consist

of either two alternating sets of permanent magnetic poles (planar) or two helical

coils with opposing current (helical). Each have an associated wiggler wavelength

λw, peak magnetic field Bw and Nw periods.

The magnetic undulator field forces the electron beam to execute an oscilla-

tory wiggle motion transverse to both the direction of travel and the axis of the

magnetic field, see figure 2.1. The resulting transverse electron oscillation allows

an energy exchange between radiation and electrons, giving gain or absorption

of the radiation field. It differs from conventional solid state lasers in that the

electrons are unbound, or free, so the amplified wavelengths are not restricted

by the discrete energy states of the atom. The FEL can be fully described by

classical electromagnetism [26], and one need not take into account the quantum

mechanical recoil of the electrons, except in some extreme situations which are

not yet experimentally feasible.

Relativistic effects are key to its inherent tunability. As the beam is relativis-

tic, the undulator wavelength λw is twice upshifted by the relativistic factor γj

in the lab frame, so the resulting wavelength λr ∝ λw/γ
2, and the device can be

tuned to a different frequency by adjusting the electron beam energy. In practice,

there are other limitations which limit the tunability of a single device, such as

the length of the undulator and the quality of the electron beam.

Under certain conditions, if the undulator is long enough, the energy exchange

results in an exponential amplification of the radiation field due to a cooperative

effect, whereby the electrons interact via the common radiation field. The elec-

trons bunch on the scale of a radiation wavelength and coherently amplify the

radiation field.

The following sections describe the basic theory of the FEL.
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2.1.1 Electron Motion in the Undulator

FEL Spontaneous Emission

Assume the positive z-axis is the direction of electron propagation. Close to the

center of the undulator the magnetic field can be described as, in the case of the

planar undulator,

Bw = −Bw sin(kwz)ŷ, (2.1)

and in the case of the helical undulator,

Bw = Bw(cos(kwz)x̂− sin(kwz)ŷ), (2.2)

where Bw is the peak magnetic field of the undulator, and kw = 2π/λw is the

undulator wavenumber.

An electron traversing the undulator close to the center will be deflected by

the Lorentz force, given by

F = q(E + v ×B). (2.3)

Ignoring for the moment the effect of the radiation field upon the electron,

the electron oscillation in x for the planar undulator case will be described by

dpx
dt

= − |e| vzBw sin(kwz) (2.4)

and changing the independent variable to z,

dvx
dz

= −|e|Bw

γm
sin(kwz) (2.5)

vx =
|e|Bw

γmkw
cos(kwz) (2.6)

dx

dz
=
|e|Bw

γmckw
cos(kwz) (2.7)

where in the last step the approximation
d

dt
≈ c

d

dz
has been made (as the electron

is relativistic).
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Figure 2.2: The electron path is shown in green and the radiation is shown in red. a)

shows the radiation from an electron travelling the arc of a circle, and the radiation

is focused into a narrow cone of angle
1

γ
normal to the direction of propagation. The

wiggler, shown in b), forces the electron to oscillate transversely, and it executes many

such circular arcs, and the output is simply the summation of the multiple source points.

If the deviation from the z axis is not as severe, which is the case in the undulator,

shown in c), then the radiation from the source points will interfere.
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The undulator parameter aw =
eBw

mckw
can now be introduced, so that

dx

dz
=
aw
γ

cos(kwz) (2.8)

If one can assume small deflections from the z axis, then
dx

dz
≈ θ, the angle

from the z axis. The radiation from a relativistic electron travelling the arc of a

circle is focused into a narrow cone of angle ≈ 1

γ
in the forward direction. It is

easy to see from equation (2.8) that if aw ≈ 1 then the electron will overlap with

the emitted radiation cone and there will be interference effects present. This is

the distinction between a wiggler and an undulator, and is shown in figure 2.2.

An undulator has a low value of aw and produces a spectrum with sharp peaks

around a fundamental wavelength and its harmonics, which is a result of this

interference effect. In a wiggler the spectrum is more continuous, as there are

fewer interference effects present. Depending on the electron beam energy and

other parameters, interference effects can still be very pronounced in devices with

aw . 10 [2].

To find which frequencies constructively interfere in the forward direction (the

on-axis emission), consider the radiation travelling at the speed of light c, and

an electron at cβ̄z < c, where β̄z =
v̄z
c

, is the speed v̄z of the electron in the

z direction, as a fraction of c, averaged over an undulator period. The emitted

radiation is seen to always travel ahead of the electron. Constructive interference

will occur if a whole number of radiation wavelengths λr propagate ahead of the

electron in the time it takes the electron to travel one undulator period λw i.e.

λw
cβ̄z

=
nλr + λw

c
(2.9)

which leads to equation

λr = λw
1− β̄z
β̄z

. (2.10)

This is the fundamental (n=1) wavelength of the radiation emitted on-axis

from an undulator. Similar arguments can be made for the more general case of
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Figure 2.3: Illustration of the condition for resonance. The resonant wavelength is

that which slips over the electron by exactly one wavelength during the period of

the electron’s oscillation. This wavelength then interferes constructively. Frequencies

which do not satisfy this condition are annihilated through destructive interference

across successive undulator periods.

interference of radiation emitted at angles from the main direction of propagation.

One finds the fundamental wavelength increases with the square of increasing

angle when observing off-axis. One also finds, upon further analysis, that only

odd harmonics are generated on-axis, and even harmonics only off-axis [2]. The

interference effect also results in an output focused into a narrower cone of angle

∼ 1

γ
√
Nw

.

By analogy with solid state lasers, this undulator radiation is referred to as

the FEL spontaneous emission, at the resonance wavelength λr. The lasing, or

field amplification, can be investigated by considering the self-consistent effects

of the field on an electron beam.

FEL Electron Bunching

When an electron beam copropagates an undulator with a radiation field, either

the spontaneous radiation or an externally injected seed, the electrons will ex-

change energy with the field, due to the transverse oscillation provided by the

undulator.
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To describe an electron’s energy exchange with an electromagnetic field, once

again one can look at the Lorentz force equation (2.3), this time neglecting the

magnetic field and considering only the electric field vector, so

F =
d

dt
(γmv) = − |e|E (2.11)

and multiplying both sides by v gives

v · d
dt

(γmv) = − |e|v · E (2.12)

dγ

dt
v · v + γ

dv

dt
· v = −|e|

m
v · E (2.13)(

dγ

dt
v · v +

γ

2

dv2

dt

)
= −|e|

m
v · E (2.14)

The term on the LHS can be replaced by rearranging the definition of the

relativistic factor γ to obtain

γ =
√

1 + γ2β2, (2.15)

and differentiating this with respect to t, to find

dγ

dt
v · v +

γ

2

dv2

dt
=
dγ

dt
c2 (2.16)

so

dγ

dt
= − |e|

mc2
v · E (2.17)

For a planar wiggler, ignoring the field in the y and z directions, this becomes

dγ

dz
= − |e|

mc2
βxEx (2.18)

and the electron speed in x is calculated in equation (2.6), so

βx =
|e|Bw

γmckw
cos(kwz) (2.19)

The radiation field takes the form

E = x̂|ξ0| cos(kz − ωt+ φ), (2.20)
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where |ξ0| and φ are the magnitude and phase of the slowly varying complex field

envelope ξ0, and k and ω are the radiation wavenumber and angular frequency

respectively. So from equation (2.18)

dγ

dz
∝ −aw|ξ0|

γ
cos(kwz) cos(kz − ωt+ φ) (2.21)

⇒dγ

dz
∝ −aw|ξ0|

γ
(cos((k − kw)z − ωt+ φ) + cos((k + kw)z − ωt+ φ)) (2.22)

The term on the left of equation (2.18) has a phase velocity > c, but the

term on the right leads to the condition for resonance. It shows how the electron

energy change varies with respect to the phase of the electron in the combined

“ponderomotive” undulator plus radiation field, defined as

θ = (k + kw)z + ωt+ φ (2.23)

The resonant FEL wavelength is that which allows a continuous energy ex-

change between the radiation and electrons i.e. when

dθ

dz
= 0 (2.24)

which is equivalent to equation (2.10), for the resonant FEL wavelength.

In a planar undulator, the unaveraged electron velocity in the z direction,

βz, oscillates at twice the frequency of the oscillation in x, which is why the

averaged velocity β̄z is used to define the resonance condition. It is constant in

a helical undulator, and in that case βz = β̄z. In the planar undulator, the so-

called “jitter” motion in the longitudinal axis causes a coupling not just to the

fundamental resonant frequency, but also its higher, odd on-axis harmonics. In

the helical undulator, there are no higher harmonics observed, since there is no

jitter motion.

To find β̄z as an expression of the undulator parameters, and thus to define

the resonance condition in terms of the undulator, one simply rearranges the

definition of γ so that

β2
z = 1− β2

⊥ −
1

γ2
(2.25)

13



where β2
⊥ = β2

x + β2
y which will be constant for a helical undulator. In the planar

undulator expression (2.19) holds, so

β2
z = 1− a2

w

γ2
cos2(kwz)− 1

γ2
(2.26)

⇒β̄z =

√
1− 1

γ2

(
a2
w

2
+ 1

)
. (2.27)

By inserting this into equation (2.10), one obtains

λr = λw

((
1− 1

γ2

(
a2
w

2
+ 1

))−1/2

− 1

)
. (2.28)

The term on the left in the bracket can be expanded using the Binomial expansion,(
1− 1

γ2

(
a2
w

2
+ 1

))−1/2

(2.29)

≈1 +
1

2γ2

(
a2
w

2
+ 1

)
− 3

8γ4

(
a2
w

2
+ 1

)2

... (2.30)

and dropping all terms after second, since typically γ ≈ 1000, then equation

(2.28) becomes

λr =
λw
2γ2

(
a2
w

2
+ 1

)
. (2.31)

One more modification is made to (2.31) to generalise further. The
a2
w

2
term

uses the peak magnetic undulator field. In the resonance expression for a helical

undulator this aw term is not halved, since then the electron oscillates in both x

and y and

β⊥ =
aw
γ

(cos(kwz)x̂− sin(kwz)ŷ), (2.32)

Working through the same steps from equation (2.26), the averaging over the

square of both oscillatory terms will result in

λr =
λw
2γ2

(
a2
w + 1

)
. (2.33)
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for the helical wiggler. If an rms undulator parameter is then defined such that

āw =
eBrms

mckw
, (2.34)

then, for a planar undulator, a2
w = 2ā2

w, so the resonant wavelength is

λr =
λw
2γ2

(
1 + ā2

w

)
, (2.35)

which holds for both helical and planar undulators. Rearranging (2.35) to define

the resonant energy, gives

γr =

√
λw
λr

(1 + ā2
w). (2.36)

Electrons at the resonant energy will remain at the same phase in the pon-

deromotive field over many undulator periods, and so from equation (2.22), the

radiation field will modify the electron energy. Initially, assuming a cold elec-

tron beam (so all electrons have energy γr), the electrons will be spread evenly

in phase, see figure 2.4, and just as many electrons will gain energy as will lose

energy. The resulting energy modulation in the electron beam will result in a

physical bunching in phase space, and the bunching causes the electrons to am-

plify the field coherently, which is the FEL lasing process.

2.1.2 Field Evolution And Approximations

Now, to complete the description of the FEL, the equation describing the field

evolution is derived. A more rigorous derivation is given in e.g. [27]: the purpose

of this rough derivation is to highlight the approximation or averaging of the

equation, as it is a relevant distinction from the 3D model derived in chapter 3

of this thesis.

The field evolution from a moving charged body, in 2 dimensions (direction

of propagation z and time t), ignoring the field diffraction and space charge, can

be described by Maxwell’s wave equation in the 1D approximation:(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E = µ0

∂J

∂t
(2.37)
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Figure 2.4: Figure showing the effects of the energy change upon position in the pon-

deromotive phase. The change in energy is constant over many undulator periods, see

equation (2.22). For an electron beam with electrons evenly distributed in phase, the

energy change is indicated by the dashed arrows in the plot on the left. Electrons which

gain energy will travel faster and catch up with those electrons which lose energy. The

second plot shows the electron bunching resulting from the energy modulation.

where J is the current density. If the field is assumed to be composed of a fast

oscillatory term with wavenumber k =
2π

λ
=
ω

c
and a slowly varying complex

envelope, so that

E =
1√
2

(êξ0e
i(kz−ωt) + c.c.) (2.38)

where ê =
1√
2

(x̂ + iŷ), then projecting the field equation over ê∗ gives(
∂2

∂z2
− 1

c2

∂2

∂t2

)
ξ0e

i(kz−ωt) = µ0
∂J⊥
∂t

(2.39)

The transverse current density J⊥ = J · ê∗ = Jx − iJy is then

J⊥ = −e
N∑
j=1

v⊥jδ(z − zj) (2.40)

where the sum is over all electrons, v⊥ = vx − ivy is the (complex) transverse

velocity and δ(x) is the delta function.

Typically, in most FEL analysis and codes, the Slowly Varying Envelope Ap-

proximation (SVEA) is applied, which states that the complex radiation envelope
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varies slowly with respect to a radiation wavelength in both time and space. Thus

one can state that ∣∣∣∣∂ξ0

∂z

∣∣∣∣� |kξ0| ,
∣∣∣∣∂ξ0

∂t

∣∣∣∣� |ωξ0| (2.41)

and so second order derivatives in both z and t can be dropped. The LHS of

equation (2.39) then becomes(
∂ξ0

∂z
+

1

c

∂ξ0

∂t

)
ei(kz−ωt) (2.42)

The equation is then averaged over a length l|| equal to at least one resonant

radiation wavelength λr, and the field envelope cannot now be driven below the

scale of a wavelength. v⊥ can be calculated from the corresponding undulator

type (planar or helical), giving, in the case of the helical undulator, ignoring the

radiation field contribution to v⊥,(
∂ξ0

∂z
+

1

c

∂ξ0

∂t

)
∝ 1

l||

N∑
j=1

e−i((kw+k)z+ωt) (2.43)

(
∂ξ0

∂z
+

1

c

∂ξ0

∂t

)
∝ 1

l||

N∑
j=1

e−iθj (2.44)

where the ponderomotive phase of the jth electron, θj, was defined earlier in

equation (2.23). The sum is now over the N electrons in a localised volume of

the electron pulse l||, commonly refered to as an electron slice, and the bunching

parameter

b =
1

N

N∑
j=1

e−iθj (2.45)

is defined, so that (
∂ξ0

∂z
+

1

c

∂ξ0

∂t

)
∝ b (2.46)

If the electrons are evenly distributed in the ponderomotive phase, then the

bunching term b = 0 and there is no net gain to the field. Note that if a planar
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wiggler is used, average quantities of θj and βj must be used due to the jitter mo-

tion. They are averaged over a wiggler period in z, and the averaging introduces

a difference of Bessel functions into the equations to account for the decoupling

to the field resulting from the jitter motion.

The universally scaled FEL equations are derived in this manner. The equa-

tions describing the energy and position in ponderomotive phase of the electrons

are derived from the Lorentz equation, and describe the evolution of the dynam-

ics within a cyclic phase space. New dimensionless scaled variables are defined,

which allows the description of the system to become simpler and allows inter-

esting insight into many facets of FEL operation. The variables are defined with

respect to the FEL or Pierce parameter ρ [28], given by

ρ =
1

γr

(
āwωp
4ckw

)2/3

(2.47)

The “steady state” FEL equations (ignoring
∂

∂t
), derived in [27] from equa-

tions (2.3) and (2.37), for a helical wiggler and valid for an infinitely long electron

beam, so that the slippage of the field over the electrons is neglected, are

dθj
dz̄

= pj (2.48)

dpj
dz̄

= −(Aeiθj + A∗e−iθj) (2.49)

dA

dz̄
=< e−iθ > (2.50)

where A is the scaled complex field envelope, which is scaled so the maximum

intensity |A|2 ≈ 1 at saturation, θj is the phase of the jth electron in the combined

(wiggler and radiation) ponderomotive field, pj is the scaled energy of the jth

electron, scaled so that when p = 0 the resonant condition is fulfilled, and z̄ is

the scaled longitudinal distance into the wiggler. z̄ is scaled with respect to what

is referred to as the FEL gain length lg = λw/4πρ. As shown in the next section,

the FEL gives exponential gain during a gain length in what is known as the high

gain regime.

Equation (2.50), the steady state equation for the evolution of the scaled com-

plex envelope, describe how the electron bunching can drive the FEL interaction.
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This can be made clearer by splitting the scaled envelope into its magnitude |A|
and phase ψ such that A = |A| eiψ, so that equation (2.50) becomes

d

dz̄
(|A| eiψ) =< e−iθ > (2.51)

eiψ
(
d |A|
dz̄

+ i |A| dψ
dz̄

)
=< e−iθ > (2.52)

d |A|
dz̄

+ i |A| dψ
dz̄

=< e−i(θ+ψ) > (2.53)

and the real and imaginary parts of both sides can be equated to conveniently

give the rate of change of the amplitude and phase of the field as

d |A|
dz̄

=< cos(θ + ψ) > (2.54)

dψ

dz̄
= − 1

|A|
< sin(θ + ψ) > (2.55)

Initially, when the electrons enter the undulator they will be distributed evenly

in phase, and, as explained in the previous section, and seen here in equation

(2.54), will give no overall gain to the field. From equation (2.22) and figure 2.4,

which showed how the electrons bunch in a resonant interaction over many undu-

lator periods, one can infer that that the electrons will bunch at θ =
3π

2
, which,

from equation (2.54), is a point in phase corresponding to zero amplification, but

positive phase growth in equation (2.55). The phase changes the condition nec-

essary for amplification in (2.54), and the bunching begins to amplify the field.

The stronger field then bunches the electrons more tightly, which in turn drives

the phase and magnitude of the field in a positive feedback loop.

This is the onset of an instability which gives rise to an exponential ampli-

fication of the field, and is now explored through a linear analysis of equations

(2.48)-(2.50).
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2.2 Linear Analysis

The system is manipulated by examining around the initial values i.e. at a small

pertubation from the initial state. So in general, if f is a function of x,

f(x) = f0 + f1(x) (2.56)

where f0 is the initial value of the system, and f1(x)� 1 is the small pertubation.

Initial values of the scaled field envelope, electron energy and phase are:

A(z̄) = A0 (2.57)

pj(z̄) = p0j = δ (2.58)

θj(z̄) = θ0j + δz̄ (2.59)

where δ is the initial detuning on the electron energy. If δ = 0 then the electrons

are injected at the resonant energy.

Throughout the linear analysis dot notation is used when convenient to signify

the derivative with respect to z̄ i.e. for variable x

ẋ =
dx

dz̄
(2.60)

2.2.1 Linearization of 1D FEL equations

Here the 1D FEL equations (2.48)-(2.50) are linearized using the notation above

to give three linear coupled differential equations.

Linearization of Ȧ

Looking at equation (2.50) and using condition (2.59) and pertubation (2.56),

Ȧ =< e−i(θ0+δz̄+θ1) > (2.61)

The small pertubation on the phase has been defined as |θ1| � 1, and ex ≈
1 + x when x� 1, so

Ȧ =< e−i(θ0+δz̄)(1− iθ1) > (2.62)

Ȧ =< e−i(θ0+δz̄) > − < iθ1e
−i(θ0+δz̄) > (2.63)
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It is assumed that < e−i(θ0+δz̄) >= e−iδz̄ < e−iθ0 >= 0, as the electrons are

assumed distributed uniformly in phase between (0 : 2π].

Ȧ =− < iθ1e
−i(θ0+δz̄) > (2.64)

Ȧ =b (2.65)

where

b = − < iθ1e
−i(θ0+δz̄) > (2.66)

Linearization of ṗj

Now taking equation (2.49), and again linearizing around initial conditions

ṗj = −(Aei(θ0j+δz̄)(1 + iθ1j) + A∗e−i(θ0j+δz̄)(1− iθ1j)) (2.67)

As A and |θ1j| � 1, 2nd order terms can be ignored. Multiplying throughout

by e−i(θ0j+δz̄), and remembering pj = δ + p1j and δ is a constant,

e−i(θ0j+δz̄) ˙p1j = −(A+ A∗e−2i(θ0j+δz̄)) (2.68)

Averaging gives

< e−i(θ0+δz̄)ṗ1 >=− < A > − < A∗e−2i(θ0+δz̄) > (2.69)

e−iδz̄ < e−iθ0 ṗ1 >=− < A > −A∗e−2iδz̄ < e−2iθ0 > (2.70)

e−iδz̄ < e−iθ0 ṗ1 >=− < A > (2.71)

Now, defining a new variable P as

P =< p1e
−i(θ0+δz̄) > (2.72)

Differentiating then rearranging gives

Ṗ = < ṗ1e
−i(θ0+δz̄) > − < iδp1e

−i(θ0+δz̄) > (2.73)

Ṗ =e−iδz̄ < e−iθ0 ṗ1 > −iδP (2.74)

e−iδz̄ < e−iθ0 ṗ1 >=Ṗ + iδP (2.75)
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Substituting (2.75) into (2.71) gives the linearized equation for the electron

energy

Ṗ + iδP =− < A > (2.76)

Ṗ =− A− iδP (2.77)

Linearization of θ̇j

Taking equation (2.48), and linearizing around initial conditions gives

d

dz̄
(θ0j + θ1j + δz̄) =p1j + δ (2.78)

˙θ1j + δ =p1j + δ (2.79)

˙θ1j =p1j (2.80)

Multiplying through by ie−i(θ0j+δz̄) and averaging,

< θ̇1ie
−i(θ0j+δz̄) >=< p1ie

−i(θ0j+δz̄) > (2.81)

Differentiating equation (2.66)

ḃ =− < iθ̇1e
−i(θ0+δz̄) > − < δθ1e

−i(θ0+δz̄) > (2.82)

ḃ =− < iθ̇1e
−i(θ0+δz̄) > −iδb (2.83)

< iθ̇1e
−i(θ0+δz̄) >=− ḃ− iδb (2.84)

Substituting (2.84) and (2.72) into (2.81) gives the linearized equation of the

electron bunching

−ḃ− iδb =iP (2.85)

ḃ =− iP − iδb (2.86)

Final Form of Linearised Equations

The 3 coupled linear differential equations are now

ḃ =− iP − iδb (2.87)

Ṗ =− A− iδP (2.88)

Ȧ =b (2.89)
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where b = − < iθ1e
−i(θ0+δz̄) > and P =< p1e

−i(θ0+δz̄) > measure the electron

bunching at different points in phase space.

2.2.2 Linear Analysis

Laplace Transforms of Linearized Equations

The coupled linear differential equations (2.87)-(2.89) can be solved using Laplace

transforms. The Laplace transform L from x→ s of the differential of a function

f(x) is

Lx→s
df(x)

dx
= sf́(s)− f(x0) (2.90)

Performing the Laplace transform from z̄ → s on equations (2.87)-(2.89) one

obtains

sb́ = −iṔ − iδb́+ b0 (2.91)

sṔ = −Á− iδṔ + P0 (2.92)

sÁ = b́+ A0 (2.93)

Rearranging (2.92) for Ṕ and substituting into (2.91), then rearranging for b́

and substituting into (2.93),

sÁ− iÁ

(s+ iδ)2
=

b0

s+ iδ
− iP0

(s+ iδ)2
+ A0 (2.94)

Putting the RHS all over a common denominator and expressing in terms of

Á gives

Á =
(s+ iδ)2A0 + (s+ iδ)b0 − iP0

s3 + 2iδs2 − sδ2 − i
(2.95)

Then the following 2 substitutions are performed:

s = q − iδ (2.96)

q = ip (2.97)
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So the equation becomes

Á =
−iP0 + b0ip− A0p

2

−ip3 + iδp2 − i
(2.98)

Á =
P0 − pb0 − ip2A0

p3 − δp2 + 1
(2.99)

A solution for A may be obtained through the inverse Laplace transform. If

Á = f(s) (2.100)

then the inverse Laplace transform is

A =
1

2πi

∫ γ+i∞

γ−i∞
esz̄f(s)ds (2.101)

Performing the substitutions from s → p, ds = dq = idp and esz̄ = e(q−iδ)z̄ =

eiz̄(p−δ), and the limits change from s = γ − i∞ and s = γ + i∞ to p = iγ −∞
and p = iγ +∞. Hence equation (2.101) becomes

A =
1

2πi

∫ iγ+∞

iγ−∞
ieiz(p−δ)f(p)dp (2.102)

A =
1

2πi

∫ iγ+∞

iγ−∞
ieiz(p−δ)

P0 − pb0 − ip2A0

p3 − δp2 + 1
dp (2.103)

Integration Method

The integral in equation (2.103) can be solved using residue integration. If

f(z̄) =
p(z̄)

q(z̄)
(2.104)

then a pole is found at the points where q(z̄) = 0. The residue az̄0 of a pole z̄0 of

f(z̄) is given by

lim
z̄→z̄0

[(z̄ − z̄0)f(z̄)] (2.105)

For an integral

I =

∮
f(z̄)dz̄, (2.106)
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where, again

f(z̄) =
p(z̄)

q(z̄)
, (2.107)

the integral is given by 2πi× sum of the residues az̄0 at the poles contained within

the circular path of integration.

Looking at the integral in equation (2.101),

I =

∫ γ+i∞

γ−i∞
esz̄f(s)ds (2.108)

Choosing a value of γ so that the line s = γ is to the right of all the poles of

f(s), a circular path of integration can be created by drawing a semi-circle from

s = γ − i∞ to s = γ + i∞, as in figure 2.5(a).

Figure 2.5: Diagram showing the creation of the closed integration paths for integrat-

ing(a) eq. (2.108) and (b) eq. (2.110)

It can thus be shown that∫ γ+i∞

γ−i∞
esz̄f(s)ds =

∮
esz̄f(s)ds (2.109)
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where the circular integration path encloses all the poles of f(z̄). After apply-

ing the transformation from s→ p, the limits of integration change and there is a

shift in the complex plane over the region of integration. However, the principle

is just the same, creating a closed integration path as illustrated in fig. 2.5(b).

The solution for A becomes eq. (2.102), which, applying the residue integra-

tion theorem, becomes

A =
1

2πi

∫ iγ+∞

iγ−∞
ieiz̄(p−δ)f(p)dp (2.110)

A =
1

2πi
× 2πi

∑
Res[ieiz̄(p−δ)f(p)] (2.111)

A =
∑

Res[ieiz̄(p−δ)f(p)] (2.112)

So to solve eq. (2.112), the poles and their associated residues must be found.

Looking at equation (2.103), the poles will be found when

p3 − δp2 + 1 = 0 (2.113)

Solution when δ = 0

If δ = 0 then the electrons are injected into the wiggler at the resonant energy

γr defined in equation (2.36) i.e. the initial average electron energy is such that

the electron phase remains constant with respect to the ponderomotive field.

Therefore, as illustrated in figure 2.4, half the electrons will gain energy and half

will lose energy, so there is no net gain in the system at first. However as z̄

increases, as explained in section 2.1.2, the energy differences imposed by the

field on the electrons will cause the electrons to start bunching on the scale of a

radiation wavelength, driving the radiation phase (according to equation 2.55),

in turn driving the magnitude of the field according to equation (2.54). The area

where the electrons provide exponential gain to the field is known as the high

gain regime.

When δ = 0, then

A =
1

2πi

∫ iγ+∞

iγ−∞
ieiz̄p

P0 − pb0 − ip2A0

p3 + 1
dp (2.114)
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and the poles occur when

p3 + 1 = 0 (2.115)

So poles are

p1 = −1 (2.116)

p2 =
1

2
+

√
3

2
(2.117)

p3 =
1

2
−
√

3

2
(2.118)

Using equation (2.105), the residue ap1 where p = −1

ap1 = lim
p→−1

[
(p+ 1)ieiz̄p

P0 − b0p− A0ip
2

(p+ 1)(p− (1
2

+
√

3
2
i)(p− (1

2
−
√

3
2
i)

]
(2.119)

ap1 =
i

3
e−iz̄(P0 + b0 − iA0) (2.120)

Residue ap2 at p = 1
2

+
√

3
2
i

ap2 = lim
p→ 1

2
+
√

3
2
i

[
(p− (

1

2
+

√
3

2
i))ieiz̄p

P0 − b0p− A0ip
2

(p+ 1)(p− (1
2

+
√

3
2
i)(p− (1

2
−
√

3
2
i)

]
(2.121)

ap2 =
−ie− z̄

2
(
√

3−i)(2P0 − (1 +
√

3i)b0 + (
√

3 + i)A0)

3(1−
√

3i)

(2.122)

Residue ap3 at p = 1
2
−
√

3
2
i

ap3 = lim
p→ 1

2
+
√

3
2
i

[
(p− (

1

2
+

√
3

2
i))ieiz̄p

P0 − b0p− A0ip
2

(p+ 1)(p− (1
2

+
√

3
2
i)(p− (1

2
−
√

3
2
i)

]
(2.123)

ap3 =
−ie z̄

2
(
√

3+i)(2P0 − (1−
√

3i)b0 + (−
√

3 + i)A0)

3(1 +
√

3i)

(2.124)
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Adding the residues together gives

A = Be−iz̄ + Ce
−z̄
2

(
√

3−i) +De
z̄
2

(
√

3+i) (2.125)

where

B =
i

3
(P0 + b0 − iA0) (2.126)

C =
−i(2P0 − (1 +

√
3i)b0 + (

√
3 + i)A0)

3(1−
√

3i)
(2.127)

D =
−i(2P0 − (1−

√
3i)b0 + (−

√
3 + i)A0)

3(1 +
√

3i)
(2.128)

Looking at (2.125), there is an exponentially increasing, exponentially de-

creasing and oscillatory term in the equation.

To further examine the behaviour of the system when δ = 0, how the system

depends on each parameter is examined. The equations are simplified by writing

them in terms of the roots, defined in equations (2.116) - (2.118). The complex

denominator in C and D is removed by multiplying the top and bottom of each

by their complex conjugate. Re-expressing in this way one obtains

B = − i
3

(p1P0 + p1b0 + iA0) (2.129)

C = − i
3

(p2P0 + p3b0 + iA0) (2.130)

D = − i
3

(p3P0 + p2b0 + iA0) (2.131)

and

B∗ =
i

3
(p1P0 + p1b0 − iA0) (2.132)

C∗ =
i

3
(p3P0 + p2b0 − iA0) (2.133)

D∗ =
i

3
(p2P0 + p3b0 − iA0) (2.134)

When examining the system’s dependance on the initial values, the other

parameters are set = 0. So when varying P0, b0 = 0 and A0 = 0, and so forth.
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The behaviour we wish to examine is that of the scaled intensity |A|2, so

|A|2 = BB∗e0 + CB∗e−
z̄
2

(
√

3−3i) +DB∗e
z̄
2

(
√

3+3i) (2.135)

+BC∗e−
z̄
2

(
√

3+3i) + CC∗e−
√

3z̄ +DC∗e0

+BD∗e
z̄
2

(
√

3−3i) + CD∗e0 +DD∗e
√

3z

To examine the scaled intensity’s dependance on the initial condition P0 only,

let b0 = 0 and A0 = 0, so intensity becomes

|A|2 =
P 2

0

9

[
e
√

3z̄ + e−
√

3z̄ − e
√

3z̄
2 (cos(

3z̄

2
) +
√

3 sin(
3z̄

2
))− e−

√
3z̄
2 (cos(

3z̄

2
)−
√

3 sin(
3z̄

2
))

]
(2.136)

Similarly, showing the dependance on the initial bunching b0 only (and thus

letting P0 = 0 and A0 = 0),

|A|2 =
b2

0

9

[
e
√

3z̄ + e−
√

3z̄ − e−
√

3z̄
2 (cos(

3z̄

2
) +
√

3 sin(
3z̄

2
))− e

√
3z̄
2 (cos(

3z̄

2
)−
√

3 sin(
3z̄

2
))

]
(2.137)

And examining the dependance only on A0

|A|2 =
A2

0

9

[
3 + e

√
3z̄ + e−

√
3z̄ + 2e

√
3z̄
2 cos(

3z̄

2
) + 2e

−
√

3z̄
2 cos(

3z̄

2
)

]
(2.138)

The computational maths program MATLAB was used to plot equations

(2.136) - (2.138).

Looking at all three equations it is expected that at high values of z̄, |A|2 →
e
√

3z̄. This is the exponential instability of the FEL described physically in section

2.1.2, allowing it to amplify an initial field by several orders of magnitiude, in

the high gain regime. Indeed, it is noted in figure 2.6 that the respective plots

converge for z̄ ≥ 3. Furthermore, the gradient of this line on the natural logarithm

scale is
√

3, as expected from the equations.

On the plot examining equation (2.138), the initial value for the scaled inten-

sity |A|2, that is |A(z̄0)|2 = |A0|2, corresponds to a small initial seed field which

has been injected into the wiggler with the electrons. There is an interval in z̄ in

which |A|2 = |A0|2, which will be identified in the next section as the low-gain
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Figure 2.6: Graph of ln(|A|2) vs z̄ for δ = 0 from z̄ = 0 → 10, examining the de-

pendancies outlined above. In each plot, the value of the dependant variable b0, P0 or

A0 = 10−4

regime. As will be shown, there is no amplification present in the low gain regime

for δ = 0. The exponential or high gain regime begins at z̄ ≈ 2, and it is clearly

observed that the field intensity is experiencing exponential amplification with

increasing z̄.

In the plots of equations (2.136) and (2.137), the intensities begin at 0 as

there is no seed field to amplify in these cases. In both these cases the electrons

generate and subsequently amplify a field, due to the initial bunching in b0 or P0.

Solution when δ 6= 0

MATLAB was used to find the poles of equation (2.103), and to calculate the

residues at these poles for different values of δ. Shown below are plots of how the

detuning affects the gain of the FEL for different values of z̄, where the gain is
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defined as

G =
|A|2 − |A0|2

|A0|2
(2.139)

Figure 2.7 a) is the well known Madey gain curve [27], at z̄ = 0.5 (low gain),

with b0, P0 = 0, showing no gain if the electrons are injected at resonance. There

is small positive gain if the electrons are injected with energy slightly above the

resonant energy (positive detuning), and negative gain with an energy slightly be-

low resonance (negative detuning). This occurs when the electrons bunch slightly

but do not significantly drive the phase of the field. In that case, at zero-detuning,

from equation (2.54), the electrons will only give positive amplification by bunch-

ing at θ = 0/2π. Again, at zero-detuning, from equation (2.22), the electrons

will bunch around θ = 3π/2 and there will be no gain, as the radiation phase

has not been driven. By giving the electrons a small energy kick, a small pos-

itive detuning, the electrons will bunch at 0/2π and the field envelope will be

amplified. This low-gain regime is utilized in cavity FEL’s, where the undulator

is enclosed by mirrors, and the radiation is reflected back and forth to interact

with a fresh beam of electrons on each pass, and the radiation builds up through

many successive passes.

As z̄ increases the system moves forward into the high gain regime (defined in

the solution where δ = 0), and a narrow peak emerges at δ = 0, as the radiation

phase is driven, described in equation (2.55). As z̄ continues to increase the gain

peak at δ = 0 becomes larger and narrower, see figures 2.7 b) and c). Again, this

was explained in section 2.1.2 as the bunching driving the phase of the radiation

field, triggering a positive feedback loop which results in amplification at the

resonant energy.

The initial bunching parameters b0 and P0 affect the results in different ways.

They are a measure of the bunching around different points in the ponderomotive

phase θ. Positive P0 corresponds to the initial bunching around θ = 0/2π, nega-

tive P0 gives the bunching around θ = π. Positive and negative b0 give the initial

bunching around θ =
3π

2
and

π

2
, respectively. In particular, if a seed field is

present, a positive b0 will drive the radiation phase much quicker (from equation
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Figure 2.7: Plots showing how the gain curve changes as z̄ increases for |A0| = 10−4

and b0, P0 = 0. In (a) z̄ = 0.5, (b) z̄ = 2 and (c) z̄ = 5.

(2.55)), leading to a quicker transition into the high gain regime.

The exponential amplification continues to saturation. Saturation occurs

when the radiation field has extracted enough energy from the electron beam

so that it is no longer resonant, and it begins to reabsorb the field energy. As the

electrons gain energy they will become resonant again, and the intensity then be-

comes oscillatory. To try and hold off saturation and increase the efficiency of the

interaction the undulator can be tapered [29]. Remembering that the equation

for the resonant energy (2.36) shows that it varies with the undulator parameter

āw, a tapered undulator is one which varies āw to keep the electrons resonant as

they lose energy.
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2.3 Slippage and 3D Effects

The previous section illustrated mathematically the exponential instability in

the FEL. According to the analysis, the process can startup from a small initial

bunching in the beam. This is important since there are no seeds or appropriate

mirrors available at short (hard X-ray) wavelengths, so it is not possible to use

a low gain oscillator FEL. It was proposed in [28] that small random fluctations

on the individual electron positions and energy inherent in the pulse will give

a small random non-zero bunching from which the high gain FEL process can

begin. This process is known as SASE (Self Amplified Spontaneous Emission).

A single pass, high gain configuration is thus the method used to generate high

power X-ray radiation from an FEL.

The analysis in the previous section was performed in the steady state, which,

although it allows one to examine the FEL instability, does not take into account

the slippage of the radiation field over the electron beam. Slippage is of fun-

damental importance in SASE. Taking into account an electron beam with a

finite longitudinal length, the electron beam can be represented by many aver-

aged longitudinal regions of equal length, called electron beam slices. Each slice

possesses its own averaged bunching parameter, arising from the electrons con-

tained within it. The electrons in each slice are contained in a cyclic phase space.

Initially, different (averaged) regions of the electron beam will possess a differ-

ent, small random bunching parameter as a result of the noise in the electron

beam. The radiation generated in each of these sections will slip forward and

be ampified as they slip over different regions upstream. The longitudinal pulse

structure will therefore be largely uncorrelated, and as the radiation slips over the

electron pulse different regions of amplified radiation will develop independently.

An important concept here is the cooperation length, lc defined as

lc =
λr

4πρ
, (2.140)

which gives the relative slippage of the radiation through the electron beam in

one gain length [30]. According to the analysis, each independent region evolves

with separation ≈ 2πlc, within which a temporally coherent spike emerges. This
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results in a radiation output with relatively poor temporal coherence but full

transverse coherence, with large fluctations in the shot-to-shot output [31].

The FEL parameter ρ governs many of the effects and criteria necessary for

successful operation. The electron beam energy spread σγ and the radiation

bandwidth at saturation are both ≈ ρ. The amplification will be significantly

reduced if the initial beam energy spread σγ & ρ. The saturation power is ∼ ρPe,

where Pe is the initial power of the electron pulse: so ρ is the efficiency of the

FEL interaction, typically 10−2 → 10−4.

Diffraction and electron beam emittance can also potentially spoil the inter-

action [32]. The field diffraction reduces the coupling with the electrons if the

field diffracts significantly outside of the transverse beam area. Likewise, the elec-

tron beam transverse velocity spread will cause decoupling if the electron beam

travels outside of the transverse radiation area, so the electron beam may need

focusing during propagation along the undulator. The emittance, the area in the

transverse phase space occupied by the electrons, induces an effective longitudinal

energy spread in addition to the 1D energy spread [33]. This modifies the energy

spread requirement slightly, so that for lasing ∆γ < ρ, where ∆γ =
√
σ2
γ + σ2

ε

is the total energy spread due to both the longitudinal energy spread and the

effective energy spread from the beam emittance.

2.4 Limitations of Theory

The most widely used FEL codes(see e.g. GENESIS 1.3 [21], FAST [22], and GIN-

GER [20]) perform the period averaging and SVEA as outlined in section 2.1.2.

In general, it is the equations for the steady state system which are numerically

solved. If slippage is to be included i.e. including the effects of a finite length

electron beam, then the electron beam is represented by many self-contained elec-

tron phase-space slices, which independently solve the steady state FEL model,

see figure 2.8. Each beam slice simulates an electron phase-space with periodic

boundary conditions. To simulate the slippage, the radiation field is shifted along

to the next slice in sequence after calculation. This artificial method of simulating
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Figure 2.8: Figure illustrating how slippage is simulated in an averaged FEL code.

Each electron slice calculates its own independent value of A, and then passes it on to

the next slice. The electrons within each slice then interact with that portion of the

field, amplify it, then pass it on. Each slice contains an electron distribution which is

averaged over to give the bunching parameter b.

slippage is nevertheless evidently very successful. The codes have been extensively

benchmarked against experiment and found to give excellent agreement (see, for

example, [16], which compares Genesis simulations with measurements from the

LCLS).

The disadvantages are that the codes cannot describe the field amplification

from variations occuring within an averaged period. This means that they cannot

simulate coherent radiation arising from quickly varying current gradients in the

pulse, called Coherent Spontaneous Emission (CSE). As the electron beam slices

exist in a self-contained cyclic phase space, electrons cannot be exchanged between

them. This is especially problematic when simulating short electron pulses, if the

energy changes imposed by the FEL interaction cause electrons to travel from

one end of the pulse to the other, or if there is a chirp in the pulse, in which case

a small electron pulse’s size will change significantly with respect to the original

bunch length.

Some promising new schemes to improve the temporal coherence are the use

of HHG (High Harmonic Gain) seeds [34] produced in gas jets, and EEHG (Echo-

Enabled Harmonic Generation) [35]. The HHG seed has a rapidly varying tempo-
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ral structure as it contains many harmonics, and so it may be invalid to describe

it using the SVEA. The EEHG scheme requires that electrons undergo large

changes in longitudinal position, which may violate the period averaging. The

restriction on the bandwidth increases with higher harmonics, so proposals which

require modelling up to high harmonic numbers will become difficult to model

in an averaged code [25]. The mode-locked FEL [36] produces output with a

frequency distribution with features similar to a spectral comb (modulated by

the FEL spectral distribution), which may violate the SVEA. As yet more exotic

methods are proposed to improve temporal coherence, the limit of the SVEA FEL

model may begin to break down. Laser plasma accelerators, a promising driver

of compact, so-called table-top FEL’s [37], produce very short electron bunches

on the order of a few resonant wavelengths long. If these are to drive FEL’s it

would seem inevitable that an unaveraged code would be required to properly

describe it.

A number of 1D codes exist which do not perform the period averaging, see

for example [38], [39] and [40]. The code presented in this thesis is the first

unaveraged code in 3D, exhibiting diffraction and transverse emittance effects,

as well as a fully longitudinal electron beam and a quickly oscillating envelope.

The advantages are, of course, an enhanced resolution of the FEL, including a

self consistent modelling of the full radiation spectrum and polarization. The

disadvantages are an increased memory requirement and process time. The next

chapter details the theory of this new 3D unaveraged model.
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Chapter 3

Analytic Model

A theory and numerical model for the Free Electron Laser was previously de-

veloped in [41] which described a helical undulator FEL. The lack of limiting

assumptions in the theory meant that it could describe situations in 3D which

had previously been unexplored. That theoretical model is now extended to de-

scribe an undulator with variable polarization.

In the first section the mathematical definitions and assumptions in the system

are presented and explained or justified. Then in the subsequent sections the

derivation of the working equations for the numerical model are presented in full.

3.1 Definitions

3.1.1 Undulator and Radiation Field

An undulator with a variable polarization is defined

Bw =
Bw0

2
(̂fe−ikwz + c.c.) (3.1)

where kw =
2π

λw
is the wiggler wavenumber and

f̂ = fxx̂ + fyiŷ (3.2)
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Figure 3.1: The undulator polarization is controlled by fx and fy as above.

is an unnormalised basis vector for the undulator. The variables fx,y control the

relative magnitudes of the magnetic field in x and y, expressed as fractions of the

peak magnetic field Bw0. This is illustrated in figure 3.1. Note that there is a fixed

phase relationship between the x and y magnetic fields. Only the magnitudes of

the field can be altered.

Note that the basis vector f̂ is not normalised. Writing (3.1) in trigonometric

form to explicitly show the x and y fields gives

Bw = Bw0(x̂fx cos(kwz) + ŷfy sin(kwz)) (3.3)

This means that a planar undulator for instance may be defined with fx = 1 and

fy = 0, and a helical with fx = 1 and fy = 1. It is felt that the undulator definition

is more intuitive in this way, as opposed to using a normalised expression. In this

unnormalised form either fx or fy must = 1 for a given wiggler polarization.

The RMS magnetic field is then

BRMS
w =

Bw0√
2

√
f 2
x + f 2

y (3.4)

and the RMS undulator parameter āw is defined using the RMS undulator field

āw =
eBRMS

w

mckw
(3.5)

The electromagnetic field is composed of a complex envelope ξ0(x, y, z, t) and

a fast oscillatory exponential term, and takes the form

E(x, y, z, t) =
1√
2

(êξ0(x, y, z, t)ei(kz−ωt) + c.c.) (3.6)
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where

ê ≡ 1√
2

(x̂ + iŷ) (3.7)

is a normalized vector basis for a circular polarized field.

Projecting the field described in equation (3.6) over ê∗ gives

Ex − iEy = ξ0e
i(kz−ωt) (3.8)

A new term E⊥, the perpendicular field, is then defined so that

E⊥ ≡ Ex − iEy = ξ0e
i(kz−ωt) (3.9)

and the radiation field vector can be expressed as

E(x, y, z, t) =
1√
2

(êE⊥ + c.c.) (3.10)

3.1.2 FEL Parameters and Scaled Variables

The FEL interaction is solved using the 3D coupled Maxwell-Lorentz equations,

which are

∇2E− 1

c2

∂2E

∂t2
= µ0

∂J

∂t
+

1

ε0
∇ρ (3.11)

F =
dpj
dt

= −e(E +
pj
γjm

×B) (3.12)

Here, the Compton limit is assumed in which the space charge term∇ρ, where

for this equation only ρ is the charge density, may be neglected and is done so

from now on.

The change in energy of the electrons is described by:

dγj
dt

= − e

mc
βj · E (3.13)

The Pierce parameter describes the strength or efficiency of the FEL interac-

tion and is given by

ρ ≡ 1

γr

(
āwωp
4ckw

) 2
3

(3.14)
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where

ωp =

√
e2np
ε0m

(3.15)

is the non-relativistic plasma frequency, and np the peak electron density.

In the derivation, the variables are scaled to dimensionless quantities consis-

tent with the notation used in the 1D steady state model in section 2.1.2 and

[27]. A list of the scaled variables, their mathematical definition, and description

is given in the table in figure 3.2

The scaled variables are used as it allows one to see easily how the various

important characteristics relate to one another. So one unit in z̄ is one exponen-

tial gain length, and one unit in z̄2 is the cooperation length, and one resonant

wavelength in z̄2 (and also one wiggler period in z̄) is 4πρ. The saturation value

for the intensity is |A|2 ≈ 1.

3.1.3 Approximations

The Paraxial approximation is applied to the system which assumes small angles

from the z axis, meaning that
∂

∂t
≈ c

∂

∂z
for the radiation field and

d

dt
≈ v̄z

d

dz
for the electrons, where v̄z is the average velocity of the electron beam in the z

direction.

As discussed in section 2.1.2, rather than make the Slowly Varying Envelope

Approximation, which would restrict the available frequency content to wave-

lengths around the resonant frequency, instead only the backwards wave is ne-

glected via the approximation∣∣∣∣( ∂

∂z
+

1

c

∂

∂t

)
E⊥

∣∣∣∣� ∣∣∣∣1c ∂∂tE⊥
∣∣∣∣ (3.16)

which in the scaled notation is∣∣∣∣∂E⊥∂z̄
∣∣∣∣� ∣∣∣∣ 2β̄z

1− β̄z
∂E⊥
∂z̄2

∣∣∣∣ (3.17)

This approximation, expressed in this form, shows the radiation envelope is

varying slowly in z̄ with respect to the radiation field rate of change in z̄2. This
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Variable Mathematical Definition Description

z̄
z

lg
= 2kwρz Scaled propagation distance

z̄2
(ct− z)

lc
= 2kρz Scaled time coordinate

lg
λw
4πρ

Exponential gain length

lc
λr

4πρ
Cooperation length

E⊥ Ex − iEy Perpendicular radiation field

p⊥ px − ipy Perpendicular electron momentum

A⊥
e
√
f 2
x + f 2

y√
2mcωp

√
γrρ

E⊥ Scaled perpendicular field

A
e
√
f 2
x + f 2

y√
2mcωp

√
γrρ

ξ0 Scaled field envelope

η
1− β̄z
β̄z

Scaled average z velocity of electrons

p2j
1

η

1− βzj
βzj

Scaled instantaneous energy

p̄⊥
p⊥
mc

Scaled perpendicular electron momentum

x̄
x√
lglc

Scaled x coordinate

ȳ
y√
lglc

Scaled y coordinate

Figure 3.2: Table describing the scaled notation. The final working equations for the

code will be expressed in terms of these variable.
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means, in the z̄2 or time frame, the field envelope can be described by complex

structures and even model discontinuities. The restriction is on the growth or

gain of these (potentially) complex structures as the field propogates through

the wiggler in z̄. Furthermore, the factor in equation (3.17)
2β̄z

1− β̄z
� 1 in the

FEL (the electron beam is relativistic), so the condition is not anticipated to be

violated.

The consequences of this can be seen directly from the Maxwell equation

∇× E = −∂Bf

∂t
(3.18)

⇒ ∂Ex
∂z

= −∂Bfy

∂t
(3.19)

∂Ey
∂z

=
∂Bfx

∂t
(3.20)

Changing to scaled variables (z̄, z̄2) gives(
∂

∂z̄
− β̄z

1− β̄z
∂

∂z̄2

)
Ex = −c β̄z

1− β̄z
∂By

∂z̄2

(3.21)(
∂

∂z̄
− β̄z

1− β̄z
∂

∂z̄2

)
Ey = c

β̄z
1− β̄z

∂Bx

∂z̄2

(3.22)

Here the approximation, in the form (3.17), can easily be applied, and it is seen

that

Ex ≈ cBy (3.23)

Ey ≈ −cBx (3.24)

The Poynting vector is then

S =
1

µ0

E×B (3.25)

=
1

µ0

(ExBy − EyBx) (3.26)

=
|E⊥|2

µ0c
(3.27)

meaning that the approximation is equivalent to electromagnetic radiation trav-

elling in the forward (positive z̄) direction only being modelled.
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The magnetic component of the radiation field is then:

Bf = − i√
2c

(êE⊥ − c.c.) (3.28)

So the full combined undulator and radiation magnetic field vector is

B =
Bw

2
(̂fe−ikwz + c.c.)− i√

2c
(êE⊥ − c.c.) (3.29)

3.1.4 Field Polarization

The general elliptical wiggler field defined for use in the code can be varied from

a linear to helical polarization, and the electron beam evolves in accordance with

the supplied wiggler polarization. To complete the model, the field, including its

polarization, must evolve consistently with the electron evolution.

It is shown here how the electromagnetic field can be considered elliptically

polarized, as the envelope and phase are functions of both z̄ and z̄2.

The electromagnetic field is defined in its basic general form as equation (3.6)

which, re-expressed in the scaled notation is

A(x̄, ȳ, z̄, z̄2) =
1√
2

(
êA(x̄, ȳ, z̄, z̄2)e−i(z̄2/2ρ) + c.c.

)
(3.30)

where A(x̄, ȳ, z̄, z̄2) describes a complex envelope at the resonant wavelength.

A scaled perpendicular field may be written

A⊥ = A exp(−i(z̄2/2ρ)) = Ax − iAy (3.31)

where Ax and Ay are the scaled fields in x̄ and ȳ.

Expanding the complex envelope A into its magnitude |A| and phase ψ gives

Ax = |A| cos(z̄2 − ψ) (3.32)

Ay = |A| sin(z̄2 − ψ) (3.33)

i.e. the fields in x and y have a fixed phase difference. This description is capable

of modelling any elliptical polarization. Polarization changes are achieved by

varying the envelope parameters |A| and ψ, which are functions of z̄ and z̄2. To
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Figure 3.3: The above plots show how the phase and magnitude of the envelope can

vary to achieve different polarizations.

obtain the complex envelope for the desired polarization we can first rearrange

(3.31) into

A = A⊥ exp(i(z̄2/2ρ)) (3.34)

= (Ax − iAy)(cos(z̄2/2ρ) + i sin(z̄2/2ρ)) (3.35)

Re(A) = Ax cos(z̄2/2ρ) + Ay sin(z̄2/2ρ) (3.36)

Im(A) = Ax sin(z̄2/2ρ)− Ay cos(z̄2/2ρ) (3.37)
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and so the magnitude

|A| =
√
Re(A)2 + Im(A)2 (3.38)

=
√

(Ax cos(z̄2/2ρ) + Ay sin(z̄2/2ρ))2 + (Ax sin(z̄2/2ρ) + Ay cos(z̄2/2ρ))2

(3.39)

=
√
A2
x(cos2(z̄2/2ρ) + sin2(z̄2/2ρ)) + A2

y(sin
2(z̄2/2ρ) + cos2(z̄2/2ρ)) (3.40)

=
√
A2
x + A2

y (3.41)

and the phase

tanψ =

(
Im(A)

Re(A)

)
(3.42)

tanψ =

(
Ax sin(z̄2/2ρ)− Ay cos(z̄2/2ρ)

Ax cos(z̄2/2ρ) + Ay sin(z̄2/2ρ)

)
(3.43)

So for a simple linear polarization in x, for example, define a resonant wave

Ax = cos(z̄2/2ρ) andAy = 0 giving |A| = | cos(z̄2/2ρ)| and ψ = arctan(tan(z̄2/2ρ)).

Examples of different field polarizations and the envelope parameters required to

describe them are shown in figures 3.3. The plots were produced using Matlab

by simply evaluating the analytic expressions given above for a desired field in x̄

and ȳ.

3.1.5 Outline Of Derivation

In the next section the final working equations are derived in detail, from the

starting points of the previous sections. First the electron equations are derived,

and then the field equation.

For the transverse forces on the electrons, the equations are manipulated so

that they may be expressed in terms of the scaled variables. The equation for

the scaled longitudinal momentum of the electrons is an equation which combines

both the variation in the longitudinal momentum and the energy exchange with

the electromagnetic field. The field equation is derived with the backwards wave

neglected as in section 3.1.3
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3.2 Electron Equations

3.2.1 Transverse Electron Momentum

Starting from the Lorentz force equation for the jth electron

Fj =
dpj
dt

= −e(Ej +
pj
γjm

×Bj), (3.44)

Transforming the independent variable from t → z so that
d

dt
= cβzj

d

dz
,

changing then to the scaled independent variable z̄ = 2kwρz and dependent

z̄2j = 2kwρ
β̄zj

1− β̄zj
(ctj−z) so that

d

dz̄
= 2kwρ

d

dz
,
z̄2j

2ρ
= −(kz−ωtj) and

z̄

2ρ
= kwz

and projecting over ê∗ gives

1√
2

dp⊥j
dz̄

=− e

2
√

2kwρcβzj

[
E⊥j −

pzj
γjm

(Byj + iBxj)
]

(3.45)

Here E⊥j = E(x̄j, ȳj, z̄2j, z̄).

The combined undulator and radiation magnetic field is described in equation

(3.29), and from this

Bxj = Bwofx cos(z̄/2ρ)− Eyj
c

(3.46)

Byj = Bw0fx sin(z̄/2ρ) +
Exj
c
. (3.47)

And so in equation (3.45)

dp⊥j
dz̄

= − e

2kwρcβzj

[
E⊥j −

pzj
γjm

(Bw0fy sin(z̄/2ρ) +
Exj
c

+ i(Bwfx cos(z̄/2ρ)− Eyj
c

))
]

(3.48)

⇒ dp⊥j
dz̄

= − e

2kwρcβzj

[
E⊥j −

pzj
γjm

(Bw0(fy sin(z̄/2ρ) + ifx cos(z̄/2ρ))+

1

c
(Exj − iEyj))

]
(3.49)

Remembering E⊥ = Ex− iEy, and defining a new complex term G describing

the undulator field such that

G = fx cos(z̄/2ρ) + ify sin(z̄/2ρ), (3.50)
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equation (3.49) becomes

dp⊥j
dz̄

= − e

2kwρcβzj

[
E⊥j −

pzj
γjm

(iBw0G
∗ +

E⊥j
c

)
]

(3.51)

Taking the factor of 1/cβzj inside the brackets the equation becomes

dp⊥j
dz̄

= − e

2kwρ

[E⊥j
cβzj

− pzj
γjmcβzj

(iBw0G
∗ +

E⊥j
c

)
]

(3.52)

dp⊥j
dz̄

= − e

2kwρ

[E⊥j
cβzj

− iBw0G
∗ − E⊥j

c

]
(3.53)

dp⊥j
dz̄

=
e

2kwρ

[
iBw0G

∗ +
E⊥j
c

(1− 1

βzj
)
]

(3.54)

From the definition of p2j,

ηp2j =
1− βzj
βzj

=
1

βzj
− 1, (3.55)

changing to the scaled p̄⊥ = p⊥/mc, and using the definition of āw in equation

(3.5),

dp̄⊥j
dz̄

=
1

2ρ

( √
2āw√

f 2
x + f 2

y

iG∗ − eηp2jE⊥j
mc2kw

)
(3.56)

Finally, scaling to A⊥ using the definition in table 3.2, and rearranging the

definition of ρ in equation (3.14) to obtain an expression for the plasma frequency,

ωp =
4ckw(γrρ)3/2

āw
(3.57)

so that

e

mc2kw
E⊥ =

4
√

2γ2
rρ

2√
f 2
x + f 2

y āw
, (3.58)

the equation becomes

dp̄⊥j
dz̄

=
1

2ρ

( √
2āw√

f 2
x + f 2

y

iG∗ − 4
√

2γ2
rρ

2ηp2j√
f 2
x + f 2

y āw
A⊥j

)
(3.59)

dp̄⊥j
dz̄

=
āw√

2(f 2
x + f 2

y )ρ

(
iG∗ −

(2γrρ

āw

)2

ηp2jA⊥j

)
(3.60)
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Focusing Effects on the Transverse Electron Motion

The finite electron beam emittance in x and y can result in decoupling between

the beam and radiation, which diminishes or eliminates the field amplification.

To counteract this, the electron beam may be focused in the transverse directions.

In lower energy FEL’s, the natural focusing provided by the undulator can be

sufficient to confine the electron beam to a desired transverse area. The natural

focusing arises from the off-axis magnetic field of the wiggler, which up till now

has not been taken into account. Close to the z axis it can be approximated as a

constant, linear focusing channel super-imposed upon the normal wiggle motion

[42], taken simply as

d2x

dz2
= −k2

βnx,
d2y

dz2
= −k2

βny (3.61)

It is seen that the electron beam will undergo an additional oscillation, called the

betatron oscillation, with wavenumber kβn, the natural betatron wavenumber,

which is much smaller than kw. Natural focusing in a planar wiggler can be

achieved in both transverse directions by using curved pole faces [42].

In higher energy FEL’s, the beam is focused by external quadrupoles, usually

in a configuration known as a FODO lattice [32]. The quadrupoles are inserted

periodically between undulator sections. Each undulator-quadrupole section is

known as a FODO cell, and many such cells comprise the lattice. Assuming

the the FODO cell length is smaller than both the betatron wavelength and the

gain length, it may also be approximated as a linear focusing channel. Strictly

speaking, the betatron wavenumber varies across the length of the FODO cell,

with the strength of the focusing dipping in the middle, but the deviation from

the mean focusing strength is assumed to be small.

It is possible to “match” the electron beam transverse area to the focusing

channel [42], by choosing the initial transverse beam parameters such that a

constant beam radius in the transverse plane is achieved. The electrons will then

oscillate within this constant beam envelope with period 2π/kβ, with different

magnitudes and phases.
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The focusing described in the theory here is the natural focusing of the heli-

cal undulator, and is artificially strengthened or relaxed, if desired, by use of a

focusing factor, to achieve the correct betatron oscillation.

It is assumed that a uniform focusing channel exists in both x̄ and ȳ for any

values of fx,y. This provides a restoring force which results in electron oscillations

within a beam envelope, given by the maximum amplitudes of the electron oscil-

lations within the beam. In a helical undulator the betatron wavenumber can be

approximated as

kβn =
āwkw√

2γ
(3.62)

The factor of
√

2 is now replaced by a general focusing factor f [43], to alter the

focusing strength, so that the focusing channel is now described as [33]

d2xj
dz2

= − ā
2
wk

2
w

f 2γ2
j

xj, (3.63)

where kβ =
āwkw
fγ

is the new betatron wavenumber.

Expressing (3.63) in terms of p̄xj =
γj
c

dxj
dt

= γjβzj
dxj
dz

gives

dp̄xj
dz

= γβzj(−k2
βxj) (3.64)

and changing the independent variable to z̄

dp̄xj
dz̄

=
γjβzj
2kwρ

(−k2
βxj) (3.65)
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and changing to the scaled x̄ via the table in figure 3.2 (so that x =
√
lglcx̄),

dp̄xj
dz̄

= −γjβzj
2kwρ

k2
β

√
lglcx̄j (3.66)

dp̄xj
dz̄

= −γjβzj
2kwρ

ā2
wk

2
w

f 2γ2
j

√
lglcx̄j (3.67)

dp̄xj
dz̄

= −βzj ā
2
wkw

2f 2γjρ

1

2ρ
√
kwk

x̄j (3.68)

dp̄xj
dz̄

= − βzj ā
2
w

4f 2γjρ2

√
kw
k
x̄j (3.69)

dp̄xj
dz̄

= −
βzj ā

2
w

√
η

4f 2γjρ2
x̄j (3.70)

(3.71)

Similarly for y,

dp̄yj
dz̄

= −
βzj ā

2
w

√
η

4f 2γjρ2
ȳj (3.72)

So the full transverse momentum equation, including focusing effects, is

dp̄⊥j
dz̄

=
āw√

2(f 2
x + f 2

y )ρ

(
iG∗ −

(2γrρ

āw

)2

ηp2jA⊥j

)
−
βzj ā

2
w

√
η

4f 2γjρ2
(x̄j − iȳj) (3.73)

Recalling the betatron wavenumber in equation (3.62), and scaling to the

scaled betatron wavenumber k̄β in the propagation distance z̄,

k̄β = lgkβ (3.74)

k̄β =
1

2kwρ

āwkw
fγ

(3.75)

k̄β =
āw

2fργ
(3.76)

⇒ fk̄β =
āw
2ργ

(3.77)

So the transverse momentum equation is then

dp̄⊥j
dz̄

=
āw√

2(f 2
x + f 2

y )ρ

(
iG∗ − ηp2j

f 2k̄2
β

A⊥j

)
− γjβzj k̄2

β

√
η(x̄j − iȳj) (3.78)
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Matched Beam

The definition of the transverse emittance is

ε = rxrx′ (3.79)

where x′ =
dx

dz
. The normalised emittance is εn = γrε.

For a matched beam, with individual electrons oscillating with wavenumber

kβ, rx′ = kβrx, so the matched transverse radius is given by

rx =

√
εn
γrkβ

(3.80)

For the transverse beam dynamics a scaled emittance ε̄ is introduced such

that

ε̄ =
ε

2ρlc
(3.81)

Scaling the transverse coordinates with r̄x =
rx√
lglc

, and using definitions

(3.74) and (3.81), equation (3.80) becomes√
lglcr̄x =

√
γrε

γrkβ
(3.82)

r̄x =

√
ε

lck̄β
(3.83)

r̄x =

√
2ρε̄

k̄β
. (3.84)

The undulator wavelength in z̄ (and the resonant wavelength in z̄2) is k̄w =
1

2ρ
,

so

r̄x =

√
ε̄

k̄wk̄β
. (3.85)

To find the matched r̄px, one must first of all relate p̄ to
dx

dz
, which is achieved

in the following by approximating γj by the resonant energy γr,
d

dt
by c

d

dz
, and
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remembering that p̄x =
px
mc

,

pxj = γjm
dx

dt
(3.86)

pxj ≈ γrmc
dx

dz
(3.87)

⇒ p̄xj ≈ γr
dx

dz
. (3.88)

Therefore, r̄px = γrrx′ . So rearranging the emittance definition (3.79):

σx′ =
ε

σx
(3.89)

and then scaling to x̄, and using equations (3.89), (3.77) and (3.81)

r̄px =
γrε√
lglcrx̄

(3.90)

r̄px =
2ρlcγr ε̄√
lglcrx̄

(3.91)

r̄px =
√
lclg

āw ε̄

f k̄βrx̄
(3.92)

r̄px =
āw
√
ηε̄

f k̄βrx̄
(3.93)

The same matching is performed in the ȳ direction, so

r̄y =

√
ε̄

k̄wk̄β
(3.94)

r̄py =
āw
√
ηε̄

f k̄βrȳ
(3.95)

3.2.2 Longitudinal Electron Momentum

Now the equation for p2, the scaled momentum in the z̄2 frame, is derived. Start-

ing with the z component of the Lorentz eq (3.12)

dpzj
dz̄

= − e

2kwρcβzj
(

pj
γjm

×Bj)z̄ (3.96)
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The cross product is

(p×B)z (3.97)

=pxBy − pyBx (3.98)

=px

(
Bwfy sin(z̄/2ρ) +

1

2c
(E⊥ + c.c.)

)
(3.99)

− py
(
Bwfx cos(z̄/2ρ)− i

2c
(E⊥ − c.c.)

)
=

1

2
(p⊥ + p∗⊥)

(
Bw0fy sin(z̄/2ρ) +

1

2c
(E⊥ + c.c.)

)
(3.100)

− i

2
(p⊥ − p∗⊥)

(
Bwfx cos(z̄/2ρ)− i

2c
(E⊥ − c.c.)

)
=
p⊥
2

(
E∗⊥
c

+Bwfy sin(z̄/2ρ)− iBwfx cos(z̄/2ρ)

)
(3.101)

+
p∗⊥
2

(
E⊥
c

+Bwfy sin(z̄/2ρ) + iBwfx cos(z̄/2ρ)

)
Substituting back into equation (3.96), and using the definition of G from

equation (3.50) gives

dpzj
dz̄

=− e

4kwργjmcβzj

[
p⊥j

(
E∗⊥j
c
− iBwG

)
+ c.c.

]
(3.102)

This gives the changes in longitudinal electron momentum in the undulator

due to the combined magnetic field of the undulator and radiation. To include

the energy change due to coupling to the electric component of the radiation field,

one can see from the definition of momentum that

dpzj
dz̄

=
d

dz̄
(γjmcβzj) (3.103)

= mcγj
dβzj
dz̄

+mcβzj
dγj
dz̄

(3.104)

Equation (3.102) can be equated with equation (3.104), but first the variation
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in energy can be found by using the expression derived in equation (2.17),

dγj
dz̄

=− e

2kwc2mρβzj
βj · Ej (3.105)

βj · Ej =
pj
γjmc

· Ej (3.106)

=
1

γjmc
(pxjExj + pyjEyj) (3.107)

=
1

γjmc
(
1

2
(p⊥j + p∗⊥j)

1

2
(E⊥j + E∗⊥j)

+
i

2
(p⊥j − p∗⊥j)

i

2
(E⊥j − E∗⊥j)) (3.108)

=
1

2γjmc
(p⊥jE

∗
⊥j + p∗⊥jE⊥j) (3.109)

⇒ dγj
dz̄

=− e

4kwργjm2c3βzj
(p⊥jE

∗
⊥j + p∗⊥jE⊥j) (3.110)

and substituting this back into (3.104) gives

dpzj
dz̄

= γjmc
dβzj
dz̄
− e

4kwργjmc2
(p⊥jE

∗
⊥j + p∗⊥jE⊥j) (3.111)

Now equation (3.102) can be equated to equation (3.111) to give

γj
dβzj
dz̄
− e

4kwργjm2c3
(p⊥jE

∗
⊥j + p∗⊥jE⊥j)

=− e

4kwργjm2c3βzj

[
p⊥j
(
E∗⊥j − icBwG

)
+ c.c.

]
(3.112)

⇒ dβzj
dz̄

=
e

4kwm2c3ργ2
j

[
(1− 1

βzj
)(p⊥E

∗
⊥j + p∗⊥jE⊥j)

+
iBwc

βzj
(p⊥jG− p∗⊥jG∗)

]
(3.113)

⇒ dβzj
dz̄

=− e

4kwm2c3ργ2
j

[
(

1

βzj
− 1)(p⊥E

∗
⊥j + p∗⊥jE⊥j)

− iBwc

βzj
(p⊥jG− p∗⊥jG∗)

]
(3.114)
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dp2j

dz̄
= − 1

ηβ2
zj

dβzj
dz̄

, so

dp2j

dz̄
=

1

ηβ2
zj

e

4kwm2c3ργ2
j

[
(

1

βzj
− 1)(p⊥E

∗
⊥j + p∗⊥jE⊥j)

− iBwc

βzj
(p⊥jG− p∗⊥jG∗)

]
(3.115)

Scaling the transverse momentum, p̄⊥ =
p⊥
mc

, so

dp2j

dz̄
=

1

ηβ2
zj

e

4kwmc2ργ2
j

[
(

1

βzj
− 1)(p̄⊥E

∗
⊥j + p̄∗⊥jE⊥j)

− iBwc

βzj
(p̄⊥jG− p̄∗⊥jG∗)

]
. (3.116)

Scaling the transverse envelope using equation (3.58), and remembering equa-

tion (3.5) for the definition of āw,

dp2j

dz̄
=

1

ηβ2
zj

1

4ργ2
j

[
(

1

βzj
− 1)

4
√

2γ2
rρ

2

āw
√
f 2
x + f 2

y

(p̄⊥A
∗
⊥j + p̄∗⊥jA⊥j)

− i

βzj

√
2āw√

f 2
x + f 2

y

(p̄⊥jG− p̄∗⊥jG∗)
]

(3.117)

dp2j

dz̄
=

1

ηβ2
zj

1

4ργ2
j

√
2āw√

f 2
x + f 2

y

[
(

1

βzj
− 1)

(
4γ2

rρ
2

ā2
w

)
(p̄⊥A

∗
⊥j + p̄∗⊥jA⊥j)

− i

βzj
(p̄⊥jG− p̄∗⊥jG∗)

]
(3.118)

To simplfy the derivation in terms of the scaled variables, first, from the
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definition of the relativistic factor one can find

1

γ2
j

=1− β2
j (3.119)

1

γ2
j

=1− β2
zj − (β2

xj + β2
yj) (3.120)

1

γ2
j

=1− β2
zj −

1

γ2
jm

2c2
(p2
xj + p2

yj) (3.121)

1

γ2
j

=1− β2
zj −

1

γ2
jm

2c2
|p⊥j|2 (3.122)

1

γ2
j

=1− β2
zj −

1

γ2
j

|p̄⊥j|2 (3.123)

⇒ 1

γ2
j

=
1− β2

zj

1 + |p̄⊥j|2
(3.124)

Next, from (3.55),

1

βzj
= 1 + ηp2j (3.125)

and

1− β2
zj

β2
zj

= ηp2j(ηp2j + 2). (3.126)

Putting equations (3.124), (3.125) and (3.126) into equation (3.118), and also

using the expression for the scaled transverse wavenumber in equation (3.76),

gives the final form of the p2 equation as

dp2j

dz̄
=

1

4ρ

√
2āw√

f 2
x + f 2

y

(
p2j(ηp2j + 2)

1 + |p̄⊥j|2

)[ηp2j

fk̄β
(p̄⊥A

∗
⊥j + p̄∗⊥jA⊥j)

− i(ηp2j + 1)(p̄⊥jG− p̄∗⊥jG∗)
]

(3.127)

3.2.3 Electron Axial Coordinates

Longitudinal Position

The definition of z̄2 is

z̄2 =
ct− z
lc

(3.128)
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and the position in z̄2 of the jth electron is

z̄2j = 2krρ(ctj − z) (3.129)

Differentiating with respect to z gives

dz̄2j

dz
= 2krρ(c

dtj
dz
− 1) (3.130)

dz̄2j

dz
= 2krρ(

1

βzj
− 1) (3.131)

and scaling the differential to z̄ gives

2kwρ
dz̄2j

dz̄
= 2krρ(

1

βzj
− 1) (3.132)

dz̄2j

dz̄
=
kr
kw

(
1− βzj
βzj

) (3.133)

dz̄2j

dz̄
=

1

η
(
1− βzj
βzj

) (3.134)

dz̄2j

dz̄
= p2j (3.135)

So it is seen that p2j is the rate of change of electron position in the z̄2 frame.

Transverse Coordinates

The momentum in x of the jth electron is defined as

pxj = γjmvxj (3.136)

and in scaled units

p̄xj =
γjmvxj
mc

(3.137)

p̄xj =
γjvxj
c

(3.138)

p̄xj = γj
1

c

dxj
dt

(3.139)

and changing the independent variable to z and then scaling to z̄

dxj
dz̄

=
p̄xj

2kwρβzjγj
(3.140)
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Scaling the transverse coordinate x to x̄ =
x√
lglc

gives

dx̄j
dz̄

=
2ρ
√
kwkp̄xj

2kwρβzjγj
(3.141)

dx̄j
dz̄

=
p̄xj√
ηβzjγj

(3.142)

To get to an expression involving p2j instead of γj and βzj remember that

from the definition of p2j

ηp2j =
1− βzj
βzj

(3.143)

ηp2j =
1

βzj
− 1 (3.144)

1

βzj
= ηp2j + 1 (3.145)

βzj =
1

1 + ηp2j

(3.146)

Also remember that from the definition of γj, in equation (3.124),

1

γ2
j

=
1− β2

zj

(1 + |p̄⊥j|2)
(3.147)

and using (3.146) gives for the numerator of the RHS

1− β2
zj = 1−

(
1

1 + ηp2j

)2

(3.148)

=
(1 + ηp2j)

2 − 1

(1 + ηp2j)2
(3.149)

=
(1 + 2ηp2j + η2p2

2j)− 1

(1 + ηp2j)2
(3.150)

1− β2
zj =

ηp2j(2 + ηp2j)

(1 + ηp2j)2
(3.151)

and using (3.151) in (3.147)

1

γ2
j

=
ηp2j(ηp2j + 2)

(1 + |p̄⊥j|2)(1 + ηp2j)2
(3.152)

58



so that in (3.142), substituting in (3.152) and (3.146),

dx̄j
dz̄

= (1 + ηp2j)

√
ηp2j(ηp2j + 2)

(1 + |p̄⊥j|2)(1 + ηp2j)2

1
√
η
p̄xj (3.153)

dx̄j
dz̄

=

√
p2j(ηp2j + 2)

(1 + |p̄⊥j|2)
p̄xj (3.154)

and similarly for ȳ

dȳj
dz̄

=

√
p2j(ηp2j + 2)

(1 + |p̄⊥j|2)
p̄yj (3.155)

3.2.4 Initial Conditions

For a numerical solution the initial electron beam coordinates must be supplied.

These are now derived analytically for an initial position along the undulator z̄

in the absence of a radiation field.

Initial p̄⊥ conditions

For the initial p̄⊥ condition, ignore the field coupling and focusing terms in (3.224)

by forcing A⊥ = 0, and integrating over z̄ gives

p̄⊥j0 =

√
2

(f 2
x + f 2

y )
1
2

(āwfxi sin(
z̄

2ρ
)− āwfy cos(

z̄

2ρ
)) (3.156)

So initial conditions for p̄⊥ are

<(p̄⊥j0) = −
√

2āw

(f 2
x + f 2

y )
1
2

fy cos(
z̄

2ρ
) (3.157)

=(p̄⊥j0) =

√
2āw

(f 2
x + f 2

y )
1
2

fx sin(
z̄

2ρ
) (3.158)

Initial p2 condition

The definition of p2j is

p2j =
1

η

1− βzj
βzj

(3.159)
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From equation (3.156),

|p̄⊥j0|2 = p̄⊥j0p̄
∗
⊥j0 (3.160)

|p̄⊥j0|2 =
2

f 2
x + f 2

y

ā2
w(f 2

x sin2(
z̄

2ρ
) + f 2

y cos2(
z̄

2ρ
)) (3.161)

We can find βzj0 from (3.124)

γ−2
j0 =

1− β2
zj0

1 + |p̄⊥j0|2
(3.162)

⇒ βzj0 =
√

1− γ−2
j0 (1 + |p̄⊥j0|2) (3.163)

βzj0 =

√
1− γ−2

j0 (1 +
2

f 2
x + f 2

y

ā2
w(f 2

x sin2(
z̄

2ρ
) + f 2

y cos2(
z̄

2ρ
))) (3.164)

To calculate η use

η =
1− β̄z
β̄z

(3.165)

where β̄z is βzj averaged along the undulator for a resonant electron given by,

from equation (3.164),

β̄z =

√
1− γ−2

j (1 +
2

f 2
x + f 2

y

ā2
w(
f 2
x

2
+
f 2
y

2
)) (3.166)

β̄z =
√

1− γ−2
j (1 + ā2

w) (3.167)

The initial p2j can then be calulated from

ηp2j0 =
1− βzj0
βzj0

(3.168)

p2j0 =
1

η

1− βzj0
βzj0

(3.169)

where βzj0 is given by eqn (3.164).

Intitial Transverse Coordinates

Returning to the equation for the transverse x̄ coordinate in the form (3.142),

inserting initial values (the initial conditions for the transverse momentum from
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eqns (3.157) and (3.158)), and integrating over z̄,

x̄j0 =

∫
p̄x0j√
ηβzj0γj0

dz̄ (3.170)

x̄j0 = − 1
√
ηβzj0γj0

√
2āw

(f 2
x + f 2

y )
1
2

fy

∫
cos(

z̄

2ρ
)dz̄ (3.171)

x̄j0 = − 1
√
ηβzj0γj0

√
2āw

(f 2
x + f 2

y )
1
2

fy2ρ sin(
z̄

2ρ
) (3.172)

x̄j0 = − 2
√

2āwρ
√
ηβzj0γj0(f 2

x + f 2
y )

1
2

fy sin(
z̄

2ρ
) (3.173)

and using (3.152) and (3.146) gives

x̄j0 = − 2
√

2āwρ

(f 2
x + f 2

y )
1
2

√
p2j0(ηp2j0 + 2)

(1 + |p̄⊥j0|2)
fy sin(

z̄

2ρ
) (3.174)

and similarly for ȳ

ȳj0 =
2
√

2āwρ

(f 2
x + f 2

y )
1
2

√
p2j0(ηp2j0 + 2)

(1 + |p̄⊥j0|2)
fx cos(

z̄

2ρ
) (3.175)

3.3 The Field Equation

The field evolution in the FEL is described by the 3D Maxwell equation in the

absence of space charge, given in equation (3.11). In the Compton limit and with

the paraxial approximation, the current density J = J⊥ where J⊥ = Jxx̂ + Jyŷ

is the transverse current density, which from N electrons is

J⊥ = − e

m

N∑
j=1

p⊥j
γj

δ3(xj, yj, zj) (3.176)

where p⊥ = pxx̂ + pyŷ is the perpendicular momentum vector.

Therefore equation (3.11) becomes

∇2E− 1

c2

∂2E

∂t2
= −µ0e

m

N∑
j=1

p⊥j
γj

δ3(xj, yj, zj) (3.177)
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where δ3(xj, yj, zj) = δ(x−xj(t))δ(y− yj(t))δ(z− zj(t)). Obviously only a trans-

verse field with vectors in the x and y dimensions (travelling in the z direction)

will arise from this. So projecting the wave equation (3.177) onto ê∗ gives:(
∇2 − 1

c2

∂2

∂t2

)
E⊥ = −µ0e

m

N∑
j=1

p⊥j
γj
δ3(xj, yj, zj) (3.178)

where E⊥ = ξ0e
i(kz−ωt) = Ex−iEy is the transverse field. Similarly p⊥j = pxj−ipyj

is the perpendicular momentum of the jth electron projected over ê∗.

Defining the independent variables z̄ = 2kwρz and z̄2 = 2kwρβ̄z(ct−z)/(1−β̄z),

so that
∂

∂z
= 2kwρ(

∂

∂z̄
− β̄z

1− βz
∂

∂z̄2

),
1

c

∂

∂t
= 2kwρ

β̄z
1− βz

∂

∂z̄2

and kz−ωt = − z̄2

2ρ
,

the LHS of (3.178) becomes

∂2E⊥
∂x2

+
∂2E⊥
∂y2

+
∂2E⊥
∂z2

− 1

c2

∂2E⊥
∂t2

(3.179)

=
∂2E⊥
∂x2

+
∂2E⊥
∂y2

+

(
∂

∂z
+

1

c

∂

∂t

)(
∂

∂z
− 1

c

∂

∂t

)
E⊥ (3.180)

=
∂2E⊥
∂x2

+
∂2E⊥
∂y2

+

(
2kwρ(

∂

∂z̄
− β̄z

1− βz
∂

∂z̄2

) + 2kwρ
β̄z

1− βz
∂

∂z̄2

)
(

2kwρ(
∂

∂z̄
− β̄z

1− βz
∂

∂z̄2

)− 2kwρ
β̄z

1− βz
∂

∂z̄2

)
E⊥ (3.181)

=∇2
⊥E⊥ + (2kwρ)2

(
∂

∂z̄

(
∂

∂z̄
− 2β̄z

1− βz
∂

∂z̄2

))
E⊥ (3.182)

Changing the delta function from z → t→ z̄2 [41],

δ(z − z̄j) =
1

βzj
2kwρ

β̄z
1− β̄z

δ(z̄2 − z̄2j) (3.183)

and applying the scaling from z, t → z̄, z̄2 to the rest of the RHS of equation

(3.178) gives

− µ0e

m

∂

∂t

N∑
j=1

p⊥j
γj
δ(x− xj)δ(y − yj)δ(t− tj) (3.184)

=− µ0e

m
(2ckwρ

β̄z
1− βz

)
∂

∂z̄2

N∑
j=1

p⊥j
γj

1

βzj
2kwρ

β̄z
1− β̄z

δ(x− xj)δ(y − yj)δ(z̄2 − z̄2j) (3.185)
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and the full field equation is now:

∇2
⊥E⊥ + (2kwρ)2

(
∂

∂z̄

(
∂

∂z̄
− 2β̄z

1− βz
∂

∂z̄2

))
E⊥ =

− e

ε0mc
4k2

wρ
2
( β̄z

1− β̄z

)2 ∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(xj, yj, z̄2j) (3.186)

⇒ 1

(2kwρ)2
∇2
⊥E⊥ +

(
∂

∂z̄

(
∂

∂z̄
− 2β̄z

1− β̄z
∂

∂z̄2

))
E⊥ =

− e

ε0mc

( β̄z
1− β̄z

)2 ∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(xj, yj, z̄2j) (3.187)

Neglecting the backwards wave by applying the approximation in section 3.1.3,

which is ∣∣∣∣∂E⊥∂z̄
∣∣∣∣� ∣∣∣∣ β̄z

1− β̄z
∂E⊥
∂z̄2

∣∣∣∣ (3.188)

gives

1

(2kwρ)2
∇2
⊥E⊥ −

2β̄z
1− βz

∂2

∂z̄∂z̄2

E⊥ =

− e

ε0mc

( β̄z
1− β̄z

)2 ∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(xj, yj, z̄2j) (3.189)

Factoring
β̄z

1− β̄z
,

1

(2kwρ)2

1− β̄z
β̄z
∇2
⊥E⊥ −

2∂2

∂z̄∂z̄2

E⊥ =

− e

ε0mc

β̄z
1− β̄z

∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(xj, yj, z̄2j) (3.190)

and applying the resonance condition,
1− β̄z
β̄z

=
λr
λw

=
kw
kr

,

1

4kwkrρ2
∇2
⊥E⊥ −

2∂2

∂z̄∂z̄2

E⊥ =

− e

ε0mc

β̄z
1− β̄z

∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(xj, yj, z̄2j) (3.191)
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Scaling x by x̄ =
x√
lglc

(and the same for y), and remembering lg =
1

2kwρ

and lc =
1

2krρ
,

LHS =
1

4kwkrρ2

(
∂2

∂x2
+

∂2

∂y2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥

=
1

4kwkrρ2

1

lglc

(
∂2

∂x̄2
+

∂2

∂ȳ2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥

=
1

4kwkrρ2
4kwkrρ

2

(
∂2

∂x̄2
+

∂2

∂ȳ2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥

=

(
∂2

∂x̄2
+

∂2

∂ȳ2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥ (3.192)

and the RHS

=− e

ε0mc

β̄z
1− β̄z

∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

1

lglc
δ3(x̄j, ȳj, z̄2j) (3.193)

as δ(x− xj) =
1√
lglc

δ(x̄− x̄j).

So the full equation is now:(
∂2

∂x̄2
+

∂2

∂ȳ2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥ =

− e

ε0mc

β̄z
1− β̄z

1

lglc

∂

∂z̄2

N∑
j=1

p⊥j
βzjγj

δ3(x̄j, ȳj, z̄2j) (3.194)

Further scaling, p̄⊥ =
p⊥
mc

and η =
1− β̄z
β̄z

, seen in the table in figure 3.2, and

1

γj
=

(
1− β2

zj

1 + |p̄⊥j|2

) 1
2

which was derived in equation (3.124), so that

1

βzjγj
=

(
1− β2

zj

β2
zj(1 + |p̄⊥j|2)

) 1
2

(3.195)

⇒ 1

βzjγj
=

(
1

(1 + |p̄⊥j|2)

(
1

β2
zj

− 1

)) 1
2

(3.196)
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Now

ηp2j =
1− βzj
βzj

(3.197)

ηp2j =
1

βzj
− 1 (3.198)

1

βzj
= ηp2j + 1 (3.199)

so that in (3.196)

1

βzjγj
=

(
1

(1 + |p̄⊥j|2)

(
(ηp2j + 1)2 − 1

)) 1
2

(3.200)

⇒ 1

βzjγj
=

(
1

(1 + |p̄⊥j|2)

(
(η2p2

2j + 2ηp2j + 1)− 1
)) 1

2

(3.201)

⇒ 1

βzjγj
=

(
1

(1 + |p̄⊥j|2)
(ηp2j(ηp2j + 2))

) 1
2

(3.202)

Simpifying (3.194) gives(
∂2

∂x̄2
+

∂2

∂ȳ2

)
E⊥ −

2∂2

∂z̄∂z̄2

E⊥ =

− e

ε0ηlglc

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.203)

Scaling from E⊥ → A⊥ by using the definition in figure 3.2,

A⊥ =
e
√
f 2
x + f 2

y√
2mcωp

√
γrρ

E⊥ (3.204)

gives(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

e2

ε0ηlglcmcωp
√
γrρ

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j)

(3.205)
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Using the definition of ρ, which is

ρ =
1

γr

(
āwωp
4ckw

)2/3

(3.206)

and and rearranging for

ωp =
4ckw(γrρ)3/2

āw
(3.207)

and also

1

γrρ
=

(
4ckw
ωpāw

)2/3

(3.208)

1

γ3
rρ

3
=

(
4ckw
ωpāw

)2

(3.209)

1

γ2
rρ

2
= γrρ

(
4ckw
ωpāw

)2

(3.210)

(3.211)

Substituting into the field equation (3.205) gives(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥−

2∂2

∂z̄∂z̄2

A⊥ = −
√
f 2
x + f 2

y

2

e2

ε0ηlglcmc

āw
4ckw(γrρ)2

×

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.212)

⇒
(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥−

2∂2

∂z̄∂z̄2

A⊥ = −
√
f 2
x + f 2

y

2

e2

ε0ηlglcmc
γrρ

4ckw
ω2
pāw
×

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.213)

Now substitute for the plasma frequency

1

ωp
=

√
ε0m

e2np
, (3.214)
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where np is the peak electron number density, then(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ = −
√
f 2
x + f 2

y

2

e2

ε0ηlglcmc
γrρ

4ckw
āw

ε0m

e2np
×

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.215)

⇒
(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ = −
√
f 2
x + f 2

y

2

4kwγrρ

ηlglcāwnp
×

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.216)

Introducing the scaled electron density, which is defined from the scaling of

x̄, ȳ and z̄2,

n̄p = lgl
2
cnp (3.217)

gives:(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

4kwγrρlgl
2
c

ηlglcāwn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j)

(3.218)(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

4kwγrρlc
ηāwn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.219)(

∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

4kwγrρ

ηāwn̄p2ρk

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j)

(3.220)
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(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

2γr
āwn̄p

1

η

kw
k

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j)

(3.221)

⇒
(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

−
√
f 2
x + f 2

y

2

2γr
āwn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j√
1 + |p̄⊥j|

√
ηp2j(ηp2j + 2)δ3(x̄j, ȳj, z̄2j) (3.222)
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3.4 Final Equations

To summarize, the final set of scaled working equations describing the FEL in-

teraction are then(
∂2

∂x̄2
+

∂2

∂ȳ2

)
A⊥ −

2∂2

∂z̄∂z̄2

A⊥ =

− 2γr
awn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j
√
ηp2j(ηp2j + 2)√
1 + |p̄⊥j|

δ3(x̄j, ȳj, z̄2j) (3.223)

dp̄⊥j
dz̄

=
aw
2ρ

(
iG∗ − ηp2j

f 2k̄2
β

A⊥j

)
+ Fj (3.224)

dp2j

dz̄
=
aw
4ρ

(
p2j(ηp2j + 2)

1 + |p̄⊥j|2

)[ ηp2j

f 2k̄2
β

(p̄⊥E
∗
⊥j + p̄∗⊥jE⊥j)

− i(ηp2j + 1)(p̄⊥jG− p̄∗⊥jG∗)
]

(3.225)

dz̄2j

dz̄
= p2j (3.226)

dx̄j
dz̄

=

√
p2j(2 + ηp2j)

1 + |p̄⊥j|2
<(p̄⊥j) (3.227)

dȳj
dz̄

= −

√
p2j(2 + ηp2j)

1 + |p̄⊥j|2
=(p̄⊥j) (3.228)

where Fj = −γjβzj k̄2
β

√
η(x̄j − iȳj) is the focusing term. The peak undulator

parameter aw =

√
2āw√

f 2
x + f 2

y

is now used in the equations to get rid of the factors

of
√
f 2
x + f 2

y common to the A⊥, p⊥ and p2 equations. The delta function is once

again represented by δ3(x̄j, ȳj, z̄2j) = δ(x̄− x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j) for brevity.

The working equations are now subjected to analysis to allow them to be

solved numerically.

69



Chapter 4

Numerical Solution

4.1 Introduction

To solve the equations numerically, a number of further changes to the equations

derived in the last chapter must be made. The electron beam is discretised into

electron macro-particles each representing many electrons. The field is discretised

into a finite number of nodes.

The field equation is solved by use of the split-step Fourier method [44], which

splits each step forward in z̄ into two half-steps: the first step deals with field

diffraction only; in the second, the field is driven by the source term in the absence

of diffraction. The electron equations are driven by the field source term using

the 4th order Runge-Kutta (RK4) method.

4.2 Numerical Field Solution

The field equation is written as

2
∂2A⊥
∂z̄∂z̄2

=
∂2A⊥
∂x̄2

+
∂2A⊥
∂ȳ2

+
2γr
awn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
δ3(x̄j, ȳj, z̄2j)

(4.1)

2
∂2A⊥
∂z̄∂z̄2

=D + S (4.2)
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where D =
∂2A⊥
∂x̄2

+
∂2A⊥
∂ȳ2

is the diffraction term and S is the source term. This

can be solved numerically by solving the diffraction and source terms separately

within one full numerical integration step. This technique is the Split Step Fourier

Method, and is a form of operator splitting.

First of all, the diffraction term is solved by letting the source term = 0, so

2
∂2A⊥
∂z̄∂z̄2

= D (4.3)

and then the source term is solved by

2
∂2A⊥
∂z̄∂z̄2

= S (4.4)

The following outlines these two steps in detail.

4.2.1 Field Diffraction

The diffraction equation is

2
∂2A⊥
∂z̄∂z̄2

=
∂2A⊥
∂x̄2

+
∂2A⊥
∂ȳ2

(4.5)

which can be solved using Fourier transforms.

Fourier transforming A⊥(x̄, ȳ, z̄, z̄2) → A′⊥(kx, ky, z̄, z̄2) in x̄ and ȳ so that
∂

∂x̄
→ ikx and

∂

∂ȳ
→ iky gives

2
∂2A′⊥
∂z̄∂z̄2

=− (k2
x + k2

y)A
′
⊥ (4.6)
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Then, similarly, transforming from A′⊥(kx, ky, z̄, z̄2)→ Ã⊥(kx, ky, z̄, kz2) gives

2ikz2
∂Ã⊥
∂z̄

=− (k2
x + k2

y)Ã⊥ (4.7)

∂Ã⊥
∂z̄

=
−(k2

x + k2
y)

2ikz2
Ã⊥ (4.8)

∂Ã⊥
∂z̄

=
i(k2

x + k2
y)

2kz2
Ã⊥ (4.9)

∂Ã⊥

Ã⊥
=
i(k2

x + k2
y)

2kz2
∂z̄ (4.10)∫

1

Ã⊥
dÃ⊥ =

∫
i(k2

x + k2
y)

2kz2
dz̄ (4.11)

ln Ã⊥ =
i(k2

x + k2
y)

2kz2
z̄ + ln Ã⊥0 (4.12)

Replacing the propagation distance z̄ with the step size h gives

Ã⊥(kx, ky, kz2, z̄ + h) =Ã⊥(kx, ky, kz2, z̄) exp

(
ih(k2

x + k2
y)

2kz2

)
(4.13)

This is the solution for the diffraction step.

4.2.2 Field Source Term

The field equation driven by the electron source is:

2
∂2A⊥
∂z̄∂z̄2

=
2γr
awn̄p

∂

∂z̄2

N∑
j=1

p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
δ3(x̄j, ȳj, z̄2j) (4.14)

This can be expressed as

∂

∂z̄2

[
∂A⊥
∂z̄
− γr
awn̄p

N∑
j=1

p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
δ3(x̄j, ȳj, z̄2j)

]
= 0 (4.15)

The solution to the bracketed term must in a general form be a function of z̄

plus a constant. Due to energy conservation, the solution must = 0 so that

∂A⊥
∂z̄

=
γr
awn̄p

N∑
j=1

p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
δ3(x̄j, ȳj, z̄2j) (4.16)
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The sum in (4.16) is still over the N electrons in the pulse. This is now

simplified to allow a sum over a number of macroparticles Nm with Nm � N .

The electron beam is discretised in 6 dimensions (3 spatial and 3 momentum).

Electron Beam Discretisation

There are N real electrons in the system, which are to be represented by Nm � N

macro-electrons. In total the beam is sampled in 6 dimensions, 3 spatial (x̄, ȳ, z̄2)

and 3 momenta (p̄x, p̄y, pz2). The sampling is performed and the noise added

statistically according to the algorithm of [45].

Each macroelectron represents Nk real electrons which collectively have a

mean position and momentum equal to the position and momentum of the macropar-

ticle.

This is achieved in equation (4.16) by replacing the sum over the real electrons

with a sum over the macroelectrons,

N∑
j=1

f(xj,pj) =
Nm∑
k=1

Nk∑
i=1

f(xk,i,pk,i) (4.17)

where f is a function of the particle coordinates in phase space. The first sum on

the RHS is over the Nm macroelectrons, and the second sum is over the Nk real

electrons represented by the kth macroparticle.

As the position-momentum coordinate of each macroparticle is the mean of

the real electrons it represents, it can be said that

N∑
j=1

f(xj,pj) =
Nm∑
k=1

Nkf(xk,pk) (4.18)

The peak electron density n̄p multiplied by a volume element Vk of the electron

beam which the kth macroelectron represents gives the number of electrons in

the most dense electron beam element. Defining a weighting factor χk such that

0 ≤ χk ≤ 1 means that the number of electrons Nk represented by the kth

macroelectron can be defined as

Nk = χkn̄pVk (4.19)
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Figure 4.1: A series of plots showing the electron beam discretization process. The

top left plot shows the real electrons in x vs px. The second plot shows the initial

distribution of macroparticles. The bottom plot show the final result with noise added.

where the weighting factor χk can be given the desired distribution, with a peak

value of 1, in x and p.

The discretization process is shown for a Gaussian distribution in figure 4.1.

The top left shows a typical electron distribution in phase space. The electrons

have a Gaussian distribution in x and px, with noise. To discretize this, an equi-

spaced grid is overlayed, shown with dashed lines. Each element has dimensions

∆x by ∆px. Into the center of each grid element a macro-particle is placed which

will represent all the real electrons within that element.

To generate the macro-electrons in the code, first the distribution of weighted
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χ values are created. Each macroparticle’s χ value is the fraction of electrons

it represents compared to the element with the most electrons. In this case it

is wished that a Gaussian distribution is modelled, so the χ values are assigned

with a Gaussian distribution in x and px. The plot on the top right shows the

macro-particles initialized in the center of their grid element, and their size is

proportional to their χ weighting factor. The noise is then added by Poisson

statistics [45], so the “larger” macroelectrons are varied less than those repre-

senting a smaller number of real electrons. The noise is added to both the χ

value and the position in x and px. The noise has been added in the bottom plot.

Note that this illustration is in the x̄ phase space of one direction. In the code

the same process occurs in all 3 ordinates, which is to say, a 6-dimensional phase

space.

Using (4.18) and (4.19), the driven field equation (4.16) becomes

∂A⊥
∂z̄

=
γr
aw

Nm∑
k=1

χ̄k
p̄⊥k(ηp2k(ηp2k + 2))1/2

(1 + |p̄⊥k|2)1/2
δ3(x̄k, ȳk, z̄2k) (4.20)

where χ̄k = χkVk.

The electrons have been discretised, and now the field must represented by a

finite number of sample points.

Field Discretisation

The field can be represented by a 3-dimensional grid with a linear interpolant.

Two different methods to solve this were attempted. A solution involving Fourier

transforms, presented in [46] and included in appendix A, solved the source term

in Fourier space, and led to a relatively easy method of parallelization of the

numerical integration. This method was limited, however, by the large number

of calculations needed: every electron must interact with every node in Fourier

space. With a 3-dimensional field and 6-dimensional electron beam, the number

of calculations is prohibitive. For example, a relatively small system may have

64×64×2000 field nodes in x̄, ȳ and z̄2, and 20×20×1000×7×7×7 electrons in

x̄, ȳ, z̄2, p̄x, p̄y and pz2, respectively, giving around 1015 electron-field interactions,
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each of which involves multiple calculations. The large number of calculations

prohibits the practical use of this method, even with a well parallelized code using

a large number of processors.

Instead, a solution using the Finite Element Method (FEM) developed in [41]

is used, while retaining the beneficial parallel distribution of the Fourier method

of [46] and appendix A. The Finite Element solution was revisited as in it each

electron only interacts with the 8 field nodes which surround it in 3D space. The

number of interactions is then greatly reduced to the number of macro-electrons

Nm × 8.

The FEM is implemented in the field source term by replacing the field A⊥

with a sum over elements

A⊥(x̄, ȳ, z̄, z̄2) =
∑
m

am(z̄)Λm(x̄, ȳ, z̄2) (4.21)

where am is a new unknown at each node and Λ is a series of interpolation

functions Li,

Λm =

(
8∑

n=1

Li

)
m

, (4.22)

and Li are linear interpolants given in the table in figure 4.2. These could also be

replaced by higher order interpolation functions. Equation (4.21) separates the

z̄ and x̄, ȳ, z̄2 dependancies in the field into two functions. By multiplying the

interpolation functions into both sides of eqn (4.20) and integrating over x̄, ȳ and

z̄2 conveniently removes the delta function, as
∫
f(x)δ(x−xj)dx = f(xj), so that∫

{Λm} bΛmc
∂am
∂z̄

dV =

∫
γr
aw

Nm∑
k=1

χ̄k
p̄⊥j(ηp2k(ηp2k + 2))1/2

(1 + |p̄⊥k|2)1/2
×

δ3(x̄j, ȳj, z̄2j) {Λm} dV (4.23)

⇒ [K]
∂am
∂z̄

=
γr
aw

Nm∑
k=1

χ̄k
p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
(Λm)k (4.24)
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Ln Definition

L1

(
1− x̄

∆x̄

)(
1− ȳ

∆ȳ

)(
1− z̄2

∆z̄2

)
L2

( x̄

∆x̄

)(
1− ȳ

∆ȳ

)(
1− z̄2

∆z̄2

)
L3

(
1− x̄

∆x̄

)( ȳ

∆ȳ

)(
1− z̄2

∆z̄2

)
L4

( x̄

∆x̄

)( ȳ

∆ȳ

)(
1− z̄2

∆z̄2

)
L5

(
1− x̄

∆x̄

)(
1− ȳ

∆ȳ

)(
z̄2

∆z̄2

)
L6

( x̄

∆x̄

)(
1− ȳ

∆ȳ

)(
z̄2

∆z̄2

)
L7

(
1− x̄

∆x̄

)( ȳ

∆ȳ

)(
z̄2

∆z̄2

)
L8

( x̄

∆x̄

)( ȳ

∆ȳ

)(
z̄2

∆z̄2

)
Figure 4.2: Table of linear interpolants for the 3D field elements.

where K is known as the stiffness matrix, given by

[K] =

∫
{Λm} bΛmc dx̄dȳdz̄2. (4.25)

This equation can now be solved with the use of a standard linear solver.

K is a large, sparse matrix, so one can take advantage of sparse solvers. K is

also a singular matrix, and so boundary conditions must be applied to make

the solution valid. The boundary condition applied here is that the matrix values

corresponding to the nodes at z̄2 = 0 must = 0, as the electrons cannot propagate

there: they cannot travel faster than the speed of light c, so in the z̄2 coordinate

system, which is the radiation frame, they must always propagate in the negative

z̄2 direction.

The linear interpolants are also used to sample the field experienced by each

electron in the electron equations.
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4.3 Transverse Electron Beam Distribution

The electron distribution in x̄ and ȳ is assumed to be Gaussian. However, the

method of matching the beam in [33] upon which the method in section 3.2.1

was expanded uses a “hard-edged” emittance. Figure 4.3 illustrates the problem

in the transverse electron phase space x̄ vs p̄x. The red ellipse is the hard-edged

emittance, with major and minor axes 2rx̄, 2rp̄x, and will be the path taken by the

outermost electron(s) in a matched beam. The electrons are to be initialized on

a rectangular grid, shown in blue, so that the outermost electrons on the corners

then follow the path outlined by the hard-edged emittance. Since it is assumed to

be Gaussian, the rectangular beam area is of length 6σx̄, 6σp̄x, where σx̄ and σp̄x

are the standard deviations of the Gaussian in x̄ and p̄x respectively. This greatly

reduces the emittance - which for a Gaussian is ∝ σxσpx - from the hard-edged

emittance.

To solve this, the hard-edged emittance ε̄h and the maximum radii rx̄m and

rp̄xm are introduced. The rectangular area in the ellipse which covers the largest

area has length rx̄m/
√

2, rp̄xm/
√

2. It can then be inferred that

σx̄ =
rx̄

3
√

2
, σp̄x =

rp̄x

3
√

2
(4.26)

Therefore the hard-edged emittance is ε̄h = 18ε̄, and the maximum radii, from

equations (3.85) and (3.93),

rx̄m =

√
ε̄h
k̄wk̄β

(4.27)

rp̄xm =
āw
√
ηε̄h

fk̄βrx̄
(4.28)

From this a matched beam is initialized with a Gaussian charge distribution

in the transverse plane and a corresponding scaled emittance ε̄.

4.4 Parallelization

Since the system of equations is not averaged over a radiation wavelength, as

with other codes, the sampling period must be sufficiently small to resolve the
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Figure 4.3: Plot of the emittance, x̄ vs p̄x. The red line represents a “hard-edged”

emittance which is used for beam matching. The red ellipse is therefore the maximum

radius of the electrons in the phase space. The blue rectangle indicates the area the

macroelectrons are initialized onto, so the outermost electrons at the corners rotate

around the ellipse. Imposing a Gaussian of width 6σ onto this square distribution,

however, will result in a smaller real emittance, which = σ̄xσ̄px, than the hard edged

emittance shown in red given by the maximum radii.
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resonant wavelength of the FEL and any shorter wavelengths such as higher

harmonics which are required to be modelled. Furthermore, the electron beam

is fully longitudinal and the electrons are not confined to any cyclic phase space.

Because of this, the memory and computation requirements are considerable, and

the simulations must be run on a parallel machine to distribute the memory.

It is known [47] that the communication of data between processors reduces

the performance enhancement from using more processors. Designing a dis-

tributed memory code which solves this 4 dimensional FEL system and scales

well with the processor number poses an interesting problem in that there are

two systems (radiation + electrons) which are constantly shifting in time with

respect to one another due to the slippage of the field over the electrons.

An electron must interact with the local field nodes surrounding it, and the

field nodes must be driven by any electrons immediately nearby. However, the

electrons slip behind the radiation field with each step. If both systems are

evenly distributed across processors, this will require a huge amount of inter-

process communication, which will hamper the perfomance of the code for large

processor numbers. Furthermore, the rate at which the field slips ahead of the

electrons is not a constant in an unaveraged system - the equations allow the

electron to have a rapid change in energy within one radiation period e.g. for

very high radiation fields. So in general it is not possible to predict the relative

positions of electrons in advance.

One approach is to pick one of the systems, either the field or electrons, dis-

tribute it evenly across processors and fix this distribution. The data distribution

for the other system must be calculated at each step and will be shifted around

the processors as required. If the field is chosen as the fixed distribution, the elec-

tron variables will be shifted between processors. However, this leads to a poor

spread of the computational load, as the electrons can only generate, amplify,

and interact with the field finite elements which immediately surrounds them.

This is especially true for short electron bunches, which is one of the areas an

unaveraged code is particularly useful - the electrons in the bunch will only be

distributed over a small percentage of the processors available at any one time.
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Those processors will be doing all the work to drive the field.

Taking the opposite approach, by distributing the electron data uniformly

across the processors, the computational load is well spread in the source step.

However, it is desirable to uniformly distribute the field nodes across processors

for the diffractive half-step. The two approaches are illustrated in figure 4.4.

In the compromise algorithm presented here, the electrons are distributed uni-

formly across z̄2 in memory, and a full copy of the field is kept on each processor.

This is justified by considering the relative memory sizes for a typical FEL sys-

tem: each electron has 6 dimensions and the number of electrons can potentially

be a few orders of magnitude larger than the number of field nodes; the field has

only 3 dimensions. Clearly, the priority is to distribute the electrons in memory.

In addition, there is a large sparse stiffness matrix to store in memory, typically

≈ 27 times the size of the field. This is generated and stored in a uniform pro-

cessor distribution. In this method, the source term is solved in parallel, and a

processor does not have to calculate which nodes it needs for the electrons it pos-

sesses and obtain them from the relevant processor. This is because the processor

already has all the field information stored locally. The diffraction step is easily

solved in parallel, as each processor selects a segment of the field to solve from the

locally available field array. Likewise for the stiffness matrix calculation. However

when calculating the RHS of the source term, in equation (4.24), this cannot be

solved without communication between processors. Each processor calulates its

own values for the driving term on the RHS from the electrons it possesses, and

these values must be added to corresponding values of the RHS from all other

processors.

The linear solver used to solve the field source term stiffness matrix equation

(4.24) is SuperLU DIST [48, 49] and the Fourier transforms needed for the field

diffraction solution are performed by FFTW 2.1.5 [50]. This is an earlier version

of FFTW and is used as it supports MPI routines.
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Figure 4.4: Methods of parallelizing the FEL system. Electrons are shown in red, and

field indicated in blue. The data must be divided amongst 8 processors, labelled P0-

P7. The first diagram on top shows the field distributed evenly over the processors, in

which case most of the processing is being performed by processors P2 and P3, as the

field nodes are only driven by the electrons which are close to them. The second shows

the electrons distributed evenly, in which case the processing effort seems to be better

balanced. Howerever, the diffraction step, which occurs for all field nodes, would then

require a redistribution of the field data to make that step have an even computational

balance amongst processors.
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4.5 Linear Solver Limitations

The memory requirements of the algorithm pose some problems even when par-

allelizing, and some situations may not be modelled due to memory constraints.

These occur when using a long undulator or electron beam.

It is found that the most memory and processor intensive section of the algo-

rithm is solving the linear system of equation (4.24) to obtain
∂A⊥
∂z̄

for the field

equation. The SuperLU DIST manual [51] explains there is a sequential bottle-

neck during the initial stages of the solution. In contrast, the Fourier method (in

Appendix A) has a sigificantly lower memory requirement - the Fourier method

of solving the source term was abandoned only due to slow performance caused

by the prohibitive number of calculations required.

In an attempt to reduce the memory demand for the linear solver, an “ac-

tive” section of the field is chosen in the transverse plane, which includes only

those nodes required for the field generation throughout propagation in the entire

undulator. It is assumed the electron beam will be confined to this transverse

area with the necessary beam focusing. The nodes outside this region are only

required for diffraction.

It is worth considering that the total transverse area of the field must be

significantly larger than the electron beam, to allow for diffraction. Typically,

for 64 × 64 nodes in x̄ and ȳ, only the inner 20 nodes will be interacting with

the electron beam if it is matched to the focusing chanel, as the beam’s radius

will remain constant. This is shown in figure 4.5. The electron beam will be

confined to the area indicated by the green ellipse. The “active” nodes, indicated

in red, are the only nodes needed in the linear solver. The outer, blue, nodes

are redundant during the solution of the source term. Solving only these inner

nodes during the linear solver step dramatically reduces the computation time

and memory constraint on the code at run-time.

It may be that SuperLU DIST is not a suitable choice of linear solver for

this problem. It seems to be better suited to non-symmetric systems. A solver

optimized for solving systems with symmetric matrices should prove a better

83



Figure 4.5: Diagram showing the transverse plane of the system, and why only the

center nodes are needed to solve the source term. The green ellipse is the transverse

electron beam profile, with the transverse field nodes overlayed. The red nodes are the

so-called “active” set, which will be solved for in the source term. The blue nodes are

only required for the field diffraction.
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option and increase performance. It should be relatively simple to change the

solver in the code, as all routines pertaining to the linear solver are contained

in a single module. Alternative linear solvers which may be considered include

PSPASES [52] , MUMPS [53] and DSCPACK [54].

4.6 Diffraction Requirements

Modelling the radiation field on a grid of finite extent has consequences for the

diffraction. Since the code models the full radiation spectrum (up to the Nyquist

frequency), the code exhibits a frequency dependant diffraction length. For lower,

sub-resonant frequencies this can become a problem, especially at very low fre-

quencies which diffract more quickly. As the code must model the field within

a finite length in the transverse directions, whilst still preserving an adequate

sampling rate in x̄ and ȳ to model the transverse behaviour of the FEL, it poses

a problem when the field diffracts past the transverse boundaries of the sys-

tem. The diffraction algorithm is performed in transverse Fourier space, which

has periodic boundary conditions, and in real space the phenomenon emerges as

build-up of a low frequency background field which can become large. This is a

problem, in particular, for the Coherent Spontaneous Emission (CSE) from the

electron pulse, which arises from the Fourier components of the shape of the elec-

tron pulse, and so typically has significant low frequency content. This type of

emission cannot be modelled in an averaged code, and may be a significant source

of start-up from FEL’s using short electron pulses. The diffraction characteristics

and the implications for the code are now described.

The Rayleigh range is a measure of the diffraction in the system. After one

Rayleigh range in z the waist of the intensity will increase by
√

2. The Rayleigh

range may be written as [23]

zR =
πw2

x0

λ
(4.29)

where wx0 is the initial waist of the intensity in x (or y), and λ is the radia-

tion wavelength. This is obtained assuming the following form for the intensity
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distribution I in x and y:

I = I0 exp

[
−2x2

w2
x0

]
(4.30)

where I0 is the peak intensity.

The input parameters given in the code are the standard deviation σx̄,ȳ of the

electron beam and σfx̄,ȳ of the seed field in the transverse directions. So it is

desirable to change to these variables.

The field envelope is defined from the standard deviation σfx by the standard

form of the Gaussian distribution,

ξ0 = ξ0pk exp

[
−x2

2σ2
x0

]
(4.31)

and the intensity is simply the magnitude of the envelope squared

I = |ξ0|2 = ξ2
0pk exp

[
−x2

σ2
x0

]
(4.32)

and so it is found that

w0 =
√

2σfx0 (4.33)

So changing the Rayleigh length (4.29) to the scaled notation, recalling that

z̄ = z/lg, z̄2 = ct/lc,x̄, ȳ = x, y/
√
lclg, and changing to the standard deviation of

the field gives

z̄R = kz2σ
2
fx̄0 (4.34)

where kz2 = 2π/λz2 is the wavenumber in z̄2.

The general expression describing the characteristic σfx of a Gaussian field

after a propagation distance z is

σfx = σfx0

√
1 +

z2

z2
R

(4.35)

This places restrictions on which frequencies can be modelled with a trans-

verse plane of finite extent without excessive build-up of low frequency due to
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periodic boundary conditions. The length of the sampled field in the transverse

axes must be long enough to accomodate the full length of the radiation being

modelled. If the field diffracts to an area beyond the extent of the model then

the numerical solution becomes invalid, resulting in a significant non-zero back-

ground field arising. To avoid this, the length of the sampled field in x and y,

lwx,y must be larger than the total length of the intensity distribution of the field

in those directions.

In the code a Gaussian distribution is generally assumed to be adequately

described by a total length of 6σfx, for example when initializing the electron

distributions or initializing a seed field. Here, however, the Gaussian is assumed

to have significant values at the edges of the sampled field in the transverse

plane when lwx = 4σfx. Then the length of the sampled field in the transverse

plane lwx is able to model a frequency component with transverse size 4σfx when

lwx > 4σfx (4.36)

and converting to scaled notation and substituting in expression (4.35) to obtain

the condition of the length of the sampled field in x̄, lwx̄ after propagation distance

z̄ and initial transverse fied size σfx̄0 gives

lwx̄ > 4σfx̄0

√
1 +

z̄2

z̄R2
(4.37)

and using (4.34) and rearranging gives the allowed frequencies in z̄2:

kz2 >
z̄

σ2
x̄0

(
l2wx̄

16σ2
fx̄0

− 1

)−1/2

(4.38)

This shows that for the full 3D model there is a low frequency cut-off below

which the field cannot model correctly. The best solution is to employ absorbing

or transparent boundary conditions [55]. This is a non-trivial solution. Two other

simpler methods are considered.

The first is to simply not allow the lower frequencies to diffract. This is easy to

do as the diffraction solution (equation (4.13)) is in Fourier space with an explicit
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frequency dependence. It will, however, lead to an unphysical field intensity

at these frequencies. However, if these frequencies are far below the resonant

frequency they should not have any significant effect on the collective electron

beam-radiation interaction, and can be safely filtered out in post processing.

The other option is to filter the lower frequencies during the simulation. It

could be argued that this is closer to what would actually happen in the undulator

since these frequencies will diffract away very quickly.

It must be noted that either solution means that the low frequencies below the

cut-off are not being modelled correctly. The validity of this is entirely dependant

upon the parameters being modelled. For instance, in [56], which describes a 1D

helical FEL model similar to the 3D version presented here, the electrons are

decelerated in small bursts over a period smaller than a resonant wavelength by

a narrow, intense radiation pulse. If the energy exchanges happen on this small

a scale then high power low frequency components could become important. On

the other hand, for a more conventional system, where the exchange is only

significant over many undulator periods, it is safe to assume that radiation far

from resonance can be ignored.

One criticism is, of course, that the code here is designed specifically to model

frequencies away from resonance. For now it is noted that only very low fre-

quencies will be ignored, which still enables a wider frequency model than that

using the SVEA, and that ALL frequencies above the cut-off, including higher

harmonics are still modelled self-consistently.

The cutoff will fall close to the resonant frequency ωr for smaller values of

the electron beam transverse dimension σx,y, because a smaller initial transverse

radius will result in a shorter gain length, from equation (4.34). In the 3D sim-

ulations presented in section 5.4.2, the highest frequency cutoff is at ≈ ωr
3

, that

is, one-third of the resonant frequency.
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Figure 4.6: Plot of the how the frequency cutoff, defined by equation (4.38), varies with

the initial radius σx̄, for a fixed z̄. The larger the initial radius, the smaller the cutoff.
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4.7 Code Overview

A diagram of the parallel code algorithm is shown in figure 4.7. The yellow boxes

correspond to non-parallel operations, which each processor performs on its own

in full. For example, the full global field array is kept on each processor, so it is

generated, in full, by each processor individually.

The code is written in FORTRAN 90/95, and has been written using open-

source packages, to enable maximum portability. The data is output in SDDS

format [57]. There is no parallel support for SDDS, so the processors take turns

at opening the data file(s) and writing their own local data to them.

At the moment, the post-processing of the data files is performed using a

number of routines written in MATLAB, which is proprietary software. However,

it should not be difficult to change this to its FOSS (free and open source software)

alternative, Octave. Or it may be wiser to use analysis packages on the servers

the code is run on. Given that the data files are potentially very large, so that

analysing the data on a standard desktop machine will not be possible for large

runs, and transporting the data between machines is a troublesome issue, as is

the storage of the data, if it is to be stored permanently, it may be more efficient

to analyse the data on the servers on which the code is run.
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Figure 4.7: Diagram of full algorithm.
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Chapter 5

Results

Several FEL systems are now modelled using the simulation code. The initial

results are to test the code against previous 1D unaveraged FEL results in [58],

[40] and [45], which test the 1D limit and demonstrate that the field and electron

bunching are being described correctly. The subsequent results show the effects of

the undulator polarization, undulator chicane sections, 3D electron beam focusing

and field diffraction. The final examples demonstrate new, potentially exciting,

effects that the code may be used to investigate.

5.1 1D Approximation

Initially, the code is run in the 1D limit, using parameters from [58], [40] and [45].

The results are shown in the following subsections and give excellent agreement

with the referenced works.

In the 1D limit, the source equation 4.16 is integrated over x̄ and ȳ, so that

∂A⊥
∂z̄

=
γr

awn̄pT

N∑
j=1

p̄⊥j(ηp2j(ηp2j + 2))1/2

(1 + |p̄⊥j|2)1/2
δ(z̄2 − z̄2j), (5.1)

where T is the transverse area of the radiation field. Diffraction is not solved,

and only one node and one electron in the transverse plane are used.
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5.1.1 CSE in a Helical Undulator

The following parameters, taken from [40], are used in this first benchmark. The

parameters test if the Coherent Spontaneous Emission (CSE) is being generated

correctly. CSE arises from current gradients in the electron pulse. The radia-

tion feedback is switched off to observe only the spontaneous emission from the

electron pulse. This is achieved by forcing A⊥j = 0 in the electron equations.

The FEL parameter ρ = 0.01 and the rms wiggler parameter āw = 2.0 were

used. The electron pulse is 2lc long, that is, two coherence lengths, corresponding

to a length of 2 in the z̄2 frame (as z̄2 = (ct − z)/lc). The undulator is 1 gain

length long, i.e. z̄ = 1. A resonant wavelength in z̄2 = 4πρ and an undulator

period in z̄ = 4πρ. So the undulator length ≈ 8 periods long. The electron pulse

has a rectangular or “flat-top” current distribution in z̄2, and there is no noise in

the cold, resonant distribution, meaning that p2k = 1 and the electron weighting

factor χk = 1∀k. As a consequence the current gradient is zero except at the

edges of the electron pulse, where there is a discontinuity in the current gradient.

The radiation feedback onto the electrons is artificially switched off here, so that

only the spontaneous emission from the electron pulse is generated.

As explained in section 2.4, in an averaged model of the FEL, the field is

averaged over a length in z̄2 equivalent to at least 1 resonant radiation cycle, and

so rapid variations in the source term on the scale of this averaged period are

not modelled correctly in such an averaged code. However, without averaging,

the discontinuities at the edges of the pulse result in a strong coherent emission

necessitating an unaveraged model of the FEL.

The plots in figure 5.1 show the scaled intensity |A⊥|2 as a function of z̄2 at

different positions within the first undulator period. The electron macroparticle

positions, shown in red, are intitialized at position 0 ≤ z̄2 ≤ 2 as shown in plot a).

In the z̄2 frame, the electron pulse tail is to the right, and as the pulse moves from

left to right it is slipping back through the stationary radiation frame. In this

sense z̄2 is like a scaled time variable. The intensity emitted from the pulse is seen

to oscillate within an undulator period, shown in b)- d). The electron pulse slips

back, and the observed interference effect results in the coherent radiation spikes
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Figure 5.1: Multiple plots of scaled intensity vs z̄2. The code is in the 1D limit, and

the plots show the generation of CSE over an undulator period. The electron beam

position in z̄2 is in red. The intensity over the electron pulse is seen to oscillate and a

process of constructive interference leaves the CSE spikes at the head and tail of the

electron pulse.
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Figure 5.2: The code in the 1D limit, after a further 7 undulator periods from the

simulation results in figure 5.1. Therefore 8 CSE spikes in radiation intensity have been

generated through the process shown in figure 5.1. The plot gives excellent agreement

with [40].

emitted from the edges after one full undulator period, seen in the final plot. The

region over the electron pulse 0.125 ≤ z̄2 ≤ 2 in d) has destructively interfered. If

the electron macroparticle weights had noise added, this destructive interference

cycle would result in a small random noise in the intensity, from which the SASE

process begins.

The final result after 1 gain length, or 8 undulator periods, is presented in

figure 5.2. It gives excellent agreement with the simulation presented in figure

1 of [40]. The 8 spikes of duration 1 resonant wavelength are the result of the

interference effect shown in figure 5.1. According to CSE theory the magnitude

of the coherent emission should be ≈ 16ρ2 = 1.6 × 10−3 [40]. The position of

the electrons in z̄2 are again shown in red, and the electron beam is seen to have

propagated in z̄2 to 1 ≤ z̄2 ≤ 3, with the head of the pulse at z̄2 = 1 and the tail

at z̄2 = 3.
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5.1.2 SACSE in a Helical Undulator

In the previous section, the radiation feedback onto the electrons was artificially

switched off in the code. This interaction is now switched on in the code so that

the radiation/electron interaction is self-consistent and one observes the FEL

amplifying the initial CSE. This amplification process, with startup from CSE

rather than noise, is known as Self Amplified Coherent Spontaneous Emission

(SACSE) [40]. The electron pulse in the example presented here is 10 cooperation

lengths long, the undulator is 15 gain lengths, and ρ = 0.005.

Again, a flat top current distribution is used, so χk = 1 for all electrons. As

in the previous section, the CSE will be emitted strongly from the edges of the

electron pulse. The intensities at two different propagation distances through the

undulator are shown in figure 5.3.

In the top plot, the electron pulse z̄2 position is again indicated in red along

the axis, and the scaled intensity |A⊥|2 is shown in blue. The head of the electron

pulse is at z̄2 = 3.75. At this stage one can identify three distinct slippage, noise

and free-space regions.

The free-space region is that for 0 ≤ z̄2 ≤ 3.75, and here the CSE from the

head of the electron pulse has propagated forward into free space, and does not

interact with the electron pulse. As in the previous section, the amplitude of the

CSE is oscillatory with a period of 4πρ, but the oscillations cannot be resolved

on the scale shown. The slippage region 10 ≤ z̄2 ≤ 13.75 contains the CSE from

the tail of the pulse, which has propagated through the electron beam towards

the head, and has been amplified. The region 3.75 ≤ z̄2 ≤ 10, is the so-called

steady state region. It shall be called the noise region here, since it is the region

evolving noise alone, and is outwith any influence of CSE.

The CSE bunches the electrons as it propagates over them from the rear, and

this, in turn, amplifies the field more strongly. This self-consistent interaction

continues until the radiation is amplified to a superradiant-type spike, shown in

the bottom plot of figure 5.3, at z̄2 ≈ 14. The electron pulse is shown between

15 ≤ z̄2 ≤ 25, with the front of the electron pulse at z̄2 = 15. There is no longer

any noise region as the CSE has propagated throughout the entire electron pulse.
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Figure 5.3 is a reproduction of the SACSE plot in [40]. It is important to

recall here, that for comparison with [40], the z̄2 coordinate system is inverted

with respect to the z̄1 frame of [40]. Both models are in excellent agreement.

Reference [40] also compared the non-averaged results evolving from CSE with

those of the averaged model which contains no CSE and evolves from noise alone.

These results demonstrate that SACSE generates output of much higher output

intensity, and reduces the shot-to-shot fluctuations.

5.1.3 SACSE in a Helical Undulator with Energy Spread

The previous two sections utilized a flat-top current distribution, with no noise or

energy spread. Now, the noise and energy spread are added to allow comparison

with the two results presented in [45].

[45] describes the method of generating an electron distribution in an un-

averaged FEL code based on Poisson statistics. The results of two simulations

are shown which describe the effects of energy spread on the generated CSE,

and shows whether CSE or noise dominates the generated field, for two different

electron beam distributions, a Gaussian and a flat-top.

Both the flat-top and Gaussian cases with noise are run, with ρ = 7.96 ×
10−3, āw = 2, γr = 100.0 and Q = 1nC, in line with the examples in the reference.

For the flat-top case an electron pulse of duration 6lc is used, and the undulator

is 5lg long. In the Gaussian case, the pulse is 18lc long, with standard deviation

σz2 = 3 and the undulator length is 2lg. In both cases there is a longitudinal

momentum spread of standard deviation σp2 = 0.008, which corresponds to the

momentum spread in the z̄1 frame σp = 0.5 in the reference.

The main features in the flat-top case, shown in the top of figure 5.4, are the

same as those modelled in the previous section in the top graph in figure 5.3.

The free space region is between 0 ≤ z̄2 ≤ 5, the amplified CSE is present in the

region 6 ≤ z̄2 ≤ 11, and the section of the pulse still evolving only from noise is

5 ≤ z̄2 ≤ 6. Note the reduction in the magnitude of the emitted CSE in the free-

space region. This is due to the energy spread smearing out the discontinuity in

the electron beam current profile at the front of the pulse. Here the oscillations in

97



Figure 5.3: Plots of scaled intensity vs the scaled time coordinate z̄2. The code is in

the 1D limit, using parameters used to produce figure 2 of [40]. A flat top current

distribution has been used. The electron pulse position is in red. The initial CSE can

be see in the top plot, emitted from the discontinuities in the electron current at the

edges of the electron pulse. The oscillations in amplitude are not able to be resolved at

this scale. The CSE from the back of the electron pulse, on the right side of the pulse,

has been amplified as it passes over the electron pulse. The bottom plot shows the same

process further in the undulator. The amplification of the CSE having propagated over

the electron pulse has resulted in a large intensity spike. This is SACSE.
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the magnitude of the CSE can be clearly seen to be decreasing as the interaction

progresses and the current edge has become less defined.

The bottom graph in figure 5.4 is a filtered version of the top plot. The

spectrum is filtered to allow only frequencies above ≈ 0.2λr to be shown. Note

that the oscillations in the CSE are no longer present, demonstrating that the

oscillations are due to the low frequency emission which is dependant on the

shape of the electron pulse. The low frequency content causes the envelope of

the higher resonant frequency to modulate. The coherent emission at resonance

is still seen to be much larger than the emission from noise.

For a Gaussian current, the top plot of figure 5.5 again exhibits CSE from

the current gradients in the pulse. However, as the electron pulse has a Gaussian

current distribution, there are two spikes peaking where the gradient is maximum.

Both the regions 0 ≤ z̄2 ≤ 2 and 18 ≤ z̄2 ≤ 20 exhibit CSE from the discon-

tinuities at the head and tail of the electron pulse. This is due to the electron

pulse being sampled for a finite length of 6σz2 in z̄2. Modelling the electron pulse

to 9σ will reduce this, although not remove it completely. It is important to note

this fact. If one desires to startup the FEL process from only the noise of the

electron pulse, then this CSE must be smaller than the noise. This is not the

case here, as shown in the second plot of figure 5.5 where a high bandpass filter

has been applied. The lower frequencies are eliminated, and only the radiation

primarily from the resonant frequency is shown. Other frequencies are present,

but the dominant frequency is the resonant frequency. Without filtering there are

low frequency components of CSE present from the shape of the electron pulse.

It is seen from the noisy structure of the output that the noise dominates the

CSE at the resonant frequency. It is also seen from this filtered plot that the

CSE from the finite sampling, in the regions 0 ≤ z̄2 ≤ 2 and 18 ≤ z̄2 ≤ 20, is

larger in magnitude than the noise. Again, it should be emphasised, this arises

from the edges of a Gaussian sampled beam. The plots in both the flat top and

Gaussian cases agree with the results of [45].
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Figure 5.4: Plots of scaled intensity vs the scaled time coordinate z̄2. The code is in

the 1D limit, using parameters used to produce figures 4 and 5 in [45]. In the top plot,

similar behaviour to the top plot in figure 5.3 is observed. The amplification of CSE

from the electron pulse tail can be seen. The bottom plot show the same result, with a

high band pass filter applied to the radiation field. Frequencies ≤ 0.2λr are neglected.

The oscillations in the CSE intensity have disappeared.
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Figure 5.5: Plots of scaled intensity vs the scaled time coordinate z̄2. The code is in

the 1D limit, using parameters used to produce figures 7 and 8 in [45], giving excellent

agreement. A Gaussian current distribution (with noise) is used with σz2 = 3. In the

top plot, the CSE, arising from current gradients in the electron pulse, peaks twice,

where the current gradients are largest. The bottom plot is the filtered intensity. All

radiation frequencies ≤ 0.2λr are neglected. As the low wavelengths from the electron

pulse shape are now gone, the noise is seen to dominate at the resonant frequency.
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5.1.4 SACSE in a Planar Undulator

For the final test in the 1D limit, a comparison with the result presented in [58]

is performed, where an unaveraged 1D model of a planar undulator FEL was

described. The result is compared to the case of a flat-top current distribution

in the reference. There is noise present in this example. The FEL parameter

ρ = 0.01, āw = 2, γr = 100 and the undulator polarization is fx = 0, fy = 1.

Figure 5.6 shows the x radiation fields at distances z̄ = 2 and z̄ = 25 into the

wiggler. The electron pulse measures 40lc in length. This is a much longer electron

pulse and propagation distance than the previous examples. The features of the

plots are the same as in the flat top cases of SACSE in the helical undulator,

although now, for a direct comparison with [58], the scaled x polarized field is

shown rather than the intensity. The top graph shows the initial CSE, with

the noise, free-space and slippage regions cearly visible. There is no apparent

amplification yet. The bottom graph shows the expected SACSE spike at z̄2 ≈ 45,

and the noise region over the electron pulse is at 25 ≤ z̄2 ≤ 40, as the SACSE

spike has not propagated to this region yet. The noise region in this example has

amplified to saturation: this is SASE. The intensity spikes from the SASE appear

to have a random structure, and are evolving independently. Given that there is

no energy spread, this example is deep into saturation, and the normal expected

characteristics of the SASE process (spike separation ≈ 2πlc etc) occuring at

saturation may not be valid.

5.2 Polarization

The field polarization is driven by the electrons traversing a wiggler of polarization

specified by fx and fy. Simulations are now presented that demonstrate that the

field and its polarization are driven consistently with such a variable transverse

current. The simulations in this section are performed in the 1D approximation

described in the previous subsection.

Figure 5.7 shows the field generated in 3 separate simulations. In each, an

identical, extremely short, electron pulse propagates an undulator with different
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Figure 5.6: Plots of scaled x polarized field vs the scaled time coordinate z̄2. The code

is in the 1D limit, using parameters used to produce figure 3 in [45], giving excellent

agreement. A flat top current distribution is used, this time in a planar undulator.

The features present in the two plots in figure 5.3 are present here, with the initial

CSE from the rear of the electron pulse (at z̄2 = 42) in the top plot being amplified as

it propagates though the electron pulse in the bottom plot. Note this time the scaled

field is plotted rather than the intensity.
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Figure 5.7: Example of different field polarizations as driven by electrons in planar,

eliptical and helical wigglers as specified by fx and fy. The radiation polarization

profiles are shown at the bottom, and the scaled powers on top. The undulator is 20

undulator periods long. The electron pulse length le = 0.1λr, so has radiated coherently,

generating an output much like a single electron with a large charge.
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Figure 5.8: The plots show the result of seeding a y polarized undulator (so the electron

oscillation is in x) with a y polarized field. The upper plot shows the intensity of the x

and y fields, and the position of the electron pulse, which has a Gaussian distribution

of 1.667 and a total length of le = 10 in z̄2. The undulator propagation distance is

z̄ = 10. The original Gaussian seed field is still present between 0 < z̄2 < 10, and has

been unaffected by the electron beam. The lower plot shows the 3 Stokes parameters,

P1, which shows the linear polarization rate, P2, which shows the skew polarization

rate, and P3, which shows the circular polarization rate.
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Figure 5.9: The same two plots as in figure 5.8, this time using an undulator of polar-

ization fx = 0.5, fy = 1. All other parameters are the same.
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Figure 5.10: The same two plots as in figure 5.8, now using an undulator of helical

polarization, fx = 1, fy = 1. All other parameters are the same.
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polarization. The FEL parameter ρ = 0.0796, and the electron pulse length in z̄2

is
4πρ

10
, where 4πρ is the resonant FEL wavelength in the scaled z̄2 frame. The

size of the electron pulse should mean that the electrons emit coherently with

characteristics much like a single, super-charged electron. The blue lines show

a planar undulator with fx = 1, fy = 0, the green corresponds to an elliptical

undulator with fx = 1, fy = 0.5, and the red shows a helical with fx = fy = 1.

Two plots are shown per undulator: the top shows the intensity, and the bottom

shows the polarization ellipse for each case, formed by plotting Ax vs Ay. One

would expect for the case fx = 1, fy = 0, from the Lorentz equation (3.12), that

the electron pulse oscillate in, and thus produce a field in, the y axis. Increasing

fy to 0.5, one should also expect a slight oscillation in the x direction. The

helical undulator should produce a circular polarized field. Note that in this

figure the instantaneous intensity A2
x + A2

y is plotted with the fast oscillatory

terms. It is not the more common time-averaged intensity. This is why the linear

and elliptical intensities are oscillatory, and the circular polarized result shows a

constant intensity.

Interestingly, the field polarization is solved self-consistently i.e. it is not pre-

defined by assumption. The electrons will only interact with the appropriate

part of the radiation field vector. For example, if the electrons oscillate in the

y-direction and are seeded with an x-polarized field there will be no interaction.

To show this the electron pulse is seeded with a linear polarized field. Again,

three simulations are performed with identical electron pulses but differently po-

larized undulators. The initial seed field, with a y polarization, is identical in

all three. The electron pulse is of length 10lc, with a Gaussian distribution of

standard deviation σz2 ≈ 1.667. The seed field envelope also has a Gaussian

distribution with the same deviation.

In the first example a planar wiggler with fx = 0, fy = 1 is used, so the

electrons oscillate in x and should not interact with the orthogonal seed. In

the second the undulator polarization is fx = 0.5, fy = 1, and the third has

fx = fy = 1.

Figures 5.8 - 5.10 plot the results. The top plot in each figure show the
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intensity of the x (blue) and y (green) polarized fields. This time, the more

common time-averaged intensity is shown. It is found by simply averaging the

square of the field in each transverse direction over one radiation cycle in z̄2 about

each point. The position of the electron pulse in z̄2 is indicated in red. There is

no energy spread in the beam in this example: the purpose of the simulation is

purely to illustrate the self-consistent evolution of the polarization in the code.

In the linear case, figure 5.8, the electron pulse passes through the undulator

and is unaffected by the seed field. The seed is visible here in green, and remains

unchanged from its initial state. The blue x field generated from noise is here

barely visible on this scale. In the second example, for the elliptical polarized

undulator, figure 5.9, the slight electron oscillation in y results in an energy ex-

change with the seed field. The seed causes a bunching of the electrons which

then emit coherently according to the undulator polarization. The reduced inten-

sity of the y field demonstrates that the electrons are generating and amplifying a

field with elliptical polarization. The helical undulator case of figure 5.10 results

in the same behaviour, but now identical intensities in x and y are generated.

To quantify the polarization, the Stokes parameters are shown in the bottom

graphsof figures 5.8 - 5.10. If the x and y polarized electromagnetic fields are

described in the form

Ex = Ex0 cos(ωt) (5.2)

Ey = Ey0 cos(ωt+ δ), (5.3)

where Ex0, Ey0 are the amplitudes of the fields, ω is the angular frequency and δ

is the phase difference between x and y, then the Stokes parameters are defined

as

S0 =
〈
E2
x + E2

y

〉
(5.4)

S1 =
〈
E2
x − E2

y

〉
(5.5)

S2 = 〈2ExEy cos(δ)〉 (5.6)

S3 = 〈2ExEy sin(δ)〉 . (5.7)

where the brackets 〈. . .〉 indicate an average over many wavelengths.
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The normalised Stokes parameters are then [59]

P1 =
S1

S0

(5.8)

P2 =
S2

S0

(5.9)

P3 =
S3

S0

(5.10)

These measure the degree of linear polarization aligned across the x (P1 = 1)

and y (P1 = −1) axis, the linear skew polarization at 45◦ (P2 = 1) and 135◦

(P2 = −1) angles to the x axis, and the right hand (P3 = 1) and left hand (P3 =

−1) circular polarization in a given field. Since they are averaged quantities, A⊥

is split into sections across z̄2, each 20 resonant periods long, within which the

averaged Stokes parameters are calculated. This provides a way of observing how

the polarization changes along the pulse in the longitudinal z̄2 coordinate.

The original y polarized seed field, shown in the intensity plot of figure 5.8,

is located at 0 ≤ z̄2 ≤ 10. The corresponding polarization plot on the bottom of

figure 5.8 shows the polarization as P1 = −1 in this region, correctly indicating

the y polarization. The polarization then changes to P1 = 1, an x polarized field,

which is the polarization of the spontaneous emission from the electron pulse.

The Stokes parameters for the second and third examples in figures 5.9 and

5.10 show the seed field polarization changes according to the electron oscillation

direction in the transverse plane. The peak of the seed field was at z̄2 = 5, which

the Stokes parameters show is now almost completely circularly polarized in the

helical case of figure 5.10.

5.3 Slippage Section/Chicanes

The code can model the effects of a series of multiple phase shifts and delays

of the electron pulse with respect to the radiation field during propagation in

the undulator. Each phase shift simulates the effect of a dispersive chicane with

longitudinal shift in z̄2 and dispersive strength factor D. In this model, the FEL is

composed of many modules, composed of an undulator section and a chicane, see
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Figure 5.11: Illustration of an FEL composed of multiple unduator-chicane modules.

figure 5.11. Each chicane adds a delay to the electron beam with respect to the

radiation field. The phase shifts are applied at intervals specified by a lattice file,

and the nth line of the lattice file corresponds to the nth wiggler-chicane module.

Each line specifies the number of wiggler periods in the undulator section, and

then the number of resonant wavelengths the electron beam is delayed by due to

the chicane with respect to the radiation field.

As the electrons travel through the chicane, they may be travelling at different

longitudinal velocities, which, if they propagate freely, will result in a change in

their position with respect to the average position of the electron beam. This

process of dispersion is controlled here by a dispersive strength parameter D of

the chicane, which is used to artificially give “more” or “less” dispersion. A larger

value of D means the electrons will deviate further from their relative positions

according to their differences in energy. The change in z̄2 due to the dispersion

process and the delay δ is given by

z̄2j = z̄2j0 −D
(1− p2j)

2ρ
+ δ (5.11)

where δ is the average longitudinal shift of the beam in z̄2 without dispersion due

to the chicane. In order to illustrate and test the effects of this, the code is run

in the 1D limit for this sub-section.

By applying periodic shifts to the electron beam by utilizing multiple undulator-

chicane modules, one can generate a frequency comb, with frequency mode spac-

ing determined by the total slippage in each undulator/chicane module [36]. The

modal envelope is equal to the usual FEL spectrum for one undulator module.

These modes can be locked with a periodic modulation on parameters, e.g. by

supplying a modulation on electron beam energy. The mode-locked FEL is pre-

dicted to generate X-ray attosecond pulse trains from an FEL [36].
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An unaveraged code may be better equipped than an averaged code to sim-

ulate the mode-locked FEL due to its enhanced frequency range. Indeed, the

unaveraged 1D simulations of the mode-locked FEL predict significantly higher

output intensities and substantially shorter radiation pulse widths than the av-

eraged simulations [60].

To check the generation of modes in this code, an electron beam of length

lz̄2 = 50, and Gaussian charge distribution with σz2 ≈ 8.3 and bunch charge 1nC

is propagated through a helical undulator, with ρ = 0.005. Each module contains

an undulator of 8 periods, followed by a chicane which delays the electron bunch

a further 23 undulator periods with respect to the radiation. The total slippage

in each module is therefore 31 × 4πρ in z̄2. The beam passes through 18 such

undulator-chicane modules. Figure 5.12 shows the scaled intensity spectrum of

the combined x and y fields. Here D = 0, so the electron beam is simply being

delayed without dispersion. The modes are not locked in this example.

According to [36], the spacing of the generated modes in the scaled z̄2 frame

should be ∆ωz2 = 3.2258. The frequency axis is scaled so the fundamental

appears at 1 by multiplying the frequencies by 2ρ, and so in this case the spacing

should be 0.0323. This is observed in the result shown in figure 5.12, so the modes

are being generated as predicted.

More generally, this functionality allows for easy modification to allow a more

general transformation to be applied to the electron coordinates at intervals spec-

ified by the user in the lattice file. This allows for the opportunity in the future

to easily insert e.g. FODO focusing quadrupoles periodically, to allow a more

realistic transverse focusing of the electron beam.

5.3.1 3D Broadband Model

Due to not performing the SVEA, the code is capable of modelling the full radia-

tion spectrum self-consistently in 3 dimensions. It is limited only by the sampling

period specified by the user via the Nyquist condition [61]. As the code is in 3D, it

simulates the transverse intensity profile of the radiation. Coupling to harmonics

through betatron motion and Fourier components from the shape of the electron
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Figure 5.12: The spectral intensity of the field resulting from an electron beam un-

dergoing periodic phase shifts in an undulator. The electron beam has passed through

a sequence of 18 modules, each comprised of an 8 period undulator, and a chicane

which then delays the electron pulse by 23 undulator periods. In such a scheme, it is

expected the radiation field will develop a series of modes centered on ωr with spacing

∆ω/ωr = 0.0323. The spectrum here displays such a spacing.
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bunch are also simulated, due to the fundamental nature of the equations solved.

In the example, now presented to demonstrate some of these effects, another

electron pulse a fraction of a resonant wavelength in length (σz2 ≈ λr/60) is used

to radiate coherently much as in figure 5.7, but now in 3D, in a longer undulator.

The undulator is 50 periods long with āw = 2 and undulator polarization fx =

1, fy = 0, so the electrons oscillate and generate a field in y. The feedback process

onto the electrons is artificially switched off here to show only the spontaneous

undulator spectrum.

Figure 5.13 shows the spectral intensity of the y field along the z̄2 axis in the

center of the transverse plane at x̄ = 0, ȳ = 0 (in blue), and slightly off from

center at x̄ = 0, ȳ = 0.3796 (in red). The frequency axis is scaled to ω/ωr, so the

resonant frequency is at 1. The field at x̄ = ȳ = 0 exhibits strong emission at the

odd harmonics of the fundamental. Note the presence of even harmonics away

from the center in the red line, as expected in a planar undulator.

The bandwidth of the fundamental at x̄ = 0, ȳ = 0 is shown in figure 5.14.

The radiation generated in an undulator is expected to have a bandwidth of

δωn
ωn

=
1

nNw

, (5.12)

where n indicates the nth harmonic of the resonant frequency ωr and δωn is the

frequency range from the peak emission at ωn to the minimum caused by the

interference effect [2]. In this example Nw = 50, so the resonant frequency should

have a bandwidth of ≈ 1

50
= 0.02. This is seen to be the case, indicated in figure

5.14.

The bandwidths of the 3rd and 5th harmonics of the field at x̄ = 0, ȳ = 0 are

shown in figures 5.15 and 5.16 respectively. As the frequency axis is scaled to
ω

ωr
, what is shown in these figures is

δωn
ωr

. As ωn = nωr, from equation (5.12),

δωn
ωr

=
1

Nw

, which is the same for all harmonics. So the bandwidth of the 3rd and

5th harmonics should be the same as the 1st harmonic in these units. Figure 5.15

and 5.16 give good agreement with this.

To see the 3D field properties of the harmonics, the field is filtered with a

narrow band-pass filter centered around the desired frequency. Figure 5.17 shows

114



Figure 5.13: Spectrum of the y-polarized field. The blue line shows the on-axis field,

and the red line is the field at point x̄ = 0, ȳ = 0.3796. Note the even harmonics are

only present off-axis. The phase-front of the y-polarized field of the second harmonic

at a transverse slice in z̄2. It exhibits the expected double-lobed structure.

Figure 5.14: Spectrum of the y-polarized field, showing detail about the resonant fre-

quency.
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Figure 5.15: Spectrum of the y-polarized field, showing detail about the 3rd harmonic

of the resonant frequency.

Figure 5.16: Spectrum of the y-polarized field, showing detail about the 5th harmonic

of the resonant frequency.
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a transverse slice of the y polarized field on the left and the transverse intensity

on the right, both filtered about the second harmonic, at the same fixed point

in z̄2. Both the phase front and the intensity show the expected double-lobed

structure, typical of even harmonics in the planar undulator [2], with no emission

on-axis.

5.4 3D Effects

5.4.1 Emittance and Diffraction

The main 3D effects which will inhibit the gain process in the FEL over those in

a 1D model are the field diffraction and electron beam emittance. These effects

can be tested in isolation to check the validity of the simulation code.

Diffraction is tested by initializing a Gaussian field in the transverse plane,

constant along z̄2, and propagating 1 Rayleigh length with the field generation

from the electrons artificially switched off. The field radius should increase by
√

2.

From the equation for the Rayleigh range as a function of frequency, equation

(4.34), the Rayleigh range of the resonant wavelength, which is 4πρ in the z̄2

frame, is

z̄R =
σ2
x̄0

2ρ
(5.13)

So for σx̄0 = σȳ0 = 0.4 and ρ = 0.008, z̄R ≈ 10.05. Figure 5.18 shows the

initial (top) and final (bottom) transverse intensity profile, after propagating to

z̄R. The result is typical of every transverse slice in z̄2. The reduction in intensity

and broadening of σx is evident. To evaluate this more clearly, the intensity along

the x̄ axis at ȳ = 0 is in figure 5.19. The waist of the transverse intensity, which

is at 1/e2 of the peak, is seen to increase by
√

2, showing the diffraction is being

simulated correctly.

The electron beam emittance and focusing can be checked by matching the

transverse dimensions of the electron beam to the undulator focusing channel.
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Figure 5.17: The top shows the phase-front of the y-polarized field of the second har-

monic at a transverse slice in z̄2, and the bottom plot shows the intensity in the same

slice. It exhibits the expected double-lobed structure.
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Figure 5.18: Plot on top shows the initial intensity, identical at all transverse slices

in z̄2. The plot on the bottom shows the intensity after one Rayleigh length, and the

intensity is seen to have diffracted to twice its original area.
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Figure 5.19: Figure showing the broadening of the transverse intensity profile due to

diffraction. The intensity is shown at ȳ = 0, the center of the ȳ axis, varying along the

x̄ axis. The blue line is the initial intensity at z̄ = 0, the green line is the intensity after

one Rayleigh length at z̄R. The intensity waist has increased by
√

2 after a Rayleigh

range.

The electron beam radius should then remain constant. The parameters used are

ρ = 0.01,ε̄ = 1, āw = 1.5, fx = fy = 1,

γr =500, λw = 0.015m, f = 0.4

Following the procedure of beam matching in section 4.3, the scaled matched

beam radius should be r̄m ≈ 0.96, with an initial radius of 3σ̄x ≈ 0.68. The initial

momentum spread in the transverse directions is 3σ̄px ≈ 0.33. The field evolution

and interaction is artificially switched off, so the electrons travel unpeturbed

through the wiggler. This allows the effect of only the focusing channel and the

undulator on the electron motion to be observed.

Plots of x̄ vs p̄x are shown in the top two plots of figure 5.20. The beam

is initialized in a square grid as shown in the first plot. As a consequence, as

the beam rotates in phase space due to the focusing channel there will be a

small oscillation in the radius from the corners between the initial radius and

the maximum radius r̄m. The oscillation should have a period of λ̄β/4, where
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λ̄β = 2π/k̄β is the period of the betatron oscillations in z̄. The definition of k̄β

is in equation (3.76), and in this case, λβ = 16.755. This behaviour is shown

in the bottom plot in figure 5.20, which shows the radius of the beam in x̄ as a

function of propagation distance z̄. The radius is found simply by the maximum

electron position in x̄. It should be noted that this does not indicate that the

charge distribution in the transverse dimensions remains constant, only that that

electrons will not travel outside the beam envelope specified by the maximum

radius.

It should also be noted that the square beam used can be made circular

by neglecting the electrons whose χk weighting falls below a certain percentage

of the maximum. Then the macro-electrons at the corners of the phase space

distribution may be ignored. The code has this capability but it was not employed

here.

5.4.2 SACSE in a Helical Wiggler in 3D

A full 3D simulation exhibiting Self Amplified Coherent Spontaneous Emission

is presented.

An electron beam 6 cooperation lengths long, with a flat-top current distri-

bution in z̄2 and a Gaussian current distribution in x̄ and ȳ is injected through

an undulator with the following parameters:

ρ = 0.00556,ε̄ = 0.3, āw = 1.0, fx = fy = 1,

γr =700, λw = 0.008m, f =
√

2

As in the previous 1D SACSE cases, the electron pulse should emit coherent

radiation strongly from its edges, which have a large current gradient. In this high

slippage/short pulse regime, the coherent emission from the rear of the electron

pulse should propagate over the electron pulse and consequently be amplified.

Both a 1D and a 3D simulation are performed for comparison, to observe the

deleterious effects the diffraction has on the amplification.

If the Rayleigh length of the resonant wavelength zR(kr) . lg, then the diffrac-

tion will be significant during an FEL exponential gain length. In the scaled
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Figure 5.20: Figure showing the rotation in transverse phase space of the focused

electron beam and the resulting oscillation of the radius of the beam. The first graph

on the top left plots the scaled x momentum p̄x vs x̄, and shows the electron beam at

z̄ = 0, initialized on a square grid. The plot on the top right shows the same view at

z̄ = 3.384, and the electron beam is shown to have rotated in the x̄ phase space. This

results in an oscillation in the electron beam radius in x̄ as the electrons at the corners

sweep around. The beam radius in x̄ is shown varying along the propagation distance z̄

in the bottom plot, and the oscillation has a period of quarter the betatron period λ̄β.

The maximum is just below the matched beam radius calculated in equation (4.27).
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variables this becomes

z̄R . 1. (5.14)

The electron beam is matched to the undulator, so its radius is given by equation

(3.80), and the Rayleigh range of the resonant wavelength for initial radius equal

to the matched electron beam radius σ̄b is given in equation (5.13). So equation

(5.14) becomes

σ̄2
b . 2ρ (5.15)

⇒ σ2
b

lglc
. 2ρ, (5.16)

and then from the definition of the matched transverse radius in equation (3.80),

εn . 2ρlglcγrkβ. (5.17)

The coherence length definition (in figure 3.2) is lc =
λr

4πρ
, so equation 5.17

becomes

εn .
γrλr
2π

lgγrkβ. (5.18)

and if kβlg ∼ 1, so that λβ ∼ 2πlg, then, broadly speaking, if

ε .
λr
2π

(5.19)

then diffraction may be considered significant within a gain length.

In the scaled notation, remembering the definition of the scaled transverse

emittance ε̄ =
ε

2ρlc
from equation (3.81), this condition becomes

ε̄ . 1 (5.20)

for significant diffraction.

In this simulation, ε̄ = 0.3, so one can expect diffraction to negatively impact

upon the lasing. For a source of matched transverse size the Rayleigh range of

the resonant wavelength is, in terms of the scaled emittance,

z̄R =
ε̄

k̄β
, (5.21)
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which is 3.3 with these parameters. This is above but still on the order of a gain

length.

The electron betatron wavelength λβ ≈ 70lg in this case. In addition to

effecting the initial radius of the emitted radiation and thus the diffraction, the

electron emittance induces a longitudinal energy spread in the beam which also

degrades the amplification. The induced spread is calculated in [33] as

σε =
krāwfε

4γr
(5.22)

which can be expressed in terms of the scaled emittance, using equation (3.81),

as

σε =
āwf ε̄

4γr
(5.23)

The total effective energy spread due to both the longitudinal and transverse

emittance is then

σT =
√
σ2
γ + σ2

ε , (5.24)

where σγ is the usual 1D energy spread. This total effective spread must be used

to satisfy the condition for lasing, so that

σT < ρ. (5.25)

In this simulation a longitudinal energy spread of 0.001 is used, which com-

bined with the induced energy spread calculated using equation (5.23), gives a

total effective spread of σT ≈ 1.005× 10−3 < ρ. The energy spread induced from

the emittance does therefore not seem to be significant compared to σγ. It is

likely then, that the transverse energy spread will not reduce the amplification.

A charge redistribution in the transverse directions due to the emittance may still

affect the interaction, due to electrons oscillating in and out of resonance, and

physically oscillating outside the radiation field radius. However, as λ̄β is large

compared with the gain length and the entire undulator length, any deleterious

effects are likely to mostly be due to diffraction.
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The result of the simulation is shown in figures 5.21 and 5.22. Shown are

the power, intensity at the center of the transverse plane x̄ = 0, ȳ = 0, where the

intensity will be at a maximum, and the transverse intensity at a fixed point in z̄2.

The intensity in 3D, with a Gaussian transverse charge distribution centered on

x̄, ȳ = 0, will generate a maximum radiation intensity at x̄, ȳ = 0. The electrons

in the center of the Gaussian, with resonant energy, before noise is added, will

have electron weight χk = 1. The 1D case, as it is a flat-top current distribution,

will also have χk = 1 before noise. The intensity produced in the center of

the Gaussian is compared with the 1D simulation. These plots are shown at

propagation distances z̄ ≈ 4 and z̄ ≈ 8.

It is important to recall that the radiation field has a high band-pass filter

applied to stop the diffraction problems outlined earlier. Here the filter omits

frequencies below ≈ 1/3rd of the resonant frequency. The same filter is applied

to the 1D case also, to allow an equivalent comparison. The filtering removes

the low frequency components whose interference with the resonant wavelengths

cause the oscillation in the radiation envelope of the resonant frequency observed

in for example the simulation presented in figure 5.4 and [45]. Thus the CSE

is observed as a constant intensity emitted from the sharp edges of the electron

pulse.

The plots at the beginning of the interaction, in figure 5.21, display the CSE,

here already showing some amplification. The electron beam lies between 4 ≤
z̄2 ≤ 10, and the radiation from z̄2 = 0 to 4 is the CSE fom the front edge of the

pulse, having travelled ahead into free space. The rear of the pulse from z̄2 = 6 to

10 is in the slippage region, and the CSE has begun to be amplified. The region

z̄2 = 4→ 6 is still evolving from noise, and a transverse intensity slice taken from

this region shows a noisy multi-mode transverse intensity structure, as expected

[32].

Further into the interaction, in figure 5.22, the expected amplification is ob-

served, albeit significantly smaller than in the corresponding 1D case. The elec-

tron pulse now lies between z̄2 ≈ 8 and ≈ 14, and the system is dominated

entirely by slippage. The CSE from the tail of the pulse, now at z̄2 = 14, has
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been amplified as it travels over the pulse. The diffraction of the CSE in the 3D

case has hindered the interaction, showing the importance of the 3D model in

this example.

Another 2 simulations have been performed, with ε̄ = 0.5 and ε̄ = 1.0. The

other parameters are kept the same. The FEL parameter ρ is being held constant

here, although by increasing the beam emittance this should be reduced due to a

larger beam diameter. It has been held constant to show the effects of only the

increasing emittance.

It can be seen in the equation for the Rayleigh range (5.21) that as ε̄ increases,

the Rayleigh range also increases, reducing the diffraction and the negative impact

on the gain from diffraction. However it is seen from equation for the energy

spread induce by the emittance (5.23) that the effective energy spread will also

increase, which inhibits the interaction further. The condition for the allowed

frequencies due to low frequency diffraction in equation (4.38) shows that the

frequency cutoff is relaxed for larger initial radii. However, for comparison, the

same frequency cutoff as the case when ε̄ = 0.3 is kept in the simulations where

ε̄ = 0.5 and ε̄ = 1.

The results presented here are also compared to 1D equivalent simulations, but

this time, in an attempt to simulate the decoupling due to the effective induced

spread, the total effective spread induced by the emittance is taken into account

in each of the 1D models. When ε̄ = 1, from equation (5.24) the total spread

σT = 0.0011, and when ε̄ = 0.5, σT = 0.0010308. These correspond to spreads

in p̄2 of σp2 = 0.0022 and 0.0010308, respectively. These are the Gaussian energy

spreads in pz2 used in the 1D simulations.

Figures 5.23 - 5.25 show the comparisons for each of the three 3D simulations.

The simulations have been run to z̄ ≈ 4. Figure 5.23 shows the case where

ε̄ = 0.3, figure 5.24 shows the result of using ε̄ = 0.5, and figure 5.24 has ε̄ = 1.0.

One can see that as the emittance is increased, the difference between the 1D case

and the 3D case reduces, and for ε̄ = 1, the solution is very similar. The effects

of diffraction are reducing, since the Rayleigh range for each case is longer with

increasing emittance. z̄R = 3.3 for the case where ε̄ = 0.3, z̄R = 5.5 for ε̄ = 0.5
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Figure 5.21: 1st plot: Scaled power, which is the scaled intensity integrated over x̄

and ȳ. 2nd plot: The intensity in the center of the radiation field i.e. x̄ = 0, ȳ = 0,

compared with the 1D intensity. 3rd plot: Transverse intensity slice at z̄2 ≈ 5, showing

a noisy transverse mode structure.
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Figure 5.22: Equivalent plots as those in figure 5.21, with the electron pulse now

propagated to z̄ = 8. Note the reduced intensity compared to the 1D case, and the

single transverse mode in the bottom plot.
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and z̄R = 11.0 for ε̄ = 1.0. Examining the 1D plots, it is observed that the extra

electron beam energy spread used to approximate the effective spread from the

emittance has made negligible difference: the 1D plots are almost identical in

all three examples. It may be a reasonable assumption then that the increase in

Rayleigh length with increasing scaled emittance is causing the field to diffract

less, and inhibiting the interaction less. It would seem that the main deleterious

3D effect in the example where ε̄ = 0.3 is diffraction.

The equivalent energy spread approximated in equation 5.23 is applied to

the 1D simulations as a spread about the resonant energy. In fact, this spread

is induced such that γr is the maximum value. This is because the electrons

travelling directly in the z̄ direction only are resonant, and the electrons travelling

at the same energy at a slight angle to the z-axis have a slighty reduced speed

in z. This leads to a detuning, which further degrades the interaction. This has

not been taken into account in the 1D case. There is also the physical decoupling

as some electrons undergo large oscillations within the beam envelope due to

the betatron motion, which cannot be taken into account in the 1D examples.

As mentioned above, the wavelength of these oscillations is λ̄β ≈ 70, and is the

same for all three emittance cases. Thus, at the propagation distance z̄ = 4

presented in these comparisons, there will not have been significant deviations of

the electrons from their initial positions in x̄ and ȳ.

5.4.3 Short Chirped Pulse

Electron pulses produced by laser plasma accelerators for undulators can produce

electron pulses with longitudinal duration on the order of a few resonant wave-

lengths. An electron beam of such small duration, with a strong negative chirp,

may “flip” over in longitudinal phase space during propagation in the undulator.

During this process, the electron bunch will be smaller than a resonant wave-

length, and consequently will radiate coherently for a number of undulator periods

dependant on the magnitude of the chirp. For a stronger chirp, the electron pulse

will radiate coherently for less undulator periods, giving a broader bandwidth.

This new effect is in fact not strictly speaking an FEL effect. It is a coherent
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Figure 5.23: Comparison of intensity in the center of the transverse electron distribution

at x̄, ȳ = 0 of 3D (blue) case with 1D intensity (green) produced with the equivalent

energy spread of σp2 = 2.01× 10−3 corresponding to ε̄ = 0.3.

Figure 5.24: Comparison of intensity in the center of the transverse electron distribution

at x̄, ȳ = 0 of 3D (blue) case with 1D intensity (green) produced with the equivalent

energy spread σp2 = 2.0616× 10−3 for the case where ε̄ = 0.5.

130



Figure 5.25: Comparison of intensity in the center of the transverse electron distribution

at x̄, ȳ = 0 of 3D (blue) case with 1D intensity (green) produced with the equivalent

energy spread σp2 = 2.2× 10−3 for the case where ε̄ = 1.0.

effect arising purely from the linear evolution of the electron beam due to the

chirp. Nevertheless, this code is well suited to simulating it in 3D.

An analytic solution can be defined from the scaled equations as follows [62].

First of all an initial linear chirp, g0, is defined in the electron beam such that

g0 =
dvj
dz̄2

, (5.26)

where vj is the jth electron’s phase velocity. Taking the initial electron beam

distribution to be a Gaussian with rms spread σ0, the spread after propagation

distance z̄ will then be

σ(z̄) = σ0 + g0σ0z̄ (5.27)

⇒ σ(z̄) = σ0(1 + g0z̄) (5.28)

To prevent σ(z̄) from becoming equal to zero from the perfect linear chirp, a

small intrinsic pulse length σi is added such that

σ(z̄) =
√
σ2

0(1 + g0z̄)2 + σ2
i (5.29)

With an initial chirp and electron distribution defined in this way, the initial

peak electron current Ipk =
Q√
2πσ0

, and the electron weighting function, in 1D,
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as a function of z̄, can then be found to be

χ(z, t) =
I(z̄, z̄2)

Ipk
(5.30)

χ(z, t) =
σ0√

σ2
0(1 + g0z)2 + σ2

i

exp

(
− z̄2

2

2(σ2(1 + g0z)2 + σ2
i )

)
(5.31)

The predictable evolution of the electron distribution allows the field equation

to be integrated over z̄ to obtain an analytic solution for the field. The field

equation used is the 1D field equation from [45], which is for a helical undulator

in the Compton limit. The solution is obtained in Fourier space, and the final

expression for the envelope as a function of f = ω/ωr is

Ã(f) =
4πρ

f
exp

(
−if − 1

2ρg0

)
exp

(
−f

2σ2
i

8ρ2

)
exp

(
−(f − 1)2

2σ2
0g

2
0f

2

)
(5.32)

Both a 1D and 3D simulation are presented here. The 1D simulation is presented

to demonstrate the evolution of the field and electron beam on propagation. In

the 3D case the electron beam is matched to the natural focusing channel in the

undulator.

The following parameters were used to simulate this effect:

ρ = 0.008; aw =1.5; γ = 707;λw = 1.5cm

fx = fy = 1

The electron beam chirp
dp2j

dz̄2

= −0.192, and the initial σ spread of the

Gaussian distribution in z̄2 is σz2 = 0.333. There is also an energy spread of

σp2 = 0.0027.

Figure 5.26 shows the evolution in phase space of the electron bunch, in 1D,

and shows bunch compression and decompression due to the energy chirp. The

corresponding 1D radiation intensity is also shown. As the electron pulse bunches

to durations of the order of the resonant radiation wavelength, it radiates coher-

ently. Recall that p2j is the rate of change of the electron’s z̄2 position, so that

a higher value of p2j means the electron will travel faster in the positive z̄2 di-

rection. However, the z̄2 frame is the stationary radiation frame, so an electron
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Figure 5.26: These 8 plots show the intensity and electron beam phase space at 4

different propagation distances. The initial chirp in the plot at z̄ = 0 in the top left

causes the electron pulse to compress and then decompress. When it is bunched to

a length in z̄2 of . 4πρ (that is to say, less than a resonant radiation wavelength) it

generates a single coherent spike in intensity.
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which is travelling faster from the front of the radiation at z̄2 = 0 is actually

travelling slower in the lab frame: it is slipping backwards through the radiation

more quickly. So, from the chirped electron beam in the top left of figure 5.26, the

electrons at the front of the electron pulse at z̄2 = 0 have a smaller velocity in the

direction of propagation than the electrons at the tail of the pulse. This causes

the electrons to bunch. The phase space plot at z̄ = 5.22 in figure 5.26 shows the

compressed electron bunch, and the resulting coherently emitted radiation spike

is shown in the corresponding intensity plot.

Note that the final radiation pulse width, shown on the intensity plot at

z̄ = 7.25 in figure 5.26, is slightly less than a cooperation length. Depending on

the initial chirp, and thus the number of undulator periods the pulse is bunched

for, the radiation pulse width may be significantly less than one cooperation

length, which is smaller than pulse widths produced by the FEL process in SASE.

The radiation spectral output is shown in figure 5.27. Figure 5.28 shows the

analytic prediction in equation (5.32) for the same parameters. The analytic and

numerical solutions are seen to be in good agreement.

The 3D simulation, using the same parameters, is run with a scaled emittance

of ε̄ = 0.8, and the beam is matched to the undulator. This gives an effective

energy spread, from equation (5.23), of σε = 0.00064, which is very small com-

pared to the spread used in the 1D simulation. The betatron wavelength in z̄ is

λ̄β = 67.01 from equation (3.76), and the Rayleigh length of the resonant wave-

length from equation (5.21) is z̄R = 8.532. Using these parameters then, it would

be reasonable to assume the 3D effects will not sigificantly deviate from the 1D

solution.

The scaled power in z̄2 and the transverse intensity slice near the coherently

radiated peak are shown in figure 5.29 and figure 5.30. The sharp peak in the

power indicates the region where the electron beam was strongly bunched and

radiating coherently, at 6 ≤ z̄2 ≤ 7. This is the same position as in the 1D case.

The transverse intensity is seen to give a sharp peak on-axis.

Also shown is the scaled spectral intensity in the center of the transverse plane,

in figure 5.31, and it again gives good agreement with the analytical solution in
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Figure 5.27: The intensity spectrum of the simulation presented in figure 5.26.

figure 5.28. The 3D effects have not significantly reduced the intensity, and the

basic mechanism has not been degraded.
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Figure 5.28: The analytic solution of the parameters used to produce the spectral

intensity of the simulation plotted in figure 5.27.
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Figure 5.29: The power in z̄2 of the 3D simulation of the short chirped pulse.

Figure 5.30: The transverse intensity profile near the peak power shown in figure 5.29.
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Figure 5.31: The spectral intensity along the z̄2 axis where x̄ = 0,ȳ = 0.
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Chapter 6

Conclusions and Future Work

A new 3D mathematical model of the FEL has been developed which makes few

limiting assumptions. In particular, the SVEA or Eikonal approximation is not

applied, meaning the model can describe phenomena below the radiation wave-

length scale. The model describes a variably polarized undulator and radiation

field. Large changes in the initial electron positions may also be modelled.

The model is solved numerically by a parallel MPI code written in FORTRAN

which balances the electron distribution uniformly amongst processors. The nu-

merical solution requires the use of the Split-Step Fourier Method, which splits

up the field diffraction and source terms into two separate steps. The diffraction

solution uses Fourier transforms, which the code uses FFTW 2.1.5 to perform.

The source term solution demands the use of a linear solver, so SuperLU DIST

was used to accomplish this in parallel. The electron beam has been matched to

a linear focusing channel so that its radius remains constant. A range of “active

nodes” were chosen, which are the only nodes in the transverse plane which inter-

act with the electrons. Using only these nodes to construct the stiffness matrix

in the linear solver reduces both computational memory and time taken by the

linear solver. The problem of diffracting long radiation wavelengths has been

outlined, and a low frequency cutoff defined below which frequencies can not be

modelled due to large diffraction. Frequencies below this cut-off are filtered out

during each diffraction step in the code.
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Results have been presented which shows the code agrees with previously

established work. The polarization was shown to be solved self-consistently, and

the diffraction and focusing effects were shown to be solved correctly. The 3D

SACSE simulation presented could not have been performed in an averaged code.

The 3D effects were shown to be important to the SACSE interaction.

There are a number of improvements which could be made to the code. The

most immediate work which should be performed is the addition of boundary

conditions to the diffraction solution, and the testing of different linear solvers to

see which gives the best performance. The problem with the broadband diffrac-

tion limits the frequency range of the code, and places restrictions upon which

FEL parameters may be modelled. The low frequency cut-off means that the

resonant frequency cannot be modelled for some FEL parameters. Although the

simulations presented in this thesis show the expected behavior, if one wishes to

solve for a more realistic FEL, absorbing or transparent boundary conditions may

need to be employed.

Testing and implementing more appropriate linear solvers should allow more

complex systems to be modelled. Currently the linear solver significantly limits

the size of the field which can be modelled. The 3D SACSE runs presented in this

thesis were at the limit of the solvers capability, and the system was relatively

small compared to more typical FEL systems. The reason SuperLU DIST inhibits

the code so much is that it is desgned and optimized for non-symmetrical linear

systems. As the stiffness matrix is symmetric, using a linear solver appropriate to

this should enhance the performance from both a speed and memory standpoint

significantly. Tests are currently underway to do this.

In a real undulator with variable polarization, it is the phase between the x

and y fields which are varied to produce the desired polarization. The model here

could concievably be altered to reflect this, rather than the current method of

varying the magnitudes of the magnetic undulator field in x and y. The constant

focusing channel could also be changed to include focusing quadrupoles. As

mentioned earlier, this could be achieved by altering the undulator-lattice/phase

shifting section of the code. In fact, after a set number of undulator periods the
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electron beam may have any coordinate transform applied to it. In practise, it

should be relatively easy to do this.

Another pressing issue is the post-processing routines. An interface was de-

signed in MATLAB for presentation of the results in [41], but this reads all the

data files at once and consumes a large amount of memory. Indeed, the final, full

3D runs could not be analysed using this interface. A separate, lighter MATLAB

script was written to generate this output.

Even this lighter script, however, was only just able to process the information

due to memory constraints in the desktop machine used. In the future it will be

necessary to employ a solution which processes the data files “on site,” meaning

the same multi-processor machines used to run the code will be needed to perform

the post-processing, simply because the data files are too big for a standard

desktop to read into memory. This will also enable the post-processing to be

more immediate: currently the data files must be transferred to a local desktop,

which takes a large amount of time over the internet, considering the files for just

a few steps are several 10’s of gigabytes in size (and these are relatively small

undulators and electron pulses).

There are tentative plans that the code, when ready, should be released via

the web under an open source licence.

There are also the numerous situations the code could be used to explore.

The mode-locked FEL has already been mentioned, as has the investigation of

lasing using very short electron pulses. The investigations begun in [56] could be

expanded upon, as the radiation pulse does not appear to saturate. In reality,

radiation growth may be inhibited by diffraction effects, and this code may be

used to research this.

The broadband nature of the code opens the possibility of seeding the FEL

interaction with lower than resonant frequencies, either to amplify the radiation,

or perhaps, to help accelerate an electron pulse in the vein of an Inverse Free

Electron Laser [63].

Different forms of the work in this thesis were presented at the international

FEL conferences in 2009 and 2010. The FEL2009 conference paper is in appendix
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A, and the two papers presented at FEL2010 are attached in appendices B and

C. Posters were also presented for the three conference papers. A paper to be

submitted to a peer reviewed journal is currently in preparation.

In general, a new, flexible FEL simulation tool has been developed that will

allow many previously unexplored types of FEL interaction to be researched.
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A FULLY 3D UNAVERAGED NON-LOCALISED ELECTRON,
PARALLELIZED-COMPUTATIONAL MODEL OF THE FEL

L.T. Campbell, R. Martin and B.W.J. McNeil
SUPA, Department of Physics, University of Strathclyde, Glasgow, UK

Abstract

A new unaveraged 3D parallelized numerical model has
been developed that will allow investigation of previously
unexplored FEL physics. Unaveraged models are required
to describe such effects as amplification of Coherent Spon-
taneous Emission and non-localised electron dynamics (see
e.g. [1] and refs therein). A previous parallelized 3D
model [2] was based upon a mixed finite element/Fourier
method, however, there were some limitations in the par-
allel algorithm and numerical routines. These limitations
are removed in the new model presented here by using only
transforms in Fourier space enabling more effective data or-
ganization across multiple parallel processors and therefore
allowing larger, more complex FEL systems to be studied.
Furthermore, unlike the previous 3D model, which uses
commercial numerical packages, the new simulation code
uses only open-source routines.

INTRODUCTION

As FEL’s continue to push boundaries of radiation wave-
length and pulse lengths, and with more complex FEL
schemes to achieve these being explored, it may become
necessary to extend the scope of what numerical FEL codes
can model. Most current codes average the equations gov-
erning the FEL interaction over a radiation period and con-
fine electrons to a localised region within one radiation pe-
riod of their initial conditions (in the electron beam rest
frame.) To describe the FEL interaction at the sub-radiation
period scale, and to model electron migration over dis-
tances greater than the radiation period (non-localised),a
numerical code that models the unaveraged equations gov-
erning the FEL interaction is required.

A 1D non-averaged model describing both sub-period
phenomena and non-localised electron propagation has
previously been developed [1, 3, 4]. More recently a 3D
parallel non-averaged model for a helical undulator was
developed in [2]. A substantially modified version of this
3D model, with significantly better parallel performance, is
presented in this paper.

The 3D FEL model of [2] uses a split-step Fourier
method [5]. This method separates a single numerical inte-
gration step, of the governing differential equations along
the undulator, into two separate half-steps. In the first
half step a Fourier transform method is used to solve for
the field diffracting in the absence of any electron source
terms. In the second half-step a Finite Element Galerkin
Method [6] is used to solve for the field being driven by the

electron sources, and in the absence of diffraction, while a
4th order Runge-Kutta method simultaneously drives the
electrons. When parallelized using MPI, the model re-
quires communication between three separate data sets dis-
tributed over multiple processors with each integration step
of the code. The amount of communication between pro-
cessors should be kept to a minimum if the run-time of a
parallel code is to scale well with the number of proces-
sors used, otherwise the run-time benefit of using multiple
processors can become significantly reduced [7].

The model presented here replaces the FEGM of the
above model with a Fourier method (using open-source
FFT routines [8]) similar to that described in [9]. The field
is therefore now solved entirely in a 3D Fourier space. The
method allows a reduction in communication between pro-
cessors and gives a better scaling of the run-time benefit
with increasing processor number. Furthermore, the com-
mercial routines used for the FEGM are not needed, im-
proving portability and allowing an open-source code when
released.

The model is also generalised to allow any undulator po-
larisation from planar to helical, variable along the FEL
interaction.

THEORETICAL MODEL

Starting from the 3D Maxwell wave equation and the
Lorentz force equation, the 3D FEL equations for an helical
undulator in the scaled dimensionless form of [2] may be
written:
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whereδ3(x̄j , ȳj , z̄2j) ≡ δ(x̄ − x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j)
and all variables are as defined in [2]. The only approxi-
mations made are the neglect of space charge, the paraxial
approximation, and
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2ρ andξ0(z̄, z̄2) is the complex radi-
ation envelope. The latter approximation is made in [10]
where, expressed in the independent variables(z̄, z̄1), it
is shown to be equivalent to the neglect of any backward
propagating field. Focussing of the electron beam is de-
scribed by the final term of (2) corresponding to the ‘nat-
ural focussing’ of an helical wiggler. This term is easily
modified for other focussing systems.

The field equation (1) is solved using the Fourier split-
step method by seperating it into diffraction-only and
source-only parts. For diffraction only in the absence of
sources the field equation is

−iρ

(

∂2A

∂x̄2
+

∂2A

∂ȳ2

)

+
∂A

∂z̄
+ 2iρ

∂2A

∂z̄∂z̄2
= 0 (7)

Defining the 3D Fourier transform

Ã(kx̄, kȳ, kz̄2
, z̄) = FT {A(x̄, ȳ, z̄2, z̄} (8)

and applying to (7) yields the solution

Ã(z̄0 + ∆z̄) = Ã(z̄0) exp

(

−iρ(k2
x̄ + k2

ȳ)

1 − 2ρkz̄2

∆z̄

)

(9)

for an arbitrary initialz̄0 and where the dependence ofÃ
on (kx̄, kȳ, kz̄2

) is understood.
In the absence of diffraction, but with electron source

terms, the field equation becomes

∂A

∂z̄
=

γr

awn̄p

N
∑

j=1

p̄⊥je
iz̄2/2ρ

√

ǫQj(ǫQj + 2)

1 + |p̄⊥j |2
δ3(x̄j , ȳj , z̄2j).

(10)

In the previous code of [2], the field equation (10) was
solved simultaneously with the electron equations using a
4th order Runge-Kutta and FEGM. One integration step re-
quired 3 different sets of field data distributed across the
parallel processors: one for the Fourier transforms used in
the diffraction step, one for the finite element, and one for
the RHS of the source equation (10) plus the electron equa-
tions. The optimum form of the electron data distribution
also changes as they migrate across field elements.

The alternative solution presented here utilises a Fourier
description of the field source term, similar to the multi-
frequency FEL model of [9], so that the entire field equa-
tion may be solved in Fourier space. Fourier transform-
ing (10) using (8) gives

∂Ã

∂z̄
=

γr

awn̄p

N
∑

j=1

p̄⊥j

√

ǫQj(ǫQj + 2)

1 + |p̄⊥j |2
×

exp

[

−i(kx̄x̄j + kȳ ȳj + z̄2j(kz̄2
− 1

2ρ
))

]

(11)

Equation (11) describes how the electrons drive the field in
3D Fourier space and is relatively simple to solve numer-
ically. To obtain the field in real space, required for the
electron dynamic equations of (2. . . 6), the inverse trans-
form is all that is required and a finite element description
of the field in real space is unnecessary.

VARIABLE UNDULATOR POLARISATION

The general form of the radiation field definition and the
equation describing its evolution allows any field polarisa-
tion to be modelled. A relatively simple modification to the
undulator field then allows modelling of an elliptically po-
larised FEL. The transverse terms of the magnetic wiggler
field are re-defined as:

Bw =
Bw√

2
(fe−i z̄

2ρ + c.c.), (12)

where the new basis vectorf = (Hx̂ + iŷ)/
√

2 and the
constantH has limits0 ≤ H ≤ 1, whereH = 1 cor-
responds to an helical undulator andH = 0 for a planar
undulator. For simplicity here, the axial terms of the wig-
gler field that give the natural focussing remain unchanged
from [2]. Note thatf is not a unit vector and the scaling
of the equations is with respect to they-component of the
undulator magnetic field. The scaling factorH appears ex-
plicitly in the equation of motion for̄p⊥j only:

dp̄⊥j

dz̄
=

aw

2ρ

[

i

2
((1 + H)e−

iz̄
2ρ − (1 − H)e

iz̄
2ρ )−

(

2γrρ

aw

)2

ǫQjAe−
iz̄2j

2ρ

]

−

a2
wǫ

8ρ2

√

Qj(2 + ǫQj)

(1 + |p̄⊥j |2)
(x̄j − iȳj)

(1 + ǫQj)2
(13)

with all other equations in (1. . . 6) remaining unchanged.
Note that this form allows the undulator polarisation factor
to vary as a function along its lengthH(z̄).

NUMERICAL MODEL

The summation over real electrons is changed to a sum-
mation over macro-particles using the method of [1]. The
localised electron density over a volume elementV̄k in the
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scaled space(x̄, ȳ, z̄2) containingNk electrons may be de-
scribed as a by a fractional weighting factor0 < χk ≤ 1 of
the scaled peak electron density in the pulse:

Nk

V̄k
= χkn̄p. (14)

Using (14), the sum overN real electrons, appearing in the
source term of (11), changes to a sum overk = 1 . . . Nm

macroparticles each of electron charge weightNk as fol-
lows:

1

n̄p

N
∑

j=1

(· · · )j =
1

n̄p

Nm
∑

k=1

Nk(· · · )k =

Nm
∑

k=1

χkV̄k(· · · )k (15)

Defining the normalized weightinḡχk = χkV̄k, the final
form of the Fourier field equation (11) implemented in the
code is obtained:

∂Ã

∂z̄
=

γr

aw

Nm
∑

k=1

χ̄kp̄⊥k

√

ǫQk(ǫQk + 2)

1 + |p̄⊥k|2
×

exp

[

−i(kx̄x̄k + kȳ ȳk + z̄2k(kz̄2
− 1

2ρ
))

]

. (16)

The Fourier field is discretized into nodes along each
axis (x̄, ȳ, z̄2) and wavevectork-values take the general
form k = 2πn/l, where the integer−M/2 ≤ n ≤ M/2
andM is the number of nodes spanning lengthl along the
axis. The numerical fast-Fourier transforms are taken us-
ing the parallel processor FFTW open-source package [8].
The macroparticles and fourier field nodes are initially dis-
tributed uniformly among the parallel processors with in-
creasinḡz2.

The new split-step Fourier method consists of the fol-
lowing steps:

1. Field Diffraction Step: The Fourier field diffraction
equation (9) is solved. Data redistribution of the trans-
formed field is not required.

2. Field Driving and Electron Propagation Step: The
Fourier field source equation (16) is solved and the
macroparticle equations (2-6) are propogated using a
4th order Runge-Kutta method. Some macroparticle
data needs to be communicated between processors
to act as the source for all the Fourier field nodes
of (16). After the macroparticles drive the field in
Fourier space a backwards Fourier transform is re-
quired to calculate the real field for the macroparti-
cle equations (2-6). The macroparticle equations are
solved in parallel without need for communication of
field data between processors.

3. The latter two steps are repeated until the end of the
integration.

A summary of the differences between the previous FEGM
algorithm of [2] and the new method presented here is
shown in Fig. 1.

Figure 1: A schematic of the parallel algorithms show-
ing the differences between the previous Finite Element
Galerkin Method of [2] with the Fourier method presented
here.

PLANE WAVE APPROXIMATION

The field description can be altered to approximate a
plane wave by using only one node in the tranverse plane.
Only the constant, non-oscilatory term of the numerical
Fourier series then exists i.e.kx̄, kȳ = 0 and the field is
then only a function of̄z2. Note, however, that this plane
wave representation of the field still allows full 3D elec-
tron dynamic effects such as emittance and beam focussing
to be modelled correctly. For a ‘full’ 1D limit, only one
macroparticle, and so one value of the transverse variables,
is used for each position in̄z2. The model is therefore quite
flexible enabling a range of effects to be modelled, from a
relatively fast full 1D model, to the plane wave approxi-
mation while retaining complete 3D electron dynamics, to
the complete 3D model for both radiation field and electron
dynamics.

To make the plane wave approximation in the numer-
ical model the real-space field equation (10) is first inte-
grated over the transverse plane (x̄,ȳ). The equation is then
Fourier transformed to give:

∂Ã

∂z̄
=

γr

aw

Nm
∑

k=1

χ̄
(1D)
k p̄⊥k

√

ǫQk(ǫQk + 2)

1 + |p̄⊥k|2
×

exp(−iz̄2k(kz̄2
− 1

2ρ
)) (17)

whereχ̄(1D)
k = χklk andlk is the range of̄z2 initially occu-

pied by thekth macroparticle. Simulations using the code
in the full 1D limit give very good agreement with results
from [1] and [3].

EXAMPLE

A simple example is used to demonstrate first simula-
tion results using the code. Several high gain FEL schemes
operating at short wavelengths propose to use the exhaust
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Figure 2: Spectra in the 1D planar wiggler limit for a short
electron pulse generating CSR both with (green) and with-
out (blue) coupling to the radiation field.

electron bunches to generate long wavelength radiation via
Coherent Spontaneous Radiation, where the electron bunch
length is less than the resonant wavelength of a long period
undulator. While averaged FEL codes cannot model this
interaction the non-averaged code described here can. Pa-
rameters similar to that of the UK NLS proposal [11] are
used which in the scaling here are:ρ ≈ 0.24; aw ≈ 60 and
with a gaussian electron pulseσ ≈ 1/50th that of a reso-
nant radiation wavelength ofλ ≈ 100µm. The code sim-
ulated a planar undulator withH = 0 and operating in the
1D mode over 10 undulator periods (without any waveg-
uide) ofλw = 1m generates the spectra of Fig. 2 both with
and without electron coupling to the radiation field. It can
be seen that with electron coupling (green), the electron
energy loss to the field shifts the resonant wavelength to
longer wavelengths and significantly changes the spectrum
from that of the uncoupled case (blue) which shows the
usual CSR wiggler spectrum with odd harmonics clearly
visible.

Using the same parameters, the second simulation
demonstrates the code operating in 3D again with a planar
wiggler. The scaled field polarisation is plotted in the (x̄, ȳ)
plane in Fig. 3 as a vector field. This polarisation does not
change as a function of̄z2 so that it describes linearly po-
larised radiation and demonstrates the ability of the code to
model variable polarisations.

CONCLUSION

A parallel FEL simulation code able to model sub-
radiation wavelength effects and non-localised electron dy-
namics has been developed. This code algorithm signifi-
cantly reduces run-time from the previous version of [2].
More rigorous testing and benchmarking of the code will
be undertaken before release.
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AN UNAVERAGED COMPUTATIONAL MODEL OF A VARIABLY
POLARIZED UNDULATOR FEL

L.T. Campbell and B.W.J. McNeil
SUPA, Department of Physics, University of Strathclyde, Glasgow, UK

Abstract

An unaveraged 3D model of the FEL has been devel-
oped which can model variably polarised undulators. The
radiation field polarisation is self-consistently driven by the
electron dynamics and is completely variable. This paper
describes both physical model and computational code.

INTRODUCTION

Future FEL’s may need to utilize effects which occur on
the scale of a resonant radiation wavelength or smaller,
timescales which are beyond the resolution of averaged
FEL simulation codes. In order to investigate these ef-
fects and the facilities which will exploit them, 3D codes
which solve unaveraged mathematical models of the FEL
will be needed. The simulation codes of [1] and [2] are
such codes. The disadvantage of a mathematical model
with increased resolution is of course the much higher sam-
pling rates needed to accurately model the system. To han-
dle potentially very large data sizes such codes are best run
in parallel on multiple processors.

In this paper the development of the unaveraged parallel
computational model from [1] and [2] is reported. In [2],
the variable H was added to describe the strength of the
wiggler field in the x axis. This has been replaced by two
new variables to control the strength of the wiggler field
in both x and y enabling full variable wiggler polarization.
The numerical method has been further refined to enhance
its speed returning to the original Finite Element Method
used in [1] while retaining the parallel memory distribution
of [2]. The radiation field in x and y is now described fully
including the ‘fast’ phase variations rather than via a com-
plex envelope description. The code utilizes only open-
source routines.

THE MODEL

An unnormalized vector basis:

f̂ = fxx̂ + ifyŷ (1)

is used to define a variable polarized undulator field

Bw =
Bw

2
(̂fe−ikwz + c.c.) (2)

where Bw is the peak magnetic field strength so that fx and
fy describe the strength of the wiggler magnetic field in x

and y. The vector basis f̂ is un-normalized so that the RMS

magnetic field B̄w varies from Bw/
√

2 ≤ B̄w ≤ Bw as the
wiggler changes from planar to helical.

The electromagnetic field is defined as:

E(x, y, z, t) =
1√
2

(

êξ0e
i(kz−ωt) + ê∗ξ∗0e−i(kz−ωt)

)

(3)
with complex envelope ξ0(x, y, z, t) and the normalized
vector basis ê = 1√

2
(x̂+iŷ) is defined with ê·ê = ê∗·ê∗ =

0 and ê · ê∗ = 1.

The 3D FEL is described using the coupled Maxwell-
Lorentz equations which in the Compton limit and with the
paraxial approximation gives:

∇2E− 1
c2

∂2E
∂t2

= −μ0e

m

N
∑

j=1

pj
γj

δ3(xj , yj, zj) (4)

F = −e(E + v × B), . (5)

where δ3(xj , yj , zj) = δ(x − xj(t))δ(y − yj(t))δ(z −
zj(t)).

Projecting the wave equation (4) onto ê∗ gives:

(

∇2 − 1
c2

∂2

∂t2

)

E⊥ = −μ0e

m

N
∑

j=1

p⊥j
γj

δ3(xj , yj , zj) (6)

where E⊥ = ξ0e
i(kz−ωt) = Ex − iEy is the transverse

field. Similarly p⊥j = pxj − ipyj is the perpindicular mo-
mentum of the jth electron.

Defining the independent variables z̄ = 2kwρz and z̄2 =
2kwρβ̄z(ct − z)/(1 − β̄z), equation (6) becomes:

∇2
⊥E⊥ + (2kwρ)2

(

∂

∂z̄

(

∂

∂z̄
− 2β̄z

1 − βz

∂

∂z̄2

))

E⊥ =

− e

ε0mc
4k2
wρ2

( β̄z

1 − β̄z

)2 ∂

∂z̄2

N
∑

j=1

p⊥j
βzjγj

δ3(xj , yj, z̄2j)

(7)

and the independent variable of the parameters of the δ3

Dirac delta function is now z̄.
Assuming:

∣

∣

∣

∣

∂

∂z̄
E⊥

∣

∣

∣

∣

<<

∣

∣

∣

∣

β̄z
1 − βz

∂

∂z̄2
E⊥

∣

∣

∣

∣

, (8)

which is equivalent to the neglect of the backwards
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wave [3], then the wave equation (7) simplifies to:

∇2
⊥E⊥ − (2kwρ)2

2β̄z
1 − βz

∂E⊥
∂z̄∂z̄2

=

− e

ε0mc
4k2
wρ2

( β̄z

1 − β̄z

)2 ∂

∂z̄2

N
∑

j=1

p⊥j
βzjγj

δ3(xj , yj, z̄2j)

(9)

Projecting the Lorentz equation (5) onto ê∗ and chang-
ing to the variables (z̄, z̄2) the equation for the transverse
momentum is obtained:

dp⊥j
dz̄

=
−e

2kwρcβzj

[

ξ0e
−i z̄2j

2ρ −
pzj
γjm

(ξ0

c
e−i

z̄2j
2ρ + iBwG∗

)]

(10)

and the z component is:

dpzj
dz̄

=
−ep⊥j

4mckwργjβzj

(ξ∗0
c

ei
z̄2j
2ρ − iBwG

)

+ c.c., (11)

where G = (fx cos(z̄/2ρ) + ify sin(z̄/2ρ)) is a term de-
scribing electron ‘jitter’ motion in z resulting from prop-
agation in a non-helical wiggler field. Using relation (11)
with the equation for the electron energy:

dpzj
dz̄

= mc
d

dz̄
(γjβzj),

along with equations (9), (10) and (11) and the scaling of
[1], modified slightly so that:

εQj =
1 − βzj

βzj
, ε =

1 − β̄z

β̄z
,

x̄ =
x

√

lglc
, ȳ =

y
√

lglc
,

p̄⊥ =
p⊥
mc

, A =
e
√

f2
x + f2

y

mcωp
√

2γrρ

gives the final set of working equations which are solved
numerically by the code:

−iρ

(

∂2A⊥
∂x̄2

+
∂2A⊥
∂ȳ2

)

+ 2iρ
∂2A⊥
∂z̄∂z̄2

=
√

f2
x + f2

y

2
γr

āwn̄p

∂

∂z̄2

N
∑

j=1

p̄⊥j
(1 + |p̄⊥j|2)1/2

×

(εQj(εQj + 2))1/2δ3(x̄j , ȳj , z̄2j) (12)

dp̄⊥j
dz̄

=
āw

ρ
√

2(f2
x + f2

y )
×

(

iG∗ − εQj

(

2γrρ

āw

)2

A⊥j
)

+ Fj (13)

dQj

dz̄
=

āw
4ρ

√

2
f2
x + f2

y

Qj(εQj + 2)
1 + |p̄⊥j |2 ×

(

−i(εQj + 1)(p̄⊥jG − p̄∗⊥jG
∗)+

εQj

(

2γrρ

āw

)2

(p̄⊥A∗
⊥j + p̄∗⊥jA⊥j)

)

(14)

dz̄2j

dz̄
= Qj (15)

dx̄j
dz̄

=

√

Qj(2 + εQj)

1 + |p̄⊥j |2
�(p̄⊥j) (16)

dȳj
dz̄

= −
√

Qj(2 + εQj)
1 + |p̄⊥j|2

�(p̄⊥j) (17)

where the equations for the x̄, ȳ and z̄2 electron coordinates
are simply derived from the scaled momentum/energy rela-
tions. The field term A⊥ = Ax− iAy is the scaled perpen-
dicular field, related to the scaled complex envelope A by

A⊥ = Ae−i
z̄2
2ρ . Hence the code now solves explicitly for

the x̄ and ȳ radiation field components. This assists in re-
solving some numerical issues requiring many conversions
between real and complex numbers when the electrons in-
teract with a complex envelope A.

The term Fj describes a generic focussing channel of
the electron transverse motion. This is similar to the natu-
ral focussing of the helical wiggler which for convenience
may be varied independently of the actual undulator used
via a scaling factor f . In the scaled notation used here the
focussing force is given by:

Fj = −f
βzj ā

2
w

√
ε

8γjρ2
(x̄j − iȳj). (18)

COMPUTATIONAL SOLUTION

The code integrates the working equations by using a
split step Fourier method [4], where the first half step
solves field diffraction in the absence of the electron trans-
verse current and the second step propogates the electrons
and field equation in the absence of diffraction. Where
previously the code solved the non-diffractive half-step in
Fourier space, as outlined in [2], it is now solved using a Fi-
nite Element Method [5]. However, the beneficial memory
and processing distribution across processors in the parallel
algotithm of the previous Fourier method is retained.

The resolution of the model is not limited to the resonant
radiation wavelength. The field must be sampled on the
sub-wavelength scale to describe the resonant wave oscilla-
tions to the desired resolved frequency. Because of this, the
data sizes for a full 3D field and 6D electron phase-space
distribution can be large, hence the use of a parallel code
algorithm to distribute the data and solve the equations.

The code of [2] used a fully distributed memory so-
lution which solved both field source and diffraction in
the Fourier domain. In terms of memory distribution this
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works well, however the solution requires a prohibitive
number of calculations per step. In order to drive the
Fourier field each electron must interact with every field
node, and the number of calcuations required is then pro-
portional to the number of electrons × the number of
Fourier nodes. In a full 3D system (and with electrons in 6
dimensions), this can give the order of 1014 interactions per
quarter step using a standard Runge Kutte 4th order method
for a moderately sized system, each of which is composed
of many computational operations. The base number of
calculations for a moderate simulation is prohibitively in-
efficient.

In replacing the Fourier method with the finite element
method, however, each electron interacts with only its 8
surrounding nodes, so the number of calculations is propor-
tional to the number of electrons ×8. The base number of
calculations is therefore significantly smaller and the code
runs much more efficiently.

The main problem with a parallel algorithm for this finite
element model is in the uniform distribution of the data.
There are two different interaction systems, the electrons
and the field, which are constantly shifting spatially in time
with respect to each another due to the slippage of the field
with respect to the electrons. Any given electron must have
its local field stored on its processor for any given step.
However, the local field shifts with each step. Furthermore,
the rate at which the local field shifts is not a constant in
an unaveraged system - the equations allow the electron to
have a rapid change in energy within one radiation period
e.g. for very high radiation fields.

One approach is to pick one of the systems, either the
field or electrons, distribute it evenly and fix this distribu-
tion. The data distribution for the other system must be
calulated at each step and will be shifted around the pro-
cessors as appropriate. If the field is chosen as the fixed
distribution, the electron variables will be shifted between
processors. However, this leads to a poor spread of the
computational load, as the electrons can only generate,
amplify, and interact with the field finite elements which
immediately surrounds them. This is especially true for
short electron bunches, which is one of the areas an un-
averaged code is particularly useful - the electrons in the
bunch will only be distributed over a small percentage of
the processors available at any one time. Those proces-
sors will be doing all the work to drive the field. Tak-
ing the opposite approach, by distributing the electron data
uniformly across the processors, the computational load is
well spread. However, the management of the field data be-
tween processors can become complicated by the need for
the electrons on one processor to interact with potentially
distant field nodes and the desire to uniformly distribute the
field nodes across processors for the diffractive half-step.

In the compromise of the code presented here, the elec-
trons are distributed evenly in memory and a full copy of
the field is kept on each processor. This is justified by
considering the relative memory sizes for a typical FEL
system: each electron has 6 dimensions and the number

Figure 1: Illustration of the the differences in computa-
tional solution between [2] and the code used here.

of electrons can potentially be a few orders of magnitude
larger than the number of field nodes; the field has only 3
dimensions. Clearly, the priority is to distribute the elec-
trons in memory. However, recalculating the field distribu-
tion each step can add significant inter-processor commu-
nication time, which can hamper the ability of a parallel
code for large processor numbers.

3D BEAM EFFECTS

The effects of the 3D electron beam are illustrated with
a simple example. The beam is said to be matched when its
radius is matched to the undulator focussing channel which
may be calculated from the normalised emittance relation
γεx = γεy = εn = γr2

b/β [6], and in terms of the scaled
notation and putting in terms of the normalised emittance
εn,

σ̄b =

(

2
√

2ρεn
εāwlg

)
1
2

(19)

where lg is the gain length of the FEL, and σ̄b is the Gaus-
sian radius in x̄ and ȳ.

A simulation to test the beam matching effects was per-
formed. The parameters used were

ρ = 0.015, lb = 4lc, εn = 10−6μ m, āw = 1.5,

fx = fy = 1, γr = 489, λw = 0.03m,

and electron beam shot noise is simulated via the method
of [7]. The beam radius should therefore be ≈ 1.61. The
field evolution and interaction is artificially switched off, so
the electrons travel unpeturbed through the wiggler. This
allows the effect of only the focussing term on the electron
motion to be observed.

The result is shown in figure 2. The matched beam ra-
dius is calculated by the code and the particles are then
loaded according to the shot-noise model of [7]. It is
seen that the noise introduces a small deviation from the
matched beam radius giving a value of ≈ 1.56. The elec-
tron beam radius then exhibits a very small oscillation on
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Figure 2: The radius of the electron beam as a function of
propagation distance through the wiggler z̄.

propagating through the wiggler. Increasing the number of
macroparticles will decrease this small noise-oscillation.

A simulation including self consistent electron-field in-
teraction is now shown. The electrons are seeded by a field
with a constant gaussian profile in the tranverse plane. The
scaled rms radius of the seed radiation intensity is chosen
to match the rms value of the gaussian distribution of the
electron beam σ̄r = σ̄b. Radiation diffraction was artif-
ically switched off for this example. This will therefore
show only the effects of the 3D electron beam on the sys-
tem. The electron beam parameters are the same as for the
previous example, the seed field peak intensity in x̄ and ȳ
is chosen so that the scaled power is 10−3. For compari-
son, simulations are performed both with and without the
emittance and focussing. The results are shown in Fig. 3.
For the case of no emittance or focussing the beam trans-
verse monmentum has zero spread and therefore does not
diverge even without a focussing channel. For the case with
emittance and focussing the beam is matched and retains
a constant radius as shown above. Hence any effects in
the generation of radiation can be attributed to emittance
and betatron effects only. The expected reduction in power
generated and rate of the instability are clearly seen.

CONCLUSIONS

A new model for describing a 3D variably polarized FEL
has been presented which uses an efficiently parallelised
algorithm with finite elements to solve the working equa-
tions. A simple example of matching a 3D electron beam to
a focussing channel and a diffraction-free FEL interaction
were shown. The new code uses only publically available
linear-solvers etc. and is intended for open-source release
in the near future. A post processing visualization package
is being worked on. The method of modelling diffraction is
currently being updated from the method of [2] which uti-
lized a complex envelope A to describe the radiation field.
The new model uses the full field of the radiation i.e. in-
cluding the fast oscillatory variations.
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Figure 3: Power as a function of z̄2 after ≈ 10 gain lengths
through the wiggler. Both simulations were run with iden-
tical parameters, one with emittance and beam focussing
(blue) and one without (green).
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Abstract

To date, short wavelength Free Electron Laser amplifiers
have generated linearly polarised radiation. For several im-
portant classes of experiment, variable polarisation is re-
quired. For example, in the wavelength range from 1.5
to 2.5 nm, light polarisation is important in characterising
magnetic materials where measurements depend critically
upon the handedness of the polarisation. It is therefore
important that the polarisation does not fluctuate between
measurements. In this paper, we study possible methods to
generate variably polarised light and consider its shot-to-
shot stability.

INTRODUCTION

Free Electron Lasers can now generate high intensity, fs
pulses of linearly polarised radiation [1]. It is desirable to
generate such radiation with circular polarization. It may
be possible to modify existing facilities to generate circu-
larly polarized light rather than build potentially expensive
helical wiggler SASE FELs. Microbunched electron beams
from existing planar wiggler SASE sources may be able to
generate coherent circularly polarized radiation with simi-
lar powers to those of the existing planar wiggler FEL with-
out extensive modification.

Conceptually, the simplest option is to inject mi-
crobunched electrons from a pre-saturated SASE planar
wiggler FEL into a relatively short helical wiggler mod-
ule. However, this may pose engineering challenges, and
helical wigglers are significantly more expensive than pla-
nar wigglers. An alternative is the crossed planar wiggler
scheme proposed in [2] and [3]. A secondary planar wig-
gler rotated 90◦ with respect to the first SASE wiggler will
generate linearly polarized radiation perpendicular to that
generated by the first wiggler. Ideally, the microbunched
beam will radiate coherently and produce similar powers
to that of the first wiggler in ∼ 1.3 gain lengths [4] of the
second wiggler. If a π/2 phase shift is supplied between
the two wigglers the combined radiation of the 2 sources
should sum to give circularly polarized light. However,
since the second wiggler must be ∼ 1.3 gain lengths to
produce ‘perfect’ circular polarization, the system can only
be optimised for one resonant wavelength for a given set of
beam parameters.

A modified crossed planar wiggler proposed in [5] and
shown schematically in Fig. 1 may remove this constraint.
By dumping the radiation from the first SASE wiggler and
then using two wigglers of equal length rotated 90◦ with

Figure 1: Illustration of the alterative crossed wiggler
scheme from [5]

respect to each other, the powers generated by the micro-
bunched beam in each of these wigglers can be made equal
and the polarization controlled by a relative phase shift be-
tween the two. The polarization stability of this scheme
has been analyzed in [6], where 3D GENESIS simula-
tions were used to calulate the radiation fields from the two
crossed wigglers.

The unaveraged model presented in [7] describes a FEL
with a variably polarised wiggler, and is capable of self-
consistently describing the seperate transverse radiation
fields through a common complex field. In addition, the
model describes an extended radiation spectrum including
significantly higher and lower frequency content simulta-
neously, subject to the Nyquist condition. The ability of
this model to describe different radiation and wiggler polar-
izations accurately is discussed, and an example of how the
crossed planar wiggler scheme can be simulated is shown
with some preliminary results.

THE MODEL

Details of the derivation and scaling of the working
equations may be obtained from [7] and are summarised
here.

The FEL interaction is described by the coupled 3D
Maxwell-Lorentz equations in a variable magnetic wiggler
field defined as:

Bw =
Bw

2
(̂fe−ikwz + c.c.) (1)

where the unnormalized vector basis:

f̂ = fxx̂ + ifyŷ (2)

is used to define a variable polarized wiggler field and
where Bw is the peak magnetic field strength. Hence, fx
and fy describe the strength of the wiggler magnetic field
in x and y. The vector basis f̂ is un-normalized so that the
RMS magnetic field B̄w varies from Bw/

√
2 ≤ B̄w ≤ Bw

as the wiggler changes from planar to helical.
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The electromagnetic field is defined as:

E(x, y, z, t) =
1√
2

(

êξ0e
i(kz−ωt) + ê∗ξ∗0e−i(kz−ωt)

)

(3)
with complex envelope ξ0(x, y, z, t) and the normalized
vector basis ê = 1√

2
(x̂+iŷ) is defined with ê·ê = ê∗·ê∗ =

0 and ê · ê∗ = 1. Projecting the field onto ê∗ gives:

E⊥ = ξ0e
i(kz−ωt) = Ex − iEy (4)

where Ex and Ey are the field components in x and y, or
in terms of the scaled units of the working equations:

A⊥ = A exp(−i(z̄2/2ρ)) = Ax − iAy. (5)

Rewriting the complex envelope A with an explicit magni-
tude and phase A = |A|eiψ gives

Ax = |A| cos(z̄2 − ψ) (6)

Ay = |A| sin(z̄2 − ψ) (7)

For constant |A| and ψ, these fields describe a circularly
polarised field. More generally, if |A| and ψ are both func-
tions of z̄ and z̄2 they can describe any polarization. This is
what happens in the code which solves numerically for A⊥:
the radiation amplitide, phase and polarization evolve self-
consistently, both driving, and being driven by, the trans-
verse electron current due to a variable wiggler polariza-
tion. Unlike other simulation codes, the radiation field po-
larisation is not fixed with respect to any transverse axis.
To obtain the complex envelope required for a given po-
larization equation (5) is re-arranged to obtain the real and
imaginary parts of the envelope in terms of Ax and Ay .
It can then be shown that the magnitude and phase of the
envelope vary as:

|A| =
√

A2
x + A2

y (8)

tan ψ =
(

Ax sin(z̄2/2ρ)−Ay cos(z̄2/2ρ)
Ax cos(z̄2/2ρ)+Ay sin(z̄2/2ρ)

)

(9)

for the given polarization.

COMPUTATIONAL SOLUTION

The code which solves the combined electron-field in-
teraction is described in more detail in [7]. The partial
differential equations describing the field and electron vari-
able evolution are solved using a Fourier split-step integra-
tion method, where the first half-step solves field diffrac-
tion using Fourier transform methods, and the second half
step integrates the driven electron and field equations us-
ing a Runge Kutte 4th order and finite element method. All
computation is performed in parallel and memory usage is
spread evenly across processors increasing code efficiency.

VARIABLE WIGGLER POLARISATION
SIMULATION

A general elliptical wiggler field can be varied from a
linear to a full helical polarization with the electron beam
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Figure 2: Illustration of how the complex envelope magni-
tude and phase vary to obtain different polarizations.
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Figure 3: Example of different field polarizations as driven
by electrons in planar, eliptical and helical wigglers as
specified by fx and fy . The radiation polarization profiles
are shown at the bottom, and the scaled powers on top.

having a corresponding transverse current. Simulations are
now presented that demonstrate that the field and its polar-
ization are driven consistently with such a variable trans-
verse current.

In Figure 3 the x and y components of the radiation
fields driven by a very short ≈ λr/10 electron pulse prop-
agating through three 20-period wigglers of different po-
larisation of are plotted. The electron pulse has a gaussian
charge distribution and, being of sub-wavelength duration,
behaves almost like a single high-charge particle emitting
coherently. The self-consistent interaction of the field on
the electrons was artificially switched off. The wiggler pa-
rameter āw = 0.5, so there is a relatively small harmonic
content. The FEL parameter ρ = 0.0796. This simulation
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demonstrates that the electrons drive the correct field polar-
ization via the complex field. Note that the scaled ‘instan-
taneous power’ ∝ |E⊥|2, i.e. including the fast oscillatory
field term, has been plotted. The sinusoidal amplitude of
the electric field is evident in the planar and elliptical cases
whereas the non-oscillatory ampluitude of the electric field
in the helical case gives a continuous instantaneous power.

PRELIMINARY RESULTS FROM A
CROSSED PLANAR FEL SYSTEM

Although the crossed planar wiggler scheme of [5] in
principle allows tunable circular polarization in SASE, the
electron bunching is initially noisy. Such bunching may
impede the ability of this scheme to achieve good circular
polarization. This is because the phase slippage induced to
achieve the circular polarisation, even for relatively small
wiggler lengths and phase shifts, may not allow good am-
plitude and phase matching of the electric fields to give
the desired polarisation. A simulation with the unaveraged
code to examine the effects of this is now outlined and pre-
liminary results presented.

An electron pulse of 40 cooperation lengths is propa-
gated through a long planar wiggler to just before satura-
tion, approx 17.5 gain lengths. The FEL parameter was set
to ρ = 0.01. This is larger than typical values for short
wavelength SASE FEL’s however it reduces the computa-
tional load and enables initial predictions and investigation
of the principles to be made quickly.

The noisy radiation output and bunching is typical of the
SASE process. A cold, flat top current distribution was
used so that a large fraction of the beam evolves only from
shot-noise. However, as this is an unaveraged code, CSE is
generated at the edges of the beam, with that from the back
developing into a superradiant spike. The front 15 coop-
eration lengths of the electron pulse have been untouched
by superradiant SACSE spike evolution and have evolved
only from shot-noise. To artificially remove CSE effects,
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Figure 4: Simulation of the SASE bunching FEL. On the
left is a plot of the x and y fields at the end of the wiggler.
On the right is the electron phase space. Note the SACSE
spike at z̄2 ≈ 42. In the z̄2 frame the tail of the pulse is to
the right and the head to the left. A section of the electron
pulse from z̄2 = 17.25 to 32.25 which has evolved from
noise only (no CSE) was selected for input into the crossed
planar FEL.
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Figure 5: Simulation of the crossed planar FEL. The mi-
cro bunched electron beam has propagated to z̄ = 1. The
wiggler polarization was switched from a planar in y to a
planar in x and a π/2 phase shift added at z̄ = 0.5. The
x and y fields are shown here, the bottom plot is enlarged
to show the structure of the fields, and the magnitudes are
scaled to the total magnitude of the radiation vector for ease
of comparison.

this section only of the beam was selected for input into
the two crossed planar wigglers with the remainder of the
beam discarded.

The shortened beam was then injected into a combined
cross wiggler a total of 1 gain length long. As the beam
had been pre-bunched, high power radiation is emmitted
in both wigglers sections. After one half a gain length the
planar wiggler polarization was rotated by π/2, to change
from a y to x polarized planar wiggler, and a π/2 phase
shift was added to the electron beam.

Figure 5 shows the resulting transverse radiation fields.
As this model is unaveraged the higher harmonics evolve
self consistently and the odd harmonics of the planar wig-
gler are seen in Fig. 6. The waveforms in Fig. 5 show the
fields in both planes are modulated, possibly by the har-
monic content, which may adversely affect the generation
of good circular polarization. The scaled instantaneous ra-
diation power |A⊥|2 shows significant modulation indicat-

THPB15 Proceedings of FEL2010, Malmö, Sweden

624 New and Emerging Concepts



0 5 10 15 20
0

0.05

0.1

0.15

0.2
Power atz̄ = 1

z̄2

|A
|2

0 2 4 6 8 10 12

10
0

10
5 Scaled spectral power atz̄ = 1

Scaled Frequency

P
ow

er

Figure 6: Simulation of the crossed planar FEL. On top is
the scaled power, and the bottom shows the frequency con-
tent of the signal scaled to the frequency of fundamental.

ing that the degree of circular polarization of the radiation
is quite poor. Also note that the amplitude of the y com-
ponent of the radiation field is less than that of the x com-
ponent. This may result from electron de-bunching in the
first y polarized planar wiggler reducing power output in
the second x polarised wiggler. Further optimisation may
mitigate such effects.

CONCLUSION
The model presented here is a potentially powerful tool

for investigating variable polarization effects in the FEL,
allowing fully variably polarized wigglers and radiation
fields to be modelled self consistently. The examples
shown are ‘work in progress’ and, although rudimentary,
demonstrate the potential of the code to investigate polar-
ization phenomena in FEL physics. The example simula-
tion of the crossed planar FEL is an initial step towards ex-
amining how the beam characteristics affect the final field
polarization. The field polarization must now be described
in a quantitative manner, for example via Stoke’s parame-

ters. The form of the transverse field components are writ-
ten here in terms of the common complex field envelope.
To determine the Stokes’ parameters this description must
now be related to the independently varying magnitude and
phase of the transverse fields.
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