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Abstract

With the rising demand for efficient wireless connectivity, Artificial Intelligence
(AI) has become a key enabler for enhancing wireless radio system performance.
Intelligent models support cognitive decision-making and real-time processing,
enabling low-latency, edge-capable systems for Physical Layer (PHY) wireless
communications tasks. While Al models perform well on Graphic Processing
Unit (GPU)-based systems, edge deployment can significantly reduce latency
and increase throughput, enabling operation in constrained environments.

This thesis presents the development and evaluation of a streaming-based
Convolutional Neural Network (CNN) accelerator for Software Defined Radio
(SDR) receivers operating on live, real-time signals. Designed from first princi-
ples using a synchronous dataflow model, the architecture is purpose-built to
align with the continuous dataflow of FPGA-based SDR pipelines, enabling
per-sample processing without data loss. The accelerator is implemented on
the AMD Zynq UltraScale+ Radio Frequency System-on-Chip (RFSoC) plat-
form, demonstrating low-latency operation (29.6 us) and high-throughput (34k
classifications per second) real-time operation in PHY layer tasks.

To support real-time deployment of CNN models on live signals captured
by the ADC, this thesis introduces the DeepRFSoC dataset generation method-
ology, which enables training on realistic loopback data affected by simulated
channel impairments and hardware-specific distortions. This methodology
enables the accelerator to operate in real-time on the SDR platform processing
live signals as they are captured.

A quantisation investigation is presented, comparing Post-Training Quan-
tisation (PTQ) and Quantisation-Aware Training (QAT) under real-time live
signal reception conditions on the AMD RFSoC. Results show that 8-bit QAT
models can outperform their floating-point counterparts by 3%, while 4-bit
and 2-bit models maintain competitive accuracy with only a 2% reduction,
demonstrating the viability of quantised CNN models for real-time PHY-layer
inference on edge FPGA-based SDR platforms, contributing to the development
of intelligent, low-latency SDR systems.
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Chapter 1
Introduction

Over the last decade, the number of wirelessly connected devices has grown
drastically [1]-[3]. With the continuous advancements of wireless standards and
significant improvements in data capacity, a wide range of new applications
and sectors have adopted wireless technology. Applications include connected
homes, smart cities, civilian drones, and the expanding network of satellites. The
benefits of a more connected society are widely felt, from instant access to live
news, streaming, music, and communications, to the enablement of autonomous
vehicles and Internet of Things (IoT) systems. As global connectivity becomes
increasingly essential, the demand for more efficient data transfer protocols,
spectrum management techniques, and data bandwidth is rising in parallel.

To address the growing demand for more efficient wireless communications
to manage the connectivity demand, current radio systems must evolve. This
evolution points to radio systems that are capable of adapting dynamically to
their environment, managing spectrum more efficiently, and making real-time
decisions without human intervention. These radios are called ‘intelligent
radios’. Intelligent radios are enabled by the power of Artificial Intelligence
(AI), which offers ways for machines to ‘learn’ how to perform some historically
challenging tasks well. While previously a task like symbol-to-bit demapping
had to be hand crafted by an engineer, a machine can instead learn to decode
symbols and even out-perform state-of-the-art techniques under more extreme
channel conditions [4].

Al is the theory and development of computer systems able to perform
tasks without the need of human intelligence. A subset of Al is Machine
Learning (ML), where computers learn patterns and make decisions from data
without being explicitly programmed. Traditional ML methods often rely on

hand-crafted features, manually selected characteristics of the input data that



help guide learning [5]. Deep Learning (DL) is a type of ML algorithm that
uses Artificial Neural Networks (ANNs) and raw input samples, instead of
features, to learn from the data. This distinction between learning a task
through features and learning a task through the raw samples has led to DL
emerging as a powerful tool for solving previously difficult tasks [6].

In computer vision and natural language processing, the abundance of data
available has led to huge success in both fields, in tasks like object recognition,
image segmentation, language translation, and language models [7], [8]. The
leaps in algorithmic advancements in those fields can also be transferred over
to other domains, like Physical Layer (PHY) wireless communications [9]. As
6G technologies emerge, and with an ever-increasing number of wirelessly
connected devices, DL can be a tool to solve many of the challenging tasks
prevalent in wireless communications. Examples include: channel estimation,
signal identification, decoding, and synchronisation.

Current and emerging Software-Defined Radio (SDR) receivers, like the
AMD Zynq UltraScale+ Radio Frequency System-on-Chip (RFSoC) [10], are
improving in their capabilities with higher sampling rates, wider instantaneous
bandwidths, and more powerful processing, enabling signal processing algo-
rithms implemented on the devices to be processed at even higher data and
sampling rates. Current Al acceleration occurs on dedicated processors, either
on the Graphics Processing Units (GPUs), or on Neural Processing Units
(NPUs) [11]-[14]. While GPUs and NPUs are excellent for training and acceler-
ating a variety of neural network topologies, respectively, without changing the
underlying architecture, they suffer from memory bottlenecking, latency, and
throughput limitations depending on the dimensions of the topology, making
them difficult to include into a radio receiver pipeline that requires deterministic
latencies and fast throughputs [11]. The focus of this thesis is to develop a
custom Convolutional Neural Network (CNN) accelerator architecture on a
Field Programmable Gate-Array (FPGA) that can be used in line with, or as
a replacement for, a traditional signal processing algorithm in a radio receiver
to support real-time streaming from the RF Analogue to Digital Converter
(RF-ADC).

This chapter will outline the main motivations for the work presented in this
thesis. This includes why an application specific CNN accelerator architecture
is needed for real-time PHY radio receiver applications, and how this can
complement current radio receiver signal processing pipelines without requiring

a structural overhaul to facilitate AI model support. In this context, training
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refers to the offline process of teaching a model using labelled data, while
inference is the real-time execution of that trained model on new, unseen data

typically performed on embedded hardware.

1.1 Convolutional Neural Network Accelera-

tors for Wireless Receivers

A typical wireless SDR. receiver performs a sequence of signal processing oper-
ations to recover transmitted information from received radio signals. These
include filtering, mixing to baseband, decimation, synchronisation, demod-
ulation, and decoding, which are usually implemented using deterministic,
hand-crafted algorithms optimised to handle adverse channel conditions [15].
However, as wireless environments grow more complex and congested, due to
the increasing number and variety of wireless devices sharing the spectrum,
traditional signal processing techniques begin to struggle with generalisation,
often requiring manual reconfiguration.

As an alternative, there is growing interest in using Al, particularly CNNs,
to tackle PHY tasks [16]. CNNs can learn relevant features directly from raw
[/Q samples, reducing the need for expert feature engineering and improving
adaptability across varying conditions. This shift also enhances productivity
by allowing engineers to focus on model design rather than manual tuning.

In other domains that rely on AI, model size varies significantly depending
on the task. For example, computer vision applications like object recognition
may use models such as Tiny-YOLOv4, which has around 6 million parameters
and runs comfortably on consumer-grade GPUs [17]. In natural language
processing, models can be substantially larger; for instance, OpenAl’s GPT-4
has an estimated 1.76 trillion parameters and requires tens of thousands of
high-end GPUs just for inference [18]. These models are trained to generalise
across many tasks, including understanding natural language instructions.

By contrast, Al models used for PHY communications do not require this
scale. Most tasks can be handled with much smaller models. In this work, a
candidate CNN architecture from the RadioML benchmark is used, containing
approximately 260,000 parameters [19].

Although DL underpins all of these applications, the scale and nature of
models vary widely across domains. Consequently, the deployment strategy
should be tailored to the specific application. A general-purpose Al inference

architecture designed for large models may not be optimal for smaller, domain-
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specific models, particularly in scenarios where throughput and deterministic
latency are critical, as is often the case in wireless communications. The
combination of smaller model size and strict performance requirements makes
CNNs for PHY tasks particularly well-suited for implementation directly on
edge devices. Edge devices are computing devices located at the periphery
of a network, typically close to the source of data or the end user. They
often operate under constrained compute resources and are commonly used in
low-power or battery-powered environments [20].

Many radio transceiver systems are deployed on System-on-Chip (SoC)
devices and FPGAs. To integrate DL into these systems without disrupting
the existing architecture, CNN models must follow a dataflow structure that
mirrors the radio pipeline. In such a structure, signal processing operations are
represented as nodes in a graph, with output samples from one stage streaming
directly into the next [21]. This supports efficient parallel processing and
resource utilisation. Dataflow architectures are particularly well-matched to
FPGA-based SoCs such as the AMD RFSoC [22], which can be reprogrammed
to deploy new neural network structures as needed.

Deploying a CNN model onto the Programmable Logic (PL) of an FPGA
or RFSoC/SoC introduces several challenges. These include model compression
(to fit weights into on-chip memory), quantisation of weights and feature maps,
and architectural optimisations like resource sharing.

This thesis addresses the lack of deterministic, streaming-friendly CNN
architectures that operate at radio line-rate and complement the structure of
existing radio receiver pipelines. To demonstrate the approach, modulation
classification is used as the application case study, as it represents a common Al
task in modern radio systems that benefits from real-time, embedded process-
ing [9]. The work also investigates the training and deployment requirements of
such models on the AMD RFSoC, including the effects of weight quantisation
on real-world performance.

While CNN models are promising for PHY tasks, integrating them into
wireless receivers requires overcoming significant deployment challenges, as

discussed in the following section.
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1.2 Challenges of Deploying Deep Learning in

Wireless Receivers

DL methods, as shown by [19], have emerged as powerful tools in the wireless
communications domain due to their ability to model complex, non-linear
systems by training on raw samples of example data, rather than relying on hand-
crafted feature extraction techniques. Tasks such as modulation classification,
signal identification, decoding, synchronisation, and channel estimation are
some of the tasks where DL can help improve radio performance, particularly
in challenging channel conditions where traditional Digital Signal Processing
(DSP) algorithms struggle, such as low SNR, highly dynamic environments. By
providing raw data samples and careful labelling, an Al model can be developed
to answer almost any problem, if designed well.

Wireless communications presents a unique opportunity for DL applications
because the environment can be simulated and synthesised. Tools such as
MATLAB communications toolboxes [23] and GNU Radio [24] can simulate
channel models and generate a vast array of different signal types, while
simultaneously labelling datasets, overcoming a common bottleneck in many
DL domains: lack of data [25]. Therefore wireless communications datasets
for various tasks can be created without the need to gather real-world data,
significantly accelerating development.

To fully leverage DL in a deployed radio system, several practical challenges
must be addressed, particularly when targetting real-time, edge-deployed infer-
ence, like implementing a DL algorithm into the signal processing pipeline of
the RFSoC.

Despite the strong potential of DL in wireless communications, integrating
these models into a real-time radio comes with several practical challenges. In
traditional radio pipelines on FPGAs, like Figure 2.13, samples are received by
the radio and digitised at the RF-ADC before being streamed into the PL at
a set sampling rate. For as long as the radio operates, this stream of data is
constantly received. In some systems, the radio captures data and then pauses
while the data is transferred to an external Al processor for inference. The
system waits for a response before continuing operation, which may not be
acceptable in applications that require uninterrupted, real-time processing. As
a result, a DL accelerator that complements this continuous stream of samples
is necessary, i.e. an architecture that operates within the streaming context of

a traditional signal processing pipeline, ideally operating directly within the PL



1.3 Background and Prior Work

alongside standard DSP blocks. This motivates the design of a streaming-based
CNN accelerator: an architecture capable of consuming I/Q samples at runtime
and performing inference in a filter-like manner.

Such an accelerator should address these deployment criteria:

o Latency: Many radio tasks, such as signal identification and modulation
classification in spectrum monitoring, must produce timely outputs to be
actionable. Offloading inference to software, external, or processor-based
accelerators introduces delays incompatible with real-time constraints.
A streaming hardware implementation minimises latency by keeping

inference within the signal path.

e Throughput: Wireless signals, especially at high samples rates, demand
high-throughput processing to avoid dropping samples. A streaming
CNN can process a stream of samples, one or more each clock cycle,

maintaining the line-rate required by the signal processing pipeline.

« Resource and Power Efficiency: While platforms like the RFSoC
provide powerful resources for signal processing, they are still limited
in terms of memory and logic elements. Complex and large designs
can quickly exhaust these resources. To address this, Al accelerator
architectures must be optimised for low resource usage. By implementing
models in fixed-point on the PL improves hardware efficiency and enables

low-power, edge-based inference without relying on external processors.

Overall, the case for a streaming-based Al accelerator is not just performance-
driven, it is architectural. DL, when adapted to the streaming-based nature of
radio hardware, can behave like a learned signal processing block, embedded
within the same AXI4-Stream infrastructure that already supports filters,

demodulators, and symbol to bit decoders.

1.3 Background and Prior Work

This thesis intersects three active fields of engineering research: DL, wire-
less communications and signal processing, and hardware accelerated FPGA
development, illustrated by Figure 1.1.

While each area has seen significant progress independently, relatively few
works attempt to bridge all three. Achieving a combination of the three domains

requires a background in DL acceleration, FPGA development with SDRs, and
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Figure 1.1 Venn diagram showing the intersection of three domains of engineer-
ing research.

a solid understanding of wireless communications and its applications with Al
This section provides an overview of key developments in each area to situate

the present work within the broader research landscape.

1.3.1 CNNs in Wireless Communications

The use of Al in PHY wireless communications has grown substantially in
recent years, driven by the need for more adaptable and data-driven solutions to
address the increasingly harsh channel environments and congested spectrum [1].
Traditional PHY algorithms rely heavily on expert-designed signal processing
functionality, which are often tailored to a specific environment and require
manual tuning. Al models, particularly DL models, have the ability to learn
directly from raw samples, and to perform tasks that are otherwise difficult to
hand-craft.

CNNs have been widely adopted in PHY wireless communications due
to their ability to extract local features from time-series or spectrogram rep-
resentations of the complex data. These models have demonstrated strong

performance in many communications tasks such as:
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o Channel estimation, where CNNs are used to improve performance in
harsh channel conditions, or to match the performance of traditional

techniques using fewer pilots symbols [26]-[28].

o RF fingerprinting, where CNNs are used to uniquely identify devices
by learning subtle, hardware-specific imperfections in their transmitted
signals, know as RF fingerprints. This allows for reliable identification
of devices in IoT environments [29], [30], across various channel condi-

tions [31], and even when channel state information is unavailable [32].

» Signal decoding, where CNNs are used to recover bit sequences from
received signals, showing promising results in comparison to traditional
decoding methods [4], [33], [34].

» Signal identifications, where CNNs have been widely used for tasks such
as Automatic Modulation Classification (AMC). This was popularised
by [19], where CNN models were applied directly to raw I/Q data. Subse-
quent research focused on refining CNN architectures for improved perfor-
mance [35]-[37]. More recent work has begin to explore transformer-based
models for AMC, while still using CNN inspired structures [38].

CNNs are a popular model variant for addressing many PHY wireless
communications tasks, where the acceleration of these model structures can
assist with the realisation of state-of-the-art DL models operating on edge
devices. AMC is a suitable candidate for demonstrating the effectiveness of a

real-time system that can be reused for other wireless communication tasks.

1.3.2 CNN Dataflow Accelerators on FPGAs

While there are many NPUs and Tensor Processing Unit (TPU) structures out
in the field that are specifically built to make Al model acceleration faster and
more power efficient, they are built with the intention of being architecture
agnostic, meaning that they will process the DL model calculations regardless
of the model topology. One downside to these processors is the memory
bottleneck associated with reading and writing data on and off-chip (more on
this in Chapter 3). Synchronous Dataflow (SDF) models [21] instead implement
a fixed topology that is optimised towards the model dimensions, resulting in a
faster throughput accelerator. These models are suited for devices with PL,
taking advantage of its inherent reprogrammability and scope to implement

custom architectures.
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SDF-based works that accelerate CNN models include: FINN [39], a design
tool that generates custom accelerators for FPGA development by implementing
each layer of a model using streaming architectures that are optimised for
FPGAs; fpgaConvNet [40], a toolflow that works similarly to [39] by mapping
CNN models to FPGAs; and hlsdml [41], a Python package for mapping Al
model inference to FPGAs by creating firmware using High Level Synthesis
(HLS) [41].

While tools like FINN, fpgaConvNet, and hls4dml focus on general-purpose
acceleration, they do not specifically target applications where continuous data
reception is a priority, such as in wireless communications. These methods
prioritise computational efficiency without guaranteeing a pipeline with no
sample loss. The approach taken in this thesis focuses on designing a streaming
pipeline architecture based around the input data rate itself, ensuring that
all the incoming samples into the model are processes without loss. This
application-driven approach motivates the need for a custom architecture built

for real-time radio receivers.

1.3.3 Real-time CNN Inference for Modulation Classifi-

cation

Real-time inference of a CNN model for the task of modulation classification
is a step towards the realisation of CNN models being deployed on FPGA-
enabled SDR systems. Prior studies, such as [42] and [43], have explored
Short Time Fourier Transforms (STFTs) and CNN architectures for modulation
classification on FPGAs with pre-recorded data. These investigations primarily
focused on simulated data and did not encompass real-time received signals.
Another work demonstrated classification of radio signals in real-time using the
Line Hough Transform with spectrograms on an AMD RFSoC device, a real-time
deployment without the use of CNNs [44]. Preliminary results demonstrating
how FINN [39] could be used to deploy a model for the RadioML dataset [45]
were presented in a proof of concept by [46]. A low-precision CNN accelerator
to perform modulation classification on the AMD RFSoC on the RadioML
dataset was implemented by [47]. The work was continued by implementing a
four class modulation classifier operating live with the RF-ADCs. However, the
majority of these studies, expect for [47], rely on pre-saved datasets. While [47]
does demonstrate live classification using RF loopback, the received signals are

clean and unaffected by multipath channel effects. As a result, there remains
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a gap in the literature concerning live classification of signals that have been
subjected to adverse channel conditions.

To the best of author’s knowledge, a single solution for a real-time CNN
modulation classifier operating on live signals with a SDR has not been fully

explored in any previous work.

1.4 Research Aim & Objectives

The research aim of this work is to develop a custom CNN accelerator archi-
tecture that can integrate into the streaming pipeline of FPGA-based radio
receivers, particularly the AMD RFSoC, to support real-world PHY wireless
communications applications. To accomplish this, the main objectives are as

follows:

o To design and develop a streaming-based CNN accelerator that operates

at the input data rate into the accelerator without dropping samples.

o To investigate the training requirements for deploying a CNN model
in real-world, real-time radio environments, including the creation of a

custom dataset to reflect deployment conditions.

o To evaluate the effects of fixed-point quantisation on the performance of

the deployed model.

The following subsections expand on each of these research objectives and
their importance in the context of wireless communications radio receivers

deployed in real-world settings.

1.4.1 Streaming-based CNN Accelerator for Real-time

Radio Receivers

A radio receiver pipeline is typically composed of DSP blocks that stream
data from one stage to the next in a pipeline, with each block responsible
for a specific signal processing task, as depicted in Figure 1.2. These blocks
might include Digital Down-Converters (DDCs), Finite Impulse Response (FIR)
filters, channelisers, demodulators, and other custom logic. In FPGA-based
radio receivers like the AMD RFSoC, these DSP functions are usually deployed
concurrently on the PL and operate in a streaming fashion. Each stage processes

the data stream and passes it along, forming a dataflow architecture. This
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parallelism enables the receiver to keep up with high sampling rates and meet
the real-time demands of wireless communications.

DL-based models, particularly CNNs, are increasingly being explored to
tackle some of the more challenging tasks in radio receivers. In simulation, CNNs

can show strong performance improvements over traditional methods. However,

deploying these models in a real-time radio system is far from straightforward.

When using platforms like GPUs for inference, the receiver typically needs to
buffer samples, transfer them to an external device, process them, and wait
for the results before continuing. This adds significant latency and disrupts
the streaming nature of the pipeline. Worse still, only chunks of data can be
processed in this way, meaning that not every sample is acted on in real time,
something that is unacceptable in many RF applications.

Instead, as shown in 1.2, a CNN accelerator that integrates directly into the
streaming pipeline, treating the input as a continuous flow of samples, is far
more suitable for deployment on FPGA-based receivers. Such an architecture
must be designed to avoid dropping samples from the RF-ADC, and instead
operate at the input data rate of the system. This thesis explores the design
choices, challenges, and optimisations needed to create a CNN accelerator that

fits naturally into the dataflow structure of real-time radio receivers.

Synchronise
i Decim. =] & Decode —>

Demodulate

Figure 1.2 A DL model as a part of a streaming dataflow radio receiver pipeline.

1.4.2 Training Requirements for Deploying CNN Models

in Real-world Scenarios

DL models for PHY tasks such as modulation classification [19] are often

trained using large, high-quality datasets generated in simulation environments.

These datasets are typically idealised, with controlled noise levels, well-defined
modulation formats, and standardised channel models that simulate multi-path
effects in wireless environments. Models are usually trained and evaluated using
floating-point precision on high-performance computing platforms. While this

setup is useful for initial development and benchmarking, it does not reflect the
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constraints and imperfections faced during real-world deployment, especially
on embedded platforms like the AMD RFSoC.

This work looks at how to build more representative training datasets that
capture the real-world imperfections introduced by the RF Data Converters
(RFDCs). The RFDC is a hardened components on the RESoC that hosts the
RF-ADCs and RF Digital to Analogue Converters (RF-DACs). By using the
RFSoC itself as part of the training loop, data can be collected directly from
the RF-ADC, capturing hardware-induced artefacts and quantisation effects
inherent to the SDR platform. The goal is to establish a training and validation
process that narrows the gap between simulation and deployment, allowing
the final model to generalise more effectively when running on hardware and

improving real-world performance consistency.

1.4.3 Lower Precision Weights for Real-Time CNN Mod-

els

Deploying a trained CNN model onto a real-time, FPGA-based radio receiver
introduces a number of challenges beyond just maintaining throughput. Due
to hardware limitations, floating-point arithmetic is often not practical in the
PL of the RFSoC. Instead, fixed-point arithmetic is used to reduce logic area,
power consumption, and overall resource usage. However, simply converting
a floating-point model to fixed-point can lead to a drop in inference accuracy.
This thesis investigates that precision-performance trade-off by comparing two
quantisation techniques: Post-Training Quantisation (PTQ) and Quantised-
Aware Training (QAT). Both approaches are evaluated at different bit-widths
to assess the impact on accuracy and resource efficiency within the proposed
accelerator architecture.

An important consideration is the engineering cost of migrating a model from
software to hardware. This includes evaluating what retraining may be required
to enable a successful transition, and whether the model weights can be reduced
to fixed-point with minimal overhead. This thesis aims to provide a practical
‘path of least resistance’ for engineers, keeping the model topology fixed and
instead evaluating how different quantisation and deployment strategies affect

accuracy and implementation effort.
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1.5 List of Contributions

Each chapter solves a specific challenge in the process from architecture design
to real-time deployment. Chapter 4 addresses the architectural challenge of
processing high data-rate 1/Q samples directly on the PL using a streaming
dataflow CNN architecture. Chapter 5 focuses on the challenge of creating
a dataset that realistically represents RF hardware distortions and enables
integration of the dataflow CNN architecture with the RF-ADC’s live inputs.
Chapter 6 tackles the deployment of low-precision weights into the custom
CNN architecture and investigates the effects of different weight quantisation
methods on the resulting real-time accuracy.

The contributions arising from this work are the following, depicted in
Figure 1.3 and the list below.

1. Development and evaluation of a streaming-based CNN archi-
tecture for SDR receivers. To the best of the author’s knowledge this
is the first radio receiver-specific CNN architecture designed to process
every sample received. A custom SDF CNN architecture is proposed that
directly complements the constant stream of 1/Q samples originating
from the RF-ADC of the AMD RFSoC development platform. This work
explores the design considerations required to successfully process every
sample produced by the RF-ADC receiver pipeline while allowing the
integration of the architecture with other streaming IP cores, such as FIR
filtering stages. This contribution introduces design considerations such
as ping-pong buffers, channel-first streaming matrix transformations, and
resource-sharing factors based on the available clock rates, to maintain

the constant processing and delivery of data samples.

2. A methodology for generating datasets for radio receiver imple-
mentations. Generating datasets for RF-applications using simulation
tools, such as MATLAB/Simulink or GNU Radio, is good for initial
DL model development; however, transferring the trained models into
real-world implementation in hardware does not yield similar performance
due to the hardware characteristics of the radio’s RF-ADCs not being
captured. This contribution proposes a method for generating channel-
distorted signals from simulation tools while also learning the real-world

hardware-specific impurities of the SDR.
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3. Investigations into quantised training methods and the effects

on resulting real-world accuracy performance. This thesis presents
one of the first in-depth comparisons of PTQ and QAT applied to real-
time modulation classification using fixed-point CNN models deployed
on a SDR platform. This contribution explores the use of fixed-point
quantisation, at 16-bit, 8-bit, 4-bit, and 2-bit precision, for weights within
the proposed custom CNN architecture. It presents an investigation into
the quantisation techniques, with a focus on their application in live
signal reception scenarios using the AMD RFSoC platform. Unlike prior
work, which relies on pre-saved datasets or clean loopback signals, this
thesis targets the gap in evaluating quantised neural network models

under real-world wireless conditions.

. Deployment and demonstration of a real-world real-time modu-

lation classification application on the AMD RFSoC. To the best
of the author’s knowledge this is the first implementation of a real-time
CNN model performing modulation classification on an SDR affected by
a multi-path distorted channel while receiving a live signal. This work is
available on a GitHub repository [48] from where the demonstrator can
be installed and run on AMD RFSoC development platforms.

Contributions to Research
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Figure 1.3 Connection between the contributions of this thesis.

1.6 Publications and Outputs

Various publications, invited talks, and demonstrators have been published as
part of this PhD study, which are listed below.
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(a)

A. Maclellan, L. D. McLaughlin, L. H. Crockett, and R. W. Stewart,
“FPGA Accelerated Deep Learning Radio Modulation Classification Using
MATLAB System Objects & PYNQ,” (conference paper), in 2019 29th
International Conference on Field Programmable Logic and Applications
(FPL), Barcelona, Spain, Sept. 2019, pp. 246-247

Available: https://doi.org/10.1109/FPL.2019.00045.

A. Maclellan, L. H. Crockett, and R. W. Stewart, “Streaming-CNN
FPGA Architecture for Communications-based Applications,” (demon-
strator), in 2022 30th IEEFE International Symposium On Field-Programmable
Custom Computing Machines (FCCM), Cornell University, New York,
USA, May 2022.

Available: https://www.fccm.org/past/2022/demo-night-2022/

A. Maclellan, L. H. Crockett, and R. W. Stewart, “Modulation classi-
fication for RFSoC showcasing streaming-CNN architectures,” (poster),
in 2022 IEEE SPS - EURASIP Summer School: Defining 6G: Theory,
Application, and Enabling Technologies, Linkoping University, Linképing,
Sweden, Sept. 2022.

Available: https://pureportal.strath.ac.uk/en/publications/modulation

-classification-for-rfsoc-showcasing-streaming-cnn-arch

T. Nyasulu, G. Fitzpatrick, A. Maclellan, E. Atimati, D. Crawford,
“Dynamic Spectrum Access and Cognitive Radio,” (book chapter), in
Software Defined Radio with Zyng UltraScale+ RFSoC, Strathclyde Aca-
demic Media, 2023.

Available: https://www.rfsocbook.com/

A. Maclellan, L. H. Crockett, and R. W. Stewart, “Streaming Convolu-
tional Neural Network FPGA Architecture for RFSoC Data Converters,”
(conference paper), in 2023 21st IEEE Interregional NEWCAS Conference
(NEWCAS), Edinburgh, UK, June. 2023, pp. 1-5.

Available: https://doi.org/10.1109/NEWCAS57931.2023.10198198

A. Maclellan, “Deployable Deep Learning Inference on AMD RFSoC for
Modulation Recognition,” (invited talk), presented at University College
London Radar Group Seminar, UK, Dec. 2023.

Available: https://youtu.be/_s2C6QPrlvc

A. Maclellan, L. H. Crockett, and R. W. Stewart, “RFSoC Modulation
Classification With Streaming CNN: Data Set Generation & Quantized-
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Aware Training,” (journal paper), in IEEE Open Journal of Circuits and
Systems (OJCAS), vol 6, Dec. 2024, pp. 38-49.
Available: https://doi.org/10.1109/0JCAS.2024.3509627

1.7 Thesis Organisation
The remainder of this thesis is organised as follows:

o Chapter 2 covers the basics of PHY wireless communications and reviews
the core digital modulation types, pulse-shaping, and channel impairments
in the context of this thesis. The topic of AMC is reviewed, as well as
the theory behind the transition from ML to DL-based approaches. The
AMD RFSoC is introduced alongside PYNQ — these are the target device

and software for all implementations in this thesis.

o Chapter 3 reviews DL and AI accelerator fundamentals. Here, the
core theory behind CNN models is covered, alongside training for both
floating-point and quantised networks. The underlying concepts and
motivations behind accelerating CNN models are discussed along with

common implementation considerations.

o Chapter 4 introduces a new streaming CNN architecture for SDR re-
ceivers. It also presents the design process and optimisation considerations
involved in achieving a real-time streaming CNN model. The work dis-
cussed in this chapter was published and presented in (b), (c¢), (e), (f),
and (g), as listed in Section 1.6.

o Chapter 5 presents implementation considerations for deploying the
architecture proposed in Chapter 4. A methodology for generating a
dataset that can be used to train a CNN model intended for real-world
deployment is presented. The work from this chapter was published and
presented in (f) and (g).

e Chapter 6 conducts an investigation into the different quantisation
requirements when training a CNN model for modulation classification.
This chapter compares the accuracy performance of deployed models
quantised to 16-bit, 8-bit, 4-bit, and 2-bits trained with PTQ and QAT
methods. Each model is evaluated on its dataset and live data capture

accuracy performance. The work in this chapter was published and
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presented in (a), (g), and (h), with accuracy performance improved since

works were published.

o Chapter 7 summarises the thesis, presents the key conclusions, limita-

tions, and outlook from the research, and proposes future work.



Chapter 2

Physical Layer Communications

and Modulation Classification

This chapter introduces the fundamental concepts in Physical Layer (PHY)
wireless communications, modulation classification, and the SDR platform of

choice for this thesis.

2.1 Primer on Physical Layer Communications

This section covers the fundamentals of physical layer communications required

to understand the AMC application explored in this thesis.

2.1.1 Introduction

The PHY of a communication system is responsible for transmitting information
from one device to another over a physical medium. In wireless systems, this
medium is the electromagnetic spectrum. Unlike wired systems where the
transmission channel is controlled and shielded, wireless communications must
operate across a dynamic and unpredictable environment.

At a high level, a typical wireless link involves a transmitter, a channel the
information passes through, and a receiver, as depicted in Figure 2.1. The
transmitter takes binary information and maps it to symbols using a digital
modulation scheme. These symbols are pulse-shaped to control bandwidth
and inter-symbol interference, and then interpolated and modulated onto a
carrier signal for Radio Frequency (RF) transmission through the channel. The
role of the transmitter is to prepare the signal in such a way that it remains

recoverable at the receiver despite channel impairments.
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Figure 2.1 Overview of a typical wireless communications link between two
radios [49].

At the receiver, the incoming RF signal is captured, demodulated, digitised,
and decimated. From there, the receiver attempts to undo the effects of the
channel by correcting frequency and timing offsets, and demapping the signal
to extract the transmitted information from the symbols. In many scenarios,
such as spectrum sharing or Dynamic Spectrum Access (DSA), the receiver
may not have any prior coordination with the transmitter. Instead, it must
monitor the spectrum for transmissions by identifying detected signal types
before making any transmission decisions.

These challenges motivate the use of ML techniques such as modulation
classification, which allow the receiver to automatically identify the modulation
scheme used by an unknown radio. These data-driven approaches complement
traditional signal processing and open the door to intelligent and adaptive

wireless systems.

2.1.2 Digital Modulation

Digital modulation is the process of encoding a frame of bits onto a carrier

signal for transmission over a wireless medium. Demodulation is the reverse

process, where bit information is extracted from the received carrier signal.

Corruption introduced by the wireless channel often results in bit errors after
demodulation. To combat these impairments, digital messages are encoded
using various modulation schemes designed to improve robustness against
channel impairments.

To support more reliable communications, various types of modulation
schemes are used to encode information into specific properties of the carrier
wave. These include amplitude, frequency, and phase.

A general term for a modulated carrier signal is given by
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s(t) = a(t)cos (2n fut + 6(t) + bo) (2.1)

where a(t) is the time-varying amplitude, f, is the carrier frequency, ¢(t) is the
phase modulation component, and ¢ is a fixed phase offset.
Eq. 2.1 can be rewritten in terms of in-phase and quadrature components

using trigonometric identities

s(t) = sg(t) cos(2mfet) — sq(t) sin(27 fet), (2.2)

where the in-phase component of s(t) is s;(t) = a(t) cos (¢(t) + ¢o) and the
quadrature component is sq(t) = a(t) sin (¢(t) + ¢o)[15], [50].

s(t) can be represented in terms of its complex low-pass representations as

s(t) = Re{u(t)} cos(2m f.t) — Im{u(t)} sin(27 f.t) (2.3)
= Refu(t)e’> <} (2.4)

where u(t) = s;7(t) + jsg(t) is the complex baseband representation (or complex
envelope) of the modulated signal s(¢). The in-phase and quadrature compo-
nents can be recovered as s;(t) = Re{u(t)} and sg(t) = Im{u(t)}, respectively.

This formulation separates the signal into two orthogonal components, which
align with vector representations like complex numbers and constellation points.
This In-phase (I) and Quadrature (Q) representation forms the foundation of
modern digital radio design.

The following section introduces digital modulation schemes used in this
thesis. Each scheme encodes information bits differently using amplitude,
frequency, phase, or a combination thereof. The design of each scheme reflects
different priorities: some aim to maximise spectrum efficiency by packing more
bits per symbol, while others prioritise robustness against noise and fading in

challenging channel conditions.

Common Modulation Schemes

A selection of common modulation schemes is described below. Amplitude,
frequency, and phase modulation techniques encode the signal by varying the
amplitude, frequency, or phase of the symbol duration T,. By the end of each
symbol interval, the transmitted signal has conveyed one or more information
bits.



2.1 Primer on Physical Layer Communications

21

In amplitude and phase modulation schemes, the symbol transmitted during
each interval Ty is represented by a complex value I + j@), mapped to a
constellation point that corresponds to a group of K bits. The duration T is
referred to as the ‘symbol time’, and each unique point in the constellation

represents one ‘symbol’.

Amplitude Modulation Amplitude modulation encodes information using
the amplitude (or voltage level) of the signal over the symbol time 7. The sim-
plest form is M-ary Pulse Amplitude Modulation (M-PAM), a one-dimensional
scheme with no quadrature component. In M-PAM, the signal’s amplitude
A, takes on one of M discrete levels, each representing a unique symbol. The
number of bits per symbol is K = log, (M) [15], [50].

M=4,K=2
00 01 11 10
L @ L @
M=8 K=3
000 001 011 010 110 111 101 100
@ @ @ @ L @ o -
T

Figure 2.2 M-PAM encoding example [50].

Figure 2.2 shows examples of PAM encoding for M =4 and M = 8. The
amplitude of each symbol is chosen from M distinct levels, allowing each
symbol to represent log, (M) = K bits. The spacing between amplitude levels
is typically referred to as d, and it plays an important role in determining
noise tolerance [50]. While PAM offers a simple implementation, it becomes
increasingly sensitive to noise as the number of amplitude levels grow, since

constellation points are spaced more closely.

Phase Modulation Phase modulation encodes information using the phase
of the signal. A common type of phase modulation is M-ary Phase Shift Keying
(M-PSK), with M discrete phases. The transmitted signal over a symbol time
period T5 is given by

si(t) = Re{Ag(t)e?mi-D/M gizwfety (2.5)
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where ¢(t) is the pulse shaping applied to the transmitted signal, and A is the
amplitude.

In M-PSK, both the amplitude and frequency stay constant while the
information is carried entirely in the phase. The constellation points (or
symbols) are evenly spaced in phase around the unit circle as described by the

i—1)

term e/270—D/M  Figure 2.3 shows how constellation points are distributed for

different M values.
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Figure 2.3 M-PSK encoding example [50].

The decision boundary defines which constellation point a received signal is
closest to. Since the points are equally spaced, the angular spacing between
them is d = 2w /M. All the symbols have the same transmit power, as they lie
on the same amplitude around the circle [49], [50].

This thesis uses the M-PSK schemes BPSK, QPSK, and 8-PSK, which
correspond to M = 2, 4, and 8, respectively. Choosing a higher M value
increases the bitrate, since more bits are encoded per symbol. However, this
comes at the cost of the symbols being packed closer together in phase, which
makes the signal more susceptible to phase noise and harder to decode reliably

in noisy channels.

Amplitude and Phase Modulation Previously amplitude and phase mod-
ulation separately provided one degree of freedom in which to encode the
information bits. By combining the amplitude and phase, two degrees of free-
dom allows for the constellation point to be placed anywhere in the unit circle,
allowing for more symbols to be mapped while keeping the distance between
points to a maximum. This scheme allows for the most bits per symbol for a

given average energy [50]. The transmitted signal is given by

si(t) = Re{A;e?%g(t)ed>m /e, (2.6)
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Quadrature Amplitude Modulation (QAM) is a version of amplitude and
phase modulation that builds constellations into square grids. An example of
M-QAM (QAM with M constellation points) is shown in Figure 2.4.

M=16, K = 4 M=4, K=2
o o o [ J o [ J
1011 1001 0001 0011 I 1 0 00

o o o o
1010 1000 0000 0010

( J o ® o
1110 1100 0100 0110

o o ( J [ J o o
1111 1101 0101 0111 11 01

Figure 2.4 M-QAM encoding example [50].

In square constellation layouts, the distance between any pair of symbols is
determined by d;; = ||s; — s;||. The minimum distance between each symbol is
d, the same as with M-PAM.

Frequency Modulation In digital communications, frequency modulation
can refer to M-ary Frequency Shift Keying (M-FSK), where information is
encoded by selecting one of M discrete frequencies corresponding to each
symbol. At each symbol interval, K = log, M bits determine the transmitted
frequency through the index ¢, the digital frequency modulated signal can be

expressed as:

si(t) = Acos(2m fit + ¢;), 0<t<Tj, (2.7)

where f; is the frequency corresponding to the ¢th symbol with a constant
phase offset ¢;.

An equivalent formula uses the centre frequency f. and defines each symbol
frequency as an offset from f.. The frequency for the ith symbol is given by
fi=fo+ a;Af., where a; =21 — 1 — M fort=1,2,..., M, and Afc is the
minimum frequency spacing between FSK carriers from f. [50].

The transmitted signal becomes:

si(t) = Acos 2 fot + 2mau Aft + @], 0<t<T,. (2.8)

In M-FSK, each of the M symbols modulates a distinct carrier frequency,
similar to the M levels in M-PAM, M-PSK, and M-QAM. Each frequency
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represents a unique symbol, encoding K bits. This results in a signal with
abrupt frequency changes, which introduces phase discontinuity and can produce
a spectrally inefficient signal due to bandwidth spreading [50]. Figure 2.5 shows

an M-FSK signal in the time domain, alongside the sequence of bits it encodes.

Bit Sequence
1
-
A 05
0 (———
M-FSK Signal
1
o 05
g
=
=
= 0
g
< 05
1
0 0.001 0.002 0.003 0.004 0.005 0.006
Time (s)

Figure 2.5 M-FSK encoding example for M = 2.

This thesis focuses on two modulation schemes that reduce phase disconti-
nuity: Gaussian FSK (GFSK) and Continuous Phase FSK (CPFSK).

In GFSK, the raw binary bitstream is passed through a Gaussian filter prior
to modulation. This smooths the transitions between bits (e.g. from 0 to 1),
softening the frequency shifts and reducing the phase discontinuities present in
standard M-FSK [50].

In CPFSK, when the signal changes frequency to encode new bits, the
modulator maintains phase continuity by preserving the current phase and
carrying it into the next symbol. This ensures that phase transitions remain
smooth and continuous, preventing abrupt changes that would otherwise lead
to spectral spreading. As a result, CPFSK maintains a constant envelope and

remains band-limited [50].

2.1.3 Pulse Shaping

In a digital communication system, the transmission of symbols over a channel
involves mapping each symbol to a time-domain pulse. Sudden changes in
amplitude, such as those in M-PAM, can lead to poor spectral characteristics in
the transmitted signal. While pulse shaping is used to smooth abrupt amplitude
transitions, it also helps reduce spectral broadening caused by sudden phase

shifts in phase modulation schemes. By smoothing the transitions between
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symbols, pulse shaping improves both amplitude and phase continuity, resulting
in a more spectrally efficient transmitted waveform.

Pulse shaping is a method of reducing the sidelobe energy relative to a
rectangular pulse, but the shaping of the signal must be performed such that
the received signal (after passing through a channel) has zero or minimal
Inter-Symbol Interference (ISI).

One of the most popular pulse shapes for reducing ISI is the Raised Cosine
(RC), shown in Figure 2.6. This pulse shaping filter has a frequency response
with a flat top and sides that rolls off like a cosine function, hence the name
‘raised cosine’. The filter is especially useful because it is parameterisable
through the roll-off factor 5. B = 0 yields a rectangular response, in the
frequency domain, whereas 8 = 1 provides a wider-bandwidth and a smoother
roll-off. The time-domain samples for the RC filter is defined as [50]

sinwt/Ts cos prt/Ts

p(t) = wt/T, 1— 4p22)T? (29)

Raised Cosine Filter Raised Cosine Frequency Response

Amplitude
Magnitude (dB)

4 2 0 2 1 0 0.2 0.4 0.6 0.8

Impulse response (time shifted) Normalized Frequency (xw rad/sample)

(a) Impulse response with changing roll-off (b) Associated frequency response

3.

Figure 2.6 Raised Cosine filter coefficients as 3 changes and frequency response.

2.1.4 Channel Models and Effects

In wireless communications, signals that are sent over the air are subject to
various impairments as they propagate through the channel. These impairments,
caused by effects such as Doppler shifts, carrier frequency offsets, and additive
noise, significantly distort the transmitted signal, altering its time, frequency,
and phase characteristics. Understanding these distortions is critical for the

design of any Al system that aims to classify received signals.
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The transmitted signal u(t) can be represented as a complex time-series of
discrete bits modulated onto a complex sinusoid. After transmission through a

multipath fading channel ¢(t), the signal becomes:

u(t) = u(t) * c(t) (2.10)

where * denotes the convolution with the channel impulse response. The

received signal r(t) can be modelled as:

r(t) = v(t)e??™ et fa(t), (2.11)

where e/27/<! represents the carrier at frequency f. and w(t) denotes Additive
White Gaussian Noise (AWGN) representing thermal background noise and
other sources of non-deterministic noise.

Equation 2.11 provides a simplified system. In reality, more terms are
present when modelling multipath propagation, leading to a more complete

expression:

N(#)
r(t) = u(t)el*m It (Z an(t)ej‘z’"(t)) + w(t) (2.12)

n=0
where the system experiences N (t) multipath components, each with its own

time-varying amplitude a,(t) and phase shift ¢,(¢). The phase shift for each
path is given by:

On(t) = 21 fea(t) — o, (2.13)

where 7,,(t) is the path time delay and ¢p_ represents the phase shifts produced
by Doppler [50]. Figure 2.7 illustrates a communications channel between
two radios. The radio receives a line-of-sight signal as well as reflected and
delayed multipath components from the channel environment. The Doppler
effect occurs when a signal is reflected off of a moving object, inducing a phase
shift depending on the velocity of the object.

The delay spread T,, of a wireless channel is the time difference between
the arrival of the earliest and latest significant multipath components of the
transmitted signal. It characterises the dispersion in time of a channel caused
by multipath propagation. A narrowband fading model is typically assumed,
where the delay spread of a channel is much smaller relative to the inverse

of the signal bandwidth B for the transmitted signal, i.e. T, < %, meaning
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Figure 2.7 A communications channel between two radios with multipath and
Doppler components.

that all multipath components arrive within a short duration and therefore the
channel is assumed to have a flat frequency response.

These channel effects cause distortions that can disrupt core signal properties,

making reliable interpretation and analysis of the received signals difficult.

Addressing these challenges is essential for developing Al systems where the
training data is as closely representative of a real-world scenario as possible
and therefore defining the simulated channel models as accurately as possible

is important.

2.1.5 The AMD RFSoC

A major outcome presented in this thesis is the integration of the proposed
algorithms onto a SDR platform. It is important to demonstrate that the Al
acceleration capabilities can run on a radio device that is suitable for real-world
deployment.

The SDR platform used in this work is AMD’s Zynq UltraScale+ RFSoC
family. The RFSoC is a state-of-the-art solution with many advanced features
for implementing flexible, high-performance radio systems [10]. It integrates
wideband RF data converters with a general-purpose Processing System (PS)
and PL into a single chip, enabling SDRs with both configurability and hardware
acceleration capabilities.

The RFSoC includes multiple high-precision, high-speed RF-ADCs and
RF-DACs, operating at sample rates of up to 5 Giga samples per second (Gsps)
and 9.85 Gsps, respectively, with resolutions of up to 14-bits. The device
consists of a PS, PL, and a set of hardened radio-specific Intellectual Property
(IP) core blocks optimized for SDR applications.
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The PS provides a range of processing resources, including the Application
Processing Unit (APU), Real-time Processing Unit (RPU), and Platform
Management Unit (PMU). It is responsible for running software associated
with the SDR application.

The PL is a key part of the RFSoC architecture, enabling hardware acceler-
ation and interfacing with the integrated RF-ADCs and RF-DACs. It hosts
reconfigurable resources such as combinatorial logic, storage, and dedicated DSP
blocks, including Look-Up Tables (LUTs), Flip-Flop registers (FFs), DSP48
slices, BlockRAMs (BRAMs), and UltraRAMs (URAMs) [10]. This fabric
allows developers to implement custom DSP algorithms to hardware accelerate.
Throughout the rest of the thesis, FPGA and PL are used interchangeably and
refer to the usage of reconfigurable resources.

The RF-ADCs and RF-DACs are implemented in hardened REDC IP cores
within the RFSoC. These cores provide the RF front-end functionality, where
each converter can be individually configured to tune to a desired spectrum band
and sampling rate. In addition to data conversion, the REFDC includes mixers for
up/down conversion between RF and baseband, as well as optional decimation

and interpolation filters for bandwidth and sampling rate adjustment.

AMD RFSoC 2x2

The RFSoC development board used in this thesis is the AMD University
Program (AUP) RFSoC 2x2 Development Kit [22], shown in Figure 2.8. AUP,
in collaboration with the board manufacturer, makes available subsidised
academic boards for teaching and research purposes. The RFSoC 2x2 is a part
of that initiative.

The RFSoC 2x2 development platform contains a 1st generation RFSoC
chip, the XCZU28DR. This chip integrates two RF-ADCs and two RF-DACs
(hence the ‘2x2’ name). The RF-ADCs can achieve a maximum sampling rate
of 4.096 Gsps and the RF-DACs can achieve a maximum sampling rate of
6.554 Gsps. The RFSoC 2x2’s elevated sample rate capabilities and flexible
reconfigurability open avenues for increasingly sophisticated applications across
the frequency spectrum. It is an excellent candidate for evaluating custom Al
acceleration architectures by building them into the PL building blocks. The
RFDC in the PL digitises incoming analogue signals and passes the samples
to the custom algorithm on the RFSoC for real-time signal evaluation. It is

through this setup that this thesis demonstrates its operation on live signals [22].
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Figure 2.8 The AMD RFSoC 2x2 development board that is used throughout
this thesis as the target platform for implementing and evaluating the custom
AT accelerators.

The XCZU28DR, part consists of a large FPGA which contains the resources

detailed in Table 2.1. These are available for implementing custom logic.

Table 2.1 XCZU28DR available FPGA resources.

Resource LUTs FF Registers BRAM Ultra RAM DSP
Total 425,280 850,560 1,080 80 4,272

The novel contributions described in this thesis target the RFSoC 2x2
development board and the Al accelerators are evaluated based on their total

consumptions of the resources from Table 2.1.

PYNQ Framework

PYNQ is a fully open source project, developed by AMD), that makes using
adaptive compute platforms, such as Zyng-enabled FPGAs and RFSoCs, much
easier. The name ‘PYNQ’ originates from the phrase ‘Python productivity for
Zynq’, although it has since further developed into a framework that extends
beyond interfacing with Zynq devices.

PYNQ uses the Python programming language, where designers can interact
with functionality implemented on the PL while developing applications on the

PS that benefit from the large ecosystem of Python libraries.
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PYNQ ships with software and drivers that make it easy to communicate
and interact with PL-accelerated functionality in conjunction with the appli-
cations operating on the PS. PYNQ enables the creation of high performance
applications through: parallel hardware execution, high data-rate processing,
hardware accelerated algorithms and real-time DSP [51], [52].

The PYNQ software stack, shown in Figure 2.9, builds on top of a typical
embedded systems software stack. The hardware layer is at the bottom, which
includes the FPGA PL with connections to the PS and hardened IP; followed by
the Operating System (OS) layer, which hosts low-level drivers and Application
Programming Interfaces (APIs) for interacting with the hardware; and finally
the interface software, in this case Python and associated packages such as
Jupyter [52]. The Jupyter session is hosted on the PS of the embedded device.

Jupyter/IPython (( >

PYNQ notebooks )

software packages (plotly) (numpy) (ipywi e t)

Python (overlay) ( dma, ) (drivers )

—( AXT4 )—( GPIO )—( MMIO )—( RFDC )—

Linux Kernel
(dev mem) @evice trea (systemd) (fpga manager)

.. N\
axi intc
—

( overlay ) (IP drivers)

FPGA

Figure 2.9 The PYNQ software stack layer breakdown. Pink cells represent
PYNQ-enabled functionality.

The upper layers handle the user interaction with the PYNQ-enabled
embedded device, facilitated through Jupyter notebooks where a browser-based
IDE is used to create applications using the Python language and open-source
libraries such as NumPy [53], Plotly [54], and ipywidgets [55]. PYNQ integrates
additional PYNQ API functionality for interfacing with the PL and common IP

cores. PYNQ also provides interfaces for hardened IP and external interfaces
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such as the RFDC, General Purpose Input Output (GPIO), and Memory
Mapped Input Output (MMIO) [52].

Jupyter [56] is an open-source web-based interface that allows users to write
and execute code in an interactive, notebook-style environment. It combines
code, visual output, and narrative text in a single document, making it a pow-
erful tool for exploration debugging, and presentation. In the context of PYNQ),
Jupyter is used to provide a platform for interacting with hardware-accelerated
applications. Its notebook interface supports running code cells individually
and in any order, enabling on-the-fly parameter tuning and experimentation
with PL designs. Jupyter also supports ipywidgets, which allow developers
to build interactive controls, such as sliders, buttons, and drop-down menus,
enabling lightweight Graphical User Interfaces (GUIs) for real-time interaction
with the PL and software components. Figure 2.10 shows a screenshot of a
Jupyter notebook example for interacting with a RFSoC application via a web
browser.

Python is used in PYNQ because it offers a high-level, user-friendly frame-
work that simplifies the development of applications. Python’s readability, large
ecosystem of scientific and visualisation libraries, and interactive development
style make it ideal for rapid prototyping and experimentation. By using Python,
PYNQ lowers the barrier to entry for working with FPGA SoC devices, enabling
developers, researchers, and students to focus on algorithm design rather than
low-level hardware and software communication details [57].

The lower levels of the PYNQ software stack handle the interfaces with
custom PL designs, board components, and the Ubuntu-based OS. PYNQ
provides a high-level layer of abstraction to the Linux kernel connection to the
target development platform through the device tree. This layer allows PYNQ
to interface with hardened board components and PL bitstreams as if they were
Python objects, simplifying the PS and PL interactions to an object-oriented
approach.

The typical PYNQ workflow is described in Figure 2.11. Every PYNQ appli-
cation begins with a complete bitstream with the desired hardware-accelerated
algorithms implemented in the PL. To achieve a working bitstream, a block
design is created, using the AMD Vivado development environment, and as
long as the design successfully passes the synthesis and implementation stages,
the bitstream can be generated.

PYNQ interactions begin when the bitstream is moved to the Jupyter session

running on the target development platform. At this point, the developer can
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Figure 2.10 A Jupyter notebook running a PYNQ demo.

load the bitstream through the overlay class and import any associated PYNQ-
enabled IP drivers. Through this initial set, the developer can interact with
the IP cores in the loaded bitstream, and write custom drivers, functions, and
interactive applications.

The power of PYNQ comes from its abstraction libraries, which make it
easy to interact with the PL, and to develop and test algorithms on the PL. The
typical development workflow involves testing the generated bitstream through
PYNQ and adjusting the associated block design in Vivado to modify or correct
any errors, which accelerates productivity when working with hardware /software

co-design projects on the development platform.
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Figure 2.11 The typical PYNQ workflow.

2.1.6 Multirate Processing with AXI4-Stream

Modern RF systems often require signal processing pipelines that operate at
different sampling rates across various processing stages. This is especially true
when working with wideband signals that must be decimated or interpolated

to match the capabilities of a downstream processing block, which is the case

with the RFSoC due to its extremely high bandwidth RF-ADCs and RF-DAC:s.

Multirate processing is a fundamental part of the RFSoC data pipeline, and
understanding how it integrates with AXI4-Stream interfaces is critical for
implementing efficient signal flows.

This section explains the streaming protocol used in AMD FPGAs, how data
rates are represented through the AXI4-Stream protocol, and how decimation

and interpolation filters enable flexible sampling rate conversion. The role of
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the RFDC is also detailed, particularly in how it produces and accepts digitised

signals.

Overview of Multirate Processing

Multirate processing refers to the concept of handling data streams that operate
at different sampling rates within the signal processing pipeline, by performing
sampling rate transitions. In RF applications on the RFSoC, the incoming
analogue signal is digitised at a high sampling rate to capture a wide bandwidth
of data [58]. However, many downstream DSP components, such as filtering
and symbol demapping, do not require the full bandwidth and can be performed
at a reduced rate.

To manage the conversion of sampling rates, decimation and interpolation
filters are used to adjust the sampling rates at different stages. These com-
ponents are critical for optimising the usage of FPGA resources and ensuring
that each module of the system receives or produces the appropriate data rate
for the given task. The RFSoC platform supports multirate designs through
the AXI4-Stream protocol which can transfer data between IP cores and the
RFEFDC operating at different rates.

Performing functions at different sampling rates provides the capability
for scalable and efficient signal processing pipelines, enabling real-time RF

processing even when computational resources are limited.

AXI4-Stream Protocol Fundamentals

IP Integrator (IPI), part of the AMD Vivado software, uses the Advanced
Extensible Interface (AXI4) protocol to facilitate communications between PS
and PL through AXI4 memory mapped and AXI4-Lite communications, as
well as between IP cores with AXI4-Stream. AXI4-Stream is a lightweight data
transfer protocol used to move data between IP cores in the PL for SoC devices
with FPGAs.

There are three types of AXI4 protocols:

o AXI4 Memory Mapped: A communication interface that provides a
standardised way to read and write data to one or more specific memory

addresses.

o AXI4-Lite: Similar to AXI4 Memory Mapped, but only writes to one
specific memory address at a time. Intended for light-weight control

communications.
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e AXI4-Stream: A protocol designed for high-throughput, continuous

data streaming, making it suited for signal processing pipelines.

At the core of the AXI4-Stream protocol, simple handshake mechanisms
between two IP cores, in a primary and secondary configuration, use the

following signals:

e TVALID: which indicates which data samples are valid when sent.
e TDATA: carries the actual sample of data that is to be shared.

e TREADY: indicates to the upstream IP core that the secondary IP core is

ready to receive data.

 TLAST (optional): is a flag signal that indicates when the last sample of a
packet has been sent in the stream (when packet-based communication is

being used).

The above signals are collected into a bus of signals that build the AXI4-
Stream protocol.

Data from the primary IP core is transferred only when both its TVALID
and the secondary IP core’s TREADY are high on the same clock cycle. This
ensures that a stream of samples can only flow through a signal processing

pipeline while all blocks are ready to receive and send data. The diagram in
Figure 2.12 illustrates the basic AXI4 handshake [59].

Primary IP Core Secondary IP Core

m_axis_tdata s_axis_tdata

s_axis_tvalid

A\ A 4

m_axis_tvalid

m_axis_tready s_axis_tlast
m_axis_tlast |---------------------- » s_axis_tready
optional
rniipigigigipinliginipginginigh
m_axis_tdata 0 X 1 X 2 X 3 X 4 X 5 X 6

s_axis_tready / \ /
m_axis_tlast / \
m_axis_tvalid / \

Figure 2.12 The basic AXI4-Stream protocol.
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Representing Lower Sampling Rates

When streaming data from high-speed ADCs (or to DACs), it is often necessary
to represent lower effective sampling rates while operating at a fixed system
clock. This enables real-time processing without changing the global clock rate.

This is normally achieved by applying decimation and interpolation filters
(depending whether the samples are being received or transmitted), to change
the ratio between the sampling rate and the clock rate. These operations
therefore reduce or increase the sample rate without altering the streaming
infrastructure through clock rate conversions. Further literature on decimation

and interpolation filters can be found in [60].

RFSoC
Receivers Programmable Logic
-
d
- —>|
| \RF ADC 1DDC FIR
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\ — ook [T ot reteaiok LI L LT LT L
tdata 2, I:'> |dala:_D_E Signal
Transmitters walid < waid T\ [\ [ ]| |Processing
= « < IPs
<RF-DAC [« 1 DUC FIR
RF Output 2 . Interpolation ||~
4-\ RF-DAC & 1DUC

Figure 2.13 Sample rate reduction/increase through decimation/interpolation
filter with a constant global clock.

Figure 2.13 illustrates samples being received from the RF-ADC and sent to
the RF-DAC on the RFSoC development platform. When a signal is received
by the RF-ADC, it is digitised and streamed into the PL in the AXI4-Stream
protocol format. The signal is sampled at the clock rate used by the RF-
ADC [10] and requires further rate reduction to be useable by the hardware IP
cores, as the hardware accelerated DSP algorithm must operate at a lower, more
manageable clock rate to meet timing constraints. This is achieved through a
FIR decimation filter. The filter outputs another AXI4-Stream signal operating
at the same clock rate as that used by the RF-ADC, but instead has a toggling
‘valid’ signal to simulate a lower overall sampling rate. Any subsequent signal
processing stages can make use of the spare clock cycles to time-share resources

(as presented by the architecture introduced in Chapter 4).
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On the transmit side, the opposite occurs. The lower sample rate signal is
increased by a FIR interpolation filter to reach the sample rate required by the
RF-DAC before it is sent out of the radio.

2.2 Literature Review on Modulation Classifi-

cation

One of the core tasks in DSA is spectrum sensing. Spectrum sensing provides
awareness of nearby radio transmitters to inform spectrum allocation and avoid
radio interference. Identifying and differentiating between nearby emitters,
which have different behaviours and requirements, is important for developing
a Cognitive Radio (CR) to dynamically use spare spectrum. Modulation
recognition is the task of classifying the modulation type of a received radio
signal as a first step towards understanding what type of signal and transmitter
is nearby, also known as AMC. An overview of the topics covered in this section

can be found in Figure 2.14.

Automatic Modulation

Classification
1
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.. Machine Learnin .
Traditional Approaches . . & Deep Learning
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1 1 1 1 1
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| LOg_likClihOIOd | | Moments | |Sp(‘(‘trzll Iluag(‘sl | DNNs |
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Figure 2.14 Overview of literature review topics for modulation classification.

Complex-valued

2.2.1 Traditional Approaches

The task of modulation classification can be traced all the way back to 1969 by
a paper by Weaver et al. [61], who investigated the use of pattern recognition
techniques to automatically identify the modulation scheme between double-

sideband amplitude modulation, single-sideband suppressed carrier, continuous
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wave, FSK, and on-off keying (Morse code). Since then, the field of modulation
classification has been divided into two general classes of AMC: Likelihood-
Based (LB) and Feature-Based (FB) methods.

Likelihood-Based Methods

A LB method models the probability of receiving a given signal under each
possible modulation type and then selects the one that is most likely to have
produced the received signal. In plain terms, if the receiver has knowledge
of the modulation formats and understands how the noise and channel affect
them, it can build a mathematical model of what the received signal should
look like under each modulation type. The likelihood of the received signal is
then calculated under each model, and the modulation type with the highest
likelihood is chosen.

The basic likelihood function is defined as
n—1
L(O|xo, ... ,xn-1) = f(z0,...,20-1]0) = [] f(:]6) (2.14)
i=0

where this function expresses how likely a set of observed data points xg, ..., z,_1
is, given a parameter 0. Here, f(xo,...,z,_1|0) is the joint Probability Density
Function (PDF) of the observed data. If the data samples are assumed to be
independent and identically distributed, the joint PDF can be written as a
product of individual probability densities. To simplify the calculation, and
because the natural logarithm is monotonically increasing, the log-likelihood

function is often used:

log(L(0|xg, ..., xn_1)) = nz:: log f(x;]0) (2.15)

Log LB methods aim to find the maximum value of Equation 2.15 by
optimising parameters 6 using the Maximum Likelihood Estimator (MLE):

0 = arg max(log(L(0]zo, ..., 2n-1))) (2.16)

Over the years, more advanced likelihood-based methods for AMC have
been developed [5]. The Average Likelihood Ratio Test (ALRT) addresses
one of the limitations of MLE-based classification: in real scenarios, channel
parameters such as phase, frequency offset, or noise power may be unknown.
Instead of estimating them, ALRT averages the likelihood over a range of

possible values, averaging out the uncertainty. In contrast, the Generalised
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Likelihood Ratio Test (GLRT) method estimates the unknown parameters first
and then inserts them into the likelihood function before applying the MLE.
The Hybrid Likelihood Ratio Test (HLRT) approach combines both techniques:
it estimates some relevant parameters while averaging over others that are less
critical [62].

Feature-Based Methods

A FB method is a type of approach used in modulation classification that
relies on extracting the signal characteristics or ‘features’ from the input data
before performing classification. Features are typically chosen based on prior
knowledge of the signal’s characteristics [5].

FB methods are split into two categories: feature extraction methods and
ML methods.

Feature extraction methods primarily focus on the specific spectral char-
acteristics of the different modulation types. The three main features are:
amplitude, phase, and frequency, because each modulation scheme produces
different amplitude, phase, and frequency properties. One such technique
group is statistical feature extraction, which is useful in low SNR environ-
ments, and disruptive channel conditions such as frequency offsets. The most
common feature extraction methods are moment-based and cumulant-based

techniques [63].

Moments describe the signal’s PDF, where each nth-order moment of a

signal x(t) is the expected value of z(¢)". The nth moment is defined by

m, = E{z"} = /_O:o " f(x)dx (2.17)

where the integral computes the expected value by integrating over " weighted
by the PDF f(z). The central moment is a further extension of the moment
where it is taken about the mean of the distribution and not about zero. A

nth-order central moment is defined as [63], [64].

o =E{(w = )"} = [ (@ = 0 fa) da (2.18)

where 1 = E[xz] is the mean of x and p, is the nth central moment. For AMC,
central moments help describe important statistical properties of the received
signal. The commonly used moments in AMC are: the mean p (first moment)

which defines the centering of the PDF; variance o2 (second moment), which
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defines the spread of samples or the energy; skewness (third moment), which
captures asymmetry of the data; and kurtosis (fourth moment), which describes
the ‘peakedness’ of the distribution [63], [64].

Different modulation types (e.g. AM, FM, PSK, and QAM) produce different
patterns of variance, skewness, and kurtosis because of their underlying symbol
structure and how their amplitude and phase behave over time. By extracting
these central moments from a received signal, a feature vector can be built that

acts like the ‘signature’ of the modulation type.

Cumulant-based feature extraction is an extension to moment-based feature
extraction. Moment-based feature extraction techniques rely on statistical
moments to describe the shape and energy distribution of the signal (first and
second order moments). Higher-order moments assist with discerning between
modulation types. Cumulant-based feature extraction makes use of this by
isolating independent statistical properties [63].

Cumulants can be obtained from moments with

lin—1

i=1
where K, is the nth order cumulant, u, is the nth order raw moment, and
(”;1> is the binomial coefficient. This recursive relationship allows cumulants
to be systematically derived from moments up to any order [65].

In practice, cumulants capture similar statistical measures as in moments
where higher-order cumulants capture increasingly fine details about the distri-
bution.

For AMC, feature vectors composed of the second, fourth, and sixth-order cu-
mulants are commonly used to distinguish between modulation schemes. Since
higher-order cumulants are insensitive to Gaussian noise and scale linearly with
signal power, they provide a compact and noise-robust statistical representation
of the signal, enabling accurate classification even under challenging channel
conditions [5], [63], [66].

Machine Learning-based Classification

After feature extraction, the next stage in the AMC process is classification.
The extracted features, such as moments and cumulants, form a feature vector
that characterises the received signal. A machine learning classifier is then used

to map the feature vector to one of the known modulation types [5], [63].
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Several types of classifiers commonly are used in AMC [5]:

o k-Nearest Neighbours (KNN): A simple, non-parametric algorithm
that classifies a sample based on the majority class of its k nearest

neighbours in the feature space.

« Support Vector Machine (SVM): A supervised learning method that
finds the optimal hyperplane to separate different classes by maximizing

the distance between them.

o« ANN: A model composed of layers of interconnected neurons that can
learn complex, non-linear relationships between input features and output

classes.

« Decision Tree (DT): A rule-based model that splits the feature space
into regions using decision rules based on feature thresholds, forming a

tree structure.

Each classifier type offers different trade-offs between computational com-
plexity, interpretability, and classification performance. The choice of classifier
depends on the system requirements of the task such as real-time constraints
and accuracy needs.

A high-level overview of the traditional classification flow is shown in
Figure 2.15, where a received signal x(t) has its features extracted and then
passed through a classifier to produce the predicted modulation label 7.

This approach to AMC relies on the careful extraction of features from
the received signal before a machine learning model makes a prediction. As
DL progressed, ML algorithms began to adopt more data-driven approaches,
where models could learn to extract features automatically from raw samples.
Prior knowledge of a signal’s unique features was no longer required to build a

successful ML classifier.

2.2.2 Deep Learning for Automatic Modulation Classifi-

cation

The use of CNNs for AMC represents a major shift from traditional feature-
based methods to data-driven learning methods. Rather than manually ex-
tracting features, such as moments or cumulants, CNN-based systems learn to

automatically extract and optimise their own features directly from the raw
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Figure 2.15 AMC ML classifier system.

input data. In the case of AMC this can be the raw in-phase and quadrature
(I/Q) samples.

The transition from classical ML techniques to fully embracing the power
of DL was popularised by the work of O’Shea et al. [19] through their paper
on DL for radio signal classification. In this work, they demonstrated that
relatively simple CNN architectures (compared to the larger models in the
image processing field at the time) could achieve state-of-the-art modulation
classification performance by learning directly from raw signal data that had
undergone minimal processing. Their results showed that DL models could
outperform traditional FB techniques, especially under harsh channel conditions
such as low Signal-to-Noise Ratios (SNRs) and channel impairments.

A core contribution of this work was also the release of the RadioML
dataset [45] (discussed in Section 2.2.3), a publicly available dataset of synthet-
ically generated radio signals under various realistic channel conditions. The
dataset includes a wide range of analogue and digital modulation schemes each
labelled with the corresponding modulation type and the SNR that was added.

The dataset quickly became a benchmark for a variety of DL model im-
provements across the field of Al for RF, similar to famous benchmark datasets
in the field of image processing such as the MNIST dataset [67], ImageNet [68],
and CIFAR-10 [69].

A number of studies have since reinforced and refined this baseline. West et

al. [70] explored deeper CNN architectures and found that deeper networks did
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not lead to a significant improvement in classification accuracy. They proposed
that future studies should focus on solving problems with synchronisation
and channel equalisation. Similarly, Wang et al [37] compared CNNs to fully-
connected DNNs and concluded that CNNs offer superior feature extraction
capabilities due to their ability to exploit local spatial patterns in /(@) samples
through convolutional layers. They also found that the representation of
the input data affected the accuracy, citing improved accuracy when using
constellation diagrams as inputs instead of raw 1/Q samples.

The use of signal-to-image transformations forms a growing theme in the
literature. Peng et al. [71] where they applied deep CNNs to constellation
diagram images and demonstrated classification improvements. These works
collectively underline the importance of how data is structured before entering
the network.

In contrast, O’Shea et al’s later work [72] reaffirmed the strength of CNNs
operating directly on raw 1/Q samples. Their study demonstrated excellent
performance on signals captured over-the-air, validating the practical applica-
bility of DL models in real-world RF environments. They also showed that
networks trained on synthetic data can generalise to live RF signals, establishing
confidence in the practical deployment of these models.

Other contributions have focused on architectural innovation. Krzyston et
al. [73] proposed complex-valued convolutional layers that better preserve the
relationships between I and ) components. In their approach, they found that
this improved accuracy in low-SNR conditions.

Together, these developments have provided valuable insights into the types
of network architectures best suited to modulation classification tasks. By
examining how different architectural choices, data representations, and learning
strategies affect performance under realistic conditions, the research community
has established a solid foundation for future development. These insights not
only clarify the types of networks that are most effective for AMC, but also
help guide the design of hardware acceleration architectures, such as those
explored in this thesis, that are compatible with the constraints of real-time

embedded radio systems.

2.2.3 The RadioML Dataset

The dataset introduced by [19], named ‘RadioML’, consists of a collection of
labelled frames of synthetically generated samples representing various modula-

tion schemes transmitted over different communication channels. Figure 2.16
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illustrates the RadioML generation process. It was created to address the need

for standardised datasets in the field of radio signal processing and Al while also

introducing how CNNs can be applied to PHY wireless communications tasks.

The dataset includes samples from a variety of modulation schemes including:
Amplitude Modulation Double Sideband (AM-DSB), Amplitude Modulation
Single Sideband (AM-SSB), Wideband Frequency Modulation (WBFM), Binary
Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 8 Phase
Shift Keying (8PSK), QAM 16 and 64, 4-level Pulse Amplitude Modulation
(PAM4), Gaussian Frequency Shift Keying (GFSK), and Continuous Phase
Shift Keying (CPFSK).

Noise |
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Figure 2.16 Generation process for the RadioML dataset.

Each frame of modulated I/Q samples is subjected to noise across a wide
range of SNR levels and channel effects to simulate real-world communications
scenarios.

By providing a standardised set of labelled 1/Q data, the RadioML dataset
facilitates the development and evaluation of machine learning models for radio
signal processing tasks and serves as a foundation for developing networks for
other wireless communication problems. It enables researchers to fairly compare
the performance of different algorithms, verify hardware-implemented solutions,
and ultimately push forward the state-of-the-art in wireless communication
systems.

One of the biggest challenges in the field of Al and DL is the collection and
organisation of training data. The quality of the dataset is as important, if not
more, than the process of training the model itself. In a classification DL, the
data must be carefully labelled while ensuring that it covers a wide range of
scenarios and avoids inherent bias. ML in wireless communications benefits
from the availability of simulation tools that can accurately replicate real world
communication scenarios.

Radio communication signals are inherently synthetic and are generated

deterministically through modulation, pulse shaping, coding, preambles, and
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other configurable parameters. These deterministic rules are also applied when
generating synthetic data where a channel model function is used to simulate
the transmitted signal passing through a destructive and noisy environment.

The RadioML dataset generates a variety of digitally and analogue modu-
lated signals using eleven different modulation schemes. The creators modulated
real voice and text datasets onto the signals and used block randomisers to
ensure that the bits were equiprobable. The generation of the synthetic data
was undertaken using the GNU Radio [24] software toolkit in Python.

The radio signals are passed through a dynamic channel model that simulates

a wide range of real-world effects, including:

e Time-varying multipath fading of the channel impulse response
o Random drift in the carrier frequency oscillator

o Random walk sampling time offsets
« AWGN

o Varying scaling, phase offsets, impulsive noise bursts, and timing dilation

After passing through the channel, a signal is segmented into frames of 128
complex-valued samples, where each sample consists of two channels represent-
ing the I/Q components of the signal.

The dataset is then labelled with the modulation scheme type and AWGN
SNR before being stored in a Python pickle file using 32-bit floating-point
precision. The total size of the dataset is approximately 500MB.

The resulting dataset provides a Python dictionary consisting of 11 mod-
ulation schemes: 8 digital and 3 analogue modulations, commonly used in
many wireless communications applications. The modulation schemes used
are: QPSK, BPSK, QAM16, QAM64, 8PSK, PAM4, GFSK, CPFSK for the
digital modulations, and WB-FM, AM-SSB, and AM-DSB for the analogue
modulations. Each data symbol is modulated with 8 Samples-Per-Symbol
(SPS). Further information about the RadioML dataset and its generation can
be found at [45].

2.3 Chapter Conclusion

This chapter has introduced digital modulation, the most common digital

modulation schemes, and the fundamentals of pulse shaping. Channel effects



2.3 Chapter Conclusion

46

and channel models were reviewed, including multipath fading models. The
concept of AMC was introduced, followed by an explanation of the different
approaches to the task. Modern AMC techniques using CNNs were presented
alongside the pivotal RadioML work. The RadioML dataset and its generation
process was also covered. The AMD RFSoC and PYNQ was introduced, followed
by multrate processing through AXI4-Stream on the RFSoC. Finally, the topic
of DL challenges for wireless communications was discussed, highlighting the
need for a CNN accelerator that supports the flow of samples in a radio signal
processing pipeline.

This chapter outlined the essential connections between digital communi-
cation theory and modern DL-based approaches. It demonstrated how core
concepts such as digital modulation schemes, channel effects, and signal rep-
resentations form the basis for tasks like AMC. The limitations of traditional
solutions in dynamic radio environments were contrasted with the performance
advantages of CNNs. Additionally, the chapter introduced key hardware con-
siderations, such as the RFSoC platform and the importance of effective data
movement using AXI4 protocols, setting the stage for understanding the need
for custom hardware accelerators capable of processing real-time radio signals
efficiently.

The main motivation for this chapter was to introduce the concepts re-
quired to understand how a custom architecture can be applied to wireless
communications tasks. The following chapter will cover the fundamentals of

DL and DL hardware accelerators.



Chapter 3

Hardware Architectures for

Deep Learning Inference

The material covered in this chapter underpins the application of DL and Al to
PHY SDR FPGA receivers presented in the subsequent chapters of this thesis.

3.1 Introduction

DL is a field where problems are solved by training models on datasets of input-
output examples. Using layers of connected neurons and sufficient training
resources, these models can learn to perform a wide range of tasks: from object
recognition in images, to signal classification in the frequency spectrum.

Getting a model to work is just the first step. The next challenge is deploying
it at the edge, where resources are limited. Designing an accelerator that can
perform inference with high throughput and low energy consumption is difficult,
but when done correctly, it enables powerful DL applications to run directly
on edge devices.

Mapping neural network models to FPGA hardware requires a solid under-
standing of the core building blocks of neural networks, which are introduced

in the following sections.

3.2 Neural Networks

ANNSs are a class of ML models inspired by the structure and function of
the human brain. They are composed of interconnected processing units, or
neurons, which collectively learn to model complex patterns in data. Over the

last decade, neural networks (and particularly deep learning) have become a
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cornerstone of modern Al, achieving remarkable performance across a range of
tasks, from image and speech recognition to wireless signal classification [25],
[74].

At its core, a neural network is a computational model that maps a set of
input features to an output through a series of interconnected processing units,
known as neurons. As illustrated in Figure 3.1, a typical use case involves
a classification task, where the network takes input features and produces a

predicted class label.

Neural Network
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Figure 3.1 Example interface of a Neural Network.

To understand how this output is generated, it is helpful to examine the
internal structure of the network. Figure 3.1 presents a conceptual view of the
individual neurons. Each neuron processes the input features by computing a
weighted sum followed by a non-linear activation function. These computations

are passed forward through the network layers, producing a set of output

probabilities corresponding to different class labels, such as ‘cat’ ‘dog’ or ‘frog’.

The class with the highest probability is selected as the final predicted label.

3.2.1 The Neuron

An artificial neuron serves as the fundamental building block in ANNs, drawing
inspiration from biological neurons in the human brain. Mathematically, it
computes an output by aggregating its weighted inputs, adding a bias term,
and then applying a non-linear activation function. This process enables the
modelling of complex, non-linear relationships within data. The output y of a

neuron is given by

y=1r <Nzl Ty, + b) (3.1)

n=0
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where a set of NV input features z,, are each multiplied with an associated weight
w,. Each input and weight product is summed together, often with an additional
bias term b specific to the neuron. The bias acts as a constant additive offset,
allowing the neuron to shift its activation threshold and adjust its decision
boundary. The resulting sum is then passed through the activation function
to introduce non-linearity. Figure 3.2 illustrates the building components of a

neuron[10], [25], [75].
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Figure 3.2 An Artificial Neuron.

Activation Functions

Activation functions are critical components in ANNs, as they introduce non-
linearity to the network. After a neuron computes the weighted sum of its
inputs, the activation function f is applied to determine the neuron’s output [25].
Without activation functions, the network would only be able to model linear
relationships, severely limiting its capacity to learn complex patterns. Therefore,
activation functions allow neural networks to approximate intricate, non-linear
mappings from input to output, enabling them to perform tasks such as
classification and regression. Three of the most common activation functions

are shown in Figure 3.3.
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Figure 3.3 Plots and equations of common activation functions.

The Sigmoid function maps any real-valued input to the range (0, 1), making

it suitable for models where the output can be interpreted as a probability. The
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Hyperbolic Tangent (Tanh) function is a scaled version of the sigmoid function
that maps inputs to the range (—1,1). The Rectified Linear Unit (ReLU)
function is currently one of the most widely used activation functions due to
its simplicity and efficiency for implementation in accelerators. It is defined as

a simple max function where only positive valued numbers are retained, and

negative inputs are set to zero. ReLU is computationally efficient to implement.

In summary, activation functions are a crucial component of neural networks,
enabling them to model complex and non-linear relationships. While traditional
functions like sigmoid, tanh, and ReLLU have been widely adopted, research
into alternative activation functions continues to evolve as DL architectural
research progress. Constant advancements are introducing novel activation
functions aimed at addressing limitations such as vanishing gradients or dead
neurons. One such example is the Swish and Mish activation functions that
outperform ReLU in some DL applications [76], [77]. The exploration of new
activation functions remains an active area of research, as subtle changes in
these non-linearities can significantly influence training dynamics and final

model performance.

3.2.2 Deep Neural Networks

A Deep Neural Network (DNN) is an extension of the basic neural network

concept, composed of multiple layers of neurons stacked one after another.

These are also known as Multi-Layer Perceptrons (MLPs). Unlike shallow
networks, which typically consist of one or two layers, DNNs incorporate
many layers, allowing them to learn hierarchical and increasingly abstract
representations of data. The term ‘deep’ refers to the depth of the network,
which is the number of layers through which data is transformed. Each layer
of a DNN can perform a large range of tasks, from extracting progressively
higher order features from the input signal, reducing the dimensionality of the
signal, or performing analysis on its spatial and temporal patterns [25]. For
example, in image classification tasks, earlier layers may detect simple features
such as edges and textures, while deeper layers can recognise complex shapes
and objects.

Deep architectures can be constructed using various types of layers such as
fully-connected layers, convolutional layers, recurrent layers, and many more,
each contributing its own unique characteristic [25]. This thesis focuses on
hardware implementations of CNNs, a type of DNN that performs many of

its feature extractions through the use of convolutional layers. Therefore, the
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following two sections will explore the two foundational layer types: fully-
connected and convolutional. Following the overview of these two layers,
the subsequent sections will describe how deep networks are trained using

optimisation techniques such as backpropagation.

3.2.3 Fully-Connected Layers

A Fully-Connected (FC) layer, also referred to as a dense layer, is a core
component of ANNs, particularly within architectures such as MLPs, CNNss,
and transformer networks. The term ‘fully-connected’ arises from the fact that
each neuron in the layer is connected to every neuron in both the preceding
and succeeding layers. This dense connectivity ensures that all inputs are
considered, but is also makes FC layers computationally expensive.

In an FC layer, each input from the previous layer is multiplied by a
corresponding weight, summed across all inputs, and optionally offset by a
bias term. The resulting value is then passed through a non-linear activation
function, such as a ReLU, sigmoid, or tanh, to enable the network to capture
complex relationships within the data. A diagram of a neural network with FC

layers can be seen in Figure 3.4.

O OO
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Figure 3.4 Graphical representation of FC layers in a neural network.

The output of a FC layer is a vector, with each element corresponding to the

output of a neuron in that layer. Mathematically, this operation is expressed as

M—1
y;:f<§:@ﬁmmlm+b;>, forn=0,...,N—1 (3.2)
m=0

where ¢! represents the output of the n-th neuron in a layer I, computed by

applying a non-linear activation function f(-) to the weighted sum of its inputs.

The inputs to the layer are denoted by «! , where m = 0, ..., M — 1 indexes the
neurons in the previous layer. Each input «! is multiplied by a corresponding

weight W!  where every possible connection between input size M and output

mn?
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size N exists. The input and weight product is summed together to compute
the total input to neuron n, and a bias term b, is added [78].

Equation 3.2 can be simplified to the form

yllxN = f(gé\lwaé\/le + bllxN) (33>

where a single FC layer, from an algebraic point of view, can be seen as a
vector-matrix product with a per-neuron additive scalar bias b after being

passed to an activation function.

3.2.4 Convolutional Layers

Convolutional layers are a cornerstone of modern DNN models, particularly in

tasks involving spatial or temporal data such as images, audio, or time series.

Unlike FC layers, which connect every input neuron to every output neuron,

convolutional layers introduce a concept of local connections and weight sharing.

This not only reduces the number of learnable parameters, making the network
more computationally efficient for larger inputs, but also allows the model to
learn spatially local patterns. Additionally, parameter sharing improves the
statistical efficiency of a neural network and increases its train-ability [78].

A convolutional layer transforms input feature maps X" into outputs
feature map Y "V, each composed of multiple units (or neurons) arranged in a
multi-dimensional grid-like topology. Unlike FC layers, which disregard spatial

structure, convolutional layers preserve the local relationships in the input by

applying learnable filters across the spatial dimensions on an input feature map.

Each output feature map is the result of convolving a corresponding kernel
with the input feature maps, followed by an optional bias term addition and

an activation function [25], [78].

2D Convolutional Layers

A simple and widely used variant of the convolution is the 2-dimensional (2D)
convolutional layer.

Let the input to the convolutional layer be a 2D feature map X ™ ¢ R#*W
and let the kernel (filter) be @™ € R/*X. The output feature map Y €
RHE-JH)x(W=K+1) 5 computed by sliding the kernel over the input spatially
and performing element-wise multiplication and summation. The 2-dimensional

convolution is defined as:
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0 K—
Y [a,b) = z X™a — j,b— k] - O™ [j, k). (3.4)

IMH

However, most modern neural network frameworks implement a cross-
correlation instead, where the kernel is not flipped during operation [79], [80].

This leads to a slightly altered equation.

NCOHV

1 K—
la,b] = Z X[q + j,b+ k] - @[], K] (3.5)

||M|

The distinction between convolution and cross-correlation becomes irrelevant
as the kernel weights are learned throughout the training process. For this
reason, cross-correlation is more commonly used in deep learning libraries due
to its simplicity. A diagram of the 2D convolution process can be seen in Figure

3.5.

w
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- output feature map
input feature map

Figure 3.5 2D convolution of input feature map and kernel.

3D Convolutional Layers

In this thesis, 3-dimensional convolutions are primarily used.

Let the input to the convolutional layer be a 3-dimensional input feature
map X € ROH*W "and let the kernel (filter) be @™ € RN*EX/xK The
output feature map Y € RNXH-J+Ox(W=K+1) i computed by sliding the
kernel over the input feature map.

Two common hyperparameters of convolution are padding and stride, which

control the output spatial dimensions and the step size of kernel, respectively.

The 3-dimensional convolution operation (without padding and a stride of 1) is

defined as:

C—-1J-1K—
Y*“"[n,a,b] = Xe,m+ j,n+ k|- O“°Yn, ¢, j, k] (3.6)
=0 j=0 k=0

>—‘

<.
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Each kernel in the set ©@°" spans all input channels, allowing the model
to combine information across feature dimensions. The output is produced by
convolving each kernel with the full input (including the channels), resulting in
N distinct output feature maps — one for each kernel [25], [75], [78].

The same operation can be represented as a nested loop:

Listing 3.1 Nested For Loops for convolutions.

for n in range(N): # Output channels
for a in range(H): # Input/Output height
for b in range(W): # Input/Output width
for c in range(C): # Input channels
for j in range(J): # Kernel height
for k in range(K): # Kernel width
Y[nl[al[b] += X[clla + j1[b + k] * Thetal[n]l[c][j1[k]

The convolutional layer performs a more structured and computationally
complex operation compared to a FC layer. However, this complexity brings a
significant advantage: it drastically reduces the number of trainable parame-
ters by reusing a small set of weights/kernels across the input. Accelerating
convolutional layers becomes a crucial objective focusing on optimising the core
convolution operation to enhance throughput and reduce latency, especially in

real-time or resource-constrained environments.

3.2.5 Neural Network Training

Training a neural network involves finding the optimal values for its parameters
(weights and biases) so that it can perform a specific task successfully — such
as classification — with high accuracy. This is achieved by presenting the
network with input-output pairs, measuring how close its predictions are using
a loss function, and adjusting its parameters accordingly, via gradient-based
optimisation. In supervised learning, a neural network can be trained, through
this process of presenting repeated examples and updating its parameters, to
achieve a model that can perform a desired task with high accuracy.

This section will cover the core steps of training a neural network including
calculating loss through loss functions, backpropagation, and parameter updates,

as well as techniques that can assist in reducing phenomena like overfitting.

Loss Functions

In neural network training, the goal is to minimise the difference between the
network’s predictions and the actual target values, which is achieved using

a loss function. The loss function guides the model to adjust its parameters
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during training, improving its accuracy over time. In this thesis, only classifica-
tion supervised learning applications are considered — so only loss functions
associated with classifications-based models are reviewed.

In multi-class classification tasks, the output layer of a neural network
typically produces raw values, known as logits, which represent the unnormalised
prediction scores of each class.

The Softmax function is applied to the logits z; from the output layer of the
network and converts them into probabilities p; [25]. The function is defined

as:

(3.7)

where p; is the predicted probability for class ¢ and z; is the logit for each class
i over C' total classes. The sum in the denominator ensures that the output
values are normalised, meaning that the probabilities across all classes sum to
one.

For classification tasks, Cross-Entropy Loss is the most commonly used loss
function. It measures the difference between the predicted class probabilities and
the actual class labels, encouraging the network to output higher probabilities
for the correct class.

The Cross-Entropy Loss function is defined as [25]:

Cc—1
J(?Ji,pi) = - Z Yi 10g<pi) (3-8)

=0

where:

e (' is the number of classes.

 y; is the actual class label (with values 0 or 1 for each class in a one-hot

encoding).

e p; is the predicted probability for class i

This loss function penalises incorrect predictions more heavily when the
model is confident about the wrong answer, thus driving the network to
output more accurate class probabilities. Cross-Entropy Loss is particularly
effective in multi-class classification tasks, making it a standard choice in many

classification-based neural network applications.
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Backpropagation

Backpropagation is the key algorithm behind the effective training of neural
networks. This algorithm is used to train neural networks by updating their
parameters based on the computed loss, as discussed in Section 3.2.5. Once the
forward pass computes predictions and an associated loss value, backpropagation
calculates the gradients of the loss with respect to each weight and bias in the
network by propagating the gradients back up the network, hence the name
‘backpropagation’ [81].

In a neural network’s forward pass, an input feature map is propagated
through each layer and neuron of a network, producing intermediate outputs at
every stage. At the final layer, the network’s prediction is compared to the true
class using a loss function to compute a scalar loss value (e.g. Cross-Entropy
Loss). The objective then becomes to adjust the model’s weights so that
the next time the same (or a similar) input is passed through, the resulting

calculated loss is smaller.

Backpropagation is the terminology for minimising the loss function J(-).

The ultimate goal is to compute

mingJ(O) (3.9)

where an optimal set of parameters, ©, must be found that minimises J(-). This
is performed by updating each of the parameters in the network to produce a
model that minimises the loss.

Backpropagation uses the chain rule from calculus to calculate the derivative
of a function that is composed of other functions. In feed-forward neural
networks, this principle is essential, as it enables the derivative of the loss
function to be propagated backward through the layers of the network. Figure
3.6 illustrates the process of backpropagation.

In the forward pass (green arrows of Figure 3.6), the output y is calculated

as a function of f(6,b) using the weight or kernel parameter 6 and the bias b.

The backward pass (red arrows of the figure) begins by receiving the gradient
of the loss function with respect to the output, denoted as %;;7' The gradients
of the loss with respect to the weight and bias parameters are then computed

using the chain rule as follows [81]:
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Figure 3.6 Neuron with forward pass variables and backward pass gradients.

0J  9Jdy

g _ 919 1
90— 9y 00 (3.10)
8J  9Jdy

By computing the partial derivatives of the loss with respect to each
parameter, backpropagation determines how much each parameter contributed
to the prediction error. This process is applied throughout the entire model,
starting from the output layer and working backwards. Using the chain rule,
all parameters in the model can be updated efficiently from a single forward

and backward pass.

Straight-Through Estimator (STE)

This thesis focuses on the implementation of Quantised Neural Networks
(QNNs). As a preliminary, it is important to understand the effects of quanti-
sation during training.

QNNs are the generalisation for when fixed-point arithmetic is used to
represent the weights and activations of a neural network. QNNs with lower
bit-widths than floating-point equivalent models tend to use less energy to
perform multiply-accumulate functions [82]-[85], making QNNs an attractive
candidate for accelerating neural network models by implementing weights and

activations with binary, ternary, and arbitrary wordlengths.
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Quantisation is applied in the forward pass during training. For a weight in
a QNN that is quantised to Q bits in a fixed-point representation, the following
deterministic quantisation function applies [78]:

d(297 1 x 6
q= Chp(roun ;Q_l x ),—1, 1 —2-@1) (3.12)

where the clip function limits the resulting value of the quantisation function to
a maximum and minimum value of —1 and 1 — 27(@=Y | respectively. However,
this function is non-differentiable and breaks the backpropagation procedure. To
successfully propagate gradients through discrete neurons, a Straight-Through
Estimator (STE) function is used for the backpropagation. The STE pretends
the quantisation operation is the identify function during backpropagation.
In the forward pass, quantisation is applied, but in the backward pass, the
quantisation step is skipped and the gradients are passed straight-through as
if no quantisation occurred [86]. If the estimator g, of the gradient g—‘; arrives

from next layer, the gradient of % is solved by the STE with:

STE = clip(d, —1,1) (3.13)

and the propagated STE of %—g is

go = gq x clip(d, —1,1) (3.14)

If the fixed-point representation requires a larger number than -1 and 1 the
clipping can be adjusted. The same STE techniques can also be applied to the
activation quantisations. Figure 3.7 plots the STE against different weight and

activation quantisation bit-widths.

Optimisation Algorithms

To train a neural network, the loss J(-) computed from a forward pass must
be minimised by updating the network’s parameters. Optimisation algorithms
assist with achieving a minimised loss by using the gradients during backprop-
agation and guiding their adjustment. In this thesis, the Adam optimiser is
used for training all neural network modules.

Adaptive Moment Estimation (Adam) is a very popular optimiser that
combines the benefits of two other techniques: momentum (which smoothens
updates based on the past gradients) and adaptive learning rates (which scales
updates based on the magnitude of recent gradients). This makes Adam

effective for training neural networks and assists in quick convergence [87]. This
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Figure 3.7 Quantised weights and activations with the associated gradient
estimation using the STE.

combination also reduces the need to tune hyperparameters, such as learning
rate, momentum coefficients, and weight decay, which are parameters set before
training and not learned from data. This is particularly useful when working
with reduced precision models, where additional parameters like quantisation

settings increase the number of hyperparameters to tune.

Regularisation

Neural networks are excellent at representing the complex relationships between
an input feature map and its associated output for a given task. This ability
has enabled neural networks to outperform many traditional ML algorithms
assigned similar tasks. When a model performs well on training data but
poorly on new unseen inputs, the model has undergone ‘overfitting. When a
neural network overfits on the training dataset, it learns an overly complex
representation that models the distribution of the training data too well. As a
result, it performs very well on the training dataset but generalises the overall
task poorly, with sub-optimal results when given unseen data.

Regularisation is the term given to techniques that assist neural networks
to generalise better to unseen data encountered after the training process, and
reduce overfitting. Regularisation techniques minimise complexity and expose
the network to a more generalised and /or diverse set of data. The regularisation

techniques covered in this section are: early stopping, L, regularisation, and
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the addition of noise. Many other techniques for regularisation exist that are

not covered in this thesis [25].

Early Stopping is one of the simplest forms of regularisation techniques to
help prevent overfitting. It involves monitoring the model’s performance on
unseen data throughout the training process, and stopping the training at an
earlier epoch if the model stops improving when shown unseen data [88].
Early stopping is applied during the training process and requires that
a portion of the training dataset is reserved as unseen data, known as the
validation set. Unlike the training set, the validation set is not used to update
the model’s weights. Instead, it acts as a benchmark — similar to the test set —
for measuring how well the model generalises unseen data during training. To
support effective training and evaluation, a typical dataset is divided into three
subsets: the training set, the validation set, and the test set — commonly split

at a ratio of 80:10:10, respectively.

early stopping

loss J(-)

salidation

training loss

epochs

Figure 3.8 Example plot showing training and validation loss with early stop-
ping.

Figure 3.8 illustrates an example plot for training and validation loss over
time (epochs) during a training session. Early stopping is triggered when the
validation loss stops improving, indicating that the model may begin to overfit if
training continues. By halting training at this point, the model that performed

best on unseen data throughout the training process is preserved.

L, Regularisation is a general term used for penalising the model’s loss
function based on the magnitude of its weights. They force the norm of the
weight vector to stay sufficiently small, which encourages the model to learn

more generalised solutions [25], [89]. The p refers to the norm used, where
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p =1 and p = 2 are the two most common norms. The L, norm of a vector x

is given by:

Ly(x) = [|z[, = Z i )7 (3.15)

The L, regularisation is applied to the loss function for a set of model

parameters by:

J(0) = J(0) + |0l (3.16)

where « is the regularisation constant. When the parameters of the network
become too large during training, «||f||, increases and, since the goal of
backpropagation is to minimise J (0), the weights should decrease as a result of

the increased overall loss.

Addition of Noise is another approach that is simple but a very effective
form of regularisation. The addition of noise for the purposes of regularisation
can be introduced to the input data, the output labels, the gradients of the
backpropagation, or the weight values themselves [25]. In this thesis, noise is
added primarily at the input data for the configurations considered as AWGN,
to simulate noisy environments. This additive noise also assists with regularising
the model to better generalise the signals it is classifying [90].

Additionally, the QAT technique is explored in Chapter 6 which applies
fixed-point quantisation to the model weights prior to training. Quantisation
of the weights inherently adds noise called ‘quantisation noise’, which arises
from the use of low-precision values to represent the weights. Quantisation
essentially discretises the range of values a parameter can take, which can be
viewed as injecting a form of structured noise into the network weights.

As shown in Figure 3.9, an N,-bit quantiser splits the input range into 2%
discrete levels, with each level separated by a fixed step size A:

2

Assuming a uniform quantiser the mean squared quantisation noise power

is given by [60]:
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Figure 3.9 Quantisation of an analogue input.

Np\2
QNb = 1010g<(2/122))

4
= 101og(2>") + 101og() (3.18)

= —6.02N, —4.77 dB

This shows that the quantisation noise power decreases with the number
of bits. While quantisation introduces error, when properly integrated into
training (as in QAT), it can act similarly to other regularisation techniques
by improving the robustness and generalisation of the network under reduced

precision constraints.

3.3 Accelerating Neural Networks

As DNNs become larger and more capable, the need for efficient, fast, and
energy-conscious execution becomes increasingly important, particularly for
real-time embedded applications. While high-end GPUs are widely used during
the training phase, deploying neural networks in the real world often means

operating on hardware with limited resources. Devices such as mobile phones,
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[oT sensors, radios, and FPGA-enabled devices face constraints in power,
memory, and compute power, requiring optimised accelerator architectures to
successfully operate AI models. This thesis focuses specifically on accelerating
neural networks for inference tasks, where speed and resource efficiency are key.

Neural network acceleration spans a range of platforms, from cloud servers
with an abundance of compute power and memory, to mobile devices and edge
systems where energy consumption and low latency are of utmost importance.
Each platform brings its own set of trade-offs in terms of throughput, memory
constraints, and power efficiency.

AT acceleration at the edge in wireless communications, particularly at
the point where the radio operates and collects samples, offers substantial
advantages for deploying Al models. As discussed in Chapter 2, PHY-layer
AT applications can enhance signal decoding, improve channel corrections, and
lead to better overall service. To make these benefits a reality, it is essential
to establish a platform or architecture that not only supports these Al-driven
functionalities, but also integrates well with the existing radio systems and their
dataflow based signal processing approaches. This ensures that Al deployments
complement and enhance the current workflows rather than disrupt them.

The remainder of this section explores the various hardware types used for
AT acceleration, the typical deep learning workflow for embedded systems, the
GeMM transform, and the role of quantisation in reducing computational load

and memory usage.

3.3.1 Hardware Types for AI Acceleration

In the field of Al acceleration, various hardware platforms offer different advan-
tages depending on the use case. The main compute platforms for Al include
Central Processing Units (CPUs), GPUs, FPGAs, and Application-Specific
Integrated Circuits (ASICs).

e CPUs are flexible and commonly used, but tend to offer lower parallel
processing capabilities for computationally intensive Al tasks compared
to GPUs. Recent advancements in CPU instruction sets better enables
AT workloads on CPUs [91], however, they are still limited in terms of
supported data types and they are power hungry.

e GPUs excel in parallel computation and are the preferred choice for
training large neural networks due to their high throughput and parallel

processing capabilities. However, while GPUs are highly efficient for
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training, using them for inference of already trained models can be energy
intensive. This increased energy consumption makes GPUs less ideal
for continuous, real-time inference tasks, as they tend to be costly to

maintain and operate over long periods of time.

« FPGASs provide customisability and energy efficiency, and offer a middle
ground between flexibility and parallel computational capabilities. While
FPGAs have great potential for successfully accelerating Al tasks while
keeping energy consumption down, developing designs for FPGAs requires

significant expertise.

o ASICs are highly specialised chips designed for specific tasks, offering

the best performance and energy efficiency for Al inference applications.

However, once a design has fabricated as for an ASIC, it is permanent,
making them a risky choice in the ever growing and fast changing field of

AT acceleration.

DL techniques have become very popular for more and more tasks such
as image recognition, audio processing, and wireless signal processing, for
applications including autonomous vehicles, drone communications, cognitive
radio, and robotics. Though excellent candidates for Al, these use cases require
low latencies and fast throughputs from their associated AI models. For
instance, in the case of autonomous vehicles, the speed at which an image can
be processed through an Al model to identify the location of other cars or
people is vital to the effectiveness and safety of the application.

GPUs are fast at running Al models, but their high power consumption and
hardware demands make them difficult to use directly at the edge, especially
in power-constrained environments like vehicles, radios, or drones. A common
workaround is to offload the Al processing to a remote server, or the cloud.
In this setup, the edge device captures data, sends it to the remote GPU for
processing, and then receives the results back. This approach comes with
several drawbacks, as depicted in Figure 3.10a: transmitting and receiving
large amounts of data can drain power on the edge device, the overall latency
for the task increases due to the time taken to send and receive data, and there
is a risk to data privacy. Encrypting the raw samples to protect privacy also
adds to the device’s power burden.

Alternatively, running an Al model directly on the edge addresses many
of these challenges. Since the data no longer needs to be transmitted off-site,

power consumption from the communication is reduced, latency is significantly
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improved (as it operated upon on the device), and privacy is inherently better
because the raw data stays local. With these major issues mitigated, the focus
shifts to the remaining challenge of: how to run the model efficiently on resource-
limited hardware. This requires minimising the energy used for computation,
and optimising the model and hardware to fit within the constrained computing

resources of the embedded system, as depicted in 3.10b.
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Figure 3.10 Comparison of the pros and cons of computing Al in the cloud vs
at the edge.

(b) AT at the edge

3.3.2 Embedded Deep Learning Flow

The process of deploying DL models on embedded devices typically begins with
training the model on a GPU using high-level Al training frameworks. Here
the model learns a classification task, as depicted in Figure 3.11, by receiving
many data examples and predicting an output. Through optimising a loss
function, the weights are updated in the model until a desirable accuracy and
performance is met. This process typically happens on a local PC or on a GPU
server.

To deploy the trained model on an edge device, the weights are extracted
from the neural network in the training phase and transferred to the neural

network for the inference phase. Here the deployment undergoes a series of
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conversions and optimisation steps, including adjusting the model’s precision,
and converting the format of the weights to one that is compatible with the
target edge platform. Finally, the edge device operates the embedded neural

network model to classify real-life data.
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Figure 3.11 Design flow of embedded Al inference.

3.3.3 Matrix Multiplication in Neural Networks

In Sections 3.2.3 and 3.2.4 a theoretical overview of the FC and convolutional
layers and their uses was covered. This section aims to detail the practical
considerations of accelerating the FC and convolutional layers in the context of
an Al accelerator. As stated in the previous section, the goal of optimisation
for operating Al models on the edge is to minimise energy consumption and to
optimise the computational capabilities of the model on the target device, so

that it can operate in real-time and with minimal energy consumption.

Fully-Connected Layers

The equation for a FC layer was given by Equation 3.3 which highlighted that,
when calculating the output of a FC layer the operation can be performed as
a General Matrix Multiplication (GeMM), since every input is connected to
every output neuron via a weighted connection..

GeMM is a fundamental operation in linear algebra and computational

mathematics [92]. Matrix multiplication is a widely used mathematical opera-
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tion that can be optimised by leveraging parallelism in computational hardware
such as GPUs, CPUs, and FPGAs. Software libraries such as Basic Linear
Algebra Subprograms (BLAS) and CUDA BLAS (cuBLAS) assist compilers in
determining how to best parallelise matrix multiplication operation on selected
hardware.

The nest loop for a FC layer is given in the Python code Listing 3.2. Here,

each input is used N times before an output for the FC layer is complete.

Listing 3.2 Nested For loops for FC layer.

for n in range(N): # Output channels
for m in range(M): # Input channels
y[n] += Thetal[m,n] * x[m]

Listing 3.3 shows an example of parallelising this process where the parfor
operator represents a fully parallel computation where all elements of the loop

are calculated at once.

Listing 3.3 Nested For loops for FC layer with parallel process.

parfor n in range(N): # Output channels
for m in range(M): # Input channels
y[n]l += Thetal[m,n] * x[m]

Figure 3.12 illustrates the effects of parallelising a portion of the matrix
multiplication operation. In Figure 3.12a, for each output sample for y, a
summation of products between © and x is performed over multiple clock
cycles. In Figure 3.12b, parallelising this process results in an output sample of

y in one clock cycle by processing multiple samples from © and x in parallel.
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input
weight

(a) Non-parallel matrix multiplication.

©
weight

* L -

input

(b) Parallelised matrix multiplication.

Figure 3.12 Comparison of non-parallel and parallel matrix multiplication.
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Convolutional Layers

Convolutional layers work by applying a set of filters (also called kernels) to the
input data to generate output feature maps. This involves sliding each filter
across the input, performing element-wise multiplications and summations at
each position (as illustrated in the nested loops in Listing 3.1). When dealing
with large inputs, this process becomes computationally intensive and complex.

To speed up convolution operations, both the input data and filter kernels
can be transformed into matrices, allowing the use of GeMM to perform the
computation. Converting convolutions into a standard matrix multiplication
brings several advantages for Al accelerators. It unifies the workload across con-
volutional and FC layers (where both become matrix multiplications), simplifies
scheduling since the operation is consistent, and streamlines hardware design
by focusing optimisation on a single core operation, i.e. matrix multiplication.
Applying the GeMM transform to a convolutional layer comes at the cost of
repeating input samples.

As shown in the FC layers, the GeMM transform makes it possible to
leverage parallelism in FPGA hardware to accelerate the matrix multiplications
for efficient computation. Hardware like GPUs use the GeMM transform to
simplify the computational complexity of the convolutional layers. Optimising
this is crucial for speeding up the training and inference process in DL models.

The GeMM transform for convolutional layers involves converting the input
and layer kernels into their respective matrices. This is performed by applying
the image to column (im2col) method [93]. The input and each set of layer
kernels are converted in their respective matrices. This process is depicted in
Figure 3.13b.

As discussed in Section 3.2.4, for a 3D convolution, the input feature map
has 3-dimensions: channels C', width W, and height H. The filter kernels are a
4D tensor with number of kernels N, channel C', kernel height .J, and kernel
width K. For the filter kernel weights, the GeMM transform is applied by
interleaving the filter channels C' for each filter N. Each interleaved filter is
then unrolled and concatenated forming a single 2D matrix denoted as ©"
with dimensions N x CJK. Effectively, the filter kernel weights are flattened
from a 4D tensor into a 2D matrix, where the same number of total elements

are used. To transform the input feature map, the following steps are required:

e Re-shaping the 3D input into a 2D matrix where the channels C' of the

input are interleaved.
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 Striding and replication functions are applied (see Figure 3.13b).

o Unrolling. For each stride step, the input samples under the filter window

are unrolled and concatenated, resulting in the matrix X

Figure 3.13 illustrates the process of performing the GeMM transform for

both the input feature map and the filter kernels for the convolutional layer.
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Figure 3.13 GeMM transform operations to 2D matrices of input and filter
kernels.

When transforming the input, the columns K of each input channel C' are
interleaved to form a 2D matrix. The flattened sliding window is passed over
the 2D input and split into smaller matrices based on how many strides S are
performed by the sliding window. Each of these split matrices are then unrolled
and concatenated to form the resulting GeMM transformed input matrix X,
with dimensions C'JK x S.

When the GeMM transform is applied to the input, the number of total
samples in the feature map increases as a result of the reduction in complexity.
This is because the sliding window operation is performed prior to the matrix
multiplication calculation. Equation 3.19 shows how the convolution is calcu-

lated after applying the GeMM transform to the input X" and resulting



3.4 Optimising Neural Network Computations

70

conv CcCOonv

transformed filter kernel ©59%. ;. The bias 057 is also added to the matrix

multiplication output.

VRS = ONes XEexs + b3 (3.19)

Equation 3.19 produces the convolutional layer output Y% with dimensions
N x S.

Simplifying the neural network layers down to matrix multiplications allows
for the calculations to be accelerated more effectively due to increased scope for
parallel operation. Additionally, the calculation for both FC and convolutional
layers is a matrix multiplication, so the hardware required for both layers types

can be shared.

3.4 Optimising Neural Network Computations

Many modern Al accelerators are built around the Neural Processing Unit

(NPU) architecture [11]-[13], which is designed to execute the core operations of

neural networks, such as the GeMM transformed convolutional and FC layers.

NPUs typically rely on highly parallel processing units, memory hierarchies
for tensor data, and low-precision arithmetic to reduce MAC operation power
consumption and increase throughput.

While this thesis ultimately focuses on a custom Al accelerator based on
a dataflow execution model, the NPU serves as a useful reference point for
understanding how neural network computations are typically optimised in
hardware. The concepts discussed in this section can be directly applied to Al
acceleration architectures on programmable hardware devices, like FPGAs. This
section builds on that foundation, introducing the core ideas and techniques used
in Al hardware design such as parallelism, stationarity, and the introduction of
dataflow models. The optimisation techniques for efficient Al task execution
are shared between typical NPU structures and more custom architectures such

as dataflow accelerator models.

3.4.1 A Typical Neural Processing Unit

An NPU is a specialised processor designed specifically to execute neural network
computations efficiently. As the limitations of general purpose processors like
CPUs and GPUs become more apparent in AI workloads, engineers have

increasingly turned to custom hardware accelerators such as NPUs. These
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architectures are designed to exploit the known dataflows of neural network
calculations, enabling parallel execution of computations while minimising data
movement between off-chip and on-chip memory, which can be costly in both
energy and latency.

Figure 3.14 shows a simplified NPU architecture. It consists of on-chip
memory, which stores the weights, inputs, and outputs of each layer, and a
systolic array of Processing Elements (PEs). Each PE contains a Multiply-
Accumulate (MAC) unit and local registers for temporary data storage. The
systolic array performs matrix multiplication across layers, where multiple PEs
operate in parallel to accelerate computation.

Longer laten: Short

Layer Outputs

' NPU
! On-chip
v | SRAM /BRAM
| :
Off-chip :
RAM : |Layel' Inputsl

[

Processing Element (PE)

BENTES

Figure 3.14 Basic structure of a typical NPU.

As shown in Horowitz’s energy analysis [94], accessing off-chip memory
(e.g. shared DDR memory) consumes significantly more energy than on-chip
alternatives such as SRAM and BRAM. It also introduces higher latency,
contributing to performance bottlenecks. For this reason, modern NPUs aim
to reduce external memory traffic and keep data as close to the compute units
as possible.

The regular structure of a systolic array enhances the performance of the
accelerator by enabling multiple MAC operations per memory fetch. This not
only improves data reuse, but also boosts throughput and energy efficiency;,
since multiple calculations are performed in each clock cycle.

This basic architecture is the foundation for many modern Al chips, in-
cluding Google’s TPU series (v1-v4) [11], [95], MIT’s Eyeriss [12], and AMD’s
XDNA NPU in Ryzen Al processors [13]. Each of these Al accelerator ar-
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chitectures contain hundreds of PEs that can perform many computations in
parallel.

The following sections introduce core techniques for optimising neural
network computations, focusing on how they apply to custom hardware archi-

tectures.

3.4.2 Parallelism and Stationarity

Facilitating data movement to and from an Al accelerator with hundreds
of parallel PEs becomes a significant challenge unless spatial and temporal
unrolling techniques are employed. Neural networks layers involving matrix
multiplications regularly reuse their data (computations share the same inputs
or weights). For example, in a GeMM operation Oy n x X, each weight
in © is used M times to compute the output Y. Efficient accelerators take
advantage of this reuse to minimise redundant data movement.

This is where the concepts of parallelism and stationarity come in. These

terms describe how data reuse can be exploited:

o Parallelism refers to performing calculations in parallel across multiple

PEs in the same clock cycle (spatial unrolling).

o Stationarity refers to reusing data across multiple cycles on the same

PE (temporal unrolling).

In practice, parallelism is achieved by distributing computations across a PE
array, allowing many operations to be performed simultaneously. Stationarity
keeps data local to the PE for as long as possible to avoid costly memory fetches.
By leveraging both, accelerators can significantly reduce memory bandwidth
demands and improve throughput, latency, and energy efficiency.

Different strategies for unrolling or folding the computation lead to weight
reuse, input reuse, or output reuse, each offering unique trade-offs depending
on the application and hardware constraints.

Figure 3.15 and Table 3.1 illustrate three common data reuse strategies:
weight stationary, input stationary, and output stationary. Fach aim to reduce
memory bandwidth (BW) requirements by minimising data movement while
maximising parallel computation. Each strategy reuses data samples across
clock cycles and exploits spatial parallelism using multiple PEs to increase the
throughput [78], [96].
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Figure 3.15 Spatial and Temporal Unrolling.

Table 3.1 Spatial and Temporal Unrolling.

Weight stationary Input stationary Output stationary
(Fig. 3.15a) (Fig. 3.15Db) (Fig. 3.15¢)

‘Weight . .

Memory BW low high high
Input . .

Memory BW high low high
Output . .

Memory BW high high low

» Weight stationary (input parallel), shown in Figure 3.15a, holds weights

locally within the PEs while inputs stream through. This approach
minimises the number of weight fetches (ideally loading each weight only
once), but increases the demand on input bandwidth since new inputs
are required with each operation. Additionally, because outputs are not
accumulated across cycles, intermediate results are written to and read

from memory, which raises output bandwidth requirements.

Input stationary (weight parallel), shown in Figure 3.15b, does the op-
posite. Input data is held constant while different weights are streamed
in across PEs. This significantly reduces input memory BW at the cost
of higher weight BW, as weights must be frequently reloaded. As with
the previous strategy, output accumulation occurs externally by sending

partially accumulated values to store in memory, increasing the output
BW.

Output stationary, shown in Figure 3.15c, keeps the partial sums of

the output activations locally within each PE. Inputs and weights are
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reloaded each cycle, leading to higher input and weight BW, but outputs

are accumulated in-place, significantly reducing output memory traffic.

These unrolling strategies are fundamental to optimising memory access
patterns in Al accelerators. By reusing fetched inputs, weights, and/or outputs
over multiple clock cycles, the overall memory traffic is reduced, leading to
improvements in latency. Meanwhile, mapping multiple MAC operations across
PEs increases the throughput, allowing many computations to be executed
simultaneously.

In practice, Al accelerator designs typically implement hybrid schemes that
combine elements from all three strategies to balance performance and resource
constraints. For example, architectures in [97], [98] use weight stationary
approaches to minimise redundant weight fetches, while [99], [100] adopt input
stationary schemes that cache input data for reuse. In all of the mentioned
implementations, output stationary techniques are also employed to accumulate

partial sums locally, reducing memory stores and improving the overall efficiency.

3.4.3 Dataflow Models

In contrast to traditional Al accelerators like NPUs (as discussed in Section
3.4.1), which use a shared systolic array of PEs to time-multiplex computations
across layers, SDF architectures take a fundamentally different approach. Neural
network structures are typically viewed as a sequential chain of layers, each
performing its computation before passing the results onto the next. In a SDF
model, this abstract graph of layers is mapped directly into hardware, where
each layer has its own dedicated computational logic on the FPGA fabric.

Instead of time-sharing a common systolic array of fixed PEs, SDF accel-
erators generate custom hardware for each layer of the model. These blocks
are connected together in a streaming pipeline, allowing each layer to start
processing and forwarding its outputs to the next as soon as data becomes
available. This structure reflects the network’s topology in physical hardware:
each layer has its own compute logic where multiple layers can compute con-
currently. Figure 3.16 illustrates a basic SDF for a four-layer neural network
model.

Since the architecture preserves the model’s topology and enables layers to
pass data directly to one another, hardware pipelining can be applied between

layers to increase throughput. Since there are limited memory fetches and
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Figure 3.16 Basic structure of a SDF model for a custom neural network of
four layers.

stores, the architecture’s throughput bottleneck lies in the speed at which
calculations can be processed.

Frameworks like FINN and fpgaConvNet are built around this dataflow
concept, synthesising accelerators specifically tailored to a given neural network
model [39], [40]. Since logic is not reused across layers, there is no need for cen-
tralised control or scheduling, reducing overhead and making this architecture
especially efficient for compact, low-latency models deployed on edge FPGAs.

This approach plays to the strengths of FPGAs, which can implement
highly parallelised customised hardware to complement the topology of the
model and match desired throughput target. The core disadvantage to the SDF
architecture is that each neural network model requires a specific hardware
architecture as opposed to the NPU architectures that can process a range of
model topologies. FPGAs are well suited for SDFs because of their ability to
reprogram their PL fabric, allowing the hardware to be changed for each new

model topology.

3.5 Chapter Conclusion

This chapter has covered the basic building blocks of neural networks. Fully-
connected and convolutional layers were introduced, and DL techniques for
training neural networks were covered, including training for quantised weights
and activations. Training techniques for regularisation were also reviewed. The
chapter then focused on summarising the core concepts behind accelerating

neural networks on custom hardware Al accelerators and how Al inference can
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be run on edge, low-resource devices. The concept of the GeMM transform

was covered, as well as mapping of matrix multiplications to a typical NPU

architecture, and the design considerations behind accelerating AI computations.

Finally, dataflow models are introduced, which is the basis of the architecture
proposed in this thesis. The concepts introduced in this chapter will appear in
the following chapters when Al accelerator design choices are discussed.

This chapter has established the foundational concepts behind DL and the
optimisations for accelerating DL inference models. It has also introduced an
understanding of the core building blocks of a neural network and an algorithmic
appreciation of the FC and convolutional layers, alongside how neural networks

are trained. These concepts form the basis for understanding how algorithmic

structures translate into hardware workloads and influence accelerator design.

The material covered provides the groundwork for analysing trade-offs between

computational efficiency, precision, and throughput in edge-based Al systems.

The next chapter will present a custom streaming-based CNN architecture

for the FPGA-based SDRs using the data-flow model introduced in this chapter.



Chapter 4

Streaming-based CNN
Architecture for FPGA Radio

Receivers

This chapter will introduce a new custom streaming-based CNN dataflow
architecture for FPGA-based radio receivers. The architecture is built using
basic DSP building blocks with the purpose of achieving filter-like behaviour,
so that it can be integrated with other DSP dataflow functionality. The
architecture is evaluated with the RadioML dataset [45] on an embedded device
while it operates in real-time.

Alongside the streaming CNN architecture, a methodology for building DL
models from basic principles within MATLAB and Simulink is presented, as
well as software drivers for interfacing with the deployed model once it has
been transferred to the PL of the RFSoC.

4.1 Motivation

While modern NPUs and TPUs offer high-throughput and power-efficient
inference for DL models, they are typically designed to be model topology-
agnostic and target a general array of applications. This generally allows
them to support a wide range of model topologies but introduces inefficiencies,
particularly in edge environments where latency and bandwidth are critical
constraints. One of the main limitations in these architectures is the memory
bottleneck associated with transferring data between off-chip memory and

compute cores, as discussed in Chapter 3.
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In contrast, dataflow-oriented designs based on SDF models generate hard-
ware that is tailored to a specific model structure. This approach removes the
need for general purpose scheduling where the latency of a deployed model from
input to classification is not immediately apparent. Instead, the SDF model
allows for fully pipelined execution and optimised memory handling. Since the
dataflow is statically defined, these accelerators can operate with deterministic
latency and sustained throughput, making them well suited for real-time signal
processing tasks.

The proposed streaming-based CNN dataflow architecture intends to be
usable in-line with other signal processing and radio receiver pipeline tasks,
such as filtering, channel estimation, and demodulation. Figure 4.1 illustrates
this concept. The ultimate goal is to replace the existing traditional functions
with DL models, without disrupting the dataflow structure of the receiver

design.

Radio Receiver System with Traditional DSP Functions

(ten)
Synchronise Channel
lDeCim. > & > Estimation [~ Decode —>
Demodulate & Equalisation

Replace
functions

Radio Receiver System with Deep Learning Functions

‘ Decim.

Figure 4.1 Motivation for replacing traditional radio pipeline functionality with
deployed DL models.

4.2 Related Work

FPGA-based CNN accelerators have gained popularity for edge inference tasks
due to their low-latency performance, energy efficiency, and the ability to
customise parallelism for dataflow-style implementations. Unlike GPU-based
or fixed-architecture NPUs, FPGAs offer fine-grained control over memory;,
compute, and parallelism, which can be customised to the needs of a specific
model and application domain.

FINN [39] is a well-known framework for building dataflow accelerators

targeting low-precision and quantised neural networks, typically in the 1-8-bit
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range. It compiles trained models into custom hardware pipelines optimised
for a fixed topology, achieving high throughput and efficiency. While FINN
is mainly applied to vision tasks, it supports a range of high-throughput
applications. However, its use in real-time PHY wireless communications tasks
has not yet been demonstrated in the literature.

fpgaConvNet [40] is another framework that maps CNNs to FPGAs using
performance modelling and hardware optimisation techniques. Like FINN,
it automates the design process, exploring trade-offs through tiling and loop
unrolling strategies to balance latency and resource usage. It has been used
successfully in domains like image recognition and, to a lesser extent, natural
language processing, but has not yet been applied to real-time wireless signal
processing tasks.

hls4ml [41] offers a Python-based toolchain for converting trained ML mod-
els into HLS-compatible code for FPGA deployment. Originally developed for
use in particle physics, it emphasises low-latency inference and interpretability
in resource-constrained environments. The framework provides tuning op-
tions such as MAC reuse and parallelism levels to meet specific throughput
and resource targets. While hls4dml shows promise for wireless applications,
there are currently no known implementations targeting real-time SDR-based
communications.

All three of the mentioned dataflow architecture compilers produce their IPs
in a HLS language format. This makes simulating the resulting architecture in
a Simulink-based environment difficult, disconnecting the CNN accelerator IP
from the rest of the radio communications pipeline, if built using MathWorks
tools.

In contrast to these frameworks, this work presents a custom streaming-
based CNN architecture designed specifically for high-throughput, real-time RF
data classification. The architecture supports direct interfacing with RF front-
ends and is optimised for inference at the RF-ADC line rate on SDR platforms.
Unlike existing systems, this approach introduces optimisations tailored to
streaming RF data, including a modified GeMM transform that rearranges data
into a channels-first format to enable faster sample propagation between layers.
The architecture is built using MATLAB and Simulink toolkits such as HDL
Coder [101] and Fixed-Point Designer [102], meaning the resulting architecture
can be simulated with other radio tasks built in MATLAB/Simulink.
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4.3 Streaming Convolutional Neural Network

Architecture Design

In this work, the decision to create a bespoke neural network architecture for
FPGA hardware originated from the positioning of the neural network model
in a PHY wireless communications receiver application. To effectively use a DL
model in a radio receiver to perform tasks such as decoding, channel estimation
and correction, and spectrum sensing, the model should receive samples coming
from the RF-ADC stage and process the samples as they enter the chip. In
many receiver cases, processing every sample that enters the chip is imperative
to the functionality of the aforementioned tasks. It is a strict requirement
that no samples are lost in the process of performing a DL task, as radio
communications samples are highly correlated with one another and dropping
samples could result in the inability to successfully decode a signal. The CNN
architecture described in this chapter was designed with this requirement at the
heart of the implementation. The resulting design processes every sample that
enters the model and has a deterministic latency, allowing it to be synchronised
with other functionality in the receiver.

The fundamental principle guiding the architectural design revolves around
the dataflow design paradigm, where incoming data samples are treated as a
continuous infinite stream of samples, each undergoing real-time processing. A
notable challenge encountered in this framework comes from the overproduction
of output samples by the convolutional layers, limiting the throughput of the
deployed DL model and leading to a requirement to balance between the
implementation throughput and associated FPGA clock rate for the model.
Mitigating this challenge involves adjusting the overall clock rate of the system,
contingent on the configuration of the convolutional layer parameters, such as
kernel size and number of filters, and the resource allocation scheme of the
MAC units within the implemented layer. This concept is further explored in
Chapter 5.

4.3.1 Input Data Pre-processing

The input samples to the neural network architecture arrive as a continuous
stream of complex IQ values. These samples are assumed to originate from
a decimation filter chain, which reduces the sample rate before entering the

architecture. While the exact source and sampling rate are implementation-
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dependent, we assume that the decimated samples are uniformly spaced in
time and arrive synchronously with the system clock.

To align with the model’s frame-based processing, a buffering mechanism
is introduced to group streaming samples into fixed-length bursts. This is
achieved using a Ping-Pong buffer, where two alternating buffers operate in
parallel: while one buffer fills with incoming samples, the other is read out as a
complete frame for CNN processing. Once a full frame (e.g. 256 samples) is
collected, it is passed to the first convolutional layer.

This burst-style input flow ensures that each frame is processed in sequence
without data loss, and that the model has sufficient time to complete its
inference on one frame before the next is ready. A simplified diagram of the
Ping-Pong buffering mechanism is shown in Figure 4.2.

Prior to entering the Ping-Pong buffer, the samples are interleaved so that
the parallel 1/Q samples are received as one stream of I and Q interleaved
samples.

The Ping-Pong buffer is implemented with on-chip BRAM and URAM and
is managed by a counter system that counts the size of burst frames required

to make a classification.
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Figure 4.2 Ping-Pong buffer.

4.3.2 Convolutional Layers

Convolutional layers pose a computational challenge due to the inherent com-

plexity of passing a kernel over the input feature map repeatedly. For a
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streaming-based CNN architecture, repeatedly passing the kernel over an input
can greatly slow down the throughput of the deployed model. To support a con-
stantly streaming input of samples, the architecture must maximise throughput
and make design choices to support this. The GeMM transform complexity
optimisation, from Chapter 3, illustrated that the operational complexity of the
convolutional layer can be simplified to a matrix multiplication at the sacrifice
of repeated input sample calls.

In traditional convolution-to-matrix transformations such as those found
in the BLAS library [103], kernel and input matrices are flattened using a
‘channels last’” ordering. This structure, discussed in Chapter 3, requires the
full input feature map to be available before transformation can begin, which

limits streaming efficiency in real-time systems.

GeMM Transformation

In this thesis, an alternative GeMM transformation is proposed, referred to as
the ‘channels first” approach, which is specifically designed for streaming input
data in radio receiver pipelines. Rather than interleaving the kernel window
columns after channels, the transformation interleaves rows after channels. This
adjustment allows the input data to begin transforming as soon as enough
samples have been received to form the first valid kernel window, instead of
waiting for the entire input frame.

The ‘channels first’ modification significantly improves throughput in sce-
narios where data arrives sample-by-sample, such as in wireless communication
systems with continuous I/Q input streams. Figure 4.3 illustrates the con-
ventional channels-last transformation and its limitations for streaming-based
applications, while Figure 4.4 demonstrates the proposed channels-first method
and how it enables low-latency data ingestion in a streaming pipeline.

In Figure 4.3, the feature maps coming from the previous layer (or the
RF-ADC and decimation stages) enter the convolutional layer memory buffer
either as interleaved 1D samples, or a frame of channels at a time. As the
GeMM transform employs the channels last method here, a streaming GeMM
transform function outputs the transformed samples one channel at a time,
where the kernel has passed over the full first channel before proceeding to
the next channel, and concatenates the resulting outputs into one matrix
ready for multiplication with the GeMM transformed weights. While this

description frames the operation in terms of building a full matrix, in practice
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Figure 4.3 Channels last GeMM transform.

the computation is performed using streams of samples and on-chip memory,
without requiring all samples to be grouped explicitly.

Since the framed data entering the convolutional layer comes in with a frame
of channel data at a time, the convolutional layer needs to wait that enough
frames of samples have been stored in the GeMM function in order to begin
outputting the transformed feature map. The transform outputs a channel last
configuration and therefore the layer would need to wait for almost the full
frame to be received before it can begin transforming. This delay hinders the

fluidity of the dataflow model and staggers the flow of data in the model.
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Figure 4.4 Channels first GeMM transform.

In contrast, since the data received in the layer comes in as frames of
channels, then it makes sense to process the frames of channels as they enter
the layer. The GeMM transform can be altered to support the data structure
of the incoming samples by instructing the Sliding Window Generator (SWG)
(covered in the next section) to process the channel C frames first followed by
the width W and height H of the input feature map. Figure 4.4 illustrates the

better efficiency of the ‘channels first” GeMM transform when receiving frames
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of channels from the previous layer. Performing channels first results in the
layer not needing to wait for the full feature map to enter the layer before the

SWG can begin to process the transformation.

Sliding Window Generator

The SWG core exists at the heart of the deployed convolutional layer for this
architecture. The SWG receives input samples into the layer memory and
transforms the samples in accordance to the GeMM transform formula detailed
in Figure 3.13b, Chapter 3. The transformed samples are subsequently sent to
a matrix-vector multiply stage where the layer output is calculated, before the
optional bias and activation function is applied.

Figure 4.5 shows the SWG core in the convolutional layers. The SWG
system consists of on-chip BRAM that is large enough to store the incoming
feature map, and a state machine controller handling the RAM address read
and write tasks. The incoming samples to the layer are first stored in an
input buffer in the on-chip RAM in sequential address spaces through the
wr_addr signal. The state machine performs the input feature map GeMM
transform on the stored samples by reading out samples in accordance with the
transformation formula with the rd_addr signal. These read samples are then
streamed to the matrix-vector multiply stage, where they are multiplied and
accumulated with pre-processed transformed layer kernels which are also stored
in on-chip RAM. The SWG outputs the transformed feature map incrementally,
either sample by sample or row by row, and conducts the multiplication with

the GeMM-transformed filter weights to generate the layer output.
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Figure 4.5 Diagram of the SWG core.

The modified GeMM transformation, described in Figure 4.4, enables the

SWG core to begin transforming the input feature map as it is being received.
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In the first convolutional layer of a CNN for radio applications, the input is
received from the ADC and receiver IP stages where this data is a stream of
complex I/Q samples forming a feature map of shape C' x H x W, where C' = 1,
H =2 (for I and Q), and W is the frame length.

The transformation uses a ‘channels-first’ ordering, interleaving data by

channels, rows, then columns, which allows the SWG core to start producing

rows of the transformed matrix X as soon as the first kernel window is filled.

This enables real-time operation without waiting for the entire feature map.

During live operation, the SWG core performs GeMM transformations only
on the input feature map. Kernel weights are transformed offline and stored in
BRAM for reuse during matrix-vector multiplication.

The SWG supports two modes of operation:

o Streaming samples: When receiving data directly from the front-end,

samples stream in continuously and are transformed on the fly.

e Streaming frames: When processing intermediate feature maps from

previous layers, the input arrives as framed tensors with multiple channels.

The SWG reads these frames from parallel input buffers and performs

the GeMM transform accordingly.

To manage this behaviour in real-time, the SWG operates as a Finite State
Machine (FSM). It transitions through states for monitoring the availability of
data, generating GeMM’d samples. Figure 4.6 shows the simplified internal
control logic of the SWG core.

Matrix-to-Vector Multiplication

In Section 4.3.2, the GeMM transform was used to reduce the complexity of
convolution by restructuring the memory access pattern. Instead of sliding a
kernel window across the input feature map in real-time, the transformation
flattens both the input and the kernel into 2D matrices. This enables the
convolution to be processed as a matrix multiplication, which can be parallelised
for more efficient computation.

Recall, from Chapter 3, that the GeMM transformed convolutional layer

can be calculated as a matrix multiplication:

conv __ (Q\conv conv conv

NxS§ = NXCJKXCJKXS + byv1 (4.1)

In a dataflow model, the aim is to output results as soon as they are

ready to be consumed by the next layer. The Matrix-to-Vector Multiplication
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data_count++;
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a = 0:J % Kernel height
or b = 0:K % Kernel width
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rd_addr = ((j + b) * stride_x * C) + (i + a);

= Y

Figure 4.6 SWG state machine.

(MVM) stage takes the transformed inputs and performs a batched multiply,
a multiplication on a frame of samples in parallel, to produce a stream of
output frames. This sections explores how that operation works under two

input conditions:

« A single-sample stream directly from the RF-ADC and decimation

stages, where the input feature map has one channel.

« A frame-based stream from a previous layer, where the input has

multiple channels.

Figure 4.7 shows the hardware implementation of a convolutional layer for
the proposed accelerator architecture. The setup depicted is for the case where
there are single sample inputs to the convolutional layer. The samples are
stored in a memory buffer where the SWG reads the samples out in accordance
with the GeMM transform. These samples are then sent to the MVM subsystem
where the transformed samples are multiplied and accumulated with the on-chip
stored filter weights in the MAC unit. Figure 4.8 illustrates the operation of the
MAC unit, where a threshold controls when the accumulated data is output.

The MVM system, shown in Figure 4.7, receives one sample at a time from
the feature map memory buffer and replicates it across a stack of MAC units,
each paired with its own RAM. Each MAC unit also has a counter that tracks

how many samples have entered, so that it can fetch the correct weight from
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RAM at each step. The MAC performs multiply-and-accumulate operations
across C'JK input values before producing a result.

In this design, the convolutional layer is parallelised across the number of
filters, N. The system only produces an output when a complete result is ready
to be sent to the next layer. As such, this implementation can be described as
input-parallel and output-stationary.

Figure 4.9 depicts a MVM that processes a single with multiple channels
C. Here the received signal is received in frames of size C' that are stored in
a parallel array of buffers. The SWG then performs the GeMM transform
in framed batches and passes these frames batches to multiple MVMs and

producing the layer output.

4.3.3 Fully-connected Layers

The core characteristics of a FC layer are dense connections, where every
neuron of the layer is connected to every neuron from the previous. The FC
layer is parameter-heavy because the layer tends to have a large number of
trainable parameters which can make them computationally expensive. Since

every neuron of a FC layer has connections and weights to every neuron of the
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Figure 4.9 Matrix-vector multiplication system with framed input.

previous layer, the layer calculation can be expressed as a matrix multiplication
where the input feature map @ is multiplied with weight matrix ® to produce

an output of y, as discussed in Chapter 3.
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Figure 4.10 Fully-connected layer interpreted as a matrix multiplication.

In Figure 4.10, the feature map from the previous layer enters the FC layer
with dimensions: channels C', height H, and width W. This 3D feature map
is flattened into a one-dimensional input vector x, where the total number of

elements is n = C x H x W. The vector x € R" is then multiplied by a

weight matrix @ € RP*" where p is the number of neurons in the FC layer.

The result is an output vector y € R, with each element representing the
activation of a single neuron.

To realise a FC layer to hardware within the proposed streaming CNN
architecture, a similar approach to the convolutional layer implementation has
been implemented, as visualised in Figure 4.11. Firstly, the input feature map
to the layer enters as a stream of samples or frames, which are stored in a
buffer or series of buffers on-chip. The Buffer Controller then reads the samples
from the buffer sample-by-sample to flatten the input. In this work, the input
is flattened channel first before it is sent to the MVM. The MVM operates



4.3 Streaming Convolutional Neural Network Architecture Design

89

exactly the same as in the convolutional layers, where a column of MAC units
process samples in parallel to produce the output of the layer. The number
of parallel MACs are equal to the number of neurons p in the FC layer, and
therefore a framed output equal to the number of neurons p is produced. This

is then followed by an optional serialisation stage and an activation function.
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Figure 4.11 Fully-connected layer hardware implementation.

4.3.4 Activations and Bias

In neural networks, activations and bias terms play a crucial role in the
performance and accuracy of the network. Activations determine the non-linear
transformations applied to the output of each layer, while the bias terms shift
the activation to allow the network to better fit the data.

Activation functions, such as Rectified Linear Unit (ReLU), Sigmoid, and
Tanh, are vital in introducing non-linearity into the network. These non-linear
functions enable the model to learn and represent complex patterns. For a
hardware accelerator, ReLU has been widely chosen as a popular activation
function due to its simplicity [25], as it can be efficiently implemented using
a comparison operation. Sigmoid and Tanh are more resource-intensive since
they require exponentiation and division operations, often implemented using
LUTs or iterative approximation methods such as CORDIC [104].

All activation functions performed in the proposed architecture occur within
the PL with the exception of the Softmax function, which due to its computa-
tionally complex equation, is performed in PS. This occurs after the final layer
classification results are transmitted to the PS, turning them into a probability

distribution.
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In the proposed architecture, the ReLLU activation is mapped using a
threshold comparison where each sample or frame is passed into the IP and
every negative value is set to zero through the operation y = maxz(x). The
ReLU function is depicted here as it is a common activation function and one
that is simple to implement in PL hardware [105].

The bias terms are optional. They are added to the linear combinations of
inputs in each layer, effectively shifting the activation function to better fit the
data. The bias terms are applied to the output of a layer where the bias values
are stored on-chip for the hardware accelerator to add the values quickly in real-
time. In this work the bias terms were used initially, but later dropped due to

there being no significant improvements observed in the accuracy performance.

4.4 Neural Network for Modulation Classifica-
tion

To demonstrate the streaming CNN architecture’s operation, an example neural
network architecture for performing modulation classification was selected.
The CNN chosen for this work is based on the architecture proposed in [19].
The objective is to demonstrate that the developed custom streaming-based
architecture can process each sample received by a radio transceiver in real-time,
while maintaining the classification performance of the original model.

The network comprises two convolutional layers followed by two FC layers,
forming a 4-layer topology. All layers employ a ReLLU activation function, except
for the final output layer, which uses a Softmax activation to produce a one-hot
encoded class prediction. Although relatively small compared to deeper Al
models, this network offers a practical balance between computational efficiency
and classification performance. Its compact structure makes it well-suited for
hardware prototyping and demonstrates that shallow networks can be effective
for tasks such as modulation classification, where signal characteristics can be
captured without extensive hierarchical features. The architecture is illustrated
in Figure 4.12.

The convolutional layers serve as feature extractors, identifying local pat-
terns in both the real and imaginary components of the input signal. These
layers exploit spatial relationships between adjacent samples to capture relevant
modulation features [25]. The subsequent FC layers aggregate and compress the

learned features, progressively reducing the dimensionality before reaching the
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Figure 4.12 Neural Network Topology for RadioML-based Modulation Classifi-
cation.

final classification output. Each neuron in a FC layer computes a weighted sum
of its inputs, enabling the network to model complicated decision boundaries.

Non-linearity is introduced between layers via the ReLLU activation, which
improves the network’s ability to approximate non-linear functions and detect
subtle signal variations. The final Softmax activation normalizes the output of
the last layer into a probability distribution over the eight modulation classes.

The network accepts a 3D input tensor with dimensions C' x W x H =
1 x 128 x 2. The first convolutional layer applies 64 filters of size 1 x 3 x 1,
producing an output of shape 64 x 126 x 2. The second convolutional layer
uses 16 filters of size 64 x 3 x 2, resulting in a compressed feature map. This
output is flattened and passed through the two FC layers, ultimately yielding
an 8-element output vector corresponding to the classification classes. ReLLU
activations are applied after each layer, and the final Softmax layer provides
the class probabilities.

This work focuses on predicting only the digital modulation schemes, as

similar hardware circuitry for further demodulation can be used for all eight.

4.5 Training

The CNN model is trained using the RadioML 2016.10a dataset, described in
Section 2.2.3, with the PyTorch deep learning framework [79]. The dataset is
first unpacked and reformatted into a structure compatible with PyTorch input
pipelines. It is then split into training, validation, and test subsets.

Model layers are initialized according to the topology shown in Figure 4.12.
Training is accelerated using an NVIDIA RTX 2060 GPU [106], enabling
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efficient iteration over the large dataset and supporting parallel computation

and gradient updates through backpropagation.

4.5.1 Dataset Preparation

The RadioML 2016.10a dataset contains signal samples for 11 modulation
schemes, with SNR values ranging from -20dB to 18dB. For this implementation,
only 8 digital modulation schemes are retained to maintain a fully digital
classification pipeline.

Analogue modulation types, such as Analogue Modulation (AM) and Fre-
quency Modulation (FM), are excluded from this work for both practical
and architectural reasons. These schemes require fundamentally different
pre-processing and demodulation techniques compared to digital modulation
schemes, which are designed to recover discrete bits from a transmitted signal.
In contrast, analogue modulations typically produce a continuous waveform
at the output, like audio or baseband analogue signals, rather than bit repre-
sentations. Supporting such formats would require entirely different circuitry
and signal processing pipelines, making their inclusion beyond the scope of this
work if the modulation classification application is taken further to demodulate
the identified signal.

The selected digital modulation schemes are: QPSK, BPSK, 16-QAM,
64-QAM, 8PSK, PAM4, GFSK, and CPFSK. The dataset comprises 160,000
frames, evenly distributed across modulation types and SNR levels. Each
frame consists of 128 complex-valued samples represented as two 1/Q channels.
Every modulation-SNR pair contains 1,000 examples, yielding 20,000 frames
per modulation scheme.

Figure 4.13 shows time-domain plots of each modulation type at 18 dB SNR,
illustrating the variation in waveform structure across the dataset. Each of the
waveforms depicted was generated using the method described in Section 2.2.3
with time, frequency, and phase offsets applied to the signal along side multipath
channel and AWGN.

Before the dataset can be used to train the DL model, it is prepared for
training by splitting it into training, validation, and testing sets. The original
RadioML 2016.10a dataset is first restructured from a dictionary format into
a tensor of input samples and a corresponding list of labels, indicating the
modulation scheme. Only the digital modulation classes are retained, as
discussed earlier. The dataset is then randomly shuffled and divided with

70% allocated to training, with the remaining 30% reserved for validation and
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Figure 4.13 Time-domain plots of each modulation scheme at 18 dB SNR.

testing. From the validation and testing portion, a further 1:2 split is used to
separate validation and testing data. Labels are converted to one-hot encoded
vectors for compatibility with the classification model, which produces one
class prediction at a time. A visual overview of the dataset preparation process

is shown in Figure 4.14.

RadioML Dataset

v
[ shuffle data

70% / I\ 30%

Training Set

20% 10%

Validation
Set

Figure 4.14 RadioML dataset split between training, validation and testing
sets.

The training and validation sets are used during training to learn how to
classify the different modulation schemes and to tune the model’s hyperparam-
eters. The validation set helps monitor how well the model generalises to the
data during training and avoids overfitting. Early stopping is triggered if the
validation loss has not improved over the course of training. The test set is kept

completely separate and is only used at the end to evaluate the final model
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performance on unseen data. The test set is also reserved for the evaluation of

the architecture on the embedded device.

4.5.2 Network Training

With the dataset prepared and split into training, validation and testing sets,
the CNN model can now be defined and trained. The network is designed to
operate on 128-sample long 1/Q frames, which are reshaped into a (1 x 2 x 128)
tensor to represent the real and imaginary components of the signal.

The model is trained using categorical cross-entropy loss and the Adam

optimiser [87]. Key training parameters are summarised in Table 4.1.

Table 4.1 CNN training parameters.

Parameter Value

Epochs 100

Batch size 128

Early stopping (Patience) 8

Loss function Cross Entropy Loss
Optimiser Adam

Learning rate le*

Weight decay (L2 Regularisation) 1le™®

Figure 4.15 shows the training and validation loss over the training process.
The network converges after approximately 58 epochs, with the validation loss
stabilising around 1.1. The validation loss consistently tracks the training loss,
which suggests that the model generalises well and does not overfit. This is also
a sign that the dataset provides a good range of signal scenarios for training.
The training process was halted early through the early stopping mechanism as
the validation loss did not continue to improve, even as the training loss was
still decreasing. Had the early stopping not occurred, the validation loss would
not continue to improve and instead begin to rise again. Early stopping is an
excellent method for verifying the model has not overfitted.

After training, the test set is used to evaluate the model’s performance on
unseen data. The overall accuracy across all SNR levels is shown in Figure 4.16,
the per-class performance is shown in the plot in Figure 4.17, and a confusion
matrix showing the per-class correct and incorrect classifications for signals at
18dB SNR can be seen in Figure 4.18. The accuracy is reported from a range
of 0 — 1, corresponding to 0% — 100%.
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Figure 4.16 Accuracies for all classes across all SNRs.

The model performs best on modulation types with lower symbol rates,
such as BPSK, GFSK, CPFSK, and PAM4. The performance of the schemes
degrades as the symbol rate increases with both QAM schemes performing the

worst. Overall, the model demonstrates strong classification performance on

SNR values above 0dB shows good generalisation across all modulation types.
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Figure 4.17 Accuracies for each class across all SNRs.
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Figure 4.18 Confusion matrix of predictions vs true labels from the trained
software model on the RadioML test set at SNR=18 dB.

Upon the completion of training and the evaluation of the test set to assess
the performance of the trained model, the weights are preserved for use in the

creation of the streaming-based CNN architecture.
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The candidate network developed here is later used to construct the CNN
architecture that is the main focus of this chapter. While the accuracy per-
formance of the trained model is not optimal, the goal of this work is not to
provide the best accuracy network, but rather to demonstrate how a trained
network can be transferred to FPGA PL for real-time operation. The resulting
accuracy for the candidate network trained on the RadioML dataset achieves a
~85% at the higher SNRs, which is comparable to other works for networks
and inputs of this size [70].

4.6 Design Workflow

As outlined in Section 4.4, the RadioML dataset and neural network architec-
ture developed by O’Shea et al. are chosen as an example model and application
for refining the proposed CNN architecture. Modulation classification, the
task of identifying the modulation scheme applied to a received signal, can
be instrumental to a spectrum sensing application in a DSA context. The
RadioML dataset is widely recognised for its efficacy in demonstrating DL
tasks in wireless communications. The selected neural network configuration
demonstrates a variety of CNN layer features, while maintaining a moderate
and manageable number of dimensions to prevent excessively long training and
implementation times. With a predefined and operational neural network topol-
ogy and application, the creation of customised CNN architecture stemming
from fundamental DSP functionality becomes feasible.

This section will detail the design workflow and methodology behind con-
verting the trained PyTorch model from Section 4.5.2, to a streaming dataflow
CNN implementation operating in the PL. This is achieved while maintaining
the core underlying functionality of the model with minimal sacrifice to the
model accuracy performance. The goal of the resulting deployed model is to
achieve similar classification accuracies while accelerating computation through
the parallel capabilities of the logic fabric. The resulting accelerated model will
receive a stream of samples and produce a prediction of the signal’s modulation
scheme.

The design workflow leverages the functionality from the trained CNN
model discussed in Section 4.5.2, transforming it into a hardware-synthesisable
format using MathWorks HDL Coder. HDL Coder enables users to generate
synthesisable Verilog and VHDL code from MATLAB functions and Simulink
models [101]. This tool is widely used in digital design and FPGA programming
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due to its capabilities in simulating and deploying engineering algorithms
efficiently on hardware platforms, and is popular with SDR engineers for its
integration with Hardware Description Language (HDL) compatible MathWorks
libraries like the Wireless HDL Toolbox [107].

Using a dataflow paradigm, HDL Coder within Simulink is particularly
advantageous for wireless communications applications. The CNN implementa-
tion resulting from this work also exploits the data flow methodology for design.
Given its compatibility with this data flow approach and its capabilities for
developing hardware efficient implementations, HDL Coder is a suitable choice
for realising the data flow CNN model in hardware.

The resulting hardware CNN model must have the same functionality as
the trained CNN model. To maintain the same functionality, the CNN function
must be built using basic functions such as additions, multiplies and on-chip
memory. Hardware optimisations, like those discussed in Chapter 3, are utilised
to exploit parallelism in the PL. Figure 4.19 illustrates the process of building
the resulting hardware-implemented CNN.

Design Workflow

Trained N MATLAB N MATLAB N Mégﬁl\A/IB N HDL
CNN Float Fixed-point Coder
Transform

Figure 4.19 CNN architecture design workflow.

The design workflow uses a variety of design software to train and implement
the CNN onto the FPGA device. To train the CNN, software tools such as
PyTorch [79] or Tensorflow [80] can be used. MATLAB/Simulink is used to
convert the trained weights into a hardware optimised architecture, following
steps of optimisation. During the conversion from software to hardware using
MATLAB and Simulink, each stage can also be simulated to verify the design

at each stage of the transformation.

4.6.1 Trained CNN Model

In Figure 4.19, the depicted workflow illustrates the steps involved in developing
a hardware-efficient CNN model, which mirrors the computational functionality
of the CNN model trained in Section 4.5.2. After training and testing the



1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26

27

4.6 Design Workflow

99

network to ensure reliable prediction of modulation schemes, the network

weights are stored in a .mat file for integration with MATLAB.

4.6.2 MATLAB Floating-point Functionality

The next step in the workflow is to replicate the CNN model in MATLAB using

floating-point arithmetic. This version is used to simulate the neural network

inference pipeline without any quantisation or hardware-specific limitations.

The goal is to verify the model’s functional behaviour before transitioning to a
fixed-point hardware-oriented implementation.

A convolution function, written in MATLAB, shown in Listing 4.1, was
written to perform 3D convolutions across input feature maps using saved
filter weights and biases. The function supports configurable stride and input
dimensions, matching the structure of the trained PyTorch model. A detailed

explanation of the convolutional layer was provided in Chapter 3.

Listing 4.1 conv: floating-point convolution function in MATLAB.

function out = conv(data, filt, bias, s)
%#codegen

% Convolves ‘filt’ over ‘data‘’ using stride ‘s’

% N - Number of filters, C - Channels, H - Height, W - Width
[filt_N, filt_C, filt_H, filt_W] = size(filt);
[data_C, data_H, data_W] = size(data);

% "Dimesions of number of channels for filter and data must match"
assert(filt_C == data_C, ’'Dimensions must agree’);

% Calculate the output dimension (C,H,W)
outdim_C = ceil((data_C - filt_C)/s)+1;

outdim_H = ceil((data_H - filt_H)/s)+1;
outdim_W = ceil((data_W - filt_w)/s)+1;
outdim_N = filt_N; % Becomes the new C

out = zeros(outdim_N, outdim_H, outdim_W);

% Convolve the filter over every part of the image, adding the bias at each

step.
for curr_N = 1:filt_N
out_h = 1;
for curr_H = 1l:s:data_H-filt_H+1
out_w = 1;
for curr_W = 1:s:data_W-filt_W+1
filter = reshape(filt(curr_N,:,:,:), size(filt, 2), size(filt,3),

size(filt,4));
data_partial = data(:,curr_H:curr_H+filt_H-1,curr_W:curr_W+filt_W-
1);
out(curr_N,out_h,out_w) = sum(filter .* data_partial, ’all’) +
bias(curr_N);
out_w = out_w + 1;
end
out_h = out_h + 1;
end
end
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The input feature map is structured as a 3D tensor with dimensions for
channels C, height H, and width W. The convolutional filters are 4D tensors
of shape (N, C, J, K), representing the number of filters NV, channels C, kernel
height J, and kernel width K. Each filter is slid across the input with the

specified stride, and a bias b is added after each multiply-accumulate operation.

The complete floating-point CNN model is implemented using a function
cnn_float (Listing 4.2) that chains together two convolutional layers followed
by two FC layers. ReLU activations are applied after each layer, and the
final output is a raw class probability vector. This MATLAB implementation

accepts the trained weights and biases exported from the PyTorch model.

Listing 4.2 enn_float: floating-point CNN model in MATLAB.

1 function [convl,actl,conv2,act2,flatten,fcl,act3,fc2, actd] = cnn_float(input,
wconvl,wconv2,wfcl,wfc2,bl,b2,b3,bu)

2 %CNN_FLOAT function to process convolutional neural network for AMC without
3 %transforms or quantisations. Used to compare against trained data.
4

5 % Layer 1

6 convl = cnn.conv(input,wconvl,bl, 1);

7 actl = convl;

8 actl(actl<0) = 0;

9

10 % Layer 2

11 conv2 = cnn.conv(actl,wconv2,b2,1);

12 act2 = conv2;

13 act2(act2<0) = 0;

14

15 % Flatten

16 conv2_2d = reshape(act2,size(act2,1),[1);
17 flatten = reshape(conv2_2d,1,[1);

18

19 % Layer 3

20 fcl = flatten * wfcl + b3;

21 act3 = fcl;

22 act3(act3<0) = 0;

23

24 % Layer 4

25 fc2 = act3 * wfc2 + bu;

26 actd = fc2;

27

28 end

To confirm correctness, the output feature maps from each layer of the
MATLAB floating-point model are compared against those produced by the
original PyTorch model using the same input data. Minor differences are
expected due to precision and rounding behaviours between MATLAB and
Python, but the outputs remain functionally equivalent. This step validates

the floating-point implementation as a reference before moving to fixed-point.
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4.6.3 MATLAB Fixed-point Functionality

Once the floating-point version of the CNN model is verified, the next step is to
convert the implementation to use fixed-point arithmetic. Fixed-point formats
are commonly used in FPGA designs, especially in DSP applications, due to
their lower resource usage and faster operation compared to floating-point
arithmetic.

In this implementation, the CNN model is treated similarly to a DSP
pipeline. Converting to fixed-point requires careful management of numeric
precision to avoid information loss from quantisation. Key design considerations
include bit growth across layers, the use of appropriate dynamic ranges, and
strategic truncation to balance accuracy and hardware efficiency. These are

standard practices in DSP filter design and are applied here to ensure that the

network remains both accurate and hardware-friendly when mapped to the PL.

Quantise Layer Weights

The trained model stores its weights in single-precision floating-point format,
which offers a wide dynamic range but is inefficient for hardware implementation
on FPGAs. Floating-point arithmetic is resource-intensive and generally avoided
in favour of fixed-point formats in real-time inference applications.

Since the neural network is used purely for inference, its weights are static
and can be quantised ahead of time. By analysing the distribution of trained

weights in each layer, suitable fixed-point representations can be selected to

minimise quantisation error while significantly reducing hardware complexity.

Figure 4.20 shows histogram plots of the weight distributions across all layers of
the network. These plots are used to guide the choice of bit-width and scaling

factors for fixed-point representation.

Weight Distributions for CNN Model
Convl Conv2 FC1 FC2

Count

Weight Value

Figure 4.20 Histogram plot of weight value distribution in each layer of the
trained CNN model.
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As seen in Figure 4.20, for convolutional layer 1, the kernel weights are
predominantly centred around —1 and 1, respectively, and reach a maximum just
over 1 and —1. Convolutional layer 2 represents a more ‘normal’ distribution,
offset and centred around 0.1. This layer has kernel weights with a maximum
and minimum of —0.45 and 0.3, respectively. For the FC layers, both models
also have a ‘normal’-like distribution of weights centred around 0. The first
FC layer has minimum —0.4 and minimum 0.2, while the second has minimum
—0.55 and maximum 0.55. Both the FC layers have a large number of samples
at or around 0.

Despite being stored in a 32-bit floating-point format, the precision offered
by this format far exceeds the practical needs for the network for inference.
This observation supports the use of reduced-precision representations. One
focus of this chapter is how fixed-point formats can be applied to the weights,
activations, and intermediate signals of the CNN to enable an efficient FPGA
implementation.

The PL fabric available on AMD’s UltraScale+ devices contain DSP48E2
slices which are dedicated MAC resources [108]. Figure 4.21 illustrates the
internal structure of the DSP48E2 slice. To maintain a single DSP48 for each
MAC operation during the implementation of the neural network in the PL,
the kernel/weights bit widths are set to 16 bits and a fractional point can be

chosen to best represent each layer’s weights.

DSP48E2

B >
Arithmetic Logic Unit
(ALU)
—> ~» » P
) Multiplier
) + |
D 2\

Pre-Adder

>
v

Figure 4.21 The DSP48E2 slice (simplified) [108].

In Table 4.2, each layer is assigned 16 bits to represent all of the kernel-
s/weights in that layer. An integer width is selected depending on the maximum
amplitude of any weight in the layer. After analysing the distribution of weights,

a fixed-point equivalent that can represent each layer’s weights is derived. The
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Table 4.2 Fixed-point representation for each layer weight assignment (For
Qm.n format, see App. A).

Layer Integer  Fractional Dynamic Rep?e(sI:I.lfclzi tion
Bit-width Bit-width Range .
(Signed)
Convl 2-bits 14-bits —2 — 1.999985 Q2.14
Conv2 1-bits 15-bits —1 — 0.999985 Q1.15
FC1 0-bits 16-bits —0.5 — 0.499985 Q0.16
FC2 1-bits 15-bits —1 — 0.999985 Q1.15

number of bits to support the maximum amplitude of each distribution is

selected through the integer bits and the remaining bits are allocated to the

fractional bits to represent finer precision. This process is also known as PTQ.

See Appendix A for a description of the Qm.n format.

GeMM Transform and Quantised Network

The CNN MATLAB code from Listing 4.2 is then adjusted to include the
GeMM transform, discussed in Chapter 3 Section 3.3.3, and the quantised
weights are analysed. By injecting the test set samples from the RadioML
dataset, the inter-layer signals and activation quantisation parameters can
be realised. Unlike the weight quantisation, the activations and inter-layer
signal fixed-point precision need to be solved via experimentation. By using the
Fixed-Point Toolbox [102] in MATLAB, the fractional bits can be automatically
assigned, while the computation of the CNN is performed. Listing 4.3 shows
the MATLAB code for implementing the GeMM-transformed neural network
and the quantised weights and activations. Listing 4.4 shows the process of
GeMM-transforming the convolutional layer weights.

The resulting inter-layer signal and activation precision are reported in
Table 4.3.

The resulting activation and inter-layer precisions fluctuate in dynamic
range as the signal passes through the network. This is due to the post-training
representation of the floating-point signals. Later, in Chapter 6, an analysis of

maintaining a more constant precision range is presented.

4.6.4 Dataflow Design Workflow

The dataflow design model provides a structured way to manage data in a

communications pipeline, especially when the input data can flow continuously.
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Listing 4.3 ecnn_gemm_amc: GeMM-transformed CNN model with quantised
weights and activations.

function [convl, convl_bias, actl, gemm_convl,

conv2, conv2_bias, act2, flattened,

fcl, fcl_bias, act3, fc2, fc2_bias, actd] = ...

cnn_gemm_amc (input, wconvl, wconv2, wfcl, wfc2, bl, b2, b3, bu)
NN_GEMM_AMC - 4-layer CNN inference with fixed-point GEMM operations.
erforms inference on 16-bit fixed-point data using pre-quantised weights.

o®
uN

% ——— Input reshaping and padding for Convl ——-
input_padded = cnn.gemm.indexPaddingReplication([2, 1281, [1, 31);
gemm_input = fi(input(input_padded), 1, 16); % Fixed-point conversion

% ——— Convolution Layer 1 + Activation —-—-
convl = fiCwconvl * gemm_input, 1, 16);
convl_bias = convl + bil;

actl = fi(max(@, convl_bias), 1, 16); % RelU

% ——— Reshape output of Convl for next layer ——-

actl_reshaped = reshape(actl, 64, 2, 126);

actl_vector = reshape(permute(actl_reshaped, [3, 2, 11), 1, [1); % Flatten
to 1D vector

% ——-— Prepare input for Conv2 (GEMM transform) —---
gemm_convl = actl_vector(cnn.gemm.gemm_transform_input([64, 2, 1261, [2, 31));

% ——— Convolution Layer 2 + Activation ——-

conv2 fi(gemm_convl * wconv2, 1, 16).';
conv2_bias conv2 + b2;

act2 fi(max(@®, conv2_bias), 1, 16); % RelLU

% ——— Flatten for Fully Connected Layer ——-
flattened = reshape(act2, 1, [1);

% ——— Fully Connected Layer 1 + Activation ——-
fcl fi(flattened * wfcl, 1, 16);
fcl_bias = fcl + b3;

act3 fi(max(®, fcl_bias), 1, 16); % RelU

% ——— Fully Connected Layer 2 (Output) ---

fc2 fiCact3 * wfc2, 1, 16);

fc2_bias = fc2 + bu;

actd fc2_bias; % Final layer has no activation

end

Listing 4.4 GeMM-transforming the convolutional layer weights.

% ——— Convert and quantise convolutional layer weights ---

Wl_perm = permute(Wconvl, [4, 3, 1, 2]); % Reorder dims to [N, C, H, W]
% GeMM transform and quantise to Q2.14

wconvl = fi(cnn.gemm.roll_out_filter(Wl_perm), 1, 16, 14);

W2_perm = permute(Wconv2, [4, 3, 1, 2]); % Same reordering for Conv2
% GeMM transform, quantise to Q1.15, then transpose
wconv2 = fi(cnn.gemm.roll_out_filter(W2_perm), 1, 16, 15)';

% ——— Quantise fully-connected layer weights --—-
wfcl = fi(Wdensel, 1, 16, 16); % FC1l weights to Q0.16 fixed-point
wfc2 = fi(Wdense2, 1, 16, 15); % FC2 weights to Q1.15 fixed-point

It passes data between functional blocks in a streaming fashion, allowing each

stage to process data concurrently. By clearly defining how data moves from
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Table 4.3 Fixed-point representation for each layer activation (For Qm.n format,
see App. A) .

Signal Integer  Fractional Dynamic Q(m,n)
Bit-width Bit-width Range (Signed)
Input 2-bits 14-bits —2 — 1.999 Q2.14
Convl Out 1-bits 15-bits —1 —0.999 Q1.15
Conv2 Out 5-bits 11-bits —32 — 31.999 Q5.11
FC1 Out 8-bits 8-bits —256 — 255.999 Q8.8
FC2 Out 7-bits 9-bits —128 — 127.999 Q7.9

source to destination, it becomes easier to optimise each block independently
for performance or resource usage. This also means that blocks can be reused or
swapped out in other designs while still following the same dataflow approach.
Benefits of using this model include improved scalability, deterministic latency,
better resource utilisation, and lower overall latency. It is particularly useful
for handling large amounts of data, where continuous streams of samples need
to be processed without interruption.

In this work, the dataflow model is applied to the design of the CNN trained
in Section 4.5.2. The trained model operates as a modulation scheme classifier
where samples from an ADC are digitised, down-converted and passed into
the neural network for classification. The dataflow design model allows for
a theoretically indefinite stream of samples coming from the radio receiver
ADC into the CNN. When implemented on PL, each layer of the CNN can
operate concurrently and pass data from an input source to the classification

destination.

4.7 The Complete RadioML CNN Architec-

ture in Hardware

The CNN RadioML network is fully implemented in the PL of the FPGA. Fig-
ure 4.22 illustrates the RadioML CNN model built using the custom architecture
layers introduced in Section 4.3.

I/Q samples enter the CNN accelerator interleaved from the Ping-Pong
Buffer system, arriving as a continuous stream of frames. These samples
are stored in the first convolutional layer’s input buffer. Once enough data

is stored, the SWG core begins the GeMM transformation and continues to
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operate concurrently, producing transformed data while still receiving new
samples. The resulting matrix is processed by the MVM stage, which deploys
64 parallel MACs, matching the number of filters N in the first layer. A counter
sequentially loads the appropriate weights for each MAC unit. After matrix
multiplication, the output is passed through a ReLLU activation function before
being sent to the next convolutional layer.

The second convolutional layer follows a similar flow, but this time receives
frames of input data. Fach frame, representing a channel C, is written into a
Multi-RAM Buffer using several parallel BRAMs, allowing an entire frame to
be stored in a single clock cycle. The SWG core again performs a frame-based
GeMM transform, distributing the data to 16 parallel MVM cores. Each of
these cores contains 16 MACs, enabling efficient parallel computation. As
before, the output passes through a ReLLU activation stage.

In the first FC layer, input frames are stored in parallel buffers managed by
the Buffer Controller. Since this layer does not require a GeMM transformation,
samples are passed directly to the MVM stage, either one at a time or as
frames (at the cost of additional MACs). Here, a parallel array of 128 MACs
performs the multiplication. The accumulated outputs are then serialised and
passed to the final FC layer, which consists of 8 parallel MACs. This final
stage produces a classification for one of the eight modulation schemes: QPSK,
BPSK, QAM16, QAM64, PAM4, 8PSK, GFSK, or CPFSK.

As discussed in Section 3.4.2, this CNN accelerator architecture uses a
hybrid data reuse strategy. It combines weight stationary and output stationary
techniques to reduce memory bandwidth by keeping weights local to the MACs
and accumulating partial sums close to where they are computed. The system
also leverages a form of input stationarity by distributing input samples across

multiple MACs, each using a different set of weights.

4.8 Integration with Embedded FPGA Device

Having completed the process of converting the trained CNN to the custom
streaming architecture in HDL Coder, the next step is to integrate it into an
embedded FPGA environment for real-time execution. This section aims to
provide insights into the deployment of the streaming-based CNN accelerator
IP using MathWorks tools and AMD’s Vivado Design Suite [109].

The AI accelerator design was built using MathWorks HDL Coder which
translates block-based Simulink models into synthesisable VHDL IP Cores
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that can be integrated within Vivado’s IPI tool. AMD’s Vivado Design Suite
enables the integration of the Al accelerator with other IP cores, facilitating
operations such as data movement, the communication with PS registers, and
the distribution of clocks from the PL fabric. Additionally, the PYNQ software
framework is required to control and interface with the AI accelerator IP
through the resulting Vivado bitstream for visualisation, analysis, and testing
purposes. The Vivado IPI hardware design, software drivers, and testing APIs
will be explored in the following subsections. Figure 4.23 shows a flow chart of
the integration with the embedded device process.

While this work focuses on the AMD RFSoC platform as the target device,
the streaming CNN architecture itself is platform-agnostic. Since the accelerator
is designed as a standalone IP core, it can be integrated into any FPGA-based
SDR platform, such as Zynq devices with AD-FMC front-ends [110] or similar
platforms, provided the FPGA fabric can meet the required input data rate.

MathWorks Tools AMD Vivado PYNQ
MATLAB & Simulink image on development board
Design HDL Algorithm Import into Connect to Jupyter
in Simulink IP Integrator Session on Board
' ' ., . 1. v
Simulate and Test 0> | Synthesise and Implement |5 Imt_la lse. Overlay
v i with blgstream
Generate IP core Write Interact with IP drivers
(HDL Coder) Bitstream and PYNQ functions

Figure 4.23 Flow chart showing process of integrating custom CNN architecture
with the development platform.

4.8.1 1IP Core Generation

Using the MathWorks HDL Coder Workflow Advisor, an IP core can be
generated from a Simulink model [101]. The generated IP core is shareable
and reusable, and once generated, can be integrated within a larger design for
an embedded system. The HDL Workflow Advisor process allows the user to
target a variety of FPGA families and devices, configure a target clock rate that
the model can be tested against, and translate Simulink input and output ports
into AXI4 compliant interfaces. The top level subsystem of the Al accelerator,
showing input and output ports, is displayed in Figure 4.24.

HDL Workflow Advisor was configured to target the AMD Zynq UltraScale+
RFSoC device family and to generate the IP core based on the available



4.8 Integration with Embedded FPGA Device

109

Automatic Modulation Classification
Hardware AI Accelerator

16-bits 16-bits
data in data out
—P] valid in valid out jr—)
Streaming
<4—— ready out CNN ready in |g—
—P! cnable tlast fr—

Figure 4.24 Top level Al accelerator IP showing input and output ports.

components within the target family. The IP can be used on any device that
contains the same resources at the RFSoC device family. The input and output
ports of the Simulink subsystem were configured for translation into AXI4
compliant interfaces. Control signals, such as enable, were configured to use the
AXT4-Lite interface and a register map offset of 0x100. The offset defines where
in the AXI4-Lite address space the control register is located, allowing software
running on the PS to interface with and manipulate the custom IP core through
memory-mapped 1/O. Assigning a unique offset prevents address collisions with
other control registers and enables consistent access from software drivers, used
by the PYNQ framework.

The data streams entering and exiting the IP core were configured to use
the AXI4-Stream interface and it is primarily used for data transfer between
components in a SoC architecture and is particularly useful in high throughput

applications such as video processing, signal processing, and communications

systems. It provides a unidirectional flow of control data for one-way transfers.

AXI4-Stream is a bus interface consisting of several signals that assist with
the flow of data through the embedded platform. A further explanation of the
AXI4-Stream protocol is found in Section 2.1.6.

In this IP core the signals combined into an AXI4-Stream interface are
displayed in Table 4.4.

HDL Workflow Advisor generates the HDL code from the Simulink design
and assigns the ports to the associated AXI4 interfaces, resulting in an IP core

as seen in Figure 4.25.
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Table 4.4 AXI4-Stream signal assignments for Al accelerator IP core.

AXI4-Stream

Port Name Direction . . AXI4 Interface
Signal Assignment
dataln In S AXIS TDATA
validIn In S AXIS TVALID AXI4-Stream Slave
readyOut Out S AXIS TREADY
dataOut Out M AXIS TDATA
validOut Out M AXIS TVALID
readyIn In M _AXIS TREADY “XI4-Stream Master
tlastOut Out M_AXIS TLAST

amc_cnn

=4 AXi4_Lite

— -} AXl4_Stream_Slave
IPCORE_CLK
IPCORE_RESETN
AXl4_Lite_ACLK

AXl|4_Stream_Master -}

|HH]

AXI4_Lite_ ARESETN

amc_cnn

Figure 4.25 IP core generated through HDL Coder.

4.8.2 Integration with Vivado IP Integrator

Vivado IPI is a tool within the AMD Vivado Design Suite that allows users to
create and manage complex designs using a graphical interface. It simplifies
the process of integrating various IP cores and custom components into a
cohesive system for AMD FPGAs and SoCs. To integrate the generated Al
accelerator IP core as part of an embedded system to be programmed onto
a Zynq UltraScale+ RFSoC device, the IP core is imported into Vivado IPI
and connected with other components of the embedded platform. Figure 4.26
shows the Vivado IPI block design for the integration of the IP core within the
embedded system.

Each numbered region in Figure 4.26 is detailed below:

1. The Zynq UltraScale+ MPSoC IP core provides interfaces from the FPGA
to the PS through the M_AXI_HPMO_FPD and S_AXI_HPO_FPD ports. These
two ports allow for the Direct Memory Access (DMA) IP cores to transfer
data to and from the PS DDR memory and also allow for AXI4-Lite
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Figure 4.26 The IP Integrator block design for testing the AMC accelerator IP.

registers, within the PL, to be configured from the software operating on
the PS.

. The AXI DMA IP core is responsible for transferring bursts of data

to and from the PS DDR memory. In this design, the DMA provides
input feature maps to the CNN IP core and retrieves the associated

classification, transferring the answer to the software on the PS.

. The CNN IP core is the generated IP core from MathWorks HDL Coder. It

is connected to the Zynq UltraScale+ MPSoC to enable AXI4-Lite register

communications, and the DMA to receive inputs and send classifications.

The DMA transfers the input feature map to the CNN IP, while the
classification output is produced sample-by-sample. A TLAST signal
is triggered when the transfer is complete. Figure 4.27 shows a timing

diagram for the signals entering and exiting the CNN accelerator.

. The AXI Interconnect manages the concurrent AXI4-Lite communications

from the DMA and CNN IP core, while the AXI SmartConnect IP core

manages the data transfers to and from the PS DDR memory.

The Vivado IPI block design is converted into a bitstream, which is then

transferred to the Zynq UltraScale+ device for deployment. The bitstream is
loaded and interacted with from the PS using the PYNQ framework.
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Figure 4.27 Timing diagram of AXI4-Stream signals in the CNN accelerator IP.

4.8.3 Control and Visualisation using PYNQ

The CNN accelerator bitstream requires the PS for control, interfacing and
visualisation. The SD card located on the development board contains the
PYNQ 3.0.1 image which comprises a Linux-based OS with additional func-
tionalities for interacting with AXI connected IPs within the PL [51]. Python
classes are created for the combined operation of the AXI DMA with the CNN
accelerator and the visualisation widget.

The core driver files, overlay.py and dma.py host the classes Quverlay, DMA,
and DefaultIP, which enable basic interactions from PYNQ to the PL. The
custom driver class, AMCCNN, combines the functionality of the AXI DMA and
the CNN accelerator IP to create an inference testing system. The driver allows
the user to send test inputs to the classifier and retrieve classifications in return.
The AMCWidget class further expands the capabilities of the AMCCNN class
by presenting a front-end environment powered by ipywidgets and plotly. A
Unified Modelling Language (UML) diagram of the CNN accelerator control

system can be seen in Figure 4.28.

Interfacing with AMCCNN

Interfacing with the modulation classification CNN IP core is performed through
a Python interpreter provided by the PYNQ framework. The bitstream gener-
ated by Vivado is loaded onto the PL through the Owerlay class, which exposes
the AXI4-Lite connected IPs. The CNN and DMA IPs are assigned to new
variables and passed into the initialisation conditions of the AMCCNN class,
as shown in Listing 4.5.

The AMCCNN class sets up the PL IPs by applying configurations to
AXI4-Lite registers and making available the functions illustrated in Figure
4.28. The predict() function performs a single frame query to the CNN and
returns the classification result based on the input provided. In Listing 4.6, a

test frame of RadioML data, x, is passed into the predict() function where
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Figure 4.28 A UML diagram displaying the relationships between software
drivers for controlling the bitstream.

Listing 4.5 Loading bitstream onto PL through PYNQ and passing IPs to
AMCNN class.

from pynq import Overlay # import Overlay class
ol = Overlay("amc_cnn_bitstream.bit") # Load bitstream to the PL

dma = ol.axi_dma_0 # Assign DMA
cnn = ol.amc_cnn_0 # Assign CNN
amc = AMCCNN(dma, cnn) # Initialise AMCCNN by passing IPs to class.

the CNN produces a classification output, y_pred. This output is compared
to the true label, y_true, for the test frame to verify if the CNN classified the

input data correctly.

Listing 4.6 Predict the modulation scheme of a test frame x.
y_pred = amc.predict(x) # Send x to the CNN via DMA transfer, return CNN

classification.
if y_pred == y_true: # Compare prediction with true label
print(’Correct’) # Print ’Correct’ if they match.
else:

print(’Incorrect’) # Otherwise, print ’Incorrect’

The predict() function abstracts the configuration of the DMA IP as
well as the AXI4-Lite enabling of the CNN IP in hardware. The CNN IP
is enabled by writing a True to the AXI4-Lite register at a given offset with
cnn.write(0x100, True). To send the test frame to the CNN IP through

a DMA transfer, a contiguous portion of memory is allocated through the
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pynq.allocate() function. The DMA then performs a transfer by triggering
dma.sendchannel.transfer(data) and then waiting for the DMA to finish the
transfer with dma.sendchannel.wait(). This operation is repeated when receiv-
ing the classifications from the CNN IP back into the PS on dma.recvchannel.

The AMCCNN class is expanded by the AMCWidget class that provides an
interactive version of the AMCCNN function seen in Listing 4.5. Figure 4.29
shows a screenshot of the AMCWidget class in operation where the input frame
is plotted and the output prediction of the CNN is presented in two ways. One
through a confusion matrix to compare the predicted value with the true value
and the confidence of the classifier prediction. A dropdown widget allows the

user to select the modulation scheme of the test frame and the ‘Update’ button

triggers the DMA transfer to the CNN IP.
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Figure 4.29 AMCWidget class showing interactive ipywidgets to control the

AMCCNN class.
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4.9 Architecture Evaluation with RadioML

In this section, the performance of the modulation classification CNN IP is
evaluated using the RadioML dataset and results are provided for overall
accuracy, per modulation scheme accuracy, and FPGA implementation utilisa-
tion. These results provide insight into the effectiveness of the architecture in
identifying modulation schemes and evaluating the feasibility of the proposed
streaming-based CNN accelerator. The following subsections present the overall

accuracy and per-scheme accuracy of the implemented model when tested with
the RadioML dataset.

4.9.1 Accuracy of Deployed Model

Through the abstracted class, AMCCNN, and associated functions the accuracy
of the deployed network can be evaluated. A test set of 32,000 frames was sent
to the CNN IP and the prediction of each frame was compared with its true
label. The test set consists of frames with each 128 complex valued samples
and modulated to one of the following modulation schemes: QPSK, BPSK,
QAM16, QAM64, 8PSK, PAM4, GFSK, and CPFSK. The RadioML frames
have been passed through a multipath channel with AWGN from —20 — 18
dB SNR.

The overall accuracy of the deployed CNN model is calculated by sending
the RadioML test set frames to the deployed model on the FPGA. The overall
accuracy of the CNN model performing AMC is shown in Figure 4.30.

The results in Figure 4.30 compare the accuracy of the deployed model
against the accuracy reported from the model training stage in Section 4.5.2.
The accuracies of the two test scenarios on the same RadioML test set indicate
that the CNN architecture accurately represents the model for performing
AMC and achieves equal accuracy, despite the quantisation of the weights
and activations. This is an expected and interesting result since the model is
using 16-bit fixed-point values which can comfortably represent the learned
floating-point values. It shows that although the system was trained in floating-
point, the full precision and dynamic range of floating-point is not required to
accurately represent the model.

Further results are reported in Figures 4.31 and 4.32. These show the per-
class accuracies across SNR levels, and a confusion matrix of the classification

for an example SNR of 18 dB, respectively.
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Figure 4.30 Overall accuracy of the CNN accelerator vs the overall accuracy
recorded from the software model with the RadioML test set.

Accuracy over SNR for Each Mod Type on CNN Accelerator
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Figure 4.31 The per-class accuracy of the CNN accelerator across SNR values
on the RadioML test set.

These results show that overall good classification accuracy is reported for all
modulation schemes and that, as observed in Section 4.5.2, the higher bit-rate

modulation schemes are the most difficult to correctly identify. Additionally,



4.9 Architecture Evaluation with RadioML

117

Confusion Matrix (SNR = 18 dB)
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Figure 4.32 Confusion matrix of predictions vs true labels from the CNN
accelerator on the RadioML test set at SNR=18 dB.

due to the similarity in the two modulation schemes, QAM16 and QAM64 are

commonly mistaken for one another as seen in Figure 4.32.

4.9.2 Implementation Results

The system was evaluated on the AMD RFSoC 2x2 development board which
hosts the Zynq UltraScale+ XCZU28DR RFSoC part. The RFSoC’s PL
includes 4,272 DSP slices, 1,080 BRAMs, and 80 URAMs. For the purposes of
this evaluation, the RFSoC was chosen to determine whether the CNN IP could
operate with its PL through DMA transfers for transferring data to the input of
the model. Verifying this functionality enables the next stage of development,
which will integrate the RFSoC’s RF-ADCs.

Resource Utilisation

Table 4.5 shows the resource utilisation for the deployed CNN model in the PL.
The model uses 10.67% of the available DSP slices on the chip and 15.09% of
the available BRAM. A breakdown of the resource utilisation for each layer is
also tabulated. The DSP slices perform the task of implementing the MAC

function used in each layer. For the first convolutional layer, 64 DSP slices were
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used to implement the MAC portion of the layer, which equals the number
of filters (V) present in the layer as discussed in Section 4.3.2. Convolution
layer 2 represents an implementation of multiple MV Ms for a multi-channel
input. In this case, 16 groups of 16 MACs were used, equalling the 256 DSP
slices implemented on the device. The latter two layers of the network are
output stationary and perform the MVM with MACs unrolled along the output
dimensions of 128 and 8, respectively. This matches the DSP slice utilisation
seen in Table 4.5.

The BRAMs and URAMs used by the CNN model facilitate the buffer
of input samples entering each layer. The singular URAM used by the first
convolutional layer stores the input to the model before the SWC can produce
the GEMM transformation for the layer. For subsequent layers, BRAMs are
used to store the inter-layer signals. Look-Up Tables (LUTs) and registers are

used to store on-chip weights and perform control calculations.

Table 4.5 FPGA resource utilisation of the deployed CNN IP.

Model Slice Slice

layer LUTs Register DSPs BRAMs URAMs

ONN 23721 45,894 456 163 1
(5.59%) (5.39%) (10.67%) (15.09%) (1.25%)
convl 4,247 4,999 64 0 1
conv? 7,781 17,730 256 32 0
fel 10,688 22,110 128 130 0
fe2 749 782 8 0 0

Latency and Throughput

The model was implemented in Vivado 2020.1 and tasked with achieving a
clock rate performance of 100 MHz. The deployed model achieved a maximum
clock rate of 355 MHz, thus exceeding the target clock rate. At a clock rate of
100 MHz, the throughput of the model achives a 26.5k classifications per second
(cps) and at its maximum achievable clock rate, 94.075k cps. The latency of
the model at 100 MHz clock rate is 37.9us and 10.68us for the maximum clock
rate of 355 MHz. Table 4.6 shows these reported results.
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Table 4.6 Clock rate, latency, and throughput results for the deployed CNN IP.

Clock Rate Throughput Latency

(MHz) (cps) (ps)
100 26.5k 37.9
355 94.075k 10.68

4.10 Chapter Conclusion

In PHY wireless communications, real-world deployments are increasingly
realised on SDR platforms such as the RFSoC. While there are significant ad-
vancements in the field of Al for RF, transferring the algorithmic improvements
to a deployable scenario is far from trivial. Other AI accelerator technologies
do not take into account the unique requirement in communications systems to
be able to process every sample received into the model.

This chapter has introduced a custom streaming-based CNN accelerator
built specifically to process a constantly moving stream of samples. Other
works [39]—[41], which focus high-throughput accelerators without a guarantee
to process samples at a given input rate, this work presents an architecture that
is specifically designed for high-throughput real-time RF data classification
that processes every sample it receives. The target application of modulation
classification was chosen to demonstrate the efficacy of this design method. A
CNN model was trained on the RadioML [45] dataset and ported to the CNN
accelerator architecture detailed in this chapter.

Each layer’s design was covered, showing how a streaming set of samples
can be processed by each of the dataflow layers, showing that all layers can
concurrently operate and stream samples from one layer to the next. Through
the introduction of an alternative GeMM transform, processing a streaming
signal going into the model was shown to be possible.

This chapter has presented an analysis of how the weights and activations
were quantised, as well as the process of designing the architecture from basic
principles. The streaming-based Al accelerator architecture is developed in
MATLAB/Simulink, which allows it to take full advantage of the software’s
simulation capabilities. As a result, engineers can integrate the CNN model
with other simulation packages, such as the Communications Toolbox and the
5G Toolbox in MATLAB and Simulink [23], [111], for system-wide evaluation.
This added benefit can assist with confirming the operation of an Al-based

communications application before it is implemented in hardware.
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The key takeaway from this chapter is that it is possible to design a stream-
ing, real-time CNN accelerator architecture for modulation classification that
achieves software-equivalent accuracy while consuming a low number of FPGA
resources. The resulting deployed architecture showed that it achieved equal
classification accuracy to the same model trained in software, confirming the
correct computational operation of the proposed architecture. The resource
utilisation of the deployed model showed acceptably low occupancy of the
RFSoC’s PL, occupying less that 6% of all logic fabric resources and approx-
imately 11% of DSP slices and 15% BRAM, respectively. This allows space
for other designs in a radio pipeline to fit alongside the CNN architecture.
The architecture showed promising latency and throughput metrics, further
supporting the design’s remit as a real-time inference architecture.

While a specific CNN model deployment is reported, the architectural
designs presented in this chapter can be applied to any size CNN. The number
of resources a resulting CNN consumes is proportional to the number of weights
in each layer (to be stored in on-chip RAM) and the input size into each
layer, which determines the number of buffers required to produce a GeMM
transformed input.

The next chapter explores the design choices and training requirements for
deploying the CNN architecture to receive live data from the RF-ADC and
operating in real-time, by removing the DMA input to the model and replacing

it with a radio receiver pipeline.



Chapter 5

Real-time CNN Integration with

Radio Recelver

This chapter details the process of validating the streaming-based CNN acceler-
ator in a real-time radio receiver system. It outlines the design and deployment
of a custom dataset, made to reflect live signal conditions captured through
the RFSoC hardware, and demonstrates the full integration of the accelerator
with a live signal. The chapter reports on accuracy performance with AMC

and throughput and latency comparisons with other works.

5.1 Motivation

A key goal of the work presented in this thesis is to demonstrate a real-time
CNN operating with a SDR receiving real-time data live. While much of
the previous development and testing has relied on the RadioML dataset,
transmitting this dataset through an RF-DAC and receiving the signal again
through the RF-ADC is infeasible due to the format the dataset is stored in.
Instead, this chapter focuses on improving the CNN architecture to operate
successfully on received radio samples, while also demonstrating a method for
the development of a custom dataset that represents the samples coming from
an RF-ADC receiver stage.

Creating this dataset presents a number of challenges. Ideally, the CNN
should be trained on signals that capture realistic channel and hardware effects,
but doing so should not require physically building and configuring a dedicated
transmitter for every modulation scheme. To address this, a hybrid dataset
generation approach is adopted. Modulation signals are synthetically generated

and then transmitted and received through the actual RF hardware in a
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loopback configuration. This approach allows synthetic signals to be embedded
with real-world hardware distortions, including the RF-ADC’s digitisation
artefacts, non-linearities, and tile stitching effects inherent to the RFSoC’s
RFEFDC system.

This methodology provides two key advantages. Firstly, the resulting dataset
preserves the controlled channel conditions of synthetic data while incorporating
the physical impairments introduced by the RF front-end. Secondly, it enables
the receiver architecture to be tested under live conditions, while receiving
sampled data from the RF-ADC, applying decimation and baseband mixing,
and performing real-time classification using the CNN accelerator. Reliable
operation under these conditions validates the accelerator as a functional and

deployable component to be used in an intelligent radio system.

5.2 Related Work

Several works have investigated the deployment of CNN models on embedded
platforms for modulation classification. In particular, related implementa-
tions targeting FPGA platforms aim to maximise inference throughput while
minimising latency. Many of these efforts rely on either HLS tools or cus-
tom hardware architectures, and typically evaluate performance using the
RadioML [45] dataset or similarly constructed synthetic datasets. However
few have attempted real-time inference using live RF signals, and fewer still
demonstrate full integration with the RF signal path of an SDR platform like
the RFSoC.

To benchmark the performance of this work’s deployed CNN accelerator,
the comparison is made against other relevant FPGA-based CNN accelerators
developed for modulation classification, including [42], [43], [46], [47]. These
works differ in architecture, quantisation, dataset usage, and evaluation setup.
The primary focus of this chapter is on evaluating how well a deployed model,
trained on a realistic dataset, can operate in real-time on live signals.

The second aspect of related work concerns how datasets for modulation
classification are constructed for training neural networks. Most existing
approaches fall into two categories. The first is purely synthetic: signals
are generated in software with simulated channel models such as AWGN
or multipath fading, often using tools like GNU Radio [24] or MATLAB.
These signals are typically normalised and presented as framed data to the

network. Such examples include: [45], [112]-[114]. The second approach involves
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capturing signals over the air, where modulation schemes are transmitted and
received using SDR hardware, and the dataset reflects the real-world conditions
of environment during capture. As a result these datasets typically record
indoor channel scenarios, leading to lack of diverse channel models in the
recorded data. Such examples include: [72], [115], [116]. The work in [72] first
trained models on synthetic data and then fine-tuned them on over-the-air data.
They reported a 16% accuracy drop when models trained solely on synthetic
data were tested on over-the-air signals, while fine-tuning on over-the-air data
recovered 10% of that loss.

The dataset methodology proposed in this work presents a hybrid approach.
Signals are synthetically generated and channel-affected in simulation, but are
then transmitted through RF hardware and re-captured. This approach bridges

the gap between simulation and physical deployment.

5.3 Deep Learning Challenges on the RFSoC

In Chapter 4, the RadioML dataset [45] was used as a benchmark to develop
and evaluate the CNN streaming accelerator architecture, demonstrating its
suitability for wireless communication applications. Once the architecture
was shown to operate correctly on synthetic data and successfully classify
modulation schemes, the next step was to integrate the Al accelerator with a
radio system receiving live signals. While synthetic benchmarks validate func-
tional correctness, evaluating the architecture in a real-time radio environment
provides a stronger indication of its practical viability and effectiveness for

deployment.

5.3.1 Processing a Stream of Infinite Samples

Several differences arise when transitioning from a synthetic classifier scenario
to a real-time and real-life data scenario. These can prove challenging when
modelling a real-time Al accelerator operating on the RFSoC. One such dif-
ference is the constant stream of data samples received by the SDR RF-ADC,
which could potentially be infinite instead of finite frames of data. The in-
troduction of a constant stream of samples adds an additional challenge to
the Al accelerator architecture. If the accelerator processes samples slower
than they are received, the accelerator will only have the ability to process a
subset of samples received by the radio. Depending on the application in which

the radio Al receiver is operating, it may be acceptable to process a subset
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of samples. These applications may include non-critical applications as part
of a larger signal detection algorithm where data is sent asynchronously to
the DL model. However, in sample-critical receiver applications such as signal
decoding, spectrum monitoring, preamble detection, and channel estimation
and correction, dropping samples or not processing every sample provided by
the receiver can lead to a degradation of receiver performance. For a CNN
accelerator to work effectively in all radio receiver scenarios, it should have the
capability to process every available sample. Knowledge of the input sample
rate f for the accelerator, the dimensions of the DL model deployed, and the
number of resources on chip (DSP slices, BRAMs, etc) is useful for achieving
an accelerator that does not drop samples. Figure 5.1 illustrates the real-time

receiver scenario when receiving a constant stream of samples.

Q Q@ Q@ Q Q
- H 0 H B

lDecimatiOn > Streaming CNN
Chain Accelerator Classifications

Jelk low

Programmable Logic

Figure 5.1 A radio receiver with a constant stream of samples entering an Al
accelerator.

The architecture introduced in Chapter 4 follows the dataflow design phi-
losophy where all layers of the DL model exist physically on-chip and data
samples flow through the layers. It is important to note that this dataflow
design philosophy treats the incoming data as a continuous stream of infinite
samples and processes them in real-time. While the model aims to support
an infinite stream of data samples entering the model, the model’s Window of
Focus (WoF) is still finite, depending on the parameters of the model deployed.
Thus, supporting a stream of infinite samples is only an implementational
design to facilitate a real-time accelerator.

A significant challenge with processing a stream of samples through the
proposed dataflow model is the repeated reading of input feature map samples
by the convolutional layers, where a loss of samples may occur due to the
over-production of samples by the convolutional layer.

In Section 3.3.3, the GeMM transform was introduced to simplify the
complexity of the 3-dimensional convolutional layers. The layers were reduced

to a matrix multiplication at the cost of replication of input samples. This
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replication of input samples can hinder the maximum available input data rate
of the CNN accelerator. Given an input feature map with dimensions including
channels ¢, height h, and width w, a convolution operation is defined by a filter
kernel of height j and width k, the number of total strides s used during a

convolution is defined as

s=(h—j+1)x(w—k+1). (5.1)

The over-production of samples each convolutional layer contributes to

the model can be calculated as the number of samples entering the layer and

the corresponding number of samples exiting the layer. This ratio, Reony, iS
calculated as shown in Equation 5.2.

(5.2)

Rconv - ’VSCJ]{-‘ .

chw

The value, Ry, represents the ratio of output samples for a given con-
volutional layer. It quantifies how many output samples are produced per
input sample. If R.o,n, > 1 then the layer produces more output samples than
input samples received, which effectively limits how frequently new inputs
can be accepted. To facilitate a constantly streaming convolutional layer, the
AT accelerator clock rate must increase by a factor equal to the sum of all

convolutional layer ratios Reony,

L.—1

Rconvftotal = Z Rconv(i)- (53)
=0

Equation 5.3 is the result of empirical derivation and does not appear in

prior literature.

5.3.2 Calculating Model Clock Rates

Equations 5.2 and 5.3 can be applied to the model introduced in Section
4.4. In the designed network from Chapter 4, the first convolutional layer
processes input WoF with dimensions (¢, h, w) = (1,2, 128) and filter dimensions
(n,c,j,k) = (64,1,1,3). The clock rate increase factor for this layer is denoted

as Rconvh Le.

scjk [252*1*1*3] {756}
Heon1 {chw-‘ 125128 256~ ° (5:4)
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The relationship in (5.2) and (5.3) can be extended and applied to all
convolutional layers in the network topology. In the case of the CNN model
proposed earlier, two convolutional layers exist. Additionally, an extra factor
of 2 is added due to the interleaving stage before data enters the implemented
CNN accelerator model. The overall upsampling ratio required for the network,

assuming that a fully unrolled parallel MVM is implemented, is given by

Rtotal - Rconvl + Rcoan +2 (55>

where Reonv1 and Reonye are both equal to 3. This equation shows that the
receiver system of the current network topology necessitates a minimum clock
rate increase by a factor of 8, while assuming a fully unrolled parallel matrix-
vector multiplier.

In the implementation described in Chapter 4, a partially unrolled MVM is
implemented for each convolutional layer and FC layer, in order to save on PL
resources. As a result, the clock rate is increased by a factor of 32 instead to

enable unrolling.

5.3.3 Signal Data Path

Real-world signal environments add significant complexity to the training and
inference phases of a deployed DL model. While synthetic datasets are useful
for initial development and testing, they do not capture the nuances of a real-
life transmission channel. These channels introduce a range of impairments,
such as interleaving spurs, harmonics, power variations, clock offsets, and
non-ideal frequency responses from the decimation and interpolation filters,
where a perfect ‘brick-wall’ response cannot be achieved. A robust system must
account for these imperfections to maintain a high classification accuracy under

real-world conditions.

5.4 Transceiver-Based Dataset Construction
on RFSoC - DeepRFSoC

As detailed in Section 5.3.3, real-world signal paths introduce hardware and
channel impairments that synthetic datasets often fail to capture. To address
this mismatch and ensure robustness under deployment conditions, a custom
dataset, ‘DeepRFSoC’, was generated using the RFSoC platform [117].
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In the generation process, synthetically generated signals were transmitted
and received in loopback using the onboard RF-ADCs and RF-DACs, allowing
the dataset to embed the exact non-idealities of the RFSoC signal chain. By
generating training data within the target hardware environment, the resulting
CNN model is exposed to the same conditions it would encounter during live

inference.

5.4.1 Generation of Training Samples in MATLAB

The first step in creating a custom dataset is to generate a set of examples
of modulated signals simulated through environmental channel effects using
MATLAB and MATLAB’s Communications Toolbox [23].

The MATLAB Communications Toolbox is an add-on package for MATLAB
that provides tools for designing and simulating communications systems rang-
ing from simple modulation schemes to OFDM, WiFi, LTE, and 5G systems [23].
It is widely used in wireless communications research and development. The
toolbox includes a comprehensive set of algorithms and functions for tasks such
as signal processing, channel modelling, error correction coding, and perfor-
mance evaluation. For this research the Communications Toolbox was used to
generate the modulated waveforms for each modulation type which were then
‘transmitted’ through a simulated channel. This work used MATLAB version
2020a.

The generation of the training samples, through MATLAB, aimed to follow a
similar paradigm to the methodology detailed in RadioML [45], where different
channel model parameters, frame sizes, and dataset sizes were configured. The
dataset consisted of eight modulation schemes where each modulation scheme
was affected by 14 AWGN values ranging from -20dB to 30dB SNR. The
generation of the dataset followed the following steps (see Appendix B for a
full code listing of the MATLAB generation process):

1. Generate 1024 uniformly random symbols for each modulation scheme.

2. Apply pulse shaping using a Raised Cosine filter with roll-off factor of
B = 0.5, filter length of 10 symbols, and 8 SPS, resulting in 8,192 complex

samples per frame.

3. Pass the signal through a Rician multipath channel using MATLAB’s

comm.RicianCHannel() function [118] configured with:

o A sampling rate of f; = 128 MHz,
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) 1.8 3.4
o Three path delays: {O, ya f},
 Average path gains: [0, -2, -10] dB,
o K-factor of 4, simulating a mildly fading indoor environment,

o Maximum Doppler shift of 4 Hz to simulate a maximum transmitter
velocity of 1.7 m/s, adequately simulating person taking a brisk

walk.

4. Introduce a random clock offset in the range of -5 to 5 MHz and com-
pute the resulting frequency shift, while assuming a carrier frequency of
700 MHz.

5. Resample the signal to simulate time drift caused by sampling frequency

mismatch via linear interpolation.

6. Add AWGN using SNR values ranging from -20 dB to 30 dB in 14 evenly

spaced steps.
7. Crop each generated frame randomly to a fixed length of 4,096 samples.

8. Separate the real and imaginary parts (I and Q) into two channels,
resulting in a final frame of tensors of shape 1,000 x 2 x 4,096 per

modulation scheme and SNR value.

9. Repeat the entire process for each of the 8 modulation schemes and for
all SNR values.

The resulting frames for each modulation scheme and SNR, were collected

into a dataset ready to be transferred to the RFSoC development board.

5.4.2 Transmit and Receive FPGA Radio Design

The next step in creating the custom dataset was to transmit, receive, and
record the generated samples through the RFSoC transmit and receive path.
Figure 5.2 shows a high-level overview of the process. In this step, the RFSoC’s
signal path was included as part of the channel the training data passed
through. The samples were sent through the RFSoC’s RF-DAC transmission
chain, including interpolation filtering and mixing, then sent via RF loopback.
The samples were received into the RFSoC’s RF-ADC, mixed down, passed
through decimation filters, and capturing a small frame of this received data

was captured.
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To facilitate the transmission and reception of the generated signal produced
in MATLAB, a PL bitstream was designed to transmit the data.

The data generated from MATLAB in Section 5.4.1 was packetised and
accessed on the RFSoC’s PYNQ Linux OS through the Python programming
language.

As stated earlier, a single frame from the dataset has dimensions 2 x 4,096
and, when ready to send, it is allocated in PS DDR memory on the RFSoC
development board. The data is then ready for the DMA to move it to the PL.
A buffer, in the PL, waits to receive the data from the DDR memory. As the
data transfer needs to be continuous, the DMA is configured in cyclic mode.
This configuration allows the DMA to repeatedly transfer data from the DMA
buffer to the IPs in the PL without interruption, simulating the constant stream
of samples that can occur in a real-life wireless communications scenario.

The signal transferred from the DMA is passed through the Digital Up-
Converter (DUC) stages and interpolated to a sampling rate of 128 MHz, then
modulated to a desired carrier frequency and sent to the RF-DAC and out of
the device. The signal is carried along the RF loopback cable and received into
the RF-ADC, which is tuned to demodulate the signal from the same carrier
frequency as applied at the transmit side.

The received signal is passed to the DDC stages where the sample rate is
reduced from 128 MHz to 4 MHz, prior to the signal entering the Frame Capture
IP block. The Frame Capture IP awaits an AXI4-Lite register update from the
PS to instruct it to capture the current 128 samples entering the IP. Once the
128 sample frame has been captured, it is transferred to PS DDR. The data
is then accessible via PYNQ and other Python libraries for visualisation and
storage. The full dataset is created by iterating over all modulation schemes,

and iterating over each SNR noise value, for each modulation scheme.

Dataset Creation Block Design

The dataset creation block design was made to facilitate the generation of
the modulation classification data by transmitting and receiving modulated
signals on the RFSoC development board. The block design integrates RF data
converters, FIR filtering stages, and efficient data transfer between the PS and
PL on the RFSoC platform.

Figure 5.3 shows a high-level description of the connected IP cores used in
the PL block design implemented on the RFSoC.
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Figure 5.3 PL design for dataset creation bitstream.

The block design facilitates the functionality described in Section 5.4.2. It

includes the following IP cores:

Zynq UltraScale+ MPSoC: Used for configuring the PS features on
the RFSoC device while also exposing the communication links between
PS and PL. (Note: MPSoC and RFSoC PS are equivalent).

RF Data Converter: Configured for data acquisition and transmission
through ADCs and DACs and producing the clock signals for operating

the transmit and receive paths.

FIR Interpolation Filters: Used for increasing the data signal sampling

rate while removing the generated spectral images with a low-pass filter.

FIR Decimation Filters: Used for decreasing the data signal sampling

rate, attenuated with low-pass filtering to prevent aliasing.

AXI Direct Memory Access (DMA): Facilitates high-speed data
transfer between the PS and PL.

Packet Generator: Used for generating packets of data by capturing a

constant stream of samples.

AXIS Clock Converter: Used to convert an AXI4-Stream signal from

one clock domain to another.
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Zynq UltraScale+ MPSoC IP Core The Zynq PS IP core provides the
capabilities for configuring device-wide settings for both the PS and PL of the
RFSoC. For this block design, the Zynq IP core was configured to provide two
output PL fabric clocks for the DMA and AXI4-Lite IP cores. The first clock,
pl_clke, was set to provide a clock rate of 100 MHz, used by the AXI4-Lite
interfaces on the IP cores. The second clock, pl_clkl, was set to provide a clock
rate of 300 MHz, which was used by the AXI DMA IP cores for transferring
the data signals to and from the PS. Furthermore, the Zynq PS IP core’s PS
to PL AXI communications signals were enabled to provide connectivity for
AXI4-Lite connections and AXI DMA data transfers. These were the HPMO
and HPM1 AXI interfaces used by the receiver and transmitter AXI4-Lite
connect IPs, respectively. The AXI DMAs were provided the HP1 and HP2
AXT interfaces for data transfer to and from the PS from the PL.

RF Data Converter The RF Data Converter (REDC) IP core in Vivado
is used to configure and control the hardened RF-ADC and RF-DAC blocks
on RFSoC devices. Theses converters provide high-speed data conversion in
RF applications, enabling the RFSoC to perform direct RF signal processing
from within the PL [58]. For this application, the REDC has been configured

to enable one ADC and one DAC channel, as this configuration meets the

requirements for a single transmit /receive system for modulation classification.

The XCZU28DR RFSoC part makes available two ADCs, one on ADC tile
224 and another on tile 226. ADCO on tile 224 was enabled for this application
as this tile receives the Phase-Locked Loop (PLL) reference clock via the most
direct connection. The settings for tile 224 ADCO were set as follows in Table
5.1.

The sampling rate configured for ADCO on tile 224 was set to 1,024 Mega
samples per second (Msps) and using a PLL reference clock of 409.6 MHz, the
RFDC was instructed to provide a fabric clock of 64 MHz. The fabric clock
required to support the AXI4-Stream data signal, received from the RF-ADC
according to the ADC tile settings, is 128 MHz, meaning that the ADC fabric
clock provided by the RFDC needs to be converted to 128 MHz using a clocking
wizard. The received signal from the ADC enters the PL in the form of two
AXI4-Stream signals, one each for the I and Q components.

Similarly for the DAC, the XCZU28DR RFSoC part makes available two
DACSs on tiles 228 and 229. In this instance, DAC pair 0 & 1 on tile 228 were
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Table 5.1 ADC tile configuration details

ADC Tile Setting Value
Dither Disabled
Data Settings

Digital Output Data 1/Q
Decimation Mode 8x

Samples per AXI4-Stream Cycle | 1
Mixer Settings

Mixer Type Coarse
Mixer Mode Real — 1/Q
Frequency Fs/2
Analogue Settings

Nyquist Zone Zone 1
Calibration Mode Mode 2

enabled because this tile is the first tile to receive the PLL reference clock. The
settings for tile 228 DAC 0 & 1 were set as follows in Table 5.2.

Table 5.2 DAC tile configuration details

DAC Tile Setting Value
Inverse Sinc Filter Disabled
Data Settings

Analog Output Data Real
Interpolation Mode 8x

Samples per AXI4-Stream Cycle | 2
Mixer Settings

Mixer Type Fine

Mixer Mode I/Q — Real
NCO Frequency (GHz) 0.0

NCO Phase 0

Analog Settings

Nyquist Zone Zone 1

Decoder Mode SNR Optimised

The sampling rate configured for DAC 0 & 1 on tile 228 was set to 1024
Msps, the same as the ADC, and using a PLL reference clock of 409.6 MHz. The
RFDC was instructed to provide a fabric clock of 128 MHz. The fabric clock
required to support the AXI4-Stream data signal going to the RF-DAC, which
is 128 MHz, according to the DAC settings. No further clocking conversions
were required for the RF-DAC. The AXI4-Stream signal has been configured to

contain 2 samples per AXI4-Stream cycle. This means that for each valid data
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sample the AXI4-Stream data packet will contain an I sample and Q sample
concatenated together.
The exposed ports and interfaces for the RFDC IP core within Vivado IPI

are shown in the screenshot in Figure 5.4.

AXM_th;e rf_data_converter
AXI4-Stream I Q> :I za:x;lx's
from transmitter pipeline IPs ﬁ+ adca i
- — 1
clock and voltage | |||+ daco_ck mo0_axis + = —» AXI4-Stream
reference signals " =+ vin0_01 m01_axis =+ E —> to receiver pipeline I[Ps
" 4+ sysref_in vout00 =+ ||
(= s_axi_ack ck_adcO = | PLIL generated
-0 s_axi_aresetn clk_dacO = } (nlywk‘\
[nter -0 m0_axis_aresetn irq =
| = mo_axis_aclk “PLL generated
-0 s0_axis_aresetn clocks
| = s0_axis_aclk

Zynq Ultrascale+ RF Data Converter

Figure 5.4 The RFDC IP core showing the exposed ports and interfaces.

The RFDC IP core exposes multiple interfaces for control, data streaming,
clocking, and synchronisation, as shown in Figure 5.4. The main ports include
AXI4-Lite for control and reconfiguration, AXI4-Stream for DAC and ADC data,
dedicated clock and reset lines, and external reference signals. These inferfaces
enable high-speed streaming and runtime control essential for SDR-based DL

applications [58]. Key ports are annotated directly in the figure.

FIR Interpolation Filters In the block design description in Figure 5.3,
two FIR interpolation filters are used in the transmitter chain. In interpolation,

an upsampler inserts zero-valued samples in accordance to the upsample ratio L

[sout

and following then the resulting low-pass filter with ideal cut-off feus o = 257

removes frequency image components.

In the application of modulation classification, the goal for the transmitter
portion of the radio system is to transmit various modulated signals for the
radio to receive, demodulate, and send to the CNN accelerator to classify the
modulation scheme. In this design, FIR interpolation filters are used with a
total interpolation factor of 32, achieved through two cascaded filters with
interpolation factors of 4 and 8. An interpolation value of 32 ensures that on

the receiver side, the signal can be decimated by 32, significantly reducing the
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computational load for the CNN accelerator when processing the received input
signal.

The FIR interpolation filter chain converts the sampling rate of a 4 Msps
signal up to 128 Msps before it is passed into the RF-DAC for transmission.
The interpolation is split between two filters instead of a single filter as this
results in a more resource efficient design.

The first interpolation filter in the chain interpolates the signal by 4 and

low-pass filters the resulting upsampled signal at a frequency cut off of

Jsout  16MHz
2L  2x4

Jeut off = = 2MHz (5.6)

The frequency response of the first FIR interpolator can be seen in Figure
5.5.

In the PL, the filter is implemented using fixed-point arithmetic with the
coefficients being set to a representation of signed Q2.14. The filter accepts
Q2.14 inputs and outputs Q4.14 samples using a symmetric rounding to zero
truncation technique. The truncation technique is used by every subsequent
filter. A Q2.14 fixed-point format was selected for the filter input to match the

14-bit resolution of the DAC while keeping the word length to 16-bits (2 bytes).

This ensures a consistent fractional bit width across the design and allows the
full DAC precision to be utilised.
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Figure 5.5 Frequency response of FIR interpolation filter by factor of 4.

The next FIR interpolation filter increases the sampling rate by a factor of

8. Similarly to the previous filter, it accepts Q2.14 samples and outputs Q4.14
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samples. The coefficients are assigned to a Q2.14 fixed-point number and the
filter is configured to support 2 parallel paths for the concatenated I and Q
samples. Figure 5.6 shows the frequency response of the FIR interpolator by
factor of 8 filter.
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Figure 5.6 Frequency response of FIR interpolation filter by factor of 8.

The combined frequency response of both these filters connected in a filter
chain is observed in Figure 5.7. The total combined filter low-pass frequency
cut-off, fiotal cut off, 15 at 2 MHz, and attenuates all frequencies to a minimum
of -60 dB. The passband responses have gains above 0 dB to compensate for
the effect of upsampling (inserting zeros), which reduces signal power.

The resulting signal that has been interpolated by the filter chain is sent to
the RF-DAC where it is then transmitted out of the device.

FIR Decimation Filters In the block design description in Figure 5.3,
two FIR decimation filters are used in the receiver chain. In decimation,
a downsampler removes samples from a data stream in accordance to the
downsample ratio R. Prior to the downsampler, a low-pass filter with an ideal

cut-off of fout o = ! s‘}f{t is used to remove frequency components that would

otherwise alias.

As mentioned in Section 5.4.2, the total decimation ratio, R, used in this
design is 32. This is to reduce the computational load for the AI accelerator
when processing the received input signal. The data streams received from the
RF-ADC are at a sample rate of 128 Msps and after passing through the FIR

decimation filter chain with decimation ratio R = 32, the resulting sample rate
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Figure 5.7 Combined frequency response of FIR interpolation chain. Total
interpolation factor of 32.

is 4 Msps. At this sample rate, the maximum representable bandwidth possible
is 4 MHz, which supports the 1 MHz bandwidth modulated signals being
received. The decimation process is separated into two filters with decimation
factors of 8 and 4, respectively. Each filters implements a low-pass filter with a

frequency cut-off equal to

fsout
2R

where R is the decimation ratio of each filter and fsout is the new lower sampling

fcut—off - (57)

rate. The low-pass filter is implemented prior to downsampling the data to
remove frequency components that are larger than the feu o = f SOUt frequency
cut-off, so that after the downsampling phase, those frequency Components
are not aliased down to interfere with lower frequency components. Figure 5.8
shows the combined frequency response of the FIR decimation chain with a

total decimation factor of 32.

The combined FIR decimation chain achieves a low-pass cut-off of 2 MHz.

The filter coefficients used are similar to the ones implemented in the FIR
interpolators except there is no added gain to compensate for the inserted

ZEeros.

AXI Direct Memory Access (DMA) The AXI DMA IP core in Vivado
is a configurable IP block used to facilitate high-performance data transfer
between system memory, such as DDR and BRAM, and AXI-based IP cores in
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Figure 5.8 Combined frequency response of FIR decimation chain. Total
decimation of 32.

FPGA designs. It supports data movement without involving the processor
directly in the transfer, freeing up the processor for other PS-based tasks and
allowing for efficient asynchronous data transfer between PS and PL [119].
On the transmit portion of the dataset creation block design shown in
Figure 5.3, the transmitter DMA, tx_dma, is responsible for transferring the
chosen MATLAB-generated modulated data from PS DDR to the interpolation
filter chain and subsequentially to the RF-DAC. The transmitter DMA’s
responsibility in this design is to continually and repeatedly transfer data to

the FIR interpolation filters without pauses. This is achieved by configuring

the DMA in cyclic mode, where it repeatedly transmits the requested data.

The transmitter DMA is configured with the following parameters given in
Table 5.3.

The configuration parameters in Table 5.3 allow the transmitter DMA to
be connected to the rest of the transmitter system. Figure 5.9 is a screenshot
of the transmitter DMA connected to the rest of the transmitter IP cores.

The transmitter DMA’s AXI4-Stream data ports are connected to the FIR
interpolation filters, while its AXI4 Memory Mapped ports are connected to the
Zynq UltraScale+ MPSoC IP core to facilitate transfer of the dataset frames
stored in PS DDR memory to the PL. The AXI4-Lite connections to the DMA
control the cyclic operation. The DMA and FIR interpolation filters are clocked
by the PLL generated DAC clock (128 MHz) from the RFDC. A PL clock,
operating at 300 MHz, is used to transfer data from the PS DDR memory to
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Figure 5.9 The transmitter system IP cores as seen in Vivado.

the DMA. The AXI4-Stream ports from the FIR interpolators connect to the
REDC IP.

Table 5.3 Transmitter DMA configuration parameters

Transmitter DMA Setting

Value

Scatter Gather Mode

Enabled

Micro DMA

Disabled

Multi Channel Support

Disabled

Control / Status Stream

Disabled

Width of Buffer Length Register

26 bits

Address Width

64 bits

Read Channel

Enabled

Number of Channels

1

Memory Mapped Data Width

32 bits

Stream Data Width

32 bits

Max Burst Size

256

Allow Unaligned Transfers

Disabled

Write Channel

Disabled

Number of Channels

Memory Mapped Data Width

Stream Data Width

Max Burst Size

Allow Unaligned Transfers

Packet Generator The packet generator IP core is a custom hardware

module designed to generate data packets that are compliant with the AXI4-

Stream protocol from continuous streams of data. In a communications system,

the flow of data is constant and IP modules on the PL are constantly processing

the received /transmitted samples. To facilitate the creation of the dataset,

subsets of the received data streams are saved in PS DDR. Since it is not

possible to transfer all the data received by the radio to the PS, instead a frame
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of data is captured and transferred to the PS DDR to be stored as a part of
the recorded dataset.

This data capture method is designed to enable active interaction with the
deployed CNN accelerator from the PS using interactive apps. It allows the
FPGA to capture data frames at specific moments in time for the purpose of
building a dataset.

The packet generator IP core is used in conjunction with the AXI DMA IP
core to capture a frame of data from an AXI4-Stream signal and transfer it
to the PS DDR using the AXI DMA. The packet generator custom module is
required because the AXI DMA itself does not hold functionality to transfer
burst of data to the PS DDR. The packet generator contains an AXI4-Stream
slave and master port for receiving streams of data and sending bursts of
packets to the AXI DMA and has two AXI4-Lite registers used to set the
capture size of the packets and another for capturing and sending the packet to
PS DDR. Figure 5.10 illustrates a block diagram operation of custom packet

generator IP core.

Single Port

RAM
data in
»| data in
data out
»| addr data out |r————————)
—p] Wwr en
packet generator
(includes FSM)
valid in valid out
=l valid in valid out > >
>
capture capture addr
. wr en
capture size ‘ tlast
—p| capture size tlast > >
>

Figure 5.10 The packet generator IP core.

The packet generator IP core consists of an FSM, an on-chip RAM system,
and control circuitry for managing the AXI4-Stream signals. The capture and
capture_size AXI4-Lite register signals are connected directly to the state
machine, and when the user sets the capture register to True, the state machine
enables the write enable, wr_en, port on the RAM system to begin storing valid
data samples. The state machine will count the number of samples being stored
in the RAM system until it reaches capture_size. Once the state machine has

fully counted the number of samples stored, the samples are released from the
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RAM system and sent out of the IP using the AXI4-Stream protocol, with a
TLAST signal being triggered on the final sample. Once the samples have been
read out, the IP is ready to receive data again. A flow diagram of the packet
generator state machine is shown in Figure 5.11.

capture = True

count ==Jcapture size
capture =|False

RAM empty

Figure 5.11 The packet generator IP finite state machine flow diagram.

The packet generator IP appears in Vivado as shown in Figure 5.12. The IP
contains an AXI4-Stream port on the left-hand side for receiving the streams of
received data from the RF-ADC and the FIR decimation filters. The AXI4-Lite
port is connected to and communicates with the PS, from where the capture

and capture_size registers are controlled.

packet_generator
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IPCORE_RESETN
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& 1 & | Lkl:i:

packet_generator

Figure 5.12 The packet generator IP as seen in Vivado.

AXIS Clock Converter The AXI4-Stream Clock Converter IP core in
Vivado is a standard IP core provided by AMD, that enables seamless data
transfer between components operating on different clock domains via AXI4-
Stream interfaces. This IP core is useful in designs where different parts of
the system run on distinct clock frequencies, and synchronisation is needed to
ensure reliable data flow.

In the dataset creation block design diagram in Figure 5.3, the AXIS clock

converter IP is used to transfer the data captured from the packet generator
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from the RF-ADC generated clk_adc, which operates at 128 MHz, to the
faster pl_clkl, which operates at 300 MHz. The clock domain of the captured
AXT4-Stream signal is converted because a faster clock domain will ensure that
the data is sent from the PL to the PS DDR at a sufficiently high rate to

maintain real-time operation.

5.4.3 Dataset Collection Through RFSoC

This section covers the transmission, reception, and recording of the MATLAB-
generated modulated data once it has been transferred to the AMD RFSoC
development board as seen in Figure 5.2. The block design used in the PL of the
AMD RFSoC device was described in Section 5.4.2 and this section will detail
how the block design was used to transmit and record the generated modulated
signals. The PL bitstream was interfaced using the PYNQ framework [51]. For
the dataset creation block design, PYNQ was used to handle all aspects of data
transfer and dataset labelling, as well as control of the AXI4-Lite connected
PL IP cores.

The recording of the dataset was performed on the AMD RFSoC 2x2
development board. Figure 5.13 shows a picture of the AMD RFSoC 2x2
development board connected in RF loopback via the Nooelec VeGA mod-
ule [120], and an in-line low-pass filter with a frequency cut-off of 2.5 GHz,
which removes any unwanted high-frequency components. The board setup

depicted in Figure 5.13 contains the block design shown in Figure 5.3.

SMA cables
transferring signals
to/from RFSoC

RFSoC 2x2
development
board

In-line
Low-pass filter |
cut-off 2.5 GHz |

Nooelec VeGA
Low-Noise Amplifier

Figure 5.13 The RFSoC 2x2 connected in loopback via the Nooelec VeGA.
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The enabled ADCO on tile 224 was connected to the DAC pair 0 & 1 on tile
228 through an RF loopback connection. An RF loopback connection was used
to ensure compliance with RF spectrum access regulations. The RF loopback
connection consisted of SubMinature version A (SMA) connected coaxial RF
cables screwed into the ADC and DAC SMA connectors on the AMD RFSoC
2x2 development board.

The ADC and DAC SMA connections were then connected to a Nooelec
VeGA Barebone Ultra Low-Noise Variable Gain Amplifier (VeGA) module
for RF and SDRs [120]. The VeGA is a wideband (30 MHz - 4000 MHz)
high performance, general purpose Low Noise Amplifier (LNA) module with
a built-in variable attenuator to control the power and amplitude of the RF
signals entering the RFSoC.

The VeGA was used in this implementation to ‘boost’ the signal received
so that the ADC on the RFSoC 2x2 utilises as much of the 14-bit resolution
ADC as possible. The VeGA’s gain control switches (D0 - D5) were all set to

off, meaning that the VeGA was set to its minimum possible gain of V., = 0V.

According to the Nooelec VeGA data sheet [120], setting the control voltage,
V., to OV results in the gain of the signal being between -3dB and 20dB. The
variability suggests that even when V. = 0V, the device may still provide some
level of amplification (up to 20dB), depending on specific conditions, such as
frequency, input power, and component tolerances. Given this knowledge of
the VeGA’s gain range, it is important that the gain is calibrated prior to
performing the dataset recording, by transmitting test signals through the
loopback connection and inspecting the resolution of the received data through
an Integrated Logic Analyser (ILA) in the Vivado block design. A diagram of
the Nooelec VeGA is shown in Figure 5.14.

A/D Analog Control
Sw7) (R9)
“ GND ——— i Digital Control
Ve | : (Do — Ds)
RF Input RF Output

Figure 5.14 A labelled diagram of the Nooelec VeGA.

Once the RFSoC board’s ADC and DAC have been connected in loopback,
the PYNQ SD card is inserted into the device and powered on. The RFSoC
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boot up sequence initialises the PYNQ framework with the Jupyter Labs
environment where the dataset recording application files are run.

The dataset transmit and recording operates as described in Figure 5.2.
Prior to transmitting, the generated MATLAB data must be transferred to
the PS DDR RAM on the RFSoC device for the Jupyter session and Python
files to load and inspect all of the saved modulated data. Alongside a Jupyter
notebook, the generated data is stored in a folder labelled ‘transmit_set’, with
each set of generated modulated signals for each modulation scheme under the
file name transmit_{mod}_SNR.pkl (mod is replaced with the associated file for
each modulation scheme).

Each file contains data for one modulation scheme, spanning the full SNR
range defined in Section 5.4.1.

To automate dataset creation, a custom overlay was implemented in Python
using the PYNQ framework. This overlay abstracts low-level register operations
for the RFDC, DMA, and packet generator IPs and exposes a simplified interface
for transmitting and receiving signal data via three methods: send(), receive(),
and stop(). These methods were used to build a real-time loopback system for
generating labeled data across a range of modulation schemes and SNR values.
The main dataset creation loop is summarised below.

The following steps summarise the key operations of the data generation

process:

1. Dataset Preparation: Each modulation scheme has an associated
dataset stored in serialised files (e.g. transmit_qpsk_SNR.pkl). These
datasets are loaded into PS DDR memory and indexed by the modulation
type and SNR level using a key value pairing (e.g. dataset[’QPSK’,’30"]).
Each modulation and SNR value pair contains 800 frames of 1/Q mod-
ulated data totalling a length of 4,096 samples. The workflow accesses

each of these frames sequentially.

2. Phase Offset: A range of phase offsets (—180° to +180° with 10°
increments) is cyclically applied to the data to expose the data to a wide
range of phase offset values, to induce a phase offset resilience during

training. The phase offset is updated for every transmitted frame.

3. Signal Transmission: The modulated data is scaled to fit within a
16-bit signed integer word length, from a floating-point data type, by a
factor equal to the fractional bit length configured in the PL. The 16-bit

I/Q samples are interleaved to formulate a 8,192 sample long interleaved
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array, which is then transferred cyclically by the transmitter DMA to the
PL (using the send() overlay function), through the FIR interpolators
and subsequentially the RF-DAC. The transmitter DMA is configured
to transfer 32-bit sameples from the PS memory. Since the interleaved
16-bit 1/Q samples are stored in contigous memory, the DMA collects 32
conscutive bits, resulting in each samples containing an I and Q pair, as
required by the PL.

4. Signal Reception: The transmitted signal is looped back through the
RF-ADC, where it is received and reconstructed into complex I and Q
data arrays. Each frame captured is 128 1/Q samples long and is received

16 times to capture variations and increase the dataset diversity.

5. Data Accumulation: The received complex data is stacked across
multiple frames to form a comprehensive dataset for each modulation and
SNR combination. The result is a 3D array representing the accumulated

signal data.

6. Serialisation of Processed Data: The processed data is stored in a
dictionary and serialised into files (e.g. loopback_train_QPSK.pkl) for
subsequent training and evaluation of the modulation classification system

using the ‘pickle’ software package.

Full code listings for the overlay class and dataset creation script are provided
in Appendix B.

Once the individual loopback training files (e.g. lLoopback_train_QPSK.pkL,
loopback_train_BPSK.pkl, etc) are generated on the RFSoC board, they are
copied to an external system for further processing. These files contain the
received complex signal data for each modulation type and corresponding SNR
levels, organised as separate serialised datasets. To streamline the training
and evaluation processes, the individual files are combined into a single unified
file, Loopback_train.pkl. This consolidated file merges the datasets for all
modulation schemes and SNR conditions.

In addition to recording a training dataset through the loopback process,
a separate testing dataset is created by extracting a smaller subset of the
transmitted data. This is to provide a smaller testing file that can be stored
on the RFSoC without the need to maintain the larger generated testing
set. Once the recorded set has been saved, the larger generated modulated

data files are no longer required and the newly created smaller testing file,
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transmit_test_SNR.pK1, can be stored as a source of pre-transmitted signals

for testing the resulting Al accelerator.

5.5 Training on New DeepRFSoC Dataset

The following section describes the design and training of a neural network
for modulation classification using the DeepRFSoC dataset generated with
the RFSoC described in Section 5.4.3. The primary objective of training the
neural network is to produce a model that accurately classifies the modula-
tion scheme within the received signal. The resulting weights serve as the
foundation for deployment within the Al accelerator, discussed in Chapter 4.
This hardware-accelerated implementation is tested with signals encoded using

various modulation schemes to evaluate the performance in real-time scenarios.

5.5.1 Dataset preparation

The DeepRFSoC dataset created in Section 5.4.3 produced a set containing 2.6
million example frames across all eight modulation schemes and SNR values.
Each frame has 2 channels that are 128 samples long. Each modulation scheme
holds 330,000 frames at varying SNR values. Each frame of the dataset is
accessible via a key pair for the requested modulation type and the SNR value
(e.g. dataset[’QAM16’,716’]). The dataset accepts keys for the modulation
type the signal has been encoded with and the applicable SNR value. The
choice of modulation schemes is: QPSK, BPSK, QAM16, QAM64, 8PSK,
PAM4, GFSK, and CPFSK, and the choice of SNR values is: -20, -16, -12. -8,
-4, 0, 4, 8, 12, 16, 20, 24, 28, and 30 dB.

From a Python environment, the dataset is loaded in through the Pickle
package using dataset = pickle.load(file_name). The dataset frames and
labels are shuffled to break up the pattern of the ordered dataset. This is to
ensure, once the dataset is split between training, validation, and testing sets,
that the distribution of data frames is equal between all sets and to ensure
that, during training, the model does not learn patterns based on the sequence
of data rather than from the data features.

The dataset is split into three sub sets, namely training, validation, and
testing, as previously described in Section 4.5.1. In the case of this dataset,

the set is split between training, validation, and testing at a ratio of 7: 1 : 2.
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5.5.2 Neural Network

The candidate neural network trained by the newly created custom dataset
mimics the neural network used in the work on RadioML in Chapter 4. The
CNN topology is shown in Table 5.4. There are two convolutional layers and two
FC layers, with ReLLU activations after each layer except for the classification
layer, where a Softmax activation exists instead to convert the output to a

probability distribution.

Table 5.4 CNN Dimensions

Layer Type Kernels/Weights Activations Parameters

Input 2 x 128 - -
Convolution 64 x 3 x1 ReLU 192
Convolution 16 x 3 x 2 ReLLU 6,144

Fully-connected 1984 x 128 ReLLU 253,952
Fully-connected 128 x 8 Softmax 1,024
Output 1x8 -

The neural network dimensions were kept the same as in Chapter 4 to
enable a direct comparison between the performance of the new DeepRFSoC
dataset and that of the RadioML synthetically generated dataset. Maintaining
the same neural network topology makes it possible to evaluate the dataset

generation process.

5.5.3 Training

The training process aims to optimise the CNN parameters to accurately predict
the modulation scheme that a signal has been encoded with. Through the
PyTorch software framework, using a desktop graphics card, the dataset is
used to train the neural network. It is important to note that the dataset has
not been normalised. Typically a dataset is normalised prior to training, as
it ensures a faster convergence (as the input features are adjusted to exist on
a similar scale), as well as providing model stability [121]. When considering
the custom DeepRFSoC dataset, normalisation is not possible. This is because,
if the dataset was normalised, it would not accurately represent the data as
it is received by the RFSoC, and therefore the Al accelerator, once deployed,
would have been trained on data that is numerically different to what it would

actively receive when operating in real-life.

The parameters for training the neural network are detailed in Table 5.5.

An Adam optimiser method was used to provide an adjustable learning rate [87]
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of 1e™*. The loss function used was cross-entropy [122], a common loss function
for calculating the loss for classification-based DL tasks. The training operates
for approximately 100 epochs unless early stopping is triggered. Early stopping
is triggered if the validation loss has not reduced for more than the specified
number of epochs referred to as patience, in this case 8, and once triggered the

training is halted.

Table 5.5 Training parameters of AMC model.

Parameter Value
Optimiser Adam
Loss function Cross-Entropy
Batch size 128
Number of epochs 100
Learning rate le™?
Weight decay N/A
Early stopping (patience) 8

Figure 5.15 shows the training loss for the DeepRFSoC dataset given the
parameters in Table 5.5. Although the training session was configured to train
for 100 epochs, the early stopping mechanism halted the training after 20

epochs, as the validation loss showed no improvement beyond that point.

5.5.4 Testing

The resulting AMC model is was evaluated against the reserved testing set.

The results in Figure 5.16 demonstrate the accuracy of the trained model across
all modulation schemes against the noise of the signal.

A peak accuracy of 80% at the maximum SNRs and a 40% accuracy at 0dB
SNR show that the method for recording a dataset through the transmission
and reception of the RFSoC produces a trainable model, and can be reliably
used to train, even without normalisation.

Additionally, in Figure 5.16, the accuracy of the RadioML dataset is also
plotted, trained with the same CNN topology. Both datasets show a similar
trend in improving accuracy as the level of noise decreases, although the model
trained with the DeepRFSoC dataset improves its accuracy at higher values of
SNR compared to the model trained with RadioML. The reason behind this is
due to the differing channel conditions between the RadioML and DeepRFSoC
datasets. While the RadioML dataset simulated a multipath channel with
GNU Radio, the DeepRFSoC dataset used the MATLAB Communications
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Figure 5.16 CNN model performance against testing set of DeepRFSoC, with
RadioML accuracy for comparison.
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Toolbox functions and a harsher channel, as well as the recorded impurities in
the hardware loopback configuration. This new accuracy curve for DeepRFSoC
will be used as the baseline accuracy for the training considerations explored
in Chapter 6.

The results seen in Figure 5.16 confirm that the next stage of deploying
the model on the streaming-based CNN accelerator from Chapter 4 can be
undertaken. The next challenge is to test the CNN accelerator on signals that
are received live during transmission, extending the capabilities of the model
further than testing against a prerecorded dataset. This poses a significant
challenge, as testing a signal on live data (as opposed to a testing set) would
involve signal values that exist outside of the distribution of the dataset. For
this reason, careful training and deployment must take place in order to produce
a reliable model that operates on hardware to perform the classification of
signals.

As stated in Chapter 4 Section 4.5.2, while the accuracy performance of the
trained model is not optimal, the goal of this work is not to provide the best
accuracy network, but rather to demonstrate how a trained neural network can
be integrated onto a real-time radio receiver and achieve real-time operation.
The resulting accuracy for both models trained on the two datasets achieves
a comparable peak accuracy to other works for networks and inputs of this
size [70].

5.6 Integration with Embedded FPGA Device

With the trained model demonstrating reliable performance on the DeepRFSoC
dataset, the next step involves its integration with the embedded AI accelerator
introduced in Chapter 4. This phase shifts the focus from controlled dataset
evaluation to real-time, hardware-based signal classification, involving both
architectural and algorithmic considerations to ensure robust performance.
The deployment process involves translating the trained model’s parameters
into a fixed-point format within the AI accelerator and addressing hardware-
specific constraints such as latency, resource utilisation, and performance once
deployed on the streaming-based architecture, from Chapter 4. Additionally,
the architecture and its trained weights are tested while receiving signals live,
demonstrating the capabilities of the application and proving the effectiveness

of training on data transmitted on the RFSoC.
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The next section details how the model weights are extracted and imple-
mented into the CNN model from Chapter 4. The conversion of the dataset
building block design to include the CNN accelerator is discussed, and an
overview of the software drivers for controlling the CNN accelerator and other

functions is presented.

5.6.1 Export Model Parameters to AI Accelerator

To enable the deployment of the trained neural network on the CNN accelerator,
it is essential to export the model parameters from the training environment in
PyTorch and adapt them for hardware compatibility. This process begins with
extracting the learned weights from the PyTorch model, which are initially
stored in floating-point format. These parameters are exported to a .mat format
for the weights to be accessible from MATLAB.

Once exported, the parameters are imported into MATLAB. Here the
weights undergo PTQ. This is a technique used to reduce the size and compu-
tational complexity of a trained neural network, by converting its weights and
activations from a high precision floating-point number (typically 32-bit) to a
lower-precision format, such as 16-bit or 8-bit floating-point, or even fixed-point
representations. This process is done after the model has been fully trained,
without the need to retrain it.

In this work, PTQ was applied to the exported model parameters by
converting both the weights and the inter-layer activations to a 16-bit fixed-
point representation. This process applies a uniform 16-bit word length across
all layers, while the fixed-point scaling is determined dynamically on a per-
layer basis. This means that for each layer of the model, the fixed-point
representation holds a different number of fractional bits according to the

distribution of weights for that layer. This can be expressed as

wé = quant[Sf](wl - Oé)] (5.8)

where [ and ¢ represent the current layer and quantisation configuration,
respectively. The resulting quantised weight for each layer, wé, is determined
by quantising to 16-bits and scaling the resulting weight by scaling factor Sé
and offsetting the layer by Ofl [123]. In this case, the offset, Ofl, for each layer
is 0 and the scaling factor, Sfl, is limited to a power-of-two as this is directly
linked to the number of fractional bits within the fixed-point 16-bit number.

Additionally, since the streaming-based CNN architecture stores all weights in
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on-chip BRAM, the weight quantisations are grouped by layer instead of by
channel.

The model weights and their distributions are shown in Figure 5.17.

Convl Conv2 FC1 FC2

20k 60

Count

Weight Value

Figure 5.17 Weight distribution for each layer of the trained CNN model trained
with DeepRFSoC.

The weights were quantised to a 16-bit format with 16-bit activations using
the PTQ technique as detailed in Section 4.6.3.

5.6.2 CNN Accelerator IP Core Integration with Block
Design

Similarly to Chapter 4, the generated IP core from MATLAB and Simulink
HDL Coder is integrated into the Vivado IPI block design. The IP core is
integrated into the same block design as described in Section 5.4.2, which was
used to record the DeepRFSoC dataset for obtaining the Al accelerator. Figure
5.18 illustrates the updated block design with the new CNN accelerator IP core
included.

The CNN accelerator IP core is integrated into the dataset building block
design by forking the resulting signal from the FIR decimation filter chain.
The signal’s T and Q values are interleaved before being passed to the AMC
CNN accelerator IP core. The IP core then processes every sample received
by the FIR decimation chain and predicts the modulation scheme the received
signal is encoded with. The resulting classifications are then packetised into an
AXI4-Stream packet and sent to the amc_dma IP core after being converted to
the pl_clkl clock domain, operating at 300 MHz. The packets sent from the
DMA to the PS are then stored in PS DDR ready to be read by the software
program operating on the PS.

The CNN accelerator IP core is tightly integrated into the communications

pipeline of the receiver, enabling real-time processing of incoming signal samples.
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By embedding the IP core within the receiver chain, each sample can be
processed sequentially as it is received, allowing for immediate classification.
This eliminates the need for batch processing, reducing the overall latency and
ensuring that classification results are available with minimal delay. The direct
integration into the pipeline also optimises data flow, leveraging the inherent
streaming nature of the architecture to maintain a high throughput while
predicting the modulation scheme of the signal. This architectural approach
compliments the existing flow of data that exists in radio receivers and proves
that the proposed architecture type can be a viable candidate in Al solutions
for PHY radio receivers.

With the CNN accelerator integrated, the updated block design is synthe-
sised and implemented to the RFSoC PL fabric where a resulting bitstream is
produced. Table 5.6 shows the resource consumption of the Al accelerator IP
core in the RFSoC PL fabric.

Although the CNN accelerator IP core has been updated with new PTQ
weights from the dataset recording and training, the resource allocation of the
model is similar to that of the model produced in Chapter 4. The resulting
bitstream produced after the integration of the CNN accelerator maintains the

capabilities of: transmitting a desired signal encoded to a select modulation
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Table 5.6 FPGA resource utilisation of the deployed CNN accelerator with
DeepRFSoC weights.

Model Slice Slice

layer LUTs  Register DSPs BRAMs URAMs

CNN 27,272 40,015 456 169 1
(6.41%) (4.7%) (10.67%) (15.64%) (1.25%)

convl 3,237 4,248 64 0 1

conv? 15,105 20,423 256 32 0

fel 7,837 14,282 128 136 0

fec2 761 797 8 0 0

scheme; interpolating the signal to a desired sampling rate; transmitting out of
the RF-DAC; receiving the data on the RF-ADC via loopback cable; decimation
from a higher to lower sampling rate; and capturing packets of the received data
to send back to the PS; this is all with the added functionality of classifying
the signals received from the RF-ADC. The following sections will cover the
evaluation of the deployed model including interfacing with PYNQ), its accuracy
performance, and the resulting latency of the deployed model as it operates

with real-time data.

5.7 Evaluation of Real-Time Modulation Clas-

sification

In this section, the performance of the AMC CNN accelerator IP core is
evaluated in a similar way to Section 4.9. The difference in this case is that the
CNN accelerator is evaluated on its ability to operate in real-time while receiving
signals from the RF-ADC, thus demonstrating the effectiveness of training a
model with a custom generated dataset based on recording samples with the
RFSoC. The results evaluated metrics are: overall accuracy, throughput, and
latency.

The results captured in this section were recorded on the AMD RFSoC
2x2 development board. The board was configured with PYNQ version 3.0.1
installed on the SD card, loaded with Python files and drivers that transmit
a signal encoded on a desired modulation scheme and are sent classifications

from the deployed Al accelerator.
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The AMD RFSoC 2x2 board was configured in RF loopback through a
SMA cable and LNA configured as specified in Section 5.4.3 and shown in

Figure 5.13.

5.7.1 Accuracy of Deployed Model

Figure 5.19 illustrates the overall accuracy of the deployed model. Its floating-
point weights were quantised to 16-bits with a fractional point specified to best
support the weights for each layer. Alongside the accuracy of the deployed

model, the accuracy of the trained model tested against the recorded dataset

is plotted as well.
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Figure 5.19 Overall accuracy of CNN accelerator IP core across SNR values.

The accuracy of the deployed model with its weights quantised to 16-
bits shows performance equal to the accuracy of the trained model tested in
PyTorch indicating that the PT(Q performed on the model weights is successful
at representing the weights from the trained model. Additionally, the quantised

activations also successfully represent the inter-layer signals between the neural

network layers.
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5.7.2 Latency and Throughput

Table 5.7 presents a comparison between this work and several FPGA-based
CNN accelerator implementations from the literature which have been designed
for modulation classification tasks. The model featured here was trained using
the DeepRFSoC dataset and deployed within the RFSoC communications
pipeline using the streaming-based CNN accelerator introduced in Chapter 4.
Both weights and activations are quantised to 16-bit fixed-point format, as
indicated by the 16w16a label in the table.

Table 5.7 Comparison with CNN accelerators for modulation classification.

This work Tridgell FINN Hou et al. | Jung et al.
Accelerator | (16wl6a) et al.[47] [46] [42] [43]
# Params 260k 636k 161k 216m 198k
VGG10-L VGG10
Topology 2 conv/2 fc (128, 512) (64, 128) VGG-16 3 conv/2 fc
Quantisation . Not
(weight /act.) 16b/16b 2b/incr. prec. 4b/4b Reported 16b/16b
Latency 29.6 8 11.7 234 12.4
(us)
Noise (dB) -20 to 30 None -20 to 30 -2 to 10 -20 to 30
Multipath . .
Channel 4 RFSoC None Multipath None Multipath
Clock rate 128 MHz 250 MHz 250 MHz Not 100 MHz
Reported
Accuracy 81% 80.2% 94.1% 92.36% 75%
(@ SNR dB) @28dB @30dB @30dB @6dB @>0dB
Throughput Not Not
(cps) 3k 488Kk 120k Reported Reported
Results from .
live RF Yes Partial No No No

A key distinction of this work is that the results are based on real-time
classification of live signals received directly from the RF-ADC, as opposed
to relying solely on pre-recorded datasets or synthetic test samples. This
makes the evaluation more representative of actual deployment conditions in
embedded radio systems.

Notably, only Tridgell et al. [47] demonstrate partial live testing, and

none of the other referenced works incorporate hardware impairments such

as RF-ADC stitching artefacts or real decimation stages in their evaluations.

The overall model complexity in terms of parameter count (260k) is lower
than some works (e.g., Hou et al. [42] with 216 million), the architecture is
optimised for low-latency operation on real data. The reported latency of
29.6p1s reflects end-to-end processing from the reception of a full input frame to

classification output, including clock rate increases and interleaving to account
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for the overproduction of data from the convolutional layers. This is higher
than works like FINN [46] and Tridgell et al. [47], which report latencies of
11.7ps and 8 s respectively. However, these architectures assume idealised data
access conditions and do not incorporate real-time live reception constraints.

In terms of throughput, the proposed architecture sustains 34k classifications
per second (cps), which is lower than the 120k cps reported by FINN or the
488k cps achieved by Tridgell et al. This is a deliberate trade-off: the system
was designed to operate at the line rate of the RF-ADC interface, ensuring
that no incoming samples are dropped while maintaining full data fidelity. The
128 MHz clock rate is also lower than the 250 MHz used in some other designs,
reflecting the integration of the accelerator into a realistic receiver chain with
timing constraints.

Despite these trade-offs, the model achieves a classification accuracy of
81% at 28 dB SNR on a live signal path, closely matching or exceeding other
real-time capable implementations.

Future improvements could include introducing inter-layer scheduling or
deeper MAC parallelism to reduce latency and improve throughput, similar
to techniques adopted in [39], [47]. However, this work prioritises end-to-end
operability with real-time RF data streams, which distinguishes it from prior,

purely synthetic evaluations.

5.8 Chapter Conclusion

This chapter has presented the integration of the streaming-based CNN acceler-
ator with a live SDR receiver and introduced a practical method for generating
a custom dataset compatible with real-time operation and live data acquisition.
While the RadioML dataset served as a benchmark in earlier chapters, its
fixed-length frame format and purely synthetic nature make it unsuitable for
validating live classification performance. To overcome this, a hybrid approach
was introduced where synthetic modulation scheme signals were passed through
the RF loopback path of the RFSoC, capturing real hardware effects such as
non-linearities, digitisation artefacts, and ADC tile stitching. This process
produced the DeepRFSoC dataset.

This chapter has described the construction of the DeepRFSoC dataset,
detailing the transmission setup and the signal processing stages used to send
a synthetically generated dataset through the RFSoC’s transmit /receive path.
The CNN topology introduced in Chapter 4 was retrained on this new dataset,
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resulting in a model that performed well despite hardware impairments and
RF distortions in the dataset. Following quantisation, the trained model was
deployed onto the FPGA-based accelerator and evaluated under live operating
conditions.

Live classification experiments confirmed that the deployed model could
match its floating-point counterpart in performance while maintaining through-
put in a real-time signal environment. Finally, a comparative analysis against
other FPGA-based CNN accelerators for modulation classification highlighted
this work’s unique focus on live RF integration, balancing latency, throughput,

and deployability within a SDR signal processing pipeline.



Chapter 6

Low-Precision Weight

Optimisation

This chapter aims to determine which quantisation strategies are best suited
for real-time CNN inference on RFSoC-based radio systems. It explores two
techniques for producing lower precision weights for DL models. The investiga-
tion explores a range of precisions and evaluates the resulting models with the
DeepRFSoC dataset, and the classification of received live modulated signals.
The accuracy performance of each technique is analysed and the resulting

implementation considerations are formulated.

6.1 Motivation

While the CNN architecture introduced in Chapter 4 and deployed in Chapter
5 successfully performs real-time modulation classification on live RF data, it
currently operates using 16-bit fixed-point weights and activations that have
been quantised to represent a set of trained floating-point values. While quan-
tising to 16-bit weights showed equal accuracy performance to the equivalent
floating-point model, the question arises as to the extent that the precision of
the fixed-point weights be pushed down to.

Lowering the model’s precision offers a clear path to lowering memory
usage, reducing latency, and improving throughput. However, lowering weight
precision comes with the risk of degrading model accuracy, especially in noisy
or low-SNR conditions. To address this trade-off, this chapter investigates two
strategies: PTQ, where a floating-point model is quantised post-training; and
QAT, where the model is trained with quantisation effects simulated during

training.
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Both PTQ and QAT are applied to the same CNN model trained on the
DeepRFSoC dataset, with weights and precisions ranging from 16-bit down to
2-bit. Each quantised model is deployed on the PL using the same accelerator
architecture and evaluated in terms of classification accuracy, generalisation
to unseen data, hardware resource utilisation, and the performance on the

classification of live received signals in the RFSoC.

6.2 Related Work

Early QAT approaches such as Jacob et al. [123] introduced training with
quantised 8-bit integer networks using simulated quantisation in the forward
pass during training, laying the groundwork for preserving accuracy post-
quantisation. Choukroun et al. [124] improved on this by demonstrating QAT
precisions down to 4-bits for hardware constrained applications. Both of these
approaches demonstrate lower precision weights with floating-point scaling
factors, saving on computational resources. More recent work, like Zhao et
al. [125], demonstrated QAT using purely integer numbers. Lin et al. [126] also
contributed to fixed-point neural networks with power-of-two scaling factors,
showing that careful tuning of the quantisation parameters during training
retains accuracy.

The application of QAT for low-bit inference has become a critical topic
for edge devices, where memory and power are constrained. Zhu et al. [84]
introduced trained ternary quantisation, allowing networks to use just two or
three weight values without drops in accuracy. Other works have extended QAT
to 4-bit or even binary weights, demonstrating trade-offs in model capacity and
efficiency [39].

For wireless signal classification, works that implement quantised neural
networks through PTQ or QAT are discussed. These works were also compared
in Table 5.7 in Chapter 5. Jentzsch et al. [46] has shown that fully quantised
models can achieve high throughput on FPGAs for modulation classification
through QAT. Tridgell et al. [47] demonstrated low-bit quantised CNNs into
a real-time SDR platform. Kumar et al. [127] demonstrated quantised neural
network inference for IoT signal detection using QAT to reduce the network
precision bit-width, while Hou et al. [42] and Jung et al. [43] both used PTQ
for RF signal classification, trading off some accuracy for fast deployment and

reduced computational complexity. However, few works explore QAT [46], [47]
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for live modulation classification under fixed-point constraints, particularly
power-of-two scaling factors, leaving a research gap which this thesis addresses.

Producing an SDR receiver design that is robust to real-world conditions is
essential for quantised models in wireless tasks. Tridgell et al. [47] tested their
quantised architecture with transmitted signals through RF loopback, showing
that careful calibration of the quantised models is essential in retaining accuracy
under live conditions. This thesis explores the effects of PTQ and QAT on
the DeepRFSoC dataset, as well as real-time received signals transmitted with
different modulation schemes to assess how these techniques perform when

deployed in real-world situations.

6.3 Evaluation Methodology

To evaluate the impact of lower precision weights in the FPGA-based CNN
accelerator, introduced in Chapter 4, a structured evaluation methodology
was designed. This section outlines the hardware platform, datasets used,

quantisation methods, and evaluation criteria used in the study.

6.3.1 FPGA Hardware Evaluation Platform

The experiments were conducted on the same AMD Zynq UltraScale+ RFSoC
platform as used in earlier chapters, i.e. the AMD RFSoC 2x2 development
board. The CNN accelerator used in this chapter is the streaming-based
CNN architecture introduced in Chapter 4, optimised for real-time modulation
classification. This implementation is deployed on the RFSoC platform using
fixed-point weights and activations to perform inference and utilises on-chip
memory to minimise latency and resource usage. The focus of this chapter
is how the deployed accelerator performs on a stream of live signals from the
RF-ADC and receiver pipelines, when different bit-widths are assigned to the
weights.

The architecture of the CNN accelerator undergoes several modifications
when the weight precision changes. The key components affected by quanti-
sation include the weight representation, inter-layer activation precision, and
accumulator sizes, which together influence the accuracy, computational effi-

ciency, and resource utilisation of the design.

Weight Precision Adjustments In the CNN accelerator, weights are stored

in fixed-point format, and their precision determines the memory footprint
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and computational complexity. Higher bit-width weights (e.g. 16-bit) provide
a greater numerical accuracy, but require increased memory bandwidth and
storage. As the weight precision is reduced (e.g. to 8-bit, 4-bit, or 2-bit), the
overall model size decreases, leading to more efficient storage. However, lower
precision may introduce quantisation errors, impacting model accuracy. The
FPGA resource allocation for weight storage depends on the chosen precision,
with lower-bit weights requiring fewer BRAM or URAM blocks.

Inter-layer Activation Precision The precision of inter-layer activations
directly affects the data transfer and computation between CNN layers. In the
proposed architecture, discussed in Chapter 4, activations are represented in a
fixed-point manner similar to the weights. Lowering the activation precision
reduces the memory bandwidth required for layer-to-layer communications,
as the inter-layer signals are stored in a BRAM/URAM buffer prior to being
processed for the next layer’s calculations. Reducing the activation precision
can yield lower BRAM/URAM utilisation. However, a reduction in activation
precision can lead to instability in feature propagation, requiring modifications
such as batch normalisation folding for fine-tuned QAT to compensate [128].
For this work, the activation precision is kept constant at 16-bits as this provides

a consistent base to assess the effectiveness of lowering the weight precision.

Accumulator Size Adjustments During convolution and matrix multipli-
cation operations, intermediate results are accumulated before quantisation.
The accumulator bit-width determines how many partial sums can be stored
without overflow. In higher-precision weight and activation implementations
(e.g. 16-bits), accumulators require a wider bit-width (e.g. 32-bit) to store
results with minimal rounding errors. Conversely, when lower precision weights
(e.g. 8-bit or 4-bit) are used, the accumulator size can be reduced accordingly,
optimising DSP slice utilisation. However, aggressive bit-width reduction may
lead to precision degradation and necessitate additional QAT techniques to
maintain stability. The accumulator bit-width is directly correlated with the
chosen folding factor implemented in each layer’s matrix multiplication sub-
system. Depending on the chosen number of MAC operations implemented in
parallel, the accumulator size can be adjusted to allow for the accumulated

output to be representable.

Streaming-CNN Architecture Figure 6.1 illustrates an overview of the

streaming-based CNN architecture and shows how the three precision parame-
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ters discussed relate to the custom architecture and provides an example of the
weight, inter-layer activation, and accumulator precisions. At the bottom of

the figure, an illustration of the MAC unit is shown, which collates all three

precisions together to perform the output calculation.
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Figure 6.1 Weight, activation, and accumulator precision locations on the
streaming-based CNN architecture.

The architecture uses three distinct fixed-point wordlengths for each part
of the CNN pipeline:

» Weights (A): The weights are stored in on-chip BRAM and accessed by
an address counter during MAC operations. Their precision is adjustable
between 16-bit, 8-bit, 4-bit, and 2-bit bit-widths, for each separate CNN
model implementation. Throughout this chapter, the weight precision is

altered for each experiment.
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 Inter-layer activations (B): These are the signals entering the input of
a layer (and from the output of the previous layer’s activation function)
and are stored at a consistent 16-bit fixed-point precision, across all
experiments. A fixed activation precision ensures consistency across
experiments when weight precision is varied, isolating the impact of

weight quantisation on accuracy.

« Accumulator output (Z): The accumulator result from the MAC op-
erations uses a wider bit-width than the input precision to accommodate
growth during accumulation and avoid overflow. The optimal accumula-

tion precision is analysed in HDL Coder for each layer configuration.

6.3.2 Dataset and Preprocessing

The DeepRFSoC dataset, introduced in Chapter 5, is reused for training
and evaluating the lower-precision models. This dataset includes multiple
modulation types across a range of SNRs, captured in loopback configured
using the RFSoC platform. The preprocessing steps and dataset split ([70:10:20])
remain unchanged.

To evaluate generalisation, the models are also tested on the RadioML
dataset, unseen during training, to assess the robustness to different distribu-
tions and channel variations. This external benchmark provides an additional
validation of the model’s performance under quantised inference, especially
with lower-precision weights.

The already trained floating-point model weights from Chapter 5 are reused

in this chapter’s analysis and testing.

6.3.3 Quantisation Methodology

To evaluate the impact of lower precision computing on the CNN accelerator,
two quantisation strategies were investigated: PTQ and QAT. These methods
were applied at varying weight bit-widths, specifically 16-bit, 8-bit, 4-bits, and
2-bits, to assess their effects on classification accuracy, hardware efficiency, and
computational performance. Reducing the bit-widths employed by the weights
can lead to potential improvements in the CNN accelerator where storage of

weights can be exploited.

Post-Training Quantisation was performed by quantising a pre-trained,

full-precision model. In this approach, weights and activations were mapped
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from floating-point to fixed-point representations after training. PTQ is advan-
tageous due to its simplicity and reduced computational cost, as it does not
require modifications to the training process. However, at lower bit-widths, the
abrupt reduction in numerical precision can introduce significant quantisation
errors, leading to accuracy degradation [129]. The extent of this degradation
depends on the bit-width used, with higher precision quantisation (e.g. 16-bit
and 8-bit) generally preserving accuracy, whereas lower bit widths (4-bit and
2-bit) can induce substantial information loss. The hardware benefit of PTQ is
a direct reduction in memory footprint and computational complexity, enabling

more efficient FPGA deployment.

Quantised-Aware Training integrates quantisation constraints during train-
ing, allowing the network to adapt to lower precision arithmetic. During QAT,
weight updates are computed in full precision, but quantisation effects are
simulated throughout the forward and backward passes. This enables the
model to learn robust weight distributions that minimise accuracy loss due
to quantisation. Compared to PTQ, QAT is more computationally intensive
because it requires training the network under quantisation constraints [85],
[86]. However, this added complexity results in significantly better performance
at lower bit-widths, as the network learns to compensate for precision loss.
QAT was applied to the same bit-width configurations (16-bit, 8-bit, 4-bit,
and 2-bit), allowing for a direct comparison with PTQ to determine the most
effective approach for FPGA deployment.

By analysing both PTQ and QAT across multiple quantisation levels, this
work aims to determine the trade-offs between accuracy, resource utilisation,
and real-time performance. The following sections present the experimental
results of PTQ and QAT for weights operating on the CNN accelerator during
the inference of the test set and live reception of signals on the RFSoC. The

implications of lower precision computation are analysed.

6.3.4 Evaluation Frameworks

This section details the different evaluation setups used to compare the ef-
fectiveness of the lower precision deployed models. Each evaluation scenario
assesses the model’s performance from software-based testing through to real-
time deployment in a live signal reception scenario, providing a comprehensive
understanding of accuracy, hardware efficiency and adaptability to an unseen

dataset. The following evaluation platforms aim to incrementally show the
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performance of the PTQ or QAT weight precision reduction techniques, as the
trained model in software is deployed on the CNN accelerator operating on the
PL.

Software Test Set

The first step to verify the effectiveness of a trained model for modulation
classification, trained with the DeepRFSoC dataset, is to evaluate the model’s
performance against a test set. The CNN model was trained using PyTorch
similarly to that shown in Chapter 4. The resulting model, whether it was
trained using floating-point weights and activations for PTQ, or quantised
weights and activations in QAT, was evaluated in the same manner by recording

its performance on the test set of the DeepRFSoC dataset.

N—

ground-truth train input ground-truth test
label set sample label data
v v v

Neural Network Neural Network

Model Model

Loss | predictions
d
Function | HE -
update weights & v v predictions
loss Optimisation
o Accuracy
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Figure 6.2 Training and testing CNN in software.

Figure 6.2 illustrates the different processes that the CNN model undergoes
in software. On the left, the model is initially trained with a dataset to achieve
weight values that perform the required task. In this case, the task is to train a
modulation classifier that identifies the modulation scheme of the signal received
on the input of the model. The dataset, shown at the top of the diagram, is
the DeepRFSoC dataset (built through capturing signals with the RFSoC in
Chapter 5). A batch of values is extracted and sent to the model for prediction,
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where the ‘Ground-Truth’ label batch is extracted alongside it. The model
predicts the class that the signal is encoded with. Through a loss function,
in this case a cross-entropy loss function, a loss value is determined based on
the ‘Ground-Truth’ label and the predicted label. The Adam optimiser then
determines the weight update step required for the model’s weights and the
model is adjusted with the aim of reducing the loss function the next time the
model is tested with the same batch of data. Once the whole training set has
been passed through the model and weights updated based on the optimiser,
the process is repeated again for several epochs until the overall loss function
no longer reduces.

Once the model has been trained, with floating-point weights, the model
is evaluated with the DeepRFSoC test set. This time, instead of the model
predicting an answer and updating the weights depending on the output of
the loss function and the optimiser, the model predicts the modulation scheme
the signal is encoded with, and the overall accuracy of the model is assessed
when compared to the ‘Ground-Truth’ label of the data it is tested with. The
accuracy of the floating-point weight model serves as the baseline for comparison
with all fixed-point deployment techniques.

The training and testing method detailed in this section and Figure 6.2 is a
general methodology used for evaluating the trained software models trained
in PyTorch and operating on the PC. It encompasses both the models trained
in floating-point (PTQ) and the quantised models trained with QAT, although
a more detailed version of this training/testing process for QAT is detailed in
Section 6.5.1. The process detailed in Figure 6.2 is the software training/testing
process used for evaluating models deployed with PTQ.

Test Set Evaluated on CNN Accelerator in PL

Once the accuracies for both the floating-point model and quantised models
are evaluated in software after training, the next step is to evaluate the trained
weights when they are deployed on the Al accelerator using the fixed-point
representation from PTQ and QAT. This evaluation isolates the impact of
weight quantisation on inference accuracy, independent of any front-end signal
processing effects that will be analysed later in the RFSoC system.

To ensure a controlled evaluation environment, the DeepRFSoC test set
is directly fed into the deployed CNN model via an AXI DMA IP core. The

overall hardware setup for this evaluation is illustrated in Figure 6.3, which
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depicts the data flow from DMA input into the CNN and back to DMA for

result retrieval.
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Figure 6.3 Hardware design for testing CNN IP.

The key objectives of this evaluation are:

e To compare the accuracy of PTQ and QAT models against the origi-
nal floating-point and QAT baseline when executed on the custom Al

accelerator in hardware.

o To analyse the impact of different fixed-point quantisation levels on

classification performance.

o To validate that the CNN accelerator correctly processes the input using
the quantised weight representations without introducing unintended

numerical artifacts.

This test strictly evaluates classification accuracy based on the pre-recorded
dataset (DeepRFSoC).

Live Reception of Signals on RFSoC

The ultimate test to verify if the trained weights for both PTQ and QAT operate
for the intended application is to evaluate the accuracy and performance of
the deployed Al accelerator when receiving signals encoded with different

modulation schemes live. This test evaluates the accuracy of the model while
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it receives a selection of signals at the ADC. Figure 6.4 illustrates the hardware

setup for deploying the CNN accelerator in the receiver pipeline.
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Figure 6.4 Hardware design for testing CNN IP in receiver pipeline.

|4f

The same quantised weights used for both PTQ and QAT tests are deployed
on the CNN accelerator in the receiver pipeline. Demonstrating the performance
of the CNN model in a receiver chain operating on live data is the ultimate test
to verifying both the quantisation training techniques as well as the feasibility
of the custom CNN accelerator for wireless communication applications. This
test transmits and receives signals under the same conditions in which the
DeepRFSoC dataset was created.

The desired pre-transmission signals, encoded with different modulation
schemes, are stored in PS DDR where a transmitter AXI DMA facilitates a
continual cyclic transmission, similar to that undergone in Chapter 5. The
hardware-in-the-loop setup used for evaluation is the same as the method
described in Chapter 5, where signals are transmitted through the FIR inter-
polation filter chain, looped back via the RF path, and received through FIR
decimation into the AI accelerator. In this section, the deployed accelerator is
evaluated under different quantised configurations (PTQ and QAT) using live
loopback RF data. Each prediction is transferred back to the PS DDR memory
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via AXI DMA IP cores and compared against the ‘Ground-Truth’ label to

compute the classification accuracy.

6.4 Post-Training Quantisation (PTQ) Evalua-
tion

The following sections evaluate the training effectiveness of the resulting models,
and how well they map to the custom CNN architecture. An incremental
evaluation, as detailed in Section 6.3.4, is discussed where an analysis of the
model takes place at each stage of the path from custom dataset to deployed

hardware Al accelerator operating on real-time signals.

6.4.1 Dataset and Training

The CNN model evaluated in this chapter is identical to the one introduced in
Chapter 4 and trained as in Chapter 5 using the DeepRFSoC dataset. This
dataset was generated using the RFSoC in loopback mode and contains I1Q
sample frames across a range of SNR levels and modulation types.

In PTQ), evaluating the accuracy of the test set in software is omitted due
to the fact that, when performing PTQ), the floating-point weights from the
trained model are later converted into fixed-point. In this case, the evaluation
of PTQ is performed in the later sections. The model’s accuracy for the task
of modulation classification is assessed in floating-point when considering the
DeepRFSoC test set and later, once the weights have been quantised to the
desired fixed-precision, the accuracy of the PTQ models are evaluated against

the original floating-point model.

Training Configuration and Network Architecture

The training configuration, optimiser, early stopping settings, and network
topology used here are the same as those described in Chapter 5. The model
consists of two convolutional layers followed by two FC layers, using ReLU
activations throughout and Softmax at the output. A summary of the network
dimensions is included in Table 6.1 for reference.

The model was trained over 100 epochs with early stopping and an adaptive
learning rate schedule. The loss and accuracy curves matched those reported
in Chapter 5, with convergence occurring within 20 epochs and no signs of

overfitting.
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Table 6.1 Neural Network Dimensions.

Layer Type Dimensions Activations OQOutput Dim. Parameters

Input 2 x 128 - 2 x 128 -
Convolution 64 x 3 x1 ReLLU 64 x 2 x 126 192
Convolution 16 x 3 x 2 ReLU 16 x 1 x 124 6,144

Fully-connected 1984 x 128 ReLU 1x128 253,952
Fully-connected 128 x 8 - 1x8 1,024
Output 1x8 Softmax 1x8

6.4.2 Floating-point Model Testing

The final floating-point model was evaluated on the test set to establish a
baseline for quantisation-aware evaluation. The test set includes a wide range
of SNR values, allowing for the measurement of the overall classification accuracy

and the model’s robustness to noise and channel impairments.

Overall Accuracy across SNR Levels

As shown previously in Chapter 5 (Figure 5.19), the floating-point model
achieves strong classification performance, reaching about 81% accuracy at
high SNRs and tapering off as SNR decreases.

Per-Modulation Accuracy across SNR levels

To further analyse performance, Figure 6.5 illustrates the classification accuracy
for each modulation scheme across SNR values. The x-axis represents SNR
(dB), while the y-axis shows accuracy (%) for each modulation type. Certain
modulation schemes, particularly those with distinct and robust characteristics,
maintain high accuracy even at lower SNRs, while others degrade more rapidly.
The modulation schemes GFSK, CPFSK, PAM4, and BPSK all perform sig-
nificantly better compared to QPSK, PSK8, QAM16, and QAM64. These
better performing modulation schemes are designed for more robust transmis-
sion scenarios such as low bit rate satellite communications, weather balloon
data, and long distance signalling [130]. The time and spectral characteristics
make it easier for receivers to locate them and decode the signals. The worse
performing modulation techniques in terms of classification accuracy are those
used for higher data rate applications such as LTE, 5G, and WiFi. While
the classification of modulation schemes has little to do with the data rates

of the modulation schemes used, the time and spectral characteristics of each
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modulation type affects how easy it is to classify each signal. As can be seen
in Figure 6.5, the modulation schemes QAM64 and QAMI16 are the lowest
performing classes in terms of accuracy. The two schemes are similar in form,
where QAM64 maps to more constellation points than QAM16. This can mean
that determining between the two schemes is more challenging than other types

of modulation scheme.
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Figure 6.5 Per-modulation accuracy of floating-point model across SNR levels.

These results and those obtained in Chapter 5 serve as a baseline for
subsequent quantisation experiments, allowing a direct comparison of how
lower precision impacts classification performance. In the next sections, the
floating-point model weights will undergo quantisation to 16-bit, 8-bit, 4-bit,

and 2-bit fixed-point representations, with 16-bit activations. The effects on

accuracy will be evaluated in both stored-data and real-time inference scenarios.

6.4.3 Evaluation of PTQ Models with AI Accelerator in
PL
PTQ is a technique used to convert the trained full-precision floating point

model into a fixed-point representation, typically lowering the bit-width of the

model’s weights and activations. PTQ is performed after training and does
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not involve retraining the network under quantised constraints, making it a
computationally efficient method for deploying models to hardware accelerators,
such as FPGAs. The objective is to evaluate how well the model can maintain

accuracy when reduced to different precision levels.

Quantisation Procedure

The process begins with the floating-point model, which is first trained using
the DeepRFSoC dataset as described in previous sections. Once the model is
fully trained and evaluated, the quantisation process is applied to the weights,
activations, accumulators, and inter-layer signals.

As stated in previous sections, the only quantisation variable that is altered
for each fixed-point model evaluation is the weight quantisations (16-bit, 8-bit,
4-bit, and 2-bit). The activations, accumulator, and inter-layer signals are a
consistent bit-width across all evaluation models, with only minor adjustments
made to the fixed-point precision, such as the fractional bit location and ratio
between integer and fractional bits. Since the activation, accumulator, and
inter-layer signal precisions are dependant on the input and weight precisions,
the weights are first quantised to the desired bit-width.

Each layer of the CNN accelerator performs a matrix multiplication using a
number of MAC units in parallel, while accumulating the result over several
clock cycles in an output stationary dataflow optimisation strategy. Each layer
holds its own set of parallelised MACs that can operate a multiply-accumulate
function for multiple weights and input samples. This means that each MAC
can support one type of fixed-point multiplication and addition with a specific
set of fixed-point precisions. For example, if a MAC performs a multiply and
accumulate for an input sample with fixed-point 16-bit representation of )2.14
and a weight value with 16-bit representation of Q4.12; then for the next input
sample the same MAC will not be able to perform its operation with a Q5.11
precision weight.

The fixed-point value representations in this thesis use the Qm.n format to
describe the integer bits (m) and fractional bits (n) (see Appendix A) [131].

With this understanding, the architecture can only support a single fixed-
point precision type for each layer, making the quantisation strategy for the
CNN model have layer-wise quantisation.

For each bit-width considered, a suitable precision representation must be
found for each layer of the network as this will allow the MACs to support

the multiplication and accumulation of multiple weights and samples. For the
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PTQ technique, each layer’s floating-point weights are analysed for the range
they cover. A larger range means that more of the available bits are taken up
for the integer section, with fewer fractional bits available, and resulting in less

precise number representations.

Weight Distributions for CNN Layers
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Figure 6.6 Distribution of weight values from floating-point model across four
CNN layers. The x-axis represents the weight value, and the y-axis shows the
number of weights within each histogram bin.

The histograms in Figure 6.6 shows the distribution of floating-point weight
values for each layer of the CNN. Apart from the first convolutional layer, the
model layers show a normal-like distribution of values centred around zero.
Almost all layer weights have magnitudes below 0.5, except for the first fully
connected layer, whose maximum value is about 0.2. With the exception of the
first convolutional layer, all other layers have a handful of outlier weight values
that fall outside the range of -0.5 to 4+0.5. Since one fixed-point precision is
used per layer, the selected integer-to-fractional bit ratio allocation inevitably
sacrifices fractional bits for integer bits to be able to represent these rare
outliers, which can result in a degradation in accuracy of the model.

The floating-point weights shown in Figure 6.6 are mapped to each quantised
weight precision detailed earlier (16-bit, 8-bit, 4-bit, and 2-bit). For each layer,
an appropriate integer and fractional bit ratio is selected and shown in Table
6.2 to support representation of all the floating-point values found in each layer.

For all bit-width cases, the number of integer bits remains consistent across
PTQ quantised models, where only the number of fractional bits change

depending on how many available bits remain. Figure 6.7 shows the new
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Table 6.2 Fixed-point precision mapping to per-layer floating-point weights.

Fixed-Point Precision Layer 1 Layer 2 Layer 3 Layer 4

(Qm.n) (Convl) (Conv2) (FC1) (FC2)
signed 16-bit Q2.14 Q0.16 Q0.16  Q1.15
signed 8-bit Q2.6 Q0.8 Q0.8 Q1.7
signed 4-bit Q2.4 Q0.4 Q0.4 Q1.3
signed 2-bit Q2.0 Q0.2 Q0.2 Q1.1

distribution of weight values after quantisation for each of the varying bit-width

models.
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Figure 6.7 Distribution of each fixed-point layer after quantisation.

As the number of bits available to represent the layer weights drops, the
weight distributions tend further from those observed in the floating-point
model in Figure 6.6. Since the majority of floating-point layer weights follow a
normal-like distribution, the majority of values exist near zero. Floating-point
precision can accurately represent values near zero comfortably, however, when
using fixed-point precision, the number of fractional bits used determines how

many of these ‘near-zero’ values can be represented. In the lower bit-width cases
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(4-bit and 2-bit), there are fewer fractional quantisation levels, and more values
end up being rounded to zero. This can result in a significant degradation in

accuracy.

Inference Testing on AI Accelerator

To accurately determine the effects of PT(Q on the floating-point model, each
model with quantised weights is loaded into the custom CNN accelerator
and evaluated as described in Section 6.3.4. With the weights loaded in the
accelerator, and with knowledge that the incoming signal will be of data type
Q2.14, the activations, inter-layer signals, and accumulators precisions can be
calculated from the resulting MAC operations. Figure 6.8 shows a simplified
dataflow diagram of the candidate CNN, where all of the activations and

inter-layer signals are labelled for reference.
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Figure 6.8 CNN model with inter-layer and activation signals labelled.

With the quantised weight values loaded into each custom AI accelerator
model, the resulting activations and inter-layer signal precisions were calculated.

Table 6.3 maps the labels in Figure 6.8 with the implemented precision.

Table 6.3 Fixed-point precision mapping to inter-layer signals.

16-bit  8-bit 4-bit 2-bit
Description weight weight weight weight
Model Model Model Model

X1 Input Data  Q2.14 Q214 Q214 Q2.4
X2 Convl Output Q6.24 Q6.24 Q6.24 Q6.24
Al Actl Output Q3.13  Q3.13 Q3.13 Q3.13
X3 Conv2 Output Q11.30 Q11.30 Q11.30 Q11.30
A2 Act2 Output Q6.10  Q6.10 Q6.10 Q6.10
X4 FC1 Output  Q19.38 Q19.38 Q19.38 Q19.38
A3 Act3 Output Q7.9 Q7.9 Q7.9 Q7.9

X5 FC2 Output Q8.8 Q8.8 Q8.8 Q7.9

X6 Output Data  float32 float32 float32 float32

Signal
Name

Since the number of integer bits is fixed, and both the CNN architecture
and network dimensions remain unchanged, the bit-width required for inter-

layer signals and activations stays consistent across all PT(Q models. In other
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words, although the weights are quantised to different precisions (e.g. 16-bit,
8-bit, etc.), they still represent values within the same numerical range. As a
result, the dynamic range of the resulting activation signals remains similar,
requiring similar fixed-point formats. This behaviour is specific to PTQ, other
approaches like QAT may result in different signal ranges, requiring re-analysis
of the inter-layer signals and activation precision formats.

As described in Section 6.3.4, each custom CNN accelerator configured with
the PTQ weights is evaluated against the DeepRFSoC test set and compared
against the floating-point model performance. The custom accelerator is
implemented into the PL of the RFSoC with an AXI DMA facilitating the
transmission of test set frames and the reception of classes. The data sent is
identical to the data used to test the floating-point equivalent model.

Figure 6.9 shows the recorded accuracy of each quantised weight model,
with PTQ, on the CNN accelerator evaluated against the DeepRFSoC test set.
Additionally, Figure 6.10 shows the recorded accuracy of each quantised PT(Q
model operating on the CNN accelerator evaluated while operating in real-time

on live data being sent and received on the RFSoC development board.
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Figure 6.9 Accuracy of PTQ models with DeepRFSoC test set through DMA
transfers.
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PTQ Real-Time Loopback Accuracy
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Figure 6.10 Accuracy of PTQ models in real-time RF loopback.

The accuracy results in Figure 6.9 show that the 16-bit quantised model
retains most of the original performance, with only a 2% accuracy drop, suggest-
ing that this bit-width is a viable alternative to floating-point inference while
offering the capability of being deployed on the custom CNN accelerator. The
8-bit model demonstrates a 4% accuracy reduction, indicating that it remains
a practical choice for deployment on resource-constrained FPGA platforms.
Similarly, in the real-time RF loopback test case, the 16-bit model achieves
equal accuracy performance to the floating-point equivalent model and the 8-bit
model shows minimal degradation of 2% accuracy overall. As the bit-width
decreases further, accuracy degradation for both test cases becomes more pro-
nounced when quantising with the PT(Q technique. The 4-bit model experiences
an 11% accuracy loss, highlighting the growing impact of quantisation noise
on model inference. At this bit-width, numerical precision constraints start
to significantly affect classification performance, suggesting that additional
techniques such as QAT may be necessary to maintain usability. The most
extreme case is the 2-bit model, which suffers a 60% accuracy drop, making
it impractical for real-world applications without further optimisation. This
sharp decline indicates that such aggressive quantisation severely limits the

model’s ability to retain critical information for classification.
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These results reinforce the expected trade-off between accuracy and effi-
ciency in quantised neural networks. While 16-bit and 8-bit quantisation offer
strong accuracy retention, moving to 4-bit and below introduces substantial
performance loss. Selecting an appropriate quantisation level depends on the
specific application’s constraints, balancing memory savings, computational
efficiency, and model accuracy. In the context of real-time radio modulation
classification, 16-bit and 8-bit quantisation appear to be the most viable op-
tions, whereas 4-bit and lower may require additional optimisation techniques
to achieve acceptable performance.

The results observed in Figures 6.9 and 6.10 show similar accuracy per-
formance between the models evaluated against the DeepRFSoC test set and
signals received live in real-time on the RF-ADC via RF loopback. The simi-
larity in results shows the effective construction of the DeepRFSoC dataset for
training DL models to perform modulation classification with the intention of

deploying on an RFSoC board and perform classification in real-time.

6.5 Quantisation-Aware Training (QAT) Eval-

uation

This section will evaluate the training and effectiveness of QAT models, and
how well they are mapped to the custom CNN architecture. An incremental
evaluation, as detailed in Section 6.3.4, is discussed including an analysis of
the model at each stage of the progression from custom dataset training, to
deployed hardware Al accelerator operating on real-time signals. This is the
second quantisation method discussed in this chapter after PTQ. The two

techniques will later be compared in Section 6.6.

6.5.1 Dataset Training

In Section 6.4, the DeepRFSoC dataset was used to train a floating-point weight
and activation model. The resulting model was evaluated with the DeepRFSoC
test set and the model’s accuracy performance was established across varying
SNR values for all modulation schemes. The floating-point model’s weights
were then extracted and quantised to one of four selected bit-widths of 16-bit,
8-bit, 4-bit, and 2-bit to achieve a quantised model through the PTQ technique.

To implement the QAT technique, each model is quantised prior to training

through quantisation-aware DL layers where the specific quantisation parame-
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ters can be configured. In contrast to quantisation with PTQ, where one set of
weights can be quantised to all four of the separate bit-widths, QAT requires a

separate training process for all four quantised models.

Quantised-Aware Training Method

In contrast to PTQ, QAT integrates quantisation effects during training by
simulating fixed-point arithmetic while maintaining floating-point precision for
gradient updates. During forward propagation, weights and activations are
quantised to the target fixed-point precision, introducing the effects of reduced
numerical representation. During backpropagation, gradients are computed
using floating-point precision to preserve learning stability. This process helps
the model to adapt to noise from the quantisation steps, resulting in improved
accuracy after deployment on fixed-point hardware.

To illustrate this, Figure 6.2 includes the key points where quantisation is
applied. This transformation Figure 6.11, which shows the quantised training
setup. The weights are clipped to the predefined numerical range before being
quantised, ensuring they remain within the representable limits of the fixed-point
format. Additionally, during backpropagation, a Straight-Through Estimator
(STE) is used to approximate gradients, allowing updates to propagate despite

the non-differentiable quantisation operation.

N
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Figure 6.11 Training and testing with QAT for CNN in software.

By incorporating quantisation noise directly into training, QAT reduces

accuracy degradation compared to PT(Q, making it a suitable choice for ap-
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plications where high precision is required post-quantisation. The evaluation
of QAT models follows a similar methodology to PTQ, where performance is
assessed on the DeepRFSoC test set and later on hardware with fixed-point
representations on the custom Al accelerator IP core.

The resulting trained model with quantised weights and activations is
evaluated against the test set of the DeepRFSoC dataset. When a forward pass
on the model is performed, the learned weights and quantisation parameters
are applied and produce a prediction based on the quantised weight values.
The accuracy performance of the model is evaluated based on the predictions
produced by these quantised weights. Alongside the accuracy results, analysis

of the training performance is also performed.

Training Setup and Configurations

The quantise-aware DL layers were configured using Brevitas, a PyTorch add-
on, developed and maintained by AMD, that provides an extensive set of
functionalities for lowering precision DL training [132]. The Brevitas software
package allows for the specific description of the data precision for many aspects
of the neural network including: weight precision and activation precision.
Figure 6.12 illustrates a quantised 2D convolutional layer, showing the additional
parameters and steps involved in the QAT procedure within the Brevitas

framework.

Input (float)

Input (float) l bit w1d1th:21§-b1ts
iser |— min val: -2.
Weight (float) l . ' Input Quantiser o L 14
Weight Quantiser ‘ X )
signed: True
Conv2D bit width QuantConv2D scale: 2™
signed: True quant type: INT
‘ scale: 2 ‘
ReLU ReLU
¢ bit width: 16-bits T
‘ signed: True
uant type: INT ||Activation Quantiser
Output (float) Scale' 2}:‘p ‘Q
tatistical
(a) (statistical) Output (Quantised) (b)

Figure 6.12 (a) floating-point Conv2D layer parameters in PyTorch. (b) Quan-
tisation parameterse for Conv2D layer in Brevitas/PyTorch

To maintain an accurately represented quantised DL model in software,
the model is configured to the desired bit-widths for all areas of the model

including weights and activations. The model is configured to operate in
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fixed-point 2’s complement arithmetic. The scaling factor for all data types
is limited to a power-of-two value, so that fractional bit selection can be used.
The scaling factor is selected during training through the forward-pass and
back-propagation steps, so that an optimal value is selected for the given task.

The input is explicitly quantised to a signed fixed-point data type of Q2.14
to ensure that it matches the data type assigned in hardware. The activation
signals choose the scaling factors through a series of statistical techniques to
determine the most effective value for the DeepRFSoC dataset [132]. Luckily,
these configurations are predefined for many common bit-width scenarios and
already define the fixed-point arithmetic rules within a large set of ‘Quantiser’
functions. As an example, the configuration of the 8-bit weight model is shown
in Table 6.4, which details the Brevitas layer and quantiser classes used to
achieve a fixed-point DL model, with 2" scaling factor, meaning it can be

represented by the fractional bits of the fixed-point number.

Table 6.4 Brevitas quantisation parameters for 8-bit weight CNN model.

IL\I?;EZ Type W]?éltth Quantiser Scale
Input  Quantldentity 16 Intl6ActPerTensorFixedPointMinMaxInit 2n
Convl QuantConVQd 8 Int8WeightPerTensorFixedPoint 2"
Actl QuantReLLU 16 Intl6ActPerTensorFixedPoint 2n
Conv2 QuantConv2d 8 Int8WeightPerTensorFixedPoint 2"
Act2 QuantReLLU 16 Intl6ActPerTensorFixedPoint 2n
FC1 QuantLinear 8 Int8WeightPerTensorFixedPoint 2"
Act3 QuantReLLU 16 Intl6ActPerTensorFixedPoint 2n
FC2 QuantLinear 8 Int8WeightPerTensorFixedPoint 2"
Output  QuantLinear 16 Intl6ActPerTensorFixedPoint 2"

Network Architecture

The network dimensions remained the same for QAT evaluation as for PTQ
evaluation. The model has four layers consisting of two 2D convolutional layers
and two FC layers with ReLU activations between layers. An overview of the
dimensions of each model can be seen in Table 6.1. All parameters remain
the same as those configured for the floating-point model with additional
parameters for achieving quantisation. For each of the candidate bit-widths,
the quantiser class used for each layer changes. Table 6.5 shows the different

weight quantisers used in each layer for every model.
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Table 6.5 Quantisation parameters for different bit-width models.

Bit Data Precision . Radix
Model Width Type Type Scaling Point Offset
16w16a 16 Signed Int Per-Tensor 2n Computed 0
8wl6a 8 Signed Int Per-Tensor 2n Computed 0
Learned
. _ n
4wl6a 4 Signed Int Per-Tensor 2 (decoupled)
Learned
3 _ n
2wl6a 2 Signed Int Per-Tensor 2 (decoupled)

Table 6.5 highlights the key quantisation parameters for each candidate
bit-width model. The Bit Width column refers to the number of bits used
for representing weights, where all models use 16-bit activations, while weights
vary from 16-bit to 2-bit. The Data Type column shows that all weight are
represented as signed integers and the Precision Type column shows that
all quantisers are configured to provide the same data type across the whole
tensor/layer. The Scaling column indicates that all models used a power-of-two
scale factor (2"), ensuring that the resulting scaling factor can be transformed
into fractional bit assignment for efficient fixed-point arithmetic hardware. The
way the Radix Point (or scaling factor) is determined differs based on the
bit-width. In the 16-bit and 8-bit models, the radix point is computed from
the back-propagation statistics, while for the lower bit width models (4-bit
and 2-bit), it is learned independently of the weights (decoupled scaling). This
adjustment allows the lower-bit models to maintain accuracy despite reduced
precision. Finally, the Offset column shows that all models use a zero offset,
meaning the quantisation is symmetric around zero. This simplifies hardware

implementation by avoiding the need for an additional bias term.

Training Process

In contrast to the PT(Q models, QAT requires each bit-width model to be trained
separately so that the appropriate weights are learned for each quantisation
limitation applied to the networks. Each model was trained for 100 epochs
using a learning rate of le™*, with an adaptive learning rate schedule to refine
convergence. The loss function used was cross-entropy and was minimised using
the Adam optimiser. The performance of each model was tracked using training
and validation loss/accuracy. To ensure proper generalisation and minimal over-
fitting, the model’s validation loss was monitored, with early stopping applied

if the validation loss did not continue to improve. To assess the convergence
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of each model, training and validation loss curves were recorded. Figure 6.13
presents these curves, showing that each model achieved stable convergence

with minimal over-fitting when trained with the DeepRFSoC dataset.
Training and Validation Loss for Each Quantised CNN Model
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Figure 6.13 Training and validation loss plots for each quantised model training

(QAT).

All four quantised models converged and triggered early stopping. Overall,
the number of epochs remains comparable to the floating-point trained model
which took 20 epochs to converge. The 16-bit model achieved the lowest
validation loss at around 1.15, followed by the 8-bit and 4-bit models which
were both measured at 1.8. The 2-bit model had the highest loss measured at
1.27; however, the convergence for this model began at a higher loss in the first
epoch.

The following sections will evaluate the effectiveness of the trained weights
and measure if there are any improvements to the accuracy compared to the

PTQ technique for deploying on the custom CNN accelerator.

6.5.2 QAT Models Testing

Following the completion of training, each quantised model was evaluated on the
DeepRFSoC test set to observe the accuracy performance of the model before

it is transferred to the custom CNN accelerator architecture. This evaluation
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provides a point of reference to compare the quantised weights, achieved through
QAT, with the same weights implemented on the CNN accelerator. The QAT
models are also compared against the floating-point model trained in Section
6.4.1. The test set results assess all four model’s ability to classify modulation
schemes across varying SNR levels.

Figure 6.14 shows the overall accuracy of each QAT model when evaluated
with the DeepRFSoC test set. This test was conducted in software within the
PyTorch environment to verify the accuracies of the resulting models when the
quantisation parameters are applied. The four models’ accuracies are plotted
with the addition of the floating-point model as a baseline reference. As can
be seen, the overall performance for all models is closely comparable to the
floating-point model in terms of accuracy across the varying SNR values. The
2-bit model (2wl6a) performs the worst due to having the lowest available bit-
width, followed by the 4-bit model (4w16a) which exhibits equal performance
to the floating-point model trained on the same dataset. The 16-bit (16w16a)
and 8-bit (8w16a) models achieve the same accuracy, and both perform slightly
better than the floating-point baseline. This may be due to quantisation noise
introducing a form of regularisation, which can in some cases assist training.
While this is an interesting observation, it is unlikely that fixed-point weights
truly outperform floating-point representations in general. Instead, it may
indicate that the floating-point model, given the current configuration, is not
reaching its maximum potential accuracy. Further investigation would be
required to establish whether this behaviour is consistent across architectures

or specific to this setup, making it a potential direction for future work.

Quantised Weight Analysis

In Section 6.4.3, the distribution of weight values from the floating-point model
was analysed in order to assess the best quantisation strategy for PTQ. In the
case of QAT, the weights are already quantised when the training process has
finished; however, it is useful to observe the distribution of weight values when
the model has knowledge of the quantisation limitations during training. Each
layer of the CNN accelerator performs a matrix-multiplication using a selected
number of MAC units in parallel, while accumulating the result over several
clock cycles in an output stationary dataflow optimisation strategy. This means
that each layer of the model has been configured to quantise its weights on
a per-tensor basis, meaning that there is one quantised precision per matrix

multiplication or layer.
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QAT Software Accuracy on DeepRFSoC
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Figure 6.14 Overall accuracy of QAT models evaluated with DeepRFSoC test
set in software.

The four QAT models converged to the following learned precisions per

layer. Table 6.6 summarises the precision configuration for each model by layer.

Table 6.6 Fixed-point precision mapping to per-layer QAT model weights.

Fixed-Point Precision Layer 1 Layer 2 Layer 3 Layer 4

(Qm.n) (Convl) (Conv2) (FC1) (FC2)
signed 16-bit Q2.14 QL15 Q016  QL15
signed 8-bit Q2.6 Q0.8 Q0.8 Q1.7
signed 4-bit Q1.3 Q-2.6 Q-3.7 Q1.3
signed 2-bit Q1.1 Q-2.4 Q-2.4 Q2.0

The precision values in Table 6.6 differ from those observed in Table 6.2 for
PTQ. In the PTQ approach, the number of integer bits assigned to each layer
remained consistent across models. By contrast, the QAT models independently
determine the optimal precision for each layer based on its learned weights.
Consequently, each layer adapts to the most appropriate precision. Notably,
some layers adopt configurations where the number of fractional bits exceeds the

total bit-width. Although the overall bit-width is unchanged, the radix point
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is shifted to enable the representation of even smaller values (see Appendix A
for an explanation on the Qm.n format).

After obtaining the learned precisions, it is insightful to examine how these
settings affect the distribution of quantised weight values. A series of histogram

plots for each model and each layer are presented in Figure 6.15.

Weight Distributions for QAT Models
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Figure 6.15 Weight distribution for each layer of each QAT model.

While the distribution of weights for higher bit-widths seems consistent
with that observed in Figure 6.6, as the bit-width decreases, the distribution
of weights changes for each layer. The models have learned to utilise specific,
quantisation step values due to the low precision. Specifically, for the final
layer of the 4-bit and 2-bit models, the distribution of weights tends away from
a normal-like distribution and instead biases towards the representable limits.
When comparing this to the quantised floating-point weights, in Figure 6.7,
the learned QAT weights adjust for the lack of precision by allocating samples
to non-zero values in order to not be overloaded by zero-valued weights and

subsequently reduce the effects of accuracy degradation.
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6.5.3 Evaluation of QAT Models with AI Accelerator in
PL

To verify the effectiveness of the trained quantised weights for each QAT model,
the weights are loaded into the custom CNN accelerator and evaluated as
described in Section 6.3.4. Each model was trained to expect an incoming signal
with data type Q2.14. The activations, inter-layer signals, and accumulator
precisions were learned through the training process and set within the custom
CNN accelerator. The diagram in Figure 6.8, shows a simplified dataflow
diagram of the candidate CNN with all of the activations and inter-layer signals
labelled for reference. The resulting activations and inter-layer signal precisions
were calculated for QAT and are displayed in Table 6.7.

Table 6.7 Fixed-point accumulator and activations precision for each QAT
model.

16-bit  8-bit 4-bit 2-bit
Description weight weight weight weight

Model Model Model Model
X1 Input Data Q2.14 Q2.14 Q2.14 Q2.14
X2 Convl Output Q6.28 Q6.28 Q6.28 Q6.28
Al Actl Output Q2.14 Q2.14 Q2.14 Q3.13
X3 Conv2 Output  Q11.30 Q11.30 Q11.30 Q11.30
A2 Act2 Output Q2.14 Q3.13 Q2.14 Q2.14
X4 FCI1 Output  Q19.38 Q19.38 Q19.38 Q19.38
A3 Act3 Output Q4.12 Q5.11 Q3.13 Q3.13
X5 FC2 Output Q11.26 Q11.26 QI11.26 Q11.26
X6 Output Data  float32 float32 float32 float32

Signal
Name

Comparing the resulting precisions from QAT in Table 6.7 to the PTQ
precisions reported in Table 6.2, the QAT models use a consistent fractional
bit-length across all activation layers. In contrast, PTQ show an increasing
fractional bit-length as the signal moves deeper into the network. This suggests
that QAT helps maintain a more normalised activation range throughout the
model. That is an important point, as keeping activations normalised could
improve support for adding more layers in the CNN without needing to support
increasingly larger layer input values.

In terms of physical implementation performance into the CNN accelerator,
no recognisable difference is observed between the model with QAT weights and
the model with PTQ weights. For all models (PTQ and QAT), the inter-layer
signals and activations maintain the same bit-width across each model where

only the radix point is adjusted to be able to represent the resulting signals
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produced from the matrix multiplication stages. The precision for the output
data type of FC2 is not truncated back down to 16-bits as this output is
converted to a 32-bit floating-point value.

As described in Section 6.3.4, each custom CNN accelerator, fitted with
the QAT weights, was evaluated with the DeepRFSoC test set on the RFSoC

PL and compared to the performance of a floating-point model for reference.

Each CNN model was sent frames from the test set and the implemented Al

accelerator was evaluated for its accuracy in predicting the correct classes.

The test set from DeepRFSoC was identical to that used to evaluate the
floating-point model and PT(Q weight models.

Figure 6.16 shows the recorded accuracy of each QAT quantised weight
model on the CNN accelerator, evaluated against the DeepRFSoC test set. The
plot in Figure 6.16 compares each QAT model accuracy against the signal SNR
value. The floating-point test set accuracy is used as a baseline comparison
to the resulting performance for each quantised model. The considered QAT
bit-widths are 16-bit, 8-bit, 4-bit, and 2-bit.

QAT Accuracy on DeepRFSoC with DMA on Al Accelerator
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Figure 6.16 Overall accuracy of QAT models evaluated with DeepRFSoC test
set in PL through DMA.

Comparing the plot in Figure 6.16, which shows the accuracy of each model

when operating on the custom CNN accelerator on the PL, to the QAT models
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tested in software, in Figure 6.14, similar results are observed. Firstly, the
floating-point model achieves the same accuracy performance as the 4wl6a
model, further highlighting the effectiveness of training a network with QAT.
The 2w16a model performs a little worse, with around a 2% accuracy drop.
The 8w16a model again performs the best out of all the QAT models, further
reinforcing that adding quantisation noise to the training process seems to
provide a level of regularisation that has assisted the training process to converge
on a more effective model. Furthermore, the 8w16a model shows that a weight
size of 8-bits is sufficient for achieve a model with accuracies better than its
floating-point counterpart.

To further evaluate the QAT weights of each model in the CNN accelerator,
each model was evaluated in terms of its effectiveness in classifying the mod-
ulation schemes when operating in real-time on live signals. As described in
Section 6.3.4, the QAT weights were transferred to the deployed CNN model
and then evaluated in a real-time scenario by classifying the signals received
from the RF-ADC. The signals sent from the RF-DAC and received into the
RF-ADC were of the same configuration and parameters as those used to record
the DeepRFSoC dataset.

QAT Accuracy on DeepRFSoC on Al Accelerator with RF Loopback
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Figure 6.17 Overall accuracy of QAT models on real-time signals received from
the RF-ADC.
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Figure 6.17 presents the accuracy of QAT models when deployed on the CNN
accelerator and classifying real-time signals from the RF-ADC. The observed
trends largely align with the other results (from Figures 6.14 and 6.16), where
the QAT models were evaluated against the DeepRFSoC test set.

A key observation is that the 8w16a model achieves the highest classification
accuracy, surpassing the floating-point baseline by 3%. This indicates that
quantisation with 8-bit weights and 16-bit activations not only preserves the
network’s discriminative capability, but also enhances performance in real-
time inference. The 16wl6a model maintains equal performance with the
floating-point baseline, reaffirming that full 16-bit quantisation does not degrade
accuracy in this deployment scenario.

On the other hand, lower-bit precision models such as 4w16a and 2w16a
exhibit a slight accuracy reduction of approximately 3%, suggesting that, at
these lower weight bit-widths, some loss of representation occurs. Despite
this minor degradation, these models still demonstrate strong classification
performance, making them viable candidates for edge deployment where lower
precision applications are paramount.

These findings reinforce the viability of lower-precision quantisation for
real-time modulation classification on the AMD RFSoC platform. Achieving
accuracy on par with, or even surpassing, a floating-point baseline while running
efficiently on dedicated CNN acceleration hardware highlights the effectiveness
of QAT for edge inference applications. Moreover, the real-time operation
of the CNN accelerator on RF signals further demonstrates its potential for

practical deployment in wireless communications systems.

6.6 Comparison of PTQ and QAT

Quantisation is a crucial step in optimising DL models for efficient deployment
on FPGA-based systems such as the AMD RFSoC. This section compares
the performance of PTQ and QAT in the context of real-time modulation
classification. A comparison between the two techniques is summarised in
Table 6.8. The results presented in the previous sections indicate that QAT
consistently achieves higher accuracy compared to PTQ. In contrast, PTQ
offers a faster and more straightforward implementation process since it does
not require training from scratch with quantised constraints. This trade-off

between accuracy and implementation efficiency is critical when deploying
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models on resource constrained edge devices for applications where retraining

models consistently is a factor.

Table 6.8 Comparison of PTQ and QAT

Post-Training Quantisation | Quantised-Aware Training
(PTQ) (QAT)

Workflow | Quantise a pretrained floating- | Incorporates quantisation effects
point model without modifying | into the training process so the
the training process model adapts to low-precision

weights

Training No additional training required | Requires training from scratch

Cost

Accuracy | Acceptable at higher precisions | Maintains  higher accuracy
(e.g. 8-bit) . Degrades quickly | across all precisions, particu-
at lower precisions (4-bit, 2-bit) | larly at low-bit

Complexity| Simple to implement and deploy | More complex, requires changes

to training process

Use Case Suitable for rapid development | Suitable when accuracy is crit-
or when training resources are | ical and sufficient training re-
limited sources are available

6.6.1 Performance Comparison

The evaluation results show that QAT-trained models outperform PT(Q models
when deployed on the custom Al accelerator and tasked with classifying live
signals received from the RF-ADC. Specifically, the 8w16a QAT model surpassed
the floating-point baseline by 3%, whereas PTQ models exhibited reduced
accuracy. The accuracy degradation in PT(Q suggests that applying quantisation
post-training leads to a loss of representational fidelity, particularly in lower-bit

precision models such as 4w16a and 2w16a.

6.6.2 Performance of DeepRFSoC Trained Models on
RadioML Dataset

To evaluate how well the quantised models generalise, it is useful to assess
their performance on a dataset they were not trained on. In this case, the
RadioML 2016.10a dataset was used to test the PTQ and QAT models that
were originally trained using the DeepRFSoC dataset. This helps determine
how transferable the learned features are across datasets that represent similar
modulation classification tasks, but differ in generation method and channel

characteristics.
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Figures 6.18a and 6.18b show the classification accuracy of the deployed
PTQ and QAT models when tested on the RadioML dataset. Although the
models were not trained on RadioML, this evaluation offers insight into the
robustness of quantised models when exposed to new signal conditions.

For the PT(Q models, a similar trend is observed to that previously seen for
the DeepRFSoC test set, where accuracy drops as the bit-width of the weights
is reduced. The 2wl6a PTQ model fails to classify any signals effectively,
highlighting the negative impact of extreme quantisation when not accounted
for during training.

In contrast, several of the QAT models retain more consistent performance.
The 8wl6a and 4wl6a QAT models outperform their PT(Q counterparts, and
surprisingly, the 2wl6a QAT model shows stronger accuracy than both the
4wl6a and even the 16wl6a QAT model. This suggests that the QAT process
is able to learn robust features even with heavily quantised weights, and in this

case, may have discovered a more general representation that transfers better

to the RadioML dataset.

6.6.3 Implementation Trade-offs

One of the primary advantages of PTQ is its ease of implementation. Unlike
QAT, which requires training each model separately with quantisation con-
straints, PTQ applies quantisation after training. For the case where multiple
quantised models are built, using PTQ significantly reduces computational
training overhead involved with implementing each quantised model. PTQ
requires training once, while each QAT model is trained separately. This
makes PT(Q a viable option when rapid deployment is necessary, such as in
scenarios where training large models is impractical. However, the performance
gap observed in real-time classification tasks suggests that QAT remains the

superior choice for applications requiring high classification accuracy.

6.6.4 PL Resource Utilisation

Table 6.9 presents the PL resource usage for each quantised version of each
CNN model implemented on the RFSoC platform, which applies to both the
QAT and PTQ quantised models. The breakdown includes logic utilisation
(LUTs and registers), DSP slices, BRAMs, and URAMs, and is separated by
layer to highlight how different stages of the network contribute to overall

resource consumption.
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Figure 6.18 Overall accuracy of deployed PTQ (a) and QAT (b) models on the
RadioML test set while trained on DeepRFSoC.
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Table 6.9 FPGA resource utilisation of each quantised CNN model.

Model Slice Slice
layer  (LUTs) (Register) DSPs BRAMs URAMs
16wl6a 34,765 58,517 456 169 1
convl 4,097 4,879 64 0 1
conv?2 18,261 282,83 256 32 0
fel 11,491 24,554 128 136 0
fe2 662 534 8 0 0
8wl6a 32,067 52,950 456 105 1
convl 5,618 6,152 64 0 1
conv?2 15,047 22,552 256 32 0
fel 10,217 22,873 128 72 0
fec2 698 1001 8 0 0
4w16a 30,871 51,350 456 104 1
convl 5,315 5,740 64 0 1
conv2 14,079 20,443 256 32 0
fel 10,432 23,895 128 71 0
fec2 602 909 8 0 0
2wl6a 28,717 48,286 456 82.5 1
convl 5,002 5,367 64 0 1
conv? 12,683 18,251 256 32 0
fel 10,026 23,496 128 49.5 0
fc2 528 821 8 0 0

Across all models, the DSP usage remains constant at 456 slices. This
is because the number of MAC operations and layer-level parallelism is kept
consistent regardless of weight precision. Each convolutional and FC layer
uses a fixed number of parallel MACs (64, 256, 128, and 8 respectively) for all
quantised model variation, which sums to the total DSP consumption.

The BRAM usage across the quantised models is largely driven by the
memory demands of the first fully-connected (FC1) layer, which contains the
majority of the model’s weights. At 16-bit precision, FC1 alone requires 128
BRAMs to store the weights. As the weight precision is reduced, the BRAM
usage for FC1 drops accordingly: 64 for 8-bit, 63 for 4-bit, and 41.5 for 2-bit
weights. FC1 is the only layer in the network whose weights are stored in
BRAM. The remaining BRAMs are used to store the incoming layer signals
into buffers.

Notably, the BRAM usage for the 4-bit model is nearly identical to the
8-bit model. This is due to HDL Coder’s default behaviour of storing data in
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byte-aligned memory, meaning that the 4-bit weights are padded to 8 bits. The
expected savings of half the BRAMs are not realised in this case. For the 2-bit
model, HDL Coder is able to infer and apply memory packing optimisations,
allowing weights to be packed more densely within each BRAM, resulting in a

further reduction in utilisation.

For the remaining layers, all weights are stored in distributed LUT RAM.

Between the different quantised layers, LUT utilisation also shows a consistent
reduction as bit-widths decrease, dropping by roughly 2,000 LUTs between
each quantised configuration.

Overall, these results show that while weight quantisation offers substantial
savings in logic and memory resources, the extent of the benefit depends on the
synthesis toolchain and memory alignment constraints. In practice, quantisation
strategies and the synthesis toolchain are interdependent, and both must be
considered when evaluating efficiency.

In addition to logic and BRAM utilisation, it is also important to assess
the potential memory savings if weights were stored using efficient bit-packing.
Table 6.10 presents the theoretical memory required to store the quantised
weights in each layer, assuming no byte-alignment or padding is introduced
during implementation. These values represent the best-case scenario for
memory consumption with the proposed architecture. As the quantisation
level decreases, the memory footprint reduces significantly, offering a clear
benefit to using lower precision weights. Although current tools such as HDL
Coder do not exploit sub-byte packing and instead allocate memory in byte
increments, this analysis highlights the untapped savings that could be achieved
with more aggressive memory packing techniques. The ideal savings that could
be achieved from bit-packing is shown in Table 6.10. This could allow for
even more compact implementations and free up additional BRAM for other

functions in the system.

Table 6.10 Total memory consumption if bit packing is used to store the weights.

Quant Conv 1 weight Conv 2 weight FC 1 weight FC 2 weight

Model memory memory memory memory
Type (Bytes) (Bytes) (Bytes) (Bytes)
16w16a 384 B 12,288 B 507,904 B 2,048 B
8wlba 192 B 6,144 B 253,952 B 1,024 B
4wl6a 96 B 3,072 B 126,976 B 512 B

2w16a 48 B 1,536 B 63,488 B 256 B
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6.6.5 Relevance to the Streaming-based CNN Architec-

ture

The findings from this comparison directly relate to the custom streaming-
based CNN architecture introduced in Chapter 4, designed specifically for
FPGA-based radio receiver systems like the RFSoC. Since this architecture is
optimised for real-time signal processing, the choice between PTQ and QAT
has a significant impact on its effectiveness. While PTQ provides a quicker
deployment pathway, QAT aligns more closely with the performance goals of
the architecture, ensuring accurate modulation classification while leveraging
the CNN accelerator’s capabilities.

The analysis demonstrates that while PTQ offers implementation speed
and simplicity, QAT provides superior classification accuracy, making it the
preferred choice for real-time inference on RFSoC-based systems. Future work
could explore hybrid approaches, such as mixed-precision quantisation, to

balance accuracy and efficiency for FPGA deployments.

6.7 Chapter Conclusion

This chapter evaluated the performance of quantised CNN models for real-time
modulation classification using the DeepRFSoC dataset. This chapter focused
on PTQ and QAT techniques to reduce the memory footprint while maintaining
classification accuracy. Each quantised model was deployed onto the CNN
accelerator presented in Chapter 4 and assessed under real-time conditions.

The quantised models demonstrated competitive accuracy compared to
their floating-point counter parts, with QAT models generally outperforming
PTQ equivalents in both test set evaluation and real-time live signal acquisition
on the RFSoC, particularly at lower weight precisions. In some cases, QAT
models even outperformed their full-precision counterparts, highlighting that
quantisation can introduce beneficial regularisation effects during training.
This suggests that the floating-point model may not be achieving its best
possible accuracy and that implicit regularisation from quantisation could be
compensating. This warrants further investigation as a direction for future
work.

Resource utilisation analysis showed that while PL resources uses decreased

with lower bit-widths, memory savings were limited due to HDL Coder’s byte-



6.7 Chapter Conclusion

198

aligned access. A theoretical memory analysis showed significant potential for
compression when more efficient packing strategies are used.

Finally, the generalisability of the quantised models was tested using the
RadioML dataset. This evaluation confirmed that QAT trained models could
also generalise and accommodate a different distribution of samples, further
solidifying the effectiveness of incorporating quantisation during training.

Together, these results show that low-precision, real-time CNN classifiers
for AMC are not only feasible but effective, and pave the way for intelligent

radio systems operating on edge platforms, such as the RFSoC.



Chapter 7
Conclusion

This thesis has presented a custom streaming-based CNN architecture designed
specifically for SDR receivers, targeting PHY wireless communication tasks
that aim to integrate Al. The architecture was introduced using AMC as
the demonstration case, highlighting the architecture’s ability to perform fast
inference on received signal data. The design was extended to support real-time
operation on live radio signals, and a practical methodology was proposed
for generating DL training datasets that reflect the challenges of real-world
hardware considerations. The thesis has also explored the use of reduced-
precision weights for the deployed CNN, providing a detailed evaluation of
model accuracy and implementation trade-offs, and demonstrating the viability
of low-bitwidth deployment in hardware.

The architectures and techniques developed here are designed to be reusable
beyond AMC, supporting a wider range of real-time edge AI applications that

rely on continuous streaming data in practical deployment settings.

7.1 Resume

In summary, the thesis outlined the field of PHY wireless communications and
DL, followed by the core contributions from this research work.

Chapter 2 introduced key background material in physical layer wireless
communications, covering digital modulation schemes, pulse-shaping, and
channel modelling. Modulation classification was presented as the candidate
application for this work, alongside traditional and modern techniques, as well
as the RadioML dataset by O’Shea et al. [19]. This dataset laid the groundwork
for the custom dataset methodology later developed in Chapter 5. The chapter
concluded with an overview of the AMD RFSoC platform, the PYNQ embedded
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software framework, and common RFSoC design practices, particularly for
targeting its RFDC subsystem.

Chapter 3 provided an overview of DL and CNNs, including common
training strategies and model optimisation techniques. The chapter also intro-
duced hardware inference accelerators, discussing typical design trade-offs and
architectural models such as SDF, relevant to embedded deployments.

Chapter 4 marked the first major contribution of this thesis. It presented
a novel streaming-based CNN dataflow architecture for FPGA-based radio
receivers. The design aimed to support real-time operation without dropping
samples by aligning the architecture with the streaming behaviour of the input
signal. The architecture was implemented on the AMD RFSoC and evaluated in
terms of classification accuracy, latency, throughput, and hardware utilisation.

Chapter 5 built on this by integrating the CNN accelerator into a full
real-time radio system capable of live signal classification. The chapter ad-
dressed clock rate requirements due to the overproduction of samples in the
convolutional layers, and introduced the need for a dataset representative of
real signals captured by the RFSoC. This led to the development of DeepRF-
SoC (the second contribution of this work), a novel hybrid dataset creation
method that combines synthetically generated signals with real-world hardware
artefacts introduced by the RF signal chain within the RFSoC. A CNN trained
on this dataset was shown to generalise well, even when classifying live signals
in a loopback configuration.

Finally, Chapter 6 investigated low-bit precision models for the streaming
CNN accelerator. A range of weight precisions were evaluated using both
PTQ and QAT. Models were tested in software, on the accelerator using the
DeepRFSoC dataset, and in real-time signal classification. Accuracy, resource
utilisation, and latency were analysed, demonstrating how precision choices

impact both classification performance and hardware efficiency.

7.2 Discussion and Key Conclusions

This thesis explored how to build a streaming-compatible CNN accelerator
architecture for FPGA-based SDRs, with a focus on real-time PHY inference.
Across Chapters 4 to 6, the work addressed the challenges of integrating neural
networks into traditional DSP pipelines and proposed both hardware and

data-centric solutions.
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While NPUs and TPUs deliver high throughput for batch processing, they
are not well-suited for continuous data streams in low-latency embedded radio
systems. Their general-purpose nature introduces memory bottlenecks and
disrupts the streaming dataflow typical of signal processing pipelines. In
contrast, this thesis introduced a custom CNN accelerator architecture designed
with dataflow in mind, using a SDF model to propagate samples through each

network layer as they arrive.

7.2.1 Review of Objectives

The research aim of this work was to develop a custom CNN accelerator
architecture that can integrate into the streaming pipeline of FPGA-based radio
receivers, to support real-world PHY wireless communications applications,
while mainly focusing development on the AMD RFSoC. The following sections

details the objectives accomplished to realise this aim.

Design a Streaming-based CINN Accelerator

This objective aimed to design and implement a CNN accelerator that integrates
into a streaming pipeline for an FPGA-based radio receiver and operated at
the input data rate without sample loss.

To meet this, a custom accelerator architecture was developed targetting the
AMD RFSoC platform. A dataflow-based design was used to allow each layer

to process samples as they arrive into the model. The architecture supports

real-time operation without dropping the samples streaming from the RF-ADC.

A modulation classification application was used to demonstrate the feasibility

of the architecture.

Training Requirements and Dataset Creation

This objective involved understanding the training requirements for deploying
a CNN in real-time wireless environments, which included generating data that
was representative of the real-world scenario.

To address this, a custom dataset, DeepRFSoC, was created using live
transmissions and loopback on the RFSoC. The dataset incorporated synthetic
signals and channel impairments while transmitting and receiving the data
using the RFSoC to capture hardware imperfections. This ensured that the

model was exposed to deployment-like conditions during training.
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The use of DeepRFSoC allowed models to generalise better during deploy-

ment, and was critical for evaluating performance under live signal capture.

Evaluation of Fixed-Point Quantisation

The final objective was to evaluate the effects of fixed-point quantisation on
model performance in deployment.

Both PTQ and QAT were explored. Multiple weight quantisation levels
(16-bit, 8-bit, 4-bit, and 2-bit) were implemented on hardware. Results showed
that QAT models maintained high accuracy even at low precision, with the 8-bit
QAT model outperforming its full-precision counterpart by 3%. These findings
confirm that quantised inference is feasible for deployment on constrained
platforms like the RFSoC.

7.2.2 CNN Accelerator for Streaming-based Applica-

tions

Real-time radio receiver pipelines impose strict timing requirements, where
every sample must be processed without delay or loss. Many FPGA-based
systems address this by adopting a dataflow model, where samples move sample-
by-sample from block to block. For DL to be viable in such systems, CNN
accelerators must respect this streaming behaviour and operate at line rate
without dropping samples.

Chapter 4 introduced a custom CNN accelerator designed around this
dataflow constraint. The architecture uses a dataflow model where MACs are
parallelised to perform matrix multiplications and a SWG is used to implement
convolutional layer to matrix transformations. A hybrid data reuse strategy
was applied, combining weight and output stationarity, to maintain a high
throughput design without compromising on resource efficiency. A modulation
classification application was targetted.

Unlike other FPGA CNN frameworks such as FINN [39] and fpgaCon-
vNet [40], which rely on HLS and static buffering, the proposed architecture
was implemented using MATLAB and Simulink with HDL Coder. This allows
for seamless integration with the MATLAB and Simulink ecosystem, enabling di-
rect simulation with tools like the 5G and Communications Toolboxes, enabling
end-to-end simulation with synthetic channels or RF pipelines.

A CNN model was trained using the RadioML dataset and quantised to 16-
bit fixed-point weight. When deployed on the accelerator, the model achieved
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comparable accuracy (85% for SNRs over 5 dB) to its floating-point software
equivalent, confirming that quantisation and hardware mapping preserved
inference performance.

The accelerator operated at 100 MHz and achieved a throughput of 26.5k

cps, with a latency of 37.9 us. The architecture was capable of a maximum

rate of 355 MHz, resulting in a throughput of 94k cps, and a latency of 10.7 us.

Resource utilisation on the AMD XCZU28DR RFSoC device was: 5.59% LUTS,
5.39% slice registers, 10.67% DSPs, and 15.09% BRAMs. This allows reserving
space for integration with other parts of a radio receiver design. These results
show that the architecture is well-suited for embedded RF applications.

One design challenge involved sample overproduction at the output of
convolutional layers, which required careful clock rate adjustment to maintain

a streaming operation. This was addressed in Chapter 5.

7.2.3 Real-time CNN Integration with Radio Receiver

Many AI models for PHY wireless communications are trained on synthetic
datasets, such as RadioML. While useful for simulation and prototyping, these
datasets do not capture critical real-world hardware artefacts, such as: RF-ADC
quantisation noise, non-linearities, and RF-ADC tile stitching, that are present
during real-world deployment. Without representative training data, CNN
models often degrade in performance when moved from simulation to real-world
operation.

Chapter 5 introduced a custom dataset, DeepRFSoC. A hybrid dataset that
bridges the gap between synthetically generated signals and channel models
and the real-world artefacts of SDR systems. The dataset was generated using
synthetically generated signals passed through a simulated channel model and
then transmitted through the RFSoC in a loopback connection. The signals
were captured, after decimation and baseband mixing, and saved to form the
DeepRFSoC dataset.

A CNN model trained on DeepRFSoC maintained strong classification
accuracy when deployed on the RFSoC while receiving live signals, closely
matching the performance of the floating-point baseline.

To achieve a real-time performance, an alternative GeMM transform was

presented, where the incoming samples were converted to matrices using the

‘channels-first’ approach to complement the flow of samples through the model.

Compared to prior work such as Tridgell et al. [47], Jentzsch et al. [46], Hou
et al. [42], and Jung et al. [43], the proposed design achieved 81% classification
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accuracy above 28 dB SNR with a throughput of 34k cps and a latency of
29.6 us, while operating on live data. While some of these designs reported
higher throughput and lower latency (such as Tridgell et al. [47] who reported
488k cps throughput and 8us latency), none of them demonstrated real-time
inference on live, distorted RF signals using a CNN architecture on the RFSoC
or similar embedded SDR platform.

The DeepRFSoC dataset highlights the value of incorporating deployment-
specific characteristics during training. By combining synthetically generated
data with realistic hardware distortions, the method enables robust model
performance under real-time conditions, a requirement for intelligent radios

operating at the edge.

7.2.4 Low-Precision Weight Optimisation

Chapter 6 explored the impact of lower weight precision on model performance
and hardware efficiency, with the goal of compressing the CNN footprint for
embedded deployment. Four fixed-point weight precisions were evaluated:
16-bits, 8-bits, 4-bits, and 2-bits. Two quantisation strategies were evaluated,
namely PTQ and QAT.

PTQ models exhibited significant performance loss as weight precision
decreased. While the 16-bit PTQ model achieved around 80% accuracy (similar
performance to the floating-point equivalent), the 2-bit version achieved only
~ 22%. In contrast, QAT models preserved much hight accurcies across all
bit-widths. The 8-bit QAT model outperformed the floating-point baseline by
~ 3%, likely due to regularisation effects from quantisation noise. Even at 4-bit
and 2-bit precisions, QAT models maintained strong performance, with only a
~ 3% drop at the lowest bit-width.

QAT models also generalised better to unseen data. When evaluated on the
RadioML dataset, while trained on DeepRFSoC, AT models outperformed their
PTQ equivalents, confirming their robustness under datasets with different
distributions of impairment factors.

Hardware utilisation scaled with weight precision. BRAM usage reduced
from 168 blocks in the 16-bit model to 82.5 blocks at 2-bits, while LUT usage
decreased from 32,765 to 28,717 across the same range. This reduction reflects
the more compact storage requirements of lower-precision weights and the
smaller memory footprints needed for on-chip input buffer and weight storage.

However, due to the fixed MAC parallelism in the architecture, the number of
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DSPs remained constant at 456 for all models. DSP allocation depends on the
chosen parllelism strategy.

These results confirm that significant reductions in weight precision are
possible without a significant reduction in classification accuracy, when the
training process uses QAT, which enables highly compressed models to be

deployed on resource-constrained platforms like the RFSoC while maintaining

real-time performance, assisting in future scalable and efficient intelligent radios.

7.2.5 Key Conclusions

This chapter evaluated the full system implementation of a streaming-based
CNN accelerator for real-time modulation classification on the AMD RFSoC
operating on live real-time signals. It brought together the architecture design,
dataset generation, and quantised model deployment. The results show that it
is possible to accelerate CNN models using low-precision weights on embedded
SDR platforms like the RFSoC without sacrificing on classification accuracy
and or dropping samples in real-time operation.

By combining a dataflow-based architecture with a hardware-aware training
dataset (DeepRFSoC) and QAT, the system was able to operate in real-time
using 16-bit, 8-bit, 4-bit, and even 2-bit weight models. The 8-bit QAT model
outperformed the floating-point baseline, and even the 2-bit model maintained
usable accuracy, all while maintaining line-rate classification performance.

Overall, these results show that a fully streaming, real-time CNN on RF
data is not only feasible, but also effective. The accelerator makes it possible
to run CNN inference directly at the edge, processing live signal data as it
arrives, without needing to offload data to external processors. This lays the
groundwork for future intelligent radios that are lightweight, efficient, and hold
the capability of high-throughput Al at the extreme edge for PHY wireless

communications.

7.3 Limitations and Further Work

This thesis proposed a streaming-based accelerator architecture for a specific
CNN topology, which was introduced in the seminal RadioML paper by O’Shea
et al. [19]. While the accelerator was built and tested successfully using this
topology for real-time modulation classification, the research undertaken for
this thesis did not explore a broad range of CNN variants. Future work should

aim to generalise the accelerator design process, perhaps through a compilation
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framework that can translate a variety of CNN topologies into streaming-
compatible hardware. This would enable rapid testing and deployment of more
standard models like VGGNet [133] or modern networks with skip connections,
such as ResNets [134].

There are also clear opportunities to improve the performance of the existing
architecture. One such area is sparsity exploitation, where many of the weights
in a trained network are zero. The current accelerator does not take advantage
of this, but a sparse-aware implementation could skip unnecessary computations,
leading to reduced latency and higher throughput, while also lowering memory
requirements. The current design already performs well without leveraging
sparsity suggests there is still untapped potential for optimisation which could
lead to an inference speed-up in proportion to the number of zero weights
that have been trained into the model. Interestingly, the floating-point trained
models exhibited a greater proportion of weights at or near zero compared to
the QAT models with lower precision quantisation. This observation suggests
a potential avenue for future work, namely investigating how sparsity might
affect inference acceleration in the two approaches.

The dataset generation method developed in this thesis offers another
promising area for refinement. By combining synthetically generated signals
with the physical distortions introduced by the RFSoC hardware, it provided
a practical way to train models for real-world deployment. However, the
approach is time consuming, requiring physical transmission and reception for
each new dataset. A possible future direction would be to model the hardware
impairments, such as RF-ADC tile stitching or RF front-end non-linearities,
within the simulation environment. This could remove the need for live RFSoC
transmission entirely, speeding up dataset generation while preserving the
hardware-specific characteristics required for model robustness.

In Chapter 6, the accuracy of reduced precision models was explored in
depth. Using PTQ, 16-bit weights performed equivalently to floating-point,
while with QAT, models using just 4-bit weights matched full-precision accuracy.
That said, this analysis did not investigate the absolute accuracy ceiling of
the floating-point model. A useful follow-up would be to assess how closely
quantised models can approach that upper limit, and whether precision can be
reduced even further without meaningful performance loss.

Another avenue for optimisation is the use of LUT-based MAC units for
low-precision weights (4-bit and 2-bit), which removes the need to rely on

DSP slices. This can lead to more efficient resource usage and potentially
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higher clock frequencies. Techniques demonstrated in works such as Andronic
et al. [135] and Umuroglu et al. [136] could be integrated into the architecture
proposed in this thesis.

Finally, while this work focused on modulation classification as a candidate
application, the proposed streaming architecture is not limited to AMC. Other
PHY tasks, such as signal detection, demodulation, or spectrum sensing, could
also benefit from this accelerator, with required modifications depending on the
task, the size of the CNN, and whether the problem is framed as classification
or regression. This offers promising directions for future exploration and

validation.

7.4 Final Remarks

The demand for spectrum access and efficient wireless communication is greater
than ever. In an age of rapid Al advancement, the convergence of wireless
systems and machine learning is not only inevitable but necessary. Intelligent
radios will need to adapt dynamically to their environment, operate flexibly in
congested spectrum, and enable more efficient data transmission.

To realise this aim, AI models must operate on the edge, where decisions
can be made quickly, locally, and without dependence on remote servers.
Bringing capable models to the edge also promotes power efficiency, private,
and decentralised Al systems aligning with the global trend toward smarter
and more autonomous computing platforms.

This thesis presented an applications-specific CNN accelerator architecture
for wireless communications scenarios. While the architecture represents an
early stage prototype, it highlights key principles that can influence the de-
velopment of future accelerators for SDRs. These include how to maintain a
continuous stream of samples in real time, how to train models that gener-
alise well to live RF data, and how precision-aware design and quantisation

techniques can reduce resource usage without compromising performance.
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Appendix A

Qm.n Format

Throughout the work presented in this thesis, fixed-point numbers are described
using the Qm.n format. This format allows for the short-hand description of
signed fixed-point numbers that include a portion of the wordlength allocated to
integer m and fractional bits n. An overview of how this format is interpreted
is presented in this Appendix. Throughout the work presented in this thesis,
fixed-point numbers are described using the Qm.n format. This format allows
for the short-hand description of signed fixed-point numbers that include a
portion of the wordlength allocated to integer m and fractional bits n [131].
An overview of how this format is interpreted is presented in this Appendix.

Figure A.1 illustrates three examples of how an 8-bit signed fixed-point
number can be represented in different ways by allocating integer and fractional
bits differently.

Signed 8-bit number
8 integer bits
0 fractional bits implied binary point

Representable . - ‘
range: |727I 26 I 2° I 24I 23 I 22I 21I QUI-
127 to -128 .
v
Q8.0

Signed 8-bit number

4 integer bits

4 fractional bits iwplied binary point
Representable . L 4 - 4
range: |723I 22I 21I 20 2*1I2*2I2*5I2*4I

15.9375 to -16
— — — —= y
Q4. -~
Signed 8-bit number
-2 integer bits
10 fractional bits
Representable I- il Bl
range: 1 |,273I 2—4I2—5I2—6I2—7I 278I 279I2,1[1
0.124023 to -0.125 f J

T~
Q-2.10

implie

Figure A.1 Examples of Qm.n format used for representing different configura-
tions for a 8-bit fixed-point number.
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In the first example, an 8-bit number is interpreted as a whole integer, with
all bits allocated to the integer part. This allows for a representable range of
-128 to 127.

In the second example, the 8 bits are split into 4 integer bits and 4 fractional
bits. This enables the representation of values less than 1, at the cost of reduced
range. By placing the binary point in the middle, the representable range
becomes -16 to 15.9375.

This idea can be extended further by shifting the binary point entirely
to the left. In the third example, all 8 bits are used for the fractional part,
meaning the number can represent fine-grained values below 1, but no integer
values. To clearly define the format, a negative value is used to indicate how far

the binary point has shifted out of the fractional range. The sum of the integer

and fractional bit counts still totals 8 bits, preserving the overall wordlength.

The resulting representable range becomes -0.125 to 0.124023.
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Appendix B
Dataset Generation Software

This appendix details the MATLAB software files and PYNQ Python drivers
for creating the DeepRFSoC dataset.

B.1 MATLAB Generation Code

The following code listings contain the MATLAB code used to create the Deep-
RFSoC dataset prior to transmission through the RFSoC loopback connection.
Listing B.1 defines the number of frames to be generated and transmission

parameters, including the channel models, frequency shifts, and timing offsets.

Listing B.1 Pulse-shaping filter and Rician channel configuration in MATLAB.

% Parameters for modulation and frames

numFramesPerModType = 1000; % Number of frames per modulation type and SNR value
sps = 8; Samples per symbol

spf = 8192; Samples per frame

symbolsPerFrame = spf / sps; % Symbols per frame

rolloff = 0.5; % Rolloff factor for pulse shaping

filterLength = 10; % Filter length (in symbols)

fs = 128e6; % Sampling frequency

of of

% Generate filter coefficients (Raised Cosine Filter)
filterCoeffs = rcosdesign(rolloff, filterLength, sps);

% Channel configuration

maxOffset = 5; % Maximum timing offset
fc = 300e6; % Carrier frequency
fs = 128e6; % Sampling frequency (repeated for clarity)

% Rician multipath channel model

multipathChannel = comm.RicianChannel(. ..
'SampleRate’, fs, ...
"PathDelays’, [0 1.8 3.4] / fs,
"AveragePathGains’, [0 -2 -10],
"KFactor’, 4, ...
"MaximumDopplerShift’, 4);

Path delays in seconds

Path gains in dB

Rician K-factor

Maximum Doppler shift in Hz

o° of of of

% Frequency offset configuration
frequencyShifter = comm.PhaseFrequencyOffset(...
'SampleRate’, fs); % Frequency offset model



1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

B.1 MATLAB Generation Code

222

Listing B.2 describes the process for generating the synthetic data signals
for each modulation scheme, including: QPSK, BPSK, QAM16, QAMG64, 8PSK,
PAM4, GFSK, and CPFSK. Each modulation scheme is affected by a Rician
channel model, clock offset, frequency shift, timing drift, and AWGN. The
signals are generated into complex waveforms, with I and Q separated and

concatenated together.

Listing B.2 Modualtion scheme frame generation method in MATLAB.
%% QPSK

QPSK = zeros(numFramesPerModType,2,spf/2);
for i=0:size(QPSK,1)-1

d = randi([0 3], spf/sps, 1);
%d=[0; 0; 0; 0; d; 1];

syms = pskmod(d,4,pi/L);

% Pulse shape
tx = filter(filterCoeffs, 1, upsample(syms,sps));

% Channel
reset(multipathChannel);
outMultipathChan = multipathChannel(tx);

% Clock Offset factor
clockOffset = (rand()* 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1le6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)=*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift

t = (0:length(tx)-1)’" / fs;

newFs = fs * C;

tp = (0:length(tx)-1)’ / newFs;

outTimeDrift = interpl(t, outFreqShifter, tp);

% numFramePerModTypeAdd noise
rx = awgn(outTimeDrift, SNR,0);

% Get frames
framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

Real-frames

= permute(real(framesComplex), [3 1 4 2]
= permute(imag(framesComplex), [3 1 4 2]
ramesReal = cat(1l, I, Q);

DF
DE

O H o°

QPSK(i+1,:,:) = framesReal;

K = [real(out), imagCout)];
S

BPSK = zeros(numFramesPerModType,2,spf/2);
for i=0:size(BPSK,1)-1

d = randi([0 1], spf/sps, 1);
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58 syms = pskmod(d,2);

59

60 % Pulse shape

61 tx = filter(filterCoeffs, 1, upsample(syms,sps));
62

63 % Channel

64 reset(multipathChannel);

65 outMultipathChan = multipathChannel(tx);

66

67 % Clock Offset factor

68 clockOffset = (rand()* 2*maxOffset) - maxOffset;
69 C = 1 + clockOffset / 1e6;

70

71 % Add frequency offset

72 frequencyShifter.FrequencyOffset = -(C-1)=*fc;

73 outFreqShifter = frequencyShifter(outMultipathChan);
74

75 % Add sampling time drift

76 t = (0:length(tx)-1)’" / fs;

7 newFs = fs * C;

78 tp = (0:length(tx)-1)’ / newFs;

79 outTimeDrift = interpl(t, outFreqShifter, tp);
80

81 % numFramePerModTypeAdd noise

82 rx = awgn(outTimeDrift,SNR,0);

83

84 % Get frames

85 framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);
86

87 % Real—frames

88 I = permute(real(framesComplex), [3 1 4 2]);

89 Q = permute(imag(framesComplex), [3 1 4 2]);

90 framesReal = cat(l, I, Q);

91

92 BPSK(i+1,:,:) = framesReal;

93

94 end

95 %% QAM16

96

97 d = randi([0 15], spf/sps, 1);

98

99 syms = gammod(d, 16, ’'UnitAveragePower’ true);

100

101 out = filter(filterCoeffs, 1, upsample(syms,sps));
102

103 QAM16 = zeros(numFramesPerModType,2,spf/2);

104

105 for i=0:size(QAM16,1)-1

106

107 d = randi([0 15], spf/sps, 1);

108

109 syms = qammod(d,16,’UnitAveragePower’  true);

110

111 tx = filter(filterCoeffs, 1, upsample(syms,sps));
112

113 % Channel

114 reset(multipathChannel);

115 outMultipathChan = multipathChannel(tx);

116

117 % Clock Offset factor

118 clockOffset = (rand()* 2*maxOffset) - maxOffset;
119 C = 1 + clockOffset / 1le6;

120

121 % Add frequency offset

122 frequencyShifter.FrequencyOffset = -(C-1)=*fc;
123 outFreqShifter = frequencyShifter(outMultipathChan);
124

125 % Add sampling time drift

126 t = (0:length(tx)-1)’" / fs;

127 newFs = fs * C;
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tp = (0:length(tx)-1)’ / newFs;

outTimeDrift = interpl(t, outFreqShifter, tp);

% numFramePerModTypeAdd noise
rx = awgn(outTimeDrift,SNR,0);

% Get frames

framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

% Real-frames
I = permute(real(framesComplex),

[3142]);
Q = permute(imag(framesComplex), [3 1 4 2]1);

framesReal = cat(l, I, Q);
QAM16(i+1,:,:) = framesReal;

end
%% QAM6U

QAM64 = zeros(numFramesPerModType,2,spf/2);
for i=0:size(QAM64,1)-1

d

randi([0 63], spf/sps, 1);

syms = qammod(d, 64, ’'UnitAveragePower’, true);

tx = filter(filterCoeffs, 1, upsample(syms,sps));

% Channel
reset(multipathChannel);
outMultipathChan = multipathChannel(tx);

% Clock Offset factor

lockOffset = (rand()* 2*maxOffset) - maxOffset;

c
C = 1 + clockOffset / 1le6;

% Add frequency offset

frequencyShifter.FrequencyOffset = -(C-1)=*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift

t = (0:length(tx)-1)’ / fs;
newFs = fs * C;

tp = (0:length(tx)-1)’ / newFs;

outTimeDrift = interpl(t, outFreqShifter, tp);

% numFramePerModTypeAdd noise
rx = awgn(outTimeDrift,SNR,0);

% Get frames

framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

% Real—-frames

= permute(real(framesComplex), [3 1 4 2
Q = permute(imag(framesComplex), [3 1 4 2
framesReal = cat(l, I, Q);

-

QAM6U(i+1l,:,:) = framesReal;

end
%% 8PSK

PSK8 = zeros(numFramesPerModType,2,spf/2);
for i=0:size(PSK8,1)-1
d = randi([0 7], spf/sps, 1);

syms = pskmod(d, 8);
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198

199 tx = filter(filterCoeffs, 1, upsample(syms,sps));
200

201 % Channel

202 reset(multipathChannel);

203 outMultipathChan = multipathChannel(tx);

204

205 % Clock Offset factor

206 clockOffset = (rand()* 2*maxOffset) - maxOffset;
207 C = 1 + clockOffset / 1e6;

208

209 % Add frequency offset

210 frequencyShifter.FrequencyOffset = -(C-1)=*fc;
211 outFreqShifter = frequencyShifter(outMultipathChan);
212

213 % Add sampling time drift

214 t = (0:length(tx)-1)’" / fs;

215 newFs = fs * C;

216 tp = (0:length(tx)-1)’ / newFs;

217 outTimeDrift = interpl(t, outFreqShifter, tp);
218

219 % numFramePerModTypeAdd noise

220 rx = awgn(outTimeDrift,SNR,0);

221

222 % Get frames

223 framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);
224

225 % Real—frames

226 I = permute(real(framesComplex), [3 1 4 2]);

227 Q = permute(imag(framesComplex), [3 1 4 2]);

228 framesReal = cat(l, I, Q);

229

230 PSK8(i+1,:,:) = framesReal;

231

232 end

233 %% PAM4

234

235 PAMU = zeros(numFramesPerModType,2,spf/2);

236

237 for i=@:size(PAM4,6 1)-1

238

239 amp = 1 / sqrt(mean(abs(pammod(0:3, 4))."2));
240

241 d = randi([0 3], spf/sps, 1);

242

243 syms = pammod(d,d4);

244

245 tx = complex(filter(filterCoeffs, 1, upsample(syms,sps)));
246

247 % Channel

248 reset(multipathChannel);

249 outMultipathChan = multipathChannel(tx);

250

251 % Clock Offset factor

252 clockOffset = (rand()* 2*maxOffset) - maxOffset;
253 C = 1 + clockOffset / 1e6;

254

255 % Add frequency offset

256 frequencyShifter.FrequencyOffset = -(C-1)=*fc;
257 outFreqShifter = frequencyShifter(outMultipathChan);
258

259 % Add sampling time drift

260 t = (0:length(tx)-1)’" / fs;

261 newFs = fs * C;

262 tp = (0:length(tx)-1)’ / newFs;

263 outTimeDrift = interpl(t, outFreqShifter, tp);
264

265 % numFramePerModTypeAdd noise

266 rx = awgn(outTimeDrift,SNR,0);

267
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Get frames

%
framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

% Real—-frames

[

= permute(real(framesComplex),

Q = permute(imag(framesComplex),
framesReal = cat(l, I, Q);

PAMU4(i+1,:,:) = framesReal;

end
%% GFSK

GFSK = zeros(numFramesPerModType,2,spf/2);

for i=0

d
M
mod

tx

:size(GFSK,1)-1

randi([0 11, spf/sps, 1);

2

1
comm.CPMModulator(. ..

"ModulationOrder’, M, .
"FrequencyPulse’, ’Gaussian’,
'BandwidthTimeProduct’, 0.5,
"ModulationIndex’, 1, ...
’SamplesPerSymbol’, sps);
meanM

= mean(0:M-1);

mod (2*(d-meanM));

% Channel
reset(multipathChannel);

outMultipathChan = multipathChannel(tx);

% Clock Offset factor

lockOffset = (rand()* 2*maxOffset) - maxOffset;

c
C = 1 + clockOffset / 1le6;

% Add frequency offset
frequencyShifter.FrequencyOffset

outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift

t = (0:length(tx)-1)’ / fs;
newFs
tp = (0:length(tx)-1)’ / newFs;

outTimeDrift = interpl(t, outFreqShifter, tp);

= fs * C;

% numFramePerModTypeAdd noise

rX

awgn(outTimeDrift, SNR,0);

% Get frames

framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

% Real—-frames

-

= permute(real(framesComplex),

Q = permute(imag(framesComplex),
framesReal = cat(l, I, Q);

GFSK(i+1,:,:) = framesReal;

end

%% CPFSK

CPFSK =
for i=0
d

M
mod

zeros(numFramesPerModType,2,spf/2);

:size(CPFSK,1)-1

randi([0 1], spf/sps, 1);

2

1
comm.CPFSKModulator(. ..

[3142]);
[31u42]);
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"ModulationOrder’, M, ...

"ModulationIndex’, 0.5, ...

’SamplesPerSymbol’, sps);
meanM = mean(0:M-1);

tx = mod(2*(d-meanM));

% Channel
reset(multipathChannel);
outMultipathChan = multipathChannel(tx);

% Clock Offset factor
clockOffset = (rand()* 2*maxOffset) - maxOffset;
C = 1 + clockOffset / 1le6;

% Add frequency offset
frequencyShifter.FrequencyOffset = -(C-1)=*fc;
outFreqShifter = frequencyShifter(outMultipathChan);

% Add sampling time drift

t = (0:length(tx)-1)’" / fs;

newFs = fs * C;

tp = (0:length(tx)-1)’ / newFs;

outTimeDrift = interpl(t, outFreqShifter, tp);

% numFramePerModTypeAdd noise
rx = awgn(outTimeDrift,SNR,0);

% Get frames
framesComplex = frameGenerator(rx,spf/2,spf/2,50,sps);

% Real-frames

I = permute(real(framesComplex), [3 1 4 2]);
Q = permute(imag(framesComplex), [3 1 4 2]);
framesReal = cat(l, I, Q);

CPFSK(i+1,:,:) = framesReal;

end

Listing B.3 shows the MATLAB code that repeats the modulation scheme
generation process for each SNR value, ranging from: -20 dB to 30 dB.

Listing B.3 Generate modulated frames for each SNR value.

% Define the range of SNR values
SNRs = [-20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, 28, 30];

% Loop through each SNR value
for i = 1:length(SNRs)
% Set the current SNR value
SNR = SNRs(i);
% Call the function/script to generate modulation schemes for the current SNR

generateModulationSchemesSNR;
end

B.2 PYNQ Overlay Class and Functions

The following Python code is related to the second portion of the DeepRFSoC
generation process where the generated signals from MATLAB are transmitted

on the RFSoC through a loopback connection. The following code listings
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detail the PYNQ drivers and functions used to control a design on the PL.
The design cyclically transmited a signal out of the RF-DAC and received the
signal on the RF-ADC, before it was created into the DeepRFSoC dataset.

The process starts from an FPGA bitstream, generated from the Vivado
software in Section 5.4.2.

The bitstream was downloaded to the PL through the pynq.overlay.Overlay()
class from the PYNQ framework. Once downloaded, the IP cores on the de-
vice were then configured for the dataset recording task. A custom overlay
class, dataset_building.overlay.Overlay(), was created that inherits from
the PYNQ pyng.overlay.Overlay() class. The custom overlay class is im-
ported as shown in Listing B.4.

Listing B.4 Custom overlay initialisation

# Import the Overlay class from the dataset_building.overlay module
from dataset_building.overlay import Overlay

# Create an instance of the Overlay class with the specified bitstream file
ol = Overlay(’bitstream/dataset_building.bit’)

T W N~

In this custom overlay class, the IP cores, located in the PL, are automat-
ically configured such as the RFDC, AXI DMA, and packet generator. In
Listing B.5 the RFDC is configured using the PYNQ framework in Python.

Listing B.5 RFDC configuration in PYNQ.

# Initialise the RFDC with default configurations
# Get the rf components

self.rf = self.usp_rf_data_converter_0
self.adc_tile = self.rf.adc_tiles[0]
self.adc_block = self.adc_tile.blocks[0]
self.dac_tile = self.rf.dac_tiles[0]
self.dac_block = self.dac_tile.blocks[0]

0O Utk WN
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# Set reference clocks for RF components

10 xrfclk.set_ref_clks()

11

12 # Set sane DAC defaults

13 # Configure DAC PLL with reference clock and output frequency
14 self.dac_tile.DynamicPLLConfig(1l, 409.6, 1024.0)

15 # Set Nyquist zone for DAC block

16 self.dac_block.NyquistZone = 1

17 # Configure DAC mixer settings

18 self.dac_block.MixerSettings = {

19 "CoarseMixFreq’: xrfdc.COARSE_MIX_BYPASS,
20 "EventSource’: xrfdc.EVNT_SRC_IMMEDIATE,
21 "FineMixerScale’: xrfdc.MIXER_SCALE_OP7,

22 "Freq’: 700,

23 "MixerMode’ : xrfdc.MIXER_MODE_C2R,

24 "MixerType’: xrfdc.MIXER_TYPE_FINE,

25 "PhaseOffset’: 0.0

26 }

27 # Update DAC mixer event

28 self.dac_block.UpdateEvent(xrfdc.EVENT_MIXER)
29 # Enable FIFO for DAC tile

30 self.dac_tile.SetupFIFO(True)

31

32 # Set sane ADC defaults
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# Configure ADC PLL with reference clock and output frequency
self.adc_tile.DynamicPLLConfig(1l, 469.6, 1024.0)

# Set Nyquist zone for ADC block

self.adc_block.NyquistZone = 1

# Configure ADC mixer settings

self.adc_block.MixerSettings = {

"CoarseMixFreq’: xrfdc.COARSE_MIX_BYPASS,
"EventSource’: xrfdc.EVNT_SRC_TILE,
"FineMixerScale’: xrfdc.MIXER_SCALE_1PO,
"Freq’: =700,
"MixerMode’ : xrfdc.MIXER_MODE_R2C,
"MixerType’: xrfdc.MIXER_TYPE_FINE,
"PhaseOffset’: 0.0

}

# Update ADC mixer event

self.adc_block.UpdateEvent(xrfdc.EVENT_MIXER)
# Enable FIFO for ADC tile
self.adc_tile.SetupFIFO(True)

The settings configured in Listing B.5 match the configurations described
in Tables 5.1 and 5.2. The custom overlay class provides three new functions
to the user: send(), receive(), and stop(). The send() function accepts a
data_buffer as an input and coordinates the communications with the tx_dma,
in the PL, and configures the DMA to transmit the data cyclically. Listing B.6

shows the send() function.

Listing B.6 The send() function.

def send(self, data_buffer):
""" Send data from PS memory to the DUC chain
by setting the dma to operate cyclically.
[dma -> fir_interp_4 —> fir_interp_8 —> rf_dac]
The sent data is transmitted continuously.

# Store the length of the data buffer
self._data_length = len(data_buffer)

# Allocate memory for the input buffer with the same length as data_buffer
input_buffer = allocate(shape=(self._data_length,), dtype=np.intl6)

# Copy data from data_buffer to input_buffer
input_buffer[:] = data_buffer

# Stop sending the previous data
self.tx_dma.sendchannel.stop()
# Start cyclically sending the new data

self.tx_dma.sendchannel.transfer(input_buffer, cyclic=True)

The receive() function coordinates the communications between the packet
generator and the receiver DMA. The function configures the packet generator
to record 1/Q packets that are 128 samples long and transfer the packets to
the receiver DMA through the AXI4-Stream protocol. The function configures
the DMA to receive the packet when then packet has been triggered and to
store the received packet in a buffer called pkt_buffer. Listing B.7 shows the

receive() function in the overlay class.

Listing B.7 The receive() function.

def receive(self):
# Set the packet generator to generate 128 packets
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self.pkt_gen.write(0x104, 128)

# Allocate memory for the packet buffer to store 128 packets
pkt_buffer = allocate(shape=(128,), dtype=np.uint32)

# Start the DMA transfer to receive packets into the buffer
self.dma_pkt.recvchannel.transfer(pkt_buffer)

# Start the packet generator
self.pkt_gen.write(0x100, 1)

# Wait for the DMA transfer to complete
self.dma_pkt.recvchannel.wait()

# Stop the packet generator
self.pkt_gen.write(0x100, 0)

# Return the received packet buffer
return pkt_buffer

The stop() function has been created to stop the tx_dma operating in

cyclic mode. The stop() function is shown in Listing B.8.

Listing B.8 The stop() function.

def stop(self):
# Stop the dma operating in ’cyclic’ mode.
self.tx_dma.sendchannel.stop()

Abstracting the register-level functionality within the custom overlay class
streamlines the implementation of the dataset creation system by encapsulating
the low-level register operations, making the code cleaner, easier to read, and
more maintainable. The functions described are used to create the data set

from a Jupyter notebook with snippet of code shown in Listing B.9.

Listing B.9 The data set creation code in PYNQ

# Set phase offset array

phase_offset = range(-179, 179, 10)

mods = ['QPSK’, ’BPSK’, 'QAM16’, 'QAM64’, ’'PSK8’, ’PAMU’, 'GFSK’, 'CPFSK’]

snrs = [I_20l' I_16I, I_12l' I_8I, ,_LI',' IOI, ,LI',, l8l' I12I, I16I‘ I20I, I2LI,I, I
287, '30']

for mod in mods:
print(f’Starting {mod}...’)
# Load the dataset for the current modulation scheme
with open(f’./transmit_set/transmit_{mod.lower()}_SNR.pkl’, 'rb’) as f:
dataset = pickle.load(f)
data_dict = {}
for snr in snrs:
data_mod = dataset[mod, snr]
# Initialize an empty array to store complex modulation data
complex_mod = np.array([]1)
i_po = 0 # phase offset index
for i in range(data_mod.shape[2]):
data = data_mod[:, :, il
# Multiply to fit number in intl6 wordlength
y = np.intl6(data * np.intl6(pow(2, 14)))
# Prepare sending variable
z = np.zeros(2 * 4096, dtype=np.intl6)
# Interleave samples
z[0::2] = y[0O, :]
z[1::2] = y[1, :1]
# Set phase offset
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po = phase_offset[i_po % len(phase_offset)]
ol.phase_offset_tx = po

i_po +=1

# Transmit data through DAC

ol.send(z)

# Receive multiple times
for j in range(16):
# Receive data through ADC
re_data, im_data = ol.receive_data()
# Data received as sl6_14
complex_data = np.vstack([re_data, im_datal)
complex_split = complex_data
# Stack onto accumulative variable to store in dict
if complex_mod.size ==
complex_mod = complex_split
else:
complex_mod = np.dstack([complex_mod, complex_split])
# Stop sending data
ol.stop()
print(’.’, end=’")
# After looping through all frames, save to dict
data_dict[mod, snr] = complex_mod

# Write data to file

with open(f’./received_set/loopback_train_{mod}.pkl’, ’'wb’) as fpkl:
pickle.dump(data_dict, fpkl, protocol=pickle.HIGHEST_PROTOCOL)

print(’ ’)

print(f’{mod} file written!’)

The workflow in Listing B.9 iterates over a set of predefined modulation
schemes, mods, including QPSK, BPSK, QAM16, QAM64, 8PSK, PAM4, GFSK,
and CPFSK, and multiple SNR levels ranging from -20 dB to 30 dB.

The resulting looback_train_{mod}.pkl files are combined to create the
DeepRFSoC dataset.



Appendix C

Demonstrator

An interactive demonstrator was created as a part of this work. The demonstra-

tor provides an interactive ipywidgets app to test the modulation classification

performance of three quantised models concurrently. The demo is available for

download at: https://github.com/axdy/rfsoc_quant amc. Figure C.1 shows

a screenshot of the ipywidgets demo in Jupyter Notebooks.

8 +X00»>m Cod = = & Python 3 (pykemel) C
o s
_ Transmitted Signal Received Signal
» Mods: | QPsK v q i real real
— , Ml it — I
Upaate [yt [ i
@ g I'
g I g A
2 o 2 1
= 3 {1 “"u [\ |
5 | 5 Wn/N W |
R ({8 | i ° Wl | \ |/
) TR e W\
Phase Ofiset 690 JIEH H I\ ey | \V Wik
1 | |
S IEEE N VO
2
o 1000 2000 3000 4000 ) 100
time (samples) time (samples)
Prediction Confusion Matrix 16w16a Prediction Confusion Matrix 8w16a Prediction Confusion Matrix 4w16a
7 ! 7 ! 7
° 08 © 08 "
g 5 5
3
=, 06 06 06
z ¢
s 3 04 04 4
2
s 02 X 02
| 0 L 0
0 2 4 6 0 2 6 0 4 6
true label true label true label
Classification Confidence 16w16a Classification Confidence 8w16a Classification Confidence 4w16a
g 100 F 100 £ 100
3 ¥ ¥
g s g s g w0
3 3 3
T 60 T 60 g
g ] g
o 40 o 40 o
& & &
] 8 ]
S 20 g 20 H
g g g
g o g o g o
= 4, 505, 2 . 2y, s, A % o, 24,
Org, Go5, %4y, b5 Pty 51 Py Ong, o Oy, Qa5 P, o Ons, G, Oty Qa4 25 P2, 5. Oy
modulation schemes modulation schemes modulation schemes
simple OM2® NoKemellide Mode: Command_ @ Ln1,Col1_demo.pynd

Figure C.1 Modulation classification demonstrator in Jupyter.
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