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Abstract 

We consider a nematic liquid crystal device in which a bistable surface anchoring term pro- 
duces two stable states, a Vertical State (i. e. all molecules are homeotropically aligned) and 

a Hybrid Aligned Nematic (h AN) State (i. e. the molecules are homeotropically aligned on 

one boundary and homogeneously aligned on the other). Our one-dimensional model de- 

termines the director profile throughout a nematic cell by minimizing its free energy. The 

free energy in this model contains dielectric, elastic, flexoelectric and anchoring terms. This 

constitutes what we denote the 'no-flow' model. An expanded, so-called `flow model', also 
includes a flow equation that we couple with our system of director equations. 

We then introduce three time integration methods for our numerical simulations, namely 

an explicit method, a semi-implicit method and a fully-implicit method, each of which em- 
ploys an adaptive time-stepping algorithm to control the size of each time-step. Numerical 

simulations also employ a moving mesh algorithm to control the positioning and quantity of 

node points used at each time-step. We then compare each simulation method to determine 

which provides the optimal balance of speed and accuracy. 

We investigate switching for voltage pulses of different magnitude and duration in order 
to graph standard rV-plots. Each switching region is determined by the interaction between 

the bistable surface and bulk equations once the applied voltage is removed, which is a rel- 

atively complex process. We develop and present a powerful algorithm for automatically 

generating rV-plots corresponding to any given parameter set. Using this algorithm, we 

then investigate the effect of each parameter on the switching characteristics of our cell, 

using both the standard model and the expanded `flow' model. 

The effects of flow are investigated by comparing the results of each model via numeri- 

cal simulation. We show that flow-induced kickback in the director can significantly affect 
the results obtained using a no-flow model. 
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lilt rO(IIi("t ion 

1 Introduction 

1.1 What, are liquid crystals? 

\1iºtti'r IS ;( 1I(r<ºIIY cuuSiclº'r('(l to ('xi`t ill 0)110' of tlirºccc Sl, º1O'S. u; ººu('IV as ;I S()11(1. a liquid ()I. 

ºº gas. Ill the case of ac ry 'týilliuýý solid t he < (ýºººlºrisiºig ºnulýýc ºº1ýýý ýirýý tirºuly lrºý ko'o1 together, 

nriintailling it high clt'grec oof 1msitionººl and rorio'ntatiºmml Orºlý'I relativ' to <m(' allot liº'r, as in 

Figure 1.1(a). Increasing the tc'tulxcrºtnrc by it sººtliºiº'ut a. itiount calisº's the auºººiºgst 

the molecules to decrease. 1ºrmlrnc"iººg all isutrºoIºi( liquid state as shown iiº Figure 1.1(c"). By 

isotr0 1)iº". W O' iºivaiº that the 1>1ºvsiº., º1 1ºrýýlººýrtics ºof'tlºº'sººl)stººiº<e are ºnºiforºrn ill '111 direct, 1011S. 
'I'Iºee gas State is oh ainº'd bY iuºrcaºsiººh the ternºperatººrc fu rtlºc'r sºº that tlºe niulcº"ºtlº's are 

wo'1l-separated. as iºº Figure 1.1(ol). Aº lassie ºexainl>le of this is water, which is <i s(Aid below 

0°C. a liquid between 0°C <uº<1 100°C. and a gas above 100°C. 

(a) solid (b) liquid crystal (c) isotropic liquid (d) gas 

111111111 4m A. M1 1 111111111 
temperature 

Figure 1.1: The tour states of matter: (a) solid. (h) nenlati( liquid ý rvst, il. (() isotropic liquid . 111(1 ((1) gas. 
Note that the positional and orientational order of' the molecules decreases as the temperature is increased. 

Some substances, however, exhibit a fourth phase, the lugnid cnnjstnl state, which occurs at a 
temperature between the crystalline solid and isotropic liquid phases. In the liquid crustal 

state, the molecules possess some properties of both the crystalline solid au<i isotro>pic liquid 

states, as illustrated in Figure 1.1(b). Like a solid, the molecules retain some degree of order 

relative to one another, vet they also flow in the sane sense its a liquid lloxxs. The example 

given in Figure 1.1(b) corresponds to the ncfnatic as e, in which orientational order is ph 

preserved but positional order is lost. 
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1.2 nie origins of li(llii(i crystals 

It i" , ('n('r: IIIV l)trd t II, It liquid c"rvst<tIs were first identified itt 1888 l>V Friedrich l uiiI"r, c'r, 

; tn Austrian botanist [ Itl]. Wlteºº heat ing a s, tºtºI>le of c1mleSI 'rVl belizU>at(. ßeiººit zer Observed 

Nvhat he believed to be tvV"() tiefparate liquid states. 'I'lse first m c"ttrrecl at 1,15.51°C ; Ili(] took 

Ilºe forººº of il clam(1v liquid. whilst at 178.5'C tlºe material Irºsf(ºruºecl into at clear liquid. 

The 'c lomclV liylti(i' is what We HOW refer to as the liquid c"rVstal state. ßeiººitzer <cýººtýtc týýcl 

Otto Leliinaiiii, a respe< tecl Gerºuaut 1ºlivsic ist. detailing his findings and requesting fnrtlier 

aiialYsis to be pcýrfcýtºuºýcl un his sample. In IS S9 Lelººuaºººº used the terttº 'llc, wing crystals' 
to describe the material [23]. and hV 1900 he had c<tiººcýtl the terºu 'licltticl c"rvstal'. 

1.3 Different types of liquid crystals 

It is 1m i1)1(' tu i>>(l1ucr the liquid crystal 1)11 is0 in one of two ways: either Mcl-mob-opically 

or lyotropically. 'l heriucýtrOJ)ic liquid crystals are induced Iw changing the temperature of a 

substance. Lvotropic liquid crystals are fornwd 1, changing the couceiitrati(m in a solvent. 
Throughout this thesis, we will only concern ourselves with theruio)tropi( liquids crystals. 

(a) nematic (b) smectic-A (c) smectic-C 

Avo. ido 0-0 
wo ww 

Figure 1.2: Examples of the (a) ueinatic. (h) sinec"tic-A and (c) sinectic-C liquid crystal phases. 

Any liquid crystal may be classified as belonging to one of following categories: nemnatic, 

smcctic, cholestei"ic and discotic. It is convenient to think of the liquid crystal molecules as 

thin and rod-shaped. In the nematic state, the molecules tend to align themselves roughly 

parallel to one another, with a high level of orientational order but without any positional 

order, as in Figure 1.2(a). Unlike nematics. smectic liquid crystal molecules have some de- 

gree of positional order and thus form layers, with a well-(lefine(l inter-layer spacing. The 

simplest type of smectic, s111ectzc-. 4. is shown in Figure 1.2(b). The smcclic-C phase is sini- 
ilar to the smectic-A phase only now the molecules have a constant tilt angle on each layer, 



1 
.: 
f 1)ifI('I ('III t,. N, p c. 's of, liqu id tryst; IIs 

gis in Figure 1.2(c). 

1' iglll'(' 1.3. All exaiiii kc oI a (il01(ctit("ri(" liquid (-rYst, il. 

3 

CliOlr-teric liquid crystals, sometimes referred to as chiral-71('lna. tiC liquid crystals. are siiiiilýir 
to nýýiuýltic liquid (rvstals only the preferred c<miit; imition of the molecules coutaiiis sornie 
kind of twist , or helical, st ru(t irre. The 'pit(li' of a clIOlestcric liquid (ryst al i5 defined u-ts the 

distance for the molecules to rotate one revolution of the helix, a. illustrated in Figure 1.3. 

(a) discotic nematic (b) discotic columnar 

Figure 1.4: An examide )I he (a) ucinatis and (b) coliuiiiiair ddiscotis liquid crestal plinse"'. 

In the discotic liquid crustal phases, we imagine the molecules as being disc-shaped. The 

iiiolecules in the discotic nennatic ph&; e, illustrated in Figure 1.4(a). have no positional or- 
der, but there is some orientational order between the molecules. In the colt na dc cotic. 

phase. the molecules have a high degree of positional order and tend to order themselves ill 

a similar fashion to a neatly stacked pile of poker chips, as in Figure 1.4(b). 

Throughout this thesis, we will only concern ourselves with nernatic liquid crystals. 



l. 1 Liquid (t \'St. º1 t{i('cn"y 

IA Liquid crystal theory 

1.1.1 The director 

'ne º'1ºnºgatcº1 nature ºUf, lictni<1 crystal nºulec uleS ºrneaººti that tlººv c"ººº pi fOl. tº, lic in a ºnu i 

OI(l(I((1 Statc'. tlºº' 71 111(1är St, ºte, with tl1(' 11cdº'c"ºi1 - nmt; lily }rarn llel to mle ; 111( )t The 

ºlirº'r(ur. it. i- t lºe ººuit vector that is ººsrc1 tºº rº'}ºrPSPnt the average ºlirec"t ic, u ººf t lºc ºumlº'c"ººIº'ti, 

res shown in Figure 1.5. 

nj Figure 1.5: The director. n, is a finit vectOmr which represents the average director of the molecules. 

Notice, from Figure 1.5, that due to the s intnetr}' of the molecules n and -n are physically 
from each oot1m er. It should be noted that, in sonne instaii es, it liquid crystal 

tutav possess some forth of l)olarit. \. iti which (-, Ise the tuolec"ttlc's are no longer svºutuet rival 

and we may no longer have n -- -n. 

1.4.2 Elasticity 

III phvsit"al terms, it tºtat('ridtl is said to be elastic if it deforms raider stress and then returns 
to its original shape wltett the stress is removed. A standard rubber band is an everyday 

example of a material with elastic properties. As it happens, liquid crystals also exhibit 

elastic properties. This is in example of a common property between liquid crystals and 

solids. 

Imagine we have a liquid crystal sanclvvichccl 1)etweeu two plates. Applying Some force to 

the bounding plates will induce an elastic distortion in the enclosed liquid crustal. 13y 

compressing the plates together, the liquid crystal molecules may either , splay. as in Figure 

1.6(a). or bend as shown in Figure 1.6((). By twisting just one of the hounding plates, we may 



I Liquid crystal theory ýj 

(a) splay (b) twist (c) bend 

ýIý II1'"'1iI 11111111 1 

1''igI1r( 1.6: `i'lie rlasti(" (listý, rI iuns rt kiting tu (a) K, (Slolav). (I>) k2 (twi, l ). (c) K 

proulnce it flI'ist distortion ats shown in Uighir(' 1.6(h). These Sltlav, twist and bend distortions 

are directly related toi Ilia Frank clastic" c"()>istaitt,, ' Ki, K2 <a11(1 li3, [14]. "flue 

saddle-splaz/, (K. 2 + makes up the fourth elastic cmistaiit. Nate that the saddle-splay I,,, 
itsn<tlly (nnittV(l since it as it does not (nntril»rte to the bulk behavior when the director is 

ccmfintýcl tct at single plane [2]. 

1.4.3 Dielectricity 

Each molecule in a liquid crystal contains some dititrilnºti<ººº of charges. The dielectric tensor, 

E. determines how easily the distribution of charge may be changed in a group of molecules. 
Specifically. tlºe diýýlrctric 1ºrrmittiv'itics, ºýý amid fl, measure. respeýtiýelýý, ho eýisily clmr es 

ººia. v he redistributed parallel and perpendicular to the director. The dielectric a1iiSotropy, 

-ýº , 
is then ºiºýfiuºýºi lw the expression 

= ii - 

Note that both (11 and Fl are unitless quantities. 

(1.1) 

«'heu a voltage is applied across a liquid crystal material, the electric field will tend to distort 

the distribution of charges within a group of liquid crystal ºuolecules, creating a small dipole 

which tlieºi cause's the director to rotate to align with the electric field. as shown iii Figure 1.7. 

This is an example of the dielcrtric c ffe 1. In relation to the dielectric peruiittivities, notice 
that with A( <U (i. e. ri> III). the preferred orientation of the ºuolecºtles is p(, r')efldi. cular 
to the applied field whilst, with Jc >0 (i. e. ci < (11), the preferrc(l orientation of the 

molecules is parallel to the applied field. Furthermore, by comparing Figure 1.7(a) with 
Figure 1.7(b), notice that the dielectric effect is the same regardless of the polarity of tue 



A Liquid ("i'\'stal I11(ory 

(a) field up 
(i) AF<O 

E/ 

, 

/l 

(ii) Ar>O 
E/ 

(/. 

(b) field down 

(i) AF<ll 

ý 
Ae 

(ii) Ac>O 

E/ t/ 

(i 

Figure 1. i: The (lieleoriu effect when an vIee ric held is applied (a) upwards, (h) downwards. Note from 

plots (a) and (h) that tue same orientation is produced ill eau"li case. 

applied field. 

1.4.4 Flexoelectricity 

The fl : roclrctri( c'ff(rt 132,111 is tVj)i("ally ol)servecl when the liquid crystal inoleciiles are 

asymmetric in shale, with each containing it small twrinauIent dipole. Iii the absence cif an 

electric field, the molecules orient theiiiselves iii such a way that the molecular dipoles cancel, 

giving zero overall dipole throughout the cell. ITpo applying an electric field the dipoles 

align themselves relative to the field and. due to the asvmmet rv of the molecules, the liquid 

crystal experiences some form of elastic distortion. 

(a) no field (b) field up (c) field down 
E 

TA! 4 

E 
Figllre 1. ö: The Hexoekctric effect with pear-s}iapc-d uwleuiiles, inRlutiTig a splay distortion. Note from 

plots (1>) and (c) that cüffcrcut field polarities produce dit1 rcut distortions. 

For example, let us consider the Ca; (' in which our liquid crystal molecules are pear-shaped, 
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III Figure 1.8(a). Once an It ric field is ; ºfºI)liccl. I he 11mic("ººI('ti rcuriº1ut t IºcºuS('lV('s 

]truºIºucitºg a splay ºlisturt iuu as "'11mVn ill Figure 1.8(h). Note t luºt this ºlisturt iun m-curs 

Sitºt"e the ºýýufig11I ttiotº ill Fi, tºr(' 1. (S(1)) is the t', tsit'"t way ft)! the 111(dº'(ºº1º's to) fill Space, 

given their slº, ºl)('. We see frtmº Figure I. S(() that ; I]ºl)lVitºg all º'1º'("triº" field in the O1º1ºOsi1 e 
direction also iuºIn<"º'S a S1ºlHV WOrtiºm, ilºis time in tlºe OJ)I>t>Sitº' (lirº'º"tium. This highlights 

,º key aspect of the fl(, xOýeel('(tri( effect. nallielV tlºat, in (ýýtºttast With the dielectric e'ffe'ct, we 

Oi)S('rvC º11.1f'r rº of (Iist0rt iOii- dc po 11 (1ing ()u t l1( 1)()lau-iIN. flf i 1u , ºppIird firh I. 

(a) no field (b) field up (c) field down 
E 

14+-. x. 1%+0, -. - I-º- -cri 
Figure 1.9: The III, lw tri(. eIlrut nitIiII .Iin, -14'( 1111". 111 ,11 1iii ,i bell d (li"t(Irt Oil . 

Not 1' trout 
1)10tS (b) and (e) tIIn I (IlIFerent Ii('I(I po) I, IriIic: S I )t Mice di IGOnoIt distort outs. 

We now consider the case in which our liquid crystal mo lec"ules are banana-shaped, as ill 

Figure 1.9(a). Rmi Figure 10(l)), notice that nlpplving an ('le('tri( hold iii this caS( iuidiices 

a beml (listOrtic)ii. As in the splay case, we see from Figure 1.9((') that tlhe bend distortion 

act", ill the opposite direction NN-hen the field chaiige4 1)t)1<irity. 

1.4.5 The Leslie viscosities 

Due to the fluid nature of liquid crystals, aººv mass movement of ºuºº1ecules (i. e. a flow) 

NN'i11 be associated with an internal friction or viscosity. III an isotropic liquid. there is orº]v 

one ViScotiitV coefficient which i" clefiiiecl iii terms of the slºear rate and the pressure tceºisor. 

However. in a neinatic liquid crystal there are six vise osit, ' coefficients, denoted «;, which 

are known as the Leslie viscosities. These viscosities are typically quite difficult to describe 

in f)hYsiC? il terms. The Leslie viscosities can be represented in terms of the ºuo>re easily un- 
derstood 

. 
1liesowicz viscosities. 

Figure 1.10 gives a graphical illnstr'atirnl of the \IieSOvVicz ViScOSiticS. The first three, 111,1/2 

and i/; 3 relate to the shear flow NvIlen n is parallel to u. parallel to Vu and orthogonal to l)ot, h 

u and Vu, respectively. The fourth ViscOsitv, 7i, relates to the rotational viscosity of the 

director. A fifth viscosity, 7712 enters the effective viscosity when the director is not aligned 
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(a) (b) (c) (d) 

zu7uzuz 

vig xx 4_ x/x 

I lý iir I. 1(l: I'lI(' Mi('SO vi('Z vise , Sit i('S, (a) SINAI' visc"O sit iii , (I>) shear visc osit, V 1/2, viýCOsit 113 
and ((1) rotational viscosity ',. In vach ('11c shear is in the : rz-l)lamw w"il li I lie velocil vu inilii": itc1 Iw 
t he arrows. 

wilI1 aln. axis. 

As }previously stated. the NliPsc)«"i("z viscosities rill be rel)resPllte(l iiI tPrnis of the Leslie 

Visc Ositic s, 1)V 

(i + 2d 3+ n1 /2" (1.2) 

'12 = (-«2 + (t. a + (15)/2, (1.3) 

113 = 6.112, (1.4) 

7l = R3 - (12, (1.5) 

1712 =01. (1.6) 

For completeness. we also list, the inverse relation which allows us to clia>> ;e from the Leslie 

viscosities to the \Iiesowvicz viscosities. 

al _ 1i12 (1.7) 

(v2 = ('/1 - 1/2 (1.8) 

ns = ('11 - 72 +'' )/2, (1.9) 

w1 211: x. (1.10) 

"5 = (ill +3T/2-4113-? i)/2, (1.11) 

(i6 = (371, +112-413-wl)/2. (1.12) 
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1.1.6 Snrfae anchoring 

If ,1 liquid <"rvstaºI is Saºuclwi(Iºc'cf 1ºc'twc'c'ºº tvVVU, siu-Gºc"c's tlºeu Ilºe uºcºI('c iºI('s c"on Ix cxfºc'c tcecl 

to interact wit 1) each surface, caºtsiººg Ilºe direct ( )r tu uric1ut iºº 50)111)' Iºrc'fc'rrecl. ()r `('a5V'. 

direction. Depending c, u how c', uclº "Ill-face is fprc'iºarcecl, t\ l>ic ally by Smile f0 rill ()f , llit; uºnc'nt 
1a1v'er ()º- rubbing, it is ImsSil)lc' tc) (. ()Ill I-()1 till-, preferred direction. 

(a) homogeneous alignment (b) homeotropic alignment 

-lisp low -saw 4ý ý01 

ý10 -glow 440P -dew 

_ 

1' 111111 

_11111, 

'' 1 

111111111 

F )"'111-c 1.11: 1 wwo dith t('iit tVI)r. of inoIrrcnlar sinrfncc aaIignuu"iit. (a) houiop'ia oiiti ; ilip'llment, , 111(1 (h) 
homeot ro is aligninfnt. 

Two ccnºitiicººº types of anchoring an, Shown iºº Figure 1.11. AVit h hoin, oj ncoUS (tiºººuct iºººCS 

referred to as planar) alignment, the molecules prefer toi align themselves parallel to the sur- 
face at each boundary. With honncotropi. c alignment, the iuolecules prefer to align themselves 

hcrPcudicular to the surface at each boundary. There is (º third type of anchoring, called 

conical anchoring (see Figure 1.12), in which the director prefers to make a fixed angle n, 

with the surface 1ºcnºººdarv. 

", 
Z (X 

Figure 1.12: Conical anchoring of the director. n. at a surface boundary. The 'couc of easy clircctious' 
makes an angle o with the surface boundary. 

For each different type of anchoring, it is also important to note t he st rength with which the 

director is anchored to the surface. W'i'e refer to this i the anchorinq strength.. There are 

two different types of anchoring strength: weak anchoring and strong (or infinite) anch. ornniq. 
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III tlue caste of wcak autc'lºuriug the (Iirec"tor at the "tuf; tce loc, ºtuolarv is, casiI\. iººII 1Vlºce(I IY 

tlºc bulk of the cell, whilst with strung anchoring the director rvutatius fixvtl ill its Incýfcýtrºýtl 
direction regardless of the bulk 

1.5 Liquid crystal technology 

Light is <ºffc'c1c'c1 ýº, it fº, isscs tlºruºtt; lº ;º liquid c'ry'sinl in cliffc'rc'ººt w%I. vs, depending oil 111c 

orient ltiom cif' the liquid c"ry"StA Illolec'iºlc'S. With the iicl of c"Prt? ºiu optic il filters, this rffec't 

can he nSPcl tcº ac'tiVP1V c'1ºauige the atººcnºººt of light passing tlºrcnºglº the material. As we have 

alrea(IV seen. at>l)lViººt; a voltage to <c liquid c"rvstA can altar the 111ulcc"iºla1' c'Onfigtn'nt]oil, 

mu cl so it is 1)Ossil>le to c Bange t lie lictuid c"rvstii I fro In opt ic"acllY c, l>miw' to t raºu"p; Ire ºIt . 
TIIis 

makes liquid c'rvstals ideal for display clevic'es. 

An eXtreiuely important factor in (portable electronic device technology, Sncli BIS iu<ýl>ile 

1)1i0ueS, laptop coinlntter"', and Imildlielcl gaiiies consoles. is the battery lifetime. Since a 
large proportion of the battery is nsecl to 1)O«Wer a liquid (rVstall display (L('I)). decreasing 

the energy consumption of the LCD will significantly increase the length of tiiiie between 

battery recharges. 

polariser 

electrode 

glass plates 
om liquid crystal 

polariser1 

electrode 

Figure 1.13: An example of a single pixel in a liquid crystal display. 

Typical liquid crystal displays (1. CDs) consist of an array of pixels, each containing a region 

of liquid crystal sandwiched between two glass plates. as illustrated in Figure 1.13. Elec- 

trodes are placed around the liquid crystal so that a voltage may be applied in order toi 

change the orientation of the liquid c rý st; il molecules. Two l)olarisers are placed iro»>ncl the 
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deev-ic"ee w tII, It llio' two statte s, voltage un aiI(I \-UUltiO( ' iA l, IcxUk (lark atul light,. 

1.5.1 Monostahle liquid crystal displays 

11 

As the uanºe suggests. ,º nºon o stahl' liquid (rv. -, ýt; ºl display (0111 ºitºs it single stable equilibrillill 

state. 7'lºen, fore, a 1110uOsta1º1(' pixel t'((lltir('S it constant power supply to uºunititnin any kind 

of non-º'<luililºriºuu (list ortion. This is illttstrat e(l in Figure 1.14. We see tInit tlºº' only stable 

e<luilihriººtºº "'tatº' is, ill this º'xatulºlº', h0uºr(, trOI>iº (Figur 1.14(a) and Figure 1.14(()). By 

applying all ('l(lide field, as ill Figure 1.11(1)), tlºe Illoiccillal. configuration changes. which 

aim) changes the atºº<nttºt of light that (oil im tlºnºugh the )ell. Upon retuovitºg the c1e<tric 
field. the ºººoýlecttles revert to their stable eqºtilihrintºº state, its in Figure 1.14(c). 

(a) field off (b) +ve field on (c) field off 

-low 

O 

F Igill'(' 1.14: : Au cxaIIIp] of a nwuu, tablc (. (. IIt lm ngiI Ig conügin"at, ions vv'Iit'iia voIt ag is ;i1 Iied. 

Extending this to a full incýnostable disp1a. v, each pixel requires a regular supply of power in 

order to clisl>laV an image. as shown in Figure 1.15. To obtain a (lark-coloured pixel we tunst 

apply an electric field to that particular pixel. Upon removing the electric field, the liquid 

crystal relaxes to its equilibrium state and the pixel reverts to white. 

The constant draw of power in a ºnuýnOstal)le LCD leads to a large overall power consump- 

tion. However, LCD devices developed by companies such as DERA (now Qin(etiQ) and 

Hewlett-Packard have managed to overcome the power consumption problem w sociated 

with nionostahle LCD,. These more Dower-efficient LCDs are known as bistable liquid ccrys- 

tal displays. 
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apply a voltage remove the voltage 
and the displayed to certain pixels image disappears 

LýLýLJUU 11 I! 11 1 111 
oaoo0 .     LIL LJI 11 1 
1 17 171777E 

Figure 1.15. 
. 

Nn Of clispla. ving auf Iviuuwing an ünat; e on ; In arrnY of pixels using tr; ulit, ional 
liquid cl. vskll 

1.5.2 Bistabk liquid crystal displays 

trtºlikte tttomUStal>1e liquid crystals. l)istathl(' liquid crustal (iisI)laVs (<mtaitt two sttblt' t'tluilil)- 
rittm states. "I'üis can he achieved liv treating. one surface, known as Hic instable sttv. rtto-r'. soy 
that there are two 'easy direct lolls' for the ntulec"ttles at t liat sttrf<uce. "I'liis call give ri5t' to 

two distinct molecular configurations that are staple. 

(a) field off (b) -ve field on (c) field off 
monostable surface 

111 

-Now 
1 

bistable surface 

I-'1gtre 1.16: All example of switcl IiIIg a histat)le cII fro une state to tIIAo oot IIt'I n. iii, -, i nwý;. I t iv. ( vultag . 

Figure 1.16 gives an example of switching from one stable configuration to the other bly 

appiviiig an electric field to the c"cell. Here Hic Instable surf ace allows for both hOnioý,, ciwoits 

and holneotrol)ic alignment, as in Figure 1.16(a) am! Figure 1.16(c). respectively. When an 

electric field is applied to the cell, the molecules distort as in Figure 1.16(b). breaking the 

bistable surface anchoring in the process. Upon removing the electric field, the molecules at 
the bistable surface remain in their new configuration and the bulk of the cell relaxes to the 

state shown in Figure 1.16(c). Figure 1.16 illustrates that, by changing the polarity of the 

electric field, it can be possible to switch in the opposite direction. 

Extending this to a full hist. able display, note that once a pixel has been switched to it dark 

or light state the field can he removed without causing the pixel to revert to its initial state, 
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(a) field off (b) +ve field on (c) field off 
monostable surface 

111 

1 

OPP 

1. Now 
bistable surface 

13 

Figure 1.11: An example 01', vvvit(. Iliug a ((Il fioiii uni'st, at(' tu the of1I('r 11"i1ih a })u, itiv vultHg(. 

as illu, trate<1 in Fit, -ire I. IS. "I'liis in('ýin. ', t1 it dI st at i< iiu, I("(, oIa listable dislplaV does nO)t 

('011,11,11111C a1Iy- j)U VCr, li'auliiig tu an euurhuuii", ri'oliuctiR)u in the overall power collsu ul)tlooll ul 

(Ic is c. the 

üL-ý u 
QQ QQ Q 

QQQQQ 

QQQQQ 7 nn, 7 n 

apply a negative voltage 
to remove the image 

4U. 
ONE 

N 

remove the voltage and 
the image remains 

IJQQ[JQ 
L11QQQ [1QQQQ 
QQQQQ 
QQQQn 

Figure 1.18: An example of displaying and removing an image on an array of pixels using bistable liquid 

crystal technology. 

An eaaiiihlc of a bistabic device ist lic ZBD (Zenit Bally Bist able Devic(, ). (levclopcd by DEB A 

(now QinetiQ) [21], which exhibits a grating m orphologNy on the lower surface and allows for 

two distinct director structures [7,5,6,35,36.1]. It is the ZBD that we will attempt to 

111O(1cl iii t leis t 1ºc. tiis. 

Figure 1.19 gives a cross-sectional illustration of a ZBD. The first stable state (Figure 1.19(a)) 

exhibits homeotrol)ic alignment throughout the cell, whilst the second stable state (Figure 

1.19(b)) is stable due to the unusual molecular configurations, known as defects, at the 

bistable surface. These defects give an effective planar alignment just above the bistable 

surface. Switching from one stable state to the other is achieved l)V applying a voltage to 

the cell 

apply a positive voltage 
to certain pixels 

It should be noted for completeness that another tVl)e of l)istahlc display is, the PABN 
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(a) State 1 

1111 11 1111 11 1111 11 
1111 11 11111 11 11,11 11 1 
11 1111 11 1111 11 1111 
111 11 1111 11 1111 11 1 

1 1111111 11j1111 1111,1 
1111 11111111 1111111111111 
11111111 fill 11f 111 

11 11 1 111111 I 111 11 I 11; 11 1/111; 1; 11 (/111; 
; 1111/1111 

\I\\//ý11ý1\\/ýý11ý1\\ //111 

(b) State 2 

11111111 I11111I IIIII 
IIIjIII 11I II III II II% 11 II 

/0 
1/ 

// /1 
1l 

/ 'ý /1 
Ili 10 

A' /0i/0i 
A, wp 

1.1 

F igiirt' 1.19: The two st. al)lc stxtcs of a ZIH). IIcrc" tilt' top SIIrf<ccc is i1101lust, I1)1c , whilst tIIc 1)Ottuiii SU11itcc 
is a ('cm11)1(, x bist able surface. 

(Post-Aligned Bistahle Nematic). developed by Hewlett-Packard LahonatOries [25], which is 

his, tal)le due toi one surfwee containing innn snnnll 'posts' [21]. 

1.6 T['-plots 

The key a., ýpect of histal)le liquid crystal devices is their ability to switch from one state 

to the ether with the application and rciiioval Of an electric- field. We can rcf)resclit this 

behaviour using something called a TV-plot. In simple terms, a rV-plot is a graph which 
indicates whether or not a histal)le cell switches between states when a specific voltage, V, 

is applied for a prescribed lciiý; tli of Hill(', T. Sncli ])hits are extreuuielýý uticfiii for yitaiºtif inn 

and understanding the operating voltages and switching characteristics Of a bistal>le cell. 
Much of our research is concerned with generating and interpreting rV-f)lots. 

Figure 1.20 gives an example of two TV-plots [24]. each of which was generated using ex- 

perimental data, where the grey shaded areas represent switching between states. So, for 

example. applying a voltage of +-10 volts for 6 milliseconds will switch from the `T' state 

to the 'P' state (by Figure 1.20(a)), but not from the `P' state to the `T' state (by Figure 

1.20(b)). Here `P' implies a planar state (equivalent to our Vertical state), whilst 'T' implies 

a tilted state (equivalent to our IIyl)rid Aligned Neinatic state). Note that, in each ease, 

snitching is observed for both positive and negative voltages. 
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(a) T to P 
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Figure 1.20: Switching results for it YABN device filled with ZLI-17tih-11011. Data recorded at t+U( \lunolm- 
lar scIttal. e pulses are applied to the device - the v-axis is the pulse amplitude in volts, and the x-axis is the 

pulses cltIratiutt ill ills. Pulses that result in switching to the opposite stalle state are shown wS the grey 
shaded area. Figure <oitrtesv of Hewlett Packard Laboratories in Bristol. 
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2 Model 

In this chapter, we derive the governing equations for a nematic Zenithal Bistable Device 
(ZBD), using a similar approach to Davidson [9]. To achieve this, we employ various mathe- 
matical techniques such as Ericksen-Leslie theory [27] and the Maxwell equations. Addition- 

ally, by considering the physical device we wish to model, we establish an appropriate set of 
boundary conditions for our model. Finally, we apply some simplifications to the model. 

2.1 Previous work 

There exist many two-dimensional [36,33,17) and even three-dimensional [13,20) models for 
liquid crystal devices, many of which employ Q-tensor theory [39,33] in order to model the 
device. Such models allow for accurate representations of any complex surface morphologies 
and defect structures that are present within the cell. This is particularly useful when mod- 
elling bistable devices, which typically contain some complex groove (or grating) structure 
at the bistable surface. Some models represent this groove structure as a sinusoidal function, 

thereby allowing for the effect of the groove-depth and the symmetry of the surface to be 

investigated [17,18]. 

The advantages of multi-dimensional modelling come with relatively high computational 
costs, which often makes such models impractical. For example, a bistable liquid crystal 
device may be physically developed and its associated rV-plot produced in roughly half of 
one day. Unless a mathematical model can be numerically simulated in less than that time, 
for the purposes of this work there is little advantage in modelling the device at all. 

However, Davidson and Mottram [10] and Davidson [9] showed that a bistable device may be 

represented using a one-dimensional model by replacing the complex bistable surface with 
a flat surface which is governed by an effective surface energy function. This simplification 
allows a bistable device to be modelled without considering the complex groove-structures 
associated with the bistable surface, which greatly simplifies analytical and numerical inves- 

tigations. Further research [37,18] indicates that such effective energy approximations can 

produce remarkably similar results to the more complex two-dimensional models. Moreover, 

the simplification to one dimension greatly reduces the required computational effort to sim- 
ulate a bistable device. It is therefore this approach that we wish to take for constructing 
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our model. 

It should be noted that some unique research by Cummings and Richardson [8] showed 
that it is possible to obtain bistability using two monostable surfaces, by applying an elec- 
tric field at some arbitrary angle of orientation to the cell. The key to achieving this is to 
have one surface 7r/2 out of phase with the other. So, for example, if the preferred director 

orientation is a at one surface then (a-7r/2) is the preferred orientation at the other surface. 

2.2 Notation 

Throughout this section, we will often use index notation [42]. In the usual system of basis 

vectors {el, e2, e3} in R3, a vector a= (al, a2, a3) can be written as 

3 

1= a1C1 + a202 + a3C3 = aici, (2.1) 

ti=1 

which can be expressed, using the Einstein summation convention, as 

a=aiei, (2.2) 

where it is understood that the repeated index i is summed from, in this example, 1 to 
3. This summation convention obeys the rule that whenever an index appears twice, and 

only twice, in the same term, a summation is implied over all the contributions obtained by 

letting that particular index assume all its possible values, unless an explicit statement is 

made to the contrary. 

One useful quantity that is employed throughout this chapter is the alternator, E*jk, de- 

fined by 
1 i, j, k unequal and in cyclic order, 

E; jk = -1 i, j, k unequal and in non-cyclic order, (2.3) 
10 any two of i, j, k equal one another, 

where i, j and k can each take any of the values 1,2 and 3. 

The scalar product of two vectors a= (a1, a2, a3) and b= (b1, b2, b3) is defined by 

a"b=a; b;, (2.4) 
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whilst the vcctor product is defined by 

axb= eE; jkajbk. (2.5) 

For partial differentiation, a1, ß implies that the ith component of the vector a is differentiated 

with respect to the jth variable. 

2.3 Setup 

We wish to construct a mathematical model for the director profile throughout a nematic 
ZBD. In order to achieve this, we must first consider the physical cell itself [35,36] and then 

make any necessary simplifications. 

(a) Vertical state 
z=d+a -º z=d --` 1 111111 111111 1f1 11 

z 

1111 11 11111 11 11111 11 1 
1 181111 1f 111 1 of 111 
111 11111 11 111 11 1 

IlII 
II 

lýll0111 
I 
ll1itII 

111 f1ý11111 

11ý1111 fill 

I jlllllllI ofloil fill Ij of::: ' 

z_-p 

(b) HAN state 

' ý' ý' I't, ý't t "-- monostable surface 

Olt 

=- - ý=y simplified surface 

ý-- bistable surface 

Figure 2.1: Diagram of a two dimensional nematic cell, with electrodes at z= -p and z=d+a. We set 
z=0 at the simplified `surface', which is taken to be slightly above the true bistable surface. Note that the 
two stable equilibrium states reduce to (a) an effective Vertical state, and (b) an effective HAN state. 

Due to the complex structure of the bistable surface, the cell exhibits two stable states. 
The Vertical state, shown in Figure 2.1(a), implies homeotropic alignment throughout the 

cell, whilst the Hybrid Aligned Nematic (HAN) state, shown in Figure 2.1(b), implies homo- 

geneous alignment at the lower boundary and homeotropic alignment at the upper boundary. 

The complex structure of the bistable surface is somewhat difficult to model, particularly 

when considering the emergence and nature of any defects, and so we make the immediate 

simplification of replacing the bistable surface with a simplified one-dimensional `surface' 

that is governed by an appropriate bistable surface energy function. The basic form of the 

surface energy function must be such that it contains two minima, corresponding to each of 
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the stable states in the cell that is being modelled. 

It should be noted that, although we only intend to model a ZBD, our model may also 
be used to model other bistable devices such as the PABN. This is due to our bistable sur- 
face simplification, which allows us to model the two stable equilibrium states regardless of 
the nature of the true bistable surface. 

2.4 Definitions and assumptions 

In order to satisfactorily model the bistable device, we need to consider the nematic director, 

the fluid velocity and the electric field within the liquid crystal layer. With these variables 
we will be able to model the electric field induced switching of the device. We will see later 

that the inclusion of flow is critical to obtain accurate results. 

Our model will therefore comprise three dependent variables: the director, n, the flow ve- 
locity, u, and the electric field, E, all of which may depend on spatial coordinates and time. 
However, we will make certain simplifying assumptions. Our first assumption is to assume 

symmetry in the xy-plane, implying that each of our dependent variables only depend on 

z. Note that this assumption is reasonable, provided the simplified surface in Figure 2.1 is 

taken to be sufficiently high above the two-dimensional bistable surface. 

The director, n, is defined as the average direction of the molecular alignment. Mathe- 

matically, we represent this in one dimension as 

n(z, t) = (cos (0(z, t)), 0, sin(0(z, t))), (2.6) 

where 9(z, t) is the tilt angle relative to the x-axis, as illustrated in Figure 2.2. 

Here we have made the assumption that the director always lies in the xz-plane, implying 

that there cannot be any twist in the cell. Also note that, by definition, n is a unit vector. 

The flow velocity in the cell is defined as the macroscopic velocity of a group of molecules 
at a specific point in time. Given the assumption that the director only lies in the xz-plane, 
it is reasonable to assume that this is also the case for the flow velocity, u. Since the cell we 

are modelling is bounded at each surface (Figure 2.1), notice that we cannot have any flow 
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2 

cos(h) 

sin(O) 

X 

Figure 2.2: The director, n which is represented only by the tilt angle, 0. 

in the z-direction since this would lead to a flux out of or into the cell at z=0 and z=d. 
Therefore, we may assume that there is only flow in the x-direction, leading to 

u(z, t) = (U (Z, t), 0,0), 

where u(z, t) is the flow velocity in the x-direction. 

(2.7) 

If the cell is constructed such that there are planar electrodes at z= -p and z= d+a, where 
a is the thickness of the alignment layer and p is the thickness of the non-planar structure 
then we assume that the electric field throughout the cell is only in the z-direction, giving 

E(z, t) = (0,0, E3 (z, t)). (2.8) 

We can now derive the governing equations for the electric field, the flow velocity and the 
director angle. 

2.5 Derivation of the electric field equation 

In the absence of free charges, Maxwell equations for an electric field are 

VxE=0, (2.9) 

V"D=0, (2.10) 
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where D is the displacement field. Note that equation (2.0) immediately implies that E may 
be written as the gradient of a potential function, U, such that 

E_-VU, (2.11) 

which, by equation (2.8), reduces to 

E= 
(oo_). 

(2.12) 

The displacement field in equation (2.10) is given by [42,9] 

D= EoE "E+ Ps, (2.13) 

with co the permittivity of free space and c the dielectric tensor which, for our system, is 

given by [9] 

E1 sin2 0+E, Icos2 80 -i¬ sin 0 cos 0 
E=0 El 0 (2.14) 

-DE sin 0 cos 00q sin 2 0+ E, L COS2 0 

where c and El are the parallel and perpendicular dielectric coefficients, respectively, whilst 
De = eH - El is the dielectric anisotropy. In our system the only spontaneous polarisation, 
PS, is assumed to be derived from the flexoelectric effect so that [3,28] 

PS = elln(V " n) + e33 ((V x n) x n) , 
(2.15) 

which in one dimension, using (2.6), reduces to 

Ps = (9'(e11 cos20 - e33 sine 0), 0, E130'sin(20)), (2.16) 

where we have adopted the convention that '=ä. Here ell and e33 are the flexoelectric 

coefficients and E13 is the average fiexoelectric constant, defined as 

E13 ell + e33 (2.1 7) =2 

From equations (2.13), (2.14), (2.16) and (2.12), we therefore have 

D3 = -C 
(c11 sin 20+ 

E1 COS2 0) 
au 

+ E13 
ae 

Sin(28). (2.18) 
öz 8z 
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Now, in one dimension, equation (2.10) implies that 

OD3 
(2.19) 

Oz 
ý' 

and so, by equation (2.18), we have 

zI -co (c sin2 0+ El cost 0) 
ýz 

+ E13F sin(20)J = 0, (2.20) 
zz 

which we will refer to as the potential equation. This is the governing equation for the electric 
potential, U(z, t), which by (2.12) defines the electric field. 

2.6 Derivation of the flow velocity equation 

The classical model of a nematic liquid crystal cell consists of the Ericksen-Leslie dynamic 

equations [27] which are derived from a series of balance laws. Note that a comprehensive 
derivation is presented in Leslie [27] and Stewart [42], but for our purposes it is sufficient 
just to state the dynamic equations. The flow equation is derived from the balance of linear 

momentum, and is given by 

Pei: =( 
m5 )- ab 

©, j - ,., 
(i = 1,2,3), (2.21) 

where 
u 9(e) 

(&LL2 
ä' 

(2.22) 
öz) + ýrt(B) äý äz + 

2'11 
(9)2 

is the reformulated dissipation function, with 

m(O) = ä3 cos2(0) - ä2 sin2(O), (2.23) 

g(0) =7 [ä4 + (ä5 -- ä2) sin2(0) + (ä3 + &6) cos2(B)] + äl sin2(0) cos2(B), (2.24) 

and a superposed dot represents the usual material time derivative 

Daasa+ (2 25) Dt - 8t u+ 
c7x - ýt u' 8x; 

Here, the di are the Leslie viscosities and -yl is the rotational viscosity defined in Section 1.4.5, 
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and the superposed dot is used to represent the usual material time derivative defined by 

equation (2.25). The fluid density and the relative pressure are given by p and p, respectively. 
Using equation (2.21) with equation (2.7), we have 

pul =a 
015 

- 
gip, (2.26) äz au, ax 

0= -oy, (2.27) 

0= -B'aD - 
op (2.28) 

ae oz, 
for i=1,2 and 3, respectively. Equation (2.27) implies that p can only be a function of x, 
z and t, whilst equation (2.26) integrates to give 

p-a 
aD 

- äz ö pül x+ C(z, t). (2.29) 
u' 

Since p 74 ±oo as x -º ±oo, we must have 

0 (015 

öz (;; ) Pui = 0, (2.30) -)- 
or 

P äau 
0t 

az 
19(0) z j, (2.31) 

which we will refer to as the flow equation. If required, the relative pressure, p, may be 
derived from equation (2.28). 

2.7 Derivation of the director angle equation 

From Ericksen-Leslie theory [27,421, the balance of angular momentum is given by [42] 

0, F 8JF 025 
- (2.32 8O,; s 

), 
-. 80 - äe °' 
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where D is the reformulated dissipation function given in equation (2.22) and wr is the free 

energy density in the bulk of the cell, given, in our case, by 

WF =W east + Welec, (2.33) 

where Wegast and w<<,, denote the elastic and electric energies, respectively. 

2.7.1 Elastic energy density 

The Frank elastic energy for non-chiral nematics is [42] 

111 
ýetnýi =2 (K1- K2 - K4) (n{, s)2+ 2 K2n1Jni j+2 K4ni jnj, i 

-I-2 (IC3 - IC2)njncankni, k, (2.34) 

where K1, K2, K3 and (K2 + 1(4) denote the splay, twist, bend and saddle-splay elastic 

constants, respectively [14]. In one dimension, using the director defined in equation (2.6), 

the elastic energy in equation (2.34) reduces to 

/ 
werk =1 (K1 cos2 0+ K3 sin2 0) 

ae) s 
(2.35) 

which only contains terms involving the splay and bend elastic constants. 

2.7.2 Electric energy density 

The electric free energy density of a nematic liquid crystal is [42,38] 

Wefec =- JD " dE, (2.36) 

[2(E'E)"E+(Ps"E)], (2.37) 

by equation (2.13). Now substituting equations (2.14), (2.16) and (2.12) into equation (2.37) 

and rearranging gives the total electric free energy density in the cell, 

\Z 
Welec 

CO (Ell sine 0+ E1 cos2 0) 
ýz 

I+ E13'90 sin(20) 
az 

. 
(2.38) 
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2.7.3 The director angle equation 

Substituting equations (2.35) and (2.38) into equation (2.33) yields the total free energy in 

the bulk of the cell, 

wF =2 (KI cost 8+ K3 sin20) 
(00)2 

7 
-2 

(q SiII2 0+ El COS2 0) TZ J+ 
E13 ae sin(20)OU. (2.39) 

The final balance of angular momentum is given by substituting equations (2.22) and (2.39) 

into equation (2.32), simplifying and rearranging to give 

71 
ae 

= (K1 cos2 0+ K3 sin2 0) 
ate 

+ E13 sin(20) 
a2U 

ät äz äz2 
ý+2 (CO 

AE 
(az) 

+ 
(äz00)2 

(IC3 - El) sin(20) - m(0) az, 

which we will refer to as the director equation. 

(2.40) 

We now have three equations, (2.20), (2.31) and (2.40) for the unknowns U(z, t), u(z, t) 

and O(z, t), respectively. In order to solve these equations fully we must also specify bound- 

ary conditions at z=0 and z=d. 

2.8 Surface boundary equations 

2.8.1 Electric potential 

If we assume that the lower electrode is earthed and a voltage is applied at the upper 

electrode, then 

v(o, t) = 0, and U(d, t) = V(c), (2.41) 
where V (t) is the applied voltage at time t. Notice that the applied voltage is a function of 
time, as illustrated in Figure 2.3. 
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Figure 2.3: An example of the applied voltage varying with time. 

2.8.2 Flow velocity 

For the flow equation, we assume there to be no flow velocity at the monostable solid surface. 
To model this, we simply apply a no-slip condition at z=d, giving 

1 u(d, t) = 0. (2.42) 

The flow velocity at the bistable surface requires slightly more thought. Note from Figure 
2.1 that our simplified surface is taken to be at z=0, which occurs slightly above the true 
bistable surface. Therefore, it is reasonable to assume that there may be some flow at z=0. 

(a) No slip (b) Partial slip (c) Perfect slip 
Z 

X 

Z=O -º 

Figure 2.4: A physical interpretation of the slip-length, J. With (a) b=0 we have a no slip, (b) 0<Ö< oo 
we have partial slip, and (c) 6= oo we have perfect slip. 

0.0 0,2 0.4 0.6 0.8 1.0 1.2 

6=0 0<6 <00 6 =00 
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In order to model the flow velocity at this boundary, we consider the three cases illustrated 
in Figure 2.4 [26]. Let 6, known as the slip-length, denote the distance below z=0 where 
a no-slip boundary condition would be satisfied. By definition, b=0 corresponds to the 

no-slip case observed in Figure 2.4(a) whilst, at the other extreme, a= oo corresponds to 
the `perfect slip' case observed in Figure 2.4(c). For 0<ö< oo, as in Figure 2.4(b), we have 

what is known as a partial slip boundary condition. 

From Figure 2.4(b), it becomes clear that a reasonable approximation to the absolute flow 

velocity at z=0 may be computed using the slip-length, b, and the gradient of the tangential 
velocity, !;, at z=0, using 

u(0, t) =6 
äz (2.43) 

This is the same form used by Barrat and Bocquet [4]. 

2.8.3 Director angle 

The interaction between a solid surface and liquid crystal molecules is relatively complex. 
In many cases, it is reasonable to assume that the molecules are rigidly anchored at the 

surface which fixes 9 at the boundary. This is termed infinite anchoring. However, a more 
general approach is to specify a `preferred direction' for the director and an associated energy 
function to model the increase in energy when the director is not aligned with the preferred 
direction. This is termed weak anchoring. 

At each surface we therefore define a surface energy, W iii f, which, using variational cal- 

culus, allows us to construct the dynamic boundary condition 

aWp 
_ 

aweurf 
- 

aVe (2.44) 
a9,; 00 ag ' 

where WF is the free energy defined in equation (2.39), De is the surface dissipation defined 

as 

De=2Ys(190)2, (2.45) 

and 
(0,0,1) at z=0, (2.46) 
(0,0, -l) atz=d, 
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is the outward unit normal to the boundary surface. The y8 parameter is the surface relax- 
ation coefficient which is defined as [9] 

78 = 1a'Yl, (2.47) 

where 1, is known as the surface length at the boundary of interest. In physical terms, 1, is a 

measure of the speed at which the director reorientates at a weakly anchored surface relative 
to the bulk [22]. 

Bistable surface energy density 

As discussed in Section 2.3, our simplified surface at z=0 is governed by a bistable surface 
energy function, which we will denote w,,. We wish to construct a simple energy function 

containing minima at 0= ai and 0= a2, where al denotes the preferred HAN orientation 

at z=0 and a2 denotes the preferred Vertical orientation at z=0. We also wish to control 
the height of the secondary energy barrier, , 0, relative to the primary energy barrier, as 
illustrated in Figure 2.5. 

mss. 

, -N o 
m. T- w 
c 0 
:r 
0 c 

rn 

C 

0 
0 

0 (radians) 

Figure 2.5: The bistable surface energy function, with minima at 0= (al +kir) and 0= (a2 +kir), (k E Z), 
a primary energy barrier of height 1.0 and a secondary energy barrier of height ß. 

The energy function in Figure 2.5 is derived by taking an appropriate Fourier Cosine Series 
(FCS) and applying a series of constraints based on the desired form. A full derivation is 

-n -n/2 0.0 n/2 n 
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provided in Appendix A, with the final energy function given by 

j(9) = ao + al cos(20 - (al + a2)) + a2 cos(40 - 2(al + a2)) + a3 cos(6O - 3(al + a2)), (2.48) 

where 
a, = (ß(A - B) - (A + B))IC, 

a2 = 2(f3(D - E) - (D + E))IC, 

a3 = (13(B - F) + (B + F))/C, 

ao = 1-al-a2-a3, 

and 
A= 2cos2(aI - a2) (1 + 2sin2(aI - a2)) - 3sin2(al - a2), 
B=2 cos(al - a2), 
C= 8sin4(al - a2), 
D= 2cos3(aI - a2), 
E= 3cos2(al - a2) - 1, 
F=1+ cos2(al - a2). 

(2.49) 

(2.50) 

Note that, in order to produce an energy function of the form given in Figure 2.5, we must 

place specific conditions on ,0 and (a2 - al). This is also covered in Appendix A. The final 

bistable surface energy density is therefore given by 

w8p = vol(e), (2.51) 

where WO is the bistable surface anchoring strength and is a measure of the height of the 

primary energy barrier between al and a2. 

Now, using equations (2.51), (2.44), (2.46), (2.39) and (2.22), we may write the bistable 

surface equation as 

ryso 
00 

= (KI cos2 0+ K3 sin2 0) 
0B 

+ E13 sin(20) az 
W 10 

°z=O, Vt, 

where -y,,,, is given by equation (2.47) with a surface length of l, o. 

Monostable surface energy density 

(2.52) 

We also employ weak homeotropic anchoring at the monostable surface, which is governed by 

a monostable surface energy, w, d. We choose our monostable energy to be a simple sinusoidal 
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function with minima at (k + 1/2)ir (k E Z), as illustrated in Figure 2.6. 

0 

C 
0 

U 
C 

p 
N 
C 
a, 

0 
0 

0 (radians) 
Figure 2.6: The monostable surface energy function, with minima at 0= (k + 1/2)n (k E Z) and an energy 
barrier of height 1.0. 

We can therefore immediately write the monostable surface energy as 

Wad = Ivd Cost e, (2.53) 

where LVd is the monostable surface anchoring strength and is a measure of the height of the 

energy barrier between 0= ir/2 and 0= -ir/2. 

Now, using equations (2.53), (2.44), (2.46), (2.39) and (2.22), we may write the monostable 
surface equation as 

ry, d 
ae 

=- (K1 cos2 0+ K3 sin2 0) 
ae 

- E13 sin(20) 
au 

+ Wi/d sin(20), z=d, Vt, 
at äz az 

where -t, is given by equation (2.47) with a surface length of 18d. 

(2.54) 

We now have boundary conditions for all three variables U, u and 0 at both surfaces. 

-n -ic/2 0.0 rt/2 It 
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2.9 Simplifications 

At this point, we consider two simplifications of our model that we will use in later chapters. 

2.9.1 Solving for the field equation 

One immediate simplification is that, since we only consider variations in the z direction, we 
can actually solve the electric potential equation. Note, by equation (2.12), that equation 
(2.18) rearranges to give 

_ 
äU 

_ 
D3 - E13 ae sin(29) (2.55) E3 _äz 

co (eil sine 0+ El cost 0)' 

which we will refer to as the field equation. In order to compute D3, note that equation 
(2.19) implies that D3 is a constant. Integrating both sides of equation (2.55) gives 

8U 
dz = 

/d D3 - E138i sin(2B) dz. (2.56) - 
In 
Jp Oz Jp 

co (Ell sin2 0+cj COS2 0) 

Now, assuming that U(O) =0 and U(d) = V, as stated in equation (2.41), we may rearrange 
equation (2.56) to give 

d E13 B sin(20) 

D 
dz V+ J0 

Ejjsin 0+E1 cos2 0 
3= 

-Ep/' 
(2.57) 

d dz 
. 10 t1l sin B+cl cos 0 

This simplification allows us to explicitly solve for the electric field using equations (2.55) 

and (2.57). To find ae 
, we simply differentiate equation (2.55) to obtain 

02U coicazE3sin(28) + E13 (2cos(20) (ez)2 +ä sin(20)) 
az2 co (ell sin 20+E. L cos2 0) 

(2.58) 

Equations (2.55) and (2.58) can then be used in equation (2.40) to compute the director 

angle. 
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2.9.2 Neglecting flow 

In some parts of this thesis we will also use the simplification of neglecting all flow effects. 
This has the effect of replacing the flow equations (2.31), (2.42) and (2.43) with 

1 u(z) = 0, (0: 5 z< d). (2.59) 

Without the presence of flow, the director equation simplifies to give 

71 
a7 

= (KI cosz B+ 1(3 sinn 0) 
azý + E13 sin(20) az 

zz 
+1 COAC 

C 
-5 -z- + 

1az) 
(1C3 - K1) sin(20). 

Equations (2.59)-(2.60) represent what is known as the no-flow model. 

2.10 Calculation of the optical transmission 

(2.60) 

Once the governing equations have been solved it will be useful to calculate the optical 
transmission through the liquid crystal layer we have modelled. The transmission is a good, 
experimentally relevant, measure of the director configuration. Let us therefore consider a 

cell comprising a liquid crystal sandwiched between two crossed polarisers. As light passes 
through the first polariser, it becomes linearly polarised. If the liquid crystal molecules are 
in a Vertical state, the light remains linearly polarised and no light is able to pass through 
the second polariser, which is typically termed the analyser, giving zero optical transmission, 

as in Figure 2.7(a). If the liquid crystal molecules are in a HAN state, however, the director 

tilt will change the linearly polarised light into elliptically polarised light, thus allowing a 
proportion of light through the second polariser and giving some optical transmission, as 
in Figure 2.7(b). Therefore, the Vertical and HAN states are sometimes referred to as the 
`dark' and `light' states, respectively. 

At any given time, the optical transmission, T, through a liquid crystal cell depends on the 



'. IO (1ak"ººl. It iuºº of t, le opt. iº". ºl t ransºiºistiiººu 

(a) Zero optical transmission 

unpolarised light linearly polarised light 

polanser glass plates analyser 

(b) Higher optical transmission 

unpolarised light elliptically polarised light linearly polarised light 

I\/ 
ýVý 

polariser glass plates analyser 

Figure 2.7: Illustration of it liquid crustal sandwiched betwe ell two crussctl lmlaritiCrs, whtTc the scctmti 
polariscr is known as the analyser. Utipolariscd light passes through the first polariscr and (a) the vertically 
aligned liquid crustal molecults cause t he light to become linearly polarised an(1 so it cannot, hass t iirtnnl h 

I lie analyser, (b) the liquid crystal molecules are in aiiA\ state and guide Ili(, light, t hrongh the smnaýlvser. 

director orientation throughout the cell and can be calculated using [9] 

T= sine 
(). 

(2.61) 

where the optical retardation, X. is given liv 

27071 
,I1 I? 1 llý. (2.62) 

ý, 

sj 2H: + (U S2 B 

where A is the wavelength of the light entering the cell, n,, is the ordinary refractive index 

; end nF is the extraordinary refractive index of the liquid crystal, as illustrated in Figure 2.8. 
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2.11 Base parameter set 

derived tliv guv(I'16ng ('(! 11 lthms fur a l)istahle device, W( a Imrallicter 'set ill 

order to describe and ni(xlel a particular (('11. AV(, therefore present a standard base J)(Iiic7nrtrr 

. srt in Table 2.1. which will bei used throughout this thesis. 

The parameters statc(l in 'I'ahle 2.1 1iav c been adapted frmn it varicty Of s< iir<es, such as 
[42] and data provided l)V" Hee«-leett Pa(kaar(l Laboratories in Bristol. As such, they describe 

a fictitious liquid crystal cell and are intended for example purposes only. 

2.12 Summary 

In this chapter, we have set up the systems of equations that will be used throughout this 

investigation. Note that we essentially have two models. The first iuoclel includes, the flow 

equations and is governed by equations (2.31). (2.40), (2.41), (2.42), (2.43). (2.52), (2.54), 

(2.55), (2.57) and (2.58). The second (no-flow) model is governed by equations (2.59). (2.60), 

(2.41), (2.52). (2.5,1), (2.55). (2.57) and (2.58). In the next chapter, we will introduce the 

numerical methods that are to be used for solving our svsteiiis of equations. 
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Table 2.1: Default values for the parameters that are used in simulations. 

Quantity Symbol Value Units 

Cell thickness d 3.0 10-6 in 
Parallel permittivity Ell 10.0 

Perpendicular permittivity El 15.0 

Flexoclcctric Coefficient E13 1.0 10-10 Cm-1 

Splay elastic constant Kl 16.3 10-12 N 

Bend elastic constant K3 16.3 10-12 N 

Leslie viscosity äl -0.6 10-2 Nsm-2 

Leslie viscosity 52 -8.12 10-2 Nsm-2 

Leslie viscosity ä3 -0.36 10-2 Nsm-2 

Leslie viscosity ä4 6.52 10-2 Nsm-2 

Leslie viscosity äs 6.40 10-2 Nsm-2 

Leslie viscosity 06 -2.08 10-2 Nsm-2 

Bistable surface length 1,0 5.0 10-7 in 

Monostable surface length 1" 2.5 10-e to 

Partial slip-length 6 1.0 10-10 in 

Fluid density p 1020.0 kg m'3 
Bistable anchoring strength WO 4.0 10-5 Nm-1 

Monostable anchoring strength IVd 4.2 10-3 Nm-1 

O(z = 0) for HAN state al 10.0 degrees 

O(z = 0) for Vertical state a2 80.0 degrees 

Ordinary refractive index no 1.4920 

Extraordinary refractive index n. 1.6567 

Wavelength of light A 632.8 10'9 in 
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3 Numerical methods 

In this section, we will introduce the numerical methods that are to be used for solving the 

systems of equations derived in the previous section (Section 2). We begin by defining the 

spatial discretisation, which will be used throughout the remainder of the investigation. We 

then introduce three time integration methods, namely an explicit method, a semi-implicit 

method and a fully-implicit method. 

Having proposed our methods of solution, we then present a variety of techniques for opti- 

mising our simulations. The first, time adaption, is used to control the size of each time-step 

such that the solution error remains roughly constant throughout the simulation. The sec- 

ond, a moving mesh algorithm, is used to control the positioning and quantity of node points 
used at each time-step such that the spatial error remains roughly constant throughout the 

simulation. 

Finally, we compare each of these simulation methods to determine which provides the 

optimal balance of speed and accuracy. 

3.1 Spatial discretisation 

Our equations are spatially discretised so that they may be solved on a non-uniform mesh. In 

the bulk equations, central differences are used to compute any derivatives. Let us consider 

a function, f (z), where hj = (zj+l - zj). Writing the Taylor series expansion for f (zß_1), we 
have 

. 
f(zi-i) = f(zi) - hh1of(z, 

) 
+ 

hýi_1 a2f(zi) 
_ 

hi-i 83. f(z3) 
..., 

(3.1) 
äz 2! dz2 3! dz3 

whilst the corresponding expansion for f (zz+l) is 

I (z; + i) = ! (z, ) + h; a a(zj) 
+ 2ý aä (2; ) + 3ý ä (3ý) + .... 

(3.2) 

To obtain an approximation of the first derivative, we subtract (3.1) from (3.2) and rearrange 
to give 

of (zi) 
_f 

(zi+i) -f (zi-i) 
+ O(hj - hj-, )" (3.3) 

Dz ti; 
-1 + h, 
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Similarly, the second derivative is approximated by adding (3.1)xh1 to (3.2)xhi_i and re- 
arranging, viz. 

132f (zi) 
_ 

2(hi-if (zi+i) - (hi-1 + h, )f (z, ) + h, f (zi-i)) 
+ O(h, - lij-i). (3.4) 

äz2 hj-lhj(ltj-1 + hj) 

Due to the complicated interactions between the surface and bulk equations, and since we 
expect high gradients to occur at each surface, the first derivatives at z=0 (= z1) and z=d 
(= z,,, +l) are approximated to second order. Consider 

Of (zi) iii 02f (zi) hi auf (zi) 
f (z2) =f (zi) + hl 

äz + 2! äz2 + 31 0z3 + ... , 
(3.5) 

and 

f(zs) = f(zl) + (hl + h2) Of(zl) + 
(h1 + h2)2 (92f (z1) 

+ 
(h1 + h2)3 (93f (z1) 

+ .... 
(3.6) 

äz 2! äz2 3! 9z3 

Now, (hl + h2)2 x (3.5) subtracted from hi x (3.6) gives 

hif (z3) - (h, + h2 )2f (z2) _ [hi - (hi + h2)2] f (zi) - phi + h2)hlh2a 
(zi) 

(hl + h2)2h2h2 83f (xi) 
+ 3! äz3+ ... ' 

(3.7) 

which may be rearranged to give 

Of (zi) 
_1{ [hi - (hl + h2)2]f (zi) 

äz hlh2(hl + h2) 

1 (3.8) + (hl + h2)2f (zs) - hf (z3) }+ O(hl (hl + h2»- 

Using the same approach, the first derivative at z=d (= zm+l) is determined using 

Of (Z. -. +i) __ 
1 CC/tm + hm-1)z - hz 

inl, 
%(zm+l) 

äz hmhm-, (hm + h�, 
-1) 

- (hm + hm-1)2f (zm) + hmf (zm-1) }+ O(hm(hm + hm-1)). (3.9) 
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3.2 Time integration 

We now present several methods for solving coupled systems of the form 

öA 
_ f(A(z, 1), u(z, t), t), `fit 0<z<d, (3.10) 

äu 
at _ - g(A(z, t), u(z, t), t), 

where (O(), U(')) is used to denote the solution of (9, u) at the nth timestep and t� denotes 
the time at the nth timestep. The nth step-size is denoted by rn = t�+i - t, . 

3.2.1 Explicit method 

The Forward Euler method is used as an example of explicit time discretisation. Forming a 
Taylor series expansion in time of 0('11) gives 

e(n+1) = B(n) + Tnao(n) 'i- O(r ) 

at 
B(n) + 7. nj(n), (3.11) 

by equation (3.10). Similarly, for u("+1) we have 

, u(n+l) N U(n) + Tn9'(n). (3.12) 

Equations (3.11) and (3.12) represent the explicit Forward Euler method as applied to equa- 
tions (3.10). At each timestep, f (") and g(') are computed using B(") and u(n) and substituted 
into equations (3.11) and (3.12), respectively, together with rn to compute ü'"' and u("+1) 
Notice that in the absence of flow (i. e. u- 0) the system simplifies and we need only use 

equation (3.11) at each timestep. 

As with all explicit methods, a relatively small step-size is required in order to maintain 
numerical stability. 
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3.2.2 Semi-implicit method 

In an effort to allow for larger timesteps and enhanced stability, we attempt to solve our 

system of equations using a semi-implicit method. Let us rewrite equations (3.10) as 

00 
_ fL(0(z, t), u(z, t), t) + IN(O(z, t), u(z, t), t), at 0<z<d, (3.13) 

a= 
gL(0(z)t), u(z, t), t) + gN(0(z, t), u(z, t), t), 

cat 

where ft, represents the terms in f which are linear in 0 and IN represents the terms in f 

which are nonlinear in 0. Similarly, gL represents the terms in g which are linear in u and 
gN represents the terms in g which are nonlinear in it. 

We now proceed by decoupling 0 and u and then solving each set of equations separately. 
Rearranging the 0 equation in (3.13) whilst evaluating fL implicitly in 0 gives 

8(n+l) -TnfL(e(n+l),, u(n)) = B(n) + Tn fN (O(n)U(n)). (3.14) 

Taking into account our spatial discretisation, equation (3.14) may we written in matrix 
form as 

AB(n+I) = d, (3.15) 

where 
lbl cl a1 

a2 b2 c2 

A= a3 b3 C3 (3.16) 

am bm Cm 
a2 am+1 bm+l 

is a near-tridiagonal matrix comprising the vectors a, b, c and the scalar quantities Ql and 

a2. Note that the terms al and a2 occur due to the second-order accuracy of the derivatives 

at the boundaries. By applying two elementary row operations we can reduce the problem 
to a purely tridiagonal system which may be efficiently solved using Algorithm 1, thus pro- 
ducing BC"'). 
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Algorithm 1 The Thomas algorithm for solving the tridiagonal system Ax = d, where A 
is an (m + 1) x (m + 1) tridiagonal matrix comprising the vectors a, b and c. 
ttequire: m, a, b, c, d 

1: compute: (1 = cl/61 
2: compute: b1 = dl/b1 
3: for i=2, ... , (m + 1) do 
4: compute: = b; - a; ({_1 
5: compute: St = c; /t; 
6: compute: Si = (d; - a; 6 

_1)/ý 
// forward elimination 

7: end for 
8: compute: Xm+i = 5m+i 
9: fori=m, 1, -l do 

10: compute: x=5, - (; x; +1 // back substitution 
11: end for 

Using the updated value of 0 we may rearrange the u equation in (3.13) to give 

,u 
(n+l) 

- Tn9L(9(n+1),, u(n+l)) = , u(n) +TnfN(O(n+1), ß(n)), (3.17) 

which also represents a tridiagonal system and may be solved for u("+I) using the Thomas 

algorithm. 

3.2.3 Fully-Implicit method 

Although our semi-implicit method provides a substantial improvement over the explicit For- 

ward Euler method, there are some instances when it is insufficient for accurately modelling 
flow. This is likely to be due to the decoupling of the director and flow equations, together 

with the inherent instabilities associated with the explicit part of the method. To combat 
this, we present a fully-implicit Newton-Raphson method for solving a system of equations. 

Evaluating equations (3.10) implicitly and rearranging gives 

e(n+l) 
- B(n) 

- Tnf (e(n+l), U(n+1)) = 0, 
1, (3.18) 

u(n+l) - u(") - Tn9(6(n+1), u(n+')) = 0, 
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which we will write in matrix form as 

F(x) = 0, 

where 
X_ {O7441), uýnt' }, j= 1ý 

... ' 
(m + 1). 

(3.19) 

(3.20) 

Let Ax be a vector of length 2m + 2. Writing the Taylor series expansion of F(x+L x) gives 

F(x + Ox) = F(x) + J(x)Ox + O(Ox2), (3.21) 

where J(x) is the Jacobian matrix associated with F(x), whose elements are defined as 

Jjk(X)= 
OF. 
DX k 

(3.22) 

Let us set x=x; and Ax = (x; +l - x; ), where i denotes the internal Newton-Raphson step 
number. Neglecting the term O(Lx2), equation (3.21) gives 

F(X++i) = F(X1) + J(X+)(Xi+i - xi). (3.23) 

At the solution, F(x; +l) =0 and we have 

F(k) + J(X: )(XC+i -: kt) = 0, 

which rearranges to give 
xt) = -F(xj). (3.24) 

Further rearranging gives 
xi+l = x; - J-1(xi)F(xt), (3.25) 

which is known as the Newton-Raphson method for linear systems. Note that J-1(z; ) is 

typically very expensive to compute, so we solve equation (3.24) for (x; +l - x; ) and then 

compute x; +l from the resulting vector. This process is iterated using 

Xltt=fin) = xo -º xl ---I x2 -0 ... º zq = Xl(t=t,, 
+1) 1 

(3.26) 

until the qth iteration which occurs when the vector F(x1) is deemed sufficiently close to 

zero, at which point we conclude that the system has converged. Note that our initial guess, 
R0, is taken as our final approximation of the solution at the previous timestep. Once the 



3.2 Time integration 42 

system has converged to within our prescribed tolerance, we move on to the next tixncstep. 

Should the system diverge at any point, we conclude that the step-size was too large and 
restart the routine using a smaller step-size. 

Algorithm 2 Newton-Raphson method for a Linear System. 
Require: TOL, xo 
Require: i=0, Fnorm = 1.0 x 10)0 

1: FnormOLD = Fnorm 

2: compute: F(xi) 
3: compute: Fnorm = IF(xi)j. 
4: if Fnorm < TOL then 
5: GO TO 15 // the method has converged 
6: else if Fnorm > FnormOLD then 

7: flag=1 
8: GO TO 15 // the method is diverging 
9: end if 

10: compute: J(*, ) // calculated analytically 
11: solve: J(xt)ix; = -F(xi) for Aki 
12: compute: xi+l = xi + Ox; 
13: i=i+1 
14: GO TO 1 

15: STOP 

The complete method is outlined in Algorithm 2, and it is applied at each timestep. The 

relative infinity norm, 
JF'(Xi)joo = maxAjjF(xi(j))j, (3.27) 

where Aj is a nondimensionalisation parameter, is used to measure the convergence of the 

system, as this is relatively cheap to compute. TOL is a user-prescribed tolerance which we 
typically set to 1.0 x 10-8. Note that we test for convergence and divergence prior to our 
analytical computation of J(xi) since this prevents us from wasting CPU cycles on the final 

iteration at any given timestep. 

One of the key advantages of the Newton-Raphson method is that, given a suitable initial 

approximation, its order of convergence is quadratic, making it one of the fastest iterative 

methods for linear systems. Also, being an implicit method, it allows larger step-sizes to be 

taken when compared with the explicit and semi-implicit methods. However, the method is 

typically very expensive since we need to evaluate a Jacobian matrix at each iteration. 
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When applied to equations (3.10), equation (3.24) becomes 

i(xi)x, (3.28) 

where 
Xt(2j - 1) = 06; (j), 

j=1, ... , 
(m + 1), (3.29) 

Xi(2j) = Dui(j), 

and 

rt(2j _ 1) = 
ei(l) - eo(j) 

_ 
j=1, , 

(m + 1). (3.30) 

rc(2j) = 
u' (j) T uo(j) 

- gi(j), 

Notice that here we have interlaced 0 and u, as this reduces the bandwidth of the associated 
Jacobian matrix, J(X; ). This is essential, since solving a block matrix comprising four sparse 
blocks is computationally very expensive, and causes an unnecessary bottleneck in line 11 of 
Algorithm 2. Now, given the spatial discretisation of the bulk and surface equations, notice 
that in this particular case the Jacobian matrix defined by equation (3.22) only contains 

non-zero entries on 

JI, k(Xi) :k=1,3,5, 
J2, k(X; ) : k=2,4,6, 

J(2i-1), k(X1) :k= (2j - 3), ... , 
(2j + 2), 

2,. .., m, (3.31) 
J(2j), k (Xc) 

.k= 
(2j - 3), ... , 

(2j + 2), 
J(2m+l), k(Xi) k= (2m - 3), (2m - 1), (2m + 1), 
J(2m+2), k(Xi) :k= 2m. 

and so we have a pseudo-hexadiagonal system with additional non-zero elements at each 
boundary. To aid in visualising the structure of this system, we present the form of J for 
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the simple case in which tit = 9, viz. 

JN 

... 

...... 

...... 
...... 
...... 

...... 

...... 
...... 
...... 

...... 

...... 
...... 
...... 

...... 

...... 

e 

11 (3.32) 

where ": is used to denote a non-zero element. Now, note that upon performing a sequence 
of elementary row operations, the system in equation (3.28) can be reduced to pentadiagonal 
form giving 

J(X; )X; = -I';, 

where the reformulated Jacobian 

cl dl el 
b2 c2 d2 

a3 b3 c3 
J= , 

e2 
d3 e3 

a2m b2m C2m d2m e2m 

a2m+1 b21n+1 C2m+1 d2m+1 

02m+2 b2m+2 C2m+2 

(3.33) 

(3.34) 

is purely pentadiagonal. The system in (3.33) may now be solved using the highly efficient 

routine in Algorithm 3 [29]. 

Note that in the no-flow case (i. e. u= 0) equation (3.28) reduces to 

J(A91)toi = -1;, (3.35) 

where 
9i - 90 (3.36) 

T 

which, upon two elementary row operations, is a purely tridiagonal system that may be 

cheaply solved using the Thomas algorithm (Algorithm 1). 
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Algorithm 3 Algorithm for solving the pentadiagonal system Ax = f, where A is an mxm 
pentadiagonal matrix comprising the vectors a, b, c, d and e. Note that this is a slightly 
modified version of [29]. 
Require: m, a, b, c, d, e, f 

1: compute: pl = -dl/cl 
2: compute: q1 = -el/cl 
3: compute: öl = fl/cl 
4: compute: (= -1/(c2 + b2p1) 
5: compute: P2 = ((l2 + b2g1)( 
6: compute: q2 = e2( 
7: compute: S2 = (b251 

- f2)( 

8: for i=3,..., mdo 
9: compute: (=b, + a; p; _2 

10: compute: -1/(c; + a, gi_2 + (p; _1) 
11: compute: p; = (d; + (q; 

_1)ß 
12: compute: q; = ete 
13: compute: 5; = (ati61_2 + (a; 

_1 - 
f; )ý // forward elimination 

14: end for 
15: compute: xm = bm 
16: compute: xm-1 = bm-1 + Pm-15m 
17: for i= (m-2), 1, -1 do 

18: compute: x; = 5; + pjx; +1 + q; x; +2 // back substitution 
19: end for 

3.3 Field calculation 

As mentioned in Section 2.9.1, the electric field equation is given by 

where 

E(z) = 
D3 - E13 sin(20) M 

(3.37) 
EO(E1 + AE sinl 0) ý 

d sin (20) 
-Eov+E 

AA 
dz 

D3 is fo 
(3.38) 

fd 1 
o El+ESIn 

dz 

Note that E(z) and aZ are needed in f (0, u) and are therefore calculated at the start of each 
timestep. In order to solve the integrals in equation (3.38), we employ a numerical method. 
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For our purposes, the trapezoid rule on a non-uniform grid is sufficient. Let us define 

d1 
(3.39) It 

o El+DEsin20dz' 

=d 
sin (20) flZ 

(3.40) 12 
Jo 

E1. +AEsinegdz, 

which may be discretised and approximated by 

I1 1 
P:: 

d 12ý hj 
L+ 

DE sin2(O1) 
+ 

E. i + Ac sin2(BJ+i), ' 
(3.41) 

3-1 

12 
1m sin(2O. )e sin(2Oj+1)a ' 

hý + (3.42) 
+ AE sin2(9j) E. i + AE sin2(Oj+1) ' . 42) 

allowing us to compute the constant term D3 using equation (3.38) and hence compute the 

electric field at each node point using equation (3.37). 

It should be noted that there are more advanced integration methods, such as Simpson's 

rule and Gaussian quadrature. However, since our moving mesh algorithm (discussed in 

Section 3.5) focuses node points about areas with steep gradients, the trapezoid rule should 

give a sufficient level of accuracy. 

3.4 Time adaption 

Initial attempts to solve our system of equations used a timestep size of At, which remained 

constant throughout each simulation. While perfectly acceptable for no-flow simulations in- 

volving relatively small voltages, problems can occur when we wish to apply higher voltages. 
This is because higher voltages cause the transition between relaxed and stressed states to 
happen in a much shorter period of time. Since the size of the time step remains constant, 

we are forced to choose a At which is small enough to accommodate the fastest-changing 

part of the simulation (i. e. the initial switch-on and/or switch-off). The problem with this 
is that much computation time is wasted during relatively static portions of the simulation. 
In the case of very high voltages, it becomes impractical to simulate in this fashion since the 

required At becomes incredibly small. 

To combat this problem, we have employed an adaptive time-stepping algorithm based on 
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the work of liaircr et al. [16]. Given a solution at time t� we compute two separate approxi- 
mations for the solution at time t�+1 = t� + (2 x At,, ). The first, 01, is computed by solving 
the system of equations twice consecutively using a step size of At,, whilst the second, 01, 

uses just one step of size 2x Ot,,. Since both 01 and 0 are approximating the same solution, 
we may obtain an estimate for the numerical error, ERR, at any given time step. For our 
purposes, we use the mesh-dependent L2 measure 

where 

() 
/es + ei+i\ z 

(3.43) D ERß = z: +i - zc 12J, 

e; = 0$ - 
Ö. (3.44) 

Using the error measure calculated in (3.43), we can compute a suitable value for the next 
time step At�+1 using the formula 

Ots+1 = At,, x min 
(facmax, 

mac I facmin, fac x 
(ERscR)T 

, 
(3.45) 

where facmax and facmin are the maximum and minimum factors, respectively, by which 
At,, may be scaled. Our safety factor, fac (< 1), gives us the option of choosing how cautious 
the next time step At, a+l will be relative to acceptance or rejection at t, +l (Algorithm 4, 
lines 10-17). The sc parameter is a user-defined error tolerance. For our simulations, based on 
the advice of Mekwi [301, we use facmax = 2.5, facmin = 0.1, fac = 0.8 and sc = 1.0 x 10-7. 

Note that we also use a `reject' parameter to keep track of when a solution has been accepted 
or rejected. Upon rejection (i. e. reject = 1), we set facmax = 1.0 for the following simulation 

- otherwise, facmax is reset to its default value (Algorithm 4, lines 4-8). This is used to limit 

oscillations in At�+1 between successive simulations [16]. 

ýa) tn+ii: tn, ' ýbý to tn+3/: tn+2 
Figure 3.1: Reject at t,, +l and re-simulate using At�+1. Blue denotes the previous timestep and green 
denotes the current timestep. 
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Algorithm 4 Time adaption algorithm 
Require: Atn, reject, facmin, facmax, fa, cmaxi�it, fac, Sc 

1: compute: 01i ul, 01, ül // updated using the preferred solution method 
2: compute: ERR // computed using equation (3.43) 
3: if reject =1 then 
4: faciax = 1.0 
5: else 
6: facmax = facmaxi,, it 
7: end if 
8: compute: At,, +l // computed using equation (3.45) 
9: if (ERR/sc) < 1.0 then 

10: reject =0 
11: 0(n+1) = 01 
12: u(n+l) = U1 
13: n=n+1 
14: else 
15: reject =1 
16: Atn = Atn+l 
17: end if 

(a) t" tn+, rz tim«, tM3n V. z (b) to tn+, rz tn., tM' tn, ' 

Figure 3.2: Accept at t, }1, where (a) At,, < At�+,, (b) At. < At,, +l. Blue denotes the previous timestep 
and green denotes the current timestep. 

Figure 3.1 illustrates the process of rejection at t.,, +l. In this case, the value of ERR computed 
by equation (3.43) is deemed to be too large, and so the simulation restarts at time to using 
the At�+1 computed by equation (3.45). Note that, by equation (3.45), when a solution is 

rejected we have At,, +l < Atn. The process of accepting a solution at t�t1 is illustrated 

in Figure 3.2. In each of the cases presented in Figure 3.2, the value of ERR computed 
by equation (3.43) is sufficiently small and the simulation continues from time to+1 using 
the Atn+l computed by equation (3.45). It is important, however, to note the distinction 

between Figure 3.2(a) and Figure 3.2(b). In Figure 3.2(a) the error is so small that we can 

afford Ot�t1 to be larger than At,,. In Figure 3.2(b) we have fac 2< ERR/sc < 1.0 which, 
by equation (3.45), translates to a smaller value of Otn+1 relative to Atn. This is important, 

as it allows our simulations to continue evolving in time with smaller, more cautious step 

sizes as ERR/sc approaches 1.0, reducing the total number of rejections in the simulation. 
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Figure 3.3(a) shows the time evolution with step number for an example simulation us- 
ing our time adaption algorithm. The simulation runs for a total of 6.0 x 10'1 seconds 
(modelled-time), with a bipolar pulse which is applied at 2.0 x 10-2 seconds. The polarity of 
the pulse is switched at 3.0 x 10'2 seconds and the voltage is removed at 4.0 X 10-2 seconds. 

(a) Model Time vs. Step Number (b) Step Size vs. Step Number 
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Figure 3.3: (a) Time increasing by timestep, and (b) At,, adapting by timestep. Voltage-on, polarity- 
change and voltage-off are denoted by the red, green and blue dashed lines, respectively. 

The corresponding evolution of At,, is shown in Figure 3.3(b). Initially a small number of 

steps is used to get to time= 0.02 seconds. Then, once the voltage is applied, At,, becomes 

very small due to rapid changes in the system of equations. As the system approaches its 

equilibrium state, At,, increases until, around step 6000, it reaches its maximum range of 

values which maintain stability. This behaviour is observed again, around step 10000, when 
the polarity is changed and when the voltage is removed. 

It should be noted that At,, has range (4.3745 x 10-11,1.5234 x 10-4) and that a total 

of 5x 104 timesteps were taken during this simulation. Using a constant timestepping al- 

gorithm, a total of 6.0 x 10-2/4.3745 x 10-11 ý- 1.37 x 109 timesteps would be required in 

order to obtain the same level of accuracy. 

0 5000 10000 15000 0 5000 10000 15000 
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3.5 Moving mesh algorithm (MMA) 

Until now, a fixed number of node points, N, were evenly spaced along the z-axis for the 
duration of each simulation. The disadvantage in doing this is that, particularly when mod- 

elling high voltages, steep gradients in 0 can develop in certain parts of the cell, which can 
lead to inaccuracy and instability. To maintain stability, we require a high density of node 

points at regions with particularly steep gradients. Conversely, we can afford to have fewer 

node points where 0 does not vary significantly. 

Unfortunately, we will generally not know where steep gradients will occur prior to run- 

ning a simulation. Furthermore, it is possible for the gradient in certain parts of the cell to 

vary from low to high at different times in the simulation. 

One possible solution is to increase N until the density of node points is great enough 
to cope with relatively high gradients in any part of the cell. However, this results in many 

wasted CPU cycles and excessively long simulation times. A far better solution would be 

to distribute the available node points in an intelligent manner at each timestep, such that 

areas with higher gradients receive a higher density of points than areas with lower gradients. 
This technique is known as r-refinement. 

Note that, in initial simulations, a suitable N would be chosen prior to each simulation. 
One problem with keeping N fixed is that the complexity of the solution can vary as the 

simulation evolves. This means that we need to over-estimate N so as to accommodate the 

single most complex timestep of the simulation, resulting in wasted CPU cycles throughout 

the more simple parts of the simulation. A far better strategy is to compute an appropriate 
N at each timestep. This kind of adaption is known as h-refinement. 

We present a combination of the two aforementioned techniques, namely hr-adaption, in 

an effort to accurately simulate our system of equations as efficiently as possible. 

3.5.1 r-refinement 

Let N(") +1 denote the number of node points at time tn. The general principle behind 

r-refinement relies on us having some measure of the relative error at each node-point in 

our domain, which is obtained from a specific monitor function. The node points are then 
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repositioned such that the error is equidistributcd throughout the domain. That is, the z 
coordinate of each of the available N("+1) +1 node points is interpolated such that the error 
at each point in the domain is equal to some quantity S (Algorithm 5, lines 4-13), with 

8N(I-) 

N(n+l) 

where 

(3.46) 

sý =JZA1 (0(z, t), z)dz Ali, (3.47) 
; _o t-1 

and M(O(z, t), z) is the monitor function. Clearly, the choice of monitor function is critical 
to the performance of this routine. Regardless of which monitor function is chosen, it has 

been shown [12,15] that some form of smoothing should be applied to obtain reasonable 

accuracy in the computed solution. We employ the same smoothing algorithm as Mekwi 
[31], namely 

i+P Alkyl k `I 
R1 - 

ýk=i 
p (3.48) 

- i+p Ik-il Ek=i-p 7 

where Ä1 is a smoothed monitor function, p is the smoothing index and ' is the resealed 

smoothing parameter. The final moving mesh equation is now obtained by replacing M1 

with ) f; in equation (3.47). Note that the smoothing index, p, is used to denote the range 

of smoothing, or averaging, and thus a higher value of p will increase the computational 

expense whilst giving a smoother mesh. Huang et al. [19] recommend using a value of p=1, 
2or3. 

For our purposes, we use the well-known scaled arc-length monitor function which is given 
by 

M(B(z, t), z) = r1-+ I9s(z, t)12. (3.49) 

With this particular monitor function, the node points are positioned such that the arc- 
length of the solution 9 between any two adjacent node points is equal. 

The complete routine, adapted from the work of Sanz-Serna and Christie [41], is outlined in 

Algorithm 5. Note that in cases of exclusive r-adaptivity N("+' = N(") 

In all simulations which follow, we have chosen a smoothing parameter of ' j= 2/3 and a 

smoothing index of p=3. Figure 3.4 illustrates the advantages of r-refinement. Note that 
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Algorithm 5 r-refinement algorithm 
Require: N("+1)N(n), z(") 

1: compute: Al // any suitable monitor function, in our case equation (3.49) 
2: compute: if // computed using equation (3.48) 
3: compute: the sj and d // computed using equations 3.47 and 3.46, respectively 
4: for i=2, N("+') do 
5: compute: b= (i - 1)8 
6: for j=2, (N(n) + 1) do 
7: if b< sj then 
8: compute: zin+l) = z(n) + (b 

- sj-1)ýzjni/\sj -s. -1) 
9: GO TO 12 

10: end if 
11: end for 
12: CONTINUE 
13: end for 

(a) Time = 3.5 milliseconds (b) Time 3.6 milliseconds 
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Figure 3.4: Director profiles (a) just before, and (b) just after a change in voltage polarity, using r-adaption 
with N= 50 points. 

before the change in polarity of the voltage (plot (a)), not many node points are required 
near z=0. However, shortly after changing the polarity (plot (b)), the system changes in 

such a way that more node points are needed near z=0. Due to the r-adaption employed, 
the available node points are shifted in such a way that we do not observe mesh starvation 
near z=0. However, the need for points near z=0 causes a reduction in points near z=d. 
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This is because N is fixed. 

3.5.2 h-refinement 

To be more flexible, we may want to increase or reduce N as time progresses. We begin by 
defining a monitor function which measures the global spatial error in the solution at time 
t, namely 

IM) =II M2(0(z, t))dz 12 , 
(3.50) 

where 
A12(0(z, t)) _I Bs; (z, t)I. (3.51) 

Notice that A12(0(z, t)), and hence rj(t), provides a measure of the curvature in B throughout 
the cell at time t. Such a monitor function is ideally suited to our particular problem. For 

example, as 0 becomes straighter the curvature in 0 decreases, implying that fewer nodes are 

needed in order to obtain an accurate solution. Conversely, as 0 becomes more nonlinear the 

curvature in 0 increases, implying that more nodes are needed to obtain an accurate solution. 

At each timestep, we wish to ensure that 

ARTOL < 71(t) < aRTOL, (3.52) 

where RTOL is a user-defined error tolerance, a>1 and 0<0<1. The basic principle is 

to increase the number of node points when the error is too high, giving greater accuracy, 

and to reduce the number of node points when the error is sufficiently small, giving greater 

speed. Note that when equation (3.52) is satisfied we need not alter the number of node 

points. However, should q(t) lie outside of the range specified in equation (3.52), we either 

add or remove node points such that r)(t) is closer to our acceptable error, RTOL. 

Now N("+1) is given by 

I 
N("+1) = (N (n) + 1) x min maxfac, max 

[minfacK (jj) 
(3.53) 

where maxfac and minfac are the maximum and minimum factors, respectively, by which 
N(") may be scaled. Our safety factor, 'c (_> 1), gives us the option of choosing how cautious 
each N("+1) will be relative to our criteria for adding and removing node points. 
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For our simulations, we use a=1.05, p=0.95, maxfac = 2.0, minfac = 0.3, k=1.0 

and RTOL = 1.0 x 10-2. So the number of nodes is only altered when ri(n) is more than 
5% from IZTO1., and N("+1) may be, at most, double N(") and, at least, 30% of N("). 

Note that equation (3.53) does not necessarily produce an integer, so we always round down 

N("+1) to the nearest integer, 

N(n+') +- INT(N(n+l)), (3.54) 

where the notation INTO implies taking the integer part. 

Algorithm 6 h-refinement algorithm 
1: compute: rj(t) // computed using equation (3.50) 
2: if ßRTOL < q(t) < aRTOL then 
3: N(n+1) = N(n) 
4: else 
5: compute: N(n+l) // computed using equations (3.53) and (3.54) 
6: end if 
7: if N(n+l) < N, I, i11 then 
8: N(n+l) _ Ninin 
9: else if N(n+l) > Nn, then 

in. N(n+1) = 4'lflax 
11: end if 

The complete routine for h-refinement is given in Algorithm 6. Note we will specify that 

N(1+1) must satisfy the condition 

Nmin <_ N("+i) < Nmax, (3.55) 

where Nmi,, and Nmax are the minimum and maximum number of allowed node points, 

respectively. In simulations, we typically choose Nm; n = 50 and Nmax = 500. 

Figure 3.5 illustrates the advantages of h-refinement. From Figure 3.5(a), we see that fewer 

node points are required in order to represent a roughly linear director profile. However, more 

node points are required in order to accurately represent the more complicated director profile 
in Figure 3.5(b). With h-refinement, an appropriate number of node points are automatically 

chosen at each time-step. 
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Figure 3.5: An example of h-adaption. (a) The solution is relatively simple, and only N= 50 points are 
required, and (b) the solution is more complicated and N= 155 points are required. 

3.5.3 hr-refinement 

Our final moving mesh algorithm uses a combination of the r- and h-refinement techniques 
discussed in the previous sections. This form of adaption, known as hr-refinement, is out- 
lined in Algorithm 7. 

Algorithm 7 hr-refinement algorithm 
Require: Parameter values 
Require: n=0, reject = 0, Ato, 0(0) 

1: while t,, < tmax do 
2: compute: 6("+1), u("+1) using Algorithm 4 
3: compute: N(n+l) using Algorithm 6 
4: compute: z(n+1) using Algorithm 5 

5: Interpolate O(n+1), u(n+i) from z(") to z("+1) 
6: end while 

As can be seen from Algorithm 7, the only important factor is the order in which the two 
individual forms of adaption are preformed. Clearly h-refinement needs to occur first, since 
the N(i+1) must be known before r-refinement may be used. The final step is to update 

0.0 0.2 0.4 0.6 0.8 1.0 
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0(z, t) and u(z, t) from z(") to z("+1). To achieve this, we use cubic spline interpolation. 
Notice that a uniform mesh may be used by simply removing lines 3-5 of Algorithm 7. 

It should be noted that we perform grid adaption based solely on the director profile, 0, 

and not the flow profile. One of the key reasons for this is that as the director approaches 
any equilibrium state the flow profile tends towards u=0 throughout the cell. Therefore, if 

our moving mesh was dependent on just the flow profile, there is the potential for our mesh 
to be insufficient for representing complicated equilibrium states in 0. Alternatively, using 
both the flow profile and the director profile to formulate our moving mesh would involve 

nondimensionalising each variable and performing some kind of weighting to each variable, 

which would add significantly to the computational expense of our method. 

We also considered using two separate grids for our simulations, with one grid for the direc- 

tor profile and the other grid for the flow profile. This proved to be somewhat difficult to 
implement, since all interactions between 0 and u needed to be interpolated between the two 

grids. Furthermore, the Jacobian matrix in our fully-implicit method became very difficult 

to compute, and we were unable to use our efficient pentadiagonal algorithm for solving the 

resulting system, meaning that, computationally, there was no advantage in using two grids. 

3.6 Method comparisons - no-flow model 

In this section we compare each of our simulation methods for the no-flow model. All simula- 
tions model the same cell which uses the default parameter set (Table 2.1), and we simulate 
from a Vertical state with an initial relaxation of lms followed by a bipolar pulse (of length 

7- = 2.5ms and voltage +50 volts) and a final relaxation of 20ms. Each method is bench- 

marked in terms of speed and accuracy, and our ultimate goal is to determine which method 

gives an optimal balance of accuracy and speed. 

All benchmarks are carried out on Intel Xeon E5345 processors running at 2.33GHz, with 
CPU-time measured using the UNIX time command. 
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Figure 3.6: A comparison between the iuoving mesh algorithm (black line) and a 'i1-node uniform grid 
(red line) when simulating from an initial Vertical state, using the base parameter set, a voltage of V= 'it) 

volts and a dwell-time of r=2.5ms. Plot (1) shows the director profile at each of the key points in our 
bipolar pulse, whilst. plot (II) shows the corresponding relaxations innnediately after the voltage is removed. 

If each grid-type is sufficiently accurate, we would expect some level of agreement between 

the simulation results. However, from Figure 3.6(I)(D), we see that the two simulations relax 

to different final states. Further examination reveals that when the voltage changes I)ohiritý. 
(Figure 3.6(I)(B)) and when the voltage is removed (Figure 3.6(I)(C)) there are significant 
differences between the director profiles at z=d and z=0. respectively. Figure 3.6(11) 

shows the initial relaxation of the director immediately after the voltage is removed. and we 
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can sec that the differences at z=0 magnify as the director profiles evolve. 

While we would expect the moving mesh algorithm to produce the more accurate results, 
Figure 3.6 shows that there is no obvious sign of numerical error in either case, with both 

simulations evolving in a somewhat `sensible-looking' fashion. This highlights the impor- 
tance of testing the solution accuracy across all grid types, as a poorly chosen grid can give 
incorrect results. 

3.6.2 Solution accuracy 

To measure the solution accuracy throughout the evolution of a simulation, accounting 
for any error accumulation, we require a good approximation to the true solution at each 
timcstcp in order to compare against. Note that as the number of node points -º 00, 

our discretised differential equations approach continuous differential equations. Therefore, 

simulating with a sufficiently high number of node points allows us to obtain a good approx- 
imation to the exact solution, °exact, at each timestep. Now, given some approximation to 
eexact, say, 9, the maximum absolute error in 0 at each time step is given by 

Eß(9) = max 16 - Oexact1, (3.56) 

whilst the Euclidean error at each time step is given by 

IN Eß(9) =N ý(ec 
- Oexact; )2. (3.57) 

s_i 

Finally, for any given simulation, we measure the average infinity and Euclidean errors, across 
all time steps, which we denote Eß(6) and E2(6), respectively. Note that Bexact must be 

interpolated onto the same grid as B before computing the error measures given by equations 
(3.56)-(3.57). We achieve this using cubic spline interpolation. For our purposes, °exact is 

computed on a uniform grid using 100,001 node points. 

3.6.3 Differences between time integration methods 

We briefly compare the differences between each of the time integration methods as the num- 
ber of node points are increased. Figure 3.7 shows the CPU-time varying with number of 
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nºxlº' points. NOtC, froººº Figure 3.7(1)), that, for > 186 uººº1º' points. the I'll llV-itulºIi("it uºctliu(I 
is the fastest of the three methods when a nºiif<ruº grid is used. Also, ('l II-tinºe for the 
filly-implicit iiuetIiud increases roughly liuenrly Is the rnºuººloer of in 1e points is increased, 

whilst for the explicit and senºi-iºnlºlicit methods the C'I'll-tiºne irnº"reatises exponentially as 
the number of 11O(le points increases. 
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Table 3.1 shows how the CPU-time varies as the node points are doubled for each time inte- 

gration method on a uniform grid, along with the CPU-time required when a moving mesh 

algorithm is used. Note that Table 3.1 uses the same data as in Figure 3.7. We see that the 

fully-implicit method scales very well as the number of nodes are increased. The poor scaling 

of the explicit and semi-implicit methods may be attributed to the Courant-Friedrichs-Lewtý 

(CFL) Condition [441 which states that an explicit, method is unstable unless the time step 

remains sufficiently small relative to the distance between adjacent node points. By increa. s- 
7118 the number of node points, we are automatically decreasing the distance between node 

points. Therefore, in addition to requiring more CPU-time at each time-step, the explicit 

and seini-iniplicit methods require more (smaller) time-steps for each simulation. 

The accumulated errors for each time integration method are also shown in Table 3.1. Notice 

that the accumulated error is almost exactly the same for each method. 

Additionally, frone Figure 3.8, we see that the errors are almost identical for each of the 

0 100 200 300 400 



3.6 Method comparisons - no-flow ufl)(Iel 60 

Table ; 3.1: The ('I't -I inie (measured in seconds) and t he average value of I: ', (O), over all Iitne-stefiti, Ger 

( ai im time integration method as we increase the nunil>er of munde points. 

Time Integration Sncenie 

Nodes Explicit. Si9ni-Iiu))lic"it l ullý-liulýlic it, 

('PU_t. itne (B) (PU-tünýL'ý (0) ('PiJ-t, inu' ls, 
t, 

(0) 

51 0.711 0.71325K 0.78 0.71325( 1. il0.713217 

101 1 2. l/ß 0.711652 1 1.88 0.711618 1 3.07 0.71 116.1.1 

201 1 PI. 66) 0.710837 1 7.24 0.7108: 11 1 6.24 0.710831 

401 1 218.32 0.07,156 11 69.1,? 0.07.9708 1 /2.18 0.074753 

801 1 1760.89 0.021531 1 550.73 0.021573 1 24.71 0.021580 

1601 14142.94 0.005382 4415.86 0.005398 47.76 0.005397 

DI INI A (51: 81) 61.2.9 0.006611 23. 0.006552 2.55 0.006590 

(a) Max. Infinity Error (b) Max. Euclidean Error (c) Ave. Infinity Error (d) Ave. Euclidean Error 
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Figure 3.8: Accumulated error measures varying with t he ininnber of node points (black explicit nivt hod, 

red seUli-im{)licit, nmethod, blue fully-implicit biet hod). 

three methods at each time-step. This implies that the adaptive tinie-stepping algorithm 

controls the error in exactly the same way, regardless of which time integration method is 

used. This also shows that the errors are dependent on the spatial grid used and not the 

time integration method. Note that for this run of our model. with < 231 nodes we converge 
to the wrong final state, whilst > 236 nodes gives the correct final state. This corresponds to 

the jump in CPU-tithe that occurs when the nodes are increased frone 231 to 236 in Figure 



3.6 Method comparisons - no-flow model 61 

3.7(b). So the semi-implicit and explicit methods require significantly more CPU-tinle to 

obtain the correct final state. 

Since the time integration method has been shown to have no effect on the accumulated 

solution error, we only use the fully-implicit method throughout the remainder of this sec- 
tion. 

3.6.4 Differences between mesh types 

Table 3.2: Accumulated error measures for a variety of different uniform grids with the corresponding 
errors relating to the moving mesh algorithm. The CPU-time is also provided in each case. We use the 
fully-implicit method in each case, and °exact is simulated using a uniform grid with 100,001 node points. 

N MA Node points CPU-time (s) max E,,. (B) max E2 (B) R" 
"(d) 

A (©) 

off 51 1.51 

off 101 3.07 

off 201 6.24 

off 401 12.18 

off 801 24.71 

off 1601 47.76 

1.206258 0.896107 0.713247 0.493587 

1.206258 0.882171 0.711644 0.488309 

1.206256 0.870989 0.710831 0.483301 

0.262178 0.008736 0.074753 0.003240 

0.074328 0.002336 0.021580 0.000851 

0.018112 0.000646 0.005397 0.000216 

on (51: 81) 2.55 0.022638 0.001717 0.006590 0.000766 

Table 3.2 shows the accumulated errors, over all time steps, for B, together with the CPU- 

time required for each simulation as the number of node points is varied. As expected, 
increasing the number of node points increases the required CPU-time whilst decreasing 

the accumulated error. Also note that the moving mesh algorithm uses no more than 81 

node points at any given time throughout the simulation. Notice that, for this particular 

cell, simulating with 51-201 node points on a uniform mesh produces extremely inaccurate 

results. From Figure 3.9, note that with < 236 nodes the simulations converge to the wrong 
final state. Therefore, the moving mesh algorithm is the fastest scheme for which the correct 
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From Figure 3.10(a), we see that > 1441 nodes are required on a uniform grid to achieve 

it lower maximum infinity error than the moving mesh algoritlºiu. Similarly, froiºº Figure 

3.10(b). we require > 951 nodes to obtain a lower maximum Euclidean error than the 

moving mesh. whilst Figure 3.10(c)-(d) shows that more than 1456 and 846 nodes are needed 

to achieve a lower average infinity error and a lower average Euclidean error, respectively, 

than the moving mesh algorithm. 

Table 3.3 shows that, regardless of which error measure is used. the uniform grid requires 

significantly more CPU-time to achieve the same level of accuracy as the moving mesh 

algorithm. At best, the uniform grid takes 9.89 tinges as long to simulate to the same 

accuracy, and at worst the uniform grid is shown to take over 19 times as long as the moving 
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3.6.5 Extension to other voltages 
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Comparing Figure 3.11(a) with Figure 3.11(b) shows that the initial state of the director 
has a negligible effect on the CPU-time required to simulate a cell without flow effects, re- 

gardless of which method is used. Also, higher voltages generally require more CPU-time to 

simulate. This is somewhat expected, as our adaptive time-stepping algorithm is designed 

to force small time steps when the system undergoes rapid change, and we expect higher 

voltages to alter the system at a faster rate. 

It should be noted that each of the lines in Figure 3.11 are not symmetrical about V=0. 

This is to be expected, since the flexoelectric effect at each surface is dependent on the po- 
larity of the voltage. Therefore negative and positive voltages give different results, which is 

then reflected in the CPU-time. 

From Figure 3.11, we see that the explicit (and, to a lesser extent, the semi-implicit) method 

uses considerably more CPU-time than the fully-implicit method as the voltage increases in 

magnitude. This may be attributed to the CFL Condition. Higher voltages typically induce 

steeper gradients in the system, and since our moving mesh algorithm is specifically designed 

to increase the density of node points around steeper gradients, the CFL Condition suggests 
that more CPU-time should be required to simulate higher voltages using an explicit scheme. 
Since the semi-implicit method contains some explicit terms, we also expect (by the CFL 

Condition) simulations to take longer when a higher voltage is applied. 

For > 15 volts, the fully-implicit scheme proves to be the fastest method. For lower voltages, 
the fully-implicit method is seen to be marginally slower than the explicit and semi-implicit 

schemes. However, over all voltages the fully-implicit scheme is significantly faster then the 

explicit and semi-implicit schemes and is therefore our preferred form of time-integration. 

3.6.6 The optimal method 

We have shown that, given a spatial grid, all three time integration schemes produce almost 

exactly the same results for this particular problem. However, for a higher number of node 

points (> 186), the explicit and semi-implicit methods demand substantially more CPU-time 

than the fully-implicit method. We therefore recommend using the fully-implicit method. 

Regarding grid-types, we have shown that a moving mesh algorithm is almost essential 
in order to prevent large accumulated errors over the course of a simulation whilst maintain- 
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ing a relatively low CPU-time. We therefore conclude that the fully-implicit method with a 

moving mesh algorithm gives an optimal balance of speed and accuracy. 

In addition to the benefits in terms of CPU-time, the moving mesh algorithm also has the 

advantage of requiring very little user intervention. Much like the adaptive time-stepping 

algorithm, the moving mesh algorithm ensures that a high degree of accuracy is obtained as 

efficiently as possible, regardless of which cell type is used. 

So far we have only considered the no-flow model. Close to z=0 and z=d, the 0 

equation typically exhibits high gradients and significant changes over time. However, we 

will see that a sterner test of our numerical method will be in the flow model, where steep 

gradients and small time-scale changes can occur anywhere in the cell. 



3.7 Method comparisons - flow model 66 

3.7 Method comparisons - flow model 

In this section we compare each of our simulation methods for the flow model. All simula- 
tions model the same cell which uses the default parameter set (Table 2.1), and we simulate 
from a HAN state with an initial relaxation of ims followed by a bipolar pulse (of length 

r=2.5ms and voltage +50 volts) and a final relaxation of 12ms. Each method is bench- 

marked in terms of speed and accuracy, and our ultimate goal is to determine which method 

gives an optimal balance of accuracy and speed. 

As with the no-flow model, all benchmarks are carried out on Intel Xeon E5345 proces- 

sors running at 2.33GHz, with CPU-time measured using the UNIX time command. 

3.7.1 Solution accuracy 

As in the no-flow case (Section 3.6.2), we compute the maximum absolute error in B, ES(B), 

and the Euclidean error in 9, E2(9), using equations (3.56)-(3.57). Additionally, given a good 

approximation to the exact solution of the flow velocity equation, Uexact, we may compute 
the maximum absolute error in fl at each timestep by 

Eo- (ü) = max Iü- uexact1, (3.58) 

whilst the Euclidean error at each time step is given by 

N 

i(ü) =N ý(üt 
- uexact; )2" (3.59) 

=i 

For this section, the exact solutions Bexact and uexact are computed on a uniform grid using 
100,001 node points. 

3.7.2 Differences between time integration methods 

We again compare the differences between each of the time integration methods as the num- 
ber of node points are increased. It should be noted that we do not provide any results 

using the explicit method, since all attempts to use our explicit method failed, producing 
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Figure 3.12 shows the CPU-türsee varying with imni wr of ii le points. Note, from Figure 
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Table 3.4 shows how the CPU-time varies as the node points are doubled for each time 

integration method on a uniform grid, along with the CPU-time required when a moving 

mesh algorithm is used. Note that the fully-implicit method scales very well (is the minil>er 

of nodes are increased. As in the no-flow case. the poor scaling of the semi-implicit method 

niav be attributed to the CFL Condition. 

The accumulated errors for each time integration method are also shown in Table 3.4. Notice 

that the accumulated error is almost exactly the same for each method with respect to the 0 

variable. However, there are notable differences between the methods when considering the 

u variable. Note that we expect there to be some fluctuation here, since the semi-implicit 

method decouples the 0 and u equations whilst the fully-implicit method solves both equa- 

tiuns simultaneously. 
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Table 3.4: The CPU-time (measured in seconds) and the average values of E2(Ö) and E2(ü), over all 
time-steps, for each time integration method as we increase the number of node points. 

Nodes 

Time Integration Scheme 

Semi-Implicit Fully-Implicit 

CPU-time E2(B) E2(ü) (x10-4) CPU-time p2(0) P'2(ü) (x10-4) 

51 1.03 0.284695 0.208384 2.66 0.284683 0.208289 

101 2.47 0.276309 0.202278 5.34 0.276297 0.201948 

201 9.57 0.269487 0.19GG30 10.94 0.269483 0.196376 

401 91.49 0.008354 0.059818 22.98 0.008359 0.060850 

801 737.39 0.002017 0.015271 41.96 0.002016 0.016204 

1601 5787.21 0.000505 0.005850 100.52 0.000504 0.005604 

MMA (51: 81) 32.53 0.001163 0.011229 3.96 0.001167 0.005578 

Additionally, from Figure 3.13, we see that the errors are almost identical for each of the 

three methods at each time-step for the 0 variable. As in the no-flow case, we can conclude 
from this that the adaptive time-stepping algorithm controls the error in exactly the same 

way, regardless of which time integration method is used. However, for the u variable we 

see that the errors between methods are inconsistent. Again, we may relate this back to the 
decoupling of the 0 and u variables in the semi-implicit method. Also note that the adaptive 
time-stepping algorithm only concerns itself with the relative errors in 9, leaving any errors 
in u unregulated. Therefore, the semi-implicit method has no control over errors specific to 

u, whilst the fully-implicit method loosely controls errors in u using its convergence criterion. 

A further point to note from Figure 3.13(11) is that the maximum infinity errors in ü (Figure 

3.13(II)(a)) behave in an unpredictable manner, with an increase in node points not neces- 

sarily resulting in a decrease in E,,, (ü). On the other hand, E2(ü), Eý(ü) and, particularly, 
E2(ü) behave in a much more sensible fashion. Since a higher number of node points are, in 

general, expected to provide a more accurate simulation, we conclude that E. (ü) is an un- 
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Figure 3.13: Accumulated error measures varying with the number of node points (black seini-implicit, 

method. red fully-implicit met hod). l'lot (1) shows error measures for 9 whilst plot (11) shows the 

corresponding error measures for ü. 

reliable error measure for ü. A far more useful and informative error measure is the average 
Euclidean error, E2(ü). 

Since the tillic integration method has been shown to affect the accumulated solution error 
in the flow profile, we consider both the semi-implicit and fully-implicit methods throughout 

the remainder of this section. 

3.7.3 Differences between m esh types 

Table 3.4 shows the average Euclidean error. over all time steps. for both B and i, together 

with the CPU-time required for each simulation as the number of node points is varied. 
As in the no-flow case. we see that increasing the number of node points increases the 

required CPU-time whilst decreasing the accumulated error. Also note that the moving niesh 

algorithm uses no more than 81 node points kit, any given time throughout the simulation. 
\otice that, for this particular cell, simulating with 51-201 node points on a uniform mesh 

produces extremely inaccurate results. From Figure 3.1-1, nute that with < 290 nodes the 
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Figure 3.14: Accumulated Euclidean error evolving through time for four different uniform meshes. In 

each case, the black line represents the number semi-implicit method whilst the red line represents the full y- 
imnplicit method. We also show the accumulated Euclidean error when a moving mesh is employed (green 

semi-implicit method, blue fully-implicit method). 

simulations actually converge to the wrong final state. Therefore, as in the no-flow the 

moving mesh algorithm is the fastest scheme for which the correct final state is obtained. 

From Figure 3.15(I)(ä) and Figure 3.15(II)(a), we see that significantly more than 1600 nodes 

are required on a uniform grid to achieve a lower maximum infinity error, for both H amid 

ii, respectively, than the fully-implicit moving mesh algorithm. However, as discussed in 

Section 3.7.2, this may be due to the infinity error measure itself as opposed to the solution 

accuracy of the simulations. We also see from Figure 3.15(I) that, as previously stated, there 

is very little difference in the accumulated errors in 6 between different time integration 

methods. Regarding it, we see frone Figure 3.15(11) that the fully-implicit method performs 

significantly better than the semi-implicit method when a moving mesh is employed. This 

is likely to be due to the convergence criterion of the fully-implicit method, which requires 

that ii obtains a specific relative error at each time-step before allowing the simulation to 

continue. The semi-implicit method, on the other hand, allows fi to evolve in an unregulated 

fashion. It is interesting to note, however, that the discrepancies in i do not appear to have 

any measurable impact on 9. 
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Table 3.5: The ntunhcr of truck' })Dints required. Oil a tuiiforlil grid, to obtain a lower average Eucliiteati 

crrOr titan the hilly-implicit Nt\IA. Also included is the ('Ply-tituc and its ratio relative to thc hilly-implicit 

\INIA CPU-time (= 3.96s). 

Error Method Nodes Required CPU-time (s) (PU-tine Ratio 

Seini-Iiuhlicit 1056 1655.05 . 117.94 
E2 (9) 

Fu lly-Implicit 1056 6(1.27 15.22 

Semi-Implicit 1601 5787.21 1461.42 
E2 (ii) 

Fully-Implicit 1601 100.52 25.38 

Table 3.5 shows that simulating with a uniform grid requires significantly more CPU-tinte to 

achieve the sinne level of accuracy a L,; the fully-imhlicitmoving mesh ; ilgoritlint. reg, r( of 

which time integration method is eniployedl. AVe see from Table 3.5 that, in order to achieve 

the same level of accuracy in 0, the uniform niesh requires roughly fifteen times as much 

CPU-time gis the fully-implicit moving mesh algorithm. In order to achieve the same level 
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of accuracy in ü, the uniform mesh requires roughly twenty-five times as much CPU-time as 
the fully-implicit moving mesh algorithm. When comparing the semi-implicit uniform mesh 

with the fully-implicit moving mesh, note that the fully-implicit moving mesh is up to 1400 

times faster. 

Table 3.6: The number of node points required, on a uniform grid, to obtain a lower average Euclidean 

error than the semi-implicit MMA. Also included is the CPU-time and its ratio relative to the semi-implicit 
MMA CPU-time (= 32.53s). 

Error Method Nodes Required CPU-time (s) CPU-time Ratio 

Semi-Implicit 1056 1655.05 50.588 
E2 (d) 

Fully-Implicit 1056 G0.27 1.85 

E2 (u) Semi-Implicit 986 1343.40 41.30 

Fully-Implicit 986 56.35 1.73 

Note from Table 3.6 that, while still faster than the uniform mesh simulations, the semi- 
implicit moving mesh simulation does not give as high a performance increase as the fully- 

implicit moving mesh when simulating to the same level of accuracy. This is partly due 

to the lower accuracy of ü which is incurred with the decoupling of the equations in semi- 
implicit method. Also, as we saw in the no-flow case, the semi-implicit method requires 

smaller time-steps in order to compensate for the CFL condition. 

3.7.4 Extension to other voltages 

So far we have only considered the case in which 50 volts are applied to our cell when sim- 

ulating from an initially HAN state. We now investigate how the CPU-time varies with 

applied voltage, with the results shown in Figure 3.16. 

Comparing Figure 3.16(a) with Figure 3.16(b) shows that the initial state of the director 

significantly affects the CPU-time required to simulate a cell when modelling flow effects, 

especially when the semi-implicit method is used. This is due to the backflow and kickback 

effects associated with the Vertical state. As we shall sec (Section 6.1), a large amount a 
director kickback is often produced when simulating from an initially Vertical state, which 

causes the moving mesh algorithm to focus a large number of node points in the centre of 

the cell. This results in a much higher number of operations at each time-step and, in the 
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Also, as is the case with the no-flow model, higher voltages generally require more ('Pi 1-tinic' 

to simulate, regardless of the initial state. However, this characteristic is far more pronrnitºc"ecl 
for the semi-implicit method, where the CPU-timnce increases exponentially with the applied 

voltage. In contrast, the CPIT-time for the fully-implicit 

with the applied voltage. 

For greater than 10 volts. the fully-implicit scheme proves to he the faster method when sinn- 

ulating from a HAN state, whilst for an initially Vertical state we sec that the fill IN"-irni}plicit, 

method is faster for anything greater than 11 volts. For lower voltages, the fully-implicit 

method is seen to be marginally slower than the semi-implicit sche111e. However, over all 

voltages the filly -implicit scheme is significantly faster then the explicit and semi-inmplicit 

schemes and is therefore our preferred form of tithe-integration. 

3.7.5 The optimal method 

We have shown that both the semi-implicit and fu lyy-implicit methods produce almost ex- 

acctly the same results in terms of 0 for this particular problem. This is likely to he (inc to 

the time-adaption algorithm. which appears to control the errors in 0 in a consistent fashion 
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across both time integration methods. Errors in ü, on the other hand, are not regulated 
by the time adaption algorithm. This is reflected in Section 3.7, where we have shown the 

errors in ü to be inconsistent across the time integration methods. The fully-implicit method 

was shown to be the more robust in modelling ic, which can be attributed to its convergence 

criterion which attempts to account for any irregularities in both 8 and ü. This highlights 

a possible area for improvement in our numerical methods, namely expanding the adaptive 
time-stepping algorithm to account for discrepancies in the flow profile. Note that this would 

require additional research to be carried out on nondimensionalisation of the flow equation. 
For this particular test cell, the differences in is did not induce any noticeable differences in 

B, though this may not necessarily hold true for all cases. 

Regarding grid-types, we have shown that a moving mesh algorithm is absolutely essential in 

order to prevent large accumulated errors over the course of a simulation whilst maintaining 

a low CPU-time. As in the no-flow case, the moving mesh algorithm also has the inherent 

advantage of requiring no user intervention, thereby ensuring that a high degree of accuracy 
is obtained as efficiently as possible. We therefore conclude that the fully-implicit method 

with a moving mesh algorithm gives the optimal balance of speed and accuracy. 

3.8 Summary 

In this section, we have introduced the numerical methods that are to be used for solving 
the systems of equations derived in Section 2. Based on the results obtained in Sections 3.6 

and 3.7, we have concluded that the fully-implicit method with adaptive time-stepping and a 

moving mesh algorithm provides the best balance of speed and solution accuracy. Therefore, 

we employ this method for the remainder of our investigation. 

In the next section, we devise a routine for using our numerical methods to trap the rV 

plots corresponding to a specific parameter set. 
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One method for finding switching regions is to overlay a grid ()f points on the testing area, 

test each point and record whether or not the V stem switches. This h-pe of Mute-. force 

method (Figure 4.1) is extremely inefficient as we require a relatively fine grid in order to 

reasonably approximate the boundary of the switching region. 

A far more efficient method is to be able to trace the outline of each switching r(gion, as 
in Figure 4.2. We have therefore developed a highly ol)tiniiseecl line-tracing algorithm for 

generating rV'-plots. Our algorithm comprises four key parts, namely: (i) finding a single 

point that switches between states, (ii) locating the boundary of the switching region, (iii) 

tracing around the switching region, (iv') finding any additional switching regions. 

0.0 0.5 1.0 1.5 



. 1.1 Detecting a switch between states 

(a) Smothed Output (b) Final Output 

rn 

\0 
""0C)000C)00 

0 00000 0O O(XD 

O0 
11 -- i-mai TTI111 

0.0 05 1.0 1.5 2.0 2.5 00 0.5 10 15 20 25 

Time (milliseconds) Time (milliseconds) 

76 
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4.1 Detecting a switch between states 

In order to produce a TV-plot. we need to be ahlc, toi reliably detect WWhcther Or 11()t ;I "'witch 
i)ctwccii states occurs for ýt given voltage pulse. Ati'hcii testing an individual (r. V) point 

manually, this process is relatively straight-forward: the final state can he determined sim- 

plv by looking at the evolution of the director profile as the cell relaxes - when the director is 

sufficiciitly clOsc to one of' the two stable states, we stob the situtilatiou and rccýýrýi a ('1 
if and only' if the final state differs from the initial state. 

However. our code needs to he able to detect the final state auttomatiý"; illý". Let its de- 

note By and By as the director profiles for the zero voltage relaxed HAN ands Vertical states, 

respectively, with 0(z, 1) as the director profile for the current simulation at time 1. An initial 

method used for determining the final state for a given test point was very crude. nvnely 

1. Once the voltage had been removed, the simulation was given an arbitrary length of 
time to relax, t= trela.. x seconds. 

2. After this relaxation period we examine the director orientation at the bistahle surface, 
0(0, 'relax). 

3. If 0(0. trelax) < (01 + a2)/2. the location of the surface energy maximum, we conclude 

that the test point relaxes to the HAN state. Otherwise, we conclude that the test 
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point relaxes to the Vertical state. 

This method has a number of drawbacks. Since a common relaxation time trelax is used, 

many simulations are likely to relax for an unnecessarily long length of time, dramatically 

increasing simulation time. Furthermore, some simulations may not relax long enough, giv- 
ing inaccurate readings. Clearly a more robust and efficient method is needed if we are 
to automatically detect switching in a bistable cell. Since simulation time is expensive, we 
ideally want to determine the final relaxed state as soon as possible once the voltage has 

been removed. 
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Figure 4.3: Simulations giving (a) the relaxed H AN state, and (b) the relaxed Vertical state. 

In preparation for our improved state-detector, we must first compute the relaxed director 

profiles for the HAN and Vertical states. 0,1(z) is obtained by simulating, with no applied 
field, for a sufficiently long period of time using a linear profile from 0(0) = al to 0(d) = 7c/2 

as our initial state, illustrated in Figure 4.3(a). To obtain Ov(z), we use a linear profile from 

0(0) = a2 to 0(d) = 7r/2 as our initial state (Figure 4.3(b)). 

Since we only need to compute the relaxed states once, we can afford to be over-cautious 

with the relaxation times used here. Also note that the adaptive time-stepping algorithm 

we employ will take larger time-steps the closer the director profile gets to an equilibrium 

solution, so longer relaxation times are always desirable. Our default relaxation time is taken 

to be 100 modelled seconds. 
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OA, (') (0H(ý, ) + 01 (1.1) 

0n(z) = OV(Z) - H11(Z). (1.2) 

the nIi(l-lilR' of 11 ie two states and the (liffi'reIwe I)etWeeII t114'týV)st, it4'. rc", l)I '("tiveiv. (hir 

"afety-zone, B. ý( ), is tlieii defined 1)V the interval 

(0.5 x buffer x 01)(z)) < (0.5 x buffer x ll�(Z)). 

where the 'buffer' (< 1.0) is a itSPr-defined c"cn1Stant, tvf)icallV taken tc Ixe 2.5 x 10 2 in our 

Siinitlatiotis. "I'hc' safety-icme is used to ensure that we are sufficiently celcosce to a relaxed state 
before making urrar final decision. 

Our final decision is based on the dlirl'c for nrientatiou at 1, ('riti( al t(st-l)füits. =,. rit 
ý, _ 1....., ... , ;, l� Ihroughouul the cell. It is essential for cane of the test points to be l)l, +c-ed 

at (1.0, since it is on the histaahlc' surface. We also advise at least one further test point 
he placed at, z= d/2, as this will give a good representation of the director profile in the 

bulk of t lie cell. For our purposes, we use p3 evenly-spaced points in t lie first half of the 

cell to determine the final state (Figure 4.4). 
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Figure 4.5: Three directOr relaxations superimposed om it)(' final-st at e det ('ct m". 

Three exaºiºI)Ics of our tºcw tºic'tlºud for detecting a fiººal state ýºrº' given in Figure 1.5.11i plot 

(a) the director is contained within the safety-zone atz = 0. ;O we cannot yet determine the 

final state. In }plots (b) and (c), however, the director is not contained within H,, at ally of 

the three test points. so the fiººztil state may be (let criººitºed. 

We also check for the possibility that the director relaxes into a state which is different 

frone either of the II AN and Vertical states. This can, in theory. occur when nºoclelling with 

flow and high applied voltages. Flow-induced kickback has beeil seen to force the clirec- 

tor above 7r/2 near z=d. In some cases, it may be possible for this kickback to create 

enough torque to break the bistahle surface anchoring and take 0(0,1) towards (Tr + (11). 

To account for this, our algorithm for determining the final state must first ensure that 

9(z, t) E (0,7r/2)`d~ before the test is performed. 
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If, after a sufficiently long period of time (1.0 modelled seconds, say), the final relaxed 

state is still undetermined, we compute the optical transmission, T(t), through the cell, us- 
ing equation (2.61). This value is compared with the known optical transmissions for the 

relaxed HAN and Vertical states, T,, and Tv, respectively. The final state is then taken to 

be that for which the transmission T(t) is closest to. 

Algorithm 8 Final State Detection 
Require: time 
Require: T11, Ty, zcrit 
Require: OS // computed using equation (4.3) 
Require: 9(z, t) If updated using the preferred solution method 

1: if time < 1.0 then 
2: if (Voltage = 0.0) and (0 < O(z, t) <7r/2) tlien 
3: if O(zcrit; ) > max (BS(zcriti)), (i = 1... p) then 
4: Cell relaxes to the Vertical state 
5: else if 6(zcrit; ) < min (©S(zcrit; )), (i = 1... P) tlieti 
6: Cell relaxes to the HAN state 
7: end if 
8: end if 
9: else 

10: compute: T(t) 
11: if IT(t) -TAI < IT(t) -THE then 
12: Cell relaxes to a state which is optically similar to the Vertical state 
13: else 
14: Cell relaxes to a state which is optically similar to the HAN state 
15: end if 

16: end if 

Using this improved method for determining the final state (Algorithm 8), we can reliably 

and efficiently determine the final state during the director's relaxation. If the final state 
differs from the initial state, we conclude that the cell has switched between states. Other- 

wise, we conclude that the cell has not switched between states. 

Equipped with Algorithm 8, we may now test for points that induce switching between 

states. 
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4.2 Finding a point that switches 

Given a grid of test points, our goal is to determine which points cause switching between 

states. In this section, we need only concern ourselves with finding a single point that 

switches. One simple way of doing this is to recursively test each point on the test grid until 

a switch is detected. 

(I) Test Grid (II) Monopolar Pulse 
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Figure 4.6: (I) A simple 4x4 rV grid. (II) A cnonopolar pulse of (r, V) = (0.6,10), which is used to test 
for switching at points (a), (b), (c) and (d) in Figure 4.6(I). 

For simplicity, let us consider a grid of 4x4 points as in Figure 4.6(I). Because of the dif- 

ferent T and V values at each point, let us also assume a different monopolar pulse is to 

be applied for each point. Figure 4.6(11) shows a typical monopolar pulse with dwell time 

T=0.6 milliseconds and magnitude V= 10 volts, where the points (a)-(d) correspond to 

times T=0.0,0.2,0.4,0.6 milliseconds. A snapshot of the director profile at each of the key 

points is shown in Figure 4.7. 

Typically, to test the points on the TV plot (r, V) = (a) (0,10), (b) (0.2,10), (c) (0.4,10) 

and (d) (0.6,10) we would run four separate simulations. Each simulation would start in 

the relaxed state, we would apply V= 10 volts for the prescribed dwell time, and relax 

until the final state is determined. However, this approach results in simulating from time 

= (0.0,0.2)ms three times and time = (0.2,0.4)ms twice. Since simulation time is expensive, 

we wish to avoid repeating computations whenever possible. Therefore, a far more efficient 

approach is to simulate once with (rr, V) _ (0.6,10), storing the director profile and flow 

(a) (b) lW (d) 
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Figure 4.7: Director profiles taken at the points corresponding to Figure 4.6(11), starting in the H AN state. 

velocity at the points (b), (c) and (d), and then simply simulating the three relaxations to 
determine the final state in each case. 

In general we use a test grid of 20 x 20 points, so instead of simulating for 400 separate 
dwell times it is only necessary to simulate with 20 dwell times, leading to substantial sav- 
ings in simulation time. This method also applies to bipolar pulses, in which case, for each 

voltage, we simulate for the longest dwell time and store the required data through to the 

change in polarity. 

In the event that all test points are found to not switch, we conclude that no switching 

regions exist within the test region. Alternatively, if a test point is found to switch we 

can proceed to find the boundary of the switching region, using the method outlined in the 
following subsection. 

4.3 Finding the boundary of a switching region 

Given a point, (rf, Vf), that causes switching, we now wish to find the boundary of the 

switching region. To achieve this, we first need to locate some other point on the test grid 
that is known not to cause switching. Note that any point corresponding to r=0 cannot 
induce switching since, for any voltage V, a dwell time of exactly 0 milliseconds will have no 

effect on the cell. For simplicity, we therefore always select the point (r, V) = (0, V) as our 
known `no switch' point. 

We may now use the Bisection Method (Algorithm 9) to estimate the location of the bound- 

ary of the switching region to within a user-prescribed tolerance rs. The Bisection Method 
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Algorithm 9 The Bisection Method 

Require: 7-(10w), T(high), Ts, V 
Ensure: 6= T(high) - T(1ow) 

1: while ö> Ts do 
2: 'r = (T(low) + T(high)/2.0 
3: compute: switchl(T, v) // returned from Algorithm 8 

4: if switch=TRUE then 

5: T(high) =T 
6: else 
7: T(IOW) 
8: end if 
9: 6= T(high) T(1ow) 

10: end while 

takes two points, (T(IOW), V) and (T(high), V), which lie outside and inside the switching region, 

respectively, and repeatedly divides the interval in half, each time selecting the subinterval 

containing the boundary. Once the subinterval is smaller than some prescribed tolerance, r5, 

the algorithm concludes that it has found a sufficiently accurate estimate for the boundary. 

This is illustrated in Figure 4.8, which takes the initial input parameters r(joW) = O. Oms, 

T(high) = 'rims, V= Vf volts and Ts = 0.05ms. Note that only six iterations are required to 

obtain the required accuracy for our estimate. 

Now that we have located the boundary of the switching region, we may attempt to trace 

around that region. However, in order for our tracing algorithm to avoid crossing over a 

previously traced route, we must be able to determine whether or not two line segments 

intersect with each other. When attempting to find additional switching regions, we must 

also be able to determine whether or not a point lies inside a polygon. We therefore proceed 

by introducing some background theory in line segment intersection. 

4.4 Line segment intersection 

Line segment intersection is a problem that is frequently solved in computer graphics appli- 

cations, primarily in routines involving polygon clipping. The work presented here is based 

on the Usenet discussion referenced in [43). 

Consider four points, pl, P2, ql and q2, in a plane, which describe the line segments pi -º pz 

and ql -+ q2, as in Figure 4.9(a). For the two line segments to fully intersect, the following 
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Method. Blue indicates switching from the H AN state to the Vertical state, whilst red indicates no switching. 
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Figure 4.9: Four points describing (a) two line segments, and (b) three vectors. 

conditions must be satisfied: 

1. the points pi and p2 must lie on opposite sides of the line ql -º qz, 

2. the points ql and q2 must lie on opposite sides of the line pl -+ pz. 
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Now, using the same four points, let us define the projections 

Q= (92: - 91=, 92y - 9i1,, 0), 

_ (Pt: - 9t:, Pty - 9t1,, 0), (4.4) 

S= (P2= - gis, P2� - 9tß,, 0), 

illustrated in Figure 4.9(b). Taking the cross-product of 
Q 

and 
R 

gives 

QX It 
= IQIIRI sin(©)k = Ak, (4.5) 

where 0 is the angle made by Q2i ql and pl, as illustrated in Figure 4.9(b), and 

A= ((92: - 9i: )(pi, - 9i,, ) - (Pi. - 9i=)(g2, - q1 )). (4.6) 

Therefore, by equation (4.5), A and 0 have the same sign, and so the sign of 0 may be deter- 

mined by computing A using equation (4.6). Note that positive values of 0 correspond to the 

points q1, Q2, pi defining a counter-clockwise triangle, whilst negative values of 0 correspond 
to ql, q2, pi defining a clockwise triangle. Equivalently, the sign of 0 determines whether pi 
lies on one side of the line ql -º q2 or the other. 

Using the same approach, we may determine the sign of ¢, the angle made by q2, ql and P2 
(see Figure 4.9(b)), and hence the position of p2 relative to ql --+ q2, by 

QXS= IQIISI sin(O)k = Bk, (4.7) 

where 
B= ((42: - gl. )(P2v - 9ly) - (p2. - qi) (92v - qtr)). (4.8) 

Note that the points pi and p2 lie on opposite sides of the line ql -º Qz if and only if 0 and 
0 have opposite sign, i. e. 

AxB<0, (4.9) 

therefore determining if condition 1 is satisfied. Analogously, condition 2 is satisfied when 

CxD<O, (4.10) 
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where 

C= ((P2 
m- p1: )(qly 

-pig) - (q1: - p1: )(P2,, 
- n'v)), (4.11) 

D= ((p2z - pl=)(92v - nlu) - (q2_ -pis) (p2v -1)i )). (4.12) 

Note that 

A=O, and CxD<0 (4.13) 
B=0, and CxD<0 (4.14) 
C= 0, and Ax B< 0 (4.15) 
D=0, and AxB<0, 01.16) 

describe cases in which the lines are touching but not fully crossing. 

09S 
(a) P1 P2 q1 q2 (b) Pi q1 P2 q2 

Figure 4.10: Cases in which pl -º p2 and ql -+ qa are collinear and (a) not overlapping, (b) overlapping. 

The final case to consider is that which occurs when the line segments are collinear, i. e. 

A=B=C=D=O, (4.17) 

as in Figures 4.10(a) and 4.10(b). In this case, we distinguish between overlapping and non- 
overlapping lines by checking if one of the end points of the first line lies between the end 
points of the second line. In other words, the lines overlap if any of the following conditions 
are met 

(Pi - qi) (Pi - q2) < 0, (4.18) 
(P2 - qi) (P2 - q2) < 0, (4.19) 

(qi - Pi) (9i - Ps) < 0, (4.20) 

(q2 - Pi) (92 - P2) < 0. (4.21) 
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4.5 Is a point inside a polygon? 

Using the theory outlined in Section 4.4, it is possible to determine whether or not a given 

point, p2, is contained within a polygon defined by an array of points, (xe, y; ), i=1, ... , n, 

where n is the total number of points. Provided we choose a suitable point, pl, which is 

known to lie outside of the polygon, we may proceed by generating pl -+ pz, and counting 

the number of valid intersections this makes with each line segment that defines the polygon. 
If the number of intersections is odd, P2 lies inside the polygon, otherwise it lies outside. 

. 

. 

. 
. 

ýaý 
Pir, 

P2 ' ', 

ýbý P., _ 

ýýý Pte'' (d) Pte', 

Figure 4.11: Special cases in which the line segment pI -, p2: (a) lies on an edge of the polygon, (b) 

passes through a point on the polygon, (c) & (d) overlaps a line segment of the polygon. 

When counting the number of intersections, there are several special cases to consider (Fig- 

ure 4.11). In the case of Figure 4.11(a), we use the convention of not counting an intersection 

when p2 lies on an edge of the polygon. To deal with cases (b)-(d), it is necessary to compute 

the A, B, C and D (using equations (4.6), (4.8), (4.11) and (4.12)) corresponding to each 

line segment of the polygon prior to counting intersections, as in Algorithm 10. 

Algorithm 11 details our method for counting the total number of intersections the line 
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Algorithm 10 Computing the orientational parameters. 
Require: Pl=, P1,,, P2=, P2,, 
Require: (xi, y; ), i=1, ... ,n 

1: for i=1, ... , 
(n - 1) do 

2: qls = xi 
3: qi� = yj 
4: q2s = xi+1 
5: q2,, = yi+l 

6: compute: Ai = (q2s - qi: )(Pi� - qiy) - (P1: - qi: )(q2,, - ql�) 
7: compute: B; = (q2= - qi: )(p2� - qi�) - (p2: - qi: )(q2� - qi�) 
8: compute: Ci = (P2= - Pl: )(qi� - pit) - (qi: - Pi: )(P2l, - Pi�) 
9: compute: D; = (P2s -Pls)(g2� -Pl�) - (q2= -Pi: )(P2� - PIV) 

10: end for 

segment pl -º P2 makes with the polygon. 

Lines 1-22 explain how to handle instances in which the two line segments are collinear. In 

such cases, we only conclude that an intersection has occurred if the last previous non-zero 
C; is different in sign from the next non-zero D; and the points which are collinear with 

Pi -º P2 lie between pl and p2 (using equations (4.20)-(4.21)). This allows us to correctly 
distinguish between the cases shown in Figures 4.11(c) and 4.11(d). 

Lines 23-27 are used to handle the case illustrated in Figure 4.11(b) (i. e. Ci = 0). We 

check the two adjacent points in the C array, C, 
_1 and C; +1. If they differ in sign we 

conclude that pi -º P2 intersects with the polygon at this point (as in Figure 4.11(b)), 

otherwise we conclude that the line touches the polygon at this point without intersecting. 

Upon reaching line 30, each of the special cases have been ruled out and we proceed to test 

for an intersection using the method outlined in Section 4.4. 

Our final step for determining whether or not the point p2 lies inside the polygon is to 

use the formula 
inside = intersection (mod 2), (4.22) 

where inside =1 implies that the point is inside the polygon, and inside =0 implies that 

the point is outside the polygon. 
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Algorithm 11 Counting the number of valid intersections. 
Require: (A,, Bi, C� D: ), i=1, ... , 

(n - 1) 
Require: Pl:, Pl,,, P2=, P2v 
Require: (x{, y; ), i=1, 

... ,n 
Require: intersection= 0, starter= 1 

1: CONTINUE 
2: for i= starter, ... , 

(n - 1) do 
3: if (JA; d < c) AND (jBil < E) AND (jCdj < E0 AND (jD; ) < E) then 
4: forj=1,..., i-1do 

5: if lC{_j) >E then 
6: GOTO9 
7: end if 

8: end for 
9: CONTINUE 

10: for k=1, ... , 
(n - 1- i) do 

11: if +D; +kl >E then 
12: GO TO 15 

13: end if 

14: end for 
15: CONTINUE 

16: if Ci_j x D, +k <0 then 
17: if ((xi_j+l 

- Pls)(xi-j+l - P2s) + (1Ji-j+l 
- Ply) (yi-j+l 

- P2y) < 0) 

AND ((x{+k 
- P1s)(xi+k - P21) + (yi+k 

- Ply)(yi+k - P2,, ) < 0) then 

18: intersection = intersection +1 

19: end if 
20: end if 
21: starter =i+k+1 
22: GO TO 1 

23: else if 1Bil >E AND A, +k x B; +k <0 then 
24: if IC4 4<e then 
25: if flCt_11 > E) AND (IC; +I) > () AND (CI-1 x Ci+1 < 0) then 
26: intersection = intersection +1 

27: end if 
28: else if JD; j <c then 

29: CONTINUE 

30: else if C; x D; <0 then 
31: intersection = intersection +1 
32: end if 

33: end if 
34: end for 

4.6 Tracing around a switching region 

We now present a method for tracing the outline of a switching region using the parameters 
-rs and VV, the standard increments for r and V, respectively. As a starting position, we 
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require a point that is known to switch and lies within Tg of the switching region's boundary. 

From Section 4.3, the final test point labeled (r(hjgh), V) is known to satisfy this condition. 
We therefore set the initial point to be (rl, V1) _ (T(high), V)- 

4.6.1 The basic tracing algorithm 

next; Direction 741 V; +I 
0 up r; V; + Viol 

1 left Ti - rtol Vi 

2 down ri V{ - Vtol 

3 right Ti + Ttol V, 

0 
13 

2 
Tim* ft) 

Figure 4.12: Defined values for next; and its effect on (r� V, ), giving (ri+i, Vi+i )" 

We employ what is known as a square tracer to estimate the boundary of the switching 

region. The tracer is `square' in the sense that r1 and V are only altered one at a time 

between successive test points. Each direction (up, left, down and right) is denoted with 

a number from 0 to 3, which is referenced when determining the direction, next;, in which 

the tracer moves from the ith test point, as illustrated in Figure 4.12. The parameters rtoi 

and Vtol represent the r and V tolerances, respectively, by which each parameter may be 

incremented. 

Algorithm 12 Determining the (i + 1)th test point. 
Require: clockwise, nextt_1, switch;, repeat 

1: if switchi = clockwise then 

2: next; = ncxti_i - repeat +1 (mod 4) 

3: else 
4: nexti = nexti_1 + repeat -1 (mod 4) 

5: end if 

At the ith test point an appropriate next; is chosen using Algorithm 12, where `repeat' 

initially takes the value zero, switch; takes the value `TRUE' or `FALSE' depending on whether 

or not the point (Ti, V; ) induces switching between states, and `clockwise' takes the value 

`TRUE' or `FALSE' depending on whether or not we are tracing in a clockwise direction. We 

use the convention of tracing around switching regions in an anti-clockwise direction when 

testing positive voltages, and tracing in a clockwise direction when testing negative voltages. 
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Figure 4.13: An example of the basic tracing algorilhin. I; Ine lxoüelS indicate a switch frone the I IAN state 
to the Vertical state, whilst red points indicate no switching. 

I laving deduced treat;, (T,, º, t,, º) may be cuuºputed using Figure . 1.12.11' (T,, 1.1,4 1) I/ 
(rk. Vý )ýý=t 

...: 
and the line segment generated by (r,. V, ) - (r; +º, 1, +º) does not intersect 

with or overlap any of the line segments generated by (rk, Vk)lk_I (using a slightly 

ºuc(lified version of Algorithm 11), we accept (r; +1, V, 1) as our next test point aucl cuººtitntc 

simulating (as in Figure 4.13(b)). Otherwise, (r; +º, V++º) is rejected, repeat=repeat, +1 and 
Algorithm 12 is repeated. as in Figure 4.13(c). 

4.6.2 Adaptive increments 

Many rV plots are of the form shown in Figure 4.14(a), with asvºnptotic properties as either 

T or V become very large. Therefore, it. is desirable to vary rt,, l and 1 't,, I. the increments in 

r and V, respectively, as appropriate so as to ºlecrewse the total number of test points while 

tnaintaining a high degree of accuracy in our approximation of the switching region. 

Our approach for adapting Tt,, l is outlined in Algorithm 13, where Ttol, is a user-prescribed 

tolerance dictating the uiinünuni allowed value for r1oi. The 'left' and 'right' paraiueters 

are used to store the number of successive moves to the left and right, respectivelY, along 

the r-axis. whilst `tflick' counts the number of successive oscillations along the r-anis. Af- 

ter five successive iiioveineirts in the saiue direction along the r-axis, we assume that Ttol 
is currently too small, and so it is doubled. Likewise, upon the third oscillation along the 
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r -axis. we as unme that rt�I is currently too large. and so it is halved. As ,i final check, we 

ensure that Tt<, I is not too small or too large. An analogous approach is used four adapting Vi�I 

We see from Figures 4.14 (b) and (c) that tracing without aclal)tion incurs many more test 

points than tracing with adaption. In this particular example, the non-adapting algorithm 

tested a total of 1016 points, whilst the adaptive algorithm tested joist 125 points. While 

it may appear that the adaptive method is significantly less accurate than the non-adaptive 

method, it should be noted that a smoothing filter (Section IS) is applied to the traced 

route in order to clean the final output. 

4.6.3 Reaching a dead-end 
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Figure 4.15: An example of reaching dead-ends and reversing to the previous fork. Greved-out lines 
indicate strands which result in reaching a dead-end 
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Algorithm 13 Adapting rtol" 
Require: next;, Ttol, Ttols 
Require: tflick, left, right 
1: if next; =1 then 
2: left=left+l 
3: right= 0 
4: else if next; =3 then 
5: right=right+l 
6: left= 0 
7: end if 
8: if ncxti =1 OR next; =3 then 
9: if left= 1 OR right= 1 then 

10: tflick=tflick+l 
11: else 
12: tflick= 0 
13: end if 
14: if tflick= 2 then 
15: tflick=0 
16: rtol = rtol/2 
17: end if 

18: end if 
19: if left= 5 AND next; =1 then 
20: left= 2 
21: rtol =2x Ttol 
22: else if right= 5 AND next; =3 then 
23: right= 2 
24: rtol =2x Ttol 
25: end if 
26: if Ttol < rtol. then 
27: 7to1 = Ttol. 
28: else if Ttol > 20 x Ttol. then 

29: Ttol = 20 x Ttols 
30: end if 

There are, however, some instances in which this algorithm folds back on itself, reaching a 
dead-end from which it cannot navigate through, as in Figure 4.15(a). Note that when these 
cases occur Algorithm 12 will eventually increment the `repeat' parameter to 3. 

Having detected a dead-end, we mark this point as omitted and note that it is also a dead- 

end. We then cycle back through the points that have already been tested until we find the 
last point which is not marked as omitted, say (r1, V). From here, Algorithm 12 is re-run 
and, if another suitable test-point is chosen, (r1, V) is marked as a point at which the tracing 
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algorithm forked. If (ri, V) does not produce another route for tracing, we mark this point 

as omitted (note that (re, V) is not marked as a dead-end, since we are already in the process 

of reversing). 

In the case of Figure 4.15(b), we only need to reverse a single point before an alterna- 

tive route is found. However, two further dead-ends are found before the algorithm is able 

to successfully navigate this particular part of the boundary. Notice by Figures 4.15(c) and 
(d) that in this case we need to reverse through seven points until a valid continuation point 
is found. 

Also, note that even once a point is omitted, both the point and its corresponding line 

segments are still stored in memory so as to avoid repetition. So, when determining a valid 

next{, we check for repetition using both the global route and any dead strands that have 

been encountered. It is also important to note that such cases of unnecessary testing are 

relatively uncommon, and that only a very small fraction of the total computation time is 

wasted traversing paths that don't lead anywhere. 

4.6.4 Reaching the edge of the test grid 

Whilst the routines presented so far allow us to trace the boundary of a switching region, we 

need to ensure that simulations do not exceed the limits of the pre-defined test grid. In the 

explanation that follows, we only consider having reached rmax since the same reasoning 

may be applied upon reaching Vnlax. 

Given a Tmax, we need to check that the r; +l proposed by Figure 4.12 is less than or equal to 

Tmax. Should T; +1 exceed rmax, we set ritl = rmax and continue tracing. If the boundary 

of the switching region is detected at an edge of the test area (that is, if two successive points 

are tested at, say, Tmax, with one causing a switch between states and the other not), as in 

Figure 4.16, another routine is used to trace along that particular edge. In the event that 

Tmax is reached, V is incremented by 2x Vtol and the resulting point is tested. This process 

is repeated until either ±Vmax is reached or a point is found to lie outside of the switching 

region in which case we continue tracing as before. 

Figure 4.17 illustrates this routine in its entirety. Note that the standard increments along 

the r axis are not reset between Figures 4.17(a) and (c), since the required increments on 
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Figure 4.17: An example of tracing a region which is clipped by the edge of the test region. 

directly opposing sides of any given region are generally relatively similar. 

4.6.5 Closing a region 

The final part of our standard algcnithtn deals With closing the switching regions that are 

traced. To nianin. ge this. ire compare the position of the current test point. (r,, 1; ), wit 11 

(r1, Vi) and (T2, V2). If the current test point is suitably close to either of the first two test 

points, we conclude that the region has been successfully traced and the algoritInn stops. 
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Figure 4.18: An example of checking if the switching region iuaY be Closed. 'I'hr purple raren shows the 

'closing spare' in which dit her oft he first t wo points hoist lie before we aIlow t he region to he closest. In plot s 
(a)_(c. ) (r� l, ) is not sufficiently close to either of the first two poitnts. whilst in I)lot ((l) (r� VV, ) is tin(1ic"ientIv 

close and the region is closed. 

Our test for closing a region uses the cttrr('tit values of Tt�I and l t�1 to (feline an , Ippropriatte 

-closing space', as in Figure 4.18. Note that the ('losing space will always be rec"tang ular% 

but that (q, [; ) will not nec"essaril)" be located in its ('eiltre since rt(, l and 1 t�I may double or 

halve (by Section 1.6.2) depending can the direction taken, as shown in Figures '1. I 

4.7 Post processing 

Ilaviiiý; traced around a switching region. we now apply soh le post processing filters to oI)t, aiu 

a smootlied estimate for the boundary of that region. Note that any points which have been 

marked as 'omitted' are not included in this part. 

A rough estimate of the boundary is given by taking the midpoint of each pair of consecutive 

test points which were found to He on opposite sides of the boundary, as in Figure 4.1(3(b). 

A five point moving average is then applied to the resulting points to smooth our estimate 

for the boundary of the switching region, as in Figure 4.19(c). 

Note that even though the route taken may appear to poorly resolve the l)o1111(lary of the 

switching region (Figure 4.20(a)) our boundary estimate is still sonleWh<lt smooth (Figure 

4.20(b)) since chains of successive test points that lie on the same side of the boundary are 

not taken into account. Applying a five-point moving average to this boundary estimate 

produces a smoother estimate for the boundary of the switching region, as in Figure 120(c). 
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the I raced path. Plot (a) shows the pal h taken, (b) overlays our estimate for the I)ounolarv (green solid line), 
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Figure 4.20: Zoomed out version of Figure 4.19, showing the overall region that is traced. 

The post-processing algorithm is detailed in Algorithm 14. Lines 1-9 filter out any omitted 

points, lines 10-17 estimate the boundary of the region, lines 18-21 are used to ensure that 

the first point of the smoothed output is equal to the last point of the smoothed output 
(essential for plotting a solid, closed region), and lines 22-26 perform the five-point moving 

average. 

0.6 0.8 1.0 1.2 1. a 

Time (milliseconds) 

T 

0.6 0.8 1.0 1.2 14 

Time (miNlseconds) 

Ti 

06 oe 10 12 14 
Tim* (milliseconds) 

0.0 0.5 1.0 1.5 2.0 2.5 

Time (milliseconds) 

0.0 0.5 1.0 1.5 2.0 2.5 

Time (milkseconds) 

0 
,00.5 

10152.0 2.5 

Toms (m IMseconds) 



4.8 The observed error 08 

Algorithm 14 Estimating and smoothing the boundary of a switching region. 
Require: n 
Require: ri, 14, switch;, omit;, i=1, ... , n. 

1: k=0 
2: for i=1, ... ,n 

do 
3: if omit; =0 then 
4: k=k+1 
5: RTk = T{ 

6: RVk=Vi 
7: RSWitcllk =switch; 
8: end if 
9: end for 

10: 1=0 
11: fori=2,..., kdo 
12: if Rswitch; ORswitch; 

_1 then 
13: 1=1+1 
14: Al rj = (RT; + RT; 

-1)/2 
15: MV = (RI/ + R[ i_1)/2 
16: end if 
17: end for 
18: form=1,..., 5do 
19: AfTi+. = MT,,,, 

20: MU+m = MVm 
21: end for 

22: 1=I+1 
23: for i=1, ... ,l do 
24: ST{ _ (MT{ + A1T{+1 + AfT{+2 + MMT{+3 + Af7*i+4)/5 

25: SV1 = (AM+111Vi+l+MV+2+AMV+3+Afvi+4)/5 
26: end for 

4.8 The observed error 

For each region that is traced, an error is incurred in our approximation of that region. 
We show this pictorially by plotting a green polygon consisting of all of the points that do 

not cause switching between states and then superimposing a white, fully opaque polygon 
consisting of all of the points that were found to cause switching. The visible green area 
in Figure 4.21(a) essentially shows the error bounds, or the `area of uncertainty', for our 
boundary estimate. 

Note, by Figure 4.21(c), that the smoothed estimate of the boundary lies within the error 
bounds. 
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(a) Error Bars. (b) Overlaid Estimation. 
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(c) Close-up. 
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Figur' 4.21: An ex, cinj)1V of I Iw cnic erI ainty of our Irarod bonnclrtrv. The green rann rcol)rvwc'ntS t lic" space iii 

, A- I, ich we know I lii true ho'IIldary Iies, %V"I1i151 1 lie black clt+S11Pc1 Iiru" SNOWS t IIv Smoot lied hcniiiclarv centnl»iIi"cl 
in Section 4.7. 

4.9 Finding additional regions 

It is oft en the (ase that there exists inure than une Switc'lºing rc%km of Ihe n saune I )v in a TV 

plot. Iºº such cases, we nved some way of tracing this additional switching region without 

retracing the first-found region. To achieve this, we need toi im difv the method out lin('cl in 

Sect ion 4.2 such that it cannot test }quints which he in a previously I rm-ed region. We have 

already shown in Section 4.5 that it is lxwsi}>l(' to determine whether or not ,a p)iut. 1),, lies 

inside a polygon (or, equivalently. a closed region) provided we know of a pont, lei. which 
lies Outside the polygon. 

Ftti gnu- t)iirlmses. Nve know tllit the point (T. 1') _ (0.0) ('innot lie inside any switching 

region aural so. with Pi, = 0, pi,, =0 and (. r,. y, ) _ 1..... it. where it is t the 

nuiiiher of points defining the jth region. W( may (irteriniur whether or not pz lies intii(lee 

the switching region using Algorithm 11. Then the point P2 iý only teste<i if it is fo»>nd to lie 

outside of a previously traced region. As it safeguards. the polygon (1cliiiilig any pr(, %-i<mitslr 

traced region consists of orale the points that were founts not to switch wheii tracing that 

particular region. 

Should an aclclitional switching regioli be detected, we proceed as before by attempting to 

find the boundary of the switching region. However, note that with there being more thin 

Inc switching region we can no longer ýss>>nýýý that it is safe to set T(1 .)0m 
illiseccmcis, 
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Figure 4.22: An example of finding a second Mwituliing region. 

(a) Point In Polygon. (b) Checking Test Grid. (c) Two Regions. 
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Figure 4.23: An example of verifying all points on the test grid. 

as the previously traced region may lie between (0,1 j) and (T1. t f). In order to determine 

whether or not this is the case, we use a slightly modified version of Algorithm 11 with 

Pi= = 0, ply -- Vj and (. rt, y; ) (Ti', 1"), i-1..... n.. ) = 1.... 
-r. where ri is the niunl)er 

of points defining the jth region and r is the number of previously traced regions. For each 
line segment of a previously traced region. the modified version of Algorithin 11 counts the 

number of intersections made by the line p, - p2 and the region of interest rund. if in 

intersection occurs, computes the coordinate of intersection. It then returns T(10w) as either 

0 (if no intersection occurs) or the highest r-value for which intersection occurs. Having 

chosen an appropriate T(toW), we may now find the edge of the current switching region using 
Algorithm 9. 
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(a) Initial Point. (b) New Bisection Point. 
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Figure 4.24: An example of finding a iucýý" T(IoW). 

Q 
Ui 

N 

O` 

O 

0) 

Co 

0 
\ 
/0 

0.2 0.3 0.4 0.5 0.6 

Time (milliseconds) 

(b) Overlaid Polygon. 
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Figure 4.25: An example of the algorithm failing to pick up a thin sect ion of a switching region, and 
detecting it as a second region. Here the yellow area represents the 'true' switching region and the green 

area shows the area used to represent a previously detected switching region. 

Finally, having found the edge of the switching region, there exists the possibility that we 

may `cross over' into a previously traced switching region at some point during our trace. 

This can happen either if rtol or Vtoi are too large, or if we are tracing along a particularly 

thin region, as in Figure 4.25. The solution here is to test if the linr segment made by 

(Ti, Li) -+ (T; +,, V+i) crosses over into a previously traced region. If so. we accept (r; +1, V. + 0 

and store it as a non-switching point so as to ensure that we don't retrace a previous region. 

(a) First Region. 

02 0.3 04 os o. s 

Tun. (milbsscaWs) 



1.111 Li ui itatiutis 

ö 
> 
aý 
rn 
Co ö 
> 

oI 

0.0 0.5 1.0 1.5 2.0 2.5 

co 

0 co 

0 
v 

N 0 

161 

Time (milliseconds) 

102 

Figiire 4.26: Prue incýl TV plot (testing for Vertical to HAN switching ulily) (()I T spu Tailing Ii, Fit; ini" 1 2'"). 

4.10 Limitations 

There is oil(, known limitation of the tracing routine. Since the algurit u rn is o mlv cm n i'rii I 

with the outline of a solid shape, it cannot detect any 'holes' within the shape. 
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Figure 4.27: The region of no switching is uncle tecteýl in glut (cl). 

\Vhilst such cases are very rare (and, in the case of the no-flow model, so far undiscovered), 

they can exist when modelling flow effects. Figure 4.27 illustrates one such case in which. 

as the anchoring strength Wo is decreased, the central island of no switching shrinks to such 

an extent that it eventually goes undetected. Brute-force simulation-, (Figure . 1.2R) indicate 

that there does exist an island within the switching region which is completely isolated from 

the traced boundary. 
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Figure '1.28: The brute-for(( method sluices that 1 hi'rr sexists, 811 island of no SW it thing within the wgio n. 

There are. however, was of minimising the effects of this liluitatI )11 and preserving hie 

essential features of the TV plot. Since we primarily generate lunltilllee T plots. silIII lit . nl4"- 

cnt51V, tu st tiny the c'Ifcct's of it 1110x101 I)aralllc"t cT. Wie grce, lt Iv, inc reacsc unr c ham-c', of not icing 

any iiiinsllal behavior. In the example liven by Figure . 1.27. we notice t hat the white island 

sndlcicellly" clisal)pears between plots (c) a11d ((I), iluiiCating that further investigativ i is re- 

quired. Another suitable way of safeguarding against such prol)lenls is to perform .1 single 
brut('-force scan of the test area every, say, one hundred traces. 

Finally. we could adapt the tracing algorithm such that it can detect any gaps within a 

region antonlatically. This modification would require testing every point on the test grid. 
defined in Section 4.2, regardless of whether or not ;i switching region is detected. Inste, ºcl 

of discarding points which are found to he insidce a l)rev irnºay traced region, a: '; in Section 

4.9, we check to make sure that they do in fact snitch. AnY points that are found not toi 

switch, but which he inside the boundary of a previous region, must be part of an island 

within the switching region. An 'inverse-trace' would then be performed to trace the outline 

of the detected island. 

4.11 Summary 

In this section, we have presented a tracing algorithin that is hot Ii ellicient and reasonably 

accurate for generating T['-1)lots. Its key limitation has been acknowledged and idea,, for fu- 

ture development have been raised. One important point is that the ( (l('-I)ase is conýlýletelý 

modular, and so it is relatively straight-forward to replace anv routine with a suitable alter- 

native. For example, should we find a better method for adapting rtoI and l <<ýI" WV may use 
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that in place of the method presented here with relative ease. This also applies to the funda- 

mental routines that are used to solve the governing equations at each test point. Therefore, 

our tracing algorithm is not limited to working with a one dimensional model, and may 
extend to two or even three-dimensional models. 

In the next section, we will use the tracing algorithm presented in this section with the 

numerical methods outlined in Section 3 to investigate the switching characteristics of our 
liquid crystal cell. We also provide a variety of parameter studies to understand how each 
parameter in our model affects these switching characteristics. 
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5 Results - no flow model 

Throughout this section we investigate the effect each parameter has on the switching char- 
acteristics of a bistable cell. To ensure that we are always comparing like-with-like, our base 

parameter set (Table 2.1) is enclosed in each parameter sweep. 

0 " 0 

>ý 

Figure 5.1: A positive bipolar pulse of length r and magnitude Vmag. 

For each simulation we apply a bipolar pulse (Figure 5.1) across the cell, where the polarity 

of the applied voltage is taken to be the sign of the second half of the pulse. Note that, 
for our simulations, both parts of the bipolar pulse are equal in duration and we define the 

pulse-length as the length of time for which each polarity is applied. We also label four 

reference points in the bipolar pulse to aid in the explanation of each individual simulation, 

namely: the initial relaxed state (A), the point at which the polarity is changed (B), the 

point at which the field is removed (C) and the final relaxed state (D). 

5.1 Parameter fundamentals 

Before we begin simulating, it is important to give a brief explanation of the key points 

regarding how we expect each parameter to affect the properties of a liquid crystal. 

To understand the expected behaviour at the bistable surface (z = 0), we consider equa- 
tion (2.52). Note that the flexoelectric term, E13, causes 0(0) to tend towards 0 and is/2 

when negative and positive voltages are applied, respectively. We also see that increasing 

the bistable surface anchoring strength, Wo, increases the bistable energy barrier, thereby 
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holding 0(0) more firmly in place at its nearest orientation of either rrl or Erz. 

To understand the expected behaviour at the monostable surface (z = d), we consider 
equation (2.54). The flexoelectric term, E13, causes ©(d) to tend towards it/2 and 0 when 
negative and positive voltages are applied, respectively. Note that this is exactly the opposite 
of the behaviour we expect to see at the bistable surface. We also sec that increasing the 

monostable surface anchoring strength, Wd, increases the monostable energy barrier, thereby 
holding 0(d) more firmly in place at its preferred orientation of ir/2. 

To understand the expected behaviour in the bulk of the cell (0 <z< d), we consider 
equation (2.40). We see that a negative dielectric material (i. e. AE < 0) causes the director 

in the bulk of the cell to tend towards 0=0 when a voltage is applied, whilst a positive 
dielectric material (i. e. Ac > 0) causes the director in the bulk of the cell to tend towards 
0= 7r/2 when a voltage is applied. Also note that the elastic constants, Kl and K3, interact 

with the curvature of the director profile, ä, thereby increasing the linearity of 0. 

5.2 The base parameter set 

Figure 5.2(a) shows the TV plot generated from the parameter set in Table 2.1. Red regions 
indicate switching from the Vertical state to the HAN state whilst blue regions indicate 

switching from the HAN state to the Vertical state. Note that semi-transparent colours are 

used, as this allows us to see if the two regions overlap. Notice that Figure 5.2(a) can be 

represented in three dimensions as a single slice, as illustrated in Figure 5.2(b). This allows 

us to observe any changes in each switching region of the base TV plot as the parameter of 
interest is varied. 

In this case, we observe minimal overlap and white space between adjacent regions. Since 

our tracing algorithm provides only an approximation for each region, these discrepancies 

are likely to be due to numerical error. 

To further investigate the two switching regions, we test some individual (r, V) points within 

each region and examine how the director profile throughout the cell evolves with time. The 

main (r, V) points of interest are indicated in Figure 5.3, and the key director profiles for 

each point are shown in Figure 5.4. Comparing Figure 5.4 (I) with Figure 5.4 (II), which 
describe HAN to Vertical and Vertical to HAN switching respectively, we see that by the 
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Figure 5.2: rV plot geiwratv(l using the base parameter set (Table 2.1), where red indicates Vertiwal tu 
IMAN switching and blue indicates IIAN to Vertical switchiing. Plot (a) shows a standard two-dimensional 

rV j)lOt, and plot 04 slows the same rV plot from a three-cliiiIUiisiunal iscnncýtric" VVic"wlwint 
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Figure 5.3: A rc'-hlot. of the hositive voltages in Figure 5.2. where the four (r, V) points rd interest are 
denoted by the black dots. 

change in polarity (plot (B)) each of director profiles have reached a state which depends on 

the point (T. V) and not the initial state. It therefore follows that plots (C) and (D) are the 

same in each case. Note that we expect similar behavior for and (r. V) that indüu `wilt hing 

between one state and the other. This explains why there is little'-t(>no overlapping between 

the switching regions in Figure 5.2. 
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Figure 5.4: Four director profilos taken at each of the kc"\" I)Ointti Ialiele 1 in Figure 5.1, witli r2 : iuis 
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lower IIAN to Vertical, upper Vertical to HAN and upper IIAN tu Vertical switching regions, respectively. 

as shown in Figure 5.3. Figure (1) starts from an initial THAN state, whilst Figure (II) starts from an initial 
Vertical state. 

Let us consider the evolution of each of the director profiles in Figure 5.4 (I), starting with 
the 5 volts case (solid black line). By plot (B), the leading edge of the' pulse has brought the 

bulk of the cell towards 0=0. Changing the polarity of thce applied voltage generates a small 
flexoelectric torque which is not high enough to break the anchoring at the histable surface, 

as seen in plot (C). Therefore, upon removing the voltage, the cell relaxes to the HAN state 

shown in plot (D). For the 20 volts case (red), the higher voltage results in it 'flatter profile 
in plot (B). More significantly, when the polarity is changed the higher voltage generates 

enough flexoelectric torque to break the bistable surface anchoring and force 0(0) close to 

Erz, as seen in plot, (C). Once the voltage has been removed, the elastic torque in the bulk of 

the cell is not high enough to break the bistable surface anchoring and the cell relaxes to the 

Vertical state shown in plot (D). The 50 volts case (green) behaves in a similar fashion to 

the 20 volts case for plots (A) and (B). However, note from plot (C) that the higher voltage 

results in a larger portion of the bulk of the cell remaining close to zero near the Instable 

surface. In this case, there is sufficient elastic torque in the bulk of the cell to break the 

bistable surface anchoring and the cell relaxes to the HIAN state shown in plot (D). 
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Figure 5.5(a) shows the field effect at the lºistahle surface for the 50 volts case and the SO) 

volt,, case. Throughout the highlighted iirterval, the, bist able surface experiences a greater 

hull towards zero in the 50 volts case than it does in the 80 volts case. Front Figure 5.5(b), 

tccºte that by the end of the highlighted interval tit(, overall torque ()11 the 1ºistable surface is 

positive in the SO volts erase but still negative in the, 50 volts case. 

However. by Figure 5.1 (I) (C), note that the iuaiu difference between the 50 and 80 \-()I1 

cases is at the monostahle surface, where the higher voltage forces B very close to zero. Toi 

understand why a difference in director structures at the ýno»ostnble surface can influence the 

electric field. and therefore the director (by Figure 5.5). at the bi. ctahlr surface WW(' (, \;, niin(' 

the field equation. namely 
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Figure 5.6: Relaxations after the voltage is removed. corresponding to Figure 5.1(I), with r=2. Sms mid 
l' = 50 (green) and 80 (blue) volts. 

\exr. by Figure 5.4 (I) (C), throughout, the e"eAl we have 

dH 

(1Z l' =SO 
d siii(2H) 

fl+A(Sill V_ro 

for small -ý(. 
Therefor. ', lw eºtuat ion (5.1), 

(/` l'-50 

sin(20)r' 
dz 

uL+ A( sin19 
1, = 50 

/): 
3It. =8o 

< nslº-=fio 

Ell. 
=80 

<(ll= 
ßiO " 

and so, by equation (2.52), we have 

00 (ki 

at ý. _ º öt 
=50 

at the bistable surface. Since a? is negative in both the 50 volts case and the s0 volts case. 

we conclude from equation (5.2) that, during initial relaxation. 0 changes fitster in the 50 

volts case, as observed in Figure 5.6. So non-local director structures can affect the director 

at the listable surface. For this reason, we refer to the upper HAN toi Vertical switching 

region in Figure 5.2 as the non-local switching region. 

It should be noted that two distinct HAN to Vertical switching regions are often observed 

experimentally [34]. Our ascertainment that one of these switching regions is glue to non- 
local effects is the first only known explanation for such behavior. 
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having explained each of the -witching regions in tlºce rl Iýlýº1 cýrrrý ýlýýýuýliºii, t.. tliý Iýnýý 

parameter set. \Vc' now ºnon"c' on to cnºr lrºraºnc"ter studies. 
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5.3 Varying the preferred HAN state 
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(a) Semi-transparent block showing all switching regions. 
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(b) Plot of solid 'slices'. (c) HAN - Vertical only. (d) Vertical - HAN only. 

Figure 5.7: 'rV plots for varying the preferred director orientation at the bistahle surface for a relaxed 
HAN state, crl, from 0° to 11.5°. 
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WC begin In im"cstigating ºº, I lic Iºrc'fc'rrcd dircec"to r uriciut, ºtiuu ººt III(. I)i'týclrlý ýºuf. uý rcý- 
Iatiººg to a relaxed HAN state. 
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Figilre 5.8: Three key slices from Figure 5.7. 
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Figure 5.9: Three individual simulations with r=2.5ms. V=8 volts and (i = 0° (black). 5.5° (red). 
11.5° (green). 

Figure 5.7 shows that co, does not have a significant effect on the switching characteristics. 
\V'e see from Figure 5.8 that the local HAN to Vertical switching region expands slightly as 

a, is increased. This increase in the HAN to Vertical switching region is explained in Figure 

5.9. AV'hen al is very small, there is very little brettalt at the bistable surface and we require 

more flexoelectric torque in order to break the listable surface anchoring by the time the 

voltage is removed. From Figure 5.9(C), notice that the voltage is too low to produce the 

flexoelectric torque needed in order to break the bistable surface anchoring in the (ii = 00 

case, whilst with higher values of R1 the bistable surface anchoring is successfiilly broken 

and the cell relaxes to a Vertical state. 
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5.4 Varying the preferred Vertical state 
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Figure 5.10: "rV plots for var}ing the preferred director orientation at the bistHhle surfa(( for a rcl, +xcd 

Vertical state, 112" frone 78.5° to 900. 
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WC 11mv Illov e oil to cnu" Iºtºrautc'tcr stttc1V fcºr cº. " the prefc'rr('cl Vertical it at ' at tlic hist; ºbIe 

sºtrface. Figure 5.10 shows that as cº2 ciec'r aac's, the 11AN toi Vertical switching region sl, (,.,, 

significant grcºwtIi. As before, some of the key slices are Sh()\WIl separat vi in Figure rß. 11. 

(a) (12 = 78.5". (b) tx2 = 84(C) u2 = 90 
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Figure 5.11: Three key slices from Figure 5.10. 
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Figure 5.12: Three individual simulations with r=2.5ins, V= SO volts and (12 = 78.5° (gern), $4" (red), 
90° (black). Dotted lines represent t lm maxima of each bist able surface energy funct ion. 

Figure 5.12 shows the director profiles at each of the key points throughout three individual 

simulations. Note that the three director profiles are very similar in plots (A)-(('). but from 

plot (D) the n2 = 90° case relaxes into a HAN state whilst the other two cases relax into a 

Vertical state. We clearly need to examine the relaxation process in more detail in order to 

explain this behavior. 

From Figure 5.12, notice that, just before the voltage is removed the three director orienta- 

tions are roughly the same at ;, =0, but the maximum a sociate(l with the bitable surface 
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Figure 5.13: Relaxations after the voltage is removed. corresponding to Figure 5.12 with r 2. Stns. 
1' = 80 volts and c72 = 78.5° (green). 84° (red). 90° (black). Dotted lines represent the inaxitna of e, 1ch 
bistable surface energy function. 

energy flrllctirnl, 11<11llely ((i + (12)/2, is different in each case. I'lu refý)I(, at the instant 

the voltage is removed, higher Values of 0º2 require less elastic torque to Iºre. ºk the hist: ºhle 

, ºlrface anchoring, since the director orientation is closer to its astiººciºltecl energy harrier. 

This lºccotººcs clearer NvIºen allied wit It Figure 5.13, which shows t he iººit ial relaxat ion lpru("('Ss 

of each director. After 5.3uis (plot (c)) the ci = 90° case hass crossed over its energy barrier 

to the 'HAN' side whilst the other two directors remain on the V'ertical' side. By plot ((I), 

tlºr c) -- 900 case is fasst relaxing to it IIAN state whilst the other º; ºsc: s are relaxing iuto a 
Vertical state due to the decreased elastic torque in the bulk. So to conclude, the h waticm 

of the bistal)le surface energy barrier decrewses with 112 and ºnoºre elastic torque is II(IfIded to 

break the anchoring at the list able surface. 
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5.5 Varying the flexoelectric constant, 
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(b) Plot of solid 'Slices'. (c") HAN " Vertical only. ((1) Vertical HAN only. 

Figure 5.14: TV plots fur varying the Hexuelect. ric constant, E1 
. 

from LO x 10-11('/nº tu 1.0 x 10 I0('/in. 
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Varying the flexoelectric constant IIM 

(a) E13 - 2.10x 10 "C 'M. (b) E13 = 5.00x 10-'1C/m. (c) E� 1 00.10 '°C m 

>oc0 

0) 
N 

TTrTrr 
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 10 1.5 20 2S 00 05 10 15 20 25 

Time (milliseconds) Time (milliseconds) Time (nubeecw mss) 

Figure 5.15: Thum key slices from 1F igure 5.1 I. 

we now move on to our paratueter StiuIV for E13, the Hrxo, ylyctric constant. \\',, expect 
higher values of E13 to cause more torque at the listable surface, allo ittg tlºe (, (, Il to swit(. Il 

from the HAN state to the Vertical state wluetº lower voltages are alºlºliecl. From Figure 5.15 

we see that, whilst this appears to be the case for a lower range of Eº:,. very high values of 
F-13 can actually reduce the HAN to Vertical switching regions. 
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Figure 5.16: Three individual simulations with r=2.5m. s. V= 50 volts and E11 = 2.1 x 10-"('/mn 
(black), . 5.0 x 10-11C'/m (red), 1.0 x 10-10('/m (green). 

Figure 5.16 shows the director profiles at each of the key points throughout three individual 

simulations. The first point to note from Figure 5.16(A) is that increasing E13 , wcentuates 

the -kink' in the relaxed HAN state. This is covered in Appendix B. From Figure 5.16(C), 

notice that with E1. = 2.1 x 10-1'C/m there is not enough flexoelectric torque to break the 

anchoring at the bistable surface, whereas with the higher values of E13 the bist able surface 

anchoring is broken and 0(0) - 7r/2 by the time the voltage is removed. This is in tigre tue nt 
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with cntr initial cxlxec"t. LtlollS. l1oW('Vº'r, %%"(I S(, (, from Fignrr 5.16(l)) that " ººp: n n"uii: %iii,; III, 

voltage. the Simulation corresponding to I"; º: { 5. (1 x 10 "('/tu rºýl: rxºýs toi :º ýý rtiº: ºI st: ºtº 

u"hi1st t17º, simulation corresponding to the highc"r , ºlne of 1. (1 x 10 "'(VIII P'LIXI"I to 

:º IIAN state. In cºrºIº'r to ('Xl)l: ºill this, n"P ('xamillP Ow short-term r("I, ºN: ºtion 1ºro('(",, Of tII( 

cell as the voltage is removed. 
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Figure 5.17: Relaxations after the voltage is removed. corresponding to Figure 5.16 with r-2.5tns, 
L' = 50 volts and K13 = 2.1 x 10-11('/m (black), 5.0 x 10-"('/m (red), 1.0 x 1(1 "'('/m (green). 

The rclaxatlull I)rOcess, iiutºicciiatcly after thc voltage is rent(wed, of eadi director i. -, - -Shmvil 
in Figure 5.17. Notice that the cell appears tcý be relaxing on a much faster time-scale with 
E13 = 1.0 x 10- II)C/m when compared to E13 = 5.0 x 10 '' C/nn. Considering just the 

flcxocclcctricc teri", and neglecting I); ý, the surface equatiuu for 
-- O re laces to 

ae do 
at 

E13sin2(2A)O 
. (5.3) 

V11icll inºhlics that higher values of E13 increase the effrec"t of the gradient at the bist ablc 

surface. Now, from Figure 5.17, note that in each case the gradient at the histahle surface is 

negative throughout the initial relaxation. Therefore, with a higher value of E13 We expect 

the director to favour lower Values at the bistable surface (luring relaxation, as in Figure 

5.17. which in turn favours a HAN state. 

Using a similar technique with the bulk equation, it is }ºo, tiil)h tu show that the Hex(>- 

electric term directly interacts with both the gradient and curvature in the cell. This leads 

to higher values of F, 13 reducing the associated relaxation timescale in the bulk of the cell, 

as in Figure 5.17. 
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.,. Ei Varying the parallel dielectric cc»>staiii 0 fixed) 
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(a) Semi-transparent block showing all switching regions. 
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(b) Plot of solid 'slices'. (u) IIAN Vertical onlY. (d) Vertical IIAN �nly. 

Figure 5.18: 7rl' plots for varying the parallel dielectric constant, (I,, from I to 20. 
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Figure 5.19: Three key slices from Figure 5.18, where (a) cýý = 10 (Jr Vii), (h) ýý 15 (fir Il), (c) 

11 = 20 (. fi( = 5). 

we now move on to our parann't er study for (11, the parallel dicelec"t ric" constant. \oºt ct kit 
, 

by fixing c1 at its default value (( l= 15), we are essentiailt" varying the (IiI'lº'c"tric" itnisººt1(Il)Y 

, 
)(= (11 -(ý. Note from the governing equations that. without "I fl('Xfleiº'c"tric" terrni. we Would 

(expect t hce c"lcc t ric (, ff(, (-ti throughout t lu' bulk of the cell to b, s, "nuuet ric"al about A( U. 

However. Eu 34 0 breaks this symmetry and gives us a situation in which positive and neg- 

ative Of materials possess quite different switching characteristics, as shown in Figure 5.19. 

(A) Initial State 

G 
C 
c0 
V 
l0 

O -ýý1 1I1 

00 02 04 04 08 1.0 

z/e 

(B) Tlms - 2. Sms (C) nms " S. Oms 

o. o 02 04 0.6 ob 1.0 

z/4 

(0) FMW pats 

00 02 04 00 0S 10 

t/6 

00 02 C. C. as 10 

.,. 

Figure 5.20: Three individual simulations with T=2. Sms, V= 50 volts and c11 = 10 (black). 15 (red). 20 
(green). 

Figure 5.20 allows us to observe the dielectric effect at the director-level. The first point to 

note is that with (11 = 15 (At = 0) the field effects are governed entirely Iv the flexoelectric" 

term and the applied voltage does not directly interact with the bulk of the <Oil. meaning 

that the bistable surface experiences very little dielectric torque when the voltage is removed. 

This indicates that switching is mainly determined by the flexoelec trio torque at the bistýilºl(. 
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stirfacc ittºnu'cliatc'ly b(foru tlºc v'ultagc is rc lil(w 'cl. licc"all. lumvvc"r. that tluc clcy"Iric" ficI(I ºn 

the balk cif the cell ccnºtnins ; tu HSVtnIUPtrt" chic tc the fivx ele(. tric tc'rtn. and S) we (Inº uni 

º xl>ec t tlic "\vit(hing regions to be exactly S tntuc"tric ; tl , tlºimt 1 11. \vIIic -II is In : tgn "i"uº4"ºit 

\v-itlt tlºce slight (Iisc"rc'i), tnc"ic's ctltsPrVecl in Figure 5.19(b). 

; c1scý see from Figure 5.2()(B) that, a expec"tecl. ýý-fºcýn a field is applied the Iýrc tý rrý c) 
director orientaticir, tlºrcnt; lºcýttt the hulk of the cell is parallel tcc the livid for ilic fi()siti\'c 

m ateria 1 atul l)erlxetuIic"ººlar t<O flue field fur tIn' negative uniterinl" mgnrclless ( )f the 1)( )I; critV 

of thc' applied voltage. This irnl>lieS that H: \\ to Vertical s\V"itc"Iºillg shcnºIcl he cluurnin: cnt 
for a1 ositivc tu; itrri; rl Whilst Veertic", il tcý I1: \\ "'witching Sil()Iil(l 1w 

ni. jterial. \0Iic"II is iu agrc'O"Wilt wit It Figººre : i. 1 N. 

Finally. as e11 is dec"rr(IM'd the dielectric anisotropy elre"rea. ses and the niatvrinl Iýeveýinv, Iii4q 

ue gat iv'e. "I'1ºis ieºc"r('xse's the fic'lcf rffc'c"tS t hIroligi )llt OR' hulk of the colt, t liPrel) inn rva iuk 

the elastic torque ret eneh boundary. Wo Wreeulcl therefore ex p ect I4m"er v". Iliies of r I, to Ine"rrnsr 

any Vertical to HA switching regions whilst dre"reasinq HAN te) V'ertie". al s Vita liini rcl, i(mS. 

This is cuiºfiruie'el iel Figure 5.18. 



5.7 Varying the perpendicular dielectric euu, taiit. (c II fixe-dl) 1'la 

5.7 Varying the pcrpciºciicular dielectric constant (ý fixe(l) 
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Figure 5.21: 7-V plots for varying the perpendicular dielectric constant, cl from 1 to 20. 
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(a) Semi-transparent block showing all switching regions. 
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Figure 5.22: Three key slices from Figure 5.21, where (a) cl =5 (A( - 5) (l, ) 10 (A( 1ý) (, ") 
rL= 15 (A( = -5). 

For ( L. the perpendicular dielectric constant, we expect to sec similar I)PIlaVic)r to that Ob- 

served in the cI study. As before. I )NI fixing 111 aat its (i('fanlt value (ý II 10). we are rssrntiail. N" 

varying the dielectric anisotropy. 
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Figure 5.23: Individual simulations with r=2.5uu, V= 50 volts and c1=5 (black). 10 (red), 15 (grün). 

Note from Figure 5.23 that, as in the (11 case, the preferred director orientation throughout 

the bulk of the cell is parallel to the field for the positive material (c_ 5. A, = 5) and 

perpendicular to the field for the negative material (c1 = 15. A( = -5). This fitnclanteittal 

similarity between the (11 and El studies is reflected in Figures 5.19 and 5.22. 

However, note that there are significant differences between Figure 5.19(c) and Figure 5.22(a) 

for V<0, despite both plots corresponding to i= +5. This indicates that the dielectric 

effects on the cell are governed by more than just the dielectric anisotropy. To further itives- 
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tigat(' tlºis, we 1I('('(1 to 1)t'il01"11i ;i stu(l\ 1>u lu)\\" tluc may/1ºIrººIU of III(' (licIe("iril. t(H'flicirnt, 

adtcr the switching < luai' R teristi<"s of ()III- cell. 
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5.8 Varying the dielectric constants (_ fixed) 
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Figure 5.24: TV plots for varying (Eil + E1)/2 from 3.5 to 17.5, with At = -5.0 in each case. 
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(a) Semi-transparent block showing all switching regions. 
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To (Ilialltifv tlºc ºuagiIitrule of t1ºc clielrc tric aºc ilic"ieuts, we use t Iºe Ine. º. ººre (ý II tt )12, No it( 

that, in relation to our base paranieter set, this gives a (l(, faºººlt value of 125. 

Throughout this t>araliºetc'r stu(IV, We fix the dielectric anis 1r(q). N at its default ý: ºInýý 44 
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Figure 5.25: Three key slices from Figure 5.24. 

From Figure 5.24, we see that the niagnit"(1e of the dielectric cociliciVutS 1ººº. ti a profound 

effect on the switching characteristics of the cell. To understand why. recall that the field 

equation is given by 

l)" - sin(20)0 +j ýI in(2n)ýý T 1: 3 
_ 

13. 
r 

,, +, 
dý 

E=D 2 :j-J (5.4) 
Ep(EI + sill 0) (`ý 1 

10 +7l)(I 

We first consider the D3 equation. For a fixed Ac, notice that as cl increases the t N%-() integral' 

in D3 decrease. We can think of this as leaving the flexoelectric tern in D;; largely unaffected. 

whilst the magnitude of the term involving [' increases. Turning our attention to F� as cj is 

increased both D3 and the flexoelectric terns decrease in magnitude. Therefore, the overall 

effect of increasing (± is that the terms involving E13 decrease. This c<uI be likened to lower 

values of ((,, +()/2 magnifying any flexoelectric effects in the cell. Wet lierefcre expect larger 

values of (Ell +(±)/2 to produce vaguely similar results to those seen \\. ith lower values of EI, {. 

By looking at the progression from Figure 5.15(c) to Figure 5.15(b). we see that lower- 

ing E13 from its default value increases the HAN to Vertical switching region with 1' > (). III 

comparison, we observe a similar trend as ((ii + El)/2 is increased through its default %alue 



\'. irving Hie c1ic'I('Ct. ric cm Ist'acit's (Ac fixed) 
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Figure 5.26: '1'IirCC in Iivid u, il Si iniilat funs Wit li T=2.511 Is. V "5U volts 8nd 
10.3 (rcd), 17-5 (t; n. ii). 

; 11141' I( mVcrin , ((!, ý (i )1 11ic rea, Scs tltc ('ff(wtiVe vi iltte cif /,: ia. wt'p would exp", t t'' i : lI'Ii, 

to draw further 0 11Itr<iriticn1S 1)('1Wc'(11 tlu' two lr 1 1111 tars ill I1w director I('Vvl. Recall tli, +t 
for larger values of Ei3, IM N'('1- gradients are preferred When rntittitnising the free energy, and 

therefore the ýISScu iat('cl tilnc'sc ale is shorter. From Figures 5.2(1-5.27, notice' t )': It we observe 

the sictue behavior as (r H+ )/2 is decreased. Sin'cific"allY, from Figure . 5.2 7 we see that t lie 

gradients in 0 are sig; nific'antly lower for smaller values of 
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Figure 5.27: Relaxations after the voltage is removed. corresponding to Figure 5.26 wit il r=2.5111s 
ý" - 50 volts and (f11 + Fl)/2 = 4.5 (black), 10.5 (red). 17.5 (green). 

Finally, notice from Figure 5.26(ä) that, just as we found when increasing E1, 
.l )Weritlg 

((I, + (l)/2 accentuates the 'kink in the relaxed HAN state. providing fin-ti er 

strong correlation l)etweell (ý ýý +I) /2 ; uid F: 1:;. 
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\Ve tºuw tuovc Oil to our t)araructº'r study for Kº, the splay vIL, ti( º"uººst, ºnt. Flom FIt1,111,41 

5.29 we see that, higher values of Kº expand the HAN tu Vertical switching rýý iýýii 
. nºýýa 

n()tably the IOui-local switclniig region. 
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Figure 5.29: Three key slices from Figure 5.28. 
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2.713 x 10-uN (red), 4.78 x 10-''N (green). 

Figure 5.30 shows the director profiles at each of the key points throughout three individual 

simulations. 
The first point to note is that varying lii changes the structure of the relaxed 

HAN state (Figure 5.30(A)). To understand the reason for this behaviour, we need to examine 

the governing equations. Considering only the elastic constants, the hulk equation reduce, 

to 2 
(lý i st H+ K3 sin2 N) + (lý -Ki) 

(o)2 atg 
sin(20), (5.5) 
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whilst the bistablc and monostable surface equations reduce to 

ae (KI cost B+ K3 sin2 9) 
©, 

(5.6) 

and ý 
'- (Kl cos2 0+1, (3 sine 0) 

0e, 
(5.7) 

respectively. Now, for 0 -- 0, we have 

(920 

in the bulk, with 

a8 ^' I{1 ä8. (5.9) 

and e 5 Wi 
, (5.10) 

at the bistable and monostable surfaces, respectively. Note that for 0a ir/2, the surface and 
bulk equations behave independently of Kl. 

Equation (5.8) translates to positive growths in the bulk around areas of positive curvature 
in 9, and negative growths in the bulk around areas of negative curvature in 0. Therefore, as 
KI increases we expect to see increased linearity in the director profile for lower values of 0. 

Equation (5.9) implies that, for 0 close to zero, the director experiences elastic torque in the 

same direction as its gradient at the bistable surface, whilst equation (5.10) implies that the 
director experiences elastic torque in the opposite direction to its gradient at the monostable 

surface. We can therefore think of Kl as a controlling the `straightness', or 'linearity', of 
the director for lower values of 0, with higher values of Kl increasing the linearity and lower 

values of Ki decreasing the linearity. This is in agreement with Figure 5.30(A). 

Our interpretation of Kl is further supported by Figure 5.30(B)-(C). Note that, in each 

plot, the curvature in the bulk of the cell decreases as Ki increases. Furthermore, from 

Figure 5.30(C), we see that the director orientation at the monostable surface decreases as 
Kl is increased due to the high positive gradient in e. 

Figure 5.31 shows the early stages of director relaxation for each simulation. Notice that 

the bulk of the cell appears to experience a faster relaxation as Kl is increased. This can 
be explained by equation (5.8), from where we can expect higher values of Kl to give an 
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increased 1)Usit ivP º'fl'('('t iu 11ºº' bulk of I1w cell, t 1ºerefo re re(ln("iººg III, asso (( Iat o(I him scalf, 
ConSPPquº'ntiillly-. this reduces, the Mastic torque , ºt tlºc' Mistahle surface and tlº, er. 'ff, r. " f, ºv, nn' 

,º Vertical state. in agrec'nºent with Figur, 5.30(D). 

In relation tu the non-total switching region, note froni equation (ßi. 1()) that we expect the 

director to remidf closer to H= (l (In ring relaxation as lt-j is incrýý. 1se(i. This gives a1 wer 

gra(lieut tlºrottgliout the 0e11. which vv(' expect to increase aus nn)u-loc1l sww"itcIiitip, regii)n" 
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We now move on to our paraºººctcr study for K, º, the lend cl<4titic c"unstant. I rmii Figure 

5.33 we see that higher values of K3 reduce the HAN to Vertical switching regions. 

(a) K3 = 8.30 x 10-12 N. (b) K3 =2.28 x 10-"N. 
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Figure 5.33: Three key slices from Figure 5.32. 
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Figure 5.34: Three individual simulations with r=2.5ms, V= ßi0 volt, and 13 = 8.0 x 10"N (black), 
1.63 x 10-11N (red), 2.03 x 10-11N (green). 

Figure 5.34 shows the director profiles at each of the key points throughout three individual 

simulations. As in the Kl parameter study, we see that varying ! %3 changes the structure 

of the relaxed HAN state (Figure 5.34(A)). Linearising equations (5.5)-(5.7) about H -- ir/2 

gives 00 020 
K3ä(5.11) ät zý 

in the bulk, with 

at az 
(5.12) 
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Figur' 535: Relaxations after the voltage is removed, corresponding to Figure 5.3.4 with r=2. Sms, 

V, ' = 50 volts and Iii = 8.0 x 10"N (black). 1.63 x 10 1N (red). 2.03 x 10-'t N (green). 

To understand vrlºV liiglicr vAlu(S of' K3 favour it I1. AN state. We examine the relaxatiem 

process in Figure 5.35. ? oticr that, in eich case, the main difference between the director 

profiles occurs at the biStal)lesurface and that the gradient there is negative. Therefore. by 

t, (4uýtioiº (5.12). we cexpcct liiglwr clues of ki to decrease -iý at the 1)1Stalble atrfit('(' is tliecell 

relaxes, thereby favouring aH AN statu. This is in accorclane. e with Figure "e 35 "e>>, i, 

ultimately, 
Figure 5.34(D). 
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5.11 Varying tue listable surface anchoring strengt Ii 
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\Le txow Inoue c, ºº to uººr triru>u'tc'r study for II'(,, the anchoring `t ncii t Ii at tilt, I>i., l, ºI)I( 

surface. Large values of It, ) iºnf>1V that the director at thy, 1>istable sººrf, u"e is firmly held in 

place at its nearest stable c>rieiitation. Therefore. for larger values º, f I1(, we, n"ºtºiire inOrv 

elastic or field-related tc>r(llie in order to break the 1>istable surface anrlm rrint, From Figurv 

. 5.36, we see that II alfcTts hc>tl> the local and the ºu>iº-local switº"1>itig rºegions. 
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Figure 5.37: Three key slices from Figure 5.36. 
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Figure 5.38: Three individual simulations With T=2.5ms. V= 50 volts alld 11'� = 1.0 x 10-"N/n, (black), 
4.0 x 10-SN/ni (red), 6.0 x 10-5N/m (green). 

Figure 5.38 shows the director profiles at each of the key points throughout three indiVidfal 

simulations. 
We see that the director profiles in plots (A)-(C) are very similar, hut that the 

cell with the highest histable anchoring strength relaxes to a Vertical state Whilst tit' other 

two cells relax to a HAN state. This is due to higher values of l1 o raising t lie energy harrier 

associated with the bistable surface, as illustrated in Figure 5.39. 

(a) Wo = 1.00 x 10-5N! M. 
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Figure 3.10 shows the initial rclaXation 1ºrcºccs. of each director lote IIItt luý Icºýý, rt lip 

value of I1 O. the faster the director is ptºllec1 (1ovv"ºº towards oil at the 1ºi51al)le surface. TIºis 

can be attributed to the lower, flatter histahlO surface energy profiles : º. soui: ºtrd with 1ºnvrr 

values of It;, ais illustrated in Figure 5.39. Therefore, with h1911crvalue: s of 11"n WC N'yººire 

more elastic torque in order to break the 1>ista l)le surface anchoring. whilst 1mver values t, f 

t1 ö mean that the elastic torque in the bulk will cloniinate (luring rcelaxation. 

(i1 ("1 + (12)2 "2 
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%V( now move oil to our parameter study for 11', i, the anchoring strength at thi. monostabil. 

surface. Large values of It',, imply that the director at the tnuºn(Stable surface is firmly held 

in place at it's nearest stable orientation. Therefore, for larger values of 11', º we require iii br. " 

elastic or field-related torque in order to perturb the director frone its l)ref('rrc(l orientatimº 

at the monostable surface. From Figure 5.41. we see that I1', ß mainly itirecis the non-lcºrººI 

switching region. 
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4.2 x 10-3N/m (red), 1.0 x 10 N/m (green). 

Figure 5.43 shows the director profiles at each of the key points throughout three indiviclmd 

simulations. We find that the first main difference between the director profiles occurs- near 

z=d during the trailing edge of the pulse (Figure 5.43(C')), where the simulation with the 

highest Wd does not distort as far from its stable orientation of it/2. Thi" is clue to higher 

values of Wd raising the energy harrier associated with the mom*; tahle surface, as illustrated 
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in Figur' 5.1 I. 
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Figure 5.45 shows the initial relaxation process of each director. Note that the higher the 

value Of lt'd. the faster the director relaxes to ; r/2 at the ulonostFil)le surface. 't'his can Ile 

attributed to steeper gradients in the inonostable surface energy a,, 11', i is increased. RS seen 

in Figure 5.44. Therefore, with lower values of li', ' the global gradient throughout the cell 

is 'more negative' for longer throughout the cell', relaxation. and the nom 1ýýý . ý1 ýwitrhi1a 

region expall(is 1() include lo er "olt ages. 
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5.13 Varying the bistablc surf<u"cý relaxation c c>ýýffic iýýýýt. 
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%V(- now Iucwc on to our paranºictcr study for 180, the I)ist<<l)1(' surface r(Ihºx; ºt ion ý ýýýtliº iº nt 
We expect higher values of 1,9,, to cause greater 'friction' at the I)iStable surfººce, ineaiºing tlº, ºt 

more work is required in order to break the bistahle surface anchoring. Froh Figure 5.47. 

we see that this translates to larger HAN to Vertical switching regions for higher values of 
IAO' 
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Figure 5.47: Three key slices from Figure i. 46. 
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Figure 5.48: Three individual simulations with T=Z. JlllS, V= 50 volts and 1,,, -1 .0x 10 1n (black). 

3.0 x 10-7m (red), 1.0 x 10-ßm (green). 

Figure 5.48 shows the director profiles at each of the key points throughout three individu, ll 

simulations. 
We see that 1,4a hals little effect on the director profile at points (B) and (('), 

indicating that a pulse length of T=2.5ms is long enough to bring t lie simulation with the 

highest friction at the bistable surface (in this case, 1,. =1X 10-6111) to e(lllilibrlllnl when 

the field is applied. Between points (C) and (D), however, the simulation with the highest 
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Figiºre 5.4! ) shows the initial relaxation process of ea 11 director. AOtic'e that with Is frictit. 11 

it the bist able surface (1. 
ý,, = 1.0 X 1()-71u and I", 5.0 x 1O-'uº) tli(ý cla. "lic ill till' 

bulk is sufficient to break tlºe surface anchoring and the cell relaxes 1t) .1 11. A\ state. ()II tile 

other hand. with l,, 
� = 1.1) x 10 º'in tlºere is enough friction at the bistaltie surface to prevent 

the elastic torgqu e frcnºº breaking the bistable anchoring and Ilie cell relaxes- toi ,a Vertical 

state. 
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We now move on to our parameter study for l., 
A, the nuºuostalºle surfer c" rc lax: ºt iºm uº Ilic is nt 

NVe expect higher values of 1sd to cause greater friction at the "'Ollost able surface. tnc"nning 
that more work is required in order to perturb the director at the ntcºttcºsttthle surface. }"roln 

Figure 5.51, we see that this does not affect the lower HAN to Vertical switching rcegion. hilt 

that it expands the non-local switching region. 
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Figure 5.51: Three key slices from Figure 5.50. 

Figure 5.52 shows the director profiles at each of the key points throughout three individital 

simulations. 
We see that 18d has little effect on the director profile at point (B). By point 

(C), we see that lower values of l, 
y,, result in the director being brought closer to o0 at 

the monostable surface. Between points (C) and (D), the simulation with the lowest friction 

relaxes to a HAN state whilst the other two simulations relax to a Vertical state. 
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Figure 5.52: Three individual simulations with r=2.5ms, V= 50 volt- and 1,,, = 1.0 x 10-6m (bleck). 

1.0 x 10-5m (red), 2.0 x 10-stn (green). 
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Fi. ttrv 5.53 s11 ivVS t he itºiti<º. l rº'1 IXx tt loll f>rO(º'sS ººf Pu"II ºlirº'º"t(n. Aut iº"º, tIi, it %%"it IiI,,, fi i 

at the tttttustn1)1e snrfia("(' 1.0 x 1tl ttº) the It the 111 Il st, ºI, l(' srnrf. u º' quickly 

relaxes to its ltreOrt'tl mieiit at hm ttt"r 7r/2. With l., IA X 11) 'rnº and !,, 2-0K l 11 "III the 

ado1iticma1 Eric ticnl at the II' m stahl(' slIrfiu"e in, iirnt, aims a hm. (fire("tnýr (wient, Itioll at - d. 

and therefore a 1ow overall grmliettt t Itruiigltuttt t lte c"º'I1, fur longer. inº"rºe, +. iIIg t Iººe n0 nt-Iº1º : ºI 

switching regiºnt. Sty whilst the director orieutatiott at z_d is higher wit h 1,,, 2.11 ' 10 "tu 

at the iºtsta iit the field is rernto ved (Figure 5.52(C)), it, takes 1ºmt; º'r to relax tºº its º"º)tºililºriºtººº 

state. 
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Figure 5.53: Relaxations after the voltage is removed. corresponding to Figure 5.52 with r=2.5 ins. 
V= 50 volts and 1, = 1.0 x 10-em (black), 1.0 x 10-sm (red), 2.0 x 10-sm (green). 

Our results also allow its to unclerstacnd what shMIl(i happen for values of 1, 
d much greater 

than 2.0 x 10-5m. Note. from Figure 5-51(h)-(c"). that the non-local switching region i", 

gradually slºifting towccrclti longer dwell-tüules as &d is inc rease(l. Recall that I1w non-lut al 

switching region occurs due to it low overall gradient throughout the cell during the early 

stages of relaxation, and that this can only occur if the director orientation is suffiicie>>tly 

low near d at the time the voltarge is renwvecl (Figure 5.52(0)). With more friction at 

the inonostable surface, it follows that longer dwell-tunes are required to lower the director 

orientation at z=d to a level that enables non-local switclhing. 
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5.15 Summary 

In this chapter, we have examined the switching characteristics of the nemntic cell corn- 

sponding to our base parameter set (Table 2.1), using a bipolar pulse, with the no-flow model. 

Most significantly, we found that non-local director structures can influence the director at 

the bistable surface, therefore having an impact on the final relaxed state. This non-local 

effect was found to originate in the flexoelectric part of the electric field during the initial 

relaxation of the cell, shortly after the voltage was removed. 

We also investigated the effect of each parameter in our model on the aforementioned switch. 

ing characteristics. In some cases, the results were relatively straight-forward to understand. 

For example, we expected the parameters only relating to the inonostable surface (111d and 

1, j) to affect just the non-local switching region, which was found to be the case. Ilowtwever, 

in other cases, such as (e11 + E1)/2, we needed to examine the governing equations in more 

detail in order to understand why the observed results occurred. 

In the following section, we will re-simulate the results from this section using the flow 

model. 
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6 Results - flow model 

In this section, we will investigate the switching characteristics of our liquid crystal cell using 

the flow model. As in the previous section, we begin by simulating with the bwse parameter 

set (Table 2.1), before moving on to each individual parameter in our model. Note that, shire 

we are now including flow in our model, we have an additional parameter study concerning 

the slip-length, b (see Section 2.8.2). 

For each parameter study, we attempt to understand the observed flow and director profiles. 
We also note any significant differences between the `flow' results and the corresponding 

`now-flow' results obtained in the previous section. 

6.1 The base parameter set 

Figure 6.1(a) shows the TV plot generated from the parameter set in Thble 2.1 when the 

flow equation is included in our model. As before, red regions indicate switching from the 

Vertical state to the HAN state whilst blue regions indicate switching from the H AN state 

to the Vertical state. 

In direct comparison with the corresponding 'no-flow' TV plot (Figure 5.2), we see that 

both HAN to Vertical switching regions are largely unaffected by the inclusion of flow in 

our model. Similarly, for negative voltages the Vertical to HAN switching region appears to 

be the same in both cases. However, notice that we now have a white area of no switching 

between the two HAN to Vertical switching regions. In the no-flow case, this `gap' was part 

of the Vertical to HAN switching region. In order to explain why We see no switching either 

way in this area, we test an individual (r, V) point in the area of interest, for example, with 

T=2.5ms and V= 50 volts, as in Figure 6.2. 

The plots in Figure 6.2(I) show director profiles, taken at each of the critical points in the 

bipolar pulse, when simulating with r=2.5ms and V= 50 volts from an initial RAN 

(black line) and Vertical (red line) state. The plots in Figure 6.2(11) show the corresponding 

relaxations, immediately after the voltage is removed. From Figure 6.2(I)(ß), we see thnt 

the stressed equilibrium state is largely dependent on the initial state. In the no-flow case 

(Figure 5.4), the stressed equilibrium states are essentially the same for V> 20, regardless 
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of the initial state. However, with the inclusion of flow in our model the director expericnctw 

'kickback' in one half of the cell (z > d/2) when starting from an initially Vertical state. This 

is due to the `backflow' experienced in the flow profile (Figure 6.3(11)). Note that, despite 

this kickback, the director is mostly the same in the first half of the cell (z < (1/2) In each 

case. By plot (I)(C), note that there is less of the bulk close to 0=0 in the initially Vertical 

cell when compared with the initially HAN cell. From Figure 6.2(1I)(a), we see that this dif- 

fcrence between the bulk profiles does not affect the bistable surface during the early stages 

of relaxation. However, notice from Figure 6.2(II)(c) that the bulk in the initially Vertical 

cell remains close to 0=0 for a shorter period of time than the initially HAN cell. Therefore, 

as each bulk relaxes, there is only enough elastic torque to break the surface anchoring in 

the initially HAN case and so each cell relaxes to its initial state. 

Prior to our analysis of these results, we note that linearisation about some Constant (Ii. 

rector orientation 0- Olin reduces the bulk director and flow equations (equations (2.10) 

and (2.31), respectively) to 

7ýät tý ^ý -m(Olin)äzu, (G. 1) 

and Ou 02u a20 
Pat , 9(Olin) az2 + m(O1in)özät' (6.2) 

respectively. Also note that 

m(0) = m(ir) = a3 < 0, (6.3) 

9(0) = 9(r) =2 [a4 + a3 - a6] > 0, (6.4) 

m(ir/2) = -a2 > 0, (6.5) 
1 

9(7r/2) =2 [a4 + a5 - &2] > 0. (6.6) 

We now investigate the time between each critical point in more detail. 

6.1.1 Voltage on 

To understand why backflow occurs, we must consider the flow equation. The instant before 

the field is applied the cell is in equilibrium and hence there is no flow throughout the ccli, 

giving äu 02u 
TZ _ 5z2 = 0. (6.7) 
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Also, in the Vertical state we have B , zi ir/2, so rn(O) tn(7c/2) and q(O) y1(nr/2). Tlivrcrore, 

using equations (6.5), (6.6) and (6.7) with equation (6.2) yields 

au ate 
at 

N 
ÖXat' (6.8) 

which translates to positive changes in the gradient of 0 inducing growths in the flow profile, 
Now recall from the no-flow case that the dielectric torque pulls the director towards 0 
0 when a voltage is applied. Note that the director is initially in a slightly off vertical 

orientation, that is, the director is aligned with 0= a2 (< 7r/2) atz =0 and ©ei jt/2 

at z=d. Hence, the director is closer to 0=0, the energy minimum associate i with the 

electric field term, in the first half of the cell. Therefore, the director experiences slightly 

more electric torque in the first half of the cell than it does in the second half of the cell, 

giving 020 
Ozi3t > 0, (6.9) 

throughout the bulk of the cell, the instant the field is applied. Thus, by equation (6.8), 

we expect the flow to be positive throughout the cell for sufficiently short tim ales after 

a voltage is applied to a vertically aligned, negatively dielectric cell, which is supported by 

Figure 6.3(11). 

In order to explain the consequence of backflow on the director, note from equations (6.1) 

and (6.5) that 
ae 

_au Ot az' (6.10) 

which translates to negative gradients in the flow profile having a positive effect on the 

director about 8= it/2. Now, from Figures 6.3(II)(a)-(b) we see that this particular cell 

experiences a large amount of backflow once the voltage is applied, causing a large positive 

flow gradient in the first half of the cell and a large negative flow gradient in the second 

half of the cell. Therefore, by equation (6.10), we expect the backflow to incrrase 0 in the 

second half of the cell, thus producing the kickback observed in Figure 6.3(I)(b). Similarly, 

we expect the backflow to decrease 0 in the first half of the cell, causing the first half of the 

cell to decrease faster than the corresponding no-flow case, in accordance with Figure 6.4. 

As the director configuration reacts to the backflow, it induces secondary effects on the 

flow profile. If we neglect inertia (p = 0) and linearise about 0 7r/2 then, by equations 
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6.1.2 Polarity change 

Figure 6.6 shows the director and flow profiles for just after the change in voltage. polarity. 
Whilst the director profile evolves in an expected manner, with the flexoelectric term ccuviiig 
0(0) -. 0 and 0(d) -º ir, the corresponding flow profiles require further investigatiotn. itrrnil 

the D3 term in the field equation, namely 

D3 _ 
-EoV + 

d fo 
E, +'Bdz 

where d sin (20) 
l/ E13 

o El + AE sin2 BCi, 
y. G. laý 

- otice, from the profile corresponding to an initially Vertical state in Figure 6.2(10, that 
is a positive quantity at the instant the voltage changes polarity. Therefore, when ClIallgilig 
from a negative to a positive voltage polarity, D3 dccrcascs in magnitude causing a alight 
decrease in the field strength throughout the cell. We expect a decrease in the electric field 

to lower the gradient in the centre of the cell and increase the gradient close tos d, such 

that the dielectric contribution to the gradient in 0 is 

ate 
< 0, (0.5 < z/d < 0.7), 

=>0, (0.9 < z/d < 1.0), (6.14) Ozat 
= 0, (elsewhere). 

Additionally, due to the change in polarity, we expect the flexoelectric term to reduce the 

director gradient at z=0 and further increase the gradient in 0 at z=d, such that the 

flexoelectric contribution to the gradient in 0 is 

ate <0, (zce 0), 
azat =>0, (z g2 d), (6.15) 

= 0, (elsewhere). 

Assuming the flow profile to be initially zero when the voltage changes polarity, n-e can use 

equations 
(6.14)-(6.15) together with equation (6.2) and the appropriate line8risatious in 
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(6.3)"(G. G) to give 

äu 

Ft 
I 

> 0, (z :: 0.0), 

= 0, (0.0<z/d<0.5), 

> 0, (0.5 < z/d < 0.6), 
< 0, (0.6 < z/d < 0.65), 
> 0, (0.65 < z/d < 0.7), 

= 0, (0.7 < z/d < 0.9), 
<0, (0.9<z/d<1.0), 

> 0, (z 1.0). 

(G. 16) 

Note that we expect the flow profile near the centre of the cell to contain an area of negative 
flow sandwiched between two areas of positive flow, since m(Oi ) incurs two sign changes as 
Olin increases from zero to ir. From Figure 6.6(II)(a), we see that the observed flow is in line 

with our prediction in equation (6.16). Notice, however, that close to each boundary the 
flow is, while still in agreement with our prediction, very small. This indicates that the flow 

profiles in Figure 6.6(II)(a)-(c) are mainly due to the dielectric effects in the bulk of the evil. 

After the initial flow profiles in Figure 6.6(II)(a)-(c), the flow reacts almost entirely to 

the changes in 0 at the boundaries. From Figure 6.6(I)(d)-(f), note that the director at 

z=d gradually moves towards 0= 7r whilst the bistable surface reacts much faster, almost 

reaching 0= a2 by plot (e). Using this information with equation (6.2) and the appropriate 
linearisations in equations (6.3)-(6.6), we can formulate a similar argument to show that the 
flow profiles in Figure 6.6(II)(d)-(f) are as expected. 

One important point to note is that the flow observed in Figure 6.6(11) is two orders of 
magnitude smaller than the flow observed in Figure 6.3(11), indicating that the director 

structures change more rapidly than when the voltage is initially applied. 

6.1.3 Voltage off 

Figure 6.7 shows the director and flow profiles for just after the voltage is removed. As 

expected, the director favours 0= it/2 throughout the bulk of the cell and the evolution 

through plots (I)(a)-(f) behave in a sensible fashion. In a similar manner to the explanation 

of Figure 6.6(II), we can use our knowledge of the director's preferred evolution in the bulk 

of the cell to determine the initial flow profile. Note that, at the instant the field is removed, 
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we have 

020 
azat 

> 0, (0.0 < z/d < 0.1), 

< 0, (0.5 < z/d < 0.7), 

> 0, (0.95 < z/d < 1.0), 

= 0, (elsewhere). 

(6.1-1) 

Assuming the flow profile to be initially zero when the voltage changes polarity, we can 
use equations (6.14)-(6.15) together with equation (6.2) and the appropriate lincarisntions 

in (6.3)-(6.6) to give 
> 0, (0.0 < z/d < 0.005), 
< 0, (0.005 < z/d < 0.1), 

= 0, (0.1 < z/d < 0.5), 
Du > 0, (0.5 < z/d < 0.6), 
ýt (6.18) 

< 0, (0.6 < z/d < 0.65), 
> 0, (0.65 < z/d < 0.7), 

= 0, (0.7 < z/d < 0.95), 

> 0, (0.95 < z/d < 1.0). 

As before, we expect the flow profile near the centre of the cell to contain a negative iuea 

of flow sandwiched between two positive areas of flow, since m(Oim) changes sign twice as 
Olin increases from zero to it. Note that we also expect the flow to change sign near z=0 

since m(Olin) changes sign as Olin decreases from ir/2 to zero. Furthermore, we expect to sec 

a higher magnitude of flow around z=0, due to the conflict between the bulk elastic torque 

and the bistable surface anchoring, relative to the flow near z=d. As evidenced by Figure 

6.7, our expectations are supported by the simulations. 

After the initial flow profiles in Figure 6.7(II) (a)-(d), note that the flow profile reacts to 

changes in the director profile in a predictable manner. 

Having explained each of the switching regions in the rV plot corresponding to the base 

parameter set, we now move on to individual parameter studies. 
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Figure 6.7: Profiles taken during the relaxation process, using the base parameter set, with -27, IT), 

and lý 50 volts, starting from au ""t"alk' Vertical state. For eich plot, four profiles ian" taker, with rd 

corresponding 
to the first profile and blue corresponding to the last profile. Plot (I) shows the director 

profiles whilst Plot (I1) sl1ows the flow profiles. 
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Figure 6.10: Three individual simulations with al = 0°, r=2.5nu and 1' = 14 (black), 17 (red) and 20 

(green) volts. 

Figure 6.10 gives the four key point, for three simulations (Correslx, ndirng to Figure 6.9(; c ). \V 

see that the simulations behave as expected until plot (C), by which point the flexuelectric 

torque has broken the bistable surface anchoring and, in the 17 volts case. forced H towards 

(a2 - ir) radians at z=0. From plot (C) note that, in each case, there is insufficient ý"111., tic 

torque in the bulk of the cell to break the bistable surface anchoring and the cell reiaxc: ti to 

the Vertical state in the 14 and 20 volt cases, and a third state state in the 1 volts ra., 
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Note that the third state shown in Figure 6.10(D) is an acceptable stale. since our lºistahh 
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Figure 6.11: Three individual sitrntlations With cri = 00, T=2.5ms and V= (a) 1.1, (hl 1' ;, n, 1 (c) 'qtr 

volts. Plots (i) show tluw director profiles whilst Plots (11) show the corresponding flow profile.. N,, týý that 

all profiles are taken during the first half of the pule, ujt<r the maximum kickback has been attain, i For 

c, lt plot, fuhr profiles are situwtt with red corresponding to the first profile (taken at time I ýitrt. ) rur(l 
blue correspondirng to the last profile (taken at time - 3.5ms). Note the clifTerence in "r, tle tor ý ;, ý 1, �t tº� 

plots in (II). 

(b) V= 17 volts. (a) V= 14 volts. 
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To understand why the director rotates below zero at the bistable surface, we examine the 
director and flow profiles just before the voltage changes polarity (i. e. between plots (I) nnºI 
(C) of Figure 6.10), which are given in Figure 6.11. Note that once the backilow dntnps 

clown the director orientation in the second half of the cell is determined entirely by tile firld 

and elastic effects, with the field favouring 0 . ̂s ir and the elastic effecui favouring 0 ct: 0. In 

the 14 volts case (Figure 6.11(a)), we see that the elastic torque outweighs the field effectM, 

and the initial kickback (lamps down, producing a similar profile to that observed in the 

corresponding no-flow case. In the 20 volts case (Figure 6.11(c)), the field countrrbaln ucvs 
the elastic effects in the second half of the cell and the cell remains in a distorted equilibrium 

state. 

In the 17 volts case (Figure 6.11(b)), note that the field is not quite strong enough to 

hold the director in equilibrium, and the director in the second half of the cell is gradually 
forced away from 7r. This movement of the director induces the flow profile shown in Figuri 

6.11(II)(b). Now, for 0 ý- 0, note from equations (6.3) and (6.1) that we have 

80 ou 
cat ~ 8z, (6.19) 

which translates to negative gradients in the flow profile inducing reductions in 0 when 0 is 

close to zero. So the director in the first half of the cell experiences a negative effect due, 

to the flow profile observed in Figure 6.11(II)(b). With a steep enough gradient in the flow 

profile, it is possible for the director in the first half of the cell to be forced slightly below 

zero which, in turn, draws the director orientation slightly below zero at the bistable surface.. 
With 0<0 at the bistable surface, note that, upon changing the polarity of the voltage, the 
flexoelectric term in the surface energy equation now favours (a2 - 7r) as opposed to 02, and 

so the system evolves to the configuration observed in Figure 6.10(C). 

Note that we do not observe any such behavior with al > 0, since the negative fo%v ef- 
fect in the first half of the cell is not large enough to force 0 below Zero at the bist able 

surface. 
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From Figure 6.12, we see that varying a2 has the same effect in the 'n(º-114)W, C M(' 

when simulating fron a HAN state. However, from Figure 6.13(h)-(("), We ., v" that there is 

now an additional Vertical to HAN switching region when high posit iv(. voltages are t plºlig4l 

and that this new region overlaps with the tipper HAN to Vertical switching region 
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Figure 6.14: Three individual simulations with 7=2.5ms. V= 80 volts and n2 = 80.0° (black). 85° (red). 
gp° (green). 

Figure 6.14 gives individual simulations at the four key points during the bipolar pulse for 

each of the cells in Figure 6.13. We see, by Figure 6.14(A), that o2 affects the location of 

the internal boundary layer in the director profile close to the middle of the cell. Specifically. 

increasing a2 moves the wall closer to z=0. This is somewhat expected. Recall, from S- 

tion 6.1.1, that the dielectric torque is initially smaller as 9 tends towards nr/2. Therefore. 

by increasing 02 the bulk of the cell is initially closer to n/2 which rMuct-, the dielectric 

torque and allows the flow profile to induce positive growths in 0 in a larger portion of the 
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(cc11. ('o11s '(1 1('Iºt ially, t lºc clirc'c tur ºuay cxpcl-icl1cc kickback ill parts ()I ill(, 

preViousl}" (kjiuituatrcl by the field c'fft'("ts. 

Frrnn Figure (i 11(1)), we Secs that till, additional switching region in (i. ) º., not :k 
true HAN state. However, a in Section 6.2, the truing algorithm dw-Isi(iº'(i thi% state nj 
being optically similar' to the HAN state (for 01 85°, the IIAN and Vertical states h ave 

c, htic al trinsifiMsiOnS of 0.7731 and 2.839 x 10', respectively. whilst till, st, 11, %114)wn its 

Figure 6.14(D) has optical transmission 0.8284). Given our cell 1ºar+iººº, ters. the third st, ate 
has a higher optical transmission than the relaxed IIAN state. , 111(1 ýýý We ýh, º11 tý (ý º t.. tlýi.. 

�ý ,i 'Super-IIAN' state. 
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the induced flow has a negative gradient. Therefore, by equations (G. 1), (6.3) and (G., l), w' 

expect this negative gradient in the flow profile to induce an increase in 0 in the econd half 

of the cell. However, in contrast with the flow effects, note that the clastic torque through. 

out the bulk of the cell induces a reduction in 0. Now notice that the (12 = 859 rn has n 
larger portion of the bulk near 0= it, and so we expect there to be less clastic torque. to 

counterbalance the flow effects in the second half of the cell. Therefore, with high higher 

Vnlucs of a2, it may be possible for the flow profile to force the director above it in thp srrnnul 
half of the cell during the initial relaxation. Consequentially, the director nt d tnay hr 

forced above it such that it relaxes towards 37r/2 instead of its usual orientation of 9r/2. 
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6.4 Varying the flexoclectric constant 
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Figure 6.17: Thar key slices from Figure 6.16. 

From Figures 6.16-6.17, we see that, apart from the flow-induced arc-ft of no switching. 

altering E13 produces the same effects on the switching regions as we ohSrv e"d in thr -n 

flow' case (Section 5.5). Also, from Figure 6.18, we see that the director is afb twl it, 

accordance with the explanations given in Section 5.5. Specifically, note that highs"r valniý 

of E13 favour lower gradients throughout the bulk of the cell. 
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From Figure 6.19. we see that varying 11 produces a variety of interesting switching ('h, lrac- 

teristics. Notice, from Figure 6.20(b), that we now observe two areas in which there is no 

sw"itc1iiiig between states, witli one Vertical to HAN switching region sandwiclml in betwo il 
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Figure 6.21 shows three individual simulations relating to Figure 6.20(b) at 2rº, TO : n, l %'jº 

volts. In the 25 volts case, we see that at the instant the voltage is removed (plot ((')) thf"rn 

is insufficient elastic torque in the bulk of the cell to break the hist: chle surface anchoring, 

and the cell relaxes to a Vertical state. In the 50 volts c<-L'; e, note that there is enough el, Lýtic 

torque in the bulk of the cell to break the bistable surface anchoring, and so thr cell relaxcq 

to a HAN state. The 80 volts case, however, requires careful consideration in order to fully 

understand why the cell relaxes to a Vertical state. 
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Note that for B< 7r/2, positive graclietits in 0 "'crease c, whilst for H> 7r/2, positive grHdli_ 

ents in 9 dccivase ý. Therefore, by Figure 6.21(C). Nve c, cii concluclc, that is larger in the 

50 volts casc thin in tli e 80 volts case. Now, ttsittg a similar argument to that prewcntcvl for 

the non-local switching region (Section 5.2), vve can show that this rcviuction in neclucti 

the torque atz = 0. ineaning that the bistal)lc surface anchoring is riot broken am] tile 

cell relaxes to a Vertical state. From Figure 6.22. we that `remains smaller in tile %4) 

volts case for much of the relaxation process, giving an increased non local field effect at fill, 
instable surface. 

I; avinb explained the Switching rc"giuºº, in Figure 6.20(b). we Ilow exxºººitu" 1114, c"fTcv t ºýf 

changing cll. SPc'c"ificaºlly, we wish to determine why the non-lo al area (dis iss cl Hh ve) 
is replaced with a Vertical to HAN region for both small and large 

.: º. aýýýýrºý ýn i'iýºýrý" 

6.20(a) and Figure 6.20(c). ri'sl)c"c"tivchV. 

Let us turn our attention to the director profiles ill Figure ti. ''a. ý\ r timt ý ýmc c rn Ol1- c. I " 

wit ll the ýý - 4.0 case. Note that for a negative material. decreawing inrn". Lse. t he elcA i ne 

torque ill the bulk of the cell when a voltage is applied. Therefore, using a similar liar of 

reasoning to that presented in Section 6.3, we can expect lower values of c 11 to rejuee tile 

amount of director-kickback in the cell. tints moving the Hens-inciuccvi wall in the director 

profile closer to z=d, as observed in Figure 6.23(B). When the voltage is remclvecl, thr 
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Figure 6.23: "I'hrc individual simulations with r=2.5ins, 1' - s0 %-Olt, % n, ºr1 rp 111 Ihlark ý 'ý rý. l 
14.5 (green) 

eIa. stic tur<lu( 111,; ", U is ýr(; ºt(I in IIºr ý� - 4.0 rase. Ihý"rý"Iýý f++wnºrºnk :+ ! l: \\ ýt, rir 
Furthernºore. n: tºe that tIle º, i. º' hMS rºWre -f its hulk ('I( ' to. N 0. Willi h nlwý 
favour` ,i final II \N st, ite. It is therc'fore reasonahl , to ývxpw"t that. with 1 tº. the ýrl) 
, Iwuld relax to ýa IIAN state. as in Figure 6.23(1)'. 

º r\l>laitn the relaxation observed in the 14.5 c'asr. we nuts, that. ; et tl, inst. t 
tl1V field is rc'ºuuVeci. there is considerably less torque 1111-uug1ºc'ut Ili, Iºu1Ik Of he, eti-ll than 
in the (I - 1.0 and ( 11 = ti.: ) cca ses. Therefore. using a similar argi inelºt t, º that Iºre nte') in 
Section 6.3. we can expect the fow effects to have a more prOnO)ºtiu"cdl 1ºeºýitiýeý rtfi'ct e, n thy, 

r1. tlils cýn<elýliu OW di -CCtcýr to rlircc tcr tu i Iex 141t%; ºrI' the Sup, state it., 
shown in Figure 6.23(D). 
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6. (i V<<t yiiý the tpertpendicula r ciielert ric" constant (' fixcd) 

50 

y 
O 

d0 
v+ 
Co 
ö 

-5( 

0 

25 

(a) Semi-transparent block showing all switching regions 

L 
i 

(h) Plot cif solid 'slices'. (c) H AN - Vertical only. (d) Vcrtirnl -" HAN roily 

Figure 6.24: rV plots for varying the perpendicular dielectric mnstwnt. l fmm 1 to 20 
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Figure 6.25: Tlircr kcy slices from Figurt 6.21. 

Figure 6.24 shows the results obtained from varying c1 when flow is inc"liuinl iii our imNil'1 

In comparison with the "O-flow results (Figure 5.21). we see that Icý«ýýr r: ýluc of c_ no W 

produce unexpected results. Spec"ificailly. as can be . eIvu l)v c olliparing Figure 6.25(a) with 

Figure 5.22(a), the majority of the HAN to Vertical switching regicm (1" < O) i, Icº, -t When 

modelling with the flow equation. 

U) C A 
V 

m 

(A) Initial Statt (B) Time - 2.5ms (C) Thun " $. OiM It" Fyr sur 

z/e 
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Co 02 e4 of IS IS 

Eid 
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Figure 6.26: Individual simulations with T=2. Tim. s. %' = -80 volts and .i=5. Herr wr our mmp*ring 
t he flow model (black) frone Figure 6.25(a) with the no-flow model (red) from Figure 5.22(a). 

To understand why it becomes more difficult to switch from the HA\ state to the Vertical 

state when including flow in our model, we first consider the director profiles in Figure 6.26, 

which simulate from an initial HAN state with T=2.5ms, 1' = -S0 volts and r1=5 

(O( = 5), using the flow model (black line) and the no-flow model (r(A line). \i'e that 

both the flow and no-flow models produce virtually identical director profiles in plc, tS (A). 

(B) and (C). but that once the voltage is removed the nc-flow simulation relaxt-, tO at Vertical 
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. tittc" W1iilst the tlcº%V sinntlaticºu relaxes to º I1 \N a: ºtr. F1 utu this, %%º ýIºýv ºtlºcir thilt tlºhr 

difference in relaxations iuaV be (1tue to all unexpected th()Nv ý'tfý"ý t andl s tlºc iººiti. 1l rý ?. ýý. ýºiII 
f the flow simulation is c"0n1Siclert"cl. 
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Figure 6.27: The individual relaxations associated wit ht he `flow' simitlat ion in Figure fi.: fi. I'lots (I) atxwý 
the director profiles whilst Plots (II) show the corresponding flow profile. For each I, 1�t. (.. 'it t, r tiln arte 
shown with red corresponding to the first profile and blue corresponding to, the last t, r hl, " 

Froh ! Figure 6.26(C), note that, the instant the voltage is removed. the cla tKK IU pi, ºº, ",, %, 

the bistable surface causes the gradient in H to decrease near z=0. Therefore, a. ' mining an 

initially flat flow profile, we may use equations (6.3)-(6.6) and (6.; ) with egtmtiom (t; 2) 

prodiet a non-zero flow profile of the form 

> 0, (0.0 < : /(/ < 0.05). 

<0, (0.05<z/d<0.1), (621) 

= 0, (0.1 < z/d < 1.0), 

which concurs with Figure 6.27(II)(a. ). Note that since B is very close tº -2 in the kille of 

the cell, we W'oulcl expect the positive part of the flow profile to ºluininatºe in the early aagvr. 

0.0 0.2 0.4 0.6 0.8 1.0 
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ý)f Il'liLK<till)I1 as ti(`(`I1 1 11 I'1p111'l` 6.27(11)(b)-(c), ! )['l)1I11('lllg a 1711},,. 
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Figtirt" 6.28: Director t'c"laxatiutus, itnntc"cliatc"Iy aftct ' the Volt age is rittxtýttl, ttrrcr)NýIUIItt} týý I t}qtr h 11ý 
Acre we are c nwaring the flow model (black) with thi no-HOW model (r(A). 

Note that the induced hackflh)ww" contributes to ,a slh; u-p p, vtk in tlt,, flow ptojilv 13%. 

same reasonitl ; as used to explaili the kickback-effect in Section ). 1. W' , "xl)c""t till, ttrgative 

gradient in the flow profile to itic"r(U. gr Ilia director oil the right-11,111d siele of Ow t)c"Hk whilst 

the extremely high positiv(' gradient in the flow profile dc-ry7'asr" tile illinledialf. 1%. to 

the left of the peak. This leads to the director kickback that is olh. cýrýcýci in each of t1w rlots 

of Figure 6.28. along with a reduction in the gradient of 0 atz 0 relativ(. I() the iio-flo%. 

model, as in Figure 6.28(a). By decreasing the gradient in Bat : _- (1, note tltat the elm tic 

torque acting on the Instable surface is also reduced. (hire the hackflow hm' clamlwil , 1ýnrn. 

there is iii. uflic"ieuit elastic torque to break the anchoring at the I, i, t. ýnrf. t,. ill 'i 014 (ill 

relaxes to a HAN state. 

)A) Initial Statt (8) Tim. " 15ms (C) Tb-» " 6. em ewr 
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Figure 6.29: Individual simulations with cl = 20, r=2.5ms and V= 25 (black). 50 (md) and 80 %rlt. e 
Note that each simulation corresponds with a point in 6.25(c). 

This result I1 LS implications for all positive materials, naltivi. v flint Ira 'kflh w promotes Vor. 
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tical to H AN switching. This is in contrast to the flow effects we observe with it tu"ESUivr 

material, in which backflow hinders some areas of Vertical to HAN switching. 

Finally, note from Figure 6.25(c) that with c .L= 
20 we observe two Arens in which the 

cell does not switch either way. To investigate this, we examine the individual director 

profiles in Figure 6.29. It can be immediately seen from Figure 6.29(C) that the director 

structures are virtually identical to those in Figure 6.21(C). We therefore conclude that the 

80 volts case in Figure 6.25(c) does not switch from the Vertical state to the HAN state title 

to the non-local field effect presented in Section 6.5. 
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6.7 Varying the dielectric constants (. -( fixed) 
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Figure 6.30: rrV plots for varying ((Ii +c 1)j 2 from : 3.5 to 17.5. with 1, ýi 11 in rarh ; ý.. 

i; ýý 

2.5 

(a) Senil-transparent block showing all switching regions. 
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Figure 6.31: Tiircr kcv slices from Figure 6.30 
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From Figure 6.30, we see that altering (FII + fl)/2 hroclncc"s, with the c"xcc"liti, m of thýý K: clº. 
the same effects on the switching regions a_5 we observed in the no-f1o "' ('a_'4' (Crc ticm ýi. K) 

Also, from Figure 6.32, we see that the (SO volts case ill Figure 5.25(1) clue-, not switch frutn 

the Vertical state to the HAN state due to the non-local field effect presented in Sott ii n tº 

(A) Initial Stau (B) Ttma " 2. Sms IC) TMta " 6. um fc4 ryy ewy 

C 

.0- 
12 o 

0 Li? [IL_ 00 0.2 0.4 06 0e 1.0 0.0 0.2 0.4 00 05 1.0 00 of 04 o" $a Is 60 &1 
.0a4. 

,I 
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Figure 6.32: Three individual simulations with (iii + E1)/2 = 10.5. r=2.5mm And %= 25 (black). ri 
(red) and 80 (green) volts. 
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6.8 Varying the splay elastic c"c»>Staiit. 
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(a) K, = 8.30 x 10-'2N. 
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Figure 6.31: 'I'hr. 'c kcv slice's from Fiwum (i.: i: l. 

Figure 6.33 shows the results obtained from varying KI \ l1VI1 fluNr i., incluýiý"ýi in ýnir inýH1ý"l. 
In comparison with the no-flow results (Figure 5.28), W see that lower values of 1%1 üit1O(l11er 

JIEe«" Vertical to IIAN switching region for high positive %. , lt. jvý 

Figure 6.34(a). 
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Figure 6.35: Three individual simulations with K, = 8.3 x 10-'2N, r=2.5i and 1' = 50 (black). fi 
(red) and 80 (green) volts. 

Figure 6.35 shows how the director varies With h=8.3 x 10-12N for different Volt . 
Note that, from our previous parameter studies, we are already in a positiom to explain the 

evolution of each director. In the 50 volts case, we see that there is enough elastic torque 

to break the bistable surface anchoring during relaxation, and so the cell relaxes to a HAN 

state. In the 70 volts case, the director is forced closer to 0= 7r at :- (I during the second 

half of the pulse, which magnifies the non-local effect (Section 6.5) and favours a Vertical 

state. Ire the SO volts case, the director experiences even less elastic torque it :-d during 
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relaxation, allowing t1c flow c"(fc'c"ts clisc1ISSCº1 iu S("c"tiuu 6.3 to rot tº" the clirºvt, ºt Iºrýidol 

g= 7r and relax towrºr<is a Super-HAN state. 111('s(' rxlºlaºnaºticIs an" si1lºIº�rtc'1l by I"igº$tº" 
6.36. 

(a) Time " 5. tms (b) Time - 5.2ms 10 n"w . SIMS Nl flow " 1&. 0 
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t/d 

o. o 01 04 oe oe ,o 
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0C .73... .... 

Figure 6.36: Relaxations corresponding to Figure 6.35 K, = 8.3 x 10-UUN r=2.5ntr wn'1 l '41 ihlnq k I. 
70 (reel) and 80 (green) volts. 

To understand why increasing K, reduces the Vertical to HAN switching region. and elimi- 

nates the Super-HAN state, we relate back to our findings in the no-How cIsv (Section rim. 

Note that lincarising equations (5.5)-(5.7) about O :: it also produce, c'cluýitioii 

Therefore, as Ki is increased, we can expect the director to remain closer to 9= rr At the 

rnonostable surface throughout, its relaxation. This increases the nou-local eff* 't. and so 
the director favours N 7r/2 at tlic Instable surface. 11'itlc toure ('hLLtic tort' ie at : ,I 
we can also expect the flow effect to be reduced, which prevents the Super-}IAN st;, tq, from 

occurring. 
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6.1) Varying the bend elastic constant 
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Figure 6.37: TV plots for varying the bend elastic constant. K3. from o. 8 Ill -ý t 2tß a lip 
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(a) K3 = 8.30 x 10-12N. 
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Figure 6.38: Three key slices from Figurc 6.37. 
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Figure 6.37 shows the results obtained from varying K3 when flow is inc"lucipd in our mc, dc. l 

In comparison with the no-flow results (Figure 5.32), we see that the results are very similar. 
However, Figure 6.38(b) is a particularly interesting slice in %N-hic"lh We Ol)cvrve t hr(. ee clist itu, t 

areas of Vertical to HAN switching when T=2.5ms, namely 1- = 5.50 and SO ý"�lts. 

C 

m 

(A) Inhl& State (B) nn» " 2.5m, (C) non. " e. Om 
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z/a 

00 0 04 os 08 .0 
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dot aWIn sr. 
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Figure 6.39: Three individual simulations with K3 = 2.48 x 10-13. N. r=2.5ms and %- 50 (hIW*). 70 
(red) and 80 (green) volts. 

The individual points of interest are given in Figure 6.39. In the 50 volts ca..; e, there is lei 

flexoelectric torque at z=d and so the director is further from 0= ir at the time the voltage 

is removed 
(plot (C)). This inhibits any non-local effects, and allows the histable surface 

anchoring to be broken causing the cell to relax into a HAN state. In the 00 %"olt caws, 

there is more flexoelectric torque at z=d, causing the director to be closer to 9=A h%" 

the time the voltage is removed, which increases the non-local field effect (Section 6.5) and 

forces a Vertical state. In the 80 volts case, the elastic torque atz =0l clues > strung 
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that HIC 11011-local c lfý ct is nc'gat('cl and tli(' c"('II rc'hM's to a HAN 

; trv supported by Figure 6.40. 

(a) Time " 5.7ms (s) Tim " 5.2ms (c) Tk"O " 9.2. m "ýry 111 TUNS 

00 02 04 06 oe 1.0 00 0: 04 oe 00 I'D 00 0.04 0F 00 ýc "" op ., o. .ý 

: Id old 1/0 
t'" 

Figure 6.40: Relaxations corresponding to Figure 6.39 with Ka = 2.4S c 111-''N. ,2 ; Ifi` and 1 : 1411 
(black), 70 (red) and 80 (green) volts. 

Frone tlic corresponding results using tlºc n()-flow Model (Section 5.10). it follows tli:, t II. -\N 
to Vertical regions are expected to dominate for lower values of K3 whilst Vertical to liAx 

regions are expected to dominate for larger values of K3. This is in . 'gre Tent with Figiirv 

6.37. 
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6.10 Varying the Uistahle surface anchoring st. rciigt 1º 
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(a) Semi-transparent (block showing all switching regions. 
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(a) Wo = 1.00 x 10 SN m. 
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Figure 6., 12: Throc kcy slices from I'igin'(" (i. 1I. 

Figure 6.41 shows the results obtained from varying IV(, when fluor is inc"Iuclwl in our muNIq"I. 
By comparing Figure 6.41 with Figurce 5.36. we see that 11 *() affects 1)Oth the no-How tttoxlel 

and the flow model in a siºººibi. r faslºionº. However, in the 110WW ºuox1('1 We see that 11 ; also 

affects the white band Of 110 switcliiºig, as in Figure 6.42(b). This ;, ºº hý xiýl. ýiný ýi 1, ý , 

ºinining indivi(lJill (r. 1') points, as in Figure 6.43. 
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Figure 6.13: Three individmil sinmiations with lt'0 = 2.3 x 10-5N/111, r=2.5in. c and I' (blek), 2(1 
(red) and 30 (green) volts. 

From Figure 6.43(B) we see that. ill the 15 volts c"aase, any kickback is quickly dot»inatf-c1 hv 

the field effects. This is because the field is too small to produce the initial backflow that is 

required in order to produce a sustained over-rotation in the director. In the 2(1 and 30 volts 

case, the initial Imckflow is large enougli to force the director close to H-;, in the 'AN '01)(1 

half of the cell. From Figure 6.43(('). we see that the elastic torque at the histal, le surfe 

increases with the applied voltage. However. the 15 volts case has more of the bulk c"IcSC to 

T. ---- tT_T.. 

0.0 0.5 1.0 1.5 2.0 2.5 

Time (milliseconds) 
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0 0. "1'1ºcrc'fcºre, as Hic cell relaxes, there is morse elastic torque a"t ing ºm t lur Iºist; iiºIr %ur- 
face in the 15 volts case than there is iii the 20 volts case, as seen iii l figure li .1 .1 11irreft)re. 

the 15 volts simulation relates towards a HAN state whilst the 20 vººIt-, º"a"º, rq+ºxº", ii w, i I« 

a Vertical state. 
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Figure 6.44: Hela. xMions corresponding to Figure 6.43 with It', = 2.3 x 10-'N /in. 2-rims mid V 

(black), 20 (red) and 30 (green) volts. 

One further point to note is that, for 1.5 x 10-5 < 1V� < 1., s x 1()-5, the (('Il C(Mt; Aül. ; III 

isolated `island' of no switching, as in Figure 6.45. This has implicat ions for the 11 j)1 ýý ýý) 

tracing algorithm, which are discussed in Section 4.10. 
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Figure 6.45: rV plot, sliowittg just Vertical to HAN switching, corresponding tu 11', t =1 ti , l11 °\ t� 

Figure 6.46 shows three individual points taken from Figure 6.45. From blot (B), we st'(' 

that all three cases are very similar. However, closer inspection reveals that the longer liýtl_ 

length has in fact distorted the bulk of the cell so t hat 0 is slightly lower than tilt, other two 

cases. This indicates that, in the 0.3ms and 0.6ms cases, the cell is lnOt in exduilihrium, ul(i 

the dielectric torque is gradually forcing the director towards 6= (l. A1'e now consider the 
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Figure 6.46: Critical points for individual simulations corresponding to Figure 6.45 with ii dw1.6 x 
10-5N/m, V= 18 volts and T=0.3 (black), 0.6 (red) and 2.5 (green) milliseconds. Note that thew 

simulations are different lengths, and that their directors have only been superimposed to illustrate the 
differences at their respective critical points. 

0.3ms and 0.6ms cases. From plot (C), note that the longer pulse-length allows for more 

of the bulk to be affected by the elastic torque near z=0. Therefore, when the fick! is 

removed, there is less elastic torque in the bulk to act against the bistablc surface anchor- 
ing. Hence, the 0.6ms favours the Vertical state whilst the 0.31ns case favours the IIAN state. 

Turning our attention to the 2.5ms case, note from plot (C) that, for a sufficiently long 

pulse-length, the dielectric torque is able to completely negate the director kickback, forcing 

the bulk of the cell towards 0=0. When the voltage is removed, there is sufficiently more 

elastic torque (relative to the 0.6ms case) in the bulk of the cell throughout the relaxation, 

thereby favouring a HAN state. 

(8) PoIdty Chang. ICI V. M. w OR 
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Figure 6.47 shows the results obtained from varying IVd when flow is included in our model, 
W'e'hen considering the no-flow results (Figure 5.41), lVd appears to affect both m odie"Is in 

a similar fashion. We see frone Figure 6.48 that higher values of lt't promote Vcrtiual to 
HAN switching for relatively high voltages, whilst maintaining part of the area in which non 

switching occurs. 
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Figure 6.49: Individual simulations with T=2.5m. s. V= tiO volts and 11"d = 1.0 x 10 1N/m (black). 
4.2 x 10-3N/in (red), 1.0 x 10-2N/m (green). 

From Figure 6.49(C), it becomes clear why higher values of 11 <1 favour a Vertical state. For 

low values of l4j, the torque at the monostable surface forces the director close to H= rr bV 

the time the voltage is removed (plot (C)). which produces the non-local effect discussed in 

Section 6.5. Therefore, lower values of 14"d favour a Vertical state. As 11; i is inc"reasw1. the 

director at the bistable surface becomes more strongly anchored at 7r/2. which reducf-s the 

ºion-local effect and favours a HAN state. 
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Figure 6.50 shows the results obtained from varying I, when flan. is inc luýiý ýl in ººº nºýýý1ý 1 

When considering the no-flow results (Figure 5.46), 1, appears to , ºffe, "t I,, ºth inýýýlr lý üº 

exactly the saine way'. 
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As in the no-flow case, we see that varying I.,, affects ýjny non-local reegii)ns ()f tlice rl' Blut 
Figure 6.53(a) shows that for low values of lq, we observe an additional Vertical to HHAN 

: wwwitcliiiig region, which overlaps the non-local RAN to Vertical s itc"Iºiug region 
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Figure 6.54: Three individual simulations with T=2.5uis, V= 50 volts and 1,,,, = 1.0 x 10-6111 (black). 

1.0 x 10 5111 (red), 2.0 x 10-5m (green). 

To understand why this overlap occurs, we first examine the director profiles at each of the 

critical points (Figure 6.54). As expected, the only difference between the ciirec"tor profiles 

occurs near z=d, most notably in plot (C). Upon removing the voltage. the tir() higher 

values of l. 
S,, relax to a Vertical state whilst the simulation corresponding to the lower 

of 1d relaxes to a Super-HAN state. 

Recall from Section 5.14 that 1d controls the friction at the monostable surface. with 1, W%rr 

values of 1 producing less friction and higher values of /, 
yd producing more frictiui,. NOW 
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recall, frone Section 6.3, that the Super-IAN state O(Ciirs &11w toi lra<'k(1mv tIiirin, g the ittiti, 11 

relaxatio>ii of the director. Therefore, with lower values of l.,, we can eXj), c"t tilt, (lirector 

to he more susceptible to the flow-imhwed torque at ý d, c: ui. ing the director toi relax 

towards 0= 37r/2 at the monostal)le surface. This is illustrated in Figure 6.55. 
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Figure 6.56 shows the results obtained from varying 6. the partial slip-length parameter. \ººt' 

that as 8 is increased we observe a second region of no switching, Which occurs when high 

positive voltages are applied. As in previous sections, we attempt tu ex , plain this behavior 

by examining the director profiles at specific (rr, V) points. 
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Figure 6.58: Three individual simulations with r=2.5ms, V= 80 volts and d=1x 10-10 (black). 
2.5001 x 10-6 (red). 1.00001 x 10-5 (green). 

Figure 6.58 shows three individual simulations at each of the critical points in the hilRolar 

pulse. From plots (A)-(C), it can be seen that there is very little difference he twec"n the 

three simulations for most of the simulation-time. However, from plot (D) we see that the 

no-slip case relaxes to a Vertical state whilst the two partial-slip cases relax to a new state 

with 0 az at z=d and 0 -_ -7r/2 at z=d. From the log files, we see that this third 

state has an optical transmission of 0.8789, whilst the HAN and Vertical states have optical 

transmissions of 0.7746 and 5.051 x 10-4, respectively. This third state, which ýV(' shall 
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Using Figure 6.58(C'), we can predict, the behaviour of the gradient in H. At the instant t hr 

field is removed 

i)28 
> 0, 

_>0, Ozät 
= 0, 

(0<z/d<0.1), 
(Z d), 
(elsewhere). 

(6.22 

Therefore, using equation (6.22) together with equation (6.2) and the a})l)roý})riatc lin('ari. sa- 
tions in (6.3)-(6.6), and assuming an initially flat flow profilr'. we have 

> 0, (0<t/(l <0.05). 
ý)tr < 0, (0.05 < z/d < 0.1), 

<(z-- d), (6.231 

= 0, (elsewhere). 
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Recall the partial-slip condition, 

a ulz_o 
Oil 

z 

12=0 
(6.7.4) 

By definition, for a non-zero slip-length the flow at the bistable boundary is directly propor. 
tional to the gradient in the flow profile at the bistable boundary. So for positive gradients in 

u at the bistable boundary (as predicted by equation (6.23)) we expect a positive flow veloc- 
ity at z=0. By equation (6.24), we also expect the flow at the bistable surface to increa'e 

with 6. Therefore, for sufficiently high values of d we can expect the gradient throughout 

the flow profile to be negative when the gradient in u is positive at the bistable surface. This 

agrees with the flow profiles in Figure 6.58(II)(a). 

Givcn a negative gradient throughout the flow profile, equations (6.1) and (6.3) give 

a0ouýO 
ät N äz (6.25) 

which implies a decrease in the bulk of the director. Furthermore, as 6 is incre c d, vi' 

expect an increased negative effect throughout the bulk of the cell during the e u1y stages of 

relaxation. Close inspection of Figure 6.58(I) indicates that this is indeed the ease, with III(, 
bulk of the director `bowing' below 0=0 for larger values of b. 

Should the bulk of the cell be forced far enough below 0=0, we might expect there to 
be enough elastic torque near z=d to pull the director below zero at the tnonostnble 

surface. Consequentially, the director may relax towards 0= -ir/2, as in Figure G. 59(I)(d). 
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6.15 Summary 

In this section, we have examined the switching characteristics of the nemntic cell ratrc*- 

sponding to our base parameter set (Table 2.1) with the flow model. Overall, with the 

exception of the flow-induced areas of no switching, the effect of varying each pariuncter %V 
largely the same as the no-flow cases discussed in Section 5. However, the inclusion of flow 

led to some interesting and unexpected differences between the two models. 

For our base parameter set, we found that above some voltage threshold the director ex- 

periences flow-induced kickback which forces 6 outside the normal range of (0, r/2). 'fjhs 

was found to be especially prominent when simulating from an initially Vertical state, and 
leads to different distorted equilibrium states for the initially HAN and initially Vertical itn- 

ulations. Essentially, this can lead to the final state of the director having some dcpendanre 

on its initial state. For our particular cell, director kickback led to some switching regions 

containing areas of no switching either way. 

We also found that the non-local field effect, originally presented in Section 5.2, is also preva- 
lent in a cell which exhibits a high degree of kickback in its distorted state. Furtlicrtuütr, 

the non-local effect was found to behave in exactly the same way in each ca-., c, w hilt leMs 

to specific parameter sets favouring a particular final state, regardless of the cells initial satte. 

Our simulations indicated that flow effects can cause the director to relax into filial equilib- 

rium states which are neither HAN nor Vertical. These equilibrium states, which We refer 

to as Super-HAN states, occur when the flow causes 0 to move outside the range (0, r) dur- 

ing the early stages of relaxation. Such states were found to be limited to high Taltages 

or low director pre-tilts. However, since it is possible for the director to obtain a relaxed 
Super-HAN state, we note that it would be useful to find a way of escaping back ton ref, Cd 

state which is truly HAN or Vertical. In order to determine whether or not this is possible, 

further research is clearly required. In the interim, to avoid Super-HAN stater, a manageable 

alternative would be to avoid voltages in excess of 50 volts and pre-tilts of less than 0.510, 

It should be noted that the Super-HAN states could be an artifact of our one-dimensiwaI 

model and, by modelling twist, such states may relax to a more energetically-favourable state. 

Although our results are mainly oriented towards investigating the switchitlg chlanlctCii, ̀, - 
tics of a negative dielectric material, we briefly investigated the flow effects when al iti%v 

material is used (Section 6.6). We found that, in contrast to a negative material, a positive 
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material does not experience director kickback when a voltage is initially alºiili'L'd to the t'dI, 

and so the distorted states were found to be the same regardless of the initial state. I low' rr, 
the director was found to experience kickback when the voltage was remo%V(I from the cell. 
This kickback worked against the elastic torque at the bistable surface, thereby fa oti ing it 
final HAN state. This led to a large reduction in HAN to Vertical switching region`, ruin it 
large increase in Vertical to HAN switching regions, for negative voltages. 
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7 Conclusions 

In this thesis, we have constructed two models for a nematic Zenithal lJistnhle Devico ('LUD), 

in one dimension, by employing various mathematical techniques such as Erickson-Colic the- 

ory and the Maxwell equations. The difference between these two tnoclek is that one Is n 

simplification which does not attempt to model flow effects, whilst the other is a mori com- 

plicated model which includes the flow equations. We then introduced a munber of ndvallml 

numerical methods, such as a fully-implicit time integration method, tulaptive timc-stepping 

and a moving mesh algorithm, for solving these equations. After some simulation unaly c's, 

we concluded that our fully-implicit method with adaptive time-stepping and a moving tnrAh 

algorithm provided the best balance of speed and solution accuracy. 

One of the important parts of this thesis is our original tracing algorithm for automata. 

cally generating rV-plots in an efficient and robust manner. This relied heavily on our tc t 

for determining when a cell is approaching an equilibrium state, and which equilibrium mate 

it is approaching, once an electric field is removed. Our code-base was built in such a way 

that it is completely modular, meaning that it is relatively straight-forward to replace any of 

the underlying routines with a suitable alternative. This means that the tracing algorithm is 

not constricted to our simple one dimensional model, and it may be easily adapted to hvrk 

with two or even three-dimensional models. 

Using our numerical methods and our tracing algorithm, we examined the switching char. 

acteristics of a bistable nematic cell when a bipolar pulse is applied, initially using just the 

no-flow model. We found that non-local director structures can influence the director at 

the bistable surface, therefore having an impact on the final relaxed state. This non"locnl 

effect was found to originate in the flexoelectric part of the electric field during the initial 

relaxation of the cell, shortly after the voltage was removed. 

We also investigated the effect of each model parameter in our model on the snitching 

characteristics of the cell. For each parameter, the integrity of our numerical results wt-. Ls ver- 

ified by examining the governing equations in detail whenever necessary. Quite inten-titingly, 

we found that the flexoelectric constant, E13, contains a `sweet-spot' for triggering IIAN to 

Vertical switching (see Section 5.5). For low values of E13, the flexoelectric torque was too 

small to break the bistable surface anchoring when the voltage was applied whist, when '13 

was too large, the flexoelectric torque was strong enough to re-break the surface anchoring 

when the voltage was removed. So there exists an interval of values for E13 nithiti which 



7 Conclusions 205 

tlic switching capabilities of the cell are optimised. We also found that rnrying the lluvfcfIU%1 
Vertical state, a2, has a profound effect on the non-local switching region whilrtt v41 tying 
the preferred HAN state, al, has little effect on the non-local switching region. V'Anying thr 

magnitude of the dielectric coefficients, (cii +cl. )/2, with fixed dielectric nni. % trnI)y. a ttirºrt 
found to dramatically affect the switching characteristics of the cell. 

Finally, we examined the switching characteristics of a bistable nemltir cell when rº11fixtl, 

pulse is applied using the complete model, which included the flow equations. We found that, 

above some voltage threshold, the director experienced flow-induced kickback whidi tort" 

0 outside its normal range of (0, ir/2). This director kickback led to some switching trgion 

containing areas of no switching either way. With the exception of the director kickback and 
its effects, the flow model was found to generally behave in a somewhat similar fashion to the. 

no-flow model when low to moderate voltages were applied. For higher voltages, hoarrt, 

some parameter sets were found to induce flow effects which caused the director to relax 
into final equilibrium states that were neither HAN nor Vertical. We referred to such states 

as Super-HAN states, since they exhibited a higher optical transmission than the standard 
HAN state. 

Although our results were mainly oriented towards investigating the switching cliatactcr. 
istics of a negative dielectric material, we briefly investigated the flow effects when a was itljt 

material was used. We found that, in contrast to a negative material, a positive material 
does not experience director kickback when a voltage is initially applied to the cell, Anti to 
the distorted states were found to be the same regardless of the initial state. ilo%%rvrr, the 
director was found to experience kickback when the voltage was removed fron the cell, thus 

reducing any HAN to Vertical switching regions and increasing Vertical to HAN switching 

regions when negative voltages were applied. 

Regarding areas for improvement and further 'Work, our numerical methods would benefit 

from some further investigation into nondimensionalisation of the flow equation. At hm'; ýcnt, 
time adaption is only carried out in terms of 0 and our fully implicit method appears to gi%e 

a higher priority to accuracy in 0. Nondimensionalising the flow equation would allow the 

convergence criterion of our fully implicit method and our time-adaption algorithm to gi e 

an equal weighting to both 0 and u. 

Finally, while our rV-plot generator has proven to be extremely robust and reliable, it 

cannot detect any `holes' within a tracing region. Despite such cases being somewhat taue, 
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tlicy do exist and must be accounted for. Several potential solutions to this deficiency all, 
described in Section 4.10. 
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A Formulation of the bistable surface energy 

'Ve wish to find an appropriate Fourier Cosine Series (FCS) to describe the bistnhle surfrar 
energy. Ideally, this function will allow for any al (the preferred HAN orientation at 0(0)), 

C k2 (the preferred Vertical orientation at 0(d)) and ß (the height of the secondary rnergy 
barrier, relative to the primary energy barrier) to be chosen. 
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Figure A. 1: The bistable surface energy function for varying al, with az = 80° and 0=1.2 in each rye 

However, from Figure A. 1(c), we see that for some values of al and a2 the energy function 

becomes unreasonable in that, instead of exhibiting local maxima, it exhibits local muinim,, j 
at 0= (-ir + al + a2)/2 and 0= (ir + al + a2)/2. \`'hat follows is the derivation of tut 

energy function which allows for any al and a2 whilst constraining Q so as to prevent the 
function from exhibiting the aforementioned minima that are observed in Figure A. 1(c). 

Let the bistable surface energy function be 

where we assume 

Waurf = 1V0f (e - (al + a2)/2), (A. 1) 

f (X) = ao + al cos(2X) + a2 cos(4X) + a3 cos(GX), týý ýý 

so that 
= f'(X) = -2a1 sin(2X) - 4a2 sin(4X) - Ga3 sin(GX), (11.3) 

8 (radians) 

-s -z -1 uiza 

9 (radians) 

-3 -2 -, 01: 2 

"(r. aw* 
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and 

where 

= f"(X) = -4a1 cos(2X) - 1Ga2 cos(4X) - 3Ga3 cos(GX), (1\, 4) 

,Y=8- (al + 02)/2. (A. 5) 

We require f (X) to satisfy the following conditions: 

1. At 9= al (i. e. X= (al - a2)/2), we require a local minimum of height 0, i. e. 

f ((al - 02)/2) = 0, 

ao + al cos(al - a2) + a2 cos(2(al - a2)) + a3 cos(3(a1 - °2)) = 0, (A, G) 

and 

f'((a1 -, a2)/2) - 0, 

-2a1 sin(ai - a2) - 4a2 sin(2(al - a2)) - 6a3 sin(3(al - 02)) -= o, (l1 r) 

and 

f0 ((ai -C f2)/2) > 0. (A. 8) 

2. At 0= a2 (i. e. X= (a2 - al)/2), we require a local minimum of height 0, i. e. 

f ((as -- al)/2) - 0. 

= ao + al cos(a2 - al) + a2 cos(2(a2 - al)) + a3 cos(3(az - al)) 0, (A 9) 

and 

f'((as - 0i)/2) - 0. 

-2a1 sin(a2 - al) - 4a2 sin(2(a2 - al)) - 6a3 sin(3(a2 - al)) = 0, (1.10) 

and 

f"((a2 - ai)/2) > 0. 

(N. B. This is exactly the same as condition 1. ) 
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3. At 0= (al + 02)/2 (i. e. X= 0), we require a local maximum of height 1, i. e. 

! (0) = 1, 
ý ao + al + a2 + a3 = 1, 

and 

f'(0) = 0, 
=0=0, (satisfied automatically) 

and 

f""(0) < 0. 

(A. 12) 

(A. 13) 

(A. 14) 

4. At 0= (-7r + al + a2)/2 (i. e. X= -ir/2), we require a local i mimum of height ß, 

i. e. 

f(-7r/2) = a, 
map-a, +a2-a3 = Ii, 

and 

f'(-ir/2) = 0, 
=0=0, (satisfied automatically) 

and 

0. 

(N. B. 0=1 sets both energy barriers to the same height. ) 

(A. 15) 

(ß\. 1G) 

(A. 1 ) 

row, since equations (A. 13) and (A. 16) are satisfied automatically, and condition 2 is MI ; ºl 

ogous to condition 1, our remaining four conditions given by equations (A. 6), (A. 7), (A. 12) 
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and (A. 15) may be written in matrix form as 

1 cos(al - a2) cos(2(al - a2)) 

0 sin(al - a2) 2 sin(2(al - a2)) 
111 
1 -1 1 

Equation (A. 18) solves to give 

cos(3(al - a2)) po 0 

3sin(3(al - ctz)) a1 p 
1 az 1' 

-1 a3 ß 

a, = (, ß(A-B)-(A+B))/C, 

a2 = 2(, ß(D - E) - (D + E))/C, 

a3 = (ß(B - F) + (B + F))/C, 

ao = 1-al-a2-a3, 

where 
A= 2cos2(a, - a2) (1 + 2sin2(a, - a2)) - 3sin2(al - a2), 
B=2 cos(al - a2), 

C= 8sin4(a, - a2), 
D=2 cos3(a, - a2), 
E= 3cos2(a, - a2) - 1, 

F=1+ cos2(al - a2). 

(ýý. i s) 

(A. I9) 

(A. 2o) 

-ow, notice that the second derivative given in equation (A. 4) may be written using tlýe 
Fourier coefficients computed in equation (A. 19) as, 

f"(X) = (-4/C) [(, Q(A - B) - (A + B)) cos(2X) 
+8(, 6(D - E) - (D + E)) cos(4X) 
+9(ß(B - F) + (B + F)) cos(6X)J, (A. 21) 

which can be rearranged, collecting terms in fl, to give 

f"(X) = A4(X) - P(X), (A. 22) 
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where 

q(X) = (-4/C){(A - B) cos(2X) 

+8(D - E) cos(4X) + 9(B - F) cos(GX)}, 

p(X) = (-4/C){(A + B) cos(2X) 
+8(D + E) cos(4X) - 9(B + F) cos(GX)}. 

Now, by equation (A. 8), we require 

P((ni - a2)/2) 
9((ai - a2)/2) 

P((ai - a2)/2) a 
9((ai - a2)/2)' 

9«al - 02)/2) > 0, 

9((at - 02)/2) < 0, 

(, ß. 23) 
(A. 21) 

(A. 25) 

to ensure that we have a local minimum at 0= al and 0= a2. Similarly, equation (A. 14) 

implies that 

,Q< qp(0), 
if q(0) > 0, 

(0) 

is needed to ensure a local maximum at 0= (al + a2)/2, whilst equation (A. 1 i) implies that 

p(-7r/2) a 
9(-7r/2)' 

P(-7r/2) a 
4(-ir/2), 

9(-7r/2) > 0, 

q(-ir/2) < 0, 

is required to ensure a local maximum at 0= (-zr + al - 02)/2. 

(A. 27) 

Using equations (A. 25)-(A. 27), we may select an appropriate value for P. With, a value 
for Q, our Fourier coefficients may be computed using equation (A. 19), allowing us to con. 

struct the Fourier Cosine Series given in equation (A. 2). 
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B The flexoelectric effect on the relaxed HAN state 

Recall that the governing bulk equation for this model is 

yl 
90 

_ (K1 cos20+ K3 sin20) 
z0 

aZ2 
(2-0-) z 

+2 sin(20) 
[¬oE2c 

+ (K3 - K1) - 2E13 
ov 

, (IL)) 

where 

D3 - E13 sin(2O) 
80 

-E0V + E13 fd sin(Z8) 
cý` 

_0, +i1_ %in 0"( 
,ý 

E=2 Oz 
' 

D3 
d EpýE1 -i- AE sin 0) d. 

JO ýl+dcsi, 0 "" 

, Vote that 

OE (az)2 ieE13 sin2(20) D30E21 Sin(20) 
TZ 

Ep (El COS2 0+ cl, Sint 0)2 Ep (C. 
L COS2 0+ Eq Sln2 ©)2 

_ 
Eisä sin(20) 2D13 (Oz)2ccxý(2o) 

(C3.3) Co (E1 COS2 0+ El, Sin2 0) Co (El COS2 0+ Ep Sin2 0) 

and 
E2 _D- 

2D3E13 sin(20)! B + Ela sin2(20) 
E2 (E1, COS2 0+ Ell Sin2 0)2 

(B. 4) 

Therefore, upon substituting equations (B. 3) and (B. 4) into (13.1) and collecting together 

like terms, we have 

ryl 
ae 

= m(O) + n(O) + p(O) + q(O) + r(O) + s(e), ß, 51 at t 

where 

7-n, (8) = (KI cos2 B+ IC3 sin 20) än(8) QEDs sin(20) 
2co (ElCOS'B+CMsill?. 0) 

P(e) =1 (Ks - K1) (äz)2sin(2B), AcE' sin3(2©) Q(e) _- 
(M)2 

2Eo (Ci. cos2©+[lsin?. D) ý 

E13 
020 

sin2(20) 
r(O) = 

co (E1 COS2 0+ Ell sin' 0) ý 

Es (i22) 2 sin(40) 
CO (El cost 0+Ej sIn2 O) 
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Our initial condition for a HAN cell is a linear profile from 0(0) = ct, to 0(d) - v/2 MI(I 
therefore, initially, ä=0. We first consider the simple case in which K, K3 and at . 0. 
In this case, 

m(e) = n(O) = p(O) = 9(O) = r(O) = 0, 

whilst 
s(O) N c(©)sin(4©(z)), 

where c(O) >0 VO(z). This means that 

i' 
ei (0) sin (40), 

with cl(O(z)) >0 dz, so 0 will increase for 0<z< d/2 and decrease for d/2 <<ßm in 
Figure B. 1(b), causing a nonlinear director angle solution. 

(a) Initial Condition (b) Fi"xo&. ctric Distortion 

N 

äO 
C 

mN 
Ö 

O 

z/d 

O 

n 

ýo 
Io 

n 
4 

0 

Figure B. 1: (a) The initial condition for a THAN state, and (b) the form of the dominant flexoekctrie tmn 

Examining each term in equation (B. 5) when Ac # 0, K, i4 K3i 

, c2(0) > 0'0(z), which tends to make 0(z) linear. Since ne begin . m(B) N c2(B) az7 
20 

with a linear profile in 0(z), a will remain small. 

. n(O) N c3(9) sin(20), c3(9) :ý0 VO(z) always has either a completely positive effect or 
a completely negative effect on 9(z) across the entire cell depending on At. 

p(O) N c4(0) sin(20), c4(0) 00 V0(z), always has either a completely positive effect or 

a completely negative effect on 0(z) across the entire cell depending on It anti K3. 

0.0 0.5 1.0 1. $ 

9 (red&m) 

U. u u. G ... ... .. o ... 
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" q(©) ' c5(0) sin3(0), c5(0) j0 V0(z), always has either a completely positiv, nicer or 
a completely negative effect on 0(z) across the entire cell depending on dt. 

" r(O) , c7(9)ä sin2(20), c7(0) >0 V0(z), so s(O) tends to inake 0(z) litnear. Sind, %%v 
begin with a linear profile in 0(z), ä will remain small. 

" s(B) N c8(0) sin(40), c8(6) > 0, meaning that t(O) will cause all `s'-slutpe tl1ttt fucrca% 
9(z) for 0<z< d/2 whilst 0 decreases for d/2 <z<d. 

So we conclude that s(O) dominates, and any `s'-shapes will always he similar to that ill 

Figure 5.16(A). Furthermore, s(O) increases quadratically with E13 thereby pronouncing the 
kink in the relaxed HAN state. 
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