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Abstract

In this thesis, we investigate the hierarchical bases of C1 quadratic spline functions

on Powell-Sabin-12 triangulations and their applications to surface compression

and numerical solutions of the biharmonic equation. We also construct C2 quintic

refinable spaces of spline functions on the Powell-Sabin-12 triangulations.

We first show that a nested sequence of Cr macro-element spline spaces on

quasi-uniform triangulations gives rise to hierarchical Riesz bases of Sobolev spaces

Hs(Ω), 1 < s < r + 3
2
, and Hs

0(Ω), 1 < s < σ + 3
2
, s /∈ Z+ 1

2
, as soon as there is a

nested sequence of Lagrange interpolation sets with uniformly local and bounded

basis functions, and, in case of Hs
0(Ω), the nodal interpolation operators associated

with the macro-element spaces are boundary conforming of order σ ≤ r.

Starting with a nested sequence of C1 piecewise quadratic macro-element spaces

which is generated by uniform refinements and combined Powell-Sabin-6 and -12

splits on arbitrary polygonal domains Ω ⊂ R
2 we construct hierarchical bases of

Lagrange type. Properly normalised, these bases are Riesz bases for Sobolev spaces

Hs(Ω), with s ∈ (1, 5
2
) and Hs

0(Ω) for s ∈ (1, 3/2) ∪ (3/2, 5/2). Compared to the

previously constructed C1 Lagrange hierarchical bases of [21, 41] which require

some special partitions of the initial triangulations, our bases are constructed on

general triangulations. Our bases have larger stability range for Hs(Ω) compared

to the C1 wavelet bases of [33] and the C1 Hermite type hierarchical bases of

[14, 49].

Numerical results are presented to show the advantages of our Lagrange hierar-

chical basis in compressing surfaces. Since this basis is a Riesz basis for the space

ii



H2
0 (Ω), we also investigate the use of the hierarchical basis as a preconditioner for

solving the biharmonic equation.

In addition, we propose a construction of refinable spaces of C2 macro-elements

of degree 5 on triangulations of a polygonal domain obtained by uniform refine-

ments of an initial triangulation and a Powell-Sabin-12 split. The new refinable

macro-elements have stable local minimal determining sets (MDS). Therefore they

can be used to construct nested spline spaces which possess stable local bases and

also achieve optimal approximation power.
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Chapter 1

Introduction

1.1 Introduction

Let ∆ be a triangulation of a domain in R
2. Given integers 0 ≤ r < d, we write

the space of splines

Sr
d(∆) := {s ∈ Cr(Ω) : s|T ∈ Pd for all T ∈ ∆},

where Pd is the space of polynomials of degree d. Spline functions are well known

as highly effective tools in approximation theory, computer aided geometric de-

sign, image analysis and numerical analysis. The application of Sr
d(∆) splines in

numerical computations usually requires stable local bases for the space Sr
d(∆)

or its subspaces. It is well known that the space Sr
d(∆) possesses stable local

bases for any regular triangulation only if d ≥ 3r+2, see [20]. In order to obtain a

spline space with C1 smoothness we need to consider either C1 quintic polynomials

with 21 degrees of freedom on each triangle or to use lower degree macro-element

spaces that subdivide each triangle into a number of subtriangles. For example,

the well-known macro-element spaces are the Clough-Tocher, Powell-Sabin-6 and

-12 macro-element spaces.

Let S(∆R) be a subspace of Sr
d(∆) where ∆R is a refinement of ∆ obtained by

applying a given splitting procedure to each triangle of ∆. Suppose in addition

1



Chapter 1. Introduction 2

that every spline s ∈ S(∆R) is uniquely determined by the values of s and its

derivatives at some collection of points in Ω. Then S(∆R) is called a macro-

element space provided that for each triangle in ∆, s|T is uniquely determined by

the data at points in T . There are many examples of macro-element spaces. For a

comprehensive study of macro-element spaces, see Lai and Schumaker [36]. Macro-

element spaces are particularly important in applications since they are available

on arbitrary polygonal domains, they generally have stable local bases and have

full approximation power. This means that they approximate sufficiently smooth

functions to O(hd+1
∆ ), where h∆ is the mesh size of ∆, that is, the length of the

longest edge in ∆. In this work we are interested in the case where ∆R is obtained

by applying Powell-Sabin splits [53] to each of the triangles in ∆, in particular

the Powell-Sabin-12 split (∆PS12), see Fig.1.1. Here each triangle is divided into

12 subtriangles by connecting each vertex of the triangle to the midpoint of the

opposite edge and connecting the midpoints. Given function values and gradients

at the vertices of a triangle and normal derivatives at the midpoints of edges, a

unique C1 quadratic spline which interpolates this data is determined [53]. We

call the resulting spline space S(∆PS12) the C1 Powell-Sabin-12 macro-element

space. A spline s ∈ S(∆PS12) can be represented piecewise using a Bernstein-

Figure 1.1: Left: Powell-Sabin-6 split, and right: Powell-Sabin-12 split.

Bézeir representation on each triangle in ∆PS12 and it can be easily evaluated

using the de Casteljau Algorithm [36]. Alternatively, a subdivision scheme based

on Hermite interpolation for the Powell-Sabin-12 split introduced by Dyn and
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Lyche in [26] can be used to evaluate a C1 quadratic Powell-Sabin-12 spline on

an arbitrary triangulation. In applications, and in particular for scattered data

fitting and the solution of boundary-value problems by the finite element method,

it is advantageous to work with macro-element spaces that produce a given order

of approximation while involving the least number of degrees of freedom. In [2]

Alfeld et al. show that certain degrees of freedom can be removed from the C1

Powell-Sabin-12 macro-element without losing any approximation power. The C1

reduced macro-element space was constructed by requiring the normal derivatives

at the midpoints of edges be linear rather than piecewise linear. This reduced space

is then uniquely defined with only function values and gradients at the vertices.

They also showed that the space has a stable local nodal minimal determining

set and full approximation power. See also the paper [9] of Chui and He for

discussions on Powell-Sabin macro-element spaces. There is also a recent paper

[10] by Cohen et al. where a simplex spline basis for C1 Powell-Sabin-12 macro-

element is introduced. For higher smoothness Powell-Sabin-12 elements, see the

paper [54] of Schumaker and Sorokina.

In our work we are particularly interested in refinable spline spaces. Given

a sequence of triangulations ∆0,∆1, . . . ,∆n, . . ., such that ∆n is a refinement of

∆n−1 for each n, suppose that S0, S1, . . . , Sn, . . ., is a sequence of spline spaces

defined on these triangulations. If Sn−1 ⊂ Sn for each n, then we say that the

sequence of spline spaces is refinable or nested. Nested sequences of splines play

an important role in the numerical solution of partial differential equations, see

[49, 14, 37]. They have also been used for surface compression in [32, 42]. The

spaces Sr
d(∆) are nested for any choice of 0 ≤ r < d. However, many other se-

quences of spline spaces are not nested. For example, the superspline subspaces

[36, Definition 5.6] of Sr
d(∆) are not nested since a given superspline on level n

will not have the needed “supersmoothness” at the vertices of the macro triangles

to belong to space of level n+ 1. Now we would like to note that Powell-Sabin-12

split has the refinability property if we subdivide a triangle in T ∈ ∆ into four
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similar subtriangles by connecting midpoints of edges. Then applying the Powell-

Sabin-12 split on each of the subtriangles we obtain a spline space of C1 piecewise

quadratic polynomials which contains the spline space of C1 piecewise quadratic

polynomials defined on the Powell-Sabin-12 split of T as a subspace. This shows

that the space S(∆PS12) is refinable and therefore nested spline spaces with sta-

ble local bases can be constructed. The nested spaces are therefore suitable for

the multiresolution analysis [12, 13, 14, 17, 19, 21, 22, 24, 29, 33, 49, 50], with

applications in particular to multilevel methods in numerical partial differential

equations and surface modelling. Recently, Jia and Liu in [33] introduced a refin-

able space of C1 piecewise quadratic polynomials on combination of Powell-Sabin-6

and Powell-Sabin-12 splits. The refinable space in [33] was employed to construct

spline wavelets. Besides C1 piecewise quadratic Powell-Sabin-12 element, there

are other notable approaches to constructing refinable C1 spline spaces. They are

cubic Fraeijs de Veubeke-Sanders C1 macro-elements, see [21, 32] and C1 quadratic

macro-element on Powell-Sabin-6 triangulations, see [11, 41, 42, 43]. For recent

survey of refinable multivariate spline functions, see the paper [29] of Goodman

and Hardin.

Starting with a nested sequence of spline spaces one can now build a multilevel

basis for it. The idea is to construct them recursively by adding to the basis from

the previous space a set of locally supported functions spanning a complement

space such that the union is a basis of the current space. In particular, in this

work we will use hierarchical bases meaning that the functions that are added are

just a subset of a single level basis for the space of the current level. For piecewise

linear functions on general triangulations, Yserentant [58] constructed hierarchical

bases and introduced the idea to use hierarchical bases as preconditioners in the

finite element application to solve second order elliptic boundary value problems

when using the conjugate gradient method. The hierarchical bases of [58] give rise

to Riesz (stable) bases for the Sobolev spaces Hs(Ω), s ∈ (1, 3/2), in 2D with a

suboptimal stability result for the case s = 1, leading to logarithmically growing
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condition numbers of the related stiffness matrices. In [49] Oswald constructed

hierarchical bases on general triangulations using refinable C1 quadratic and cu-

bic Powell-Sabin-12 macro-element spline spaces. The hierarchical bases are of

Hermite type which means that they are derived from the Hermite interpolation

functionals. The hierarchical bases studied in [49] are introduced for precondition-

ing the finite element equations for fourth-order elliptic boundary value problems.

Motivated by the same problem, [14] constructed hierarchical bases of C1 quintics

splines, which are also of Hermite type. These C1 hierarchical bases are Riesz

bases for the Sobolev spaces Hs(Ω) with s ∈ (2, 5/2), with a suboptimal stabil-

ity result for the case s = 2. That is using the associated hierarchical bases as

preconditioners will lead to logarithmically growing condition numbers of stiffness

matrices related to fourth order elliptic equations. These C1 hierarchical bases are

of Hermite type, which restricts the range of stability to values s > 2, since, by the

Sobolev embedding theorem, the corresponding Hermite interpolation operator is

only well defined for functions in Hs(Ω), s > 2. Taking that into consideration, the

construction of hierarchical bases based on C1 macro-elements of Lagrange type

instead of Hermite type allows to enlarge the range of stability from s ∈ (2, 5/2)

to s ∈ (1, 5/2).

Hierarchical bases are employed for surface compression. Surface compression

using C2 quadratic wavelets of certain box-spline spaces was studied in [25]. The

application of hierarchical bases in surface compression was first proposed by Hong

and Schumaker in [32]. In [32] a surface compression method was constructed for

the space of C1 cubic splines defined on triangulations obtained from convex quad-

rangulations. Later Maes and Bultheel [42] construct a compression method for

the space of C1 quadratic splines on Powell-Sabin-6 triangulations. The hierarchi-

cal basis of [32] is of Hermite type and the hierarchical basis of [42] is constructed

using quasi-interpolation schemes.

Lagrange bases with local support were constructed in [44, 45, 46] for C1 cu-

bic splines on triangulation generated by triangulated quadrangulations and for



Chapter 1. Introduction 6

C1 quadratic Powell-Sabin-6 macro-element spaces in [47]. In [21] Davydov and

Stevenson constructed the first C1 hierarchical bases of Lagrange type where the

nested spline spaces are macro-element spaces of C1 piecewise cubic polynomials

[36, Section 6.5] on certain triangulations obtained from checkerboard quadran-

gulations of any polygonal domain and the nestedness of the space is obtained

by a triadic refinement scheme. The Lagrange interpolation points are chosen so

that the sequence of Lagrange interpolation sets {Ξn}∞n=0 for the corresponding

spaces Sn is nested, that is Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn ⊂ . . . and hence a corresponding

hierarchical basis can be constructed. The C1 Lagrange hierarchical bases of [21]

generate Riesz bases for Sobolev space Hs(Ω), s ∈ (1, 5/2), which is an optimal

result for s = 2. Later, Maes and Butheel in [41] also constructed a C1 hierar-

chical basis of Lagrange type. The nested spline spaces are C1 Powell-Sabin-6

macro-elements and the nested sequence of triangulations is obtained by a triadic

refinement of the Powell-Sabin-6 split. Here an initial triangulation is obtained

from a certain checkerboard quadrangulation of the polygonal domain. We note

that the constructions of C1 hierarchical bases of Lagrange type in [21, 41] require

some special partitions of the initial triangulations of polygonal domains. Fur-

thermore, the construction in [41] only leads to Riesz bases under the assumption

that the resulting nested family of triangulations is regular. We say a sequence

of triangulations is regular if the minimum angle of all triangulations in the se-

quence of triangulations remains bounded below by a positive constant β > 0

independent on the refinement level n. This is a standard property required in the

multilevel methods. Although not shown in [21], the sequence of triangulations

suggested there is always regular as we verify in Chapter 2 Proposition 2.12. Be-

sides the hierarchical Riesz bases, there are also Riesz bases of wavelet type. On

general triangulations of polygonal domains, Jia and Liu [33] constructed cubic

spline wavelet bases based on orthogonal projection operators which lead to Riesz

bases for Hs(Ω), s ∈ (1.618, 5/2). On unit square, Jia and Zhao [34] constructed

bicubic splines wavelet bases which lead to Riesz bases for Hs(Ω), s ∈ (1, 5/2).
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As a central result of this work, in Chapter 3, we construct C1 Lagrange hierar-

chical Riesz bases for the Sobolev spaces Hs(Ω) for s ∈ (1, 5/2) and Hs
0(Ω) for

s ∈ (1, 3/2) ∪ (3/2, 5/2) on general triangulations of arbitrary polygonal domains

Ω ∈ R
2. We note that our construction gives a larger range of stability compared

to [33]. Our method can be applied to any polygonal domain in contrast to [34]

where the method is only available on the unit square. We also would like to note

that no numerical results are available for the numerical schemes based on the

hierarchical bases of Lagrange type [21, 41] and wavelet bases of [33]. We have

implemented our method and numerical results are presented in Chapter 4.

We have seen from the above discussion the effectiveness of using hierarchical

basis as a preconditioner is related to the Riesz basis (or “stability”) property

of this hierarchical basis in the Sobolev spaces Hs(Ω), and Hs
0(Ω) in the case of

homogeneous boundary conditions. In [34], Jia and Zhao developed a general

theory for multilevel Riesz bases of Hilbert spaces. Under the guidance of the

general theory, they were able to construct wavelet bases for Sobolev spaces on

the unit square. The similar theory is also studied in [33]. The key ingredient for

establishing the stability properties is the norm equivalence of the form

∥∥f
∥∥
Hs

∼ inf
fn∈Sn: f=

∑
∞

n=0 fn

( ∞∑

n=0

[
ρns‖fn‖L2(Ω)

]2)1/2

, f ∈ Hs. (1.1.1)

with Hs = Hs(Ω) or Hs
0(Ω) and ρ being the refinement factor. The norm equiv-

alence can be established using the arguments similar to those in Oswald [50],

Theorem 6 and [13]. The following Jackson inequality of the form

inf
g∈Sn

‖f − g‖L2(Ω) . ρ−n(k+1)|f |Hk+1(Ω), f ∈ Hk+1(Ω), r < k ≤ d, (1.1.2)

plays an important role in getting the estimate (1.1.1). The Jackson inequality

(1.1.2) can be obtained by using quasi-interpolation operators for any spline space

S with a stable local basis, see [18] and [36]. However, if one has to establish (1.1.1)

for Hs = Hs
0 one would first require the Jackson estimate (1.1.2) to hold for all

f ∈ Hk+1
0 . But this can be established if the interpolation operators Πn associated
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with the spline spaces Sn are boundary conforming of order r in the sense that

for any function f vanishing on the boundary of Ω together with its derivatives

up to order r, the interpolants Πnf satisfy the same property. This is normally

true for macro-element spaces. We note that the results for spaces Hs
0(Ω) have not

been established before. In Chapter 2, with the focus on the macro-element spaces

due to the availability of boundary conforming interpolation operators that allow

appropriate treatment of subspaces with zero boundary conditions, we present

general conditions for the nested sequences of macro-element spline spaces to give

rise to Riesz basis in Hs(Ω) and Hs
0(Ω).

We have already mentioned some examples of macro-element spaces, in partic-

ular the refinable macro-element spaces which are of our interest in this work. We

note that refinable macro-element spaces we have seen so far are of C1 smoothness.

In fact refinable macro-element spaces of higher smoothness have not been known

yet. Constructing such spaces is non-trivial, and depending on the nature of the

type of split ∆R used. Usually one would require working with supersplines, that

means that the splines space will need to satisfy certain smoothness conditions at

the vertices higher than the degree of smoothness enforced across the edges. We

know that supersplines are usually not refinable because of the supersmoothness

conditions at the vertices. For a construction of refinable sequences of special su-

perspline spaces, see [17]. As the last part of this work, in Chapter 5, we present

a construction of C2 refinable macro-element spaces on Powell-Sabin-12 triangu-

lations, whose degree 5 is substantially lower than the degree 8 of the C2 spline

spaces of [20] and degree 9 of the refinable C2 superspline spaces of [17]. The

nestedness of the spaces is achieved by relaxing the C3 smoothness conditions at

the vertices of macro-triangles, which allows to break the ‘super-smoothness disks’

at the vertices into half-disks.
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1.2 Organisation of this Thesis

Here is the outline of this thesis.

In Chapter 2 we study the general conditions for the nested sequences of

macro-element spline spaces to give rise to Riesz bases in Hs(Ω) and Hs
0(Ω). We

first establish the Bernstein inequality for spline spaces with stable local bases.

We then proceed to derive the Jackson inequality for macro-element spline spaces

where we only assume that the nodal basis is uniformly bounded. We then present

a general theory which shows that a nested sequence of Cr macro-element spaces

with nested Lagrange interpolation sets and uniformly bounded and local basis

functions, generates hierarchical Riesz bases for the Sobolev spaces Hs(Ω) for

s ∈ (1, r + 5/2), and for Hs
0(Ω) for s ∈ (1, σ + 3/2) \ (Z + 1/2) when the nodal

interpolation operators related to the macro-elements are boundary conforming

of order σ. In the last part of the chapter, we review the existing constructions

of C1 Lagrange type hierarchical Riesz bases for Sobolev spaces. In particular,

we verify that the triadic refinement underlying the construction of [21] leads to

quasi-uniform triangulations.

In Chapter 3 we construct Lagrange bases for the spaces of C1 piecewise

quadratic polynomials on the combination of Powell-Sabin-6 and Powell-Sabin-12

triangulations introduced in [33]. We prove that the Lagrange bases are uniformly

stable and local. We then consider the multilevel setting and construct hierarchical

bases of Lagrange basis functions and prove that they form Riesz (stable) bases

for the Sobolev spaces Hs(Ω), s ∈ (1, 5/2) and Hs
0(Ω), s ∈ (1, 3/2) ∪ (3/2, 5/2)

using the general theory developed in Chapter 2.

In Chapter 4 we first investigate the performance of our hierarchical bases

constructed in Chapter 3 for surface compression. Numerical test results show

the advantages of the Lagrange hierarchical bases for this application. The last

part of this chapter is devoted to solving the biharmonic equation ∆2u = f . We

numerically compare the multilevel preconditioners of hierarchical and BPX type
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based on both Lagrange and Hermite basis functions.

In Chapter 5 we propose a construction of refinable C2 macro-elements of

degree 5 on Powell-Sabin-12 triangulations. We show that the macro-element

spaces have stable local minimal determining sets (MDS) and also stable local

nodal minimal determining sets (NMDS). We also provide explicit formulas for

all B-coefficients which are not computed directly by the standard smoothness

conditions so that the proposed macro-elements can be easily implemented in the

framework of the Bernstein-Bézier techniques.

Chapter 6 provides a conclusion and indicates possible directions for future

research.

Throughout we employ the usual notation a . b and a ∼ b to indicate that

the inequality (respectively, the double inequality) includes bounding constants

which are not of interest. The parameters on which these constants may depend

are either explicitly mentioned or clear from the context.
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1.3 Preliminaries

The aim of this section is to introduce standard definitions from the theory of bi-

variate piecewise polynomial splines as described in the book of Lai and Schumaker

[36], which will be used throughout the thesis.

1.3.1 Sobolev spaces

Let Ω be a bounded domain in R
2. Suppose 1 ≤ p ≤ ∞ and k ∈ N. Then Sobolev

space is defined by

W k
p (Ω) = {f : ‖f‖W k

p (Ω) <∞},

where

‖f‖W k
p (Ω) =





(
k∑

i=0

|f |pW i
p(Ω)

)1/p

, 1 ≤ p <∞,

k∑
i=0

|f |W i
∞(Ω), p = ∞,

with

|f |W i
p(Ω) =





( ∑
ν+µ=i

‖Dν
xD

µ
yf‖pLp(Ω)

)1/p

, 1 ≤ p <∞,

max
ν+µ=i

‖Dν
xD

µ
y f‖L∞(Ω), p = ∞.

Thus the space W k
p consists of all functions f in Lp(Ω) whose partial derivatives of

order less than or equal to k belong to Lp(Ω). For a good reference work concerning

Sobolev spaces, see [1].

1.3.2 Bivariate Spline Functions on Triangulations

Let Ω be a polygonal domain in R
2 and ∆ a finite collection of triangles whose

union coincides with Ω. We assume that the intersection of any two triangles

in ∆ is empty, or a common vertex, or a common edge of them. Then ∆ is a

triangulation of Ω. The length of an edge e of ∆ is denoted by |e|. Let ξ be

the set of all edges of ∆. The maximum length of the edges of ∆, denoted by
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h = h∆ = supe∈ξ |e|, is called the diameter or mesh size of ∆. Given a triangle

T ∈ ∆, we denote the diameter of T by diam(T ), which refers to the length of its

longest edge. We denote the smallest angle of the triangles T ∈ ∆ by β∆, and set

γ∆ = min{diam(T ) : T ∈ ∆}/h∆.

A family of triangulations is called regular if β∆ ≥ β > 0 for every ∆ in the family.

A regular family is said to be quasi-uniform if γ∆ ≥ γ > 0 for every ∆.

For any positive integer d, let Sd(∆) denote the space of all piecewise polyno-

mials of degree d with respect to ∆. In other words, s ∈ Sd(∆) if and only if, on

each triangle T ∈ ∆, s agrees with a polynomial in Pd, the space of all bivariate

polynomials of total degree at most d. For any r = 0, 1, . . . , d− 1, let

Sr
d(∆) := Sd(∆) ∩ Cr(Ω)

be the space of all piecewise polynomials of degree d and smoothness r with respect

to ∆.

Let {s1, . . . , sN} be a basis for a linear space S ⊂ Sd(∆). We say that the

basis is m-local if for each i = 1, . . . , N there is a triangle Ti ∈ ∆ such that

supp si ⊂ starm(Ti). Here star
k(T ) := star(stark−1(T )) for k ≥ 2, where if U is the

union of a cluster of triangles, then star(U) = star1(U) is the union of all triangles

in ∆ that have a non-empty intersection with U . A basis is called local if it is

m-local for some m.

Suppose that {λ1, . . . , λN} ⊂ S∗ is the dual basis, that is,

λisj =




1, i = j,

0, otherwise.

A basis {s1, . . . , sN} for S ⊂ Sd(∆) is said to be a stable local basis [16] if for

an integer m and positive constants C1, C2,

(a) {s1, . . . , sN} is m-local,

(b) |λis| ≤ C1‖s‖L∞(starm(Ti)) for all s ∈ S, i = 1, . . . , N , and
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(c) ‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N .

Any stable local basis is Lp-stable for all 1 ≤ p ≤ ∞ after appropriate renorming,

that is, for any α = (α1, . . . , αN) ∈ R
N ,

k1C
−1
2

∥∥α
∥∥
lp
≤

∥∥∥
N∑

i=1

αi
si

| supp si|1/p
∥∥∥
Lp(Ω)

≤ k2C1

∥∥α
∥∥
lp
, 1 ≤ p ≤ ∞,

where k1, k2 are some constants depending only on p, r, d and m, and |M | denotes
the area of a set M ⊂ R

2.

1.3.3 Bernstein-Bézier techniques

Given a nondegenerate triangle T (one with nonzero area) in R
2 with vertices

vi := (xi, yi), i = 1, 2, 3. Let v be any arbitraty point in R
2 with Cartesian

coordinates (x, y). We define the barycentric coordinates b1, b2, b3 of v with respect

to T as the unique solution of the system



1 1 1

x1 x2 x3
y1 y2 y3





b1
b2
b3


 =



1

x

y


 .

Any bivariate polynomial p of total degree d on T can be uniquely represented in

the form

p =
∑

i+j+k=d

cijkB
T,d
ijk , (1.3.1)

with

BT,d
ijk =

d!

i!j!k!
bi1b

j
2b

k
3

the Bernstein basis polynomials of degree d associated with T . We refer to the

representation (1.3.1) as the B-form of p related to T . The cijk’s are called the

B-coefficients of p, and the associated set of domain points is defined by

Dd,T :=

{
ξijk :=

iv1 + jv2 + kv3
d

}

i+j+k=d

. (1.3.2)

Given a triangulation ∆ = {Ti}Ni=1 of a bounded connected polygonal domain

Ω ⊆ R
2 and a positive integer d, we define the corresponding set of domain points
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c200

c110 c101

c020
c011

c002

ξ200

ξ110 ξ101

ξ020
ξ011

ξ002

Figure 1.2: Domain points ξijk and B-coefficients cijk of a quadratic polynomial.

by

Dd,∆ :=
⋃

T∈∆

Dd,T .

Given s ∈ S0
d(∆) and T ∈ ∆, there exists a unique set of coefficients {cξ}ξ∈Dd,T

such that

s|T =
∑

ξ∈Dd,T

cξB
T,d
ξ ,

and each spline in S0
d(∆) is uniquely determined by its set of B-coefficients {cξ}ξ∈Dd,∆

.

Given 0 ≤ m ≤ d and T := 〈v1, v2, v3〉, we say that a domain point ξijk is at a

distance dist(ξ, v1) = d− i from the vertex v1 and at a distance dist(ξ, e1) = i from

the edge e1 = 〈v2, v3〉 opposite to v1. Furthermore, we refer to the set of domain

points RT
m(v1) := {ξd−m,j,m−j}mj=0 as the ring of radius m around the vertex v1.

We refer to the set DT
m(v1) :=

⋃m
n=0R

T
n (v1) as the disk of radius m around the

vertex v1. The rings and disks around v2 and v3 are defined similarly. If v is a

vertex of ∆ with triangles T1, . . . , Tk attached to it, then the ring and the disk of

radius m around v are defined by Rm(v) =
⋃k

i=1R
Ti
m(v) and Dm(v) =

⋃k
i=1D

Ti
m (v),

respectively.

Suppose now that S is a linear subspace of S0
d(∆) defined by enforcing some

set of smoothness conditions across the edges of the triangulation ∆. Then a

determining set for S is a subset M of the set of domain points Dd,∆ such that if

we set the B-coefficients cξ of some spline s ∈ S to zero for all ξ ∈M , then s ≡ 0.

If M is a determining set for a spline space S and M has the smallest cardinality
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among all possible determining sets for S, then we call M a minimal determining

set (MDS) for S. It is known that M is a MDS for S if and only if every spline

s ∈ S is uniquely determined by its set of B-coefficients {cξ}ξ∈M .

An MDS M is called local provided that there is an integer ℓ such that for

every ξ ∈ Dd,∆ ∩ T and every T ∈ ∆, the B-coefficient cξ of a spline s ∈ S is

a linear combination of {cη}η∈Γξ
where Γξ is a subset of M with Γξ ⊂ starℓ(T ).

Moreover, M is said to be stable provided that there is a constant K depending

only on d and the smallest angle in ∆ such that

|cξ| ≤ Kmax
η∈Γξ

|cη|, for all ξ ∈ Dd,∆.

We say that a spline s ∈ S0
d(∆) is Cρ smooth at the vertex v provided that all

polynomials s|T such that T is a triangle with vertex at v have common partial

derivatives up to order ρ at the point v. In this case we write s ∈ Cρ(v).

Smoothness across an edge is described with the help of smoothness functionals

defined as follows. Let T = 〈v1, v2, v3〉 and T̃ = 〈v4, v3, v2〉 be two adjoining

triangles which share the edge e = 〈v2, v3〉, and let cijk and c̃ijk be the coefficients

of the B-representations of sT and sT̃ , respectively. Then for any n ≤ m ≤ d, let

τne,m be the linear functional defined on S0
d(∆) by

τne,ms = c̃n,m−n,d−m −
∑

i+j+k=n

ci,j+d−m,k+m−nB
T,n
ijk (v4). (1.3.3)

In terms of these linear functionals, the condition that s be Cr smooth across the

edge e is equivalent to

τne,ms = 0, n ≤ m ≤ d, 0 ≤ n ≤ r.

1.3.4 Macro-Element Spline Spaces

A linear functional λ is called a nodal functional provided λf is a scalar multiple

of the value of f or its (directional) partial derivative at some point η = η(λ) ∈ R
2,

that is λf = γ ∂ν+µf
∂σν∂τµ

(η), for suitable ν, µ ∈ Z+, η ∈ Ω, unit vectors σ, τ , and a

scaling coefficient γ ∈ R. The number κ(λ) = ν + µ is called the order of λ.
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A collection N = {λi}Ni=1 is called a nodal determining set for a spline space

S ⊂ Sd(∆) if every s ∈ S is κ(λ) times continuously differentiable at η(λ), and

λs = 0 for all λ ∈ N implies s ≡ 0. N is called a nodal minimal determining set

(NMDS) for S if there is no smaller nodal determining set. In other words, N is

an NMDS if it is a basis for the dual S∗ of S. Let {si}Ni=1 be the basis of S dual

to N , called the nodal basis.

We will work with spaces of splines that are defined on triangulations ∆R =
⋃

K∈∆KR obtained from a given partition ∆ of Ω into polygonal cells K by apply-

ing some refinement process to each K ∈ ∆. Examples are provided by well-known

Clough-Tocher and Powell-Sabin splits of the triangles of a triangulation ∆ of Ω.

We assume that each K is star-shaped with respect to a disk. We denote by

χK the chunkiness parameter diamK/ρmax of K, where ρmax is the maximum ra-

dius of disks with respect to which K is star-shaped [7, Section 4.3]. Recall that

χK is bounded in terms of the minimum angle of K if K is a triangle. We set

χ∆ := maxK∈∆ χK .

For each cell K ∈ ∆, we define

NK = {λ ∈ N : η(λ) ∈ K}.

We call S ⊂ Sd(∆R) a macro-element space provided there is a NMDS N for S

such that for each K ∈ ∆, S|K is uniquely determined from the values {λs}λ∈NK
.

It is easy to see that the support of a basis function si in a macro-element space

is contained in the union of all K ∈ ∆ containing η(λi). For each λi ∈ N , we

choose the scaling coefficient γ to be equal to γi = diam(Ti)
κ(λi), where Ti ∈ ∆R is

a triangle containing η(λi). Note that diam(Ti) ∼ diam(T ′) for any other triangle

T ′ ∈ ∆R sharing a vertex with Ti, with the constant of equivalence depending only

on β∆R
, see [36, Section 4.7], and diam(Ti) ∼ diam(K), where Ti ⊂ K ∈ ∆, and

the constant of equivalence depends only on β∆R
and ν∆R

:= maxK∈∆ |KR|. Then
by Markov inequality [36, Theorem 2.32] |λis| ≤ C1‖s‖L∞(Ti) for any s ∈ S, where

C1 depends only on d, κ(S) := maxi κ(λi) and β∆R
. It follows that {si}Ni=1 is a
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stable local basis for S with parameters depending only on d, κ(S), β∆R
and ν∆R

as soon as ‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N , for some constant C2.

The interpolation operator Π : Cκ(S)(Ω) → S is defined by

Πf =
N∑

i=1

λi(f)si. (1.3.4)

By the duality of the basis functions si, it is clear that Πs = s for all s ∈ S.

In particular, Π reproduces polynomials of degree at most k if Pk ⊂ S. The

definition of the macro-element space implies that the local interpolation operators

ΠK : Cκ(S)(K) → S|K,
ΠKf =

∑

i: η(λi)∈K

λi(f)si

satisfy ΠKf = (Πf)|K for f ∈ Cκ(S)(Ω).

We say that the interpolation operator Π is boundary conforming of order σ if

the homogeneous boundary conditions of order σ are preserved by the interpolant,

that is, if

∂ν+µf

∂xν∂yµ
= 0 on ∂Ω, for all ν, µ ≥ 0, ν + µ ≤ σ,

implies

Πf ∈ S0,σ := {s ∈ S :
∂ν+µs

∂xν∂yµ
= 0 on ∂Ω, for all ν, µ ≥ 0, ν + µ ≤ σ}.

Using the Bernstein-Bézeir techniques, we say a NMDS N is local provided

that there exists an integer l not depending on ∆ such that for every s ∈ S,

K ∈ ∆, and ξ ∈ Dd,K the B-coefficients cξ of s can be computed from the nodal

data at points in starl(K). Moreover, N is said to be stable provided there exists a

constant K depending on l and the smallest angle in ∆ such that for every s ∈ S,

K ∈ ∆, and ξ ∈ Dd,K ,

|cξ| ≤ K
κ(S)∑

ν=0

diam(K)ν |s|W ν
∞(starl(K)),
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where | · |W ν
∞(starl(K)) denotes the standard Sobolev semi-norm. Given a stable local

NMDS for spline space S, the corresponding nodal basis {si}Ni=1 is a stable local

basis for S, see [36, pp. 144], in the sense of the definition in Section 1.3.2.

The following result gives an error bound for (Hemite) nodal interpolation with

a spline space S possessing a stable local NMDS.

Theorem 1.1. [36, Theorem 5.26] Suppose N is a stable local nodal minimal

determining set for a spline space S. Let Π be the associated (Hermite) nodal

interpolation operator defined in (1.3.4). Then there exists a constant K depending

only on d, l and the smallest angle in ∆ such that for every f ∈ Cr(Ω) with

κ(S) ≤ r ≤ d+ 1,

‖Dα
xD

β
y (f −Πf)‖L∞(Ω) ≤ Khr−α−β

∆ |f |W r
∞(Ω)

for all 0 ≤ α + β ≤ r − 1.

1.3.5 Hierarchical Bases

Given a nested sequence of finite dimensional spaces of real-valued functions

S0 ⊂ S1 ⊂ S2 ⊂ . . . Sn.

Each of the space Sn has a finite basis and then a set of functions

Φ :=
n⋃

k=0

{φ(k)
i }nk

i=1

is said to be a hierarchical basis for Sn given that

Φm :=
m⋃

k=0

{φ(k)
i }nk

i=1

is a basis for Sm for each m = 0, 1, . . . , n. Then every s ∈ Sn can be written in the

form

s =

n∑

m=0

nm∑

i=1

c
(m)
i φ

(m)
i , (1.3.5)
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and the partial sums

sk =

k∑

m=0

nm∑

i=1

c
(m)
i φ

(m)
i

are functions in the space Sk for each k = 0, 1, . . . , n.



Chapter 2

Macro-Element Hierarchical Riesz

Bases

2.1 Introduction

Given a sequence of nested spline spaces S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · · , and cor-

responding nested interpolation sets Ξ0 ⊂ Ξ1 ⊂ · · · ⊂ Ξn ⊂ · · · with Lagrange

bases {B(n)
ξ }ξ∈Ξn, hierarchical bases are obtained from the appropriately re-scaled

functions

B
(n)
ξ , ξ ∈ Ξn \ Ξn−1, n = 0, 1, . . . (Ξ−1 := ∅).

The most famous example is given by the piecewise linear basis functions (hat

functions), where the hierarchical basis is used for the multilevel preconditioning

of the discretised second order elliptic equations [57]. The effectiveness of this

method is related to the Riesz basis (or “stability”) property of this hierarchical

basis in the Sobolev spaces Hs(Ω) and Hs
0(Ω), 1 < s < 3

2
. For elliptic equations

of fourth order, stability in H2(Ω) and H2
0 (Ω) is needed, and this can be achieved

by C1 hierarchical bases [21] that are Riesz bases in the range 1 < s < 5
2
. In fact,

as noted in [39], bases with stability in Hs(Ω) with as large as possible range of s

is advantageous, in particular when an elliptic operator includes parts of different

20
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order. Moreover, a good preconditioning effect is expected when s corresponding

to a given variational problem lies in the central part of the stability interval, see

[39].

In this chapter we study general conditions for the nested sequences of macro-

element spline spaces to give rise to Riesz bases in Hs(Ω) and Hs
0(Ω). The main

result (see Theorem 2.11) shows that the stability range 1 < s < r+ 3
2
in Hs(Ω) is

guaranteed for refinable Cr macro-elements on quasi-uniform triangulations in R
2

if the Lagrange bases {B(n)
ξ }ξ∈Ξn are uniformly local and bounded, and the nodal

bases of the macro-element spaces are also uniformly bounded. Moreover, the same

stability range (up to the half-integer values) is obtained in Hs
0(Ω) if the macro-

element nodal (Hermite) interpolation operators Πn are boundary conforming of

order r in the sense that for any function f vanishing on the boundary of Ω together

with its derivatives up to order r, the interpolants Πnf have the same property.

These results are published in the paper [23].

In Section 2.2 we list some auxiliary results on K-functionals, interpolation

spaces and Sobolev spaces Hs(Ω) and Hs
0(Ω). Section 2.3 is devoted to Bernstein

and Jackson inequalities for bivariate splines, including the Bernstein inequality

in Hs(Ω) for spline spaces possessing stable local bases, and error bounds for the

macro-element nodal interpolation of functions in Sobolev spaces of integer order.

General results on hierarchical bases of Lagrange type are given in Section 2.4,

whereas C1 macro-element spaces where such bases are known are reviewed in

Section 2.5. In particular, we verify that the sequence of nested triangulations

suggested in [21] is quasi-uniform.

2.2 Preliminaries

We denote by W k
p (Ω), k ∈ N, 1 ≤ p ≤ ∞, the usual Sobolev spaces on a bounded

Lipschitz domain Ω ⊂ R
n. The space Ck(Ω) ⊂W k

∞(Ω) consists of all k times con-

tinuously differentiable functions f on the closure of Ω, with ‖f‖Ck(Ω) = ‖f‖W k
∞(Ω).
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The space W k
2 (Ω) is also denoted by Hk(Ω), with H0(Ω) := L2(Ω). It is a Hilbert

space with inner product

〈f, g〉Hk(Ω) = 〈f, g〉L2(Ω) +
∑

|α|=k

〈∂αf
∂xα

,
∂αg

∂xα

〉
L2(Ω)

,

where α = (α1, . . . , αn) ∈ Z
n
+ is a multi-index, with |α| := α1 + · · ·+ αn.

Let X and Y ⊂ X be two Hilbert spaces with norms ‖ · ‖X and ‖ · ‖Y =

‖ · ‖X + | · |Y , respectively, where | · |Y is a seminorm. The K-functional is defined

for each f ∈ X and t > 0 by

KXY (f, t) := inf
g∈Y

‖f − g‖X + t|g|Y ,

or equivalently (see [40, Remark 4.8]) by the same expression with |g|Y replaced

by ‖g‖Y .
One of the key properties of the K-functional is the following Jackson type

inequality.

Lemma 2.1. Let S be linear subspace of X. Suppose that for some t > 0,

inf
s∈S

‖g − s‖X ≤ t|g|Y , for all g ∈ Y.

Then for any f ∈ X,

inf
s∈S

‖f − s‖X ≤ KXY (f, t).

Proof. Indeed,

inf
s∈S

‖f − s‖X ≤ inf
g∈Y

inf
s∈S

(‖f − g‖X + ‖g − s‖X) ≤ KXY (f, t)

if the assumption holds.

According to the K-method [3], the interpolation space [X, Y ]θ, 0 < θ < 1,

consists of all f ∈ X for which the functional

|f |θ;K =

(∫ ∞

0

(
t−θKXY (f, t)

)2 dt
t

)1/2

(2.2.1)

is finite.



Chapter 2. Macro-Element Hierarchical Riesz Bases 23

For each f ∈ X , by taking g = 0, we obtain

KXY (f, t) ≤ ‖f‖X .

Hence ∫ ∞

1

(
t−θKXY (f, t)

)2 dt
t
≤ ‖f‖2X

∫ ∞

1

dt

t1+2θ
=

1

2θ
‖f‖2X.

Given a number α > 1, obviously

KXY (f, α
−(n+1)) ≤ KXY (f, t) ≤ KXY (f, α

−n) for all t ∈ [α−(n+1), α−n],

and KXY (f, αt) ≤ αKXY (f, t). Hence

∫ 1

0

(
t−θKXY (f, t)

)2 dt
t
=

∞∑

n=0

∫ α−n

α−(n+1)

(
t−θKXY (f, t)

)2 dt
t

∼
∞∑

n=0

K2
XY (f, α

−n)

∫ α−n

α−(n+1)

(
t−θ

)2 dt
t

=
∞∑

n=0

K2
XY (f, α

−n)
α2nθ(α2θ − 1)

2θ

∼
∞∑

n=0

α2nθK2
XY (f, α

−n).

It follows that

|f |θ;K ∼
( ∞∑

n=0

[
αnθKXY (f, α

−n)
]2)1/2

, (2.2.2)

where the constants of equivalence depend only on θ and α.

The k-th modulus of smoothness of f ∈ Lp(Ω), 0 < p ≤ ∞, is defined by

ωk(f, t)p = sup
|δ|<t

‖∆k
δf‖Lp(Ωkδ),

where |δ| denotes the Euclidean length of δ ∈ R
n, Ωkδ := {x ∈ Ω : x+ jδ ∈ Ω, j =

0, . . . , k}, and

(∆k
δf)(x) :=

k∑

j=0

(k
j

)
(−1)k−jf(x+ jδ), x ∈ R

n,

is the usual difference operator. By [50, Theorem 1], the modulus of smoothness

is equivalent to the K-functional,

ωk(f, t)2 ∼ KL2,Hk(f, tk), t > 0. (2.2.3)
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Therefore, in view of Lemma 2.1, error bounds for functions in Sobolev spaces

immediately lead to Jackson type estimates in terms of the modulus of smoothness.

The Sobolev spaces Hs(Ω) of a fractional order s > 0 can be defined as inter-

polation spaces

Hs(Ω) =
[
L2(Ω), H

k(Ω)
]
θ
,

where s = kθ, k integer, 0 < θ < 1. In view of (2.2.1) and (2.2.3),

|f |Hs(Ω) ∼
(∫ ∞

0

(t−sωk(f, t)2)
2 dt

t

)1/2

. (2.2.4)

Let C∞
c (Ω) be the linear space of all infinitely differentiable functions on Ω with

compact support contained in Ω. We use Hs
0(Ω) to denote the closure of C∞

c (Ω)

in Hs(Ω). It is well known [38] that C∞
c (Ω) is dense in Hs(Ω) if and only if s ≤ 1

2
.

If s > 1
2
and the boundary of Ω is smooth, then Hs

0(Ω) is a proper subspace of

Hs(Ω) given by

Hs
0(Ω) =

{
u ∈ Hs(Ω) :

∂αu

∂xα
= 0 on ∂Ω, for all 0 ≤ |α| < s− 1

2
, α ∈ Z

n
}
,

see [38, Theorem 11.5]. Hence, Hs
0(Ω) = Hs(Ω) if s ≤ 1

2
and Hs

0(Ω) = Hs(Ω) ∩
Hs0

0 (Ω), where s0 = ⌈s− 1
2
⌉ if s > 1

2
. According to [38, Theorem 11.6] the spaces

Hs
0(Ω) of fractional order s /∈ Z+ 1

2
can be obtained from the integer order spaces

Hk
0 (Ω), k > s, by interpolation

Hs
0(Ω) =

[
L2(Ω), H

k
0 (Ω)

]
θ
, θ =

s

k
, s /∈ Z+

1

2
. (2.2.5)

For s ∈ Z+ 1
2
a description of the interpolation spaces Hs

00(Ω) :=
[
L2(Ω), H

k
0 (Ω)

]
θ
,

θ = s
k
, can be found in [38, Theorem 11.7].

For a domain Ω ⊂ R
2 with piecewise smooth boundary in the sense of [31,

p. 34], which includes the case of Lipschitz polygonal domains, the interpolation

property (2.2.5) has been shown in [59]. As shown in [31], Hs
0(Ω), s /∈ Z + 1

2
, in

this case coincides with the space H̃s(Ω) of all those functions f ∈ Hs(Ω) whose

extension to R
2 by zero belongs to Hs(R2). See also [5] for (2.2.5) in the case of a

bounded Lipschitz domain in any space dimensions and integer s.
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2.3 Bernstein and Jackson inequalities for bivari-

ate splines

2.3.1 Bernstein inequality

We first recall some notations introduced in Section 1.3.2. Let Ω be a polygonal

domain in R
2. For a triangulation ∆ of Ω, then h∆ denotes the mesh size of ∆,

β∆ denotes the smallest angle of the triangles T ∈ ∆, and the shape parameter

is denoted by γ∆ = min{diam(T ) : T ∈ ∆}/h∆. In this section we show that

functions in subspaces of Sr
d(∆) possessing a stable local basis satisfy a Bernstein

type inequality in the norm of Hs(Ω) for all 0 < s < r+ 3
2
(see Theorem 2.5). We

begin by providing some auxiliary results.

Lemma 2.2. Fix T ∈ ∆ and set Tµ = T +µ, µ ∈ R
2. We denote by {Tj}j∈J ⊂ ∆

the set of all triangles Tj ∈ ∆ such that Tj ∩ Tµ 6= ∅. Then the cardinality of J

satisfy

#J ≤ N1

for some constant N1 dependent only on β∆ and γ∆.

Proof. Let D ⊂ Ω be a disk with centre of D at the barycentre of Tµ such that

Tj ⊂ D for all j ∈ J.

Let |D| denote the area of the disk D and denote by |Tj | the area of the triangle

Tj . Then it is easy to see that

#J ·min
j∈J

|Tj | ≤ |D|.

It is also clear that

min
j∈J

|Tj| ≥ k1h
2
∆,

where the constant k1 depends only on β∆ and γ∆.

Let Tk ∈ {Tj}j∈J be a triangle with a vertex v1 on the boundary of D and

another vertex v2 on the edge of Tµ as shown in Fig.2.1. Let d1 denote the distance
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of v2 from the centre of D and d2 denote the distance between v1 and v2. Let r be

the radius of the disk. Then we see that

r ≤ d1 + d2 ≤ 2h∆

since d1 ≤ h∆ and d2 ≤ h∆.

Thus the area of the disk D satisfies

|D| = πr2 ≤ 4πh2∆,

and hence we obtain

#J ≤ 4π

k1
.

r
d1

d2

Tk

Tµ

D

Figure 2.1: Radius of Disk.

Lemma 2.3. Suppose that S ⊂ Sd(∆) has an m-local basis {φi}i∈I . Fix T ∈ ∆

and also fix an integer k and δ ∈ R
2. Consider

IT = {i ∈ I : ∆k
δφi|T 6= 0} = {i ∈ I : T ⊂ supp(∆k

δφi)}.
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Then the cardinality of IT satisfies

#IT ≤ N2

for some N2 dependent only on k, β∆, γ∆, d and m.

Proof. Let i ∈ I. Then for some l ∈ {0, 1, . . . , k},

T ∩ suppφi(x+ lδ) 6= ∅.

For a fixed l, we denote

IT,l = {i ∈ I : T ∩ supp φi(x+ lδ) 6= ∅}.

Then

IT ⊂ ∪k
l=0IT,l

and

#IT ≤
k∑

l=0

#IT,l.

Take l = 0, that is

IT,0 = {i ∈ I : T ∩ suppφi 6= ∅},

where supp φi ⊂ starm(Ti) for some triangle Ti ∈ ∆ and starm(Ti) ⊂ starm+1(vi)

where vi is a vertex of Ti. Then it is known that [16, 35]

#{T ∈ ∆ : T ⊂ starm+1(vi)} ≤ K1

where K1 depends only on β∆, γ∆ and m.

Since the cardinality #IT,0 does not exceed the dimension of the space of all

polynomials of degree d on starm(Ti) [16], that is,

#IT,0 ≤ K2

(
d+ 2

2

)
(2.3.1)

where K2 is the number of triangles of ∆ lying in starm(Ti), and K2 is bounded

by K1.
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Now take l ≥ 1. We note that IT,l can also be written as

IT,l = {i ∈ I : (T − lδ) ∩ supp φi 6= ∅}

and Tlδ = T − lδ ⊂ ⋃
j∈J Tj where {Tj}j∈J ⊂ ∆ the set of all triangles Tj ∈ ∆ such

that Tj ∩ Tlδ 6= ∅.
Since

#IT,l ≤
∑

j∈J

#ITj ,0, l ≥ 1,

then by Lemma 2.2 and (2.3.1), we obtain

#IT,l ≤ N1 ·K2

(
d+ 2

2

)

because #J ≤ N1 and hence

k∑

l=0

#IT,l ≤ (k + 1) ·N1 ·K2

(
d+ 2

2

)
.

Thus we get

#IT ≤ N2

where N2 = (k + 1) ·N1 ·K2

(
d+2
2

)
.

Lemma 2.4. Suppose that S ⊂ Sd(∆) has an m-local basis {φi}i∈I . Then for any

f =
∑

i∈I ciφi ∈ S where ci ∈ R,

Ik(f, δ)
2 .

∑

i∈I

c2i Ik(φi, δ)
2, δ ∈ R

2,

where the bounding constant is dependent only on k, β∆, α∆, d and m.

Proof. Fix δ ∈ R
2 and fix an integer k,

Ik(f, δ)
2 = ‖∆k

δf‖2L2(Ωkδ)
=

∫

Ωkδ

(
∆k

δ

(∑

i∈I

ciφi

))2

dx

=
∑

j∈J

∫

Tj∩Ωkδ

(∑

i∈I

ci∆
k
δφi

)2

dx

=
∑

j∈J

∫

Tj∩Ωkδ

(∑

i∈Ij

ci∆
k
δφi

)2

dx,



Chapter 2. Macro-Element Hierarchical Riesz Bases 29

where Ij = {i ∈ I : Tj ⊂ supp∆k
δ (φi)}.

Since {φi}i∈I are locally supported we know by Lemma 2.3 the cardinality of

Ij satisfies

#Ij ≤ N2.

Using the inequality
(

1

N2

∑

i∈Ij

ci∆
k
δφi

)2

≤ 1

N2

∑

i∈Ij

c2i (∆
k
δφi)

2, j ∈ J,

for any real-valued ci, we obtain
(∑

i∈Ij

ci∆
k
δφi

)2

≤ N2

∑

i∈Ij

c2i (∆
k
δφi)

2, j ∈ J.

Hence

‖∆k
δf‖2L2(Ωkδ)

≤
∑

j∈J

∫

Tj∩Ωkδ

N2

∑

i∈Ij

c2i (∆
k
δφi)

2dx

= N2

∑

j∈J

∑

i∈Ij

c2i

∫

Tj∩Ωkδ

(∆k
δφi)

2dx

= N2

∑

i∈I

c2i
∑

j:i∈Ij

∫

Tj∩Ωkδ

(∆k
δφi)

2dx

= N2

∑

i∈I

c2i

∫

supp∆k
δ (φi)

(∆k
δφi)

2dx

= N2

∑

i∈I

c2i
∥∥∆k

δφi

∥∥2

L2(Ωkδ)
.

Hence we get

Ik(f, δ)
2 .

∑

i∈I

c2i Ik(φi, δ)
2, f =

∑

i∈I

ciφi.

Theorem 2.5 (Bernstein Inequality). Suppose that S ⊂ Sr
d(∆) has a stable local

basis {φi}i∈I . Then for any f ∈ S,

‖f‖Hs(Ω) . h−s
∆ ‖f‖L2(Ω), 0 < s < r +

3

2
, (2.3.2)

where the bounding constant depends only on s, r, d, β∆, γ∆ and the parameters

m,C1, C2 of the stable local basis.
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Under slightly different assumptions on S, a proof of the Bernstein inequality

can be found in [50], see also [52]. We provide a proof based on the following

lemma.

Lemma 2.6 ([33, Lemma 2.2]). Let f ∈ Sr
d(∆). Then f ∈ Hs(Ω) for all s < r+ 3

2
,

and

‖f‖Hs(Ω) . h−s
∆ ‖f‖L2(Ω), 0 < s < r +

3

2
, (2.3.3)

where the bounding constant depends only on s, r, d, β∆, γ∆ and the number of

triangles T ∈ ∆ in the support of f .

Proof Theorem 2.5. Since {φi}i∈I is a stable local basis, the functions ψi = | suppφi|−1/2φi,

i ∈ I, form an L2-stable basis for S. In particular ‖ψi‖L2(Ω) ≤ M , where M de-

pends only on the parameters m,C1, C2 of the stable local basis.

Let f =
∑

i∈I ciψi for some ci ∈ R, so that ‖f‖2L2(Ω) ∼ ∑
i∈I c

2
i . Choose an

integer k > s. Since the basis {ψi}i∈I is m-local, by Lemma 2.4 we have

Ik(f, δ)
2 .

∑

i∈I

c2i Ik(ψi, δ)
2, where Ik(f, δ) := ‖∆k

δf‖L2(Ωkδ), δ ∈ R
2.

Hence,

ωk(f, t)
2
2 .

∑

i∈I

c2iωk(ψi, t)
2
2,

and by (2.2.4),

|f |2Hs(Ω) .
∑

i∈I

c2i

∫ ∞

0

(t−sωk(ψi, t)2)
2 dt

t
∼

∑

i∈I

c2i |ψi|2Hs(Ω).

By applying the Bernstein inequality (2.3.3) to the locally supported functions

ψi and using the L2-stability of the basis {ψi}i∈I , in particular, uniform L2-

boundedness of ψi, we obtain

‖f‖2Hs(Ω) . h−2s
∆

∑

i∈I

c2i ‖ψi‖2L2(Ω) . h−2s
∆

∑

i∈I

c2i . h−2s
∆ ‖f‖2L2(Ω),

which completes the proof.
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2.3.2 Jackson inequality for macro-element spline spaces

We restrict our attention to the macro-element spaces, see Section 1.3.4, because

of the availability of boundary conforming interpolation operators that allow ap-

propriate treatment of subspaces with zero boundary conditions. The notations

used in this section are inherited from Section 1.3.2 and 1.3.4.

The proof of the following version of the Jackson inequality follows the scheme

used in [7, Section 4.4], where it is proved for finite elements, thus making an

assumption of affine equivalence of the spaces S|K , K ∈ ∆. In place of affine

equivalence, we only assume that the nodal basis is uniformly bounded, see (2.3.4).

Theorem 2.7 (Jackson Inequality). Let S ⊂ Sr
d(∆R) be a macro-element space

such that Pk ⊂ S for some 1 ≤ k ≤ d, and κ(S) ≤ k − 1. Assume that its nodal

basis {si}Ni=1 satisfies

‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N. (2.3.4)

Then for every f ∈ Hk+1(Ω),

‖f − Πf‖Hν(Ω) ≤ Chk+1−ν
∆ |f |Hk+1(Ω), ν = 0, . . . ,min{r, k}+ 1, (2.3.5)

where C depends only on d, β∆R
, ν∆R

, χ∆ and C2.

Proof. Recall that by Sobolev embedding theorem any function f ∈ Hk+1(Ω)

belongs (after possible modification on a set of zero measure) to Ck−1(Ω). This

implies that Πf is well defined for all f ∈ Hk+1(Ω), and f − Πf ∈ Hr+1(Ω) since

Sr
d(∆R) ⊂ Hr+1(Ω).

Given any K ∈ ∆, we define

K̂ :=

{
x

diam(K)
: x ∈ K

}
.

Then diam K̂ = 1 and hence |K̂| ≤ π/4. For any function g defined on K we set

ĝ(y) := g(diam(K)y), y ∈ K̂. The functions

ŝi := ŝi|K , for all i such that λi ∈ NK ,
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form a basis for the spline space ŜK := {ŝ : s ∈ S|K} on K̂, with its dual basis given

by the linear functionals λ̂i(ĝ) := λi(g), g ∈ Ck−1(K). Since diam(Ti) ∼ diam(K),

we have

λ̂iĝ = diam(Ti)
ν+µ ∂ν+µg

∂σν∂τµ
(η) ∼ ∂ν+µĝ

∂σν∂τµ
(diam(K)−1η),

and it follows that

|λ̂i(g)| ≤ Ĉ1‖g‖Ck−1(K̂), g ∈ Ck−1(K̂), λi ∈ NK , (2.3.6)

where Ĉ1 depends only on β∆R
, ν∆R

and d. Note that by Sobolev inequality [7,

Section 4.3],

‖g‖Ck−1(K̂) . ‖g‖Hk+1(K̂), g ∈ Hk+1(K̂) ⊂ Ck−1(K̂), (2.3.7)

where the bounding constant depends only on k and the chunkiness parameter χK̂

(= χK).

We define the interpolation operator ΠK̂ : Ck−1(K̂) → ŜK by

ΠK̂g :=
∑

i:λi∈NK

λ̂i(g)ŝi.

By (2.3.4) we get

‖ŝi‖L2(K̂) ≤
√
π

2
‖ŝi‖L∞(K̂) ≤

√
π

2
C2,

which in view of the Bernstein inequality (2.3.3) leads to

‖ŝi‖Hr+1(K̂) ≤ Ĉ2, (2.3.8)

where Ĉ2 depends only on d, r, β∆R
, |KR| and C2.

The inequalities (2.3.6) and (2.3.8) imply that the operator ΠK̂ : Ck−1(K̂) →
Hr+1(K̂) is bounded, i.e.,

‖ΠK̂g‖Hr+1(K̂) ≤ Ĉ3‖g‖Ck−1(K̂), (2.3.9)

where the constant Ĉ3 depends only on Ĉ1, Ĉ2, d and |KR|. Indeed, let g ∈
Ck−1(K̂). Then ΠK̂g ∈ ŜK ⊂ W r+1

∞ (K̂) ⊂ Hr+1(K̂). Clearly, #NK does not
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exceed a constant C ′ depending only on d and |KR|. In view of (2.3.6) and (2.3.8),

‖ΠK̂g‖Hr+1(K̂) ≤
∑

i:λi∈NK

|λ̂i(g)| ‖ŝi‖Hr+1(K̂) ≤ C ′Ĉ1Ĉ2‖g‖Ck−1(K̂).

We now show that for every K ∈ ∆ and g ∈ Hk+1(K),

|g − ΠKg|Hν(K) . diam(K)k+1−ν |g|Hk+1(K), 0 ≤ ν ≤ min{r, k}+ 1, (2.3.10)

where the constant in the bound depends only on d, β∆R
, ν∆R

, χK and C2. If

g ∈ Hk+1(K), then ĝ ∈ Hk+1(K̂) and, by the Bramble-Hilbert lemma [7, Section

4.3] there exists a polynomial p ∈ Pk such that

‖ĝ − p‖Hℓ(K̂) . |ĝ|Hk+1(K̂), 0 ≤ ℓ ≤ k + 1, (2.3.11)

where the bounding constant depends only on k and the chunkiness parameter

χK̂ (= χK). Let m = min{r, k}. Since ΠK̂p = p, we have by (2.3.9), (2.3.7) and

(2.3.11),

‖ĝ − ΠK̂ ĝ‖Hm+1(K̂) ≤ ‖ĝ − p‖Hm+1(K̂) + ‖ΠK̂(p− ĝ)‖Hm+1(K̂)

. ‖ĝ − p‖Hk+1(K̂) + ‖p− ĝ‖Ck−1(K̂)

. ‖ĝ − p‖Hk+1(K̂) + ‖p− ĝ‖Hk+1(K̂)

. |ĝ|Hk+1(K̂),

and (2.3.10) follows since

|g − ΠKg|Hν(K) = diam(K)1−ν |ĝ − ΠK̂ ĝ|Hν(K̂),

|ĝ − ΠK̂ ĝ|Hν(K̂) . ‖ĝ − ΠK̂ ĝ‖Hm+1(K̂), and

|ĝ|Hk+1(K̂) = diam(K)k|g|Hk+1(K).

The estimate (2.3.5) follows from (2.3.10) because

‖f − Πf‖2Hν(Ω) =
∑

K∈Ω

ν∑

i=0

|f |K − ΠKf |K |2Hi(K), |f |2Hk+1(Ω) =
∑

K∈Ω

|f |K|2Hk+1(K)

and h∆ = maxK∈∆ diam(K).
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Note that the estimate

inf
g∈S

‖f − g‖Hν(Ω) ≤ Chk+1−ν
∆ |f |Hk+1(Ω), f ∈ Hk+1(Ω),

can be obtained by using quasi-interpolation operators for any spline spaces S with

a stable local basis, see [36] or [18]. Even though Theorem 2.7 is only applicable

to macro-element spaces, its importance for the results below about Riesz bases

in Hs
0(Ω) is that it leads to the estimate

inf
g∈S0,σ

‖f − g‖Hν(Ω) ≤ Chk+1−ν
∆ |f |Hk+1(Ω), f ∈ Hk+1

0 (Ω), (2.3.12)

as soon as the interpolation operator Π is boundary conforming of some order

σ ≤ r, which is normally the case for the macro-elements.

Corollary 2.8. In addition to the assumptions of Theorem 2.7 suppose that the

interpolation operator Π is boundary conforming of order σ ≤ r. Then the estimate

(2.3.12) holds for all ν = 0, . . . ,min{r, k} + 1, where C depends only on d, β∆R
,

ν∆R
, χ∆ and C2.

2.4 General theory of hierarchical Riesz bases

Recall that a basis {φn}∞n=1 for a Hilbert space H is said to be a Riesz basis if for

any real-valued cn ∈ ℓ2,

∥∥∥
∞∑

n=1

cnφn

∥∥∥
H
∼

( ∞∑

n=1

c2n

)1/2

.

Suppose that Sn, n = 0, 1, 2 . . ., is a nested sequence of finite dimensional

subspaces of a Hilbert space H , that is

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . . n = 0, 1, 2, . . . . (2.4.1)

We assume that ∪∞
n=0Sn is dense in H and set S−1 := {0}. Then every element

f ∈ H can be represented as a convergent series
∑∞

n=0 fn in H with fn ∈ Sn. For

n = 0, 1, 2, . . ., let Pn be a linear projection from Sn onto Sn−1, and let Wn be the
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complement space, that is, Pn(Wn) = {0} and Sn = Sn−1 + Wn. In particular,

W0 = S0.

We will use the following general result about construction of Riesz bases for

certain subspaces of H using stable bases of Wn.

Theorem 2.9 ([34]). Assume that for some v > 0 and ρ > 1,

‖Pn+1 · · ·Pmf‖H . ρv(m−n)‖f‖H , f ∈ Sm, (2.4.2)

for all m,n = 0, 1, 2, . . . with n < m. Let s > v and let Hs be a linear subspace of

H which itself is a Hilbert space with norm ‖ · ‖Hs satisfying

∥∥f
∥∥
Hs

∼ inf
fn∈Sn: f=

∑
∞

n=0 fn

( ∞∑

n=0

[
ρns‖fn‖H

]2)1/2

, f ∈ Hs. (2.4.3)

Suppose that for each n = 0, 1 . . ., Wn ⊂ Hs and there is a stable basis {φ(n)
k }k∈Kn

for Wn in the sense that

∥∥∥
∑

k∈Kn

ckφ
(n)
k

∥∥∥
H
∼

( ∑

k∈Kn

c2k

)1/2

, (2.4.4)

with constants of equivalence independent of n. Then
⋃∞

n=0{ρ−nsφ
(n)
k }k∈Kn is a

Riesz basis for Hs.

Assumption (2.4.3) of Theorem 2.9 can often be verified with the help of the

following theorem. Although it can be derived from more general results in e.g. [8,

40] (see also [51]), we provide here a short and self-contained proof based on

arguments similar to those in [50, Theorem 6] and [13, Corollary 5.2].

Theorem 2.10. Let H and H ′ ⊂ H be Hilbert spaces with norms ‖ · ‖H and

‖ · ‖H′ = ‖ · ‖H + | · |H′, where | · |H′ is a seminorm. Suppose that for some α > 1

and 0 < λ < 1 nested finite dimensional linear subspaces Sn ⊂ H satisfy the

Jackson inequality

inf
s∈Sn

‖f − s‖H . α−n|f |H′, f ∈ H ′, n = 0, 1, . . . , (2.4.5)
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and the Bernstein inequality in the norm ‖·‖λ;K of the interpolation space [H,H ′]λ,

‖s‖λ;K . αnλ‖s‖H , s ∈ Sn. (2.4.6)

Then for any 0 < θ < λ,

‖f‖θ;K ∼ inf
fn∈Sn: f=

∑
∞

n=0 fn

( ∞∑

n=0

[
αnθ‖fn‖H

]2)1/2

, f ∈ [H,H ′]θ, (2.4.7)

where the constants of equivalence depend only on α, the difference λ− θ and the

bounding constants in (2.4.5) and (2.4.6).

Proof. Recall from (2.2.2) that

‖f‖θ;K ∼ ‖f‖ := ‖f‖H +
( ∞∑

n=0

[
αnθKH,H′(f, α−n)

]2)1/2

.

We will show that ‖f‖ ∼ ‖f‖∗, where ‖f‖∗ denotes the right hand side of (2.4.7).

We first prove that ‖f‖∗ . ‖f‖. Let f ∈ H . It follows from (2.4.5) by Lemma

2.1 that there exists a sequence of elements fn ∈ Sn such that

‖f − fn‖H . KH,H′(f, α−n), n = 0, 1, . . . .

Then

‖fn − fn−1‖H ≤ ‖fn − f‖H + ‖fn−1 − f‖H . KH,H′(f, α−n), n ≥ 1,

and ‖f0‖H . ‖f‖H +KH,H′(f, 1). If ‖f‖ <∞, then ‖f − fn‖H → 0 when n→ ∞
and hence

f =
∞∑

n=0

(fn − fn−1), f−1 = 0,

where fn − fn−1 ∈ Sn since Sn−1 ⊂ Sn, which implies

‖f‖∗ ≤
( ∞∑

n=0

[
αnθ‖fn − fn−1‖H

]2)1/2

. ‖f‖.

We now proceed to showing the opposite inequality ‖f‖ . ‖f‖∗. Let f =
∑∞

n=0 fn with some fn ∈ Sn. By (2.4.6) we have for t ∈ [α−(j+1), α−j],

KH,H′(fn, t)
2 ≤ KH,H′(fn, α

−j)2 . α−2λj|fn|2λ,K . (tαn)2λ‖fn‖2H . (2.4.8)
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Let 0 < θ < λ. Then

∞∑

j=0

α2θjKH,H′(f, α−j)2 ≤ 2(A+B),

where

A =
∞∑

j=0

α2jθ

( j∑

n=0

KH,H′(fn, α
−j)

)2

, B =
∞∑

j=0

α2jθ

( ∞∑

n=j+1

KH,H′(fn, α
−j)

)2

.

By (2.4.8) and Cauchy-Schwarz inequality,

A .

∞∑

j=0

α2jθ

( j∑

n=0

α(n−j)λ‖fn‖H
)2

=
∞∑

j=0

α2j(θ−λ)

( j∑

n=0

αn(λ−θ)αnθ‖fn‖H
)2

≤
∞∑

j=0

α2j(θ−λ)

j∑

n=0

αn(λ−θ)

j∑

n=0

αn(λ−θ)α2nθ‖fn‖2H .

Since
j∑

n=0

αn(λ−θ) =
α(j+1)(λ−θ) − 1

α(λ−θ) − 1
≤ α(λ−θ)

α(λ−θ) − 1
· αj(λ−θ),

we get

A .

∞∑

j=0

α−j(λ−θ)

j∑

n=0

αn(λ−θ)α2nθ‖fn‖2H

=
∞∑

n=0

∞∑

j=n

α−(j−n)(λ−θ)α2nθ‖fn‖2H .

Let k = j − n, then

A .

∞∑

n=0

∞∑

k=0

α−k(λ−θ)α2nθ‖fn‖2H

= C1

∞∑

n=0

α2nθ‖fn‖2H

where C1 =
∑∞

k=0 α
−k(λ−θ) = 1

1−α−(λ−θ) .
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The bound KH,H′(fn, α
−j) ≤ ‖fn‖H and the Cauchy-Schwarz inequality imply

B ≤
∞∑

j=0

α2jθ

( ∞∑

n=j+1

‖fn‖H
)2

=

∞∑

j=0

α2jθ

( ∞∑

n=j+1

α
−nθ
2 α

−nθ
2 αnθ‖fn‖H

)2

≤
∞∑

j=0

α2jθ
∞∑

n=j+1

α−nθ
∞∑

n=j+1

α−nθα2nθ‖fn‖2H

=
α−θ

1− α−θ

∞∑

n=1

n−1∑

j=0

α(j−n)θα2nθ‖fn‖2H

≤ C2

∞∑

n=0

α2nθ‖fn‖2H ,

where C2 = α−θ

(1−α−θ)(αθ−1)
. Combining the above estimates for A and B yields

‖f‖ . ‖f‖∗.

We will use Theorems 2.9 and 2.10 with H = L2(Ω) and Hs = Hs(Ω) or Hs
0(Ω),

where Ω ⊂ R
2 is an arbitrary polygonal domain, and {Sn}∞n=0 is a nested sequence

of macro-element spline spaces.

A sequence of triangulations {∆n}∞n=0 of Ω is said to be nested if each ∆n+1 is a

refinement of ∆n, that is ∆n+1 is obtained from ∆n by subdividing the triangles of

∆n. Then obviously Sr
d(∆n) ⊂ Sr

d(∆n+1), so that {Sr
d(∆n)}∞n=0 is a nested sequence

of spaces. However, certain subspaces Sn ⊂ Sr
d(∆n) may also be nested, see for

example [17, 19, 24].

Recall that a sequence of triangulations {∆n}∞n=0 of Ω is regular if the minimum

angle of all ∆n remains bounded below by a positive constant β > 0 independent

of n, and the triangulations ∆n are quasi-uniform in the sense that there exist

constants ρ > 1 and c1, c2 > 0 independent of n such that

c1ρ
−n ≤ diamT ≤ c2ρ

−n, T ∈ ∆n. (2.4.9)

The parameter ρ will be called the refinement factor of {∆n}∞n=0.

Recall that a finite set Ξ ⊂ Ω is said to be a Lagrange interpolation set for a

finite dimensional linear space S of functions on Ω if #Ξ = dimS and for each
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ξ ∈ Ξ there is a unique function Bξ ∈ S satisfying Bξ(η) = δξ,η for all ξ, η ∈ Ξ,

where δξ,η = 1 if ξ = η and δξ,η = 0 otherwise. The set
{
Bξ

}
ξ∈Ξ

is a basis for S

called the Lagrange basis.

A sequence of Lagrange interpolation sets {Ξn}∞n=0 for the corresponding spaces

Sn is said to be nested if

Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn ⊂ . . . . (2.4.10)

We are ready to formulate the main result of this chapter.

Theorem 2.11. Let {Sn}∞n=0 be a nested sequence of spaces Sn ⊂ Sr
d(∆n), r ≥ 0,

with respect to a regular nested sequence of triangulations {∆n}∞n=0 of a polygonal

domain Ω ⊂ R
2, with refinement factor ρ > 1, and let {Ξn}∞n=0 be a nested sequence

of Lagrange interpolation sets for the spaces Sn, with the corresponding Lagrange

basis
{
B

(n)
ξ

}
ξ∈Ξn

for Sn. Assume that the bases
{
B

(n)
ξ

}
ξ∈Ξn

are uniformly local and

bounded, that is they are m-local and satisfy ‖B(n)
ξ ‖L∞(Ω) ≤ M , ξ ∈ Ξn, for some

m,M independent of n.

(a) Assume that the spaces Sn satisfy the Jackson inequality

inf
g∈Sn

‖f − g‖L2(Ω) . ρ−n(k+1)|f |Hk+1(Ω), f ∈ Hk+1(Ω), (2.4.11)

For some k ∈ N with r < k ≤ d. Then for any s ∈ (1, r + 3
2
) the set

Bs :=
∞⋃

n=0

{
ρn(1−s)B

(n)
ξ

}
ξ∈Ξn\Ξn−1

is a Riesz basis for Hs(Ω).

(b) Moreover, if the spaces Sn, n = 0, 1, . . ., satisfy the homogeneous boundary

conditions of order σ ≤ r, that is

∂ν+µg

∂xν∂yµ
= 0 on ∂Ω, for all ν, µ ≥ 0, ν + µ ≤ σ, g ∈ Sn,

and (2.4.11) holds for all f ∈ Hk+1
0 (Ω) rather than for all f ∈ Hk+1(Ω), then Bs

is a Riesz basis for Hs
0(Ω) if s ∈ (1, σ + 3

2
) \ (Z+ 1

2
).
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Proof. Under the assumptions of the theorem, the bases
{
B

(n)
ξ

}
ξ∈Ξn

are stable and

local in the sense of the definition in Section 1.3.2. Since diam(T ) ∼ ρ−n, T ∈ ∆n,

the bases
{
ρnB

(n)
ξ

}
ξ∈Ξn

are L2-stable, which implies

∥∥∥
∑

ξ∈Ξn

cξB
(n)
ξ

∥∥∥
L2(Ω)

∼ ρ−n
( ∑

ξ∈Ξn

c2ξ

)1/2

, (2.4.12)

for any real numbers cξ, with constants of equivalence independent of n.

Let 0 < s < r + 3
2
. We choose a number s̄ such that s < s̄ < r + 3

2
. By

Theorem 2.5, since the spaces Sn possess stable local bases, we obtain the Bernstein

inequality

‖g‖H s̄(Ω) . ρns̄‖g‖L2(Ω), g ∈ Sn.

By Theorem 2.10, applied with α = ρk+1, λ = s̄/(k + 1) < 1 and θ = s/(k + 1),

we see that under the assumptions of part (a) condition (2.4.3) of Theorem 2.9

is satisfied for H = L2(Ω), H
′ = Hk+1(Ω) and Hs = Hs(Ω) = [L2(Ω), H

k+1(Ω)]θ.

Similarly, under the assumptions of part (b) condition (2.4.3) follows from Theorem

2.10 with H = L2(Ω), H
′ = Hk+1

0 (Ω) and Hs = [L2(Ω), H
k+1
0 (Ω)]θ.

We now verify the other assumptions of Theorem 2.9. The density of ∪∞
n=0Sn

in H = L2(Ω) follows from the Jackson inequality (2.4.11) since both Hk+1(Ω)

and Hk+1
0 (Ω) are dense in L2(Ω). Furthermore, let In : C(Ω) → Sn, n = 0, 1, . . .,

be the Lagrange interpolation operator

Inf :=
∑

ξ∈Ξn

f(ξ)B
(n)
ξ .

We set Pn := In−1|Sn , n ≥ 1, and P0 := 0. Then Pn : Sn → Sn−1 is a

linear projection, and, in view of the nestedness (2.4.10) of {Ξn}∞n=0, we have

Pn+1 · · ·Pm = In|Sm for all m > n. Let g ∈ Sm and h := Pn+1 · · ·Pmg. Then

g =
∑

ξ∈Ξm
g(ξ)B

(m)
ξ and h =

∑
ξ∈Ξn

g(ξ)B
(n)
ξ . By (2.4.12) and (2.4.10) we obtain

∥∥h
∥∥2

L2(Ω)
. ρ−2n

∑

ξ∈Ξn

|g(ξ)|2 ≤ ρ−2n
∑

ξ∈Ξm

|g(ξ)|2

. ρ2(m−n)‖g‖2L2(Ω),
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which implies (2.4.2) with H = L2(Ω) and v = 1. Because of (2.4.10) the sets

{
ρnB

(n)
ξ : ξ ∈ Ξn \ Ξn−1

}
, n = 0, 1, . . . (Ξ−1 = 0)

form L2-stable bases for the complement spaces Wn. Since Wn ⊂ Sn ⊂ Hs(Ω) for

all s < r+ 3
2
by Theorem 2.5, an application of Theorem 2.9 with v = 1 completes

the proof of part (a). Under the assumptions of part (b) it is easy to see that

Sn ⊂ H̃s(Ω) = Hs
0(Ω) for all s < σ + 3

2
, s /∈ Z + 1

2
, and Theorem 2.9 implies that

Bs is a Riesz basis for [L2(Ω), H
k+1
0 (Ω)]s/(k+1) for all 1 < s < σ+ 3

2
. The statement

of part (b) follows in view of the description (2.2.5) of these interpolation spaces

in Section 2.2.

Note that in the case r = σ = 0 the condition (2.4.3) of Theorem 2.9 for H =

L2(Ω) and Hs = Hs
0(Ω), s <

3
2
, can be verified with the help of [48, Corollary 3]

without using interpolation spaces.

The argumentation of Theorem 2.11 for Ω ⊂ R
d would lead to the Riesz basis

for Hs(Ω) with the expectable range d
2
< s < r + 3

2
. Indeed, (2.4.12) then holds

with ρ−
dn
2 replacing ρ−n, and hence Theorem 2.9 is applicable with v = d

2
.

The standard C0 piecewise linear hierarchical basis [57] is, after appropriate

scaling, a Riesz basis of Hs(Ω) s ∈ (1, 3
2
) in two dimensions, see [39]. Clearly,

Theorem 2.11 applies to this case, where the triangulations ∆n are obtained by

the uniform refinement of an initial triangulation of Ω, ρ = 2, Sn is either S0
1(∆n)

(for Hs(Ω)) or its subspace {s ∈ Sn : s|∂Ω = 0} (for Hs
0(Ω)), and Ξn is either

the set of all vertices of ∆n or the set of all interior vertices, respectively. The

Jackson inequality (2.4.11) for k = 1 follows from Theorem 2.7 since S0
1(∆n) are

macro-element spaces with uniformly bounded basis functions, P1 ⊂ S0
1(∆n), and

the interpolation operator Π is boundary confirming of order σ = 0.

In the next section we provide a brief review of the existing constructions of

C1 Lagrange type hierarchical Riesz bases for Sobolev spaces Hs(Ω), s ∈ (1, 5
2
),

and Hs
0(Ω), s ∈ (1, 3

2
) ∪ (3

2
, 5
2
). Note that C1 hierarchical bases of Hermite type

are also known [14, 49]. They form Riesz bases for Hs(Ω), s ∈ (2, 5
2
).



Chapter 2. Macro-Element Hierarchical Riesz Bases 42

2.5 C1 Lagrange hierarchical Riesz bases for Sobolev

spaces

Spline spaces Sn ⊂ Sr
d(∆n) and Lagrange interpolation sets Ξn satisfying the

hypotheses of Theorem 2.11 give rise to hierarchical Riesz bases for Hs(Ω), s ∈
(1, r+ 3

2
), respectively Hs

0(Ω), s ∈ (1, σ+ 3
2
)\(Z+ 1

2
). However, specific constructions

are only available for r = 0, 1. In this section we review such constructions of the

spaces Sn in the case r = 1. We do not describe the corresponding sets Ξn as they

are quite technical, and the interested reader is instead referred to the original

literature.

2.5.1 Piecewise cubics on triangulated quadrangulations

The first construction of C1 Lagrange hierarchical bases has been suggested in [21],

where the nested spline spaces are the macro element spaces of C1 piecewise cubic

polynomials on the triangulations (see [36, Section 6.5]) obtained by adding two

diagonals to the quadrilaterals of a checkerboard quadrangulation of any polygonal

domain, which means that all interior vertices of the quadrangulation are of degree

4 and quadrilaterals can be coloured black and white in such a way that any two

quadrilaterals sharing an edge have opposite colours. The corresponding nodal

basis satisfies (2.3.4) with a constant C2 dependent only on the minimum angle of

the triangles T ∈ ∆R and the interpolation operator Π is boundary conforming of

order 1.

Nested spaces are obtained by the triadic refinement of the quadrilaterals and

their subtriangles illustrated in Figures 2.2 and 2.3. More precisely, Let Q =

〈v1, v2, v3, v3〉 be a quadrilateral and let p1 = 1/3(2v1 + v2), p2 = 1/3(v1 + 2v2),

p3 = 1/3(2v2 + v3), p4 = 1/3(v2 + 2v3), p5 = 1/3(2v3 + v4), p6 = 1/3(v3 + 2v4),

p7 = 1/3(2v4 + v1), p8 = 1/3(v4 + 2v1), p9 = 1/3(v1 + 2v̄), p10 = 1/3(v2 + 2v̄),

p11 = 1/3(v3 + 2v̄), p12 = 1/3(v4 + 2v̄), where v̄ is the point of intersection of the



Chapter 2. Macro-Element Hierarchical Riesz Bases 43

diagonals of Q. The refinement is obtained by connecting the points p1 and p8 to

p9, p2 and p3 to p10, p4 and p5 to p11, p6 and p7 to p12, and finally connecting the

points p9, p10, p11, p12 together, as shown in Figure 2.2. Each of the 9 quadrilaterals

is subdivided into 4 triangles by its diagonals as in Figure 2.3.

v1

v2 v3

v4

p1

p2

p3 p4

p5

p6

p7p8

p9

p10 p11

p12

Figure 2.2: A triadic refinement ♦Q of a quadrilateral Q.

v1

v2 v3

v4

v5

Figure 2.3: The triangulation ∆Q of ♦Q.

Given an initial quadrangulation ♦0 of Ω, this method generates a sequence

of successively refined quadrangulations ♦0,♦1, . . . ,♦n, . . . , and triangulations

∆0,∆1, . . . ,∆n, . . . , and the nested macro-element spaces are Sn = S1
3(∆n). While

the nestedness of the sequence of triangulations {∆n}∞n=0 is obvious, its regularity,

which has not been fully addressed in [21], follows from Proposition 2.12 below.

For the nested sequence of Lagrange interpolation sets {Ξn}∞n=0 described in [21]
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all assumptions of Theorem 2.11 (b) are satisfied, with r = σ = 1, k = 3 and

ρ = 3, which leads to a Riesz basis for Hs
0(Ω), s ∈ (1, 3

2
) ∪ (3

2
, 5
2
).

Proposition 2.12. Each triangle T ∈ ∆n, n ≥ 2, is similar to a triangle in ∆1

with the scaling factor 1
3n−1 .

Proof. Consider the quadrangulation ♦Q of a quadrilateral Q obtained by the tri-

adic refinement. It is easy to see that the quadrilateral 〈p9, p10, p11, p12〉 is similar

to the parent quadrilateral Q = 〈v1, v2, v3, v4〉, whereas 〈p1, p2, p10, p9〉 is a paral-

lelogram with side length 1
3
of the size of the parent edge 〈v1, v2〉, see Figure 2.2.

Three other children of Q in similar position are also parallelograms.

Let ∆Q be the triangulation of ♦Q shown in Figure 2.3. We observe that

there are 8 different types of similar triangles in ∆Q as shown in Figure 2.4. The

triangles of types 1, 2, 3 and 4 are similar to their parent triangles (obtained from

Q by splitting along its diagonals) with the coefficient 1
3
. The triangles of types

5, 6, 7 and 8 will be referred to as “median” triangles because each of them has a

side parallel to the median of its parent triangle and of length 2
3
of that median,

as illustrated in Figure 2.5, where the section 〈v1, v2, v5〉 of the triangulations ∆Q

of Figure 2.3 is shown separately.

1

1

111

2 2

2

2

2

3
3

3 3 3

44

4

4

4

5555

6

6

6

6

7 7 7 7

8
8

8
8

Figure 2.4: Eight types of similar triangles in ∆Q.

We now apply the next refinement step and look at the median subtriangle

〈a, b, c〉 of the median triangle in ∆Q as shown in Figure 2.6. We note that the
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dotted line 〈q1, q2〉 is of length 2
3
of the side 〈p1, p9〉 of the parent which is parallel to

the median 〈m, v5〉 of the grandparent. Hence the median of the median triangle

〈a, b, c〉 is of length 1
4
× 2

3
× 2

3
= 1

9
of the median 〈m, v5〉 of the grandparent

〈v1, v2, v5〉. Therefore, the median subtriangle 〈a, b, c〉 is similar to the grandparent

〈v1, v2, v5〉 with coefficient 1
9
.

v1

v2

v544

4

4

4

8
8

8
8

p1

p2

p9

p10

m

Figure 2.5: The triangle 〈v1, v2, v5〉, its median 〈m, v5〉 and 9 children.

v1

v2

v5

q1 q2
p1 p9

a

b

c

m

Figure 2.6: The triangle 〈a, b, c〉 is similar to the grandparent 〈v1, v2, v5〉 with

coefficients 1
9
.

Let T ∈ ∆n, with n ≥ 2. By applying the above observations recursively, we

have two following cases: 1) T is similar to an ancestor T̃ ∈ ∆1 with coefficient

1
3n−1 . 2) T is similar to an ancestor T̂ ∈ ∆0 with coefficient 1

3n
. But T̂ has a child

T̃ ∈ ∆1 which is similar to T̂ with coefficient 1
3
and this implies that T is similar

to T̃ with coefficient 1
3n−1 .
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2.5.2 Piecewise quadratics on Powell-Sabin-6 splits

C1 piecewise quadratic hierarchical bases are considered in [41]. Here, an ini-

tial checkerboard quadrangulation of Ω is first turned into a triangulation by

adding one diagonal of each quadrilateral, and then each triangle is subdivided

using a Powell-Sabin-6 (PS-6) split. To obtain a nested sequence of triangulations

{∆n}∞n=0, a triadic refinement of the PS-6 split [56] is performed, see Figure 2.7.

The nested spline spaces Sn are the C1 piecewise quadratic Powell-Sabin macro-

elements [36, Section 6.3]. Lagrange interpolation sets Ξn with the required prop-

erties are selected using a scheme which can be seen as a specific realisation of

the interpolation method described in [47]. It is shown in [41] that this construc-

tion leads to a Riesz basis for Hs(Ω), 1 < s < 5
2
, under the assumption that the

triangulation sequence {∆n}∞n=0 is regular. Indeed, in this case Theorem 2.11 is

applicable with r = σ = 1 and k = 2. We note however that this assumption

does not seem easy to verify unless ∆0 is a uniform triangulation, in which case

ρ = 3. It is an open question whether an arbitrary polygonal domain Ω admits

an initial triangulation such that the sequence of triangulations obtained by the

triadic refinement of its PS-6 split is regular.

2.5.3 Piecewise quadratics on mixed PS-6/PS-12 splits

In Chapter 3 we construct C1 piecewise quadratic hierarchical bases on arbitrary

polygonal domains using nested sequences of triangulations and spline spaces in-

troduced in [33]. Beginning with an arbitrary triangulation ∆0 of Ω, a nested

sequence of triangulations {∆n}∞n=0 is obtained by the standard uniform refine-

ment, where the middle points of edges are connected to each other. An edge of

∆n is said to be regular if it is shared by two triangles that form a parallelogram.

Clearly, all boundary edges are irregular, but an interior edge may only be irregu-

lar if it overlaps a part of an edge of ∆0. Furthermore, let ∆∗
n be the triangulation

obtained by subdividing each triangle T ∈ ∆n using the Powell-Sabin-6 split if all
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Figure 2.7: The triadic refinement of the PS-6 split: A new vertex is placed at the

position of the interior point in the PS-6 split and two new vertices on each edge.

edges of T are regular, or the Powell-Sabin-12 split [36, Section 6.4] otherwise. For

both PS-6 and PS-12 splits the central vertex is chosen at the barycentre of the

triangle and the edge splitting vertices are at the midpoints of the edges. Then

{∆∗
n}∞n=0 is also a nested sequence of triangulations, as illustrated in Figure 2.8. It

is obviously regular, with refinement factor ρ = 2.

Figure 2.8: An example to illustrate that ∆∗
n+1 is a refinement of ∆∗

n.
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The spline spaces are defined by

Sn =
{
s ∈ S1

2(∆
∗
n) :

∂s

∂e⊥
∣∣
e
is linear for each irregular edge e of ∆n

}
,

where ∂s
∂e⊥

denotes the normal derivative of s on e. It is easy to see that {Sn}∞n=0 are

nested macro-element spaces, their interpolation operators are boundary conform-

ing of order 1, and P2 ⊂ Sn, n = 0, 1, . . .. Let Pn : Sn → Sn−1 be the orthogonal

projector with respect to the inner product defined by

(f, g) =
∑

e∈En

(f, g)e,

where En is the set of all edges of ∆n and, for e = 〈v1, v2〉,

(f, g)e :=
1

22n

[
f(v1)g(v1) +

(
f(v1) +

1

4

∂f

∂e
(v1)

)(
g(v1) +

1

4

∂g

∂e
(v1)

)

+ f(v2)g(v2) +
(
f(v2)−

1

4

∂f

∂e
(v2)

)(
g(v2)−

1

4

∂g

∂e
(v2)

)]
.

It is shown in [33] that the projectors Pn satisfy (2.4.2) with

v = log2

(2(1 +
√
13)

3

)
≈ 1.618,

and thus lead to a construction of Riesz bases in Hs(Ω) for v < s < 5
2
.

In Chapter 3 we present a construction of nested Lagrange interpolation sets

for Sn and their subspaces with homogeneous boundary conditions of order 1,

which leads to a Riesz basis for Hs(Ω), s ∈ (1, 5
2
) and Hs

0(Ω), s ∈ (1, 3
2
) ∪ (3

2
, 5
2
),

by applying Theorem 2.11 with r = σ = 1, k = 2 and ρ = 2.



Chapter 3

C1 Piecewise Quadratic

Hierarchical Bases

3.1 Introduction

In this chapter we construct Lagrange hierarchical bases for the spaces of C1

piecewise quadratic polynomials on the combination of Powell-Sabin-6 and Powell-

Sabin-12 triangulations which are available for any polygonal domain. These hi-

erarchical bases generate Riesz bases for the Sobolev spaces Hs(Ω) for s ∈ (1, 5
2
),

and Hs
0(Ω) for s ∈ (1, 3/2) ∪ (3/2, 5/2).

Hierarchical bases were constructed first by Yserentant in [57], based on piece-

wise linear functions on general triangulations in the finite element applications

to second order elliptic boundary value problems. For domains in R
2 they give

rise to Riesz bases for Hs, s ∈ (1, 3/2). In [14] Oswald constructed hierarchical

bases using C1 quadratic and cubic spline spaces. It was demonstrated that the

hierarchical bases are suboptimal for the condition numbers of the corresponding

discretisation matrices related to fourth-order elliptic equations. In [49] hierar-

chical bases were constructed for C1 quintic spline spaces. These C1 hierarchical

bases are of Hermite type and so they generate Riesz bases for Hs(Ω), s ∈ (2, 5/2).

In [32] Hong and Schumaker also constructed C1 hierarchical bases of Hermite

49
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type for cubic splines and these bases are employed for surface compression.

For arbitrary polygonal domains Ω ∈ R
2, the first C1 hierarchical Riesz bases

of Lagrange type were constructed by Davydov and Stevenson [21], for Hs(Ω) with

s ∈ (1, 5
2
) using C1 piecewise cubic polynomials on certain triangulations obtained

from checkerboard quadrangulations. Different C1 piecewise quadratic hierarchical

bases of Lagrange type were constructed in [41]. They are based on the triadic

refinement of the Powell-Sabin-6 split of a special initial triangulation and lead to

Riesz bases for Hs(Ω) with s ∈ (1, 5
2
) only under the assumption that the resulting

nested sequence of triangulations is quasi-uniform. In [33] Jia and Liu constructed

Riesz bases of spline wavelets based on orthogonal projection operators which give

the range of stability s ∈ (1.618, 5
2
), but with an advantage of that it is applied

to general triangulations of any polygonal domain Ω. On the unit square, Jia

and Zhao [34] recently constructed wavelet Riesz bases for Hs(Ω), s ∈ (1, 5/2) and

investigated their applications to numerical solutions of the biharmonic equation

and general elliptic equations of fourth-order.

It is expected that the C1 Lagrange hierarchical bases constructed in this chap-

ter and also those bases constructed in [21, 33, 41] are suitable for surface com-

pression, see [25, 32, 42]. These bases also will have applications to numerical

solutions of partial differential equations. These bases are particular suitable for

the biharmonic equation since they areH2-stable (see the discussion in [49, 21, 41]).

The condition numbers of the corresponding discretisation matrices are uniformly

bounded.

We note that our hierarchical Riesz bases have a larger range of stability com-

pared to the Hermite type hierarchical bases of [14, 49] and the wavelet bases of

[33]. Our construction is available on general triangulations of the polygonal do-

mains and it does not require any special initial partition as needed in [33, 41].

Our method can be applied to any polygonal domain compared to [34] where it is

only available on the unit square. We also note that numerical schemes based on

the Riesz bases of [21, 41, 33] have yet to be implemented. We have implemented
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our bases and investigated their applications to surface compression and numerical

solutions of the biharmonic equation. Numerical results are presented in Chapter

4.

In Section 3.2 we discuss the nested sequence of C1 piecewise quadratic spline

spaces of Powell-Sabin and in Section 3.3 we construct local Lagrange interpolation

sets for the spaces and prove that the corresponding Lagrange bases are stable and

local. The most challenging part is to ensure the Lagrange interpolation sets of

consecutive refinement levels are nested so that the corresponding hierarchical

bases can be constructed. In Section 3.4 we use the general theory established in

Chapter 2 to show that the Lagrange hierarchical bases, properly scaled, give rise

to Riesz bases for Hs(Ω) for s ∈ (1, 5/2), and Hs
0(Ω) for s ∈ (1, 3/2) ∪ (3/2, 5/2).

3.2 Refinable Spaces of C1 Piecewise Quadratics

We now describe the refinable spaces of C1 piecewise polynomials we are going to

use for our construction of hierarchical bases. This space is introduced by Jia and

Liu [33] for the construction of C1 spline wavelets.

Let Ω be a bounded connected polygonal domain in R
2. Suppose that some

initial triangulation ∆0 of Ω is given such that the union of the triangles of ∆0 is

Ω and the intersection of two triangles of ∆0 either consists of a common edge or

a common vertex of both triangles or is empty.

Beginning with ∆0 we construct a nested sequence ∆0,∆1,∆2, . . . of triangu-

lations of Ω, i.e.,

∆n ⊂ ∆n+1 n = 0, 1, . . . . (3.2.1)

The triangulation ∆n+1 is obtained from ∆n by subdividing any triangle of ∆n

into four equal subtriangles by joining the midpoints of the three edges with each

other as shown in Fig.3.1. We call this procedure the uniform refinement (TU) of

any triangle T .

The sequence {∆n} satisfies the minimum angle condition, i.e., the minimum
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Figure 3.1: The uniform refinement procedure.

angle of any triangle in any ∆n remains bounded away from zero (all triangles are

similar to one of the triangles of level 0 so minimum angle in level n is the same

as the minimum angle in level 0) and is quasi-uniform (all triangles in ∆n have

comparable sizes), i.e.,

C1 · 2−n ≤ diamT ≤ C2 · 2−n, T ∈ ∆n, n = 0, 1, . . . . (3.2.2)

with absolute constants C1, C2.

Two triangles T, T ′ ∈ ∆n are said to be neighbours if T and T ′ share a common

edge. A triangle T is called regular if T and its any neighbouring triangle T ′ form

a parallelogram. Otherwise T is called irregular. An edge shared by two triangles

is said to be regular if and only if the two triangles form a parallelogram, and all

other edges are said to be irregular. All edges of ∆n which are not part of an edge

of ∆0 are regular. For example a triangle of ∆2 may be irregular only if one of its

edges is a part of an interior edge of ∆0. These triangles are shown as shaded in

Fig.3.2. All other triangles of ∆2 are regular.

Starting from (3.2.1) we introduce further subdivisions by subdividing any

regular triangle of ∆n into six subtriangles by joining the midpoints of the three

edges with the opposite vertex and subdividing any irregular triangle of ∆n into

twelve triangles by joining the midpoints of the three edges with each other and

with the opposite vertex. We call these the Powell-Sabin-6 split (TPS6) and Powell-

Sabin-12 split (TPS12) of any triangle T , respectively. See Fig.3.3. Clearly, TPS12

is a refinement of both TU and TPS6. Moreover, if each of the triangle of TU is
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Figure 3.2: The irregular triangles are shaded.

divided into six smaller triangles by Powell-Sabin-6 split then it is also clear that

the resulting triangulation is a refinement of TPS12.

Figure 3.3: Powell-Sabin-6 split and Powell-Sabin-12 split of a triangle.

Let ∆reg
n be the collection of all regular triangles of ∆n, and ∆n \ ∆reg

n the

collection of all irregular triangles of ∆n. We write the resulting triangulation ∆∗
n

of ∆n

∆∗
n :=

( ⋃

T∈∆reg
n

TPS6

)
∪
( ⋃

T∈∆n\∆
reg
n

TPS12

)
.

The sequence of triangulations ∆∗
0,∆

∗
1,∆

∗
2, . . . satisfies

∆∗
n ⊂ ∆∗

n+1 . . . , n = 0, 1, . . . , (3.2.3)

C3 · 2−n ≤ diamT ∗ ≤ C4 · 2−n, T ∗ ∈ ∆∗
n, n = 0, 1, . . .
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with absolute constants C3, C4.

An example of property (3.2.3) is illustrated in Fig.3.4.

Figure 3.4: An example to illustrate that ∆∗
n+1 is a refinement of ∆∗

n.

For n = 0, 1, . . ., we define the space S1
2(∆

∗
n) of C

1 quadratic piecewise polyno-

mials, i.e.

S1
2(∆

∗
n) := {s ∈ C1(Ω) : s|T ∈ P2 for all T ∈ ∆∗

n},

where P2 is the space of polynomials of degree at most 2.

We now consider a subspace Sn of S1
2(∆

∗
n) defined by

Sn =
{
s ∈ S1

2(∆
∗
n) :

∂s

∂e⊥
∣∣
e
is linear for all irregular edges e of ∆n

}
,

where ∂s
∂e⊥

∣∣
e
is the normal derivative of s on e.

Suppose s ∈ Sn and e is an irregular edge of ∆n+1. Then the normal derivative

of s on e is a linear function since all irregular edges of ∆n+1 are edges of ∆
∗
n. This

shows that

Sn ⊂ Sn+1, n = 0, 1, 2, . . . .

Theorem 3.1. The dimension of Sn is given by

dimSn = 3#Vn,

where Vn is the set of all vertices of ∆n. Moreover, the spline s ∈ Sn is uniquely

defined by its function values s(v) and gradients { ∂s
∂x
(v), ∂s

∂y
(v)} at the vertices

v ∈ Vn of ∆n.
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Proof. Suppose T ∈ ∆reg
n . Then T is a PS-6 split triangle. Let s ∈ Sn. It is known

[53] that given function and gradient values at the vertices of T , the C1 piecewise

quadratic function s|T is uniquely determined. Moreover, the function s|e and the

gradient of s|T on the edge e of T are defined by the function and gradient values

at the two endpoints of e. This argument relies on the fact that the directional

derivative along the line joining the midpoint of e to the barycentre of T evaluated

on e is a linear function. Thus any function defined on two adjacent triangles of

this type will be differentiable across their common edge if the line joining the

barycentres of the two triangles intersects at the midpoint of their common edge.

We also note that this condition is always satisfied by our construction since any

two PS-6 split triangles together form a parallelogram.

Now suppose T ′ ∈ ∆n \ ∆reg
n . Then T ′ is a PS-12 split triangle. The edges

of T ′ are either irregular or they are shared by PS-6 split triangles. If an edge e′

of T ′ is irregular then the normal derivative of s|T ′ at the midpoint of e′ is the

average of the normal derivatives computed at the two endpoints of e′ since the

normal derivative is a linear function on e′. Thus any function defined on two

PS-12 split triangles will be differentiable across their common edge e′. If an edge

e of T ′ is shared by a PS-6 split triangle T , e is a regular edge of ∆n and T ′ ∪ T
forms a parallelogram. The directional derivative along the line joining the the

midpoint of e to the barycentre of T ′ evaluated on e is a linear function. Then the

normal derivative of s|T ′ at the midpoint w of e is determined from s|T since s|T
and s|T ′ are differentiable across their common edge e (See Remark 3.2 and 3.3).

The normal derivative of s|T ′ at w is the linear combinations of the directional

derivative of s|T along the edge e evaluated at w and the directional derivative of

s|T along the line connecting the midpoint of e to the barycentre of T evaluated

at w. These two directional derivatives of s|T are defined by the function and

gradients values at the two endpoints of e. Given function and gradient values at

the vertices of T ′, and the normal derivatives at the midpoints of the edges of T ′, it

is known [53] that the C1 piecewise quadratic function s|T ′ is uniquely determined.
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Thus from the above discussion we deduce that s|T ′ is uniquely determined only

by the function and gradient values at the vertices of T ′.

Since given function and gradient values uniquely determine s on each triangle

of ∆n of Ω, and hence on all of Ω, it follows that the dimension of the spline space

Sn(∆) is 3#Vn. Furthermore, we obtain a piecewise quadratic function that is

continuous and whose first derivative is continuous throughout the triangulation.

Remark 3.2. Suppose we extend a PS-6 split triangle T ∈ ∆n to a PS-12 split

triangle and put a condition such that the directional derivatives along the line

joining the midpoint of the regular edges to the barycentre of the triangle of the

spline function s|T , evaluated along the edges, are linear. We know from [53] the

spline function s|T where T is PS-6 split triangle satisfies the linearity of these

directional derivatives. Then any spline s|T and the gradient of s on such an edge

are uniquely defined by the function and gradient values of s at its two endpoints

when T is either the PS-6 split or PS-12 split triangle. So s|T is equivalent when

T is either a PS-6 split or PS-12 split triangle. Hence if we extend all the PS-

6 split triangles of ∆n to PS-12 split triangles we obtain the same spline space.

Moreover, the spline space is now a subspace of the classical Powell-Sabin-12 C1

macro-element space.

Remark 3.3. Consider the edge shared by two triangles T1, T2, where T1 is a PS-6

split and T2 is a PS-12 split. Let s1 = s|T1 and s2 = s|T2. Along a common edge e,

the restriction of each of the two bivariate C1 piecewise quadratic polynomials s1|e
and s2|e to the common edge e gives a univariate C1 piecewise quadratic polyno-

mials on the edge. Each of the univariate C1 piecewise quadratic polynomials s1|e
and s2|e is determined uniquely by two function values and first order derivatives

at the two endpoints of the edge. These values are common to the two triangles

so s1|e and s2|e are identical. Hence s1 and s2 are C0 continuous across the com-

mon edge e. Now to show that it is C1 continuous, it is enough to consider the
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continuity of the directional derivatives along the line joining the midpoint me of

the common edge to the barycentre vT of the triangle, evaluated along the common

edge e, denoted by DvT1−mes1|e and DvT1−mes2|e for s1 and s2, respectively. It is

known [53] that DvT1−mes1|e is a linear function and DvT1−mes2|e is a piecewise

linear function. Also DvT1−mes2|e is determined by three data values, that is, it’s

two function values at each endpoint of e and at the midpoint of e. Since s1 and

s2 are continuous across e, their gradients at the midpoint of e coincide and hence

DvT1−mes1|e and DvT1−mes2|e evaluated at the midpoint me of e coincide. Since

these data are common to the two triangles, then DvT1−mes1|e and DvT1−mes2|e are
identical and they are linear functions. Hence s1 and s2 are C1 continuous across

the common edge e.

Let Nn = 3#Vn be the dimension of Sn. We now describe a basis for Sn. For

each v ∈ Vn, let λv, λ
x
v and λyv be the point-evaluation functionals defined on the

space C1(Ω) by

λvs = s(v), λxvs =
∂s

∂x
(v), λyvs =

∂s

∂y
(v). (3.2.4)

Then by Theorem 3.1 the set of linear functionals

Nn = {λ(n)i }Nn

i=1 =
⋃

v∈Vn

{λv, λxv , λyv} (3.2.5)

is a nodal minimal determining set (NMDS) for Sn. Then for Nn, the (Hermite)

nodal basis Φn = {s(n)i }Nn

i=1 for Sn will be defined uniquely by the duality

λ
(n)
i s

(n)
j =




1, i = j,

0, otherwise.

Theorem 3.1 shows that for every function f ∈ C1(Ω), there is a unique spline

s ∈ Sn that solves the Hermite interpolation problem

s(v) = f(v),
∂s

∂x
(v) =

∂f

∂x
(v),

∂s

∂y
(v) =

∂f

∂y
(v), for all v ∈ Vn. (3.2.6)
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Since λ
(n)
i are function evaluations or derivatives of at most first order, they

lead to the Hermite interpolation operator Πn : C1(Ω) → Sn defined by

Πnf =

Nn∑

i=1

λ
(n)
i (f)s

(n)
i . (3.2.7)

By the duality of the basis functions si, it is clear that the spline Πns reproduces

s, i.e.,

Πns = s, all s ∈ Sn.

Now since P2 ⊂ Sn, Πn reproduces the quadratic polynomials P2, i.e.,

Πnp = p all p ∈ P2.

Now we want to show that the NMDS Nn for Sn is stable and local. Given a

triangle T ∈ ∆n, we can see from the formulae of B-coefficients (3.2.11) for s ∈ Sn

on T that these coefficients are computed from the nodal data at the vertices of T .

This shows that Nn is local. Similarly, from the formulae (3.2.11) we can easily

check that if the coefficient cξ of s is computed from the gradients then

|cξ| ≤ K1

1∑

ν=0

diam(T )ν |s|W ν
∞(T ), (3.2.8)

where K1 is a constant depending on the smallest angle in ∆n. Since the computa-

tion of all other coefficients from the smoothness conditions is a stable process, it

follows that (3.2.8) holds for all coefficients of s on T . This verifies the stability of

Nn. Since NMDS Nn is stable and local, it implies that the corresponding Hermite

basis Φn is stable and local in the sense of the definition of Section 1.3.2.

Lemma 3.4. Let T ∈ ∆n be a triangle with vertices v1, v2, v3. Then for every

s ∈ Sn, we have

‖s‖L∞(T ) . max

{
|s(vj)|, 2−n

∣∣∣∣
∂s

∂x
(vj)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(vj)

∣∣∣∣, 1 ≤ j ≤ 3

}
, (3.2.9)

where the bounding constants depend only on the smallest angle in ∆n.
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Proof. Since Φn is a stable local basis, {s(n)i }9i=1 is a stable basis for the L∞-norm,

that is for c = (c1, . . . , c9)

‖
9∑

i=1

cis
(n)
i ‖L∞(T ) ∼ ‖c‖l∞ (3.2.10)

with bounding constant depending only on the smallest angle of ∆n. By construc-

tion of Πn we have

‖s‖L∞(T ) = ‖
9∑

i=1

λ
(n)
i s

(n)
i ‖L∞(T ).

Then by (3.2.10),

‖s‖L∞(T ) . max
i

|λ(n)i |, i = 1, · · · , 9.

The lemma immediately follows from (3.2.4) with proper scaling of the linear

functionals involving derivatives, that is γ ds
dx
(vj) and γ

ds
dy
(vj) where γ = diam(T ),

and we have diam(T ) ∼ 2−n from (3.2.2).

We now write the set of linear functionals Nn for Sn in a different way. Let

N0 = {λ(0)i }n0=N0
i=1 =

⋃

v∈V0

{λv, λxv , λyv}

and for each 1 ≤ k ≤ n, set

Γk = {λ(k)i }nk

i=1 =
⋃

v∈Vk\Vk−1

{λv, λxv , λyv}, nk = Nk −Nk−1.

Then for each 0 ≤ m ≤ n, the set of linear functionals

Nm = N0 ∪
m⋃

k=1

Γk

is clearly a nodal minimal determining set for Sm.

We now construct a hierarchical basis for Sn. Let {s(0)i }N0
i=0 be the nodal basis

for S0. In addition, for each 1 ≤ m ≤ n and each 1 ≤ i ≤ nm, let s
(m)
i be the

unique spline in Sm such that

λ
(m)
j s

(m)
i =




1, i = j, j = 1, . . . , nm,

0, otherwise.
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and

λ
(k)
j s

(m)
i = 0, j = 1, . . . , nk, k = 1, . . . , m− 1.

Theorem 3.5. For each 0 ≤ m ≤ n, the set of splines

Bm =

m⋃

k=0

nk⋃

i=1

{s(k)i }

form a basis for Sm.

Proof. Since the splines in Bm belongs to Sm by the construction and they are also

linear independent. The cardinality of Bm is equal to n0 + n1 + . . .+ nm, which is

the dimension of the space Sm. The proof is complete.

Theorem 3.5 shows that Bn is a hierarchical basis for Sn, which means that

every spline s ∈ Sn can be written as a unique hierarchical representation

s =

n∑

m=0

nm∑

i=1

c
(m)
i s

(m)
i .

v1

v2 v3

v13v12

v23

d2 d3

d1

cT

Figure 3.5: Powell-Sabin-12 split of a triangle and its domain points.

For the convenience of writing a program to compute the spline s satisfying

(3.2.6), we now give explicit formulae for all the B-coefficients of s ∈ Sn in terms
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of function and gradient values at the vertices of T ∈ ∆n. For T regular, i.e. T

is a PS-6 split, the formulae for the B-coefficients for s can be found in [36, (6.5)]

and they are written in terms of function and gradient values at the vertices of

T . We will now concentrate on the case where T is irregular, i.e. T is a PS-12

split. Following the notation used in [2], if v is a vertex of T , we write C(v) for

the B-coefficient associated with the domain point v, and if [u, v] is an edge of

T , we write C(u, v) for the B-coefficient associated with the domain point at the

midpoint of e. For a typical macro triangle T = 〈v1, v2, v3〉, see Fig.3.5, we write

v12 for the midpoint of the [v1, v2], with the similar notation for the other edges of

T . Let cT = (v1+v2+v3)/3 be the barycenter of T , and let d1 = (2v1+v2+v3)/4 be

the midpoint of the edge [v12, v13], with similar definitions for d2 and d3. Then by

the standard Bernstein Bézier techniques, we can compute the following formulae

for the B-coefficients of s on T where T is irregular:

C(v1) = s(v1),

C(v1, v12) = C(v1) +
[
(x12 − x1)

∂s

∂x
(v1) + (y12 − y1)

∂s

∂y
(v1)

]
/2,

C(v12) = [C(v1, v12) + C(v2, v12)]/2,

C(v1, d1) = [C(v1, v12) + C(v1, v13)]/2,

C(v12, d1) = [3C(cT , v12) + C(v1, v12)]/4, (3.2.11)

C(d1) = [C(d1, v12) + C(d1, v13)]/2,

C(cT , d1) = [C(cT , v12) + C(cT , v13)]/2,

C(cT ) = [C(cT , v12) + C(cT , v13) + C(cT , v23)]/3,

C(d1, cT ) = [C(v12, cT ) + C(v13, cT )]/2.

It is now remaining to find the formula for C(cT , v12). We first consider the case

where the edge e = [v1, v2] is regular. We assume that the B-coefficients on all reg-

ular triangles (PS-6 split) are first computed. Then the gradient ∂
∂x
s(v12),

∂
∂y
s(v12)

at v12 can be easily computed from the B-coefficients on the PS-6 macro triangle
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sharing an edge with T . The coefficient C(cT , v12) can then be written as

C(cT , v12) = C(v12) +
[
(xcT − x12)

∂s

∂x
(v12) + (ycT − y12)

∂s

∂y
(v12)

]
/2.

Next we consider the case where the edge e = [v1, v2] is irregular. Let ne be

the unit vector perpendicular to e and pointing into T . To find the formula for

C(cT , v12), we make use of the requirement that the derivative Dnes should be

linear along the edge e. We first write

ne = α1(v12 − v1) + β1(v13 − v1),

= α2(v12 − v2) + β2(v23 − v2), (3.2.12)

= α12(v2 − v12) + β12(cT − v12).

See Remark 3.6 for details on how to get the α′s and β ′s. We make use of these

equations to get the formulae for Dnes at certain points on T . We note that for

any two vertices u, v of a triangulation ∆n, the directional derivative associated

with the vector u− v of a quadratic spline defined on ∆n is

Du−vs(v) = 2δ(u, v)

where

δ(u, v) = C(u, v)− C(v).

This then leads to

Dnes(v1) = 2[α1δ(v12, v1) + β1δ(v13, v1)],

Dnes(v2) = 2[α2δ(v12, v2) + β2δ(v23, v2)], (3.2.13)

Dnes(v12) = 2[α12δ(v2, v12) + β12δ(cT , v12)].

The requirement that Dnes is linear on e can be written as

Dnes(v12) = [Dnes(v1) +Dnes(v2)]/2.
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Now substituting the equations (3.2.13) and solving for C(cT , c12), we get

C(cT , v12) = C(v12) + [−2α12δ(v2, v12) +Dnes(v12)]/(2β12)

= C(v12) +
[
− 2α12δ(v2, v12) + [Dnes(v1) +Dnes(v2)]/2

]
/(2β12)

= C(v12) +
[
− 2α12δ(v2, v12) + α1δ(v12, v1) + β1δ(v13, v1)

+ α2δ(v12, v2) + β2δ(v23, v2)
]
/(2β12).

Remark 3.6. To find αi and βi in the equation (3.2.12), we first compute a so

that

[a(v12 − v1) + (v13 − v1)] ◦ (v12 − v1) = 0

This is one equation for the unknown a.

In the next section we will construct suitable Lagrange bases for the spaces

Sn, n = 0, 1, . . .. We begin the construction on the coarsest level ∆0 and then

progress to the next level and so forth. In particular, we construct a nested La-

grange interpolation sets {Ξn}∞n=0 so that a corresponding Lagrange hierarchical

basis can be constructed.

3.3 Stable Local Lagrange Bases

Recall that a finite set Ξ ⊂ Ω is said to be a Lagrange interpolation set for a finite

dimensional linear space S of functions on Ω if #Ξ = dimS and for each ξ ∈ Ξ

there is a unique function Bξ ∈ S satisfying Bξ(η) = δξ,η for all ξ, η ∈ Ξ, where

δξ,η = 1 if and only if ξ = η. The set
{
Bξ

}
ξ∈Ξ

is a basis for S called the Lagrange

basis. A sequence of Lagrange interpolation sets {Ξn}∞n=0 for the corresponding

spaces Sn is said to be nested if Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn ⊂ . . . .

In Algorithm 1 below we construct the set of interpolation points for the spline

space S0. We use an algorithm similar to one introduced by Nürnberger and Zeil-

felder [47] for the construction of local Lagrange interpolation sets for C1 quadratic

splines on arbitrary triangulations with Powell-Sabin 6-splits. The construction of
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local Lagrange interpolation sets is based on adding successively Lagrange inter-

polation points in the interior of the edges of ∆0 to V0, the set of vertices of ∆0.

In [47] interpolation points on the edges are chosen at distance |d|
2
, where |d| is the

distance from the endpoints to the interior knots of Powell-Sabin 6-splits on the

edges. In contrast to [47], we choose the interpolation points at distance |e|
4
from

the endpoints of the edges, where |e| denotes the length of the edges. We shall see

later that this is particularly important in order to get a nested interpolation sets.

We also prove the Lagrange interpolation set is local.

Algorithm 1 [Interpolation set for S0]

Let ∆0 be the initial triangulation. In the algorithm the vertices of ∆0 are marked

whenever the interpolation points are chosen near the vertices. We say that an

interpolation point ξ is assigned to a vertex v ∈ V0 if either ξ = v or v is the closest

endpoint of the edge containing ξ. We add successively Lagrange interpolation

points in the interior of the edges of ∆0 such that three interpolation points are

assigned to every vertex of ∆0.

Step 1. Let T1, T2, . . . , Tn be the triangles of ∆0. First, on T1 = 〈u, v, w〉, the
points

u, v, w,
3

4
u+

1

4
v,

3

4
u+

1

4
w,

3

4
v +

1

4
u,

3

4
v +

1

4
w,

3

4
w +

1

4
u,

3

4
w +

1

4
v, (3.3.1)

are chosen and the vertices u, v, w are marked, see Fig.3.6a. The algorithm then

proceeds by induction as follows. Assume that the triangles T1, T2, . . . , Ti have

been considered. Next, the triangle Ti+1 is considered, and again its vertices are

denoted by u, v, w. If all vertices u, v, w are not yet marked, then the points (3.3.1)

are chosen and the vertices u, v, w are marked. Otherwise, Ti+1 is omitted and Ti+2

is considered. This is repeated until all the m triangles of ∆0 are considered.

Step 2. After T1, T2, . . . , Tn are processed in Step 1, the unmarked vertices are

denoted by u1, u2, . . . , um. The algorithm proceeds by induction as follows. For

i = 1, . . . , m consider two cases. If an unmarked vertex uj, j ≥ i + 1, exists such
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that [ui, uj] is an edge of ∆0, then an arbitrary triangle T ∈ ∆0 is chosen with

vertices ui, uj, u. Note that its third vertex u is necessarily already marked in Step

1. In this case, the interpolation points

ui, uj,
3

4
ui +

1

4
u,

3

4
ui +

1

4
uj,

3

4
uj +

1

4
u,

3

4
uj +

1

4
ui,

are chosen and vertices ui, uj are marked, see Fig.3.6b. Otherwise, an arbitrary

triangle T with vertex ui is chosen. Its two other vertices u, v are already marked.

In this case, the interpolation points

ui,
3

4
ui +

1

4
u,

3

4
ui +

1

4
v,

are chosen and the vertex ui is marked, see Fig.3.6c.

We call the triangle in Fig.3.6a the filled triangle. We call the triangle T in

Fig.3.6b the edge triangle, the edge [u, v] the filled edge and the vertex w the

dependent vertex of T . We call the triangle T in Fig.3.6c the vertex triangle,

the vertex u the isolated vertex and v, w the dependent vertices of T . We call

a triangle which is not a filled triangle, an edge triangle or a vertex triangle, an

empty triangle.

Let Ξ0 be the interpolation set consisting of all points chosen in Algorithm 1.

By the above construction it is clear that three interpolation points are assigned

to every vertex of ∆0 and hence Ξ0 consists of 3#V0 interpolation points. An

example for Ξ0 is given in Fig.3.7.

Discussion. From the above construction it is clear that the dependent vertex of

any edge triangle belongs to a filled triangle. The dependent vertices of any vertex

triangle belong to either a filled triangle or an edge triangle. This it true since no

two isolated vertices are connected by an edge of ∆0, see Lemma 3.7 below. Also

we note that any vertex of an empty triangle belongs to either a vertex, an edge

or a filled triangle.

Lemma 3.7. No two isolated vertices are connected by an edge of ∆0.



Chapter 3. C1 Piecewise Quadratic Hierarchical Bases 66

u v

w

(a)

u v

w

(b)

u v

w

(c)

Figure 3.6: (a) Filled triangle, (b) Edge triangle and (c) Vertex triangle

Proof. From Step 2 of Algorithm 1 we understand that if a vertex uj is connected

to an isolated vertex uk by an edge and j < k, then uj cannot be isolated as by

construction uk could have been chosen as a pair to uj at the j-th step to form an

edge triangle.

Lemma 3.7 immediately implies the following.

Lemma 3.8. If T ∈ ∆0 is a vertex triangle then only its neighbour opposite to its

isolated vertex maybe a non-empty triangle.

Theorem 3.9. The set Ξ0 is a local interpolation set for S0. The supports of the

Lagrange basis functions B
(0)
ξ , ξ ∈ Ξ0 satisfy

supp(B
(0)
ξ ) ⊆ star3(T ),
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Figure 3.7: Construction of interpolation points in the two steps of the Algorithm

1. The interpolation points are indicated by black circles.

where T ∈ ∆0 is any triangle containing ξ.

Proof. Let s ∈ S0. The set Ξ0 is an interpolation set for S0 if and only if the point

evaluation functionals

s(ξ), ξ ∈ Ξ0,

form a basis for the dual space (S0)
∗. Since #Ξ0 = 3#V0 = dimS0, this will follow

once we show that these functionals span (S0)
∗, i.e., the condition s(ξ) = 0, ξ ∈ Ξ0,

implies s ≡ 0.

The idea of the proof is to assume s(ξ) = 0, ξ ∈ Ξ0 and show that the gradient

of s vanishes for all vertices v of ∆0. Then it follows from Theorem 3.1 that s ≡ 0.
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Before we proceed with the proof we observe that from the above construction

each vertex of ∆0 belongs to either a filled triangle, an edge triangle or a vertex

triangle. If we can show that the gradient of s vanishes at the vertices of all the

three types of triangle by assuming s is zero at the interpolations points, then the

proof is complete.

First we consider the filled triangle. Clearly each edge of any filled triangle con-

tains exactly four points of Ξ0. It follows from the Schoenberg-Whitney Theorem

in the univariate spline theory that

{
a,

1

4
(3a+ b),

1

4
(a+ 3b), b

}

is a Lagrange interpolation set for the space of C1 quadratic splines on [a, b] with

a knot at the midpoint. Therefore, it follows that s|e ≡ 0 holds for all edges e of

∆0 containing four Lagrange interpolation points. This shows that s|e ≡ 0 for all

edges of any filled triangle. Hence the gradient of s vanishes at the vertices of any

filled triangle.

Next we look at the edge triangles. Let u, v, w and e1 = [v, u], e2 = [u, w], e3 =

[w, v] be the vertices and edges respectively of an edge triangle and e1 is the filled

edge. We know that the dependent vertex w of the edge triangle belongs to a filled

triangle, so the gradient of s vanishes at u. Since e1 contains four points of Ξ0, we

have s|e1 ≡ 0. Moreover, by Rolle’s Theorem we can easily show that s|e2 ≡ 0 and

s|e3 ≡ 0. This implies that the gradient of s also vanishes at v, w.

Finally we look at the vertex triangles. Let u, v, w and e1 = [v, u], e2 =

[u, w], e3 = [w, v] be the vertices and edges of a vertex triangle respectively, and

let u be the isolated vertex. We know that the dependent vertices v, w of the

vertex triangle belong to either a filled triangle or an edge triangle. Hence the

gradient of s vanishes at v, w. Thus by Rolle’s theorem, we show that s|e1 ≡ 0 and

s|e2 ≡ 0. This implies that gradient of s vanishes at u. Since we have considered

all the three types of triangles of ∆0 and also we have shown that the gradient of

s vanishes on their vertices. Thus the gradient of s vanishes at all the vertices of
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∆0. The proof to show that Ξ0 is an interpolation set for S0 is now complete.

Next we show that Ξ0 is local. Let T be a filled triangle. Assume s satisfies zero

interpolation conditions on T . Then from the above argument zero interpolation

conditions on T = star0(T ) imply zero function and gradient values at vertices

of T . Hence s|T ≡ 0. Suppose T is an edge triangle. Then there exists a filled

triangle TF ∈ star(T ) such that the dependent vertex v of T belongs to TF . Zero

interpolation conditions for s on star(T ) imply s|TF
≡ 0 and so the gradient of s

vanishes at v, and hence at the other two vertices of T . Zero function and gradient

values at vertices of T now imply s|T ≡ 0. Now suppose T is a vertex triangle.

Then there exists either a filled triangle TF or an edge triangle TE belongs to

star(T ) such that the dependent vertices u, v of T belong to either TF or TE . Zero

interpolation conditions for s on star2(T ) imply s|TF
≡ 0 and s|TE

≡ 0 and so the

gradient of s vanishes at u, v and hence at the other vertex of T . Since function

and gradient values vanish at all vertices of T , we have s|T ≡ 0. Finally, we

suppose T is an empty triangle. Then the vertices v1, v2, v3 of T belong to either

a filled triangle TF , an edge triangle TE or a vertex triangle TV where TF , TE , TV

belong to star(T ). Thus zero interpolation conditions for s on star3(T ) imply

s|TF
≡ 0, s|TE

≡ 0, s|TV
≡ 0 and so the gradient of s vanishes at all vertices of

T . Zero function and gradient values at all vertices of T now imply s|T ≡ 0. We

therefore conclude that if T is a filled triangle, an edge triangle, a vertex triangle,

an empty triangle then zero interpolation values of s on T = star0(T ), star1(T ),

star2(T ), star3(T ), respectively imply s|T ≡ 0.

Using the arguments above we now analyse the maximum size of supports of

Lagrange basis functions B
(0)
ξ . If we choose triangles T, T ′ ∈ ∆0 such that T ′ is

not in star3(T ), then the Lagrange basis function B
(0)
ξ |T ′ ≡ 0 if the corresponding

interpolation point ξ ∈ T . Indeed, B
(0)
ξ satisfies the zero interpolation condition

in star2(T ′) since star2(T ′) ∩ T = ∅. This shows that the supports of B
(0)
ξ satisfy

supp(B
(0)
ξ ) ⊆ star3(T ).
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This completes the proof.

Corollary 3.10. The supports of the Lagrange basis functions B
(0)
ξ , ξ ∈ Ξ0 satisfy

supp(B
(0)
ξ ) =





star3(T ), if T is a filled triangle,

star2(T ), if T is an edge triangle,

star(T ), if T is a vertex triangle.

where T ∈ ∆0 is any triangle containing ξ.

An illustration on the maximal propagation of the Lagrange basis functions is

given in Fig.3.8.

Figure 3.8: Maximal propagation along the edge of ∆0. The white circle indicates

the interpolation point associated with the Lagrange basis function. The circles

indicate derivatives of the basis function which are possible non-zero, while the

squares indicate zero derivatives of the basis function at the vertices.

Algorithm 2 [Interpolation sets for Sn, n ≥ 1]

Next we describe an algorithm to construct Lagrange interpolation sets for Sn,

n ≥ 1. Using the same principle of Algorithm 1 we want to construct sets of filled,

edge, vertex and empty triangles on ∆n. Before we begin to describe the algorithm

we first introduce some terminologies and put down some preliminary discussions

which are necessarily useful later.
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We recall that an interpolation point ξ ∈ Ξn is assigned to a vertex v ∈ Vn

if either ξ = v or v is the closest end-point of the edge containing ξ. We add

successively Lagrange interpolation points on the edges of ∆n such that we have

three interpolation points assigned to every vertex of ∆n.

As we repeat the refinements, there are new born triangles and so are new

vertices at every new level. We need to add new interpolation points at every new

level and preserve all the interpolation points of the previous levels. We call the

interpolation points from the previous levels on the n-th level the inherited points

in ∆n.

We note that some inherited points in ∆n may be closer to a new vertex

than to the vertex where they were assigned to in ∆n−1. These points are thus

assigned to different vertices in ∆n. We call this the reassignment of interpolation

points. Initially the point is located at distance |e|
4
from an endpoint of an edge e.

First refinement does not lead to reassignment but relative distance increases to

1
2
. Each subsequent refinement produces reassignment of this point. Interpolation

points assigned to a vertex v ∈ ∆n−1 are said to be lost if the points are now

reassigned to new vertices in ∆n. We replace the lost points by assigning new

interpolation points to v at distance |e|
4

from v on the edges where the points

were lost. To clarify this better, we illustrate an example here. Fig.3.9a shows

a vertex triangle T = 〈u, v, w〉 on ∆0 with the interpolation points u, p, p′ where

p = 3
4
u + 1

4
v and p′ = 3

4
u + 1

4
w (p and p′ are at distance |e|

4
from u on [u, v] and

[u, w] respectively). The interpolation points u, p, p′ are assigned to the vertex u

in Algorithm 1. Fig.3.9b shows the same triangle T in ∆1 with the middle triangle

T̃ = 〈a, b, c〉. We see that the same interpolation points u, p, p′ are now contained

in a new triangle T1 = 〈u, b, a〉 on ∆1 and, p =
1
2
u+ 1

2
b and p′ = 1

2
u+ 1

2
a on T1. The

points p, p′ are still remain assigned to u (p and p′ are now at distance |e|
2
from u

on [u, a] and [u, b] respectively). Next we see in Fig.3.9c the same triangle T in ∆2.

Clearly, the same interpolation points u, p, p′ are now contained in a new triangle

T2 = 〈u, e, d〉 on ∆2 and, the points p, p
′ are now located at e, d respectively in T2.
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We say two interpolation points p, p′ are lost from u. Since we require each vertex

of ∆2 to be assigned with three interpolation points, clearly we need to add new

interpolation points to the vertices u, e, d to achieve this.

u

v w

p p′

(a)

u

v w

p p′

ab

c

(b)

u

v w

ab

c

de

(c)

Figure 3.9: Example of reassignments of interpolation points.

We observe that each triangle T ∈ ∆n−1 for n ≥ 1 is refined in ∆n as shown in

Fig.3.10a. We call the shaded triangle T̃ ∈ ∆n the middle triangle of T in ∆n. We

also see that each triangle T ∈ ∆n−2 for n ≥ 2 is doubly refined in ∆n as shown

in Fig.3.10b. We call the shaded triangle T̂ ∈ ∆n the middle triangle of T in ∆n

in this case.

The vertices of ∆n−1 remain marked and the vertices in ∆n\∆n−1 are unmarked

initially. We recall that ∆0 is made up of the filled, edge, vertex and empty triangles

by the construction of Algorithm 1.
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(a) (b)

Figure 3.10: Middle triangle of T ∈ ∆n−1 is shaded in (a). Middle triangle of

T ∈ ∆n−2 is shaded in (b).

Step 1. For each T ∈ ∆0, we choose interpolation points on its middle triangle

T̃ ∈ ∆1 in the following steps (a)-(d).

(a) For each filled triangle, each edge triangle, and each vertex triangle whose

all neighbours are empty triangles in ∆0, we make its middle triangle T̃ =

〈u, v, w〉 in ∆1 a fill triangle. i.e., we choose the points

u, v, w,
3

4
u+

1

4
v,

3

4
u+

1

4
w,

3

4
v +

1

4
u,

3

4
v +

1

4
w,

3

4
w +

1

4
u,

3

4
w +

1

4
v, (3.3.2)

and mark the vertices u, v, w. See Fig.3.11.

Discussion. All points produced in this step are different since no filled and

edge triangles share an edge.

We know from Lemma 3.8 that only one neighbour of a vertex triangle T ∈
∆0 maybe a filled triangle, an edge triangle or a vertex triangle, namely the

triangle sharing with T the edge opposite to its isolated vertex.

(b) For each pair T1, T2 of vertex triangles sharing an edge, we make the middle

triangle of one of them a fill triangle and make the middle triangle of the

other one an edge triangle.
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Let T̃1 = 〈u, v, w〉 and T̃2 = 〈u, v′, w′〉 be the middle triangle of T1 and T2,

respectively. Suppose we make T̃1 a filled triangle and T̃2 an edge triangle.

i.e., for T̃1 we choose the points (3.3.2) and for T̃2 we choose the points

v′, w′,
3

4
v′ +

1

4
u,

3

4
v′ +

1

4
w′,

3

4
w′ +

1

4
u,

3

4
w′ +

1

4
v′

and mark the vertices u, v, w, v′, w′. See Fig.3.12.

Let TV be the set of all remaining vertex triangles (those sharing an edge

with a filled or an edge triangle).

(c) For each T ∈ TV , we make the middle triangle T̃ = 〈u, v, w〉 of T an edge

triangle. i.e., we choose the points

u, v,
3

4
u+

1

4
w,

3

4
u+

1

4
v,

3

4
w +

1

4
u,

3

4
w +

1

4
v

and mark u, v. Note that the dependent vertex w is necessarily already marked

in step (a). See Fig.3.13 and 3.14.

At this stage it is clear that the remaining unmarked vertices now belong to

the middle triangle of the empty triangles.

Let TE be the set of middle triangles of all the empty triangles.

(d) Let T1, T2, . . . , Tn be the triangles of TE. Starting with T1 = 〈u, v, w〉, if the
vertices u, v, w are unmarked then we choose the points (3.3.2) and make T1 a

fill triangle and mark u, v, w. Otherwise, T1 is omitted and T2 is considered.

This is repeated until all n triangles of TE are considered.

(e) After T1, T2, . . . , Tn have been processed in (d), the unmarked vertices are

denoted by u1, u2, . . . , um. The algorithm proceeds by induction. For i =

1, . . . , m consider two cases. If an unmarked vertex uj , j ≥ i+1 exists such

that [ui, uj] is an edge of T = 〈ui, uj, u〉 ∈ TE, we make T an edge triangle.

i.e., we choose the points

ui, uj,
3

4
ui +

1

4
u,

3

4
ui +

1

4
uj,

3

4
uj +

1

4
u,

3

4
uj +

1

4
ui,
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Figure 3.11: Construction of interpolation points in the two steps of Algorithm

1 and Step 1(a) of Algorithm 2. The interpolation points are indicated by black

circles.

and mark ui, uj. Note that the third vertex u of T is necessarily marked

before. Otherwise, T ∈ TE with vertex ui is made a vertex triangle since its

two other vertices u, v are already marked. i.e, we choose the points

ui,
3

4
ui +

1

4
u,

3

4
ui +

1

4
v

and mark ui.

We also note that steps (d) and (e) are the same as the steps in Algorithm 1.



Chapter 3. C1 Piecewise Quadratic Hierarchical Bases 76

(a) (b)

Figure 3.12: (a) A vertex triangle with a vertex triangle as neighbour in ∆0. (b)

One of the middle triangle is made a filled triangle and the other one is made an

edge triangle in ∆1.

(a) (b)

Figure 3.13: (a) A vertex triangle with a filled triangle as a neighbour in ∆0. (b)

The middle triangle of the filled triangle is made a filled triangle and the middle

triangle of the vertex triangle is made an edge triangle in ∆1.

Let Ξ1 be the interpolation set consisting of all points chosen in Algorithm 1

and Step 1 of Algorithm 2. An example for Ξ1 is given in Fig.3.15.

For ∆n, n ≥ 2, we choose the interpolation points in the following steps:

Step 2 (Middle Triangles). For each T ∈ ∆n−2 we make its middle triangle

T̂ = 〈u, v, w〉 in ∆n a fill triangle, i.e., we choose the points (3.3.2) and mark the
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(a) (b)

Figure 3.14: (a) A vertex triangle with an edge triangle as a neighbour in ∆0. (b)

The middle triangle of the edge triangle is made a filled triangle and the middle

triangle of the vertex triangle is made an edge triangle in ∆1.

vertices u, v, w.

Discussion. Step 2 is possible since no inherited point is assigned in ∆n to the

vertices of T̂ , even after reassignment. This is because the vertices of ∆n−1 may

have inherited points assigned to them in ∆n−1 but these points are not on the

dotted edges as shown in Fig.3.10b since these edges did not exist in ∆n−2. Hence

any points on dotted edges assigned to these vertices in ∆n−1 are at distance |e|
4

from the vertices on (n−1)st level and so they are not reassigned to other vertices

in ∆n.

Step 3 (Vertices of ∆n−1). For each vertex v of ∆n−1 which has no inherited

points assigned in ∆n, let T ∈ ∆n−1 be the triangle containing 3 interpolation

points assigned to v in ∆n−1. In fact each of these points is located at the vertices

of T ′ = 〈v1, v2, v3〉 with v1 = v and T ′ is the child of T . We choose

3

4
v1 +

1

4
v2,

3

4
v2 +

1

4
v1,

3

4
v2 +

1

4
v3,

3

4
v3 +

1

4
v2,

3

4
v1 +

1

4
v3,

3

4
v3 +

1

4
v1

and mark v2, v3, see Fig.3.16b.

Discussion. Step 3 will replace two lost points and add four new points on T ′.

This makes T ′ a filled triangle and this is possible since for T ′ the vertex v belongs

to ∆n−2 and hence the triangle T ′ is separated from filled triangles of Step 2.
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Figure 3.15: Construction of interpolation points in the two steps of the Algorithm

1 and Step 1 of Algorithm 2. The interpolation points are indicated by black circles.

After Step 2 and Step 3 are carried out, the remaining unmarked vertices of ∆n

now lie on the boundary of star1(v) where v is a vertex of ∆n−2. This is illustrated

in Fig.3.17. Clearly the marked vertices of the boundary of star1(v) are those

which have received reassigned inherited points in step 3.

Step 4 (Vertices of ∆n−2) For each vertex of v ∈ ∆n−2, we denote the unmarked

vertices connected to v by u1, u2, . . . , um. The algorithm proceeds by induction

as follows. For i = 1, . . . , m we consider two cases. If an unmarked vertex uj,

j ≥ i+1 exists such that [ui, uj] is an edge of ∆n, then the triangle T = 〈ui, uj, u〉
is made an edge triangle where u is already marked and belongs to a filled triangle



Chapter 3. C1 Piecewise Quadratic Hierarchical Bases 79

v1

v2 v3

(a)

v1

v2 v3

(b)

Figure 3.16: Inherited points are indicated by black circles. New interpolation

points assigned in Step 3 are indicated by white circles. (a) Three inherited points

assigned to v1 (no reassignment). (b) Inherited points are located at v2 and v3.

Each v1, v2, v3 get 2 newly assigned points.

Figure 3.17: Vertices indicated by squares are processed in Step 2. Vertices indi-

cated by circles are vertices of ∆n−1 processed in Step 3. The remaining vertices

belong to the boundary of star1(v) for v ∈ ∆n−2.

of step 2. i.e., we choose

ui, uj,
3

4
ui +

1

4
uj,

3

4
ui +

1

4
u,

3

4
uj +

1

4
ui,

3

4
uj +

1

4
u



Chapter 3. C1 Piecewise Quadratic Hierarchical Bases 80

and mark ui, uj. Otherwise, T with vertex ui is made a vertex triangle. Of its two

dependent vertices p, q one belongs to a filled triangle of step 2 and one belongs

to the boundary of star1(v). The vertices p, q are already marked. We choose the

points

ui,
3

4
ui +

1

4
p,

3

4
ui +

1

4
q

and mark ui. An illustration is given in Fig.3.18.

Discussion. The unmarked vertices mentioned above clearly do not belong to

any filled triangle of step 2 but they are connected to such triangle since this is

true for all vertices in Vn \ Vn−2.

v

u1

u2

u3

p q

u

Figure 3.18: Black circles are interpolation points assigned in Step 4. The filled,

edge and vertex triangles produced before Step 4 are appropriately shaded.
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Let Ξn be the interpolation set consisting of all points chosen in Algorithm 1 or 2.

It is again clear that by our construction three interpolation points are assigned

to every vertex of ∆n and hence the number of interpolation points of Ξn equals

3#Vn, where #Vn is the number of vertices of ∆n.

We will now discuss the definite structures obtained from each step of the

above construction. The discussion will be useful when we discuss the support of

the Lagrange basis functions later.

In step 1(a) we get sets of filled and vertex triangles. Each of these vertex

triangles shared an edge with a filled triangle. In step 1(b) and (c) we get sets

of filled and edge triangles. The dependent vertex of each of these edge triangles

belongs to a filled triangle. Consequently, we get vertex triangles sharing an edge

with an edge triangle. Step 1(d) and (e) are similar to Algorithm 1. In conclusion,

step 1 gives ∆1 the same structure as ∆0.

In Step 2 it is clear that we get a set of filled triangles and consequently we

get a set of vertex triangles where each of these vertex triangles has interpolation

points at distance |e|
2

and shares the edge opposite to its isolated vertex with a

filled triangle. In addition, we get the followings when step 3 is performed. Filled

triangles with interpolation points at distance |e|
4
.

In addition to what we obtained above from step 2 and step 3, we get the

following structures when step 4 is carried out. From the initial step of Step 4, we

get edge triangles with points at the distance |e|
4
attached to the filled triangle of

step 2. Otherwise we get vertex triangles with points at the distance |e|
4
with their

dependent vertices one belong to the middle filled and the other one belongs to an

edge triangle created from the initial step. The latter could also belong to a filled

triangle produced in Step 3 since this vertex belongs to the boundary of star1(v)

for v ∈ ∆n−2.

Remark 3.11. Let T1, T2 ∈ ∆n−2 be two neighbouring triangles. Let Tgc be the

grandchildren of T1 in ∆n intersect with the grandchildren of T2 in ∆n. Then every

triangle of Tgc is contained in the star2(Tm) where Tm is the middle triangle of T2
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in ∆n. We can see this clearly from Fig.3.18, for example.

Remark 3.12. In Step 4 we get a vertex triangle T ∈ ∆n with its dependent

vertices u, v ∈ Vn one belonging to the middle filled of step 2 and one belonging

to a filled triangle TF of Step 3, where TF has a vertex of ∆n−2. It is clear that

T and TF are grandchildren of T ′ and T ′′ respectively, where T ′, T ′′ ∈ ∆n−2 and

T ′, T ′′ are neighbouring triangles. Since T and TF share a vertex then T belongs

to star2(Tm) where Tm is the middle filled triangle of T ′′ in ∆n, see Remark 3.11.

We also see that for any vertex v ∈ ∆n−2, v could be a vertex of a filled triangle

of type 3 or vertex triangle with points at |e|
2
. These triangles are processed in step

3. The remaining triangles in the star1(v) are necessary empties. For any vertex

u ∈ Vn−1 \ Vn−2, u could be a vertex of a vertex triangle with points at |e|
2
but not

a filled triangle since all the triangles in star1(u) have a vertex of the filled triangle

of step 2. The remaining triangles in the star1(u) are necessary empties.

Theorem 3.13. The set Ξn is a local interpolation set for Sn, n = 1, 2, . . .. The

supports of the Lagrange basis functions B
(n)
ξ , ξ ∈ Ξn satisfy

supp(B
(n)
ξ ) ⊆ star3(T ),

where T ∈ ∆n is any triangle containing ξ.

Proof. Clearly that from the above construction, ∆n, n = 1, 2, . . . consist of the

filled, edge, vertex and empty triangles. Using the same argument as in the proof of

Theorem 3.9, we can show that by assumming zero interpolation values, gradient

of s vanishes for all vertices of ∆n. The similar argument also shows that the

supports of B
(n)
ξ satisfy

supp(B
(n)
ξ ) ⊆ star3(T ),

and Corollary 3.10 holds for B
(n)
ξ .
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Theorem 3.14. Let Ξn be the local interpolation set described above for Sn, n =

0, 1, 2 . . .. For any arbitrary function f in C(Ω) and its corresponding unique

Lagrange interpolating spline s ∈ Sn, we have

‖s‖L∞(T ) . max
{
|f(ξ)| : ξ ∈ Ξn ∩ stari(T )

}
, T ∈ ∆n, (3.3.3)

where i = 0, 1, 2, 3 when T is a filled, an edge, a vertex, or an empty triangle,

respectively. The bounding constant depending only on the smallest angle in the

triangulation ∆n.

Proof. We denote the vertices of T as vi = (xi, yi), i = 1, 2, 3. Let e12 = v2 − v1 =

(x2 − x1, y2 − y1) and e13 = v3 − v1 = (x3 − x1, y3 − y1) define two vectors. Then

the directional derivatives of s at (x, y) ∈ T with respect to the directions e12 and

e13 are given respectively by

∂

∂e12
s(x, y) = (x2 − x1)

∂

∂x
s(x, y) + (y2 − y1)

∂

∂y
s(x, y),

(3.3.4)

∂

∂e13
s(x, y) = (x3 − x1)

∂

∂x
s(x, y) + (y3 − y1)

∂

∂y
s(x, y).

We find that
∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣ ≤ |x2 − x1|
∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣+ |y2 − y1|
∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣,

∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣ ≤ |x3 − x1|
∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣+ |y3 − y1|
∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣,

and hence
∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣ . max

{∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣,
∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣
}
,

∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣ . max

{∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣,
∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣
}
. (3.3.5)

With diam(T ) being the diameter of T , we get

|e12|
∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣ . max

{
diam(T )

∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣, diam(T )

∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣
}
,

|e13|
∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣ . max

{
diam(T )

∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣, diam(T )

∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣
}
. (3.3.6)
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Solving (3.3.4) simultaneously gives

∂

∂x
s(x, y) =

(y3 − y1)
∂

∂e12
s(x, y)− (y2 − y1)

∂
∂e13

s(x, y)

x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2
,

∂

∂y
s(x, y) =

(x2 − x1)
∂

∂e13
s(x, y)− (x3 − x1)

∂
∂e12

s(x, y)

x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2
.

We find that
∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣ ≤
|y3 − y1|
2Area(T )

∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣+
|y2 − y1|
2Area(T )

∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣,

∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣ ≤
|x2 − x1|
2Area(T )

∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣+
|x3 − x1|
2Area(T )

∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣,

and hence
∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣ . max

{∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣,
∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣
}
,

∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣ . max

{∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣,
∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣
}
.

With diam(T ) being the diameter of T , we get

diam(T )

∣∣∣∣
∂

∂x
s(x, y)

∣∣∣∣ . max

{
|e12|

∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣, |e12|
∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣
}
,

(3.3.7)

diam(T )

∣∣∣∣
∂

∂y
s(x, y)

∣∣∣∣ . max

{
|e12|

∣∣∣∣
∂

∂e12
s(x, y)

∣∣∣∣, |e13|
∣∣∣∣
∂

∂e13
s(x, y)

∣∣∣∣
}
,

with the bounding constant depending only on the smallest angle of the triangu-

lation ∆n.

We will prove (3.3.3) in several steps. We will make use of the classical Markov

Inequality

‖p′‖L∞(0,1) ≤ 2q2‖p‖L∞(0,1)

which is valid for all univariate polynomials of degree q, and we often apply this

inequality in the following way: Let e be a line segment in R
2 with endpoints v, w,
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and let s be a bivariate polynomial of total degree q. With ∂s
∂e
(v) we denote the

derivative of s at v in the direction w−v. Defining p(t) = s(v+ t(w−v)), we have
∂s
∂e
(v) = p′(0)

|e|
and Markov inequality shows that

∣∣∣∣
∂s

∂e
(v)

∣∣∣∣ ≤
2q2

|e| ‖s‖L∞(e)
. (3.3.8)

From our construction we have interpolation points on the line segments ei =

[vi, wi], 1 ≤ i ≤ 4,

Ξe1 = {v1, w1,
3

4
v1 +

1

4
w1,

3

4
w1 +

1

4
v1},

Ξe2 = {v2, w2,
3

4
v2 +

1

4
w2},

Ξe3 = {v3, w3,
1

2
v3 +

1

2
w3},

Ξe4 = {v4, w4}.

We shall now classify Ξe1 as type 1, {Ξe2,Ξe3} as type 2 and Ξe4 as type 3 inter-

polation points on the line segments.

The univariate C1 quadratic splines pi(t) = s(twi+(1− t)vi), 1 ≤ i ≤ 4 satisfy

the interpolation conditions

p1(0) = s(v1), p1(
1

4
) = s(

3

4
v1 +

1

4
w1), p1(

3

4
) = s(

3

4
w1 +

1

4
v1), p1(1) = s(w1),

p2(0) = s(v2), p2(
1

4
) = s(

3

4
v2 +

1

4
w2), p2(1) = s(w2), p′2(1) = |e2|

∣∣∣∣
∂s

∂e2
(w2)

∣∣∣∣,

p3(0) = s(v3), p3(
1

2
) = s(

1

2
v3 +

1

2
w3), p3(1) = s(w3), p′3(1) = |e3|

∣∣∣∣
∂s

∂e3
(w3)

∣∣∣∣,

p4(0) = s(v4), p′4(0) = |e4|
∣∣∣∣
∂s

∂e4
(v4)

∣∣∣∣, p4(1) = s(w4), p′4(1) = |e4|
∣∣∣∣
∂s

∂e4
(w4)

∣∣∣∣.

The well-posedness of such a C1 quadratic spline interpolation scheme implies that

‖s‖L∞(e1) . max{|s(ξ)| : ξ ∈ Ξe1}, (3.3.9)

‖s‖L∞(ej) . max{|s(ξ)|, |ej|
∣∣∣∣
∂s

∂ej
(wj)

∣∣∣∣ : ξ ∈ Ξej}, 2 ≤ j ≤ 3, (3.3.10)
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and

‖s‖L∞(e4) . max{|s(ξ)|, |e4|
∣∣∣∣
∂s

∂e4
(v4)

∣∣∣∣, |e4|
∣∣∣∣
∂s

∂e4
(w4)

∣∣∣∣ : ξ ∈ Ξe4}.

Let T ∈ ∆n with vertices v1, v2, v3. We put e1 = [v1, v2], e2 = [v2, v3], e3 =

[v3, v1]. Three univariate C1 quadratic splines, p1(t) = s(tv2 + (1 − t)v1), p2(t) =

s(tv2 + (1 − t)v3), p3(t) = s(tv3 + (1 − t)v1), t ∈ [0, 1] will play an important role

below.

Step 1 : Suppose T ∈ ∆n is a filled triangle. Then the interpolation points on

each ei, i = 1, 2, 3 are of type 1. Therefore, using the estimate (3.3.9) and Markov

inequality give

|e1|
∣∣∣∣
∂s

∂e1
(v1)

∣∣∣∣ = |p′1(0)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e1},

|e3|
∣∣∣∣
∂s

∂e3
(v1)

∣∣∣∣ = |p′3(1)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e3},

|e1|
∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣ = |p′1(1)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e1},

|e2|
∣∣∣∣
∂s

∂e2
(v2)

∣∣∣∣ = |p′2(0)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e2},

|e2|
∣∣∣∣
∂s

∂e1
(v3)

∣∣∣∣ = |p′2(1)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e2},

|e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣ = |p′3(0)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e3}.

With diam(T ) ∼ 2−n and (3.3.7), we conclude that

max

{
2−n

∣∣∣∣
∂s

∂x
(vi)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(vi)

∣∣∣∣
}

.Mi, 1 ≤ i ≤ 3,

where

M1 = max
{
|s(ξ)| : ξ ∈ Ξn ∩ (e1 ∪ e3)

}
,

M2 = max
{
|s(ξ)| : ξ ∈ Ξn ∩ (e1 ∪ e2)

}
,
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M3 = max
{
|s(ξ)| : ξ ∈ Ξn ∩ (e2 ∪ e3)

}
,

with a constant depending only on the smallest angle in T . Lemma 3.4 applied to

T shows that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ T}, (3.3.11)

with a constant depending only on the smallest angle of the triangulation ∆n.

Step 2 : Suppose T ∈ ∆n is an edge triangle. Then there exists a triangle

T1 ∈ star(T ) \ T where T1 is a filled triangle. Let v3 be the dependent vertex of

T and it is also the common vertex of T and T1. We also note that interpolation

points on e1 is of type 1 and e2, e3 are of type 2.

Using the estimates (3.3.9) and (3.3.10) and Markov inequality imply that

|e1|
∣∣∣∣
∂s

∂e1
(v1)

∣∣∣∣ = |p′1(0)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e1},

|e3|
∣∣∣∣
∂s

∂e3
(v1)

∣∣∣∣ = |p′3(1)| . max

{
|s(ξ)| : ξ ∈ Ξn ∩ e3, |e3|

∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}
,

|e1|
∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣ = |p′1(1)| . max{|s(ξ)| : ξ ∈ Ξn ∩ e1},

|e2|
∣∣∣∣
∂s

∂e2
(v2)

∣∣∣∣ = |p′2(0)| . max

{
|s(ξ)| : ξ ∈ Ξn ∩ e2, |e2|

∣∣∣∣
∂s

∂e2
(v3)

∣∣∣∣
}
.

With diam(T ) ∼ 2−n and (3.3.7), we conclude that

max

{
2−n

∣∣∣∣
∂s

∂x
(v1)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v1)

∣∣∣∣
}

. max

{
|s(ξ)| : ξ ∈ Ξn∩(e1∪e3), |e3|

∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}
,

max

{
2−n

∣∣∣∣
∂s

∂x
(v2)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v2)

∣∣∣∣
}

. max

{
|s(ξ)| : ξ ∈ Ξn∩(e1∪e2), |e2|

∣∣∣∣
∂s

∂e2
(v3)

∣∣∣∣
}
.

With diam(T ) ∼ 2−n and (3.3.6), we get

max

{
|e2|

∣∣∣∣
∂s

∂e2
(v3)

∣∣∣∣, |e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}

. max

{
2−n

∣∣∣∣
∂s

∂x
(v3)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v3)

∣∣∣∣
}
.

We now make use of the Markov inequality for bivariate polynomial on triangle,

we deduce that
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{
2−n

∣∣∣∣
∂s

∂x
(v3)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v3)

∣∣∣∣
}

. ‖s‖L∞(T1)

and

max

{
|e2|

∣∣∣∣
∂s

∂e2
(v3)

∣∣∣∣, |e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}

. ‖s‖L∞(T1).

Lemma 3.4 applied to T and taking into account of the estimate (3.3.11) for s on

T1 shows that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ star(T )}, (3.3.12)

with the bounding constant depends only on the smallest angle of the triangulation

∆n.

Step 3 : Suppose T ∈ ∆n is a vertex triangle. Then the dependent vertices

v2, v3 of T belong to to T2, T3, respectively (which allows T2 = T3) in star(T ) \ T .
Each of T2, T3 is either a filled or an edge triangle. We note that interpolation

points on e1, e2 are of type 2 and e3 can be either type 1 or type 4.

Using the estimate (3.3.10) and Markov inequality imply that

|e1|
∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣ = |p′1(0)| . max

{
|s(ξ)| : ξ ∈ Ξn ∩ e1, |e1|

∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣
}
,

|e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣ = |p′3(1)| . max

{
|s(ξ)| : ξ ∈ Ξn ∩ e3, |e3|

∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}
,

and so with diam(T ) ∼ 2−n being the diameter of T , we conclude that

max

{
2−n

∣∣∣∣
∂s

∂x
(v1)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v1)

∣∣∣∣
}

. max

{
|s(ξ)| : ξ ∈ Ξn ∩ (e1 ∪ e3), |e1|

∣∣∣∣
∂s

∂e1
(v2), |e3|

∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣
}
,

With diam(T ) ∼ 2−n and (3.3.6), we get

|e1|
∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣ . max

{
2−n

∣∣∣∣
∂s

∂x
(v2)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v2)

∣∣∣∣
}

and

|e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣ . max

{
2−n

∣∣∣∣
∂s

∂x
(v3)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v3)

∣∣∣∣
}
.
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Making use of the Markov inequality for bivariate polynomial, we deduce that

{
2−n

∣∣∣∣
∂s

∂x
(v2)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v2)

∣∣∣∣
}

. ‖s‖L∞(T2)

and {
2−n

∣∣∣∣
∂s

∂x
(v3)

∣∣∣∣, 2−n

∣∣∣∣
∂s

∂y
(v3)

∣∣∣∣
}

. ‖s‖L∞(T3),

and hence

|e1|
∣∣∣∣
∂s

∂e1
(v2)

∣∣∣∣ . ‖s‖L∞(T2)

|e3|
∣∣∣∣
∂s

∂e3
(v3)

∣∣∣∣ . ‖s‖L∞(T3).

Case 1: The dependent vertices v2, v3 belong to two different triangles where

both are filled triangles or they belong to the same triangle which is a filled triangle

(T2 = T3).

Lemma 3.4 applied to T and taking into account of the estimate (3.3.11) on T2

and T3 show that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ star(T )}.

Case 2: The dependent vertices v2, v3 belong to two different triangles where

both are edge triangles or they belong to the same triangle which is a edge triangle

(T2 = T3).

Lemma 3.4 applied to T and taking into account of the estimate (3.3.12) on T2

and T3 show that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ star2(T )}.

Case 3: The dependent vertices v2, v3 belong to two different triangles of dif-

ferent types (T2 edge and T3 filled triangle).

Lemma 3.4 applied to T and taking into account of the estimates (3.3.11) on

T3 and (3.3.12) on T2 show that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ star2(T )}.
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Step 4 : Suppose T is an empty triangle. Since empty triangle is attached to

either the filled, edge or vertex triangle, in view of the above argument for step 1,

2 and 3, using Markov inequality on T and then apply Lemma 3.4 to T , we hereby

conclude that

‖s‖L∞(T ) . max{|s(ξ)| : ξ ∈ Ξn ∩ star3(T )}.

This completes the proof.

(a)

(b)

Figure 3.19: (a) Basis function Bξ with ξ corresponding to a vertex in ∆n (b)

Basis function Bξ with ξ corresponding to a vertex in ∆n+1 \∆n.
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By Theorem 3.14, the bases {B(n)
ξ }ξ∈Ξn are well-defined, and so we have

∥∥B(n)
ξ

∥∥
L∞(Ω)

. 1, ξ ∈ Ξn, (3.3.13)

where the bounding constant depends only on the smallest angle of the triangula-

tion ∆n. Since uniform refinement does not change angles, the constant depends

only on the smallest angle in ∆0.

Finally, by construction since we used all point of Ξn when constructing Ξn−1,

Algorithms 1 and 2 give us a nested interpolation set, i.e.

Ξn ⊂ Ξn+1, n = 0, 1, 2, . . .

Figures 3.20a, 3.20b, 3.21a, 3.21b and 3.22 provide some illustrations.

For each n = 0, 1, 2, . . . , we are also interested in the multilevel spaces S̃n ⊂ Sn

satisfying the homogeneous boundary conditions, i.e.,

S̃n :=

{
s ∈ Sn : s =

∂s

∂x
=
∂s

∂y
= 0 on ∂Ω

}
.

It is clear that the splines spaces S̃n are nested, i.e.

S̃n ⊂ S̃n+1, n = 0, 1, 2 . . . .

Let Ξ̃n = Ξn \Ξb
n with Ξb

n being the set of interpolation points assigned to the

boundary vertices of ∆n. It is also clear that the interpolation set Ξ̃n is nested,

i.e.,

Ξ̃n ⊂ Ξ̃n+1, n = 0, 1, 2, . . . .

Theorem 3.15. The set Ξ̃n is a Lagrange interpolation set for S̃n. The maximal

supports of the Lagrange basis functions B̃
(n)
ξ , ξ ∈ Ξ̃n satisfy

supp
(
B̃

(n)
ξ

)
⊆ star3(T ),

if the corresponding interpolation point ξ ∈ Ξ̃n lies on T ∈ ∆n.
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(a)

(b)

Figure 3.20: (a) ΞT for some T ∈ ∆n and (b)
⋃{

ΞT̃ : T̃ ∈ ∆n+1, T̃ ⊂ T
}

Proof. The spline spaces S̃n satisfy homogeneous boundary conditions; therefore

we find that dim S̃n = 3#VI
n = #Ξ̃n where VI

n is the set of all interior vertices of

∆n. We need to show that for s ∈ S̃n with s(ξ) = 0, ξ ∈ Ξ̃n implies s ≡ 0. Indeed,

using the same argument as in the proof of Theorem 3.9 and 3.13 with three

interpolation conditions on every boundary vertex replaced with the homogeneous

boundary conditions, we can show that s|e ≡ 0 for all edges of ∆n. Therefore we

deduce that the function value and the gradient of s vanish at all vertices of ∆n.

Thus s ≡ 0 by Theorem 3.1. It is also clear that the maximum size of supports of
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(a)

(b)

Figure 3.21: (a)
⋃{

ΞT̂ : T̂ ∈ ∆n+2, T̂ ⊂ T̃ ⊂ T
}

and (b)
⋃{

ΞT ∗ : T ∗ ∈
∆n+3, T

∗ ⊂ T̂ ⊂ T̃ ⊂ T
}

the basis functions B̃
(n)
ξ , ξ ∈ Ξ̃n satisfy supp

(
B̃

(n)
ξ

)
⊆ star3(T ).
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Figure 3.22:
⋃{

ΞṪ : Ṫ ∈ ∆n+4, Ṫ ⊂ T ∗ ⊂ T̂ ⊂ T̃ ⊂ T
}

3.4 Hierarchical Riesz Bases

For any K ∈ N, K ≥ 1, it can be easily checked that the set

K⋃

n=0

{
B

(n)
ξ

}
ξ∈Ξn\Ξn−1

is a hierarchical basis for SK .

Under the guidance of the general theory for macro-element hierarchical Riesz

bases developed in Chapter 2, in the next theorem we show that the properly

scaled hierarchical bases give rise to Riesz bases for certain Sobolev spaces on Ω.
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Theorem 3.16. Let

Bs :=
∞⋃

n=0

{
2n(1−s)B

(n)
ξ

}
ξ∈Ξn\Ξn−1

, Bs
0 :=

∞⋃

n=0

{
2n(1−s)B̃

(n)
ξ

}
ξ∈Ξ̃n\Ξ̃n−1

.

Then Bs is a Riesz basis for Hs(Ω) for any s ∈ (1, 5
2
). Moreover, Bs

0 is a Riesz

basis for Hs
0(Ω) for any s ∈ (1, 3

2
) ∪ (3

2
, 5
2
).

Proof. By Lemma 3.4, we see that the nodal basis {s(n)i }Nn

i=1 is uniformly bounded.

Then by Theorem 2.7, for k = 2, h∆n ∼ 2−n, we obtain the Jackson estimate

inf
s∈Sn

‖f − s‖L2(Ω) . 2−3n|f |H3(Ω), f ∈ H3(Ω). (3.4.1)

Moreover, the corresponding Lagrange interpolation sets for Sn are nested and the

Lagrange basis functions B
(n)
ξ are uniformly local and bounded (see Theorem 3.14

and (3.3.13)). Then by Theorem 2.11, applied with ρ = 2, k = 2 and r = 1, Bs

leads to a Riesz basis for Hs(Ω) for any s ∈ (1, 5
2
). This completes the proof for

the first part.

For the second part, we recall that the spaces S̃n ⊂ Sn satisfies homogeneous

boundary conditions of order 1. We also note that the operators Πn (3.2.7) are

boundary conforming of order 1, that is

f =
∂f

∂x
=
∂f

∂y
= 0 on ∂Ω

implies Πnf ∈ S̃n. Then by Corollary 2.8 we get the estimate

inf
s∈S̃n

‖f − s‖L2(Ω) . 2−3n|f |H3(Ω), f ∈ H3
0 (Ω). (3.4.2)

We have now verified the assumptions of part (b) of Theorem 2.11. Hence Bs
0 is a

Riesz basis for Hs
0(Ω) for any s ∈ (1, 3

2
) ∪ (3

2
, 5
2
).

As the result, we say for K ∈ N,

K⋃

n=0

{
2n(1−s)B

(n)
ξ

}
ξ∈Ξn\Ξn−1
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and
K⋃

n=0

{
2n(1−s)B̃

(n)
ξ

}
ξ∈Ξ̃n\Ξ̃n−1

are uniformly Hs-stable bases for SK and S̃K , respectively.

The above constructed Lagrange hierarchical bases can be used for surface

compression, see [32, 42]. For this application, our basis of Lagrange type has

a larger range of stability than the Hermite type will have its advantage here.

Furthermore, Lagrange basis has another advantage that only Lagrange data of

the surface is needed.

The hierarchical bases can also be used to solve boundary value problems of

fourth order. For example, consider the biharmonic equation

∆2u = f on Ω, u =
∂u

∂n
= 0 on ∂Ω, (3.4.3)

where ∂Ω denotes the boundary of the polygonal domain Ω. As usual, ∆ stands for

the Laplace operator: ∆ = ∂2

∂x2 +
∂2

∂y2
, and ∂

∂n
represents the normal derivative. The

biharmonic equation appears as result of the modelling of plate bending problems.

After switching to a variational formulation, the Ritz-Galerkin approximation

uK ∈ SK solves

a(uK , vK) = (f, uK)L2(Ω), vK ∈ SK ,

where

a(u, v) =

∫

Ω

∑

i,j

∂2iju∂
2
ijvdx.

Since a(v, v) ∼ ‖v‖2
H2

0 (Ω)
, then using the properly scaled hierarchical basis

K⋃

n=0

{
2−nsB̃

(n)
ξ

}
ξ∈Ξ̃n\Ξ̃n−1

will lead to uniformly well-conditioned stiffness matrices. For comparison, note

that standard, single scale bases for SK give rise to stiffness matrices with condition

numbers of the order h−4
∆K

with h∆K
= 2−K .



Chapter 3. C1 Piecewise Quadratic Hierarchical Bases 97

Remark 3.17. The hierarchical bases constructed in Section 1 are of Hermite type.

The functionals defining the bases involve both the function values and derivatives,

so by Sobolev embedding thereom, the corresponding interpolation operator Πn is

only well defined for Hs(Ω) when s > 2. As a consequence, properly scaled, these

bases generate Riesz basis for Hs(Ω) for 2 < s < 5/2. This is a suboptimal result

in the case of s = 2 thus using these bases to solve the biharmonic equation will lead

to logarithmically growing condition numbers of stiffness matrices, see [49, 14].



Chapter 4

Applications

4.1 Introduction

In this chapter we consider the applications of hierarchical bases constructed in

the previous chapter. In particular, we explore the use of our hierarchical bases of

Lagrange type in surface compression and also in solving the biharmonic equation.

Hierarchical bases of Lagrange type were constructed in [21, 41]. However,

numerical schemes based on these hierarchal bases have yet to be implemented.

Therefore it is important here for us to explore the use of hierarchical basis of this

type in applications.

The application of hierarchical bases in surface compression was first proposed

in [32]. In [32] a surface compression method was constructed for the space of C1

cubic splines defined on triangulations obtained from convex quadrangulations.

Later, Maes and Bultheel [42] construct a compression method for the space of

C1 quadratic splines on Powell-Sabin-6 triangulations. The hierarchical basis of

[32] is of Hermite type and the hierarchical basis of [42] is constructed using quasi-

interpolation schemes. Surface compression using C2 quadratic wavelets of certain

box-spline spaces was discussed in [25]. For this application, the fact that our

basis is of Lagrange type, instead of the Hermite basis as employed in [32], has the

obvious practical advantage that only Lagrange data of the surface is needed. Also

98
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the larger range of stability of our Lagrange basis extends its applicability here.

As mentioned in the previous chapter our Lagrange hierarchical basis is suitable

as a preconditioner for fourth order elliptic equations.

We note for the same spline spaces that we have used in our construction

of Lagrange hierarchical bases, Jia and Liu [33] constructed spline wavelet bases

which lead to Riesz bases forHs(Ω), 1.618 < s < 5/2. These wavelet bases can also

be used in surface compression but they are stable for a smaller range of Hs(Ω)

compared to our bases. Since these bases are H2-stable, they can also be used in

solving the biharmonic equation. However, no numerical scheme based on these

wavelet bases has been implemented. Furthermore, we would like to note that the

Lagrange hierarchical bases of [21, 41] are also applicable in surface compression

and they can be used as preconditioners for solving the biharmonic equation.

In Section 4.2, we consider a very simple surface compression algorithm devel-

oped by [25] and employed in [32, 42]. We formulated two functions and numeri-

cally compare the compression results obtained by employing Lagrange hierarchical

basis with the results obtained by using the Hermite hierarchical basis.

Section 4.3 is devoted to solving the biharmonic equation. In addition to hierar-

chical basis preconditioner we also consider a Bramble-Pasciak-Xu (BPX) precon-

ditioner [6] that is optimal for the biharmonic equation. The BPX preconditioner

is derived by using the nodal basis functions of all levels. In other words, the

BPX works with a set of redundant basis functions instead of a basis. Moreover

we numerically compare the BPX preconditioner with the hierarchical basis (HB)

preconditioner based on both Lagrange and Hermite bases.

Overall, we show that our Lagrange hierarchical basis can be implemented

and performs very well. Test results show that it has an advantage over Hermite

hierarchical basis when applied to surface compression. However, test results also

reveal that hierarchical preconditioner based on Lagrange basis is not favorable in

use for solving the biharmonic equation.
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4.2 Applications to Surface Compression

Some surfaces in Computer-Aided Geometric Design are often described by using

millions of control parameters. These parameters can arise, for example, as mea-

surements from a physical model. In order to effectively store and manipulate the

computer representation of such surfaces, the process called Surface Compression

can be used to reduce the amount of data while maintain accuracy. In [25] a surface

compression algorithm was given by means of wavelet decompositions of surfaces

into box splines. In this section we explore the use of our hierarchical bases of

the previous chapter in surface compression as inspired by the work of Hong and

Schumaker [32, 42]. Test results show that it can achieve good approximations

with good compression rates. Test results also show that Lagrange hierarchical

basis has advantage over the Hermite hierarchical basis in compressing surfaces.

4.2.1 Compression

In view of the previous chapter, a spline s ∈ Sn is uniquely determined by the

function values

{s(ξ)}ξ∈Ξn, (4.2.1)

where Ξn is the set of Lagrange interpolation set for Sn on level n.

A spline s ∈ Sn can be represented as

s =
∑

ξ∈Ξn

s(ξ)B
(n)
ξ ,

where B
(n)
ξ is the Lagrange basis function corresponding to ξ ∈ Ξn. Then it is easy

to show that the set of functions

Bn = {B(0)
ξ }ξ∈Ξ0 ∪ {B(1)

ξ }ξ∈Ξ1\Ξ0
∪ . . . ∪ {B(n)

ξ }ξ∈Ξn\Ξn−1

is a hierarchical basis for Sn. Then every s ∈ Sn can be written in the form

s =

n∑

k=0

∑

ξ∈Ξk\Ξk−1

c
(k)
ξ B

(k)
ξ , Ξ−1 = ∅. (4.2.2)
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The coefficients in (4.2.2) are given by

c
(0)
ξ = s(ξ), ξ ∈ Ξ0 (4.2.3)

and

c
(k)
ξ = s(ξ)− sk−1(ξ), ξ ∈ Ξk \ Ξk−1, k = 1 . . . n, (4.2.4)

where

sk−1 =

k−1∑

j=0

∑

ξ∈Ξj\Ξj−1

c
(j)
ξ B

(j)
ξ . (4.2.5)

The discussion above can be turned into an algorithm for computing the co-

efficients in (4.2.2). The process of computing the coefficients in (4.2.2) from the

values (4.2.1) is called decomposition, see Algorithm 1.

Algorithm 1 Decomposition

1: Use (4.2.3) to compute {c(0)ξ }ξ∈Ξ0 from functional s(ξ), ξ ∈ Ξ0.

2: for k = 1, . . . , n do

3: Form the spline sk−1 as in (4.2.5),

4: Compute {c(k)ξ }ξ∈Ξk\Ξk−1
as in (4.2.4).

5: end for

To discuss a compressed approximation of s, we can store (or transmit) only

coefficients which are larger than some prescribed threshold. The ratio of the

number of the retained coefficients to the original number of coefficients will then

describe the compression rate.

Now we describe the thresholding algorithm, see Algorithm 2.

Algorithm 2 Thresholding

1: Choose some threshold ǫ.

2: for k = 1, . . . , n do

3: Drop the coefficient {c(k)ξ }ξ∈Ξk\Ξk−1
if it is smaller than the threshold ǫ.

4: end for
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The above discussion can be applied to Hermite basis, see [32], where in our

case (see Section 1 of Chapter 3) the associated functionals are defined to be

⋃

v∈Vn

{s(v), ∂s
∂x

(v),
∂s

∂y
(v)}, (4.2.6)

and Vn is the set of vertices of the triangulations ∆n on level n.

4.2.2 Numerical Examples

Now we present some examples to illustrate the performance of the compression

scheme. In all cases we choose ∆0 as the triangulation that is constructed by

dividing the unit square [0, 1]2 ∈ R
2 into two triangles by drawing a single diagonal.

For each test function f and approximating spline s, we measure both the relative

maximum error L∞-error:= ‖f−s‖∞/‖f‖∞ and relative L2-error:= ‖f−s‖2/‖f‖2.
Instead of using the thresholding algorithm (Algorithm 2) to decide the number

of coefficients to be retained in our implementation we choose the various numbers

of coefficients we want to be retained, that is, the errors are computed for particular

numbers of coefficients rather than particular sizes if we use the threshold algorithm

above. For example, if we want to obtain a compressed function with sayN number

of coefficients, we order all its coefficients in a hierarchical basis according to the

absolute values, starting with the largest. Then we retain the N coefficients in

this order. This approach will later help us to get a better comparison of the

compression results.

Now we formulate the test functions for surface compression. We first write

the univariate functions

f1(x) =

{
ψ(x+ 1

2
)− 1

2
: 0 ≤ x < 1

2
1
2
ψ(2− 2x) : 1

2
≤ x ≤ 1

where

ψ(x) =
φ(x)

φ(x) + φ(1− x)

and

φ(x) =

{
e−

1
x : x > 0

0 : x ≤ 0;
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f2(x) =

{
f1(x) : 0 ≤ x < 1

−f1(−x) : −1 ≤ x ≤ 0;

gρ,b(y) =

{
e
−

−r20
(r20−r2)2 : r < r0

0 : otherwise

where

r0 =
1

ρ
and r(y) = (y − b)2.

We also define the bivariate function p(x, y)

p(x, y) =
√
(1.52 − x2 − y2)/1.5

and the bivariate version of the function gρ,b(y), that is

gρ,a,b(x, y) =

{
e
−

−r20
(r2

0
−r2)2 : r < r0

0 : otherwise

where

r0 =
1

ρ
and r(x, y) = (x− a)2 + (y − b)2.

1. First example: A smooth function with a single spike. Here we consider the

function

q1(x, y) = 0.5 · f2(150(x− 0.5))gρ,b(y) + p(x, y)

with ρ = 20000 and a = 0.5. The test function q1 is shown in Fig.4.1.

Figure 4.1: Test function q1 of Example 1.



Chapter 4. Applications 104

The test function is approximated by splines sn based on both Lagrange and

Hermite bases corresponding to levels n = 1, . . . , 8 and by splines ŝ which

are compressed.

The surfaces corresponding to the splines sn are plotted in Fig.4.5 and

Fig.4.6, and the surfaces corresponding to the compressed splines ŝ are plot-

ted in Fig.4.3 and Fig4.4. We see that with as few as 20 coefficients, the

compressed surface using Lagrange hierarchical basis functions has captured

the spike of the original function while a compressed surface with 90 coeffi-

cients is virtually indistinguishable from the original. But for the case when

a Hermite hierarchical basis is employed we notice the large artifacts with

a smaller number of coefficients. However, we see that gradually with more

coefficients the Hermite surfaces start to perform corrections and begin to

reproduce the spike of the original function. Hermite compression with 90

coefficients has also captured the spike of the original function but not as

close yet to the original compared to Lagrange. The above observation can

be explained using the fact that Lagrange basis is more stable than Hermite

in the hierarchical representation.

Now we do a comparison of the compressed approximations to the single level

approximations. We see from Fig.4.5 that Lagrange single level approxima-

tions with small number of coefficients only approximate the smooth part

of the surface and ignore the small feature, whereas compressed Lagrange

approximations are already reasonable with 20 coefficients and capturing

the shape of the original function. We also note that Hermite single level

approximations do not give any good results until level 6, see Fig.4.6.

The numerical results are displayed in Tables 4.1 and 4.2. We have also

plotted a log-log plot to compare the error results obtained above as shown

in Fig.4.2. The errors for compressed Lagrange, compressed Hermite, sin-

gle level Lagrange and single level Hermite approximations are represented
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by line plots indicated by ComLag, ComHerm, SLLag and SLHerm, respec-

tively, as shown on the legend of the graph. We clearly see from the graph

that single level Hermite approximations do not give any good results until

they reached to higher level. The plots show that at the beginning with small

number of coefficients the single level Lagrange approximations give better

errors than the compressed Lagrange approximations. But these results do

not agree on what we have seen before on the figures of the approxima-

tions. We think that in this case the L2 and L∞ errors are not the right

indication of the quality of approximations. We also see that compressed

Lagrange is significantly better than compressed Hermite, most important

for small number of coefficients which imply high compression rates but both

approximation results are comparable from about 200 coefficients. However

with more coefficients compressed Hermite might give a better approxima-

tion than Lagrange basis due to its smaller support of basis functions.

Table 4.1: Errors and number of coefficients N for the surface compression algo-

rithm applied to the test function of Example 1

Lagrange Hermite

N L2-error L∞-error L2-error L∞-error

10 1.33e-01 5.54e-01 2.09 4.84

20 6.71e-03 5.11e-02 1.59 4.89

30 6.70e-03 4.47e-02 1.06 2.69

40 5.59e-03 4.47e-02 7.87e-01 1.87

50 5.58e-03 3.13e-02 1.54e-01 6.25e-01

60 2.42e-03 3.13e-02 1.03e-01 3.33e-01

70 2.06e-03 3.08e-02 3.16e-02 2.04e-01

80 7.16e-04 2.91e-02 3.14e-02 7.88e-02

90 4.26e-04 2.88e-02 2.60e-02 4.70e-02

100 3.85e-04 2.87e-02 9.80e-03 3.73e-02

150 2.70e-04 2.88e-02 4.65e-04 2.49e-02

200 2.68e-04 2.88e-02 3.31e-04 2.49e-02
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(a) Log-Log Plot for L2-errors
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(b) Log-Log Plot for L∞-error

Figure 4.2: Example 1. Log-Log Plot of the numerical results.
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(a) 20 Coefficients (b) 30 Coefficients

(c) 60 Coefficients (d) 70 Coefficients

(e) 80 Coefficients (f) 90 Coefficients

(g) 200 Coefficients

Figure 4.3: Example 1. The compressed approximations with various numbers of

coefficients using Lagrange basis functions.
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(a) 20 Coefficients (b) 30 Coefficients

(c) 60 Coefficients (d) 70 Coefficients

(e) 80 Coefficients (f) 90 Coefficients

(g) 200 Coefficients

Figure 4.4: Example 1. The compressed approximations with various numbers of

coefficients using Hermite basis functions.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 4.5: Example 1. The single level approximations using Lagrange basis

functions.
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(g) Level 6 (h) Level 7

(i) Level 8

Figure 4.5: Example 1. Single level approximation using Lagrange basis functions.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 4.6: Example1. The single level approximations using Hermite basis func-

tions.



Chapter 4. Applications 112

(g) Level 6 (h) Level 7

(i) Level 8

Figure 4.6: Example 1. Single level approximation using Hermite basis functions.
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Table 4.2: Errors and number of coefficients N for single level approximations to

Example 1

Lagrange Hermite

n N L2-error L∞-error L2-error L∞-error

0 12 6.71e-03 4.90e-02 3.15e-02 6.86e-02

1 27 8.93e-04 4.60e-02 2.23 5.52

2 75 5.72e-04 4.60e-02 5.57e-01 2.76

3 243 5.50e-04 4.60e-02 1.39e-01 1.38

4 867 5.50e-04 4.60e-02 3.48e-02 6.84e-01

5 3267 5.50e-04 4.60e-02 8.54e-03 3.31e-01

6 12675 5.50e-04 4.60e-02 1.75e-03 1.11e-01

7 49923 3.10e-04 3.30e-02 3.18e-04 3.30e-02

8 198147 2.67e-04 2.88e-02 2.97e-04 2.49e-02
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2. Second example: A smooth function with several spikes. In this example we

consider a function which is obtained by adding 4 more spikes of different

sizes to the function of Example 1 and placed each at a different location

of the domain as illustrated in Fig.4.7. The function is written explicitly as

follows

q2(x, y) = s1 · f2(c1(x− a1))gρ1,b1(y) + s2 · f2(c2(x− a2))gρ2,b2(y)

+ s3 · f2(c3(x− a3))gρ3,b3(y) + s4 · f2(c4(x− a4))gρ4,b4(y)

+ s5 · gρ5,a5,b5(x, y) + p(x, y)

where ρ1 = 20000, ρ2 = 40000, ρ3 = 20000, ρ4 = 20000, ρ5 = 40000, c1 =

40, c2 = 150, c3 = 40, c4 = 150, c5 = 200, s1 = 0.5, s2 = 0.1, s3 = 0.5, s4 =

0.2, s5 = 0.3, and the values of a’s and b’s are chosen randomly from (0, 1).

Figure 4.7: Test function q2 of Example 2

Just like in Example 1 the test function is approximated by splines sn based

on both Lagrange and Hermite bases corresponding to levels n = 1, . . . , 8

and by splines ŝ which are compressed with various numbers of coefficients

N .

The surfaces corresponding to the splines sn are plotted in Fig.4.11 and

Fig.4.12,and the surfaces corresponding to the compressed splines ŝ are plot-

ted in Fig.4.9 and Fig4.10. Here we see that as few as 100 coefficients, the
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compressed surface using Lagrange basis functions has captured the feature

of the original function and is a good approximation to the original, while a

compressed surface with 500 coefficients is virtually indistinguishable from

the original. But for Hermite case, just as we have observed in Example 1

we notice the large artifacts with smaller number of coefficients due to the

instability of Hermite basis functions in the hierarchical representation.

Similarly in this example we also do a comparison of the compressed approx-

imations to the single level approximations. We see that although ŝ with 800

coefficients which is fewer than 867 coefficients of s4, it does a much better

job of approximation and capturing the shape of the original function. The

similar result is also observed in the Hermite case. These results also show

the effectiveness of the compression algorithm in this example.

The numerical results are shown in Table 4.3 and Table 4.4. We have also

plotted a log-log plot to compare the results as shown in Fig.4.8. These

plots exhibit the similar behaviour to what we have already seen in Example

1. The errors for compressed Lagrange, compressed Hermite, single level

Lagrange and single level Hermite approximations are represented by line

plots indicated by ComLag, ComHerm, SLLag and SLHerm, respectively, as

shown on the legend of the graph. In this example we also see that single

level Hermite approximations do not give any good results until they reached

to higher level. The plots show that at the beginning with small number of

coefficients the single level Lagrange approximations give better errors than

the compressed Lagrange approximations. But these results do not agree

on what we have seen before on the figures of the approximations. As in

Example 1, we think that in this case the L2 and L∞ errors are not the right

indication of the quality of approximations. We also see that compressed

Lagrange is significantly better than compressed Hermite, most important

for small number of coefficients which imply high compression rates but both
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approximation results are comparable from about 1000 coefficients. However

with more coefficients compressed Hermite might give a better approximation

than Lagrange basis due to its smaller support of basis functions.

Table 4.3: Relative Errors and number of coefficients for the surface compression

algorithm applied to the test function of Example 2

Lagrange Hermite

N L2-error L∞-error L2-error L∞-error

50 7.43e-03 1.59e-01 2.12e-01 6.56e-01

100 7.24e-03 1.28e-01 5.56e-02 2.75e-01

150 7.12e-03 1.10e-01 3.54e-02 1.96e-01

200 7.05e-03 8.34e-02 2.73e-02 1.46e-01

250 6.89e-03 4.49e-02 2.62e-02 1.16e-01

300 6.81e-03 4.27e-02 2.61e-02 1.04e-01

400 5.66e-03 3.44e-02 9.83e-03 4.11e-02

500 3.05e-03 4.00e-02 7.42e-03 2.29e-02

800 8.36e-04 3.27e-02 3.01e-04 2.33e-02

1000 5.73e-04 3.19e-02 2.66e-04 2.33e-02

Table 4.4: Relative Errors for Single Level Approximations of Example 2

Lagrange Hermite

l N L2-error L∞-error L2-error L∞-error

0 12 7.17e-03 1.04e-01 3.16e-02 1.56e-01

1 27 2.65e-03 9.22e-02 5.94e-01 1.47

2 75 2.56e-03 9.20e-02 3.11e-01 1.30

3 243 2.56e-03 9.19e-02 8.24e-02 6.49e-01

4 867 2.56e-03 9.19e-02 2.03e-02 3.24e-01

5 3267 3.03e-03 1.10e-01 4.79e-03 1.62e-01

6 12675 2.68e-03 1.33e-01 2.36e-03 1.56e-01

7 49923 1.51e-03 1.03e-01 1.11e-03 7.71e-02

8 198147 4.94e-04 3.13e-02 2.65e-04 2.33e-02
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(b) Log-Log Plot for L∞-error

Figure 4.8: Example 2. Log-Log Plot of the numerical results.



Chapter 4. Applications 118

(a) 50 Coefficients (b) 100 Coefficients

(c) 150 Coefficients (d) 200 Coefficients

(e) 300 Coefficients (f) 500 Coefficients

(g) 800 Coefficients

Figure 4.9: Example 2. The compressed approximations with various numbers of

coefficients using Lagrange basis functions.



Chapter 4. Applications 119

(a) 50 Coefficients (b) 100 Coefficients

(c) 150 Coefficients (d) 200 Coefficients

(e) 300 Coefficients (f) 500 Coefficients

(g) 800 Coefficients

Figure 4.10: Example 2. The compressed approximations with various numbers of

coefficients using Hermite basis functions.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 4.11: Example 2. Single level approximation using Lagrange basis func-

tions.
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(g) Level 6 (h) Level 7

(i) Level 8

Figure 4.11: Example 2. Single level approximation using Lagrange basis func-

tions.
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(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 4.12: Example 2. Single level approximation using Lagrange basis func-

tions.
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(g) Level 6 (h) Level 7

(i) Level 8

Figure 4.12: Example 2. The single level approximations using Lagrange basis

functions.
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3. Third Example: Cusp function

We take the test function

g3(x, y) =
[
(2x− 1)2 + (2y − 1)2

]1/4

introduced in [25], as shown in Fig.4.13.

Figure 4.13: Cusps function of Example 3

This function has a cusp singularity at the point (1/2, 1/2). Compressing this

function using Hermite hierarhical basis functions is not well defined since the

gradient ∇f is not defined at the point (1/2, 1/2) and there is a possibility

that a vertex might be located at this point. This example also exhibits

another advantage of using Lagrange basis since only Lagrange data of the

surface is needed. The surfaces corresponding to the Lagrange compressed

splines ŝ are plotted in Fig.4.14. Here we see that as few as 222 coefficients,

the compressed surface has captured the shape of the original function, while

a compressed surface with 463 coefficients is virtually indistinguishable from

the original.

Table 4.5 presents the error of approximation produced by the compression

algorithm for various numbers of coefficients. The errors we computed for

this example are the absolute errors instead of relative errors computed for

the previous two examples. This allows us to compare the results to the re-

sults in DeVore [25] where absolute errors are presented. We also extracted
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(a) 163 Coefficients (b) 222 Coefficients

(c) 463 Coefficients (d) 618 Coefficients

Figure 4.14: Example 3. The compressed approximations with various numbers of

coefficients using Lagrange basis functions.
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Table 4.5: Example 3. Compression comparing with [25].

Lagrange Compression DeVore Compression

Number of Coefficients L2-error L∞-error L∞-error

70 4.34e-2 1.76e-1 1.05e-1

91 2.91e-2 1.30e-1 7.13e-2

163 3.89e-3 1.98e-2 2.69e-2

222 2.36e-3 9.19e-3 1.38e-2

463 4.05e-4 2.48e-3 2.76e-3

618 2.48e-4 1.29e-3 1.38e-3

the results from DeVore [25] and put them on the same table for easy com-

parison. We see that the errors are comparable even though we do not have a

wavelet basis. Recall that our hierarchical basis is available on any polygonal

domain whereas the box spline wavelets of [25] are only for R2.

In the last part of this section we would like to demonstrate the instability of

Hermite bases in the hierarchical expansion which will also explain the observations

we get in test functions of Examples 1 and 2.

In this experiment, we choose a Hermite basis function Bn,s = 2n(1−s)B
(n)
v

(where 2n(1−s) is the normalising factor in Hs-norm) from each level n = 1, . . . 9

corresponding to the same point v = (0.5, 0.5) ∈ V1 of the coarse level with scal-

ing factors s ∈ (1, 5/2). Each of these function Bn,s has a finite representation

involving functions of levels up to n. We write each of these functions in the Her-

mite hierarchical representation and also in Lagrange hierarchical representation.

We compute the l2 norm of the coefficient vectors for each of these functions for

different scaling factors. The results are displayed in Table 4.6.

For a better view of the results, we plotted a semi-log graph as shown in

Fig.4.15 with semi-log y-axis representing the l2 norm of coefficient vectors and

x-axis representing the level n where the function comes from. The graphs are

plotted with different colours for different scaling factors s. We clearly see from

the graphs in the case where functions are written in the hierarchical Hermite basis
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Table 4.6: The l2 norm of coefficient vectors for functions Bn,s with different scaling

factors.

s=1 s=1.25 s=1.5 s=1.75 s=2 s=2.25 s=2.5

n H L H L H L H L H L H L H L

1 1 0.346 1 0.332 1 0.322 1 0.315 1 0.310 1 0.306 1 0.304

2 2.50 0.426 2.25 0.421 2.06 0.417 1.91 0.414 1.80 0.412 1.72 0.411 1.66 0.410

3 5.22 0.159 4.08 0.159 3.28 0.159 2.73 0.159 2.35 0.159 2.08 0.159 1.90 0.159

4 10.55 0.379 7.02 0.373 4.87 0.369 3.57 0.366 2.78 0.363 2.31 0.362 2.02 0.361

5 21.15 0.159 11.90 0.159 7.05 0.159 4.51 0.159 3.16 0.159 2.45 0.159 2.07 0.159

6 42.32 0.379 20.06 0.373 10.09 0.369 5.56 0.366 3.50 0.363 2.55 0.362 2.10 0.361

7 84.66 0.159 33.78 0.159 14.34 0.159 6.78 0.159 3.81 0.159 2.62 0.159 2.11 0.159

8 169.33 0.379 56.82 0.373 20.34 0.369 8.21 0.366 4.09 0.363 2.66 0.362 2.11 0.361

9 338.66 0.159 95.58 0.159 28.80 0.159 9.87 0.159 4.36 0.159 2.70 0.159 2.12 0.159
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Figure 4.15: Semi-log graph of l2 norm versus the level n where the function

belongs to.

representations that the l2 norms are large and growing with n, especially fast for
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1 < s < 2. On the other hand, functions written in the Lagrange hierarchical basis

representations have smaller l2 norms and their values do not grow with n and they

vary very little with scaling. In the case of Hermite hierarchical expansion, the

results also show that the stability constants

K =
‖c‖l2

‖Bn,s‖Hs(Ω)

, 1 < s < 2

are growing with n and this implies the instability of the expansion. The results

confirm the theory that we have already know about the stability of these hierar-

chical bases, that is, Lagrange hierarhical bases are stable for Hs(Ω), 1 < s < 5/2

and Hermite hierarchical bases are stable for 2 < s < 5/2. The H1 and H2 norms

for Bn,1 and Bn,2, respectively, for n = 1, . . . 8 are presented in Table 4.7.

Table 4.7: The H1 norms for Bn,1 and H2 norms for Bn,2.

nH1-normH2-norm

1 6.23e-1 4.32

2 6.23e-1 4.32

3 6.23e-1 4.32

4 6.23e-1 4.31

5 6.24e-1 4.33

6 6.26e-1 4.23

7 6.39e-1 4.07

8 6.92e-1 3.53
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4.3 Applications to the Biharmonic Equation

We consider the two dimensional biharmonic equation with homogeneous bound-

ary conditions, that is,

∆2u = f on Ω, u =
∂u

∂n
= 0 on ∂Ω, (4.3.1)

where ∂Ω denotes the boundary of the polygonal domain Ω. As usual, ∆ stands

for the Laplace operator: ∆ = ∂2

∂x2 +
∂2

∂y2
, and ∂

∂n
represents the normal derivative.

The variation formulation of the biharmonic equation (4.3.1) is to find u ∈
H2

0 (Ω) such that

a(u, v) = 〈f, v〉, ∀v ∈ H2
0 (Ω), (4.3.2)

where a(u, v) = 〈∆u,∆v〉. For u, v ∈ H2
0 (Ω), it is easy to verify that a(u, v) ≤

β1‖u‖H2
0 (Ω)‖v‖H2

0 (Ω) (bounded) and a(u, u) ≥ β2‖u‖2H2
0 (Ω)

(coercieve) where β1, β2

are constants independent of u and v, see [34]. Hence a(u, v) is bounded and

coercive, and by the Lax-Milgram theorem (see [7]), existence and uniqueness

of the solution are guaranteed for (4.3.2). This u is the weak solution to the

biharmonic equation (4.3.1).

In order to solve the variation problem (4.3.2), we use finite dimensional sub-

spaces to approximate H2
0 (Ω). Let V be a subspace of H2

0 (Ω) with {v1, . . . , vm} as

its basis. We look for y1, . . . , ym ∈ R such that u =
∑m

k=1 ykvk satisfies the system

of equations

〈∆u,∆vj〉 = 〈f, vj〉, j = 1, . . . , m,

which can be written as

m∑

k=1

ajkyk = bj , j = 1, . . . , m, (4.3.3)

where bj = 〈f, vj〉 and ajk = 〈∆vk,∆vj〉, j, k ∈ {1, . . . , m}. We call A = (ajk)1≤j,k≤m

the stiffness matrix and b = (bj)
T
1≤j≤m the load vector. Often v1, . . . , vm are chosen

to be finite elements over a triangulation of Ω with mesh size h > 0.
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It is well known that the linear system arising from usual discretisations of

the biharmonic equation is ill conditioned. Under mesh refinement, the condition

number of the stiffness matrix deteriorates rapidly like h−4 in general. Thus, it is a

challenging problem to efficiently solve the large linear system. An ill-conditioned

matrix usually results in very slow convergence for classical iterative methods.

Thus, without preconditioning, it would be very difficult to solve the system of

linear equations in (4.3.3) for small h.

4.3.1 Convergence Rates

In this section we established the convergence rates of the C1 quadratic finite

element method for the biharmonic equation in different norms. In particular, we

will establish the suboptimal convergence rate in L2 norm which does not seem to

have been explicitly discussed in the literature.

Given f ∈ L2(Ω), let u ∈ H2
0 (Ω) be the unique solution to the equation

a(u, v) = 〈f, v〉 for all v ∈ H2
0 (Ω). (4.3.4)

Here we assume that Ω is a bounded polygonal domain with inner angle ω at each

boundary corner satisfying

ω < 126.283696...◦

Then we have u ∈ H4(Ω), by Blum and Rannacher [4]. Moreover,

‖u‖H4(Ω) ≤ C‖f‖L2(Ω) (4.3.5)

for some constant C independent of f .

Recall our spline spaces S̃n with homogenous boundary condition in Chapter

3. Let un be the unique solution in S̃n to the following equation

a(un, v) = 〈f, v〉 for all v ∈ S̃n. (4.3.6)

There is a standard trick, called the duality argument, for deriving an L2 esti-

mate from an energy norm estimate. This argument requires the elliptic regularity

property (4.3.5).
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Let w ∈ H2
0 (Ω) be the solution to the variation problem

a(w, v) = 〈u− un, v〉 for all v ∈ H2
0 (Ω).

Since u− un ∈ L2(Ω), the solution w belongs to H2
0 (Ω) ∩H4(Ω). Then

‖u− un‖2L2(Ω) = 〈u− un, u− un〉

= a(w, u− un).

Since the interpolant wI belong to S̃n,

a(u, wI) = 〈f, wI〉

and

a(un, wI) = 〈f, wI〉,

which implies that

a(u− un, wI) = 0.

It follows that

a(w, u− un) = a(w − wI , u− un)

and therefore we obtain

‖u− un‖2L2(Ω) = a(w − wI , u− un)

≤ β1‖u− un‖H2(Ω)‖w − wI‖H2(Ω).

By the elliptic regularity assumption (4.3.5), w ∈ H3(Ω) and therefore, by the

Jackson estimate (2.3.5), there is a constant C such that

‖w − wI‖H2(Ω) ≤ Ch|w|H3(Ω).

It follows that

‖u− un‖2L2(Ω) ≤ Cβ1h‖u− un‖H2(Ω)|w|H3(Ω)

≤ Cβ1h‖u− un‖H2(Ω)|w|H4(Ω).
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By the elliptic regularity assumption, there is another constant C such that

|w|H4(Ω) ≤ ‖w‖H4(Ω) ≤ C‖u− un‖L2(Ω).

Combining β1 and the two constants denoted above by C into a new constant,

also denoted by C, we get

‖u− un‖2L2(Ω) ≤ Ch‖u− un‖H2(Ω)‖u− un‖L2(Ω)

and hence

‖u− un‖L2(Ω) ≤ Ch‖u− un‖H2(Ω). (4.3.7)

In view of the fact that the finite element solution un is the orthogonal pro-

jection of u in S̃n, then by the Cea’s theorem [7, Theorem 2.8.1] and the Jackson

estimate (2.3.5) we obtain the convergence in energy norm

∥∥u− un
∥∥
H2(Ω)

≤ C inf
v∈S̃n

‖u− v‖H2(Ω)

≤ C‖u− uI‖H2(Ω), uI ∈ S̃n,

and hence
∥∥u− un

∥∥
H2(Ω)

≤ C ′h|u|H3(Ω). (4.3.8)

Finally, applying the estimate (4.3.8) in (4.3.7) for ‖u− un‖H2(Ω), we obtain

‖u− un‖L2(Ω) ≤ Ch2|u|H3(Ω). (4.3.9)

Now by [7, Theorem 14.3.3] we get the error in H1-norm below

‖u− un‖H1(Ω) ≤ Ch2|u|H3(Ω). (4.3.10)

With the above discussion we can now write the theorem below.

Theorem 4.1. Given f ∈ L2(Ω), let u be the unique solution in H2
0 (Ω) to the

equation (4.3.4). Let un be the unique solution in S̃n to the equation (4.3.6). Then

the estimates (4.3.8), (4.3.9) and (4.3.10) hold, and their bounding constants are

independent of f and n.
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Theorem 4.1 says that our C1 piecewise quadratic finite element solutions con-

verge to the exact solution of biharmonic equation in optimal order for H1 and H2

norms but suboptimal order O(h2), not O(h3) for error in L2 norm. The numerical

results displayed in Tables 4.8 and 4.9 confirm that these convergence rates cannot

be improved.

The suboptimal convergence rate in L2 norm for certain quadratic elements

which are not C1 continuous has been observed numerically in [55, 27]. Also in

[27] the suboptimal convergence rate in L2-norm was proved in the context of the

discontinuous Galerkin method.
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4.3.2 Hierarchical Basis Preconditioner

In this section we will discuss the use of our Lagrange type hierarchical basis in

solving the biharmonic equation (4.3.1).

Recall that in order to solve the variational problem (4.3.2), we take the finite

dimensional space S̃n to approximate H2
0 (Ω) and seek un ∈ S̃n such that

〈∆un,∆v〉 = 〈f, v〉 ∀v ∈ S̃n. (4.3.11)

Since our hierarchical basis

∞⋃

k=0

{2k(1−s)B̃
(k)
ξ }

is a Riesz basis for Hs
0(Ω) for any s ∈ (1, 3

2
) ∪ (3

2
, 5
2
), by exploiting the properly

scaled hierarchical basis

Ψn =

n⋃

k=0

{2−kB̃
(k)
ξ }

we get uniformly well-conditioned stiffness matrices. For comparison, single scale

bases for S̃n will give rise to stiffness matrices with condition numbers of the order

24n. Hence it would be difficult to solve the problem when n is large.

Let Φn denote the locally supported single scaled basis for Sn. Let An and

An denote the stiffness matrices with respect to Ψn and Φn, respectively, and the

associated linear systems

Anyn = bn

and

Any
′
n = b′n (4.3.12)

respectively.

Since Φn and Ψn are two bases of S̃n, there exists a unique matrix Tn, called

the transformation matrix, which transform Ψn to Φn. Therefore,

An = T T
n AnTn

b′n = T T
n bn.
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Consequently, the linear system (4.3.12) is equivalent to

T T
n AnTny

′
n = T T

n bn.

We can use conjugate gradient (CG) algorithm to solve T T
n AnTny

′
n = T T

n bn, the

iterations needed to reach a fixed tolerance τ would not increase as the mesh size

decreases since the condition number of An is uniformly bounded.

By letting yn = Tny
′
n, the CG algorithm for solving T T

n AnTny
′
n = T T

n bn is

equivalent to the preconditioned conjugate gradient (PCG) algorithm for solving

Anyn = bn using the preconditioner TnT
T
n .

The conjugate gradient (CG) algorithm and preconditioned conjugate gradi-

ent (PCG) algorithm (see [28]) for solving the linear system are introduced in

Algorithm 3 and Algorithm 4, respectively.

Algorithm 3 Conjugate Gradient Algorithm for Anyn = bn

1: Given initial guess y0n

2: r0 = bn − Any
0
n

3: p0 = r0

4: for k = 0, 1 . . . do

5: αk =
rTk rk

pT
k
Anpk

6: yk+1
n = ykn + αkpk

7: rk+1 = rk − αkAnpk

8: if ‖rk+1‖2 < τ then

9: stop

10: end if

11: βk =
rTk+1rk+1

rTk rk

12: pk+1 = rk+1 + βkpk

13: end for
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Algorithm 4 Preconditioned Conjugate Gradient Algorithm for Anyn = bn with

preconditioner M

1: Given initial guess y0n

2: r0 = bn − Any
0
n

3: z0 =M−1r0

4: p0 = z0

5: for k = 0, 1 . . . do

6: αk =
rT
k
zk

pT
k
Anpk

7: yk+1
n = ykn + αkpk

8: rk+1 = rk − αkAnpk

9: if ‖rk+1‖2 < τ then

10: stop

11: end if

12: zk+1 =M−1rk+1

13: βk =
zTk+1rk+1

zT
k
rk

14: pk+1 = zk+1 + βkpk

15: end for
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4.3.3 The BPX-Preconditioner

In the paper [30] Griebel shows that the conjugate gradient (CG) method for the

semidefinite system that arises from the Galerkin scheme using the nodal basis

functions of the finest level and of all coarser levels of discretisation, is equivalent

to the Bramble-Pasciak-Xu (BPX) preconditioned CG method [6] for the linear

system that arises from the Galerkin scheme using only the nodal basis functions of

the finest level. We will briefly discuss this here. The interested reader is referred

to [30] for further details.

Let Φn = {φn
1 , φ

n
2 , . . . , φ

n
Nn

} be the nodal basis of level n (either Hermite or

Lagrange type). Any function s ∈ Sn can be expressed uniquely by

s =

Nn∑

i=1

uni φ
n
i , (4.3.13)

with the column vector un := (un1 , u
n
2 , . . . , u

n
Nn

)T of nodal values.

Instead of the expression in (4.3.13), the set of functions En is defined as the

union of all different nodal bases Φk for the levels k = 1, . . . , n

En = Φ1 ∪ Φ2 ∪ . . . ∪ Φn−1 ∪ Φn.

Then clearly En is a linearly dependent set of functions and it is no longer a basis

for Sn but a generating system. Then any function s ∈ Sn can be expressed in

terms of the generating system by

s =
n∑

k=1

Nk∑

i=1

wk
i φ

k
i

with the block vector wE
n := (w1, w2, . . . , wn)T , where

wk = (wk
1 , w

k
2 , . . . , w

k
Nk
), k = 1, . . . , n.

This represents a level-wise decomposition of s into functions gk ∈ Sk, k = 1, . . . , n,

where

s =

n∑

k=1

gk, gk =

Nk∑

i=1

wk
i φ

k
i .
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We denote representation in terms of the generating system Ek by the superscript

E. The length of wE
n is

NE
n =

n∑

k=1

Nk.

For a given representation wE
n of s in En, we can easily compute its unique repre-

sentation un with respect to Φn.

The transformation from wE
n to un resembles a mapping

TE
n : RNE

n → R
Nn ,

which can be described by the product

TE
n = T n−1,E

n · T n−2,E
n−1 · T n−3,E

n−2 . . . T 2,E
3 · T 1,E

2

= Π2
k=nT

k−1,E
k

of sparse (NE
n −NE

k−1)× (NE
n −NE

k−2) matrices T k−1,E
k . We then have

un = TE
n w

E
n .

Since the spaces Sk are nested, there exists a transformation matrix P k
k−1 such

that φk−1 = φkP
k
k−1 or equivalently uk = P k

k−1uk−1. The matrix P k
k−1 maps Sk−1

to Sk, k = n, . . . , 2. The transformation matrices T k−1,E
k , k = n, . . . , 2 can be

expressed by

T k−1,E
k =

(
P k
k−1 Ik 0

0 0 In,k+1

)

where In,k+1 is the identity operator of dimension
∑k+1

i=n Ni.

Using the nodal basis Φn at the fixed level n, the Galerkin approach leads to a

linear system of equations

Lnun = fn

where (Ln)(i,j) = a(φn
i , φ

n
j ) and (fn)(j) = 〈f, φn

j 〉, i, j = 1, . . . , Nn. For the gener-

ating system En, the Galerkin approach leads to the system of equations

LE
nw

E
n = fE

n ,
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where (LE
n )

k
(ik ,jk)

= a(φk
ik
, φk

jk
) and (fE

n )
k
(j,k) = 〈f, φk

jk
〉, k = 1, . . . , n, ik, jk =

1, . . . , Nk. The matrix LE
n is singular symmetric positive semidefinite. It has the

same rank as Ln. Thus N
E
n−1 = NE

n − rank(Ln) eigenvalues are zero. The system

is solvable but it has infinitely many solutions. For two different solutions wE,1
n

and wE,2
n

TE
n w

E,1
n = TE

n w
E,2
n = un

holds, where un is the unique solution of the system Lnun = fn. This is direct

consequences of (4.3.14). Therefore, it is sufficient to compute just one solution of

the enlarged semidefinite system to obtain using TE
n .

Since the transformation from En to Φn is expressed by un = TE
n w

E
n , then

LE
n = (TE

n )TLnT
E
n , fE

n = (TE
n )Tfn. (4.3.14)

Hence to compute LE
n and fE

n it is not necessary to explicit compute a(φk
ik
, φk

jk
) and

(fE
n )k(j,k) = 〈f, φk

jk
〉. which involves integration on all levels 1, . . . , n, but instead

the expression (4.3.14) can be used.

Now we consider the diagonally preconditioned conjugate gradient method for

the enlarged semidefinite system. A major task is to compute the residual

rEn = fE
n − LE

nw
E
n

of the semidefinite system for a given wE
n . Using the product representation

(4.3.14) of LE
n and fE

n , we have

rEn = (TE
n )Tfn − (TE

n )TLnT
E
n w

E
n ,

and, with un = TE
n w

E
n and rn = fn − Lnun, we have

rEn = (TE
n )T (fn − Lnun) = (TE

n )T rn.

Let DE
n be a diagonal matrix that we use as a preconditioner. With DE

n precondi-

tioning, we have to compute (rEn )
TDE

n r
E
n in the preconditioned conjugate gradient

algorithm. Since rEn = (TE
n )T rn, then

(rEn )
TDE

n r
E
n = rTnT

E
n D

E
n (T

E
n )T rn.
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Hence, the DE
n preconditioned conjugate gradient algorithm for solving LE

nw
E
n =

fE
n is equivalent to the conjugate gradient algorithm with preconditioner TE

n D
E
n (T

E
n )T

for solving Lnun = fn.

In [58], the finest level system Lnun = fn is treated by BPX preconditioners

given by the matrix CX
n defined as follows:

CX
n :=

n∑

k=0

Nk∑

i=1

1

dki
〈·, φk

i 〉φk
i

with the scaling factor dki = a(φk
i , φ

k
i ). The preconditioner can now be expressed

easily in terms of semi-definite system LE
nw

E
n = fE

n . Computation of the residual

rEn = fE
n − LE

nw
E
n gives

rEn = (TE
n )T rn = (r1 r2 . . . rn−1 rn)T ,

where (rk)i = 〈rn, φk
i 〉φk

i , k = 0, . . . , n, i = 1, . . . , Nk. The BPX preconditioner

resembles just a multiplication of the residual rEn of the enlarged system with the

diagonal matrix DE
n where the diagonal entries are given by the scaling factor

1/a(φk
i , φ

k
i ). Therefore, in term of the enlarged system, BPX preconditioning is

just the diagonal scaling of the residual.

Now we consider the condition number of the DE
n preconditioned semidefinite

system. In general, the conventional number is infinity because LE
n is singular. In

[30], it is shown that the condition numbers of the preconditioned enlarged and

original systems are the same, provided a generalised condition number is used

that considers the preconditioned matrix restricted to the orthogonal complement

of its null space. The generalised condition number that we use is given by

κ(DE
nL

E
n ) = λmax/λmin,

where λmax denotes the largest eigenvalue of DE
nL

E
n and λmin its smallest nonzero

eigenvalue.

For hierarchical basis preconditioner we use a similar strategy. That is, the

hierarchical basis preconditioner is just the diagonal matrix DE
n where only the
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diagonal entries associated with the functions appearing in the hierarchical basis

are non-zero.

4.3.4 Numerical Results

We solve the biharmonic equation (4.3.1) for the unit square Ω = [0, 1]2. The

initial triangulation ∆0 is constructed by drawing the two diagonals of Ω which

divide Ω into four triangles as shown in Fig.4.16a.
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(a) Initial Triangulation (b) Approximate Solution

Figure 4.16: Initial triangulation and approximate solution to the biharmonic

equation.

The right hand side f is chosen such that the exact solution is given by

u = (10x(1− x)y(1− y))2.

The same problem has been investigated by Maes and Bultheel [43].

In Table 4.8 and 4.9, we display the errors between the exact solution and

the finite element solutions at several levels. The order of convergence of the

finite element is consistent with that stated in Theorem 4.1. The graph of the

approximate solution on the level 8 of the triangulation is shown in Fig.4.16b.

We also solve the problem using the Lagrange type Hierarchical preconditioner,

Hermite type Hierarchical preconditioner and also BPX preconditioners based on



Chapter 4. Applications 142

Table 4.8: The convergence of finite element for the biharmonic solution based on

Lagrange basis functions.

Level Dim L2-error Rate L∞-error Rate H1-error Rate H2-error Rate

1 15 5.22e-02 - 1.49e-01 - 2.75e-01 - 3.32 -

2 75 8.65e-03 2.59 2.48e-02 2.58 4.87e-02 2.50 1.35 1.30

3 339 2.18e-03 1.99 6.12e-03 2.02 1.24e-02 1.98 6.83e-01 0.99

4 1443 5.35e-04 2.03 1.51e-03 2.02 3.04e-03 2.02 3.44e-01 0.99

5 5955 1.33e-04 2.01 3.75e-04 2.02 7.54e-04 2.01 1.69e-01 1.02

6 24195 3.30e-05 2.00 9.34e-05 2.01 1.88e-04 2.00 8.37e-02 1.02

7 97539 8.27e-06 2.00 2.34e-05 2.00 4.70e-05 2.00 4.21e-02 0.99

8 391683 2.37e-06 1.80 6.58e-06 1.83 1.30e-05 1.85 2.10e-02 1.00

Table 4.9: The convergence of finite element for the biharmonic solution based on

Hermite basis functions.

Level Dim L2-error Rate L∞-error Rate H1-error Rate H2-error Rate

1 15 5.22e-02 - 1.49e-01 - 2.75e-01 - 3.32 -

2 75 8.65e-03 2.59 2.48e-02 2.58 4.87e-02 2.50 1.35 1.30

3 339 2.18e-03 1.99 6.12e-03 2.02 1.24e-02 1.98 6.83e-01 0.99

4 1443 5.35e-04 2.03 1.51e-03 2.02 3.04e-03 2.02 3.44e-01 0.99

5 5955 1.33e-04 2.01 3.75e-04 2.01 7.54e-04 2.01 1.69e-01 1.02

6 24195 3.30e-05 2.01 9.34e-05 2.01 1.88e-04 2.00 8.37e-02 1.02

7 97539 8.24e-06 2.00 2.33e-05 2.00 4.69e-05 2.01 4.21e-02 0.99

8 391683 2.05e-06 2.01 5.81e-06 2.00 1.17e-05 2.00 2.10e-02 1.00

these two type of bases. We follow the approach outlined by Griebel [30] as dis-

cussed in the previous section to implement these preconditioners. For each pre-

conditioner we compute the spectral condition number κ of the system matrix for

the linear system of the equations that is solved. The condition numbers are listed

in Table 4.10.

The numerical computation shows that BPX preconditioned matrices have

smaller condition numbers compared to hierarchical preconditioned matrices for

both Lagrange and Hermite versions. We also notice that despite knowing from the

theory that the Lagrange hierarchical basis is a Riesz basis for the Sobolev space



Chapter 4. Applications 143

Table 4.10: Condition numbers of single level discretisation matrices, BPX and

hierarchical preconditioned matrices.

Lagrange Hermite

Level Dim κ κ-BPX κ-Hie κ κ-BPX κ-Hie

2 75 2.02e4 1080 1190 1.02e4 66 68

3 339 3.25e5 1530 4100 1.50e5 85 108

4 1443 5.35e6 1860 7060 2.34e6 99 193

5 5955 8.67e7 2120 9560 3.72e7 108 302

6 24195 1.37e9 2310 11330 5.95e8 115 437

2 3 4 5 6
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Level

C
o
n
d
it
io
n
n
u
m
b
e
r
κ

 

 

SLLag

SLHerm

HieLag

HieHerm

BPXLag

BPXHerm

Figure 4.17: Semi-log graph of the condition number κ versus the level n.

H2
0 (Ω), the corresponding preconditioned matrices have larger condition numbers

compared to the other preconditioned matrices. We have also plotted a semilog

graph to illustrate the behaviour of these condition numbers, as shown in Fig.

4.17. We see from the graph that the condition numbers of the single level dis-

cretisation matrices are growing at a high rate with n, the condition numbers of

Lagrange hierarchical preconditioned matrices and BPX preconditioned matrices

of Lagrange and Hermite versions are stabilising and the condition numbers of
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Hermite hierarchical preconditioned matrices are growing at a lower rate. These

behaviours are consistent with the theory on these preconditioned matrices that

we already know before.

Now we proceed to computing the solution at each level with the conjugate

gradient method. The starting vector for each iteration is the zero vector. At each

level we stop the conjugate gradient iteration when the residual r ≤ 0.1∗H2 single

level discretisation error. The results are shown on Tables 4.11, 4.12, 4.13 and

4.14. The first column gives the maximum resolution level n. For each level, we

display the residuals, the errors in different norms, and the number of iterations

that is needed to reach the stopping criteria. The results clearly favor for Hermite

based BPX preconditioner which requires the least number of iterations.

Table 4.11: Numerical Results - Using BPX preconditioner based on Lagrange

basis functions.

Level Dim Its Res L2-error L∞-error H1-error H2-error

2 75 22 6.30e-02 1.33e-02 3.37e-02 7.48e-02 1.59

3 339 35 6.25e-02 4.20e-03 1.23e-02 2.94e-02 8.36e-01

4 1443 46 2.66e-02 2.12e-03 6.29e-03 1.74e-02 4.94e-01

5 59550 58 1.52e-02 1.14e-03 3.20e-03 1.04e-02 2.83e-01

6 24195 69 6.78e-03 7.30e-04 1.98e-03 6.82e-03 1.75e-01

7 97539 78 3.89e-03 5.18e-04 1.44e-03 4.78e-03 1.18e-01

8 391683 87 2.13e-03 3.63e-04 1.00e-03 3.28e-03 8.07e-02
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Table 4.12: Numerical Results - Using Hierarchical preconditioner based on La-

grange basis functions.

Level Dim Its Res L2-error L∞-error H1-error H2-error

2 75 21 8.50e-02 1.25e-02 2.97e-02 6.97e-02 1.58

3 339 32 6.02e-02 6.53e-03 1.74e-02 4.74e-02 1.02

4 1443 46 3.02e-02 3.15e-03 1.01e-02 3.02e-02 6.77e-01

5 5955 61 1.62e-02 1.54e-03 5.32e-03 2.01e-02 4.52e-01

6 24195 83 8.20e-03 8.55e-04 2.92e-03 1.06e-02 2.56e-01

7 97539 97 4.05e-03 6.19e-04 1.93e-03 7.02e-03 1.79e-01

8 391683 113 2.18e-03 3.26e-04 1.03e-03 3.83e-03 1.17e-01

Table 4.13: Numerical Results - Using BPX preconditioner based on Hermite basis

functions.

Level Dim Its Res L2-error L∞-error H1-error H2-error

2 75 7 5.34e-02 8.85e-03 2.50e-02 4.88e-02 1.37

3 339 10 2.44e-02 2.41e-03 7.37e-03 1.43e-02 7.13e-01

4 1443 12 1.80e-02 6.88e-04 2.69e-03 5.22e-03 3.76e-01

5 5955 14 9.19e-03 2.58e-04 1.08e-03 3.09e-03 2.03e-01

6 24195 16 4.53e-03 1.43e-04 5.04e-04 2.21e-03 1.15e-01

7 97539 17 4.09e-03 1.22e-04 4.41e-04 2.02e-03 8.16e-02

8 391683 19 1.87e-03 8.83e-05 2.96e-04 1.50e-03 5.34e-02

Table 4.14: Numerical Results - Using Hierarchical preconditioner based on Her-

mite basis functions.

Level Dim Its Res L2-error L∞-error H1-error H2-error

2 75 6 1.02e-01 9.71e-03 2.77e-02 5.75e-02 1.43

3 339 11 4.21e-02 2.82e-03 9.73e-03 1.76e-02 7.66e-01

4 1443 14 2.75e-02 9.99e-04 4.19e-03 7.71e-03 4.62e-01

5 5955 17 1.45e-02 4.17e-04 1.70e-03 3.97e-03 3.01e-01

6 24195 21 7.43e-03 2.02e-04 7.25e-04 2.38e-03 1.94e-01

7 97539 26 3.65e-03 9.18e-05 2.80e-04 9.69e-04 1.17e-01

8 391683 32 2.04e-03 4.58e-05 1.22e-04 5.06e-04 8.58e-02
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The last experiment is to show the advantage of the C1 piecewise quadratics

finite element space we used in our construction compared to multilevel spaces of

Powell-Sabin-6 split elements in [43].

In order to compare with the results obtained by [43], for each level we stop

the conjugate gradient iteration when the residual r is less than equal to 0.001

times H2 single level discretisation error. The results are displayed in Table 4.15.

A comparison to the results obtained in [43] Table 1 reveals that even though we

have a larger condition number (see Table 4.10) compared to the
√
3 PS-6 of [43],

we achieve comparable residuals with similar number of iterations and our results

are better than the ones obtained with the non-reduced PS-12 split method as

shown in the same table of [43].

Table 4.15: Numerical Results for BPX-PCG based on Hermite basis functions

with tolerance 0.001*H2norm

Level Dim Its Res L2-error L∞-error H1-error H2-error

2 75 10 4.67e-04 8.64e-03 2.48e-02 4.87e-02 1.35

3 339 14 6.10e-04 2.19e-03 6.16e-03 1.24e-02 6.84e-01

4 1443 18 2.83e-04 5.43e-04 1.50e-03 3.15e-03 3.45e-01

5 5955 22 1.16e-04 1.35e-04 3.56e-04 8.48e-04 1.70e-01

6 24195 25 6.28e-05 3.45e-05 9.66e-05 2.89e-04 8.44e-02

7 97539 27 4.09e-05 1.06e-05 4.16e-05 1.72e-04 4.29e-02

8 391683 30 1.66e-05 3.63e-06 1.45e-05 7.65e-05 2.19e-02



Chapter 5

Refinable C2 Piecewise Quintic

Polynomials on Powell-Sabin-12

Triangulations

5.1 Introduction

Nested spaces of smooth piecewise polynomials (splines) are used in multilevel

algorithms for surface compression [25, 42], nonlinear approximation [15, 19] and

preconditioning of spline based finite element system matrices [14, 21, 49]. If the

triangulations ∆n are obtained by successive refinements of a starting triangula-

tion ∆0, then the spaces Sn = Sr
d(∆n) of all Cr splines of degree at most d are

nested. However, these spaces are known to possess stable local bases important

for application only if d is relatively large, d ≥ 3r + 2, see [20]. Therefore much

attention is paid to the macro-element spaces [36, Chapter 6] whose degree can be

kept much lower at the expense of requiring that ∆n is obtained from a general

triangulation by splitting each triangle into subtriangles by various methods such

as Clough-Tocher split, Powell-Sabin-6 or Powell-Sabin-12 split. Some C1 macro-

elements [11, 21, 32, 33, 41] are refinable in the sense that nested spline spaces

147
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with stable local bases can be constructed with their help. However, refinable

macro-elements of higher smoothness have not been known.

In this chapter we propose a construction of refinable C2 macro-elements, whose

degree 5 is substantially lower than degree 8 of the C2 splines of [20] and degree

9 of the refinable C2 spline spaces with stable dimension suggested in [17]. On a

single macro-triangle our spaces coincide with the C2 quintic macro-element of [54],

although we obtain a simpler description of it (important for nestedness) in the case

when the central point of the Powell-Sabin-12 split is placed at the barycentre of

the macro-triangle. The nestedness of the spaces is achieved as in [17] by relaxing

the C3 smoothness conditions at the vertices of macro-triangles, which allows to

break the ‘super-smoothness disks’ at the vertices into half-disks. The proposed

macro-elements are easy to implement in the framework of the Bernstein-Bézier

techniques because we provide explicit formulas for all B-coefficients which are

not computed directly by the standard smoothness conditions. The work in this

chapter is published in the paper [24].

In Section 5.2 we construct the nested spaces and stable minimal determining

sets (leading to a stable local basis). Section 5.3 is devoted to the proofs of the main

results, whereas Section 5.4 provides a nodal minimal determining set and error

bounds for the corresponding Hermite interpolation operator. We show that the

nodal minimal determining set is stable and local and we also define the associated

stable local basis. In the last part, we introduce a hierarchical basis for the nested

spaces.

5.2 Refinable spaces of C2 piecewise quintics

Let Ω be a bounded connected polygonal domain in R
2. Suppose that some initial

regular triangulation ∆0 of Ω is given. Beginning with ∆0 we construct a sequence

{∆n}∞n=0 of triangulations of Ω by uniform refinement, that is ∆n+1 is obtained

from ∆n by subdividing any triangle T of ∆n into four equal subtriangles by
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joining the midpoints of the three edges with each other, as in Figure 5.1 (left).

The uniform refinement of a single triangle T will be denoted TU .

Starting from {∆n}∞n=0 we introduce further subdivisions by splitting each tri-

angle of ∆n into twelve triangles by joining the midpoints of the three edges with

each other and with the opposite vertices. This Powell-Sabin-12 split TPS12 of a

single triangle T is illustrated in Figure 5.1 (right). Clearly, TPS12 is a refinement

of TU . The triangulation obtained from ∆n by applying the Powell-Sabin-12 split

to each triangle will be denoted ∆∗
n. An important observation is that ∆∗

n+1 is a

refinement of ∆∗
n, in the sense that ∆∗

n+1 can be obtained from ∆∗
n by subdividing

its triangles.

v1

v2 v3

w2w3

w1

u1

u2 u3

vT

Figure 5.1: Uniform refinement TU and Powell-Sabin-12 split TPS12 of a triangle.

For each n = 0, 1, . . . , we denote by Vn, En, Ẽn and Wn the sets of all vertices,

edges, interior edges and midpoints of edges of ∆n, respectively. Given a triangle

T ∈ ∆n, we denote the vertices of TPS12 by v1, v2, v3, w1, w2, w3, u1, u2, u3 and vT

as shown in Figure 5.1. We refer to the edges of the form [vi, ui] as type-1 edges,

to edges of the form [ui, vT ] as type-2 edges and to edges of the form [wi, vT ] as

type-3 edges. For i = 1, 2, 3, we write E i
n for the set of all edges of ∆∗

n of type-i.

We set

Ṽ0 = ∅, Ṽn = (Vn ∩ Int Ω) \ V0, n = 1, 2, . . . .
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Then

Vn \ Ṽn = V0 ∪ (Vn ∩ ∂Ω).

For any v ∈ ⋃
n∈N Ṽn, let nv := min{n : v ∈ Ṽn}. Clearly, there is a unique edge ev

of ∆nv−1, with adjacent triangles T+
v , T

−
v ∈ ∆nv−1, such that v lies at the midpoint

of ev. Since Wn∩ Int Ω ⊂ Ṽn+1, the triangles T
+
w , T

−
w ∈ ∆n are well defined for any

w ∈ Wn ∩ Int Ω.

For n = 0, 1, . . ., let S2
5(∆

∗
n) denote the space of C2 quintic piecewise polyno-

mials, i.e.

S2
5(∆

∗
n) := {s ∈ C2(Ω) : s|T ∈ P5 for all T ∈ ∆∗

n}.

We consider the subspace Sn of S2
5(∆

∗
n) defined by

Sn =
{
s ∈ S2

5(∆
∗
n) :

(i) s ∈ C3(v) for all v ∈ V0 ∪ (Vn ∩ ∂Ω) and all v ∈ Wn ∩ ∂Ω,

(ii) s|T+
v
∈ C3(v), s|T−

v
∈ C3(v) for all v ∈ Ṽn and all v ∈ Wn ∩ Int Ω, and

(iii) s is C3 across all edges in E1
n ∪ E2

n ∪ E3
n

}
.

One crucial property of the spaces Sn is their nestedness.

Theorem 5.1. The spaces Sn, n = 0, 1, . . . are nested, that is,

Sn ⊂ Sn+1, n = 0, 1, 2, . . . .

Proof. Let n ≥ 1. We suppose s ∈ Sn−1 and show that s ∈ Sn. If v ∈ V0∪(Vn∩∂Ω),
then v ∈ V0 ∪ (Vn−1 ∩ ∂Ω) or v ∈ Wn−1 ∩ ∂Ω, so s ∈ C3(v) by Condition (i) in

the definition of Sn. It is also clear that s ∈ C3(v) for v ∈ Wn ∩ ∂Ω since v

lies in the interior of a boundary edge of ∆∗
n−1. If v ∈ Ṽn, then either v ∈ Ṽn−1,

or nv = n and v ∈ Wn−1 ∩ Int Ω, T+
v , T

−
v ∈ ∆n−1 and v lies at the midpoint

of the common edge ev of these two triangles. By Condition (ii) in both cases

s|T+
v
, s|T−

v
∈ C3(v) as required. If v ∈ Wn ∩ Int Ω, then nv = n + 1 and T+

v , T
−
v ∈

∆n, whereas v lies at the midpoint of the common edge ev ∈ ∆n of these two

triangles. Moreover, for a triangle T ∈ ∆n−1, v is either the midpoint of the
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edges 〈v1, w2〉, 〈v1, w3〉, 〈v2, w1〉, 〈v2, w3〉, 〈v3, w1〉, 〈v3, w2〉 or the vertices u1, u2, u3

of TPS12. In the first case, s|T+
v
, s|T−

v
∈ C3(v) because v is not a vertex of ∆∗

n−1.

In the second case, s|T+
v
, s|T−

v
∈ C3(v) since s is C3 across type 1 and type 2

edges, e ∈ E1
n−1 ∪ E2

n−1. If e ∈ (E1
n ∪ E2

n ∪ E3
n) then either e is (a part of) an edge

ẽ ∈ (E1
n−1 ∪ E2

n−1 ∪ E3
n−1) since ∆∗

n is a refinement of ∆∗
n−1 or e lies in the interior

of some triangle T ∈ ∆∗
n−1. In both cases, s is C3 across e by Condition (iii).

We now want to generate a stable local MDS for Sn. We will use the Bernstein-

Bézeir techniques presented in Section 1.3.3 and also follow the notation introduced

there.

For each v ∈ Ṽn, let ev in ∆nv−1 be the unique edge with adjacent triangles

T+
v , T

−
v ∈ ∆nv−1 such that v lies at the midpoint of ev. For each v ∈ Vn, we choose

a triangle T̂v ∈ ∆∗
n with vertex at v. If v ∈ Ṽn, we assume that T̂v ⊂ T+

v and we

choose another triangle T̃v = 〈v, u, w〉 ∈ ∆∗
n attached to v such that T̃v ⊂ T−

v and

an edge of T̃v is a part of ev. We now set Mv := D3(v) ∩ T̂v for any v ∈ Vn, and

M̃v :=Mv ∪ ξT̃v

2,3,0 for any v ∈ Ṽn. The set M̃v is illustrated in Figure 5.2.

Furthermore, for each edge e of ∆n, let vTe be the barycentre of a triangle Te

in ∆n attached to e, let we be the midpoint of e, let T 3
e = 〈vTe, we, u〉 be one

of the triangles in ∆∗
n attached to the edge 〈we, vTe〉, of type 3, and let Me =

{
ξ
T 3
e

3,2,0, ξ
T 3
e

2,3,0, ξ
T 3
e

2,2,1, ξ
T 3
e

1,4,0

}
. For each w ∈ Wn∩ Int Ω, let T+

e and T−
e be two triangles

in ∆n attached to the edge e = 〈v1, v2〉 in ∆n, such that w is the midpoint of e,

that is w = we. Let vT+
e
be the barycentre of T+

e and let T̂ 3
e ⊂ T+

e be some triangle

in ∆∗
n attached to the edge 〈we, vT+

e
〉 of type 3. Let T̃e = 〈we, u, v1〉 ⊂ T−

e be one

of the triangles in ∆∗
n with vertex we and such that one of its edges is a part of e.

Let M̃e =
{
ξ
T̂ 3
e

3,2,0, ξ
T̂ 3
e

2,3,0, ξ
T̂ 3
e

2,2,1, ξ
T̂ 3
e

1,4,0

}
∪ {ξT̃e

2,3,0}. The domain points corresponding to

M̃e are shown in Figure 5.3.

Theorem 5.2. The dimension of Sn is given by

dimSn = 10#Vn +#Ṽn + 4#En +#Ẽn. (5.2.1)
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T+
v T−

v

Figure 5.2: Domain points corresponding to M̃v are marked with filled circles.

v1

v2

we

u

T+
e T−

e

Figure 5.3: Domain points corresponding to M̃e are marked with filled circles.
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Moreover, the set

Mn =
⋃

v∈Vn\Ṽn

Mv ∪
⋃

v∈Ṽn

M̃v ∪
⋃

e∈En\Ẽn

Me ∪
⋃

e∈Ẽn

M̃e

is a stable local minimal determining set for Sn.

The proof of this theorem will be given in Section 5.3.

By restricting to a single Powell-Sabin-12 split TPS12, we consider the space

S(TPS12) defined by

S(TPS12) =
{
s ∈ S2

5(TPS12) :

s ∈ C3(vi) for all i = 1, 2, 3,

s ∈ C3(wi) for all i = 1, 2, 3,

s is C3 across the segment 〈vi, ui〉,〈ui, vT 〉,〈wi, vT 〉, for all i = 1, 2, 3
}
,

where vi, ui, wi are as in Figure 5.1. Clearly, S(TPS12) = S0 if ∆0 consists of just

one triangle.

Let T1 = 〈v1, w3, u1〉, T2 = 〈v2, w1, u2〉, T3 = 〈v3, w2, u3〉, T4 = 〈vT , w2, u1〉,
T5 = 〈vT , w3, u2〉, T6 = 〈vT , w1, u3〉, and let

Mv =
3⋃

i=1

(D3(vi) ∩ Ti), Me =
6⋃

i=4

{
ξTi

1,4,0, ξ
Ti

2,3,0, ξ
Ti

3,2,0, ξ
Ti

2,2,1

}
.

Theorem 5.2 specialised to the case of S(TPS12) gives the following corollary,

see Figure 5.4 for an illustration.

Corollary 5.3. The dimension of S(TPS12) is 42. Moreover, the set M =Mv∪Me

is a stable minimal determining set for S(TPS12).

Remark 5.4. The spaces S(TPS12) can be used to define non-nested C2 macro-

element spaces which in fact coincide with the spaces of C2 Powell-Sabin-12 macro-

elements constructed in [54] when the vT is the barycentre of T . Note that our

definition of S(TPS12) is simpler than the corresponding space S2(TPS12) in [54].
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Figure 5.4: Minimal determining set for S(TPS12) is indicated by filled circles.

5.3 Proof of Theorem 5.2

We start by providing two auxiliary results.

Let TPS6 be the Powell-Sabin-6 split of the triangle T = 〈w1, w2, w3〉 which lies

inside the Powell-Sabin-12 split in Figure 5.1 and is shown separately in Figure 5.5

for convenience. Recall that ui is the midpoint of the edge opposite to wi for

i = 1, 2, 3, and vT = (w1 + w2 + w3)/3 is the barycentre of T . We consider the

space S3
5(TPS6) of all C

3 piecewise quintics on TPS6.

Let T1 = 〈vT , w1, u3〉, T2 = 〈vT , w2, u1〉 and T3 = 〈vT , w3, u2〉, and let

M =
3⋃

i=1

(D3(wi) ∩ Ti),

see Figure 5.6, where the points in M are marked with filled circles.

Lemma 5.5. The dimension of S3
5(TPS6) is 30. Moreover, the above set M is a

stable minimal determining set for S3
5(TPS6).
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u3

u1

u2
vT

w1

w2 w3

Figure 5.5: Powell-Sabin-6 Split

w1

w2 w3u1

u2u3

1
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67
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20

21

22

23

24

25

26

27

28

29

30

31
32

33

34
35

36

37

38

Figure 5.6: Minimal determining set M for S3
5(TPS6) is marked by filled circles.

Proof. The dimension of S3
5(TPS6) is easily obtained by [36, Theorem 9.3]. Let

us show that M is a minimal determining set for S3
5(TPS6). For each i = 1, 2, 3,

we use the C3 smoothness at wi to uniquely and stably compute the coefficients

corresponding to all domain points in D3(wi) \M by [36, Lemma 5.10].

Next, for each edge e1 = 〈w2, w3〉, e2 = 〈w1, w3〉, e3 = 〈w1, w2〉 of T , we
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use the C3 smoothness across the edge 〈vT , u1〉, 〈vT , u2〉, 〈vT , u3〉, respectively, to
determine the coefficients corresponding to domain points in the set

E2(ei) := {ξ : dist(ξ, ei) ≤ 2, ξ 6∈ D3(wi) ∪D3(wi+1)}, i = 1, 2, 3.

(These coefficients are indicated by squares in Figure 5.6.) The C3 smoothness

across the edge 〈vT , ui〉 gives three smoothness conditions involving these coef-

ficients which uniquely determine them as solutions of the corresponding linear

system. For example, the barycentric coordinates of w3 relative to 〈w2, u1, vT 〉 are
given by (−1, 2, 0) since u1 is the midpoint of the edge 〈w2, w3〉. Hence, the three

smoothness conditions across the edge 〈vT , u1〉 involving the coefficients on the

edge 〈w2, w3〉 are given by

C23 = −C7 + 2C6,

C27 = C15 − 4C7 + 4C6,

C30 = −C18 + 6C15 − 12C7 + 8C6,

where the coefficients Ci of a spline s ∈ S3
5(TPS6) are numbered as in Figure 5.6.

By solving this linear system of equations with respect to C7, C23 and C6, we get

C7 = −1
4
C18 − 1

4
C30 + C15 +

1
2
C27,

C23 = −1
4
C18 − 1

4
C30 +

1
2
C15 + C27,

C6 = −1
4
C18 − 1

4
C30 +

3
4
C15 +

3
4
C27.

Similarly, we obtain

C8 = −1
4
C17 − 1

4
C29 + C14 +

1
2
C26, C22 = −1

4
C17 − 1

4
C29 +

1
2
C14 + C26,

C5 = −1
4
C17 − 1

4
C29 +

3
4
C14 +

3
4
C26, C9 = −1

4
C16 − 1

4
C28 + C13 +

1
2
C25,

C21 = −1
4
C16 − 1

4
C28 +

1
2
C13 + C25, C4 = −1

4
C16 − 1

4
C28 +

3
4
C13 +

3
4
C25.

The other coefficients indicated by squares in Figure 5.6 can be found in the same

way.
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By taking into account the C3 smoothness condition across the edges 〈w1, vT 〉,
〈w2, vT 〉, 〈w3, vT 〉, we compute the yet unknown coefficients corresponding to the

domain points on the rings R4(w1), R4(w2) and R4(w3), respectively. These co-

efficients are indicated by diamonds in Figure 5.6. For example, the barycentric

coordinates of u1 relative to 〈u3, w2, vT 〉 are (−1, 1
2
, 3
2
), and hence the three smooth-

ness conditions across the edge 〈w2, vT 〉 involving the coefficients in the ring R4(w2)

are given by

C10 = −C31 +
1
2
C12 +

3
2
C11, C9 = C32 − C35 − 3C31 +

1
4
C16 +

3
2
C12 +

9
4
C11,

C8 = −C33 +
3
2
C34 +

9
2
C32 − 3

4
C36 − 9

2
C35 − 27

4
C31 +

1
8
C37 +

9
8
C16 +

27
8
C12 +

27
8
C11.

By solving the linear system involving the above equations, we get

C10 =
4
3
C9 +

2
3
C32 − 2

3
C35 +

1
6
C16 − 4

9
C8 − 4

9
C33 +

2
3
C34 − 1

3
C12 +

1
18
C37 − 1

3
C36,

C11 =
4
3
C9 +

4
3
C32 +

1
3
C16 − 16

27
C8 − 16

27
C33 +

8
9
C34 − 4

9
C36 +

2
27
C37 − 4

3
C35,

C31 =
2
3
C9 +

4
3
C32 − 4

3
C35 +

1
2
C12 − 4

9
C8 − 4

9
C33 +

2
3
C34 − 1

3
C36 +

1
18
C37 +

1
3
C16.

By using C1 smoothness across the edges 〈u1, vT 〉, 〈u2, vT 〉, 〈u3, vT 〉 we compute

the remaining undetermined coefficients corresponding to the domain points at

distances three and four from 〈w1, w2〉, 〈w2, w3〉, 〈w3, w1〉. These coefficients are

marked by stars in Figure 5.6. For instance, since that the coefficients C10, C11, C19

and C20 are already known, we compute C2 and C3 using the formulas

C2 =
1
2
C11 +

1
2
C19, C3 =

1
2
C10 +

1
2
C20.

Finally, the only remaining undetermined coefficient at vT , marked by a triangle

in Figure 5.6, can be computed by using for example the univariate C1 smoothness

condition along the line 〈u2, w2〉, which gives

C1 =
2
3
C11 +

1
3
C38.

We have shown thatM is a determining set for S3
5(TPS6). The setM is minimal

since its cardinality is equal to the dimension of S3
5(TPS6). The stability of M is

obvious in view of [36, Lemma 5.10] and the above explicit formulas.
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Remark 5.6. The space S3
5(TPS6) coincides with the space S2(TPS6) of [36, The-

orem 7.9], where the vertex vT is placed at the barycentre of T .

Lemma 5.7. Let ∆ be the triangulation shown in Figure 5.7 with six vertices

v1, . . . , v6,, where v4 = (v3 + v5)/2, v2 = (3v1 + v3)/4 and v6 = (3v1 + v5)/4. Let

T = 〈v1, v4, v6〉. Let M = D1(v3) ∪D1(v5) ∪Me ⊂ D3,∆, where

Me = {ξT1,2,0, ξT2,1,0, ξT3,0,0, ξT2,0,1}.

Then M is a stable minimal determining set for the space P3 of cubic polynomials

regarded as a subspace of S0
3(∆).

v1

v2

v3 v4 v5

v6

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

2526

27

28

Figure 5.7: Triangulation of Lemma 5.7, where the minimal determining set M is

indicated by filled circles.

Proof. The lemma follows from a more general statement given in [54, Lemma 4.1].

We provide a (somewhat different) proof in order to work out explicit formulas for

the B-coefficients. We see that #M = dimP3 = 10. Hence we only need to show

that if we set the coefficients of s ∈ P3 corresponding to ξ ∈ M , then all other
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coefficients are stably determined. Suppose the coefficients of s are numbered as in

Figure 5.7. Then using the C1 smoothness across the common edge 〈v1, v4〉 of two
triangle T1 = 〈v2, v4, v1〉 and T2 = 〈v6, v1, v4〉, where the barycentric coordinates of
v6 relative to T1 are given by (−1, 1

2
, 3
2
), we obtain

C13 =
1
2
C12 +

3
2
C1 − C2.

By using the univariate C1, C2 and C3 smoothness conditions along the edge

〈v1, v3〉, where the barycentric coordinates of v3 relative to 〈v1, v2〉 are given by

(−3, 4) and solving the linear system involving the three equations, we obtain

C14 = − 9
16
C1 − 1

48
C28 +

3
2
C13 +

1
12
C27,

C23 = −27
16
C1 − 1

16
C28 +

9
4
C13 +

1
2
C27,

C22 = −27
32
C1 − 1

32
C28 +

27
16
C13 +

3
16
C27.

By symmetry, similar formulas hold for C3, C4 and C5, and by using the univariate

C1, C2 and C3 smoothness conditions along the edge 〈v3, v5〉 and solving the

corresponding linear system, we get the formulas

C25 = −1
4
C28 − 1

4
C7 + C26 +

1
2
C8,

C18 = −1
4
C28 − 1

4
C7 +

1
2
C26 + C8,

C19 = −1
4
C28 − 1

4
C7 +

3
4
C26 +

3
4
C8.

In the next step we compute C20 and C17 by C1 smoothness conditions across

edges 〈v2, v4〉 and 〈v4, v6〉, respectively,

C20 =
1
4
C25 +

3
4
C16, C17 =

1
4
C18 +

3
4
C16.

By the C1 and C2 smoothness conditions across the edge 〈v1, v4〉, as well as

the C2 smoothness conditions across the edges 〈v2, v4〉 and 〈v4, v6〉, we obtain the
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system of equations

C11 = −C15 +
1
2
C16 +

3
2
C12,

C10 = C21 − C20 − 3C15 +
1
4
C19 +

3
2
C16 +

9
4
C12,

C26 = 9C12 − 24C15 + 16C21,

C8 = 16C12 − 24C11 + 9C10,

which can be solved with respect to C10, C11, C15 and C21 to give

C10 = −1
7
C8 + C12 +

12
7
C16 +

4
7
C19 − 16

7
C20 +

1
7
C26,

C11 = − 2
21
C8 +

25
24
C12 +

9
14
C16 +

3
14
C19 − 6

7
C20 +

3
56
C26,

C15 =
2
21
C8 +

11
24
C12 − 1

7
C16 − 3

14
C19 +

6
7
C20 − 3

56
C26,

C21 =
1
7
C8 +

1
8
C12 − 3

14
C16 − 9

28
C19 +

9
7
C20 − 1

56
C26.

Finally, using C1 smoothness across the edges 〈v4, v6〉 and 〈v2, v4〉, we get

C9 = −3C11 + 4C10, C24 = −3C15 + 4C21,

which completes the proof that M is a determining set for P3. The stability is

again obvious in view of the explicit formulas used.

Proof of Theorem 5.2. To see that Mn is a stable minimal determining set, we

show that we can set the coefficients {cξ}ξ∈Mn of a spline s ∈ Sn to arbitrary values,

and that all other coefficients of s are then uniquely and stably determined.

First, we show how the coefficients in D5,∆∗
n
\Mn can be computed. For each

v ∈ Vn\Ṽn, using C
3 smoothness conditions at v and the coefficients corresponding

to Mv, we can uniquely compute the coefficients of s corresponding to all domain

points in D3(v) by [36, Lemma 5.10]. For each v ∈ Ṽn, using the C3 smoothness

of s|T+
v
at v and the coefficients in Mv ∩ T+

v , we compute the coefficients of s cor-

responding to all domain points in D3(v) ∩ T+
v . By using C2 smoothness across

the common edge ev of T+
v and T−

v , we can compute the coefficients correspond-

ing to D2(v) ∩ T−
v . Then by C3 smoothness at v inside T−

v and the coefficient
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corresponding to the domain point ξT̃v

2,3,0 inside T
−
v we can compute the remaining

coefficients corresponding to all domain points in R3(v) ∩ T−
v .

For each e = 〈u, v〉 ∈ En\Ẽn, using the coefficients corresponding toMe, we now

apply Lemma 5.7 to determine the coefficients of s corresponding to domain points

in the disk D3(we), where we is the midpoint of e. Due to the C3 smoothness at

we, we can regard the coefficients of s in the disk as coefficients of a polynomial g

of degree 3. Lemma 5.7 ensures that we can set the coefficients of s corresponding

to domain points in Me to arbitrary values, and that all coefficients corresponding

to the remaining domain points in D3(we) are uniquely and stably determined.

For each e = 〈u, v〉 ∈ Ẽn, using the C3 smoothness of s|T+
e
at the midpoint we of

e and the coefficients corresponding to
{
ξ
T̂ 3
e

3,2,0, ξ
T̂ 3
e

2,3,0, ξ
T̂ 3
e

2,2,1, ξ
T̂ 3
e

1,4,0

}
inside T+

e we can

compute the coefficients of s corresponding to domain points in the disk D3(we)∩
T+
e by Lemma 5.7 as described previously. Using the C2 smoothness across the

common edge e of T+
e and T−

e we can compute the coefficients corresponding to

D2(we) ∩ T−
e . Then using the C3 smoothness condition supported inside T−

e and

the coefficient corresponding to the point ξT̃e

2,3,0 we can compute the remaining

coefficients corresponding to domain points in R3(we) ∩ T−
e . For each type-1 edge

e = 〈u, v〉, by taking account of the C3 smoothness across the edge e = 〈u, v〉
we can now compute the three central coefficients in the ring R4(v). Note that

in practice these coefficients can be more conveniently computed by using C1

smoothness conditions across the edges of the form 〈wi, wi+1〉, see Remark 5.8.

We now show that the coefficients corresponding to the remaining domain

points are uniquely determined. These remaining domain points lie inside triangles

of the form T = 〈w1, w2, w3〉, where wi ∈ Wn. Let TPS6 be the Powell-Sabin-6 split

of T , see Figure 5.5. We have already determined all coefficients corresponding to

domain points in the disks D3(wi) for i = 1, 2, 3. Now we can apply Lemma 5.5 to

uniquely and stably determine all coefficients of s corresponding to the remaining

domain points in T .

We have thus shown thatM is a determining set for Sn. To complete the proof,
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we need to show that the six central C1, C2 smoothness conditions across the edges

〈wi, wi+1〉, i = 1, 2, 3 are satisfied. Indeed, all other smoothness conditions are

either used in the above computation or are satisfied in view of Lemmas 5.5 and

5.7.

To check these conditions we will only look at the section 〈v1, w3, vT , w2〉 of

the triangle T = 〈v1, v2, v3〉 as shown in Figure 5.8, where we indicate the domain

points of the 5 × 7 grid around u1 by double integer indices (i, j) with the origin

(0, 0) at u1 and the row of indices with j = 0 on the edge 〈w2, w3〉. The coefficient

corresponding to (i, j) is denoted by Ci,j. All smoothness conditions that need

verification are supported within this grid. The smoothness conditions on the

other two sections of the triangle can be checked in the same way.

v1

vT

w2

w3 u1 (0, 0)

(3, 2)(−3, 2)

(3,−2)
(−3,−2)

row 0

row 1

row 2

row −1

row −2

Figure 5.8: The 5× 7 grid around u1.

Let (γ, β, δ) be the barycentric coordinates of vT relative to 〈v1, w3, u1〉. Thus
β = 0 and vT = γv1 + δu1 where γ = −1

3
and δ = 4

3
. We first write down the
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known C1, C2 and C3 smoothness conditions in rows j = −2,−1, 0, 1, 2 of the grid,

C3,j = 8C0,j − 12C−1,j + 6C−2,j − C−3,j,

C2,j = 4C0,j − 4C−1,j + C−2,j,

C1,j = 2C0,j − C−1,j.

By solving this linear system for C−1,j, C0,j, C1,j, we obtain for j = −2,−1, 0, 1, 2

C−1,j =
1
4
(2C2,j − C3,j + 4C−2,j − C−3,j), (5.3.1)

C0,j =
1
4
(3C2,j − C3,j + 3C−2,j − C−3,j), (5.3.2)

C1,j = C2,j − 1
4
C3,j +

1
2
C−2,j − 1

4
C−3,j. (5.3.3)

We write down the four known C1 smoothness conditions across row 0 of the grid

Ci,−1 = γCi,1 + δCi,0, i = −3,−2, 2, 3. (5.3.4)

By replacing C−3,−1, C−2,−1, C2,−1, C3,−1 in (5.3.1)–(5.3.3) with expressions in (5.3.4)

and collecting the terms with coefficients γ and δ, we obtain

Ci,−1 = γCi,1 + δCi,0, i = −1, 0, 1,

which confirms the three remaining C1 smoothness conditions across row 0. Sim-

ilarly, by replacing C3,2, C2,2, C−2,2, C−3,2 in (5.3.1)–(5.3.3) with expressions in the

four known C2 smoothness conditions across row 0,

Ci,2 = γ2Ci,0 + 2γδCi,−1 + δ2Ci,−2, i = −3,−2, 2, 3,

we verify the three remaining C2 smoothness conditions across row 0,

Ci,2 = γ2Ci,0 + 2γδCi,−1 + δ2Ci,−2, i = −1, 0, 1.

We have shown thatMn is a stable local minimal determining set for Sn. Hence,

the dimension of Sn is equal to the cardinality of Mn, which is easily seen to be

the number in (5.2.1).
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Since Mn is a minimal determing set for Sn, a basis can be constructed for

Sn. Let {γξ}ξ∈Mn be the linear functionals such that γξ applied to Sn gives the B-

coefficients Cξ. Then the so-called Mn-basis Ψn = {ψξ}ξ∈Mn for Sn can be defined

uniquely using the conditions

γηψξ =




1, ξ = η,

0, otherwise,

for all ξ, η ∈ Mn. Moreover Mn is stable and local, it follows from [36, Theorem

5.21] that Ψn is a stable local basis for Sn.

Remark 5.8. Note that in practice the three central coefficients in the ring R4(v1)

are more conveniently computed by using C1 smoothness conditions across the

edge 〈w3, w2〉 rather than by C1, C2 and C3 smoothness conditions across 〈v1, u1〉
according to the above proof. Indeed, in the notation of Figure 5.8 these coefficients

are given by

C−1,1 = 4C−1,0 − 3C−1,−1, C0,1 = 4C0,0 − 3C0,−1, C1,1 = 4C1,0 − 3C1,−1.

5.4 A nodal minimal determining set for Sn

As usual for macro-element spaces, we provide a stable nodal minimal determining

set for Sn and an error bound for the corresponding Hermite interpolation operator.

Recall that a linear functional λ is called a nodal functional provided that λf

is a combination of values and/or derivatives of f at some point η. A collection

N = {λ}Ni=1 is called a nodal determining set for a spline space S if λs = 0 for

all λ ∈ N implies s ≡ 0. Moreover, N is called a nodal minimal determining set

(NMDS) for S if there is no smaller nodal determining set.

Let (ux, uy) and (vx, vy) be the Cartesian coordinates of u and v, respectively.

Then the directional derivative of s at (x, y) ∈ T with respect to the (directed)

edge e is given by

Des(x, y) = (vx − ux)Dxs(x, y) + (vy − uy)Dys(x, y).
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Let e⊥ be the directed segment obtained rotating e ninety degrees in the counter-

clockwise direction. We write De⊥s for the directional derivative of s associated

with e⊥. The linear functional evaluating at ξ ∈ Ω any function f continuous at ξ

will be denoted by δξ.

Lemma 5.9. Let ∆ be the triangulation shown in Figure 5.7, where v4 = (v3 +

v5)/2, v2 = (3v1 + v3)/4 and v6 = (3v1 + v5)/4. The set

N = Nv3 ∪ Nv4 ∪Nv5

is a nodal determining set for P3, where

1) Nv3 = {δv3 , δv3Dx, δv3Dy},

2) Nv5 = {δv5 , δv5Dx, δv5Dy},

3) Nv4 = {δv4De1 , δv4D
2
e1
, δv4De2D

2
e1
, δv4D

3
e1
},

with e1 := 〈v4, v1〉 and e2 := 〈v4, v5〉.

Proof. It is clear that the cardinality of N is equal to the dimension of P3. Thus

to prove that N is a nodal minimal determining set, we just need to show that

given the values of {λs}λ∈N all B-coefficients of s ∈ P3 can be determined. Sup-

pose the coefficients of s ∈ P3 are numbered as in Figure 5.7. Using the data

{δv3s, δv3Dxs, δv3Dys} at v3 we can compute the coefficients C26, C27 and C28 by

[36, Theorem 2.19]. Similarly, using the data {δv5s, δv5Dxs, δv5Dys} at v5 we com-

pute the coefficients C6, C7 and C8. Using the data {δv4De1s, δv4D
2
e1
s, δv4D

3
e1
s} we

can compute the coefficients C16, C12 and C1 by [36, Theorem 2.15], that is, using

the formulas

δv4De1s = −3C19 + 3C16,

δv4D
2
e1s = 6C19 − 12C16 + 6C12,

δv4D
3
e1
s = −6C19 + 18C16 − 18C12 + 6C1,
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where C19 can be computed using the three univariate smoothness conditions along

the edge 〈v3, v5〉 as in the proof of Lemma 5.7.

Let e = 〈v4, v6〉. Since v6−v4 = 1
4
(v5−v4)+ 3

4
(v1−v4), according to [36, (2.36)],

we can use the data δv4De2D
2
e1
s to compute the coefficient C2 from the relation

1

4
δv4De2D

2
e1
s+

3

4
δv4D

3
e1
s = δv4DeD

2
e1
s = −6C19+12C16+6C12+12C11−6C17−6C2,

where the coefficients C11 and C17 are computed as in the proof of Lemma 5.7.

At this point we have determined all coefficients corresponding to domain

points in the minimal determining set M of Lemma 5.7, and it follows from that

lemma that all other coefficients are also determined.

Theorem 5.10. The set

Nn =
⋃

v∈Vn\Ṽn

Nv ∪
⋃

v∈Ṽn

Ñv ∪
⋃

e∈En\Ẽn

Ne ∪
⋃

e∈Ẽn

Ñe

is a nodal minimal determining set for Sn, where

1) Nv = {δvDα
xD

β
y , 0 ≤ α + β ≤ 3},

2) Ñv = {δvDα
evD

β
e⊥v
, 0 ≤ α + β ≤ 3, β ≤ 2} ∪ {δ+v D3

e⊥v
, δ−v D

3
e⊥v
},

3) Ne =
{
δweDe⊥, δweD

2
e⊥, δweDeD

2
e⊥, δweD

3
e⊥},

4) Ñe =
{
δweDe⊥, δweD

2
e⊥, δweDeD

2
e⊥, δ

+
we
D3

e⊥, δ
−
we
D3

e⊥

}
,

where δ±v f := δv(f |T±
v
) and δ±we

f := δwe(f |T±
e
), and we denotes the midpoint of the

edge e.

Proof. It is clear that the cardinality of Nn is equal to the dimension of Sn as

given in (5.2.1). Thus to prove that Nn is a nodal minimal determining set, we

just need to show that given the values of {λs}λ∈Nn all B-coefficients of s ∈ Sn

can be determined.

For every vertex v ∈ Vn \ Ṽn, we can compute all coefficients corresponding

to domain points in the disk D3(v) directly from the data in Nv by [36, Theorem

2.19].
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For every vertex v ∈ Ṽn, we can compute all the coefficients of s corresponding

to domain points in the disk D3(v) from the data in Ñv. That is, using the data

{δvDα
evD

β
e⊥v
s, 0 ≤ α+ β ≤ 3, β ≤ 2} ∪ {δ+v D3

e⊥v
s}, we can compute the coefficients

corresponding to domain points in D3(v)∩ T+
v by [36, Theorem 2.19]. Then using

the coefficients corresponding to domain points in D3(v)∩ T+
v and C2 smoothness

conditions across the edge ev, we can compute the coefficients corresponding to

domain points in D2(v) ∩ T−
v . Now using the data {δ−v D3

e⊥v
s} and C3 smoothness

conditions inside T−
v , we can compute all the remaining coefficients corresponding

to domain points in R3(v) ∩ T−
v .

Given an edge e = 〈v′, v′′〉 in En\Ẽn, let we be its midpoint. We now compute all

coefficients of s corresponding to domain points in D3(we). By the C3 smoothness

at we, as in the proof of Theorem 5.2, these coefficients can be regarded as the

coefficients of a polynomial g of degree 3. Hence, it follows from Lemma 5.9 that

all B-coefficients in D3(we) are determined by the known B-coefficients in the sets

D3(we) ∩D3(v
′) and D3(we) ∩D3(v

′′) and the nodal data in Ne.

Given an edge e in Ẽn, we can compute the coefficients of s corresponding to

the domain points in the disk D3(we) from the data in Ñe. That is, using the

data
{
δweDe⊥s, δweDeD

2
e⊥s, δweD

2
e⊥s, δ

+
we
D3

e⊥s}, we can compute the B-coefficients

corresponding to D3(we)∩ T+
e using the same argument as above. Then using the

coefficients corresponding to domain points in D3(we) ∩ T+
e , and C2 smoothness

conditions across the edge e we can compute all the coefficients corresponding

to domain points in D2(we) ∩ T−
e . Finally, using {δ−we

D3
e⊥
s} and C3 smoothness

conditions inside T−
e we can compute all the remaining coefficients corresponding

to domain points in R3(we)∩T−
e . At this point we have determined all coefficients

corresponding to domain points in the minimal determining setMn of Theorem 5.2,

and it follows from that theorem that all other coefficients are also determined.

Corollary 5.11. The set

N = Nv ∪ Ne

is a nodal minimal determining set for S(TPS12), where
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1) Nv =
⋃3

i=1{δviDα
xD

β
y , 0 ≤ α+ β ≤ 3},

2) Ne =
⋃3

i=1

{
δwei

De⊥i
, δwei

DeiD
2
e⊥i
, δwei

D2
e⊥i
, δwei

D3
e⊥i
},

vi are the three vertices of T , e1 := 〈v1, v2〉, e2 := 〈v2, v3〉, e3 := 〈v3, v1〉 and wei

denotes the midpoint of ei.

By Theorem 5.10 for any function f ∈ C3(Ω) and any n = 0, 1, . . ., there exists

a unique spline sn(f) ∈ Sn that solves the Hermite interpolation problem

λs = λf, λ ∈ Nn.

Given a triangle T ∈ ∆n and a domain point ξ ∈ T of sn(f), it is easy to see

that if the coefficient cξ of sn(f) is computed from the derivatives as in the proof

of Theorem 5.10, then

|cξ| ≤ K1

3∑

ν=0

diam(T )ν |f |W ν
∞(T ), (5.4.1)

where K1 is a constant depending only on the smallest angle in ∆n. Since the

computation of all other coefficients from the smoothness conditions is a stable

process, it follows that (5.4.1) holds for all domain points ξ lying in T . Since the

Bernstein basis polynomials form a partition of unity, (5.4.1) implies that

‖sn(f)‖L∞(T ) ≤ K1

3∑

ν=0

diam(T )ν |f |W ν
∞(T ).

This verifies the stability of nodal minimal determining set Nn.

The following error bound follows immediately by [36, Theorem 5.26] if we take

into account that the uniform refinement used to generate the triangulation ∆n

halves the diameters of the triangles.

Theorem 5.12. For every f ∈ Cr(Ω), with 3 ≤ r ≤ 6,

|f − sn(f)|W k
∞(Ω) ≤

K

2n(r−k)
|f |W r

∞(Ω),

for all 0 ≤ k < r, where K depends only on the maximum diameter and the

smallest angle of the triangles of the initial triangulation ∆0, and | · |W r
∞(Ω) denotes

the standard Sobolev seminorm on Ω.
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The nodal NMDS Nn of Theorem 5.10 provides another stable local basis for

Sn, see pp. 144 and 491 of [36], in the sense of definition of Section 1.3.2. The

basis Φn = {φ(n)
j }#Nn

j=1 is defined uniquely using the duality

λiφ
(n)
j =




1, i = j,

0, otherwise,

where λi ∈ Nn and i, j = 1, . . . ,#Nn.

Now we write the nodal determining set Nn in a slightly different way. We set

V̂n = (Vn ∩ ∂Ω) \ V0, n = 1, 2, . . . .

For any v ∈ ⋃
n∈N V̂n, let nv := min{n : v ∈ V̂n}. Clearly, for any v ∈ V̂n there is

a unique edge êv ∈ ξnv−1 \ ξ̃nv−1 such that v lies at the midpoint of êv. Let

N̂v = {δvDα
êvD

β
ê⊥v
, 0 ≤ α + β ≤ 3}.

Then it can be easily checked that the set

N̂n =
⋃

v∈V0

Nv ∪
⋃

v∈V̂n

N̂v ∪
⋃

v∈Ṽn

Ñv ∪
⋃

e∈En\Ẽn

Ne ∪
⋃

e∈Ẽn

Ñe

is also a stable local nodal determining set for Sn. Moreover, the nodal determining

sets N̂n are nested, that is, N̂n ⊂ N̂n+1, n = 0, 1, 2, . . .. We now construct the

hierarchical basis Bn by

Bn = Φ̃0 ∪ Φ̃1 ∪ · · · ∪ Φ̃n, Φ̃0 = Φ0

where Φ̃k = {φ(k)
j , j = #N̂k−1 + 1, · · · ,#N̂k} is the set of all those nodal basis

functions from Φk corresponding to nodal minimal determing set N̂k on ∆k not

yet used on ∆k−1 for k = 1, 2, . . . n.

Remark 5.13. In developing the macroelement spaces of this chapter, we have

used P. Alfeld’s software for examining determining set for the spline spaces, avail-

able from http://www.math.utah.edu/~alfeld.
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Conclusions and Future Work

In this thesis, we investigated the construction of stable local bases for refinable

spaces of spline functions on Powell-Sabin 12 triangulations. Here we would like

to give a brief overview of our studies.

In Chapter 2, we proved that functions in subspaces of smooth splines Sr
d(∆)

possessing stable local bases satisfy a Bernstein type inequality. Furthermore,

we established the Jackson inequality for macro-element spline spaces. We then

proceed to present the general theory on hierarchical bases of Lagrange type to

give rise to Riesz bases for Sobolev spaces Hs(Ω) and Hs
0(Ω). In the last part

of this chapter, we reviewed the known C1 macro-element spaces where Lagrange

hierarchical bases were constructed. We also proved that the sequence of nested

triangulations suggested in [21] is quasi-uniform. These results are published in

the paper [23].

Then, in Chapter 3, we constructed Lagrange hierarchical bases for refinable

C1 piecewise quadratic polynomials on combination of Powell-Sabin 6 and Powell-

Sabin 12 triangulations. Under the guidance of general theory established in Chap-

ter 2, we proved that the hierarchical bases are stable for a larger range of Sobolev

spaces Hs(Ω) and Hs
0(Ω) than the hierarchical basis of Hermite type and the

wavelet type bases of [33] for the same spline space.

Chapter 4 was devoted to the applications of the hierarchical bases we con-

170



Chapter 6. Conclusions and Future Work 171

structed in Chapter 3. We formulated two test functions to demonstrate the

performance of our bases in surface compression. We numerically compared the

compression results based on the Lagrange hierarchical basis and Hermite hier-

archical basis. Numerical results show that Lagrange hierarchical basis has an

advantage over Hermite hierarchical basis in compressing surfaces. The second

part of this chapter is devoted to solving the biharmonic equation. We numeri-

cally compared the hierarchical basis preconditioners and the BPX preconditioners

based on both Hermite and Lagrange bases.

In Chapter 5 we presented a new construction of refinable C2 spline spaces of

degree 5 on Powell-Sabin-12 triangulations. We proved that the refinable spaces

have stable local minimal determining sets which will lead to a stable local basis.

Furthermore, we show that the spaces have nodal minimal determining sets. This

leads to a stable local basis of Hermite type. At the end, we also provide the

error bounds for the corresponding Hermite interpolation operators. These results

are published in the paper [24]. We also constructed a hierarchical basis for the

refinable spaces.

In terms of future work, we would like to address the following topics:

• We would like to extend the results of Chapter 3 to multilevel spline bases

which would give rise to a larger range of stability for Hs(Ω). In particular,

we are interested to construct a projection operator such that the range of

stability of the corresponding bases can be extended to include H0(Ω) =

L2(Ω).

• It would also be interesting to investigate the use of our multilevel bases in

the numerical solutions of fractional order elliptic PDEs. In particular, if the

energy space of the variational formulation is the fractional Sobolev spaces

Hs(Ω) for 3/2 < s < 2, in 2D, then our hierarchical bases are stable in this

range and hence they are suitable to be used as preconditioners for these

type of problems. Recall that neither C0 nor C1 Hermite hierarchical bases
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are stable for Hs(Ω), 3/2 < s < 2.

• We have seen several constructions that generate Riesz bases for Sobolev

spaces, see [21, 41, 33]. It would be interesting to implement the hierarchical

bases of [21, 41] and the wavelet bases of [33] and to compare all these

methods numerically. These multilevel bases might be useful for surface

compression which is also interesting to investigate.

• Another interesting task is to implement the refinable C2 macro-element

spaces constructed in Chapter 5 and investigate the use of the corresponding

multilevel bases for surface compression and numerical PDEs.

• Finally, we would also like to extend the results of Chapter 5 to macro-

element spaces of higher smoothness.
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