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Abstract

Large-scale smart metering deployments and energy saving targets across

the world have ignited renewed interest in residential non-intrusive appli-

ance load monitoring (NALM), that is, disaggregating total household’s

energy consumption down to individual appliances, using purely analytical

tools. Despite increased research efforts, NALM techniques that can dis-

aggregate power loads at low sampling rates are still not accurate and/or

practical enough, requiring substantial customer input and long training

periods. In this thesis, we address these challenges via a practical low-

complexity low-rate NALM, by proposing two approaches based on a com-

bination of the following machine learning techniques: k-means clustering

and Support Vector Machine, exploiting their strengths and addressing

their individual weaknesses. The first proposed supervised approach is

a low-complexity method that requires very short training period and is

robust to labelling errors. The second, unsupervised approach relies on a

database of appliance signatures that we designed using publicly available

datasets. The database compactly represents over 100 appliances using

statistical modelling of measured active power. Experimental results on

three datasets from US (REDD), Italy and Austria (GREEND) and UK

(REFIT), demonstrate the reliability and practicality of the proposed ap-

proaches.
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Chapter 1

Introduction

1.1 Introduction

Energy demand has dramatically increased in recent years especially in urban areas.

Currently, buildings in Europe alone are responsible for 40 % of energy consumption

and 36 % of CO2 emission [1]. The European Union officially adopted a plan of 20%

improved energy efficiency by 2020 [1]. To meet that goal, an annual reduction of 1.5

% in national energy sales must be made, which should be facilitated by a rollout of

close to 200 million smart energy meters [1] [2].

The U.S. Energy Information Administration (EIA) published results [3] with an

international energy projection for the period of 2012 to 2040. The outlook included

residential energy consumption comprising energy used for heating, cooling, lighting,

water heating and consumer products. According to this report, Mexico and Chile

combined energy demand grow by an average of 1.9% a year from 2012 to 2024, while

electricity becomes the major residential energy source, increased from roughly 37%

of their total energy use in 2012 up to 60% in 2040. In Europe, many countries

have relatively low economic growth, therefore, energy consumption estimations were

slightly lower than earlier years. However, electricity remains the fastest-growing

source of residential energy. In Asia, Japan’s energy consumption steady declines,

but China and India together will hold a share of 27% of the world’s total residential

energy consumption in 2040. Indeed, the rapid increase in China’s growth leads to an

increase in energy consumption of 2.4% a year in average from 2012 to 2040. Middle

East holds a share of 6.6 % of the total residential energy consumption in 2012, but

1



it is estimated to grow by an average of 1.7 % a year, which is far higher than the

world’s average of 0.9% a year from 2012 to 2040 due to the increasing demand for

cooling [3].

Renewable energy and nuclear power are the world’s fastest-growing energy sources,

each increasing with a pace of about 2.5 % per year. However, fossil fuels will con-

tinue to supply nearly 80 % of the world’s energy use through 2040 [3]; they are also

expected to end in the near future causing an energy crises.

Load monitoring and management are urgently needed in order to lower the unnec-

essary energy consumption [4] [5]. This could also encourage appliance manufacturers

to upgrade traditional household appliances to energy efficient ones [6]. A possible

solution to lower the increasing demand of power usage is to implement smart energy

grid using feedback schemes based on smart meters [7]-[9].

A large scale deployment of smart meters in households has started or is about to

start in many countries worldwide. For example, the UK Government has committed

utilities to a roll out of automatic meter reading (AMR) systems by 2020. It is

anticipated that by 2020 all UK households will be equipped with an AMR system

that measures and displays in real time aggregate energy usage with an in-home

display unit [11]. In Europe, Italy has the largest smart meter deployment but other

countries are following its lead. For example, France plans to deploy about 35 million

smart meters by 2020 and Spain plans to deploy 13 million smart meters by 2018 [12].

Australia launched a smart metering project in Victoria state at the end of 2013

aiming to install 2.75 million residental smart meters [13]. The U.S Government

agreed a roll out of about 58.5 million smart meters in 2014, about 88 % were resi-

dential installations [3].

The Middle East smart meter market is forecast to reach 16.1 million units by

2022 with roughly 86 % of homes and businesses in the region expected to have smart

meters installed [14]. For example, the Qatar’s first phase of smart meter instillation

is currently under deployment in Doha area and one million smart meters are to be

deployed across the Emirates by 2020 [15]. Other countries in the region are following

the lead of Qatar and Emirates, like Lebanon, which announced in 2014 to install 1.2

million units and Iran, which launched a limited smart meter project for a trial that

was announced in April 2016, with 33 million meters to be installed over a period of

10 years [14].
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Smart meters or load monitors installed in households could possibly provide

energy information feedback, which could help consumers to learn about their en-

ergy consumption habits. Timing of energy consumption and dynamic pricing plan

brought to consumers could result in persuading them to change their energy con-

sumption routines toward off-peak period for lower billing, which could hopefully

reduce energy peak demand. By managing the peak demand, we could prevent power

outage from occurring on the grid during high power demand usage periods. However,

electricity flows will be managed in a better way by utilities during peak periods and

navigate effectively through system emergencies by using coordinated and networked

smart meters [7], [10].

This global investment promises significant improvements in energy demand via

automatic, more efficient and more informed billing. However, to provide a richer

energy feedback, information about consumption of individual appliances is necessary.

Indeed, up to 20% of reduction in energy consumption is expected via appliance-

feedback and specific appliance replacement programs [16].

1.2 Intrusive vs. Non-intrusive Load Monitoring

Load monitoring is made by inserting a monitoring device between the socket and

the appliance and then recording its operation. This method is generally called ”in-

trusive” load monitoring, and up to date, is still considered inconvenient for large

scale implementations as it requires a recording devise for each appliance of interest

in order to monitor their power consumption or other load activities [17].

Non-Intrusive Appliance Load Monitoring (NALM), also referred to as NILM or

NIALM [19], presents an attractive alternative, because it performs disaggregation at

the metering point and does not require any measuring devises installed to individual

appliances [17, 18].

With today’s technology and increasing deployment of smart meters, monitoring

individual appliances using individual sensors in a house is often impractical and

expensive, especially having in mind that the number of electrical devices at home

are rapidly increasing. On the other hand, energy disaggregation via NALM offers

separating total energy readings obtained from a single energy meter into power loads

of each appliance used, based purely on computational approach.
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Figure 1.1: An aggregated load data obtained using single point measure-
ment from REFIT dataset House 9 based on Hart’s method.

1.3 Early Work on NALM

NALM was introduced in the research literature in 1982’s by G. W. Hart [19] [20].

Later research in the area of NALM showed that NALM implementation could be

very useful to consumers with installed smart meters [21]-[24].

Hart’s method is based on disaggregating electrical loads by examining only the

appliance specific power consumption signatures within the aggregated load data

(total load) as shown in Figure 1.1 [25]. Hart assumed that each load in a house

consumes a unique amount of real power and reactive power. Therefore, his work

used real power (P) and reactive power (Q) to detect variations of loads (∆) in the

∆P-∆Q plane as shown in Figure 1.2 using the steady state variations. ON and OFF

status of a certain load, based on Hart’s method, are determined by observing the

change in real and reactive power [22],[26]-[35]. However, results in Figure 1.2 show

some overlapped clusters because there are some appliances with similar real and

reactive consumptions, and in these cases, more signatures are required to identify

these loads with more unique characteristics [25].

Since Hart’s work, many NALM algorithms have been proposed that improve the

initial design of [19] and adapt to advances in sensor technology, capturing energy
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Figure 1.2: The Loads On Real and Reactive Power Plane based on
Hart’s method [25].

measured at a range of sampling rates, generally in the order of kHz. However,

with large-scale smart metering deployments on the way, an increased interest in

NALM algorithms that work at lower sampling rates, in the order of seconds and

minutes made NALM a hot research topic [25]. It is not only the cost of the sensing

technology [16], but also computational and storage cost as well as implementation

efficiency that are key drivers towards the wide deployment of low-sampling smart

meters. However, so far, there are no widely available efficient solutions for NALM,

that offer high accuracy and low complexity smart metering [37, 25].
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1.4 Problem Statement

The goal of this research work is to develop load disaggregation methods at the

metering point and explore potential applications. By doing so, we could add new

services to customers. The objective of this thesis is to propose and test reliable and

low-complexity disaggregation solutions.

The approaches discussed here require that the aggregate power drawn by all

appliances in a household is measured periodically. We use three available datasets

of active power measurements, REDD from United States (US) [39], GREEND from

Austria and Italy [40] and REFIT from United Kingdom (UK) [41] to simulate daily

appliance activities in a household. For example, Figure 1.3 shows few-hour power

usage for seven known appliances from the REFIT dataset House 17 [41]. The concern,

as illustrated in Figure 1.4, is how to effectively separate these individual appliances

in real-time using only total active power.
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Figure 1.3: Daily energy consumption from REFIT dataset House 17.
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1.5 Novel Contributions

The key issues with current low-sampling rate NALM methods are high complex-

ity, low accuracy and a requirement for impractical training which means intensive

amount of training data which could slow the system response time. To overcome

these problems, we propose an efficient low-complexity supervised NALM approach

that combines k-means and Support Vector Machine (SVM) [42]. In particular, to

benefit from high classification performance of linear and non-linear SVM and low

computational cost of Trained k-means clustering, we effectively combine conventional

k-means and SVM obtaining a hybrid method that outperforms k-means and SVM

classification alone. We use k-means to cleverly select a subset of input data used to

train an SVM. By training the SVM only on a small set of representative samples,

we are able to significantly reduce computational cost.

To make this supervised approach practical and reduce or remove the need for a

labeled training dataset, we build a database of appliance signatures by acquiring ap-
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pliance power load measurements from houses as well as processing publicly available

datasets. Such a database is then used to develop an unsupervised approach that re-

quires no training (and hence no client’s input). The database is a compact collection

of appliance power load statistical features that is used for energy disaggregation in

unknown houses. It is populated using open source datasets from US [39], Austria

and Italy [40], and UK [41]. Some similar attempts are recently reported in [120] but

for US houses only and high data-rates.

The main contributions of this thesis are:

• Novel real-time low-complexity Linear and Gaussian k-means and SVM-based

NALM method for low sampling rate data;

• Innovative appliance-based selection of extracted features that maximize per-

formance;

• Detailed experimental evaluation using different training sizes and errors in

labeling the training data;

• Comparison with Trained k-means and Linear and Gaussian SVM in terms of

time complicity and accuracy ;

• A generic database of appliance load profiles populated from 34 houses in UK,

Europe, and US, containing over 200 appliance signatures.

• A low-complexity NALM approach that uses the developed database for train-

ing, irrespective of the house, and hence does not require customer input; using

House-agnostic training data and compared with House-specific training data

approach.

• Comparison with Linear and Gaussian SVM approaches using three households

from the REDD data set [39], GREEND data set[40] and REFIT data set [41].

• Comparison with state-of-the-art Hidden Markov Model [43].
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1.6 Thesis Layout

The rest of this thesis is organized as follows: Chapter 2 brings a brief background

on NALM and available methodologies. Chapter 3 describes the proposed methodol-

ogy of data processing and classification algorithms with an illustration of the used

NALM algorithms. Chapter 4 studies the proposed algorithms and tests their perfor-

mance and robustness as a supervised approach. Chapter 5 introduces a database of

load-profile signatures as well as a deep investigation of our signature database with

two methods to cluster appliance signatures into groups and sub-groups based on

their Gaussian signature similarities. Chapter 6 introduces two novel unsupervised

methods and their performance in comparison with the supervised approach. The

last chapter discusses our main findings, limitations of our frameworks and future

work.
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Chapter 2

Background and Related Work

2.1 Introduction

NALM is a challenging task, but has the benefit of helping home owners and occupants

conserve energy, which can be established by knowing how appliances within the home

are used and how much energy they consume.

Figure 2.1: Flow chart for a typical classification method.

Figure 2.1 shows a block diagram of a typical NALM algorithm [44]. This chapter

is organized in much the same manner, with each section discussing details of each of

the blocks in the diagram as in [46], [47], [43] and [25].

Existing NALM approaches can be roughly categorized into event-based and

state-based depending on whether or not they rely on detecting and classifying each

appliance-state transition [45]. Event-based NALM systems use a filter or a pre-set
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thresholds to detect when a power signal changes its state. Traditional event-based

NALM methods [19] consist of signal pre-processing, edge detection and feature ex-

traction followed by classification. After acquisition, signal pre-processing can be

established in the form of power normalization, filtering (for signal smoothing and

getting rid of sudden peaks), and set a threshold values to remove small power loads

that would appear as noise as well as the base-power load, from appliances that are

always running. Next, edge detection is performed to identify events of appliances

switching on, off or changed state. Edge detection is followed by extracting features

in an identified event window, where a window of events is created between every

detected events. Classification is then used to group sets of extracted windows with

have similar characteristics, such as power levels, time profile, reactive components

etc.

2.2 Measurement Acquisition

Any NALM method starts with collecting power meter reading from sensors placed

on a power line/lines that needed to be monitored. In this section, we discuss three

important issues that are considered when installing a power meter in a household:

• Measurement Type: which indicates the type of power load we are monitoring

such as real power, reactive power, current waves, etc.

• Sample Rate: which indicates how many samples per second, minute or hour

we are storing.

• Sensing Type: which indicates how many meters are installed in a single house-

hold.

2.2.1 Measurement Types

Many researchers used current and voltage and related loads to disaggregate appli-

ances from a single point reading. Figueiredo et al. [48] [49] used voltage, current,

and power factor measurements stating that a simple power load type can provide a

high accuracy results with steady-state events matching. Gupta et al. [50] obtained
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interesting results using more advanced load measurements, Electromagnetic Inter-

ference (EMI) spectrum analysis, where similar appliances showed similar signatures

but the EMI sensor placed in a home affected the readings from appliances and con-

tributed to noise. However, the authors were still able to detect near simultaneous

appliance events at 102 milliseconds apart.

Likewise, Berenguer et al. [51] found that tested appliances show some unique

start up signatures using current short impulses when they were turned on. Tsai and

Lin [52] tested five different appliances: fan, florescent light, radio, and microwave

oven. They used current characteristic measurements such intensity, peak and average

values in current pulses. They captured current waveforms as the appliances were

being turned on at different voltage phase angles creating different appliances load

profiles. However, they had to down-sample their measurements from 1 microsecond

to 500 microseconds for memory requirements.

Inspired by Hart [19], Norford and Leeb [53] collected commercial buildings active

and reactive power readings focusing on transient waves. They concluded that active

power was more useful than reactive power in their transient detector. They also

noted that transient signatures helped detecting appliances start up but did not

detect appliances that were running. Laughman et al.[54] modified Hart’s approach

by adding the third dimension to the ∆P − ∆Q plan which was harmonics. They

noted that adding transient harmonics could lead to a better distinguish in appliances

that were overlapped using ∆P-∆Q plane only.

Fisera and Macek [55] also used active and reactive power in conjunction with the

existing building management system. They noted that using control signals caused a

higher computational cost, especially when more appliances were introduced, however,

they managed to detect appliances in near real-time disaggregation.

Researchers like [Kim et al. [56], Berges et al. [44], Zeifman [57], Kolter et al. [58],

Kolter and Jaakkola [59], Parson et al. [43] ] used real power measurements. Kim et al.

[56] found it difficult to disaggregate steady-states and had to use appliance changing

states. They also concluded that more appliances considered means less accuracy,

from one appliance (100 %) to eight appliances with accuracy drop (between 73–65

%). Berges et al. [44] studied only one appliance (refrigerator), and they found it

significantly hard to detect when it changed its states to defrost cycle, due to the

need for better signature and more advanced machine learning technique than kNN.

12



Zeifman [57], stated that six days of active power data took two minutes of processing

off-line using MATLAB, and concluding that ”real-time implementation is feasible”.

Kolter et al. [58], Kolter and Jaakkola [59] were again influenced by smart meters.

Using complex unsupervised machine learning algorithms, they managed to success-

fully disaggregate appliances that are similar in terms of power load. Parson et al.

[43], collected real power measurements across six different homes, used then to build

and tune general appliance models using Hidden Markov Models.

Power meters installed in homes can store only active power readings for billing,

therefore, in this thesis, we focus on measurements using active power only.

2.2.2 Sample Rates

In general, the higher sampling rate the better the accuracy to correctly detect house-

hold appliances. Analyzing appliance events needs as much information as possible,

but that comes at the cost of memory and computational complexity. Based on the

sampling rate, NALM can be: high sampling rate (>60Hz) and low sampling rate

(<60Hz). High frequency sampling has to be greater than 1 reading every 16.667 mil-

liseconds (Norford and Leeb, [53]; Liang et al. [62]). Researchers have used different

ranges of sampling rates such as 10 kHz (Berges et al. [44]), 15kHz (Chang et al.

[60]), to rates of 100kHz and over (Patel et al. [61]).

In this thesis, we focus on low-rate NALM solutions, where sampling rates are in

the range of seconds and minutes due to memory needs and complexity cost and also

availability, since we rely on installed smart meters.

2.2.3 Sensing Types

To store power data in order to test algorithms, two sensing techniques are avail-

able: single-point sensing and multi-point sensing. As it seems clear from the names,

single-point and multi-point indicate the number of sensors used to collect data in a

household.

Single-point sensing is usually placed in the point where main electricity breaker

is, which is mainly at the entrance of a house. In this technique, there is no need
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to install any extra sensors, which provides a relatively low cost method but requires

occupants to manually record their activity to provide ground-truth to researchers,

to run their experiments. Researchers used single-point sensing such as [(Froehlich

et al. [63]), (Intille et al. [64]), ( Tapia et al. [65])] taking advantage of low-memory

requirements but had a questionable ground-truth as it can be prone to human errors

unlike multi-point sensing.

Multi-point sensing refers to monitor power consumption using more than one

point. Researchers like (Berges et al. [44]; H. Kim et al. [56]; Tsai & Lin [52];

Froehlich et al. [63]; Zeifman [57]) have used multiple sensors to monitor individ-

ual appliances running in parallel with total meter reading having specific appliances

plugged into their own plug-level meter; this provides an accurate ground-truth. How-

ever, it has higher computational cost in case of a greater number of appliances being

monitored and tested due to memory capacity.

2.3 Event Detection

Detecting appliance-events (when an appliance turns ON or OFF) as they occur

can be challenging and still under development. Without a reliable way to detect

events, NALM algorithms cannot proceed with the tasks of feature extraction, which

calculates certain features per event-window and classification which is deciding which

event belongs to what appliance. Events not detected contribute to inaccuracies. Two

methods are usually used by researchers which are: Edge detection and signature

matching, using probabilistic approaches. The two methods have their advantages

and disadvantages as it is discussed in this section.

2.3.1 Edge Detection

Monitored power constantly changes its state depending on which appliance is running

and in what mode (eg, operating or standby), when power reading goes high or low,

creating a raising edge or falling edge (edges are threshold values to detect possible

change in power values). These edges (if high enough) can signal that an event has

occurred. This is known as edge detection which is usually used in NALM methods

to create event windows. However, researchers (Norford and Leeb [53], Baranski and

Voss [66], Tsai and Lin [52], Liao et al. [105]) have used different thresholds to detect
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edges; if a threshold was set too high then it will not detect small appliance activities,

and if it was too low then it will be too sensitive and creates many events for the

same appliance.

Norford and Leeb [53] used two thresholds of 3 kilo Watt and 5 kilo watt [kW] to

detect appliances activity in commercial buildings. However, they argued that their

edges were not suitable to detect residential homes, because household appliances

consume much less power. For example, a heat pump, would only consume about 1.5

kilo watt in average. Likewise, Baranski and Voss [66], used a much lower threshold of

80 watt, as they found that most household appliances run in the range of 200 watt.

On the other hand, Tsai and Lin [52] used an adaptive threshold. They represented

their threshold step based on rising or falling of the current value ∆I in Amps with a

different value α in the measured current signal. Leeb et al. [67] used complex multi-

scalar edge detectors that can correctly identify events on multiple measurements but

needed some tuning to correctly identify events.

Luo et al. [68] published work on extending Generalized Likelihood Ratio (GLR).

They monitored HVAC loads in commercial buildings at different frequencies (8Hz,

1Hz, 0.5Hz, etc). GLR used a ratio of probability distributions before and after a step

change in power load was detected. The natural log of this ratio was used to calculate

a ”decision statistic”. In other words, instead of using edge detection they used a

statistical algorithm that is triggered on deviations from the mean power reading.

After five hours of monitoring, they were able to detect 16 out of 17 on/off events.

Since we are concerned with low-complexity methods, we use multiple thresholds

to detect different ranges of appliances in this thesis.

2.3.2 Signature Matching

Berges et al. [44] argues for a probabilistic approach towards event detection, and

used the Generalized Likelihood Ratio (GLR) work from Luo et al. [68]. Berges et al.

[44] modified the work by continuously computing the standard deviation instead of

setting fixed event parameters during initial training. They added a ”voting scheme”

that allowed each sample taken within the detection window to vote optimal change

value to be selected. These modifications to the GLR improved the accuracy of the

output.
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Kolter et al. [58] used a probabilistic approach because edge detection is not

suitable for very low sampling rates (hourly in this case). The authors used a sparse

coding technique that focused on the task of disaggregation not classification and

used hourly energy consumption amounts rather than real power readings. They

then trained basis functions to detect appliance usage. They note that edge detection

works best with high frequency sample rates.

2.4 Feature Extraction

Once an event is detected, it is compared to certain values that is calculated as

a feature based on a wide range of measured characteristics such as current, real

power etc, would be of significance. These different features usually lead to various

signatures which are categorized into steady-state or transient-state and a derived

signal transform. The NALM algorithm should be trained by labeled data of the

feature selected. A proper set of features will be extracted and compared against

the labeled data to ensure a precise classification task, hence accurately identifying

appliances when an event happens. The following subsections present the proposed

signatures in the current literature.

2.4.1 Steady-State Signature

A signature is a certain value corresponds to certain behavior. Steady-state signature

is one of the signatures that is usually devoted to a monitored signal which does not

vary or varies very little with respect to time. It can be formally defined as a fixed

sum of waveforms or a finite number of waveforms.

The steady-state signatures were defined by Fiqueiredo et al. [69] [48] as ” a dif-

ference between any two samples of a sequence that does not exceed a given tolerance

value”. They carried out their investigations into real power steady-state signatures

only, however, very similar signatures were shown based on different appliances, re-

sulting in significant classification errors. Therefore, ratios between rectangular areas

that are usually characterized by the so-called successive states values were identified

to differentiate the appliances.
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It is worth mentioning here, that steady-state signatures might become unclassified

particularly for low powered equipment, such as cell phone charger, smoke alarm etc.

This can be attributed to no change in power values, thus the event cannot be easily

detected and will be considered as noise.

2.4.2 Transient Signature

Transient signature is a time dependent type of signatures which usually occyres at

the beginning of appliance operating cycle. In fact, an appliance normally consists of

various electrical components (for example transistors, resistors, capacitors etc.) and

noticeable alterations in the power signal can occur, which signify an incomparable

transient signature [Laughman et al. [54]; Berenguer et al. [51]].

Signatures of different appliances and different monitored power lines can be cap-

tured by using the transient waveform analysis procedure [for background information

see Chan et al. [70]; Tse et al. [71]; Leeb et al. [67]].

Norford and Leeb [53] conducted a study to store transient signatures in the form

of a ”precise time of v-sections”, where v-sections are considered to be the monitored

variation through the the transient signature. A study was carried out by Tsai and

Lin [52], who did the calculation of the maximum, average, and root mean square

values of the transient signature and represented them as features, which were used for

subsequent classification applying neural network and a k-nearest neighbor algorithm.

In this work, we focus on steady-state features as high frequency sampling is

required to obtain a high degree of signal uniqueness to capture transient signatures,

as well as, transient stage is usually fast, then calling for more expensive acquisition

equipment.

2.5 NALM Classification Strategies

Classification or Machine Learning technique is the most important step in NALM;

machine learning is used to help computers or robots to make a decision when exposed

to new data without being explicitly programmed. In this section, we provide details

on famous machine learning techniques.
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2.5.1 Supervised Learning Methods

Supervised learning is the task of learning information from a labeled data which can

be then used to decide the outcome for a classification problem.

2.5.1.1 Optimization-based Methods

Optimization based methods deal with the task of power load disaggregation as an

optimization problem, as they compares between an unknown load with possible

known loads that are present in an appliance dataset trying to find the best match

between them with the lowest error [62]. It can be formed mathematically as:

class = argmini ‖ŷi − yi‖ (2.1)

where ŷi is the appliance feature available in the signature library, and yi is the

new feature extracted due to occurrence of an unknown event of an appliance i [62].

However, the main challenge using this method is with overlapped loads, as dis-

aggregation algorithms need to consider possible overlapped appliances. Researchers

[73],[62],[66], [75] proposed different techniques to solve the optimization problem.

In [73], a number of appliances was monitored and their switching active power

events were stored and matched to new testing events using an optical sensor sam-

pled by one second, clustered their training data using Self-Organizing Data Analysis

Technique (ISODATA) and adjust clusters based on appliance types.

In [62], researchers used a collection of algorithms in parallel combining optimiza-

tion and pattern recognition methods to compare an unknown power load with a set

of known appliances and the most common decision by all of them is then voted to

be the correct decision.

In [66], researchers used Genetic algorithm that works similar to pseudo code

genetic to detect unknown appliances, pseudo code genetic algorithm presented in

[76]. By doing so, the genetic algorithm combines different states to create appropriate

finite state machines due to constraints of electrical end uses. However, their method

managed to detect typical on and off loads.
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In [75], a technique based on integer programming was introduced. The authors

measured current waveforms for selected appliances to form a pool of signatures in a

dataset with a high sampling rate of 25 micro seconds. However, this method suffered

from similar waveform appliances not being correctly detected such as fluorescent

lamps.

The major drawback of these methods is that it becomes a challenge to reduce

the complexity of these methods especially if any unknown loads are present in the

aggregated power load data. Additionally, appliances with similar or overlapping load

signature are difficult to discern using these approaches.

2.5.1.2 Pattern Recognition Methods

Pattern Recognition Methods are very common method used by researchers to detect

certain behavior in appliances. Researchers in [77], used a Bayesian approach to detect

household appliances using real power and state-change ( change in operating or

standby) information. Naive Bayes classifier was trained using individual appliances

and used to classify total power load measurements. However, the method showed

good performance but only a small number of appliances were tested. Likewise,

in Sanquer [78], Hierarchical Bayesian method to reduce the computational cost as

feature extraction and training steps was performed jointly using a set of features.

Their method tested two appliances vacuum cleaner and refrigerator over a database

of transients.

Researchers have shown that the temporal information in combination with real

power values can facilitate the power load disaggregation algorithms [37], [124]. How-

ever, Artificial Neural Networks (ANN) [Ruzzelli [79], Kelly [80], Chang [60]] was

proven to perform well for the task of power load disaggregation due to their abil-

ity to incorporate in their learning, temporal as well as appliance state transition

information,

In [60], the authors proposed a Back-propagation Artificial Neural Network (BP-

ANN) method that uses Particle Swarm Optimization (PSO) algorithm to optimize

the parameters in order to enhance performance of ANN, using steady-state signatures

such as real and reactive power. By finding the optimum solution of power load

pattern recognition, they managed to significantly improve their performance.
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In [80], a combination of three different Neutral networks (NN) were used together

to perform a deep machine learning task; roughly 1 to 150 million trainable parameters

were tested using five known appliances which are fridge, washing machine, dish

washer, kettle and microwave samples in 6 seconds. The first Neutral Network model

is Recurrent NN which is a feed forward NN and has only one dimensional input and

output because it suffers from collapsing with limited memory. The second layer of

this approach is called De-noising Auto-encoder NN, this technique is mainly used

in image processing which is basically eliminates background noise from an image,

it is done by encoding the input and them decode the output by a compact vector

representation. The final layer is responsible for the start time and end time of

a targeted appliance event window, basically the start time in a time window is 0

and end time is 1 and it is 0.5 half way through. However, this method showed

well performance for two-state appliances but does not perform well on multi-state

appliances such as the dish washer and washing machine.

Decision Tree (DT) has been used for power load disaggregation also and showed

good performance. In [81], multi-class DT is used to classify four loads; battery

charger, fluorescent lamp, personal computer and incandescent light bulb sampled

at 10 seconds and voltage, current and phase angle were recorded. After applying

Discrete Fourier Transform to extract the fundamental frequency component, the

change in these power components is calculated to help developing the classification

tree model. It was concluded that an increase in accuracy with up to 26.27 % was

made by using the change in power compared to using the actual measured power.

In [82] an application of discrete wavelet transform was used in the process of

NALM using an ensemble of DT, by assigning weights to the predictions made by

each base classifier testing the same four loads; battery charger, fluorescent lamp, per-

sonal computer and incandescent light bulb at the transient state. It was found that

third order (out of five) Daubechies filter (Daub3) can achieve highest classification

accuracy reaching 95.83 % and 93.06 % for training and testing respectively. Also it

was concluded that both accuracy and computational cost increased when increasing

the number of decision trees.

Graphical Signal Processing (GSP) is a signal processing concept that effectively

captures correlation among data samples in time and space by embedding the struc-

ture of signals onto a graph but suffers from high computational cost. In [83], two
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novel methods were introduced using GSP. The first method minimizes the total num-

ber of iterations. The second method further refines the total number of iterations

using a simulated annealing technique which allows to split the data into manageable

windows in order to decrease the execution time. It was concluded that, both meth-

ods showed competitive performance and the second method successfully reduced

complexity, however, it did not enhance performance.

On the other hand, Support Vector Machines (SVM) have shown good perfor-

mance in classifying appliances especially using harmonic signatures and low fre-

quency features. Researchers in [84], generated data from 10 houses in India with

roughly 30 devices in a minute-wise logs. They compared performance between Sup-

port Vector Machines (SVM), Decision Tree (DT), Naive Bayesian and Artificial Neu-

ral Network (ANN); the best performance was accomplished by SVM with roughly

30% accuracy. However, they also argued that by adding time stamp as a variable to

classifiers, accuracy significantly increased to 70%.

In [85], authors used Linear SVM in comparison with polynomial SVM and ANN

to disaggregate similar appliances such as LCD TV, CPU and laptops using Discrete

Wavelet transformation coefficients as an input to their classifiers. However, Lin-

ear SVM gave the best performance with 100% accuracy in correctly detect similar

appliances.

In [49], authors used a combination of multi-state linear and Gaussian SVM tech-

niques along with k nearest neighbours with k=5. They collected steady state data

with roughly 15 seconds for six appliances including microwave and 2 LCD screens.

They concluded that linear SVM and 5NN gave the best performance against all with

up to 97% F-measure.

In [86], linear, polynomial and Gaussian SVMs and ANN were put into comparison

using data from eight devices by generating fast Fourier transform coefficients as

input to their classifiers. They concluded that all methods performed well but SVM

algorithms showed relatively high computational resource requirements.

In [87], authors tested 24 appliances with excluding one appliance out for testing

and performed one-class SVM. However, they used Receiver Operating Characteristic

(ROC) curve to evaluate false positive and true negative values and achieved a total

rate accuracy of 97.7%.
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A hybrid Support Vector Machine/Gaussian Mixture Model (SVM/GMM) model

has recently been proposed by Lai et al.[88] in which GMM is used to describe the

distribution of current waveforms, so as to find power similarity; while an SVM per-

forms classification on the extracted power features in order to recognize operations

of targeted loads.

SVM have shown significant performance in classifying appliances especially using

low frequency features and high number of existing appliances. However, it provides

high computational cost, therefore, SVM will be the main approach in this thesis,

with the focus on lowering its computational cost for real-time response.

2.5.2 Unsupervised Learning Methods

Unsupervised learning methods do not require labeled data which is a label for every

event-window for which appliance is running, unlike supervised learning method, but

often need preset threshold values to study similarities between power data.

2.5.2.1 Hidden Markov Model (HMM) based methods

A widely used structure for modeling appliance consumption behavior is the Hidden

Markov Model (HMM). It requires tunning a set of hidden parameters, such as the

operation condition of an appliance, and an estimation of consumption data. There

are different versions of HMM used by NALM: Figueiredo et al. [69] used Expectation-

Maximization (EM) to tune models before disaggregation; an optimization step is

needed to be used to estimate the power demand of each appliance.

Kim et al. [89], used factorial Hidden semi-Markov model (FHSMM) to model

appliances to provide a better estimation of the state occupancy durations of the appli-

ances, introducing a Conditional FHMM (CFHMM) to integrate additional features

related to the behavior of the appliances that are used in the house, using Expecta-

tion Maximization (EM) algorithm and Maximum Likelihood Estimation (MLE) to

tune other features like ON-duration distribution, OFF-duration shape, correlation

of appliances and behavior of occupants.

Kolter and Jaakkola [59], used Additive Factorial hidden Markov models (FH-

MMs), where each HMM chain produces its own emissions, but observations are
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defined as collections of the independent emissions using an optimization problem

called Additive Factorial Approximate Maximum A-Posteriori (AFAMAP).

Parson et al. [43] used HMM to model each appliance type in a household, ex-

tracting only the signal that is useful for the appliance tunning by using a sliding

window method in a given aggregated data. Pattem [90] used HMM with segmented

Viterbi to successfully disaggregate as many known appliances as possible by using

ON/OFF power transitions as a signature and also applied residual analysis to handle

lower power signatures.

Johnson and Willsky [91], benefit from using Hierarchical Dirichlet Process HMM

(HDP-HMM) structure to solve large scale complexity from provided data, and pro-

vided semi-Markov modeling (HSMM) to define the Markov transition with higher

accuracy.

Finally, in [92], a Graphical Signal Processing (GSP) method was introduced

using low-rate four real houses, it was concluded that blind GSP method provided

comparative performance to that using supervised approach.

2.5.2.2 Source Separation

The source separation problem is the task of recovering an original event from a com-

bination of events. Figueiredo et al. [63] used the single-channel source separation

method to solve energy disaggregation problem; his method was based on a Non Neg-

ative Matrix Factorization (NMF); where a matrix of events is factorized into usually

two matrices with no negative elements in all three matrices. Such approximation

makes the resulting events more solvable. However, in order to improve the per-

formance, additional information about dependencies between different appliance are

used, introducing the technique called Source Separation Via Tensor and Matrix Fac-

torizations (STMF); using these methods together helped making the dependencies

between the sources clear.

Wytock and Kolter [93] used source separation for energy disaggregation by finding

a correlation between different appliances in a convex optimization problem; assuming

that every appliance can be represented as a linear function of some component bases

and performed a contextually supervised method which is based on temperature time

series, the non-linear dependence, represented as Gaussian functions, is defined as
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basis for the energy consumption. However, after theoretical analysis, it was found

that linear independence between features for different signals is essential to perform

accurate source separation.

Goncalves et al. [94] present a Blind Source Separation (BSS) using Genetic

k-means algorithm to obtain a representation of the appliances consumption state

from the observation of steady-state event in real and reactive power profile. After

that, Matching Pursuit (MP) method is used for reconstruction, by using the cluster

information to characterize each appliance.

Liao et al. [95] and Elafoudi et al. [96] presented a method based on Dynamic

Time Warping (DTW) for template matching by performing a non-linear mapping of

new detected events. After a signature detection within the aggregate power consump-

tion, classification is then performed by calculating the minimum distance between

the signature detected and the matching cluster.

2.6 Evaluation Measurements

There are different evaluation methods that are used by researchers such as basic

accuracy, Precision, Recall and F-Measure.

2.6.1 Accuracy

No consistent method with respect to measure performance accuracy was found, ac-

cording to (H. Kim et al. [56]; Zeifman & Roth,[37]). With the new efforts that are

being devoted to this subject in particular, a progress or even a slight change will be

surely seen over the next decade.

Despite of numerous datasets have been released in public in order for researchers

to conduct their own testing, the majority of those researchers still deal with the basic

form in assessing the performance accuracy.
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2.6.1.1 Basic Accuracy

The basic accuracy [52] measure employed by the vast majority of NALM algorithm

researchers is expressed as:

Accuracy =
TP

total number of events
(2.2)

where true positive (TP) presents the correctly detected event. Tsai and Lin [52]

investigated this accuracy measure by using correct signals matched and showed a

sufficient accuracy of approximately 95%. A recognition accuracy on training and

testing results was implemented by Chang et al. [60], who reported as high as a

100% accuracy. One of the drawbacks of the aforementioned reports is that the

classification’s performance was not assessed, so researchers may not rely on the

work outcomes (Metz, [97]; Sokolova et al. [98]). For example, a fridge would have an

accuracy measure of 90% as long as it operates only 10% of the time whilst an NALM

algorithm ( 100% of the time) shows that the fridge was not working. H.Kim et al.

[56] concluded that accuracy results can be ”very skewed” particularly when dealing

with appliances that are off-power and also appliances that have a relatively rare

event. Consequently, a high accuracy will be noticed as better accuracy performance

measures are needed.

2.6.1.2 Total Energy Correctly Assigned (TECA)

Another form of accuracy measurements is Total Energy Correctly Assigned (TECA)

[92] which described as:

Acc = 1−
∑T

t=1

∑K
i=1|ŷt

(i) − y(i)t |
2
∑T

t=1 ȳt
(2.3)

where T is the number of test samples. ŷt
(i) denotes the estimated power of the ith

appliance and y
(i)
t is the actual energy consumption by appliance i at a time instance

t(i). ȳt denotes the observed total power consumption at time instance t(i) [92].

In [39] and [80] authors used TECA to measure accuracy of their approaches of

FHMM and Neural Nets respectively.
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2.6.1.3 F-Measure

F-Measure is one of the accuracy measure forms that usually deals with the classifi-

cation of text/document and information results. Figueiredo et al. [48] [49] examined

their NALM algorithm accuracy by applying F-Measure based on 50 samples of data

for each appliances. Berges et al. [44] carried out an investigation into both training

and testing of their NALM algorithm by using F-Measure, for comparing consump-

tion of 5.5 days. The rational was to compare the NALM algorithm predictions of an

appliance against corresponding readings supplied by a plug-level meter. Kim et al.

[56] stated that ”F-Measure measures binary classifier outcomes and power signals

cannot be considered binary”. Accordingly, it can be claimed that a better accuracy

performance measure is importantly required.

However, in this thesis, we focus on events that were correctly classified and

wrongly classified into other appliances taking into account if a feature is unique

enough or not. Therefore, we do not use standard accuracy, and we turn to use

Precision, Recall with a focus on F-Measure, as they include a sense of how many

events being falsely correctly or wrongly classified.

The evaluation metrics used are precision (PR) [105], recall (RE) [105] and F-

Measure (FM) [105] defined as:

PR = TP/(TP + FP ) (2.4)

RE = TP/(TP + FN) (2.5)

FM = 2 ∗ (PR ∗RE)/(PR +RE), (2.6)

where true positive (TP) presents the correctly detected event, false positive (FP)

represents an incorrect detection, and false negative (FN) indicates that the appliance

used was not identified [105]. The values of these measures are between 0 to 100, the

higher the values the better the disaggregation is.
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2.7 Available Datasets

It is significantly important to validate results with other approaches/researchers,

therefore, recent researches collected and published energy consumption datasets as a

reference. One can easily apply simulations on real life scenarios from different houses

and environments and compare results and finding with other researchers.

A comparison between available datasets, highlighting their main characteristics,

such as duration, number of houses and signal sampling frequency is shown in Table

2.1 [99] and [100].

We have chosen REDD [39] from USA, GREEND [40] from Italy and Austria and

REFIT [41] dataset from UK as they come from different environments with different

low sampling rates with a range of different types of appliances. REDD dataset

has 6 different houses with roughly 6 appliances each recorded at 1 Hz sampling

rate which was downsampled to 1 minute intervals, and worth 119 days in total.

GREEND dataset has 8 average homes with roughly 9 active loads each with a total

of 58 appliances with 8 seconds intervals, worth roughly 10 months in total. REFIT

dataset has 20 UK homes with roughly 9 appliances each at 8 seconds intervals, the

whole dataset is roughly worth 2 years in total.

2.7.1 Labeled Data

In order for NALM algorithms to disaggregate and classify events accurately that are

incurred by appliances, more information associated with the appliances operated at

the home as well as background knowledge relevant to the home itself, are needed

to be accomplished. Therefore, labeling the unlabeled data/events that exist in the

power signal based on selected features is the main task of the classifier; thus labeling

plays a major role in characterizing how electricity at homes is being used.

As far as labeled data is concerned, current NALM algorithms apply three main

methods: signature corpora, finite state machines (FSM) and historical data. For

example, in high frequency NALM algorithm particularly when unlabeled transient

and steady-state signatures associated with ”current readings” are compared against

a set of acquirable labeled signatures, the signature corpora is always recommended

(Tsai & Lin [52]; Figueiredo et al.[48]).
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Table 2.1: List of available Energy Datasets as summarized in [99] and
[100]. R stands for Residential.

Dataset Sampling Duration Houses/ Subject Ground Country
rate Devices truth

Dataport 1Hz 4+ years 1200+ R, Sub- US
to 1min Com, meters

and Indus
REDD 16500 Hz Several 2 / 5 R Sub- US

/ 1 Hz months meters
BLUED 12000 Hz 1 week 1 R labels US

UK-DALE 16000 Hz 2 years 6 R Sub- UK
/1 Hz meters

PLAID 30000 Hz 5 sec 55 Individual US
appliances

WHITED 44000 Hz 5 sec 9 Individual Multiple
appliances

Tracebase 1 Hz 1 day 158 Individual Germany
appliances

DRED 1 Hz 6 months 1 R Sub- Netherlands
/1 min meters

AMPds 1 minute 2 years 1 R Sub Canada
meters

iAWE 1 Hz 73 days 1 R Sub- India
meters

HES 2 minutes 1 year 251 R Sub- UK
meters

REFIT 8 sec 2 years 20 R Sub- UK
meters

ECO 1 sec 8 months 6/45 R Sub- Switzerland
meters

ACS-Fl 10 sec 2 sessions 0/10 R Sub- Switzerland
/1 hour each and office meters

GREEND 6 sec 2 years 7/58 R Sub- Italy and Austria
meters

For a given appliance, a recorded power signal over a given period of time can

technically represent signatures. A signature corpus was built by Fisera and Macek

[55] through the training stage of control signals based in building management system

(BMS). The BMS was considered as a supervisor to aid identify electrical events.

Furthermore, the classifier was trained by using steady-state and transient signatures

that were restored in corpus; which are corresponded to a time dependent event

selected. In low frequency NALM algorithms, however, signature corpora may not be
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usable, therefore finite state machines (FSM) can be considered as a reliable option

(e.g. Hart [19]; Norford & Leeb [53]; Parson et al. [43]).

Unless for continuously variable appliances, the FSM can be applied to represent a

number of various appliance types (e.g. microwave, fridge, dishwasher, oven, clothes

dryer, etc.). Unlike signature corpora, the FSM has gone beyond a ”static set of

data”. A study was published by Parson et al. [43] , who explained in detail how an

FSM can be adjusted whilst the NALM algorithm runs. The rational was to identify

a specific model of a given appliance (e,g., Clothes dryer) by using a generic trained

FSM of that appliance. Moreover, each generic appliance FSM is loaded only with

electrical characteristic values. For low frequency sampling NALM algorithm, the

historical data can be also considered as a suitable option of source of data. This

type of data source (historical data or periodic data) contains periodic power readings

that can be aggregated and characterized by using different methods ( e.g. histogram

of appliance usage). Even though historical data can be practically applied in other

ways, it is fundamentally functioned for testing datasets. The frequency of appliance

usage was analyzed by Baranski and Voss [73] [74] [66]. This was frequently subjected

to an inherited algorithm that created an FSM for that appliance.

Since labeling data is an important step, as well as low-complexity NALM, we

focus on historical submetered data to label data using information from the same

dataset used in this work.

2.8 Summary

In this chapter, we highlighted a number of recent papers that demonstrate existing

solutions to the energy disaggregation problem. We described few household moni-

toring techniques to collect real life data with different ranges of sampling rates. High

sampling rates lead to unique features but demand high memory capacity which is

pricey and impractical. Therefore, in this thesis, we focus on low-rate NALM solu-

tions, where sampling rates are in the range of seconds and minutes.

The sampling rate can also influence the type of features that can be used. Fur-

thermore, we focus on steady-state features as high frequency sampling is required

to obtain a high degree of signal uniqueness to capture transient signatures. For ex-

ample, low-rate NALM approaches can use only steady-state parameters, including
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active or real power, reactive power, power factor, voltage or current waveform. In

fact, newer research approaches use only active power measurements for simplicity

and cost, basically, power meters installed in homes can store only active power read-

ings for billing. Another reason is sensors that can be purchased and attached to

individual appliances are relatively inexpensive.

Event detection is an important step in NALM. The most popular method used

to detect events is edge detection. A pre-set threshold will be constantly compared

with the testing data in order to detect raising and falling edges. Researchers have

proposed and tested different methods of edge detection from using one fixed number

to constantly measuring variance in data. However, in this thesis, we focus on low-

complexity methods, therefore, we use multiple thresholds to detect different range

of appliances.

We have also reviewed a number of classification methods used for NALM includ-

ing supervised and unsupervised algorithms. Supervised methods include optimiza-

tion theories and pattern matching methods. Both methods showed good performance

but come with high complexity cost. However, Support Vector Machines (SVM) have

shown significant performance in classifying appliances especially using low frequency

features and high number of existing appliances, which will be the focus of our re-

search.

Unsupervised methods, include HMM-based method and source separation etc,

HMM-based method require tunning for pre-set information about appliances in the

testing dataset which can be highly complex and impractical. Source separation

suffers from low accuracy unless combined with other methods to increase their per-

formance.

We also gave details on available accuracy measurements such as basic accuracy

which can be impractical. As we will use in this thesis Precision, Recall and a focus

on F-Measure as they include a sense of how many events being falsely correctly or

wrongly classified. Also, in additional to accuracy, recently researchers have pub-

lished datasets to simulate real life household behavior. We have chosen REDD [39],

GREEND [40] and REFIT [41] dataset as they come from different environments and

sampling rates and different types of appliances.
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Chapter 3

Methodology

3.1 Introduction

The Support Vector Machines (SVM)-based classification algorithm is one of the most

popular algorithms in artificial intelligence tasks, but it suffers from high computa-

tional cost as discussed in the background chapter. Since it is very important to

receive near real-time feedback on which appliance is running in a household, the re-

duction of SVM execution time is the main focus of this chapter. Therefore, inspired

by [101]–[104], we propose a combined algorithm of k-means and SVM for NALM to

reduce computational complexity.

The disaggregation procedure usually comprises two steps; Data processing and

classification. The data processing step comprises of event detection and feature ex-

traction. Classification, on the other hand, is a common artificial intelligence objective

with the task to decide to which class each dataset point belongs to.

The focus of the chapter is in developing a new NALM classification method.

that can work with various event detection approaches. For completeness, we start

with reviewing the adopted event detection method and then proceed with the pro-

posed classification approaches, starting with Trained k-means, followed by Linear

and Gaussian SVM and finally we propose our combined approaches. After that, a

simple case study of the disaggregation algorithms is demonstrated for better under-

standing of our proposed methods.
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3.2 Data Cleaning

During data monitoring, short spikes and drop in connecting with the server could

happen, that can give wrong results in energy disaggregation task. In this thesis,

data cleaning was mainly performed by ignoring event windows with less than three

samples and consider event windows that start and end with zero values or lost data,

which means that extra zero values will not be considered as part of training or

testing data. Low values less than 20 Watt were considered to be noise and therefore

neglected.

3.3 Event Detection and Feature Extraction

The task of event detection is to detect changes in time-series aggregate load curve

due to one or more appliances being switched on/off or changing its state.

Here we closely follow the notion of [105], [106]. Let M be a set of all known

appliances in the house. Let p(ti) be active power measured at time instance ti.

Without loss of generality, in the following we denote p(ti) as p(ti) = p(iT ) = p(i),

where T = ti − ti−1 is the sampling interval.

The disaggregation task is to find pj(i) for all j, such that p(i) =
∑M

j=1 pj(i)+n(i),

where pj(i) ≥ 0 is the power load of appliance j and n(i) is the measurement noise.

Note that pj(i) is zero if the appliance is off at time instance iT . Now let W be a set

threshold. Then, if |pj(i)− pj(i− 1)| ≥ W then the appliance j has changed state at

time instant iT .

Threshold W needs to be set low enough so that for all j, if |pj(i)−pj(i−1)| ≤ W

Appliance j did not change its state and, otherwise, it did change its state. W depends

on the set of appliances being monitored, and is adapted automatically during the

training process based on the minimum state transition that needs to be detected

and the maximum variation of the active power within one appliance state across all

appliances’ states, that is

W = max{min
m∈M

pm,max
m∈M
|max(pm)−min(pm)|}, (3.1)
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Figure 3.1: Example of Event Detection and Labelling step from REFIT
dataset House 17.
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Figure 3.2: Example of Feature Extraction
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where pm is a vector of active power readings of appliance m.

Note that the value of W depends on the set of available appliances, and is adap-

tively changed as appliances are being disaggregated and removed from the aggregate

load.

An event occurs whenever an appliance changes its state. Edge detection is used

to detect events by comparing |p(i)−p(i−1)| with W . We say a window of the event

started at time ls and ended at le if an appliance changed its state at ls and le, and

|[p(ls)− p(ls − 1)] + [p(le)− p(le − 1)]| ≤ C, (3.2)

where C is parameter smaller than W .

Next, features are calculated and stored from each event window; each window

is given a label of which appliance is running as illustrated in Figures 3.1. There

are different types of features namely time and phase signatures as reported in [107].

In our experiments, extracted time features include (1) all active power readings in

the event window, (2) rising/falling edge magnitude , (3) maximum/minimum active

power value in the window, (4) duration of the event, (5) area, calculated as the area of

the irregular polygon formed by the active power (Watt) samples in the event window,

i.e., the energy of that event window in Joules (see Fig. 3.2). The optimal features

to use, for each appliance, will be selected using the training dataset. Extracted

features from each detected event are matched to the pre-defined appliance classes

using a trained classifier.

3.4 NALM Classification Algorithms

Classification is carried out in two stages: training and testing. Training is performed

using a labeled dataset mapped into a finite dimensional space. By a labeled dataset,

we mean a collection of event windows with labels indicating which appliance was

running. For example, if a microwave was switched on, the resulting event window of

active power samples will then be labeled as microwave. Testing then is accomplished

by using information from the training step to classify new input events.
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3.4.1 Trained k-means

The well-known k-means is a clustering method [108], but here we adapt supervised

k-means [109] [110], which we term Trained k-means, to perform supervised clustering

similarly to [111]. Trained k-means uses a labeled dataset to classify the input data

based on minimum distance classification similar to [112].

(a) Training step

(b) Testing step

Figure 3.3: An example of a Trained k-means separable problem in a 2
dimensional space. C1, C2 and C3 are cluster heads corresponding to
Appliances 1, 2 and 3, respectively. r1, r2 and r3 are Euclidean distances
measured with a new testing point V.

During training, aggregate events with Appliance A label from the entire training

dataset are grouped together, forming the Appliance A class. Like conventional k-

means, the centroid of each appliance class is set as its head C. Note that, the number

of classes k is always equal to the number of known appliances in the household. When
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a new testing sample (feature vector) is introduced, it is compared with all heads,

and the minimum distance determines the classification outcome.

For better illustration, assume we have three known appliances (Appliance 1,

Appliance 2 and Appliance 3) in a house which are needed to be classified. As

illustrated in Figures 3.3a and 3.3b, training and testing steps are as follows:

• In training, all appliance events with the same label are grouped together; a

class head, is then calculated as the average value of all data points in that

class, as in the example shown in Figure 3.3a.

• Testing step is straightforward. When a new event point V is introduced, Eu-

clidean distances ( r1, r2 and r3 ) are then measured between that event and all

possible class heads ( three heads in this case; C1, C2 and C3) ); the minimum

distance determines the closest class to that event. The label of that class is

then assigned to event V as in the example shown in Figure 3.3b. These train-

ing and testing points are effectively features, that could be 1D (power values

only), 2D, 3D, etc.

3.4.2 Linear and Gaussian Support Vector Machines

SVM-based algorithms are optimal classifiers in the presence of noise and proven to

perform well for NALM applications as reported in [113], [114], [115] and [25]. SVM is

a binary classifier, it separates two classes at a time. Training process is accomplished

by deciding a proper margin of the largest separation between the nearest training

data points. This is done by calculating a weight w0 between observations, which

is a constant for each two points α and z using dot product (w0 = αizi) in a linear

decision surface. The smaller the weight the better it separates the two classes [42].

Basically, we test similarity between α and z, and if w0 was 1 that means α and z are

very close. Likewise, if w0 was 0 that means α and z are further apart. After that,

optimization is performed to decide which points to keep as support vectors in order

to have a proper decision margin as illustrated in Figure 3.4.

In Figure 3.5, it can be seen that a linear boundary is not clear, therefore, we some-

times need a non-linear solution. Radial Basis Function Kernel SVM, or Gaussian

SVM [116] is a popular non-linear type of SVM. It uses Kernel function to evaluate
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the separation between two classes in a feature space as in Equation 3.3, where σ is

a parameter [116].

k(α, z) = exp

(
− ‖(α, z)‖2

2σ2

)
(3.3)

Figure 3.4: An example of a linear SVM separable problem in a 2 di-
mensional space. Blue points are class A training points. Red points are
class B training points. Black circled points are support vectors for each
class.

NALM is a multi-class problem, as we normally have more than two appliances

(classes) to distinguish between. There are two main strategies for multi-class SVM:

(one-against-all) and (one-against-one) [117]. One-against-all strategy consists of

constructing one SVM per class, which is trained to distinguish the samples of one

class from the samples of all remaining classes. Usually, classification of an unknown

pattern is done according to the maximum output among all SVMs. One-against-one

strategy, also known as ”all pairs”, consists in constructing one SVM for each pair

of classes. Usually, classification of an unknown pattern is done according to the

maximum voting , where each SVM votes for one class [117].

As we train SVM classifiers to separate one appliance at a time as reported in [118]

and [119], we use one-against-all due to its popularity and lower computational time
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compared to (one-against-one). After an appliance has been classified, its contribu-

tion is removed, the threshold used for edge detection is adapted, and disaggregation

is attempted on the next appliance.

Figure 3.5: An example of a Gaussian SVM separable problem in a 2
dimensional space. Blue points are class A training points. Red points
are class B training points. Black circled points are support vectors for
each class.

3.5 Proposed Combined Algorithms

To combine Trained k-means and SVM, we first train k-means as explained in Section

3.4.1 using the entire training dataset. As a result, k classes, each corresponding to

one appliance, are formed with a centroid as head. Next, all feature vectors falling

in Class i that are at an Euclidean distance larger than r from their head, form a

subset of feature vectors Ci that is removed from Class i and used to train an SVM

for Appliance i. r is a pre-set threshold, unique for each house, obtained heuristically,

that is used to tradeoff complexity and performance. See Fig. 3.6 for an illustration.

Note that, in this way, SVM will be trained using a significantly reduced dataset

obtained from the trained k-means classifier, and hence the combined k-means &

SVM algorithm complexity will be reduced, compared to SVM classification alone.

Algorithm 1 shows the training steps, where d(x, y) denotes the Euclidean distance

between vectors x and y.
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Algorithm 1 Training: Perform training on the extracted features of the collected
dataset.

function Train(Labelled training dataset L, |M|, r)
k=|M| . Number of Appliances
[Cluster, c]=kmeans(k, L) . Call kmeans function

. Returns Cluster distribution and cluster heads c.
for i = 1 : k do

Ci = {∅}
for ∀l ∈ Clusteri do . Clusteri denotes i-th cluster in Cluster

if d(l, ci) ≥ r then . ci denotes i-th element of k-length vector c
Ci = Ci

⋃
{l}

end if
end for
SVMTrain(Ci) . Call conventional SVM training function

end for
end function

Algorithm 2 Testing: Perform testing on the extracted features of the collected
dataset.

function Test(Testing dataset, Clusters, c, |M|, r)
k=|M| . Number of Appliances
for i = 1 : k do

Ci = {∅}
for ∀l ∈ Clusteri do

if d(l, ci) ≥ r then
Ci = Ci

⋃
{l}

elseClassify sample i to the appliance corresponding to ci
end if

end for
SVMTest(Ci) . Call conventional SVM testing function

end for
end function
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Figure 3.6: Filtering data samples in the proposed algorithm. Red rhom-
boids inside the circle centred at cluster head c will not be fed into the
SVM training module.

Testing is straightforward and shown in Algorithm 2. Samples at distance less

than r from a cluster head are classified to the appliance corresponding to that cluster

head. All other samples are classified using SVM.

More specifically, if the Euclidean distance between a tested sample and any cluster

head is smaller than the pre-set threshold, then the sample is classified to the closest

cluster head. Otherwise, the sample is input to the SVM classifier.

The proposed combined method has low execution time, since many samples will

be classified rapidly using k-means, and only a small amount of samples that are

far away from their heads, will be fed to the SVM classifier. However, the proposed

algorithm maintains high performance, since SVM improves classification for samples

that would most likely be incorrectly classified using the trained k-means.
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3.6 Illustration of Disaggregation Algorithms

In this section, we illustrate the proposed algorithm using a simple case study on

House 5 of the REFIT dataset. Three appliances were chosen, as they are frequently

used in daily activities, which are: tumble dryer, television and toaster. We used two

days for training and ten days for testing. First, events are detected based on pre-set

thresholds, different features are calculated and stored forming different (2D, 3D, 4D

and 5D) features. Then, we label training events depending on which appliance was

running. Note that we also label testing events for verification purposes. Next, we

feed training feature combinations along with their label-vectors to the classifiers to

perform training and testing steps.
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Figure 3.7: Training step of Trained k-means. Circles are training points
of each appliance, red are for the tumble dryer, green are for the TV and
purple are for the toaster. Stars are cluster heads which are then stored
for the testing step. x-axis is maximum power value per event. y-axis is
event duration [No. of samples].
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3.6.1 Classification training and testing steps

3.6.2 Trained k-means

Trained k-means uses training points of the same label to form a cluster head using

mean values as shown in Figure 3.7. Circles are training points of each appliance, red

circles are for the tumble dryer, green circles are for the TV and purple circles are

for the toaster. Stars are cluster heads which are then stored for testing. In testing,

features will be extracted from every new testing point and will be compared to all

possible cluster heads using Euclidean distance. The label of the closest head will be

assigned to the testing event.

3.6.3 Linear and Gaussian Support Vector Machines

Linear and Gaussian SVMs usually classify between two classes only but here we use

one-against-all multi-class SVM, which trains and tests two appliances at a time as

shown in Figures 3.8a, 3.8b and 3.8c for Linear SVM, and Figures 3.9a, 3.9b and

3.9c for Gaussian SVM. Training points in green are the current class, red points

represent every other appliance and black circles are support vectors used to separate

the two classes. The first step is to train and detect appliance 1 which is tumble

dryer as in Figures 3.8a and 3.9a then testing points of tumble dryer are removed

from the training dataset. The second step is to train and detect appliance 2 which

is TV as shown in Figures 3.8b and 3.9b then testing points of TV are removed from

the training dataset. Finally, we train and detect appliance 3 which is toaster as in

Figures 3.8c and 3.9c.

3.6.4 Linear and Gaussian combined algorithms

Linear and Gaussian combined algorithms train and test in three steps. First, Trained

k-means uses all training and testing points to detect all possible appliances as illus-

trated in Figures 3.10a, 3.11a. Secondly, we apply a radius on all cluster heads as

explained in Figure 3.6 which is fixed to all known appliances within the same house.

All training and testing points fall within that threshold will be removed then and

the remaining of training and testing points will be fed to Linear or Gaussian SVM

classifiers. Finally, multi-class Linear and Gaussian SVMs will be trained and testing
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(a) Tumble dryer training
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(b) TV training
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(c) Toaster training

Figure 3.8: Training steps of Linear SVM. Training points in green are
the current class, red points are every other appliance, black circles are
support vectors used to separate the two classes. x-axis is maximum
power value per event. y-axis is event duration [No. of samples].

will be performed as explained before which is shown in Figures 3.10b, 3.10c and

3.10d for Linear combined algorithm, and Figures 3.11b, 3.11c and 3.11d for Gaus-

sian combined algorithm. Training points in green are for the current class, red points

represent every other appliance, black circles are support vectors used to separate the
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(a) Tumble dryer training
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(b) TV training
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(c) Toaster training

Figure 3.9: Training steps of Gaussian SVM. Training points in green
are the current class, red points are every other appliance, black circles
are support vectors used to separate the two classes. x-axis is maximum
power value per event. y-axis is event duration [No. of samples].

two classes. The first step is to train to detect appliance 1 which is tumble dryer as

in Figures 3.10b and 3.11b. The second step is to train to detect appliance 2 which

is TV as in Figures 3.10c and 3.11c. The final step is to train to detect appliance 3

which is toaster as in Figures 3.10d and 3.11d.
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3.6.5 Disaggregation case study results

The outcome of the classifiers is a one dimensional vector of expected labels, where

each label corresponds to the testing event in the same order of their appearance in

the testing dataset. After that, we use confusion matrix to compare correct labels

that we have generated in the training step with the obtained labels during testing

to calculate True Positive, False Positive and False Negative as illustrated in Figure

3.12. Then, we can use our accuracy measures explained in Section 2.6.1.3. We also

monitor speed of execution of both training and testing steps separately in terms of

seconds as a measure of time complexity. Note that MATLAB 2013a was used to

generate most of the experiments in this thesis; other simulators might result in a

faster or slower performance.

3.6.5.1 Accuracy

From Table 3.1, as it is a simple case study, it can be seen that all algorithms have

performed well in detecting tumble dryer and toaster using most of feature combi-

nations but performed poorly in detecting TV due to its training events overlapped

with the tumble dryer using all feature combinations.

It can be seen from Figure 3.13 that Trained k-means is significantly faster than all

other algorithms in training and testing steps with training execution time of 0.0062

seconds and testing execution time of 0.0931 seconds. Linear and Gaussian SVMs have

a very high training execution times with 3.72 and 3.99 seconds respectively. Linear

and Gaussian combined algorithms show a lower execution times in both training and

testing steps compared to that of Linear and Gaussian SVM algorithms.

3.7 Summary

In this chapter, we have explained in detail our novel methodology which combines

Trained k-means and SVM. Trained k-means is used for its practicality to speed our

classifier which filters easily events, the remaining of training and testing points are

then classified by Linear and Gaussian SVMs. This method balances between testing

time and accuracy which will be demonstrated in the next chapter. Next, we will test
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Table 3.1: A comparison between Trained k-means, Linear SVM, Gaus-
sian SVM, Linear combined algorithm and Gaussian combined algorithm
using Precision, Recall and Fm after disaggregation using REFIT dataset
House 5.

Method tumble dryer television toaster
(%) (%) (%)

Pr 94.64 0 100
Trained k-means Re 100 0 100

Fm 97.24 0 100
Pr 94.64 0.95 100

Linear SVM Re 100 66.6 100
Fm 97.24 1.87 100
Pr 94.64 1.92 100

Gaussian SVM Re 100 33.3 100
Fm 97.24 3.63 100
Pr 94.64 0.483 100

Linear combined Re 100 33.3 100
Fm 97.24 0.95 100
Pr 94.64 0.47 100

Gaussian combined Re 100 33.3 100
Fm 97.24 0.93 100

this methodology in supervised and unsupervised approaches and compare it with

using only k-means and SVMs separately as well as the state of the art HMM.
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(a) Trained k-means training
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(b) Tumble dryer training
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(c) TV training
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(d) Toaster training

Figure 3.10: Training steps of Linear combined algorithm. Training
points in green are the current class, red points are every other appliance,
black circles are support vectors used to separate the two classes. x-axis
is maximum power value per event. y-axis is event duration [No. of
samples].
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(a) Trained k-means training
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(b) Tumble dryer training
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(c) TV training
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(d) Toaster training

Figure 3.11: Training step of Gaussian combined algorithm. Training
points in green are the current class, red points are every other appliance,
black circles are support vectors used to separate the two classes. x-axis
is maximum power value per event. y-axis is event duration [No. of
samples].
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Figure 3.12: True Positive, False Positive and False Negative in the
Confusion Matrix form.
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Figure 3.13: Training and Testing execution times by Trained k-means,
Linear SVM, Gaussian SVM, Linear combined algorithm and Gaussian
combined algorithm using REFIT dataset House 5.
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Chapter 4

Supervised Method; Performance
and Robustness

4.1 Introduction

In the methodology chapter 3, we have proposed real-time low-complexity combined

algorithms to disaggregate total household energy consumption into its individual

readings. In this chapter, and based on our published work in [106], we test perfor-

mance of our Linear and Gaussian combined algorithms using different simple feature

combinations; we also test their reliability by reducing training datasets and intro-

ducing errors in training label-vectors in comparison with Trained k-means, Linear

Support Vector Machines and Gaussian Support Vector Machines. Finally, we bench-

mark with HMM performance in all experiments.

4.2 Novel Contributions

Novel contributions of this chapter are:

• Novel real-time low-complexity Linear and Gaussian kmeans-SVM-based NALM

method for low sampling rate data;

• Innovative appliance-based selection of extracted features that maximize per-

formance;
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• Detailed experimental evaluation using different training sizes and errors in

labeling the training datasets;

• Performance comparison using three households from the open source database

from the USA [39] with 1min sampling rate;

4.3 Performance and Robustness

Testing performance of our Linear and Gaussian SVM-based approaches can be

achieved by detecting different types of appliances. The two major metrics that are

considered here are accuracy and complexity. Accuracy is measured by the number

of correctly detected appliance events as explained in Section 2.6.1.3; the complexity

is measured by execution time (in seconds) for training and testing simulations for

classifications form start to finish. Linear combined and Gaussian combined perfor-

mances are compared with Trained k-means, Linear SVM and Gaussian SVM. All

algorithms are tested with the same training and testing periods.

To assess the testing robustness of the algorithms we test how reliably an algorithm

adapts to real life issues such as missed data and labeling errors. One way of testing

robustness is by reducing training datasets. A proper amount of training events of all

known appliances is needed to be present in the training sets. Labeling appliances for

creating public datasets, is sometimes done manually by occupiers of tested houses,

which can result in labeling errors. Therefore, another way to test robustness is to

insert errors in the training labeling step. These errors are added randomly, that is,

by placing wrong labels in random positions in our training label-vector by wrong

labels.

4.4 Results and Discussion

We use House 1, House 2 and House 6 from the publicly available REDD dataset [39]

down-sampled to 1min resolution. The training size was varied in the experiments,

and testing is always performed on four weeks worth of data.

All experiments were run on an HP Pavilion 15 Notebook PC with 8GB RAM,

1TB Hard drive and AMD A10 with 2.2 GHz Radeon HD dual Graphics processor
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(quad core) using MATLAB 2013a.

4.4.1 Feature Selection

Using different feature combinations has a significant impact on the performance of

our approaches. Table 4.1 shows few selected feature combinations of 2-dimensional,

3-dimensional , 4-dimensional combinations and all features (5-dimensional) combi-

nation. The same event detection thresholds and training set were used here for all

simulations. Marked with bold typeface are the best performing features for each

appliance. One can see that the algorithms respond differently to different types

of features. For example, Max power, Min power and Max/Mean were better for

Gaussian combined algorithm in Houses 1 and 2 with total F-Measure of 75% and

86.30% respectively, but were outperformed by using Max power and Min power only

in House 6 with 97%.

Likewise, Area and Duration gave worse results for Linear combined algorithm in

Houses 1 and 2 with total F-Measure 66.45%. Yet, in House 6 it has better results of

91.47%. Interestingly, feature combination has the same impact on Trained k-means

and Linear and Gaussian SVMs which can be seen in Appendix A were same feature

combinations can affect classifiers differently.

We use all possible feature combinations to detect known appliances using all

tested algorithms, and the best result is then chosen. Tables 4.2, 4.3 and 4.4 show

the best feature combinations used to distinguish between known appliances in REDD

dataset Houses 1, 2 and 6 respectively. It can be noticed from all tables that max-

imum power value often help detect refrigerators correctly in all three houses. The

remaining appliances respond better to area and maximum divided by minimum power

ratio. However, in practical, area slows down classifiers when used to detect differ-

ent appliances. It can also be noticed from the three tables that higher consumer

appliances (washer dryer and dishwasher) are often distinguishable using duration of

events due to their long operation cycles. However, 2 dimensional and 3 dimensional

feature combinations give better performance by all tested algorithms compared to 4

dimensional and 5 dimensional, mostly, in all appliances, this can simply mean that

the higher dimensional datasets are harder to disaggregate by the classifiers.
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Table 4.1: Comparison between selected features using F-Measure for
REDD data Houses. Max= maximum power value. Min= minimum
power value. dur= duration of an event. ratio= maximum power value
over mean power value ratio.

House Feature Linear Combined Gaussian Combined
number combination (%) (%)

Max. & Min. 70.72 69.46
House 1 Area. & Dur. 66.45 48.57

Max.,Dur. & Area 69.14 67.08
Max.,Min. & ratio 70.88 75

Min.,Dur.,Area & ratio 71.83 59.96
All features 69.4 60.28

Max. & Min. 83.04 83.66
House 2 Area. & Dur. 66.45 78.51

Max.,Dur. & Area 85.42 86.18
Max.,Min. & ratio 83.41 86.30

Min.,Dur.,Area & ratio 85.67 67.71
All features 83.16 85.80

Max. & Min. 86.99 97
House 6 Area. & Dur. 91.47 86.78

Max.,Dur. & Area 91.25 96.37
Max.,Min. & ratio 90.61 96.37

Min.,Dur.,Area & ratio 89.97 95.52
All features 87.84 95.94

4.4.2 Algorithms Performance

The three REDD dataset houses used are House 1, 2 and 6; we chose five appliances

in each house. In House 1, we train the algorithms with five known appliances:

refrigerator, microwave, toaster, dishwasher, washer dryer. In House 2, we trained the

algorithms with: refrigerator, stove, microwave, toaster, and dishwasher. In House

6, we have: refrigerator, stove, microwave, toaster, air conditioner. All remaining

appliances were considered to be ”unknown” and hence they contribute to noise.

Unknown appliances were neglected due to changing their signature or being combined

with other appliances in the same monitor.
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Table 4.2: Feature combinations used in detecting all appliances for
REDD data House 1. NA= Not Available. Max= maximum power
value. Min= minimum power value. dur= duration of an event. ratio=
maximum power value over mean power value ratio.

Method Refrigerator Microwave Toaster Dishwasher Washer Dryer
max max, max, max max

Trained k-means & min & min & & &
dur ratio ratio area ratio
max max, dur max max, min

Linear SVM & min & & & ,dur
area ratio ratio ratio & ratio
max, max, area max, min max

Gaussian SVM min & & & area & &
ratio min dur ratio dur
max max, all min max

L Combined & min & features & &
area ratio ratio dur
max, max max, min max max,

G Combined min & & area & & min &
ratio dur dur dur area

Table 4.3: Feature combinations used in detecting all appliances for
REDD data House 2. NA= Not Available. Max= maximum power
value. Min= minimum power value. dur= duration of an event. ratio=
maximum power value over mean power value ratio.

Method Refrigerator Stove Microwave Toaster Dishwasher
max max

Trained k-means & NA NA & NA
dur dur
max all max max,

Linear SVM & features NA & dur &
area area area
max, max area max area

Gaussian SVM min & & & & &
area ratio ratio area min
max area area max, dur max

L Combined & & & area & dur
dur min dur ratio area
max area max min,

G Combined & NA & & dur &
dur dur dur area
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Table 4.4: Feature combinations used in detecting all appliances for
REDD data House 6. NA= Not Available. Max= maximum power
value. Min= minimum power value. dur= duration of an event. ratio=
maximum power value over mean power value ratio.

Method Refrigerator Stove Microwave Toaster Air conditioner
max max

Trained k-means & NA NA NA &
dur dur
max max dur max,

Linear SVM & & area & NA area &
area area ratio ratio
max max dur max

Gaussian SVM & & & NA &
min ratio ratio min
max max max, max

L Combined & & min & NA &
ratio ratio ratio ratio

max, min max max, max, min
G Combined area & & min & NA area &

dur dur dur dur

4.4.2.1 Time Complexity

Table 4.5 and Figure 4.1 show training time and testing time results in seconds

obtained for REDD dataset houses 1, 2 and 6 for Trained k-means, Linear SVM,

Gaussian SVM, Linear combined algorithm and Gaussian combined algorithm. Ex-

ecution time is measured after the data processing step which indicates only the

time for algorithms to run training and testing process. It is obvious that trained

k-means has the shortest execution time that is less than 0.3 sec in both training

and testing in all three houses. Linear SVM has the highest training times of 0.945,

1.198 and 0.698 seconds respectively, while Gaussian SVM has the highest testing

times of 1.283, 1.523 and 0.82 seconds respectively. It can be seen that Linear and

Gaussian combined algorithms vary between Trained k-means and SVMs which are

faster than SVMs but slower than Trained k-means. Next we test accuracy for our

proposed combined algorithms in comparison with Trained k-means, Linear support

vector machines and Gaussian vector machines.
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Table 4.5: Comparison between Trained kmeans, Linear SVM, Gaussian
SVM, Linear combined algorithm and Gaussian combined algorithm us-
ing Execution time for REDD data Houses 1, 2 and 6.

Method House 1 House 2 House 6
Train Test Train Test Train Test
(sec) (sec) (sec) (sec) (sec) (sec)

Trained k-means 0.155 0.152 0.291 0.291 0.239 0.139
Linear SVM 0.945 0.723 1.198 0.803 0.698 0.562

Gaussian SVM 0.729 1.283 0.801 1.523 0.579 0.82
Linear Combined 0.298 0.388 0.352 0.553 0.301 0.334

Gaussian Combined 0.484 0.442 0.42 0.488 0.47 0.477
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Figure 4.1: Upper figure shows training execution times in seconds
and lower figure shows testing execution times after disaggregation by
Trained k-means, Linear and Gaussian SVMs and Linear and Gaussian
combined method for Houses 1,2 and 6 in REDD dataset.

4.4.2.2 Accuracy

We have used the evaluation metrics of precision (PR), recall (RE) and F-Measure

(FM) for each appliance explained in Equations 2.4, 2.5 and 2.6 respectively. We also
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use total precision , total recall and total F-Measure measurements that use total

events such as total True positive events from all known appliances in each tested

house which are defined as :

TotalPR =
N∑
n=1

TPn/(
N∑
n=1

TPn +
N∑
n=1

FPn) (4.1)

TotalRE =
N∑
n=1

TPn/(
N∑
n=1

TPn +
N∑
n=1

FNn) (4.2)

TotalFM = 2 ∗ ((totalPR) ∗ (totalRE))/((totalPR) + (totalRE)), (4.3)

where N is the total number of known appliances in a tested house. TPn, FPn

and FNn are True positive events, false positive events and false negative events per

appliance.
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Figure 4.2: Total F-Measure after disaggregation by Trained k-means,
Linear and Gaussian SVMs and Linear and Gaussian combined method
for Houses 1, 2 and 6 in REDD dataset.

Figure 4.2 shows total F-Measure after disaggregation of REDD dataset houses

1,2 and 6 using Trained k-means, Linear and Gaussian SVMs and Linear and Gaus-

sian combined algorithms. The best result of each known appliance from all feature

combinations was chosen as discussed in Section 4.4.1 that were tested. All five algo-

rithms always use the same edge detection and feature extraction method explained

previously.
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All algorithms show high total F-Measure of above 70% in all tested houses. In

Houses 1 and 2, Gaussian Combined algorithm has the best total F-Measure among

other algorithms with 81.88% and 87.49% respectively but is slightly worse than

Trained k-means in House 6 with total F-Measure of 96.87%. Linear SVM was per-

formed 3% and 8% better than Gaussian SVM in Houses 1 and 2 respectively but

12% less in House 6. Trained k-means accomplished the highest total F-Measure

compared to other algorithms in House 6 with 97.01% and a good performance on

Houses 1 and 2 with 73.49% and 84.79% respectively. However, total F-Measure gives

false impression that Trained k-means can behave better than SVMs and combined

algorithms. Next, we look into each house in detail.

Figures 4.3 to 4.6 show a comparison between Trained k-means, Linear SVM,

Gaussian SVM, Linear combined algorithm and Gaussian combined algorithm in

REDD Houses 1, 2 and 6 respectively. It can be seen that all algorithms performed

well in detecting refrigerator as expected due to its high number of training and test-

ing events. Trained k-means has lower F-Measure as it was effected by high False

Positive of 132 events compared to 82, 91, 80 and 72 events by Linear SVM, Gaus-

sian SVM, Linear combined and Gaussian combined respectively (see Figure 4.4). In

dishwasher results, Trained k-means has a top 100% Precision but much lower Recall

and F-Measure which can be explained by looking at Figure 4.4, as it can be seen

that Trained k-means has a low detection rate of dishwasher but zero False Positive

events gave wrong impression. By looking at toaster accuracy measures, it can be

seen that Gaussian combined algorithm gave 100% Precision because of its zero False

Positive but its F-Measure result fell behind Trained k-means as it has higher False

Negative of 25 events compared to 3 only.

By looking at Figure 4.5 for House 2 results, it can be seen that all algorithms

performed well in detecting refrigerator with Precision and Recall of above 91% and

F-Measure of 92.58% or better. Gaussian combined algorithm did not manage to cor-

rectly disaggregate any stove events but Linear combined F-Measure outperformed

all other algorithms in detecting stove with Precision of 66.66%, Recall of 33.33% and

F-Measure of 44.44% using proper feature combination. The proposed combined al-

gorithms have clearly exceeded other algorithms in classifying microwave and toaster.

Interestingly, Linear combined algorithm had a similar performance with F-Measure

29.26% to that by Linear SVM with F-Measure 26.06% in detecting dishwasher and

Gaussian combined had same performance by Gaussian SVM with Precision of 50%,
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Figure 4.3: Precision, Recall and F-Measure for each appliance, after
disaggregation by Trained k-means, Linear and Gaussian SVMs and Lin-
ear and Gaussian combined method for House One in REDD dataset.

Recall of 21.42% and F-Measure 30%. Trained k-means, on the other hand, fell be-

hind in detecting all tested appliances as expected except for refrigerator which has

highest number of events due to its operating nature.

Figure 4.6 shows a comparison between all five tested algorithms in House 6.

Refrigerator and air conditioner have the highest number of events in the training

set and 405 and 58 events respectively in the testing set, which made all algorithms

have a significantly high Precision, Recall and F-Measure results. 90% or above for

refrigerator for Precision, Recall and F-Measure. Linear SVM had slightly lower F-

Measure result with only 30% when identifying air conditioner compared to above

87% roughly by other tested algorithms due to its high FP number from refrigerator

events using maximum power, area and max/mean ratio. Trained k-means was not

able to distinguish correctly any event for stove, microwave and toaster which have
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Figure 4.4: True Positive, False Positive and False Negative values for
each appliance, after disaggregation by Trained k-means, Linear and
Gaussian SVMs and Linear and Gaussian combined method for House
One in REDD dataset.

much less non-overlapped events in the training set with less than 10 testing events

each. In fact, all five algorithms failed to detect toaster correctly using all possible

feature combinations.

4.4.2.3 Performance summary

It is clear that Linear and Gaussian combined algorithms have provided a competitive

performance compared to other tested algorithms in terms of complexity and accuracy

in detecting most of present appliances in REDD dataset Houses 1, 2 and 6. Both

combined algorithms provided a trade-off between speed of processing and quality

of disaggregation using different sets of features that simplifies data and maximizes
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Figure 4.5: Precision, Recall and F-Measure for each appliance, after
disaggregation by Trained k-means, Linear and Gaussian SVMs and Lin-
ear and Gaussian combined method for House Two in REDD dataset.

performance. Next, we test robustness of our approaches along with Trained k-means,

LSVM and GSVM.

4.4.3 Algorithms Robustness

In this section, we test the robustness of the proposed methods to the reduction of

the training set size. We test different training sizes: 6000 samples (roughly 6 days),

5000 samples (roughly 5 days), 4000 samples (roughly 4 days), 3000 samples (roughly

3 days) and 2000 samples (roughly 2 days). We also introduced errors in label-vector

starting with 5% error rate then increase gradually until 20% error rate.
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Figure 4.6: Precision, Recall and F-Measure for each appliance, after
disaggregation by Trained k-means, Linear and Gaussian SVMs and Lin-
ear and Gaussian combined method for House Six in REDD dataset.

4.4.3.1 Reduction of training-set size

Figures 4.7 to 4.10 show results while reducing different training sizes for all five algo-

rithms. Figure 4.7 shows results of testing step execution times after reducing training

dataset size. Disaggregation is achieved by choosing the best results after testing all

possible feature combinations. Therefore, testing execution times are averaged per

house. It can be noticed here that Trained k-means is fairly steady in response to

training different sizes as it takes roughly 0.153, 0.266 and 0.136 seconds on average

to test all existing appliances in Houses 1, 2 and 6 respectively. Linear SVM has a

response time of roughly 0.688 second in testing Houses 1 and 2. Thus, it decreases

slowly in testing House 6 from 0.5 to 0.39 seconds. Gaussian SVM has the highest

testing execution time that exceeds 1 sec on average among all other algorithms , and

is also the most sensitive approach which dropped in House 1 experiments from 1.2
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at 5000 samples to 1 second at 4000 and dropped by half at 2000 samples with 0.677

second. In House 6, GSVM had execution time of 0.876 and 0.938 seconds at 6000

and 5000 samples respectively which then decreased to 0.54 second roughly at 4000,

3000 and 2000 samples. On the other hand, Linear and Gaussian combined algo-

rithms show a very steady decrease in testing running times after decreasing training

datasets in all REDD houses. The exact results in detail are available in Appendix

A.
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Figure 4.7: Testing time of reduced training size after disaggregation
of each appliance by Trained k-means, Linear and Gaussian SVMs and
Linear and Gaussian combined methods for Houses 1, 2 and 6 in the
REDD dataset.

Figure 4.8 shows F-Measure results of reducing training size using House 1 af-

ter disaggregation of each appliance by all five algorithms. Refrigerator shows very

steady performance by all tested algorithms even with decreased training due to its

significantly hight number of events in training dataset. All five algorithms managed

to classify microwave with above 63% F-Measure roughly. Though, Linear combined
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had a lower result at 5000 and 3000 samples with 20% less F-Measure. Gaussian com-

bined also had a lower F-Measure of 20% approximately at 5000 samples. Toaster

had a zero value by all algorithms in all different training sizes due to its sensitiv-

ity. Trained k-means was not successful in detecting dishwasher. Linear SVM and

Gaussian combined algorithms have better performance at 4000 samples compared

to other training sizes. Gaussian SVM and Linear combined algorithms have slightly

better performance than other three algorithms in detecting dishwasher with 20% to

40% F-Measure each.

Washer dryer was hard to be correctly disaggregated by Trained k-means, Lin-

ear SVM and Linear combined algorithms. Gaussian combined had a slightly lower

F-Measure than Gaussian SVM. However, all five algorithms were quite robust in

detecting refrigerator and microwave. Linear SVM, Gaussian SVM, Linear combined

and Gaussian combined algorithm were robust in detecting dishwasher and washer

dryer. All algorithms were more sensitive in detecting toaster. Note that appliances

can have better performance with lower training due to better quality of training.

House 2 F-Measure results of reducing training size after disaggregation of each

appliance by all five algorithms are present in Figure 4.9. Refrigerator showed very

steady performance by all tested algorithms with above 90% F-Measure approxi-

mately. Stove and microwave detection were not as successful which can be seen

since only Gaussian Combined had 40% F-Measure at 6000 samples whereas rest of

other algorithms gave zero or close to zero values when different training sizes were

tested. Toaster results varied in F-Measure by our tested algorithms from 45% to

78%. Linear combined algorithm accomplished better results at 3000 and 2000.

Figure 4.10 shows F-Measure results of when reducing the training size after dis-

aggregation of each appliance by all five algorithms in REDD dataset House 6. Re-

frigerator and air conditioner were not affected much by reducing training set size

due to their significant presence in training; other appliances were not as steady as

they have much less data in the training set. Looking at air conditioner results, it

can be seen that Trained k-means had a major drop in performance at 4000 samples

with 18.18% F-Measure, zero value at 2000 samples and 86% F-Measure roughly with

all other training sizes. Linear SVM had a better result at 4000 samples compared

to other training sizes with 73.78% F-Measure. Gaussian SVM had firmly fixed per-

formance for up to 2000 samples with F-Measure between 71% to 87.7%. Linear

combined algorithm gave better results at 3000 and 4000 samples with 87.7% and
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Figure 4.8: F-Measure of reduced training size after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 1 in the REDD dataset.

88.8% respectively. Gaussian combined algorithm had a better F-Measure at 5000

and 4000 samples with 92.45% and 82.14% respectively.

4.4.3.2 Insertion of labeling errors

Figures 4.11 to 4.13 show another technique of testing robustness of an algorithm

by inserting wrong labels in the training label-vector as every training dataset has a

corresponding vector of labels to help separating classes.

Figure 4.11 shows F-Measure results of error insertion using House 1 after disag-

gregation of each appliance by all five algorithms. Refrigerator, microwave and washer

dryer performance were very robust to different error rates due to their proper train-

ing events in the training dataset. All five algorithms managed to detect refrigerator
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Figure 4.9: F-Measure of reduced training size after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 2 in the REDD dataset.

clearly with F-Measure that is up to 90% roughly. Although, microwave was a chal-

lenge for Trained k-means as its performance dropped dramatically at 15% error rate

almost half of F-Measure value. All tested algorithms show very poor performance in

finding toaster and dishwasher. Trained k-means, Linear SVM, Linear and Gaussian

combined algorithms have zero or close to zero value with toaster. Thus, Gaussian

SVM gave a slightly better F-Measure value with roughly 36% at 5% and 15% error

rates. In the case of detecting washer dryer, Linear combined gave a high and very

steady performance accomplishing roughly 80% F-Measure compared to a top of 39%,

65%, 69% and 34% with Trained k-means, linear SVM, Gaussian SVM and Gaussian

combined algorithms respectively. Note that appliances are affected by each other in

the training step, which might result in higher F-Measure results for some appliances

corresponding to higher error rates due to errors being introduced randomly.
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Figure 4.10: F-Measure of reduced training size after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 6 in the REDD dataset.

Figure 4.12 shows F-Measure results of error insertion using House 2 after dis-

aggregation of each appliance by all five algorithms. Refrigerator show very steady

performance by all tested algorithms as expected. Detecting stove and microwave

were not as successful, since all algorithms show very poor performance that is close

to zero to disaggregate stove events. Linear and Gaussian combined algorithms out-

performed other algorithms to correctly distinguish microwave events with up to 51%

roughly. Washer dryer was hard to be correctly disaggregated by Trained k-means,

Gaussian SVM and Gaussian combined algorithms. Thus, Linear SVM and Linear

combined have a slightly better F-Measure values than other algorithms with roughly

45% each at 5% and 10% error rates for Linear SVM and at 15% and 20% error rates.

Figure 4.13 shows F-Measure results of error insertion using House 6 after disag-

gregation of each appliance by all five algorithms. Refrigerator and air conditioner
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Figure 4.11: F-Measure of increased error rate after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 1 in the REDD dataset.

have quite robust performance in all algorithms due to their high presence in train-

ing datasets even with high error rate in label-vector. Stove, microwave and toaster

have significantly lower performance as the amount of their training events are less

than ten testing non overlapped events each. In fact, none of our tested algorithms

have correctly detected any toaster events due to its short operating cycle in training

and testing steps. However, Linear and Gaussian combined algorithms accomplished

better results with microwave with up to 100% F-Measure at 10% error rate using

Linear combined and a steady 66.66% F-Measure with Gaussian combined algorithm.

69



90

92

94

 

 
Refrigerator

F
m

 (
%

)

0

2

4
Stove

F
m

 (
%

)

0

50

100
Microwave

F
m

 (
%

)

0

50

100
Toaster

F
m

 (
%

)

Trained k−means
LSVM
GSVM
Lcombined
Gcombined

5 10 15 20
0

50

Error rate ( % )

Dishwasher

F
m

 (
%

)

Figure 4.12: F-Measure of increased error rate after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 2 in the REDD dataset.

4.4.3.3 Robustness summary

The Combined algorithms are not sensitive to the variation of the training size nor

increased error rate. Note that the SVM-based and proposed method can have slightly

better performance for smaller training sets due to better quality of the training data.

And it can also give better F-Measure results with higher error rate as some appliances

are more sensitive to errors than others. In average over all three houses, the combined

methods outperform all other approaches for training sizes of 2000 and 6000 in most

cases and comes after Trained k-means for the training size of 5000 and 3000.
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Figure 4.13: F-Measure of increased error rate after disaggregation of
each appliance by k-means, Linear and Gaussian SVMs and Linear and
Gaussian combined method for House 6 in the REDD dataset.

4.5 Benchmark

In this section, we compare the proposed Linear and Gaussian approaches with the

state-of-the-art HMM of [43], which was designed for low-sampling (1 min) rates. For

each dataset, Linear combined algorithm, Gaussian combined algorithm and HMM

were always tested using the same amount and periods of data for training (7000

samples or roughly one week) and testing (four weeks). The HMM-based method

[43] requires prior initialization of the model using expert knowledge (state variances,

mean value for each state and state transition probabilities), which was carried out in

our experiments either using the information provided by the authors of [43], or were

modeled during experiments. Then, we gradually reduce training and insert errors in

the label-vector to test robustness as explained in Section 4.4.3.
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4.5.1 Performance

Table 4.6 shows total F-Measure after disaggregation of REDD dataset houses 1, 2

and 6 using Linear combined algorithm, Gaussian combined algorithm and the state-

of-the-art HMM. All tested algorithms always use the same edge detection and feature

extraction method explained previously. All algorithms show high total F-Measure

of above 70% in all tested houses.

From the results for all tested houses, it can be seen clearly that train and test

execution times of Linear and Gaussian combined algorithms are significantly lower

than HMM train and test times. In House 1, Linear and Gaussian combined algo-

rithms need less than 1 second in total for training and testing compared to roughly

50 seconds to train and test HMM algorithm. However, Total F-Measure for all three

algorithms need similar 77.52%, 81.88% and 77.06% respectively. In House 2, Linear

and Gaussian combined algorithms have less than 0.4 second for training and less than

0.6 seconds for testing compared to roughly 22.767 and 18.088 seconds to train and

test HMM algorithm respectively. However, total F-Measure for all three algorithms

was above 82%.

Table 4.6: Comparison between Linear combined algorithm, Gaus-
sian combined algorithm and HMM using Execution time and total F-
Measure for REDD data Houses. L=Linear. G=Gaussian.

Method H 1 H 2 H 6
Train Test Fm Train Test Fm Train Test Fm
(sec) (sec) (%) (sec) (sec) (%) (sec) (sec) (%)

L Combined 0.298 0.388 77.52 0.352 0.553 82.17 0.301 0.334 95.58
G Combined 0.484 0.442 81.88 0.42 0.488 87.49 0.47 0.477 96.87

HMM 28.317 22.903 77.06 22.767 18.088 82.38 30.22 16.189 72.82

Tables 4.7, 4.8 and 4.9 show a detailed comparison of REDD dataset Houses 1, 2

and 6 between our combined algorithms and HMM. Table 4.7 shows Precision, Recall

and F-Measure in House 1. All three algorithms have similar results for all five tested

appliances except that HMM gave poorer performance in detecting toaster and washer

dryer with zero value for both appliances. Gaussian combined algorithm showed

better Precision, Recall and F-Measure in detecting toaster with 100%, 30.55% and

46.80% respectively.

House 2 results are presented as Table 4.8 of Precision, Recall and F-Measure of

Linear combined, Gaussian combined and HMM. All three algorithms have similar
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results for all five tested appliances except that Gaussian combined algorithm gave

poorer performance in detecting stove. HMM has better F-Measure results in detect-

ing microwave with 10% and 20% higher performance. Thus, combined algorithms

have higher F-Measure to disaggregate dishwasher with roughly 30% each compared

to 12.32%. House 6 results are present in Table 4.9. It can be seen that all algo-

rithms have very close results in classification of refrigerator and microwave and none

of them have correctly detected any toaster events. Linear and Gaussian combined

algorithms gave much higher performance in recognizing air conditioner events using

a proper feature combination. HMM had also lower F-Measure with zero value in

stove detection compared to roughly 33.3% using rest of algorithms.

Table 4.7: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure for REDD data House
1. L=Linear. G=Gaussian.

Method L Combined G Combined HMM
Pr Re Fm Pr Re Fm Pr Re Fm
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Refrigerator 83.19 96.82 89.49 90.18 96.57 90.18 90 77.16 83.12
Microwave 64.81 61.40 63.06 68 89.47 77.27 79.31 60.53 68.66

Toaster 16.66 2.77 4.76 100 30.55 46.80 0 0 0
Dishwasher 50 28.08 35.97 68.96 44.94 54.42 44.63 86.17 58.80

Washer Dryer 92.85 63.41 75.36 65.30 78.04 71.11 0 0 0

Table 4.8: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure for REDD data House
2. L=Linear. G=Gaussian.

Method L Combined G Combined HMM
Pr Re Fm Pr Re Fm Pr Re Fm
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Refrigerator 92.87 95.88 94.35 91.07 97.50 94.17 87.45 87.93 87.69
Stove 66.66 33.33 44.44 0 0 0 38.10 66.67 48.48

Microwave 15.38 82.05 25.91 27.63 53.84 36.52 35.71 58.14 44.25
Toaster 69.62 91.66 79.13 67.69 73.33 70.40 50 92.45 64.90

Dishwasher 22.22 42.85 29.26 50 21.42 30 33.33 7.56 12.32

4.5.2 Robustness test

Tables 4.10 to 4.15 show a detailed comparison of REDD dataset Houses 1, 2 and 6

in robustness between our combined algorithms and HMM. We test robustness of our
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Table 4.9: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure for REDD data House
6. L=Linear. G=Gaussian.

Method L Combined G Combined HMM
Pr Re Fm Pr Re Fm Pr Re Fm
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Refrigerator 98.28 99.01 98.65 98.06 99.75 98.90 69.20 96.13 80.47
Stove 20 100 33.33 33.33 33.33 33.33 0 0 0

Microwave 100 74.07 85.10 85.71 88.88 87.27 100 100 100
Toaster 0 0 0 0 0 0 0 0 0

Air conditioner 88.88 86.95 87.91 92.72 91.07 91.89 0.43 100 0.85

combined algorithm in comparison with HMM similar to Section 4.4.3 by reducing

the training dataset size and replacing correct labels with wrong ones in the training

label-vector. Testing robustness in House 1 is presented in Tables 4.10 and 4.11.

It can be seen that all algorithms are quite robust in disaggregating refrigerator,

microwave and dishwasher up to 2000 samples and 20% error rate, but less successful

in detecting toaster as all gave zero or close to zero values in different training sizes

and error rates. The combined algorithms showed better performance to correctly

distinguish washer dryer appliance.

In House 2, robustness results are presented in Tables 4.12 and 4.13. Both tables

show that all algorithms are quite robust in disaggregating refrigerator, toaster and

dishwasher up to 2000 samples and 20% error rate. Gaussian combined algorithm

gave better performance in detecting microwave correctly with higher error rates than

Linear combined algorithm and HMM. Although, HMM managed to detect stove with

48.48% F-Measure.

Tables 4.14 and 4.15 show results of House 6. It is very clear that Linear and

Gaussian combined algorithms have slightly higher results in detecting refrigerator

and stove in all different training sizes with more than 10% better F-Measure in

reduced training experiments and 44% better in error insertion experiments by Gaus-

sian combined algorithm. A much better performance was made by our combined

algorithms in detecting air conditioner with up to 88.88% F-Measure compared to

less than 1% F-Measure only by HMM in both tables. However, HMM managed to

successfully disaggregate Microwave at 6000 samples and 5% error rate with 100%

F-Measure.
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Table 4.10: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of reduced training size
for REDD data House 1. L=Linear. G=Gaussian.

Method Refrigerator Microwave Toaster Dishwasher Washer Dryer
Train size (%) (%) (%) (%) (%)

6000 89.4 62.9 0 31.08 20.3
L Combined 4000 89.5 71.5 0 40.4 0

2000 88.9 62.9 0 0 0
6000 86.2 57.8 0 13.5 63.3

G Combined 4000 85.3 71.1 0 23.6 52.8
2000 81 56.6 0 0 0
6000 84.03 68.66 1.11 58.8 0

HMM 4000 84.03 52.99 1.11 53.01 0
2000 83.29 52.99 1.11 53.01 0

Table 4.11: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of Error insertion size
for REDD data House 1. L=Linear. G=Gaussian.

Method Refrigerator Microwave Toaster Dishwasher Washer Dryer
Error rate (%) (%) (%) (%) (%)

5% 89.3 50.9 4.6 14.8 80
L Combined 15% 89 58.2 3 40.8 81.1

20% 88.9 58.5 3.3 37.9 81.1
5% 89.7 56.3 0 0 34.9

G Combined 15% 90.2 72.8 0 63.7 25.7
20% 88.5 54.4 0 0 32.9
5% 81.49 48.57 0 58.8 0

HMM 15% 81.49 65.35 0 0 0
20% 81.34 65.35 0 0 0

4.5.3 Benchmark Summary

Experimental results using REDD data Houses 1, 2 and 6 demonstrate the com-

petitiveness of the proposed solutions with respect to a state-of-the-art HMM-based

approach. Indeed, the proposed approaches show similar performance to that of

HMM, with up to 18 and 13 times lower execution time for testing and training,

respectively. Tests, conducted by reducing the training size and introducing errors

in the training dataset, showed high robustness of the proposed approaches, that are

capable of performing successful disaggregation using only two days of training data

and up to 20% of errors in the training set.
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Table 4.12: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of reduced training size
for REDD data House 2. L=Linear. G=Gaussian.

Method Refrigerator Stove Microwave Toaster Dishwasher
Train size (%) (%) (%) (%) (%)

6000 91.84 0 0 8.9 41.6
L Combined 4000 91.7 0 0 6.4 40

2000 90.22 0 0 60 0
6000 93.5 0 40 46.5 22.2

G Combined 4000 92.3 0 0 9.4 23
2000 90.3 0 0 5.2 0
6000 87.69 48.48 44.25 64.90 12.32

HMM 4000 83.4 0 44.25 0 0
2000 83.55 0 44.25 0 0

Table 4.13: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of Error insertion size
for REDD data House 2. L=Linear. G=Gaussian.

Method Refrigerator Stove Microwave Toaster Dishwasher
Error rate (%) (%) (%) (%) (%)

5% 91.8 0 0 11.4 17.39
L Combined 15% 93.3 0 0 11.9 42.8

20% 91.9 0 0 8.9 45.3
5% 92.1 0 50.6 35.1 21.8

G Combined 15% 91.7 0 51.7 9.3 19.66
20% 93.4 0 3.3 46.2 25.8
5% 83.42 48.48 44.25 64.90 12.32

HMM 15% 83.42 48.48 44.25 46.97 12.32
20% 83.55 18.65 0 46.97 12.32

4.6 Chapter Summary and Conclusion

Designing accurate NALM algorithms for low sampling data is challenging. In this

chapter we tested our proposed Linear and Gaussian low-complexity combined al-

gorithms based on combining Trained k-means and Linear and Gaussian Support

Vector Machines. Appliances from a range of REDD dataset houses with roughly 1

minute sampling rate with 5 appliances each are used to evaluate performance and

robustness. The two combined algorithms using house-specific training data are ac-

curate even when the training period is short until up to two days only for training

and training errors are present with up to 20% error rate. The combined algorithms

76



Table 4.14: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of reduced training size
for REDD data House 6. L=Linear. G=Gaussian.

Method Refrigerator Stove Microwave Air conditioner
Train size (%) (%) (%) (%)

6000 98.3 6.6 100 55.3
L Combined 4000 98.6 33.3 0 65.1

2000 98.5 57.1 0 88.8
6000 84.5 18 0 47.9

G Combined 4000 98.14 15.7 0 82.14
2000 91.7 60 0 0
6000 80.47 0 100 0.85

HMM 4000 77.44 0 0 0
2000 77.44 0 0 0

Table 4.15: Comparison between Linear combined algorithm, Gaussian
combined algorithm and HMM using F-Measure of Error insertion size
for REDD data House 6. L=Linear. G=Gaussian.

Method Refrigerator Stove Microwave Air conditioner
Error rate (%) (%) (%) (%)

5% 97.7 6.4 28.5 45.3
L Combined 15% 96.6 0 88.8 72.2

20% 96.2 0 4 22.8
5% 93 44.4 66.6 65.3

G Combined 15% 98.9 0 66.6 89.2
20% 98.3 0 66.6 88.3
5% 80.47 0 100 0.85

HMM 15% 80.47 0 0 0.85
20% 79.60 0 0 0.85

also showed a competitive performance to state-of-the-art Hidden Markov Models and

Support Vector Machines. A set of different feature combinations is used to maximize

performance. Next, we create a database of signatures to eliminate the training step.
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Chapter 5

Appliance Database Creation and
Clustering

5.1 Introduction

To make our combined algorithms practical and reduce or remove household occupier

effort in maintaining a time-diary, a database of appliance signatures is created in

order to train the classifier models. The designed database is a compact collection of

appliance power load signatures which are used to develop statistical features, such

as mean, variance and auto-correlation for each appliance that are then used for load

disaggregation. The database is populated using open source datasets from Austria

and Italy [40], and UK [41].

Similar attempts have recently been reported in [120], where a database of signa-

tures was introduced, called Plug-Level Appliance Dataset (PLAID), accommodated

by roughly 200 appliances from US datasets sampled at a high resolution of 30 kHz.

The database is made publicly available for current and voltage readings with over

1kHz sampling rate.

Load signatures contain useful information with respect to operational character-

istics of the loads in an electrical circuit, which can be used to study similarities and

differences in signatures between appliances. By doing so, one can predict whether a

feature or a load characteristic collected in one house can successfully help disaggre-

gate an appliance of another house.
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First, in this chapter, we compare different statistical models of appliances and

then we create a database of signatures that uses Gaussian modeling as previously

published in [132]. In Section 5.5, we propose two simple methods to classify house-

hold appliances into different groups using mean-shift and k-means algorithms. In

Section 5.6, results of the classification methods will be presented followed by sum-

mary and conclusion section.

5.2 Novel Contributions

Novel contributions of this chapter are:

• A generic database of appliance load profiles populated from 34 houses in UK

and Europe containing over 130 appliance signatures.

• A clustering approach using Mean-shift algorithm.

• A load hierarchical tree using unsupervised k-means algorithm.

• A detailed investigation of the signature database of appliance load profiles by

clustering all houses from the open source databases from Italy and Austria

(GREEND dataset) [40] and two UK (REFIT dataset) [41] houses into groups

and sub-groups.

5.2.1 Appliance Modeling Validation

All domestic appliances are designed to work within a certain active power range,

which can often be found in the appliance instruction manual. However, in practice,

the consumed power will deviate due to electrical noise, interference, aging etc.

We test modeling suitability of three common statistical models for representing

power signature: Gaussian, Laplace and Log-normal using these equations, respec-

tively:

f(x) =
1

σ
√

2π
exp−(

x−µ2

2σ2
) (5.1)
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Figure 5.1: Root-Mean-Square Error of Gaussian mixture, Laplace
and Log-normal statistical models for 13 appliances from REFIT and
GREEND datasets, and the REFIT aggregate meter reading, all shown
on a log-scale.

where σ is the standard deviation, µ is the mean for Gaussian Probability Distri-

bution Function and x is the profit bin which is the histograms of the real distribution

curve.

f(x) =
1

2b
exp(−|x− µ|

b
) (5.2)

where σ is the standard deviation, µ is the mean for Laplace Probability Distribu-

tion Function and x is the profit bin and b is the diversity parameter which is higher

than 1.

f(x) =
1

xσ
√

2π
exp(−

(ln(x−µ))2

2σ2
) (5.3)

where σ is the standard deviation, µ is the mean for lognormal Probability Distri-

bution Function and x is the profit bin which is the histograms of the real distribution

curve.
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Figure 5.1 presents the Root-Mean-Square Error (RMSE) for each of the three

distribution models, using selected appliances from GREEND and REFIT datasets.

The values are obtained by averaging in time and across different houses using:

RMSE =

√√√√(
1

N
(
N∑
i=1

(yi − ȳi))2) (5.4)

where N is the total number of observations, that is, active power values for the

modelled appliance. (yi − ȳi) is the difference between estimated power reading at

time instance i and model estimated value at the same time instance.

From the figure, it can be seen that the Gaussian mixture model is the best fit

for all appliances, especially for high loads such as kettle and toaster. As expected,

the Gaussian mixture model is also the best for the aggregate readings, since it is

a sum of nearly independent processes. This validates our approach of using the

Gaussian mixture model (red line in Figure 5.2) to build the distribution model of all

appliances. We also note that RMSE is insignificantly small except for low-consumers

such as TV and Stereo Player due to their long operation cycles. These findings are

similar to those reported in [89].

5.3 Signature Database Creation

To capture the electrical behavior of an appliance, we present in Figure 5.2 probability

density function (pdf) of active power for several domestic appliances. These results

are obtained using one month of continuous monitoring in five houses. Because we

are targeting low sampling rates (under 1Hz) we focus only on steady state operation

removing automatically in the process of data cleaning transient values from each

appliance operation. It can be seen from the figure that the consumed active power

follows a similar distribution trend for all appliances: pdf rapidly decreases from one

to three peaks with few isolated impulses. In addition, and similarly to [89], and

validated in the previous section, we model each appliance power load profile using

a Gaussian mixture model, obtained via curve fitting, and store mean, variance and

the first two correlation coefficients calculated as:
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R(τ) = (
∑

(yt − µ)(yt+τ − µ))/σ2, (5.5)

where µ is the mean power value, σ2 is the variance and τ is the sample lag.

Some appliances, so called multi-state appliances , such as washing machine and

dishwasher, have several operating states, for example, washing machine usually con-

tains three cycles: washing, rinse and spin. The number of Gaussian components in

the Gaussian mixture model is set to the number of operating states. Standby modes

are neglected using proper thresholds for each appliance.
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Figure 5.2: Gaussian mixture probability density distribution models of
six REFIT dataset appliances.

To replace NALM training, we create a database of appliance load profiles. Over

100 different appliance-load profiles are collected from GREEND and REFIT datasets

with appliances ranging from standard kitchen appliances, such as kettle, toaster, mi-

crowave, white appliances, washing machines, dishwashers, to electronics, TV, ADSL
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modem, radios and PCs. We stored one complete working cycle of each appliance

at the acquired sampling rate. A working cycle is stored when an appliance is ON

until it changes its states to OFF. Working cycle of some appliances that run all the

time such as refrigerator and freezer is stored when appliance is ON until it changes

it states to standby mode.

Each input to the database contains the statistical parameters, appliance type,

model (where available), the origin (dataset including the measuring sampling rate),

and one full-cycle signature. The database is organized into CSV files, where each

file corresponds to one appliance type.

5.4 Load-profiles of Selected Household Appliances

5.4.1 GREEND Dataset

Figures 5.3, 5.4 and 5.5 show the Gaussian mixture distribution curve along with

histograms, generated using true data, for a randomly selected sets of appliances

from GREEND dataset. They are split into three sets for clarity. The first set has 4

appliances which are: House 2 Network Access Storage (NAS), House 1 Radio, House

3 Hair drier and House 5 Stove. The second set has 4 appliances which are: House

0 Kitchen lamp, House 1 Microwave, House 0 Vacuum cleaner and House 2 Tumble

dryer. The third set with 4 appliances which are: House 0 Radio, House 7 Hood,

House 2 Bread maker and House 7 ADSL modem. It can be seen from these three

sets of figures that the Gaussian mixture model and true curves fit well together, and

this is also validated in Tables 5.1, 5.2 and 5.3 which show that RMSE values for

those appliances are relatively small.

Figures B.1, B.2 from Appendix B and Figure 5.6 show Gaussian mixture distri-

bution models for different Refrigerators from GREEND dataset Houses 0, 1, 3, 4, 5

and 7, Televisions from GREEND dataset Houses 0, 2, 3, 4, and 5, and Coffee makers

from GREEND dataset Houses 0, 2 and 3. It is obvious from these figures that energy

consumptions of these different appliance types are very different. Tables B.1, B.2

and 5.4 show that regardless of the type, each appliance is modeled well resulting in

relatively small RMSE.
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(a) H2 NAS (b) H1 Radio

(c) H3 Hair drier (d) H5 Stove

Figure 5.3: Pdf for four different appliances from the GREEND dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].

Table 5.1: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different
GREEND houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H2 NAS 52.56 9.54 7.90 E-04 0.0106 0.0251
H1 Radio 19.08 0 3.6 E-04 -0.0487 0.1707

H3 Hair drier 527 195.84 7.74 E-04 0.1208 -0.0284
1117.1 13.68
1867.9 11.8

H5 Stove 677.7 58.2 1.2 E-03 0.0682 -0.0144
1353.1 26.98

5.4.2 REFIT Dataset

Figures 5.7, 5.8 and 5.9 show the Gaussian distribution curve along with histograms,

generated using true data, for a randomly selected sets of appliances from REFIT

dataset. They are split into three sets for clarity. The first set has 4 appliances

which are: House 7 Fridge, House 3 Television, House 5 kettle and House 7 Toaster.

The second set has 4 appliances which are: House 1 Tumble dryer, H5 Combination
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(a) H0 Kitchen lamp (b) H1 Microwave

(c) H0 Vacuum cleaner (d) H2 Tumble drier

Figure 5.4: Pdf for four different appliances from the GREEND dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].

Table 5.2: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different
GREEND houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H0 Kitchen lamp 38.81 1.04 1.2 E-04 -0.027 -0.0092

H1 Microwave 62.1 74.19 4.9 E-03 0.0611 -0.0485
1316.6 62.42

H0 Vacuum cleaner 1208 164.98 0.0038 0.1005 -0.0529
H2 Tumble drier 87.1 94.7 5.94 E-04 0.0013 -0.0479

2558.2 72.21
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(a) H0 Radio (b) H7 Hood

(c) H2 Bread maker (d) H7 ADSL modem

Figure 5.5: Pdf for four different appliances from the GREEND dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].

Table 5.3: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different
GREEND houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H0 Radio 8.67 0 0.0017 -0.3196 -0.2253

10.8 0.1325
H7 Hood 6.58 12.41 1.33 E-04 0.03 -0.0023

173.14 1.94
H2 Bread maker 98.83 36.26 2.97 E-02 -0.0072 -0.265

H7 ADSL modem 2.19 0 1.33 E-02 0.1909 0.1247
16.87 8.56

Table 5.4: RMSE, mean [W], variance, 1st order correlation coefficient
and 2nd order correlation coefficient for different Coffee makers of dif-
ferent GREEND houses.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H0 Coffee machine 83.11 283.37 8.4 E-03 -0.0103 -0.1678
H2 Coffee machine 21.44 150.01 1.7 E-03 -0.1272 -0.1235
H3 Coffee machine 49.7 1.07 6.1 E-03 0.0359 -0.2965

531.2 312.55
1155.1 25.9
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(a) House 0

(b) House 2

(c) House 3

Figure 5.6: Different distributions of different Coffee Makers types from
the GREEND dataset. Histograms are showing true data obtained via
sub-metering. x-axis shows active power in [W].
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microwave, House 6 Toaster and House 7 Tumble dryer. The third set is with 4

appliances which are: House 1 Chest freezer, House 1 Electric heater, House 7 Kettle

and House 6 freezer. It can be seen from these three sets of figures that the Gaussian

mixture model and true curves fit well together, and this is also validated in Tables

5.5, 5.6 and 5.7 which show that RMSE modeling values for those appliances are

relatively small. However, these errors are slightly higher than those obtained by

GREEND dataset due to noise that is present in REFIT dataset.

(a) H0 Refrigerator (b) H3 Television

(c) H5 Kettle (d) H7 Toaster

Figure 5.7: Pdf for four different appliances from the REFIT dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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(a) H1 Tumble dryer (b) H5 Microwave

(c) H6 Toaster (d) H7 Tumble dryer

Figure 5.8: Pdf for four different appliances from the REFIT dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].

Table 5.5: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different RE-
FIT houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H7 Refrigerator 103.4 1.6 0.0017 -0.8196 0.0253

506.75 308.07
H3 Television 142.7 2.046 3.02 E-04 0.763 -0.3023

H5 Kettle 2690 193.68 0.089 0.7122 -0.2675
H7 Toaster 914.54 135.91 0.0019 -0.4929 -0.7227
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(a) H1 Chest freezer (b) H1 Electric heater

(c) H7 Kettle (d) H6 Freezer

Figure 5.9: Pdf for four different appliances from the REFIT dataset.
Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].

Table 5.6: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different RE-
FIT houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H1 Tumble dryer 121.1 46.29 0.0187 0.8796 -0.8203

1214.8 349.64
2539.4 57.26

H5 Microwave 1412 93.65 3.21 E-02 0.873 0.5223
2692 96.35

H6 Toaster 955.06 88.53 0.0025 -0.9002 0.965
H7 Tumble dryer 247.8 29.17 1.33 E-02 0.9923 -0.5247

1754.9 51.83
3259.6 76.21
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Table 5.7: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of different RE-
FIT houses. H denotes House number.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
H1 Chest freezer 175.26 61.44 0.0196 0.8176 -0.5223

627.92 198.33
903.28 23.09

H1 Electric heater 570.3 529.26 8.06 E-05 0.0356 0.9023
1001.2 16.08
1994.5 36.7

H7 Kettle 2182.2 136.34 7.18 E-04 -0.0672 -0.865
H6 Freezer 241.18 228.58 0.0181 -0.2309 0.9247

895.35 70.18

5.5 Database Clustering

Grouping appliances could provide better understanding of appliance electric behav-

ior, which would help predict if NALM algorithms could successfully disaggregate

appliances or not. In this section, we introduce two methods to cluster appliances

and appliance-states. The first method uses mean-shift algorithm to group appli-

ances into different categories; while mean-shift does not require defining the number

of groups, a bandwidth value has to be determined. The second method, uses the

Genetic k-means to split appliances into two groups to form a Hierarchical tree with

root and leaves. This clustering can be done on datasets or separate houses, big

data or smaller sets of appliances. By doing that, one can study similarities and

dissimilarities between load-profiles before applying disaggregation. In other words,

clustering could predict if an appliance feature/signature is unique enough for NALM

algorithms to correctly classify it or not.

5.5.1 Mean-shift Clustering

Appliance clustering can be performed using active power and reactive power readings

or features extracted from their loads. Here, we use mean power value and variance

of Gaussian signatures extracted from the signature database.

We use Mean-shift algorithm [121] to cluster possible appliances and appliance-
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Figure 5.10: An example of mean-shift classification into three clusters.
Big circles represent cluster heads and each colour represents a cluster.

states in GREEND and REFIT datasets based on their Gaussian load signature. In

comparison to the classic k-means clustering approach, there are no assumptions on

the number of modes or clusters that are needed [122]. As exemplified in Figure 5.10,

we cluster all objects into possible groups and then we re-cluster any relatively big

groups into sub-groups and so on.

5.5.2 Hierarchical Tree Clustering

In the hierarchical tree clustering, the objects that are needed to be clustered are

organized into a tree. The tree shows how the objects (appliances) are related to

each other, and the groups of the objects can be determined from the tree. Figure

5.11 shows a tree for clustering 12 objects i.e., appliances, together as an example.

We start from the top and cluster down appliances into smaller groups in every step.

Each node represents the number of appliances to be clustered.

In [123], a similar method was introduced using different features; based on voltage

and current (V-l) trajectory, which then were compared to the taxonomies based on

traditional power metrics and eigenvectors. It was found that the groups of appliances
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in the taxonomy based on V-I trajectory were well-separated and had engineering

meanings. The authors used Euclidean distance between every pair of appliances

or appliance-states and linked the closest two pairs together forming a leaf, then

connected every two pairs of appliances to finally form the root of the tree. By doing

so, it was proven that appliances from the same type, in terms of their operation

purpose, do not perform in the same way, and their signatures can be significantly

different. Their method, suffers from high complexity especially with high number of

appliances.

Figure 5.11: An example of tree classification using 12 objects. Each
node shows the number of objects to be clustered.

The details about how the tree is formed, in our approach, and how objects are

grouped together are:

• Step 1 :

– Consider all appliances together as a parent node in a tree. Split objects

i.e., appliances, into two groups (clusters) using k-means clustering with

k=2. Every new cluster is treated as a parent node and can be split into

two clusters again until we reach a relatively small number of objects in

every child node.
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• Step 2 :

– Measure the Euclidean distance between the center of every child cluster

and the center of every parent cluster. The distance between a pair of

objects indicates how similar the objects are. Smaller distance between

the child node to the parent cluster means that the objects in child cluster

are similar to objects in the parent cluster. Here, an object is an appliance

or an appliance-state.

• Step 3 :

– Link all nodes together to create the tree as shown in Figure 5.11; in this

example we have 12 objects connected together as a tree and clustered

down into two groups then every group was split into two groups. Basically,

we can keep splitting clusters until we reach a relatively small size cluster

at every end.

• Step 4 :

– In this step, we cut the tree at a certain hight to create a number of groups.

Practically, distance between parent node and the two children nodes is

roughly the same as illustrated in Figure 5.12. It can be seen from the

figure that d1 is roughly equal to d2. d1 and d2 are distances between

child 1 and child 2 centers (c1 and c2) to the parent cluster center (C).

Therefore, we cut the clustering tree into a suitable level instead of a hight.

A level indicates how many times we split each cluster from top to end,

and step 2 is no longer needed. The main factor that controls cutting at

a suitable level is the number of groups that we need. If we cut the tree

at a very high level we will have a small number of groups with a large

number of objects in every group that are more dissimilar, and if we cut at

a very low level we will have a large number of groups with a small number

of objects that are more similar. In Figure 5.11, if we cut at level 1, two

groups will be formed with 8 and 4 objects respectively. If we cut at level

2, four groups will be formed with 5, 3, 2 and 2 objects respectively.

94



Figure 5.12: Parent cluster split into 2 clusters using k-means (k=2).
d1 and d2 are distances between child 1 and child 2 centers (c1 and c2)
to the parent cluster center (C).
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5.6 Results and Discussion

In this section, we use all houses from GREEND dataset and REFIT dataset Houses

2 and 3 to test our clustering methods. From these experiments, we try to group

similar appliances together based on their Gaussian distribution characteristics. We

also predict, from the clusters, which appliances would be distinguishable from similar

types of appliances.

5.6.1 GREEND Dataset Results

5.6.1.1 Mean-shift Clustering

Figures 5.13 and Table B.17 (Appendix B) show the outcome from clustering all

appliances and appliance-states in GREEND dataset into groups and sub-groups by

mean-shift clustering method. Figure 5.13 (upper figure) shows all appliances and

appliance-states clustered which formed 9 groups. Some groups have high number of

appliances and appliance-states with roughly 63 objects in one of the groups and few

have lower number of appliances and appliance-states with only one appliance-state

in another group. Then we re-clustered group 1 since it has relatively high number of

appliances and appliance-states, into smaller groups forming 6 sub-groups as shown in

Figure 5.13 (middle figure) and Table B.18. Sub-group 1.2 was then re-clustered into

smaller sub-groups as it has roughly 44 objects forming another 5 groups as shown

in Figure 5.13 (lower figure) and Table B.19.

From Tables B.17, B.18, and B.19 it can be seen that many different appliances

were clustered into the same groups such as group 6. Moreover, similar appliances

were clustered into different groups such as televisions and refrigerators. It can also

be noticed that group 1.2.3 has different types and states of radios from GREEND

dataset Houses 0 and 1 along with House 5 computer with scanner and printer op-

erating states and also all three operating states of ADSL modem of House 7, which

could means that all of these appliances have similar Gaussian load characteristics

despite the difference in their operating purpose.

Group 2 shows that some high consumption appliances have similar consumption

behavior such as dishwashers and washing machines high states from Houses 0, 1,

2, 4 and 5. In the same group we have kettle from House 0, hair dryer high state
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from House 3 and House 5 iron state 4, which indicates that all these appliances show

operate similarly. On the other hand, House 2 tumble dryer state 2 was clustered

alone in group 4 as it has unique consumption load.

5.6.1.2 Tree Clustering

Figures 5.14 and 5.15 and Table B.20 show the outcome from clustering GREEND

dataset into groups and sub-groups by tree clustering method using k-means algo-

rithm. Figure 5.14 shows the classification tree cut into a suitable level (dashed line)

which formed 8 groups. Some groups have high number of appliances and appliance-

state with up to 47 objects in one of the nodes while few nodes have lower number

of appliances and appliance-states with only one appliance-state in one of the nodes.

Then we re-cluster one of the nodes which has 40 appliance-states (with red circle)

into 10 sub-groups as shown in Figure 5.15. Re-cut the tree into a lower level again

(dashed line in 5.15) to form more sub-groups.

From Table B.20, it can be seen that many similar appliances were clustered

into different groups such as televisions and refrigerators. Furthermore, different

appliances were clustered into same groups such as group 3.2. It can also be noticed

that group 3.4 has different types and states of radios from GREEND dataset Houses

0 and 1 along with House 5 computer with scanner and printer both operating states

and also all operating states of House 7 ADSL modem, as it might mean that all of

these appliances have similar load characteristics. Likewise, group 3.9 has low mean

power appliances such as House 0 TV and House 2 NAS.

Group 7 shows a good relation between some high consumption appliances such

as dishwashers and washing machines high states from Houses 0, 1, 2, 4 and 5. In the

same group we have House 3 kettle, House 3 hair dryer high state and House 5 iron

state 3, which means that they all share similar Gaussian models. House 2 tumble

dryer state 2 was clustered alone in group 8 as it showed unique consumption load.

5.6.1.3 GREEND Dataset Results Summary

From both methods (mean-shift and tree clustering), we can predict that appliances

fall into the same category can have similar characteristics which could make them

hard to be classified by an NALM algorithm without training. It can be seen from
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Figure 5.13: Clustering of GREEND dataset into groups and sub-groups
using mean-shift algorithm. Upper figure has 9 groups. Middle figure
has 6 groups. Lower figure has 5 groups. x-axes is Power in [W]
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Figure 5.14: Classification for GREEND dataset using tree clustering-
part 1. Nodes show number of appliances to be clustered. Dashed line is
a suitable level to cut the tree. Red circled node will continue in Part 2,
in Figure 5.15.
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Figure 5.15: Classification for GREEND dataset using tree clustering-
part 2. Nodes show number of appliances to be clustered. Dashed line is
a suitable level to cut the tree.
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Tables B.17 and B.20 that most of appliances first states were clustered into one group

due to their mean and variance values being close, that could possibly mean that

low states are hard to classify. However, usually in disaggregation tasks, low states

are neglected. It can be seen that most washing machine states across all houses are

grouped together, which could mean that most washing machines in GREEND dataset

show similar behavior in terms of their Gaussian estimation curve. Televisions, do

not belong to one group but, all of them are in the low to medium state groups.

We can see from both methods that tumble dryer second state is in its own group

with no other appliances which means that it could be easily disaggregated due to its

signature being unique. The same can be said about coffee machine and fridge freezer

second states. However, the first state of fridge-freezer and freezer states are in the

same groups which can lead for them being misclassified. Dishwasher and washing

machine second states were categorized into the same groups which means that it

is hard to classify them unless other appliances in the same houses were different in

terms of their signatures. We can also predict that dishwasher in Houses 2 and 3 can

be hard to classify if washing machine second state is present as they are clustered

in the same group but the first states can be correctly classified. Washing machine

in Houses 1 and 2 can be mixed with the microwave and tumble dryer second states

but the first states of the appliances are different, which can help disaggregate them

correctly.

5.6.1.4 REFIT Dataset Results Summary

From both methods, Houses 2 clustering shows that toaster will easily be misclassified

with other appliances, as its states being spread across most of the groups. Also

microwave and kettle will be mixed with toaster third and fourth states. Second

states of dishwasher and washing machine are in the same groups, which could mean

that it will be hard to correctly classify them.

In House 3, tumble dryer, dishwasher and washing machine second states are

clustered in the same groups with both methods, which means that it will be hard

to correctly classify them unless other operation states were significantly different.

However, the tumble dryer first state is also similar to the washing machine first

state.
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5.7 Chapter Summary and Conclusion

In this chapter, we created a database of signatures that is based on Gaussian Distri-

bution Estimation. The database includes appliances modeled from GREEND and

REFIT datasets. We also gave a deep insight into GREEND dataset different appli-

ances and Houses 2 and 3 REFIT dataset and studied similarities and dissimilarities

between all different types of appliances. We clustered those appliances into groups

and sub-groups using two simple, yet effective techniques: First, we used mean-shift

clustering algorithm to section all appliances and then sub-sectioned any relatively

big groups into smaller sets of groups. In the second method, we created a hierarchical

tree using k-means algorithm, then cut the tree into a proper level to form different

groups and sub-groups.

Both methods gave similar classification results for GREEND and REFIT datasets.

For the GREEND dataset, it can be noticed from some groups such as group 1.2.3

in mean-shift method is similar to group 3.4 in the tree method. Likewise, group 7

in mean-shift and group 2 in tree method are almost the same. The tumble dryer

second state in House 2 was clustered in a separate group in both methods. For the

REFIT dataset, both methods gave similar prediction about toaster as it can easily be

misclassified with other appliances. Tumble dryer, dishwasher and washing machine

could be mixed as their second states have similar Gaussian characteristics.

Mean-shift and Tree clustering methods gave predictions on which appliances will

be hard to classify using or algorithms and which appliances show unique signatures.

In the next chapter, we use Gaussian signatures to test NALM algorithms and test

clustering predictions.
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Chapter 6

Unsupervised Methods and
Performance

6.1 Introduction

Our proposed disaggregation algorithms were tested using training data sets from spe-

cific REDD dataset houses in Chapter 4, and then a signature database was created

in Chapter 5. This chapter is based on published material in [132], where the signa-

tures database is used to develop novel approaches that require no training from the

household, and hence no input from the household occupier which is considered a su-

pervised approach. Unsupervised approaches require no input from consumers which

is more practical as explained in Section 2.5. Here, we propose and test Unsupervised

methods using our Linear and Gaussian combined algorithms, compare performance

with Trained k-means, Linear SVM and Gaussian SVM. Finally, we benchmark with

the HMM-based approach.

6.2 Novel Contributions

Novel contributions of this chapter are:

• A low-complexity NALM approach that uses the developed database for train-

ing, irrespective of the house, and hence does not require customer input; using
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House-agnostic training data and compared with House-specific training data

approach.

• Detailed experimental evaluation using open source database from Italy and

Austria (GREEND dataset) [40].

• Detailed experimental evaluation using open source database from UK (REFIT

dataset) [41].

• Comparison with state-of-the-art (HMM)-based method.

6.3 Unsupervised methods

In this section, we introduce two new Unsupervised NALM methods. These meth-

ods use the signatures generated by Gaussian statistical curve that we introduced

in Chapter 5. The first method, called General Modeling, uses a universal model

that can possibly fit all appliances of the same type, such as, dishwashers and wash-

ing machines. The second method, called Gaussian Unsupervised Method, draws

data samples from the created database assuming Gaussian load distribution model.

Then, one can use features such as maximum and minimum power, duration of an

operation state or the area under the curve to maximize the classification algorithms

performance.

6.3.1 Unsupervised General Approach

In this section, we turn to providing a general statistical model for one type of ap-

pliances. A general statistical model can be generated simply by selecting same type

of appliances in different houses provided in a dataset. Then, we develop a Gaussian

mixture model as explained in Section 5.3 with samples from different appliances of

the same type. For example, in order to provide a general model for toaster, different

toasters data samples can be modeled together, using Gaussian statistical model.

While this kind of generalization will not work for TVs, refrigerators and coffee

makers, as discussed in Section 5.3 as similar appliances of these types showed majorly

different operation behavior, all tested washing machines and dishwashers have similar

signatures. Figures 6.1, 6.2, 6.3 and 6.4 show the Gaussian mixture distribution
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model for the washing machine and dishwasher obtained using the data from all

GREEND houses and Houses 1 to 7 in REFIT dataset. It can be seen that an

efficient general model can be formed that represents well different appliance brands

as shown in Tables 6.1, 6.2, 6.3 and 6.4 since the root-mean-square error (RMSE)

obtained in this way is still small across all tested GREEND houses. Some other

appliances were modeled in Appendix B using REFIT dataset.

(a) House 0 WM (b) House 1 WM

(c) House 2 WM (d) House 3 WM

(e) House 4 WM (f) WM General Model

Figure 6.1: Different distributions of different Washing machines types
from the GREEND dataset. Histograms are showing true data obtained
via sub-metering. x-axis shows active power in [W].
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(a) House 0 DW (b) House 1 DW

(c) House 2 DW (d) House 3 DW

(e) DW General Model

Figure 6.2: Different distributions of different Coffee Makers types from
the GREEND dataset. Histograms are showing true data obtained via
sub-metering. x-axis shows active power in [W].

The first proposed unsupervised method, called Unsupervised Training-less Gen-

eral Model approach, uses only mean and variance of the generated general Gaussian

mixture model, without any sampling or training. Mean and variance are used as

classification features for k-means and Linear SVM, Gaussian SVM, Linear combined

and Gaussian combined algorithms. This is a very simplistic approach that is not ex-

pected to perform well, due to statistical similarities of appliance signatures. Testing

data goes through event detection and each event is treated as a single state appliance

with a mean and variance values which then are matched to mean and variance of

the general model.
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Table 6.1: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different washing machines of dif-
ferent GREEND houses. G denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H0 WM 80.1 93.8 4.2 E-3 0.0751 -0.1059

1955.6 73.07
H1 WM 40.4 73.97 3.8 E-3 0.022 -0.1126

1991.7 90.92
H2 WM 47.2 88.84 7.20 E-03 0.082 0.0317

2081 58.3694
H3 WM 94.7 115.59 1.91 E-2 0.0609 -0.0838

1957.8 69.51
H4 WM 54.9 93.71 3.3 E-3 0.0298 -0.2105

597.4 13.77
1946.1 224

G WM 139.2 119.93 3.2 E-3
2009.3 90.45

Table 6.2: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different dishwashers of different
GREEND houses. G denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H0 DW 77 14.05 6.17 E-05 0.1925 0.1226

1953.3 77.8
H1 DW 13.7 28.9 4.5 E-05 -0.042 -0.1111

1796 29.54
H2 DW 18.1 33.19 9.97 E-05 -0.066 -0.1186

2071.3 38.79
H3 DW 39.9 36.8 1.15 E-04 0.2213 0.1674

1760.7 24.1
G DW 48 42.56 6.7 E-03

2480 368.2

6.3.2 Gaussian Unsupervised Method

The second Unsupervised proposed approach is called Gaussian Unsupervised method.

This approach uses features derived from the Gaussian distribution models and draws

random samples from the Gaussian distribution to train our classification algorithms;
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(a) House 1 WM (b) House 2 WM

(c) House 3 WM (d) House 4 WM

(e) House 4 WM (2) (f) WM General Model

Figure 6.3: Different distributions of different washing machine types
from the REFIT dataset. Histograms are showing true data obtained
via sub-metering. x-axis shows active power in [W].

Trained k-means, Linear SVM, Gaussian SVM, Linear combined and Gaussian com-

bined algorithm. Features such as Maximum power value, Minimum power value, Du-

ration and so forth are calculated similar to Supervised method explained in Chapter

3. Different dimensional feature combinations are then fed to classifiers in the train-
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Table 6.3: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different washing machines of dif-
ferent REFIT houses. GM denotes the general model.

House Mean value Variance RMSE 1st Cor. 2nd Cor.
H1 116.8 131.91 0.0085 -0.0701 -0.0059

2274.7 99.01
H2 135.9 71.53 8.63 E-04 0.082 0.2206
H3 164.4 79.50 0.0046 -0.002 -0.0765

1865.2 110.27
H4 344.6 170.84 0.00117 0.0699 0.0068

2513.1 77.56
H4 448.3 121.09 3.3 E-3 -0.0754 -0.0105

2358.5 182.5181
GM 225 56 0.0206

2209 213.3

Table 6.4: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different dishwashers of different
REFIT houses. GM denotes the general model.

House Mean value Variance RMSE 1st Cor. 2nd Cor.
H2 64.6 21.96 4.56 E-05 0.1755 0.0359

2203.5 35.63
H3 130.6 8.87 0.002 0.0022 0.0226

2098.3 72.41
H5 2297.5 106.36 2.70 E-03 0.082 0.0317
H6 65.4 11.02 5.64E-05 0.0699 0.3838

2179.9 46.11
GM 152 419.5 0.032

2141 152.7

ing and testing steps. Testing data, goes through event detection and each event

is treated as a single state appliance and therefore same features are calculated per

event and multi-dimensional data are created and matched to features derived from

Gaussian distribution estimation.

6.4 Illustration of The Unsupervised Methods

Next, we demonstrate the two proposed methods on a simple case study using Houses

5 and 17 of REFIT dataset. Three appliances were chosen, as they are usually involved
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(a) House 2 DW (b) House 3 DW

(c) House 5 DW (d) House 6 DW

(e) DW General Model

Figure 6.4: Different distributions of different dishwasher types from
the REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].

in daily activities, which are: tumble dryer, television and toaster. We used ten days

for testing. Testing events are detected based on pre-set thresholds as explained in

Chapter 3. We have extracted Gaussian approximation curve for each appliance,

calculated mean and variance, and stored the values as shown in Figure 6.5 and
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Table 6.5. Then, we label training data based on each method. Note that we model

television and toaster and label them as other.

Figure 6.5: Gaussian models for television, toaster and tumble dryer in
REFIT house 5.

6.4.1 General Modeling Method Training and Testing Steps

First, a general model for tumble dryer is generated using REFIT dataset House 17

in order to use it for training as shown in Table 6.5 and Figure 6.6; television and

toaster are treated as one appliance ’other’.

Linear and Gaussian combined algorithms train and test in three steps as explained
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Table 6.5: RMSE, mean, variance for different appliances of television,
toaster and tumble dryer in REFIT dataset House 5. General models are
generated using REFIT dataset House 17. GM denotes General Model.

Appliance Mean value [W] Variance RMSE
TV 26.07 0.69 7.90 E-07

98.61 1.39
Toaster 747.5 131.55 3.6 E-06

1476.7 27.66
Tumble dryer 1107 535.2 1.165 E-04

3190 642
5274 772.3
7358 975.9

Tumble dryer GM 1664 778.2 6.78 E-06
8315 1667
4989 3055
6049 1210

in Chapter 3. First, Trained k-means uses all training and testing points to detect

all possible appliances as illustrated in Figures 6.7 and 6.8 (top figures). Second, we

apply a radius on all cluster heads as explained in Figure 3.6 which is fixed to all

known appliances within the same house. All testing points fall within that threshold

will be removed then remaining of testing points will be fed to Linear and Gaussian

SVM classifiers. Note here we do not remove any training points. Finally, Linear and

Gaussian SVMs will train and test as explained before which is shown in Figures 6.7

and 6.8 (bottom figures).
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Figure 6.6: Tumble dryer general model using REFIT dataset House 17.
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(b) Linear SVM training

Figure 6.7: Simple case study to detect tumble dryer using General mod-
elling method using Linear combined algorithm. Training points in green
are the current class, red points are every other appliance, black circles
are support vectors used to separate the two classes.

6.4.2 Gaussian Unsupervised Method Training and Testing
Steps

Using Gaussian signatures extracted in the signature database, we derived samples

from the Gaussian distribution models and used them to extract features to train

our classifiers. 2-Dimensional, 3-Dimensional, 4-Dimensional and all 5 Dimensional

feature combinations are formed and used to test our combined algorithms. Features

are maximum value, minimum value, max/mean ration, duration of an statistical

state and area under curve. Then we train and test our classifiers as shown in Figures

6.9 and 6.10. First, Trained k-means uses all training and testing points to detect

all possible appliances as illustrated in top figures. Second, we apply a radius on all

cluster heads as explained before which is fixed to all known appliances within the

same house. All training and testing points fall within that threshold will be removed

and remaining of training and testing points will be fed to Linear and Gaussian SVM
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Figure 6.8: Simple case study to detect tumble dryer using General mod-
elling method using Gaussian combined algorithm. Training points in
green are the current class, red points are every other appliance, black
circles are support vectors used to separate the two classes.

classifiers. Finally, Linear and Gaussian SVMs will train and test the remaining of

training and testing data as in the figures below.

6.4.3 Disaggregation Case Study Results

The outcome of classifiers is a 1D vector of expected labels that corresponds to testing

events. After that, we use confusion matrix to compare correct labels that we have

generated in the training step with the expected ones to form True Positive, False

Positive and False Negative events and we also calculate Precision, Recall and F-

Measure. Results of both methods in detecting the tumble dryer are presented in

Table 6.6. It can be seen that both algorithms performed poorly in detecting tumble

dryer as it was mixed with washing machine signature which is expected based on

Chapter 5 clustering methods. By other words, tumble dryer signature was not unique

enough in this house to correctly disaggregate it.
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(b) Linear SVM training

Figure 6.9: Simple case study to detect tumble dryer using Unsupervised
Gaussian method using Linear combined algorithm. Training points in
green are the current class, red points are every other appliance, black
circles are support vectors used to separate the two classes.

6.5 Results and Discussion

Note that both Unsupervised approaches can be used with different event-based super-

vised algorithms. That is, the designed general appliance model can replace training.

We test both supervised and unsupervised approaches next. Then, we benchmark

the results against the state-of-the-art HMM using GREEND and REFIT datasets.

We used washing machine and dishwasher in GREEND dataset in Houses 1, 2 and

3. Washing machine and dishwasher were selected, in our experiments, since these

are the only two appliances present in at least 4 GREEND dataset houses, and also

known to be main electricity consumers.

GREEND House 1 has 8 appliances operating: fridge, dishwasher, microwave,

water kettle, washing machine, radio with amplifier, dryer and bedside lamp. House

2 has 8 appliances operating: TV, Network Access Storage (NAS), washing machine,
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Figure 6.10: Simple case study to detect tumble dryer using Unsupervised
Gaussian method using Gaussian combined algorithm. Training points
in green are the current class, red points are every other appliance, black
circles are support vectors used to separate the two classes.

dryer, dishwasher, notebook, coffee machine and bread machine. House 3 has 9

appliances operating: entrance outlet, dishwasher, water kettle, fridge with freezer,

washing machine, hair dryer, computer, coffee machine and TV.

We also used REFIT dataset Houses 2 and 3. In House 2, there are 9 ’known’

appliances present. However, only seven were chosen in our experiments, that are

present in at least four houses, which are: Fridge-Freezer, Washing Machine, Dish-

washer, Television, Microwave, Toaster, Kettle. Other appliances were treated as

”unknown”, and hence they contribute to noise. Unknown appliances are usually

appliances that changed signature or combined with other appliances in the same

monitor.

In House 3, there are 9 ’known’ appliances present, which are: Toaster, Fridge-

Freezer, Freezer, Tumble Dryer, Dishwasher, Washing Machine, Television, Microwave,

Kettle.
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Table 6.6: Results of case study to detect tumble dryer using Linear
combined algorithm and Gaussian combined algorithm using Precision,
Recall and Fm after disaggregation using REFIT dataset House 5.

Method tumble dryer other
(%) (%)

G
en

er
al

m
o
d
el

li
n
g

L combined

Pr 0 81.15
Re 0 100
Fm 0 89.59

G combined

Pr 0 81.15
Re 0 100
Fm 0 89.59

G
au

s
U

n
su

p
er

v
is

ed

L combined

Pr 20 92.41
Re 8.1 92.41
Fm 11.59 86.47

G combined

Pr 32.35 83.18
Re 22.44 89.09
Fm 26.5 86.04

6.5.1 Time Complexity

In this sub-section, we compare supervised and unsupervised approaches using time

complexity. Complexity is measured by execution time in seconds but we only monitor

testing simulation time here, as training execution time for unsupervised methods is

considered to be zero seconds.

6.5.1.1 Unsupervised General Method

Figure 6.11 shows testing execution times for washing machine and dishwasher in

GREEND dataset Houses 1, 2 and 3 for Supervised and Unsupervised General mod-

eling methods methods using Trained k-means, LSVM, GSVM, Linear combined al-

gorithm and Gaussian combined algorithm. It can be seen that Trained k-means was

the fastest in detecting our tested appliances as expected with less than 0.1 seconds

in both methods. Linear SVM and Gaussian SVM are the slowest compared to other

disaggregating algorithms in the figure. Our combined algorithms are slower than

k-means, yet, much faster than linear and Gaussian SVM in both methods. These
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results are similar findings to Section 4.4.

It can also be seen that Unsupervised General modeling method has lower exe-

cution times using all tested classification algorithms by almost a half compared to

Supervised method results. Interestingly, Gaussian-based (Gaussian SVM and Gaus-

sian combined) algorithms are slower than Linear-based (Linear SVM and Linear

combined) algorithms.
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Figure 6.11: Testing execution times results for Supervised and Unsuper-
vised General modeling methods using Trained k-means, LSVM, GSVM,
Linear combined algorithm and Gaussian combined algorithm to detect
for washing machine and dishwasher in GREEND dataset Houses 1, 2
and 3. x-axis shows testing execution time in [sec].

Figure 6.12 shows testing execution times for REFIT Houses 2 and 3 for Super-

vised and Unsupervised General modeling methods using Trained k-means, LSVM,

GSVM, Linear combined algorithm and Gaussian combined algorithm. Houses 1 to

7 were used to build models for the target appliances. It can be seen that Trained
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k-means was the fastest in detecting our tested appliances as expected. Linear SVM

and Gaussian SVM are the slowest compared to other disaggregating algorithms with

higher execution times of up to roughly 4 and 6 seconds respectively for the Super-

vised method and 2 and 4.5 seconds using General modeling method. Our combined

algorithms are slower than k-means as expected based on similar findings in Section

4.4 but much faster than linear and Gaussian SVM which is also expected regarding

Section 4.4.

It can also be seen that Unsupervised General modeling method has lower ex-

ecution times using all tested classification algorithms by almost a half compared

to Supervised method results. Similar to GREEND dataset results, Gaussian-based

(Gaussian SVM and Gaussian combined) algorithms are slower than Linear-based

(Linear SVM and Linear combined) algorithms.

6.5.1.2 Gaussian Unsupervised Method

Figure 6.13 shows testing execution times for washing machine and dishwasher in

GREEND dataset Houses 1, 2 and 3 for Supervised and Gaussian Unsupervised meth-

ods using Trained k-means, LSVM, GSVM, Linear combined algorithm and Gaussian

combined algorithm. It can be seen that the Gaussian modeling method results by

Trained k-means, Linear SVM, Gaussian SVM, Linear combined and Gaussian com-

bined algorithm show a similar behavior to that by the Supervised method. Our

combined algorithms are slower than k-means but much faster than linear and Gaus-

sian SVM in both methods with less than 1 second in both training methods which

is similar to the findings discussed in Section 4.4.

It can also be seen that Unsupervised Gaussian modeling method has lower ex-

ecution times compared to that by Supervised method using all tested classification

algorithms by one or two seconds roughly in most tested classification algorithms in

this table.

Figure 6.14 shows testing execution times for REFIT dataset Houses 2 and 3

for Supervised and Gaussian Unsupervised methods using Trained k-means, LSVM,

GSVM, Linear combined algorithm and Gaussian combined algorithm. Houses 1

to 7 were used to build models for the target appliances. It can be seen that the

Gaussian modeling method results by Trained k-means, Linear SVM, Gaussian SVM,

Linear combined and Gaussian combined algorithm show a similar behavior to that
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Figure 6.12: REFIT Houses 2 and 3 testing execution times results for
Supervised and Unsupervised General modeling methods using Trained
k-means, LSVM, GSVM, Linear combined algorithm and Gaussian com-
bined algorithm. x-axis shows testing execution time in [sec].

by Supervised method, and similar pattern to that obtained by GREEND dataset.

Trained k-means was the fastest again in detecting our tested appliances as expected,

due to its simplicity. Linear SVM and Gaussian SVM are the slowest, due to their

complexity, compared to the remaining of disaggregating algorithms.

It can also be seen that Unsupervised Gaussian modeling method has lower ex-

ecution times compared to that by Supervised method using all tested classification

algorithms by one or two seconds roughly in most tested classification algorithms.
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Figure 6.13: Testing execution times results for Supervised and Unsuper-
vised Gaussian model methods using Trained k-means, LSVM, GSVM,
Linear combined algorithm and Gaussian combined algorithm to detect
washing machine and dishwasher in GREEND dataset Houses 1, 2 and
3. x-axis shows testing execution time in [sec].

6.5.2 Accuracy

In this sub-section, we compare supervised with unsupervised approaches using algo-

rithm accuracy. Accuracy is measured here using Precision, Recall and F-Measure.

6.5.2.1 General Modeling Method

Tables 6.7 and 6.8 show a comparison between unsupervised General method and

supervised method after disaggregation with Trained k-means, Linear SVM, Gaussian

SVM, Linear combined and Gaussian combined using GREEND dataset Houses 1,

2 and 3. Results obtained by the supervised method are much higher that results
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Figure 6.14: Testing execution times results for Supervised and Unsu-
pervised Gaussian methods using Trained k-means, LSVM, GSVM, Lin-
ear combined algorithm and Gaussian combined algorithm. x-axis shows
testing execution time in [sec].

obtained by the General Model method with up to 78.94% and 94.16% Fm results in

detecting washing machine in both Houses 1 and 2 respectively and up to 98.48% and

94.73% Fm results in detecting dishwasher in Houses 2 and 3 respectively. It can also

be seen from both tables that detecting washing machine events using unsupervised

General model signature did not work but it gave good performance in detecting

dishwasher.

The reason for this is that mean and variance of dishwasher is very unique against

other appliances in the tested houses as was predicted in Section 5.6.1.3 due to its

first state being different that other appliances in the same houses, which is not the

case with the washing machine which was mixed with tumble dryer and microwave

as predicted in Section 5.6.1.3. This flags up the need for training using the samples
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Table 6.7: Results for washing machine disaggregation in GREEND
Houses 1 and 2 for two different methods. Houses 3, 4 and 5 are used
for training.

General Modeling Supervised Method
H Method Pr Re Fm Pr Re Fm

% % % % % %
Trained k-means 0 0 0 91.2 65.3 76.14

H1 Linear SVM 0 0 0 63.88 100 77.96
Gaussian SVM 0 0 0 91.39 66.92 77.27

Linear Combined 0 0 0 100 65.21 78.94
Gaussian Combined 0 0 0 63.82 100 77.92

Trained k-means 0 0 0 75 100 85.71
H2 Linear SVM 6.26 3.33 4.34 83.33 100 90.90

Gaussian SVM 5.55 3.33 4.16 100 86.61 92.82
Linear Combined 9.09 3.33 4.87 87.50 93.33 90.32

Gaussian Combined 5.55 4.33 4.87 100 88.97 94.16

Table 6.8: Results for dishwasher disaggregation in GREEND Houses 2
and 3 for two different methods. Houses 1, 4 and 5 are used for training.

General Modelling Supervised Method
H Method Pr Re Fm Pr Re Fm

% % % % % %
Trained k-means 100 85.03 91.91 100 86.6 92.82

H2 Linear SVM 92.29 100 96.26 97.01 100 98.48
Gaussian SVM 100 92.12 95.9 100 94.87 97.39

Linear Combined 94.20 100 97.01 97.01 100 98.48
Gaussian Combined 100 92.91 96.3 100 94.87 97.36

Trained k-means 100 47.24 64.17 68.18 100 81.08
H3 Linear SVM 83.33 71.42 76.92 87.50 100 93.33

Gaussian SVM 91.2 65.35 76.14 100 90 94.73
Linear Combined 83.33 71.42 76.92 87.50 100 93.33

Gaussian Combined 91.2 65.35 76.14 100 90 94.73

from the database, rather than using the features directly for the classification.

Figure 6.15 shows a comparison between all five tested algorithms in REFIT House

2 using Supervised method and General modeling method. It is obvious that all

tested algorithms performed significantly better using Supervised method compared

to Unsupervised general modeling method. Washing machine had slightly higher

result using Gaussian combined method with 60.22% F-Measure but lower results

using rest of algorithms due to its low state values being mixed with fridge-freezer and
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second state mixed with dishwasher as was predicted in Section 6.5.2.1 using mean-

shift and Tree clustering methods. However, fridge-freezer had good performance

using Linear combined, Linear SVM and Gaussian SVM with roughly 69% F-Measure.

Trained k-means and Gaussian combined gave very high performance detecting the

kettle with 100% Precision, but Gaussian combined had low recall which affected its

F-Measure to be lower, due to its Gaussian signature being mistaken with dishwasher

and microwave which also was predicted in Section 6.5.2.1 due to their signatures

were clustered in the same category.

Figure 6.16 shows a comparison between all five tested algorithms in REFIT House

3 using Supervised method and General modeling method. It is obvious that all tested

algorithms performed significantly better using Supervised method compared to Un-

supervised general modeling method as expected. However, freezer general model

was correctly detected by Linear SVM with a high 70% F-Measure and 74.80% using

Linear combined, but much lower results by k-means, Gaussian SVM and Gaussian

combined algorithm due to its signature values being mixed with fridge-freezer states.

Tumble dryer general model, as well, was detectable but its signature was not unique

enough as it only gave 40%, 34.4% and 38.8% using Linear SVM, Gaussian SVM and

Gaussian combined algorithm respectively. Interestingly, washing machine results

were very poor, unlike House2, due to its first state being mixed with fridge-freezer

signature, second state was mixed with microwave states and its high states was

mixed with tumble dryer as was predicted in Section due to their signatures being

clustered in the same groups.

6.5.2.2 Gaussian Unsupervised Method

Tables 6.9 and 6.10 show Precision, Recall and F-Measure results in GREEND dataset

Houses 1, 2 and 3 after disaggregation using Trained k-means, Linear SVM, Gaussian

SVM, Linear combined and Gaussian combined algorithms. It can be seen that the

Gaussian model sampling approach shows competitive performance to that of the

supervised combined approach.

Washing machine results for Houses 1 and 2 are presented in Table 6.9 using

Precision, Recall and F-Measure for both methods. It can be seen that all tested

algorithms performed well. Trained k-means generally performed slightly lower than

other algorithms as expected. However, other tested algorithms gave up to 76.92%
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Figure 6.15: Disaggregation results for REFIT Houses 2 Supervised
(Top figures) and Unsupervised General modelling (Bottom figures)
methods using Trained k-means, LSVM, GSVM, Linear combined al-
gorithm and Gaussian combined algorithm.

and 78.94% Fm by Gaussian modeling and the supervised method respectively in

House 1, and up to 93.75% and 94.16% Fm in House 2 of Gaussian modeling and

supervised method respectively.
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Figure 6.16: Disaggregation results for REFIT Houses 3 Supervised
(Top figures) and Unsupervised General modeling (Bottom figures)
methods using Trained k-means, LSVM, GSVM, Linear combined al-
gorithm and Gaussian combined algorithm.

Similarly, dishwasher results for Houses 2 and 3 are presented in Table 6.10 using

Precision, Recall and F-Measure for both methods. It can be seen that all tested

algorithms performed well. Trained k-means generally performed 5-10% lower than

other algorithms. However, all other algorithms gave up to 91.04% and 89.48% Fm by
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Gaussian modeling and supervised method respectively in House 2, and up to 94.73%

and 94.73% Fm in House 3 of Gaussian modeling and supervised method respectively.

It can also be seen that Linear combined gave similar results to that of Linear SVM

and Gaussian combined algorithm showed similar performance to that of Gaussian

SVM.

Table 6.9: Results of washing machine disaggregation in GREEND
Houses 1 and 2 for two different methods. Houses 3, 4 and 5 are used
for training.

Gaussian Modelling Supervised Method
H Method Pr Re Fm Pr Re Fm

% % % % % %
Trained k-means 61.22 100 75.94 91.2 65.3 76.14

H1 Linear SVM 78.57 71.73 75 63.88 100 77.96
Gaussian SVM 99.9 56.81 72.44 91.39 66.92 77.27

Linear Combined 72.54 80.43 76.28 100 65.21 78.94
Gaussian Combined 62.5 100 76.92 63.82 100 77.92

Trained k-means 100 72.44 84.01 75 100 85.71
H2 Linear SVM 83.33 100 90.90 83.33 100 90.90

Gaussian SVM 100 85.03 91.91 100 86.61 92.82
Linear Combined 88.23 100 93.75 87.50 93.33 90.32

Gaussian Combined 100 88.18 93.72 100 88.97 94.16

Table 6.10: Results of dishwasher disaggregation in GREEND Houses 2
and 3 for two different methods. Houses 1, 4 and 5 are used for training.

Gaussian Modeling Supervised Method
H Method Pr Re Fm Pr Re Fm

% % % % % %
Trained k-means 75 100 85.71 100 86.6 92.82

H2 Linear SVM 92.06 89.23 90.62 97.01 100 98.48
Gaussian SVM 84.41 100 91.15 100 94.87 97.39

Linear Combined 88.40 93.84 91.04 97.01 100 98.48
Gaussian Combined 88.40 93.84 91.04 100 94.87 97.36

Trained k-means 68.18 100 81.08 68.18 100 81.08
H3 Linear SVM 87.50 100 93.33 87.50 100 93.33

Gaussian SVM 100 90 94.73 100 90 94.73
Linear Combined 87.50 100 93.33 87.50 100 93.33

Gaussian Combined 100 90 94.73 100 90 94.73

Figure 6.17 shows a comparison between all five tested algorithms in REFIT House

2 using Supervised method and Gaussian Unsupervised Method. It is obvious that all
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tested algorithms performed very well for both Supervised method and Unsupervised

method with above 80% F-Measure in detecting fridge-freezer and washing machine

due to their high appearance in testing dataset. Oddly, the unsupervised method

outperformed supervised method in few cases; microwave results were better using

trained k-means as they increased from zero F-Measure with supervised method to

41.37% F-Measure. Linear SVM detected microwave with 3% F-Measure using super-

vised method compared to 41.73% F-Measure using unsupervised method. Kettle, as

well, was detected better using unsupervised method with 81.48%, 81.48% and 31.57%

using Linear SVM, Gaussian SVM and Linear combined algorithm respectively, com-

pared to 76.9%, 69.76% 5% using supervised method by Linear SVM, Gaussian SVM

and Linear combined algorithm respectively. Only Gaussian combined algorithm re-

sults were better using supervised method in detecting kettle with 96.74% against

81.48% using unsupervised method. However, kettle results could mean that some-

times noisy data like REFIT can benefit from using features derived from Gaussian

approximations instead of using training dataset.

Figure 6.18 shows a comparison between all five tested algorithms in REFIT House

3 using Supervised method and Gaussian Unsupervised Method. Supervised method

outperformed unsupervised method in most cases with all tested algorithms. How-

ever, some appliances were detected better using unsupervised method due to bet-

ter training quality with Gaussian approximation model. Washing machine results

were FM = 23.28% using k-means but was about FM = 58.61% using unsupervised

method. Linear SVM, as well, had some appliances performed better using unsuper-

vised method, freezer had 3% higher F-Measure, going from 80.86% using supervised

method to 83.94% using unsupervised method. Tumble dryer has FM = 53.21% using

supervised method and up to FM = 67.76% using unsupervised Gaussian method.

The Linear combined algorithm performed better for the unsupervised method

in REFIT House 3 to detect toaster, fridge-freezer, dishwasher and television with

50%, 49.36%, 84.33% and 52.94% F-Measure respectively using unsupervised method

compared to 34.4%, 40.94%, 0% and 33.33% F-Measure respectively for the supervised

method. The fridge-freezer events were wrongly classified to the freezer events using

supervised method, toaster and television were mixed with washing machine low-

value events. Dishwasher events were mixed with fridge-freezer and washing machine

events using supervised method.
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Figure 6.17: Disaggregation results for REFIT Houses 2 Supervised
(Top figures) and Gaussian Unsupervised modeling (Bottom figures)
methods using Trained k-means, LSVM, GSVM, Linear combined al-
gorithm and Gaussian combined algorithm.

6.5.3 Feature Selection

Similar to the Supervised method introduced and discussed in the previous chapter,

feature selection has a major role in disaggregating appliances using the Gaussian
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Figure 6.18: Disaggregation results for REFIT Houses 3 Supervised
(Top figures) and Gaussian Unsupervised modelling (Bottom figures)
methods using Trained k-means, LSVM, GSVM, Linear combined algo-
rithm and Gaussian combined algorithm.

unsupervised method. Table 6.11 shows different feature combinations were used by

Trained k-means, Linear SVM, Gaussian SVM, Linear combined and Gaussian com-

bined algorithms to better detect washing machine appliances in GREEND dataset

Houses 1 and 2 and dishwasher appliances in GREEND dataset Houses 2 and 3.
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It can be seen that two-dimensional feature combinations gave better performance

for different dimensional data. It is also clear that Maximum power value helps cor-

rectly disaggregate washing machine and dishwasher. Mean power value and Maxi-

mum over mean power ratio were also good in detecting washing machine and dish-

washer; minimum power value was less likely used. Interestingly, the area under the

curve did not give good performance by any tested algorithms.

Table 6.11: Best feature combinations for detecting washing machines
and dishwashers among all possible feature combinations

Appliance Method Supervised Method Unsupervised Method
Trained k-means ratio & dur max & dur

H1 WM Linear SVM max & mean max & mean
Gaussian SVM ratio & dur max & ratio

Linear Combined max & mean max & min
Gaussian Combined max & ratio min & ratio

Trained k-means max & min min & ratio
H2 WM Linear SVM max & mean max & mean

Gaussian SVM max, min & dur max & ratio
Linear Combined max & mean max & ratio

Gaussian Combined min &mean max & min
Trained k-means max & min max & mean

H1 DW Linear SVM max & min ratio & dur
Gaussian SVM ratio & dur max &ratio

Linear Combined max & min max & ratio
Gaussian Combined max & dur max & ratio

Trained k-means max & dur max & dur
H2 DW Linear SVM max & min ratio & dur

Gaussian SVM max & dur max & ratio
Linear Combined max & min max & min

Gaussian Combined min & ratio ratio & dur

Table 6.12 shows the best feature combinations among all possible feature combi-

nations for REFIT House 2 using Supervised method and Unsupervised method. It is

noticed that 2-dimensional and 3-dimensional feature combinations have performed

better than 4-dimensional and 5-dimensional feature combinations, which can mean

that high dimensional data mean harder job for classification algorithms. It can also

be seen that maximum power value and duration of event are the main features that

helped detecting most of appliances in House 2, such as freezer, television and mi-

crowave. It can be seen also that no toaster events were correctly classified using all

tested algorithms which was predicted in Section 6.5.2.1 due to its states signatures
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included across all groups which means that it can be easily misclassified into other

appliances. Minimum power value and maximum power value over mean power value

features were very useful to detect washing machine, dishwasher and kettle. However,

area was less likely to help correctly disaggregate appliances.

Table 6.12: Best feature combinations among all possible feature com-
binations for REFIT House 2. NA= Not Available. Max= maximum
power value. Min= minimum power value. dur= duration of an event.
ratio= maximum power value over mean power value ratio.

Appliance Method Supervised Method Unsupervised Method
Trained k-means dur & ratio max & min

Fridge-Freezer Linear SVM max, dur & area max & ratio
Gaussian SVM max, min & dur min & dur

Linear Combined max, dur & area max & ratio
Gaussian Combined area & dur area & min

Trained k-means dur & ratio max & min
Washing Machine Linear SVM max, min & dur min & dur

Gaussian SVM max, dur & ratio min & dur
Linear Combined dur & ratio max & ratio

Gaussian Combined max, dur & ratio dur & ratio
Trained k-means max, min & ratio max & ratio

Dishwasher Linear SVM max, min & ratio min & ratio
Gaussian SVM max, min & area area & dur

Linear Combined max, area & ratio max & dur
Gaussian Combined max, min & area area & dur

Trained k-means NA NA
Television Linear SVM area & dur max, min & ratio

Gaussian SVM max, min & dur NA
Linear Combined area & dur max , dur & area

Gaussian Combined dur & ratio NA
Trained k-means NA min, dur & area

Microwave Linear SVM max, min & dur area & dur
Gaussian SVM max & area max & ratio

Linear Combined max, area & ratio max & area
Gaussian Combined max & min area & dur

Trained k-means NA NA
Toaster Linear SVM NA NA

Gaussian SVM NA NA
Linear Combined NA NA

Gaussian Combined NA NA
Trained k-means max, min & ratio area & ratio

Kettle Linear SVM min, dur & ratio min & ratio
Gaussian SVM max, area & ratio max & min
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Linear Combined dur, area & ratio area & ratio
Gaussian Combined max & ratio area & dur

Table 6.13 shows the best feature combinations among all possible feature com-

binations for REFIT House 3 using Supervised method and Unsupervised method.

Also here, it can be noticed that 2-dimensional and 3-dimensional feature combi-

nations have performed better than 4-dimensional and 5-dimensional feature com-

binations. However, no common feature was used to detect appliances in House 3.

However, maximum power value, duration of events and maximum power value over

mean power value ratio were used to correctly disaggregate toaster events in both

Supervised and Unsupervised events by all tested algorithms. Duration of events and

minimum power value were unique values to help detect fridge-freezer events. Du-

ration of events and maximum power value over mean power value ratio were used

by trained k-means, Linear SVM and Gaussian SVM to detect freezer in Supervised

method, while minimum power value and maximum power value over mean power

value ratio helped in Unsupervised method. Interestingly, television and kettle area

values were used by most of our tested algorithms.

Table 6.13: Best feature combinations among all possible feature com-
binations for REFIT House 3. NA= Not Available. Max= maximum
power value. Min= minimum power value. dur= duration of an event.
ratio= maximum power value over mean power value ratio.

Appliance Method Supervised Method Unsupervised Method
Trained k-means max, min & ratio max & dur

Toaster Linear SVM max, min & dur dur & ratio
Gaussian SVM max, dur & ratio max & dur

Linear Combined max & ratio min & dur
Gaussian Combined max, dur & area min & ratio

Trained k-means dur & ratio area & dur
Fridge-Freezer Linear SVM max & dur min & dur

Gaussian SVM area & dur dur & ratio
Linear Combined dur & ratio max & area

Gaussian Combined max & min max & min
Trained k-means dur & ratio max, min & ratio

Freezer Linear SVM dur & ratio min & dur
Gaussian SVM dur & ratio dur & ratio

Linear Combined max, min & dur min & ratio
Gaussian Combined max, dur & area max & min

Trained k-means min & dur NA
Tumble Dryer Linear SVM max, dur & ratio max & ratio
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Gaussian SVM max & dur max & min
Linear Combined max, min & ratio max & dur

Gaussian Combined max & ratio max & min
Trained k-means NA NA

Dishwasher Linear SVM NA NA
Gaussian SVM NA NA

Linear Combined NA area & dur
Gaussian Combined NA NA

Trained k-means min & dur max, dur & area
Washing Machine Linear SVM dur & ratio dur & ratio

Gaussian SVM min, dur & area max & dur
Linear Combined min, area & ratio max & min

Gaussian Combined min, dur & area max & ratio
Trained k-means area & dur NA

Television Linear SVM area & dur NA
Gaussian SVM area & dur area & min

Linear Combined area & dur area & dur
Gaussian Combined dur, area & ratio max, min & ratio

Trained k-means NA NA
Microwave Linear SVM NA NA

Gaussian SVM max, min & dur NA
Linear Combined area & ratio NA

Gaussian Combined max & min min & ratio
Trained k-means NA NA

Kettle Linear SVM max, dur & ratio NA
Gaussian SVM max, dur & area min & ratio

Linear Combined min, area & ratio max & area
Gaussian Combined dur, area & ratio max & dur

6.5.4 Results Summary

As expected, it was clear that Linear and Gaussian combined algorithms provide a

competitive performance compared to other tested algorithms in terms of time com-

plexity and accuracy to correctly detect washing machine and dishwasher appliances

in GREEND dataset Houses 1, 2 and 3, as well as, seven appliances in House 2 and

nine appliances in House 3 in the REFIT dataset. Again, both combined algorithms

provided a trade-off between speed of processing and quality of disaggregation using

different sets of features that simplifies data and maximizes performance.

Similar appliances across both datasets like washing machine and dishwasher gave

similar results. It can be summerized that washing machine was mixed with tumble

134



dryer when present in same houses. Dishwasher was harder to be correctly classified

across all tested houses since its low state was mixed with lower appliances signatures

and high state was mixed with washing machine signature.

Our proposed Unsupervised methods showed a good replacement of regular train-

ing in case of clear appliance signature and also lower execution time in testing step.

Next, we benchmark our proposed method with HMM algorithm.

6.6 Benchmark

Similar to Chapter 4, we compare the proposed approaches (Linear and Gaussian

combined algorithms) with the state-of-the art HMM-based method of [43], which was

designed for low-sampling (1 min) rates. For each dataset, all three tested algorithms

always use the same amount of data for training. The HMM-based method [43]

requires prior initialization of the model using expert knowledge (state variances,

mean value for each state and state transition probabilities), which was carried out

in our experiments either using the information provided by the authors of [43], or

were generated during training. The combined algorithms select the best feature

combination to be used for GREEND dataset washing and dishwasher and REFIT

dataset Houses 2 and 3, and then perform classification.

Supervised Method uses ”Regular Training of one week data” while Unsupervised

method uses washing machine and dishwasher models, which were generated using

one month worth of data from different houses.

6.6.1 Time Complexity

Table 6.14 shows a comparison between Linear combined algorithm, Gaussian com-

bined algorithm and HMM in detecting washing machine and dishwasher appliances

in GREEND dataset Houses 1, 2 and 3 using Supervised method and our two proposed

Unsupervised methods. It can be seen that HMM has significantly higher testing exe-

cution times to classify washing machine in Houses 1 and 2 and dishwasher in Houses

2 and 3 with 1037.55, 1023.23, 954.93 and 864.82 seconds respectively compared to

less than 1 second by Linear and Gaussian combined algorithms. Execution times

135



in detecting dishwasher seem slightly lower than washing machine execution times

results by HMM.

Table 6.14: Testing execution time results of washing machines and dish-
washer disaggregation in GREEND Houses. H denotes House number.
L C denotes Linear combined algorithm. G C denoted Gaussian com-
bined algorithm. GM denotes General Modeling.

Supervised Method Unsupervised GM method
Appliance L C G C HMM L C G C L C G C

(sec) (sec) (sec) (sec) (sec) (sec) (sec)
H1 WM 0.21 0.32 1037.55 0.13 0.24 0.081 0.107
H2 WM 0.27 0.38 1023.23 0.19 0.29 0.082 0.190
H2 DW 0.31 0.42 954.93 0.21 0.35 0.090 0.097
H3 DW 0.29 0.40 864.82 0.17 0.32 0.082 0.089

Table 6.15 shows a comparison between Linear combined algorithm, Gaussian

combined algorithm and HMM in detecting all known appliances in REFIT dataset

Houses 2 and 3 using Supervised method and the two proposed Unsupervised meth-

ods. It can be seen that HMM has significantly higher testing execution times, due to

its complexity, with 3884.26 and 5047.75 seconds in Houses 2 and 3 respectively, com-

pared to less than 3 seconds by Linear and Gaussian combined algorithms. Execution

times in detecting House 3 is slightly higher than detecting appliances in House 2 by

HMM due to less number of appliances.

Table 6.15: Testing execution time results of disaggregation in REFIT
Houses 2 and 3. H denotes House number. L C denotes Linear combined
algorithm. G C denoted Gaussian combined algorithm. GM denotes
General Modeling.

Supervised Method Unsupervised GM method
House L C G C HMM L C G C L C G C

(sec) (sec) (sec) (sec) (sec) (sec) (sec)
H2 1.861 2.091 3884.26 1.226 1.88 0.732 0.992
H3 2.42 3.071 5047.75 2.171 2.781 0.824 1.038

6.6.2 Accuracy

Tables 6.16 and 6.17 show Precision, Recall and F-Measure results in GREEND

dataset Houses 1, 2 and 3 after disaggregation with Supervised, Unsupervised and
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General modeling methods using Linear combined algorithm, Gaussian combined

algorithm and HMM.

Washing machine results for Houses 1 and 2 are presented in Table 6.16 using Pre-

cision, Recall and F-Measure using different training methods. It can be seen that

Linear and Gaussian combined algorithms performed well for Supervised and Unsu-

pervised approaches with above 77% F-Measure for the supervised method. House

2 results were high by Linear and Gaussian combined algorithms with above 90%

F-Measure for supervised and unsupervised methods. However, in the same table,

Linear and Gaussian algorithms gave very poor results in detecting washing machine

signature by General modeling method as expected. HMM, on the other hand, gave

very poor performance in Precision and F-Measure of less than 5% for both tested

GREEND houses and a very high Recall of 95.5% and 96.4% in Houses 1 and 2

respectively which reflects very small false negative but high false positive.

Similarly, dishwasher results for Houses 2 and 3 are presented in Table 6.17 using

Precision, Recall and F-Measure for different training methods. It can be seen that

Linear and Gaussian combined algorithms have a very high performance for Super-

vised and Unsupervised approaches of above 98% F-Measure in supervised method.

House 2 results were slightly lower using supervised method with Linear and Gaussian

combined algorithms with roughly 5% less, but gave slightly higher performance for

roughly 3% higher F-Measure by unsupervised method. However, unlike the washing

machine general modeling method, Linear and Gaussian algorithms gave quite high

performance in detecting dishwasher with the General modeling method as discussed

before. HMM, on the other hand, gave very poor performance in F-Measure of less

than 10% for both tested GREEND houses. A Precision of 24.68% in House 2 means

lower number of true positive events compared to false positive events. A high Recall

of 82% in House 3 which reflects very small false negative but higher false positive.
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Table 6.16: Results of washing machine disaggregation in GREEND
Houses 1 and 2 for three different methods. Houses 3, 4 and 5 are
used for training. L C denotes Linear combined algorithm. G C denoted
Gaussian combined algorithm. GM denotes General Modeling.

Supervised Method Unsupervised GM method
H % L C G C HMM L C G C L C G C

PR 100 63.82 0.5 72.54 62.5 0 0
H1 RE 65.21 100 95.5 80.43 100 0 0

FM 78.92 77.92 1.04 76.28 76.92 0 0
PR 87.56 100 2.14 88.233 100 9.09 5.55

H2 RE 93.33 88.97 96.4 100 88.18 3.33 4.33
FM 90.32 94.16 4.19 93.57 93.72 4.87 4.87

Table 6.17: Results of dishwasher disaggregation in GREEND Houses
2 and 3 for three different methods. Houses 1, 4, 5 and used for train-
ing. L C denotes Linear combined algorithm. G C denoted Gaussian
combined algorithm. GM denotes General Modeling.

Supervised Method Unsupervised GM method
H % L C G C HMM L C G C L C G C

PR 97.01 100 24.68 88.40 88.40 92.2 100
H2 RE 100 94.87 3.19 93.84 93.84 100 92.91

FM 98.48 97.36 5.66 91.04 91.04 97.01 96.30
PR 87.50 100 2.51 87.50 100 83.33 91.2

H3 RE 100 90 82 100 90 71.42 65.35
FM 93.33 94.73 4.88 93.33 94.73 76.92 76.14

Figure 6.18 shows a comparison between all three tested algorithms in REFIT

House 2. Seven known appliances are present: fridge-freezer, washing machine, dish-

washer, television, microwave, toaster, kettle. Fridge-freezer and washing machine

have the highest number of events in the testing set, that is 671 and 612 events

respectively, which made all algorithms have a significantly high Precision, Recall

and F-Measure results. 80% or above for fridge-freezer for Precision, Recall and

F-Measure for both Supervised and Unsupervised methods. Linear combined had

slightly lower F-Measure result with roughly 75% compared to Gaussian combined

algorithm. Washing machine performed well (FM above 80 %) using Linear combined

and Gaussian combined algorithms with both Supervised and Unsupervised methods.

Dishwasher, was high in F-Measure using Gaussian combined in Supervised method

but much lower using Linear combined in Supervised, while both algorithms gave
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lower performance using Unsupervised method. General modeling method, on the

other hand, was very poor for all tested algorithms disaggregating all seven appli-

ances except for washing machine which means that its general model was unique

enough compared to other appliances. HMM suffered from higher number of appli-

ances.

Table 6.18: Results after disaggregation in REFIT Houses 2 and 3
for three different methods. G M Method denotes General Modelling
Method. L C denotes Linear combined algorithm. G C denoted Gaussian
combined algorithm. Fr-Frz=Fridge-Freezer. WM=Washing Machine.
DW=Dishwasher. TV=Television. MW=Microwave. Tstr=Toaster.
K=Kettle. GM denotes General Modeling.

Supervised Method Unsupervised GM Method
Appliance % L C G C HMM L C G C L C G C

PR 92.85 88.72 0 92.33 81.84 52.95 0
Fr-Frz RE 75.55 80.92 0 77.19 84.64 100 0

FM 83.31 84.64 0 84.09 83.22 96.24 0
PR 78.33 76.77 71.53 70.24 77.48 73.28 43.68

WM RE 91.41 98.05 15.88 98.70 94.81 15.55 96.90
FM 84.36 86.12 25.99 82.07 85.27 25.66 60.22
PR 79.72 82.08 0 64.58 93.93 26.37 4.83

DW RE 42.04 62.5 0 35.22 35.22 27.27 3.4
FM 54.81 70.96 0 45.58 51.23 26.81 4
PR 12.5 7.14 0 9.09 0 0 0

TV RE 66.66 50 0 50 0 0 0
FM 21.05 12.5 0 15.38 0 0 0
PR 9.52 90.78 100 77.41 72.97 0 6.6

MW RE 2.38 82.14 5.95 28.57 32.14 0 2.3
FM 3.8 86.25 11.23 41.73 44.62 0 3.5
PR 20 0 0 0 0 0 0

Tstr RE 12.5 0 0 0 0 0 0
FM 15.38 0 0 0 0 0 0
PR 4.16 100 20 100 100 0 100

K RE 6.25 93.75 6.25 18.75 68.75 0 6.25
FM 5 96.77 9.52 31.57 81.48 0 11.76

Figure 6.19 shows a comparison between all three tested algorithms in REFIT

House 3. Nine known appliances are present: Toaster, Fridge-Freezer, Freezer, Tumble

Dryer, Dishwasher, Washing Machine, Television, Microwave, Kettle.

Freezer and washing machine have the highest number of events in testing set,
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namely, 326 and 364 events respectively, which was reflected on all tested algorithms,

except HMM, by having a significantly high Precision, Recall and F-Measure results.

80% or above for both freezer and washing machine for F-Measure in both Supervised

and Unsupervised methods. Dishwasher was not detected at all, using all possible

feature combinations, by Linear combined algorithm using Supervised method but

much higher F-Measure of about 70% was obtained using Unsupervised method, al-

though, Gaussian combined algorithm gave good performance with 81.66%, 85.58%

and 83.58% of Precision, Recall and F-Measure results, respectively, using Supervised

method though the appliance was not detected using Unsupervised method. General

modeling method, on the other hand, was very poor in all tested algorithms disag-

gregating all nine appliances except for tumble dryer which means that its general

model was distinguishable compared to other appliances. HMM, as in House 2, gave

very poor performance compared Linear and Gaussian algorithms.

Table 6.19: Results after disaggregation in REFIT Houses 2 and 3
for three different methods. G M Method denotes General Modelling
Method. L C denotes Linear combined algorithm. G C denoted Gaussian
combined algorithm. Fr-Frz=Fridge-Freezer. WM=Washing Machine.
DW=Dishwasher. TV=Television. MW=Microwave. Tstr=Toaster.
K=Kettle. TD=Tumble Dryer. Fzr=Freezer. GM denotes General
Modeling.

Supervised Method Unsupervised GM Method
Appliance % L C G C HMM L C G C L C G C

PR 21.73 40 0 40 45.45 2.1 3.9
Tstr RE 83.33 100 0 66.66 83.33 50 66.66

FM 34.48 57.14 0 50 58.82 4.1 7.4
PR 36.61 52.61 12.22 38.23 16.94 0 8.86

Fr-Frz RE 46.42 97.33 28.57 69.64 71.42 0 100
FM 40.94 68.30 17.11 49.36 27.39 0 16.27
PR 82.97 88.73 18.42 88.48 91.91 60 0

Fzr RE 82.20 77.30 2.14 75.46 76.68 97.54 0
FM 82.58 82.62 3.8 81.45 83.61 74.82 0
PR 100 81.11 75 100 97.67 19.51 43.75

TD RE 91.25 91.25 7.5 53.84 52.5 30 35
FM 95.42 85.88 13.63 70 68.29 23.64 38.88
PR 0 81.66 0 89.74 0 7.4 12.5

DW RE 0 85.58 0 79.54 0 27.27 18.18
FM 0 83.58 0 84.33 0 11.65 14.81
PR 81.5 82.01 84.37 81.11 73.23 0 0

WM RE 89.56 91.48 14.83 71.15 85.71 0 0
FM 85.34 86.49 25.23 75.84 78.98 0 0
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PR 100 100 4 47.36 77.77 0 0
TV RE 20 20 13.33 60 46.66 0 0

FM 33.33 33.33 6.15 52.94 58.33 0 0
PR 7.6 50 0 0 100 0 0

MW RE 33.33 16.66 0 0 16.66 0 0
FM 12.5 25 0 0 28.57 0 0
PR 50 40 0 42.10 22.22 0 0

K RE 3.4 13.79 0 27.58 6.89 0 0
FM 6.4 20.51 0 33.33 10.52 0 0

6.6.3 Benchmark Summary

Experimental results using GREEND dataset Houses 1, 2 and 3, and REFIT dataset

Houses 2 and 3 demonstrate the competitiveness of the proposed solutions with re-

spect to a state-of-the-art HMM-based approach. Indeed, the proposed approaches

show significantly better performance to that of HMM, with up to 1000 times lower

execution time for testing GREEND dataset, and up to 5000 times lower execution

time for testing REFIT dataset. Simulations showed that HMM based algorithm

could not perform well for high sampling rate of GREEND dataset of roughly 6 sec-

onds and roughly 9 appliances in each house, and higher number of known appliances

with noisy for REFIT dataset, which made it hard to model each appliance due to

significantly high overlapping between appliances in aggregated data, unlike other

disaggregating algorithms tested here.

6.7 Chapter Summary and Conclusion

Designing accurate NALM algorithms for different sampling rate data is not an easy

task. In this chapter we tested our proposed Linear and Gaussian low-complexity

algorithms based on combining Trained k-means and Linear and Gaussian SVMs on

supervised and unsupervised approaches. We focused on washing machine and dish-

washer in GREEND dataset as they are assumed to be high consumers of electricity

and we used a range of GREEND dataset houses with a considerably high sampling

rate. REFIT dataset was a challenge also for all tested algorithms, as it was nosier

that GREEND, and higher number of appliances were present.
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We have created and validated a database of signatures using Gaussian fitted

models in Chapter 5; we have proposed and tested two unsupervised methods using

signatures derived from that database. One method is called Training-less General

modeling which uses signatures straight from the signature database which gave a

poor results in detecting washing machine and a good performance in detecting dish-

washer due to the unique signature of dishwasher in GREEND dataset Houses 2 and

3. However, results with this approach were poor in the REFIT dataset.

The second unsupervised method called Gaussian unsupervised method which uses

a set of different feature combinations derived from Gaussian samples of the signatures

to simplifies and maximize performance which shows a lower simulation time and

competitive performance to that using training from houses-specific data. However,

in some cases, in REFIT dataset results, the unsupervised method outperformed the

supervised results, due to better quality of training using signatures instead of features

per event, which could provide an attractive solution to noisy datasets.

The two combined algorithms (Linear and Gaussian) showed an accurate steady

performance using supervised and unsupervised methods in all tested appliances and

a much better performance compared to HMM algorithm in terms of complexity and

accuracy, which struggled with higher number of appliances and a higher sampling

rate of GREEND and REFIT datasets compared to REDD dataset results introduced

in Chapter 4.
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Chapter 7

Conclusions and Further
Discussion

7.1 Introduction

In this chapter, the main findings with regards to the research objectives are sum-

marized and general conclusions based on the findings of the studies presented in

this thesis are described. Furthermore, the limitations of the proposed methods are

considered and suggestions for further research are presented.

7.2 Main Findings

This thesis was driven by the concept of real-time response and low-complexity ap-

proaches. We proposed different NALM solutions; by combining Trained k-means

and SVM, we managed to reduce the computational cost of SVM without losing its

high performance. We tested our proposed Linear and Gaussian combined algorithms

in comparison with k-means, Linear and Gaussian SVMs and also benchmarked our

combined algorithms with an HMM-based NALM approach. We then introduced two

unsupervised methods based on a signature database to reduce the need for training

classifiers.

For the proposed supervised method, a proper training dataset is presented to

help train classifiers to disaggregate testing data. Both training and testing data
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have to be from the same house in order to have good accuracy output. The pro-

posed unsupervised methods, however, allow us to approach solutions with little or no

information about present appliances. Many researchers prefer to use unsupervised

methods but the lack of successful (utterly blind) methods make supervised methods

still popular, adding to that, supervised methods usually provide much higher and

more liability performance.

7.2.1 Supervised Method

In Chapter 4, we tested our proposed Linear and Gaussian low-complexity combined

algorithms based on combining Trained k-means and Linear and Gaussian SVM. By

combining SVM with k-means, we can benefit from the low complexity of k-means and

the high performance of SVM. The appliances from a range of REDD dataset houses

with roughly 1 minute sampling rate and 5 appliances each were used to evaluate

performance and robustness.

We also tested robustness of the two proposed algorithms by inserting random

errors in training datasets and reduced training from one week to roughly two days.

The two combined algorithms using house-specific training data are accurate even

when the training period as short as two days only for training and training errors

are present with up to 20% error rate and also showed competitive performance to

state-of-the-art approaches of Linear and Gaussian SVM and Hidden Markov Models.

A set of different feature combinations were used to simplify and maximize perfor-

mance, which were used to create 2-dimensional, 3-dimensional, 4-dimensional and

5-dimensional set of features from 1-dimensional power readings. It was found that

2-dimensional and 3-dimensional training data gave better results than higher di-

mensional training data to classify most of the appliances correctly due to classifiers

having harder task with higher dimensional data.

7.2.2 Signature Database Creation and Clustering

In Chapter 5, we created a database of signatures that is based on Gaussian Dis-

tribution Estimation. The database includes appliance load models from GREEND

and REFIT datasets. All houses from GREEND dataset and REFIT Houses 2 and 3

were clustered, studying similarities and dissimilarities between all different types of
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appliances based on their Gaussian signatures, using two simple, yet effective, tech-

niques: First, we used mean-shift clustering algorithm to section all appliance and

then sub-section any relatively big groups.

In the second method, we created a hierarchical tree using the well-known Genetic

k-means algorithm, then cut the tree into a proper level to form different groups and

sub-groups. Both methods, mean-shift and tree clustering, gave similar prediction

results to the same appliances and good prediction to which appliances would be

hard to classify. Tree clustering gave detailed connection between appliances from

root to leaf nodes with one or two appliances in each leaf.

7.2.3 Unsupervised Methods

In Chapter 6, we tested our proposed Linear and Gaussian low-complexity algorithms

based on combining Trained k-means and Linear and Gaussian SVMs on supervised

and unsupervised approaches. We focused on washing machine and dishwasher from

GREEND dataset as they are assumed to be high consumers of electricity and exist

in at least four GREEND houses. We also used REFIT dataset as it offers higher

number of appliances that exist in most houses such as tumble dryer, toaster and

freezer.

We also proposed and tested two unsupervised methods using signatures derived

from that database. One method called Training-less General modeling which uses

signatures straight from the signature database which gave poor results in detecting

washing machine and good performance in detecting dishwasher due to the unique

signature of dishwasher in GREEND dataset. All tested appliances from REFIT

Houses 2 and 3 gave poor performance with General modeling method.

The second unsupervised method called Gaussian unsupervised method which uses

a set of different feature combinations derived from Gaussian samples of the signatures

to simplify and maximize performance of our combined algorithms which showed

a lower simulation time and competitive performance to that using training from

houses-specific data. The two combined algorithms gave accurate steady performance

using supervised and unsupervised methods for all monitored appliances and a much

better performance compared to HMM algorithm that struggled with higher number

of appliances and sampling rate of GREEND and REFIT datasets.
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7.3 Further Discussion

From the conclusion points, it can be noticed that not all methods work perfectly

with different types of appliances. That means, some appliances can be disaggregated

better using unsupervised approaches than supervised method, or works better with

Gaussian combined algorithm than Linear combined algorithm. The reason for that

depends on how the appliance operates for short or long periods of time, as well as,

whether the data is clean enough. However, here are few points worth mentioning:

• Refrigerators were usually easy to disaggregate by most used methods due to

the high number of event windows present in training and testing datasets.

• Appliances such as washing machines and tumble dryer are usually hard to

disaggregate when another high consuming appliance is present in the same

house, due to their level of consumption and long cycles being similar.

• Different types of Televisions have significantly different operation cycles. For

example, LCD televisions do not operate similar to Plasma televisions.

• Toasters and kettles were hard to separate when present in the same house due

to their short cycles and high energy consumption values being similar.

These findings are summarized from this thesis outcomes using kmeans, Linear

SVM, Gaussian SVM, Linear combined algorithm and Gaussian combined algorithm

and benchmarked with HMM-based algorithm. There was a clear trade-off between

accuracy and simplicity in all results, better results were obtained by Gaussian algo-

rithms (Gaussian SVM and Gaussian combined algorithm) but slower performance

due to higher complexity compared to linear algorithms (Linear SVM and Linear

combined algorithm.

7.4 Advantages

This work mainly focuses into two major issues in developing NALM solutions; prac-

ticality and simplicity. The key advantage of this work was providing low-complex

solutions to solve the NALM disaggregation problem. By combining Trained kmeans
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and support vector machines, we managed to enhance the performance of linear and

Gaussian support vector machines, which then provided lower computational cost.

The resulting combined algorithms were low-complex, reliable and out-performed

kmeans and SVM individually.

We managed to use only one dimensional data which is active power and convert

it into multi dimensional data by using different features that have provided a major

impact on this research. By doing so, there was no need to use any extra source of in-

formation, such as circuits to measure current and voltage, to disaggregate appliances

into separate readings.

We have also provided a dataset of appliance-load signatures for other researchers

to use in energy disaggregation task. This dataset provides a number of load char-

acteristics extracted from Gaussian mixture model of appliances from GREEND and

REFIT datasets. We managed to advantage from using these signatures to provide

Unsupervised solutions without the need of excessive training. The unsupervised

approaches out-performed the supervised approach in few cases.

7.5 Limitations

Although this research have reached its goals, we are aware of its limitations and

shortcomings, which are listed below:

• The proposed algorithms combine Trained k-means and SVM and use a preset

threshold which separates training and testing datasets between Trained k-

means and SVM. As explained in Section 3.5, this threshold is set manually

which can be impractical. An adaptive threshold could solve this limitation.

• The proposed approaches, supervised and unsupervised, still need labeled data.

By that, we mean a label-vector is needed to train classifiers in order to clearly

separate appliances for classification.

• There is a need to train using ’all’ possible feature selections, as features play

a key role in the disaggregation task, which can be unpractical.

• The current approaches can not separate many overlapped events i.e., when

appliances operate at the same time, and such events are discarded, though,
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partially overlapped-events can be classified by separating overlapped parts and

total overlapped parts.

• Both approaches (supervised and unsupervised) require to re-train when a new

appliance is introduced.

7.6 Potential Applications

Energy load disaggregation using NALM, based purely on analytical tools, has been

gaining popularity, especially with ongoing smart meter roll-outs worldwide. Real-

time feedback on energy consumption is a clear opportunity of energy disaggregation

task. In technology sector, new products could be added into the existing smart

meters by many providing companies. By devising many uses for NALM output,

we could possibly deliver enhanced services to consumers such as detailed billing.

Detailed billing with energy usage breakdown into separate appliances, could persuade

consumers to adopt better energy consumption lifestyles and hint to which appliances

could be replaced into a better energy saving models.

On the other hand, smart grids can benefit from enhanced smart meters. Since

smart grids use demand-side energy management to self-regulate their energy foot-

print, a reduction of the overall energy consumption and peak power usage is key

advantage of the long-term solution of NALM. Demand-side management carried out

by smart grids requires smart buildings, where monitoring energy consumption of

electrical loads is a constantly operating function to remotely control how much en-

ergy every load consumes. These tasks could be performed by modified smart meters

to reduce energy usage and carbon emission which contributes to climate change.

7.7 Future work

The future work will contain:

• Include and test more feature combinations to further improve the performance

of the combined algorithms such as order of maximum and minimum peaks.
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• Implementation of the Linear and Gaussian combined algorithms on other types

of appliances for both supervised and unsupervised methods.

• Further development of the database of signature by generating appliance-load

signatures of different datasets.

• Further investigation of clustering methods using signatures generated from

other datasets including further REFIT dataset houses.
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Appendix A

Supervised Methods Experimental
Results

Table A.1: Comparison between selected feature combinations using
Trained k-means, Linear SVM, Gaussian SVM, Linear combined algo-
rithm and Gaussian combined algorithm for REDD dataset Houses 1, 2
and 6.

House Feature Trained k-means Linear SVM Gaussian SVM
number combination (%) (%) (%)

Max. & Min. 70.33 67.63 71.83
House 1 Area. & Dur. 48.72 45.09 47.15

Max.,Dur. & Area 64.83 69.77 66.77
Max.,Min. & Max/Mean 71.14 74.52 71.67

Min.,Dur.,Area & Max/Mean 63.75 66.77 62.02
All features 66.57 67.4 63.44

Max. & Min. 82.53 85.55 81.78
House 2 Area. & Dur. 85.42 52.76 53.89

Max.,Dur. & Area 85.55 85.17 76.38
Max.,Min. & Max/Mean 75.37 83.41 76.75

Min.,Dur.,Area & Max/Mean 85.42 85.55 56.78
All features 85.05 83.66 55.9

Max. & Min. 90.83 86.35 96.58
House 6 Area. & Dur. 86.56 62.68 68.01

Max.,Dur. & Area 93.6 63.96 74.8
Max.,Min. & Max/Mean 91.04 72.49 71.21

Min.,Dur.,Area & Max/Mean 93.81 66.31 75.05
All features 94.45 66.52 74.84
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A.1 Performance

A.1.1 House 1

Table A.2: Comparison between Trained k-means, Linear SVM, Gaus-
sian SVM, Linear combined algorithm, Gaussian combined algorithm
and HMM algorithm using FM for REDD dataset House 1.

Method % Refrigerator Microwave Toaster Dishwasher W dryer Total
Pr 70.4 85.45 52.63 100 74.48 72.75

Kmeans Recall 95.73 73.43 86.95 4.65 88.52 74.24
Fm 81.13 78.99 65.57 8.88 80.89 73.49
Pr 82.91 52.17 15.15 83.87 64.58 74.26

L SVM Recall 97.31 84.21 13.88 29.21 75.6 80.37
Fm 89.53 64.42 14.49 43.33 69.66 77.2
Pr 81.31 41.42 19.14 43.47 92 71.62

G SVM Recall 96.82 50.87 25 11.23 56.09 73.89
Fm 88.39 45.66 21.68 17.85 69.69 72.74
Pr 83.19 64.81 16.66 50 92.85 78.66

L Combined Recall 96.82 61.40 2.77 28.08 63.41 76.42
Fm 89.49 63.06 4.76 35.97 75.36 77.52
Pr 90.18 68 100 68.96 65.30 80.15

G Combined Recall 96.57 89.47 30.55 44.94 78.04 83.70
Fm 90.18 77.27 46.80 54.42 71.11 81.88
Pr 90 79.31 0 44.63 0 77.16

HMM Recall 77.16 60.53 0 86.17 0 76.97
Fm 83.12 68.66 0 58.80 0 77..06
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A.1.2 House 2

Table A.3: Comparison between Trained k-means, Linear SVM, Gaus-
sian SVM, Linear combined algorithm, Gaussian combined algorithm
and HMM algorithm using FM for REDD dataset House 2.

Method % Refrigerator Stove Microwave Toaster Dishwasher Total
Pr 92.28 0 0 45.31 0 84.79

Kmeans Recall 95 0 0 48.33 0 84.79
Fm 93.62 0 0 46.77 0 84.79
Pr 93.41 4.16 0 54.9 33.33 85.18

L SVM Recall 91.76 33.33 0 93.33 21.42 85.92
Fm 92.58 7.40 0 69.13 26.08 85.55
Pr 93.31 2.24 0.81 63.15 50 70.86

G SVM Recall 93.97 66.66 2.56 60 21.42 85.55
Fm 93.55 4.34 1.23 61.53 30 77.51
Pr 92.87 66.66 15.38 69.62 22.22 73.30

L Combined Recall 95.88 33.33 82.05 91.66 42.85 93.49
Fm 94.35 44.44 25.91 79.13 29.26 82.17
Pr 91.07 0 27.63 67.69 50 83.54

G Combined Recall 97.50 0 53.84 73.33 21.42 91.83
Fm 94.17 0 36.52 70.40 30 87.49
Pr 87.45 38.10 35.71 50 33.33 84.85

HMM Recall 87.93 66.67 58.14 92.45 7.56 80.05
Fm 87.69 48.48 44.25 64.90 12.32 82.38
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A.1.3 House 6

Table A.4: Comparison between Trained k-means, Linear SVM, Gaus-
sian SVM, Linear combined algorithm, Gaussian combined algorithm
and HMM algorithm using FM for REDD dataset House 6.

Method % Refrigerator Stove Microwave Toaster Air Conditioner Total
Pr 96.66 0 0 0 100 97.01

Kmeans Recall 100 0 0 0 85.96 97.01
Fm 98.30 0 0 0 92.45 97.01
Pr 93.83 9.67 3.33 0 24.24 72.85

L SVM Recall 97.53 100 100 0 42.10 90.40
Fm 95.65 17.64 6.45 0 30.76 80.68
Pr 99 100 2.38 0 81.81 88.86

G SVM Recall 98.27 33.33 100 0 94.73 97.01
Fm 98.64 50 4.65 0 87.80 92.76
Pr 98.28 20 100 0 88.88 95.09

L Combined Recall 99.01 100 74.07 0 86.95 96.07
Fm 98.65 33.33 85.10 0 87.91 95.58
Pr 98.06 33.33 85.71 0 92.72 96.39

G Combined Recall 99.75 33.33 88.88 0 91.07 97.36
Fm 98.90 33.33 87.27 0 91.89 96.87
Pr 69.20 0 100 0 0.43 58.54

HMM Recall 96.13 0 100 0 100 96.32
Fm 80.47 0 100 0 0.85 72.82
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A.2 Robustness

Table A.5: Comparison between the Trained k-means, Linear SVM,
Gaussian SVM, Linear combined algorithm and Gaussian combined al-
gorithm using Testing execution time for REDD data Houses after re-
duction of the training dataset.

Method House 1 House 2 House 6
(sec) (sec) (sec)

6000 0.153 0.235 0.121
5000 0.153 0.201 0.136

Trained k-means 4000 0.183 0.262 0.11
3000 0.138 0.266 0.12
2000 0.145 0.255 0.186
6000 0.581 0.698 0.566
5000 0.659 0.722 0.464

Linear SVM 4000 0.624 0.731 0.529
3000 0.688 0.682 0.391
2000 0.57 0.718 0.361
6000 1.14 1.461 0.876
5000 1.282 1.028 0.938

Gaussian SVM 4000 1.097 1.189 0.596
3000 1.118 0.867 0.548
2000 0.677 1.069 0.493
6000 0.328 0.476 0.364
5000 0.356 0.449 0.366

Linear Combined 4000 0.328 0.366 0.307
3000 0.333 0.401 0.283
2000 0.316 0.317 0.208
6000 0.444 0.543 0.465
5000 0.408 0.569 0.443

Gaussian Combined 4000 0.401 0.446 0.306
3000 0.302 0.495 0.337
2000 0.283 0.42 0.366
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A.2.1 House 1

Table A.6: FM results of Trained k-means, Linear SVM, Gaussian SVM,
Linear combined algorithm and Gaussian combined algorithm after re-
ducing the training dataset for REDD dataset House 1. T denotes Train-
ing.

Training size Fridge Microwave Toaster Dishwasher Washer dryer Total
6000 85.04 63.69 0 0 0 71.12
5000 85.95 64.1 0 8.7 0 71.25

T k-means 4000 88.7 64.4 0 5.6 0 72.91
3000 90 72.2 0 0 0 75.3
2000 89.3 55 0 0 0 71.93
6000 89.2 64.1 0 4.25 0 73.7
5000 89.4 65.8 0 0 4.7 74.2

L SVM 4000 89.5 64 0 35 4.3 73.78
3000 90.4 32.4 0 33.6 26 71.86
2000 88.9 65.8 0 0 5 73.83
6000 89.6 67.85 0 21.15 65.3 77.26
5000 89.7 64.4 0 23.7 68.8 77.6

G SVM 4000 86.7 64.8 0 36.75 71.1 73.5
3000 88.61 57.14 0 46.23 64.07 75.26
2000 80.27 62.5 0 0 0 68.3
6000 89.4 62.9 0 31.08 20.3 74.4
5000 89.3 42.6 0 28.5 13.6 71.7

L combined 4000 89.5 71.5 0 40.4 0 73.8
3000 89 32.2 0 35.2 28 72.81
2000 88.9 62.9 0 0 0 73.26
6000 86.2 57.8 0 13.5 63.3 73.6
5000 89 37.3 0 0 52.8 71.1

G combined 4000 85.3 71.1 0 23.6 52.8 73.63
3000 89.7 57.8 0 2.19 51.8 73.17
2000 81 56.6 0 0 0 67.9
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Table A.7: FM results of Trained k-means, Linear SVM, Gaussian SVM,
Linear combined algorithm and Gaussian combined algorithm for differ-
ent Error rates for REDD dataset House 1. T denotes Trained.

Error rate Fridge Microwave Toaster Dishwasher Washer dryer Total
5 % 89 40.2 0 13.5 39.2 72.66

T k-means 10 % 88.4 31.2 0 0 39.8 70.82
15 % 87.6 15.7 0 0 39.2 71.28
20 % 86.3 16.6 0 0 37.1 70.73
5 % 89.5 64.4 0 41.66 65.78 78.1

L SVM 10 % 89.5 65.3 0 41.3 46.8 77.3
15 % 89.5 65.3 0 40.6 26 76.72
20 % 89.5 62.5 0 42 12.24 74.36
5 % 87.6 44.6 36.5 24.3 69.69 70.33

G SVM 10 % 87.77 42.4 19.73 25.74 66.6 66.57
15 % 88.27 48.73 36.17 26.2 32 69.45
20 % 88.43 45.66 20 26.4 32 68.8
5 % 89.3 50.9 4.6 14.8 80 75.12

L combined 10 % 89.2 66.2 0 13.3 81 75.6
15 % 89 58.2 3 40.8 81.1 75.48
20 % 88.9 58.5 3.3 37.9 81.1 76.83
5 % 89.7 56.3 0 0 34.9 70.1

G combined 10 % 88.66 57.14 0 27.8 29.2 68.88
15 % 90.2 72.8 0 63.7 25.7 73.1
20% 88.5 54.4 0 0 32.9 69.12
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A.2.2 House 2

Table A.8: FM results of Trained k-means, Linear SVM, Gaussian SVM,
Linear combined algorithm and Gaussian combined algorithm after re-
ducing the training dataset for REDD dataset House 2. T denotes
Trained.

Training size Fridge stove Microwave Toaster Dishwasher Total
6000 90.9 0 0 20 0 82.78
5000 93.5 0 0 45 0 84.67

T k-means 4000 91.8 0 0 2.4 0 82
3000 92.9 0 0 76.3 0 86.18
2000 94.8 0 0 75.6 0 89.69
6000 92.52 4.6 0 71.6 26 84.41
5000 92.5 4.5 0 67.8 40 84.3

L SVM 4000 92.5 0 0 75.16 44.4 87.1
3000 93.1 0 0 75.1 0 87.63
2000 92.2 0 0 75.1 0 85.93
6000 94.2 2.8 1.2 62.6 26.1 78.86
5000 92.2 0 1.3 59.6 31.57 80.66

G SVM 4000 91.4 0 1.1 60.9 31.57 78.75
3000 92.7 0 0 78.1 0 87.1
2000 92.1 0 0 52.8 0 85.75
6000 91.84 0 0 8.9 41.6 84.85
5000 91.88 0 0 17 0 84.4

L combined 4000 91.7 0 0 6.4 40 84.7
3000 90.4 0 0 60.15 0 72.68
2000 90.22 0 0 60 0 84.7
6000 93.5 0 40 46.5 22.2 84.68
5000 93.4 0 0 46.4 16 85.68

G combined 4000 92.3 0 0 9.4 23 84.23
3000 90.4 0 0 0 0 82.95
2000 90.3 0 0 5.2 0 81.55
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Table A.9: FM results of Trained k-means, Linear SVM, Gaussian SVM,
Linear combined algorithm and Gaussian combined algorithm for differ-
ent Error rates for REDD dataset House 2. T denotes Trained.

Error rate Fridge stove Microwave Toaster Dishwasher Total
5 % 91.9 0 0 57.4 0 84.79

T k-means 10 % 93.4 0 0 46.6 0 84.79
15 % 91.8 0 0 2.4 0 82.03
20 % 91.9 0 0 2.4 0 82.03
5 % 92.2 3 0 43.6 44.4 81.98

L SVM 10 % 92.2 1.3 0 0 45.5 77.35
15 % 92 3.9 0 45.3 0 82.66
20 % 91.7 0 0 0 0 85.53
5 % 92.46 2.2 0 66.1 30 80.44

G SVM 10 % 92.6 0 0 47.9 30 72.47
15 % 92.2 0 0 44.6 31.25 67.2
20 % 91.27 0 0 0 14.6 66.8
5 % 91.8 0 0 11.4 17.39 84.6

L combined 10 % 91.48 0 46.9 12.5 13.7 86.14
15 % 93.3 0 0 11.9 42.8 85.58
20 % 91.9 0 0 8.9 45.3 84.58
5 % 92.1 0 50.6 35.1 21.8 86.43

G combined 10 % 93.6 0 48.7 33.3 20.4 87.29
15 % 91.7 0 51.7 9.3 19.66 87.84
20% 93.4 0 3.3 46.2 25.8 84.47
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A.2.3 House 6

Table A.10: FM results of Trained k-means, Linear SVM, Gaussian
SVM, Linear combined algorithm and Gaussian combined algorithm af-
ter reducing the training dataset for REDD dataset House 6. T denotes
for Trained.

Training size Fridge stove Microwave Toaster Air conditioner Total
6000 98.25 0 0 0 86.36 95.9
5000 98.65 0 0 0 87.17 96.5

T k-means 4000 98.25 0 0 0 18.18 85.2
3000 98.25 0 0 0 86.36 95.94
2000 92.8 0 0 0 0 86.5
6000 96 17.14 6.4 0 29.67 80.7
5000 96.2 16.6 4.8 0 43.27 81.5

L SVM 4000 98.25 10.34 0 0 73.78 86.3
3000 97.75 10.52 0 0 27.16 83,8
2000 96.7 10.1 0 0 13.6 83.15
6000 98.6 50 4.6 0 87.8 92.76
5000 98.5 50 4.6 0 87.1 92.55

G SVM 4000 97.75 44.4 0 0 71 93.81
3000 97.3 57.14 0 0 77.68 94.2
2000 92.38 66.6 0 0 24.7 85.5
6000 98.3 6.6 100 0 55.3 90.83
5000 98.5 0 0 0 42.1 88

L combined 4000 98.6 33.3 0 0 65.1 94.3
3000 98.6 66.6 0 0 87.7 96.8
2000 98.5 57.1 0 0 88.8 96.58
6000 84.5 18 0 0 47.9 75.13
5000 98.6 14.28 100 0 92.45 96.5

G combined 4000 98.14 15.7 0 0 82.14 92.4
3000 92.79 66.6 0 0 5.7 85.92
2000 91.7 60 0 0 0 84.6
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Table A.11: FM results of Trained k-means, Linear SVM, Gaussian
SVM, Linear combined algorithm and Gaussian combined algorithm for
different Error rates for REDD dataset House 6. T denotes Trained.

Error rate Fridge stove Microwave Toaster Air conditioner Total
5 % 98.3 0 0 0 91.6 96.5

T k-means 10 % 98.5 0 0 0 88.6 95.94
15 % 98.6 0 0 0 89.3 96.58
20 % 98.3 0 0 0 87.5 96.37
5 % 93.6 5.7 0 0 36.6 85.6

L SVM 10 % 78.49 3.7 0 0 0 60.55
15 % 76.2 3.6 0 0 0 57.7
20 % 87.2 12.7 0 0 0 76
5 % 98.5 0 0 0 86.9 88.9

G SVM 10 % 98.6 0 0 0 89.2 89.8
15 % 98.5 0 4.1 0 89.2 91.24
20 % 98.38 0 4 0 52.5 87.8
5 % 97.7 6.4 28.5 0 45.3 89.8

L combined 10 % 96.3 5 100 0 88.8 91.87
15 % 96.6 0 88.8 0 72.2 92.2
20 % 96.2 0 4 0 22.8 83.29
5 % 93 44.4 66.6 0 65.3 96.53

G combined 10 % 98.7 44.4 66.6 0 92.15 97.1
15 % 98.9 0 66.6 0 89.2 96.66
20% 98.3 0 66.6 0 88.3 87.4
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Appendix B

Unsupervised Methods
Experimental Results

B.1 Database Creation

B.1.1 GREEND Dataset

Table B.1: RMSE, mean, variance, 1st order correlation coefficient
and 2nd order correlation coefficient for different Fridges for different
GREEND dataset houses.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H0 Fridge with Freezer 73.74 9.89 0.0065 0.3669 0.3249

236.74 6.4
H1 Fridge 35.2 46.48 1.56 E-04 0.0086 -0.2045

H3 Fridge with freezer 109.57 6.69 7.18 E-05 0.5009 0.4663
H4 Fridge with freezer 140.27 35.44 1.04 E-02 0.2934 0.2016
H5 Fridge with freezer 64.82 3.14 4.3 E-05 0.0952 0.066

202.72 66.24
H7 Fridge with freezer 88.52 37.04 1.65 E-04 0.2272 0.1632

426.68 136.86
641.16 29.07

H7 Freezer 101 21.97 5.1 E-03 0.0448 -0.0273
56.24 1.07
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Table B.2: RMSE, mean, variance, 1st order correlation coefficient
and 2nd order correlation coefficient for different TV’s for different
GREEND dataset houses.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H0 TV 55.48 11.6 0.023 0.3495 0.2982
H2 TV 359.45 78.52 0.0239 0.04 0.0152
H3 TV 90.11 9.87 7 E-03 0.3366 0.2606

H4 Kitchen TV 42.14 2.88 5.68 E-02 0.2698 0.2455
H4 living room TV 16.68 48.41 4.9 E-03 0.0962 0.0184

H5 LCD TV 35.25 2.46 3.77 E-04 0.0199 0.0768
56.24 1.07

H5 Plasma TV 144.47 13.94 8.3 E-03 0.1442 0.0746
201.45 34.67

B.1.1.1 House 0

Table B.3: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 0.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Coffee machine 83.11 283.37 8.4 E-3 -0.0103 -0.1678

Washing machine 80.1 93.8 4.2 E-03 -0.0751 -0.1059
1955.6 73.07

Radio 8.67 0 0.0017 -0.3196 -0.2253
10.8 0.1325

Kettle 40.3 137.04 0.001 0.1431 0.0014
1769 20.63

Fridge with Freezer 73.74 9.89 0.0065 0.3669 0.3249
236.74 6.4

Dishwasher 77 14.05 6.17 E-05 0.1925 0.1226
1953 77.8

Kitchen lamp 38.81 1.04 1.2 E-04 -0.027 -0.0092
Tv 55.48 11.6 0.023 0.3495 0.2982

Vacuum cleaner 1208 164.98 0.0038 0.1005 -0.0529
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(a) House 0 (b) House 1

(c) House 3

(d) House 4 (e) House 5

(f) House 7 (g) House 7

Figure B.1: Different distributions of different Fridges types from the
GREEND dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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(a) House 0 (b) House 2

(c) House 3 (d) House 4

(e) House 4 (f) House 5

(g) House 5

Figure B.2: Different distributions of different TV types from the
GREEND dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.3: Pdf for different appliances from the GREEND dataset
House 0. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].

165



B.1.1.2 House 1

Table B.4: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 1.

Appliance Mean value [W] Variance [W 2] RMSE 1st Cor. 2nd Cor.
Fridge 35.2 46.48 1.56 E-4 0.0086 -0.2045

Dishwasher 13.7 28.9 4.54 E-05 -0.042 -0.1111
1796.1 29.54

Microwave 62.1 74.19 4.9 E-03 0.0611 -0.0485
1316.6 62.42

Kettle 834.51 70.82 1.10 E-03 0.1582 -0.0073
Washing machine 40.4 73.97 3.80 E-03 0.022 -0.1126

1991.7 90.92
Radio with amplifier 10.1 3.94 3.61 E-04 -0.0487 0.1707

19.08 0
Hair Drier 1569.9 152.86 1.5 E-03 0.1552 -0.0034

Bedside lamp 54.15 18.43 5.51 E-02 0.0768 0.0377
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Figure B.4: Pdf for different appliances from the GREEND dataset
House 1. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].
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B.1.1.3 House 2

Table B.5: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 2.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Tv 359.45 78.52 0.0239 0.04 0.0152

NAS 52.56 9.54 7.90 E-04 0.0106 0.0251
Washing machine 47.2 88.84 7.20 E-03 0.082 0.0317

2081 58.3694
Tumble drier 87.1 94.7 5.94 E-04 0.0013 -0.0479

2558.2 72.21
Dishwasher 18.1 33.19 9.97 E-05 -0.066 -0.1186

2071.3 38.79
Notebook 24.99 19.61 4.8 E-02 -0.1024 -0.1368

Coffee machine 21.44 150.01 1.7 E-03 -0.1272 -0.1235
Bread maker 98.83 36.26 2.97 E-02 -0.0072 -0.265
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Figure B.5: Pdf for different appliances from the GREEND dataset
House 2. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].
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B.1.1.4 House 3

Table B.6: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 3.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Entrance outlet 1258 141.92 0.0027 0.0469 -0.036

Dishwasher 39.9 36.8 1.15 E-04 0.2213 0.1674
1760.7 24.1

Kettle 1955.6 177.94 1.7 E-0.3 0.0905 -0.008
Fridge with freezer 109.57 6.69 7.18 E-05 0.5009 0.4663
Washing machine 94.7 115.59 1.91 E-02 0.0609 -0.0838

1957.8 69.51
Hair drier 527 195.84 7.74 E-04 0.1208 -0.0284

1117.1 13.68
1867.9 11.8

Computer 49.76 7.18 2.12 E-02 0.8874 0.8708
80.69 4.54

Coffee machine 49.7 1.07 6.1 E-03 0.0359 -0.2965
531.2 312.55
1155.1 25.9

Tv 90.11 9.87 7 E-03 0.3366 0.2606
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Figure B.6: Pdf for different appliances from the GREEND dataset
House 3. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].
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B.1.1.5 House 4

Table B.7: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 4.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Kitchen Tv 42.14 2.88 5.68 E-02 0.2698 0.2455
Living R Tv 16.68 48.41 4.9 E-03 0.0962 0.0184

Fridge w/ freezer 140.27 000 1.04 E-02 0.2934 0.2016
Electric oven 31.4 119.42 4.21 E-04 0.021 -0.0712

1618.2 28.19
Comp. w/ scanner & printer 25.7 16.57 7.42 E-05 0.2083 0.1518

814 67.96
1028.4 20.5

Washing machine 54.9 93.71 3.3 E-03 0.0298 -0.2105
597.4 13.77
1946.1 224

Hood 15.93 1.05 1.41 E-02 -0.0382 0.0253
144.12 23.45
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Figure B.7: Pdf for different appliances from the GREEND dataset
House 4. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].

173



B.1.1.6 House 5

Table B.8: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 5.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Plasma Tv 144.4 13.94 8.3 E-03 0.1442 0.0746

201.45 34.67
Lamp 4.52 5.99 2.4 E-04 -0.1311 0.0631

205.79 2.64
Toaster 747.5 131.55 2.3 E-03 0.1285 -0.0502

1476.7 27.66
Stove 677.7 58.2 1.2 E-03 0.0682 -0.0144

1353.1 26.98
Iron 678 6.62 3.2 E-02 0.0236 -0.0417

728.3 234.5
1235 29.9471

1849.4 34.23
Comp. w/ scanner & printer 2.19 0 1.33 E-02 0.1909 0.1247

16.87 8.56
LCD Tv 35.25 2.46 3.77 E-04 0.0199 0.0768

56.24 1.07
Washing machine 31.3 54.95 1.4 E-03 0.0222 -0.1068

1866.1 68.14
Fridge w/ freezer 64.82 3.14 4.3 E-05 0.0952 0.066

202.72 66.24
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Figure B.8: Pdf for different appliances from the GREEND dataset
House 5. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].
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B.1.1.7 House 7

Table B.9: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different appliances of GREEND
dataset House 7.

Appliance Mean value [W] Variance RMSE 1st Cor. 2nd Cor.
Tv with decoder 10.94 0 3.51 E-02 -0.011 -0.0177

112.48 14.03
Electric oven 1470 150.81 2.8 E-03 -0.0479 0.0032

Hood 6.58 12.41 1.33 E-04 0.03 -0.0023
173.14 1.94

Fridge with freezer 88.52 37.04 1.65 E-04 0.2272 0.1632
426.68 136.86
641.16 29.07

Kitchen Tv 26.07 0.69 2.03 E-04 0.0155 0.0113
98.61 1.39

ADSL modem 2.19 0 1.33 E-02 0.1909 0.1247
16.87 8.56

Freezer 101 21.97 5.1 E-03 0.0448 -0.0273
56.24 1.07

Kitchen Tv 2.6 0 1 E-02 0.2447 0.2939
34.06 12.11
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Figure B.9: Pdf for different appliances from the GREEND dataset
House 7. Histograms are showing true data obtained via sub-metering.
x-axis shows active power in [W].
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B.1.2 REFIT Dataset

B.1.2.1 House 1

Figure B.10: Pdf for different appliances from the REFIT dataset House
1. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.2 House 2

Figure B.11: Pdf for different appliances from the REFIT dataset House
2. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.3 House 3

Figure B.12: Pdf for different appliances from the REFIT dataset House
3. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.4 House 4

Figure B.13: Pdf for different appliances from the REFIT dataset House
4. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.5 House 5

Figure B.14: Pdf for different appliances from the REFIT dataset House
5. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.6 House 6

Figure B.15: Pdf for different appliances from the REFIT dataset House
6. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.2.7 House 7

Figure B.16: Pdf for different appliances from the REFIT dataset House
7. Histograms are showing true data obtained via sub-metering. x-axis
shows active power in [W].
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B.1.3 General Modelling Results

Figure B.17: Different distributions of different Fridge-Freezer types
from the REFIT dataset. Histograms are showing true data obtained
via sub-metering. x-axis shows active power in [W].
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Figure B.18: Different distributions of different television types from
the REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.19: Different distributions of different microwave types from
the REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.20: Different distributions of different toaster types from the
REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.21: Different distributions of different kettle types from the
REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.22: Different distributions of different tumble dryer types from
the REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Figure B.23: Different distributions of different freezer types from the
REFIT dataset. Histograms are showing true data obtained via sub-
metering. x-axis shows active power in [W].
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Table B.10: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different fridge-freezer of different
REFIT dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H2 34.7839 45.46 2.16 E-04 0.8751 0.0059
H3 137.92 127.36 8.84 E-04 0.022 -0.1126
H4 837.7 18.48 0.0199 -0.002 0.7333

1291 185.5
2039 32.69

H5 387.6 56.06 7.50 E-04 0.0098 0.7105
1248 137.7

GM 308.7 85.64 0.0032
1125 167.76
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Table B.11: RMSE, mean, variance, 1st order correlation coefficient
and 2nd order correlation coefficient for different televisions of different
REFIT dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H2 42.20 4.92 1.49 E-02 -0.0701 -0.1159

46.54 0.6325
H3 142.7 2.046 3.02 E-04 -0.022 -0.1026
H7 126.17 23.73 6.71 E-05 -0.082 0.0017

370.3 18.41
1064 12.66

GM 2110 97.25 0.00121
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Table B.12: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different microwaves of different
REFIT dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H3 1276.5 340.07 3.16 E-02 0.0632 0.4578

1955.6 73.07
H4 1124.7 102.84 0.0013 0.0532 0.1126
H6 626.5 34.67 0.0038 0.0087 0.2117

1006 18.62
1304 626.5
1544 46.41

GM 152 62 0.00222
1113 106.1
1805 289.7
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Table B.13: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different toasters of different REFIT
dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H2 12.5 13.78 0.0017 0.0841 0.1439

161.1 117.61
950.6 11.71
941.9 20.93
2047.6 1.14

H3 1003.1 83.22 0.0081 -0.0642 0.2226
H5 2685.2 193.68 8.90 E-04 0.0512 0.0817
H6 955.06 88.53 0.0025 0.0609 -0.0838
H7 914.54 135.91 0.0019 0.0578 0.0085
GM 945.7 83.45 0.0195

1199 98.06
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Table B.14: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different kettles of different REFIT
dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H2 63.2 189.03 4.2 E-3 0.0751 -0.1059

2722.9 52.29
H3 2061.1 133.09 6.90 E-03 0.0022 -0.1126
H4 963.9 263.56 7.20 E-03 0.0802 0.0227

1909.2 29.09
H5 2685.2 193.68 8.90 E-04 0.0609 -0.0838

1957.8 69.51
H6 2593.3 177.55 0.0017 0.0296 -0.2065
GM 2052 310.7 0.0241

2653 94.74
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Table B.15: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different freezers of different REFIT
dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H3 533.3 362.67 0.0189 0.0221 0.0059

1233 67.16
H4 280 153.7 3.8 E-3 0.0225 0.1126

1047 50.93
2088 41.49

H6 241.18 228.58 0.0181 -0.082 -0.0317
895.35 70.18

H7 109.24 99.07 6.08 E-042 0.0909 0.0138
GM 39.01 94.01 3.97 E-04
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Table B.16: RMSE, mean, variance, 1st order correlation coefficient and
2nd order correlation coefficient for different tumble dryers of different
REFIT dataset houses. GM denotes the general model.

Appliance Mean value Variance RMSE 1st Cor. 2nd Cor.
H1 50 98.5 4.2 E-3 0.0751 0.1839

1448 33.17
H3 727.07 66.37 3.8 E-3 0.0129 -0.1126

1155.9 224
2119.02 128.7

H5 48.2 88.84 7.20 E-03 0.0082 0.0377
1081 123.36

H7 195 115.59 1.91 E-2 0.0669 -0.0838
GM 214.4 83.02 3.2 E-3

1472 128.7
2552 87.31

B.2 Appliance-Load Clustering Results

B.2.1 REFIT Dataset Clustering Results

B.2.1.1 Mean-shift Clustering

Table B.21 and Figure B.24 (upper figure) show groups of REFIT House 2 appliances

after clustering using mean-shift method into 3 groups. It can be seen that groups

can vary in the number of appliances or appliance-state they hold. Group 1, contains

medium to high mean and variance values, such as washing machine second state,

dishwasher second state and toaster highest state. Group 3 has relatively high states

with microwave second state and toaster third and fourth states. Group 2, show

slightly higher number of appliances compared to Groups 1 and 2, therefore, it was

reclustered in further sub-groups.

In Table B.22 and Figure B.24 (middle figure) it can be seen that Group 2 was

reclustered into 3 groups, group 2.1 and 2.3 show only one appliance each, microwave

and kettle first states. Group 2.2 still holds higher number of appliances and was

reclustered into further groups. In Table B.23 and Figure B.24 (lower figure) Group

2.2 was reclustered into 3 further groups, it can be seen that fridge/freezer first

state, washing machine first state and toaster first and second states hold similar
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Gaussian characteristics as they were grouped into the same group. Sub-group 2.2.1,

has only television second state, but television first state was in a different group with

dishwasher low state.

Table B.24 and Figure B.25 (top figure) show groups of REFIT House 3 appliances

after clustering using mean-shift method into 3 groups. It can be seen that groups can

vary in the number of appliances or appliance-state they hold. Groups 2 and 3 have

relatively lower number of appliances, Group 2 contains high appliances-states such

as tumble dryer, dishwasher and washing machine second state and kettle first state

which means that they hold similar Gaussian characteristics. Group 3 represents

medium mean and variance values toaster and microwave first states and freezer

second state.

Group 1 shows slightly higher number of appliances, therefore, it was reclustered

into further sub-groups which are shown in Table B.25 and Figure B.24 (bottom

figure). It can be seen that Group 1.2 and 1.3 contain only one appliance each which

are tumble dryer and fridge/freezer first states. Group 1.1 contains low mean and

variance values states such as freezer, dishwasher, washing machine and television

first states.

B.2.1.2 Tree Clustering

Figure B.26 shows groups of REFIT House 2 appliances after clustering using Tree

method. It can be seen that 16 appliance-states are present in House 2 forming a tree

of appliance-signatures. The tree was cut into suitable level forming 4 main groups

of 3, 9, 3 and one appliance state. The group with 9 appliance-states was then re-cut

into further groups, forming four groups. Table B.26 shows all groups and sub-groups

from House 2 tree clustering, it can be seen that Group 1 contains kettle second state

only, which means that it was different that all other appliance signatures. Group 2

shows a good connection between medium to high mean and variance values such as

dishwasher, washing machine second states.

Group 3 shows a connection between low to medium consumption appliances

which was sub-groups into 4 groups, Group 3.1 contains microwave and kettle first

states and toaster second state. Group 3.2 was cut into further 2 sub-groups, Group

3.2.1 shows a similarity between fridge-freezer and toaster first states, while Group

3.2.2 shows a connection between television first and second state, dishwasher and
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Table B.17: Groups of all appliances GREEND dataset based on Mean-
shift clustering method. H denotes House number. DW=dishwasher.
WM=washing machine. TD=tumble dryer. s denotes state number.

Group Number Appliance
H2 TV

H4 hood s2, H5 plasma TV s1
H0 kitchen lamp, H0 TV, H1 bedside lamp,

H2 NAS, H3 computer s1,
H3 coffee M s1, H4 kitchen TV,
H5 LCD TV s1, H5 LCD TV s2,

H5 fridge freezer s1, H7 kitchen TV s1,
H7 laptop scanner printer s2

H0 radio s1, H0 radio s2, H1 radio s1,
H1 hair dryer, H4 hood s1,

H5 lamp s1, H5 computer scanner printer s1,
H5 computer scanner printer s2,

H7 TV w decoder s1, H7 hood s1,
H7 ADSL modem s1, H7 ADSL modem s2,

1 H7 ADSL modem s3, H7 laptop scanner printer s1
H0 fridge freezer s1, H0 DW s1,
H2 Bread M, H3 fridge freezer,

H3 computer s2, H3 TV, H7 fridge freezer s1,
H7 kitchen TV s2, H7 freezer

H1 fridge, H1 DW s1, H2 DW s1, H2 notebook,
H3 DW s1, H4 living R TV, H4 computer scanner printer s1

H0 WM s1, H0 kettle s1, H1 microwave s1, H1 WM s1, H2 WM s1,
H2 TD s1, H2 coffee M, H3 WM s1, H4 fridge freezer,

H4 E oven s1, H4 WM s1, H5 WM s1
H7 fridge freezer s2

H0 fridge freezer s2, H5 plasma TV s2, H5 lamp s2,
H5 fridge freezer s2, H7 hood s2

H0 coffee M
2 H0 WM s2, H0 kettle s2, H1 DW s2, H3 DW s2,

H3 WM s2, H3 hair dryer s3, H5 iron s4, H5 WM s2
3 H0 DW s2, H1 WM s2, H2 WM s2, H2 DW s2, H3 kettle, H4 WM s3
4 H2 TD s2
5 H3 hair dryer s1, H3 coffee M s2
6 H1 kettle, H4 computer scanner printer s2,

H4 WM s2, H5 toaster s1,
H5 stove s1, H5 iron s1, H5 iron s2, H7 fridge freezer s3

7 H1 bedside lamp, H4 E oven s2, H5 toaster s2, H7 E oven
8 H0 vacuum cleaner, H1 microwave s2, H3 Entrance outlet,

H5 stove s2, H5 iron s3
9 H3 hair dryer s2, H3 coffee M s3, H4 computer scanner printer s3
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Table B.18: Sub-groups of Group 1 based on Mean-shift clus-
tering method for GREEND dataset. H denotes House number.
DW=dishwasher. WM=washing machine. TD=tumble dryer. s denotes
state number.

Group Number Appliance
1.1 H2 TV

H4 hood s2, H5 plasma TV s1
H0 kitchen lamp, H0 TV, H1 bedside lamp,

H2 NAS, H3 computer s1,
H3 coffee M s1, H4 kitchen TV,
H5 LCD TV s1, H5 LCD TV s2,

H5 fridge freezer s1, H7 kitchen TV s1,
H7 laptop scanner printer s2

1.2 H0 radio s1, H0 radio s2, H1 radio s1,
H1 hair dryer, H4 hood s1,

H5 lamp s1, H5 computer scanner printer s1,
H5 computer scanner printer s2,

H7 TV w decoder s1, H7 hood s1,
H7 ADSL modem s1, H7 ADSL modem s2,

H7 ADSL modem s3, H7 laptop scanner printer s1
H0 fridge freezer s1, H0 DW s1,
H2 Bread M, H3 fridge freezer,

H3 computer s2, H3 TV, H7 fridge freezer s1,
H7 kitchen TV s2, H7 freezer

H1 fridge, H1 DW s1, H2 DW s1, H2 notebook,
H3 DW s1, H4 living R TV, H4 computer scanner printer s1

1.3 H0 WM s1, H0 kettle s1, H1 microwave s1, H1 WM s1, H2 WM s1,
H2 TD s1, H2 coffee M, H3 WM s1, H4 fridge freezer,

H4 E oven s1, H4 WM s1, H5 WM s1
1.4 H7 fridge freezer s2
1.5 H0 fridge freezer s2, H5 plasma TV s2, H5 lamp s2,

H5 fridge freezer s2, H7 hood s2
1.6 H0 coffee M
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Table B.19: Sub-groups of Group 1.2 based on Mean-shift clus-
tering method for GREEND dataset. H denotes House number.
DW=dishwasher. WM=washing machine. TD=tumble dryer. s denotes
state number.

Group Number Appliance
1.2.1 H4 hood s2, H5 plasma TV s1
1.2.2 H0 kitchen lamp, H0 TV, H1 bedside lamp,

H2 NAS, H3 computer s1,
H3 coffee M s1, H4 kitchen TV,
H5 LCD TV s1, H5 LCD TV s2,

H5 fridge freezer s1, H7 kitchen TV s1,
H7 laptop scanner printer s2

1.2.3 H0 radio s1, H0 radio s2, H1 radio s1,
H1 hair dryer, H4 hood s1,

H5 lamp s1, H5 computer scanner printer s1,
H5 computer scanner printer s2,

H7 TV w decoder s1, H7 hood s1,
H7 ADSL modem s1, H7 ADSL modem s2,

H7 ADSL modem s3, H7 laptop scanner printer s1
1.2.4 H0 fridge freezer s1, H0 DW s1,

H2 Bread M, H3 fridge freezer,
H3 computer s2, H3 TV, H7 fridge freezer s1,

H7 kitchen TV s2, H7 freezer
1.2.5 H1 fridge, H1 DW s1, H2 DW s1, H2 notebook,

H3 DW s1, H4 living R TV, H4 computer scanner printer s1
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Table B.20: Groups and Sub-groups of GREEND dataset based on
tree clustering method. H denotes House number. DW=dishwasher.
WM=washing machine. TD=tumble dryer. s denotes state.

Group Number Appliance
1 H1 kettle, H2 TV, H3 hair dryer s1,

H3 coffee M s2, H4 computer scanner printer s2,
H5 toaster s1, H5 stove s1, H5 iron s1

2 H7 fridge freezer s2, H7 fridge freezer s3,
H5 iron s2, H4 WM s2

3.1 H1 microwave s1, H1 WM s1,
H2 WM s1, H4 WM s1

3.2 H0 kettle s1, H2 coffee M s1, H4 E oven s1
3.3 H0 kitchen lamp, H2 notebook, H4 kitchen TV,

H4 computer scanner printer s1, H5 LCD TV s1,
H7 kitchen TV s1, H7 laptop scanner printer s2

3.4 H0 radio s1, H0 radio s2, H1 radio s1,
H1 hair dryer, H4 hood s1, H5 lamp s1,

H5 computer scanner printer s1, H5 computer scanner printer s2,
H7 TV with decoder s1, H7 hood s1, H7 ADSL modem s1,

H7 ADSL modem2, H7 ADSL modem s3, H7 laptop scanner printer s1
3 3.5 H1 DW s1, H2 DW s1, H4 living R TV s1

3.6 H1 fridge, H3 DW s1, H5 WM s1
3.7 H0 fridge freezer s1, H0 DW s1, H3 computer s2, H3 TV, H7 kitchen TV s2
3.8 H7 fridge freezer s1
3.9 H0 TV, H1 radio s2, H2 NAS, H3 computer s1

3.10 H3 coffee M s1, H5 LCD TV s2, H5 fridge freezer s1
4 H0 coffee M, H0 WM s1, H0 fridge freezer s2,

H2 TD s1, H2 bread M, H3 fridge freezer, H3 WM s1,
H4 fridge freezer,H4 hood s2,H5 plasma TV s1,H5 plasma TV s2,

H5 lamp s2, H5 fridge freezer s2, H7 hood s2, H7 freezer
5 H0 vacuum cleaner, H1 microwave s2, H3 entrance outlet,

H3 hair dryer s2, H3 coffee M s3, H4 computer scanner printer s3,
H5 stove s2, H5 iron s3

6 H1 bedside lamp, H4 E oven s2,
H5 toaster s2, H7 E oven

7 H0 WM s2, H0 kettle s2, H0 DW s2,
H1 DW s2, H1 WM s2,H2 WM s2, H2 DW s2,

H3 DW s2, H3 kettle,H3 WM s2, H3 hair dryer s3,
H4 WM s3, H5 iron s4, H5 WM s2

8 H2 TD s2
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Table B.21: Groups of REFIT dataset House 2 based on Mean-
shift clustering method. DW=dishwasher. WM=washing machine.
TV=television. s denotes state number.

Group Number Appliance
1 WM s2, DW s2, toaster s5, kettle s2
2 microwave s1, kettle s1, TV s1, TV s2, fridge/freezer s1,

WM s1, toaster s1, toaster s2, DW s1
3 microwave s2, toaster s3, toaster s4

Table B.22: Sub-groups for REFIT dataset House 2 of group 2 based
on Mean-shift clustering method. DW=dishwasher. WM=washing ma-
chine. TV=television. s denotes state number.

Group Number Appliance
2.1 microwave s1

TV s1, TV s2, fridge/freezer s1,
2.2 WM s1, toaster s1, toaster s2, DW s1
2.3 kettle s1

Table B.23: Sub-groups for REFIT dataset House 2 of group 2.2 based
on Mean-shift clustering method. DW=dishwasher. WM=washing ma-
chine. TV=television. s denotes state number.

Group Number Appliance
2.2.1 TV s2
2.2.2 DW s1, TV s1
2.2.3 fridge/freezer s1, WM s1, toaster s1, toaster s2

Table B.24: Groups for REFIT dataset House 3 based on Mean-
shift clustering method. DW=dishwasher. WM=washing machine.
TV=television. TD=tumble dryer. s denotes state number.

Group Number Appliance
1 freezer s1, DW s1, WM s1, TV s 1

TD s1, fridge/freezer s1
2 TD s2, DW s2, WM s2, kettle s1
3 toaster s1, freezer s2, microwave s1
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Table B.25: Sub-groups for group 1 REFIT House 3 dataset based on
Mean-shift clustering method. DW=dishwasher. WM=washing ma-
chine. TV=television. TD=tumble dryer. s denotes state number.

Group Number Appliance
1.1 freezer s1, DW s1, WM s1, TV s 1
1.2 TD s1
1.3 fridge/freezer s1

Table B.26: Groups of REFIT House 2 dataset based on Tree cluster-
ing method. DW=dishwasher. WM=washing machine. s denotes state
number.

Group Number Appliance
1 kettle s2
2 DW s2, WM s2, toaster s5

3.1 microwave s1, toaster s2, kettle s1
3 3.2 3.2.1 fridge/freezer s1, toaster s1

3.2 3.2.2 TV s1, TV s2, DW s1
3.3 WM s1

4 microwave s2, toaster s3, toaster s4

Table B.27: Groups of REFIT House 3 dataset based on Tree cluster-
ing method. DW=dishwasher. WM=washing machine. s denotes state
number.

Group Number Appliance
1 TD s2, WM s2, DW s2, kettle s1
2 freezer s2, microwave s1
3 3.1 TD s1, WM s1

3.2 DW s1, fridge-freezer s1, TV s1
4 toaster s1, freezer s1
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Figure B.24: Clustering groups for REFIT dataset House 2 appliances
into groups and sub-groups using mean-shift algorithm. Upper figure has
3 groups. Middle figure has 3 sub-groups from group 2. Lower figure
has 3 sub-groups from sub-group 2.2. x-axes is Power in [W]
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Figure B.25: Clustering groups for REFIT dataset House 3 into groups
and sub-groups using mean-shift algorithm. Upper figure has 3 groups.
Lower figure has 3 sub-groups from group 1.
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Figure B.26: Classification for REFIT dataset House 2 using Tree clus-
tering. Nodes show number of appliances to be clustered. Dashed line is
a suitable level to cut the tree.
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Figure B.27: Classification for REFIT dataset House 3 using Tree clus-
tering. Nodes show number of appliances to be clustered. Dashed line is
a suitable level to cut the tree.
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washing machine first states. Group 3 contains one appliance state only which is

washing machine first state. Group 4 shows a similarity between microwave second

state, toaster third and fourth states.

Figure B.27 shows groups of REFIT House 3 appliances after clustering using

Tree method. It can be seen that 13 appliance-states are present in House 3 forming

a tree of appliance-signatures. The tree was cut into suitable hight forming 4 main

groups of 2, 5, 4 and 2 appliance state. The group with 5 appliance-states was then

re-cut into further groups, forming two groups. Table B.27 shows all groups and sub-

groups from House 3 tree clustering; it can be seen that Group 1 contains medium

consumption values using Gaussian estimation curve such as tumble dryer, washing

machine, dishwasher and kettle second states. Group 2 shows a connection between

freezer and microwave second states.

Group 3 was re-cut into further two sub-groups containing appliances with low

states values. Group 3.1 shows similarity tumble dryer and washing machine first

states. Group 3.2 contains dishwasher first state, freezer second state and television

first state. Group 4 shows similarity between taster and freezer first states.
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