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Abstract 
 

Hyperspectral imaging (HSI) is emerging as a potential tool for non-contact, non-

destructive high-throughput analysis of products and processes. The main benefit of 

HSI over point spectroscopy techniques is the possibility to explore both spatial and 

chemical information present in samples. However, there are challenges associated 

with using HSI as an automated tool for high-throughput applications. 

This study involves the application of near-infrared (NIR) HSI and data analysis 

methodologies for assessment of tea products. Assessment of tea products involved 

the development of support vector machine classification models for different tea 

products sourced from Unilever, UK. The study further involves covering challenges 

related to handling, managing and processing of HSI data in an automatic sense. 

Methodologies related to automatic pre-processing, compression and data fusion for 

assessment of tea products are presented. 

The findings showed that NIR HSI can be used for the classification of tea products 

with an accuracy of more than 97%. The pre-processing methodologies developed 

provided automatic removal of noise from the HS images. The shearlet-based de-

noising method improved the classification accuracy by 11% and 19% compared to 

Savitzky Golay and median filtering, respectively. The total variation based de-noising 

method removed the dead strips from HS images, which is not achievable with 

traditional methods. The compression scheme devised, which utilised 2D wavelets and 

variance decomposition methods, gave a reduction in the size of HS images by a factor 

of 40. Finally, a methodology based on grey-level co-occurrence matrices is presented 

for extracting textural information from HS images. The fusion of textural and NIR 

information showed an improvement in classification accuracy compared to use of 

spectral or textural information alone.  

The methodologies presented will support implementation of high-throughput HSI for 

assessment of tea products and processes.  
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Chapter 1 : Hyperspectral imaging as an on-line monitoring tool 
and associated major challenges 
 
1.1 Hyperspectral imaging 
 

Close-range hyperspectral imaging (HSI) is now a well-established technique for non-

destructive, non-contact, rapid exploration of spatially-resolved spectral properties of 

materials. Application of hyperspectral imaging can be found in assessments related 

to foods [1,2], pharmaceuticals [3], plants [4], fabrics [5], forensics [6] and many more 

[7]. HSI is the integration of traditional spectroscopic techniques with the imaging 

modality. Traditional spectroscopy is really limited to the study of homogeneous 

samples. However, due to the additional imaging modality, HSI provides the 

possibility to explore spatially inhomogeneous samples. HSI can be explored across 

different spectroscopic domains such as visible (VIS), near-infrared (NIR), ultra-violet 

(UV), fluorescence, and Raman, and also at different spatial resolution ranging from 

remote sensing [8] applications to the imaging of nanomaterials [9].  

 

The acquisition of HS images is typically possible in four different ways i.e., point 

scanning, line scanning (push broom), wavelength scanning and snapshot scanning 

[10]. Point scanning uses a linear array detector to record a single spectrum one at a 

time and then consecutively measures the spectral information over the spatial scene. 

Line scanning involves utilising a 2D array to collect one line of the imaging scene, 

which is then repeated over the spatial dimension to generate the complete cube. 

Wavelength scanning includes scanning the complete imaging scene consecutively for 

all wavelengths and lastly, snapshot scanning acquires complete images with a single 

exposure. Of all the configurations, push broom is the most commonly used and is the 

commercially available configuration for close-range HSI. 

 

A typical push-broom HSI instrument consists of an objective lens, spectrograph, 

camera, acquisition system, translation stage, illumination and computer system [1]. 

All these components are integrated together based on the samples to be imaged and 
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the experimental settings required for imaging. A major part of HSI is related to the 

processing of the images, which involves tasks such as segmentation, exploration and 

classification utilising advanced machine learning techniques as well as specific 

chemometric techniques developed for spectral data processing. 

 

1.2 NIR hyperspectral imaging: Instrumentation and theory 

 
The following subsections introduce the theory behind NIR spectroscopy and a 

description of the instrumentation typically employed for NIR HSI.  

 

1.2.1 Principal of NIR spectroscopy 

 
NIR spectroscopy is the spectroscopic method that utilises the near-infrared part of 

electromagnetic radiation (780 – 2500 nm) for the study of materials in terms of 

reflection, absorption and transmission. Assuming the chemical bonds to be like a 

weak spring holding together two or more atoms which vibrate naturally, when more 

energy (infrared radiation) is added to this system the vibration will become more 

energetic. However, due to restriction from quantum mechanics the atoms in the 

molecules are allowed only a few specific energy levels. In more detail, if there are 

only two atoms the only vibration noticeable will be stretching whereas when the 

number of atoms increases the vibration can arise due to bending phenomenon giving 

rise to a whole series of different vibrations. Different chemical bonds vary in strength 

and so the energy requirement for the bond vibration to move from one level to the 

next. This energy variation is usually represented as a spectrum presenting the 

absorptions at different wavelengths due to molecular vibrational transitions. These 

molecular vibrations can be defined in two mechanical models i.e. harmonic oscillator 

and anharmonic oscillator. 

1.2.1.1 Harmonic oscillator 
 
The molecular vibration in this model are described using the classical physics model 

of the harmonic diatomic oscillator as the simplest vibrating system. Here, the 

diatomic molecules are considered as two spherical masses connected with a spring 

with a given force constant. Any vibration in the masses connected with a spring leads 



 19 

to changes in the internuclear distance. The energy of the system can be explained 

using the Hooke law as:  

! = #

$%
&
'

(
             (1.1) 

where h is the Planck constant, k is the force constant of the bond, ) is the reduced 

mass of the bonded atoms. Combining the Hooke law with the Newton’s force law as 

in equation 1.2 leads to the equation 1.3 as:  

! = ℎ+         (1.2) 

+,-. =
/
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&
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(
     (1.3) 

Equation 1.3 explains that the frequency of vibration is the function of the bond 

strength. The vibrations frequencies are the key to the essential information about the 

structure of the studies compound. 

The molecular vibration can be defined using a harmonic oscillator where the potential 

energy (V) can be defined as the function of the displacement of the atoms (x) as 

equation 1.4: 

0 = /

$
1(3 − 35)$ =

/

$
17$        (1.4) 

where 0 is the potential energy, 3 is the internuclear distance, 35 is the internuclear 

distance at equilibrium and 7 is the displacement of vibrating atoms.  

Quantum mechanical considerations show that the vibrational energy for the harmonic 

oscillator has no continuum for vibrational energy levels, but only discrete energy 

levels defined by v (0,1,2,3…) and can be understood in equation 1.5 as: 

!,-. = 8v + /

$
; #

$%
&
'

(
         (1.5) 

According to the equation 1.5, transitions between neighbouring and equidistant 

energy levels are allowed in the harmonic oscillator. The distribution of the molecules 

among the allowed vibrational levels are defined by Boltzmann distribution. At the 

room temperature most molecules reside at the ground vibrational level v=0, hence the 

first fundamental transition to v=1 dominates the spectrum. Absorption of a light 

photon has precondition that the frequency of the light photons equals the energy 

difference between two vibrations states in the bond. The energy absorption can be 

defined according to the resonance theory which stated that the energy transfer occurs 

through the molecular polarity defined as dipole moment. The degree of dipole 
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moment defines the extent of light absorption, further, only heteronuclear, diatomic 

molecules shows the transitions between the photons of the light and the molecule 

vibrations.  

1.2.1.2 Anharmonic oscillator 
 

The main consideration in the harmonic oscillator involves considering the potential 

energy curve as parabolic (equation 1.4) and only transitions between consecutive 

energy levels that change the dipole moment are possible. According to the harmonic 

oscillator a bond can store infinite amount of energies without bond breaking. 

However, in practicality, all the bond disassociates when enough energy is applied and 

vibrating bond is extended, further, there are strong repelling forces when the atoms 

are forced together. These mechanical anharmonicity thus modifies the classical ball 

and spring model and the potential energy equation can now be understood as equation 

1.6 where the quadratic function of the displacement is extended by adding higher 

order displacement terms: 

0 = /

$
17$ + /

$
1<7= +

/

$
1.7= +⋯.        (1.6) 

Furthermore, the Schrödinger equation can now be understood as: 
 

!,-. = ℎ+ 8v + /

$
; − @ 8v + /

$
;
$
         (1.7) 

In equation 1.7, @ represents the anharmonicity constant. The anharmonicity now 

allows transitions between the noncontagious energy states furthermore, the energy 

levels are non-longer equidistant and energy differences decrease with increasing 

quantum number v.  

 

Absorption in the NIR region is the result of overtones and combinations of 

fundamental vibrations. Overtones transitions that correspond to quantum numbers 

greater than one and that appear as multiples of the fundamental vibrational frequency 

are reflected in the region of 780-2000 nm. Combinations modes that usually present 

in polyatomic molecules emerge between 1900-2500 nm further they can be 

understood as the sum of the multiples of each interacting frequency. The number of 

fundamental absorptions in the molecules is limited to a few, however, due to these 

multiple combinations and overtones, NIR spectra are usually broad leading to 
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complex spectra which cannot be directly interpreted to a specific chemical 

component. To perform the interpretation multivariate calibration techniques are 

usually required.  

 

1.2.2 Instrumentation for a typical NIR hyperspectral imaging camera 

 
The typical NIR instrumentation involves a source of NIR radiation, a detector and a 

dispersive element such as a diffraction grating to allow the intensity at different 

wavelengths to be recorded. NIR spectrometers allow the recording of reflectance and 

transmission depending on the sample to be analysed. The typical light source used for 

generating broadband NIR radiation is a halogen light bulb. Further, the type of 

detector used is based on the range of wavelengths to be measured. Silicon based 

CCDs are suitable for the short end of the NIR range, however they are not very 

sensitive at wavelengths greater than 1000 nm. For the complete NIR range, InGaAs 

and PbS devices are more suitable but they are less sensitive than CCDs. Typically for 

HSI, a 2D array detector with an acousto-optic tuneable filter is used providing 

multiple images to be recorded sequentially at different narrow wavelength bands. A 

typical diagram representing the main component of the HSI camera are presented in 

Figure 1.1.  

 
Figure 1.1: Schematic of common components in a hyperspectral imaging camera. 

 

1.2.3 On-line implementation of NIR hyperspectral imaging 
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On-line implementation of HSI requires continuous monitoring of process and product 

lines. Typically for that two major types of hyperspectral acquisition techniques i.e. 

line scan and snapshot cameras can be used. The line scan modality is particularly 

important when the HSI needs to be implemented over a continuous moving process 

line. In that case, the speed of acquisition is determined by the integration time and the 

acquisition speed of the camera. From an efficiency point of view, the speed of 

acquisition should be fast and should match the speed of the conveyor belt. For a 

typical acquisition for on-line application the camera is placed at an appropriate 

distance to achieve a relevant field of view (FOV) covering the complete area of 

interest. To obtain an image with an accurate aspect ratio, the pixel dimensions along 

the scanning directions need to equal the pixel size along the FOV. Considering a 

sample of length A, the number of lines the camera needs to acquire to scan it 

completely is given by equation 1.8 as 
<

B-C5D	F-G5
 ,               (1.8) 

which can be rewritten as 1.9 
<×IJK.5L	MN	B-C5DF

OPQ
            (1.9) 

 Now, considering the integration time of the camera is given by R,	the maximum frame 

rate is /
T
. Thus, the final scanning time can be calculated as 1.10 

<×IJK.5L	MN	B-C5DF

OPQ×NL<K5	L<T5
              (1.10) 

Depending on the imaging scene, the speed can be increased or decreased based on the 

integration time, where a low integration time will increase the acquisition speed at 

the expense of the signal-to-noise ratio (SNR) and a too high integration time will 

saturate the detector and the resulting signal. Finally, the acquisition for the line scan 

systems can be synchronised with the processing and product lines. However, to make 

them superfast like real-world video cameras, developing multispectral systems based 

on the wavelengths identified with a HS camera is of particular interest. Recently, 

snapshot HS cameras are also emerging which provides a high acquisition speed of 

almost 200 ms at 7-megapixel resolution [12] Further, HS video cameras are also 

emerging which provides a continuous video acquisition of the scene.  

 



 23 

1.3 Hyperspectral image processing 

 

HSI records the information from three dimensions (U × V × W) of which two are 

spatial (U × V) and one spectral (W) resulting in a dataset commonly known as a 

hypercube [11]. The images can also be understood as thousands of spectra distributed 

over the imaged scene as pixels. Typically, the mathematical operations performed 

over the HSI data are performed either by selecting specific pixels as training samples 

for any supervised modelling or unfolding the 3D cube (U × V × W) into a long 2D 

matrix (UV × W) for unsupervised exploration of data. Finally, after processing, the 

data are refolded to represent the spatial distribution of modelled spectral properties. 

There are different toolboxes available to perform HSI processing such as HYPER-

Tools [13] and the Multi-variate Image Analysis add-on in PLS Toolbox [14].  

Some key steps of HSI processing include:  

 

1. Radiometric flat field calibration: The HSI camera usually provides the 

output as a radiance image. For a radiance image to be converted to 

reflectance or absorbance requires white and dark reference images. In a 

typical experiment, the white and dark images are obtained simultaneously 

with the sample images, and used later for the radiometric calibration of 

the images as the first step in HSI processing. Typically, the white 

reference images are obtained from diffuse reflectance standard such a 

spectralon. The spectralon is  a fluoropolymer and has the highest diffuse 

reflectance of any known material over the UV, VIS and NIR region of the 

EMR. The dark reference is obtained by putting a cap in front of the camera 

lens to block the all incoming light and then recording the image. The white 

and dark reference images are used as 1.11: 

XY(-,Z,') =
[\]^(_,`,a)b[c]\a(_,`,a)
[^d_ef(_,`,a)b[c]\a(_,`,a)

    (1.11) 

where XY is the calibrated reflectance, XL<g is the raw intensity measured 

from the test sample, Xh<L'  the intensity of the dark response, Xg#-T5  is the 

intensity of the uniform white reference, and i and j are spatial coordinates 

and k is the wavelength in the image.   
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2. Pre-processing: After radiometric calibration, the images are corrected for 

any noise present. The pre-processing of the images is performed both in 

the spatial and spectral domains. Spatial filtering mainly aims to 

compensate for any noise present in the spatial domain through, for 

example, cropping of the edges and performing filtering to predict missing 

pixel values. Spectral pre-processing involves dealing with the noise 

present in the spectral domain such as correcting any kind of discontinuity 

by performing operations such as smoothing and filtering. Two common 

approaches to deal with the pre-processing in the spectral and spatial 

domain are smoothing and filtering where the smoothing involves utilising 

the polynomials and the filtering based approaches utilising criteria of 

measure of central tendency to approximate the corrupted information. In, 

the present work inside each chapter the pre-processing performed on the 

dataset is well explained inside the material and method sections.  

 

3. Spectral normalisation: Radiometric calibration usually compensates for 

differences in the illumination. However, since a flat white spectral 

reference is mostly used as a reference it does not compensate for any 

inhomogeneity at the surface of the samples. Surface inhomogeneity results 

in the scattering of light, which further modifies the final signal recorded. 

The scattering can be minimal in the case of samples with a completely flat 

surface, but can be maximal and consist of multiple scattering in the 

imaging of powder samples. To correct for theses scattering effects, various 

spectral normalisation and scaling techniques are used. Two common 

method for reducing the effects of scattering in NIRS are standard normal 

variate (SNV) normalisation and the multiplicative scatter correction 

(MSC) methods. The SNV has the benefit over the MSC that it does not 

require the reference spectrum to perform the correction and is totally based 

on the mean and the standard deviation of the individual spectrum. In the 

present work to correct for the scatter effect the SNV normalisation was 

used as there is need to acquire the reference spectrum.  
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4. Segmentation: Once the effects of any noise or scattering are corrected 

for, the task is to extract the subset of pixels that are of interest in the image. 

The subset of pixels can be used to perform the modelling and later the 

model can be applied to the complete image to represent the modelled case. 

Segmentation is the task performed to identify and remove different 

uninteresting regions from the images. The segmentation task is often 

carried out utilising the masking techniques. The masks are 2D binary 

images where the 0 value pixels represent uninteresting pixels and the 1 

value pixels represent a pixel of interest. There are different ways of 

masking, which can be divided into supervised and unsupervised. 

Supervised techniques can range from identifying manually the region of 

interest to setting up threshold values by visualising the histogram of the 

intensities of the pixels in the imaging scene. Unsupervised techniques can 

range from automatically identifying shapes and edges over the image to 

utilising advanced classification techniques such as Otsu and K-means 

clustering.  

 

5. Explorative analysis: Once the images are pre-processed and the relevant 

pixels are extracted from the images, primary explorative analysis is 

usually performed. The most commonly used techniques utilise variance-

based methods such as principal component analysis (PCA), and 

independent component analysis (ICA) to enhance the contrast between 

spectrally different objects present in the imaging scene. The explorative 

analysis also provides insight into the type of analysis method that should 

be used in future data processing. Details regarding the explorative analysis 

performed in this work are presented inside each chapter accompanied with 

mathematical explanation.  

 

6. Predictive analysis: After the explorative analysis and through enhanced 

understanding of the data, the images can be processed to perform 

predictive analysis based on the experimental requirements. Commonly 

used predictive analysis methods include regression and classification 
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models. Regression analysis includes training models to perform the 

prediction of continuous variables. Classification analysis includes 

performing prediction of discrete variables or classes. Details regarding the 

classification analysis performed in this work are presented inside each 

chapter accompanied with mathematical explanation.  

 
 

7. Reconstruction of predicted images after data processing: Once the 

predictive analysis is performed on the small training set, the developed 

models are used to predict the values or classes for every pixel over the 

image. If the analysis is performed by unfolding the image into 2D 

matrices, the 1D vector resulting from the model application is reshaped to 

the spatial dimension as a final output. 

 

8. Image analysis (any morphological analysis): The final images 

(prediction maps/score images/classification maps) can further be 

processed utilising classical image processing techniques such as contrast 

enhancement, sharpening, and deblurring for output enhancement. In the 

present work the texture analysis is performed as an extra spet and the 

details regarding the methodology can be find in chapter 7.  

 

To understand all of the steps involved in HS image processing and related techniques, 

readers are encouraged to read [11,13]. 

 

1.4 Hyperspectral imaging as an on-line monitoring tool 

 

The use of HSI for close-range analysis of materials is now gaining popularity as a 

potential tool for on-line monitoring of processes and production lines [1]. The aim of 

utilising HSI as an on-line tool is to design, analyse and control critical quality and 

performance parameters of materials and manufacturing processes in real-time to 

ensure process integrity and product quality. In the process control domain, HSI has 

been popularly known as ‘chemical imaging’ but has always been side-lined compared 
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to other spectral techniques. However, due to the Food and Drug Administration’s 

(FDA’s) recent process analytical technology (PAT) initiative, support for spectral 

imaging techniques to enable detailed understanding of product and processes has 

grown [15]. HSI has not only gained interest as a tool for analysis of pharmaceuticals, 

it has spread to many domains including food engineering. The main benefits of the 

use of HSI as an on-line monitoring tool can be seen when the product monitoring or 

testing task are labour intensive and time consuming, when there are opportunities for 

error leading to an increased risk of product contamination, and when individual 

samples are not representative of the process and so multi-sample measurements are 

needed. In such cases, HSI can be a non-invasive and rapid means for acquisition of 

meaningful information for process and product control. HSI has been used for on-line 

monitoring of an industrial polymer process [16], a pharmaceutical coating process 

[17], meat production [18], and fresh-cut lettuce [19], with the number of reported 

applications continually increasing.  

 

Utilisation of HSI for on-line monitoring involves placing a push-broom camera at a 

fixed location in the line and moving the sample past the camera. Movement of the 

samples can be via a conveyor belt for continuous on-line monitoring of processes and 

production lines. In cases related to foods, on-line monitoring is usually needed to 

meet the hazard analysis and critical control points (HACCP) requirement of the 

industrial production process, to control the composition of valuable food components 

and to ensure the absence of any contamination resulting from microbiological 

impurities, allergen contaminants and hazardous foreign material [20].  

 

1.5 Scope of hyperspectral imaging for monitoring tea products and processes 

 

Tea is the most widely consumed drink in the world after water [21]. Most of the tea 

products available in the market are obtained by application of different processing 

conditions to the hand plucked tender leaves of the plant Camellia sinensis [22]. The 

main processing step in the processing of tea is fermentation, which results in the 

enzymatic oxidation of polyphenols in tea causing the formation of theaflavins and 
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thearubigins. Based on the extent of fermentation, tea can be classified as three main 

products: green (unfermented), oolong (semi-fermented), and black (fermented) [23]. 

The most important chemical constituents that influence the final taste and flavour of 

tea products are polyphenols, flavonols, caffeine, sugars, organic acids, amino acids, 

and volatile flavour compounds [24,25]. However, the final quality of processed tea 

products also depends on factors like genetic strain, climatic conditions, soil, growth 

altitude and horticultural practices, the plucking season, sorting of the leaves, the 

processing, and storage. The quality of tea products is of critical importance for an 

industrial brand to provide its customer with a satisfactory product and to continue to 

stay in the market. The quality of tea can be expressed in many ways. Sensorially, tea 

infusion is assessed by its appearance, flavour, and aroma, and these characteristics 

are reflected in the price of the final tea products. Big industries usually do not grow 

and process all the tea on their own, they are dependent on various tea auctions around 

the world to buy tea products. In such a global tea market, assuring the quality of 

products helps to make buying decisions as the final tea product made for the market 

has to be a blend of different teas from different sources. Typically, industry uses 

sensory evaluation experts known as Tea Tasters to make buying decisions during 

auctions and for any tea quality evaluation in later stages. However, this evaluation 

method is subjective, inconsistent and vulnerable to human error. Further, in an 

industrial scenario, the Tea Taster has to analyse a large number of samples putting 

them under business stress. Also, the tea tasters cannot be used for on-line monitoring 

of continuous product lines in an industrial scenario. Hence there is a requirement to 

have a robust and accurate method of tea quality evaluation. 

 

Near-infrared spectroscopy (NIRS) in recent years has gained popularity for rapid and 

non-destructive assessment of quality parameters in food and agricultural products. 

NIRS contains abundant chemical information, which can support estimating quality 

parameters quickly and non-invasively. In particular, a wide range of works has been 

performed for quantitative estimation of the chemical constituents that are present in 

tea products (Table 1.1). In addition, imaging and image processing have emerged as 

potential tools to enable the analysis of the physical properties of tea products such as 

shape, texture and other visual bulk properties [26,27,28]. However, a combination of 
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NIRS and imaging is still in its initial stages for assessment of tea products and hence, 

is the focus of this work.  
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Table 1.1: Recent works utilising NIRS for estimation of various chemical parameters responsible for tea quality. 

 
Spectral 

range (nm) 

Sample 

state 

Type of 

tea 

Task Parameters Type of 

modelling 

Model accuracy Cross 

Validation 

References 

909 -2631 Powder 

(final 

product) 

Green, 

Black and 

Oolong 

Biochemistry 

quantification 

Caffeine and total 

polyphenols 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partial least 

square 

regression 

(PLSR) 

Caffeine prediction: 

R2=0.9688 

Polyphenol: 

R2=0.9299 

Leave one 

sample out 

(29) 
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1100-2500 Leaf and 

powder 

(better 

calibration 

for leaves) 

Green Biochemistry 

quantification 

Caffeine, 

epigallocatechin 

gallate (EGCG), 

epicatechin (EC), 

Total antioxidant 

capacity (TAC) 

 
 
 
 
 
 
 
 
 
 
 
 
 

PLSR Caffeine: R2=0.96 

TAC: 

R2=0.90 

EGCG: 

R2=0.83 

EC: 

R2=.44 

Leave one 

sample out 

(30) 
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1100-2500 Leaves 

(final 

product) 

Green Biochemistry 

quantification 

Total antioxidant 

capacity 

Principal 

component 

regression 

(PCR) 

R2=0.92 Leave one 

sample out 

(31) 

1108-2490 Leaves 

(final 

product) 

Green Biochemistry 

quantification 

Gallic acid (GA), 

EC, 

epigallocatechin 

(EGC), epicatechin 

gallate (ECG), 

EGCG,  caffeine, 

theobromine, 

theogallin 

PLSR GA: R2= 0.89 

EC: R2= 0.97 

EGC: R2=0.85 

EGCG: R2= 0.93 

ECG: R2= 0.95 

Caffeine: R2=0.97 

Theobro: R2=0.86 

Theogallin: R2= 0.94 

Not 

mentioned 

but 

performed 

(32) 

1000-2500 Powder 

(final 

product) 

Green Biochemistry 

quantification 

Total polyphenol PLSR R2=0.95 Leave one 

sample out 

(33) 

 Leaves 

(final 

product) 

Black Biochemistry 

quantification 

Theaflavin and 

moisture content 

 Not able to access 

article 

 (34) 
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909-2631 Powder 

(final 

product) 

Green Biochemistry 

quantification 

Caffeine, total 

polyphenols 

PLSR Caffeine: R2=0.9688 

Poly: R2=0.9299 

Leave one 

sample out 

(35) 

900-1700 Leaves 

(final 

product) 

Green Biochemistry 

quantification 

Polyphenols PLSR R2=0.925 Leave one 

sample out 

(36) 

1000-2500 Leaves 

(final 

product) 

Green Biochemistry 

quantification 

EGCG PLSR R2=0.97 Not 

mentioned 

(37) 

1100-2500 Leaves 

(final 

product) 

Green and 

black 

Biochemistry 

quantification 

Polyphenols, 

Caffeine, 

Amino acids, 

Lignin 

Multiple linear 

regression 

(MLR) 

Polyphenols: R2=0.94 

Caffeine: R2=0.91 

Amino acids: R2=0.98 

Lignin: R2=0.97 

Not 

mentioned 

(38) 

1000-2500 Powder 

(final 

product) 

Black Biochemistry 

quantification 

Amino acid, 

Caffeine, 

theaflavins and 

water extract 

PLSR Amino acid: 

R2=0.9396 

Caffeine: 

R2=0.9195 

Theaflavins: 

R2=0.9056 

k-fold (39) 
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Water extract: 

R2=0.8886 

1000-2500 Powder 

(final 

product) 

Black, 

oolong, 

green 

Biochemistry 

quantification 

Total polyphenols, 

caffeine, Free amino 

acids 

CARS Total polyphenols: 

R2=0.994 

Caffeine: R2=0.986 

Free amino acids: 

R2=0.993 

k-fold (40) 

800-2500 Powder 

(final 

product) 

Black Biochemistry 

quantification 

Caffeine, water 

extract, total 

polyphenols, free 

amino acids 

PLSR Caffeine: R2=0.983 

water extract: 

R2=0.977 

total polyphenols: 

R2=0.975 

free amino acids: 

R2=0.943 

Leave one 

sample out 

(41) 

325-1075 Leaves 

(final 

product) 

Green Biochemistry 

quantification 

Moisture content Wavelet R2=0.991 Not 

mentioned 

(42) 
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408-1117 

(HSI) 

Leaves 

(final 

product) 

Green Classification Different grades SVM 95% Not 

mentioned 

(43) 
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1.6 Challenges associated with hyperspectral imaging as an on-line tool 

 

Although HSI systems are now readily available on the market, utilising HSI as an on-

line monitoring tool comes with different challenges. One of the major challenges is 

related to the handling and interpretation of the huge volume of data generated during 

the high-throughput measurements [44]. The high-throughput implementation of HSI 

can be understood in two ways, one in which the HSI is continuously implemented as 

an online tool to and generate a continuous stream of data where as another where the 

HSI generate discrete but a huge number of HSI such as in a implementation of high-

throughput plant phenotyping. In both high-throughput cases weather continuous of 

discrete image generation, HSI generate hundreds of MBs of images in a couple of 

seconds. Some common challenges can be understood below: 

• A challenge from an on-line application point of view is the continuous 

accumulation of huge volumes of data, which requires the use of compression 

methods for efficient storage of data for future records and use.  

• The other challenge comes from the point of view of automating the analysis 

of data and removing human subjectivity in tasks such as pre-processing. The 

information generated in HS images is often accompanied by noise, which can 

arise from detector sensitivity, illumination conditions (e.g. the choice of the 

light source) and experimental conditions (e.g. interference from other light 

sources). The typical way of removing noise is to visually check to see if the 

images contain noise, then the user based on his/her experience will utilise 

different methods such as smoothing/filtering to remove the noise. However, 

in an on-line implementation or in an automated scenario, it will not be possible 

for the user to check and correct every image. Therefore, there is a need for 

automated methods which can intelligently identify the noise and correct for it 

based on the identification of the type of noise present in the images.  

• The third challenge comes from the point of view of combining the spectral 

and spatial information obtained from the spectroscopic and imaging 

modalities of HSI, respectively. The use of spatial information is of particular 

importance to tea products as differently processed tea products exhibit 
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different textural properties. The complementary information about the texture 

can, therefore, enhance the modelling task performed with only spectral 

information. 

 

1.7 Aims and objectives of the study 

 

This research performed in this thesis links to the ModLife project, a H2020 ITN 

(http://www.modlife.eu/) which aims to develop advanced model-based optimisation, 

monitoring and control as enabling technologies for bioprocess-product development 

and innovation tailored for the needs of the life science industries. The ModLife ITN 

aims to develop the next generation of high-performance computing tools and in-situ 

measurements for increasing the efficiency, innovation and competitiveness of 

Europe’s life sciences and processing industries.  

 

This thesis contributes to the ModLife ITN through evaluation of optical and imaging 

techniques for biological process related to tea products and processes. Tea product 

analysis was of major interest to the industrial partner ‘Unilever’ in the project. The 

thesis further represents working of the industrial and the academic partners together 

to solve a problem which is of key importance for a European project like ModLife. 

Further, in the thesis different data analysis methods are explored and methods for 

handling large volumes of HSI data are presented. These data analysis methodologies 

link directly to the ModLife ITN aim to develop novel data modelling methodologies. 

The methodologies are currently being explored for implementation at Bayer Ag for 

HSI based assessment of biological plants in high-throughput phenotyping setup. 
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Figure 1.2: Schematic of the scope of the thesis chapters. 

 

The overall aims of this study were to investigate the feasibility of using NIR HSI for 

assessment of tea products and to address some of the key challenges related to 

automated handling, managing and processing of HSI data that are needed for on-line 

application to be fully realised. The work has been performed in collaboration with the 

ModLife project partner, Unilever, based at Colworth Park in the United Kingdom. A 

summary of the chapter are presented in figure 1.2. The specific objectives of the study 

were as follows:  

 

1.    To evaluate the feasibility of using NIR HSI for assessment of a wide range 

of tea products (Chapters 2 and 3). 

2.    To utilise advanced data visualisation, classification techniques and 

variable selection techniques to process the NIR HSI data related to tea 

products (Chapters 2 and 3). 

3.    To deal with the huge volumes of HS images by utilising data compression 

methods (Chapter 4). 

4.    To automate the pre-processing of HS images to identify and correct for 

various types of noises present (Chapters 5 and 6). 

5.    To extract and utilise the textural (spatial) information present in images 

and to fuse textural and spectral information to enhance the performance of 

data modelling (Chapter 7). 
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The following six chapters (Chapters 2 to 7) of the thesis are written in the format of 

journal publications having their own introduction, material and methods, results and 

discussion, and conclusions sections. Chapter 8 gives the overall conclusions of the 

research described in this thesis, along with suggestions for future work. Some results 

related to the tea analysis were confidential to be presented in the thesis, however, 

these results once cleared from the industrial partners will be published as journal 

articles and conference proceeding. The readers are advised to follow up the thesis in 

the coming months and years for more information related to the thesis.  
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2.1 Abstract  

 

Tea is the most consumed manufactured drink in the world. In recent years, various 

high-end analytical techniques such as high-performance liquid chromatography have 

been used to analyse tea products. However, these techniques require complex sample 

preparation, are time consuming, expensive and require a skilled analyst to carry out 

the experiments. Therefore, to support rapid and non-destructive assessment of tea 

products, the use of near infrared (NIR) (950 - 1760 nm) hyperspectral imaging (HSI) 

for classification of six different commercial tea products (oolong, green, yellow, 

white, black and Pu-erh) is presented. To visualise the HSI data, linear (principal 

component analysis (PCA) and multidimensional scaling (MDS)) and non-linear (t-

distributed stochastic neighbour embedding (t-SNE) and isometric mapping 

(ISOMAP)) data visualisation methods were compared. t-SNE provided separation of 

the six commercial tea products into three groups based on the extent of processing: 

minimally processed, oxidised and fermented. To perform the classification of 

different tea products, a multi-class error-correcting output code (ECOC) model 

containing support vector machine (SVM) binary learners was developed. The 

classification model was further used to predict classes for pixels in the HSI hypercube 

to obtain the classification maps. The SVM-ECOC model provided a classification 

accuracy of 97.41 ± 0.16% for the six commercial tea products. The methodology 

developed provides a means for rapid, non-destructive, in situ testing of tea products, 

which would be of considerable benefit for process monitoring, quality control, 

authenticity and adulteration detection.  

Keywords: Imaging spectroscopy, hypercube, multivariate, data visualisation, 

neighbourhood methods  

2.2 Introduction  

 

Being the oldest beverage, tea is the most consumed drink in the world [1]. Different 
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tea products exist due to different processes for freshly harvested tea leaves [2]. There 

are six main types of tea products, i.e. oolong, green, yellow, white, black and Pu-erh 

[3], which differ in terms of processing (see Figure 2.1). Green, yellow and white tea 

products undergo minimal processing, oolong and black tea products have been 

oxidised while Pu-erh tea has been fermented. The chemical composition of fresh tea 

(Camellia sinensis) leaves is a complex mixture of caffeine, polyphenols, 

polysaccharides and nutrients such as protein, amino acids, lipids, and vitamins [4]. 

Typically, during the processing of fresh tea leaves, such as oxidation and 

fermentation, they undergo chemical compositional changes. Free amino acids, total 

tea polyphenols, soluble sugars, and caffeine are the four major chemical components 

that determine the nature and quality of the final tea products [5]. 

 

Figure 2.1: Processing steps for different tea products starting from fresh green tea 
leaves to final products. 

Analytical methods used to measure chemical constituents as quality indicators of 

plant-based products include high-performance liquid chromatography (HPLC) [6], 

liquid chromatography/mass spectrometry (LC/MS) [7], gas chromatography/mass 

spectrometry (GC/MS) [8] and electrochemical systems [9,10]. However, these 

methods have complex sample preparation, are time consuming, expensive and require 

a skilled analyst to carry out the experiments [11]. A non-destructive technique that 
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has been used for analysis of tea processes and quality monitoring is e-nose [12,13]. 

E-nose devices usually include an array of metal oxide sensors which respond to the 

number of biochemical volatiles coming into contact with the corresponding sensor 

surface to explain the chemical profile [14]. However, a major disadvantage of e-nose 

sensors is that they are affected by environmental conditions such as temperature and 

humidity, which leads to sensor drift [15].  

In recent years, there has been increasing interest in the use of optical spectroscopic 

techniques for rapid, non-destructive assessment of food products. NIR spectroscopy 

is particularly attractive for this purpose, where changes in the NIR spectral profiles 

can be correlated to perform qualitative and quantitative analysis of food products 

[16,17]. NIR spectroscopy has been explored for discrimination [18,19], identification 

[20, 21] and quality assessment [22] of tea products. Also reported for non-destructive 

tea analysis are emerging studies utilising imaging techniques for the identification 

[23], classification [24] and for evaluation of sensory quality [25] of tea products. 

Integration of spectroscopy and imaging is known as hyperspectral imaging (HSI) and 

use of NIR-HSI still seems unexplored in its application to the analysis of tea products.  

HSI has been widely used in remote sensing for military applications [26], but it is 

now popular in scientific domains such as forensics [27], medical [28], food [29], 

pharmaceutical [30] and plants [31]. There are reports of the use of HSI for the 

understanding of different food products such as coffee [32], tobacco [33], and seeds 

of vegetable and fruits [34,35]. Some applications of HSI of tea have been reported 

but these studies only considered a single variety of tea and measured the visible and 

very near infrared (VNIR) range (around 400 - 1000 nm), which is dominated by the 

pigments and physical characteristics of the samples [36,37]. In comparison to the 

VNIR region, the NIR region provides more detailed chemical information such as 

overtones resulting from the molecular vibration of O-H, C-H, N-H bonds and their 

combinations, which can support a better classification system based on the chemistry 

of the samples [38].  

The aim of the present work is to demonstrate the use of NIR (950 - 1760 nm) HSI for 

rapid, non-destructive classification of six different commercial tea products (oolong, 

green, yellow, white, black and Pu-erh). The study investigates and compares four 
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different dimensionality reduction techniques (linear and non-linear) to visualise the 

high dimensional HSI tea data. Furthermore, multi-class support vector machine 

(SVM) modelling has been performed to generate spatial classification maps of tea 

products. 

2.3 Materials and Methods  

2.3.1 Samples 

 
Six commercial tea samples were obtained from the local market (Glasgow, United 

Kingdom). The samples were obtained in airtight sealed packaging and stored at 

ambient temperature. All samples of tea were in loose-leaf form. Black, green and 

white tea were from Vahdam Teas (New Delhi, India), oolong tea was from 

Yamamotoyama (California, USA), Pu-erh tea was from The Tea Makers of London 

(London, United Kingdom) and yellow tea was of an unspecified Chinese origin. The 

six tea products can also be broadly grouped as minimally processed (green, white and 

yellow), oxidised (black and oolong tea) and fermented (Pu-erh tea). The samples for 

each imaging experiment were transferred on the day of analysis into a black plastic 

circular container (diameter = 3.3 cm, depth = 1.3 cm). A different cap was used for 

each tea to avoid any cross-contamination. 

2.3.2 Hyperspectral imaging measurements 

Imaging was performed with a push-broom line scan HSI camera (Model name: 

RedEye 1.7) from INNO-SPEC (Nurnberg, Germany). The camera has an InGaAs 

sensor and generates a spatial map of 320 x 256 pixels in the spectral range of 950 - 

1760 nm. The pixel size was 30 x 30 µm2 and the spectral resolution was 3.2 nm. The 

camera communicated with the computer via a gigabit Ethernet connection. The 

lighting was provided by two halogen light sources 50 W each and the integration time 

used was 300 ms. Imaging was performed by placing the samples over the translation 

stage which was controlled by an independent stage motor connected to the computer 

system (Zolix TSA 200 BF). The speed of the translation stage was optimised before 

image acquisition to avoid any distortion in the shape of the image arising from the 

overlapping of the spectral information in the adjacent pixels. The image acquisition 

and management of settings (integration time) were performed using the software 
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interface called SiCAP provided with the camera by INNO-SPEC. Images were first 

acquired of six different tea samples placed adjacent to each other in their respective 

sample containers in the field of view of the camera. An image was then acquired of 

black, Pu-erh and oolong teas where each tea occupied approximately a third of the 

volume of the sample container; the teas were not physically mixed. Finally, equal 

proportions of all six tea samples were mixed, by manually shaking the different tea 

products in a container, and an image of the mixture was acquired. One image was 

acquired of each sample, with each image comprising more than 2000 pixels (spectra) 

for the individual tea samples and more than 11200 pixels for the samples containing 

more than one type of tea. An illustration of the HSI setup conFigured for imaging of 

tea samples can be found in Figure 2.2.  

 

Figure 2.2: Illustrative diagram for the hyperspectral imaging setup used to acquire 

the images of tea samples. 

2.3.4 Data analysis� 

2.3.4.1 Pre-processing of HSI data 

 
The data cubes not only contain information about the samples imaged but also consist 

of different unwanted influences in signal resulting from factors such as illumination 

intensity, the detector sensitivity and transmission properties of the optics. The effects 



 52 

resulting from these factors are both wavelength dependent and independent. To 

correct for these effects, radiometric calibration was performed using dark and white 

reference images acquired along with the samples. The correction was performed for 

every pixel in the HS image according to equation 2.1:  

!"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

    (2.1) 

where !" is the calibrated reflectance, !678 is the raw intensity measured from the test 

sample, !976'  the intensity of the dark response, !8:$;<  is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is the wavelength in the image.  

Often, the radiometric correction is sufficient to remove the effects of illumination 

inhomogeneity from the spectral data, however, when the sample surfaces are not 

uniform, as in the case of samples of loose tea leaves, the light scattering during diffuse 

reflection causes additive and multiplicative effects [38]. These scattering effects lead 

to baseline shifts in the spectrum and variation in the global intensity, which is again 

dependent on the wavelength. Standard normal variate (SNV) is a very common 

technique used in NIR spectroscopy to remove these effects [39]. In SNV, the mean 

and standard deviation of each spectrum for each pixel are calculated, the mean is 

subtracted, and the standard deviation is used to normalise the difference. This 

transformation normalises each spectrum to zero mean and unit standard deviation. 

Before applying the SNV transform, the spectral range was reduced from 950 - 1760 

nm to 967 nm - 1700 nm, to remove the noisy regions at the edges of the spectral range, 

and converted to absorbance. Further, the spectral absorbance profiles were smoothed 

with a Savitzky-Golay filter (15-point width and second order polynomial) [40]. The 

savgol and snv functions from PLS Toolbox (version 8.11, Eigenvector Research Inc., 

USA) were used. All visualisation and classification analysis were performed on the 

pre-processed spectra. The pre-processed pure spectra of six pure tea samples were 

extracted using Matlab’s (R2016b, Mathworks, USA) roipoly function. The roipoly 

function provides a graphical user interface in Matlab to extract the information from 

each image over the manually selected locations. 



 53 

2.3.4.2 Principal Component Analysis 

 
Principal component analysis (PCA) introduced by Pearson in 1901 belongs to the 

family of linear methods for visualising high dimension data [41]. In PCA, a set of 

observations containing correlated variables is orthogonally transformed to linearly 

uncorrelated variables defined as principal components (PCs). In PCA, the 

transformation is performed to retain the major amount of variability in the dataset.  

The PCA decomposition model for a given observation data matrix X can be 

understood as equation 2.2:  

= = >?@           (2.2)  

where T is the score in the lower dimension explained by the number of PCs specified 

and W is a l × l (l denotes number of variables) matrix whose columns are the 

eigenvectors of XTX.  

In the case of dimensionality reduction, the aim is to preserve the maximum amount 

of meaningful variation present in the dataset. The extracted PCs define a new 

orthonormal basis set which can be used to transform the data from a high dimension 

space to the lower space explained by the PCs. PCA from a dimensionality reduction 

perspective can be understood as minimising the squared reconstruction error as given 

in equation 2.3.  

min	 ||>?@ − >6?6;||G          (2.3)  

where, TW and TrWr are the reconstructed original dataset in higher and lower 

dimensional space, respectively. Minimisation of the reconstruction error results in the 

maximisation of the information that was present in the higher dimensional space 

when defined in the lower dimensional space given by the significant number of PCs. 

To interpret the data in two- or three-dimensional plots, the respective PCs can be 

selected and used for transformation to the orthogonal axes represented by the PCs. 

Transformation from a higher dimension to a lower dimension can be performed as in 

equation 2.4.  
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	=H6 = =?																							(2.4) 

 

2.3.4.3 Multi-Dimensional Scaling  
 
Multi-dimensional scaling (MDS) is a linear method for visualising high dimensional 

data [42]. MDS performs a transformation by preserving the between object distances 

from the higher dimension to lower dimension. The MDS utilises calculation of the 

Euclidean distances for each data point in the multidimensional space to capture the 

pattern. The distances are defined as a symmetric distance matrix (D). MDS attempts 

to find data points in a specified (d-dimensional) space such that the Euclidean distance 

between data points (LM) is similar to the distance in higher dimensional space. The 

minimisation function can be understood as equation 2.5:  

NOP∑ ∑ RS$& − ST$&R
G

&$            (2.5)  

where, D = dij =∥xi−xj∥2and LM	= dij =∥yi− yj∥2 explaining the Euclidean distance 

between points in high (xi, xj) and low dimensional space (yi, yj), respectively. i, j 

denotes the specific position of a point. 

2.3.4.4 Isometric Mapping  

 
Isometric mapping (ISOMAP) belongs to the family of non-linear techniques for 

visualising high dimensional data [43,44]. ISOMAP can be understood as a 

generalised non-linear form of MDS which utilises the geodesic space accounting for 

the non-linearity in the high dimensional data manifold. The geodesic distance is 

defined as the shortest distance between two data points on a curved surface of a non-

linear manifold. As a first step, ISOMAP approximates a neighbourhood graph by 

identifying k nearest neighbours (kNNs) or selecting neighbourhood data points based 

on any other condition for all data points. The geodesic distance is then approximated 

for all the pairs of data points on the neighbourhood graph. Finally, the distance data 

obtained from the graph is embedded to a lower dimension Euclidean space using 

MDS as shown in equation (2.6).  
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NOP∑ ∑ ||LV − LW||G&$             (2.6)  

where, DG and DE explain the geodesic and Euclidean distance between points in high 

and low dimensional space, respectively. 

2.3.4.5 t-Distributed Stochastic Neighbour Embedding  

 
t-distributed stochastic neighbour embedding (t-SNE) is a non-linear technique used 

to visualise high dimensional data in two- or three-dimensional scatter plots [45]. 

Unlike PCA, t-SNE is based on utilising local relationships between data points to 

create a low dimensional mapping which allows to capture non-linear relationships. t-

SNE further utilises the local relationship between data point to create a probability 

distribution utilising Gaussian distribution which defines the relationship between 

respective data points in high-dimensional space. t-SNE then uses a t-distribution in 

the low dimensional space which explain the probabilities. The optimisation step in 

final try to make the distribution in low dimensional as similar to that in the high 

dimension. The optimisation process actually make the distribution in the low 

dimension learn the pattern from the high dimensional data. The main objective of t-

SNE is to model similar points using nearby points (small pairwise distance) and 

dissimilar points using distant points (large pairwise distances). As a first step, to 

represent the similarity, the t-SNE converts high-dimensional Euclidean distances 

between data points into conditional probabilities using a Gaussian distribution. The 

joint probability for a data point xj to xi can be calculated with equation (2.7):  

X&|$ =
YZ[	(1

||	\.]\/||
^

^_.
^ )

∑ ∑ YZ[	(0`a0 1
||\0]\a||^

^_.
^ )

        (2.7) 

 

The conditional probability represents the probability that xi will pick xj as a neighbour 

based on the proportion of probability density under a Gaussian centred at xi. If the 

points are near then the value of pj|i will be higher compare to the points far away. 

Furthermore, the conditional probabilities are symmetrised to reduce the effects of 

outliers by setting (2.8):  
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X$& =
b/|.cb.|/

Gd
            (2.8)  

To represent joint probabilities in the low dimensional map qij, t-SNE utilises a heavy 

tailed Student t-distribution. The benefit of using a heavy tailed distribution is that it 

makes the joint probabilities invariant to changes in the scale of the map. The joint 

probabilities qij can be estimated by (2.9):  

e$& =
(fc||g.1g/||^)]h

∑ ∑ (fc||g01ga||^)]h0`a0
       (2.9) 

Finally, the t-SNE minimises a single Kullback-Leibler (KL) divergence between a 

joint probability distribution, P, in the high-dimensional space and a joint probability 

distribution, Q, in the low-dimensional space as can be understood from equation 

(2.10):  

ij(k||l) = ∑ ∑ X$&mno
b./
p./&$          (2.10)  

The minimisation of the KL divergence is performed using a gradient descent 

algorithm with respect to the locations of the points in the map yi.  

All the data visualisation methods (PCA, MDS, ISOMAP and t-SNE) were 

implemented in Matlab using the Toolbox for Dimensionality Reduction 

(https://lvdmaaten.github.io/drtoolbox/) [45,46]. The Mahalanobis distance [47] was 

used to assess the separation of the clusters identified with the different data 

visualisation methods. 

2.3.4.6 Support vector machines for multi-class classification  

 
Support vector machines (SVMs) are supervised non-probabilistic learning models 

which utilise hyperplanes to define the decision boundaries for performing 

classification [48]. The SVM algorithms are usually developed to perform a binary 

classification, however, SVM can be used for multi-class classification problems by 

utilising several independent binary classifiers. This can be performed by combining 

it with ensemble methods such as error correcting output codes (ECOC). The ECOC 

deals with the multi-class classification problem by converting it into several 
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independent binary classification problems. A wide range of applications of SVM to 

process HS images can be seen [49,50]. 

In the present work, the ECOC-SVM algorithm available in Matlab’s Statistics and 

Machine Learning Toolbox (R2016b) was implemented to perform the classification 

utilising the classification learner application. ECOC-SVM uses a one-versus-all 

coding design, in which for each binary learner one class is assigned a positive value 

and all others are assigned negative values. To map the data to the higher dimension, 

a radial basis function (RBF) kernel (scale parameter = 10) was used. The RBF kernel 

has the benefit of non-linearly mapping the sample to the higher dimensional space for 

dealing with a non-linear relationship between observation and classes. For every pure 

tea sample, spectra (967 - 1700 nm) were extracted from 200 pixels, which were 

selected at random from the image collected, leading to 1200 spectra in total for 

calibration of the classification model. Validation of the model was performed with a 

10-fold cross-validation method. Furthermore, to have confidence in the model 

accuracy, the model was recalibrated with 1200 iterations and the mean and standard 

deviation were noted. The trained classifier was further used to generate the 

classification maps of the HS images. The HSI cubes were first unfolded from a 3D 

map (n × p× q) to a 2D matrix (np × q) and then the class of every row of the matrix 

(representing the pixel) was predicted, where n, p, and q define the x, y and z 

dimensions of the data, respectively. After prediction, the matrix (np × 1) was reshaped 

to the original image dimension (n × p). 
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2.4 Results  

2.4.1 Spectral profiles of tea samples  

 

 

(a)                                                                                        (b)                                                                              (c) 

Figure 2.3: Absorbance spectra of pure tea samples of yellow, oolong, green, black, white and Pu-erh. (a). Mean absorbance spectra (n = 

200). (b) Mean spectra after pre-processing (SNV and Savitzky- Golay smoothing), and (c) standard deviation of the absorbance spectra and 

spectra after pre-processing. The vertical green lines denote the positions of the main peaks. 
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Figure 2.3 presents the spectral profiles of individual tea samples. Figure 2.3(a) 

presents the mean absorbance spectra calculated from the 200 spectra extracted for 

each of the six tea samples (yellow, oolong, green, black, white and Pu-erh), Figure 

2.3(b) presents the mean spectra after pre-processing with Savitzky-Golay filtering 

followed by SNV (a plot along with the standard deviation for each samples can be 

find in Annex 1 (Figure A1.1)), and Figure 2.3(c) presents the standard deviation of 

the spectra before and after pre-processing. From Figure 2.3(a), it can be seen that the 

absorbance spectra of different tea samples contain scattering effects leading to 

baseline shifts. These effects can also be seen in the standard deviation plot in Figure 

2.3(c) for the absorbance spectra (red), where the standard deviation over the entire 

spectral range is approximately constant. These scattering effects can bias modelling 

of the data, therefore, they were removed via pre-processing. In Figure 2.3(b), it can 

be seen that after pre-processing, differences in spectra at various wavelengths have 

emerged, and so spectral differences corresponding to different teas can be noted. 

Scattering effects arise in the imaging experiments as the inhomogeneity in the size of 

the loose leaves does not get compensated for by the flat surface of the white 

reflectance standard used for radiometric calibration.  

In Figure 2.3(c), it can be noted that the pre-processing reveals the spectral variation 

arising from differences in the tea, which was previously dominated by the effects of 

light scattering. In Figure 2.3(b), various peaks (depicted by the green vertical lines) 

can be identified at representative wavelengths. In previous works, the peaks at 1131, 

1654 and 1666 nm were found to be representative of the total tea polyphenols [51,52], 

1361 nm is representative of moisture content [22], 1093-1121 nm for thearubigin 

components of TRS1 [22], 1492 nm corresponds to free amino acids [52], 1176 nm is 

a second overtone C-H [53] and 1390 nm for the CH2 overtone [54]. 
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2.4.2 Visualising high dimensional data  
 

 

Figure 2.4 : 2-Dimensional scater plots for visualising high dimensional tea data. (a). 

Principal Component Analysis (PCA), (b). Multidimensional Scaling (MDS), (c). 

Isometric Mapping (ISOMAP), and (d). t-distributed Stochastic Neighbour Embedding 

(t-SNE). In all the plots, the first dimension is represented in the x-axis and the second 

in the y-axis, and the six tea products are coloured as follows: Pu-erh (pink), black 

(sky blue), oolong (Yellow), green (green), white (blue) and yellow (red). 

To visualise the high dimensional data in the lower dimension, the 256-dimensional 

HSI data were transformed to 2-dimensional plots using PCA, MDS, ISOMAP and t-
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SNE as shown in Figure 2.4. The loading related to PCA can be found in Annex 1 

(Figure A1.2). It can be seen clearly in Figure 2.4 that the t-SNE (Figure 2.4(d)) 

outperforms PCA, MDS and ISOMAP (Figures 2.4(a), 2.4(b) and 2.4(c), respectively) 

regarding identification of the maximum number of separate clusters. These separate 

clusters correspond to different tea products and their representation as separate 

clusters in the plots signifies that the visualisation method is able to preserve the 

structure of the data on transformation from a high dimensional space to a lower 

dimensional space. In general, all the methods were able to separate the Pu-erh tea 

(pink) from all other tea samples. The reason for this can be seen in Figure 2.3(b) 

where Pu-erh tea (sky blue) has a very different spectral signature compared to the 

other tea samples. This is likely to be because the Pu-erh tea undergoes very different 

processing, which includes microbial fermentation of sun-dried leaves [2], compared 

to the other teas.  

It can be seen in Figure 2.4((a), (b) and (c)) that with the exception of Pu-erh tea, all 

other types of tea samples are mixed and their clear distinction is not possible. In 

comparison, black and oolong tea are identified as separate clusters with t-SNE. 

However, while t-SNE was not able to separate the green, yellow and white tea, it still 

provided better separation of these three teas as shown in Figure 2.4(d). Green, yellow 

and white teas appear in the same cluster as they have similar spectral signatures (see 

Figure 2.3(b)). This may arise from the fact that these teas are most similar in terms of 

processing conditions; they are subjected to either limited or no oxidation. In 

comparison, oolong and black teas undergo oxidation during their manufacturing. This 

may be why these two teas lie in two adjacent clusters that are far away from the cluster 

containing green, yellow and white teas. However, further information is required to 

identify the exact source of the spectral differences observed.  
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Figure 2.5: Mahalanobis distances between the three different cluster groups obtained 

using PCA (dark-blue), MDS (sky-blue), ISOMAP (light- green) and t-SNE (yellow). 

To assess further the separation of clusters with each method, the Mahalanobis 

distance between the clusters was calculated. Figure 2.5 presents the Mahalanobis 

distance estimated for the three major clusters identified in Figure 2.4. The three major 

cluster can be understood as the group of minimally processed tea products available 

on the market (denoted the green group), the teas subjected to oxidation (oxidised 

group) and those that have been subjected to microbial fermented (fermented group). 

The x-axis in Figure 2.5 presents the pairwise groups used for estimating the distance 

and the y-axis gives the respective Mahalanobis distance obtained from the different 

data visualisation methods. It can be seen that the t-SNE (yellow) was superior to all 

other methods followed by the ISOMAP (light green), and then PCA (dark blue) and 

MDS (sky blue) for separating all three groups in the data-visualisation plots.  

From a statistical perspective, a better visualisation of separate clusters corresponding 

to different tea products with t-SNE could be due to its ability to capture the non-

linearity present in the data set and consideration of neighbourhood information. This 

supports the modelling of both distant and nearby points [45]. Often, in high 

dimensional space when the data lies near, or in a non-linear manifold, linear methods 
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like PCA and MDS fail to preserve the structure of data in the lower dimension space. 

This is because with linear methods like PCA and MDS, the aim is to keep the distant 

object far apart; no consideration is given to utilising the information about the 

neighbouring data points [46]. 

It can be seen in Figure 2.4(c) that ISOMAP provides a little insight on differences in 

the classes belonging to black and oolong teas compared to what was achieved with 

PCA (Figure 2.4(a)) and MDS (Figure 2.4(b)). However, ISOMAP was not able to 

provide a clear separation of the two teas as was obtained with t-SNE. A reason for 

the poor performance of ISOMAP compared to t-SNE could be due to its weakness in 

dealing with the holes and non-convex nature of the data manifold in the higher 

dimension [43]. Another important weakness of ISOMAP is its topological instability, 

which leads to a short-circuiting problem in the neighbourhood graph and results in its 

poor performance [44].  
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2.4.3 Support vector machine classification 

 

Figure 2.6: (a) Greyscale image constructed from the image plane extracted from the hypercube at 1424 nm, (b) Classification maps obtained 

from the application of the ECOC-SVM model. From left to right the samples can be understood as yellow (dark blue), oolong (light blue), 

green (cyan), black (light green), white (orange) and Pu-erh (Yellow). (c) Histograms showing the proportion of pixels attributed to the 

different tea products for the classification maps in (b).  
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The results from the application of the ECOC-SVM multi-class classification model 

are presented as classification maps in Figures 2.6 and 2.7. Figure 2.6(b) presents the 

classification maps of pure tea samples, from left to right, the samples can be 

understood as yellow, oolong, green, black, white and Pu-erh. For comparison, a 

greyscale image was also produced (Figure 2.6(a)) using the image plane 

corresponding to 1424 nm; this wavelength was selected merely to allow visualisation 

of the data hypercube. It can be seen from Figure 2.6(b) that all six teas were classified 

into their respective individual classes. However, there are some pixels that were 

misclassified; Figure 2.6(c) shows the proportion of pixels attributed to the different 

tea products for the classification maps in Figure 2.6(b). The misclassification was 

most dominant at the edges owing to signal from the circular sample container; such 

pixels (approximately 20%) were misclassified as Pu-erh. When these pixels were 

excluded, an overall accuracy of 97.41 ± 0.16% was obtained for cross-validated 

samples using 1200 iterations. 

Apart from the edges, a reason for the misclassification between different teas can be 

attributed to their spectral similarity. When visualising the data with t-SNE (see Figure 

2.4(d)), green, white and yellow tea were found to be lying near in the same cluster, 

and black and oolong were near to each other due to their spectral similarity. Hence, 

the classification map for the yellow tea (dark blue) has some misclassified pixels that 

have been attributed to either white (orange) or green tea (cyan). For black and oolong 

teas, it can be noted that there are some pixels in the classification map for black tea 

(light green) that were misclassified as oolong (light blue class) and vice-versa. 

Another possible reason for misclassification could arise from the purity of the tea; for 

example, a minimally processed tea (e.g. white) may contain small amounts of 

oxidised product (e.g. black tea). 
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Figure 2.7:(a). Greyscale image at 1424 nm for the sample comprising oolong, black 

and Pu-erh tea, (b). The classification map for the sample comprising oolong, black 

and Pu-erh tea, (c). Pie chart representing the proportion of pixels belonging to a 

particular class for the classification map presented in (b), (d). Greyscale image at 

1424 nm for a sample containing a mixture of all teas, (e). The classification map for 

a sample containing a mixture of all teas, and (f) Pie chart representing the proportion 

of the pixels belonging to a particular class for the classification map presented in (e). 
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Figure 2.7 presents the classification maps for the HS images acquired for samples 

comprising mixtures of teas. This analysis was performed to assess the feasibility of 

using the methodology developed to classify different tea samples when more than 

one tea is present. Figure 2.7(a) presents the image plane corresponding to 1424 nm 

for a sample containing oolong, black and Pu-erh teas (not mixed) in roughly equal 

portions. These three teas were selected as there is an oxidation stage in their 

manufacturing. The location of the different teas in Figure 2.7(a) can be identified with 

the red markers. As can be seen from Figure 2.7(b), the model provided a clear 

classification of the three teas into their respective classes. However, some 

misclassification can be seen at the interface between different types of teas; individual 

pixels will detect the presence of more than one type of tea at these locations. 

Furthermore, Figure 2.7(c) provides insight into the proportion of pixels belonging to 

each class. It can be seen that the pie chart is mainly dominated by the proportion of 

oolong, black and Pu-erh tea and contains a very small portion (<1%) of pixels 

classified as green, white and yellow. 

The methodology developed was also tested for a mixture of all six tea samples. The 

result for classification of the sample containing a mixture of all six types of tea is 

presented in Figure 2.7(e). The classification map shown in Figure 2.7(e) can be 

interpreted in conjunction with the pie chart (Figure 2.7(f)) representing the proportion 

of pixels classified belonging to different classes. The pie chart shows that the presence 

of all the classes can be detected with the classification model and the portion of each 

type of tea ranged from 10 – 26%. However, it was not possible to validate the 

classification result of the mixture image because it is not known if the sample was a 

homogenous mixture of the six types of teas and hence, the exact composition of the 

upper surface of the sample is unknown. In addition, there may be some 

misclassification of pixels that detect more than one type of tea. 

2.5 Conclusions  

 

NIR HSI has been used to classify six different types of commercial tea samples. 

Before any data modelling, the spectral imaging data from tea products should be pre-

processed to reduce the effects of light scattering arising from the inhomogeneous and 
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uneven leaf surface. Four different types of linear and non-linear dimensionality 

reduction methods were compared for visualisation of imaging data. The non-linear 

method, t-SNE, gave better separation of the different tea products than classical linear 

techniques such as PCA and MDS. This is because t-SNE uses information from 

neighbouring data points in the high dimensional space to preserve the structure in the 

low dimensional representation. It was possible to classify the tea according to product 

type using a ECOC-SVM multi-class classification model constructed using the NIR 

HSI data. Therefore, NIR HSI in conjunction with machine learning could be a 

potential tool for classification of different types of tea products. The source of spectral 

differences is assumed to arise from the different processing steps that are involved in 

the manufacture of various types of tea. However, there could be other sources, e.g. 

geographical, that contribute to spectral differences and hence, this requires further 

investigation. 
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3.1 Abstract  

 

The distinct flavour and aroma of different tea products are dependent on the climate 

and soil conditions in which the plants are grown. Therefore, there is an increasing 

demand for tea products originating from specific geographical locations. In addition, 

it is important to be able to identify the geographic origin of tea products within the 

context of food traceability. Traditionally, discrimination of tea products is performed 

via sensory analysis, which requires an expert human panel. More recently techniques 

such as high-performance liquid chromatography have been employed, but these are 

destructive, time-consuming and require complex sample preparation. Therefore, in 
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this work, near-infrared hyperspectral imaging (NIR-HSI) has been used for rapid and 

non-destructive classification of sixteen different green tea products corresponding to 

four different continents and seven different countries of origin. To perform the multi-

class classification of the different tea products, support vector machine (SVM) binary 

learners were combined with the error-correcting output codes (ECOC) ensemble 

technique. Three different classification models were constructed considering sixteen, 

seven and four classes based on the samples, countries and continents of origin, 

respectively. The 10-fold cross validated SVM-ECOC model provided a classification 

accuracy of 97.01 ± 0.17%, 96.36 ± 0.17% and 97.77 ± 0.16% for prediction of product 

type, and country and continent of origin, respectively. The classification models were 

used to produce spatial classification maps by predicting the class of pixels in the 

hypercube. Further, to identify the important region of the spectral range responsible 

for the success of each classification model, two different feature selection methods, 

ReliefF and sequential forward selection (SFS), were explored. SVM-ECOC models 

for the ReliedF were constructed using the selected features so as to achieve a 

predictive accuracy of 90%. The selected features comprised 7.5 – 22.5% and 8.0 – 

11.4% of the full spectral range for ReliefF and SFS, respectively, for prediction of 

product type, and country and continent of origin. The methodology developed enables 

rapid, non-destructive in situ analysis of green tea products originating from different 

geographic locations, which could be valuable for counterfeit detection, quality control 

and traceability of green tea products. 

Keywords: Traceability, classification, geographic origin, non-destructive, NIRS, 

feature selection 

3.2 Introduction  

 

Beverages prepared from the infusion of tea leaves are the most consumed 

manufactured drinks in the world. Different tea products, such as green, oolong and 

black, are obtained from the Camellia sinensis plant after a series of processing stages 

such as withering, drying, oxidation and fermentation. In recent decades, tea products 

have gained the attention of the world’s population owing to the health benefits 

associated with incorporating tea in the daily diet. Of all the tea products, the 
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minimally processed green tea has potential health benefits as it contains natural 

polyphenolic antioxidants [1]. The reported benefits of bioactive polyphenols such as 

epigallocatechin gallate (EGCG) and theaflavin (TF) include potential anti-cancer 

effects [2], influence on the human brain function [3], protection from environmental 

toxins [4], anti-angiogenesis effects [5], managing oxidative stress [6] and many others 

[7].  

Within the globalised tea market, there is an increasing demand for high-quality tea 

products of specific geographical origin. There is also a requirement to be able to 

identify the geographic origin of food products to support international food 

traceability [8]. High-quality tea products are mainly characterised by the flavour that 

they impart, which involves two primary sensory perceptions, i.e. taste and aroma. The 

distinct taste and aroma of any tea product are derived from its geographical origin as 

they are unique to the climate and soil conditions in which the plants were grown [9]. 

Typically, discrimination of green tea products via sensory analysis is performed using 

an expert human panel. Sensory analysis involves assessment of tea products by 

appearance, colour, aroma and taste, along with the overall quality of the samples. 

However, distinguishing tea products based on sensory analysis is a time-consuming 

and expensive task as it requires an expert human panel. Furthermore, sensory analysis 

is subjective, and it can be inconsistent and unpredictable owing to physiological and 

psychological differences between tasters [10]. One more limitation is that the expert 

panel cannot be used as an on-line technique for the grading of tea products [11].  

In recent years, different analytical techniques have been explored for assessment of 

tea products to work independently or partially with the sensory panel to support the 

discrimination of tea products. Different high-end analytical techniques such as high-

performance liquid chromatography (HPLC) [12], gas chromatography (GC) [13] and 

isotope analysis [14] have been explored for assessment of tea products. However, 

these techniques are time-consuming, expensive, destructive and require trained 

experts to perform the experiments. Two other possible techniques for the assessment 

of green tea products, which mimic the taste and odour assessment by the human test 

panel, are the e-nose and the e-tongue. The e-nose has been used for identification 

[15], discrimination [16, 17], quality evaluation [18] and classification [19] of green 
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teas, while the e-tongue has been used for multicomponent analysis [20], 

discrimination [21] and classification [11]. However, it is extremely difficult to use 

the e-nose and the e-tongue to discriminate between similar complex mixtures because 

of the non-specificity of the sensor arrays [10]. Further to that, the performance of both 

sensors is affected by environmental conditions, such as humidity and temperature 

[22].  

Applications of electrochemical methods have been reported for the quality 

assessment [23], authentication [24] and estimation of biochemistry [25, 26] of tea 

products. A methodology based on calorimetric indicator displacement assays was 

recently used to discriminate teas of different geographical origin [27]. The 

methodology showed good performance for discriminating tea samples based on 

quality grade and geographical origin. However, it was destructive and required 

extraction of liquor from the tea leaves to record the calorimetric response. On the 

other hand, optical spectroscopic techniques can be used for non-destructive analysis 

of a wide range of food products and beverages. For example, near-infrared 

spectroscopy (NIRS) has been used to discriminate between spices [28], coffee [29], 

oils [30] and alcohols [31] of different geographical origin. Some initial work to 

discriminate between different tea products has also been reported; Chen et al. used 

NIRS to discriminate between green teas originating from four different geographical 

locations in China [9]. However, the study was limited to samples that originated from 

a single country (China). Computer vision techniques have been used to grade tea 

products on the basis of colour and texture [32]. Hyperspectral imaging (HSI) 

combines the benefits of spectroscopy and imaging, producing spatial maps of spectral 

variation [33], and has recently been used to discriminate between different types of 

tea products [34]. However, NIR HSI has been used to discriminate food products, on 

the basis of geographic origin, such as wolfberries [35], Jatropha seeds [36], rice [37] 

and fish species [38]. 

NIR HSI cameras typically capture a broad spectral range (e.g. 900 – 1700 nm). 

However, the chemical information related to vibrations and overtones of the bonds is 

mainly limited to particular regions within the overall range [39]. Identification of 

distinct NIR regions can be performed manually by the spectroscopist, utilising their 
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prior knowledge of band assignments. However, feature selection methods can be used 

to identify the most important NIR regions in an automated way. The goal of feature 

selection methods is to identify a reduced number of optimal wavelengths (variables), 

which provide comparable model classification/regression prediction accuracies to 

models developed with the full spectral range [40]. There are different methods for 

variable selection ranging from fast-filter based approaches to computationally 

intensive wrapper-based methods [41]. Furthermore, feature selection for NIR HSI 

brings further benefits such as supporting the development of cheap multi-spectral 

sensors through identification of unimportant variables. This enables more efficient 

storage of data and decreases the computational intensity of data processing algorithms 

[42]. In the present work, the interest in utilising feature selection methods is to 

identify the NIR wavelengths responsible for distinction between green tea samples of 

different geographical origin.  

The aim of the present work is to demonstrate the use of NIR-HSI, in conjunction with 

multi-class SVM modelling and variable selection, for classification of green tea 

samples based on geographic origin (country and continent). In addition, the use of 

two different feature selection methods, ReliefF and sequential forward selection 

(SFS), was explored as a means of identifying the most important wavelengths for 

successful classification with a smaller subset of features. 
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3.3 Materials and Method  

3.3.1 Samples  

 

Figure 3.1: A summary of the geographical origin, by country and continent, of the 16 

green tea samples. 

Sixteen green tea samples differing in geographical origin were obtained from 

Unilever, Colworth Park, UK. The 16 samples originated from 7 different countries: 

Argentina (1), India (5), Sri Lanka (2), China (2), Japan (2), Kenya (3) and Sumatra 

(1). Further, it can be seen that the samples originated from three continents Asia, 

Africa and Latin America. To extend the model, the Asian continent was sub-divided 

into North and South-Asia, thus separating China and Japan from India and Sri Lanka. 

A summary of the geographic origin of the 16 samples is given in Figure 3.1. All 

samples of tea were provided in loose-leaf form in sealed packaging, and were stored 

at ambient temperature. Each sample was transferred into a black plastic circular 

container (diameter = 3.3 cm, depth = 1.3 cm) for analysis using HSI. A different cap 

was used for each tea sample to avoid any possible cross-contamination. 

3.3.2 Hyperspectral imaging measurements  

 
Images were acquired with a NIR push-broom line scan HSI camera (Model name: 
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RED EYE 1.7) from INNO-SPEC (Nurnberg, Germany) over a spectral range of 950 

- 1760 nm. The camera has an InGaAs sensor and generates a spatial map of 320 x 256 

pixels, and has a pixel size of 30 x 30 µm2. Images were acquired over the spectral 

range 950 – 1765 nm with a spectral resolution of 3.2 nm. The camera communicated 

with the computer via a gigabit Ethernet connection. Two halogen light sources of 50 

W each were used to illuminate the samples and an integration time of 300 ms was 

used. Imaging was performed by placing the samples over the translation stage, which 

was controlled by an independent stage motor system (Zolix TSA 200 BF). The speed 

of the translation stage, 2.5 mm s-1, was optimised before image acquisition to avoid 

any distortion in the shape of the image arising from the overlapping of the spectral 

information in adjacent pixels. The distance from the lens to the translation stage was 

15 cm. The image acquisition and management of settings (integration time) were 

performed using the software interface provided with the camera by INNO-SPEC. 

Prior to acquisition of an image, a set of white (Spectralon diffuse reflectance standard) 

and dark reference were recorded for radiometric calibration. An image was acquired 

of the 16 different tea samples placed adjacent to each other in their respective sample 

containers in the field of view of the camera. The image comprised more than 2000 

pixels (spectra) for each of the individual green tea samples. 

3.3.3 Data analysis� 

3.3.3.1 Pre-processing of HSI  

 
Variations in signal resulting from illumination intensity; the detector sensitivity and 

the transmission properties of the optics were corrected by radiometric calibration 

using dark and white reference images. The correction was performed for every pixel 

in the HS image according to equation 3.1: 

!"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

    (3.1) 

where IR is the calibrated reflectance, Iraw is the raw intensity measured from the test 

sample, Idark the intensity of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is the wavelength in the image.  

After radiometric calibration, the spectral range of the hypercube was reduced from 
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950 - 1765 nm to 967.11 - 1700 nm to remove noise. The data were converted to 

absorbance by calculating the negative logarithm (base 10) of reflectance. A moving 

window Savitzky-Golay (SAVGOL) filter [43] (15-point width and second order 

polynomial) was applied to each pixel of the image to remove random noise from 

spectra. To reduce light scattering effects arising from inhomogeneity in the sample 

surface, the spectra were normalised using the standard normal variate (SNV) [44]. 

3.3.3.2 Principal component analysis 

 
Data visualisation was performed using the scores obtained from principal component 

analysis (PCA). Data were mean centred prior to analysis and PCA decomposition was 

performed in Matlab utilising PLS_Toolbox (version 8.11, Eigenvector Research Inc., 

USA). 

3.3.3.3 Classification with support vector machines  

 
Classification of the 16 green tea products on the basis of individual samples (16 

classes), country of origin (7 classes) and continent of origin (4 classes) was performed 

using multi-class error correcting output code (ECOC) models containing SVM binary 

learners, which used a one-versus-one coding design. A total of k number of learners 

was utilised in combination in the coding design. A quadratic kernel (scale parameter 

= 5) was used to map the data to a higher dimension. Pre-processed spectra of the 16 

green tea samples were extracted. For every pure green tea sample, pre-processed 

spectra were extracted from 200 pixels, which were selected at random from the image 

collected, using the ‘roipoly’ function in MATLAB (R2016b, Mathworks, Natwick, 

USA). This gave a total of 3200 spectra for the calibration of the classification models. 

The models were cross-validated with a 10-fold cross-validation method. Furthermore, 

this whole calibration procedure was performed with 100 iterations and the mean 

validation accuracy and the standard deviation were recorded. The trained classifiers 

were later used to generate the classification maps of the tea samples based on sample 

type, and the country and continent of origin. The ECOC-SVM models were 

implemented in MATLAB using the Statistics and Machine Learning Toolbox 

(R2016b). The predictive accuracy of the ECOC-SVM model built using the full 

(967.11 - 1700 nm) spectral range was used as the performance criterion for the feature 
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selection methods. 

3.3.3.4 Feature selection to identify potential NIR regions 

 
In the present work, two different feature selection methods, ReliefF and SFS, were 

explored. The two methods are distinct in their statistical backgrounds; ReliefF is 

based on a fast filter-based approach while SFS is a computationally-intensive 

wrapper-based method. The choice of these two methods was also made based on their 

level of interaction with the classifiers; ReliefF is independent of the classifier and 

selects the features before developing the classifier, while the SFS is dependent on the 

classifier to select the subset of features. The methods are briefly explained the in 

following sections. 

3.3.3.4.1 ReliefF  

 
ReliefF is a filter-based approach for feature selection and belongs to the family of 

Relief methods, which were designed to estimate attributes based on how well their 

values distinguish between the instances that are near to each other [45]. The Relief 

methods, like typical filter-based methods, use the variable ranking technique as the 

criterion for feature selection. The initial version of Relief was only capable of dealing 

with two class problems. However, the extension ReliefF can deal with multi-class 

problems including incomplete and noisy data [46]. The key idea behind ReliefF is the 

same as Relief and starts with searching for the nearest hit and miss, however, ReliefF 

searches for k of its nearest neighbours from the same class as the nearest hit and 

another k nearest neighbours from different classes as the nearest miss. ReliefF updates 

the weights for variables using the average contribution of all the hits and all the 

misses. Further, the contribution for each class of the misses is estimated from the prior 

probability for that particular class. The normalisation of prior probabilities of classes 

is also performed to deal with the influence of classes with a small number of cases 

for k near misses from each different class. Further, like Relief, ReliefF is also repeated 

m number of times.  

In the present work, the ReliefF algorithm was implemented in Matlab using the 

Statistics and Machine Learning Toolbox. Three different ReliefF feature selections 
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were performed for the 16, 7 and 4 class classification cases corresponding to samples, 

countries and continents, respectively. Since ReliefF is a filter-based approach, a 

threshold is required to select the features. In our case, we present a methodology to 

automatically decide on the threshold for selection of the relevant features. The 

methodology partitions the range of ReliefF weights into 100 steps and a classification 

model is developed for every threshold value, and the validation accuracy recorded. 

The threshold was selected based on a model accuracy greater than 90% and the 

corresponding features were retained. 

3.3.3.4.2 Sequential forward selection  

 
SFS belongs to the family of wrapper-based methods, which aim to find the subset of 

features through exhaustive search [41]. The exhaustive search involves assessing all 

of the possible combinations of subsets of features against a particular criterion. The 

criterion can be explored for both regression or classification based on the need. 

Further, the selection criteria for the features involves minimisation or maximisation 

of criterion such as reduction of the predictive error for regression and minimisation 

of the misclassification rate for classification. Typically, the forward selection case 

starts with an empty feature set and the criterion is assessed by involving a feature in 

the modelling. If inclusion of the feature in the model satisfies the criterion selected, 

the feature set is updated by adding the new feature. This procedure is repeated until 

all relevant subsets of features are selected. In the present work, the criterion chosen 

was misclassification accuracy of the ten-fold cross validated multi-class ECOC-SVM 

classification models for the 16, 7 and 4 class classification cases corresponding to 

samples, countries and continents, respectively. Therefore, three different SFS feature 

selections were performed for classification of green tea products.  

In the present work, the SFS algorithm was implemented in Matlab using the Statistics 

and Machine Learning Toolbox. 
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3.4 Results  

3.4.1 Spectral profiles  

 

                                        (a) 

 

(b) 
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(c) 

Figure 3.2: Mean SNV pre-processed absorbance spectral profiles of tea samples (a) 

corresponding to 16 products, (b) corresponding to 7 countries of origin, and (c) 

corresponding to 4 continents of origin. 

Figure 3.2 (a, b and c) presents the mean SNV pre-processed absorbance spectral 

profiles of the green tea samples corresponding to 16 individual products, 7 countries 

of origin and 4 continents of origin. The spectra were pre-processed to reduce the light 

scattering effects originating from inhomogeneous surface of the tea products as 

recommended in [34]. In Figure 3.2 (a, b and c) it can be noted that variability in 

spectra is present at various regions over the complete range for NIR spectra recorded. 

Such variability can be noted higher at specific locations compared to others. To 

understand this variability and the specific NIR regions the standard deviation was 

calculated and presented in Figure 3.3. 
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Figure 3.3: Standard deviation calculated for NIR spectra of individual products 

(blue), countries of origin (red) and continents of origin (Yellow). The vertical green 

lines denote the assignment of wavelengths to different components present in tea 

products based on the literature. 

Figure 3.3 presents the standard deviation calculated for mean spectra of individual 

products (in blue), mean spectra based on countries of origin (in red) and mean spectra 

based on continents of origin (in yellow). The vertical lines presented in Figure 3.3 

denote the assignment of wavelengths to different components present in tea products 

based on the literature. Using previous works, the following assignments can be made: 

carbohydrates and moisture (970 nm) [52]; Thearubigin components of TRS1 (1093 - 

1121 nm) [49]; total tea polyphenols (1131, 1654 and 1666 nm) [47, 48], a second 

overtone C-H (1176 nm) [51], Theaflavin (1218 nm) [49], a C-H vibration (1351 – 

1384 nm) [53], moisture (1361 nm) [49], CH2 (1390 nm) [50] , ROH (1418 nm) [50], 
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liquor brightness (1452 nm) [49], Thearubigin components of TRS1 (1416 and 1466 

nm) [49], NH (1480 nm) [50], free amino acids (1492 nm) [47] and tea polyphenols 

(1556-1660 nm) [48]. 

3.4.2 Principal component analysis 

PCA was performed on the NIR spectra of tea products and the results obtained for 

PC1 (54.76%) and PC8 (0.51%) are shown in Figure 3.4. Figures 3.4(a) and 3.4(b) 

present the PC1 v PC8 scores biplots with samples highlighted on the basis of 

continent and country, respectively. The scores biplots for PC1 v PCs 2 – 7, colour 

coded on the basis of continent, are presented in Figures A2.1 to A2.6 in Annex 2. In 

Figure 3.4(a), the samples corresponding to Latin-America, South-Asia, North-Asia 

and Africa can be identified with red squares, green triangles, sky blue circles and dark 

blue stars, respectively. 
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(b) 

 

 

(c) 
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(d) 
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(f) 

Figure 3.4 : a) Principal component scores (PC1 v PC8) for visualising data based on 

continent of origin, b) principal component scores (PC1 v PC8) for visualising data 

based on country of origin, c) PC1 scores for samples colour coded according to the 

continent of origin, d) PC1 scores for samples colour coded according to the country 

of origin, e) PC8 scores for samples colour coded according to the continent of origin, 

and f) PC8 scores for samples colour coded according to the country of origin. The 

ellipses in c) to f) are to aid visualisation of samples from different continents and 

countries. 

In Figure 3.4(b), the samples corresponding to Argentina, India, Sri-Lanka, China, 

Japan, Kenya and Sumatra can be understood as red crosses, yellow triangles, sky-blue 

circles, green stars, orange triangles, dark-blue triangles and pink squares, 

respectively. It can be seen in Figures 3.4(a) and 3.4(b) that the samples are overlapped 

as the spectral profiles of different green tea products are very similar. No information 
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was available on any potential differences between samples originating from the same 

country. However, it can be seen from Figures 3.4(a) and 3.4(e) that the samples from 

Latin-America, in this case Argentina, have a high PC8 score making them distinct 

from other samples. In addition, the samples from North Asia (sky blue circles in 

Figure 3.4(a)) and specifically from China (sky blue circles in Figure 3.4(c)) have, in 

general, a higher PC1 score. 

 

 

(a)
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(b) 

Figure 3.5: Loading vectors corresponding to (a) PC1 and (b) PC8.  

The corresponding loadings for PC1 (a) and PC8 (b) are presented in Figure 3.5. It can 

be seen in Figure 3.5(a) that the loading weights for PC1 are higher for the spectral 

range of 950 to1100 nm compared to the rest of the spectrum. Potential assignment of 

regions with the highest loadings include carbohydrates (970 nm) and moisture (970 

and 1361 nm), Thearubigin (1093 and 1466 nm) and amino acids (1492 nm). PC8, on 

the other hand, has higher positive loading weights for peaks at around 1200 nm, 1350 

– 1390 and 1585 nm. These peaks can be attributed to CH vibrations at 1176, 1351, 

1384 and 1390 nm. The PC8 loadings plot (Figure 3.5(b)) also contains some negative 

peaks, which can be attributed to liquor brightness (1418 nm) and tea polyphenols 

(1654 – 1666 nm).  
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3.4.3 Support vector machine classification  

 

 

Figure 3.6: Classification maps for the 16 green tea samples obtained using 

classification models corresponding to a) different samples, b) country of origin and 

c) continent of origin. Class 0 presents the dark blue background and does not 

correspond to any tea product. 

Figure 3.6 presents the classification maps obtained from the 10-fold cross-validated 

multiclass SVM-ECOC models for the sixteen (Figure 3.6(a)), seven (Figure 3.6(b)) 

and four (Figure 3.6(c)) class problems explaining classification based on the samples, 

country of origin, and continent of origin, respectively. The classification accuracy 

obtained for prediction of individual products, country of origin, and continent of 

origin were 97.01 ± 0.17%, 96.36 ± 0.17% and 97.77 ± 0.16%, respectively. Confusion 

matrices showing classification accuracies for individual classes obtained using 

continent, country and product SVM models are given in Figures A2.7 to A2.9, 

respectively, of Annex 2. In Figure 3.6, the presence of misclassification can be seen 

for all the tea samples. The source of the misclassification can be understood from 
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Figure 3.7, where misclassification of samples originating from different continents 

(Figure 3.7a) and different countries (Figure 3.7b) are presented.  

 
Figure 3.7: Summary of misclassification between different samples based on: (a) 

continents and (b) countries. 

It can be seen from Figure 3.7(a) that samples from Africa, North-Asia and Latin-

America are misclassified as samples from South-Asia. Further, the North-Asian 

samples and Latin-American samples have some misclassification with each other. 

However, the North-Asian and Latin-American samples do not have any 

misclassification with the samples originating from Africa. Further detailed 

misclassification insight is presented in Figure 3.7(b). It can be seen that all of the 

samples except those from China have some misclassification with the samples of 

Indian origin. The samples of Chinese origin have some misclassification with the 

samples of Japanese origin. Furthermore, the samples of Japanese origin have some 

misclassification with the samples from Sri-Lanka. The samples from Sumatra and 

Kenya have some misclassification with each other but not with the samples from Sri-

Lanka and Japan. 
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3.4.4 Feature selection to identify potential NIR regions 

 

    

(a)                                                                         (b) 

Figure 3.8: (a). ReliefF threshold for weights and the model accuracy obtained from 

using features corresponding to a particular threshold. The black horizontal line 

represents a model accuracy of 90 %.  The two vertical dashed lines represent the final 

threshold used for the three different classification cases. (b) The evolution of the 

misclassification rate (SFS criterion) with the number of selected wavelengths. 

Figure 3.8 presents the evolution of the criterion of the feature selection methods used. 

Figure 3.8(a) presents the evolution of the classification model accuracy with 

increasing threshold for relief weights. Figure 3.8(b) presents the decrease of 

misclassification rate as the number of features added was increased. In Figure 3.8, the 

three different classification models corresponding to samples, countries and 

continents of origin can be identified with blue, red and yellow coloured lines, 

respectively. Figure 3.8(a) for the ReliefF also presents two dashed vertical lines 

highlighting selection of a subset of features that can provide a classification accuracy 

of at least 90%. It was hypothesised that a 90% accurate model would assist in 

identifying the key important wavelengths. Maintaining the same classification 

accuracy as that obtained with the entire spectral range was not expected to result in a 

significant reduction in the number of wavelengths. This is because the tea sample 

spectra are very similar and peaks are not evolving with time. Usually in process 
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monitoring applications, it is possible to identify a much smaller set of wavelengths 

that gives a similar model accuracy as that attainable using the full spectrum as there 

are specific peaks evolving or shifting. A different number of features were obtained 

for the three different classification problems based on the threshold (see Figure 3.9). 

In Figure 3.8(b), the SFS combined with the EVM-ECOC classifier provided a 

decreasing misclassification rate for the three cases, and the corresponding extracted 

features are presented in Figure 3.9. In Figure 3.8(b), it can be seen that for the sixteen-

class classification case the misclassification rate starts to decrease from a very high 

value, followed by the seven class and four class classification case.  

 

 
Figure 3.9: Wavelength selection (vertical green lines) performed with ReliefF for 

90% validation accuracy. Selected wavelengths for (a) 16 sample classification 

problem, (b) 7 country classification problem and (c) 4 continent classification 

problem. Selected wavelengths with sequential forward selection (SFS) for (d) 16 

sample classification problem, (e) 7 country classification problem and (f) 4 continent 

classification problem. 
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Figure 3.9 presents the features selected with ReliefF (Figure 3.9 (a,b,c)) and SFS 

(Figure 3.9 (d,e,f)). The features selected are shown with the vertical green lines. In 

Figure 3.9 (a,b,c), the features selected with ReliefF are located very near to each other 

compared to the features selected with SFS (Figure 3.9 (d,e,f)). A reason for this is 

that ReliefF extracts correlated features, which is not the case with SFS. The 

classification maps corresponding to selected variables can be found in Annex 2 

(Figure A2.1). It is easier to identify the important regions that are responsible for 

discrimination between different classes using ReliefF. In comparison, with SFS the 

features extracted have different wavelengths and no such concentrated information 

about the features can be extracted. Both ReliefF and SFS share some common 

features too, however, for different classification models different spectral regions 

were identified, which is more visually apparent with ReliefF (Figure 3.9 (a,b,c)). The 

different spectral regions and spectral bands identified by ReliefF and SFS, 

respectively, are presented in Table 3.1. 

 

Table 3.1: A summary of the spectral regions and bands selected from the range 950 

– 1700 nm using ReliefF and SFS for classification of samples with a predictive 

accuracy of 90% on the basis of product, country and continent. 

 
 Basis of classification 

Product type Country of origin Continent of origin 

 

ReliefF 

% of 

variables 

selected 

from full 

spectrum 

16.4% 22.5% 7.5% 

Selected 

wavelengths 

(nm) and 

main 

assignments 

967.1 

(Carbohydrate 

and moisture), 

1170 – 1211 

(second 

overtone CH), 

967.1 

(Carbohydrate and 

moisture), 1116 

(Thearubigin), 

1157 – 1214 

(Second overtone 

970.4 

(Carbohydrate and 

moisture), 1208 

(second overtone 

CH), 1390 – 1421 

(CH2 and ROH), 
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1387 – 1421 

(ROH), 1509 – 

1531, 1651 – 

1667 (tea 

polyphenols) 

CH), 1387 – 1421 

(CH2 and ROH), 

1500 – 1559 (tea 

polyphenols), 1641 

– 1670 (tea 

polyphenols) 

1506 - 1515, 1651 

– 1667 (tea 

polyphenols) 

 

SFS 

% of 

variables 

selected 

from full 

spectrum 

9.2% 11.4% 8.0% 

Selected 

wavelengths 

(nm) and 

main 

assignments 

970.4 

(Carbohydrate 

and moisture), 

983.4, 1009, 

1032, 1052, 

1096 

(thearubigin), 

1103, 1141, 

1224, 1246, 

1353 (CH 

vibration), 

1378, 1406, 

1421, 1425, 

1443, 1490 

(NH), 1528, 

1563 (Tea 

polyphenols), 

1600, 1664 

(Tea 

polyphenols), 

1702 

970.4 

(Carbohydrate and 

moisture), 990, 

993.2, 999.7, 1003, 

1013, 1045, 1084 

(thearubigin), 1100 

(thearubigin), 1128 

(thearubigin), 1183, 

1186 (Second 

overtone CH), 

1198, 1236, 1261, 

1265, 1284, 1315, 

1346 (CH 

vibration), 1362 

(moisture), 1412 

(ROH), 1421 

(ROH), 1443 

(Liquor brightness), 

1528, 1578, 1622 

(tea polyphenols), 

973.6 

(Carbohydrate and 

moisture), 1035, 

1084, 1096 

(therubigin), 1173 

(second overtone 

CH), 1176 (second 

overtone CH), 

1198, 1230, 1374, 

1387 (CH 

vibration), 1472 

(therubigin), 1497 

(amino acids), 

1506, 1537, 1566, 

1600, 1645, 1670, 

1699 
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1664 (tea 

polyphenols) 

 

 

3.5 Conclusions  

 
Non-destructive and rapid classification of green tea products of different geographical 

origin is crucial for international market and trade. NIR-HSI and multi-class SVM 

were successfully used to perform geographical classification of green tea products 

based on country and continent of origin. The SVM-ECOC model provided a 

classification accuracy of 97.01 ± 0.17%, 96.36 ± 0.17% and 97.77 ± 0.16% for the 

sixteen, seven and four class problems explaining the classification based on the 

samples, countries and continent of origin, respectively. The tea samples considered 

were from India, Sri-Lanka, China, Japan, Kenya, Sumatra and Argentina. PCA 

provided primary visualisation of tea samples. ReliefF and SFS identified the subset 

of spectral bands which can be used to obtain classification models with a 

classification accuracy of 90%. The selected spectral bands can also be used to 

compress the images by removing the unimportant spectral bands. By identifying the 

correlated features, ReliefF identified spectral regions whereas SFS identified spectral 

wavelengths spread all over the spectral range, making interpretation more difficult 

compared to the results obtained using ReliefF. However, implementation of ReliefF 

is fast, computationally light, it avoids overfitting and has generalisation ability. On 

the other hand, SFS has the advantage of interaction with the classifier and explanation 

of the feature dependencies. The drawback of ReliefF is the need to select the threshold 

whereas the drawbacks of SFS includes high computational cost, the risk of overfitting 

and classifier dependent feature selection. 
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4.1 Abstract  

 
A two-level data decomposition scheme is applied for compressing the hyperspectral 

imaging (HSI) data for rapid transfer and easy storage to support process applications. 

At the first level, the decomposition of the spatial information was performed with 2D-
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Discrete Wavelet Transform (2D-DWT). At the second stage, two different variance-

based data decomposition methods (i.e. principal components analysis (PCA) and 

Tucker) were applied separately to decompose the spectral information. The potential 

of the methods was judged by visual inspection of reconstructed data cubes and 

spectral profiles, by spatial and spectral correlation, and by multi-class support vector 

machine (SVM) classification performance. The results showed that both methods 

gave a significant reduction in the size of data cubes and provided a comparable 

reconstruction of the original data by providing very high spatial and spectral 

correlation. Furthermore, by eliminating some unwanted variance, the reconstructed 

data cubes resulted in the reduction of noise in initially noisy bands. The de-noising 

step also increased the classification accuracy of the SVM model and further improved 

the classification maps. The results showed that based on 2D-DWT and variance 

decomposition techniques, the HSI data cubes could be decomposed and reconstructed 

for easy transfer and storage.  

Keywords: data reduction, storage, imaging spectroscopy, hypercube, multivariate 

data analysis 

4.2 Introduction  

 
In recent years, close-range hyperspectral imaging (HSI) has become a potential non-

destructive tool for rapidly exploring spatially resolved light absorbing and scattering 

properties of different materials. Based on the chemical properties of the material, HSI 

can be exploited across different spectral modalities such as ultraviolet-visible (UV-

VIS), near-infrared (NIR), mid-infrared (MIR), Raman, fluorescence and terahertz 

(THz) [1] ranges. Applications of HSI are popular in different domains such as food 

science [2] [3], forensics [4] [5], plant science [6] [7], microbiology [8] [9], medicine 

[10] [11] and pharmaceutical science [12] [13] [14]. Most of the applications of HSI 

presented in the literature are limited to the laboratory scale, where the first feasibility 

studies were performed, and no subsequent integration of the methodologies for real-

world process and industrial applications was reported. One of the main factors 

limiting the application of HSI for real world process and industrial applications is the 

huge volume of data generated during the experiments which is complex to manage. 
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Typical hyperspectral cameras recorded binary images with the size directly 

proportions to sptial and spectral dimensions.  

HSI combines two sensor modalities - spectroscopy and imaging. The data generated 

by HSI is typically in the form of data cubes of size 6 × 8 × 9, where the first two 

dimensions (6 × 8) represent the spatial information obtained with the imaging 

modality of HSI. The third dimension (9) represents the spectral information obtained 

with the spectroscopic modality of HSI. The main advantage of HSI is the 

complementary information generated with the imaging and spectroscopic modalities, 

allowing to spatially resolve spectral properties of materials. However, the data 

generated with HSI is huge as it contains redundant and correlated information in both 

the spatial and spectral domains [15]. Depending on the spatial and spectral resolution 

of the camera used, the typical size of the data array can range from a few hundred 

megabytes to gigabytes. The difficulty in handling such a large amount of data has 

already been highlighted in [16] [17], where it was emphasised that to extract 

information from such data is computationally expensive, complicating the 

development of fast and efficient applications of HSI. 

Process applications of HSI can range from simple monitoring of fruits and vegetables 

for quality control [18] [19] to process analytical technology (PAT) for monitoring 

pharmaceutical tablet manufacturing [12] [13]. Typically, in process applications, the 

data is acquired continuously to gain insight into the process for efficient control of 

the process. Therefore, when data are acquired with HSI, the data cubes are generated 

continuously throughout the process and so keep on accumulating. There are two ways 

to deal with this type of real-time HSI data: firstly, if the computer server system is 

present at the experimental site, the data can be processed in real-time and results 

displayed; secondly, if HSI is employed remotely, the acquired data needs to be 

transferred rapidly to the server where the processing is performed. In both the cases, 

the later storage of data is also an important concern. Sometimes the storage of the 

data is for future reference and recall, and sometimes it is because of strict data 

protection requirements of industries such as for pharmaceutical manufacturing. 

One major benefit of the redundant/correlated information present in the HSI is the 
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possibility to obtain compressed representations of the original data. Since HSI is the 

combination of two different modalities, i.e., imaging and spectroscopy, redundant 

information can be found in both the spatial and spectral domains. Therefore, to 

perform this compression, both the spatial and spectral information can be utilised. In 

the first step the spatial information can be pre-conditioned with the help of wavelet 

transforms as performed in classical image compression methods [20]. The spectral or 

spatio-spectral information can then be compressed by identifying the latent 

subspaces, with methods based on maximising a criterion such as the variance is of 

particular interest. This is because a small number of important variance-based 

subspaces can be retained in the datasets and can later be used to reconstruct the 

original data. Selection of such a small number of important subspaces also allows 

elimination of the subspace that does not contribute significantly to explaining the data 

cube. Subspace elimination can also reduce the amount of noise present in the 

reconstructed data cubes, improving the quality of the dataset for future data analysis 

using such as regression or classification. Principal component analysis (PCA), a 

variance decomposition technique, has been of wide interest for exploration of HSI 

data, and some applications of PCA for visualising big HSI data sets have been 

reported in [16][17][21]. Also, there are application where PCA has been implemented 

to process continuous streams of the datasets and late using the set of scores and 

loading vectors to reconstruct the data [22]. However, PCA performs the 

decomposition of the spectral domain once the 3D cubes have been unfolded into 2D 

matrices, and do not consider the spatial correlation. There are different advantages 

associated with processing data with unfolded analysis such as it can make the 

exploration of data easy, however, it comes with the cost of throwing away the 

information presented in 3D. Further, unfolded models are complex, sometimes 

difficult due to interpret directly as the third dimension is lost and might accompany 

with the risk of fitting more noise to the structural model leading to poor predictive 

power [23]. However, Tucker, an extension of PCA for trilinear data decomposition, 

deals directly with the 3D cube of data generated by HSI [24]. Tucker performs 

simultaneous decomposition of both the spatial and spectral domains and application 

of Tucker for HS image decomposition and compression can be found in [25]. The 

spatial and spectral decomposition can be combined to result in a higher quality 
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compression of HS images [20]. To the best of our knowledge, the performance of the 

2D-discrete wavelet transforms (2D-DWT) in combination with variance 

decomposition methods (PCA and Tucker) have never been presented qualitatively 

and quantitatively as a means for storage and transfer of close-range HS images.   

The present work aims to apply a two-level data decomposition scheme [25] for 

compressing the HSI data to perform rapid transfer and easy storage. At the first level, 

the decomposition of spatial information was performed with 2D-Discrete Wavelet 

Transform (2D-DWT). At the second stage, two different variance-based data 

decomposition methods (i.e. principal components analysis (PCA) and Tucker) were 

applied separately to decompose the spectral information. The two methods differ in 

the way they decompose the data cube; while PCA decomposes the data after first 

unfolding the 3D data cube to the 2D matrix, Tucker decomposes the 3D data cube 

directly.  

4.3 Material and methods  

 
4.3.1 Samples and hyperspectral imaging measurements 

 
Four different types of tea (oolong (Yamamotoyama, California, USA), black, green 

and white (all Vahdam Teas, New Delhi, India)), all in loose-leaf form, were obtained 

from a local market (Glasgow, UK). The samples were obtained in airtight sealed 

packaging and stored at ambient temperature. Each tea sample was transferred to a 

black plastic circular container (diameter = 3.3 cm and depth = 1.3 cm) for analysis. 

Imaging was performed using a push-broom line scan HSI camera (Model name: RED 

EYE 1.7) from INNO-SPEC (Nurnberg, Germany). The camera has an InGaAs sensor 

and generates a spatial map of 320 x 256 pixels in the spectral range of 950 - 1700 nm. 

The pixel size is 30 x 30 µm2 and the spectral resolution is 3.2 nm. The NIR camera 

was controlled with a computer via a gigabit Ethernet connection. Lighting was 

provided by two 50 W halogen light sources and an integration time of 300 ms was 

used. Image acquisition was performed by placing the samples over the translation 

stage controlled by an independent stage motor connected to the computer system 

(Zolix TSA 200 BF). The speed of the translation stage was optimised before image 

analysis to avoid any distortion in the shape of the image arising from the overlap of 
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the spectral and spatial information. Image acquisition and management of settings 

(integration time) for the NIR camera were performed using a software interface 

provided by the camera manufacturer. An image was acquired of the four different tea 

samples placed adjacent to each other in their respective containers in the field of view 

of the camera. Each image comprised more than 2000 pixels (spectra) for the 

individual tea samples. Prior to analysis, images were radiometrically calibrated using 

white (Spectralon diffuse reflectance standard) and dark references. The correction 

was performed for every pixel in the HS image according to equation 4.1: 

!"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

    (4.1) 

where IR is the calibrated reflectance, Iraw is the raw intensity measured from the test 

sample, Idark the intensity of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is the wavelength in the image.  

4.3.2 Spatial decomposition 

 
4.3.2.1 2D discrete wavelet transform 

 
 

 

 

Figure 4.1: Scheme for 2D-DWT decomposition of a hypercube i to high and low pass 

filtered components. 
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The DWT provides an efficient decomposition of signals into low resolution 

components and detailed information. Many successful applications of the DWT can 

be found in the image processing domain such as for noise reduction, edge detection 

and compression [26]. From a deterministic point of view, the DWT can be understood 

as successive low and high pass filtering of the discrete time-domain signal. At each 

level, the high-pass filter produces detailed information (horizontal (H), vertical(V) 

and diagonal (D)), while the low-pass filter associated with the scaling function 

produces coarse approximations (A). In this work, the 2D-DWT was performed on 

each band of the HS images, as presented in [25]. A scheme depicting the 

decomposition is shown in Figure 4.1, where each image plane with n rows and p 

columns, was decomposed into four sub-band images (A, H, V and D), each with :
;
 

rows and <
;
	columns.  

 

In the present work, a single level 2D-DWT was performed and later for retaining the 

important information in the four sub-images, variance-based data decomposition was 

employed. In the present compression scheme, a single level 2D-DWT was performed 

and all the decomposed sub-images (H, D, V and A) were retained. The wavelet filter 

used was the ‘biorthogonal’ from the Wavelet Toolbox in Matlab (R2016b, 

(Mathworks Inc., Natick, USA). Biorthogonal wavelets are the standard wavelets used 

in image compression application and are also used in JPEG2000 compression.  

 

4.3.3 Spectral decomposition 

 
For retention of the important details in the four sub-images, variance-based data 

decomposition was employed and more than 99.5% of variance was retained. The four 

data cubes generated from the 2D-DWT were decomposed using two different 

variance-based decomposition methods. The first one involved performing PCA on 

the unfolded data cubes and the other was by direct decomposition of the 3D cubes 

using Tucker. The PCA and Tucker decomposition methods are explained further in 

the following sections. 
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4.3.3.1 Principal component analysis  

 

 

Figure 4.2: The scheme for performing PCA decomposition and reconstruction for 3D 

hypercube dataset generated with HSI. 

PCA, as introduced by Pearson in 1901, is a linear variance decomposition method 

and has been widely employed for identifying the variance maximising orthogonal 

subspaces for a range of multivariate data generated in spectroscopy [27]. The scheme 

for performing PCA on the 3D data cubes generated from HSI is given in Figure 4.2. 

In the present case, the 3D cube to be decomposed is a sub-image obtained from the 

2D-DWT. For example, to perform PCA decomposition on the sub-image formed from 

the horizontal details (n/2 × p/2 × q), the corresponding 3D cube must first be unfolded 

into a 2D matrix (np/4 × q). PCA decomposes the matrix into two sub-matrices of 

scores and loading. PCA decomposition performs a linear transformation of the 

original variables to give uncorrelated orthogonal variables called principal 

components (PCs). The PCA transformation is performed to retain the maximum 

amount of variability in the dataset. Furthermore, the first PCs retain the maximum 

amount of variability, and the subsequent PCs contain the highest amount of remaining 

variability while being orthogonal to the previous PCs. A small number of PCs can, 

therefore, be retained to keep the useful details and the rest can be discarded to remove 

the unwanted variability in the dataset. The PCs that are retained can be used to 

reconstruct a less noisy approximation of the original data matrix. Finally, the 2D 
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matrix can be reshaped into the original 3D data cube.  

The PCA decomposition model for a given observation data matrix H (horizontal 

details unfolded cube) is given by 4.2:  

H = TPT                 …(4.2) 

where T is the scores matrix for a given number of principal components and P is a q 

× q loadings matrix whose columns are the eigenvectors of HTH.  

For successful data reconstruction, the maximum amount of significant variation 

present in the dataset should be preserved. PCA from a data reconstruction perspective 

can be understood as minimising the square reconstruction error as given in equation 

4.3:  

min||TPT-TrPrT||2               …..(4.3) 

where TP and TrPr are the original and reconstructed datasets, respectively. The 

minimisation of the reconstruction error results in maximisation of the information 

that was present in the data reconstructed by the significant PCs. In the present work, 

PCA was employed for retaining the details in the four sub-images obtained from the 

2D-DWT. PCA was performed separately on the unfolded matrices of all four sub-

images. To reconstruct the sub-images, the scores and loadings matrices were 

multiplied. Furthermore, the inverse 2D-DWT (i2D-DWT) was used to reconstruct an 

approximation of the original HS image from the sub-images. PCA decomposition was 

performed in Matlab using the PLS Toolbox (version 8.11, Eigenvector Research Inc., 

USA). 
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4.3.3.2 Tucker decomposition  

 

 

Figure 4.3: The scheme for performing Tucker decomposition and reconstruction of 

the 3D hypercube dataset generated with HSI. 

Tucker is a popular data analysis tool, widely used for multi-way analysis in 

chemometrics for the analysis of multi-way spectral data [28]. Tucker can be 

understood as a generalisation of PCA to higher-order data. The scheme for Tucker 

decomposition and reconstruction of a 3D cube, which in this case is a sub-image 

obtained from the 2D-DWT, is given in Figure 4.3. It can be seen that Tucker 

decomposes the 3D data cube of a sub-image, e.g., the horizontal detailed sub-image, 

H, into a core tensor multiplied by a matrix along each of the 3 modes. Thus, the 

decomposition for a 3D cube H ∈ R n/2 × p/2 × q is given by equation (4.4):  

H ≈ G ×1 A ×2 B ×3 C = ∑ ∑ ∑ 	"
@AB

C
DAB

E
FAB gxyz ax ◦ by ◦ cz                  ..…(4.4) 

Here, A ∈ Rn/2×P, B ∈ Rp/2×Q, and C ∈ Rq×R are the factor matrices and can be understood 

as the principal components in each mode. ×1,	×2 and ×3 defined the outer product in 

three different modes of the HS data. The tensor G ∈ RP×Q×R is called the core tensor 

and its entries show the level of interaction between the different components.  

Elementwise, the Tucker decomposition can be understood from equation (4.5):  
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xijk ≈ ∑ ∑ ∑ 	"
@AB

C
DAB

E
FAB  gxyz aix bjy ckz,                                                                           

for i = 1, …n/2,   j=1,…..,p/2,    k=1,…….,q       …(4.5) 

where P, Q and R are the number of components in the factor matrices A, B, and C, 

respectively. P, Q and R are smaller than n/2, p/2 and q, and, therefore, the core tensor, 

G, can be thought of as a compressed version of H. Typically, the decomposed version 

of the tensor is significantly smaller than the original tensor. In this case, the 3D sub-

images obtained from the 2D-DWT were decomposed individually into a core array 

and factor matrix to support storage. Furthermore, to reconstruct the sub-images, the 

core array can be multiplied by the factor matrices in each mode. The i2D-DWT can 

be used to reconstruct an approximation of the original HS image from the sub-images. 

Tucker decomposition was performed in Matlab utilising PLS Toolbox. 

4.3.4 Spatial and spectral Correlation  

 
To comment on the quality of reconstructed data cubes, spectral and spatial 

correlations were measured. Both the spatial and spatial correlations were calculated 

with respect to the original data cube. The spatial and spectral correlations were 

estimated using the corr2 and corr functions in Matlab respectively. 

4.3.5 Multi-class Support Vector Machine  

 
To test the data reconstruction efficacy of PCA and Tucker, classification was 

performed with a multi-class support-vector machine (SVM) classifier. Three different 

SVM classifiers were developed corresponding to the original data, data reconstructed 

using the 2D-DWT and PCA, and data reconstructed using the 2D-DWT and Tucker. 

SVM utilises hyperplanes to define the decision boundaries to perform classification 

Furthermore, to deal with the data complexity, the SVM performs high dimensional 

mapping of the data using kernel functions. Mapping to a higher dimension is usually 

performed to select the hyperplane that provides the best separation of the classes. As 

there are four different classes corresponding to four different tea products in this case, 

the traditional SVM binary classifier combined with the error correcting output code 

(ECOC) ensemble method was used. The ECOC deals with the multi-class problem 

by developing several independent binary classification models. The SVM along with 
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ECOC was implemented in Matlab using the Statistics and Machine Learning Toolbox 

(R2016b). The coding design used was one-vs.-all where one class was assigned as 

positive and all other classes were assigned negative. In total, the coding design utilises 

all combinations of class pair assignments with K (number of classes) number of 

learners. High dimensional mapping of the data was performed with a gaussian kernel 

function. The spectra from the images for the four different classes were selected in a 

supervised way using the ‘roipoly’ function in Matlab. The ‘roipoly’ function provides 

a graphical interface to manually extract the information from the hypercube. For each 

individual tea product, spectra were extracted from 200 pixels, which were selected at 

random from the image collected, leading to a total of 800 spectra for calibration of 

the classification model. Validation of the model was performed with a 10-fold cross-

validation method. This was repeated 100 times, and the average prediction accuracy 

was recorded. 
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4.4 Results  

4.4.1 Image planes  

 

 

Figure 4.4: Greyscale images produced using the image plane at 1267 nm for the 

original and reconstructed data. (a) Original data (approx. 40 MB), (b) data 

reconstructed using the 2D-DWT and PCA (approx. 5 MB), and (c) data reconstructed 

using the 2D-DWT and Tucker (approx. 1 MB). 

Greyscale images produced using the image plane corresponding to 1267 nm for the 

original, data reconstructed using the 2D-DWT and PCA, and data reconstructed using 

the 2D-DWT and Tucker are presented in Figure 4.4; 1267 nm was selected merely to 

allow visualisation of the data hypercubes. The four circular portions in the image 

represent the four different tea samples. It can be seen in Figure 4.4 that reconstruction 
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of the data with PCA and Tucker provided image planes of comparable quality to those 

in the original dataset. However, the size of the data was significantly smaller for the 

reconstructed data cubes (5 and 1 MB for PCA and Tucker, respectively) compared to 

the original data cube (40 MB). Furthermore, to understand the reconstruction quality 

across the entire spectral range of the camera, the spatial correlation for the data 

reconstructed using the 2D-DWT and PCA, and the 2D-DWT and Tucker was 

calculated with respect to the original dataset (see Figure 4.5).  

 

Figure 4.5: Spatial correlation across the entire spectral range for data reconstructed 

using the 2D-DWT and PCA (blue) and the 2D-DWT and Tucker (red). 

It can be seen from Figure 4.5 that the spatial correlation was almost 100% for data 

reconstructed using both the 2D-DWT and PCA, and the 2D-DWT and Tucker. 

However, a slightly higher spatial correlation was obtained for the 2D-DWT and PCA 

method compared to that obtained for the 2D-DWT and Tucker method. Furthermore, 

at wavelengths greater than 1700 nm, the spatial correlation for data reconstructed 

using the 2D-DWT and PCA, and the 2D-DWT + Tucker decreases. This can be 
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attributed to the removal of the noise from the data set through limiting the details in 

the sub-band images (obtained after the 2D-DWT) during PCA and Tucker 

decomposition of the data. Evidence for this can be seen in Figure 4.6, where greyscale 

images produced using the image plane at 1736 nm are presented for the original data, 

data reconstructed using the 2D-DWT and PCA, and data reconstructed using the 2D-

DWT and Tucker. It can be seen in Figure 4.6 that the greyscale image produced from 

the original data are very noisy at 1736 nm; this wavelength was chosen to allow 

visualisation of a noisy region in the data hypercube. However, the images produced 

from the reconstructed data using the 2D-DWT and PCA, and the 2D-DWT and 

Tucker are clearer. The spatial correlation for the data reconstructed using the 2D-

DWT and Tucker decreased more compared to that for the 2D-DWT and PCA. This 

indicates that a higher amount of noise was removed utilising the 2D-DWT and Tucker 

decomposition and reconstruction and it is because of this that the spatial correlation 

decreases.  
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Figure 4.6: Greyscale images produced from the image plane at 1736 nm for the 

original and reconstructed data. (a) Original data, (b) data reconstructed using the 

2D-DWT and PCA, and (c) data reconstructed using the 2D-DWT and Tucker. 
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4.4.2 Spectral profiles  

 

Figure 4.7: Spectral profiles corresponding to the pixel with x and y co-ordinates of 

50 and 300, respectively, obtained from the original data (blue), data reconstructed 

using the 2D-DWT and PCA (red), and data reconstructed using the 2D-DWT and 

Tucker (yellow). 

Figure 4.7 presents the spectra for the pixel with x and y co-ordinates of 50 and 300, 

respectively, extracted from the original data (blue), data reconstructed using the 2D-

DWT and PCA (red), and data reconstructed using the 2D-DWT + Tucker (orange). It 

can be seen that the profiles from the reconstructed data are similar to those extracted 

from the original dataset. However, at wavelengths greater than 1700 nm, there is a 

slight difference in the spectral profiles from the reconstructed and original data. This 

is because the sensitivity of the camera drops significantly above 1700 nm and this 

results in a noisy spectral profile. However, when reconstructing the data with the 2D-

DWT and PCA and the 2D-DWT and Tucker, this noise was reduced (as previously 
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shown in Figure 4.6) resulting in a difference in the spectral profile above 1700 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To estimate the quality of the spectral profile for the complete image, the spectral 

correlation was calculated between each pixel in the reconstructed data and the same 

pixel in the original dataset. The spectral correlation plot for the complete image is 

presented in Figure 4.8. It can be seen that the area representing the four tea samples 

gave very high spectral correlations, while the edges and background gave slightly 

lower spectral correlation. However, in this case, the important part of the image is 

Figure 4.8: Spectral correlation calculated for each pixel of the reconstructed data 

with respect to the original data. (a) Data reconstructed using the 2D-DWT and PCA 

and (b) data reconstructed using the 2D-DWT and Tucker. 
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that representing the four tea samples. The background used was just a black board 

leading to a very low intensity spectral signature, and therefore, the background was 

removed prior to further analysis of the image. 

4.4.3 Classification  

 

 

Figure 4.9: Classification accuracy of the original data, the data reconstructed using 

the 2D-DWT and PCA and the data reconstructed using the 2D-DWT and Tucker. 

The classification accuracy of the multi-class SVM model is presented in Figure 4.9. 

It can be seen that the classification accuracy was highest for the model built using 

data reconstructed using the 2D-DWT and Tucker, followed by the original data then 

data reconstructed using the 2D-DWT and PCA. This increase in the classification 

accuracy of the model built using data reconstructed using the Tucker method 

compared to that built using the original data is due to the removal of noise from the 

dataset during the decomposition and reconstruction steps. The superior performance 



 130 

of models built from data reconstructed using the Tucker method, compared to the 

PCA method, is due to differences in the way that Tucker and PCA decompose the 

dataset. In the Tucker method, the spatial dimensions along with the spectral 

dimension are used to perform the decomposition whereas in the PCA method only 

the spectral dimension is decomposed. However, the classification accuracy obtained 

with the model built using data reconstructed using the 2D-DWT and PCA was slightly 

lower compared to those built using the original data and the Tucker reconstructed 

dataset. A reason for this could be due to discarding of a very small amount of 

important variability present in the data while retaining a limited number of 

components from the PCA. 

 

Figure 4.10: Classification maps for the original data, data reconstructed using PCA, 

and data reconstructed using Tucker. The red circles highlight example regions where 



 131 

reconstruction using Tucker gives fewer misclassifications between the classes 

compared to the original data and reconstruction using PCA. 

 
Figure 4.11: Percent of pixels belonging to each class in the classification maps (see 

Figure 4.10) using the original data, data reconstructed using the 2D-DWT and PCA, 

and data reconstructed using the 2D-DWT and Tucker. 

 
The classification maps obtained for the multi-class SVM are presented in Figure 4.10. 

It can be seen that the quality of the classification maps obtained from data 

reconstructed using the 2D-DWT and PCA, and the 2D-DWT and Tucker are similar 

to those obtained using the original dataset. Furthermore, the Tucker reconstruction 

method seems to enhance the classification maps by reducing the number of 

misclassifications between the classes, as illustrated in the circled regions in Figure 
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4.10. The percent of pixels identified inside the markers (red circular regions) in Figure 

4.10 are presented in Figure 4.10. In Figure 4.11, it can be seen that 2D-DWT+Tucker 

based decomposition and reconstruction provided a clear improvement for modelling 

each class. 

4.5 Conclusions  

 
Process applications of HSI can be characterised by the acquisition and accumulation 

of large amounts of HSI data. The data generated needs to be transferred as well as 

stored for efficient management of the information generated. Due to the redundant 

and correlated information present in both the spatial and spectral domains, HSI data 

can be decomposed in both domains prior to transfer and storage and can be 

reconstructed later for data analysis. The two-step compression scheme based on the 

2D-DWT and variance decomposition methods presented in this work showed that the 

reconstructed data were comparable to the original data but were much smaller in size. 

A further advantage of variance-based decomposition methods in combination with 

the 2D-DWT is that important details in the data can be represented by a small number 

of latent spaces leading to reduced noise in the reconstructed data. In the present work, 

the decomposition of the variance of the 2D-DWT sub images was faster with PCA 

compared to with Tucker. However, the quality of the reconstructed images was higher 

with Tucker owing to the simultaneous decomposition of both the spatial and spectral 

domains. Variance-based decomposition requires selection of the number of latent 

variables to be retained; the number retained affects the compression rate and the 

quality of the spectral image. Future work will involve implementation of these 

methodologies for rapid transfer and storage of remotely acquired HSI data of the 

processing of tea, which is being collected for process understanding and monitoring. 
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5.1 Abstract  

 
Hyperspectral imaging (HSI) has become an essential tool for exploration of different 

spatially-resolved properties of materials in analytical chemistry. However, due to 

various technical factors such as detector sensitivity, choice of light source and 

experimental conditions, the recorded data contain noise. The presence of noise in the 

data limits the potential of different data processing tasks such as classification and 

can even make them ineffective. Therefore, reduction/removal of noise from the data 

is a useful step to improve the data modelling. In the present work, the potential of a 

wavelength-specific shearlet-based image noise reduction method was utilised for 

automatic de-noising of close-range HS images. The shearlet transform is a special 

type of composite wavelet transform that utilises the shearing properties of the images. 

The method first utilises the spectral correlation between wavelengths to distinguish 

between levels of noise present in different image planes of the data cube. Based on 

the level of noise present, the method adapts the use of the 2-D non-subsampled 

shearlet transform (NSST) coefficients obtained from each image plane to perform the 

spatial and spectral de-noising. Furthermore, the method was compared with two 

commonly used pixel-based spectral de-noising techniques, Savitzky-Golay 

(SAVGOL) smoothing and median filtering. The methods were compared using 

simulated data, with Gaussian and Gaussian and spike noise added, and real HSI data. 

As an application, the methods were tested to determine the efficacy of a visible-near 

infrared (VNIR) HSI camera to perform non-destructive automatic classification of six 

commercial tea products. De-noising with the shearlet-based method resulted in a 

visual improvement in the quality of the noisy image planes and the spectra of 

simulated and real HSI. The spectral correlation was highest with the shearlet-based 

method. The peak signal-to-noise ratio (PSNR) obtained using the shearlet-based 

method was higher than that for SAVGOL smoothing and median filtering. There was 

a clear improvement in the classification accuracy of the SVM models for both the 

simulated and real HSI data that had been de-noised using the shearlet-based method. 

The method presented is a promising technique for automatic de-noising of close-

range HS images, especially when the amount of noise present is high and in 

consecutive wavelengths.  
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5.2 Introduction  
 
Close-range hyperspectral imaging (HSI) and image processing techniques are popular 

analytical tools in many scientific domains and are used in applications such as the 

exploration of food properties [1], pharmaceutical product characterisation [2, 3], 

forensics analysis [4, 5], exploration of plant traits for phenotype studies [6, 7], and 

microbiology [8]. The major advantage of HSI over other conventional analytical 

techniques is its non-invasive and non-destructive nature which is further 

complemented by rapid data acquisition.  

HSI combines two sensor modalities that are spectroscopy and imaging, where the 

spectroscopy provides the chemical information about the samples and the imaging 

adds a complementary domain of spatial information [9]. The data generated by HSI 

can be understood as spatial maps of spectral variation arranged in 3-D cubes (n × p × 

q). The first two dimensions (n × p) of the cubes are usually the spatial dimensions, 

and the third dimension (q) contains the spectral information. To extract the 

meaningful information from HS images, different data processing steps such as 

exploration, regression and classification are often performed. However, before any 

data processing, as a standard first step, the cubes are usually pre-processed to remove 

various types of noise from the data so as to increase the signal-to-noise ratio (SNR) 

[10].  

The information generated in HSI is often accompanied by noise, which can arise from 

detector sensitivity, illumination conditions (e.g. the choice of light source) and 

experimental conditions (e.g. interference from other light sources). In general term, 

noise can be understood as unwanted modification a signal may suffer during capture, 

storage, transmission, processing or conversion. The types of noise in HSI can range 

from small signal-independent noise such as low-level Gaussian to high-level mixed 

noise such as Gaussian, Poisson and spike [11]. Since the noise is in the acquired 

signals, it can be observed in each individual spectrum. However, it can also be 

observed as pixel-to-pixel intensity variations in each spatial plane. For this reason, 
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the noise is visible in both the spatial and the spectral domains. The need for 

methodologies to deal with the noise present in the data cubes generated by close-

range HSI has already been highlighted in [12]. A typical approach to deal with noisy 

signals in the chemometrics field is to remove the affected spectral range from the 

dataset. This approach can be seen very often when the extreme wavelengths of images 

are noisy, and the easiest option is to remove that part of the spectrum. However, the 

downside of this approach is that with the removal of noisy wavelengths, relevant 

information in the data might also be removed. The other common approach to remove 

noise from the signal (spectra) while keeping the information is to apply smoothing 

filters. Two commonly used filter methods are Savitzky-Golay (SAVGOL) smoothing 

[12, 13,14] and median filtering. SAVGOL smoothing and median filtering can be 

used alone and independently for each spectrum corresponding to a pixel of the HS 

image. However, if the level of noise is too high in the spectrum, the use of SAVGOL 

smoothing and median filtering can become tedious because of the need to determine 

the optimum window width for smoothing. Also, if noise is present in successive 

wavelengths, SAVGOL and median filters can result in a deformed spectral profile. 

The deformation mainly occurs when a large number of noisy wavelengths are present 

inside the smoothing window, dominating the normal wavelengths. To deal with this, 

the filter-based methods e.g. median filtering are currently applied after removing the 

high noise wavelengths [15, 16]. Furthermore, the main drawback of both of these 

methods is that they can only be used to deal independently with the noise in each 

spectrum of the HS image and it is not possible to consider the spatial relations 

between the spectra of the pixels. Without removing the noise from the spatial domain, 

the scores maps resulting from classification and regression procedures can become 

noisy (misclassified pixels) leading to inefficient data modelling.  

Methods like SAVGOL and median filtering require testing and optimisation of 

parameters such as the window size, order of derivative etc., which often requires 

expertise and visualisation skills to decide on efficacy. However, the use of HSI for 

process analysis, where real-time data processing is required, means that there is a 

need for automatic de-noising methods. To the best of our knowledge, there is no 

existing automatic method that deals simultaneously with both the spatial and spectral 

noise in the data generated with close-range HSI. However, in the field of remote 
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sensing, the problem of automatic de-noising of HS images is well understood. There 

are three main families of methods that are used for automatic de-noising of HSI data. 

The first is the family of methods that utilise the sparse representation of spatial planes 

such as wavelets but do not consider the spectral noise [17]. The second is the family 

of methods that combine decorrelation techniques such as principal components 

analysis (PCA) with the sparse techniques [18]. However, these methods deal with the 

spatial and spectral noise separately. The third is the family of methods, such as tensor 

decomposition methods [19], that utilise the spatial and spectral noise together and are 

based on the 3-D representation of data. However, the major drawback of such tensor 

approaches is that the spectral and spatial dimensions are treated equally whereas 

typically in HSI, spectral correlation is far higher than spatial correlation. Also, the 

type and amount of noise ranges from low signal-independent noise to mixed 

Gaussian, Poisson and spike noise for different wavelengths. Therefore, a method 

utilising both the spatial and spectral information together, and based on the type of 

noise present in the data would be of great use for de-noising HS images.  

Recently, a wavelength-specific shearlet-based image noise reduction method was 

proposed for de-noising of HS images in the remote sensing domain [11]. The method 

perfectly fits the needs of HS image de-noising by considering both the spatial and 

spectral correlations and also considering the types of noise present in different image 

planes. The method first identifies the type of noise present in the image planes via 

measurement of spectral correlation. Based on the spectral correlation, the method 

categorises the noise into low-level Gaussian noise or high levels of mixed noise. After 

identification of the type of noise, the non-subsampled shearlet transform (NSST) is 

then performed on each image plane. Later, to de-noise the low-level Gaussian noise 

wavelengths, the method assumes an additive noise model and performs spatial de-

noising using the BayesShrink threshold method [20]. To de-noise the high-level 

mixed noise wavelengths, the method utilises the NSST information from the 

neighbouring low-level Gaussian noise wavelengths. The shearlet coefficients of 

adjacent low-level Gaussian noise wavelengths are fused with the details of mixed 

noise wavelengths utilising a weighted linear combination criterion, which results in 

spectral de-noising. Finally, after de-noising, the inverse of the NSST is applied to 

reconstruct the image planes. 
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The aim of the present work is to apply a wavelength-specific shearlet-based image 

noise reduction method [11] for HS image de-noising and to test its potential for de-

noising close-range HS images. Furthermore, the method was compared with two 

pixel-based spectral smoothing techniques, i.e., SAVGOL and median filtering. The 

potential of the method was tested using three different sets of HS images. The first 

two image sets comprised simulated supervised images containing known amounts of 

Gaussian and mixed noise. The third image set was a real VNIR HSI dataset generated 

for the classification of six commercial tea products (oolong, black, green, yellow, Pu-

erh and white). The performance of the de-noising techniques was evaluated through 

visual inspection of denoised image, spectral correlation between denoised and 

original image, peak signal-to-noise ratio (PSNR), and through classifications 

performed with a multi-class support vector machine (SVM). The PSNR was used to 

quantify the improvement in the spatial domain and the spectral correlation was used 

to quantify the similarity of the spectra after de-noising with the corresponding spectra 

in the absence of noise, i.e. the clean spectra (spectral domain). 

5.3 Material and methods  

5.3.1 Samples and imaging sensor 

 
De-noising and classification experiments were performed with visible-near infrared 

(VNIR) hyperspectral images of six different commercial tea products, which were 

purchased from a local market (Glasgow, United Kingdom). The samples were 

obtained in airtight sealed packaging and stored at ambient temperature. All samples 

of tea were in loose-leaf form. Black, green and white tea were from Vahdam Teas 

(New Delhi, India), oolong tea was from Yamamotoyama (California, USA), Pu-erh 

tea was from The Tea Makers of London (London, UK) and yellow tea was of an 

unspecified Chinese origin. Each tea sample was transferred to a black plastic circular 

container (diameter = 3.3 cm, depth = 1.3 cm) for analysis. The six samples were 

placed adjacent to each other on the translation stage so that all six samples were 

imaged in a single measurement. Imaging was performed using a push-broom line scan 

HSI system comprised of a V10E spectrograph from SPECIM (Oulu, Finland) and a 

CCD camera (C8484-05C, Hamamatsu Photonics, UK). The HSI system was used to 

acquire spatial maps consisting of 1350 × 256 pixels over the spectral range 383 – 
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1000 nm with a spectral resolution of 2.45 nm. The pixel size of the CCD camera is 

6.45 ´ 6.45 µm2. Lighting was provided by two 20 W halogen light sources. The 

distance from the lens to the translation stage was 30 cm, and the stage was controlled 

by an independent stage motor connected to the computer system (Zolix TSA 200 BF). 

The speed of the translation stage, ~3 mm s-1, was optimised using a checkerboard to 

avoid any distortion in the shape of the image arising from the overlapping of the 

spectral and spatial information. A single image, comprising more than 2000 pixels 

per tea sample, was acquired of the six tea samples using a frame rate of 21 fps and an 

exposure time of 5 ms. 

The acquisition and management of data were performed using in-house code 

developed in Matlab (R2016b, Mathworks Inc., Natick, United States). Before data 

analysis, the radiometric calibration of images was performed using white and dark 

references. The correction was performed for every pixel in the HS image according 

to equation 5.1, 

!"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

    (5.1) 

where IR is the calibrated reflectance, Iraw is the raw intensity measured from the test 

sample, Idark the intensity of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is the wavelength in the image.  

To demonstrate the effectiveness of the HSI de-noising method, two more sets of HS 

images were simulated by adding different types of noise to the VNIR images. The 

simulation was performed by manually reducing the VNIR hypercubes to the cleanest 

(smoothest) spectral profile range (546 – 791 nm). Of the two sets of simulated images, 

one set was simulated with a known amount of Gaussian noise (zero mean and 0.03 

variance), and the other was simulated with mixed noise comprising a combination of 

Gaussian (zero mean and 0.03 variance) and spike noise (density of 0.08) at 20 

randomly selected image planes. The term density of 0.08 here means that the 

reflectance will change from zero to one with a probability of 0.08. In the following 

text, mixed noise (MN) will be used to represent the combination of Gaussian and 

spike noise and Gaussian noise (GN) will be used to represent Gaussian noise. A 
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summary of the sets of images analysed is presented in Table 5.1. 

 

Table 5.1: Details of image sets. 

Image set Dimension (height × width × 

wavelength) 

Wavelength 

range/nm 

VNIR 1350 × 287 × 256 383-1000 

VNIR + Gaussian Noise 1350 × 287 × 101 546-791 

VNIR + Mixed Noise 1350 × 287 × 101 546-791 

 

5.3.2 De-noising methodology  

 
The de-noising methodology has three main steps in its implementation. The first step 

is to identify the type of noise present (low-level Gaussian noise or mixed noise) to 

choose the de-noising techniques for that particular wavelength. Different techniques 

here signify the different ways of using the shearlet coefficients for de-noising. The 

second step is to perform the sub-sampled shearlet transform on each image plane to 

capture the shearlet coefficients. The third step is to utilise the shearlet transform 

coefficients to perform de-noising individually for each wavelength based on the type 

of noise identified. The detailed methodology is explained in the following sections. 

5.3.2.1 Noise characterisation  

 
In HSI, the noise varies from wavelength to wavelength and can range from simple 

low-level Gaussian noise to high-level mixed noise resulting from a combination of 

Gaussian and spike noise. The typical additive noise model for any image plane of a 

data cube (n × p × q) can be understood from equation 5.2: 

Y = X + N    (5.2) 

where Y is the recorded image plane containing the useful informative signal part (X) 
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and the noise part (N). This assumed model is usually correct if the noise present in 

the plane is limited to Gaussian white noise, but this is not always the case. In the 

methodology presented here, the nature of the noise is assumed to be unknown. To 

find the type of noise present in image planes, the method utilises the correlation 

coefficient, R, between two image planes, Yk and Yk+r, as in equation 5.3:  

K(Y', Y'LM) =
NOP(Q0,Q0R+)

SPTM(Q0)PTM(Q0R+)
       k = 1,2 ….. q - r       (5.3) 

From the correlation measurement between two image planes, it can be understood 

that if the two image planes are very similar, then they will have a very high correlation 

coefficient. However, in the presence of noise, the correlation between the image 

planes will be significantly reduced. Furthermore, the greater the noise, the more the 

correlation will decrease. To differentiate between the low-level Gaussian noise and 

the high-level mixed noise, the threshold for the mean correlation between the image 

plane and its neighbouring image planes was set. The mean correlation was obtained 

by choosing a window, w1, containing 10% of the total number of wavelengths centred 

around the wavelength considered, as in equation 5.4.  

KU(Y') = VWX6M∈YZ[K(Y', Y'LM)\										(5.4) 

The values obtained for the mean correlation for low-levels of noise will be very high. 

Depending on the amount and the complexity of the noise, the correlation will 

decrease. Therefore, the values will span a heavy-tail distribution for the KU. For such 

a distribution, the median is already known to be the best estimator to represent the 

central tendency of the distribution [21]. In the present methodology, the median 

estimated from the distribution of the correlation coefficients was chosen to be the 

threshold and to classify the image plane as either a low- or high-level noise image 

plane.  

5.3.2.2 Shearlet transform  

 
After the classification of the image planes as low-level Gaussian noise or high-level 

and/or mixed noise, the NSST coefficients for each image plane were calculated 

independently. NSST is a special type of discrete shearlet transform that provides an 
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additional feature of invariance to the shift of the input signal [22]. The shearlet 

transform is a special type of composite wavelet transform in which the mother 

wavelet matrix is an anisotropic dilation matrix along with the shear matrix, compared 

to the dilated matrix associated with the scale transformation and directional 

transformation in the composite wavelet transform. The composite wavelet function 

can be understood as equation 5.5.  

`&,a,'(b) = | detg|&/; 	` ijag&(b − l)m						(n, o ∈ ℤ, l ∈ ℤ;)												(5.5) 

where ψ is the mother wavelet, M is an anisotropic dilation matrix, S is a shear matrix 

and j, l and k are scale, directional and shift parameters, respectively. In this work, we 

have limited the explanation to the NSST only, however, more detailed information 

on the composite wavelet transform and shearlet transform can be found in [22] [23] 

[24].  

The implementation of NSST to decompose the image planes requires two steps. The 

first is the application of non-subsampled pyramid (NSP) filter banks and the other is 

the use of non-subsampled shearing (NSS) filter banks. A non-subsampled filter bank 

has no shift variant issues as there is no down- or up-sampling during the 

decomposition. Furthermore, the NSP filter gives the multiscale decomposition of the 

original image into high- and low-frequency sub-images of the same size as the 

original image. The NSS part of the NSST performs directional filtering in the spatial 

domain and decomposes the high-frequency sub-images into directional sub-images. 

For a typical application, the filter banks are applied in an iterative way where the low-

frequency sub-images obtained are again decomposed to lower scale high- and low-

frequency sub-images, resulting in a multi-scale and multi-directional decomposition. 

An example of the multi-scale and multi-directional decomposition performed by the 

NSST can be understood with the three-scale decomposition shown in Figure 5.1. In 

the present case, a three-level shearlet decomposition with 16, 8 and 4 shearing 

directions at scales of 1, 2 and 3, respectively, was performed.  
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Figure 5.1: Multi-scale and multi-dimensional three-scale decomposition with a non-

subsampled shearlet transform (NSST) where A and D signifies the low and high 

frequency sub images, respectively, and l = 16, 8 and 4 at scales 1, 2 and 3, 

respectively. 

5.3.2.3 De-noising image planes 

 
The coefficients obtained from the NSST of the image are mostly very small and close 

to zero. But due to the presence of the noise, the sparsity of the matrix of NSST 

coefficients is greatly reduced. Therefore, to perform the de-noising with NSST, the 

aim is to re-attain the sparsity of the matrix of NSST coefficients. To do this, a 

threshold is used to distinguish the coefficients corresponding to noise from the 

coefficients containing signal information. Different techniques were used for de-

noising the image planes identified with low and high levels of noise. For the low-

level noisy image planes, the threshold for the shearlet coefficients, qr,s, was 

determined assuming an additive noise model and utilising the BayesShrink method 

[20], as shown in equation 5.6: 
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qr,s =
tu,v,4
w

tv,4
       (5.6) 

where the noise variance at scale s (s = 1…j) and direction t (t = 1…l) is given by xy,r,s;
 

and is estimated as mentioned in [25]. The standard deviation (xr,s) of the signal 

measured from the sub-image Ys,t at scale s and direction t is estimated as in equation 

5.7: 

xr,s = 	zmax	((xQv,4
; − xy,r,s

; ),0)                    (5.7) 

where      x�v,4
; = 	 B

yw
∑ Yr,s

; (Ä, n)y
$,&AB   

i and j define the spatial coordinates and N is the maximum value of (n, p). 

Once the image planes with a low level of noise were de-noised, then to de-noise the 

high and/or mixed noise image planes, the shearlet coefficients of the adjacent low 

noise level image planes were fused to the details of the mixed noise sub-images. The 

shearlet coefficients were used to replace the details of the sub-images of the mixed 

noise level image planes by the weighted average of the sub-image details of the 10% 

closest low noise level image planes. The weights used were inversely proportional to 

the distance between the neighbouring wavelengths as explained in equation 5.8:  

∑ ÅMM∈Yw = 1      ÉÑÖy(l) = 	∑ ÅMÉÑÜáy(l + à)M∈Yw                (5.8) 

where Å; are the adjacent LGN image planes, and ÉÑÖy and ÉÑÜáy correspond to de-

noised mixed noise and low-level Gaussian noise image planes, respectively. To 

reconstruct the de-noised image plane, the inverse of the NSST was applied to the 

coefficients. Any further classification analysis was performed on the resulting de-

noised images.  

5.3.3 Savitzky-Golay smoothing  

 
SAVGOL smoothing is a window-based technique that utilises different polynomial 

functions to smooth signals [13]. To perform smoothing with SAVGOL, a window of 

fixed size is chosen, centred on the signal point to be smoothed, and a polynomial is 
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fitted to the variables within the window. The value of the central variable is replaced 

by the value calculated by the polynomial function. The window is moved point-by-

point over the signal to perform the smoothing on the complete spectrum. The window 

size and the polynomial function are usually chosen manually, and the optimum choice 

is based on visual inspection of the spectral profile. For the present work, a second 

order polynomial and 15-point window were used. SAVGOL smoothing was 

performed using the PLS Toolbox (version 8.11, Eigenvector Research Inc., USA).  

5.3.4 Median filtering 

 
Median filtering belongs to the family of non-linear signal filtering techniques and is 

often used to deal with high levels of noise such as spikes in the data. Median filtering 

in the spectral domain can be understood as a moving window that replaces each 

observation with the median value of the observations inside the window. When the 

number of observations inside the window is odd the median is a single value, however 

when the number of observations is even, then the median is the average of the two 

middle values. In the present work, the median filter was employed by unfolding the 

(n × p × q) HSI array to give a (np × q) matrix, performing the median filtering with a 

4-point window and later reshaping the matrix back to the cube. To perform the 

filtering, the meadfilt1 Matlab function was used.   

5.3.5 De-noising performance 

 
Spectral correlation and peak signal-to-noise ratio (PSNR) were used to quantify the 

performance of the de-noising methods in the spectral and spatial domains, 

respectively. 

Spectral correlation provides a measure of the similarity of spectra after de-noising 

with the corresponding spectra in the absence of noise (i.e., the clean spectra), and was 

estimated via calculation of the correlation coefficient between the de-noised and clean 

spectra utilising the corr function in Matlab. The PSNR was calculated as shown in 

equation 5.9: 

âjäK = 10oãåBç(
<éT'PTaèéw

Öêë
)                 (5.9) 
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where the mean square error is given by gjí =	
∑ [îZ($,&)1îw($,&)]w
u
.,/ñZ

yw
                      

and óB and ó; are the two image planes to compare (i.e., the image plane after de-

noising and the corresponding image plane in the absence of noise, respectively) and 

peakvalue is either specified by the user or selected from a range that is dependent on 

the image datatype (e.g. 255 for a uint8 image). The PSNR was calculated utilising the 

PSNR function in Matlab. 

5.3.6 Multiclass support vector machine classification  

 
To perform the classification experiment on the HSI data sets, support vector machine 

(SVM) classifiers were developed. SVM utilises the hyperplanes to define the decision 

boundaries to perform classification. Furthermore, to deal with the data complexity, 

the SVM performs high dimensional mapping of the data using kernel functions. 

Mapping to higher dimensions is usually carried out to make the data linearly 

separable. Furthermore, in the high dimensional space, the choice has to be made to 

select the hyperplane that provides the largest separation of the classes. As in our case 

we have six different classes corresponding to six different tea products, the traditional 

SVM binary classifier was combined with the error correcting output code (ECOC) 

ensemble method. The ECOC deals with the multiclass problem by creating several 

independent binary classification models.  

The SVM along with ECOC was implemented in Matlab via the Statistics and Machine 

Learning Toolbox (R2016b). The coding design used for the ECOC-SVM model was 

one-vs-one, where a model was developed with one class being assigned positive and 

another class being assigned negative and all other classes were neglected. The 

algorithm exhausts all combinations of class pair assignments leading to k(k-1)/2 

models, where k is the number of classes to be considered. High dimensional mapping 

of the data was performed with a radial basis function (RBF) kernel function with a 

scale parameter of 2.5. The spectra from the images for six different classes were 

selected in a supervised way using the “roipoly” function in Matlab. The “roipoly” 

function provides the graphical interface to manually extract the information from the 

data cube. For each individual tea class, spectra were extracted from 200 pixels, which 
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were selected at random from the image collected, leading to a total of 1200 spectra 

for classification model development. For the development of a robust model, the 

model was cross-validated with a 10-fold cross-validation method. In 10-fold cross-

validation, the calibration data is divided into ten equal parts. For making the model, 

9 out of 10 parts were used and to cross-validate, the 10th part was used. This was then 

repeated ten times, and the average prediction accuracy was recorded. The whole 

process was performed with 100 iterations and the mean accuracy and standard 

deviation were recorded.  

5.4 Results  

5.4.1 Noisy and de-noised spectra from simulated images 

 
 

 
Figure 5.2: A single spectrum at pixel location (370, 135) extracted from the following 

image sets: (a). VNIR, (b). VNIR + Gaussian noise, and (c). VNIR + Mixed noise. 20 

random wavelengths were used to simulate Gaussian and mixed noise images. 

Figure 5.2 presents the spectrum extracted from the raw reflectance (5.2a), GN added 

to reflectance (5.2b) and MN added to reflectance (5.2c) data from a spatial location 

at (370, 135) in the simulated hyperspectral image. The spectral noise was added at 20 

different random wavelengths over the data cube and its effect can be seen in (5.2b,c) 

when compared to the raw reflectance profile in 5.2(a).  
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Figure 5.3: Noisy and de-noised spectra from pixel location (370, 135), the red line 

shows the clean spectrum, the blue line shows the noisy spectrum and the yellow line 

shows the spectrum after de-noising. (a). SAVGOL smoothing filter applied to the 

spectrum with mixed noise added, (c). Median filtering applied to spectrum with 

Gaussian noise added, (d). Median filtering applied to spectrum with mixed noise 

added, (e). de-noising with shearlet-based method for spectrum with Gaussian noise 

added, and (f). de-noising with shearlet-based method for spectrum with mixed noise 

added. 
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Figure 5.3 presents the effect of different de-noising methods applied to the spectra 

shown in Figure 5.2. Figure 5.3 (a,b) shows the results of SAVGOL smoothing, with 

a 15 point window and a second order polynomial, of the spectra with Gaussian and 

mixed noise added. Figure 5.3 (c,d) shows the results from application of median 

filtering with a 4 point window. Figure 5.3 (e,f) illustrates the result of utilising the 

shearlet-based de-noising methodology. The spectra in red in Figure 5.3 represent the 

clean reflectance profiles, while the solid blue and yellow lines represent the noisy and 

de-noised spectra, respectively.  

In Figure 5.3, it can be seen that the shearlet-based de-noising method outperformed 

SAVGOL smoothing and median filtering. The reason for the poor performance of 

SAVGOL smoothing in the case of simulated noise can be understood as being due to 

the window size and the smoothing function used. Since SAVGOL smooths each 

spectrum by fitting a polynomial to a window of adjacent wavelengths, if noise 

contributes significantly to several of the wavelengths, then the polynomial fitting will 

be less effective. Median filtering works better than SAVGOL smoothing since even 

if there are several outlier intensity values in the spectrum, they will not have as much 

influence on the smoothed value. Nevertheless, there are peaks to be found in the 

spectra after median filtering, due to the presence of several peaks within the window 

used for the smoothing, resulting in the median value being influenced by this noise. 

Furthermore, the peaks resulting from median filtering now appear at new 

wavelengths. This is because median filtering is performed for each wavelength 

resulting in transferral of noise to wavelengths adjacent to the noisy wavelengths. 

However, in the shearlet-based methodology, the de-noising of the waveband is 

performed using the shearlet coefficients of the adjacent low GN image planes, 

therefore, the high-intensity noise wavelengths do not affect the spectral de-noising as 

in the case of SAVGOL smoothing and median filtering. This is because the high-

intensity noise wavelengths have no influence when performing the de-noising since 

they are not considered in the calculation of the weighted average of shearlet 

coefficients.  

In Figure 5.3 (e,f), it can be seen that some small differences can still be found in the 
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spectrum after de-noising. The reason for these small disturbances can be understood 

as resulting from the averaging of the shearlet coefficient, especially when the 

automatically selected GN image planes are distant, as averaging with the shearlet 

coefficients of these GN planes leads to small disturbances in the spectral profile. 

However, these disturbances are minute compared to the noise present in the spectrum 

after smoothing with SAVGOL or median filtering. To quantify these small 

disturbances and the spectral similarity, spectral correlation was used.  

 

Figure 5.4: Correlation for the spectra extracted from the pixel at location (370, 135) 

from noisy and de-noised data with clean data. The blue line dashed shows the 

Gaussian noise and the red line shows the mixed noise. 

Figure 5.4 presents the spectral correlation calculated between a single spectrum 

extracted at a pixel location of 370,135 from, on the one hand, the noisy, SAVGOL, 

median filtered and shearlet de-noised images, and, on the other hand, the clean image. 

A summary related to all the pixels correlation can be found in Annex 3 Figure A3.1. 
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Further in Annex 3, a summary of time required by different techniques is presented 

in Table A3.1. The blue dashed line and red solid line shows the GN and MN cases, 

respectively. The spectral correlation was calculated to quantify the similarity of the 

spectral profiles obtained from different de-noising techniques. It can be seen in Figure 

5.4, that the spectral correlation for the spectrum with GN added was always high for 

all the de-noising techniques compared to the spectrum with MN added. The reason is 

that the MN noise is much more complicated, resulting in a higher number of noisy 

wavelengths in the spectrum. Furthermore, the new shearlet-based method gave the 

highest correlation of 99.9% followed by median filtering and then SAVGOL 

smoothing.  

5.4.2. Noisy and de-noised image planes from simulated images 

 

 
Figure 5.5: The image planes corresponding to six different tea samples (oolong, 

black, green, yellow, Pu-erh and white (from left to right)) and the simulated noisy 

and de-noised image planes for data with Gaussian noise added. (a). Reflectance 

image plane (588 nm), (b) SAVGOL smoothed image plane, (c) Median filtered image 

plane, (d) Shearlet de-noised image plane, (e). Clean adjacent reflectance image plane 
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(586 nm), (f). Adjacent image plane after SAVGOL smoothing, (g) Adjacent image 

plane after median filtering, and (h). Adjacent image plane after shearlet de-noising. 

Figure 5.5 presents the image planes (at 588 and 586 nm) with GN added used in the 

simulation studies. The plane corresponding to 588 nm is the de-noised band whereas 

586 nm represents the clean adjacent band affected by the de-noising methods. Figure 

5.5 (a,e) presents the original reflectance image plane with Gaussian noise added, 5.5 

(b,f) the SAVGOL smoothed data, 5.5 (c,g) the median filtered data and 5.5 (d,h) the 

image planes after application of the shearlet-based de-noising method. The six 

circular objects in the image represent six different commercial tea products, i.e. 

oolong, black, green, yellow, Pu-erh and white. The presence of the Gaussian noise 

can be seen as a ‘fog’ over the image plane (5.5 (a)). It can be seen clearly by visual 

inspection that the shearlet-based de-noising method outperformed both SAVGOL and 

median filtering to give a clearer image. 

 

Figure 5.6: The image planes corresponding to six different tea samples (oolong, 

black, green, yellow, Pu-erh and white (from left to right)) and the simulated noisy 

and de-noised image planes for data with mixed noise added. (a). Reflectance image 

plane (588 nm), (b) SAVGOL smoothed image plane, (c). Median filtered image plane, 
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(d) Shearlet de-noised image plane, (e). Clean adjacent reflectance image plane (586 

nm), (f) Adjacent image plane after SAVGOL smoothing, (g). Adjacent image plane 

after median filtering, and (h). Adjacent image plane after shearlet de-noising. 

Figure 5.6 presents the image planes (for 588 and 586 nm) with MN added used in the 

simulation studies. Figure 5.6 (a,e) presents the reflectance image plane with MN 

added, 5.6 (b,f) the SAVGOL smoothed data, 5.6 (c,g) the median filtered data, and 

5.6(d,h) the image planes after application of the shearlet-based de-noising method. 

The presence of mixed noise (5.6 (a)) can be seen as a ‘fog’ accompanied by some 

high-intensity (bright) pixels resulting from the spike noise. The shearlet-based de-

noising method clearly outperformed SAVGOL and median filtering. However, 

median filtering seems to provide better results than SAVGOL smoothing for image 

planes containing GN or MN. This is because SAVGOL smoothing dilutes the noise 

of several consecutive wavelengths by fitting the polynomial whereas the median filter 

is calculated directly based on the intensities present inside the window resulting in a 

better de-noising. However, both the median filter and SAVGOL smoothing also affect 

the consecutive wavelengths by spreading the noise. The spreading is more important 

when the noise is present in consecutive wavelengths. In the case of SAVGOL 

smoothing, the noisy wavelengths dominate the shape of the polynomial and lead to 

spreading of the noise to the consecutive wavelengths. In the case of median filtering, 

a larger number of noisy wavelengths in a small window affects the calculation of the 

median. Also, median filtering does not use any measure to pre-identify the amount of 

noise. Therefore, the correction is performed for each wavelength, which results in a 

distribution of the noise to the adjacent wavelengths. The spreading of the noise can 

be seen in Figures 5.5 (f) and 5.6 (f), and 5.5 (g) and 5.6 (g) resulting from SAVGOL 

and median filtering, respectively, when compared to Figures 5.5(e) and 5.6(e), the 

clean image planes. However, this was not the case with the shearlet-based method as 

it does not affect any adjacent wavelengths because the method starts with identifying 

the wavelengths containing noise resulting in wavelength-specific de-noising. 
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Figure 5.7: Peak signal-to-noise ratio (PSNR) for the 20 wavelengths with added 

noise: purple dashed (SAVGOL smoothed data with mixed noise), thick blue dashed 

(SAVGOL smoothed data with Gaussian noise), thick red dashed and dot (median 

filtered data with Gaussian noise), green dashed and dot (median filtered data with 

mixed noise), thick yellow (shearlet de-noised data with Gaussian noise) and dashed 

sky-blue (shearlet de-noised data with mixed noise). 

The potential of the shearlet-based de-noising method is further quantified using the 

PSNR as presented in Figure 5.7. The PSNR represents the ratio of the maximum 

possible signal intensity to the corrupting noise present in the signal. Figure 5.7 shows 

the PSNR for the 20 randomly selected image planes used to simulate the noise. The 

PSNRs were estimated taking the raw reflectance image planes with no added noise 

(i.e. clean) as the reference for the de-noised image planes. It can be seen in Figure 5.7 

that the shearlet-based de-noising method (in yellow and sky-blue) increased the 

PSNR and attained the highest levels for the majority of image planes where GN and 
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MN had been added. Median filtering increased the PSNR more than SAVGOL 

smoothing and was as effective as the new shearlet-based de-noising method for 

several wavelengths. The PSNR obtained from the shearlet-based de-noising 

methodology was the same for data containing GN (in yellow) and MN (in sky blue). 

The PSNR obtained for SAVGOL smoothed data with added noise was higher for GN 

(in dashed thick blue) compared to MN (in dashed purple). Similarly, the PSNR 

obtained with the median filter was higher for data with added GN (in thick dashed 

and dot red) at several wavelengths compared to MN (in dashed and dot green). The 

reason for this is that MN is more complex than GN and therefore with median filtering 

and SAVGOL smoothing, the PSNR increased more for the GN than for the MN case. 

The improved PSNR indicates that the signal contains more information compared to 

the noise and that data modelling based on the improved PSNR should be more 

successful. However, a higher PSNR does not guarantee successful modelling because 

the affected adjacent wavelengths resulting from the de-noising method is also a 

concern. 
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Table 5.2: SVM classification model accuracies (%) obtained using different de-

noising methods with the simulated and real datasets (see Table 5.1). The value given 

is the mean ± one standard deviation resulting from 100 iterations of a 10-fold cross 

validated model. 

Images type Noisy data Savitzky-

Golay 

smoothing 

Median 

filtering 

Shearlet de 

noising 

VNIR + 

Gaussian Noise 

(Simulated) 

55.63±0.42 57.18±0.52 79.00±0.48 87.37±0.30 

VNIR + Mixed 

Noise 

(simulated) 

56.21±0.41 49.77±0.44 78.23±0.47 87.36±0.35 

VNIR (Real) 42.9±0.44 67.44±0.55 59.67±0.56 78.27±0.55 

 

The improvement in the classification performance of the SVM classifier after de-

noising can be noted in Table 5.2. The shearlet-based de-noising method gave the 

highest accuracy of 87.37 ± 0.30% and 87.36 ± 0.35% for data cubes with added GN 

and MN, respectively.  The median filter was second in terms of classification 

accuracy with comparable accuracy obtained for the data cubes with added GN (79.00 

± 0.48%) and MN (78.23 ± 0.47%). SAVGOL smoothing resulted in the lowest 

accuracy of 57.18 ± 0.52% and 49.77 ± 0.44%, for the data with GN and MN added, 

respectively. For the data containing MN and subjected to SAVGOL smoothing, the 

accuracy was even lower than for the data containing MN (56.21 ± 0.41%). The poor 

performance of SAVGOL smoothing is due to the spreading out of the effect of the 

noise over several consecutive wavelengths by the fitting of the polynomial inside the 
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window. This reason can also explain the better performance of median filter 

compared to SAVGOL smoothing. 

 

5.4.3 De-noised VNIR image set spectra  

 

 
Figure 5.8: A single spectrum at pixel location (370,135) extracted from the VNIR 

hypercube, blue represents the raw reflectance signal, and red represents the de-

noised spectra. (a). SAVGOL smoothing, (b). Median filtering, and (c). Shearlet-based 

de-noising method. 

Figure 5.8 presents a complete spectrum (383-1000 nm) extracted from the raw 

reflectance and the de-noised VNIR hypercubes for the six different commercial tea 

products. Figure 5.8 (a) presents the spectrum after SAVGOL smoothing, Figure 5.8 

(b) after median filtering and Figure 5.8 (c) shows the results of the shearlet-based de-

noising method. The red line depicts the spectrum after the de-noising treatment, with 

the raw reflectance spectrum given in blue. It can be seen that the raw reflectance 

spectrum (blue) contains noise at different wavelengths over the complete range, 

especially at the beginning (383-500 nm) and end (900-1000 nm) of the spectrum. In 

Figure 5.8 (a) it can be seen that SAVGOL filter smooths the spectrum quite well from 

500 to 900 nm. However, at the edges of the spectrum, SAVGOL smoothing does not 

work as well. In Figure 5.8 (b) it can be seen that median filtering also performed well 

between 500-900 nm, but was less effective than SAVGOL smoothing at the very 

noisy ends of the spectrum. In the case of the shearlet-based method (Figure 5.8 (c)), 

it can be seen that the spectrum around the edges (383-500 nm and 900-1000 nm) is 

smoother compared to both SAVGOL and median filtering. This is because the 
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shearlet-based de-noising method utilises the shearlet coefficients of the neighbouring 

low Gaussian noise image planes to perform the weighted averaging. With the 

algorithm, a total of 59 wavelengths were identified as containing noise, and were de-

noised automatically.  

The VNIR (383-1000 nm) reflectance spectral profiles of food products contain 

different chemical information such as pigments, moisture content, and physical 

information such as particle size. Noise-free spectral features related to this 

information must be extracted to form the basis for the success of any classification 

modelling. In the case of tea products, the VNIR spectra contain information related 

to different chemical components. Some key wavelengths identified in a previous 

study were 485 nm corresponding to the total liquor colour, 522 – 625 nm to 

thearubigins constituent group TRS1, 688 and 732 nm to thearubigins, 706 nm to total 

polyphenols, 743 nm to liquor brightness and 745 nm to theaflavin [26].  
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5.4.4 De-noised VNIR image set image planes 

 
Figure 5.9: Noisy and de-noised image planes (405 nm) extracted from real 

hyperspectral data from a VNIR camera. (a). VNIR noisy image plane, (b). SAVGOL 

de-noised image plane, (c). Median filter de-noised image plane, and (d) Shearlet de-

noised image plane. 

Figure 5.9 presents the noisy and de-noised image planes for the real VNIR cube. 

Figure 5.9 (a) shows the raw noisy image planes from the VNIR hypercube 

corresponding to 405 nm, where intense noise is visible. The chosen waveband used 
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to display the image plane was automatically identified by the algorithm for de-

noising. Figures 5.9 (b), (c) and (d) present the results of de-noising with SAVGOL 

smoothing, median filtering and the shearlet-based de-noising method, respectively. 

In Figure 5.9 (d), it can be seen that after de-noising the image planes reveal six 

different tea samples thus demonstrating the improved performance of the presented 

de-noising method over SAVGOL (Figure 5.9 (b)) and median filtering (Figure 5.9 

(c)).  

5.4.5 SVM classification on VNIR image set 

 
The results of classification (Table 5.2) showed an improvement in the classification 

accuracy after utilising the shearlet-based de-noising method compared to raw 

reflectance, SAVGOL smoothed and median filtered data. The reason for this is the 

high signal-to-noise ratio obtained after the de-noising of the image planes. The 

accuracy of the model was increased from 42.90 ± 0.44% to 78.27 ± 0.55% after de-

noising with the shearlet-based methodology. For SAVGOL smoothing, the 

classification accuracy increased to 67.44 ± 0.55% and for median filtering, it 

increased to 59.67 ± 0.56%. In this case, SAVGOL smoothing outperformed median 

filtering because at the two ends of the spectra there are many consecutive noisy peaks 

that are considered in the calculation of the median value. 

5.5 Conclusions  

 
The data generated from HSI often contain noise. For an efficient data processing 

strategy, it is important to deal with the noise present in the data by either reducing or 

removing it. However, simply removing noise (wavelengths) can lead to loss of 

information from the dataset. Therefore, exploiting different data pre-processing 

techniques to reduce the noise in the datasets is always the better option as the 

information in the dataset is largely retained.  

Commonly used methods such as SAVGOL smoothing and median filtering can deal 

with a small amount of noise and if the noise is not present in neighbouring 

wavelengths. However, when the noise level increases and the noise is present in 

consecutive wavelengths, SAVGOL smoothing and median filtering can result in 
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distorted spectral profiles leading to spreading of the noise to adjacent wavelengths. 

Furthermore, both SAVGOL smoothing and median filtering are performed for every 

waveband as no steps are present to determine the wavelengths that need to be de-

noised automatically. This, results in over-smoothing of the spectral profiles. Another 

drawback is the need to determine the correct window size, which is often performed 

manually. Different window sizes might result in an improvement in the de-noising 

results, however, visual inspection is needed to select the optimum window size. 

However, the presented shearlet-based technique deals with the noise in an intelligent, 

fully automatic way by first classing the wavelengths into non-noisy, low GN and MN, 

thus reducing the chances of over-smoothing of the wavelengths and spreading of 

noise to adjacent wavelengths. The method then deals with the spatial and spectral 

noise synergistically and also adapts to the type of noise present in the data. The de-

noising of the low GN noise wavelengths is performed through retention of the sparsity 

of the shearlet coefficients, which is completely independent of other wavelengths. 

Finally, to de-noise the MN wavelengths, the method fuses the information from the 

shearlet coefficients of the neighbouring GN wavelengths. This study also 

demonstrated the potential of the shearlet based de-noising methodology as seen in the 

visual improvement of image planes, the increase in spectral correlation, the increase 

in PSNR for image planes and the improved classification accuracy of the multi-class 

SVM model, compared to SAVGOL smoothed and median filtered data. The shearlet-

based methodology is a useful technique for automatic de-noising of close-range HSI 

data where the spectral domain exhibits broad signals (i.e., information from adjacent 

spectral bands is correlated). Hence, this methodology will provide new opportunities 

for the use of a wide variety of HSI techniques, e.g. NIR, UV, visible and fluorescence, 

for real-time decision making such as in a process environment.  
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 6.1 Abstract 

 
Close-range hyperspectral (HS) images may contain several types of noise such as 

Gaussian, salt-and-pepper, and dead striped lines. Noise can originate from a number 

of sources including detector sensitivity, and fluctuations in the power supply, dark 

current, external illumination, and experimental conditions. The noise in data should 

be removed or reduced before performing any data modelling. In the present work, an 

automatic, general de-noising method is presented for dealing with different types of 

noise in close-range HS images. The method utilises a spatio-spectral total variation 

(SSTV) model to simultaneously de-noise both the spatial and spectral dimensions of 
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HS images. Noisy near-infrared (NIR) HSI data were simulated by adding different 

types of noise (Gaussian, salt-and-pepper or striped, or a combination of all 3 (mixed)) 

to a HS image of 10 different cut-tear-curl (CTC) grade black-tea products. The 

performance of the de-noising method was then evaluated by comparison of the de-

noised data with the original HS image. Image planes and spectra extracted from the 

noisy HS images showed a reduction in the level of noise after de-noising. Upon de-

noising, the peak signal-to-noise ratio (PSNR) increased typically by a factor of 2 – 3, 

and the structure similarity index measure (SSIM) increased to approximately 1 and 

0.9 for HSI data that had one type and mixed types of noise added, respectively. There 

was also a significant improvement in the classification accuracy of support vector 

machine (SVM) models for different CTC grade black tea products after de-noising of 

the HS images. As the method was able to reduce the level of noise in HS images for 

the 3 types of noise considered both individually and in combination, it can be 

considered to be a general de-noising method. Furthermore, the method can readily be 

automated and has wide applicability for the de-noising of data from different 

modalities of chemical imaging where spatial and spectral correlation is present.  

 

Keywords: total variation, optimisation, split-Bregman, de-noising, black tea 

 

6.2 Introduction 

 
Hyperspectral imaging (HSI) is a non-destructive technique that combines traditional 

imaging with spectroscopy to support rapid analysis of spatially-resolved spectral 

properties of materials. HSI was initially developed for remote-sensing applications 

and was limited to the visible (VIS) and near-infrared (NIR) spectral regions. 

However, it is now well-developed in the close-range domain and has been used across 

a variety of spectral techniques such as VIS [1], NIR [2,3], mid-infrared (MIR) [4], 

Raman [5], fluorescence [6], terahertz [7] and x-ray [8]. Furthermore, applications of 

HSI can be found in different fields of research such as plant science [9], food science 

[10], archaeology [11], medicine [12], forensics [13] and is further expanding. 

Unlike traditional imaging, HSI combines imaging with spectroscopy. HSI generates 

data by recording the spectral signature for each pixel of the image resulting in a 3D 
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data cube. The first two dimensions of the 3D cube represent the spatial information 

and the third dimension represents the spectral information [9]. The acquisition of HS 

images is not as simple as the single shot (snapshot) acquisition method that is possible 

with traditional RGB imaging. Typically, HS image acquisition can be performed via 

two different scanning methods: the point scan and the line scan. The point scan 

configuration involves utilising a single element detector with movement of either the 

camera or the sample to generate a spatial representation of the spectral properties of 

the sample. On the other hand, the line scan configuration involves a multi-element 

array detector to cover a larger spatial area, thus, resulting in faster acquisition speeds 

compared to that achievable with the point scan modality; this means that the line scan 

system is usually preferred over the point scan system. However, the multi-element 

array detector may bring stripe noise, which can affect both the spatial and spectral 

information, leading to poor data modelling [14,15]. Furthermore, noise can originate 

from a number of different sources including fluctuations in the power supply, dark 

current, external illumination and experimental conditions. Hence, close-range HS 

images can contain different types of noise such as Gaussian, salt-and-pepper, and 

horizontal or vertical dead striped lines [16]. All of these different types of noise either 

need to be removed or reduced in magnitude before performing any data modelling 

otherwise the noise can substantially reduce the model performance and lead to low-

quality results. 

In the chemometrics field, there are the different methods that can reduce noise such 

as application of a piecewise smoothing function or median filtering in the spatial and 

spectral domains of HSI. However, many of these methods are manual and require 

inputs such as the window size and specification of the smoothing function by the user. 

Further, the choice of window size and smoothing function is often decided by visual 

interpretation, which can be time consuming. An automatic wavelength-specific 

shearlet-based noise reduction method was proposed by Mishra et al., (2019) [17] to 

overcome many of the issues associated with smoothing and filtering methods. The 

method, which operates in a push-button automatic sense, utilises the shearlet 

coefficient of the image planes to simultaneously reduce the noise present in the spatial 

and spectral domains. The method was able to successfully de-noise NIR-HSI data and 

resulted in an improvement in the accuracy of classification models for six different 



 173 

commercial tea products. However, the noise considered were limited to Gaussian and 

spike, and the method was not designed to consider the stripe noise that can be present 

in HSI data. In comparison, Xu et al., (2017) [14] presented a chemometric-based 

method to deal with stripe noise. However, their method was not designed to deal with 

other types of noise such as Gaussian and salt-and-pepper. Therefore, an automatic, 

general method that can be used to de-noise different types of noise, both individually 

and in combination (i.e. mixed noise), is needed.  

The aim of this work is to apply an automatic de-noising technique that can reduce or 

remove the most common types of noise encountered in close-range HSI, i.e., 

Gaussian, salt-and-pepper noise, and horizontal or vertical dead striped lines, from the 

raw reflectance hypercube. The methodology utilises a spatio-spectral total variation 

(SSTV) model to simultaneously de-noise both the spatial and spectral dimensions of 

close-range HS images, and has previously been used to de-noise remote-sensing data 

[16]. Noisy NIR-HSI data were simulated by adding different types of noise (Gaussian, 

salt-and-pepper or striped, or a combination of all 3 (mixed)) to a HS image of 10 

different CTC grade black tea products. The performance of the de-noising method 

was assessed by visual inspection and quantified by estimating the peak signal-to-noise 

ratio (PSNR), the structure similarity index measure (SSIM) and classification 

accuracies of support vector machine (SVM) models. 

 

6.3 Material and methods 

 
6.3.1 Samples and imaging measurements 

 
Ten different cut-tear-curl (CTC) grade black tea products were sourced in loose leaf 

from Unilever, Colworth Park, United Kingdom. The CTC is a method of processing 

black teas in which the leaves are passed through a series of cylindrical rollers with 

hundreds of sharp teeth that crush, tear and curl the tea into small and hard pellets.  

Samples were provided in sealed packaging and were stored at ambient temperature 

until the day of the imaging experiment. The tea samples were transferred into ten 

black plastic circular containers (diameter = 3.3 cm and depth = 1.3 cm) for analysis. 

Images were acquired with a push-broom line scan NIR-HSI camera (Model name: 

RED EYE 1.7) from INNO-SPEC (Nurnberg, Germany) operating in the spectral 
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range of 950 – 1700 nm. The camera utilises an InGaAs sensor and generates a spatial 

map of 320 ´ 256 pixels, with a pixel size of 30 ´ 30 µm2 and a spectral resolution of 

3.2 nm. Two 50 W halogen light sources, positioned at 45˚ to each other, were used to 

illuminate the samples. The samples were presented automatically to the camera with 

an independent stage motor system (Zolix TSA 200 BF). An image was acquired, 

using an integration time of 300 ms, of the ten black tea samples placed adjacent to 

each other in their respective containers in the field of view of the camera. Each image 

comprised more than 3000 pixels (spectra) for the individual tea samples. Prior to 

acquisition of an image of the tea samples, a set of white (Spectralon diffuse 

reflectance standard) and dark references were recorded for radiometric calibration. 

Four noisy HS images were simulated by adding different types of noise (Gaussian, 

spike, striped lines, or a combination of all 3 (mixed)) to the HS image of the ten black 

tea samples. Gaussian noise was added to the HS image utilising the awgn function 

from Matlab (R2016b, Mathworks, Natick, USA) with a signal-to-noise ratio of 20. 

Salt-and-pepper noise was added utilising the imnoise function from Matlab with a 

noise density of 0.05. Striped noise was added by manually setting 15 columns and 15 

rows to zero intensity in 15 randomly selected wavelengths; the columns and rows 

were selected at random. 

6.3.2 Data pre-processing  

The effects of variation in the illumination intensity, the detector sensitivity and 

transmission properties of the optics were corrected by radiometric calibration utilising 

dark and white reference images. The correction was performed for every pixel in the 

HS image according to equation (6.1): 

                                              !"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

                            (6.1) 

where, IR is the calibrated reflectance, Iraw is the raw intensity measured from the test 

sample, Idark is the intensity of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is the wavelength in the image.  

6.3.3 Spatio-spectral total variation model 

 
A HSI hypercube of size 6 × 8 × 9, where 6 × 8 represents the spatial dimensions 
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and 9 represents the number of wavelengths, can be depicted as a matrix ò =

[bB, b; … . , bö] where b$ is a vector of size np x 1 formed from the vertical 

concatenation of the columns of each 6 × 8 image plane. The model for Gaussian and 

sparse noise can be given by equation (6.2): 

ó = ò + j + õ (6.2) 

where X is the image in the absence of noise, Y is the noisy image, S is sparse noise 

and G is Gaussian noise. The term sparse noise is used here to describe all those types 

of noise that are only present at certain pixels such as salt-and-pepper and dead stripes. 

This is a general model used to formulate the HSI de-noising problem [16, 18]. To 

deal with the spatial and spectral correlation present in HS images, the images can be 

described by piecewise smoothing functions and can be modelled with TV 

regularisation. The TV of a greyscale image x is given by equation (6.3): 

qú(b) = ||Éùb||B + ||ÉPb||B  (6.3) 

where Éù and ÉP are the horizontal and vertical 2D finite differencing operators, 

respectively and ||∙||B denotes the 1-norm. The hyperspectral TV (HTV) model for a 

HS image X with 9 wavelengths is given by equation (6.4): 

üqú(ò) = ∑ qú(b$)
ö
$AB  (6.4) 

However, the HTV model only accounts for the spatial correlation in an image. 

Therefore, to deal with the spectral correlation that is also present in a HS image, the 

spatio-spectral total variation (SSTV) model [16] is used as shown in equation (6.5):  

jjqú(ò) = ||ÉùòÉ||B + ||ÉPòÉ||B…(6.5) 

where D is a 1D finite differencing operator applied on the spectral signature of each 

pixel. This model explores the spatial and spectral correlation simultaneously. The de-

noising problem with SSTV is given by equation (6.6): 

min
¢,ê

||ó − ò − j||£
; + §||j||B + •jjqú(ò)  (6.6) 

where ||∙||£ is the Frobenius norm, and §	X6¶	• are regularisation parameters. This 
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results in a high-dimensional non-differentiable optimisation problem in terms of X 

and S as given by equation (6.7): 

min
¢,ê

||ó − ò − j||£
; + §||j||B + •||ÉùòÉ||B + •||ÉPòÉ||B  (6.7) 

Since X is not separable, the problem can be rewritten in a constrained form: 

min
¢,ê

||ó − ò − j||£
; + §||j||B + •||â||B + •||ß||B (6.8) 

subject to â = ÉùòÉ and ß = ÉPòÉ. Equation (6.8) can be written as an 

unconstrained optimisation problem using a quadratic penalty function: 

min
E,C,¢,ê

||ó − ò − j||£
; + §||j||B + •||â||B + •||ß||B + ®||â − ÉùòÉ||£

; +

®||ß − ÉPòÉ||£
;  (6.9) 

where ® is the regularisation parameter. Equation (6.9) contains multiple 

regularisation terms, which can be solved using the split-Bregman approach [16, 19]. 

The Matlab code for the TV de-noising method can be accessed at [20]. To de-noise 

the HS image, the raw reflectance HS image was inserted into the algorithm in Matlab 

and the output was the de-noised image. The default parameters used for § , •  and ® 

were 0.1, 0.2 and 0.2, respectively. 

6.3.4 Quality parameters 

 
The quality of the de-noised HS images was quantified using the peak signal-to-noise 

ratio (PSNR) and the structure similarity index measure (SSIM). The PSNR and SSIM 

values for de-noised images were calculated with respect to the corresponding image 

planes in the absence of noise. The PSNR calculation is given by equation (6.10):  

âjäK = 10	oãåBç(
<éT'PTaw

Öêë
)  (6.10) 

where peakval is either specified by the user or selected from a range that is dependent 

on the image datatype (e.g. 255 for a uint8 image). MSE is the mean square error 

between the de-noised image plane and the corresponding image in the absence of 

noise. 
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The estimation of SSIM [20] is based on the computation of three terms, namely a 

luminance term (l), a contrast term (c) and a structural term (s). The overall index is a 

multiplicative combination of the three terms as shown in equation (6.11): 

jj!g(b, ©) = 	 [o(b, ©)]T. [™(b, ©)]´. [¨(b, ©)]≠ (6.11) 

where 

o(b, ©) =
2•F•D + ØB
•F; + •D; + Ø;

 

™(b, ©) =
2xFxD + Ø;
xF; + xD; + Ø;

 

¨(b, ©) =
xFD + Ø∞
xFxD + Ø∞

 

and µx and µy are the local means, and σx and σy are the standard deviations of images 

x (reference image) and y (chosen image plane), respectively, σxy is the cross-

covariance for images x and y, ±, ≤	and	≥ are exponent terms, which were set to 1, and 

C1 = (k1L)2, C2 = (k2L)2 and C3 = C2/2 where k1 = 0.01, k2 = 0.03 and L = 255.  

 

6.3.5 Classification with support vector machines  

 
Classification of the 10 black tea products was performed using multi-class error 

correcting output code (ECOC) models containing SVM binary learners, which used 

a one-versus-one coding design. The data were transformed using a quadratic kernel. 

For every black tea sample, spectra were extracted from 200 pixels, which were 

selected at random from the image collected, leading to 2000 pixels in total for 

calibration of the classification models. The models were cross-validated with a 10-

fold cross-validation method. Furthermore, this whole calibration procedure was 

performed with 100 iterations, and the mean validation accuracy and standard 

deviation were recorded. The trained classifiers were later used to generate the 

classification maps for the black tea samples contained in the image, which comprised 

more than 3000 pixels per sample. The ECOC-SVM models were implemented in 

Matlab using the Statistics and Machine Learning Toolbox (R2016b). 
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6.4 Results 

 
6.4.1 De-noising 

 
Figure 6.1: Greyscale images produced using the image plane at 1035 nm containing 

different types of noise: (a) Gaussian, (b) salt and pepper, (c) dead stripe, and (d) a 

combination of Gaussian, salt and pepper, and dead stripe noise. In each case, the 
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original, noisy and de-noised images are given which can be understood as mentioned 

at the top in the figure.  

 

Figure 6.1 (a) to (d) show greyscale images produced using the image plane at 1035 

nm (selected to allow visualisation of the data hypercubes) with no noise added 

(original), after the addition of different types of noise and the corresponding de-noised 

images. Four different noise cases were considered: Gaussian, salt-and-pepper, dead 

stripe lines, and a mixture of Gaussian, salt-and-pepper and dead stripe lines. It can be 

seen that the de-noising method was able to reduce the level of noise present in the 

data for all types of noise, with the appearance of the de-noised images comparable to 

that of the original image plane, i.e., with no noise added. Figure 6.2 presents a sample 

spectrum extracted from the original (blue), noisy (mixed noise; red) and de-noised 

(yellow) images from a pixel with x and y co-ordinates of 108 and 29, respectively. 

The noise was added by randomly selecting 15 different wavelengths, and their 

presence can be seen in the red trace in Figure 6.2 corresponding to a spectrum from 

the noisy image. After de-noising the spectrum was very similar to the original spectral 

profile, showing the potential of the de-noising method. However, the de-noised 

spectrum still contains some small peaks at the wavelengths where the noise was 

added; these peaks can be removed automatically using a filter operation. 
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Figure 6.2: Sample spectra extracted from the original, mixed noise and de-noised 

images from the pixel with x and y co-ordinates of 108 and 29, respectively. 
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6.4.2 PSNR and SSIM 

 

    
(a)                                                                          (b) 

Figure 6.3:PSNR for noisy and de-noised images. (a) Gaussian and salt and pepper 

noise, and (b) dead stripe and mixed noise. 

 

 

 
(a)                                                                               (b) 

Figure 6.4: SSIM for noisy and de-noised images. (a) Gaussian and salt and pepper 

noise, and (b) dead stripe and mixed noise. 

 

Figures 6.3 and 6.4 present the PSNR and SSIM, respectively, for the 15 image planes 

with noise added before and after de-noising with respect to the original hypercube 

(i.e. in the absence of noise). It can be seen in Figure 6.4 that the PSNR was lowest for 

mixed noise followed by Gaussian, salt-and-pepper and dead stripe lines. The image 
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to which mixed noise had been added had a lower PSNR as it contained more noise 

compared to the images containing one type of noise, i.e., Gaussian, salt-and-pepper 

and dead stripe lines. However, after de-noising the salt-and-pepper data resulted in 

the highest PSNR for all the 15 image planes followed by the dead stripe, Gaussian 

and mixed noise data. Similarly, for the SSIM, the mixed noise data had the lowest 

SSIM for all the 15 image planes followed by the Gaussian, salt-and-pepper, and 

striped noise. The SSIM increased after de-noising of images containing all types of 

noise considered; the highest SSIM was obtained for the de-noised images to which 

salt-and-pepper and dead stripe noise had been added followed by Gaussian and mixed 

noise. 

 

6.4.3 Classification 

 

 
Figure 6.5: Classification accuracies of SVM models for noisy and de-noised data. 

Figure 6.5 presents the classification accuracies of the SVM models developed for 

noisy and de-noised data for classifying ten black tea samples. A classification 
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accuracy of 87.81± 0.35 % was obtained for the clean data alone without any pre-

processing. In Figure 6.5, it can be seen that the SVM model accuracies were affected 

when constructed using images containing Gaussian, salt-and-pepper, and mixed noise 

resulting in model accuracies around 70%. However, the model accuracy was around 

90% for a SVM model constructed from images containing dead stripe noise. A reason 

for high model accuracy of dead stripe noise could be due to less noise effected pixels 

considered during the calibration modelling. De-noising resulted in an improvement 

in the accuracies of all models from 66.77 ± 0.55%, 69.43 ± 0.50%, 86.87 ± 0.44% 

and 67.75 ± 0.55% to 99.75 ± 0.06 %, 94.27 ± 0.24%, 94.73 ± 0.26 % and 99.80 ± 

0.09% for Gaussian, salt-and-pepper, dead stripe and mixed noise data, respectively. 

The accuracies quoted are the mean ± one standard deviation resulting from 100 

iterations of a 10-fold cross validated model). 

 

6.5 Conclusions 

 
The data resulting from HSI contains different types of noises such as Gaussian, salt-

and-pepper and dead striped lines. The noise affects both the spatial and spectral 

dimensions, leading to lower model accuracies for, for example, classification of 

samples. The removal of noise is important for the development of accurate and robust 

models. However, removing one particular type of noise is not the solution as other 

remaining noise also affects the data modelling. SSTV de-noising is a general method 

and is capable of reducing different kinds of noise that may be present in close-range 

HS images. The method explores the structure by utilising the 2D total variation in the 

spatial domain and the 1D spectral variation in the spectral domain. The results showed 

that the accuracies of the SVM models were significantly improved by de-noising. The 

de-noising method is fully automatic and has wide applicability for the de-noising of 

data from different modalities of chemical imaging where spatial and spectral 

correlation is present. 
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7.1 Abstract 
 
Hyperspectral imaging (HSI) can acquire data in two modes: imaging and 

spectroscopy, revealing the spatially-resolved spectral properties of materials. 

Traditional HSI processing in the close-range domain primarily focuses on the spectral 

information with minimal utilisation of the spatial information present in the data. The 

present work describes a methodology for utilising the spatial information present in 

HSI data to improve classification modelling over that achievable with spectral 

information alone. The methodology has been evaluated using near infrared (NIR) HSI 

data of sixteen green tea products from seven different countries. The methodology 

involves selecting and sharpening an image plane to enhance the textural details. The 

textural information is then extracted from the statistical properties of the grey level 

co-occurrence matrix (GLCM) of the sharpened image plane using a moving window 

operation. Finally, the textural properties are combined with the spectral information 

using one of the three different levels of data fusion, i.e. raw data level, feature level 

and decision level. Raw data-level fusion involved concatenating the spectral and 

textural data before performing the classification task. The feature-level fusion 

involved performing principal component analysis (PCA) on spectral and textural 

information and combining the PC scores obtained prior to performing classification. 

Decision-level fusion involved a majority voting scheme to enhance the final 

classification maps. All the classification tasks were performed using multi-class 

support vector machine (SVM) models. The results showed that combining the textural 

and spectral information during modelling resulted in improved classification of the 

sixteen green tea products compared to models built using spectral or textural 

information alone.  

 

Keywords: chemical imaging; texture; support vector machine (SVM); grey level co-

occurrence matrix (GLCM); data fusion; green tea. 

 

7.2 Introduction 
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Computer vision and image processing have benefited from the exploration of 

spatially-resolved physical properties of materials in analytical chemistry [1]. The 

combination of imaging with spectroscopy, known as hyperspectral imaging (HSI), 

has complemented imaging by allowing simultaneous exploration of spatial and 

spectral properties of materials in a fast and non-destructive way. Although HSI was 

primarily developed for remote sensing [2], it is now a well-established technique in 

close-range laboratory settings [3, 4, 5, 6]. HSI has been used for the study of a wide 

range of food products such as wheat flour [7], olive oil [8], herbal tea [9], seeds [10], 

coffee [11], beans [12] and many more [13]. 

 

The information generated by HSI takes the form of hypercubes where the first two 

dimensions represent the spatial information of the imaged scene and the third 

dimension adds the spectral information to the pixels [12]. The extraction of 

meaningful information from the hypercube requires advanced pattern recognition and 

data modelling. Although, HSI data is rich in information, not all the information 

present is needed to perform the data modelling. The traditional HSI processing 

approach includes selection of the region of interest (ROI) over the image plane to 

extract the relevant spectra. The selected spectra are then used to perform different 

types of modelling such as data visualisation, regression, and classification. The 

models developed are used to predict the scores for each pixel to represent prediction 

or classification maps [14]. This modelling approach aids in visualising the spatial 

distribution of the predicted values or classes. However, the complementary 

information present in the spatial domain, e.g., texture, is not generally used in the 

construction of calibration models based on spectra [15]. In the predecessor of close-

range HSI, i.e. remote sensing, the importance of information present in the spatial 

domain of HSI is well realised. In particular, utilising the spatial information to 

improve classification modelling is widely employed [16]. The spatial information can 

be used either pre or post-classification modelling to improve the classification 

accuracies and classification maps.  

 

There are some extra benefits to the application of HSI in close-range settings, 

compared to the remote-sensing domain, which further motivates the use of spatial 
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information. One of the benefits is the high spatial resolution of the images, which 

reduces the number of mixed pixels in the imaged scene leading to improved image 

quality. The other is the artificial dark-field illumination used to enhance the contrast 

of regions where illumination interferes with the edges, scratches, imprints, slots and 

elevations over the imaging scene, leading to detailed information about the physical 

features of samples [17]. The spatial information that is primarily of interest in the case 

of close-range HSI is textural. Texture can be understood as a quantitative measure of 

the arrangement of intensities in a region [18]. Therefore, it is necessary to calculate 

texture from statistical analysis of an image plane. There are different ways of 

extracting textural information from an image plane. Estimating the grey level co-

occurrence matrices (GLCMs) has gained widespread interest in the close-range HSI 

processing domain [19, 20, 21, 22, 23, 24, 25]. A reason for its popularity is that the 

statistical properties extracted from GLCMs can be used to represent, compare and 

classify texture. Since the GLCM-based texture calculation can only be performed on 

a monochromatic image, an image at a single wavelength is usually selected from the 

HS image and subjected to GLCM analysis [20, 24]. Furthermore, utilising textural 

information in conjunction with spectral information can be realised in a data fusion 

approach to combine the two types of information at three different levels, i.e., low, 

middle and high. The low-level data fusion of spectral and textural information utilises 

the spectral and textural data in raw form and performs concatenation of the data 

matrices before the data modelling. Mid-level fusion involves doing some feature 

transformation prior to performing the fusion such as utilising principal component 

analysis (PCA) to capture the most important variation in the feature vector and later 

concatenating the scores obtained for the corresponding features. High-level involves 

decision-level fusion where the output from different models is usually fused based on 

some decision criteria to enhance the final output such as classification maps.  

 

The aim of this work is to present a methodology for fusing spectral and textural 

information to improve the modelling of near-infrared (NIR) HSI data. To demonstrate 

the potential of fusing textural and spectral information, the classification of sixteen 

green tea products from seven different countries was considered. High-quality green 

tea products are mainly characterised by the flavour that they impart, which involves 
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two primary sensory perceptions, i.e. taste and aroma. The distinct taste and aroma of 

any tea product are derived from its geographical origin as they are unique to the 

climate and soil conditions in which the plants were grown. Typically, discrimination 

of green tea products via sensory analysis is performed using an expert human panel. 

Sensory analysis involves assessment of tea products in leaf and/or extracted liquor 

form on the basis of appearance, colour, aroma and taste, along with the overall quality 

of the samples. However, distinguishing tea products based on sensory analysis is a 

time-consuming and expensive task as it requires an expert human panel. Furthermore, 

sensory analysis is subjective, and it can be inconsistent and unpredictable owing to 

physiological and psychological differences between tasters [26]. One more limitation 

is that the expert panel cannot be used as an on-line technique for grading of tea 

products [27]. In recent years, different analytical techniques have been explored for 

assessment of tea products of which HSI is one. NIR HSI, in comparison to visible 

HSI, provides access to the chemical information present in samples. NIR HSI has 

recently been used to discriminate between different types of tea products [28], 

although only the spectral information was used to build the classification models. 

However, leaf tea products also have a rich amount of textural detail present in their 

leaves; such textural information has previously been used to classify tea products [17, 

29]. However, utilising texture alone is not a robust modelling solution as textural 

properties are affected by variations in illumination intensity [30]. Therefore, in this 

work, we utilise the textural information as supplementary information to enhance NIR 

spectroscopy-based classification of green tea products.  

 

7.3 Material and methods 

 
7.3.1 Samples  

 
Sixteen green tea samples, differing in geographical origin, were sourced in loose-leaf 

form from Unilever R&D, Colworth Science Park, United Kingdom. All the samples 

were provided in sealed packaging and were stored at ambient temperature until 

analysis. All samples were green in colour and exhibited some textural differences 

owing to variations in the shape and size of the leaves. The sixteen samples originated 

from seven different countries: Argentina (one), South India (five), Sri Lanka (two), 
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China (two), Japan (two), Kenya (three) and Sumatra (one). Imaging experiments were 

performed by presenting the sample in a circular black plastic cap (diameter = 3.3 cm, 

depth = 1.3 cm). The sixteen tea samples were each analysed in a different cap to avoid 

any cross-contamination. 

7.3.2 Hyperspectral imaging measurements  

 
Imaging was performed with a push-broom line scan NIR HSI camera (Model name: 

RED EYE 1.7) from INNO-SPEC (Nurnberg, Germany). The camera has an InGaAs 

sensor and generates a spatial map of 320 x 256 pixels, and has pixel dimensions of 

30 x 30 µm2. Images were acquired over the spectral range of 950 – 1765 nm with a 

spectral resolution of 3.2 nm. Two halogen light sources, each with a power of 50 W, 

were used to illuminate the samples. For image acquisition, the sixteen tea samples 

were placed on the translation stage, which was controlled via an independent stage 

motor system (Zolix TSA 200 BF). The speed of the translation stage, 2.5 mm s-1, was 

optimised using a checkerboard to avoid any distortion in the shape of the image 

arising from the overlapping of spectral and spatial information. The distance from the 

lens to the translation stage was 15 cm. Prior to acquisition of an image, a set of white 

(Spectralon diffuse reflectance standard) and dark references were recorded for 

radiometric calibration. Each image comprised more than 2000 pixels (spectra) per 

individual green tea sample and was acquired using an integration time of 300 ms. 

7.3.3 Data analysis� 

7.3.3.1 Image pre-processing  

 
Variations in signal arising from illumination intensity, the detector sensitivity and the 

transmission properties of the optics were corrected by radiometric calibration utilising 

dark and white reference images. The correction was performed for every pixel in the 

HS image according to equation (7.1):  

!"($,&,') =
*+,-(.,/,0)1*2,+0(.,/,0)
*-3.45(.,/,0)1*2,+0(.,/,0)

  (7.1) 

where, IR is the calibrated reflectance, Iraw is the raw intensity measured from the test 

sample, Idark is the intensity of the dark response, Iwhite is the intensity of the uniform 
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white reference, and i and j are spatial coordinates and k is the wavelength of the image. 

The spectral range of the hypercube was reduced from 950 – 1765 nm to 967.11 – 

1700 nm to remove noise. A moving window Savitzky-Golay (SAVGOL) filter [31] 

(15-point width and second order polynomial) was applied to each pixel of the image 

to remove random noise, e.g. spikes, from spectra. Further, to reduce light scattering 

effects arising from inhomogeneity of the sample surface, the spectra were normalised 

using the standard normal variate (SNV) [32]. Smoothing and normalisation were 

performed using the savgol and snv functions, respectively, from PLS_Toolbox 

(version 8.11, Eigenvector Research Inc., USA). 

7.3.3.2 Texture estimation 

 
7.3.3.2.1 Selection of image plane 

 
Textural analysis requires a single image plane to enable extraction of the GLCM 

properties. Since some spectral bands are noisy compared to others in HSI, the best 

image plane can be chosen on the basis of two different image quality parameters: the 

peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). 

The PSNR and SSIM were calculated with respect to the mean image plane (reference 

image), obtained from averaging the intensities of pixels along the spectral dimension. 

The PSNR can be calculated using equation (7.2):  

 

âjäK = 10	oãåBç(
<éT'PTaw

Öêë
)  (7.2) 

 

where peakval is either specified by the user or selected from a range that is dependent 

on the image datatype (e.g. 255 for a uint8 image) and MSE is the mean square error 

between the chosen image plane and the reference image. 
The SSIM [33] is based on the computation of three terms, namely the luminance term 

(l), the contrast term (c) and the structural term (s). The overall index is a multiplicative 

combination of the three terms calculated by equation (7.3): 
 

jj!g(b, ©) = 	 [o(b, ©)]T. [™(b, ©)]´. [¨(b, ©)]≠ (7.3) 

where 
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o(b, ©) =
2•F•D + ØB
•F; + •D; + Ø;

 

 

™(b, ©) =
2xFxD + Ø;
xF; + xD; + Ø;

 

 

¨(b, ©) =
xFD + Ø∞
xFxD + Ø∞

 

 

and µx and µy are the local means, and σx and σy are the standard deviations of images 

x (reference image) and y (chosen image plane), respectively, σxy is the cross-

covariance for images x and y, ±, ≤	and	≥ are exponent terms, which were set to 1, and 

C1 = (k1L)2, C2 = (k2L)2 and C3 = C2/2 where k1 = 0.01, k2 = 0.03 and L = 255. The best 

image plane was selected based on the maximum PSNR and SSIM.  

 

7.3.3.2.2 Sharpening of the image plane 

 
The raw HS images obtained had soft edges owing to the limited focus and/or low 

spatial resolution of the camera resulting in low contrast between adjacent pixel 

intensities. Therefore, the image plane was sharpened to enhance the textural details. 

The enhanced textural details obtained with sharpening should result in more accurate 

calculation of the GLCM properties. Typically, the aim of sharpening is to increase 

the contrast along the edges where different colours meet. In the present work, the 

unsharp masking technique was used to perform image sharpening. This technique 

sharpens the image by first estimating a “blurred” negative image mask from the 

original image, which is then subtracted from the original image creating an image that 

is less blurry than the original [34]. Textural analysis was then performed on the 

sharpened image via estimation of the statistical properties of the GLCM.  

 

7.3.3.2.3 Estimating GLCM properties 
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Figure 7.1:  Schematic of the window operation performed for extracting textural 

features. 

The textural information of the image has variations in the greyscale as a function of 

spatial position. Different pixels in the image share spatial relationships in terms of 

greyscale intensities, which is spatial correlation. A common method to represent the 

relationship between greyscale pixels is via GLCMs [19, 20, 21, 22, 23, 24, 25]. The 

GLCM aims to describe the textural information present in the image by defining how 

often pairs of pixels with a specific value and spatial relationship occur in an image. 

The GLCM is a square matrix whose elements represent the probabilities of a pixel 

being at a distance from another pixel with a fixed spatial relationship. These values 

of the elements represent the conditional probabilities of all pairwise combinations of 

greyscale levels in the spatial window. Statistical measures can further be applied to 

these conditional probabilities to generate the textural properties. In the present work, 

twenty different statistical measures were estimated resulting in twenty different 

textural information maps. The twenty statistical properties considered were the 

correlation, autocorrelation, contrast, cluster prominence, cluster shade, dissimilarity, 

energy, entropy, homogeneity, variance, sum average, sum variance, sum entropy, 

difference variance, difference entropy, two information measures of correlation, 

inverse moment difference, inverse difference normalised and inverse difference 

moment normalised. Further information on the use of statistical metrics for estimating 

textural properties can be found in [35, 36, 37]. In the present work, the GLCM 

estimation was performed utilising the graycomatrix command in Matlab (R2016b, 

Mathworks, USA). A square window with a size of 11 x 11 pixels2, which was moved 

over the image plane (see Figure 7.1), was used for the GLCM estimation. The window 
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size was selected based on the number of pixels required to cover the largest tea leaves, 

and was an odd number to give equal coverage of the pixels around the centre pixel. 

In this process, the greyscale intensity of the centre pixel was replaced with the 

estimated textural property of the GLCM. To make the GLCM uniform around the 

exterior area of the sample, a patch mask was defined, which included replacing the 

individual pixel intensity values by their mean intensities. Textural analysis resulted 

in the calculation of 20 image planes corresponding to the 20 statistical metrics given 

above; all 20 textural image planes were used in subsequent analysis. 

 

7.3.3.3 Feature transformation with PCA 

 
In the present work, two PCA models were built to transform the spectral and textural 

information separately. The number of principal components was selected such that 

>99% of the variance in the data was retained. The PCA decomposition was performed 

in Matlab utilising the PLS_Toolbox.  

7.3.3.4 Data fusion scheme 

 

 

Figure 7.2: Schematic for raw data-level and feature-level fusion. 

Once the 20 textural features were obtained from the data, the fusion of textural 

information with the spectral information was performed. The scheme for raw data-
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level and feature-level fusion is depicted in Figure 7.2. Raw data-level fusion was 

performed by concatenating the texture with the spectral information. In the case of 

feature-level fusion, two separate PCA models were constructed to extract the relevant 

features from the spectral and textural cubes. The extracted features were then 

concatenated before performing the classification modelling. In the case of decision-

level fusion, all the classification maps obtained from raw- and feature-level data 

fusion were used within a majority voting scheme and the final classification map was 

updated.  

7.3.3.5 Classification with support vector machines  

 
In the chemometrics domain, there are different methods to perform the classification 

of spectral features [38]. However, in the image processing domain the support vector 

machine (SVM) has gained popularity for the classification of fused spectral and 

textural information [39]. Classification of the 16 green tea products was performed 

using multi-class error correcting output code (ECOC) models containing SVM binary 

learners, using a one-versus-one coding design. High dimensional mapping of the data 

was performed using a quadratic kernel. For every green tea sample, spectra and/or 

textural information were extracted from 400 pixels, selected at random from the 

image, leading to 6400 pixels in total for the calibration of the classification models. 

The models were cross-validated with the 10-fold cross-validation method. This whole 

calibration procedure was performed with 100 iterations with the mean validation 

accuracy and standard deviation recorded. The trained classifiers were later used to 

generate the classification maps for the tea samples contained in the image, which 

comprised more than 2000 pixels per sample. The ECOC-SVM models were 

implemented in Matlab using the Statistics and Machine Learning Toolbox (R2016b). 
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7.4 Results 

 

(a)                                                               (b) 

Figure 7.3: Criteria used for selection of the best image plane on which to perform 

sharpening and textural analysis: a) SSIM and b) PSNR for all image planes in the 

range 967.11 – 1700 nm. 

Figure 7.3 presents the SSIM and PSNR obtained for each HSI image plane in the 

range 967.11 – 1700 nm. It can be seen in Figure 7.3(a), that the SSIM value was 

highest for the image plane at 1381 nm. The higher the SSIM value, the more similar 

the image of interest is to the reference image. For example, an SSIM value of one 

signifies that the image is exactly the same as the reference image, whereas, a SSIM 

value of zero indicates that there is no similarity between the image plane and the 

reference image. In Figure 7.3(b), it can be seen that the image plane at 1381 nm also 

has the highest PSNR value. A high PSNR value indicates that there is more 

information present (relative to the noise) in the image plane at 1381 nm compared to 

image planes at other wavelengths. The image plane corresponding to 1381 nm is 

presented in Figure 7.4(a). Figure 7.4(b) presents the same image plane after 

sharpening. It can be seen that before sharpening, the image plane is blurred, however, 

this is reduced after sharpening and the textural details are more evident. 
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(a)                                                                (b) 

Figure 7.4: Greyscale images produced using the image plane at 1381 nm (a) without 

and (b) with sharpening. 
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Figure 7.5: Mean classification accuracies (in percent) of the 16 green tea products 

obtained for the calibration samples (pixels) using models built with raw data and 

PCA features. In both cases, models were built using spectral information alone, 

textural information alone and fused spectral and textural information. The error bars 

denote ± 1 standard deviation (n = 100). 

Figure 7.5 presents the mean classification accuracies of the 16 green tea products 

obtained for the calibration samples (pixels) using multi-class SVM models developed 

with spectral and textural information. The accuracies are presented as the mean ± one 

standard deviation for 100 iterations. Confusion matrices showing classification 

accuracies for individual classes obtained using raw data and feature-level SVM 

models are given in Figures A4.1 and A4.2, respectively, of Annex 4. It can be seen 

from Figure 7.5 that the models built with the spectral information alone were more 

accurate than those constructed using only textural information. Combining textural 

information with spectral information resulted in an improvement in the model 

accuracy. Improvements were observed for both raw data-level fusion as well as 

feature-level fusion. The model accuracy for fusion of data at the raw level was higher 

compared than that at the feature level. It could be that the features extracted using 

PCA contain less information than the raw data. The features were selected so as to 
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retain 99% of the variance in the data whereas the raw data retains all of the 

information. and therefore, this could account for the higher accuracy of the raw data 

models. Use of supervised feature selection algorithms such as partial least squares 

discriminant analysis (PLS-DA) could improve the performance of the feature-level 

models. 

 
Figure 7.6: Classification maps for the 16 green tea products obtained from SVM 

modelling of (a). raw spectral information, (b). raw textural information, and (c). 

concatenated raw spectral and textural information. 
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Figure 7.7: Classification maps for the 16 green tea products obtained from SVM 

modelling of (a). PCA features extracted from spectral information, (b). PCA features 

extracted from textural information, and (c). concatenated PCA features from spectral 

and textural information. 

 
Figure 7.8: Classification maps for the 16 green tea products obtained from decision-

level data fusion, using a majority voting scheme, of the six classification maps 
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obtained from SVM modelling of spectral information, textural information, and 

spectral and textural information using raw data (Figure 7.6) and PCA features 

(Figure 7.7). 

 

Figure 7.6 and Figure 7.7 presents the classification maps for the 16 green tea products 

obtained from application of the raw data and feature-level SVM models, respectively, 

to the complete image. Every circular object in the classification maps is a different 

green tea sample, comprising more than 2000 pixels per sample, and the different 

colours reflect different classes. In Figure 7.6, the three classification maps were 

obtained from three different SVM models built using raw spectral data (Figure 7.6a), 

raw textural data (Figure 7.6b) and concatenated raw spectral and textural data (Figure 

7.6c). Similarly, in Figure 7.7 the three classification maps were obtained from three 

different SVM models built using the scores obtained from PCA of spectral data 

(Figure 7.7a), the scores obtained from PCA of textural data (Figure 7.7b) and the 

concatenated scores obtained from separate PCA models of spectral and textural data 

(Figure 7.7c). Figure 7.8 provides the output of a majority voting scheme performed 

on all six classification maps, i.e., three from the raw data (Figure 7.6) and three from 

the extracted features (Figure 7.7). Majority voting was performed by assigning the 

pixel value to the class that occurred most frequently in all six classification maps. It 

can be seen from visual inspection of Figures 7.6, 7.7 and 7.8 that improved 

classification maps (i.e. an increase in the number of pixels inside the circular area 

belonging to the same class) were obtained for models built using fused spectral and 

textural information. This improvement can be quantified by calculating the 

percentage of correctly classified pixels as shown in Figure 7.9. It can be seen that the 

highest values were obtained for models built using raw data-level fusion (~84%), 

followed by decision-level fusion (~83%), with the least number of correctly classified 

pixels obtained using feature-level data fusion (~78%). Fusion of spectral and textural 

information at all levels (raw, feature and decision) gave improved model accuracies 

compared to spectral or textural information alone at the relevant level (i.e. raw or 

PCA features) leading to an improvement in the classification maps. These results are 

consistent with HSI studies of meat products [20, 21, 23, 24, 25] where improved 
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classification or property prediction was obtained with models built using both spectral 

and textural information. 

 

 

 
Figure 7.9: Percentage of pixels correctly identified in the classification maps for the 

16 green tea products obtained using six different SVM models and decision-level 

fusion by majority voting. 

7.5 Conclusions 

 
The spectral and spatial domains of HSI generate complementary information, and 

synergistic processing of the information can lead to enhanced classification model 

accuracies and improved classification maps. The present work fused spectral and 

textural data at three different levels to demonstrate the usefulness of textural 

information in HSI for classification of green teas. The highest classification accuracy 

(97.30 ± 0.12% for the calibration samples) was obtained using the raw data-level 

fusion, which was superior to that obtained for feature-level data fusion. In this case, 

feature extraction resulted in information loss. However, use of supervised feature 

selection methods, such as PLS-DA, could improve the performance of the feature-

level models. Decision-level fusion provided classification maps of comparable 

quality to those obtained using raw data-level fusion. In conclusion, the extracted 
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textural information is always complementary as it can support the development of 

enhanced understanding of the samples and further model improvement. However, it 

should be noted that the decision to use the textural information in data modelling has 

to be based on the samples imaged, as samples with high textural information can 

contribute positively to model improvement whereas model with no such textural 

details will merely increase the computation load. Therefore, the methodology 

developed will be useful in the assessment of a variety of food products (e.g., tea, 

spices, meat and fruit) where consideration of both spectral and textural information 

is required for, e.g., quality control and counterfeit detection.  
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Chapter 8 : Conclusions and future work 
 
8.1 Conclusions 

 
Tea product analysis is of key importance to different industries working in the field 

of tea processing, procurement, packaging and marketing for product quality control. 

At present, tea analysis is largely limited to the ‘tea taster’ which can be categorised 

as slow, costly and subjectively biased. Further, the number of samples to be analysed 

by tea tasters is limited and therefore cannot be used as an on-line tool for an automated 

high-throughput scenario. Further, in an industrial scenario there is a need for rapid 

fast and non-destructive sensors which can support this assessment and to some extent 

can replace the different high-end techniques such as HPLC, GCMS which are used 

to perform this task. The NIR-HSI in particular can support in non-destructive real 

time prediction of different chemical constituents such as caffeine, polyphenols, Gallic 

acid, epigallocatechin, theobromine, Theaflavin, moisture, amino acids and Lignin. 

However, the main motivation is to have a technique which can provide rapid and cost-

effective analysis of tea products as this can support on-line analysis of tea products 

and processes. Keeping this as the motivation, the 1st chapter of the thesis explored 

the literature for the possibility of utilising NIRS and HSI by identifying some most 

recent applications of NIRS for analysing tea products. Learnings from the 1st chapter 

include the understanding of the assessment of tea products based on both physical 

quality and chemical assessment, which define the taste profile for the tea. The 

literature survey showed an increased interest in the use of rapid non-destructive 

sensors such as NIR point spectroscopy for chemical assessment of tea processes and 

products. For physical assessment, there are increasing applications of RGB imaging 

for assessment of shape, size and texture of tea products to explain the physical quality. 

However, the literature reviewed showed that a combination of imaging and 

spectroscopy, i.e., HSI is still emerging for analysis of tea products and processes. 

Further, not only for tea but in general in recent years, HSI has emerged as a potential 

tool for the rapid non-contact assessment of food products. There is also growing 

interest in utilising HSI for the on-line monitoring of food products and processes. 

However, there are different challenges related to utilising HSI as an on-line 

monitoring tool and these are mainly related to the handling and processing of the data 
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generated by HSI. These challenges need to be dealt with also in the case for utilising 

HSI for assessment of tea product and processes. Further, the implementation of HSI 

for a high-throughput application can be understood in two ways, the first is as a 

continuous monitoring tool which generate a continuous stream of data and the second 

is the implementation to HSI for discrete image acquisition for example monitoring 

agricultural plants every day for phenotyping related applications. The methodologies 

presented in the work are more adaptable to the discrete HSI data compared to online 

monitoring tasks.  

 

The main focus of the research after the learnings from chapter 1 was to utilise NIR 

HSI for non-destructive assessment of tea products and to deal with different 

challenges associated with processing and handling of the data. Chapter 2 and 3 dealt 

mainly with analysing tea products, where the research showed that utilising NIR for 

classification of different tea products is possible and HSI can be moved forward as a 

potential tool for on-line assessment of tea products. Particularly, in chapter 2 

experiments relating to the classification of commercial tea products were carried out.  

NIRS data is multivariate and therefore visualising its structure directly is not possible. 

In chapter 2, different linear and non-linear neighbourhood-based data visualisation 

techniques were compared to traditional PCA, showing an improvement in 

performance for visualising NIR data. The better performance of neighbourhood 

methods was based on the fact the when there are multiple classes in the data with 

small and high variances, then visualising all the classes together inside a single PCA 

will try to separate the classes with maximum variance where the small variance 

classes will be forced to lie next to each other. In such a case, the method which can 

consider the neighbourhood information can benefit by improving the data 

visualisation by separating even the low variance classes. Learnings from chapter 2 

led the way to chapter 3, where more complex samples, comprising only green tea 

products, were analysed. In chapter 3, the task was more complex because all the green 

tea products have very similar tea profiles. However, SVM modelling supported the 

classification of green tea products based on individual products, and countries and 

continents of origin. It is to be kept in mind, that the samples analysed in the analysis 

was a subset of samples provided by Unilever, Colworth Park, UK. A study performed 
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on such a small set cannot be directly translated to broader samples and for that 

purpose there is a need to perform such a study on a large number of samples 

considering global variability. Further, in chapter 3, different wavelength selection 

methods (sequential and filter based) were used to identify the subset of wavelengths 

that were important for maintaining the classification accuracy while reducing the 

number of variables required to perform the modelling.  

 

After developing the learning on the potential of NIR HSI for tea products analysis in 

chapter 2 and chapter 3, the next stage was to consider implementation of HSI in a 

real-world industrial scenario for tea products analysis. The challenges associated with 

implementation mainly relate to data processing and handling. Chapters 4 – 7 consider 

these challenges and deal with them one after another based on the complexity of the 

challenges. The first challenge was related to the size of the HS image and their storage 

for the long term. Typically, HSI cameras record the images in binary format and 

therefore the size of the images is directly proportional to the spatial and spectral 

dimension of the images. In chapter 4 to deal with it, a method for HS image 

compression based on the decomposition of spatial and spectral information is 

presented. The method utilises the 2D-DWT for preconditioning of the HS image and 

later utilising the variance-based method to perform the decomposition of the HS 

image into a set of matrices. The methods can help to store individual images by 

storing them in the form of decomposed information, which can be reconstructed later 

to perform the analysis. Such a method is of high use where a large number of 

individual HS images are generated and the storage of them is needed for future recall 

or reference and most recently for developing deep learning-based models.  

 

The second major challenge related to the implementation of HSI for automated 

continuous application was to deal with the pre-processing of raw hyperspectral cubes. 

HSI cameras due to various internal and externals factors sometimes provide a 

measurement which is accompanied by noise. To deal with such types of noises, in 

chapter 5, a method for automatically pre-processing the HS images is presented. The 

automatic method benefited over the traditional methods used in the chemometrics 

domain for pre-processing of images such as SAVGOL and median filtering. Further, 
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the automatic method does not require the user to check each and every image for 

noise and decide on how to correct the images and can support the on-line 

implementation of HSI. However, the method presented in chapter 5 can only deal 

with Gaussian and spiked noise, and a combination of the two. The method cannot be 

used to de-noise dead striped lines. The need to find a de-noising method that can be 

used with a wide variety of different types of noise, including dead striped lines, laid 

the foundation for chapter 6. In chapter 6, a method based on the total variation model 

is presented. The results showed that the total variation-based method can deal also 

with the dead stripped lines and can be used as a general method for automatic de-

nosing. Chapter 5 also shows that to perform the classification of 6 different tea 

products used in the chapter 2, the VNIR system can provide a classification accuracy 

of 87 %. The VNIR system are sometimes a preferred choice over the NIR systems 

because of the cheap systems available for imaging in VNIR spectral range. However, 

the NIR range has the benefit of accessing the chemical information present in the 

samples as the NIR spectra reflects overtones and combinations of the fundamental 

vibration of chemical bonds.  

 

The final challenge related to utilising HSI and in particular for tea analysis was 

extracting and utilising the physical information about the samples and to use it for 

improved modelling. Tea samples of different grades and geographical origin possess 

different physical properties in terms of shape and size. Such tea samples when viewed 

in bulk with imaging exhibit different textures which is distinct for a particular sample. 

Distinct textural information from individual tea samples can be used to support the 

classification models which are solely based on NIR information. Texture extraction 

from HS images laid the foundation for chapter 7, where a methodology based on 

GLCM is presented for extracting textural information. The methodology showed that 

the extracted texture from the HSI can be combined with the NIR information via data 

fusion, which can finally lead to improved classification accuracies.  

 

In summary, the study concludes that HSI can be a potential tool for non-destructive 

assessment of tea product and processes. Further, to automate the HSI for an industrial 

scenario study presented automated pre-processing, compression and texture fusion 
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methodology which in this study were used with the HSI images of tea products can 

be extended/modified based on application areas. A complete list of all the outputs 

generated in this study can be referred to in Annex 5.   

 

8.2 Suggestions for future work 

The work presented on the assessment of tea products is in its very initial stage. There 

are a large number of opportunities related to developing NIR HSI as a tool for 

assessment of tea products. Of particular interest is to work directly in conjunction 

with the industries to deal directly with the real case scenario. The models and methods 

related to tea product analysis generated in this work were limited to the number of 

samples and cannot be directly translated to an industry scenario. Implementing HSI 

for tea analysis into an industrial scenario will require training new models based in 

new samples, however, the similar schemes presented in this work can be followed. 

The implementation for HSI for an industrial conveyor belt scenario will also include 

examining the thickness of tea leaves and the penetration depth of the radiation. Also, 

it will include exploring strategies for removing the background material if it effect 

the imaged signal for the tea product.  

In the present work, HSI was used as a tool to perform classification of tea products, 

however, in future work HSI can be used as a tool for performing quantification of 

chemical constituents by use of image regression methods. The non-destructive 

chemical quantification can especially support the monitoring of the tea fermentation 

process, which is a solid-state fermentation process involving enzymatic oxidation of 

chopped fresh tea leaves. In that case, predicting the concentration of key analytes can 

help to monitor and optimise the process to obtain the best quality tea products. In that 

case, the classification models developed in this work will not be valid but new 

regression models based on new samples can be trained. 

In future work, there are also opportunities to link the sensory properties of the tea 

products judged by the ‘Tea Taster’ with that of the NIR data through HSI. In that 

case, new regression models involving modelling between NIR and tea taste scores as 

reference are needed to be developed. Most commonly, the industries deal mainly with 

the three tea products i.e. green, black and oolong tea products as also covered in this 
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work. However, the work related to HSI can be extended to different tea products 

which come from the processing of fresh leaves of camellia sinensis plants.  

In future, there are opportunities to perform system integration utilising HSI as a 

complete solution for an automated industrial use case scenario for tea products 

assessment. The integrated system can have its own software system for automatic 

acquisition, handling and processing of data based on the methodologies presented in 

this work.  

Apart from the application based on the tea, the different data processing 

methodologies presented in this work for dealing with the HS data can have the broad 

range of applications where the HSI can be implemented as a continuous monitoring 

tool. Finally, there is an increasing interest from tea industry side requiring miniature 

sensors which can be used directly in the tea auctions before purchasing the tea 

products to access the quality of tea products in real-time for making effective 

decisions regarding the purchase. In such cases, the miniature NIR sensor such as 

microNIR from Viavi Solutions, DLP NIR from Texas Instrument can be explored. 

Further, there is an open door for application of portable miniature handheld HSI 

cameras if they appear in the market in the coming years like the specim IQ which 

work in VNIR range. 

Related to the data processing methodologies presented in the work, the future work 

can be related to developing a methodology which combines the de-noising and 

compression step. Such a methodology will make the two-step process to a single step 

which can lead to time-saving while performing continuous measurements. 

Furthermore, for a real-case industrial scenario integrating these methodologies to the 

pipeline can also be foreseen as a future direction of work. 

In conclusion, utilising the HSI as a continuous monitoring tool is in its initial stage 

and many future opportunities exist for making it a day to day usable technology in an 

industrial case scenario.  
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Annex 1  
 

 
 
Figure A1.1: Standard deviation for spectra of individual tea products. 
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Figure A1.2: PC1 and PC2 for the PCA performed an compared with other data 
visualisation tools. 
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Annex 2 
 

 
Figure A2.1: Principal component scores (PC1 v PC2) for visualising data based on 
continent of origin 
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Figure A2.2: Principal component scores (PC1 v PC3) for visualising data based on 
continent of origin. 
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Figure A2.3: Principal component scores (PC1 v PC4) for visualising data based on 
continent of origin. 
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Figure A2.4: Principal component scores (PC1 v PC5) for visualising data based on 
continent of origin. 
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Figure A2.5: Principal component scores (PC1 v PC6) for visualising data based on 
continent of origin. 
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Figure A2.6: Principal component scores (PC1 v PC7) for visualising data based on 
continent of origin. 
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Confusion matrix plot for SVM models:  

 

 

 
Figure A2.7: Confusion matrix for SVM model developed for classification of tea 

samples on the basis of continent of origin (4 classes).  
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Figure A2.8: Confusion matrix for SVM model developed for classification of tea 

samples on the basis of country of origin (7 classes). 
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Figure A2.9: Confusion matrix for SVM model developed for classification of tea 

samples on the basis of product (16 classes). 
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Figure A2.10: Principal component scores (PC1 v PC2) for visualising data based 
on continent of origin 
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Annex 3 

 
Figure A3.1: Principal component scores (PC1 v PC2) for visualising data based on continent of origin 
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Table A3.1: Time spent in running each algorithm for denoising.  

 
Method Gaussian noise 

(Savgol) 
Gaussian noise 
(Median filtering) 

Gaussian noise 
(Shearlet) 

Mixed noise 
(Savgol) 

Mixed noise 
(Median filtering) 

Mixed noise 
(Shearlet) 

Time required 
(Seconds) 

0.08 0.16 23.43 0.20 0.33 23.35 
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Annex 4 
 

            
 

   

(a)                      (b)                              (c) 

Figure A4.1: Confusion matrix for (a). Classification based on NIR spectral data, (b) Classification based on textural information and (c) 
Classification based on concatenated NIR spectral and textural data. 
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(a) (b) (c) 

Figure A4.2: Confusion matrix for (a). Classification based on PCA features from NIR spectral data, (b) Classification based on PCA 
features from textural information and (c) Classification based on concatenated PCA features from NIR spectral and textural data. 
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support evidence-based risk assessment for food safety, traceability and authenticity. 
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Naantali, Finland, 19-22 June 2017, Visualizing hyperspectral data with linear and 

non-linear dimensionality reduction methods 
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Germany, held during 10-12 May 2017, Nondestructive analysis of vegetable oils 
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Award and achievements  
 

• CPACT’s Malcolm McIvor award 2018, Glasgow, United Kingdom 

• Accepted and funded proposal for European Researchers Night 2018, 

Brussels, Belgium 

• Early stage researcher award from European Food Safety Authority (EFSA) 

2018, Parma, Italy 

• Accepted and funded proposal for participation in Falling Walls Lab 2017, 
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Secondments and industrial trainings 

 
4-15 September 2017 

Unilever, Sharnbrook, United Kingdom 

• Introduction to tea products analysis 

• Methodologies for tea products analysis 

• Visit to green houses 

• Introduction to tea processing 

 

 

4 June-19 October 2018 

Unilever, Sharnbrook, United Kingdom 

• Tea products analysis with NIR sensors 

• Chemometric modelling for predicting chemical constituents 

 

5-16 November 2018 
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Bayer AG, Leverkusen, Germany 

• Analysis of hyperspectral images from a continuous line for assessment of 

drought studies in plants 

• Exploring automatic hyperspectral imaging facilities at Bayer AG 

 

14 January – 15 February 2019 

Bayer AG, Leverkusen, Germany 

• Analysis hyperspectral images from a continuous line for assessment of 

drought studies in plants from automatic phenotyping platforms 

• Exploring automatic hyperspectral imaging facilities at Bayer Crop science in 

Frankfurt, Germany 

• Developing pipeline for hyperspectral images processing


