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Abstract 

This thesis describes practical learning systems able to model unknown nonlinear dynamic 

processes from their observed input-output behaviour. Local Model Networks use a number of 

simple, locally accurate models to represent a globally complex process, and provide a powerful, 

flexible framework for the integration of different model structures and learning algorithms. 

A major difficulty with Local Model Nets is the optimisation of the model structure. A novel 

Multi-Resolution Constructive (MRC) structure identification algorithm for local model net­

works is developed. The algorithm gradually adds to the model structure by searching for 

'complexity' at ever decreasing scales of 'locality'. Reliable error estimates are useful during 

development and use of models. New methods are described which use the local basis function 

structure to provide interpolated state-dependent estimates of model accuracy. Active learning 

methods which automatically construct a training set for a given Local Model structure are 

developed, letting the training set grow in step with the model structure - the learning system 

'explores' its data set looking for useful information. 

Local Learning methods developed in this work are explicitly linked to the local nature of 

the basis functions and provide a more computationally efficient method, more interpretable 

models and, due to the poor conditioning of the parameter estimation problem, often lead 

to an improvement in generalisation, compared to global optimisation methods. Important 

side-effects of normalisation of the basis functions are examined. 

A new hierarchical t:.<tension of Local Model Nets is presented: the Learning Hierarchy of 

Models (LHM), where local models can be sub-networks, leading to a tree-like hierarchy of 

softly interpolated local models. Constructive model structure identification algorithms are 

described, and the advantages of hierarchical 'divide-and-conquer' methods for modelling, es­

pecially in high dimensional spaces are discussed. 

The structures and algorithms are illustrated using several synthetic examples of nonlinear 

multivariable systems (dynamic and static), and applied to real world examples. Two nonlinear 

dynamic applications are described: predicting the strip thickness in an aluminium rolling mill 

from observed process data, and modelling robot actuator nonlinearities from measured data. 

The Local Model Nets reliably constructed models which provided the best results to date on 
the Rolling Mill application. 
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Chapter 1 

Learning Systems for Empirical 

Modelling 

1.1 Learning 

The ability to interact with the environment and to learn from the effects of these interactions is 

one of the defining features of intelligence. A system with the ability to learn from observation 

thus compensates for an initial lack of a priori knowledge about its given task. Such flexibility 

is becoming increasingly important in automatic systems, as the physical, technological and 

economical environments in which systems are operating are changing faster than ever before. 

Higher levels of autonomous action are desired from our robots, washing machines, cars and 

computers. Improved flexibility and adaptability is a major asset, whether the adaptability is 

in the product development process, or in the products themselves. 

This thesis targets the task of modelling complex nonlinear, dynamic processes by allowing 

models to learn from the processes' observed behaviour. A goal of the work .vas to develop 

methods which not only had the required performance, but were also relatively interpretable, to 

support validation of models, and able to integrate models and methods from other paradigms. 

The introduction of explicit a priori knowledge about the target process is also an important 

element of applied learning systems. 

Obtaining an accurate computer-based model of the physical process is the first step towards 

the creation of high performance diagnosis systems, supervisory systems, controllers and filters. 

In many practical systems, however, the process is still poorly understood, or new variations 

of the system are being constantly created, leading to a slightly different problem each time a 

controller is to be developed. The ability to use learning systems to cope with the uncertainties 

would allow developers to produce high performance systems faster and more cheaply than with 
conventional techniques. 

1 
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The intuitive concept of 'learning' can be interpreted in a number of ways when trying to 

emulate it on a machine: 

A typical dictionary definition of learning is: 

• 1. to gain knowledge of something or acquire skill in some art or practice, 2. 

to commit to memory, 3. to gain by experience, example etc., 4. to become 

informed. 

Other definitions from the researchers investigating machine learning include: 

• Learning systems belong to the class of systems which show a gradual im­

provement of performance due to the improvement of the estimated unknown 

information (Fu, 1970). 

• Learning is optimisation under conditions of insufficient a priori information 

(Tsypkin, 1971). 

• Learning is the process by which one entity acquires knowledge (Rich, 1988). 

• Learning can be regarded as synthesising an approximation of a multi-dimensional 

function, that is solving the problem of hypersurface reconstruction 

(Poggio and Girosi, 1990). 

• ... modifying patterns of behaviour on the basis of past experience so as to 

achieve specific anti-entropic ends. In these higher forms of communicative 

organisms the environment, considered as the past experience of the individual, 

can modify the pattern of behaviour into one which in some sense or other will 

deal more effectively with the future environment (Wiener, 1948). 

• Behaviour is primarily adaptation to the environment under sensory guidance. 

It takes the organism away from harmful events and toward favourable ones, 

or introduces changes in the immediate environment that make survival more 

likely (Hebb, 1949). 

This work develops learning algorithms and model structures which gain knowledge about 

a process from observed input-output example by synthesising a suitable non-linear multi­

dimensional function to fit the training data. 

1.2 Learning & Engineering - Where is the Engineering? 

Much research in recent years has been carried out within the artificial neural network paradigm, 

using simplified formal models of physiological systems. The neural network research in empir­

ical modelling has been very experimentally oriented, so the learning algorithms and structures 
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o 
o 

How many units in net? 

Can we use a priori knowledge? 

Which inputs, what system order? 

Data pre-processing? 

Is the training set adequate? 

Is the trained network reliable? 

3 

Figure 1.1: The trouble with neural nets for engineering ... An engineer faces a number of 
difficult design decisions when using neural networks in practical projects. 

which have become popular in this community have been successfully applied to a variety of 

challenging applications. However, few workers in the area have analysed the deeper theor­

etical issues, or exploited results and experience from closely related fields such as function 

approximation, system identification or statistics. This ignores decades of relevant work, and 

has made the scientific output less accessible to a broader community, leading to criticism of 

the neural network area by scientists and engineers from other fields. 

The lack of a theoretical approach to the work has, unfortunately, also had the consequence that 

there is no clearly defined engineering process in which a model can reliably be created from 

measurements taken from a physical system, as shown in Figure 1.1. The impressive results 

quoted in the literature usually come after months of 'tweaking' the parameters of learning 

algorithms, implicitly using a priori knowledge by pre-processing the data, and in selective 

testing of the trained system. The length of time taken for training is often prohibitive, often 

without the guarantee of an optimal solution. 

The difficulty in determining whether a good solution has been found stems from the fact that 

most networks need to have their structure initialised in advance using guesswork, with little 

guarantee against over-fitting the data, or under-specifying the model structure. It is vital for 

the successful application of the ideas, that robust (in terms of reliably finding a good model 

which generalises well to new inputs) learning algorithms be developed which can adaptively 

find a parsimonious model structure and optimise its parameters to fit a given problem and 
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training set. 

The problems for learning systems in industry are not, however, limited to poor learning 

algorithms. The creation of a training set for a nonlinear, multi-variable dynamic system can 

be an extremely complex task. The data acquisition process may also be very expensive, time­

consuming, costly, and in some cases dangerous (if you don't already have a good controller) 

and time-consuming. It is also possible to unwittingly include undesired side-effects in the data 

specific to a particular run/day/setting which limit the usefulness of the final model. 

A further problem with much of the current reported research is that the methods used to 

evaluate performance of the trained system are usually too simplistic. The reliability of the 

resulting model is also usually not clearly understood, partially because of the poor inter­

pretability of the model architectures. In the conventional neural networks it is often difficult 

to introduce a priori knowledge. This is highly important in practical applications, where 

there is usually a great deal of such knowledge available about the system in question. In 

most publications, the creation of the training set is implicitly affected by a priori knowledge 

about the system, and certain architectures may be more suited to certain system types. The 

assumption underlying the research here is that it is very important that prior knowledge can 

be explicitly built in to the system's architecture and optimisation algorithms. Methods to do 

this have been described, but are still not present in much of the current research. This work 

attempts to bring these various facets together within a single framework. 

1.3 Thesis Contributions 

The methods described in this thesis have been chosen for their suitability for integration with 

conventional engineering techniques, as well as their powerful representations and learning 

algorithms. The resulting interpretability and robustness with respect to sparse or noisy data 

was also an important aspect of the work . 

• The Local Model Network, an existing generalisation of Basis Function 1 networks is ana­

lysed, and the theoretical and practical suitability of the architecture for practical model­

ling applications is demonstrated. The Local Model framework allows the integration of 

a priori knowledge, is more transparent than other architectures, and by pre-structuring 

the model structure, can better cope with high-dimensional, or high order processes . 

• It was found that the commonly used global parameter optimisation in Local Model 

networks is computationally expensive, and in some cases poorly conditioned. A new 

Local Learning algorithm for the optimisation of the parameters in a local model net has 

been developed. This is significantly faster, produces more interpretable models and can 

have a regularisation effect on the optimisation process producing models with a better 
generalisation ability. 

1 Networks consisting of a single nonlinear layer, linearly weighted to the output, as described in Section 2.3.1. 
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• Locally interpolated error estimates for Basis Function and Local Model networks are 

developed. These produce state-dependent error estimates for a trained local model net­

work, which help validate the trained model, and can be used by constructive algorithms, 

or on-line when the model is in use. 

• The effect of normalisation of the basis functions in Local model and Basis Function 

networks is analysed. Side-effects are described which reduce the interpretability, and 

have serious effects on the smoothness and robustness of the final model. 

• The new Multi-Resolution Constructive (MRC) structure identification algorithm for 

local model nets is developed. This automatically fits the model structure (number, 

location and size of the basis functions, and the complexity of the local models) to the 

available training dat~. The algorithm uses a 'complexity heuristic' to gradually improve 

the model's structure. 

• The local model network is extended to a hierarchy of local model networks - the Learning 

Hierarchy of Models (LHM) architecture. Parameter optimisation and structure identi­

fication algorithms are described which utilise the hierarchical nature of the structure to 

make learning more efficient. 

• The algorithms and model structures are applied to model data from a real industrial 

process - an aluminium rolling mill. The algorithms performed better than competing 

learning systems such as MARS (Friedman, 1991), and Multi-Layer Perceptrons2 , and it 

is intended to implement the model in o~.-line tests. A further example, modelling robot 

actuator dynamics is also analysed. 

1.4 Thesis Structure 

• Chapter 2 is a review of the existing empirical modelling theory. The empirical modelling 

process is introduced and the importance of the various stages discussed: Experiment 

design, construction of a suitable representation, optimisation of the parameters and val­

idation of the trained models are all vital stages, and the lack of support for these phases 

from conventional neural networks is criticised. The Local Model network architecture is 

reviewed and its suitability as a network for practical modelling applications discussed, 

as is the use of hierarchical learning structures. An overview of related work and theory 

is given. 

• Chapter 3 investigates several aspects of local model networks. The problems with ill­
conditioning of the parameter estimation problem in local model nets are analysed and 

a new local learning algorithm is described which is faster and in noisy or sparsely 

2See Section 2.1.4. 
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populated problems can be more robust than global methods. The trade-off between 

global and local training methods is discussed. 

A flexible, straightforward extension to local model nets is given which allows inter­

polation of local estimates of accuracy to provide a state-dependent error statistic for a 

trained network. 

The effect of normalisation of the basis functions on the network's representational prop­

erties is analysed. Several side-effects other than the desired partition of unity are de­

scribed which can have serious consequences for the interpretability and robustness of 

basis function networks. 

• In Chapter 4 the new MRC algorithm for constructive creation of Local Model Basis 

Function Nets is described. This development iteratively allocates units to the areas 

of greatest complexity in the system. This is repeated at ever increasing resolution of 

complexity, gradually creating an ever more accurate model, given the limitations of the 

available training data. 

Constructive techniques for active selection of the most important training data from a 

large training set are given. This allows the learning system to maintain the training 

set at the size and completeness needed for a given model structure. The strengths and 

weaknesses of the methods developed in this chapter are illustrated using several artificial 

static and dynamic modelling tasks. 

• Chapter 5 introduces the Learning Hierarchy of Models architecture. This can be viewed 

as a hierarchical local model net structure. The advantage of this structure is that more 

efficient models can be produced, and that the hierarchical nature of the structure allows 

more efficient learning algorithms, especially for high-dimensional problems. Parameter 

optimisation algorithms and structure identification algorithms are defined. The confid­

ence estimation and active learning components described in previous chapters for local 

model nets are extended to the LHM architecture. 

• Chapter 6 demonstrates the practical application of the new methods with the modelling 

aspects of an aluminium rolling mill. The local model and LHM architectures were 

successfully applied to model the output thickness deviation of the strip, given the current 

state of the system. 

A further example, the modelling of robot actuator nonlinearities, is given. The res­

ults are compared with three other methods, MARS, ASMOD (Kavli, 1992) and LSA 

(Johansen and Foss, 1994b). 

• Chapter 7 summarises and discusses the significance of the results and analysis in the 
thesis. 



Chapter 2 

Methods for training models 

The scope of the use of learning techniques for empirical modelling in this thesis is 

outlined, and the classes of learning systems are described in general terms. The 

various research paradigms associated with machine learning are reviewed, with 

special attention paid to the practical problems with artificial neural networks in 

an engineering environment. To clarify the requirements of a learning framework 

for modelling, the modelling process is analysed, each phase of which is then as­

sociated with desirable features in a learning system. The Local Model Network, 

a generalisation of Basis Function nets, is proposed as an architecture suited to 

real applications. It provides the ability to introduce a priori knowledge and model 

complex systems robustly, while allowing estimates of accuracy and enhancing the 

training set. The relevant literature is reviewed and the close connections to con­

ventional statistical methods, system identification and fuzzy logic are emphasised. 

2.1 Using Learning Techniques for Empirical Modelling 

The 'modelling problem' as discussed here is to try to robustly approximate the behaviour 

of a given complex system from observation data, where complex implies that the system 

can be non-linear, time-invariant, multi-variable and dynamic. This can be interpreted as a 

learning task, where the learning system has to learn a suitable representation for the process 

in question. The model should obviously be a good representation of the target system, for 

the purposes intended of it, but in an industrial or scientific environment it should ideally 

also be interpretable, so that the engineer gains improved understanding about the system. 

The learning systems used in this thesis can therefore be viewed as computationally intensive 

tools which are used to support the modelling process by attempting to induce a parsimonious 

representation of the process from the behaviour described by the observed input-output data. 

The basic assumption underlying the use of learning systems for modelling purposes is therefore 

7 



CHAPTER 2. METHODS FOR TRAINING MODELS 8 

that the behaviour of the process can be described in terms of its observed inputs (1/J) and 

outputs (y). The process can therefore be modelled as a function f(1/J) of the inputs 1/J, i.e. 

y = f( 1/J), subject to a measurement error e, so that the true outputs are 

y = f(1/J) + e. (2.1) 

Such methods are basically black-box modelling techniques, i.e. techniques which attempt to 

describe a system by finding relationships between the system's inputs, internal states and out­

puts using general model structures (f( 1/J) performs a nonlinear mapping from n dimensional 

inputs to m dimensional outputs, nn -+ nm) to represent a fit to the given data, irrespective 

of physical meaning of the parameters. 

1(1/') 
1/' rtget Sysrem I 

y 

Input 

1 
~ Output 

Rn Rm 

System's 
Behaviour 

Figure 2.1: Systems can often be described by their input-output behaviour 

In practice it will usually be impossible to find an absolutely correct representation of the 

underlying process because of the effects of unmeasured inputs and states, which can be gen­

eralised to be treated as noise on the data, leading to the need to use a stochastic framework 

for the modelling process. It will also be rare for the training data to be uniformly distributed 

around the input space, and there may be areas with insufficient data available for a good 

approximation. This uncertainty means that there is no general method which can be applied 

to all modelling problems. To reduce the effect of the uncertainty in the data, constraints on 

the form of the possible solutions must be used. Such constraints are basically any existing 

knowledge about the process, or its environment. The framework should therefore be able 

to include such knowledge wherever possible. If a priori knowledge of model structures or 

parameters is included in the estimation process, the model can be called a grey-box model. 

The task for the tools developed in this thesis is therefore to support the process 

Observed Data + A priori Knowledge -+ Model 

as well as possible. 

2.1.1 Empirical models of dynamic systems 

Any real physical system's reactions to a given input are not likely to be instantaneous, and 

will depend on previous inputs.· We are therefore dealing with dynamic systems, which are 
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processes described by difference or differential equations, where the current output of the 

system depends not only on the current external stimuli, but also on previous stimuli and 

internal states. This brings a new dimension to the modelling process, as the optimal sampling 

rate of the unknown system must be estimated, the order of the system must be taken into 

account, and the model's dynamics must be validated. To represent the dynamic aspects of the 

system, it is necessary to have memory elements to store past inputs and model states which 

are passed to a static nonlinear model. 

Most of the work in this thesis is based on the assumption that the process can be represented by 

a non-linear auto-regressive model with exogenous inputs (NARX) over the whole operation 

envelope. As the implementation of the learning system will be on a digital computer, we 

consider discrete-time non-linear systems having the general form 

y(t) = f(y(t - 1), .. . y(t - nil), u(t - k), ... u(t - k - nu)) + e(t). (2.2) 

Here, y(t) is the system output, and u(t) the input. The analysis is limited to multiple-input 

single-output (MISO) systems so that y(t) EYe nand u(t) E U C nn i 
... Here k represents 

a time delay. The information vector passed to the nonlinear model is therefore defined as 

",(t -1) = [y(t - 1), .. . y(t - nil)' u(t - k), ... u(t - k - nu)f (2.3) 

or, if a zero-mean disturbance term e(t) is to be taken into account on-line, the widely stud­

ied NARMAX (Non-linear ARMAX) framework (Leontaritis and Billings, 1985) from system 

identification can be used, 

",(t - 1) = [y(t - 1), ... y(t - nil)' u(t - k), .. . u(t - k - nul, e(t - 1), ... e(t - ne)]T, (2.4) 

where e(t) E E C n. 
u (t) 

~ yet) 

::=::::::l 

Figure 2.2: Using a tapped delay line (the T's represent delay elements) and static neural net 

to represent nonlinear dynamic systems. 
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The NARX, or tapped delay line approach (see the graphical representation of equation (2.2) 

in Figure 2.2) is fairly pragmatic, as it brings the neural network into the world of conventional 

system identification theory, where the static neural net can be viewed simply as a technique 

for function approximation. One disadvantage is that the input dimension becomes very large 

for even simple systems. Also, if the sampling rate has been correctly set, the data from a 

dynamic system will be highly correlated on the delayed inputs from the output state - i.e. it 

is impossible for the data to fill the input space, as shown in Figure 2.3, which shows a slice 

through the input space of the rolling mill data discussed in Chapter 6. This can have serious 

26.9r--...--...--...--...--...--...--...--...----, 
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Figure 2.3: A slice through the input space of the rolling mill's training set, showing a variable 
plotted against the delayed version of itself. 

consequences for some learning algorithms, and model structures. If the model structure is 

such that the nonlinearity results from partitions which are orthogonal to the axes of the input 

space (an underlying assumption in learning systems such as MARS, ASMOD, ABBMOD, 

ID3), the model will be less suited to modelling such dynamic processes than an algorithm 

which can partition the input space more freely, e.g. by placing basis functions on data points 

from the training set, or by allowing axis-oblique partitions of the input space. 

An alternative to an externai tapped delay line is to have memory and feedback within the 

network itself, where the dynamics are learned by the network. Such recurrent networks, 

which contain local internal feedback connections have received a great deal of attention in 

the literature (see, for example (Hopfield, 1984, Zbikowski, 1994)). These networks are math­

ematically elegant structures which are, however, often more difficult to understand and train 

than static networks for practical problems. The local model network mixed order systems 

described in Section 2.5.4 are less susceptible to the dimensionality problems inherent to the 

NARX representation. 

A further alternative to the NARX representation is to pass the derivatives of the variables to 

the model, which makes the data distribution more even and reduces the conditioning problems 
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often caused by the highly correlated inputs found in the training data for NARX systems. 

Because of the sensitivity of such systems to noise, it is important to filter the data beforehand. 

2.1.2 Classes of learning systems 

As can be seen from the wide variety of definitions in Section 1.1, machine learning can be 

studied from a number of widely differing viewpoints. This is largely because the use of 

observed data to provide the information needed to better fulfil a given goal, whether on-line, 

or off-line, is a major aspect of almost all areas of science and engineering. This makes it 

important to try and describe the basic features of learning systems in as general a form as 

possible, so that the various branches of research can be more easily integrated. The systems 

shown in Figures 2.4-2.6 describe the range of learning ability for automatic model creation. 

Systems which cannot learn 

Engineer's knowledge 

(a) Input Fixed System Output 

Figure 2.4: System without learning ability - behaviour is pre-programmed 

System (a) is the traditional method of solving a problem. The problem is analysed, de­

composed into subsystems, and an explicit solution is developed by human engineers using 

their knowledge of the problem, its constraints and its environment (note that much of this 

knowledge is however based on earlier empirical work). The resulting program/expert sys­

tem/controller/classifier is then tested with experimental data and put into use. No automatic 

learning is used in the development, making the development process sensitive to changes in 

the environment, the system or the development goals. 

Systems which can be trained 

.. ...I Teacher I 
I I~ 

l 
(b) Input -'" Learning .. .. 

System 
Output 

Figure 2.5: Supervised learning system 
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System (b) is a supervised learning system. The machine's task is therefore described by the 

'teacher' using examples of what should be done, rather than instructions about how to do it, 

and criteria for the evaluation of the learning system's performance, compared to the output 

the 'teacher' expected. The learning system then learns the optimal mapping from input to 

output with the help of an external 'teacher'. The task of adjusting the learning system's 

parameters and structure to achieve this is not a trivial matter. For any learning structure the 

optimisation task usually becomes more difficult, the more flexible the representation used.1 

Systems which can self-organise 

~ 
(c) Input .. I Goals, Cost I .. 

.... Function r Output 
Learning System 

Figure 2.6: Self-organising system 

System (c) is an unsupervised learning or self-organising system. There is no external teacher 

and the system adjusts its parameters and structure to optimise some predetermined cost 

function without instructive feedback from an external body. This very general description of 

an unsupervised system is extremely far-reaching, and should not be confused with the limited 

implementation of the current generation of unsupervised learning algorithms described in 

the literature, e.g. the Self-Organising Maps (Kohonen, 1990), which are basically clustering 

algorithms. The important feature of self-organising systems is that the goals and cost functions 

are built into the system, allowing them to autonomously adapt their behaviour to better 

achieve their given goals, rather than learning to imitate an existing solution~ 

The unsupervised learning system can provide a more general form of learning system, de­

pending on the complexity of implementation. The teacher has, in effect, been 'hard-wired' 

into the learning algorithm in the form of goals and a quality functional which is dependent 

on the inputs and resulting outputs, taking system constraints into account. The methods 

described in this thesis are not directed towards the direct implementation of Self-organising 

learning systems, but will involve some of the self-organising principles to provide the structure 

for the solutions within the supervised learning schemes, so the desired output is described 

explicitly in the training set, although the structure of the learning system is identified from the 

training data in an unsupervised manner - i.e. the 'teacher' does not have to tell the learning 

system exactly what its structure should be and which training data it should use to train its 

parameters. 

1 A more abstract form of this style of learning can be seen in reinforcement learning lIystems, where the 
lIystem is no longer told exactly what to do, but is given graded feedback about the lIystem'lI performance. 
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2.1.3 Research paradigms for automatic empirical modelling 

Cybernetics, control and adaptive systems 

The idea of artificial systems capable of learning is not as new as some people imagine. 

Many of the basic ideas present in modern research have been in print since the 1940's, 

when Norbert Wiener initiated the field of Cybernetics (Wiener, 1948) - a field which, like 

neural networks, brought together control engineers, biologists, mathematicians, sociologists 

and computer scientists. The concepts of learning systems, especially with ideas from biolo­

gical systems, were examined throughout the world, the popularity of the field shown in review 

papers such as (Sklansky, 1966) and (Fu, 1970). Steinbuch's work was often ahead of its time 

(note the rolling mill application of neural nets in (Steinbuch, 1963)!), while Tsypkin's work 

(Tsypkin, 1971, Tsypkin, 1973) still clarifies many of the basics involved and describes the 

application of learning and adaptation to a variety of technical systems. 

Although cybernetics, like neural networks, is still seen as an elegant framework for promot­

ing communication and interaction between various fields of research, it could not stand the 

strain brought by the explosion in progress and knowledge in its various sub-fields, which lead 

to the specialisation and more insular behaviour now common in the fields originating from 

cybernetics. 

System identification (Ljung, 1987) is the area of modern control theory with the closest sim­

ilarity to the learning systems philosophy described in this thesis, although the majority of 

the identification work has been based on th.e basic assumption of linear representations of the 

systems. Important contributions to the area of non-linear system identification can be found 

in the NARMAX modelling methods (Billings, 1980, Chen and Billings, 1989), based first on 

polynomial representations, then later on neural network implementations with multi-layer per­

ceptrons and RBF (Radial Basis Function) Networks (Chen et al., 1990, Chen and Billings, 1992). 

On-line adaptation of the model can be used to cope with slow variations in the parameters of a 

given system, or of a change in operating point. This adaptation allowed the use oflinear models 

for the control of non-linear systems and environments, and was also a significant, if restricted, 

step towards learning systems. Adaptive signal processing is covered in (Haykin, 1991) and 

a review of the adaptive control field is given in (Astrom, 1987), where he defines adaptive 

control as: a special type of nonlinear feedback control, where the states of the process can be 

separated into two categories, which change at different rates. The slowly changing states are 

viewed as parameters. 

Most of the practical industrial applications of adaptive control systems have, however, been 

limited to self-tuning control, where linear controllers are adjusted automatically for a given 

system. In many cases, an accurate time-invariant nonlinear model of a system will remove 

the need for on-line adaptation. 
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Statistics 

Many of the tasks routinely ascribed to learning systems (Le. classification or modelling ability 

derived from data, as opposed to a priori knowledge about the problem) can be viewed as 

regression problems, and many of the tools for their solution have thus been a standard part 

of the statistician's toolkit for decades. (Barron and Barron, 1988) discusses the similarities 

between statistical methods and more recent developments. Fisher's simple linear discriminant 

algorithm is functionally similar to the Percept ron (Fisher, 1936), and has led to the more 

powerful quadratic and polynomial discriminant algorithms. Nearest-Neighbour algorithms 

are also powerful techniques, despite their simplicity (Dasarathy, 1990, Duda and Hart, 1973). 

Spline and Kernel based modelling methods have much in common with Basis Function Nets (to 

be described in Section 2.3.1) (Wahba, 1990, Wahba, 1992, Kavli, 1992) and local approxima­

tion ideas (to be described in Section 2.3.2) have also been used in statistics. The statisticians 

also developed tree based regression systems independently from the AI world (e.g. CART 

(Breiman et al., 1984) and MARS (Friedman, 1991)). A further important contribution from 

statistics is the wealth of evaluation techniques developed to validate the models and classifiers 

derived from observed data (e.g. cross-validation techniques, robust cost functions, sampling 

techniques, additive models etc.). Projection pursuit methods are also closely related to Multi­

Layer Perceptron neural networks (Zhao, 1992). 

Machine learning - the symbolic view 

Non-neural machine learning has also a relatively long history, dating back to Samuel's check­

ers work (Samuel, 1959, Samuel, 1967) and although the neural network research faded away 

at the end of the 1960's, the Artificial Intelligence community kept working on learning sys­

tems. Most of this work was in the symbolic domain, as opposed to the numerical environment 

of neural networks, statistics and system identification. Despite this, some of the work on 

Inductive Learning is relevant to modelling nonlinear dynamic systems and, in general, the 

examination of different viewpoints often provide new insight into the learning mechanisms, 

improving understanding for both groups of researchers. Techniques such as decision trees 

have been used as models of dynamic systems (Isaksson et al., 1991). Omohundro describes a 

variety of standard algorithms which can be applied in many situations with more success than 

neural networks (Omohundro, 1987). Case-Based Learning also has applications in modelling 

(Kolodner, 1993), and we describe the overlap of Case-Based Learning with nearest neigh­

bour methods and RBF neural networks in (Murray-Smith and Thakar, 1993), dealing with 

aspects of customer modelling from sales information, where the basis functions performed 

interpolation between cases. A general, easy to read overview of machine learning is given 

in (Weiss and Kulikowski, 1991), and (Shavlik and Ditterich, 1990) is a collection of the most 

significant papers in the field's history. (Michalski et al., 1983, Michalski et al., 1986) and 

(Kodratoff and Michalski, 1990) also provide collections of significant work. 
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2.1.4 Empirical modelling with neural networks 

The basic philosophy of the neural network approach to machine learning is to use the style 

of information processing evident in the physiology of living beings as the inspiration for 

a computational paradigm. A large number of simple processing elements, based on highly 

simplified mathematical models of neurons, are densely interconnected by weighted connections 

which roughly represent the axons and synapses of the biological model. These structures are 

then optimised using a variety of algorithms, some aspects of which - although by no means 

the majority - are based on biologically plausible techniques. 

The resulting networks can represent complex mappings from their input nodes to output 

nodes, making them interesting for engineering applications. The neural network architectures 

used in this thesis are examples of flexible black-box models which are created on the basis 

of input-output data pairs. There are several advantages of using neural networks to model 

systems, the most compelling of which is their ability to model continuous, non-linear, multi­

variable systems. As mentioned in the previous section, this ability is not unique to neural 

networks, but the progress made in recent years, due to the increase in available computing 

power, has shown that the new algorithms often perform well compared to previous methods 

of nonlinear system identification. More important, perhaps, is the multidisciplinary nature of 

the research, which has brought new ideas from artificial intelligence, mathematics and biology 

together with application-oriented engineering and computing practice. 

A bit of history 

The roots of the neural network approach to learning can be traced back to 1943, when 

McCulloch and Pitts (McCulloch and Pitts, 1943) made some proposals about how simple 

neural-like networks could compute. Hebb then suggested a biologically plausible learning 

rule for such networks (Hebb, 1949). The beginning of the field as it is known today can be 

found in Frank Rosenblatt's work on Perceptrons (Rosenblatt, 1962). He pioneered the use of 

formal mathematical analysis and the use of digital computers for simulation. He also made 

some over-enthusiastic claims about the power of perceptrons compared to normal computers 

which would spark off a debate which is still running to this day, but which then led to the 

field being laid dormant for twenty years. This was a combination of the limitations of the 

contemporary hardware, and the irritation caused to other scientists by Rosenblatt's claims. 

It was this irritation which lead Minsky and Papert to publish the famous Perceptrons book 

(Minsky and Papert, 1969) where they rigorously analysed the existing techniques and pointed 

out the limitations of the structures and their inability to scale up to larger problems. 

(Widrow and Hoff, 1960), coming from a more engineering background also proposed a similar 

network called an Adaline, trained using the Delta-rule, which eventually found widespread 

use in telecommunications systems as an adaptive filter. Kurt Steinbuch was another engineer 

who did significant work in learning control systems, including his Lernmatrix learning system 
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(Steinbuch, 1961, Steinbuch, 1963). Grossberg's work in the 1970's introduced new ideas from 

biology and psychology to create the ART series of non-linear dynamic architectures. Albus 

made important contributions with the CMAC architecture in the field of learning in robotics, 

using many biologically motivated methods (Albus, 1972, Albus, 1975b, Albus, 1975a). Hol­

land examined adaptation in (Holland, 1975), introducing Genetic algorithms and classifier 

systems for learning. 

The main reason for the current renaissance in machine learning in general was the boom 

in 'artificial neural networks' in the eighties, precipitated by Hopfield's work (Hopfield, 1982, 

Hopfield, 1984) and the PDP Group's books (Rumelhart and McClelland, 1986). This was 

combined with a general frustration with the lack of progress in 'conventional' AI for tasks such 

as speech recognition, vision and pattern recognition, and the fact that the powerful computing 

hardware needed by these numerically intensive algorithms was now widely available. 

The neural network 'label', as used in the current literature, seems to be applicable to almost 

any modelling or classification scheme, as networks can be used as convenient graphic represent­

ations for many mathematically described systems. (Barron and Barron, 1988) provides a clear 

description of the similarities between neural nets and statistical methods. General introduct­

ory books include (Haykin, 1994, Hertz et al., 1991, Wassermann, 1993). Historically import­

ant papers are reprinted in the Neurocomputing collections (Anderson and Rosenfeld, 1988, 

Anderson and Rosenfeld, 1990). Reviews of the neural network field for modelling and control 

include (Miller et al., 1990, Hunt et al., 1992, Warwick et al., 1992). 

The Multi-Layer Percept ron 

As discussed earlier, the first neural architecture to be implemented and studied in detail was 

Rosenblatt's Percept ron (Rosenblatt, 1958). This is a very simple system, which was suggested 

as a simple model of biological neurons present in the human visual system. The output is a 

function (usually non-linear, such as a hard limiter or sigmoidal function) of the sum of the 

weighted inputs. 

y = f(xW + bias), (2.5) 

where f(·) is the activation function, and W is the weight matrix connecting inputs x to 

outputs y. 

The extension of the percept ron to allow multiple layers - the multi-layer perceptron in equa­

tion (2.6) (see Figure 2.7 for a graphical representation), became widespread in the eighties 

after suitable learning algorithms, such as back-propagation, became widely known. 

(2.6) 

where WI is the weight matrix connecting inputs x to the hidden layer neurons, and W2 

connects the hidden layer neurons to the outputs y. Back-propagation was developed inde­

pendently by various workers (Werbos, 1974, Parker, 1985) with best known version being 
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(Rumelhart et al., 1986), bringing the neural networks field back to life. The Multi-Layer Per­

ceptron soon became, for better or worse, the most commonly used (and abused) network 

architecture in the history of neurocomputing. The widespread use came about because of 

Yl 

Y2 

YII 

Figure 2.7: Multi-layer Perceptron 

the real fl exibility of the structure in coping with complex high-dimensional problems, and 

because it managed to produce often excellent results compared to competing methods. The 

disadvantages of the structure are the slow training times associated with the back-propagation 

learning algorithm and poor transparency of the algorithm and of the trained networks. This 

led to an alchemy-like approach to training taken by the majority of researchers, producing a 

huge variety of heuristically motivated 'new improved' learning rules. 

2.1.5 What is wrong with modelling with neural nets? 

Empirical modelling as a methodology, even in its 'hard ' form of System Identification, has its 

disadvantages. Often, the models produced in empirical modelling, even if they have achieved a 

useful representation of the process being modelled , give little physical insight into the process, 

since they are rarely based on detailed knowledge about the process structure. This is closely 

related to another disadvantage, which is that the product of a purely data based modelling 

process usually has limited validity in situations different to that in which the data was collected 

(e.g. at different working points, given different inputs, or a change in environment) . The 

identification methods in existence are also still very much highly interactive art forms. They 

depend to a great extent on utilising as much knowledge about the process in question as 

possible, to simplify the modelling problem, and on an intuitive feel for the techniques used, as 

well as an understanding of the complex statistical tools available for the analysis of the data 

and estimation of the parameters . 

While things have improved slightly in recent years, a characteristic of much work in the field 

of neural networks is the lack of rigour, compared to more established 'competing' areas such 
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as statistics and system identification (see (Sjoberg et aI., 1994) for a good discussion of the 

overlap between the fields, with the intention of 'removing the mystique' surrounding neural 

nets). This had certain advantages initially, as the fact that the area was linked to human 

intelligence often made it more appealing to young researchers, as well as to the various bodies 

which sponsor research and development, than the more highly mathematical established fields. 

Although the field has been rightly criticised for the wild claims made initially, it did bring 

in fresh ideas from other fields such as AI, psychology and physiology. These insights have 

enriched the scope and methods of the research into learning and adaptive systems, as well as 

a very application oriented style of research which got the method applied to a wide variety of 

problems. 

The problem facing researchers at the start of the 1990's was that much of the experience 

gained in the existing fields had been ignored, and the field was too strongly linked to one 

architecture - the multi-layer perceptron. Initially much emphasis was laid on the fact that 

the multi-layer perceptron architecture is theoretically powerful enough to represent arbitrary 

nonlinear mappings, but such results did not help produce efficient training algorithms. A 

large proportion of the research was invested in a variety of problem specific 'fiddle factors' 

designed to speed up the optimisation process-which often took days of computing time-and to 

improve generalisation. The multi-layer perceptron can often be highly successful at modelling 

a given system, but despite this it is not ideal for many modelling tasks. The long training 

times are not suited to the iterative and interactive nature of the modelling process, especially 

as it was unclear when learning should be stopped, or how many units or layers a net should 

have for a particular problem. The poor interpretability limits the user's ability to validate a 

trained network, and limits the networks' applicability to safety critical situations. There is no 

straightforward way of introducing prior knowledge directly into the network structure, even 

though for many tasks the ability to simplify the problem using such knowledge is critical to 

reaching the desired level of accuracy. 

Combining the different paradigms 

While none of them is ideally suited to the task, the research paradigms for learning models 

described in this section can all contribute significantly to the goal of having a flexible, inter­

active learning system which robustly forms a model of a complex process, given a mixture of 

observed data and a priori knowledge. Systems theory and System Identification provide the 

user with a mathematically well founded base of theory and experience for modelling dynamic 

systems from observed data. Much of the work has been restricted to linear systems, but the 

basics remain relevant, and many of the algorithms can be directly applied to the hybrid local 

model architectures described in Section 2.3.2. Similarly with statistics, where the theory and 

experience developed by statisticians in areas such as experiment design, model optimisation, 

model validation and function approximation is an invaluable aid to a better understanding 

and evaluation of newer systems such as neural networks. 
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The models used in this thesis can benefit not only from numerically oriented techniques, but 

also from the integration of fuzzy logic aspects and symbolic machine learning systems which 

then allows the incorporation of linguistic or rule-based knowledge into the learning system. 

Section 2.3.2 presents an architecture suitable for the integration of the various paradigms. 

2.2 The Modelling Process 

The work in this thesis is aimed at improving techniques for the design of models of non-linear 

dynamic systems (the f(1/J(t)) in equation (2.1)), with the aid of computationally intensive 

data-driven techniques. The goal is to produce a mapping from the input space to the output 

space which best fits the observed data and meets the specified constraints. This involves 

integrating knowledge about the system with data observed from identification experiments. 

This allows the developer to produce better model structures and identify their parameters, 

as well as being able to validate the accuracy of the final model. Modelling from data and 

knowledge is often viewed as an art form, mixing 'expert' insight with the information in 

observed data, while using ad hoc simplifications to make the problem solvable. The typical 

Engineering Insight is 
applied at each stage , ' ' • 

EXPERIMENT 

A priori knowledge, ~ Q 
physical laws ,~ 

. .' <~ ... .. . '>i5~rn .... . : 
••.. •. ' \\ • : • • ..tim'" mod<I .. 

\J . structure/order " 

Model Works. 
Designer can analyse it, and 

a priori knowledge is improved 

Q 
Estimate Model 

Parameters 

Q 
Model Validation 

"'Q'~od<IOK 
Apply Model 

Model Inadequate. 
Improve model structure, 

perform a new experiment, or 
change cost criteria 

MACHINE LEARNING 

Figure 2.8: The Engineering Cycle for Training a Model 
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modelling cycle is shown in Figure 2.8, showing the interaction of a priori engineering insight, 

experiment design, data acquisition and pre-processing, followed by machine modelling and 

validation. Each of these phases will now be looked at in more detail. 

2.2.1 Using a priori information 

Modelling from observed data supported by learning systems is supposed to reduce the need to 

understand the detailed physical relationships within the system under investigation, but as can 

be seen in Figure 2.8, a major feature of the cycle is the important role of a priori knowledge 

at each stage of the modelling process. A priori information is initial knowledge about the 

system, or problem in question. This includes aspects such as the goals of the problem, the 

characteristics of the process, its parameters, the effect of the environment (expected noise, 

disturbances), and the robustness requirements for different situations. Learning or adaptive 

systems are usually used because of the insufficiency of the a priori information (few complex 

processes in reality can be described completely by a priori knowledge, due to the effects of 

noise, disturbances and unmeasured states). Such systems try to compensate for this by the 

continuous use of current information about the system: 

'A priori information is the basis for the formulation of an optimisation problem, 

but the current information provides the solution for the problem' (Tsypkin, 1971). 

This describes the basis of Adaptive Control. Although the goal of learning systems is to reduce 

the need for a priori knowledge, its use almost invariably makes the learning problem more 

tractable. A priori knowledge can be used both implicitly and explici,tiy. It is used implicitly 

when framing the problem, in the act of creating a representative training set, deciding which 

learning algorithms and structures are best suited to the problem and which inputs and pre­

processing algorithms are likely to make the learning task easiest. 

The explicit use of a priori knowledge involves the direct integration of models or rule-bases 

into the learning system to reduce the learning effort. Knowledge about variable interaction 

can also be used to decouple the inputs, and reduce the dimensionality problems. Model 

structure, dynamic order and sampling rate are dependent on a priori knowledge. Knowledge 

about physical constraints can be used to limit the generalisation in areas with insufficient 

data. Existing models or controllers (e.g. human operators) can also be copied, where valid. 

Models of the environmental disturbances expected can also be included, as can knowledge 

about the relative importance of various areas of the input space. 

Another important aspect of modelling from observed data is that the machine learning in­

volved also usually results in the human engineer gaining a better understanding of the system, 

and the a priori knowledge about the system in question therefore being improved. The human 

designer is still a vital part of the process, and the goal should be to enhance the power of the 

interactive software by automating the learning process wherever possible, but by giving the 
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engineer the freedom to intervene at each stage. As knowledge about the system being modelled 

increases, more possibilities of simplifying the machine learning should become clearer, allow­

ing it to be used more successfully, closing the loop in the modelling cycle seen in Figure 2.8, 

where the a priori knowledge is improved by the availability of the validated model. 

The final product, a working model, can therefore be seen as a contribution to the more general 

pool of engineering and scientific insight. The laws, rules or models we take as a priori today 

were also once poorly understood observed behaviour, which was then measured, analysed 

and turned into some simpler law or model. Kepler's laws of planetary motion were found 

only after painstaking acquisition of observed data, and the application of a variety of model 

structures to the data, estimation of the model parameters and validation of the models on new 

data! 

2.2.2 Creating the training set - design & pre-processing 

The training set 'D is the data set used for optimising the parameters and structure of the 

learning system. It is generally necessary to devote a great deal of attention to the process of 

extracting preprocessing and representing the data for training. 

Experiment design 

It is vitally important that the training set represents the task in hand correctly and adequately 

over the whole input space, but it is important to consider the relative importance of the various 

areas of the input space. In many situations a system spends most of its time in a particular 

operating region. It may make sense to weight this more heavily in the learning process. In 

others, a particular aspect of the model must be very accurate, for example the reaction to 

a step change in the inputs or disturbances is important for many processes. In others it is 

important to have very accurate models in relatively stable areas, as this is where the process 

spends most of its time. In many applications certain areas of the system are associated with 

danger - how should these be treated in the model? Constructing a representative training set 

is often far more difficult than learning the task from the training set. The general process 

of training set creation is shown in Figure 2.92 • A significant aspect of the diagram is the 

existence of important disturbances which can not be measured. The ability of the training 

procedure to cope robustly with such disturbances will often determine to a great extent the 

procedure's usefulness in real world applications. It is not only important to have training data 

covering the input space, but to have larger amounts of data where the decision surface is most 

~In many cases the model is to be developed in order to produce a controller for the process in question. A 
valid point is to ask how this controller should be developed, without an adequate model to design it with? In 
critically unstable cases this will be a major problem, but in many cases the task is to improve on an existing 
controller which can be used for the purposes of data acquisition. There may, however, have to be a series 
of acquisition and modelling runs, as some aspects of the processes may not be apparent with less powerful 
controllers. In many cases, however, the learning system will have to make do with whatever data is available, 
because oC the costs oC extensive experimentation both in terms of money, as well as organisational effort. 
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Figure 2.9: Acquiring and preparing the training data 
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complex, and to have some information about the relative significance of individual training 

data. This could be in the form of probability distribution functions, showing the relative 

frequency of particular situations, or the definition of areas which are particularly important. 

The science of creating an optimal sampling of the input space is called Experiment Design 

(Fedorov, 1972, Goodwin and Payne, 1977, Ljung, 1987), and has been picked up by workers 

in machine learning within the active learning framework. 

Active learning 

The neural network community traditionally threw every available training example at the 

network during the learning phase, irrespective of redundancy, noise levels, or local complexity 

in the process being modelled. The disadvantages of this procedure are being increasingly 

recognised, leading to the introduction of active learning methods which enhance the training 

set used during the learning process, as shown in Figure 2.10. 

System to 
be modelled Input Stimuli 

a 

x 

System response 

Neural Model 

Figure 2.10: Active learning - exploring the input space. The learning system can interact 
with its environment to obtain new training data. 

The research in active learning has gained momentum in recent years, see (Cohn et al., 1990, 

Cohn, 1994) and (Cohn et al., 1994). (Plutowski, 1994) is a recent thesis in the area. The 
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use of local basis functions to guide active learning is described in (Murray-Smith, 1992). As 

described in (Thrun, 1992), active learning can be viewed as either directed guided search or 

undirected, random search. The undirected active learning methods described in the literature 

have the disadvantage that the effort needed to learn a given process increases exponentially 

with the dimension of the input space. Active learning can include active sampling and active 

selection, techniques: 

• Active sampling is associated with the experiment design phase - in which regions of 

the input space should training data be acquired to best minimise the uncertainty in the 

model? The uncertainty estimate in the model is based on the information in the existing 

training set.3 

• Active selection, which involves the most efficient use of a large existing training set uses 

closely related techniques to active sampling, without the connection to the environment. 

The active label is due to the fact that the selection or sampling processes are dependent on the 

learning process and model structure, so that the learning process can be seen more broadly 

as actively exploring its environment or training data, then exploiting that data to optimise its 

performance.The use of complexity-based active learning algorithm in local model networks 

is described in Section 4.3, and an active sampling routine is used to improve the learning 

process in the rolling mill application in Chapter 6. 

Pre-processing 

A vital factor in all empirically driven model building approaches is that the training set 

should be pre-processed before learning. Any way in which the data can be transformed to 

make learning easier will lead to a significant improvement in performance. Pre-processing 

includes all action applied to the measured data, including which sensor information to use, 

how to sample it, how the amount of data can best be reduced, what transformations should 

be applied, and how can. it be best encoded to make the learning task easier. The data may 

have to be pre-filtered to remove noise effects, anti-aliasing techniques will be necessary when 

continuous signals are sampled, outliers can be removed, or extra information can be used to 

reduce the distorting effect of measurable disturbances. In many cases non-linear characterist­

ics in sensors or actuators are well known in advance, and the nonlinearity can be counteracted 

before learning commences. Somewhere between pre-processing and representation lies the as­

pect of minimising variable interaction. The data can be transformed to a lower dimension 

3The concept of giving a learning IIYlltem a 'sense of curiosity', based on internal estimatell of its own 
accuracy, and giving it the ability to search the most promising areas of the input space for new information 
is of major importance for the future of autonomously learning systems, and the techniquell used are closely 
related to those needed Cor the recursive identification of time-varying processes, where it is important to be 
able to 'Corget' the training examples in the right areas, while learning from those describing the new behaviour 
of the procellS. 
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using principal components analysis to reduce the problems related to the 'curse of dimension­

ality'. It may be known that particular variables interact in a given way, whether additively, 

multiplicatively or nonlinearly (Hastie and Tibshirani, 1990). This information can be used 

to limit the freedom of the learning system, forcing it to learn more efficiently and generalise 

more robustly (see Section 2.5.4 for more details on how this information can be used). In 

general, the pre-processing applied to the raw data is often a critical stage in the development 

of models from observed data, and its importance should not be underestimated for learning 

systems. 

2.2.3 Learning algorithms and knowledge representation 

Once the training data has been acquired and pre-processed, a knowledge representation ability 

is required for the model to be able to learn the data and a learning algorithm which can be 

used to go from the information presented to the learning system, in the form of inputs, 

outputs and feedback from the environment, to the desired representation. In simple cases 

this can be viewed as an optimisation process, where the optimal set of parameters for a given 

structure is found, or it can also involve the construction of the representation itself. Learning 

systems involve a wide variety of knowledge representation techniques, from simple numerical 

parameters or symbolic features to complex specialised structures. Each style of knowledge 

representation is biased towards a particular class of problems, a fact which can be seen in 

the classical fields of statistics and system identification, as well as the newer areas of neural 

networks and machine learning, each of which tend to use structures suited to the problems 

faced in that field 

When considering learning systems in general, for any given data set, a variety of possible 

model structures usually compete for the best representation of the data. It is important that 

the most suitable style of representation is chosen for a given problem, as the right choice 

of model structure will be a major factor in producing a model which is able to 'generalise' 

correctly. Generalisation is the ability of a learning system to give a 'correct' output to inputs 

on which it has never been trained (see Figure 2.11). These could be new, noisy or incomplete 

inputs. Memorisation, or learning the training set to perfection is not the goal of learning - a 

random access memory (RAM) can do this adequately! 

The resulting quality of generalisation for a given problem will depend on the problem defin­

ition, encoding of the features, the quality of the training set, the power and suitability of 

the representational structure M and the learning algorithm used. To analyse the trade-off 

between learning the training set V, and generalising to unseen inputs, it can be helpful to 

decompose the modelling error J(M, V) into two aspects, the bias JB(M, V} and the variance 

Jv(M,1)} (Geman et al., 1992). 

J(M, V) = Jv(M, 1») + JB(M, V), (2.7) 
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Figure 2.11: The generalisationjoverfitting dilemma. 

where the bias is 

JB(M, V) = (Ev[i(x;M, V)] - E [y(x) Ix]) 2, 

where Ev is the expectation over the training set 'D, and the variance 

Jv(M, 'D) = Ev [(i(X;M, 'D) - Ev [i(x,M, 'D)]f] . 
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(2.8) 

(2.9) 

The bias of a model is the average difference from the real system of models trained on a 

number of training sets, thus indicating what the system could not learn, even when given the 

information. The variance of a model is the average variation of the model estimates from all 

trained models to the 'average' model over all data sets, and can be used as an indicator of 

how robust the learning process Was. 

The flexibility required of the model to be able to model an arbitrary data set (reducing the 

bias part of the error) conflicts with the desire to reduce the variance of the resulting estimate. 

Use of a large flexible representation will reduce the bias, but without a correspondingly large 

data set is likely to lead to the over fitting effect, where the training set is learned adequately, 

but generalisation is poor - equivalent to high variance. The system has either learned the 

noise in the data, or has learned the data correctly, but interpolates between data points 

poorly. It is therefore important to use a suitably sized model structure for the given training 

data - the system must be over-determined (i.e. more training data than parameters, and -

importantly for nonlinear systems - it must be locally over-determined in the complex areas of 

the input space). One of the most important features of a learning algorithm is that it reliably 

finds a solution which generalises robustly to new data. The regularisation methods described 

in Section 2.5.1 are methods which artificially increase the bias to improve the variance and 

therefore create more robust networks. In practice, algorithms which produce reliable models 

will be far better suited to engineering problems than algorithms which sometimes produce 

excellent results on one problem but then fail dismally on the next application. 

2.2.4 Model validation 

Once the model structure and parameters have been identified it is necessary to validate the 

accuracy of the final product. This is obviously a very important stage in a process which by its 
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very nature has relatively little in the way of 'common sense' intuition about the behaviour of 

the target system. It is therefore important to combine data-driven validation - is it adequately 

accurate and robust for its purpose? - with more SUbjective validation, i.e. does the model 

behave in a way which seems physically plausible? Can the final machine learned model be 

interpreted to give the human engineer a better understanding of the system in question? Model 

validation is an issue which has often been neglected in the literature on learning systems, but 

one which is very important in industrial situations. There will usually be a trade-off between 

flexibility and interpretability, the outcome of which will depend on their relative importance 

for a given application. 

Use of n-fold cross-validation 

The most commonly applied method of predicting the accuracy of a neural network is that of 

measuring the quality of the system's response on the training and test sets, assuming that 

the data set was complete enough to have encountered all of the important areas of the input 

space. The general technique is called cross-validation. Generalisation ability is closely tied up 

with the concept of expected error prediction, so this is of fundamental importance to learning 

systems (Stone, 1974). 

Resampling methods such as cross-validation aim to give unbiased estimates of the error rate 

of a learning system. They make minimal assumptions about the statistics of the training 

data. The simplest form of this is to use two sets of data (training and test sets), where 

the first is used to train the system and the test set is used to validate the results. A more 

general form of this is n-fold cross-validation, where the available data are partitioned into n 

subsamples. Each subsample is tested by training the net with the other (n - I) subs am pies 

and the error rate is then the average of these n sub-samples. This reduces the bias present 

in the error estimate, but is often a time consuming process and the error rates have a high 

variance. (Weiss and Kulikowski, 1991) Leave-one-out validation is a special case of cross­

validation, where one example of the training set is left out to provide a test example for 

the model trained on all the other examples. This is then repeated until each member of the 

training set has been used as a test example. It is therefore very computationally expensive, 

and although it provides the most accurate prediction of error, is only suitable for problems 

with small training sets, or few parameters. 

Cross-validation was initially not used with neural networks because of the computational 

expense of running the system several times, which for MLPs trained with back-propagation, 

can take several days, was fairly unrealistic. Less computationally expensive methods have been 

developed (e.g. Generalised Cross Validation GCV (Wahba, 1990), Aikaike's Final Prediction 

Error (FPE) have been used to optimise the size of multi-layer networks). 

Cross-validation is therefore useful for automatically finding the optimal model structures or 

parameter estimates for a given data set, as well as supporting the human designer in validation 
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and interpretation of models. The model can start small and increase its size until the cross­

validation results start to show too much variance in the test errors. 

The reliability of the accuracy estimates achieved by methods such as cross-validation depends 

strongly on the adequacy of the training data. If the training data is present in sufficient 

quantity throughout the input space (complex parts of the model will need a related number 

of data to train and test the parameters in that area) this provides a good estimate of the 

predictive power of the model. The amount of training data needed is also related to the noise 

on the training data. As the noise level increases, the amount of data points needed to train 

and validate a particular model increases. 

2.2.5 Organisational aspects in empirical modelling projects 

The procedure for the successful development of a model is often a major undertaking, involving 

a variety of experts from various fields. The data must be acquired somehow, usually from 

an experiment carried out by an experienced operator. The experiment design should ideally 

be an interactive process, involving several steps, including information from earlier modelling 

attempts. Initial data processing will involve signal processing engineers, the goals of the 

modelling are set by a mixture of business and engineering constraints, and the validation of 

how well the goals were achieved involves every link of the chain. For most realistic problems 

there will also have to be many iterations towards the goal of an accurate, useful, reliable 

model, so the representation used must be promote co-operation between specialists with very 

different backgrounds, and be able to integrate different types of a priori knowledge either 

directly as model structure, or in the optimisation process as cost-functions and constraints. 

2.3 Local Methods in Modelling 

The previous section described the aspects of the modelling process which should be supported 

by a learning architecture. This thesis discusses variations on one main class of network, the 

Basis Function Network (BF Net) because of its suitability for modelling continuous nonlinear 

systems. The BF nets used in this thesis are basically local structures, which inherently involve 

modularisation in representation and allow the easy integration of ideas and structures from 

other modelling paradigms. 

2.3.1 Basis Function Networks for modelling 

The basic Basis Function Network described in equation (2.10) is shown in Figure 2.12. The 

output4 y is a weighted (by parameters OJ) linear combination of the activations of the many 

4The models discussed in this report are all Multi-Input/Single Output models. The extension to multi­
output systems is mathematically straightforward. The optimisation of the units' weights is unchanged, other 
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Figure 2.12: Radial Basis Function network 

(nM) locally active non-linear basis functions Pi (-) which react to the input vector 1/J, 

noM 

y = f(1/J) = L OiPi(1/J). (2.10) 
i=1 

The nonlinear basis functions basically map inputs into a higher dimensional space, where it 

is easier to learn the mapping to the outputs than from the original input space, so that a 

linear connection to the output suffices. The optimisation of the weights then becomes a linear 

process, meaning that the optimal solution can be found using the standard tools of linear 

optimisation theory, including a variety of powerful methods for coping with ill-posed problems 

(see Section 2.5 .1), and methods for analysing the covariance of the parameter estimates (see 

Section 3.2.3) , from which aspects such as experiment design criteria can be obtained. 

Basis functions 

Each unit 's centre is a point in the input space, and the receptive field of the unit (the support, 

or volume of the input space to which it reacts) is defined by its distance metric d(1/J;C,CT) . 

The basis or activation function (similar to the membership funct ion of a fuzzy set) of the unit 

is usually designed so that the activation monotonically decreases towards zero as the input 

point moves away from the unit's centre (Cj), e.g. B-Splines or Gaussian bells are common 

choices. 
than that a matrix of output values is used instead of a vector. The optimisation of the model structure is 
obviously more difficult for multi-output problems, because the nonlinearity and complexity for the various 
output spaces will not always be in the same areas of the input space. The use of a single model structure 
with multiple outputs would mean that for the total model there are fewer parameters to optimise, which would 
suggest a lower variance than for a decomposed model. It may, however make more sense to decompose the 
problem into several single output problems, because each sub-problem will then have the required complexity 
and basis function locations for the complexity of the output in question, and will not produce an increase in 
variance in the other output variables, which happens in the multi-output case. 
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c d(l/J; c, a) 

Figure 2.13: A typical locally active, smooth basis function 

In Radial Basis Function (RBF) nets, the basis functions are composed of two elements. The 

distance metric d(1jJ; c;, O'i) for basis function i, defined in equation (2.11), can scale and shape 

the spread of the basis function relative to its centre c;, depending on its width 0';, and the 

basis function itself p(.), which takes the distance metric as its input 

(1jJ- Ci)2 ( ) 
d(1jJ; c;, IT;) = 2 ' 2.11 

O'i 

and can be generalised by using a matrix tr; instead of a scalar, giving an ellipsoidal basis 

function (equation (2.12)). Training algorithms for such distance functions are given in Sec­

tion 4.2.3. 
(2.12) 

There is a wide variety of possible basis functions, e.g. the Gaussian bells used in this thesis, 

as in equation (2.13), B-Splines, thin plate splines, linear functions etc. 

(2.13) 

(Carlin, 1992) compares the effectiveness of a variety of basis functions for modelling and con­

trol purposes. The basis functions llsed in this report will be assumed to have local properties5 , 

i.e. they are active in a limited area of the input space because of the improvement in trans­

parency achieved. 

If the units have localised receptive fields, and a limited degree of overlap with their neighbours, 

the unit's weights can be viewed as locally accurate piecewise constant models (in more complex 

networks, more general local models can be used, see Section 2.3.2), whose validity for a given 

input is indicated by their unit's own activation functions for a given input. 

For modelling and control of continuously differentiable processes, the basis function should 

be smooth, and if the basis functions are to be local, they must decrease monotonically from 

a maximum at 1jJ = c (distance metric = 0) towards zero, according to the distance metric 

d(~; c, 0'). This forces the influence of the local model associated with the basis function to 

decrease as the inputs move away from its centre (where the basis function's local model is the 

most accurate representation of the system).6 

5Note that strictly speaking the Gaussian is not a local basis function, as it does not have compact support. 
sGiven relevant (I priori knowledge, more complex basis functions can be used which do not adhere to the 
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Partition of unity 

For modelling tasks the basis functions should form a partition of unity for the input space, i.e. 

at any point in the input space, the sum of all basis function activations should be 1. This is a 

necessary requirement for the network to be able to globally approximate systems as complex 

as the basis functions' local models, e.g. in the straightforward single weight case, so that 

constant areas of the input space can be modelled exactly. The partition of unity ensures that 

every point in the input space has an equal weighting, so that any variation in output over the 

input space is due only to the parameters 8 weighting the basis functions' activation. In many 

applications the network's basis functions are normalised to achieve the partition of unity, i.e. 

(,p) _ p(d(,p,c/o,C1/o)) 
Ph - L:?~p(d(,p,ci,C1i)) (2.14) 

where p(.) is the general unnormalised basis function, so that the normalised basis functions 

Ph (-) sum to unity, 
nM 

L:p;(d(,p,c;,C1;)) = 1. (2.15) 
;=1 

(Werntges, 1993) discusses the advantages of normalisation in RBF nets, promoting somewhat 

simplistically the advantages of a partition of unity produced by normalisation. Normalisation 

can be important for basis function nets, often making the model less sensitive to poor choice 

of basis functions, but it also has a number of side-effects which are discussed in detail in 

Section 3.3. These side-effects make the argument for or against the use of normalisation far 

more complicated than is often assumed. 

Literature of Basis Function nets for modelling 

Basis Function Networks and their equivalents have been used for function approximation and 

modelling in various forms for many years. The original Radial Basis Function Nets came from 

Interpolation theory and are described in (Powell, 1987), where a basis function is associated 

with each training point, as in (Specht, 1991). Potential Functions (Aizermann et a1., 1964), 

Kernels (Wahba, 1992) and Spline Models (Wahba, 1990) are all similar structures. The lit. 

erature of local learning methods in statistics is reviewed in (Atkeson, 1990). These methods 

store the training data and for a given input point form a locally weighted representation of the 

system from the related training points. Smoothing methods such as Gaussian Kernel methods, 

as described in (Hastie and Tibshirani, 1990) like other local averaging methods, suffer from 

the curse of dimensionality (Friedman, 1991), and are computationally expensive. 

Aldus's CMAC ideas have a great deal of overlap with BF Nets with uniformly distributed 

local basis functions (Albus, 1975b, Lane et a1., 1991, Brown and Harris, 1994). The close 

relation of basis function nets to classes of fuzzy logic systems has also been discussed in 

features above, but which are specially relevant to a particular application, e.g. sinusoidal basis functions are 
a good choice if it is known that oscillatory components play an important role in the system being modelled. 
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(Jang and Sun, 1993), (Haas and Murray-Smith, 1993) and (Brown and Harris, 1994), where 

the similarity between membership functions and basis functions is pointed out. Mixture 

Models used in statistics are created by mixing a number of probability distributions, and have 

many similarities to RBF nets (Bishop, 1994) and (Xu et al., 1994). 

Recently BF neural networks have received a growing amount of attention from the neural net­

work community, starting with the early papers (Moody and Darken, 1989, Jones et al., 1989, 

Broomhead and Lowe, 1988). (Hlava.ckova. and Neruda, 1993) gives a brief review of the use 

of RBF nets. (Poggio and Girosi, 1990) (Girosi et al., 1993) and (Mason and Parks, 1992) de­

scribe the networks within the mathematical framework of Regularisation Theory for function 

approximation. (Hutchinson, 1994) describes the use of RBF nets for financial time series 

modelling. (Park and Sandberg, 1991) and (Park and Sandberg, 1993) proved the universal 

approximation abilities of RBF nets. 

Use of RBF nets for modelling and control purposes is described in (Barnes et al., 1991) 

(Sanner and Slotine, 1992) (Sbarbaro-Hofer, 1992) and (Pantaleon-Prieto et al., 1993). The 

methods were applied in (R8scheisen et al., 1992) to control a rolling mill. Early work related 

to this thesis can be found in (Murray-Smith et al., 1992) and (Neumerkel et aI., 1993). RBF 

networks which use the local nature of the basis functions to give a local prediction of their 

own accuracy throughout the input space are examined in (Leonard et al., 1992) (this idea is 

extended to the local model nets in Section 3.2). 

The Gaussian Bar nets (Hartman and Keeler, 1991, Kurcova, 1992) are also closely related, 

although less powerful. These are nets with 'semilocal' units formed by taking one-dimensional 

local basis functions and forming their tensor product to approximate a multi-variable function, 

as with tensor product spline models such as the ASMOD system (Kavli, 1992). The advantage 

of these units is that they can better cope with some classes of high dimensional problems, as 

they do not need to cover 'uninteresting' dimensions. A disadvantage of this style of network 

is that the representation does not cope well with processes where the nonlinearity depends on 

several variables, such as the marsl benchmark used in Chapter 4. 

Pac's Functional Link Network (Pao, 1992), and Billing's closely related Extended Model Set 

ideas (Billings and Chen, 1989), use links with a fixed non-linear function built in to expand 

the input vector, resulting in the production of extra 'higher-order' inputs. These are linearly 

weighted by the networks parameters. The well known Polynomial methods can also be viewed 

as Basis Function systems, as there is a single layer of nonlinear functions, and the parameter 

optimisation is a linear process. The problem here is to find the suitable model structure - i.e. 

which set of basis functions can approximate the system adequately. Some off-line structure 

identification algorithms are described in (Chen and Billings, 1994, Ivakhnenko, 1971). Holden 

describes a general framework for basis function nets, calling them Phi-nets in (Holden, 1994). 
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Are Basis Function nets too local? 

An intrinsic feature of the Basis Function networks is the concept of 'locality'. In linear 

systems the data, optimisation and validation are all considered to be globally relevant, i.e. any 

results obtained are valid over the entire input space, whereas in nonlinear systems the process 

complexity varies throughout the input space. For nonlinear systems, however, (especially 

when multivariable) the problem can be simplified by partitioning the input space into multiple 

subspaces. This can involve a reduction of the problem's dimensionality by decomposing the 

problem, discarding irrelevant interactions, or of simply partitioning the input spaces into 

subspaces which are easier to handle - the traditional 'divide and conquer' strategy inherent 

to local modelling techniques. 

The concept of 'locality' is obviously relative, depending on the complexity of the system, 

the availability of training data, the importance of the given area of the input space, and a 

priori knowledge of internal structures within the given system. The form of 'locality' utilised 

depends on the representation used; in decision trees, locality is introduced by partitioning 

the input space into hypercubes, in RBF nets locality is hyperspherical and in multi-layer 

perceptrons or Projection Pursuit nets locality is a projection of the input space. This locality 

can be used to make networks more transparent and computationally efficient, which can then 

make learning algorithms which utilise the locality more efficiently than alternative algorithms. 

The problem with standard basis function networks is that the crudeness of the local approxim­

ation (weighted piecewise constant models), suffers like other local methods from the 'curse of 

dimensionality' (Bellman, 1961). This forces the system to use exponentially increasing num­

bers of basis function units to approximate a given system, as the input dimension increases. 

This leads to computational, transparency and robustness problems (the training data to train 

all of the units has to exist!). It is therefore important to be able to profit from the local nature 

of the basis functions while not having to have too many units7 • This implies that the basis 

functions should be associated with more powerful representations than piecewise constant 

models, so that a smaller number of them could cover larger areas of the input space while 

achieving the desired modelling accuracy. 

2.3.2 Local Model basis function nets 

Linear models, although very restricted in their representational ability have proved to be very 

useful for a large range of problems. This is due to their simple representation, their easy 

interpretability, and their robustness to noisy or missing data. It makes sense therefore to 

include the ability to at least be able to form a linear model within the network, as in 

n.+1 nM+n.+l 

fI = AlP) = 01 + L OiT/Ji + L OiPi (t/J) , (2.16) 
;=2 ;=n.+2 

7 see (Lowe, 1994) for a discussion or rurther arguments against local basis functions. 
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where n", is the dimension of the input vector t/J . The basic architecture (Poggio and Girosi, 1990) 

is a simple improvement which is highly relevant for practical applications, e.g. used in 

(Hutchinson, 1994). 

The ability to use linear (or other) models, can also be introduced in a more general way. 

Standard basis function networks can be generalised to allow not just a constant weight to 

be associated with each basis function, but a more general function of the inputs, so that the 

network can be described in the form 

nM 

iJ = j(t/J) = ~ ji(t/J )Pi (¢), (2.17) 
i=l 

where ¢ defines the operating point of the system. This is a vector which can be defined on a 

lower dimensional subspace of the input space which is covered by the basis functions. These 

can be seen as scheduling or gating functions for the local models which are defined on the full 

input space. 

The basis, or model validity functions used in this thesis are radial , i.e . they use a distance 

metric d(¢; Ci, O'i) which measures the distance of the current operating point t/J from the basis 

function's centre Ci, relative to the width variable O'i, as in equation (2.12). They are also 

normalised, so that they sum to unity, as in equation (2 .14) . See Figure 2.14 for a simple 

representation of operating regimes in a two dimensional operating space. The overlapping 

operating regimes allow the basis functions to smooth the transfer from one region of the 

model structure to the next. 

<PI 

Figure 2.14: Local Model Operating Regimes. Each local model is associated with an operating 
regime. These regimes overlap, and the gradual decay of 'validity' provides interpolation 
between models . 

This means that the structure has the advantages inherent to the local nature of the basis func­

tions while, because of the more powerful local models associated with the basis functions, not 

requiring as many basis functions as before to achieve the desired accuracy. The improvement 

is more significant in higher dimensional problems. This generalisation of the BF network to 
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the Local Model Network described in equation (2.17), where the weights have been general­

ised to allow not just a constant weight to be associated with each parameter, but to have a 

function of the inputs weighted by the relevant basis function, has been applied by a number of 

authors. The nM local models used are represented by general functions of the inputs Ii (1/J), 

but in many cases simple linear ~odels are chosen 

(2.18) 

The network form of equation (2 .17) is shown in Figure 2.15. The trained network structure 

can be viewed as a decomposition of the complex, nonlinear system into a set of locally active 

sub-models, which are then smoothly integrated by their associated basis functions . 

A 

~y 

Figure 2.15: Local Model Basis Function network 

To illustrate the workings of a local model network, a one dimensional function is mapped 

using local models in Figure 2.16. The top plot shows the target function and the model's 

approximation, while the basis functions and associated local models are shown below. 

Literature of local model methods in learning and modelling 

The representational ability of the normal Basis Function (BF) net can be extended to a gener­

alised form of BF network, where the basis functions are used to weight other functions of the 

inputs as opposed to straightforward weights . This was suggested in (Jones et al., 1989), fol­

lowed up by (Stokbro et al., 1990) and (Barnes et al., 1991) . The Adaptive Expert networks in 

(Jacobs et al., 1991) are essentially local model systems, where the local models are called ex­

pert networks and the integration of the various experts is made by gating networks. These were 

developed into hierarchical models in (Jordan and Jacobs, 1991, Jordan and Jacobs, 1993). 
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Figure 2.16: An example of local models representing a one dimensional function 

35 

The advantages of local representations are discussed in (Bottou and Vapnik, 1992), where 

they suggest that a proper compromise between local and global methods will usually prove 

most effective as varying levels of complexity are required throughout the input space, although 

they claim that the 'local capacity' should m<.~ch the data density, which is not necessarily true, 

as this would not place units where the system is complex, but rather where there was most 

data. The more general goal of allocating local capacity is that the learning system should 

match the 'local complexity' of the target system. 

The idea of using locally accurate r •• odels is also described in the statistical literature in 

(Cleveland et al., 1988), where local linear or quadratic models are weighted by smoothing 

functions. (Priestley, 1988) describes State Dependent Models for non-linear time series which 

are basically linear models where the parameters depend on the operating vector ~ (corres­

ponding to the 'state' in Priestley's terminology) 

nM 

y(t) = ..pT(t - 1) I:0iPi(~)' (2.19) 
;=1 

Local Model nets could be viewed ~ a finite parameterisation of the state-dependent model. 

Tong's Smooth Threshold Autoregressive (STAR) models (Tong, 1990) are also structurally 

equivalent to local model nets. In neither Priestly's or Tong's case, however, is much detail 

given about how to find the smooth weighting functions. (Billings and Voon, 1987) also uses 

a number of linear models to approximate a nonlinear system, but does not have smooth 

interpolation between basis functions. 

Local model systems for diagnosis, modelling and control of dynamic systems have been 
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applied extensively by Johansen and Foss in Trondheim, e.g. (Johansen and Foss, 1992c), 

(Johansen and Foss, 1992b) and (Johansen and Foss, 1993). A development of the ideas to 

a state-space implementation of local models is described in (Johansen and Foss, 1993). 

Some fuzzy logic systems can also be viewed as Local Model networks, e.g. the methods 

used in (Takagi and Sugeno, 1985) are effectively overlapping piecewise linear models, with 

the interpolation between models provided by the membership functions. Similar applica­

tions are reported in (Sugeno and Kang, 1988, Foss and Johansen, 1993), (Wang, 1994) and 

(Harris et aI., 1993). In (Haas and Murray-Smith, 1993) we discuss the similarity between 

fuzzy and basis function systems in more detail. (Back and Tsoi, 1991) describes the use of 

dynamic models as nodes in Multi-Layer Perceptrons - this could be seen as an MLP imple­

mentation of Local Model methods. 

(Skeppstedt et al., 1992) describes the use of local dynamic models for modelling and control 

purposes, but with hard transfers from one model regime to the next. (Pottmann et al., 1993) 

describes a multi-model approach where although the local models overlap there is still a sharp 

transition from one model to the next, and to minimise model switching a heuristic criterion 

is introduced which only allows switching after three consecutive steps in the direction of the 

new model. 

2.4 Hierarchical Approaches to Learning Models 

We have discussed the use of locality in basis function networks for the limitation of complexity, 

but how can we decide on the suitable level of locality for any given area of the input space? 

How can we reduce the effect of high dimensionality by only concentrating on the areas of 

interest? Can we produce efficient training algorithms which take points outside a given local 

model into account, while not reducing the system to a global optimisation technique? 

A common technique for the control of complexity, found in nature, society and technical 

systems, is hierarchy (Mes~,rovic et al., 1970). In the flat local model networks used so far, the 

structure identification phase tends to be computationally expensive, because any alteration 

to one unit affects many others. The effect of normalisation also alters the local properties 

of the basis functions, sometimes leading to unexpected results, as described in Section 3.3. 

Hierarchical methods offer, due to their structure, the ability to more effectively hide local 

complexity, in the traditional 'divide and conquer' manner, making the learning process more 

efficient and robust. The goal is truly hierarchical learning, where a network can grow to fit 

the data, and as the representation of the model improves decisions made earlier in the learning 

process can be reevaluated, leading to gradual changes to the higher levels. The local model 

framework is well suited for the creation of such hierarchies, as the local models in a given 

network can be further local model networks producing a hierarchy of local model nets. This 

is the Learning Hierarchy of Models (LHM) structure described in Chapter 5. 
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2.4.1 Hierarchical learning methods 

The use of hierarchy in learning algorithms breaks down into two general camps. The decision 

tree methods started in the 1970's with k-d trees (Bently, 1975), Classification And Regression 

Trees (CART) (Breiman et al., 1984), and IDB and C4.5 (Quinlan, 1993), and involve hierarch­

ies of sharp partitions, dividing the input space into ever smaller areas . (Isaksson et al., 1991) 

and (Stromberg et al., 1991) describe the use of such trees with dynamic models in the leaf 

nodes to model nonlinear dynamic systems. Because of the sharp partitions, however, these 

methods are poorly suited to modelling continuous systems. An alternative approach is the 

Figure 2.17: Decision tree structure 

use of soft splits, where the input space is no longer sharply partitioned, but there is a gradual 

transfer from one local model space to the other, allowing smooth interpolation between the 

models. This also means that a point in the input space can activate models in several leaves 

of the tree, with a differing level of membership to each. 

Examples of this type of structure include Basis-Function Trees (Sanger, 1991b) and the re­

lated paper (Sanger, 1991a) . The Hierarchical Mixtures of Experts (HME) structure, is a hier­

archical structure (Jordan and Jacobs, 1993) trained using Expectation Maximisation tech­

niques (EM) . Friedman used spline-based techniques to extend the CART ideas to soft splits 

for his Multiple Adaptive Regression Splines (MARS) algorithm (Friedman, 1991) . Quinlan 

also started to work with continuous systems modelling using Model Trees (Quinlan, 1992) . 

Links between wavelets and hierarchical networks (Bakshi and Stephanopoulos, 1993) have 

also been investigated. Banan describes a constructive hierarchical method, with local lin­

ear models, which trains many times, and partitions the input space randomly in the areas 

producing errors. The 'average' network produced by the random splits is then the result 

of training (Banan and Hjelmstad, 1992). (Omohundro, 1991) describes Bump- and Balltrees 

which have linear classifiers in the leaves of the tree. The first work from this thesis with 

hierarchical networks was the development of Fractal Radial Basis Function Nets, described 
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in (Murray-Smith, 1992). The extension of this method is integrated into the local model 

paradigm in Chapter 5. 

2.5 Learning in Local Model Basis Function Networks 

The learning task for Local Model Networks is to try to adapt their structure and parameters 

to minimise a cost functional related to the deviation of the model from the target system. 

The optimisation of the parameters8 is a linear process and relatively straightforward, while 

the optimisation of the number of basis functions and their position and determining a suitable 

level of 'locality' is a difficult non-convex problem, where ad hoc methods of reducing the 

complexity play an important role. 

The description of the learning process is therefore split into the two highly interdependent 

stages of structure identification (Section 2.5.4 describes methods for introducing a priori 

knowledge into the model structure, Section 2.5.3 reviews the literature of structure identifica­

tion methods) and parameter estimation (Section 2.5.1), which are repeated until the desired 

structure and parameters are found. 

2.5.1 Parameter estimation in Local Model Nets 

The assumption made during the parameter estimation stage is that the model structure (i.e. 

the basis functions and local model structures) already exists and remains fixed during the 

estimation phase. This thesis only deals with time-invariant processes, so the methods used 

are all off-line methods, where the entire training set is assumed to be available simultaneously 

for the estimation phase, as opposed to on-line or recursive methods, which assume a constant 

stream of new information9
. The assumption made here is that the local models are linear in 

the parameters, as in equation (2.18). 

The problem of parameter identification within such a framework is reasonably well understood, 

with a variety of efficient optimisation algorithms existing to solve the problem of optimising 

the parameters 9 of local models id') in equation (2.17) to minimise the cost functional 

J(9,M,V) for a given local model structure M, where M = (c,O',nM,M1..nM) (i.e. the 

basis functions' centre locations and basis function sizes, as well as local model types) and 

training set V = (-rf;(t - 1), y(t)), t = l..N . Parameter optimisation for a given model structure 

finds the optimal cost r 
r(M, V) = minJ(9, M, V). 

9 
(2.20) 

8In this work the term parameter! refers to the parameters of the local models and does not include the 
basis function parameters, the centres and widths, which are deemed to define the model 6tructure. 

9Section 4.3 discusses methods for iteratively extending the training set used, but for any given estimation 
stage the optimisation is seen as a batch process. 
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Weighted Least Squares estimation 

In many learning situations the relative importance of the training data varies throughout the 

input space, either because the system spends most of its time in one particular operating 

regime, or because a particular aspect of the system is more interesting than others, and it is 

also common to have varying measurement accuracy in different areas of the input space . It is 

therefore important to be able to weight points in the training set to have more or less signi­

ficance. The global criterion for estimation of the parameters of the model in equation (2.17) 

is then the weighted least squares cost functional, 

(2.21) 

and the vector containing all the estimated model parameters is that which minimises J . In 

equation (2.21) a:(tPj) are observation weights which can be attached to each measurement. 

For the case where the measurement noise estimate for each training point is available, this cost 

functional is the chi-squared function (where a:(..pj) = C7(~.)' where u(..pj) is the measurement 

error (standard deviation) of the ith training vector} . The model obtained using this functional 

is known as a Markov Estimator or a Best Linear Unbiased Estimator (BLUE). 

Regularisation methods for complexity penalisation 

The parameter optimisation for local model nets is an ill-posed problem as described in 

(Tikhonov and Arsenin, 1977). This is because there is insufficient data in the training set to 

reconstruct the input-output mapping uniquely, the data is usually corrupted by noise , meaning 

that a unique solution is impossible, and the continuity conditions are violated . To make the 

problem well-posed it is necessary to make assumptions about the smoothness of the underlying 

process being modelled, and the training set must have redundancy in an information-theoretic 

sense. 

A variety of methods can be used to regularise the optimisation problem, to reduce the variance 

of the solution. Many neural network learning algorithms have implicitly (often unplanned!) 

had a regularisation effect, in that they have not found the 'optimal' (in the least squares sense) 

solution to the posed optimisation problem. Methods such as weight decay, stopping learning 

early (Sjoberg and Ljung, 1992), network pruning, learning with noise (Bishop, 1994) are all 

examples of ad hoc attempts to produce a regularisation effect. The classic regularisation 

method as defined in the regularisation theory proposed by (Tikhonov and Arsenin, 1977) is 

to extend the simple quadratic error cost functional to become a cost-complexity operator, 

N 

J(8, V) = ~ L a: (..pj) ((Yi - Yj)2 + )..R(j(..pi, 8))) , 
j=l 

(2 .22) 

including penalising nonnegative functional R(Y) which includes a priori information such as 

smoothness constraints which makes the optimisation problem well-posed. This forces the 
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optimisation to find a 'smoother' solution (,X is a small weighting, which defines the relative 

cost of the complexity compared to accuracy), which is likely to improve the generalisation 

of the network on new examples, at the cost of a slightly worse performance on the training 

data e.g. (Bishop, 1991) (Bishop, 1994) (Poggio and Girosi, 1990) (Girosi et al., 1993) . These 

are, unless analytical solutions exist, too computationally expensive for problems of more 

than a few dimensions. More practical regularisation methods are described in Chapter 3. 

(Sjoberg et al., 1993) describes the use of regularisation methods in system identification , and 

the earlier paper (Sjoberg and Ljung, 1992) links the regularisation work to stopping training 

early, and discusses the number of important parameters in multi-layer perceptrons. 

A priori knowledge of physical constraints on models can also be used to improve generalisa­

tion, as in (Kramer et al., 1992), and by (Roscheisen et al., 1992) who demonstrate the use of 

a priori models in training an RBF model of a rolling mill. 

Using Singular Value Decomposition to estimate the local model parameters 

The optimisation of the weights in RBF and Local Model Networks is theoretically a straight­

forward application of Linear Regression techniques, and as the optimisation problem is a 

linear one, the 'optimai' solution should always be found (assuming uncorrelated zero-mean 

noise). The regression problem can be viewed as finding the local model parameters () which 

satisfy the equation, 

Y = C)(J (2.23) 

where C) is the design matrix, where the rows are defined by 

(2.24) 

so that the design matrix C), and vector of output measurements Yare 

Yl 

C)= , y= (2.25) 

YN 

The task of matrix inversion is important for the optimisation process. In practical situations, 

however, the straightforward inversion of an information matrix is of little use, as the matrices 

are not square, and even if they are, the poor condition or singularity of the matrix in question 

makes inversion impossible. To avoid these problems, the Moore-Penrose pseudoinverse of '1», 

C)+ is used to estimate the weights. 

(2.26) 

so for weighted least squares as described in equation (2.21)' with Q a diagonal matrix with 

Qii = a(xi), the optimal weights are: 

(2 .27) 
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The algorithm used in this work 10 , as in many other papers, to calculate the pseudoinverse is 

Singular Value Decomposition (SVD) of a matrix of observed input data. The SVD algorithm 

decomposes any N x n¢ matrix 4) to matrices U (N x n¢ column orthogonal), E (n ,p x n¢ 

diagonal) and V (n,p x n¢ orthogonal), such that 4) = USVT
. Due to the orthogonality of the 

matrices U and V, UTU = VTV = 1. V is the matrix containing the eigenvectors of 4)T ~ . U 

is made up of the eigenvectors of ~4)T. The associated eigenvalues (CTi) are the same in both 

cases, and are the squares of the singular values (Sj), i.e. CTj = Sj2 As U and V are orthogonal , 

their inverses are equal to their transposes. E is diagonal, so its inverse is the diagonal matrix 

containing the reciprocals of its diagonal elements (the singular values). The advantage of this 

decomposition11 is that the inverse of 4) is now trivial to compute, giving the pseudoinverse: 

4)+ = VE+UT (2 .28) 

where 

Sl 0 0 0 

0 S2 0 0 
E= (2 .29) 

0 0 0 

0 0 0 sn. 

The method is robust because it can, within limits, cope with singular or poorly conditioned 

matrices. The condition number of a matrix gives an indication of the rank of the matrix .12 If 

this is infinite the matrix is singular, and if the reciprocal of the condition number approaches 

the machine precision, the matrix is said to be ill-conditioned. In such cases the singular values 

are so small that the result is corrupted by the round off effects caused by finite accuracy arith­

metic. Their corresponding columns in V are linear combinations of x's which are insensitive 

to the data. The: elements, where s is less than a preset tolerance are zeroed, reducing the 

number of free parameters in the fit . Once the singular values have been zeroed, the parameters 

(J solving the regression problem in equation (2.23) can be calculated, 

(2.30) 

This method of optimising the parameters is not without its disadvantages, however , which 

ace described in Section 3.1.1. For more details on SVD see the general treatment in books 

such as (Golub and van Loan, 1989), or (Press et aI., 1988). The use of the method in sys­

tem identification applications is described in (Soderstrom and Stoica, 1989). The review 

article (van der Veen et aI., 1993), and papers on the general application of the method m 

(Deprettre, 1988) and (Vaccaro, 1991) give further background. 

IOThe implementation of SVD used in this thesis is the MATLAB function svdO. 
lITo better understand the behaviour of the original transformation Y = cI>8, the SVD of cI> is a rotation of 

8 in n¢-space by V T , the components are then scaled by 5 and then rotated again by U to give Y. If a vector 
Y lies in the range of cI>, there is a solution to 8. The solution is actually a set of solutions, as any vector in the 
nullspace can be added to 8 in any linear combination. SVD, however, finds the solution 8 wit h the smallest 
magnitude (see (Press et aI., 1988) for details) . 

12See Section 3.1.1 for more details. 
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2.5.2 Uniformly distributed basis functions 

The simplest method of determining the position and widths of the basis functions in a local 

model net is to fit a regular mesh or lattice of basis functions over the input space, as shown in 

Figure 2.18. This also allows the use of computationally simple methods to find active units, as 

Sum a Bulo F.."Ion. 

(a) Hexagonally distributed BF's (b) Sum of Hexagonally distributed BF's 

Sum a Bulo F ... iono 

~ 

(c) Grid-like distribution of BF's (d) Sum of grid-like distributed BF's 

Figure 2.18: A lattice style distribution of basis functions in square and hexagonal forms 

the net is effectively an interpolating memory. The total number of units required will rise - as 

the 'curse of dimensionality' would have us expect - exponentially with the input dimension . 

Many non-linear systems in the real world, however, have smooth nonlinearities which can be 

represented by relatively few units (this becomes even more relevant when the individual units 

are associated with more powerful local models) . Also, as the system being modelled is often 
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only active or of interest in a small region of the input space, a further saving of redundancy can 

be found by only placing basis functions in regions where the system operates. This demands 

more flexibility in the model structures than is possible with mesh-like networks, and methods 

for optimising the flexible structures. 

2.5.3 Structure identification 

The use of existing a priori knowledge, as described in Section 2.5.4, to define the model 

structure is important, but as many problems are not well enough understood for the model 

structure to be fully specified in advance, it will often be necessary to adapt the structure for 

a given problem, based on information in the training data. The optimisation of the network 

structure M is, however, a difficult non-convex optimisation problem, and is probably the most 

important area of research for basis function networks, if they are to be applied to demanding 

modelling problems where little is known about the model structure in advance. 

The goal of the structure identification procedure is to provide a problem-adaptive learning 

scheme which automatically relates the density of basis functions and the size of their receptive 

fields to the local complexity and importance of the system being modelled. The desirable 

features of a structure identification algorithm are: 

• Consistency - as the number of training points increases the algorithm should produce 

models which approximate the real process more accurately. 

• Parsimony - the model structure produced by the algorithm should be the simplest 

possible which can represent the process to the required accuracy. 

• Robustness - the model structures produced should be as robust as possible with regards 

to noisy data or missing data. 

• Interpretability - the model structure produced should ideally be as interpretable as 

possible, given the available data, local models and basis functions. 

The aim is therefore to find a model structure M which allows the network to best minimise the 

given cost function in a robust manner, taking the above points into consideration. Minimising 

r (M, V), from equation (2.20), over the possible model structures leads to the 'super-optimal' 

cost, using a priori knowledge about the process structure ICs, 

r-('v,lCs) = minr(M,V). 
M 

(2.31) 

The robustness is an important aspect, as constructive structure identification algorithms can 

obviously be very powerful, enabling the network to represent the training data very accurately 

by using a large number of parameters, but usually then leading to a high variance. The choice 

of model structure plays a major role in the bias-variance trade-off (see (Geman et al., 1992) 
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for details about the trade-off), and this should be reflected in the cost functions J and r 
(from equation (2.20)) in the form of regularisation terms for J and terms which penalise 

over-parameterisation in the structure functional r. 
Algorithms for structure identification from data should take into account the complexity of the 

target mapping, the representational ability of the local models associated with the basis func­

tions, and the availability of data. This is a general non-convex optimisation problem, and in 

practice it is not possible to guarantee a general method which will provide an optimal solution 

to the problem for all possible learning tasks. The methods described here are optimisation 

techniques implicitly suited to the basis function optimisation problem. 

4-..... ~ Parameters 

Data 

\ 
Cost Function ..... t-_ 
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\ 
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Structure 
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Knowledge 

Figure 2.19: The structure learning process involves a number of complex interactions. 

Structure through parameterised optimisation 

A gradient descent optimisation technique for moving the centres and adapting the widths is 

described in (Poggio and Girosi, 1990). This is, however, reported to be a slow and unreliable 

technique. There is no guarantee of convergence to a global minimum and there is therefore 

likely to lead to variance ir. performance between runs on similar data. This method was applied 

in (Roscheisen et al., 1992) and also in (Hutchinson, 1994), where some practical guidelines for 

clustering are given. 

Clustering basis functions 

RBF researchers used methods where a fixed number of basis functions was assumed, and the 

structure identification task was seen as the optimisation of the centres and widths. In the pa­

pers (Moody and Darken, 1989, Sbarbaro, 1992) clustering algorithms such as self-organising 

maps or k-means clustering were used to place the centres. A disadvantage of such algorithms 

is that they do not relate the location of the basis functions to the complexity of the func­

tion being mapped, only to the location of data in the input space. Pantaleon-Prieto et al 
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(Pantale6n-Prieto et aI., 1993) use a clustering routine where only the nearest unit to a given 

input is adapted, in order to reduce computation. 

Placing centres on training data points 

The disadvantage of the techniques described above is that the user mu .. t still define how many 

units the network should have before learning starts, but as the complexity of the system is 

usually not fully understood, the optimal number of units is also unknown. Some researchers 

developed methods which estimate the number of units from the position of the training data 

in the input space. Specht describes a method which has a basis function centred on every 

example in the training set (Specht, 1991). This is a simple technique, but one which scales 

up very poorly, and is not particularly robust when faced with noisy or sparse data. More 

promising methods use the redundancy in the training set to reduce the number of units 

needed to learn the desired training data. A hierarchical clustering technique based on a 

binary tree approach to recursively partition the input space is used in (Stokbro et aI., 1990). 

The resulting network is a single layer net, only the partitioning process is hierarchical. The 

partitioning is not related to the local complexity of the system, but simply to the presence of 

data - a drawback of other similar algorithms. (Raipala and Koivo, 1992) describe a similar 

simple method for constructing a network, which is to insert a new unit whenever an input 

occurs which is not near the centre of any of the units' receptive fields. This is repeated 

in (Roberts and Tarassenko, 1994). The algorithms we used in (Murray-Smith et aI., 1992) 

and (Neumerkel et al., 1993) can be seen as extending this type of technique by including the 

system complexity in the distance metric for the clustering process. 

Iterative constructive techniques for gradual approximation 

Another option is to start off with a simple model, to estimate its parameters, determine where 

the representation is still unsatisfactory and to dynamically add new models to the network. 

This leads to a sequence of model structures Ml -+ M2 -+ ... -+ M nM , where Mi -+ Mi+1 

indicates an increase in the representational ability (more degrees of freedom) in the model 

structure followed by a parameter identification and confidence estimation stage. Constructive 

techniques which gradually enhance the model representation in this manner have a number 

of advantages. They automate the learning process by letting the network grow to fit the 

complexity of the target system, but they do this robustly, by forcing growth to be guided by the 

availability of data and the complexity of the local models. This automatically determines the 

size of the network needed to approximate the function adequately, while preventing overfitting. 

Two such constructive algorithms are described in Chapters 4 and 5, coming from the work 

published in (Murray-Smith and Gollee, 1994) and (Murray-Smith, 1992). 

Chen et al (Chen et aI., 1991) used orthogonal least squares for the clustering task. Their 

algorithm is a constructive one, which uses every training point as a candidate centre. Each 
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time a unit is added to the network, it chooses the best candidate centre by attempting to 

minimise the variance in the model output due to the network parameters. The Resource Al­

location Net described in (Platt, 1991) is a constructive algorithm, where when a pattern is 

presented which causes an error larger than a given threshold a new unit would be added at 

that point. Wynne-Jones suggests a constructive method where existing units in the network 

are split into two. The Hierarchical Self-Organising Learning (HSOL) algorithm, a hierarch­

ical strategy for the construction of single layered basis function networks for classification is 

described in (Lee and Kil, 1991). Units are added to the network in a coarse to fine strategy. 

(Carlin, 1992) applied HSOL to modelling problems and similar coarse-to-fine ideas have been 

used for spline-based modelling applications (e.g. ASMOn in (Kavli, 1992)). (Fritzke, 1994) 

describes a constructive method based on a self-organising map framework. The LSA al­

gorithm which splits the input space orthogonally to the axes of the input space is described in 

(Johansen and Foss, 1994b). The spline-based MARS algorithm (Friedman, 1991) mentioned 

earlier is also a gradual constructive method.13 

2.5.4 Pre-structuring the local model net 

The straightforward local model network, where the local models are simple linear models, can 

be viewed as a general structure which is well suited for use in modelling dynamic systems. A 

major advantage of the local model nets is, however, their ability to allow the introduction of 

a priori knowledge to define the model structure for a particular problem. This leads to more 

interpretable models which can be more reliably identified from a limited amount of observed 

data. 

Incorporating local models based on a priori knowledge 

The most general form of information is the expected order of the system, and the form of 

model to be identified (e.g. simple linear ARX models etc). If more knowledge is available, the 

local models could be physically oriented models, possibly with only a subset of their variables 

to be identified, thus allowing the engineer to easily create grey-box models. A generalised 

form would allow the designer to specify a pool of feasible local models, which could be locally 

tested for suitability in the various operating regimes defined by the basis functions. 

In many cases, there will not be sufficient data to train the model throughout the input space. 

This is especially true in areas outside normal desired operation, where the model may have 

l3The Model Merging algorithm described in (Omohundro,1991) attacks the problem in a different way, 
using a fine-to-coarse learning algorithm, where each training point is initially viewed as a model, and in­
creasingly global models are created by merging the existing models. This has the disadvantage of being more 
computationally intensive than the top down methods, and will tend to overtrain where coarse-to-fine methods 
tend to over-generalise. Other workers have produced constructive algorithms for a variety of network types, 
e.g. Caacade-correlation (Fahlmann and Lebiere, 1990) and GAL (Alpaydin, 1991), but these IItructures lose 
the locality advantages of the basis function networks, and cannot easily introduce a priori knowledge, unlike 
local model nets. 
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to be very robust, and well understood. These situations can be covered by fixing a priori 

models in the given areas, and applying learning techniques only where the data is available 

and reliable. 

Incorporating a priori knowledge of non-linearity into the basis functions 

Locality of representation provides advantages for learning efficiency, generalisation and trans­

parency. It is, however, very difficult to automatically find the 'correct' level of locality for a 

given subspace of an arbitrary problem. The problems of dimensionality can also be reduced 

in many systems with a large number of inputs, as there are often combinations of input di­

mensions which are of no interest, or which are additively or linearly related. The problem 

can then be decomposed, if the user already has a priori knowledge about the system be­

ing modelled, thus allowing the user to treat the system as an additive combination of lower 

dimensional sub-models. (The use of such physically based knowledge makes on-line adapt­

ation of the system's parameters much more feasible). The statisticians have developed the 

theory of additive modelling techniques, e.g. (Hastie and Tibshirani, 1990, Friedman, 1991) 

to support such decompositions. (Hrycej, 1992) also describes similar methods for the mod­

ularisation of neural networks. Also, because of the strong links between Fuzzy membership 

functions and Basis Functions (see our review in (Haas and Murray-Smith, 1993), or the books 

(Harris et aI., 1993, Brown and Harris, 1994)), the a priori knowledge of how best to decom­

pose the problem could be expressed as linguistic rules with accompanying basis functions. 

(Bridgett et aI., 1994) analyses the functionality of the MARS and ASMOD algorithms and 

relates them to fuzzy systems. 

High dimensional Local Models, low dimensional Basis Functions 

The decomposition of the input space is especially interesting for nonlinear, high order dynamic 

systems, as the input space is very large (and in practice such high dimensional input spaces 

are often impossible to fill with data), but the nonlinearity may only be dependent on a small 

number of the inputs. Local model nets are well suited for modelling such systems because 

although the system may be globally strongly nonlinearly dependent on the inputs,it may be 

possible to use the most important subset of the inputs to partition the input space. The 

system can then be localIy approximated sufficiently accurately by simple (possibly linear) 
models which use the entire input vector, so 

~ C 1/l,dim~ < dim1/l. (2.32) 

In the dynamic systems' case, a dramatic reduction in the input space used for the nonlinear 

partition could be achieved by including only a subset of the delayed values of the inputs and 

state in ~, while all are present in 1/l (i.e. the dimension of ~ is usually smaller than that of 

1/l). 
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The well-known consequences of the 'curse of dimensionality ' can be greatly reduced by defining 

a lower dimensional projection of the input space for the location of the basis functions and 

the evaluation of the distance metric (shown in Figure 2.20). This greatly simplifies the scale 

of task facing the structure identification algorithm . 

High dimensional 
Input vector 

t/J 

Low-dimensional 
Subset of 

inputs 

Full 
dimensionality 

Basis Functions 

Model Weighting Vector 

Local Models 
--t---- --, 

A 

Y 

Figure 2.20: A mixed order hybrid Local Model Net system, where the operating point ¢ has 

a lower dimension than the model inputs ..p . 
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2.6 Conclusions 

2.6.1 Engineering deficits of neural net solutions 

The idea of creating a model of a given system by examining its behaviour, as opposed to 

gaining an understanding of the physical processes within the system, was not an innovation 

of the neural network field. The related fields of Statistics, System Identification, Cybernetics 

and Machine Learning all offer much support in both theoretical and practical aspects of the 

modelling task. Although the last decade has seen the publication of thousands of papers on 

neural networks, the deficiencies of many artificial neural networks for reliable use in practical 

applications are now becoming obvious to many working in the field. While networks like the 

multi-layer percept ron have been applied with success in a number of real applications, the 

lack of clear methods for training, analysis and validation lessen their applicability to difficult, 

or safety-critical projects. The 'curse of dimensionality' is a basic fact of life when producing 

models from data, making it necessary to introduce a priori knowledge-a procedure which is 

not well supported in multi-layer perceptrons. The lack of an engineering methodology also 

makes project administration in any such work more difficult, due to the unpredictability of 

success or failure, the variation in time needed to achieve a solution and the uncertainty about 

the quality of the final trained model. 

2.6.2 Local Model Basis Function nets for practical problems 

Local Model nets can be seen as a more general implementation of the more widely used basis 

function net. Local Model Nets have fewer of the engineering problems described above. The 

two main advantages of the architecture are: 

• given local basis functions, i.e. limited overlap between models, a significantly higher level 

of transparency is achieved. This allows the easy local introduction of tools from other 

modelling paradigms (system identification, statistics etc.), and makes it easier to build 

a priori knowledge into the architecture in the form of partially or fully parameterised 

physical models. 

• the partition also simplifies the evaluation of local confidence limits, and therefore leads to 

more efficient parameter and structure identification algorithms. The localised confidence 

estimates and constructive structure identification methods have a further advantage, as 

it becomes possible to automatically determine local sparsity in the training data so that 

more data can be demanded in active learning systems, if necessary. 

• an enhanced representation, making it more suitable for modelling high dimensional and 

dynamic systems. Although the basis functions are still local, the more powerful local 

models associated with them allow the representation to be significantly more global, 
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without the problems seen in more powerful fully global representations such as polyno­

mial approximations, or the curse of dimensionality in fully local methods such as RBF 

nets. 

The local model nets seem therefore to be a promising framework for the improvement of the 

'learning engineering' problems which this thesis set out to attack. The local nature of the 

basis functions makes it easier to develop constructive structure identification algorithms. The 

Local Model Nets are more interpretable than other neural network architectures, and thus 

allow existing modelling techniques to be more easily integrated. This makes the framework 

potentially very powerful, as it can benefit from the wealth of theory and experience in domains 

such as statistics and system identification. 



Chapter 3 

Aspects of Local Model Networks 

The methods used for the global optimisation of the parameters in local model net­

works are analysed, revealing frequent problems with ill-conditioning. Global op­

timisation methods are computationally expensive, and produce poorly interpretable 

final models when the underlying structure is not physically meaningful. 

Local learning methods utilise the locality in the network structure to provide a more 

computationally efficient, more flexible and often more robust alternative. Local 

learning also has a regularisation effect on the optimisation, and often produces 

more interpretable results than global learning. The simultaneous use of a variety 

of local optimisation routines in heterogeneous local model nets is outlined. 

Methods which use the local nature of the network structure to provide state­

dependent estimates of model accuracy are described. These use the basis functions 

to interpolate general local error statistics. Methods for estimating the covariance 

of local model parameters are given, and the detection of extrapolation is discussed. 

An investigation of normalisation of the basis functions reveals that normalisa­

tion can fundamentally alter properties of the basis functions in a manner not 

appreciated by many researchers: the shape is no longer uniform, maxima of basis 

functions can be shifted from their centres, and the basis functions are no longer 

guaranteed to decrease monotonically as distance from their centre increases. In 

many cases basis functions can re-appear far from the basis function centre. The 

consequences for model interpretation and learning algorithm development are out­

lined. 

3.1 Local Learning vs. Global Learning 

The optimisation process described in Section 2.5.1 is based on the assumption that all of the 

parameters 6 would be optimised simultaneously with a single regression operation. This is 

51 
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not always computationally feasible if a large number of training patterns or local models are 

needed for a particular problem (see Section 3.1.3). A further problem is that the global nature 

of the observation can lead to the trained network being less transparent, as the parameters of 

the local models cannot be interpreted independently of neighbouring nodes. Also, even with 

robust identification algorithms, ill-conditioning in the design matrix can lead to the 'optimal' 

network parameters consisting of delicately balancing large positive and negative weights which 

minimise the output error on the training set, but which are not robust when confronted with 

new examples - i.e. the model generalises poorly. 

3.1.1 Problems with global optimisation methods 

The condition of the design matrix is very important for the robustness of the optimisation 

process. The condition number of a square matrix A is defined to be 

c(A) = IIAIlIiA -111. (3.1) 

The larger the condition number, the larger the effect of slight changes in the matrix A on the 

solution of the pseudoinverse A +. As the weights are dependent on A + , a slight change in 

data would lead to different weights, so generalisation is likely to be poor. SVD is used to 

avoid robustness problems, but it is still important to try to improve the condition of the design 

matrix. The condition number for the pseudoinverse of A can be easily calculated from the 

singular values produced by the SVD (see Appendix A.4 in (SOderstrom and Stoica, 1989)), as 

the norm of a matrix IIAII = 81 (the largest singular value) and the norm of the pseudoinverse 

is IIA + II = .!. ' where there are n, nonzero singular values, so the condition number is 

81 
c(A) =-. 

8 n • 

Ill-conditioning in Local Model Networks 

(3.2) 

RBF nets with widely varying basis function sizes can have condition problems, because the 

smaller basis functions will have relatively few data points in their receptive fields, compared 

to the larger ones, leading to them being treated as singularities in some cases. Local model 

networks, with global optimisation, tend to be more prone to ill-conditioning than simple RBF 

nets, because of the increased level of correlation between basis elements in the regression 

problem - the same inputs appear in each local model, the only difference being differing 

weightings provided by their basis functions. 1 

lThe condition can be improved slightly by norming the inputs to the individual local models by using 
deviation from the centre (or operating point in conventional linearisation theory) as an input to the local 

models "'dev = 1/1;,,; , so that the regression bases are in the same numerical range, but there is less correlation , 
between bases. 
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A one-dimensional example is used to illustrate the relationship between the properties of the 

networks and the associated singular values for a variety of local model nets. The arbitrarily 

chosen nonlinear function is 

y(x) = cos(6x2
) + e(X), (3.3) 

where the additive noise term e(X) is Gaussian with a varying standard deviation of o-(x) = 
OAexp (-Ix - !14.6). The examples plotted in Figure 3.1 used 401 training examples (see 

Figure 3.5 on page 63 for a plot of the training data). 

Even using deviation inputs to the local models, the condition of the design matrix still deteri­

orates rapidly with increasing numbers of local models, as can be seen from the example in 

Figure 3.3(b). 
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Figure 3.1: A set of 10 basis functions is fixed and used to represent the system using constant, 
linear and quadratic local models. The singular values for piecewise constant, linear and 
quadratic models are plotted. The drops in the singular values at 11 in the linear local model 
case, and at 11 and 22 in the quadratic model case are less pronounced than in Figure 3.2. 
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Figure 3.2: The same case as in Figure 3.1, but with basis functions half the size. Notice the 
sharp drops in the singular values at 11 in the linear local model case, and at 11 and 22 in the 
quadratic model case. These indicate that the basis functions associated with the higher order 
inputs are more likely to contribute to poor conditioning in learning. Note also the effect of 
narrow basis functions on the smoothness of the RBF model output - the normalised basis 
functions are more step-like, reducing the smoothness of the model output. 
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Effect of basis function overlap factor on condition 

Figure 3.3 (a) shows the increase in condition number wi th increas ing numbers of local models, 

when the relati ve overlap remains identical. To better understand the role of overl ap, Fig­

ure 3.3 (b) shows the increase in condition number in a local model net wi th a fi xed number of 

uni ts (seven) when the overlap is increased . T he interpretation of this for learning systems is 

that an increase in the number of models, or the level of overlap of the bas is fun ctions can lead 

to a poorl y cond itioned optimisation p roblem, and models which do not generalise well. Too 

few models, however , will obviously lead to poor approximation , and too little overl ap leads 

to non-smooth approximations. 
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Figure 3.3: Condition number increasing with number of local models or with overl ap. Basis 
functions were normalised. 

3 .1.2 Local learning 

An alternative to global learning is to locally estimate the parameters of each of the local 

models (as defined in equation (2 .18)) independently2. As described in (Murray-Smith , 1994) , 

potentia l advantages of local learning include: 

• T he local optimisation will be more computationally effi cient (see Section 3.1.3) . 

2this assumes that the bas is functions achieve a pa rti t ion of unity . 
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• In the global case the design matrix (<<I) has many elements which are close to zero since 

only a small number of validity functions are significantly non-zero at any point in the 

input space. Also, given a large degree of overlap, many local model bases will appear 

very similar. Both features can lead to poor conditioning of the optimisation equations 

and numerical problems. 

The restriction involved in local learning means that the final locally trained network 

will often be more robust when facing new data than a globally trained model. 

• Heterogeneous local model networks can be defined which use a variety of optimisation 

algorithms (possibly also nonlinear), each suited to the individual local model type. 

• If global training is used, the parameters of a 'local' model can often have no local 

meaning, as they depend on interaction with their neighbours to produce the correct 

model behaviour, whereas locally trained local models can be interpreted independently 

of neighbouring local models. This is extremely important, as an oft-cited advantage of 

local model networks is that the trained local models are easier to interpret than other 

representations as they are already in a locally interpretable form3• 

Local learning with weighted least squares 

For the global criterion it is possible to set a(.,pi) = 1 for all i, or to select a function a(.,pi) 

to weight the importance of areas of the input space to the optimisation process (similarly to 

equation (2.21). To achieve local learning it is necessary to define a set of local criteria. A 

given local model's basis function can be used to define that model's relevance for any g:ven 

input. For the local criteria, on the other hand, the weights must be chosen to take direct 

account of the interactions of the validity functions. Our confidence in a given observation 

regarding its relevance for the i-th local model is directly reflected in the i-th validity function. 

The local weighting functions should therefore be set as 

ai(.,p) = Pi(~)' (3.4) 

where ~ is the subset of .,p related to the basis functions, which results in a set of local 

estimation criteria for the i-th local model (where i = l..nM) of 

1 Ni _ 

Ji(8i) = N. LPi(tPi.)(Yi. - Yi,Y· (3.5) 
, 1e=1 

where Ni is the number of examples in the local training set Vi limited to the receptive field 

of local model i, and Yi. is the output from local model i, for data point k from Vi. In this 

case the estimate of the local model parameter vector 8j is given by 8j = argminJj(8j). In 

matrix terms the operation is now 

• T -1 T 8i = (c)j Qi«lj) «Ij QjY, {3.6} 
-----------------------------3The reduction in interference will also possibly make it more suitable for use with on-line adaptation 
algorithms. 
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where <J.)i is an Ni x (n,p + 1) vector, 

(3.7) 

where the regression variables are: 

(3.8) 

where the k refers to the kth example in local training set Vi. Qi is an Ni x Ni diagonal 

matrix, where the diagonal elements are the activations of the basis function of the ith model 

over the training set 1)i, 

Pi(~iJ 0 0 0 

0 Pi(~i,) 0 0 
Qi= (3.9) 

0 0 0 

0 0 0 Pi(¢iN) • 

The local learning method is therefore to compute noM locally weighted least squares regres­

sions, one for each local model, using only the training data 1)i within the model's receptive 

field, and with only the bases related to the given local model's parameters. The analog­

ous method for straightforward RBF networks would be to set the weight of a unit to the 

weighted average of t.he data points in its receptive field, as in (Pantale6n-Prieto et al., 1993). 

(Johansen and Foss, 1992a) applied local learning to local model networks, but did not use 

the basis functions as a weighting function. 

To gain a better understanding of the difference in the cost function associated with the local 

learning technique the global and local cost functions can be expanded. First the local one: 

(3.10) 

so the local learning cost function is 

(3.11) 

where 'Vi = <J.)i8 i. 

The global least squares cost function 

J (8) = ~ (y _ 'V) T (y _ y) , (3.12) 

so 

(3.13) 
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where Y = i)0, c) being as defined in Section 2.5.1, 

J(O) = ~(yTY_20TclTY+OTclTclO). (3.14) 

Consider only the subset of the parameters Oi associated with local model i resulting from the 

global optimisation of O. Decomposing the design matrix cI into Ai and ri gives more insight 

into the interplay of the neighbouring basis functions with the parameters for model i, 

(3.15) 

where the parameters Oi are supported by r i, the submatrix of cI for inputs covered by basis 

function Pi (.) 

( ~ ... 
r i = : 

o 

... ~) . . 
o 

(3.16) 

The parameters 0i are also affected by the matrix Ai containing the inputs supported by 

neighbouring basis functions other than i. 

( Pl (4),, )<1>" Pic (~il)<Pil Pi(')O Pn.}.A~i1)<Pil ). Ai= (3.17) 

PI(~iNJ<PiNi Pic (~jNJ<PiN; Pi (·)0 PnM (~iNi ) <PiN; 

Decomposing the cost functional to highlight the effect of the other basis functions on model 

i's parameters, gives 

J(O) = ~(yTy - 20TriY - 20T AiY + OT c)T i)0) 

~ (yTy _ 20; c)? QTy - 20T Ai Y + OT ciT clO) , 

To better understand the differeace in the cost functions we examine OT c)T C)O, where 

(3.18) 

(3.19) 

(3.20) 

which clearly shows the interaction between the overlapping local models (the Ai terms) and 

local model i (the ri term). By multiplying by the weights we can bring the equation into a 

form more comparable with the local cost function in equation (3.11). 

OT c)T C)O = o;r; AjO + O;rTrOj + OT A;rjOi + OT AT AjO (3.21) 

= oT cI? QT AjO + Or cI? QT QjcljOi + OT AT Qjc)jOj + OT AT AjO (3.22) 

(3.23) 

so that the cost function for OJ is 

, 1 T AT T AT T A 
J (0) = N (Y Y - 2Yj Qi Y + Y j Qi QjYj -

TAT TT A TT 20 Ai Y + YiQi AjO + 0 Ai Qj Yj + 0 Aj AjO). (3.24) 
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The local form's YTQiYi from equation (3.11) corresponds to a YTQTQiYi. The global 

yTy corresponds to the weighted yT Qi Y in the local functional. 

The major effect of local learning on the cost functional is to remove the Ai terms. Ai consists 

of model i's neighbouring basis functions which overlap with i, so the greater the level of 

overlap, the more significant the difference between cost functions. High levels of overlap lead 

to Ai being more significant and leading to a higher correlation with the off-diagonal term, 

which becomes the major contributing factor to the poor conditioning of global optimisation 

problems in local model nets. 

3.1.3 Global VS. local SVD for computational ef'ort 

The effort needed to find the pseudoinverse using SVD for a (p x q) matrix is roughly 

(Noble and Daniel, 1988), 

, (3.25) 

In terms of the design matrix for a basis function network, p relates to the number of training 

points and q is the number of basis terms. The cubic term shows the importance of the smallest 

dimension of the matrix on the complexity of the calculation. As the set of linear equations 

should be over-determined, the smaller number is q, representing the number of basis elements, 

and this implies that the product of the number of local models and the number of their 

parameters is the crucial factor with regard to computational effort. To compare global and 

local learning, calculate Oglobal for a homogeneous local model net, with linear local models, 

where p = Nand q = nMn.p, where n.p represents the full dimension of the model's input 

space, and O'oca' where p = Ni (number of training points in local model i's receptive field, 

q = n.p and which is repeated nM times. It is difficult to compare the methods exactly, as the 

reduction in the number of training points in a particular area is dependent on the problem in 

question and will vary for each local model, but even using the conservative estimate, which 

expects N to be the same in both cases, 

(3.26) 

and 

(3.27) 

Even ignoring the speed-up gained by the reduced number of points (as Ni $ N), the local 

variant will be faster for all nM greater than 1. The effort for local learning also increases 

linearly in nM as opposed to the cube of (nMn.p), which makes local learning far more suitable 
for larger problems. 
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3.1.4 Local learning experiments 

Approximation of a I-D noisy function 

The system described in equation 3.3 is used to give an impression of the regularisation effect 

of local learning on the final solution of a learning problem, comp~red to global learning. The 

function is shown below in Figure 3.4. The global learning was carried out using the SVD 

algorithm, zeroing singular values smaller than 10-5 • In the figures shown here, the inputs 

to the local models were not deviations from the centre, but the absolute value. Experiments 

where the local models used deviations from their centres resulted in the same order of model 

mismatch and ill-conditioning. The cost measures were taken from the model's deviation from 

1000 noise free points randomly distributed throughout the input space. 

For smaller training sets (101 patterns), the robustness of the local learning is immediately 

obvious, both in the smoother response, and in the lower error on the training data. Figure 3.5 

shows the same problem with 401 patterns, but even though the amount of training data has 

increased, the global measure is still worse than that from local learning. 

Even when there are 1001 training points, although the global approximation is now better 

than the local one, the parameters of the global model have little physical significance, in the 

sense of being a local approximation to the real system. 

The robustness of local learning is demonstrated experimentally with artificial test examples 

in Chapters 4 and with real applications in Chapter 6. A hierarchical form of local learning is 

introduced in Chapter 5. 

Robustness of locally learned solutions 

Ideally, a learning algorithm should robustly deliver a solution which has as high a level of 

accuracy as possible, and which responds robustly to new data, i.e. it is likely to generalise 

well. The smoothness of the resulting model is also important for many applications. In many 

cases, a smooth model which has a poorer least squares cost is better than a 'more' exact but 

'wrinkled' model. For example, in model based predictive control, the optimal control setting 

is often found using gradient search methods, which, if the model is not smooth, would then 

be subject to many local minima and would lead to unreliable control. The examples here, 

the two-dimensional example shown in Figure 4.12 on page 103, and the practical results in 

Chapter 6 indicate that local learning can often have a smoothing effect on the trained model's 

response. It cannot be stated generally, as the weaker approximation abilites of local learning 

may force the structure identification algorithm to use a far larger number of basis functions, 

leading to a less robust network, but in a number of examples in this thesis an improvement 

in smoothness was noted. 
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Figure 3.4 : Experimental comparison of Global and Local Learning for 101 training points. 
The left hand side shows the target function , the noisy training data and the trained network 's 
response. The cost functional J in the figure titles, is the same as equation (2 .21) where the 
weighting function a(x) = olx) · J is evaluated on the model's deviation from the noise-free 
outputs. The right hand side of each figure shows the normalised basis functions and the 
associated local linear models. 
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Figure 3.5 : Local vs. Global estimation - continu ation of Figure 3.4 for 401 training points. 
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Figure 3.6: Local vs. G lobal estimation - continuation of Figure 3.4 for 1001 training points. 
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3.1.5 Training heterogeneous local model nets 

The local learning method can a lso be used as a method for optimising the parameters of local 

model nets which a re not linear in the parameters, so that each local model locally app lies 

its own optimisation a lgorithm . For example, in Figure 3.7 the three local models could have 

three different optimisation algorithms. It (tfJ) is an ARX model, and could use an linear 

optimisation routine, h(tfJ) is a step model, which could be adapted by a local line search, 

and h(tfJ) is a neural network, e.g. a multi-layer percept ron which cou ld be optimised by an 

algorithm such as back-propagation. T he basis fun ctions could a lso be pre-st ructured usmg 

fuzzy rules, or some a priori choice of basis function. 

Figure 3.7: Heterogeneous local model network with multi-algorithm optimisation 
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3.2 Estimating the Confidence in a Trained Network 

When using learning systems like neural networks for tasks such as classification, prediction, 

modelling or control it is essential to have an estimate of the system's accuracy for any given 

operating region. There is little sense in reacting to the output provided by such a system 

with no clear estimate of the accuracy of the information. Such confidence limits often provide 

necessary information for further processing - which algorithms are most suitable, which can 

be ignored, what is the likely cost of a mistake? The relevance of good estif!1ates of model 

accuracy for model based controllers and model based fault diagnosis systems is obvious, and 

this has long been an area of research in conventional statistics, where a variety of methods 

for the analysis of samples, the validation of models, etc., has been developed. The methods 

developed in standard statistics or identification tend to produce global measures of accuracy 

for the system. The methods developed for the simpler techniques are, however, not suitable for 

methods which have varying representational complexity in different areas of the input space. 

An example of the inadequacy of global measures of error is the maximum absolute error of a 

model. In some cases this can increase during training, e.g. learning to model a step function, 

as shown in Figure 3.8: 

Max error 0---...1 M"e~r 
Figure 3.8: As the model improves its average performance, the worst error can increase! 

Despite the problems described above, the general problem of how to estimate the confidence 

in the system for given situations is even more relevant for the case of complex non-linear 

methods such as neural networks than for linear systems. 

The confidence in the output of the trained empirical model at run-time is related to several 

factors: 

• The accuracy achieved at modelling the input-output behaviour, which is related to 

- the accuracy achieved on the given data 

- the accuracy of the information in the training set. 

- the ratio of data available against model complexity (parsimonious models are preferred4 ) • 

• The measurement noise on the inputs at run-time. 

4Pruning methods for model reduction are described in Section 4.2.4. These can be seen as simple methods 
for the automatic detection and reduction of non-parsimonious model structures. 
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• The performance of the model as a whole, used as it is intended to be used . 

• The sense of the fitted model in the light of a priori knowledge. 

The last point is important for an improved understanding of the model's limits, and in order 

to try to learn more about the process being modelled. In local model networks where the local 

model structures are based on physical insight, this becomes even more important. The local 

interpretation will depend, however, on the parameters being identified locally, as described in 

Section 3.1.2. Well-known statistical techniques can be applied to estimate the variance of the 

estimated parameters, as described in Section 3.2.3. 

One important aspect, however, is the suitability of the model for the purpose intended of it. 

In many applications important aspects of the real process may have been ignored during the 

modelling process, or cost functions which seemed suitable, may not produce the desired result 

when coupled with other system components - this is especially true in dynamic systems. It 
is usually too expensive, dangerous or time-consuming to test all proposed models in the real 

system, so other methods must be available to eliminate faulty models in advance. 

Cross-validation methods are described in the next section which use the local nature of the 

basis functions to produce local confidence limits, show how standard statistical methods can 

be used to determine the covariance of the model parameters, and discuss methods for the 

detection of model extrapolation in areas in which it had insufficient training data. 

3.2.1 Local confidence measures 

The bulk of model validation techniques used in day-to-day system identification are based on 

measuring the difference between the model outputs and the observed outputs on validation 

data sets not used to develop the model. The majority of these are global methods which 

do not produce state-dependent results, even though the errors found in the system may vary 

dramatically throughout the input space. The local model network structure is well suited to the 

production of local estimates of accuracy because of the partitioning of the input space inherent 

to the model structure. The well-known model validation methods which can be applied to 

conventional systems can now be applied at a local level, and the results interpolated by the 

basis functions associated with the local models. 

The statistics reSUlting from the local test are weighted by the basis function activations for a 

given input to give a local estimate of the given statistic. If a general error statistic li is locally 

acquired for each local model i = l..nM, the global estimate l(~) for a given operating point 

~ is 
noM 

i(~) = EiiPi(~). (3.28) 
i=l 
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Examples of error statistics 

As an example of the above technique, cross-validation methods can be applied locally to give 

local estimates of worst errors, variance and bias. This is a very simple method, but can still 

be very useful. The most straightforward error statistics are the local mean and worst errors 

on a single validation set. The mean absolute error can be derived as, 

(3.29) 

using the basis function activation to weight the errors, where N; is the number of points from 

the validation set in Pi. The mean squared error can be defined similarly. 

(3.30) 

The use of the basis function to weight the error becomes more complex for local worst error 

estimates. The weighted form is 

(3.31) 

which tends to underestimate the worst error, whereas using a cutoff point' for the basis 

function activation, to determine whether an error will be defined as being associated with a 

given local model, 

(3.32) 

is too conservative. 

Illustrative example 

The results of the implementation for the function z = (y - 0.5)2 sin(211'z sin(lI'(z - 0.1)3)) are 

shown in Figure 3.10, with the basis functions organised in a grid. The target function is 

shown in Figure 3.9. Data points were noise-free and uniformly randomly distributed Over the 

entire input space. The weighted worst absolute error statistic from equation (3.31) was used. 

The results seem intuitively compatible with the model's approximation of the function. The 

confidence bands for the solution are larger where the target function is more complex and the 

model therefore a poorer fit. Further experimental results with the various error statistics are 

given with the rolling mill application in Chapter 6. 

3.2.2 Detecting extrapolation 

Extrapolation is the act of estimating the response of a system, assuming certain restrictions 

such as smoothness constraints, beyond the bounds of knowledge about that system, and can 

often lead to unpredictable results. This happens with learning systems when the trained 
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Figure 3.9: Test function . z is vertical axis. x and yare right and left axes respectively 

model is presented with data outwith the area covered by the training data. Leonard et 

al. (Leonard et aI., 1992) describe a 'Validity Index' net which warns the user when a value is 

being extrapolated. Another method by Kramer is the use of ' Rho-nets' (Kramer, 1993) , which 

uses basis function networks to create a probability distribution function of the data existing 

in the training set, and then notifies the user if the inputs stray from this area at run-time. 5 

This method has also been used in constructive structure identification algorithms for bas is 

function nets (e.g. (Raipala and Koivo, 1992, Roberts and Tarassenko, 1994)) 

As described in Section 3.3.1, the use of normalised basis functions leads to the basis functions 

covering larger areas of the input space, and means that the methods described above cannot 

be as eas ily used to detect extrapolation in normalised BF or Local Model nets. 

3.2.3 Estimating covariance of weight estimates from the residuals 

If the local models being used are based on underlying physical structures, it is often interesting 

to examine the parameters after training in order to interpret the physical relevance of the 

model. It is therefore useful to know the covariance of a given parameter estimate. The 

covariance estimation problem for locally trained local model nets is equivalent to that of an 

optimal weighted linear local model , 

(3 .33) 

such that the real output vector Y will be defined by the model's parameters (OJ) and its 
res iduals (D) : 

(3.34) 

5This can be very important for model-based predictive control, where the optimisation routines can produce 
very 'unnatural' inputs, lying outside the sampled data range so that the model behav s I f th 
intended of the model ' e poor y or e purpose 
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Figure 3.10: Forming local confidence limits from 'worst error ' cro s-validation results . The 
model is trained on the test function shown in Figure 3.9 using local learning . 
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where eli; is as defined in equation (2.25). The estimates of the parameters for a weighted least 

squares system are: 

(3.35) 

(3.36) 

where 80 indicate the 'true' parameters for the given structure, and 8; represent the differences. 

If Q is the unweighted form, then the differences 8; of the parameters can be found by taking 

the pseudoinverse of the design matrix eli;, otherwise the general form is: 

(3.37) 

where R is the covariance matrix of the residuals (R = EDDT ), 

A - - T T -1 T T )-1 cov(J, = E(Ji(Ji = (~i Qi~i) ~i QiRQi~i(~i Qi~i (3.38) 

in the unweighted case ( Q, = ~; I) 

(3.39) 

where the covariance of the output signal (Le. the measured errors at the output) is iTo. 

When using these methods to examine the local model's parameters it is important to remember 

that the covariance statistics here assume that the model structure is capable of modelling the 

underlying system, which will not be true in many cases. 
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3.3 The Effect of Normalisation of the Basis Functions 

As described in Section 2.3.1, normalisation of the basis functions is sometimes desired be­

cause it results in every point in the input space being covered by the basis functions to 

the same degree, i.e. the basis functions form a partition of unity across the input space. In 

many cases the use of normalised basis functions has resulted in an improvement in perform­

ance. While the approximation capabilities of normalised networks have been demonstrated 

(Benaim, 1994), in (Shorten and Murray-Smith, 1994) we observed that the side-effects of nor­

malisation had not been considered in detail by most authors. Normalisation is used by many 

authors, e.g. for RBF nets in (Moody and Darken, 1989) and (Jones et aI., 1989), for local 

model nets in (Johansen and Foss, 1992a) and for fuzzy systems in (Takagi and Sugeno, 1985) 

and (Brown and Harris, 1994). Use of normalisation is most relevant for RBF nets, as other 

networks which partition the input space in an axis-orthogonal manner (e.g. B-Spline nets), 

can be designed to achieve a partition of unity without normalisation. 

The output of a normalised basis function network (BFN) is described by taking the standard 

basis function network, described in equation (2.10), where the basis functions plc(;j,) are 

normalised forms of a basis function p(;j,), 

(3.40) 

3.3.1 Side-effects of normalisation for the basis functions 

Normalisation leads to a number of side effects other than the intended partition of unity 

described in Section 2.3.1, which can have important consequences for the resulting network. 

Change of shape of basis function 

Unnormalised networks usually use homogeneous basis functions, sometimes with differing 

widths. In normalised nets this is not the case - the shape of the basis functions is usually 

quite different from the un-normalised basis function, and the shape is influenced not only by 

the basis function's width, but also by the proximity of the other functions in the network. 

Note the decrease in basis function maxima in the normalised case shown in Figure 3.11. As 

the width of the basis function decreases the normalised network becomes less smooth, and 

tends towards a crisp nearest-neighbour classifier. 

The basis function centred at (0.6097,0.0361) from the network in example 2 (see normalised 

contour plot shown in Figure 3.17) is shown in Figure 3.12 for both cases. Note the multiple 

peaks, reduced maximum and convoluted surface of the normalised version. 
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Figure 3.12: Effect of Normalisation on Basis Function Shape. The normalised basis function 
has a far more complex surface than before, with many local maxima. 
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Cove r ing of the input-space 

In the case where the basis function used is non-compact in nature, for example when Gaussians 

are used, then normalisation results in the whole of the input space being covered and not just 

the region of the input space defined by the training data. It can be seen from Figures 3.11 

and 3.13 that in the normalised case the activation tends toward unity at the edges of the space. 

This can lead to unpredictable and often unstable behaviour in dynamic models if the operating 

point drifts outside the region of the input space that has been learned during training. It also 

reduces the ability of a basis function net to detect extrapolation using the methods described 

in Section 3.2.2. 

Irregular networks: reactivat ion and shift in maxima 

A further difficulty with normalised basis functions involves two further phenomena. If centres 

are not uniformly spaced, or if basis functions of differing widths are used , the maximum of 

the basis function may no longer be at its centre. A further effect of varying basis widths is 

that the basis function can become multi-modal, meaning that it can now also increase as the 

distance function increases, instead of continuously decreasing - the unit ' reactivates'. These 

effects are shown in Figure 3.13. 
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Figure 3.13: Shift in maxima and reactivation . Note the reactivation of the centre basis 
function , the reduced maximum of the right hand basis function , and the shift in maximum 
for all three functions . The vertical lines show the positions of the basis functions centres to 
emphasise the centre-shift effect 
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Figure 3.14: Reactivation example. The point in the input space x where the basis function 
reactivates can be determined from the units ' centres ( C1 and C2, where C1 is furthest from the 
input x) and their widths (0'1 and 0'2) . 

The reactivation occurs when neighbouring basis functions have differing widths. A one­

dimensional example shown in Figure 3.14 using two basis functions illustrates how the phe­

nomenon occurs . The reactivation point x, assuming monotonically decreasing basis functions, 

is the point at which the distance metric d1 is no longer smaller than d2 , so it can be determined 

from the functions ' centres and widths. 

For a Euclidean distance metric, 

(x ~lC1 r < (x ~2C2 r ' 
0'2 1 x - C2 1 -< 7--~ 
0'1 1 x - C1 I ' 

(3.41) 

(3.42) 

(3.43) 

Equation (3.43) shows that reactivation only occurs when the ratio between 0'1 and 0'2 is less 

than the ratio of the unweighted distances from the centres. This implies that in networks 

with uniformly wide basis functions, reactivation cannot occur. The shift in the position of the 

activation function 's maximum occurs when neighbouring basis functions are either unevenly 

spaced or have differing widths. 

This behaviour can cause problems if the network is being used to estimate an underlying 

probability distribution as is the case when local linear models are being used to approximate 

the function (Johansen and Foss, 1992c) (Johansen and Foss, 1992b) . Within this fr amework , 

reactivation can lead to models becoming significantly active in regions in which they were 

never intended to operate. The examples in this section demonstrates the effect of this on a 

regression problem . 

Effects of normalisation on multi-dimensional problems 

The effects of normalisation can become more pronounced as the input dimension increases. 

Due to the increased number of neighbouring basis functions in higher dimensions, the cumu­

lative activation in a given region tends to increase with dimension, leading to normalised basis 
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functions often having dramatically reduced maxima. Note also that the difference between the 

normalised radial and ellipsoidal basis functions is less extreme than the difference between 

the original functions - in many cases normalisation makes the use of more complex distance 

metrics less significant. See Figures 4.6 and 4.7 on page 93. 

3.3.2 Effect of normalisation on optimal network parameters 

The robustness of a trained network is closely related to the magnitUde of the basis function 

parameters. For example, with noisy data, large weights can cause potentially large errors 

or even instability. This section examines what happens to the least squares weight solution 

for the estimated weights 6, when a given basis function network as defined by the network 

structure parameters M = (nM, P1...n,M (.)), is normalised. 

We consider the system described by equation (2.10) where the exact form of the basis function 

is defined by the activation function used and whether it is normalised or not. We also assume 

that the output observations are all positive6 • Equation (2.23) can be decomposed to include 

a matrix C 
y = CCl9, (3.44) 

where N is the number of observations, CI is the Nxnq, design matrix of basis function activa­

tions from the training set, 9 is the nq,x1 vector of weights and C is a NxN positive definite 

diagonal matrix (this assumes basis functions which are positive for all of their support). In 

the unnormalised case C is simply the identity matrix, while in the normalised case C's entries 

are given by 

(3.45) 

Then the normalised output Y is, 

Y = C-1y = Cl9, (3.46) 

since C is invertible. Therefore the solution to equation (3.46) can be written, 

(3.47) 

which can be written 

9 = JC-1y, (3.48) 

where J is an nq,xN matrix and assuming that the inverse (CIT CI)-l exists. Expanding equa­

tion (3.48) yields, 

(3.49) 

6In practice this is not a restriction since the output can be normalised to lie in the interval (0,1) during the 
pre-processing stage. At the output the inverse operation can be carried out. 
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where 8i denotes the ith normalised weight, jmn is the mn entry of J. After some manipulation 

the following inequality can be obtained from equation (3.49), 

(3.50) 

where c;~~ and c~!n are the maximum and minimum entries of the C-1 matrix and 8j denotes 

the ith weight under the constraint that the C matrix is the identity matrix, i.e. the network 

is not normalised. 

Equation (3.50) indicates that the magnitude of optimal weights may be increased or decreased 

after normalisation of the basis functions. An increase in weights typicalry occurs when the 

widths are large (as E:~ p( d(~; Cj, (Tj)) is then also large), whereas a decrease in weight mag­

nitude tends to be associated with small widths. In multidimensional cases, the effect of large 

basis functions becomes even more dramatic, for the reasons described in Section 3.3.1. It is 

therefore important not to normalise blindly, but to compensate for the normalisation by alter­

ing the design criteria for the structure (centre positions and width magnitudes) identification 

procedure. 

Example 1: Modelling a pulse function 

A simple one-dimensional example is used to illustrate the effects of normalisation - a pulse 

function defined between 0 and 1, which is 1 for 0.2 < z < 0.7 and zero elsewhere. The 

training data consists of 100 points spread uniformly throughout the input space. Five basis 

functions (centred at [0.15 0.25 0.450.65 0.75]) are used to model the function. The model's 

approximation of the target function is shown, with the associated basis functions. 

The example in Figure 3.15 shows the reactivation of the large basis function in the normalised 

case. This forces the model to 'sag' in the middle, as the edges of the basis function are far 

removed from the main part, and the approximation becomes an average of far removed areas 

of the input space. The approximation is locally flatter than the non-normalised case, because 

of the ability of the normalised model to approximate constant surfaces. 
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Figure 3.15: Normalisation example. The pulse function is modelled with and without norm­
alisation. In the normalised case, the reactivation of the centre basis function is clearly visible, 
leading to the sag in the middle of the model output plot. Note the unnormali:;ed model's 
inability to model the flat area of the pulse, due to the lack of a partition of unity. 
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Example 2: Modelling a two dimensional Function 

Figures 3.16 and 3.17 show the effect of normalisation on the representation of a 2-D function 

with basis functions which have little overlap, and those with greater overlap (the (J'S are twice 

as large in Figure 3.17) . The response plots were created using the same basis functions , but 

the weights were trained individually for the normalised and unnormalised cases. Note the 

relative robustness of the normalised network to the change in width parameters, whereas the 

unnormalised network provides a very poor representation with the smaller basis functions. 
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Figure 3.16: Effect of Change of Shape on Model Representation - Wide BFs. Both models 
produce a good approximation of the target function . Compare this to Figure 3.17, where the 
narrower basis functions lead to a large difference for the unnormalised model. 
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Figure 3.17: Effect of Change of Shape on Model Representation - Narrow BFs. The Unnor­
malised model is far less robust to changes is the basis function size, as shown by its inability 
to model the function . The normalised model performs only slightly worse than in Figure 3.16. 
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3.4 Conclusions 

3.4.1 Local learning as a robust optimisation algorithm 

Two methods (global and local learning) for optimising the local model parameters using singu­

lar value decomposition were compared. The problems involved in a global optimisation were 

examined. These are: the drastic increase of effort with increasing numbers and complexity 

of local models, and the ill-conditioning common to such regression problems. This leads to 

non-robust, and poorly interpretable models. 

The advantages of the new local learning methods are: 

• The analysis of the computational complexity shows that local learning is faster than 

global learning (linear increase with number of local models, as opposed to cubic in the 

number of parameters). This speeds up the learning process significantly. 

• Local learning can be seen as a simple form of regularisation, meaning that the local 

methods often produce models with higher accuracy, and greater robustness than globally 

optimised methods (especially in noisy, poorly populated or high dimensional problems), 

without having to resort to expensive cost functionals. 

• A further point is that the parameters found for locally trained networks can be more 

interpretable as local approximations to the real system than those for globally trained 

ones. Globally trained local models cannot be meaningfully examined without taking 

account of neighbouring local models. 

• The structure also allows more flexibility in the use of optimisation algorithms, which 

will be especially useful with heterogeneous local model networks which require a variety 

of nonlinear optimisation algorithms for the different local models. 

In general, the experience gained during this work indicates that local learning will tend to 

be better than global learning when there is insufficient training data, or noisy training data. 

Global learning will tend to do well when faced with smooth underlying nonlinearities in low 

dimensional spaces well populated by training data. 

Future work 

There are a number of interesting aspects which are still to be fully investigated in local 

learning. The relationship between local learning and other regularisation methods (e.g. the 

smoothing splines work in (Hastie and Tibshirani, 1990)) may provide insight, and could lead 

to the application of the ideas in other structures. The application of local methods in adaptive 

control is obviously interesting for on-line parameter adaptation, with minimal interference 

with other areas of the model. 
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3.4.2 Local confidence limits 

The local confidence interpolation methods described in this section are simple applications of 

the local modelling philosophy to the model validation stage, which produce more significant 

measures of model accuracy than global methods, and allow the local use of many conventional 

statistical methods. The dangers of extrapolation were pointed out, with the observation that 

the normalisation of basis functions makes many of the extrapolation detection techniques 

from the literature inapplicable to normalised nets. The use of well known methods for the 

estimation of variance in the parameters of local model nets was described. 

Apart from being important for the interpretation and validation of trained networks, local 

confidence estimates can be used to improve the learning process itself, by directing the search 

for a better model structure to those areas with the poorest confidence limits. The model 

structure identification algorithms in Chapters 4 and 5 are based on such ideas. 

Future work 

The methods described here basically interpolate local error estimates to produce state-dependent 

global ones. There is obviously plenty of room for the integration of a great variety of stat­

istical tests existing for linear systems into this framework. More direct use of the confidence 

limits for the detection of model structure mismatch is obviously interesting for use in structure 

identification algorithms, as are better methods for validating the dynamic aspects of the local 

models. 

The methods used in this work for the prediction of model error were fairly straightforward 

applications of the local model philosophy, but they do not consider the effect of noise on the 

inputs at run-time. This can vary during operation, or in different areas of the input space. 

It is also possible that some sensors could fail totally. It is obviously desirable for a model to 

continue to operate, while having poorer confidence in its results. 

3.4.3 Effects of basis function normalisation 

Phenomena which occur in basis function networks when a partition of unity is achieved 

by normalisation of the basis functions were discovered and analysed. These effects can be 

summarised as follows: 

1. Normalisation leads to a change in shape of basis function. This can lead to a loss in 

smoothness ofrepresentation if the widths of units are too narrow (i.e. little overlap). If 

there is a great deal of overlap between units, the maxima of the model validity functions 

are drastically reduced. 
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2. If non-compact basis functions (e.g. Gaussians) are used normalisation leads to the whole 

of the input space being covered. This is important, as it makes some extrapolation 

detection techniques unusable, and it seriously affects the stability of dynamic basis 

function models. 

3. For irregular networks the maxima of the units shift away from the centres, and the 

units can reactivate in other parts of the input space. Reactivation, and the resulting 

non-localised behaviour of individual basis functions means that the very motivation 

behind much of the work carried on local RBF nets, i.e. localised behaviour, is no longer 

guaranteed. 

4. Normalisation also affects the magnitude of the 'optimal' parameters 8 for a given net­

work. This can subsequently affect the robustness and stability (for dynamic systems) 

of the network, depending on the level of overlap before normalisation. 

5. The above effects become even more pronounced as the input dimension increases, due 

to the larger number of neighbouring basis functions. 

While partitioning unity is highly desirable for many modelling applications, these phenomena, 

or side-effects, can lead to unpredictable network behaviour. It is therefore important that 

researchers and users of local model nets, BF nets or fuzzy systems should consider these 

effects when designing both networks and training algorithms, and when interpreting and 

validating trained networks. 

Future work 

It is important that the effect of normalisation be better understood, especially with respect 

to the stability of dynamic models built with basis function networks. Many aspects of basis 

function nets and local model nets rely on the locality of the basis functions. The results 

presented in this chapter may lead to the development of new training algorithms which try 

to minimise the side-effects. The significance of the results here should also be noted in the 

related fields of fuzzy logic and in the recent models based on mixtures of probability density 

functions. 



Chapter 4 

Structure Identification in Local 

Model Networks 

This chapter describes a novel constructive structure identification algorithm for 

local model networks which gradually adds to the model structure by placing extra 

representation in 'complex' areas of the input space. The search for 'complex­

ity' is repeated at ever decreasing scales, as far as the training data will allow. 

A new method for estimating ellipsoidal distance metrics for the basis functions 

is described. To prevent structural over fitting, stopping and pruning criteria are 

developed. Local model structure selection methods are also suggested 

Active selection methods which construct a training set automatically are intro­

duced. The algorithms described allow the training set to be constructed in step 

with the model structure, selecting the most suitable training data for the given 

problem, and available training data. 

The algorithms are demonstrated on several static and dynamic test systems. 

4.1 Constructive Structure Identification 

The structure identification problem was introduced in Section 2.5.3, and the previous methods 

were reviewed. As stated, the goal of the structure identification procedure for local model 

nets is to provide a problem-adaptive learning scheme which automatically relates the density 

of basis functions, the associated local model structures and the size of their receptive fields to 

the local complexity and importance of the system being modelled. The aim is to find a model 

structure M which allows the network to best minimise the given cost function in a robust 

manner. Minimising r(M, 1», from equation (2.20), over the possible model structures leads 

83 
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to the 'super-optimal' cost, using a priori knowledge about the process structure 1\,$, 

J**(V, 1\,s} = minJ*(M, V). 
M 

(4.1) 

This is a general statement of the problem, and much of the work in the area of structure 

identification formulates the task as an explicit search or optimisation problem where the 

task is to find the structure associated with the minimum of the given cost function. The 

construction becomes a multi-step process: At each step various options are constructed, the 

model parameters optimised, and the structure with the best cost-complexity value chosen. The 

procedure is then repeated at the next stage of construction. Unfortunately the search space is 

usually very large and such algorithms therefore suffer from the 'curse of dimensionality' and 

scale up badly to larger problems. This becomes even more acute when multiple search paths 

are followed, where not only the best option is chosen at each step, but several of the best 

model structures are chosen and used for future steps. 

To produce efficient, practical algorithms the following observations about the modelling prob­

lem should be noted: 

1. Although highly desirable, the distribution of training data will probably not be directly 

related to the complexity of the observed process. 

2. The process will probably have varying levels of complexity throughout different areas 

of the input space. 

3. The training data will not be uniformly distributed, and because of the physical con­

straints inherent to the process being modelled, there will be areas of the input space 

which cannot be filled with data. 

These points have a number of implications for constructive algorithms for local model nets. 

The first point implies that we should consider the local complexity of the process output in the 

improvement of model structure, as opposed to unsupervised learning techniques, which only 

consider the density of the input data, regardless of the output response. The second point 

implies the need for a multi-resolution technique which will find model structure representing 

varying volumes of the input space (varying levels of 'locality'). The last point lets us reduce 

the volume of the input space we consider for new local models to only points covered by the 

available training data. 

4.1.1 The constructive approach 

The constructive approach starts off with a simple model. The parameters are then estimated, 

and the model validated. The validation helps determine the areas of the input space where 

the representation is still unsatisfactory so that new degrees of freedom can be added to the 
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model in these areas. This generally leads to a sequence of model structures of increased 

representational ability (i.e. increasing degrees of freedom in the model structure, although 

sometimes the model structure may be reduced). The basic algorithm for a constructive struc­

ture identification algorithm is therefore: 

1. Initialise model struf't.ure using a priori knowledge. 

2. Estimate model parameters from training data. 

3. Validation (Determine model quality, and where model structure most needs improve­

ment) 

4. Improve model structure, if necessary and feasible, given the available data. (Can involve 

an increase or decrease in degrees of freedom) 

5. Goto Step 2 if validation unsatisfactory. 

Constructive techniques which gradually enhance the model representation in this manner have 

a number of advantages. 

• The network first allocates representation where most needed, according to the complex­

ity heuristic. The main features of a process are captured first, then the details. This is 

an implicit style of regularisation, as the model construction process can now be seen as 

a gradual increase in variance and decrease in bias. Learning continues until the desired 

level of bias-variance trade-off is achieved. 

• Modelling accuracy and generalisation ability tend to be improved, as the model structure 

is extended as a far as possible to fit the data, while the overfitting protection inherent 

to the constructive algorithm limits overtraining. 

• A priori knowledge can be introduced in the form of a pool of local model structures, 

so that the local model structure best suited to a local area of the input space is chosen. 

This automatically creates a heterogeneous model structure. 

• The proportion of the available training data used can also be selectively extended during 

learning to have a density matching the density of the basis functions, improving the 

quality of the parameter estimates, and speeding up the learning process. If there is 

insufficient data in certain areas of the input space, the constructive algorithm can be 

linked to an active learning procedure which interacts with its environment to obtain 

more information. 

The constructive procedure is illustrated in Figure 4.1 where the model complexity is increased 

gradually for a two-dimensional function approximation problem. The algorithm used to con­

struct this network is the Multi-Resolution Constructive (MRC) algorithm for local model nets, 
described in the next section. 
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Figure 4.1: A gradual approach to constructing a model. The model responses are shown for 
a series of stages in model development , shown by the contour plots of the basis functions. 
The bottom row shows the training data used - note that the set is expanded with the model 
structure. The target function is that shown in Figure 3.9 on page 68. 
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4.2 The Multi-Resolution Constructive Algorithm 

This section describes the Multi-Resolution Constructive Algorithm, which differs from the 

existing constructive algorithms in a number of ways. The conventional methods tend to 

basically apply search techniques to find a model structure which minimises the cost-complexity 

functional. The method used here is to use a 'model mismatch' or 'complexity heuristic' to 

indicate the areas of the input space with the worst errors, or greatest complexity and to 

develop the model structure in this area. The options for model structure extension are also 

drastically reduced by restricting the possible positions of basis function centres to be on input 

points in the training set. This leads to a relatively simple method for extending the model 

structure which expends its effort in predicting where new structure would be useful, rather 

than trying out the options and selecting the best of them. The process is described below: 

1. The model starts off with a minimal representation (perhaps only one linear model, 

depending on the state of the a priori knowledge) and searches for 'coarse' complexity. 

It refines the model structure at ever increasing levels of resolution until the desired 

accuracy has been achieved, or the training data has been exhausted. 

2. To determine where to add the extra representation the 'complexity' heuristic is needed. 

This decides where new models should be placed, based on a weighted local statistic 

of the training data, or from measured model residuals. To enforce the gradual nature 

of the approximation the new centres must be a minimum distance dmin from existing 

centres.1 

3. Given the suggested location of the new model centre the desired overlap with neigh­

bouring regions is determined, thus completing the basis function optimisation for this 

stage of the model construction. 

4. If a pool of local model structures has been defined, the best fitting local model for each 

basis function can be chosen by estimating the local model parameters for the new model 

structure and running cross-validation runs. If the receptive field of any given basis 

function has too few units to reliably estimate the associated local model parameters it 

can be removed (and Step 3 is repeated), or the local model structure simplified. 

5. If the model is still not accurate enough, the search for the next most 'complex' area of 

the input space is then restarted. This is repeated until either no further local models 

can be added, or the added models do not bring any improvement, whereupon the scale 

of the 'complexity window' is reduced, and the search is restarted at the finer resolution. 

The details about each of these stages are described in the following sections. 

Idmin is related to the current resolution of search (Twin. 
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4,2,1 Scheduling the multi-scale search for complexity 

The search principle is shown in Figure 4.2, where the radial complexity window described in 

Section 4.2.2 is applied at different scales, starting off by searching for coarse complexity and 

refining the search as learning progresses. The resolution of the window lTwi n is reduced by a 

factor of >. each iteration, starting at an initial size of IT max. 
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Figure 4.2: Multi-Resolution Windowing. The complexity measure is applied at different 
scales, and at each scale lTi the 'window' is centred on points from the training set. The points 
corresponding to the greatest values of the complexity measure are those suggested as new 
centres for basis functions. 

As new models must be a certain minimum distance away from previous models, the input 

space will gradually be filled with basis functions, the density being determined by the current 

resolution. Once no more basis functions can be inserted at this resolution the algorithm 

moves on to the next, finer search stage. To prevent non-complex areas of the input space 

being unnecessarily filled with local models, the search at a given resolution is abandoned if 

over a window of ncutof f successive insertions no improvement in mean cross-validation error 

is made (n cut off = 4 was used for the experiments in this work) . 

Choice of algorithm parameters 

In general, the algorithm worked well on a range of problems without the need to fiddle with 

the parameters . Once the initial model was built, the user could alter parameters to try and 

improve the approx;mation, but the initial results were usually satisfactory. 

The choice of initial search resolution IT max , reduction rate >. and number of window resolutions 

n re • involves the usual trade-offs in parameterisation. A large number of iterations will make 

the process more robust, but also more expensive. Having>. too small, or starting with a small 

O'max will lose the multi-resolution nature of the algorithm, as the resolution jumps from a 

coarse level to a relatively fine window . Setting these parameters to be too large will increase 

the number of iterations and the computational cost. 

The scaling factor "I is used to determine the minimum distance a new centre has to have 

from existing centres dmin = 'YlTwin. This has an effect on the manner in which complexity is 
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increased during learning. The 0' win defines the size of the complexity window being used, but 

if'Y is too small, the gradual nature of the approximation will also be lost, as the algorithm 

will place too many units in the complex areas of the input space (where 'complex' is defined 

for the current level of search), at the cost of other areas. 

The variance in conventional search-style algorithms, such as decision trees, which recursively 

partition the input space comes from the effect of making a non-optimal decision early in the 

construction process which has a serious effect on following stages of learning, as the amount 

of available data has been drastically reduced. This is less of a problem in the multi-resolution 

constructive algorithm because the multi-stage nature of the algorithm brings added robustness. 

From experimental experience, the learning algorithm does not seem to be overly sensitive to 

early decisions, whereas in decision trees this is not so. The variance in network size tends to 

be due to the decision to stop construction at a given level. 

4.2.2 Complexity detection -- where are extra units needed? 

The multi-resolution cluster algorithm uses a 'complexity detection' heuristic to place new 

local models. The heuristic was inspired by the Vector Field Approach to Cluster Analysis 

(Andrews, 1983). Observation 3 above indicates that we should simplify the search task by 

assuming that the training data covers the significant areas of the input space adequately for 

the initial search (an assumption which must be true for any degree oflearning to take place). 

Initially, all training points which are a minimum distance dmin = 'YO'win from existing centres 

are viewed as possible centres Cnew for the new basis function. The centre Cnew E nn., and 

the 'complexity' of the mapping in a windowed area, where p(.) is the windowing function2, 

around this point is measured using 

(4.2) 

where N is the number of neighbouring data points used, fi can be a general error statistic3 , 

but which is often simply 

ei = IYi -- Yil· (4.3) 

The function d(·) is a distance measure. The complexity is estimated by an analogy to the 

concepts of forces acting on a mass in physics. The weighting of the forces depends on their 

associated error statistic (ei). The windowing function focusses the heuristic's attention on 

the level of locality currently being examined. The larger the level of Ftotal, the larger the 

estimated complexity. 

2In this work a Gaussian bell was used, as defined in equation (2.13). 
3If pruning is not used it can make sense to use e; = lAy; lIe;l. where Ay; = 11; -Yeenlre, as this prevents 

the system allocating nodes in relatively simple areas of the input space, purely because the initial windowing 
size is too coarse to capture the finer model structure. 
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Figure 4.3: Windowed_Complexity Estimate . The weighting function pC) weights the error 
measures e i at points tPi around the prototype centre. The window function is usually chosen 
such that points further from the centre have less effect on the outcome of the complexity 
estimate. 

The major disadvantage of the complexity heuristic is its computational load. It can require a 

maximum of N 2 calculations of the weighting function and the associated offset for each proto­

type centre. However, as extra basis functions are added for any given resolution, the number 

of potential centres sinks, due to the distance constraint dmin covering a higher percentage of 

the training points. This means that the search for complexity gets faster as the model grows . 

The computational effort can also be reduced by limiting the search by using only a subset of 

the training data as potential centres by applying active selection . Hierarchical decomposition 

of the input space also limits the number of data points under consideration, as described in 

Chapter 5 . 

4.2.3 Overlap determination 

Given a set of basis function centres we need to define the basis function widths u, which 

determine the level of overlap between neighbouring local models. When basis functions are 

used where centres can be distributed unevenly throughout the input space finding the 'correct' 

degree of overlap is a difficult problem . The conventional method is to set the radius (J"j 

proportional to the average distance of the k nearest neighbours from the centre Cj, 

( 4.4) 

In many cases this will be unsatisfactory, as the immediately neighbouring units could be widely 

varying distances apart in different directions, meaning that the resulting level of overlap with 

the neighbouring basis functions would vary greatly. Too much overlap leads to problems 

with poor estimation and singularities in the regress ion process. With too little overlap and 
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normalisation the mapping loses smooth interpolation between local models, and the behaviour 

further away from the centre becomes unpredictable, because of the interaction with other 

basis functions. In Section 3.1.1 it was shown that the condition of the design matrix is highly 

dependent on the level of overlap between basis functions. More powerful distance metrics 

such as the ellipsoidal distance metric in equation (4.5), where CTj is a positive definite square 

matrix, as in (Poggio and Girosi, 1990, Roscheisen et aI., 1992) can be used to provide more 

flexible basis functions 

- 1- IT -11- I d(q,jcj,O'j)= q,-Cj CTj q,-Cj, (4.5) 

which potentially allow a more even level of overlap with the neighbouring units. The overlap 

optimisation problem is therefore to robustly determine the matrix CT for each basis function 

from the distance of the neighbouring units. 

Use of a 'covariance' heuristic 

To make a fast estimate of CT j, a heuristic is used which calculates the 'covariance' of the set 

of centres Cn surrounding the chosen centre Cj (which serves as the 'mean' in the calculation). 

The inverse of the 'covariance' estimate can then be used to define the distance function, as 

used in equation (4.5): 
(4.6) 

where En is the expected value over the set of chosen neighbouring centres Cn • The results of 

this technique are shown in Figure 4.4. 

The problem with this technique is that we are interested in estimating the distance to the 

nearest neighbours in all directions around the centre. It is not sufficient to take the k nearest, 

as they could all be in the same area. To avoid this, the algorithm demanded a minimum angle 

between neighbouring centres before they were included in Cn to be used for the covariance 

estimate, as shown in Figure 4.5. 

Spherical, ellipsoidal or axis-orthogonal ellipses? 

The ellipsoidal basis functions demand an extra n(n2+1) free parameters, and the variance inher­

ent in this increase in parameterisation is not trivial. To reduce the variance we used singular 

value decomposition (SVD) to determine the inverse of the 'covariance' matrix CT. This allows 

us to apply simple regularisation ideas to the distance metric by altering the singular val­

ues, and thus reducing the degrees of freedom in the final distance metric. In our experiments, 

however, we found that the minimal improvement in performance compared to the simple RBF 

net was usually not enough to justify the use of fully parameterised ellipsoidal distance met­

rics. More restricted axis-orthogonal elliptical basis functions, where CT is a diagonal matrix, 

can be easily derived by only considering the diagonal terms of the covariance matrix. The 

use of these simplified distance metrics tended to lead to networks with higher accuracy and 
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Figure 4.4: Using the 'covariance' measure to determine the basis functions' size and orienta­
tions. Neighbouring points are found and the desired overlap is estimated. 'x' is the centre of 
the unit being adjusted , and the '0' points are the centres of neighbouring units. The surface 
plot on the right shows the shape of the resulting basis function. 

Figure 4.5: Eliminating centres with a common direction. The neighbouring points are used 
to define a 'covariance' matrix which is used to determine the overlap between neighbouring 
units. Neighbours in the same direction are ignored . 
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better generalisation . Figures 4.6 and 4.7 show the contours of the basis functions found for a 

two-dimensional problem with the given centres, using the three styles of distance metric with 

and without normalisation. Note from Figure 4.7 that when the basis fun ctions are normalised , 
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Figure 4.6: Radial , Ellipsoidal and Axis-orthogonal ellipsoidal basis functions. Contours are 
drawn at a level of 0.5. 

there is often little difference between the various options . 

Figure 4.7: Normalised Radial, Ellipsoidal and Axis-orthogonal ellipsoidal basis functions. 
Contours are drawn at a level of 0.5. 

T he heuristic method described in this section could be seen as a fast initialisation routine, 

which could be further optimised by iterative gradient techniques , as in (Poggio and Girosi, 1990) . 

4.2.4 Preventing overfitting 

The problem of differentiating between errors due to noise on the training data and errors due 

to bias caused by an inadequate model structure is often a difficult one. Overfitting is the 

result of extending the structure so fa r that noise is learned , instead of system structure. In 
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Section 2.5.1 we discussed ways of reducing the variance in the parameter estimation phase. 

It is also possible to reduce variance by limiting the model structure, which can be done by 

stopping growth, pruning structure, or careful selection of local model structures. 

3topping model growth 

A simple constraint on the structure identification algorithm is to require a minimum number 

of data points within the receptive field of a given local model for it to be considered viable, 

i.e. only if Ptotal/ > Nmin, where Nmin is the minimum number of training points needed and 

N 

Ptotal/ = L: PI (4)i) (4.7) 
i=l 

is a heuristic 'count' of the local data points for smoothly overlapping basis functions. Nmin 

is dependent on the level of noise on the data and the complexity of the local model. The local 

model structure selection criteria described in Section 4.2.5 uses this style of data count to 

encourage the algorithm to choose simpler models when data is sparse, and stopping growth 

can be viewed as the extension of this local structure selection to the case of preferring no 

increase in model structure to other model structures. 

Pruning techniques 

Further pruning techniques, which merge neighbouring local models if their parameters are 

similar enough, have also been successfully applied to simplify the networks. These rely on the 

use of local learning techniques, as described in Section 3.1.2, to ensure that the parameters 

have a strictly local interpretation. 

The distance between the local model parameter vectors is then calculated c5i/c = lei - 81c1 , 
and the most' similar min6i j, i,j = l..nM local models were merged into one, and the new 

basis function centred between the old ones. 

The pruning algorithm can be applied during the constructive process, not just at the end of it. 

When the algorithm moves to a finer level of resolution the pruning stage is started, redundant 

models are removed, and only then are new models added. 

4.2.5 Local model structure selection 

The structure optimisation extends also to the model structures of the individual local models. 

These need not be homogeneous, the user can define a pool of possible local models which can 

then be inserted into a given operating regime, with the 'best' one being chosen. This would 

allow a more robust fitting of models to operating regimes, taking the amount of data and the 

local process complexity into account. Such a cost-complexity functional is 

J(Mi) = li 

(1 ...1!.!:L) 
Plolo/; 

(4.8) 
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where {i is a statistic such as mean squared error, as defined in equation (3.30) and the 

( 1 -~) part is a GCV penalty term, where Pi represents the number of parameters in 
pta"a'i 

local model structure Mi. fJ, (0:::; fJ < I), is a factor which can be related to the level of noise 

in the training data. 

The resulting local model net will be a heterogeneous structure, as shown in Figure 3.7 where 

each local model could be different. If all local models are linear in the parameters, the standard 

global optimisation techniques remain valid. This will be true in the most straightforward 

example of heterogeneous LMN's, where the local models are linear, but with varying dynamic 

order. If some local models require nonlinear optimisation techniques, the heterogeneous local 

learning methods described in Section 3.1.2 can be used. 

4.3 Active Learning with Local Model nets 

As mentioned in Section 2.2.2, interest in active learning has grown in recent years. Local 

model networks are well suited to the application of these techniques for a number of reasons: 

In local model nets where the local models are linear in the parameters, a number of existing 

statistical methods for linear systems can be applied at local level, reducing the computational 

load in a similar manner to the local learning techniques described in Section 3.1.2. The basis 

functions give a clear indication of the data points related to any given local model, so that 

areas with insufficient data can be easily identified. The methods described in Section 3.2 for 

estimating the local confidence in the network for any given unit can be used to guide the 

search for new training data, collecting more in areas where the model has poor confidence in 

its accuracy. 

Confidence estimates can be linked with Experiment Design techniques to produce the 'optimal' 

sampling of the input space for a given regression problem (Fedorov, 1972). This is done by 

adding samples where the uncertainty in the model is greatest. The experiment design frame­

work has recently been applied to networks with a structure identical to local model networks 

in (Cohn et al., 1994). If local basis functions are used, this is obviously an improvement 

to the general experiment design philosophy, as the locality can be used to better determine 

regions of low confidence, and to select new areas for sampling. 

4.3.1 Active selection of training data in Local Model Nets 

In many learning problems, there is a large number of data points present in the training 

set 'D, but often most are in 'uninteresting' areas of the input space. Such areas are often 

straightforward to model because they are usually the setpoints of the system, where control 

is most accurate, and it makes little sense to have such a large proportion of the training data 

representing such simple areas of the input space. 
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It is important therefore to reduce the training set V to a V opt , where the 'optimal' training set 

depends on the current model structure and a cost-complexity functional to weight the relative 

importance of residuals, costs of expanding the data set and computational effort. This should 

lead to a more computationally tractable optimisation process with a more information-rich 

training set. 

Selecting from Local Training Sets 

An active selection algorithm for use in conjunction with the iterative constructive algorithm 

was developed. The method selects a given number of training points from the full data set 

randomly from the receptive field of each local model. The points are deemed to be within the 

local model's training set 1)i I if the activation of the model's basis function is above a specified 

minimum activation level C, i.e. 

,pE1)i, if Pi(d(~;Ci'O"i»>C. (4.9) 

The global training set 1)opt is then created by reducing the subsets Vi, i = l..nM and com­

bining the reduced subsets (the 1)iop,). There is a variety of methods which can be used to 

find the optimal local training sets. The simplest is to randomly select training data from the 

local set Vi. A slightly more sophisticated method is to weight the probability of a point's 

inclusion by the associated value of the basis function Pi (d«(j)j Ci, (Ti)). The size of the local 

data sets depends on the expected noise level in the data and the complexity of the associated 

local models. 

The process is illustrated in Figure 4.8. Two models were allowed a maximum number (N = 
500) of training points to learn from. One had only the 500 points, and used all of them. The 

other used an active selection system to choose its points from a training set of 5000 (for the 

experiment Nmin = 30), but was allowed no more than 500 at anyone moment. The system 

trained using active selection performed better on a uniformly distributed independent test set 

of 1000 patterns. 

Unevenly distributed training data 

Unevenly distributed training data is a common feature of real industrial processes which 

are often relatively simple around the normal operating conditions, where most of the data is 

collected. The process often becomes increasingly complex as the operating point moves away 

from the given setpoint, and because such areas are harder to control, the process spends less 

time in them, and there is less data available for training. The importance of not just using the 

given distribution of data to model the target process is shown by the example in Figure 4.9, 

where the data is distributed most heavily in a relatively simple area of the target system. The 

data had additive normally distributed noise with a variance of 0.02. 
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Figure 4.8: Active Selection and Random Selection of the same number of training data. Target 
function is shown in Figure 4.16 on page 106. Both algorithms could use only 500 points at 
any given stage of learning. The active selection algorithm, could however choose its 500 from 
a total set of 5000. Active learning had mean error 1.99%, worst of 59.6%. Fixed data set had 
a mean error of 2.27% and a worst error of 96 .5% (results from a randomly distributed test 
set of 1000 points.) 
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(a) Model Response - Trained with 
fixed training set 

o 0 

(d) Model Response - Trained using 
Active learning 

(b) 1000 Training Data (c) 80 Basis Functions 

(e) 742 Actively Selected 
Training Data 

(f) 49 Basis Functions 

Figure 4.9: Use of active learning to cope with training set distributions which are not related 
to the process complexity. The active learning system produces a model structure more suited 
to the local complexity of the system than the model produced using the larger fixed training 
set, which has concentrated its structure on the area of the input space with greatest data 
density. Target function is that shown in Figure 3.9 on page 68 . 
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Adding randomly selected patterns 

One danger of using constructive algorithms with active learning is that the trained model can 

become very 'narrow-minded', and dependent on the initial conditions. If the initial training 

data or model structure is biased towards one area of the input space, the constructive algorithm 

will start to develop there. Due to the more complex model structure in that area, the system 

will demand more local data, allowing it to develop even further, eventually becoming 'locked­

in' to that one aspect of the process, ignoring other equally complex areas of the input space. 

To make the active selection process more robust, a set of NranJ. data points Vr was selected 

randomly from the whole training set V, regardless of process complexity or model structure. 

nM 

'Dopt = U Vjopt U Vr 
i=l 

(4.10) 

The use of such active selection schemes speeds up the training process and the new distribution 

of the training points can improve the robustness of the training process. The fact that the 

training set is changed after each iteration also tends to make the structure identification 

algorithm more robust, as poor structure which by chance was well suited to one set of data 

will be discovered at the next iteration when the data set changes. 

4.4 Illustrative Examples 

In order to evaluate the use of the new cor .::tructive techniques described in the previous 

chapters we use a variety of test systems to illustrate the algorithm's strengths and weaknesses 

and we compare the algorithms with competing methods. 

The robustness of the constructive algorithms and the parameter estimation routines can be 

verified using cross-validation techniqups. For the cross-validation experiments in this thesis 

a 5-fold cross-validation is used to measure robustness of learning algorithms. This means 

that the model is trained 5 times with 80% of the data randomly chosen as the training set 

and tested each time on the remaining 20%. The quality index used to determine the model 

performance trained on the training set Vj was the average absolute error from each pattern p 

in the associated test set 'Ti • 
1 N 

Eab.; = N L IYp - 1/pl· 
p=l 

Also important is the worst error found in the data set, 

(4.11) 

(4.12) 

The cross-validation results are then found by taking the mean and variance of the results from 

the set of training sets. 
1 J 

Emean = 7 EEj • 

j=l 
(4.13) 
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and 
1 J 2 

E tJar = f t; (Ei - Emean) , ( 4.14) 

where f is the number of 'folds' in the cross-validation process. If there is a high variance in 

the error produced on the training set over the various folds, it implies that there are some data 

patterns which map to a complex surface which the model is unable to represent. This could 

be due to disturbances, or simply to an inadequate sampling of the input space. If, however, 

the errors produced on the test sets vary greatly, and the errors on the training set do not, it 

implies that the architecture chosen is over parameterised (too powerful) for the given training 

set. The cross-validation results therefore give us an estimate of the robustness of the learning 

algorithms' models in the experiments. 

The interpretability of trained networks is discussed in Section 6.3.4. It is difficult to determine 

whether a model is parsimonious or not, if little a priori knowledge about the system is avail­

able. One method is to apply pruning techniques to the model, as described in this chapter, 

and to observe the effect on the model accuracy. The consistency of an algorithm is easier 

to validate, as the same problem can be attacked with increasing amounts of data, and the 

resulting models compared. 

4.4.1 Static examples 

Unless otherwise stated, the MRC algorithm was used to create local model nets. Training was 

global, the initial window size was O"maz = 0.2/2, ,\ = 0.6, nre• = 5, "y = 'l- and Nmin = 15n.p, 

TJ = 0.02, Nde. = 1.5Nmin, Nrand = Nde •• Basis functions were normalised. 

Mars 

This is a benchmark from the non parametric statistics literature, used in (Gu et al:, 1990, 

Friedman, 1991). 

2 exp (8 [(x - 0.5)2 + (y - 0.5)2]) 

Z = exp (8 [(x - 0.2)2 + (y - 0.7)2]) + exp (8 [(x - 0.7)2 + (y - 0.2)2)) 
(4.15) 

It is typical of a smooth nonlinear function, which should be relatively easy for a learning system 

to model. It is a collinear function (where the nonlinearity is dependent on linear combinations 

of the input dimensions), which makes it more difficult for methods which partition the input 

space orthogonal to the axes of the input space. 

To give an impression of the effect of the noise on the training set, the 300 pattern training sets 

are plotted for the 2-dimensional benchmarks, with and without noise (normally distributed, 

variance = 0.02). The target tolerance 1] was set to 0.005 for noise free examples, and 0.02 for 

noisy data. 

The response of Local Model Network trained on the Marsl data is shown in Figure 4.11. 
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Figure 4.10: Marsl test function and 300 training points . z axis is vertical. x and yare right 
and left respectively. 
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(a) LMN Response nre. = 5, >. = 0.6,1) = 0.005 
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(c) LMN Response on noisy data nr .. = 5, >. = 0.6,1) = 0.02 

(b) LMN with 11 ellipsoidal Basis 
Functions. Contours are drawn 
at 0 .5 

(d) LMN Basis Functions for 
noisy data. Contours are drawn 
at 0 .5 

Figure 4.11: Resulting LMN responses for mars1 benchmark (300 training points) using global 
learning. Note the effect the noise has on the smoothness of the approximation. This is due 
to the model structure extending too far, in an attempt to model the noise . Compare to the 
network response for the locally trained network in Figure 4.12. 
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(a) LMN Response on noisy data nr •• = 5,'\ = 0.6,1) = 0.02, using 
local learning. 

(b) LMN Basis Functions for 
noisy data. Contours are drawn 
at 0 .5 

Figure 4.12: Resulting LMN responses for mars1 benchmark (300 training points) using local 
learning. Note the far smoother response than that of the globally trained network in Fig­
ure 4.11. 
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Figure 4.14: Cross-validation results for MARS algorithm on the noise-free Mars example. 
Note that MARS performs worse on t raining and test measures than the Local Model Net, 
and there is less similarity in the results for t raining and test runs than there is with the Local 
Model Nets. 
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Squiggle 

This benchmark has several aspects: the influence of y is as a linear multiplication, whereas x 

has a highly nonlinear behaviour. The nonlinearity is also of varying complexity, having very 

high frequency components at large values of x, and changing very slowly in the middle. 

z = (y - 0.5) sin (101l'x sin(x - 0.5)3) (4 .16) 

0.5 
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. . :.: :.~:~~.: .. ~: .. ;~::): ': .~ : .. ::~ ~L :~.> ::': .. 
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o 0 

(a ) Squiggle functi on (b) Squiggle training data 

Figure 4.16: Squiggle test function and 300 training data points 

This is an extremely difficult benchmark for most learning systems. Because of the ext reme 

variation in complexity it shows the necessity of intelligent construction of the training set for 

such systems, using either experiment design techniques, or active learning . 

The MARS algorithm performs very well on the Squiggle function, because the nonlinearity 

is axis-orthogonal, and the function is only highly nonlinear in x, and MARS strength lies in 

its ability to separate important inputs from unimportant inputs when developing the model 

structure. Other axis orthogonal schemes such as LSA (Johansen and Foss, 1994b) produce 

similar results , and it would be expected that ASMOD would also work well on this example. 

Rotated Squiggle 

To show the disadvantage of axis-orthogonal representations, however, all we have to do is 

rotate the function. In this case it has been rotated by ~ radians. The rotated squiggle 

function and various responses are shown in Figure 4.19 . T he mean absolute error for MARS , 

trained on 1000 points was 0.0237 (used 64 basis functions). LMN achieved a mean error of 

0.0043 with 62 local models (with ellipsoidal distance metrics) . 
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Figure 4.17: Resulting LMN for Squiggle benchmark (1000 training points), with 38 axis­
orthogonal ellipsoidal basis functions and global learning. Compare with MARS response in 
Figure 4.18 which is very close to the original function . The LMN for the noisy data had 
Nmin = 30, instead of 15, and 7J = 0.02 instead of 0.005 for the noise free case, which lead it 
to produce a good model with 30 local models. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 108 

o 0 

(a) LMN Response on noisy data 

o 0 o 0 

(b) MARS Response on clean data (c) MARS Response on noisy data 

Figure 4.18: MARS responses and LMN response on noisy data. 
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(a) Rotated Squiggle function (b) MARS Rotated Squiggle response 
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(c) LMN Rotated Squiggle response (d) LMN Rotated Squiggle response 

Figure 4.19: Rotated Squiggle responses. Note the difficulty MARS has in comparison with the 
original Squiggle benchmark, due to the non-axis orthogonal nonlinearity, whereas the LMN 
copes well with the change. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 110 

4.4.2 Dynamic systems 

The static examples above are interesting test cases for constructive algorithms, because they 

can be easily visualised, and as they are synthetic, data can be easily created with varying 

degrees of noise. They are, however, not high dimensional and the uniform data distribution is 

also not typical of modelling applications for dynamic systems. One major difference between 

static and dynamic systems is that in the static case the input dimension of the problem is 

known, whereas in dynamic systems this is not necessarily the case. In the modelling examples 

in this thesis the learning algorithms do not identify the order of the system, the user defines 

it before learning starts. 

Measuring model quality for dynamic systems 

A straightforward measure of network accuracy is the one-step-ahead prediction measure, where 

previous system inputs and outputs are fed to the model, which should then predict the system 

output at the next time step: 

(4.17) 

where 11 = !(1fJ), and 1fJ = [YIc-lI •• " YIc-n, UIc-lI ••• UIc-n]. It is obviously important to com­

pare the errors produced at each stage with the expected change in the output between samples. 

If the sampling rate is too high, the learning system can have difficulty in learning the sys­

tem's dynamics. In practice, unless interpreted carefully, the one-step ahead method can give 

misleadingly good results for a model which in reality is a poor representation of the process. 

A more realistic test of the system's modelling ability is to leave the model free-running over 

a horizon of h steps, with its own output states being fed back and to see whether the model 

reacts in the same way as the target system - the Multiple-step-ahead prediction test. 

1 N-hm+h 

Em.h = N _ h L: L: (Ylc - YIc)2 , 
m=llc=m 

where 11 = !(1fJ), and 1fJ = [Y1c-I, ••• , YIc-n, UIc-I,'· .UIc-n] 

Nonlinear time-series example 

A two input one output nonlinear system is described by the following equation: 

y(t) = [0.8 - 0.5 exp( _y2 (t - 1))] y(t - 1) - O.lsin(lI'y(t - 1)) 

+ [0.3 + 0.9 exp( _y2 (t - 1))] y(t - 2) + e(t), 

(4.18) 

(4.19) 

(4.20) 

where e(t) is zero mean Gaussian noise, with variance 0.01. The inputs x(t) = [y(t - l)y(t -
2)], and the output is y(t). The response surface for the function without noise is shown in 
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Figure 4.20: 4.20(a) Time series function response. Figure 4.20(b) Phase portrait . Fig­
ure 4.20(c) and Figure 4.20(d) are noisy data sets. 
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Figure 4.20. The time series represents an unstable equilibrium, enclosed by a stable attracting 

limit cycle. This process has been used in (Chen and Billings , 1992) and (Harris et aI., 1993). 

Two sets of experiments were performed with the given data, one with 1000 points, as used in 

(Harris et al., 1993), and another more difficult case, where only 200 training points were used. 

To test the results a free- running simulation was used , where the model was given the initial 

value [0.1 , 0.1] . The results of the 1000 set experiments are shown in Figures 4.21 and 4.22. 

Both locally and globally trained models capture the essential dynamics of the process. The 
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Figure 4.21: Time series model. Local model net with local learning, trained on 1000 examples. 
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Figure 4.22 : Time series model. Local model net with global learning, trained on 1000 ex­
amples. Note the smoother approximation of the locally trained model. 

process is modelled with a small number of basis functions, compared to the work reported 

in (Chen and Billings, 1992) , which used over 30 basis functions to approximate the same 

problem. Note, however , the difference in the phase portraits between the locally and globally 

trained systems. The local method produces a far smoother model. The results from the more 
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Figure 4.23: Time series model. Local model net with local learning, trained on 200 examples. 
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Figure 4.24 : Time series model. Local model net with global learning, trained on 200 examples . 
The locally trained model still approximates the process well, while the global method does 
not provide a stable solution. 
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difficult 200 point problem are shown in Figures 4.23 and 4.24. The globally trained model 

in Figure 4.24 proved to be unable to produce a robust free-running simulation, because of 

the poor generalisation. This is also visible in the form of the response plot, which is highly 

variable outside the area covered by the training data. This problem with robustness in a 

free-running simulation is one which is of great importance for the practical use of dynamic 

models, but which has been often disregarded in the literature, as Lhe accuracy of models is 

often evaluated only on one-step-ahead prediction tests. 
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4.5 Conclusions 

4.5.1 Structure identification in Local Model Networks 

The new Multi-Resolution Constructive (MRC) structure identification algorithm proposed in 

this chapter has a number of advantages. The procedure is relatively fast, and automatic­

ally determines its own structure for a given modelling problem. The complexity detection 

heuristic performs well at allocating resources to the more complex areas of the model's state­

space, although it is likely that more efficient ways can be found of implementing the basic idea. 

The algorithm also limits overfitting by the simple but very effective method of gradual con­

struction, stopping structural growth in areas which are not sufficiently populated by training 

examples. Pruning methods which compare neighbouring local models' parameters to detect 

overparameterisation were also successfully used. 

A new algorithm for determining the size and shape of the basis functions was developed. It is 

based on a 'covariance' measure of the surrounding centres. Radial, axis-orthogonal ellipsoidal 

and fully ellipsoidal basis functions were used. The axis-orthogonal ellipses tended to produce 

the most robust models. From the experience in this work, the algorithm works well for 

relatively low dimensional problems, but becomes less robust with increasing input dimension. 

It is interesting that the algorithm, despite its relatively simple search technique can model 

some extremely nonlinear systems better than other more sophistica.ted algorithms, such as 

MARS. This reflects the representa.tion of the nonlinearity inherent to the competing model 

structures. Axis-orthogonal structures such as LSA, MARS or ASMOD produce better and 

more interpretable models for some systems, whereas MRC produces better models when the 

nonlinearity is at an angle through the input space. 

The dependence on the training data of the MRC algorithm, is both a strength and a weakness 

of the algorithm. From experience, the MRC algorithm tends to perform poorly at ignoring 

unimportant input dimensions, but the computational effort does not increase exponentially 

with input dimension, meaning that the problem can still be used usefully on higher dimensional 

problems. The increase of computational effort with the amount of training data can be 

controlled by using the active selection techniques described in this chapter. 

The disadvantages of the limited amount of feedback4 in the MRC algorithm become more 

obvious when noisy data is used, especially when the data distribution is skewed, as the 

algorithm tends to fit model structure in the wrong areas of the input space. Local learning 

proved to be a remedy for some of these problems, performing well with the noisy systems. 

Future work 

The structure identification problem is far from solved, and this should remain a major research 

area in machine learning in the near future. The problems with the methods described in this 

"Here the feedback discussed is the effect of the new model on the cost-complexity measure. 
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chapter are that they tend not to cope well with a. la.rge number of relatively unimportant input 

dimensions. 

The criterion for stopping construction is not particularly robust, especially when local learning 

is used, and it seems to be the main source of variance in the algorithm's performance. The 

effect of changing the reduction schedule for the multi-resolution complexity 'window' is still 

not fully understood, leaving too many 'fiddle factors' (the values used in this work, however, 

proved to be reasonably general, working well on a variety of problems). It also indicates 

the need for hierarchical structure identification, which as learning progresses, revises earlier 

structure decisions, producing a more parsimonious, robust and interpretable model. 

Local Controller Networks are the obvious generalisation of Local Model networks, where the 

local functions can be viewed as controllers, instead of models. The framework is clearly similar 

to gain scheduling in conventional control (Shamma and Athans, 1991), and has recently been 

described as the use of Heterogeneous Control Laws in (Kuipers and Astrom, 11:)94). The 

methodology could, however, benefit from the use of structure identification algorithms such 

as MRC to automatically place the controllers. In the linear case, the transfer from local 

model to local controller is easiest to imagine: The local model network for a given system 

could be created, and the corresponding local controllers then created using conventional linear 

design techniques. A global nonlinear controller is then the result of the interpolated linear 

controllers. It would seem that locally trained iocal models are better suited for the creation 

of local controllers, due to their local interpretability. 

Initial experiments have shown the structure to be well-suited for classification purposes. The 

work will be published in a future paper. 

4.5.2 Active learning 

Active learning was easily introduced to the local model networks. The algorithm described 

in this chapter for active selection of important data from the training set, in conjunction 

with the constructive structure identification algorithm was found to make the learning process 

more efficient and in some cases led to more accurate models. Active selection also lets the 

constructive algorithm cope better with non-uniformly distributed training data. The local 

nature of the basis functions makes the task of selecting the new inputs easier than with other 

archi tectures. 

The improvement gained by using active learning, in speed and accuracy is demonstrated again 

in Chapter 6. 

Future work 

The extension of the automatic modelling methodology to the unsupervised automated creation 

of training sets is an important goal, but for industrial applications there are still many practical 
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and safety aspects which have to be dealt with. The next step following the work in this thesis 

would be to apply the theory of experiment design, as in (Cohn et al., 1994). 

The use of active learning in its active sampling form in dynamic systems requires an existing 

controller to perform the experiment, and in the case of large expensive industrial plant it is 

not always going to be possible to allow the learning system to stimulate the process as it 

pleases! This should not, however, be seen as an indication that active learning has no role in 

modelling real dynamic systems, as the online version can be implemented with a human in 

the loop - the active learning system could be seen as an experiment assistant who describes 

where the system lacked data, so that the engineer could design an experiment which would 

provide the missing information. 

The active learning area, be it active sampling or active selection, is likely to be of benefit to all 

areas of learning systems, but the application of active learning in nonlinear dynamic systems 

is very much in its infancy. The development of methods which automatically explore the input 

space of a dynamic system within defined constraints will be an important extension of the 

research which should be significant both for engineers developing models of given processes, 

and for future intelligent, autonomous machines which have to cope with a continually changing 

environment. 



Chapter 5 

Hierarchies of Local Models 

Th e Learning Hierarchy of Models (LHM) Network is described. This is ffi clively 

a hierarchy of Local Model Nets where the local models can consist of furth er sub­

networks. Parameter estimation methods are developed which apply conventional 

regression techniques by first unravelling the hierarchy. Local methods f or estim­

ating the parameters of sub-trees within the model are introduced. A consir·uctive 

algorithm for the structure is described. The constructive algorithms QI'e compared 

with MARS and fiat Local Model Nets on a number of test system s. 

5.1 The LHM Architecture 

The Local Model Net framework can be extended by replaced by allowing the local models 

to also be sub-networks instead of simple linear models. A hierarchy of models can then be 

iteratively constructed to model the target system. Simpler local models a re replaced by sub­

networks , leading to the new hierarchical model structure having an increas ing representational 

abi lity. 

Figure 5.1: Local Models can be replaced by sub-networks to improve representational ability 

The top level of an LHM structure can be described as a local model net, 

nMo 

1f(t) = i( tI; (t -l);M) = L idtl; (t - l) ;Mi)Pi(¢), (5 .1) 
i = 1 

118 
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where the level in the hierarchy of the bas is functions and local models is indicated by the 

number of subscripts, and nM • . indicates the number of local models at level 2 in model j , the 
J 

child of model i. The model structures Mi a re the local model st ructures (e.g . linear ARX 

model, a priori models) , or are again genera l LHM structures defining the form of the hiera rchy 

of sub-models below the current level in the tree. 

We assume, for simplicity, that the operating point is 4> at each level. A local model at the 

next level in the tree, Ji (1/J( t - 1); M;) , can be defined as 

nMi 

Ji( 1/Ji(t - 1) ; Mi) = L: k (1/; (t - 1); MiJpi j (4)) . (5.2) 
j=1 

5.1.1 Soft-splits 

Here, a binary 'soft-split' is assumed at each stage (nM = 2), giving each parent model 

two children . The subspace is therefore partitioned by a soft-split oriented o rthogonal to a 

hyperplane (unless the basis functions were of unequal s ize, which would lead to a curved 

partition) . In the simplest form of partition, both local models' basis functions can be thought 

(a) 

20 • Cr 

Figure 5.2: (a) The soft split from above and (b) The split from the side 

of as two interlocked identical ridge functions, with opposite signs. The hyperplane produced 

by the intersection of the two functions is defined by the vector of angle weights a, a E nn. 
in the equation a4> = O. The split can be created from two normalised radi al basis functions 

with equal widths. The centres are placed orthogonal to the plane defined by vector a, and are 

both a away from the centre cp of the parent local model (through which the pl ane defined by 

a passes). The exact form of the non-linear split function is only restricted by the fact that 

it must sum to unity, and that smoothness is a des irable feature. The splits a re optimised to 

partition the input space at each stage in a way which will reduce the modelling error as far as 
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possible. The adaptation of the orientation of the splits is discussed in Section 5.4.3. Spli tt ing 

the input space is usually better for eliminating ' uninteresting' dimensions tha n the methods 

described in the previous chapter, which were limi ted to the data poin ts in the t ra ining set. 

This makes the st ructure more suitable for high-d imensional modelling problems. 

Figure 5 .3 : The Learning Hierarchy of Models a rchi tecture. A tree of local models is produced, 
where the leaves of the tree consist of the local models, the results of which a re interpolated 
with the results from other leaf models by the parent basis fun ctions of the higher levels of the 
st ructure. 

5.2 Optimising the Local Model Parameters 

Once the hierarchy and the basis functions in the LHM architecture have been fi xed, the 

st ructure can be treated as a linear (in the parameters) system , and the parameters of the 

local models can be optimised using standard least squares a lgorithms such as SVD , exac tly 

as with BF and local model nets . This is done by unravelling the t ree to become a stand ard 

local model network , as shown below for a two level t ree: 

(5.3) 

If the local models are linear , and the tree binary, 

(5.4) 
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which leads to each local model effectively being weighted by a cumulative basis function 

Peum(d(1/J)) which is the product of parent models' basis functions back up the hierarchy to 

starting level s:' 
h(;) 

Peum.(d(1/I)) = II (pP(.). (/ 1) ), 
1=. I' - 1'(/) 

(5.5) 

where the p(l) at each level I from starting level 8 to final level h indicates the relevant node 

in the tree on the path to the i-th leaf. The cumulative basis function design matrix ~eum can 

then be used in the same manner as for the flat local model net. Ileum is composed of the 

inputs to the local models on the leaves of the tree, weighted by the cumulative basis functions. 

The hierarchical network can now be represented in the non-hierarchical form: 

nM 

y = ~ (1/I[(t - 1)0;) IIcum.(~)' (5.6) 
i=l 

where nM is the number of leaf nodes. This format allows the parameters (J to be estimated 

using the standard estimation methods described earlier. The method is, however, similarly 

plagued by ill-conditioned design matrices, leading again to the need to apply solutions such 

as local learning. 

5.2.1 Sub-tree optimisation using weighted least squares 

The local learning ideas described in Section 3.1 can also be applied to the hierarchy of models. 

The weight optimisation procedure can be carried out at any position in the tree, for the sub­

tree below the selected node. The optimisation process for subtrees can be made a weighted 

least squares procedure, by using the cumulative effect of a node's parents basis functions as 

the weighting function. This weighting function 0("') (assuming that the start level 8 is not 

the top level) is then 

0(1/1) = t! (PP(O)'P<._I)p(.») . (5.7) 

A sub-tree with M leaves and n", input dimensions and local linear models would become a 

general linear least squares problem with M n", parameters. The solution to the problem is 

then the same as that described above. Locally optimising a sub-tree is especially relevant 

when adding new units to the tree, as the effect of various possibilities can be evaluated 

without optimising the whole tree. As with the flat networks, the effect of the more localised 

optimisation will be that. the optimisation stage will be faster, as well as sometimes being 

more robust and interpretable. The representational ability of the network to learn a given 

training set will, however, often be reduced. The hierarchical nature of the architecture gives 

the designer more control over the level of locality used in learning than with the flat Local 

Model Net. 
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5.3 Confidence Limits with LHM 

The methods described in Section 3.2.1 for the interpolation of local estimates of accuracy 

can be easily extended to the hierarchical case. The local error statistic from a leaf node can 

be weighted by the leaf node's parents' basis functions. The two level net is again used to 

illustrate the concept, 

(5.8) 

The error estimation can obviously also be unravelled to produce 

npcum 

i(~) = L iiPcum,(~), (5.9) 
i::1 

where the i's at the leaves have been reordered into a vector form. As with the sub-tree 

optimisation, the hierarchical structure of the model can be used to give the developer greater 

control of the scope of the error statistics. Higher level models can derive their statistics from 

lower level ones, as in equation (5.8), or the error statistics can be calculated from the 'global' 

model below that point in the hierarchy. 

5.3.1 Using local error statistics to indicate poor model structure 

A structure identification algorithm usually uses a cost-complexity term for optimisation. The 

cost is generally the degree to which the model differs from the test data. The method used in 

this work was to take the local mean squared error statistic, i.e. the network's squared errors at 

all Ni points in local training set 'Vi within local model ;i("")'S receptive field, then weighted 

by the local model's cumulative basis function Pcum,(~), as described in Section 3.2.1: 

1 Ni _ 

J(Mi) = ii = N- LPcum,(¢)(y(t) - y(t»2, 
• 1::1 

(5.10) 

Complexity terms 

The complexity aspect of the optimisation functional is a. term which penalises over-complex 

networks. It results in simpler networks, which have slightly poorer performance on the training 

data, but which are expected to show more robustness in the face of new data, and which are 

less likely to have spurious 'folds' in their mappings l , A simple way of penalising complexity in 

the resulting model is to use a weighted product of the parameters used in the local model and 

the breadth of the model's basis function. The GCV (Generalised Cross Validation) term below 

1 important if the model is to be used in a model-based controller, where an optimisation procedure makes 
use of the model's derivatives 
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is based on (Craven and Wahba, 1979, Wahba, 1990) which will penalise complex models (i.e. 

local models with a poor data-to-parameters ratio), 

1 
GCV(Mi) = /lEi. . 

1- N, 
(5.11) 

The range term below is a heuristic which penalises models with smaller basis functions more 

heavily. If used in a constructive structure identification algorithm this will bias the algorithm 

to split models covering more of the input space first, thus having a smoothing effect on the 

resulting mapping, 

(5.12) 

The cost complexity functional can then be created by taking the product of the components. 

Pi is a measure of the complexity of the local model i (usually the number of parameters). The 

parameters"Y and f3 can be adjusted to fit the type of problem. For example, a model to be 

used in a control system should usually be as smooth as possible, so would possibly have a 

higher"Y than a model which was to be used in simulation. The /3 factor (0 ~ /3 < 1) can be 

related to the level of noise in the training data. The overall cost-complexity measure is then 

J(M ,) _ " (1 + "YO"i) 
, - (, ( ) , 

1 - /lEi. N, 

(5.13) 

where £i is as defined in equation (5.10). Ni can be derived as in equation (4.7). 

5.4 The Constructive Algorithm 

The weight optimisation technique described above should find the best parameters 8 to fit 

the data, given the fixed basis functions. The difficult part, however, as for conventional Basis 

Function nets, is the adaptation of the number, position and size of the basis functions. As with 

conventional LMN's, the problem space is initially partitioned using the a priori knowledge 

available. Local models can be either simple linear models, nonlinear models, or partially or 

fully parameterised models. This acts as the first approximation to the system being modelled. 

The method used for extending the hierarchical method was, once the current architecture 

has been optimised and tested, and had not yet met the tolerance requirement, to iteratively 

refine an existing local model by splitting its input space and replacing it with a sub-network 

containing two local models. 

As in conventional decision tree theory, there are a variety of methods used for construction 

of the hierarchy, e.g. multiple-step look ahead or blind search using a fixed number of nodes. 

We use a simple method which at each construction stage adds children to the most promising 

(i.e. where the extra representation is most needed) leaf in the tree. 
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Which local model should be split? 

The choice of where to extend the model by splitting a sub-model is a crucial one, to which 

there is no generally correct answer. The choice must be made efficiently to minimise the 

training error, while still leading to good generalisation. The method used is to define a cost­

complexity function which evaluates the potential benefit brought by a particular split, allowing 

the system to choose the spIlt which minimises the function most. The cost-complexity function 

is designed to provide a compromise between model complexity and accuracy. The cost term 

tries to decrease the network's error bias for the given training data, while the complexity 

penalty decreases the network's error variance, so that it will be able to generalise properly. 

The work in decision trees produced a variety of such functions. These systems usually made 

axis-orthogonal splits, meaning that not only should a leaf be chosen for splitting, but the 

dimension to be split should be chosen as well. In many cases, each possibility was tried out 

and the resulting cost-complexity measure recorded, the largest one then becoming the new 

node. The technique used in this work is different - a node is selected for splitting where it 

seems most needed (where the cost-complexity function, as described in Section 5.3.1, at the 

leaves is greatest). The angle of the split through the input space is then optimised locally, 

thus reducing the computational effort dramatically. 

When not to split? 

The cost-complexity function encourages the system to grow nodes where they are most needed, 

and where there is enough data to train the new models. In some cases, though, the chosen 

node may turn out not to be suitable for splitting for one of the following reasons: 

1. There is insufficient data in this area of the input space to robustly train the new local 

models, given the level of noise and the number of parameters to be optimised. 

2. The cross-validation process after training shows that the new models are worse than the 

old model, indicating that the system has started to overtrain, probably due to insufficient 

local training data. (This method is expensive, but general) 

3. The centres of the new unit are closer than a predefined minimum (can be related to the 

noise on the input variables, or expected complexity). 

In this case, the I!ew models are removed, and the old model is marked as being unsuitable for 

further splitting. 

5.4.1 One-dimensional example 

To illustrate the constructive process, a one dimensional version of the 'Squiggle' test function 

y = sin (101I'zsin(z - 0.5)3) (5.14) 

is modelled. Figure 5.4 shows the gradual approximation of the target function. 
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F igure 5.4 : Construction of a one-dimensional LHM Model Structure. T he Model's response 
a nd worst error estimates are shown on the left , and the model st ructure i shown on the 
right . T he shaded area indicates the model's own weighted worst confidence limi ts a round the 
estimate. 
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5.4.2 Axis-orthogonal partitions 

Finding the optimal partition for the basis functions is a vital aspect of the learning algorithm. 

The straightforward method, as suggested in (Johansen and Foss, 1994b), is to try all possible 

axis-orthogonal splits, optimise the parameters and use the split which improves the cost­

complexity function most. A more sophisticated method is at each step to have a limited 

search horizon, where future splits are attempted, and the split which minimises the multi-step 

optimisation problem is chosen. This is the same basic technique as the optimisation used in 

(Breiman et al., 1984) or (Friedman, 1991). The smoothness of the split could also be adapted. 

In the implementations described in this thesis the smoothness, dependent on (f is not adapted. 

For axis-orthogonal splits (f is chosen so that the space is divided using the same proportions 

at each step, forcing a continuous increase in the absolute 'sharpness' of the splits in any given 

dimension as submodels are added. 

The restriction of splits to hyperplanes orthogonal to the axes makes the method simple to 

implement, but it scales up poorly to higher dimensions and more complex models, especially 

when look-ahead search is used. It is also difficult to have truly hierarchical learning in such 

a system, as this requires a constant cycle of pruning and construction of nodes2 , with no 

opportunity for gradual optimisation of parent nodes' splits, as learning progresses. 

5.4.3 Axis-oblique partitions 

Splits may be axis-oblique, i.e. the split depends on several variables, which also brings a 

number of problems. For axis-orthogunal splits, the width of the soft split could be easily 

determined by the previous splits. For oblique splits, there is no easy analytical way of de­

termining the width of the split. The method used here estimates the separation between the 

centres using the available training data in the local model's receptive field, and its distance 

from the separating hyperplane. The covariance D(¢) of the points from the separating hy­

perplane a~ = 0 can then be measured and the separation of the children set proportional to 

the standard deviation, i.e. 

(5.15) 

and the centres can then be set in a similar manner, 

CI = Cp ± aO", (5.16) 

where Cp is the parent's centre, and CI is the new centre. A more general approach is to allow 

full flexibility in the partitioning of the input space. 

2pruning is necessary, otherwise early 'mistakes'-non-optimal splits-lower the quality of the final results 
drastically, as they dramatically reduce the amount of training data available to their children 
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Optimisation of the new split 

Partitioning the input space orthogonal to the axes is a useful restriction of the search space in 

many applications, but it is restricted in the types of system it can model well, and there is no 

possibility for gradual changes in hierarchical manner. Increasing the freedom of the partition 

should give the model more flexibility to better model systems where the nonlinearity depends 

on a combination of variables. 

The use of smooth splits allows a variety of gradient-based optimisation algorithms to be 

applied to find the optimal partition, which is not possible in the classical decision tree meth­

odology due to their crisp partitions. For simplicity, however, the method used in this thesis 

is simulated annealing (Kirkpatrick et al., 1983) to optimise the split parameters. The vector 

a is initialised to have the same value as the parent split (making the useful assumption that 

the direction of greatest nonlinearity is probably not going to change dramatically). The split 

angle is then randomly altered, 

a(t) + 6(t) 
a(t + 1) = lIa(t) + 6(t)1I (5.17) 

the width determined, as in equation (5.15) from the local data, and the local models are locally 

optimised using SVD. The potential split is evaluated on test data by treating the two local 

Old split 

C 
-: J} •• OC}(t+l) 

\ 

'0 Cl(t) 

, New Split 

(a+d)x = 0 

Figure 5.9: Adjusting the split angle. The split is rotated around the centre by the random 
variable d. The local models are trained, and if the new split provides a better model, this is 
chosen as the starting point for futUre splits. As time passes the changes become smaller, until 
the split converges. 

models as a representation of the system locally (the cumulative basis function of the parent 

model is used to weight the validation results). The best split is then used as the starting point 

for further random alterations. The random 6 vector responsible for the alterations initially 

allows large changes - equivalent to high temperature in the annealing analogy - but the 

'temperature' T is gradually reduced, until the split has converged to a steady position. The 

process can be visualised as randomly rotating a hyperplane around the parent's centre. The 
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annealing sched ule used in this work was to have the temperature related to an exponenti a l 

decay, which was related to the number of iterations desired before adaptation was completed , 

T(t) = exp (_4_t_) 
tmax 

(5.18) 

i.e. each element of J is a normally distributed random variable with variance T(t ) proportional 

to the exponentially decaying annealing schedule 

J(t) = N (O , T (t)) , (5.19) 

where t indicates the iteration, from 1 to tmax . The use of linear regress ion methods, and only 

the local data points means that the learning process can be quite fast, despite the s implicity 

of the optimisation technique. 

The results for the Squiggle benchmark are shown in Figure 5.10 . Note that despite the 

increased degree of freedom in the model structure, the learning algorithm copes well and 

produces a good model. Compare the results here with those for the local model net in 

Figure 4 .11(a), which required 62 local models to achieve a lower accuracy. T he real benefit 

comes with non-axis-orthogonal nonlinearities such as those shown in Figures 5.8 and 5.11. 
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Figure 5.10: Squiggle results for axis-oblique LHM. Despite the extra degrees of freedom the 
learning algorithm does well. 
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5.5 Conclusions 

The Learning Hierarchies of Models structure is a new architecture which is well suited to 

constructive learning algorithms. There are many overlaps with decision trees in symbolic 

machine learning, but the advantage of the LHM architecture lies in the soft-splits of the 

input space, and the local models in the leaves, making the architecture more suitable for the 

representation of continuous dynamic systems. 

Due to the hierarchical nature of the model structure, where local models can hide entire 

sub-trees of other models, it is well suited to constructive structure identification algorithms. 

Unlike in flat local model nets, where the addition of a new model means that the neighbouring 

units must adjust their basis functions and parameters, the replacement of a given leaf model 

in an LHM does not affect the other models in the structure. Also, because of the partition 

of unity inherent to the soft splits, normalisation is not necessary, so the problems found in 

Section 3.3.1 with normalisation are no longer relevant. 

The axis-oblique splits used to partition the input space are an important feature of the LIIM 

architecture, as they differentiate the methods more from conventional methods which partition 

the space using only one variable at a time. Simulated annealing proved to be useful, despite 

its simplicity. Other more sophisticated optimisation algorithm may produce better results. 

As the nonlinearity is achieved by splitting the input space, the hierarchical extension of the 

local model framework has the potential to produce more efficient methods for representing 

and identifying unknown model structures. It copes better with high-dimensional spaces than 

non-hierarchical methods. 

The local confidence estimates and the local learning methods can be easily integrated into 

the hierarchical structure. This also provides interesting potential for controlling the level of 

locality of the local learning, and active learning through the hierarchy. 

Future work 

The most straightforward extensions to the theory described here would be to the structure 

adaptation algorithm so that more flexible structures are created. e.g. optimisation of the 

separation of child nodes, use of smarter optimisation algorithms for the partitioning angles. 

A major advantage of axis-oblique partitions with the hierarchical architecture is the potential 

for hierarchical structure adaptation. This would mean that once a model had grown children, 

and had improved its representation of the system, the partitioning decisions made earlier 

could be adjusted to take account of the better understanding of the underlying system. If this 

is done gradually during the learning process a more efficient, parsimonious and interpretable 

approximation should be possible. Such hierarchical structure identification and adaptation is 

obviously also of great interest in adaptive control situations. 
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The binary tree LHM structure with homogeneous linear local models developed in this thesis 

is the most basic form of the structure but the framework can be viewed in a more general 

manner, if the interface between the child and parent is made more powerful. The task of 

the sub-model can be viewed as being exactly the same as that of the original problem, just 

at a smaller spatial scale, with a reduced portion of the data set. This means that all of the 

considerations used initially in framing the modelling problem are also relevant at this level 

(i.e. which inputs are important? can the problem be decomposed into an additive model of 

several input spaces? if the system is a dynamic one, what model order should be used, what 

sampling speed should be used?). The concept of hierarchy in the time-domain could be used 

to produce hierarchies of models working at different sampling speeds, allowing the system to 

cope with stiff systems with a wide range of time constants. Different types of hierarchy from 

the simple binary tree could also be considered. If this were linked with the more powerful 

child/parent interface and heterogeneous local models (which could be dynamic models, expert 

systems, etc.), the LHM has the potential to become a much more general representation than 

simply a method for representing nonlinear systems. 



Chapter 6 

Rolling Mill & Robot Actuator 

Modelling Examples 

To show the methods in use for practical applications, the local model networks 

and learning hierarchies of models networks are applied to real problems, with data 

measured from physical systems. 

They are used to produce a predictor which can model the roll gap in a rolling mill 

based on data sampled from a real mill. The Local Model net produced the best 

results in terms of accuracy, and generalisation ability, compared to multi-layer 

perceptrons, MARS, linear models and RBF networks. The interpretability of the 

trained network is discussed and visualised. 

The methods are applied to a second example, a robot actuator modelling problem. 

6.1 Rolling Mill Problem Description 

To demonstrate the practical applicability of the modelling structures, methodology and al­

gorithms developed in this thesis, the methods were applied to the task of modelling a rolling 

mill from real data. Rolling mills, are examples of complex nonlinear processes, where a wide 

variety of physical effects play a significant role. Despite the obvious usefulness of rolling 

mills, and long practical experience with their operation, the physical models developed for 

them tend to be highly complex (too complex for on-line use), and because of the uncertainties 

in industrial processes the models tend to be of little practical use. In practice, the control 

algorithms used in real mills tend to be simple enough to be adapted by the operators, and are 

often developed in a very heuristic manner. This suggested that the use of learning methods to 

better model the poorly understood characteristics of the rolling process would be a productive 

path to follow. 

135 
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The mill inves tigated is shown in Figure 6.1, and is a four-high s ingle stand aluminium rolling 

mill. A coil is placed on the left and the material is threaded into the roll bite, where the 

materi a l is reduced and exits to be collected again in a coil on the o ther s ide . 

. Figure 6.1 : Single stand of a rolling mill. 

The strip moves with a velocity VI and enters the roll gap with a thickness hi . It exits with a 

thickness h2 and a velocity V2, preserving the mass-flow relationship, 

(6 .1 ) 

The strip is deformed by two cylindrical rolls which apply a force f w to the material to produce 

a flat strip of a pre-determined thickness, as shown in Figure 6.2. 

The roll gap is varied by exerting force on the backup roll bearing . This force is transferred 

to the centre of the backuproll, to the centre of the work roll and then to the strip . Flat strip 

is produced when the force on both sides is equivalent . Roll gap position is measured on both 

s ides and is averaged to give the roll gap variable So. The setting for the roll gap is a function 

of strip input thickness and the elastic deformation of the surrounding mill hous ing and roll 

bearings (shown in Figure 6.2 as springs). 
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Figure 6.2: Roll bite 

6.1.1 Nonlinearities in the rolling process 

The rolling process is nonlinear in a number of ways. The deformation characteristics of the 

rolled material, the work rolls and the surrounding mill housing are nonlinear. The material 

undergoes elastic deformation , then plastic deformation, followed by elastic relaxation . T his, 

combined with the elastic deformation of the work rolls and mill housing, is a process which is 

very hard to describe with simple differential equations. Further complexity is added by the 

effect of variations in temperature on the process (materia ls change their properties, the rolls 

swell) . Lubrication effects further confuse the situation , and are very difficult to model from 

first principles. 

6.1.2 Measurement noise and disturbances 

Many of the disturbances in the modelling process are obviously closely related to the complex, 

unmeasured and poorly understood processes described above. As can be seen in Figure 6.2, 

the sensors for the measurement of h2 are a distance l2 away from the roll bite, leading to a 

dead time between actuation and sensing which varies with operating speed VI. The sensors are 

usually X-ray gauges measuring the thicknesses h[ and h2 , and these measurements tend to be 

very noisy. The rolling force can be measured either directly (the more accurate way)by load 

cells, or indirectly by using pressure transducers from the hydraulic cylinders and converting 

this quantity to force. The methods used in this application are the indirect methods . The 

strip velocities are calculated from the deflection rolls, and the work roll velocity is calculated 

using the tacheometer of the drive system. In each case the measured quantity is the angular 

velocity, which when combined with the roll diameter can give the actual roll speed. Due to 

the complex nature of the disturbances and the poorly understood interactions, it did not seem 

promising to build explicit disturbance models. 
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6.1.3 Modelling goals 

The goals of the learning task were therefore to try to produce a model of the system which 

reliably represented the data, and which could be used in a model-based control algorithm. 

The variable of interest is dh 2 , a measure of the deviation from the reference output thickness. 

At present, the acceleration and deceleration phases are poorly modelled and controlled, so 

an improvement in model accuracy in those phases would be a major contribution to making 

the rolling process more economic by avoiding wastage caused by roll material which does 

not meet the accuracy specifications. In the general case it is obviously desirable to have a 

system which can cope with different types of metal and different reduction schedules. One 

possibility is to hand segment the training data into different training sets for different types 

of metal, then to bring them together committee-style using a classification network to decide 

which model matches the current strip best. Another possibility is to amalgamate a variety of 

independently trained models, to try to produce an 'average' general model. The method used 

in this thesis, however, concentrates on producing a single model from a training set composed 

of a variety of training runs, from a single type of strip. 

Important areas of the input space 

In many modelling applications there are given areas of the input space which are especially 

important to model accurately, because the model-based system needs particular accuracy in 

a given situation, bandwidth or region. In the rolling process, the long periods of relative 

stability, where the velocity does not change, are obviously important, as despite the fact 

that the modelling here is easier, this phase is where the mill produces most of its product. 

The acceleration and deceleration phases are, however, important because it is much more 

difficult to achieve an accurate model, so more data is needed to produce robust accurate 

representations of the physical process. The trade-off between the two areas is one for the 

engineer to decide on. (A further possibility is of course, to treat the three areas separately, by 

segmenting the training data, and associating a local model with each phase of the operation) 

6.2 Rolling Mill Training and Test Data 

We have described the complex nature of the problem, which makes it clear that there is little 

hope of a clean, uniform, conflict free training set. Each run of a rolling mill is going to 

produce slightly different results, many of the reasons for which cannot be directly measured 

(e.g. temperature differences, different roll materials, possibly different machine settings). To 

give an impression of the distribution of the data in the input state-space, the correlation 

between various inputs is shown in Figure 6.4. To improve the numerical robustness of the 

learning process, the data was normalised so that each variable was distributed between 0 and 1. 
The normalised data are shown in Figure 6.5. 
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Notation 

So 

/w 

input thickness deviation 

output thickness deviation 

input thickness deviation (time aligned) 

output thickness deviation (time aligned) 

strip input velocity 

strip output velocity 

roll gap 

roll force 

6.2.1 Pre-processing used 

Filtering and time alignment 

The data used for modelling is low-pass filtered and down-sampled to a more appropriate 

frequency for the modelling task. The filtering was done offline using a 32-order FIR filter and 

the MATLAB filtfilt{ ) routine, which results in zero-phase distortion after passing through 

the data set in both forward and backward directions. 

One of the main difficulties in modelling aspects of rolling mills is that delays in sensor meas­

urements are inevitable, due to the distance of the thickness gauges from the roll bite. These 

delays are also velocity dependent, so the dr1.ay for the forward sensors is 

(6.2) 

where V1 is the input velocity, and 11 is the distance from the roll bite, as shown in Figure 6.2. 
To make the modelling task more straightforward, the data was pre-processed so that it would 

be referenced to the roll bite, such that the new thickness dh 1n is given by 

(6.3) 

where at the sampling rates used, td1 varies from eight sample delays at low speed, to 2 sample 

delays at top speed. The output thickness is analogously, 

(6.4) 

where td2 = T;. This time shifting was validated by checking correlations between the thickness 

variation and the roll force signal, confirming that the time-shift was accurate to within one 

sample. 
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Sampling rate 

The mill has a variety of subsystems with different bandwidths-the hydraulic system has a 

bandwidth of 15-20Hz, the roll eccentricity effects are 12-15 Hz, but the most important effects 

are dominated by the slowest subsystems. From experience, the sampling time needed to cope 

with the change in response from the moment of sensing a disturbance, actuating the hydraulics 

and moving the rolls is between I-2Hz. This is what was used in the design of the filtering and 

sampling algorithms. 

The original data was sampled at 100Hz. Using the old rule of thumb that the sampling rate 

should be around 8-10 times the closed loop bandwidth (Ljung, 1987), the data was down­

sampled to a frequency of I, = 12.5 Hz. 

6.2.2 Planning the experiment 

The problems of acquiring the data in many industrial processes are non-trivial, involving a 

great deal of time and money. In this case the data existed already, having been taken from 

a real plant under normal operating conditions. We had no influence over the experiments 

performed, and new experiments were deemed too costly to be worthwhile. Four different 

runs, each similar to that shown earlier were used for training, and the data selected from the 

combined data sets. The sets used to produce the training data are shown in Figure 6.6. The 

data are normalised to be within the limits defined by the maxima found in training and test 

sets. The test data used to validate the trained model were taken from five different runs with 

the same type of strip. The sets used for the validation are shown in Figure 6.7. 

Open questions 

The methods used to prepare the training data all seem to be practical measures aimed at a 

concrete enginee~ing solution, but there are still many open questions. How many data do we 

require to be confident that our model is general enough? How will the model react to different 

materials, or reduction schedules? Will hot mills, where the input thickness is more variable 

need more runs? 

6.3 Rolling Mill Modelling Results 

6.3.1 Modelling specifications 

Model structure and order 

The local model structures used were linear models based on delayed inputs (equivalent to an 

FIR filter structure). 

(6.5) 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 144 

Normalised Training data 
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Normalised Validation data 
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where 

The previous measured output thickness could not be used for control purposes, because of 

the dead time in the output measurement process. The order nu of the processes involved was 

not clear in advance, so mudels with a variety of dynamic orders were used. In general, models 

with an order of around nu = 7 performed best. It is not clear whether this is due to high 

order dynamics or low order dynamics with the effect of unknown dead times. 

Selection of the cost function for optimisation 

The cost function used will depend on the noise on the training data and the relative importance 

of the area of the input space. In this case we simply applied the quadratic cost function, as 

the active learning and constructive algorithm would automatically devote more resources to 

the more complex acceleration and deceleration phases. 

Parameter selection for learning algorithm 

Ideally, the need to fiddle with the parameters of the learning algorithm should be kept to a min­

imum. In practice, this can prove to be highly important for the modelling process. The results 

in this chapter with the local model nets were obtained using the following parameter settings: 

(1ma:t: = 0.2..;nJ, A = 0.6, n re6 = 3, '1 = 0.5~, Nma:t: = 1000, Nmin = 10nop, ncutoJ/ = 4. The 
distance metrics used for the basis functions were axis-orthogonal ellipses. The basis functions 

in all nets were normalised. 

Reducing the operating space 

In order to allow a more straightforward and robust model structure, the dimension of the space 

in which the operating regimes are placed was reduced. The operating point ¢ is defined by 

the inputs So, VI and dh1n, so these are the variables used to place the basis function centres. 

The local models inputs ..p are composed of So, VI and dhln, delayed nu times, where nu is 

the order of the tapped delay line on the inputs. Other variables were not found to contribute 

significantly to a reduction in the model error. 

As mentioned in Section 2.5.4, in some applications it makes sense to form a rough partition 

of the input space initia:ly, as seems logical to the development engineer. The results in this 

chapter did not use this technique, although it may prove useful in future work (e.g. to form an 

explicit partition of the acceleration and deceleration phases from the normal operating speed 

phase). 

The distribution of the data points in the basis function space (this can also be viewed as the 

state-space in which the current operating point ¢ is defined) is shown in Figure 6.8. The four 

runs which make up the training set are shown here. 
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ure 6.4 for 2-dimensional slices fo the space. 
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U se of cross-validation to estimate robus tness 

T he results given in this chapter are all one-step-ahead prediction resul ts. As noted earlier, 

models of dynamic systems should normally be validated by applying the exogenous inputs 

and letting the system run , feeding back the model states as opposed to the measured states. 

For the rolling mill , however, the model is not autoregress ive as ti,e dead time involved in the 

sensor feedback would mean that the data would not be available for use in a control algorithm . 

The one-step-ahead prediction is therefore the ultimate off- line test in this case. The potential 

problems involved in on- line application of the model for control purposes are described late r. 

6.3.2 Benchmark algorithms 

Linear modelling results 

To provide a st raightforward benchmark for the local model nets, we tra ined a simple non­

autoregress ive linear model (as in equation (6 .5)) using the same data as the LMN. The results 

were surpr isingly good for such a simple structure, as shown in Figure 6.9. 
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Figure 6.9: Mill model residuals for linear model on the validation data. Mean squared er­
ror = 0.00049. The plot shows the error residuals on the combined thickness modelling results 
from 5 strips used in the validation runs shown in Figure 6. 7. The x-axis is time. y-axis 
indicates magnitude of the residual. Note the large errors in the acceleration and deceleration 
phase. 
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Figure 6. 10 shows a cross-validation plot of the linear modelling resul ts, showing that they are 

consistent over the d ifferent folds, as would be expected for such a simple model. 
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Figure 6.10 : Cross-validation resul ts for linear model 

MLP modelling results 

To provide a benchmark with the more t raditional neural networks methods, a mul ti-laye r 

percept ron was applied to the problem . A network wi th a single hidden layer of 30 neurons 

wi th sigmoidal activation functions was used . T he outpu t unit was a linear one. T he t ra ining 

was carried out over 8000 runs through the training set of 6497 patte rns, presented in a random 

order. T he straightforward back-propagation algorithm was used wi th a learning rate of 0.1. 

(Other settings were tried , but had little effect on the outcome.) T he modelling accuracy was 

found to be not as good as the MRC algorithm 's, and t raining duration was several days, as 

opposed to minutes for the other methods. An interesting comparison is wi th the simple linear 

model, which proved to be more accurate than the potentially powerful MLP. T he reasons for 

the MLP 's poor perfN mance were not investigated in detail , but the problem proably lies in 

the ineffi cient learning algorithm , back-propagation . 

MARS r e sults 

As a benchmark with the methods developed in the stati stical communi ty the MARS structure 

identi fi cation algori thm was used. The results again , were not as good as the linear , or Local 

Model or LHM methods, as shown in Figure 6.12. T his is probably due to the axi s-orthogonal 

nature of the parti tioning of the input space, combined wi th the lack of local linear models in 

the standard setup. 
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Figure 6.11: Mill model residuals for MLP with 30 units on the validation data. Mean squared 
error = 0.00065. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 151 

c: 
o 
~ 
.~ 

MARS model, max_basis = 100 
0.4~----~----'------r-----r----~----~~----T---~ 

0.2 

'C 
0)-0.2 
:E 
Q) 
'C o 
E 

-0.4 

-0.6 

-0.SOL.----1-0 ..... OO--2-0 ..... 0-0--3-0 ..... 0-0--40 ..... 0-0--S0 ...... 0-0--60...LO-0--7...L00-O--S....J000 

Figure 6.12: Mill model residuals for MARS on the validation data. Mean squared er­
ror = 0.0017. Large errors especially in the acceleration and deceleration phase. Model even 
worse than a linear model. 
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Figure 6.13 : Cross-validation results for MARS on mill data. Reasonably robust with a cross­
validation on the training data , but performed badly when face with data from a totally different 
run . 
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6.3.3 Local model net results 

Local learning 

The error results for a LMN with 21 models, trained locally are shown in Figure 6.14 
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Figure 6.14: Mill model residuals for LMN (local training) on the validation data. Mean 
squared error = 0.00040. 

The mean absolute errors on the training set at each stage of the local learning model con­

struction are shown in Figure 6.15(b). The cross-validation results are given in Figure 6.15(a), 

and indicate that the approximation process is relatively robust. 

Other parameter settings for learning were used, for example, letting the training continue for a 

further resolution level, which lead to the smallest training residuals, with an average absolute 

error of 0.85 

Global learning 

The error results for a LMN with 23 models, trained globally are shown in Figure 6.14. The 

global method used was SVD, where singular values which were a factor of 104 smaller than 

the largest singular value were zeroed. Note the poorer performance in the acceleration and 

deceleration phases, compared to the locally trained model. 
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Figure 6.15: Cross-validation resu lts for net construction, and training error development 
during a single construction run. 
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Figure 6.16: Mill model residuals for LMN (global training) on the validation data. Mean 
squared error = 0.0036 . 
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Figure 6. 17: Global Learning Error Curve. Global optimisation performs well on training set , 
but poorly on validation set. Glitch in curve indicates pruning of models. 

To compare the robustness of the local and global parameter estimation, independently of the 

structure identification, the structure which produced the residuals in Figure 6.14 was fixed , 

and a cross-validation experiment was carried out, where only the local model parameters were 

adapted , both locally and globally. The errors are, in general, slightly better in the global case . 

How does this fit in with the res idual plots in Figures 6.14 and 6.16 , where the local results 

are clearly better? The difference is that the validation resul ts from the cross-va lidation done 

here use data points extracted from the rolling runs used for t raining, whereas the res idu a ls 

are plotted on validation data from completely fresh runs, which provide a better test of the 

modelling framework . 

Summary of results on validation data 

Table 6.1 summarises the modelling results tested on the validation data. The Local Model 

nets consistently provided the highest level of accuracy, producing both the smallest average 

errors and smallest maximum errors. Surprisingly, the simple Linear model performed better 

than MARS and Multi-Layer Perceptrons. This is not to say that an MLP could not be trained 

to produce better results , but it does indicate the lack of robustness in the widely used learning 

algorithms, such as back-propagation, which have trouble identifying a linear system . 
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Figure 6.18: Cross-validation Comparison between local and global learning. In both cases 
the parameter estimation process seems to produce robust results. )Iowever, the residuals 
on completely new validation data (shown in Figures 6.14 and 6.16 show that local learning 
produced better generalisation ability). 

Model Type Mean abs error Mean squared error Max abs error 
Linear model 0.0116 0.00049 0.28 
MARS (19 BF's) 0.0168 0.0014 0.45 
MARS (85 BF's) 0.0162 0.0017 0.63 
RBF (39 Basis 0.0185 0.0017 0.72 
Functions) 
MLP (30 Units) 0.0144 0.00065 0.29 
LMN (gl, axis-orth) 0.0235 0.0036 0.78 
LMN (U,RBF, nu 0.0151 0.00068 0.32 
=2) 
LMN (Il, no active) 0.0118 0.00059 0.32 
LMN (ll,RBF, nu 0.0115 0.00045 0.26 
=5) 
LMN (Il, ellipse) 0.0116 0.00044 0.227 
LMN (ll,RBF) 0.0111 0.00046 0.264 
LMN (local learn- 0.0110 0.00040 0.22 
ing, axis-orth) 

Table 6.1: Summary of mill modelling results on validation run. gl - global learning, II -
local learning, ellipse - full ellipsoidal distance metric, axis-orth - axis-orthogonal ellipsoidal 
distance metric. 
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6.3.4 Interpreting the trained models 

Can the final machine learned model be interpreted to give the human engineer a better un­

derstanding of the system in question? This is a question which has often been ignored in the 

li terature on learn ing systems, but one which is very important in indust ria l s ituations. There 

will usually be a trade-off between flexibility and interpretability , which will depend on their 

relative importance for a given application. 

The positions of the basis functions can be visualised in a three dimensional plot, as shown in 

Figure 6.19. This gives us some insight into the location of complexity in the problem 's state 

space. The hyper-ellipsoids in the figure correspond to the scales of the distance metrics of 

the basis functions . The constructive algorithm seemed to develop models with the complexity 

in the ' intuitively correct' areas of the input space. The acceleration and deceleration phases 

are deemed the most complex, and these were covered to a greater extent than the constant 

velocity area, which in general was covered by only one or two models. The resulting models 

were also reasonably small, the overfitting protection limiting the detrimental effects of sparse 

data in the complex areas of the input space - the model structures found tended to have less 

than 20 local models, despite training sets of over 6000 examples . 

O .'r--~-~--~-~----' 

" 

(a) BF Contour plot 

sa a a 
vI 

(b) 3-D plot of Basis functions for roll mill model. T he basis 
functions are shown here in the unnormalised form , basically 
as ellipsoids representing the volume equivalent to that of the 
contour plot at 0.5 . 

Figure 6.19: Visualisation of the mill model operating regimes . 

A further aid to understanding the model is to go through the validation runs examining the 

model output and actual output, while viewing the current position ¢ in the operating space . 
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T he top plot in Figure 6.20 shows the model and actual output, while the plot below shows the 

run fo~ the entire trai ning se t in the operating space, with the portion being examined above 

is marked as the darker area. 

T he use of such visualisation tools lets the developer examine the areas of the operating space 

responsible for large model deviations, to t ry and determine possible inadequacies in the model 

st.rllcture (e.g. too few local models in a particular region, ill-suited local model st ructures, 

etc .) with the aid of visualisation tools such as shown in Figure 6.19. T hese too ls are ob­

viously limited to any three given dimensions, but can still provide useful insight in many 

cases. Fu rther development of such tools would allow the user to select certain a reas of the 

inputs space and find the nearest local models, so that their st ructu res and pa rameters can 

be investigated , or gain more insight about the model workings . In genera l, as noted in 

(J ohansen and Foss, 1994a), there should always be room for the human user to intervene in 

the modelling process . To give a more detailed feeling for the accuracy of the model, three 
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Figure 6.20: Model and Real Mill output, with the related a rea of the input space. T he 
visualisation tool allows you to examine the model res iduals, while viewing the current position 
in the operating space below (the subset of the data corresponding to the model plot above is 
highlighted). More powerful tools would allow the use such plots in conjunction with images 
such as Figure 6.19, where the local model closest to the data shown could be 'clicked ' on and 
the structure and parameters viewed . 

areas of the test data set are plotted in Figures 6.21 to 6.23. 
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Figure 6.21: Detailed validation modelling runs with LMN and local learning. LMN model 
in acceleration phase. Despite the changes in the inputs, the model performs well , although it 
goes off track between 1760 and 1820. 
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Figure 6.22 : Detailed validation runs with LMN and local learning, in constant velocity phase. 
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Figure 6.23: Detailed validation modelling runs with LMN a nd 10 al learning. LMN mod I in 
deceleration phase. Again model does well despite the changing tate o f the phy i a l yst m . 
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Figure 6.24 : Detailed validation modell ing runs with linear model. Compare with the LMN 
Model in Figure 6.21. The linear model does not manage to come as close to the actual output 
in the area of large output changes between 1600 and 1700. Nevertheless, the linear model 
could still prove to be useful in a real application because of its simplicity. 
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6.3.5 Analysing the local confidence limits 

By examining the local error statistics (as defined in Section 3.2 . L) for the local mod Is the 

location of the worst errors can be deduced , poss ibly helping the engineer lea rn where the 

complexity in the real process is, or where insufficient experimenta l data exists . T he tes t run 

is plotted below, where the error is shown, with the network's es timation of its own accuracy. 
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(a ) Error statistics a nd LMN 's weighted average 
error prediction on the training set used to derive 
the es timates. 
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(b) E rror stat istics and LMN's we ight 'd Iw crage 
error pred iction on the va lida ti on se t . 

F igure 6.25: State-dependent average error sta tistics on the t rain ing and validation data 

What happen s when we close the loop? 

Despite the validation process, the real test of the model wi ll only happ n wh n it is us d 

as it was intended in the real system. In this case, any false assumptions ab ut tit syst 10 , 

or disturbances on the t ra ining data will become immediately a ppa rent. O nce a 'ontrol! r is 

built which uses the model from the learning phase, it may also mak the old model in valid . 

This is because the new, improved controller will impose a d ifferent type of stimu lation n 

the process, which will cover different areas of the input space, and which m ay produc quit 

different responses from the process. 
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(d) Model residuals a nd LMN's we ighted worst 
error prediction on the validation set. 

Figure 6.26: State-dependent worst error statistics on the training and validation data. 
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6.4 Robot Actuator Modelling 

The robot application described in this section is based on data sampled from a physical 

system, supplied by Tom Kavli, SINTEF, Oslo. The application and the data sets have been 

described for modelling work in (Kavli, 1992) and in (Johansen and Foss, 1994b). A brief 

overview is given here: 

Many industrial robot applications now demand high dynamic accuracy. Model based control 

schemes have the potential to improve performance, but the use of hydraulic manipulators has 

suffered due to the lack of good nonlinear models for the hydraulic components. Model based 

control schemes have been more successful on electric direct drive arms with low friction and 

linear actuators. The goal of the learning task is to form a model of the servo valve/actuator 

system of a hydraulic robot. The robot is an ABB Trallfa TR4000 Robot, specially designed for 

spray painting, where tracking accuracy over a desired trajectory is extremely important. The 

control signal u is described as a function of the joint position q, velocity q and acceleration ij: 

u=f(q,q,ij). (6.7) 

The nonlinearities are due to: 

• the changing moment arm of the cylinder over the operating range, 

• the nonlinear damping coefficient due to the quadratic flow/pressure relation for turbulent 

flow and, 

• the changing pressure gain characteristics for the servo valve at different flow rates. 

The data was sampled by logging the data at 100Hz, while the manipulator moved along a 

randomly generated path. The velocity and acceleration signals were calculated by low pass 

filtering the data and differentiating the joint positions. The linear effects in the system were 

subtracted from the data to emphasise the nonlinearity of the system. The training data 

consisted of 8000 training points and the test set had 1000 points. 

6.4.1 Experimental results 

The ASMOD results * are taken from (Kavli, 1992). LSA (Local Search Algorithm) results + 
are from (Johansen and Foss, 1994b). The LMN results were obtained by using the algorithms 

described in this thesis, as well as the active selection algorithm to reduce the number of points 

in the training set (the training set was reduced to a maximum of 1200 points). 

The MARS results are shown in Figure 6.30(a). The cross-validation results for the local 

model net with local learning are shown in Figure 6.29(a) is compared with the global learning 

case in Figure 6.29(b). Note the poor performance of local learning in the cross-validation 
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Model Type Test Error (NRMS) 

LSA+ 17 
MLP (3-20-1) 23 
ASMOD*(Quadrat.) 15 
ASMOD*(Linear) 17 

RBF* 23 

MARS 17 
LMN (local learning) 18 
LMN (global learning) 17 
LHM (axis oblique) 18 
LMN (local learning) 18 
LMN (global learning) 17 

Table 6.2: Robot modelling results on the test set. The only method to provide better results 
than the LMN was the ASMOD model with quadratic splines (and a large number of pa rameters 
at 512 basis functions). Local Modelling proved to lead to slightly worse results, and required 
a larger number of parameters, but produced 'safer ' extrapolation to areas with little training 
data. 

qdol 

(a) LMN Basis Functions for the robot model 

0.8 

~0.8 

!04 
0.2 

qdot o 0 

(b) Ro b ot training data 

Figure 6.27: Distribution of robot training data and local models' basis functions. 
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resul ts. Only one of the runs produces a mean error s im il a r to that of the global op ti m isat ion . 

T hi s is, however , due to a weakness in the structure iden tification a lgori thm , which stops 

growing when the error stops decreas ing . In global learning, the greater degree of freedom for 

the optimisation means that the addi tional local models have a mo re pro no unced effect, a nd 

construction continues. By a ltering nrc. to 5 for local learning p roduced the resul ts shown 

in F ig ure 6.28 (b) , where a la rger number of local m odels were buil t, bu t whi ch achieved an 

improvement in accuracy to that close to the globally t ra ined model. 

T he problems with ill-conditio ning for glo ba l learning a re less preva len t in thi s applicat io n, due 

to the low dimensionali ty, accompanied by large amounts of t ra ining data, a nd the appa rent 

sm oothness of the underlying process nonlinearity. 
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(a ) LMN erro r curve with global learning 
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(b) LMN erro r cur ve with local learning 

Figure 6. 28: T he progress of the average absolu te error as new m odels a re added to the robo t 
modelling exa mple. Note that local learning finishes earlier tha n globa l learning. 

Vi sualisation of tht system 

T he following surfaces are representations of the inpu t space as seen thro ugh different sli ces 

through the space . The corners of the plots are areas where the system had no tra ining da ta, 

a nd are therefore unreliable. 
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Figure 6.29: Cross-validation results fo r the Trallfa robot with Local Model Nets. Note the 
poor performance of local learning in all but one example. By increasi ng nr e• to 5, the local 
learning could perform better , as shown in Figure 6.28(b) 
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Figure 6.30: Modell ing resu lts for the Trallfa robot with MARS. 
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q dot dol o 0 

(a) Speed and acceleration , with position at 0 .5. (b) Position and accelera tion with speed a t 0.5. 

q dot 

(c) Position a nd speed with accele ration at 0.5 . 

Figure 6.31: Output responses for slices through the robot actuator model. Note the way 
the model response surface flies off in the corners where data does not exist. This is one 
disadvantage of normalised basis functions, where the basis functions are supported through 
the whole input space, combined with global learning, which produces less robust models . 
Compare the plots here to those achieved with local learning in Figure 6.32. 
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Figure 6.32: Output responses for slices through the robot actuator model using local learning . 
Compare the plots here to those achieved with local learning in Figure 6.31. The locally trained 
models provide a less dramatic form of extrapolation outside the populated area of the input 
space. 
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6.5 Conclusions 

6.5.1 Rolling mill results 

The rolling mill application provided an interesting environment for testing the local model 

network methodology and the constructive algorithms proposed in this thesis. To solve the 

problem meant dealing with the practical problems of data acquisition, pre-processing, and 

variable selection. In some ways though it is also not an ideal choice to show off the structure, 

due to the poor available understanding of the system, and the difficulty in performing exper­

iments to acquire data, or to validate the usefulness of models produced. Despite the relative 

deficit of formalised a priori knowledge about the system, the local model network methods 

proved to be the most accurate, and most interpretable representations of the rolling mill pro­

cess. The MARS algorithm was relatively fast, but did not have the desired accuracy, and the 

conventional MLP neural network was very slow during training, and produced low-accuracy 

models. 

The validation phase used cross-validation techniques to test the robustness of the learning 

algorithms, as well as using validation sets from completely different runs. This showed up 

some interesting features in the experimental setup. The local learning techniques led to 

significantly more accurate models for new validation data than globally trained ones, even 

though they were found to be slightly less accurate on 5-fold cross-validation runs based on 

partitions of the training set. This seems to indicate that the local learning produced a more 

robust model of the mill, at the expense of accuracy on the training data. 

The state-dependent error estimates proved, despite their simplicity, that they could capture 

the areas of the input space where the model is least accurate - the acceleration and deceleration 

phases. Other tools were used which helped interpret the model, including the visualisation of 

model residuals, accompanied by the position of the data in the operating space of the local 

model net's basis functions. This can also be combined with slices through the basis functions, 

in the form of either contour plots or ellipsoidal plots of basis functions in three dimensions. 

6.5.2 Robot actuator results 

The results obtained by the Local Model Net are comparable with the results quoted in the 

original work (Kavli, 1992) and also with those in (Johansen and Foss, 1994b). The problem 

is low dimensional, the nonlinearity seems to be fairly smooth, and there is an abundance of 

training data. This means that other model structures can also cope with the problem, and 

that while the local model nets perform well at the modelling task, the po~ential advantages of 

local model nets are not as evident as in other applications. A further interesting result from. 

the experiment pointed out weaknesses in the structure identification algorithm working with 

local learning, where it often stops construction too early. Using a larger nre• lead to better 

results, but also needed a larger number of parameters. 



Chapter 7 

Conclusions 

7.1 Local Model nets 

The work undertaken has shown that Local Model Nets have a great deal of potential as 

a general model structure, suitable for a wide variety of empirical modelling and learning 

tasks. An important aspect of the architecture is that it forms a link between the world of 

learning systems such as neural networks and the more conventional world of systems theory 

and statistical modelling. The local nature of the models means that the trained networks 

are more transparent, and can easily integrate a priori models from the other paradigms. 

Knowledge about the process being modelled can be used in hybrid local model nets to better 

cope with high-dimensional systems. 

7.1.1 Local Model Net extensions 

This thesis extends the understanding of local model networks in several respects: 

• The Local Learning methods developed in this work have a regularisation effect which in 

many cases improve the generalisation of the trained net, as the methods overcome some 

of the conditioning problems discovered in the parameter estimation phase of training. 

The nature of the conditioning problems had previously gone unnoticed, and this work 

demonstrated the dependence of the condition on the level of overlap between models. 

• Methods have been developed which use the local nature of the basis functions to allow 

local error estimates to be interpolated to produce a state-dependent error statistic for 

the whole network. Such statistics are useful for the validation and interpretation phases 

of modelling and are useful for on-line application in model-based control and diagnosis 

systems. The techniques were applied to the rolling mill problem and produced error 

estimates which corresponded well with the measured residuals on a validation run. 

172 
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• The effect of the widely used normalisation technique for basis function nets has been 

analysed, and hitherto undocumented results were discovered. These have a serious effect 

on the smoothness of the representation and can compromise the local nature of the basis 

functions. Normalisation still has advantages in that it produces a partition of unity, and 

makes the model less sensitive to a poor choice of basis functions, but the unexpected 

side-effects described in Section 3.3.1 should be taken into account when interpreting 

trained basis function nets, and when developing new learning algorithms. 

The thesis also provides descriptions of a number of practical techniques for use in Local Model 

Networks: 

• New Local Learning methods were developed for the parameter estimation phase in Local 

model nets. These methods are far less computationally expensive than the global ones, 

and can often result in more interpretable local models. In general, with a reasonable 

level of basis function overlap, the local optimisation tends to cope better than global 

learning in high-dimensional, noisy or sparsely populated learning problems. Section 4.4 

gives examples of how the local learning methods performed more robustly on noisy test 

functions, and Chapter 3 demonstrates the better generalisation ability of locally trained 

local models on the rolling mill application. 

Local learning is also well-suited to heterogeneous local model nets, where a variety of 

types of local model can be used, each with its own optimisation algorithm. This makes 

the local model framework much more general than the basic homogeneous linear local 

model structure, allowing it to integrate a variety of styles of model and methods of 

knowledge representation . 

• The new Multi-Resolution Constructive (MRC) structure identification algorithm for 

Local Model networks has been developed. This allows the network to fit the basis 

functions to the data set in a gradual, problem-adaptive manner. The constructive nature 

of the algorithm speeds up the modelling process by reducing the amount of 'fiddling' 

needed to produce a good model. It also tends to find more accurate models, as the 

complexity is increased as needed for the given problem, while overfitting is limited by 

taking the local density of the training data into account. The fact that trained models 

are now being trained in minutes as opposed to days with previous learning techniques 

obviously better supports the interactive nature of the modelling process . 

• Active data selection techniques have been developed for local model nets. These speed 

up the learning process by automatically selecting a training set for the current model 

structure, where the number of data points needed is reduced, but the most informative 

data is chosen from the complex areas of the input space. Training tends also to be 

more robust with respect to the distribution of the training data, as demonstrated in 

Section 4.3 with synthetic examples and in Chapter 6 on the real applications. 
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1.1.2 Learning Hierarchies of Models 

The novel Learning Hierarchy of Models architecture is a hierarchical extension of the local 

model networks, which due to the split-like nature of its partitioning mechanism decomposes 

high dimensional spaces more efficiently than flat Local Model nets. 

A new constructive algorithm which automatically grows tree-like structures to fit the target 

function is described. The soft-splits can be axis-oblique, making the structure more powerful 

than other more restricted hierarchical structures which are limited to partitioning the input 

space one variable at a time. Local learning, error estimation and active learning can all be 

applied in a hierarchical manner. 

Use of soft, axis-oblique splits provides the potential for hierarchical structure adaptation, 

where gradual structure learning occurs simultaneously at several levels of the structure at 

differing timescales. This is likely to lead to more efficient learning algorithms, which produce 

more parsimonious models. It is also interesting for on-line use for structure adaptation in 

time-varying systems. The architecture can also be seen as a fuzzy decision tree, and could 

apply methods from both decision tree theory and fuzzy systems. 

1.1.3 Experimental work 

To demonstrate the applicability of the methods to real industrial processes data was taken 

from an aluminium rolling mill and a robot actuator: 

• Data has been taken from an aluminium rolling mill to train a predictive model of the strip 

thickness using local model nets. This was a real application of the modelling techniques 

to aspects of a nonlinear, dynamic process which were poorly understood. The Local 

Model Net techniques described in this thesis have produced the most accurate modelling 

results known to date on this problem, and further testing with an on-line implementation 

is planned . 

• The Trallfa robot actuator nonlinearities were also learned successfully. This problem has 

been used as a test example for a number of other structure identification algorithms, and 

it is characterised by its low dimensionality, smooth nonlinearities and large training set. 

Despite its relatively simple nature, the problem demonstrated that the methods could 

still be competitive on more straightforward, low-dimensional problems. 

7.2 Outlook 

The training algorithm used to identify the underlying structure of the basis functions is a 

practical but still relatively ad hoc routine, and there is certainly a great deal of progress to 
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be made in the area of structure construction algorithms. User friendly methods for the easy 

integration of a priori knowledge into the network will become more and more important as the 

demands for accuracy, robustness and transparency increase. There are many opportunities for 

the development of easy-to-use tools which allow the developer to creatively build engineering 

knowledge directly into the modelling process, leaving the learning algorithms to cope with 

the uncertainty in the process, and to warn the user where more information is needed. Tools 

based on the ideas described in this thesis are likely to benefit the developer in the computer 

intensive, data driven areas of modelling. Despite the improvements in tools, it is perhaps 

relevant to quote one of the leading system identification researchers, Lennart Ljung: 

'Thinking, intuition and insight cannot be made obsolete by automated model 

construction' (Ljung, 1987) 

An immediately practical view of the methods described in this thesis is to see them as 

computationally- and data-intensive ways of supporting more traditional modelling methods, 

allowing the engineer to better understand the system by reproducing the behaviour with a 

learned model, understanding the behaviour and then creating a 'hand built' simplified model 

which exhibits the essential behaviour of the structurally more complex learned model. This is 

then more easily understood and validated, and is therefore more likely to be used in practical 

applications. 
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Notation 

A.I 

AT 
A- l 

A+ 

Bj,p 

Cov(x) 

t 

u 

cp 
y 

iJ 
v 
Vi 

Ji 
M 

Notation used 

the transpose of matrix A 

the inverse of matrix A 

the pseudoinverse of matrix A 

Basis Spline j of order p 

the covariance matrix of vector x 

knot of a basis spline 

system inputs 

information vector inputs 

position of basis function i's centre in the input space 

operating point state 

outputs 

estimate of outputs 

the training set of input-output pairs 

the training set of input-output pairs in receptive field of basis function i 

basis vector for regression 

the design matrix for the regression problem 

the design matrix for the local regression problem for local model i 

cost function 

cost due to model variance 

cost due to model bias 

optimal cost for parameter optimisation 

optimal cost for structure optimisation 

cost functional for optimisation of parameters of local model i. 

the whole model structure 
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M(6) 

Mi 

nt/J 

nclJtoJ J 

N 

Ni 

Nde, 

Nmin 

Nrand 

p, 
p(.) 

Pi( .) 

ptotal 

nn 
s 

erwin 

6 

a(·) 

a 

-y 

D(tP) 
,x 

Qmin 

*,x 
X 
y , ,., 
11·11 

the model structure parameterised by 6 

the model structure of local model i 

number of input dimensions to local models 

number of basis functions 

dimension of basis vector for regression 

number of new units added for 'stopping window 

number of resolution stages in multi-resolution clustering 

dimension of basis function space 

dynamic order of local models in rolling mill model 

number of training patterns 

number of training patterns for local model i 

number of data points desired for a given local model for active selection 

minimum number of training patterns in the receptive field of a local model 

number of data points randomly chosen from entire training set during active selection 

the number of parameters in local model I 

the basis activation function 

the basis activation function for basis function i (can be after normalisation) 

the cumulative activation of a basis function over the whole training set 

Euclidean n-dimensional space 

the process being modelled 

scaling matrix (or factor) for distance function of the basis function 

current window size for the complexity window of Chapter 4 

coarsest (initial) window size for the complexity window of Chapter 4 

weights 

error weighting function for weighted least squares problems 

weighting matrix for distance metric 

scaling factor for minimum distance between units 

scaling factor for the distance from centre for calculation of er 

reduction factor for window size in iterative cluster algorithm 

minimum angle between two neighbouring centres for covariance calculation 

weighting of cost function in cost-complexity optimisation 

the experiment used to gather the training data V 

the vector of outputs in training set V 

threshold for basis function activation 

Euclidean norm 

Matrix norm 
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A.2 

ANN 

ANOVA 

ARMAX 

ARX 

ART 

ASMOD 

BF 

BP 

CART 

CMAC 

EBF 

FIR 

GCV 

GSS 

HME 

HSOL 
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k-N-N 

LHM 

LMN 

LMS 

LSA 

LTU 

LVQ 

MARS 

Abbreviations 

Artificial Neural Network 

AN alysis Of VAriance 

Auto-Regressive Moving Average model with eXternal variable 

Auto-Regressive model with eXternal variable 

Adaptive Resonance Theory 

Adaptive Splines MODelling 

Basis Function 

Back-Propagation 

Classification And Regression Trees 

Cerebellar Model Articulation Controller 

Ellipsoidal Basis Function 

Finite Impulse Response 

Generalised Cross-Validation 

Generalised Smoothing Splines 

Hierarchical Mixtures of Experts 

Hierarchical Self-Organising Learning 

Iterative Dichotomiser 3 

k-Nearest-Neighbour 

Learning Hierarchy of Models 

Local Model Network 

Least Mean Squared 

Local Search Algorithm 

Linear Threshold Unit 

Learning Vector Quantisation 

Multiple Adaptive Regression Splines 

MLP Multi-Layer Percept ron 

NARMAX Non-linear Auto-Regressive Moving Average model with eXternal variable 

peA Principle Component Analysis 

PDP Parallel Distributed Processing 

PDF Probability Distribution Function 

PID Proportional Integral Derivative 

PLS Partial Least Squares 

PNN Probabilistic Neural Network 

PVM Predictive Value Maximisation 

RBF Radial Basis Function 

RCE Restricted Coulomb Energy 

RK Reproducing Kernels 

SOM Self-Organising Map 
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SVD 

TDNN 

VI-Net 

Singular Value Decomposition 

Time-delay neural network 

Validity Index Net 
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