
A LOCAL MODEL NETWORK APPROACH

TO NONLINEAR MODELLING

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER SCIENCE

OF THE UNIVERSITY OF STRATHCLYDE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Roderick Murray-Smith

November 1994

© Copyright 1994 by Roderick Murray-Smith

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation

3.49. Due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.

Abstract

This thesis describes practical learning systems able to model unknown nonlinear dynamic

processes from their observed input-output behaviour. Local Model Networks use a number of

simple, locally accurate models to represent a globally complex process, and provide a powerful,

flexible framework for the integration of different model structures and learning algorithms.

A major difficulty with Local Model Nets is the optimisation of the model structure. A novel

Multi-Resolution Constructive (MRC) structure identification algorithm for local model net­

works is developed. The algorithm gradually adds to the model structure by searching for

'complexity' at ever decreasing scales of 'locality'. Reliable error estimates are useful during

development and use of models. New methods are described which use the local basis function

structure to provide interpolated state-dependent estimates of model accuracy. Active learning

methods which automatically construct a training set for a given Local Model structure are

developed, letting the training set grow in step with the model structure - the learning system

'explores' its data set looking for useful information.

Local Learning methods developed in this work are explicitly linked to the local nature of

the basis functions and provide a more computationally efficient method, more interpretable

models and, due to the poor conditioning of the parameter estimation problem, often lead

to an improvement in generalisation, compared to global optimisation methods. Important

side-effects of normalisation of the basis functions are examined.

A new hierarchical t:.<tension of Local Model Nets is presented: the Learning Hierarchy of

Models (LHM), where local models can be sub-networks, leading to a tree-like hierarchy of

softly interpolated local models. Constructive model structure identification algorithms are

described, and the advantages of hierarchical 'divide-and-conquer' methods for modelling, es­

pecially in high dimensional spaces are discussed.

The structures and algorithms are illustrated using several synthetic examples of nonlinear

multivariable systems (dynamic and static), and applied to real world examples. Two nonlinear

dynamic applications are described: predicting the strip thickness in an aluminium rolling mill

from observed process data, and modelling robot actuator nonlinearities from measured data.

The Local Model Nets reliably constructed models which provided the best results to date on
the Rolling Mill application.

11

Acknowledgements

On the technical side, I would like to thank my employers Daimler-Benz AG for providing a

stimulating research environment, and for letting me include research carried out for them in

the thesis. I'd especially like to thank Frieder Lohnert for giving me the freedom to explore

the areas I thought useful.

My other colleagues provided a great deal of advice and support, directly and indirectly: Jeff

Donne for his insight into rolling mills (and cocktails) and for preparing the data for the

mill modelling work; Henrik Gollee for his assistance in the vagaries of MATLAB, performing

experiments and proof-reading the thesis; Ken Hunt for reading the thesis and trying to improve

my mathematical precision; Dietmar Neumerkel for his organisational support in the mill work

and for helping with the development of tools and ideas; Robert Shorten for co-operation with

the normalisation work and for doing the dishes. Thanks to the other members of the group

not directly involved in this work. Wise old Greeks, Indians and Persians also managed to put

the ups and downs of research into perspective.

Cooperating in research has fewer geographical limitations than ever before, so I'd like to thank

Tor Arne Johansen in Norway and Daniel Sbarbaro-Hofer in Chile for the many long distance

E-mail discussions we had (thanks again to Dan for the help given at the start of the work, for

reading the resulting thesis and for making insightful suggestions). I'd also like to thank Tom

Kavli in Oslo for letting me use his robot actuator data. My supervisor Douglas McGregor

was also, unusually for a supervisor, one of the long distance colleagues, but still managed to

provide guidance in the right direction at the right time.

On the personal side, I thank my parents again for giving me the best start in life I could have

hoped for.

I would like to thank history for making Berlin a fascinating place in the early 90's, and the

Berliners (Ossis, Wessis and Auslander) for being a lot of fun to be with.

III

Contents

Abstract

Acknowledgements

1 Learning Systems for Empirical Modelling

1.1 Learning....................

1.2 Learning & Engineering - Where is the Engineering?

1.3 Thesis Contributions

1.4 Thesis Structure ..

2 Methods for training models

2.1 Using Learning Techniques for Empirical Modelling.

2.1.1 Empirical models of dynamic systems

2.1.2 Classes of learning systems

2.1.3 Research paradigms for automatic empirical modelling

2.1.4 Empirical modelling with neural networks

2.1.5 What is wrong with modelling with neural nets?

2.2 The Modelling Process

2.2.1 Using a priori information.

2.2.2 Creating the training set - design & pre-processing

2.2.3 Learning algorithms and knowledge representation

2.2.4 Model validation

2.2.5 Organisational aspects in empirical modelling projects

2.3 Local Methods in Modelling

IV

ii

iii

1

1

2

4

5

7

7

8

11

13

15

17

19

20

21

24

25

27

27

CONTENTS

2.3.1 Basis Function Networks for modelling ..

2.3.2 Local Model basis function nets

2.4 Hierarchical Approaches to Learning Models.

2.4.1 Hierarchical learning methods

2.5 Learning in Local Model Basis Function Networks

2.5.1 Parameter estimation in Local Model Nets ..

2.5.2 Uniformly distributed basis functions.

2.5.3 Structure identification

2.5.4 Pre-structuring the local model net

2.6 Conclusions

2.6.1

2.6.2

Engineering deficits of neural net solutions . .

Local Model Basis Function nets for practical problems

3 Aspects of Local Model Networks

3.1 Local Learning vs. Global Learning.

3.1.1 Problems with global optimisation methods

3.1.2 Local learning

3.1.3 Global vs. local SVD for computational effort

3.1.4 Local learning experiments

3.1.5 Training heterogeneous local model nets

3.2 Estimating the Confidence in a Trained Network

3.2.1 Local confidence measures.

3.2.2 Detecting extrapolation ...

3.2.3 Estimating covariance of weight estimates from the residuals.

3.3 The Effect of Normalisation of the Basis Functions

3.3.1 Side-effe<:ts of normalisation for the basis functions

3.3.2 Effect of normalisation on optimal network parameters

3.4 Conclusions

3.4.1 Local learning as a robust optimisation algorithm.

3.4.2 Local confidence limits.

3.4.3 Effects of basis function normalisation

v

27

32

36

37

38

38

42

43

46

49

49

49

51

51

52

56

60

61

64

65

66

67

68

71

71

75

80

80

81

81

CONTENTS VI

4 Structure Identification in Local Model Networks 83

4.1 Constructive Structure Identification 83

4.1.1 The constructive approach . . 84

4.2 The Multi-Resolution Constructive Algorithm 87

4.2.1 Scheduling the multi-scale search for complexity. 88

4.2.2 Complexity detection - where are extra units needed? 89

4.2.3 Overlap determination 90

4.2.4 Preventing overfitting 93

4.2.5 Local model structure selection 94

4.3 Active Learning with Local Model nets. 95

4.3.1 Active selection of training data in Local Model Nets . 95

4.4 Illustrative Examples . . 99

4.4.1 Static examples . 100

4.4.2 Dynamic systems . 110

4.5 Conclusions 115

4.5.1 Structure identification in Local Model Networks 115

4.5.2 Active learning 116

5 Hierarchies of Local Models 118

5.1 The LHM Architecture . 118

5.1.1 Soft-splits 119

5.2 Optimising the Local Model Parameters 120

5.2.1 Sub-tree optimisation using weighted least squares 121

5.3 Confidence Limits with LHM 122

5.3.1 Using local error statistics to indicate poor model structure 122

5.4 The Constructive Algorithm . . . 123

5.4.1 One-dimensional example 124

5.4.2 Axis-orthogonal partitions 127

5.4.3 Axis-oblique partitions . 127

5.5 Conclusions 133

CONTENTS

6 Rolling Mill & Robot Actuator Modelling Examples

6.1 Rolling Mill Problem Description

6.1.1 Nonlinearities in the rolling process.

6.1.2 Measurement noise and disturbances

6.1.3 Modelling goals

6.2 Rolling Mill Training and Test Data

6.2.1 Pre-processing used
6.2.2 Planning the experiment .

6.3 Rolling Mill Modelling Results

6.3.1 Modelling specifications

6.3.2 Benchmark algorithms .

6.3.3 Local model net results

6.3.4 Interpreting the trained models

6.3.5 Analysing the local confidence limits

6.4 Robot Actuator Modelling . .

6.4.1 Experimental results .

6.5 Conclusions

6.5.1 Rolling mill results

6.5.2 Robot actuator results

7 Conclusions

7.1 Local Model nets

7.1.1 Local Model Net extensions

7.1.2 Learning Hierarchies of Models

7.1.3 Experimental work

7.2 Outlook

A Notation

A.l Notation used.

A.2 Abbreviations .

References

Vll

135

135

137

137

138

138

142

143

143

143

148

153

157

163

165

165

171

171

171

172

172

172

174

174

174

176

176

178

180

List of Tables

6.1 Summary of mill modelling results on validation run ..

6.2 Robot modelling results on the test set

Vlll

156

166

List of Figures

1.1 The trouble with neural nets for engineering .,. 3

2.1 Systems can often be described by their input-output behaviour. 8

2.2 Using a tapped delay line 9

2.3 A slice through the input space of the rolling mill's training set 10

2.4 System without learning ability - behaviour is pre-programmed 11

2.5 Supervised learning system 11

2.6 Self-organising system 12

2.7 Multi-layer Perceptron 17

2.8 The Engineering Cycle for Training a Model 19

2.9 Acquiring and preparing the training data . 22

2.10 Active learning - exploring the input space 22

2.11 The generalisation/overfittin~ dilemma.. . 25

2.12 Radial Basis Function network 28

2.13 A typical locally active, smooth basis function. 29

2.14 Local Model Operating Regimes. . . 33

2.15 Local Model Basis Function network 34

2.16 An example of local models representing a one dimensional function 35

2.17 Decision tree structure. 37

2.18 A lattice style distribution of basis functions in square and hexagonal forms 42

2.19 The structure learning process involves a number of complex interactions. 44

2.20 A mixed order hybrid Local Model Net system 48

3.1 Singular values of constant, linear and quadratic local models 54

IX

LIST OF FIGURES x

3.2 As Figure 3.1, but with basis functions half the size. 55

3.3 Condition number increasing with number of local models or with overlap 56

3.4 Experimental comparison of Global and Local Learning for 101 training points 62

3.5 Local vs. Global estimation - continuation of Figure 3.4 for 401 training points. 63

3.6 Local vs. Global estimation - continuation of Figure 3.4 for 1001 training points. 63

3.7 Heterogeneous local model network with multi-algorithm optimisation. 64

3.8 As the model improves its average performance, the worst error can increase! 65

3.9 Test function. z is vertical axis. z and yare right and left axes respectively 68

3.10 Forming local confidence limits from 'worst error' cross-validation results. 69

3.11 Change in basis function shape due to normalisation 72

3.12 Effect of Normalisation on 20 Basis Function Shape 72

3.13 Shift in maxima and reactivation of basis functions 73

3.14 Simple reactivation example. 74

3.15 20 Normalisation example. . 77

3.16 Effect of Change of Shape on Model Representation - Wide BFs 78

3.17 Effect of Change of Shape on Model Representation - Narrow BFs 79

4.1 A gradual approach to constructing a model. 86

4.2 Multi-Resolution Windowing .. 88

4.3 Windowed Complexity Estimate. 90

4.4 Using 'covariance' measure to determine basis functions' size and orientations 92

4.5 Eliminating centres with a common direction 92

4.6 Radial, Ellipsoid...! and Axis-orthogonal ellipsoidal basis functions . 93

4.7 Normalised Radial, Ellipsoidal and Axis-orthogonal ellipsoidal basis functions 93

4.8 Active Selection and Random Selection of the same number of training data 97

4.9 Active learning-training set distribution unrelated to process complexity. . 98

4.10 Marsl test function and 300 training points. z axis is vertical. z and yare right

and left respectively. 101

4.11 LMN responses for mars1 benchmark using global learning 102

4.12 LMN responses for mars1 benchmark using local learning . 103

4.13 Cross-validation results for Local Model Net on noise-free Mars example 104

4.14 Cross-validation results for MARS algorithm on the noise-free Mars example. 104

LIST OF FIGURES xi

4.15 MARS response to mars! function, trained with 300 data points. . 105

4.16 Squiggle test function and 300 training data points 106

4.17 Resulting LMN for Squiggle benchmark 107

4.18 MARS responses and LMN response on noisy data. . 108

4.19 Rotated Squiggle responses 109

4.20 4.20(a) Time series function response. Figure 4.20(b) Phase portrait. Fig-

ure 4.20(c) and Figure 4.20(d) are noisy data sets. ... 111

4.21 Time series model. Local model net with local learning . 112

4.22 Time series model. Local model net with global learning 112

4.23 Time series model. Local model net with local learning, trained on 200 examples. 113

4.24 Time series model. Local model net with global learning, trained on 200 examples 113

5.1 Local Models can be replaced by sub-networks to improve representational ability 118

5.2 (a) The soft split from above and (b) The split from the side.

5.3 The Learning Hierarchy of Models architecture

5.4 Construction of a one-dimensional LHM Model Structure.

5.5 Continuation of Figure 5.4.

5.6 Squiggle results for axis-orthogonal LHM .

119

120

125

126

128

5.7 Contour and 3d representations of leaves of model tree for axis-oblique partition. 128

5.8 Mars1 results with LHM and axis-oblique partitions.

5.9 Adjusting the split angle

5.10 Squiggle results for axis-oblique LHM

5.11 Rotated Squiggle results for axis-oblique LHM .

6.1 Single stand of a rolling mill.

6.2 Roll bite

6.3 Observed data from mill .

6.4 Observed data from mill- state portraits for a single run

6.5 Normalised training data.

6.6 Combined training sets . .

129

130

131

132

136

137

139

140

141

144

6.7 Combined Validation sets from 5 different strips of the same material. 145

6.8 Training data distribution in operating point space over four runs . . . 147

LIST OF FIGURES

6.9 Mill model residuals for linear model on the validation data

6.10 Cross-validation results for linear model

6.11 Mill model residuals for MLP with 30 units on the validation data.

6.12 Mill model residuals for MARS on the validation data

6.13 Cross-validation results for MARS on mill data

6.14 Mill model residuals for LMN (local training) on the validation data

6.15 Cross-validation results for net construction, and training error development

xu

148

149

150

151

152

153

during a single construction run. 154

6.16 Mill model residuals for LMN (global training) on the validation data. 154

6.17 Global Learning Error Curve 155

6.18 Cross-validation Comparison between local and global learning 156

6.19 Visualisation of the mill model operating regimes. 157

6.20 Model and Real Mill output, with the related area of the input space 158

6.21 Detailed validation runs with LMN and local learning, in acceleration phase 159

6.22 Detailed validation runs with LMN and local learning, in constant velocity phase. 160

6.23 Detailed validation runs with LMN and local learning, in deceleration phase 161

6.24 Detailed validation modelling runs with linear model 162

6.25 State-dependent average error statistics on the training and validation data.. 163

6.26 State-dependent worst error statistics on the training and validation data. 164

6.27 Distribution of robot training data and local models' basis functions. . . . 166

6.28 Progress of the average absolute error as new models are added to the robot

modelling example •

6.29 Cross-validation results for the Trallfa robot with Local Model Nets .

6.30 Modelling results for the Trallfa robot with MARS

6.31 Output responses for slices through the robot actuator model

167

168

168

169

6.32 Output responses for slices through the robot actuator model using local learning 170

Chapter 1

Learning Systems for Empirical

Modelling

1.1 Learning

The ability to interact with the environment and to learn from the effects of these interactions is

one of the defining features of intelligence. A system with the ability to learn from observation

thus compensates for an initial lack of a priori knowledge about its given task. Such flexibility

is becoming increasingly important in automatic systems, as the physical, technological and

economical environments in which systems are operating are changing faster than ever before.

Higher levels of autonomous action are desired from our robots, washing machines, cars and

computers. Improved flexibility and adaptability is a major asset, whether the adaptability is

in the product development process, or in the products themselves.

This thesis targets the task of modelling complex nonlinear, dynamic processes by allowing

models to learn from the processes' observed behaviour. A goal of the work .vas to develop

methods which not only had the required performance, but were also relatively interpretable, to

support validation of models, and able to integrate models and methods from other paradigms.

The introduction of explicit a priori knowledge about the target process is also an important

element of applied learning systems.

Obtaining an accurate computer-based model of the physical process is the first step towards

the creation of high performance diagnosis systems, supervisory systems, controllers and filters.

In many practical systems, however, the process is still poorly understood, or new variations

of the system are being constantly created, leading to a slightly different problem each time a

controller is to be developed. The ability to use learning systems to cope with the uncertainties

would allow developers to produce high performance systems faster and more cheaply than with
conventional techniques.

1

CHAPTER 1. LEARNING SYSTEMS FOR EMPIRICAL MODELLING 2

The intuitive concept of 'learning' can be interpreted in a number of ways when trying to

emulate it on a machine:

A typical dictionary definition of learning is:

• 1. to gain knowledge of something or acquire skill in some art or practice, 2.

to commit to memory, 3. to gain by experience, example etc., 4. to become

informed.

Other definitions from the researchers investigating machine learning include:

• Learning systems belong to the class of systems which show a gradual im­

provement of performance due to the improvement of the estimated unknown

information (Fu, 1970).

• Learning is optimisation under conditions of insufficient a priori information

(Tsypkin, 1971).

• Learning is the process by which one entity acquires knowledge (Rich, 1988).

• Learning can be regarded as synthesising an approximation of a multi-dimensional

function, that is solving the problem of hypersurface reconstruction

(Poggio and Girosi, 1990).

• ... modifying patterns of behaviour on the basis of past experience so as to

achieve specific anti-entropic ends. In these higher forms of communicative

organisms the environment, considered as the past experience of the individual,

can modify the pattern of behaviour into one which in some sense or other will

deal more effectively with the future environment (Wiener, 1948).

• Behaviour is primarily adaptation to the environment under sensory guidance.

It takes the organism away from harmful events and toward favourable ones,

or introduces changes in the immediate environment that make survival more

likely (Hebb, 1949).

This work develops learning algorithms and model structures which gain knowledge about

a process from observed input-output example by synthesising a suitable non-linear multi­

dimensional function to fit the training data.

1.2 Learning & Engineering - Where is the Engineering?

Much research in recent years has been carried out within the artificial neural network paradigm,

using simplified formal models of physiological systems. The neural network research in empir­

ical modelling has been very experimentally oriented, so the learning algorithms and structures

CHAPTER 1. LEARNING SYSTEMS FOR EMPIRICAL MODELLING

o
o

How many units in net?

Can we use a priori knowledge?

Which inputs, what system order?

Data pre-processing?

Is the training set adequate?

Is the trained network reliable?

3

Figure 1.1: The trouble with neural nets for engineering ... An engineer faces a number of
difficult design decisions when using neural networks in practical projects.

which have become popular in this community have been successfully applied to a variety of

challenging applications. However, few workers in the area have analysed the deeper theor­

etical issues, or exploited results and experience from closely related fields such as function

approximation, system identification or statistics. This ignores decades of relevant work, and

has made the scientific output less accessible to a broader community, leading to criticism of

the neural network area by scientists and engineers from other fields.

The lack of a theoretical approach to the work has, unfortunately, also had the consequence that

there is no clearly defined engineering process in which a model can reliably be created from

measurements taken from a physical system, as shown in Figure 1.1. The impressive results

quoted in the literature usually come after months of 'tweaking' the parameters of learning

algorithms, implicitly using a priori knowledge by pre-processing the data, and in selective

testing of the trained system. The length of time taken for training is often prohibitive, often

without the guarantee of an optimal solution.

The difficulty in determining whether a good solution has been found stems from the fact that

most networks need to have their structure initialised in advance using guesswork, with little

guarantee against over-fitting the data, or under-specifying the model structure. It is vital for

the successful application of the ideas, that robust (in terms of reliably finding a good model

which generalises well to new inputs) learning algorithms be developed which can adaptively

find a parsimonious model structure and optimise its parameters to fit a given problem and

CHAPTER 1. LEARNING SYSTEMS FOR EMPIRICAL MODELLING 4

training set.

The problems for learning systems in industry are not, however, limited to poor learning

algorithms. The creation of a training set for a nonlinear, multi-variable dynamic system can

be an extremely complex task. The data acquisition process may also be very expensive, time­

consuming, costly, and in some cases dangerous (if you don't already have a good controller)

and time-consuming. It is also possible to unwittingly include undesired side-effects in the data

specific to a particular run/day/setting which limit the usefulness of the final model.

A further problem with much of the current reported research is that the methods used to

evaluate performance of the trained system are usually too simplistic. The reliability of the

resulting model is also usually not clearly understood, partially because of the poor inter­

pretability of the model architectures. In the conventional neural networks it is often difficult

to introduce a priori knowledge. This is highly important in practical applications, where

there is usually a great deal of such knowledge available about the system in question. In

most publications, the creation of the training set is implicitly affected by a priori knowledge

about the system, and certain architectures may be more suited to certain system types. The

assumption underlying the research here is that it is very important that prior knowledge can

be explicitly built in to the system's architecture and optimisation algorithms. Methods to do

this have been described, but are still not present in much of the current research. This work

attempts to bring these various facets together within a single framework.

1.3 Thesis Contributions

The methods described in this thesis have been chosen for their suitability for integration with

conventional engineering techniques, as well as their powerful representations and learning

algorithms. The resulting interpretability and robustness with respect to sparse or noisy data

was also an important aspect of the work .

• The Local Model Network, an existing generalisation of Basis Function 1 networks is ana­

lysed, and the theoretical and practical suitability of the architecture for practical model­

ling applications is demonstrated. The Local Model framework allows the integration of

a priori knowledge, is more transparent than other architectures, and by pre-structuring

the model structure, can better cope with high-dimensional, or high order processes .

• It was found that the commonly used global parameter optimisation in Local Model

networks is computationally expensive, and in some cases poorly conditioned. A new

Local Learning algorithm for the optimisation of the parameters in a local model net has

been developed. This is significantly faster, produces more interpretable models and can

have a regularisation effect on the optimisation process producing models with a better
generalisation ability.

1 Networks consisting of a single nonlinear layer, linearly weighted to the output, as described in Section 2.3.1.

CHAPTER 1. LEARNING SYSTEMS FOR EMPIRICAL MODELLING 5

• Locally interpolated error estimates for Basis Function and Local Model networks are

developed. These produce state-dependent error estimates for a trained local model net­

work, which help validate the trained model, and can be used by constructive algorithms,

or on-line when the model is in use.

• The effect of normalisation of the basis functions in Local model and Basis Function

networks is analysed. Side-effects are described which reduce the interpretability, and

have serious effects on the smoothness and robustness of the final model.

• The new Multi-Resolution Constructive (MRC) structure identification algorithm for

local model nets is developed. This automatically fits the model structure (number,

location and size of the basis functions, and the complexity of the local models) to the

available training dat~. The algorithm uses a 'complexity heuristic' to gradually improve

the model's structure.

• The local model network is extended to a hierarchy of local model networks - the Learning

Hierarchy of Models (LHM) architecture. Parameter optimisation and structure identi­

fication algorithms are described which utilise the hierarchical nature of the structure to

make learning more efficient.

• The algorithms and model structures are applied to model data from a real industrial

process - an aluminium rolling mill. The algorithms performed better than competing

learning systems such as MARS (Friedman, 1991), and Multi-Layer Perceptrons2 , and it

is intended to implement the model in o~.-line tests. A further example, modelling robot

actuator dynamics is also analysed.

1.4 Thesis Structure

• Chapter 2 is a review of the existing empirical modelling theory. The empirical modelling

process is introduced and the importance of the various stages discussed: Experiment

design, construction of a suitable representation, optimisation of the parameters and val­

idation of the trained models are all vital stages, and the lack of support for these phases

from conventional neural networks is criticised. The Local Model network architecture is

reviewed and its suitability as a network for practical modelling applications discussed,

as is the use of hierarchical learning structures. An overview of related work and theory

is given.

• Chapter 3 investigates several aspects of local model networks. The problems with ill­
conditioning of the parameter estimation problem in local model nets are analysed and

a new local learning algorithm is described which is faster and in noisy or sparsely

2See Section 2.1.4.

CHAPTER 1. LEARNING SYSTEMS FOR EMPIRICAL MODELLING 6

populated problems can be more robust than global methods. The trade-off between

global and local training methods is discussed.

A flexible, straightforward extension to local model nets is given which allows inter­

polation of local estimates of accuracy to provide a state-dependent error statistic for a

trained network.

The effect of normalisation of the basis functions on the network's representational prop­

erties is analysed. Several side-effects other than the desired partition of unity are de­

scribed which can have serious consequences for the interpretability and robustness of

basis function networks.

• In Chapter 4 the new MRC algorithm for constructive creation of Local Model Basis

Function Nets is described. This development iteratively allocates units to the areas

of greatest complexity in the system. This is repeated at ever increasing resolution of

complexity, gradually creating an ever more accurate model, given the limitations of the

available training data.

Constructive techniques for active selection of the most important training data from a

large training set are given. This allows the learning system to maintain the training

set at the size and completeness needed for a given model structure. The strengths and

weaknesses of the methods developed in this chapter are illustrated using several artificial

static and dynamic modelling tasks.

• Chapter 5 introduces the Learning Hierarchy of Models architecture. This can be viewed

as a hierarchical local model net structure. The advantage of this structure is that more

efficient models can be produced, and that the hierarchical nature of the structure allows

more efficient learning algorithms, especially for high-dimensional problems. Parameter

optimisation algorithms and structure identification algorithms are defined. The confid­

ence estimation and active learning components described in previous chapters for local

model nets are extended to the LHM architecture.

• Chapter 6 demonstrates the practical application of the new methods with the modelling

aspects of an aluminium rolling mill. The local model and LHM architectures were

successfully applied to model the output thickness deviation of the strip, given the current

state of the system.

A further example, the modelling of robot actuator nonlinearities, is given. The res­

ults are compared with three other methods, MARS, ASMOD (Kavli, 1992) and LSA

(Johansen and Foss, 1994b).

• Chapter 7 summarises and discusses the significance of the results and analysis in the
thesis.

Chapter 2

Methods for training models

The scope of the use of learning techniques for empirical modelling in this thesis is

outlined, and the classes of learning systems are described in general terms. The

various research paradigms associated with machine learning are reviewed, with

special attention paid to the practical problems with artificial neural networks in

an engineering environment. To clarify the requirements of a learning framework

for modelling, the modelling process is analysed, each phase of which is then as­

sociated with desirable features in a learning system. The Local Model Network,

a generalisation of Basis Function nets, is proposed as an architecture suited to

real applications. It provides the ability to introduce a priori knowledge and model

complex systems robustly, while allowing estimates of accuracy and enhancing the

training set. The relevant literature is reviewed and the close connections to con­

ventional statistical methods, system identification and fuzzy logic are emphasised.

2.1 Using Learning Techniques for Empirical Modelling

The 'modelling problem' as discussed here is to try to robustly approximate the behaviour

of a given complex system from observation data, where complex implies that the system

can be non-linear, time-invariant, multi-variable and dynamic. This can be interpreted as a

learning task, where the learning system has to learn a suitable representation for the process

in question. The model should obviously be a good representation of the target system, for

the purposes intended of it, but in an industrial or scientific environment it should ideally

also be interpretable, so that the engineer gains improved understanding about the system.

The learning systems used in this thesis can therefore be viewed as computationally intensive

tools which are used to support the modelling process by attempting to induce a parsimonious

representation of the process from the behaviour described by the observed input-output data.

The basic assumption underlying the use of learning systems for modelling purposes is therefore

7

CHAPTER 2. METHODS FOR TRAINING MODELS 8

that the behaviour of the process can be described in terms of its observed inputs (1/J) and

outputs (y). The process can therefore be modelled as a function f(1/J) of the inputs 1/J, i.e.

y = f(1/J), subject to a measurement error e, so that the true outputs are

y = f(1/J) + e. (2.1)

Such methods are basically black-box modelling techniques, i.e. techniques which attempt to

describe a system by finding relationships between the system's inputs, internal states and out­

puts using general model structures (f(1/J) performs a nonlinear mapping from n dimensional

inputs to m dimensional outputs, nn -+ nm) to represent a fit to the given data, irrespective

of physical meaning of the parameters.

1(1/')
1/' rtget Sysrem I

y

Input

1
~ Output

Rn Rm

System's
Behaviour

Figure 2.1: Systems can often be described by their input-output behaviour

In practice it will usually be impossible to find an absolutely correct representation of the

underlying process because of the effects of unmeasured inputs and states, which can be gen­

eralised to be treated as noise on the data, leading to the need to use a stochastic framework

for the modelling process. It will also be rare for the training data to be uniformly distributed

around the input space, and there may be areas with insufficient data available for a good

approximation. This uncertainty means that there is no general method which can be applied

to all modelling problems. To reduce the effect of the uncertainty in the data, constraints on

the form of the possible solutions must be used. Such constraints are basically any existing

knowledge about the process, or its environment. The framework should therefore be able

to include such knowledge wherever possible. If a priori knowledge of model structures or

parameters is included in the estimation process, the model can be called a grey-box model.

The task for the tools developed in this thesis is therefore to support the process

Observed Data + A priori Knowledge -+ Model

as well as possible.

2.1.1 Empirical models of dynamic systems

Any real physical system's reactions to a given input are not likely to be instantaneous, and

will depend on previous inputs.· We are therefore dealing with dynamic systems, which are

CHAPTER 2. METHODS FOR TRAINING MODELS 9

processes described by difference or differential equations, where the current output of the

system depends not only on the current external stimuli, but also on previous stimuli and

internal states. This brings a new dimension to the modelling process, as the optimal sampling

rate of the unknown system must be estimated, the order of the system must be taken into

account, and the model's dynamics must be validated. To represent the dynamic aspects of the

system, it is necessary to have memory elements to store past inputs and model states which

are passed to a static nonlinear model.

Most of the work in this thesis is based on the assumption that the process can be represented by

a non-linear auto-regressive model with exogenous inputs (NARX) over the whole operation

envelope. As the implementation of the learning system will be on a digital computer, we

consider discrete-time non-linear systems having the general form

y(t) = f(y(t - 1), .. . y(t - nil), u(t - k), ... u(t - k - nu)) + e(t). (2.2)

Here, y(t) is the system output, and u(t) the input. The analysis is limited to multiple-input

single-output (MISO) systems so that y(t) EYe nand u(t) E U C nn i
... Here k represents

a time delay. The information vector passed to the nonlinear model is therefore defined as

",(t -1) = [y(t - 1), .. . y(t - nil)' u(t - k), ... u(t - k - nu)f (2.3)

or, if a zero-mean disturbance term e(t) is to be taken into account on-line, the widely stud­

ied NARMAX (Non-linear ARMAX) framework (Leontaritis and Billings, 1985) from system

identification can be used,

",(t - 1) = [y(t - 1), ... y(t - nil)' u(t - k), .. . u(t - k - nul, e(t - 1), ... e(t - ne)]T, (2.4)

where e(t) E E C n.
u (t)

~ yet)

::=::::::l

Figure 2.2: Using a tapped delay line (the T's represent delay elements) and static neural net

to represent nonlinear dynamic systems.

CHAPTER 2. METHODS FOR TRAINING MODELS 10

The NARX, or tapped delay line approach (see the graphical representation of equation (2.2)

in Figure 2.2) is fairly pragmatic, as it brings the neural network into the world of conventional

system identification theory, where the static neural net can be viewed simply as a technique

for function approximation. One disadvantage is that the input dimension becomes very large

for even simple systems. Also, if the sampling rate has been correctly set, the data from a

dynamic system will be highly correlated on the delayed inputs from the output state - i.e. it

is impossible for the data to fill the input space, as shown in Figure 2.3, which shows a slice

through the input space of the rolling mill data discussed in Chapter 6. This can have serious

26.9r--...--...--...--...--...--...--...--...----,

26.85

26.8

26.75

_ 26.7

:L
~26.85

26.6

26.55
.~,

26.5 .J/'
L:~'

26'~l46 26.5

. ~ ..
.. / . ., ...

<;
.~,.r

/'"
.... ? .,.

26.55 26.8 26.65 26.7 26.75 26.8 26.85 26.9
10(11

Figure 2.3: A slice through the input space of the rolling mill's training set, showing a variable
plotted against the delayed version of itself.

consequences for some learning algorithms, and model structures. If the model structure is

such that the nonlinearity results from partitions which are orthogonal to the axes of the input

space (an underlying assumption in learning systems such as MARS, ASMOD, ABBMOD,

ID3), the model will be less suited to modelling such dynamic processes than an algorithm

which can partition the input space more freely, e.g. by placing basis functions on data points

from the training set, or by allowing axis-oblique partitions of the input space.

An alternative to an externai tapped delay line is to have memory and feedback within the

network itself, where the dynamics are learned by the network. Such recurrent networks,

which contain local internal feedback connections have received a great deal of attention in

the literature (see, for example (Hopfield, 1984, Zbikowski, 1994)). These networks are math­

ematically elegant structures which are, however, often more difficult to understand and train

than static networks for practical problems. The local model network mixed order systems

described in Section 2.5.4 are less susceptible to the dimensionality problems inherent to the

NARX representation.

A further alternative to the NARX representation is to pass the derivatives of the variables to

the model, which makes the data distribution more even and reduces the conditioning problems

CHAPTER 2. METHODS FOR TRAINING MODELS 11

often caused by the highly correlated inputs found in the training data for NARX systems.

Because of the sensitivity of such systems to noise, it is important to filter the data beforehand.

2.1.2 Classes of learning systems

As can be seen from the wide variety of definitions in Section 1.1, machine learning can be

studied from a number of widely differing viewpoints. This is largely because the use of

observed data to provide the information needed to better fulfil a given goal, whether on-line,

or off-line, is a major aspect of almost all areas of science and engineering. This makes it

important to try and describe the basic features of learning systems in as general a form as

possible, so that the various branches of research can be more easily integrated. The systems

shown in Figures 2.4-2.6 describe the range of learning ability for automatic model creation.

Systems which cannot learn

Engineer's knowledge

(a) Input Fixed System Output

Figure 2.4: System without learning ability - behaviour is pre-programmed

System (a) is the traditional method of solving a problem. The problem is analysed, de­

composed into subsystems, and an explicit solution is developed by human engineers using

their knowledge of the problem, its constraints and its environment (note that much of this

knowledge is however based on earlier empirical work). The resulting program/expert sys­

tem/controller/classifier is then tested with experimental data and put into use. No automatic

learning is used in the development, making the development process sensitive to changes in

the environment, the system or the development goals.

Systems which can be trained

.. ...I Teacher I
I I~

l
(b) Input -'" Learning

System
Output

Figure 2.5: Supervised learning system

CHAPTER 2. METHODS FOR TRAINING MODELS 12

System (b) is a supervised learning system. The machine's task is therefore described by the

'teacher' using examples of what should be done, rather than instructions about how to do it,

and criteria for the evaluation of the learning system's performance, compared to the output

the 'teacher' expected. The learning system then learns the optimal mapping from input to

output with the help of an external 'teacher'. The task of adjusting the learning system's

parameters and structure to achieve this is not a trivial matter. For any learning structure the

optimisation task usually becomes more difficult, the more flexible the representation used.1

Systems which can self-organise

~
(c) Input .. I Goals, Cost I ..

.... Function r Output
Learning System

Figure 2.6: Self-organising system

System (c) is an unsupervised learning or self-organising system. There is no external teacher

and the system adjusts its parameters and structure to optimise some predetermined cost

function without instructive feedback from an external body. This very general description of

an unsupervised system is extremely far-reaching, and should not be confused with the limited

implementation of the current generation of unsupervised learning algorithms described in

the literature, e.g. the Self-Organising Maps (Kohonen, 1990), which are basically clustering

algorithms. The important feature of self-organising systems is that the goals and cost functions

are built into the system, allowing them to autonomously adapt their behaviour to better

achieve their given goals, rather than learning to imitate an existing solution~

The unsupervised learning system can provide a more general form of learning system, de­

pending on the complexity of implementation. The teacher has, in effect, been 'hard-wired'

into the learning algorithm in the form of goals and a quality functional which is dependent

on the inputs and resulting outputs, taking system constraints into account. The methods

described in this thesis are not directed towards the direct implementation of Self-organising

learning systems, but will involve some of the self-organising principles to provide the structure

for the solutions within the supervised learning schemes, so the desired output is described

explicitly in the training set, although the structure of the learning system is identified from the

training data in an unsupervised manner - i.e. the 'teacher' does not have to tell the learning

system exactly what its structure should be and which training data it should use to train its

parameters.

1 A more abstract form of this style of learning can be seen in reinforcement learning lIystems, where the
lIystem is no longer told exactly what to do, but is given graded feedback about the lIystem'lI performance.

CHAPTER 2. METHODS FOR TRAINING MODELS 13

2.1.3 Research paradigms for automatic empirical modelling

Cybernetics, control and adaptive systems

The idea of artificial systems capable of learning is not as new as some people imagine.

Many of the basic ideas present in modern research have been in print since the 1940's,

when Norbert Wiener initiated the field of Cybernetics (Wiener, 1948) - a field which, like

neural networks, brought together control engineers, biologists, mathematicians, sociologists

and computer scientists. The concepts of learning systems, especially with ideas from biolo­

gical systems, were examined throughout the world, the popularity of the field shown in review

papers such as (Sklansky, 1966) and (Fu, 1970). Steinbuch's work was often ahead of its time

(note the rolling mill application of neural nets in (Steinbuch, 1963)!), while Tsypkin's work

(Tsypkin, 1971, Tsypkin, 1973) still clarifies many of the basics involved and describes the

application of learning and adaptation to a variety of technical systems.

Although cybernetics, like neural networks, is still seen as an elegant framework for promot­

ing communication and interaction between various fields of research, it could not stand the

strain brought by the explosion in progress and knowledge in its various sub-fields, which lead

to the specialisation and more insular behaviour now common in the fields originating from

cybernetics.

System identification (Ljung, 1987) is the area of modern control theory with the closest sim­

ilarity to the learning systems philosophy described in this thesis, although the majority of

the identification work has been based on th.e basic assumption of linear representations of the

systems. Important contributions to the area of non-linear system identification can be found

in the NARMAX modelling methods (Billings, 1980, Chen and Billings, 1989), based first on

polynomial representations, then later on neural network implementations with multi-layer per­

ceptrons and RBF (Radial Basis Function) Networks (Chen et al., 1990, Chen and Billings, 1992).

On-line adaptation of the model can be used to cope with slow variations in the parameters of a

given system, or of a change in operating point. This adaptation allowed the use oflinear models

for the control of non-linear systems and environments, and was also a significant, if restricted,

step towards learning systems. Adaptive signal processing is covered in (Haykin, 1991) and

a review of the adaptive control field is given in (Astrom, 1987), where he defines adaptive

control as: a special type of nonlinear feedback control, where the states of the process can be

separated into two categories, which change at different rates. The slowly changing states are

viewed as parameters.

Most of the practical industrial applications of adaptive control systems have, however, been

limited to self-tuning control, where linear controllers are adjusted automatically for a given

system. In many cases, an accurate time-invariant nonlinear model of a system will remove

the need for on-line adaptation.

CHAPTER 2. METHODS FOR TRAINING MODELS 14

Statistics

Many of the tasks routinely ascribed to learning systems (Le. classification or modelling ability

derived from data, as opposed to a priori knowledge about the problem) can be viewed as

regression problems, and many of the tools for their solution have thus been a standard part

of the statistician's toolkit for decades. (Barron and Barron, 1988) discusses the similarities

between statistical methods and more recent developments. Fisher's simple linear discriminant

algorithm is functionally similar to the Percept ron (Fisher, 1936), and has led to the more

powerful quadratic and polynomial discriminant algorithms. Nearest-Neighbour algorithms

are also powerful techniques, despite their simplicity (Dasarathy, 1990, Duda and Hart, 1973).

Spline and Kernel based modelling methods have much in common with Basis Function Nets (to

be described in Section 2.3.1) (Wahba, 1990, Wahba, 1992, Kavli, 1992) and local approxima­

tion ideas (to be described in Section 2.3.2) have also been used in statistics. The statisticians

also developed tree based regression systems independently from the AI world (e.g. CART

(Breiman et al., 1984) and MARS (Friedman, 1991)). A further important contribution from

statistics is the wealth of evaluation techniques developed to validate the models and classifiers

derived from observed data (e.g. cross-validation techniques, robust cost functions, sampling

techniques, additive models etc.). Projection pursuit methods are also closely related to Multi­

Layer Perceptron neural networks (Zhao, 1992).

Machine learning - the symbolic view

Non-neural machine learning has also a relatively long history, dating back to Samuel's check­

ers work (Samuel, 1959, Samuel, 1967) and although the neural network research faded away

at the end of the 1960's, the Artificial Intelligence community kept working on learning sys­

tems. Most of this work was in the symbolic domain, as opposed to the numerical environment

of neural networks, statistics and system identification. Despite this, some of the work on

Inductive Learning is relevant to modelling nonlinear dynamic systems and, in general, the

examination of different viewpoints often provide new insight into the learning mechanisms,

improving understanding for both groups of researchers. Techniques such as decision trees

have been used as models of dynamic systems (Isaksson et al., 1991). Omohundro describes a

variety of standard algorithms which can be applied in many situations with more success than

neural networks (Omohundro, 1987). Case-Based Learning also has applications in modelling

(Kolodner, 1993), and we describe the overlap of Case-Based Learning with nearest neigh­

bour methods and RBF neural networks in (Murray-Smith and Thakar, 1993), dealing with

aspects of customer modelling from sales information, where the basis functions performed

interpolation between cases. A general, easy to read overview of machine learning is given

in (Weiss and Kulikowski, 1991), and (Shavlik and Ditterich, 1990) is a collection of the most

significant papers in the field's history. (Michalski et al., 1983, Michalski et al., 1986) and

(Kodratoff and Michalski, 1990) also provide collections of significant work.

CHAPTER 2. METHODS FOR TRAINING MODELS 15

2.1.4 Empirical modelling with neural networks

The basic philosophy of the neural network approach to machine learning is to use the style

of information processing evident in the physiology of living beings as the inspiration for

a computational paradigm. A large number of simple processing elements, based on highly

simplified mathematical models of neurons, are densely interconnected by weighted connections

which roughly represent the axons and synapses of the biological model. These structures are

then optimised using a variety of algorithms, some aspects of which - although by no means

the majority - are based on biologically plausible techniques.

The resulting networks can represent complex mappings from their input nodes to output

nodes, making them interesting for engineering applications. The neural network architectures

used in this thesis are examples of flexible black-box models which are created on the basis

of input-output data pairs. There are several advantages of using neural networks to model

systems, the most compelling of which is their ability to model continuous, non-linear, multi­

variable systems. As mentioned in the previous section, this ability is not unique to neural

networks, but the progress made in recent years, due to the increase in available computing

power, has shown that the new algorithms often perform well compared to previous methods

of nonlinear system identification. More important, perhaps, is the multidisciplinary nature of

the research, which has brought new ideas from artificial intelligence, mathematics and biology

together with application-oriented engineering and computing practice.

A bit of history

The roots of the neural network approach to learning can be traced back to 1943, when

McCulloch and Pitts (McCulloch and Pitts, 1943) made some proposals about how simple

neural-like networks could compute. Hebb then suggested a biologically plausible learning

rule for such networks (Hebb, 1949). The beginning of the field as it is known today can be

found in Frank Rosenblatt's work on Perceptrons (Rosenblatt, 1962). He pioneered the use of

formal mathematical analysis and the use of digital computers for simulation. He also made

some over-enthusiastic claims about the power of perceptrons compared to normal computers

which would spark off a debate which is still running to this day, but which then led to the

field being laid dormant for twenty years. This was a combination of the limitations of the

contemporary hardware, and the irritation caused to other scientists by Rosenblatt's claims.

It was this irritation which lead Minsky and Papert to publish the famous Perceptrons book

(Minsky and Papert, 1969) where they rigorously analysed the existing techniques and pointed

out the limitations of the structures and their inability to scale up to larger problems.

(Widrow and Hoff, 1960), coming from a more engineering background also proposed a similar

network called an Adaline, trained using the Delta-rule, which eventually found widespread

use in telecommunications systems as an adaptive filter. Kurt Steinbuch was another engineer

who did significant work in learning control systems, including his Lernmatrix learning system

CHAPTER 2. METHODS FOR TRAINING MODELS 16

(Steinbuch, 1961, Steinbuch, 1963). Grossberg's work in the 1970's introduced new ideas from

biology and psychology to create the ART series of non-linear dynamic architectures. Albus

made important contributions with the CMAC architecture in the field of learning in robotics,

using many biologically motivated methods (Albus, 1972, Albus, 1975b, Albus, 1975a). Hol­

land examined adaptation in (Holland, 1975), introducing Genetic algorithms and classifier

systems for learning.

The main reason for the current renaissance in machine learning in general was the boom

in 'artificial neural networks' in the eighties, precipitated by Hopfield's work (Hopfield, 1982,

Hopfield, 1984) and the PDP Group's books (Rumelhart and McClelland, 1986). This was

combined with a general frustration with the lack of progress in 'conventional' AI for tasks such

as speech recognition, vision and pattern recognition, and the fact that the powerful computing

hardware needed by these numerically intensive algorithms was now widely available.

The neural network 'label', as used in the current literature, seems to be applicable to almost

any modelling or classification scheme, as networks can be used as convenient graphic represent­

ations for many mathematically described systems. (Barron and Barron, 1988) provides a clear

description of the similarities between neural nets and statistical methods. General introduct­

ory books include (Haykin, 1994, Hertz et al., 1991, Wassermann, 1993). Historically import­

ant papers are reprinted in the Neurocomputing collections (Anderson and Rosenfeld, 1988,

Anderson and Rosenfeld, 1990). Reviews of the neural network field for modelling and control

include (Miller et al., 1990, Hunt et al., 1992, Warwick et al., 1992).

The Multi-Layer Percept ron

As discussed earlier, the first neural architecture to be implemented and studied in detail was

Rosenblatt's Percept ron (Rosenblatt, 1958). This is a very simple system, which was suggested

as a simple model of biological neurons present in the human visual system. The output is a

function (usually non-linear, such as a hard limiter or sigmoidal function) of the sum of the

weighted inputs.

y = f(xW + bias), (2.5)

where f(·) is the activation function, and W is the weight matrix connecting inputs x to

outputs y.

The extension of the percept ron to allow multiple layers - the multi-layer perceptron in equa­

tion (2.6) (see Figure 2.7 for a graphical representation), became widespread in the eighties

after suitable learning algorithms, such as back-propagation, became widely known.

(2.6)

where WI is the weight matrix connecting inputs x to the hidden layer neurons, and W2

connects the hidden layer neurons to the outputs y. Back-propagation was developed inde­

pendently by various workers (Werbos, 1974, Parker, 1985) with best known version being

CHAPTER 2. METHODS FOR TRAINING MODELS 17

(Rumelhart et al., 1986), bringing the neural networks field back to life. The Multi-Layer Per­

ceptron soon became, for better or worse, the most commonly used (and abused) network

architecture in the history of neurocomputing. The widespread use came about because of

Yl

Y2

YII

Figure 2.7: Multi-layer Perceptron

the real fl exibility of the structure in coping with complex high-dimensional problems, and

because it managed to produce often excellent results compared to competing methods. The

disadvantages of the structure are the slow training times associated with the back-propagation

learning algorithm and poor transparency of the algorithm and of the trained networks. This

led to an alchemy-like approach to training taken by the majority of researchers, producing a

huge variety of heuristically motivated 'new improved' learning rules.

2.1.5 What is wrong with modelling with neural nets?

Empirical modelling as a methodology, even in its 'hard ' form of System Identification, has its

disadvantages. Often, the models produced in empirical modelling, even if they have achieved a

useful representation of the process being modelled , give little physical insight into the process,

since they are rarely based on detailed knowledge about the process structure. This is closely

related to another disadvantage, which is that the product of a purely data based modelling

process usually has limited validity in situations different to that in which the data was collected

(e.g. at different working points, given different inputs, or a change in environment) . The

identification methods in existence are also still very much highly interactive art forms. They

depend to a great extent on utilising as much knowledge about the process in question as

possible, to simplify the modelling problem, and on an intuitive feel for the techniques used, as

well as an understanding of the complex statistical tools available for the analysis of the data

and estimation of the parameters .

While things have improved slightly in recent years, a characteristic of much work in the field

of neural networks is the lack of rigour, compared to more established 'competing' areas such

CHAPTER 2. METHODS FOR TRAINING MODELS 18

as statistics and system identification (see (Sjoberg et aI., 1994) for a good discussion of the

overlap between the fields, with the intention of 'removing the mystique' surrounding neural

nets). This had certain advantages initially, as the fact that the area was linked to human

intelligence often made it more appealing to young researchers, as well as to the various bodies

which sponsor research and development, than the more highly mathematical established fields.

Although the field has been rightly criticised for the wild claims made initially, it did bring

in fresh ideas from other fields such as AI, psychology and physiology. These insights have

enriched the scope and methods of the research into learning and adaptive systems, as well as

a very application oriented style of research which got the method applied to a wide variety of

problems.

The problem facing researchers at the start of the 1990's was that much of the experience

gained in the existing fields had been ignored, and the field was too strongly linked to one

architecture - the multi-layer perceptron. Initially much emphasis was laid on the fact that

the multi-layer perceptron architecture is theoretically powerful enough to represent arbitrary

nonlinear mappings, but such results did not help produce efficient training algorithms. A

large proportion of the research was invested in a variety of problem specific 'fiddle factors'

designed to speed up the optimisation process-which often took days of computing time-and to

improve generalisation. The multi-layer perceptron can often be highly successful at modelling

a given system, but despite this it is not ideal for many modelling tasks. The long training

times are not suited to the iterative and interactive nature of the modelling process, especially

as it was unclear when learning should be stopped, or how many units or layers a net should

have for a particular problem. The poor interpretability limits the user's ability to validate a

trained network, and limits the networks' applicability to safety critical situations. There is no

straightforward way of introducing prior knowledge directly into the network structure, even

though for many tasks the ability to simplify the problem using such knowledge is critical to

reaching the desired level of accuracy.

Combining the different paradigms

While none of them is ideally suited to the task, the research paradigms for learning models

described in this section can all contribute significantly to the goal of having a flexible, inter­

active learning system which robustly forms a model of a complex process, given a mixture of

observed data and a priori knowledge. Systems theory and System Identification provide the

user with a mathematically well founded base of theory and experience for modelling dynamic

systems from observed data. Much of the work has been restricted to linear systems, but the

basics remain relevant, and many of the algorithms can be directly applied to the hybrid local

model architectures described in Section 2.3.2. Similarly with statistics, where the theory and

experience developed by statisticians in areas such as experiment design, model optimisation,

model validation and function approximation is an invaluable aid to a better understanding

and evaluation of newer systems such as neural networks.

CHAPTER 2. METHODS FOR TRAINING MODELS 19

The models used in this thesis can benefit not only from numerically oriented techniques, but

also from the integration of fuzzy logic aspects and symbolic machine learning systems which

then allows the incorporation of linguistic or rule-based knowledge into the learning system.

Section 2.3.2 presents an architecture suitable for the integration of the various paradigms.

2.2 The Modelling Process

The work in this thesis is aimed at improving techniques for the design of models of non-linear

dynamic systems (the f(1/J(t)) in equation (2.1)), with the aid of computationally intensive

data-driven techniques. The goal is to produce a mapping from the input space to the output

space which best fits the observed data and meets the specified constraints. This involves

integrating knowledge about the system with data observed from identification experiments.

This allows the developer to produce better model structures and identify their parameters,

as well as being able to validate the accuracy of the final model. Modelling from data and

knowledge is often viewed as an art form, mixing 'expert' insight with the information in

observed data, while using ad hoc simplifications to make the problem solvable. The typical

Engineering Insight is
applied at each stage , ' ' •

EXPERIMENT

A priori knowledge, ~ Q
physical laws ,~

. .' <~ '>i5~rn :
••.. •. ' \\ • : • • ..tim'" mod<I ..

\J . structure/order "

Model Works.
Designer can analyse it, and

a priori knowledge is improved

Q
Estimate Model

Parameters

Q
Model Validation

"'Q'~od<IOK
Apply Model

Model Inadequate.
Improve model structure,

perform a new experiment, or
change cost criteria

MACHINE LEARNING

Figure 2.8: The Engineering Cycle for Training a Model

CHAPTER 2. METHODS FOR TRAINING MODELS 20

modelling cycle is shown in Figure 2.8, showing the interaction of a priori engineering insight,

experiment design, data acquisition and pre-processing, followed by machine modelling and

validation. Each of these phases will now be looked at in more detail.

2.2.1 Using a priori information

Modelling from observed data supported by learning systems is supposed to reduce the need to

understand the detailed physical relationships within the system under investigation, but as can

be seen in Figure 2.8, a major feature of the cycle is the important role of a priori knowledge

at each stage of the modelling process. A priori information is initial knowledge about the

system, or problem in question. This includes aspects such as the goals of the problem, the

characteristics of the process, its parameters, the effect of the environment (expected noise,

disturbances), and the robustness requirements for different situations. Learning or adaptive

systems are usually used because of the insufficiency of the a priori information (few complex

processes in reality can be described completely by a priori knowledge, due to the effects of

noise, disturbances and unmeasured states). Such systems try to compensate for this by the

continuous use of current information about the system:

'A priori information is the basis for the formulation of an optimisation problem,

but the current information provides the solution for the problem' (Tsypkin, 1971).

This describes the basis of Adaptive Control. Although the goal of learning systems is to reduce

the need for a priori knowledge, its use almost invariably makes the learning problem more

tractable. A priori knowledge can be used both implicitly and explici,tiy. It is used implicitly

when framing the problem, in the act of creating a representative training set, deciding which

learning algorithms and structures are best suited to the problem and which inputs and pre­

processing algorithms are likely to make the learning task easiest.

The explicit use of a priori knowledge involves the direct integration of models or rule-bases

into the learning system to reduce the learning effort. Knowledge about variable interaction

can also be used to decouple the inputs, and reduce the dimensionality problems. Model

structure, dynamic order and sampling rate are dependent on a priori knowledge. Knowledge

about physical constraints can be used to limit the generalisation in areas with insufficient

data. Existing models or controllers (e.g. human operators) can also be copied, where valid.

Models of the environmental disturbances expected can also be included, as can knowledge

about the relative importance of various areas of the input space.

Another important aspect of modelling from observed data is that the machine learning in­

volved also usually results in the human engineer gaining a better understanding of the system,

and the a priori knowledge about the system in question therefore being improved. The human

designer is still a vital part of the process, and the goal should be to enhance the power of the

interactive software by automating the learning process wherever possible, but by giving the

CHAPTER 2. METHODS FOR TRAINING MODELS 21

engineer the freedom to intervene at each stage. As knowledge about the system being modelled

increases, more possibilities of simplifying the machine learning should become clearer, allow­

ing it to be used more successfully, closing the loop in the modelling cycle seen in Figure 2.8,

where the a priori knowledge is improved by the availability of the validated model.

The final product, a working model, can therefore be seen as a contribution to the more general

pool of engineering and scientific insight. The laws, rules or models we take as a priori today

were also once poorly understood observed behaviour, which was then measured, analysed

and turned into some simpler law or model. Kepler's laws of planetary motion were found

only after painstaking acquisition of observed data, and the application of a variety of model

structures to the data, estimation of the model parameters and validation of the models on new

data!

2.2.2 Creating the training set - design & pre-processing

The training set 'D is the data set used for optimising the parameters and structure of the

learning system. It is generally necessary to devote a great deal of attention to the process of

extracting preprocessing and representing the data for training.

Experiment design

It is vitally important that the training set represents the task in hand correctly and adequately

over the whole input space, but it is important to consider the relative importance of the various

areas of the input space. In many situations a system spends most of its time in a particular

operating region. It may make sense to weight this more heavily in the learning process. In

others, a particular aspect of the model must be very accurate, for example the reaction to

a step change in the inputs or disturbances is important for many processes. In others it is

important to have very accurate models in relatively stable areas, as this is where the process

spends most of its time. In many applications certain areas of the system are associated with

danger - how should these be treated in the model? Constructing a representative training set

is often far more difficult than learning the task from the training set. The general process

of training set creation is shown in Figure 2.92 • A significant aspect of the diagram is the

existence of important disturbances which can not be measured. The ability of the training

procedure to cope robustly with such disturbances will often determine to a great extent the

procedure's usefulness in real world applications. It is not only important to have training data

covering the input space, but to have larger amounts of data where the decision surface is most

~In many cases the model is to be developed in order to produce a controller for the process in question. A
valid point is to ask how this controller should be developed, without an adequate model to design it with? In
critically unstable cases this will be a major problem, but in many cases the task is to improve on an existing
controller which can be used for the purposes of data acquisition. There may, however, have to be a series
of acquisition and modelling runs, as some aspects of the processes may not be apparent with less powerful
controllers. In many cases, however, the learning system will have to make do with whatever data is available,
because oC the costs oC extensive experimentation both in terms of money, as well as organisational effort.

CHAPTER 2. METHODS FOR TRAINING MODELS

Experiment
93

Disturbances (Unmeasurable)
Inputs

(Can be manipula~) ,.-_--1 __ --,
System

:I
Disturbances-...,r-,.L-"':---.J

(Measurable but not
manipulable) r-'-........ -------..&...--,

Pre-processing

Training Data
9l

Outputs

Figure 2.9: Acquiring and preparing the training data

22

complex, and to have some information about the relative significance of individual training

data. This could be in the form of probability distribution functions, showing the relative

frequency of particular situations, or the definition of areas which are particularly important.

The science of creating an optimal sampling of the input space is called Experiment Design

(Fedorov, 1972, Goodwin and Payne, 1977, Ljung, 1987), and has been picked up by workers

in machine learning within the active learning framework.

Active learning

The neural network community traditionally threw every available training example at the

network during the learning phase, irrespective of redundancy, noise levels, or local complexity

in the process being modelled. The disadvantages of this procedure are being increasingly

recognised, leading to the introduction of active learning methods which enhance the training

set used during the learning process, as shown in Figure 2.10.

System to
be modelled Input Stimuli

a

x

System response

Neural Model

Figure 2.10: Active learning - exploring the input space. The learning system can interact
with its environment to obtain new training data.

The research in active learning has gained momentum in recent years, see (Cohn et al., 1990,

Cohn, 1994) and (Cohn et al., 1994). (Plutowski, 1994) is a recent thesis in the area. The

CHAPTER 2. METHODS FOR TRAINING MODELS 23

use of local basis functions to guide active learning is described in (Murray-Smith, 1992). As

described in (Thrun, 1992), active learning can be viewed as either directed guided search or

undirected, random search. The undirected active learning methods described in the literature

have the disadvantage that the effort needed to learn a given process increases exponentially

with the dimension of the input space. Active learning can include active sampling and active

selection, techniques:

• Active sampling is associated with the experiment design phase - in which regions of

the input space should training data be acquired to best minimise the uncertainty in the

model? The uncertainty estimate in the model is based on the information in the existing

training set.3

• Active selection, which involves the most efficient use of a large existing training set uses

closely related techniques to active sampling, without the connection to the environment.

The active label is due to the fact that the selection or sampling processes are dependent on the

learning process and model structure, so that the learning process can be seen more broadly

as actively exploring its environment or training data, then exploiting that data to optimise its

performance.The use of complexity-based active learning algorithm in local model networks

is described in Section 4.3, and an active sampling routine is used to improve the learning

process in the rolling mill application in Chapter 6.

Pre-processing

A vital factor in all empirically driven model building approaches is that the training set

should be pre-processed before learning. Any way in which the data can be transformed to

make learning easier will lead to a significant improvement in performance. Pre-processing

includes all action applied to the measured data, including which sensor information to use,

how to sample it, how the amount of data can best be reduced, what transformations should

be applied, and how can. it be best encoded to make the learning task easier. The data may

have to be pre-filtered to remove noise effects, anti-aliasing techniques will be necessary when

continuous signals are sampled, outliers can be removed, or extra information can be used to

reduce the distorting effect of measurable disturbances. In many cases non-linear characterist­

ics in sensors or actuators are well known in advance, and the nonlinearity can be counteracted

before learning commences. Somewhere between pre-processing and representation lies the as­

pect of minimising variable interaction. The data can be transformed to a lower dimension

3The concept of giving a learning IIYlltem a 'sense of curiosity', based on internal estimatell of its own
accuracy, and giving it the ability to search the most promising areas of the input space for new information
is of major importance for the future of autonomously learning systems, and the techniquell used are closely
related to those needed Cor the recursive identification of time-varying processes, where it is important to be
able to 'Corget' the training examples in the right areas, while learning from those describing the new behaviour
of the procellS.

CHAPTER 2. METHODS FOR TRAINING MODELS 24

using principal components analysis to reduce the problems related to the 'curse of dimension­

ality'. It may be known that particular variables interact in a given way, whether additively,

multiplicatively or nonlinearly (Hastie and Tibshirani, 1990). This information can be used

to limit the freedom of the learning system, forcing it to learn more efficiently and generalise

more robustly (see Section 2.5.4 for more details on how this information can be used). In

general, the pre-processing applied to the raw data is often a critical stage in the development

of models from observed data, and its importance should not be underestimated for learning

systems.

2.2.3 Learning algorithms and knowledge representation

Once the training data has been acquired and pre-processed, a knowledge representation ability

is required for the model to be able to learn the data and a learning algorithm which can be

used to go from the information presented to the learning system, in the form of inputs,

outputs and feedback from the environment, to the desired representation. In simple cases

this can be viewed as an optimisation process, where the optimal set of parameters for a given

structure is found, or it can also involve the construction of the representation itself. Learning

systems involve a wide variety of knowledge representation techniques, from simple numerical

parameters or symbolic features to complex specialised structures. Each style of knowledge

representation is biased towards a particular class of problems, a fact which can be seen in

the classical fields of statistics and system identification, as well as the newer areas of neural

networks and machine learning, each of which tend to use structures suited to the problems

faced in that field

When considering learning systems in general, for any given data set, a variety of possible

model structures usually compete for the best representation of the data. It is important that

the most suitable style of representation is chosen for a given problem, as the right choice

of model structure will be a major factor in producing a model which is able to 'generalise'

correctly. Generalisation is the ability of a learning system to give a 'correct' output to inputs

on which it has never been trained (see Figure 2.11). These could be new, noisy or incomplete

inputs. Memorisation, or learning the training set to perfection is not the goal of learning - a

random access memory (RAM) can do this adequately!

The resulting quality of generalisation for a given problem will depend on the problem defin­

ition, encoding of the features, the quality of the training set, the power and suitability of

the representational structure M and the learning algorithm used. To analyse the trade-off

between learning the training set V, and generalising to unseen inputs, it can be helpful to

decompose the modelling error J(M, V) into two aspects, the bias JB(M, V} and the variance

Jv(M,1)} (Geman et al., 1992).

J(M, V) = Jv(M, 1») + JB(M, V), (2.7)

CHAPTER 2. METHODS FOR TRAINING MODELS

/-Model
-, -

Poor estimation 'Good' generalisation 'Sad' Generalisation (Overfitting)

Figure 2.11: The generalisationjoverfitting dilemma.

where the bias is

JB(M, V) = (Ev[i(x;M, V)] - E [y(x) Ix]) 2,

where Ev is the expectation over the training set 'D, and the variance

Jv(M, 'D) = Ev [(i(X;M, 'D) - Ev [i(x,M, 'D)]f] .

25

(2.8)

(2.9)

The bias of a model is the average difference from the real system of models trained on a

number of training sets, thus indicating what the system could not learn, even when given the

information. The variance of a model is the average variation of the model estimates from all

trained models to the 'average' model over all data sets, and can be used as an indicator of

how robust the learning process Was.

The flexibility required of the model to be able to model an arbitrary data set (reducing the

bias part of the error) conflicts with the desire to reduce the variance of the resulting estimate.

Use of a large flexible representation will reduce the bias, but without a correspondingly large

data set is likely to lead to the over fitting effect, where the training set is learned adequately,

but generalisation is poor - equivalent to high variance. The system has either learned the

noise in the data, or has learned the data correctly, but interpolates between data points

poorly. It is therefore important to use a suitably sized model structure for the given training

data - the system must be over-determined (i.e. more training data than parameters, and -

importantly for nonlinear systems - it must be locally over-determined in the complex areas of

the input space). One of the most important features of a learning algorithm is that it reliably

finds a solution which generalises robustly to new data. The regularisation methods described

in Section 2.5.1 are methods which artificially increase the bias to improve the variance and

therefore create more robust networks. In practice, algorithms which produce reliable models

will be far better suited to engineering problems than algorithms which sometimes produce

excellent results on one problem but then fail dismally on the next application.

2.2.4 Model validation

Once the model structure and parameters have been identified it is necessary to validate the

accuracy of the final product. This is obviously a very important stage in a process which by its

CHAPTER 2. METHODS FOR TRAINING MODELS 26

very nature has relatively little in the way of 'common sense' intuition about the behaviour of

the target system. It is therefore important to combine data-driven validation - is it adequately

accurate and robust for its purpose? - with more SUbjective validation, i.e. does the model

behave in a way which seems physically plausible? Can the final machine learned model be

interpreted to give the human engineer a better understanding of the system in question? Model

validation is an issue which has often been neglected in the literature on learning systems, but

one which is very important in industrial situations. There will usually be a trade-off between

flexibility and interpretability, the outcome of which will depend on their relative importance

for a given application.

Use of n-fold cross-validation

The most commonly applied method of predicting the accuracy of a neural network is that of

measuring the quality of the system's response on the training and test sets, assuming that

the data set was complete enough to have encountered all of the important areas of the input

space. The general technique is called cross-validation. Generalisation ability is closely tied up

with the concept of expected error prediction, so this is of fundamental importance to learning

systems (Stone, 1974).

Resampling methods such as cross-validation aim to give unbiased estimates of the error rate

of a learning system. They make minimal assumptions about the statistics of the training

data. The simplest form of this is to use two sets of data (training and test sets), where

the first is used to train the system and the test set is used to validate the results. A more

general form of this is n-fold cross-validation, where the available data are partitioned into n

subsamples. Each subsample is tested by training the net with the other (n - I) subs am pies

and the error rate is then the average of these n sub-samples. This reduces the bias present

in the error estimate, but is often a time consuming process and the error rates have a high

variance. (Weiss and Kulikowski, 1991) Leave-one-out validation is a special case of cross­

validation, where one example of the training set is left out to provide a test example for

the model trained on all the other examples. This is then repeated until each member of the

training set has been used as a test example. It is therefore very computationally expensive,

and although it provides the most accurate prediction of error, is only suitable for problems

with small training sets, or few parameters.

Cross-validation was initially not used with neural networks because of the computational

expense of running the system several times, which for MLPs trained with back-propagation,

can take several days, was fairly unrealistic. Less computationally expensive methods have been

developed (e.g. Generalised Cross Validation GCV (Wahba, 1990), Aikaike's Final Prediction

Error (FPE) have been used to optimise the size of multi-layer networks).

Cross-validation is therefore useful for automatically finding the optimal model structures or

parameter estimates for a given data set, as well as supporting the human designer in validation

CHAPTER 2. METHODS FOR TRAINING MODELS 27

and interpretation of models. The model can start small and increase its size until the cross­

validation results start to show too much variance in the test errors.

The reliability of the accuracy estimates achieved by methods such as cross-validation depends

strongly on the adequacy of the training data. If the training data is present in sufficient

quantity throughout the input space (complex parts of the model will need a related number

of data to train and test the parameters in that area) this provides a good estimate of the

predictive power of the model. The amount of training data needed is also related to the noise

on the training data. As the noise level increases, the amount of data points needed to train

and validate a particular model increases.

2.2.5 Organisational aspects in empirical modelling projects

The procedure for the successful development of a model is often a major undertaking, involving

a variety of experts from various fields. The data must be acquired somehow, usually from

an experiment carried out by an experienced operator. The experiment design should ideally

be an interactive process, involving several steps, including information from earlier modelling

attempts. Initial data processing will involve signal processing engineers, the goals of the

modelling are set by a mixture of business and engineering constraints, and the validation of

how well the goals were achieved involves every link of the chain. For most realistic problems

there will also have to be many iterations towards the goal of an accurate, useful, reliable

model, so the representation used must be promote co-operation between specialists with very

different backgrounds, and be able to integrate different types of a priori knowledge either

directly as model structure, or in the optimisation process as cost-functions and constraints.

2.3 Local Methods in Modelling

The previous section described the aspects of the modelling process which should be supported

by a learning architecture. This thesis discusses variations on one main class of network, the

Basis Function Network (BF Net) because of its suitability for modelling continuous nonlinear

systems. The BF nets used in this thesis are basically local structures, which inherently involve

modularisation in representation and allow the easy integration of ideas and structures from

other modelling paradigms.

2.3.1 Basis Function Networks for modelling

The basic Basis Function Network described in equation (2.10) is shown in Figure 2.12. The

output4 y is a weighted (by parameters OJ) linear combination of the activations of the many

4The models discussed in this report are all Multi-Input/Single Output models. The extension to multi­
output systems is mathematically straightforward. The optimisation of the units' weights is unchanged, other

CHAPTER 2. METHODS FOR TRAINING MODELS 28

Figure 2.12: Radial Basis Function network

(nM) locally active non-linear basis functions Pi (-) which react to the input vector 1/J,

noM

y = f(1/J) = L OiPi(1/J). (2.10)
i=1

The nonlinear basis functions basically map inputs into a higher dimensional space, where it

is easier to learn the mapping to the outputs than from the original input space, so that a

linear connection to the output suffices. The optimisation of the weights then becomes a linear

process, meaning that the optimal solution can be found using the standard tools of linear

optimisation theory, including a variety of powerful methods for coping with ill-posed problems

(see Section 2.5 .1), and methods for analysing the covariance of the parameter estimates (see

Section 3.2.3) , from which aspects such as experiment design criteria can be obtained.

Basis functions

Each unit 's centre is a point in the input space, and the receptive field of the unit (the support,

or volume of the input space to which it reacts) is defined by its distance metric d(1/J;C,CT) .

The basis or activation function (similar to the membership funct ion of a fuzzy set) of the unit

is usually designed so that the activation monotonically decreases towards zero as the input

point moves away from the unit's centre (Cj), e.g. B-Splines or Gaussian bells are common

choices.
than that a matrix of output values is used instead of a vector. The optimisation of the model structure is
obviously more difficult for multi-output problems, because the nonlinearity and complexity for the various
output spaces will not always be in the same areas of the input space. The use of a single model structure
with multiple outputs would mean that for the total model there are fewer parameters to optimise, which would
suggest a lower variance than for a decomposed model. It may, however make more sense to decompose the
problem into several single output problems, because each sub-problem will then have the required complexity
and basis function locations for the complexity of the output in question, and will not produce an increase in
variance in the other output variables, which happens in the multi-output case.

CHAPTER 2. METHODS FOR TRAINING MODELS . 29

c d(l/J; c, a)

Figure 2.13: A typical locally active, smooth basis function

In Radial Basis Function (RBF) nets, the basis functions are composed of two elements. The

distance metric d(1jJ; c;, O'i) for basis function i, defined in equation (2.11), can scale and shape

the spread of the basis function relative to its centre c;, depending on its width 0';, and the

basis function itself p(.), which takes the distance metric as its input

(1jJ- Ci)2 ()
d(1jJ; c;, IT;) = 2 ' 2.11

O'i

and can be generalised by using a matrix tr; instead of a scalar, giving an ellipsoidal basis

function (equation (2.12)). Training algorithms for such distance functions are given in Sec­

tion 4.2.3.
(2.12)

There is a wide variety of possible basis functions, e.g. the Gaussian bells used in this thesis,

as in equation (2.13), B-Splines, thin plate splines, linear functions etc.

(2.13)

(Carlin, 1992) compares the effectiveness of a variety of basis functions for modelling and con­

trol purposes. The basis functions llsed in this report will be assumed to have local properties5 ,

i.e. they are active in a limited area of the input space because of the improvement in trans­

parency achieved.

If the units have localised receptive fields, and a limited degree of overlap with their neighbours,

the unit's weights can be viewed as locally accurate piecewise constant models (in more complex

networks, more general local models can be used, see Section 2.3.2), whose validity for a given

input is indicated by their unit's own activation functions for a given input.

For modelling and control of continuously differentiable processes, the basis function should

be smooth, and if the basis functions are to be local, they must decrease monotonically from

a maximum at 1jJ = c (distance metric = 0) towards zero, according to the distance metric

d(~; c, 0'). This forces the influence of the local model associated with the basis function to

decrease as the inputs move away from its centre (where the basis function's local model is the

most accurate representation of the system).6

5Note that strictly speaking the Gaussian is not a local basis function, as it does not have compact support.
sGiven relevant (I priori knowledge, more complex basis functions can be used which do not adhere to the

CHAPTER 2. METHODS FOR TRAINING MODELS 30

Partition of unity

For modelling tasks the basis functions should form a partition of unity for the input space, i.e.

at any point in the input space, the sum of all basis function activations should be 1. This is a

necessary requirement for the network to be able to globally approximate systems as complex

as the basis functions' local models, e.g. in the straightforward single weight case, so that

constant areas of the input space can be modelled exactly. The partition of unity ensures that

every point in the input space has an equal weighting, so that any variation in output over the

input space is due only to the parameters 8 weighting the basis functions' activation. In many

applications the network's basis functions are normalised to achieve the partition of unity, i.e.

(,p) _ p(d(,p,c/o,C1/o))
Ph - L:?~p(d(,p,ci,C1i)) (2.14)

where p(.) is the general unnormalised basis function, so that the normalised basis functions

Ph (-) sum to unity,
nM

L:p;(d(,p,c;,C1;)) = 1. (2.15)
;=1

(Werntges, 1993) discusses the advantages of normalisation in RBF nets, promoting somewhat

simplistically the advantages of a partition of unity produced by normalisation. Normalisation

can be important for basis function nets, often making the model less sensitive to poor choice

of basis functions, but it also has a number of side-effects which are discussed in detail in

Section 3.3. These side-effects make the argument for or against the use of normalisation far

more complicated than is often assumed.

Literature of Basis Function nets for modelling

Basis Function Networks and their equivalents have been used for function approximation and

modelling in various forms for many years. The original Radial Basis Function Nets came from

Interpolation theory and are described in (Powell, 1987), where a basis function is associated

with each training point, as in (Specht, 1991). Potential Functions (Aizermann et a1., 1964),

Kernels (Wahba, 1992) and Spline Models (Wahba, 1990) are all similar structures. The lit.

erature of local learning methods in statistics is reviewed in (Atkeson, 1990). These methods

store the training data and for a given input point form a locally weighted representation of the

system from the related training points. Smoothing methods such as Gaussian Kernel methods,

as described in (Hastie and Tibshirani, 1990) like other local averaging methods, suffer from

the curse of dimensionality (Friedman, 1991), and are computationally expensive.

Aldus's CMAC ideas have a great deal of overlap with BF Nets with uniformly distributed

local basis functions (Albus, 1975b, Lane et a1., 1991, Brown and Harris, 1994). The close

relation of basis function nets to classes of fuzzy logic systems has also been discussed in

features above, but which are specially relevant to a particular application, e.g. sinusoidal basis functions are
a good choice if it is known that oscillatory components play an important role in the system being modelled.

CHAPTER 2. METHODS FOR TRAINING MODELS 31

(Jang and Sun, 1993), (Haas and Murray-Smith, 1993) and (Brown and Harris, 1994), where

the similarity between membership functions and basis functions is pointed out. Mixture

Models used in statistics are created by mixing a number of probability distributions, and have

many similarities to RBF nets (Bishop, 1994) and (Xu et al., 1994).

Recently BF neural networks have received a growing amount of attention from the neural net­

work community, starting with the early papers (Moody and Darken, 1989, Jones et al., 1989,

Broomhead and Lowe, 1988). (Hlava.ckova. and Neruda, 1993) gives a brief review of the use

of RBF nets. (Poggio and Girosi, 1990) (Girosi et al., 1993) and (Mason and Parks, 1992) de­

scribe the networks within the mathematical framework of Regularisation Theory for function

approximation. (Hutchinson, 1994) describes the use of RBF nets for financial time series

modelling. (Park and Sandberg, 1991) and (Park and Sandberg, 1993) proved the universal

approximation abilities of RBF nets.

Use of RBF nets for modelling and control purposes is described in (Barnes et al., 1991)

(Sanner and Slotine, 1992) (Sbarbaro-Hofer, 1992) and (Pantaleon-Prieto et al., 1993). The

methods were applied in (R8scheisen et al., 1992) to control a rolling mill. Early work related

to this thesis can be found in (Murray-Smith et al., 1992) and (Neumerkel et aI., 1993). RBF

networks which use the local nature of the basis functions to give a local prediction of their

own accuracy throughout the input space are examined in (Leonard et al., 1992) (this idea is

extended to the local model nets in Section 3.2).

The Gaussian Bar nets (Hartman and Keeler, 1991, Kurcova, 1992) are also closely related,

although less powerful. These are nets with 'semilocal' units formed by taking one-dimensional

local basis functions and forming their tensor product to approximate a multi-variable function,

as with tensor product spline models such as the ASMOD system (Kavli, 1992). The advantage

of these units is that they can better cope with some classes of high dimensional problems, as

they do not need to cover 'uninteresting' dimensions. A disadvantage of this style of network

is that the representation does not cope well with processes where the nonlinearity depends on

several variables, such as the marsl benchmark used in Chapter 4.

Pac's Functional Link Network (Pao, 1992), and Billing's closely related Extended Model Set

ideas (Billings and Chen, 1989), use links with a fixed non-linear function built in to expand

the input vector, resulting in the production of extra 'higher-order' inputs. These are linearly

weighted by the networks parameters. The well known Polynomial methods can also be viewed

as Basis Function systems, as there is a single layer of nonlinear functions, and the parameter

optimisation is a linear process. The problem here is to find the suitable model structure - i.e.

which set of basis functions can approximate the system adequately. Some off-line structure

identification algorithms are described in (Chen and Billings, 1994, Ivakhnenko, 1971). Holden

describes a general framework for basis function nets, calling them Phi-nets in (Holden, 1994).

CHAPTER 2. METHODS FOR TRAINING MODELS 32

Are Basis Function nets too local?

An intrinsic feature of the Basis Function networks is the concept of 'locality'. In linear

systems the data, optimisation and validation are all considered to be globally relevant, i.e. any

results obtained are valid over the entire input space, whereas in nonlinear systems the process

complexity varies throughout the input space. For nonlinear systems, however, (especially

when multivariable) the problem can be simplified by partitioning the input space into multiple

subspaces. This can involve a reduction of the problem's dimensionality by decomposing the

problem, discarding irrelevant interactions, or of simply partitioning the input spaces into

subspaces which are easier to handle - the traditional 'divide and conquer' strategy inherent

to local modelling techniques.

The concept of 'locality' is obviously relative, depending on the complexity of the system,

the availability of training data, the importance of the given area of the input space, and a

priori knowledge of internal structures within the given system. The form of 'locality' utilised

depends on the representation used; in decision trees, locality is introduced by partitioning

the input space into hypercubes, in RBF nets locality is hyperspherical and in multi-layer

perceptrons or Projection Pursuit nets locality is a projection of the input space. This locality

can be used to make networks more transparent and computationally efficient, which can then

make learning algorithms which utilise the locality more efficiently than alternative algorithms.

The problem with standard basis function networks is that the crudeness of the local approxim­

ation (weighted piecewise constant models), suffers like other local methods from the 'curse of

dimensionality' (Bellman, 1961). This forces the system to use exponentially increasing num­

bers of basis function units to approximate a given system, as the input dimension increases.

This leads to computational, transparency and robustness problems (the training data to train

all of the units has to exist!). It is therefore important to be able to profit from the local nature

of the basis functions while not having to have too many units7 • This implies that the basis

functions should be associated with more powerful representations than piecewise constant

models, so that a smaller number of them could cover larger areas of the input space while

achieving the desired modelling accuracy.

2.3.2 Local Model basis function nets

Linear models, although very restricted in their representational ability have proved to be very

useful for a large range of problems. This is due to their simple representation, their easy

interpretability, and their robustness to noisy or missing data. It makes sense therefore to

include the ability to at least be able to form a linear model within the network, as in

n.+1 nM+n.+l

fI = AlP) = 01 + L OiT/Ji + L OiPi (t/J) , (2.16)
;=2 ;=n.+2

7 see (Lowe, 1994) for a discussion or rurther arguments against local basis functions.

CHAPTER 2. METHODS FOR TRAINING MODELS 33

where n", is the dimension of the input vector t/J . The basic architecture (Poggio and Girosi, 1990)

is a simple improvement which is highly relevant for practical applications, e.g. used in

(Hutchinson, 1994).

The ability to use linear (or other) models, can also be introduced in a more general way.

Standard basis function networks can be generalised to allow not just a constant weight to

be associated with each basis function, but a more general function of the inputs, so that the

network can be described in the form

nM

iJ = j(t/J) = ~ ji(t/J)Pi (¢), (2.17)
i=l

where ¢ defines the operating point of the system. This is a vector which can be defined on a

lower dimensional subspace of the input space which is covered by the basis functions. These

can be seen as scheduling or gating functions for the local models which are defined on the full

input space.

The basis, or model validity functions used in this thesis are radial , i.e . they use a distance

metric d(¢; Ci, O'i) which measures the distance of the current operating point t/J from the basis

function's centre Ci, relative to the width variable O'i, as in equation (2.12). They are also

normalised, so that they sum to unity, as in equation (2 .14) . See Figure 2.14 for a simple

representation of operating regimes in a two dimensional operating space. The overlapping

operating regimes allow the basis functions to smooth the transfer from one region of the

model structure to the next.

<PI

Figure 2.14: Local Model Operating Regimes. Each local model is associated with an operating
regime. These regimes overlap, and the gradual decay of 'validity' provides interpolation
between models .

This means that the structure has the advantages inherent to the local nature of the basis func­

tions while, because of the more powerful local models associated with the basis functions, not

requiring as many basis functions as before to achieve the desired accuracy. The improvement

is more significant in higher dimensional problems. This generalisation of the BF network to

CHAPTER 2. METHODS FOR TRAINING MODELS 34

the Local Model Network described in equation (2.17), where the weights have been general­

ised to allow not just a constant weight to be associated with each parameter, but to have a

function of the inputs weighted by the relevant basis function, has been applied by a number of

authors. The nM local models used are represented by general functions of the inputs Ii (1/J),

but in many cases simple linear ~odels are chosen

(2.18)

The network form of equation (2 .17) is shown in Figure 2.15. The trained network structure

can be viewed as a decomposition of the complex, nonlinear system into a set of locally active

sub-models, which are then smoothly integrated by their associated basis functions .

A

~y

Figure 2.15: Local Model Basis Function network

To illustrate the workings of a local model network, a one dimensional function is mapped

using local models in Figure 2.16. The top plot shows the target function and the model's

approximation, while the basis functions and associated local models are shown below.

Literature of local model methods in learning and modelling

The representational ability of the normal Basis Function (BF) net can be extended to a gener­

alised form of BF network, where the basis functions are used to weight other functions of the

inputs as opposed to straightforward weights . This was suggested in (Jones et al., 1989), fol­

lowed up by (Stokbro et al., 1990) and (Barnes et al., 1991) . The Adaptive Expert networks in

(Jacobs et al., 1991) are essentially local model systems, where the local models are called ex­

pert networks and the integration of the various experts is made by gating networks. These were

developed into hierarchical models in (Jordan and Jacobs, 1991, Jordan and Jacobs, 1993).

CHAPTER 2. METHODS FOR TRAINING MODELS

Target and Model outputs
2r---~---r--~----r---~---r--~----~--~---,

-20~--~--~--~~~~--~--~--~~~~--~---.J
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5 ":""

o
-0.5

-1

Local Models and Basis Functions

-1.50~---:0:-'-.1:----:'0.':-2---0:-L.3:----0.L...4---0:-'-.5---0.L...6---0:-'-. 7~--:-O.':-8--~O:':.9:--~

Figure 2.16: An example of local models representing a one dimensional function

35

The advantages of local representations are discussed in (Bottou and Vapnik, 1992), where

they suggest that a proper compromise between local and global methods will usually prove

most effective as varying levels of complexity are required throughout the input space, although

they claim that the 'local capacity' should m<.~ch the data density, which is not necessarily true,

as this would not place units where the system is complex, but rather where there was most

data. The more general goal of allocating local capacity is that the learning system should

match the 'local complexity' of the target system.

The idea of using locally accurate r •• odels is also described in the statistical literature in

(Cleveland et al., 1988), where local linear or quadratic models are weighted by smoothing

functions. (Priestley, 1988) describes State Dependent Models for non-linear time series which

are basically linear models where the parameters depend on the operating vector ~ (corres­

ponding to the 'state' in Priestley's terminology)

nM

y(t) = ..pT(t - 1) I:0iPi(~)' (2.19)
;=1

Local Model nets could be viewed ~ a finite parameterisation of the state-dependent model.

Tong's Smooth Threshold Autoregressive (STAR) models (Tong, 1990) are also structurally

equivalent to local model nets. In neither Priestly's or Tong's case, however, is much detail

given about how to find the smooth weighting functions. (Billings and Voon, 1987) also uses

a number of linear models to approximate a nonlinear system, but does not have smooth

interpolation between basis functions.

Local model systems for diagnosis, modelling and control of dynamic systems have been

CHAPTER 2. METHODS FOR TRAINING MODELS 36

applied extensively by Johansen and Foss in Trondheim, e.g. (Johansen and Foss, 1992c),

(Johansen and Foss, 1992b) and (Johansen and Foss, 1993). A development of the ideas to

a state-space implementation of local models is described in (Johansen and Foss, 1993).

Some fuzzy logic systems can also be viewed as Local Model networks, e.g. the methods

used in (Takagi and Sugeno, 1985) are effectively overlapping piecewise linear models, with

the interpolation between models provided by the membership functions. Similar applica­

tions are reported in (Sugeno and Kang, 1988, Foss and Johansen, 1993), (Wang, 1994) and

(Harris et aI., 1993). In (Haas and Murray-Smith, 1993) we discuss the similarity between

fuzzy and basis function systems in more detail. (Back and Tsoi, 1991) describes the use of

dynamic models as nodes in Multi-Layer Perceptrons - this could be seen as an MLP imple­

mentation of Local Model methods.

(Skeppstedt et al., 1992) describes the use of local dynamic models for modelling and control

purposes, but with hard transfers from one model regime to the next. (Pottmann et al., 1993)

describes a multi-model approach where although the local models overlap there is still a sharp

transition from one model to the next, and to minimise model switching a heuristic criterion

is introduced which only allows switching after three consecutive steps in the direction of the

new model.

2.4 Hierarchical Approaches to Learning Models

We have discussed the use of locality in basis function networks for the limitation of complexity,

but how can we decide on the suitable level of locality for any given area of the input space?

How can we reduce the effect of high dimensionality by only concentrating on the areas of

interest? Can we produce efficient training algorithms which take points outside a given local

model into account, while not reducing the system to a global optimisation technique?

A common technique for the control of complexity, found in nature, society and technical

systems, is hierarchy (Mes~,rovic et al., 1970). In the flat local model networks used so far, the

structure identification phase tends to be computationally expensive, because any alteration

to one unit affects many others. The effect of normalisation also alters the local properties

of the basis functions, sometimes leading to unexpected results, as described in Section 3.3.

Hierarchical methods offer, due to their structure, the ability to more effectively hide local

complexity, in the traditional 'divide and conquer' manner, making the learning process more

efficient and robust. The goal is truly hierarchical learning, where a network can grow to fit

the data, and as the representation of the model improves decisions made earlier in the learning

process can be reevaluated, leading to gradual changes to the higher levels. The local model

framework is well suited for the creation of such hierarchies, as the local models in a given

network can be further local model networks producing a hierarchy of local model nets. This

is the Learning Hierarchy of Models (LHM) structure described in Chapter 5.

CHAPTER 2. METHODS FOR TRAINING MODELS 37

2.4.1 Hierarchical learning methods

The use of hierarchy in learning algorithms breaks down into two general camps. The decision

tree methods started in the 1970's with k-d trees (Bently, 1975), Classification And Regression

Trees (CART) (Breiman et al., 1984), and IDB and C4.5 (Quinlan, 1993), and involve hierarch­

ies of sharp partitions, dividing the input space into ever smaller areas . (Isaksson et al., 1991)

and (Stromberg et al., 1991) describe the use of such trees with dynamic models in the leaf

nodes to model nonlinear dynamic systems. Because of the sharp partitions, however, these

methods are poorly suited to modelling continuous systems. An alternative approach is the

Figure 2.17: Decision tree structure

use of soft splits, where the input space is no longer sharply partitioned, but there is a gradual

transfer from one local model space to the other, allowing smooth interpolation between the

models. This also means that a point in the input space can activate models in several leaves

of the tree, with a differing level of membership to each.

Examples of this type of structure include Basis-Function Trees (Sanger, 1991b) and the re­

lated paper (Sanger, 1991a) . The Hierarchical Mixtures of Experts (HME) structure, is a hier­

archical structure (Jordan and Jacobs, 1993) trained using Expectation Maximisation tech­

niques (EM) . Friedman used spline-based techniques to extend the CART ideas to soft splits

for his Multiple Adaptive Regression Splines (MARS) algorithm (Friedman, 1991) . Quinlan

also started to work with continuous systems modelling using Model Trees (Quinlan, 1992) .

Links between wavelets and hierarchical networks (Bakshi and Stephanopoulos, 1993) have

also been investigated. Banan describes a constructive hierarchical method, with local lin­

ear models, which trains many times, and partitions the input space randomly in the areas

producing errors. The 'average' network produced by the random splits is then the result

of training (Banan and Hjelmstad, 1992). (Omohundro, 1991) describes Bump- and Balltrees

which have linear classifiers in the leaves of the tree. The first work from this thesis with

hierarchical networks was the development of Fractal Radial Basis Function Nets, described

CHAPTER 2. METHODS FOR TRAINING MODELS 38

in (Murray-Smith, 1992). The extension of this method is integrated into the local model

paradigm in Chapter 5.

2.5 Learning in Local Model Basis Function Networks

The learning task for Local Model Networks is to try to adapt their structure and parameters

to minimise a cost functional related to the deviation of the model from the target system.

The optimisation of the parameters8 is a linear process and relatively straightforward, while

the optimisation of the number of basis functions and their position and determining a suitable

level of 'locality' is a difficult non-convex problem, where ad hoc methods of reducing the

complexity play an important role.

The description of the learning process is therefore split into the two highly interdependent

stages of structure identification (Section 2.5.4 describes methods for introducing a priori

knowledge into the model structure, Section 2.5.3 reviews the literature of structure identifica­

tion methods) and parameter estimation (Section 2.5.1), which are repeated until the desired

structure and parameters are found.

2.5.1 Parameter estimation in Local Model Nets

The assumption made during the parameter estimation stage is that the model structure (i.e.

the basis functions and local model structures) already exists and remains fixed during the

estimation phase. This thesis only deals with time-invariant processes, so the methods used

are all off-line methods, where the entire training set is assumed to be available simultaneously

for the estimation phase, as opposed to on-line or recursive methods, which assume a constant

stream of new information9
. The assumption made here is that the local models are linear in

the parameters, as in equation (2.18).

The problem of parameter identification within such a framework is reasonably well understood,

with a variety of efficient optimisation algorithms existing to solve the problem of optimising

the parameters 9 of local models id') in equation (2.17) to minimise the cost functional

J(9,M,V) for a given local model structure M, where M = (c,O',nM,M1..nM) (i.e. the

basis functions' centre locations and basis function sizes, as well as local model types) and

training set V = (-rf;(t - 1), y(t)), t = l..N . Parameter optimisation for a given model structure

finds the optimal cost r
r(M, V) = minJ(9, M, V).

9
(2.20)

8In this work the term parameter! refers to the parameters of the local models and does not include the
basis function parameters, the centres and widths, which are deemed to define the model 6tructure.

9Section 4.3 discusses methods for iteratively extending the training set used, but for any given estimation
stage the optimisation is seen as a batch process.

CHAPTER 2. METHODS FOR TRAINING MODELS 39

Weighted Least Squares estimation

In many learning situations the relative importance of the training data varies throughout the

input space, either because the system spends most of its time in one particular operating

regime, or because a particular aspect of the system is more interesting than others, and it is

also common to have varying measurement accuracy in different areas of the input space . It is

therefore important to be able to weight points in the training set to have more or less signi­

ficance. The global criterion for estimation of the parameters of the model in equation (2.17)

is then the weighted least squares cost functional,

(2.21)

and the vector containing all the estimated model parameters is that which minimises J . In

equation (2.21) a:(tPj) are observation weights which can be attached to each measurement.

For the case where the measurement noise estimate for each training point is available, this cost

functional is the chi-squared function (where a:(..pj) = C7(~.)' where u(..pj) is the measurement

error (standard deviation) of the ith training vector} . The model obtained using this functional

is known as a Markov Estimator or a Best Linear Unbiased Estimator (BLUE).

Regularisation methods for complexity penalisation

The parameter optimisation for local model nets is an ill-posed problem as described in

(Tikhonov and Arsenin, 1977). This is because there is insufficient data in the training set to

reconstruct the input-output mapping uniquely, the data is usually corrupted by noise , meaning

that a unique solution is impossible, and the continuity conditions are violated . To make the

problem well-posed it is necessary to make assumptions about the smoothness of the underlying

process being modelled, and the training set must have redundancy in an information-theoretic

sense.

A variety of methods can be used to regularise the optimisation problem, to reduce the variance

of the solution. Many neural network learning algorithms have implicitly (often unplanned!)

had a regularisation effect, in that they have not found the 'optimal' (in the least squares sense)

solution to the posed optimisation problem. Methods such as weight decay, stopping learning

early (Sjoberg and Ljung, 1992), network pruning, learning with noise (Bishop, 1994) are all

examples of ad hoc attempts to produce a regularisation effect. The classic regularisation

method as defined in the regularisation theory proposed by (Tikhonov and Arsenin, 1977) is

to extend the simple quadratic error cost functional to become a cost-complexity operator,

N

J(8, V) = ~ L a: (..pj) ((Yi - Yj)2 +)..R(j(..pi, 8))) ,
j=l

(2 .22)

including penalising nonnegative functional R(Y) which includes a priori information such as

smoothness constraints which makes the optimisation problem well-posed. This forces the

CHAPTER 2. METHODS FOR TRAINING MODELS 40

optimisation to find a 'smoother' solution (,X is a small weighting, which defines the relative

cost of the complexity compared to accuracy), which is likely to improve the generalisation

of the network on new examples, at the cost of a slightly worse performance on the training

data e.g. (Bishop, 1991) (Bishop, 1994) (Poggio and Girosi, 1990) (Girosi et al., 1993) . These

are, unless analytical solutions exist, too computationally expensive for problems of more

than a few dimensions. More practical regularisation methods are described in Chapter 3.

(Sjoberg et al., 1993) describes the use of regularisation methods in system identification , and

the earlier paper (Sjoberg and Ljung, 1992) links the regularisation work to stopping training

early, and discusses the number of important parameters in multi-layer perceptrons.

A priori knowledge of physical constraints on models can also be used to improve generalisa­

tion, as in (Kramer et al., 1992), and by (Roscheisen et al., 1992) who demonstrate the use of

a priori models in training an RBF model of a rolling mill.

Using Singular Value Decomposition to estimate the local model parameters

The optimisation of the weights in RBF and Local Model Networks is theoretically a straight­

forward application of Linear Regression techniques, and as the optimisation problem is a

linear one, the 'optimai' solution should always be found (assuming uncorrelated zero-mean

noise). The regression problem can be viewed as finding the local model parameters () which

satisfy the equation,

Y = C)(J (2.23)

where C) is the design matrix, where the rows are defined by

(2.24)

so that the design matrix C), and vector of output measurements Yare

Yl

C)= , y= (2.25)

YN

The task of matrix inversion is important for the optimisation process. In practical situations,

however, the straightforward inversion of an information matrix is of little use, as the matrices

are not square, and even if they are, the poor condition or singularity of the matrix in question

makes inversion impossible. To avoid these problems, the Moore-Penrose pseudoinverse of '1»,

C)+ is used to estimate the weights.

(2.26)

so for weighted least squares as described in equation (2.21)' with Q a diagonal matrix with

Qii = a(xi), the optimal weights are:

(2 .27)

CHAPTER 2. METHODS FOR TRAINING MODELS 41

The algorithm used in this work 10 , as in many other papers, to calculate the pseudoinverse is

Singular Value Decomposition (SVD) of a matrix of observed input data. The SVD algorithm

decomposes any N x n¢ matrix 4) to matrices U (N x n¢ column orthogonal), E (n ,p x n¢

diagonal) and V (n,p x n¢ orthogonal), such that 4) = USVT
. Due to the orthogonality of the

matrices U and V, UTU = VTV = 1. V is the matrix containing the eigenvectors of 4)T ~ . U

is made up of the eigenvectors of ~4)T. The associated eigenvalues (CTi) are the same in both

cases, and are the squares of the singular values (Sj), i.e. CTj = Sj2 As U and V are orthogonal ,

their inverses are equal to their transposes. E is diagonal, so its inverse is the diagonal matrix

containing the reciprocals of its diagonal elements (the singular values). The advantage of this

decomposition11 is that the inverse of 4) is now trivial to compute, giving the pseudoinverse:

4)+ = VE+UT (2 .28)

where

Sl 0 0 0

0 S2 0 0
E= (2 .29)

0 0 0

0 0 0 sn.

The method is robust because it can, within limits, cope with singular or poorly conditioned

matrices. The condition number of a matrix gives an indication of the rank of the matrix .12 If

this is infinite the matrix is singular, and if the reciprocal of the condition number approaches

the machine precision, the matrix is said to be ill-conditioned. In such cases the singular values

are so small that the result is corrupted by the round off effects caused by finite accuracy arith­

metic. Their corresponding columns in V are linear combinations of x's which are insensitive

to the data. The: elements, where s is less than a preset tolerance are zeroed, reducing the

number of free parameters in the fit . Once the singular values have been zeroed, the parameters

(J solving the regression problem in equation (2.23) can be calculated,

(2.30)

This method of optimising the parameters is not without its disadvantages, however , which

ace described in Section 3.1.1. For more details on SVD see the general treatment in books

such as (Golub and van Loan, 1989), or (Press et aI., 1988). The use of the method in sys­

tem identification applications is described in (Soderstrom and Stoica, 1989). The review

article (van der Veen et aI., 1993), and papers on the general application of the method m

(Deprettre, 1988) and (Vaccaro, 1991) give further background.

IOThe implementation of SVD used in this thesis is the MATLAB function svdO.
lITo better understand the behaviour of the original transformation Y = cI>8, the SVD of cI> is a rotation of

8 in n¢-space by V T , the components are then scaled by 5 and then rotated again by U to give Y. If a vector
Y lies in the range of cI>, there is a solution to 8. The solution is actually a set of solutions, as any vector in the
nullspace can be added to 8 in any linear combination. SVD, however, finds the solution 8 wit h the smallest
magnitude (see (Press et aI., 1988) for details) .

12See Section 3.1.1 for more details.

CHAPTER 2. METHODS FOR TRAINING MODELS 42

2.5.2 Uniformly distributed basis functions

The simplest method of determining the position and widths of the basis functions in a local

model net is to fit a regular mesh or lattice of basis functions over the input space, as shown in

Figure 2.18. This also allows the use of computationally simple methods to find active units, as

Sum a Bulo F.."Ion.

(a) Hexagonally distributed BF's (b) Sum of Hexagonally distributed BF's

Sum a Bulo F ... iono

~

(c) Grid-like distribution of BF's (d) Sum of grid-like distributed BF's

Figure 2.18: A lattice style distribution of basis functions in square and hexagonal forms

the net is effectively an interpolating memory. The total number of units required will rise - as

the 'curse of dimensionality' would have us expect - exponentially with the input dimension .

Many non-linear systems in the real world, however, have smooth nonlinearities which can be

represented by relatively few units (this becomes even more relevant when the individual units

are associated with more powerful local models) . Also, as the system being modelled is often

CHAPTER 2. METHODS FOR TRAINING MODELS 43

only active or of interest in a small region of the input space, a further saving of redundancy can

be found by only placing basis functions in regions where the system operates. This demands

more flexibility in the model structures than is possible with mesh-like networks, and methods

for optimising the flexible structures.

2.5.3 Structure identification

The use of existing a priori knowledge, as described in Section 2.5.4, to define the model

structure is important, but as many problems are not well enough understood for the model

structure to be fully specified in advance, it will often be necessary to adapt the structure for

a given problem, based on information in the training data. The optimisation of the network

structure M is, however, a difficult non-convex optimisation problem, and is probably the most

important area of research for basis function networks, if they are to be applied to demanding

modelling problems where little is known about the model structure in advance.

The goal of the structure identification procedure is to provide a problem-adaptive learning

scheme which automatically relates the density of basis functions and the size of their receptive

fields to the local complexity and importance of the system being modelled. The desirable

features of a structure identification algorithm are:

• Consistency - as the number of training points increases the algorithm should produce

models which approximate the real process more accurately.

• Parsimony - the model structure produced by the algorithm should be the simplest

possible which can represent the process to the required accuracy.

• Robustness - the model structures produced should be as robust as possible with regards

to noisy data or missing data.

• Interpretability - the model structure produced should ideally be as interpretable as

possible, given the available data, local models and basis functions.

The aim is therefore to find a model structure M which allows the network to best minimise the

given cost function in a robust manner, taking the above points into consideration. Minimising

r (M, V), from equation (2.20), over the possible model structures leads to the 'super-optimal'

cost, using a priori knowledge about the process structure ICs,

r-('v,lCs) = minr(M,V).
M

(2.31)

The robustness is an important aspect, as constructive structure identification algorithms can

obviously be very powerful, enabling the network to represent the training data very accurately

by using a large number of parameters, but usually then leading to a high variance. The choice

of model structure plays a major role in the bias-variance trade-off (see (Geman et al., 1992)

CHAPTER 2. METHODS FOR TRAINING MODELS 44

for details about the trade-off), and this should be reflected in the cost functions J and r
(from equation (2.20)) in the form of regularisation terms for J and terms which penalise

over-parameterisation in the structure functional r.
Algorithms for structure identification from data should take into account the complexity of the

target mapping, the representational ability of the local models associated with the basis func­

tions, and the availability of data. This is a general non-convex optimisation problem, and in

practice it is not possible to guarantee a general method which will provide an optimal solution

to the problem for all possible learning tasks. The methods described here are optimisation

techniques implicitly suited to the basis function optimisation problem.

4-..... ~ Parameters

Data

\
Cost Function t-_
& Constraints

\
Model

Structure

A priori I
Knowledge

Figure 2.19: The structure learning process involves a number of complex interactions.

Structure through parameterised optimisation

A gradient descent optimisation technique for moving the centres and adapting the widths is

described in (Poggio and Girosi, 1990). This is, however, reported to be a slow and unreliable

technique. There is no guarantee of convergence to a global minimum and there is therefore

likely to lead to variance ir. performance between runs on similar data. This method was applied

in (Roscheisen et al., 1992) and also in (Hutchinson, 1994), where some practical guidelines for

clustering are given.

Clustering basis functions

RBF researchers used methods where a fixed number of basis functions was assumed, and the

structure identification task was seen as the optimisation of the centres and widths. In the pa­

pers (Moody and Darken, 1989, Sbarbaro, 1992) clustering algorithms such as self-organising

maps or k-means clustering were used to place the centres. A disadvantage of such algorithms

is that they do not relate the location of the basis functions to the complexity of the func­

tion being mapped, only to the location of data in the input space. Pantaleon-Prieto et al

CHAPTER 2. METHODS FOR TRAINING MODELS 45

(Pantale6n-Prieto et aI., 1993) use a clustering routine where only the nearest unit to a given

input is adapted, in order to reduce computation.

Placing centres on training data points

The disadvantage of the techniques described above is that the user mu .. t still define how many

units the network should have before learning starts, but as the complexity of the system is

usually not fully understood, the optimal number of units is also unknown. Some researchers

developed methods which estimate the number of units from the position of the training data

in the input space. Specht describes a method which has a basis function centred on every

example in the training set (Specht, 1991). This is a simple technique, but one which scales

up very poorly, and is not particularly robust when faced with noisy or sparse data. More

promising methods use the redundancy in the training set to reduce the number of units

needed to learn the desired training data. A hierarchical clustering technique based on a

binary tree approach to recursively partition the input space is used in (Stokbro et aI., 1990).

The resulting network is a single layer net, only the partitioning process is hierarchical. The

partitioning is not related to the local complexity of the system, but simply to the presence of

data - a drawback of other similar algorithms. (Raipala and Koivo, 1992) describe a similar

simple method for constructing a network, which is to insert a new unit whenever an input

occurs which is not near the centre of any of the units' receptive fields. This is repeated

in (Roberts and Tarassenko, 1994). The algorithms we used in (Murray-Smith et aI., 1992)

and (Neumerkel et al., 1993) can be seen as extending this type of technique by including the

system complexity in the distance metric for the clustering process.

Iterative constructive techniques for gradual approximation

Another option is to start off with a simple model, to estimate its parameters, determine where

the representation is still unsatisfactory and to dynamically add new models to the network.

This leads to a sequence of model structures Ml -+ M2 -+ ... -+ M nM , where Mi -+ Mi+1

indicates an increase in the representational ability (more degrees of freedom) in the model

structure followed by a parameter identification and confidence estimation stage. Constructive

techniques which gradually enhance the model representation in this manner have a number

of advantages. They automate the learning process by letting the network grow to fit the

complexity of the target system, but they do this robustly, by forcing growth to be guided by the

availability of data and the complexity of the local models. This automatically determines the

size of the network needed to approximate the function adequately, while preventing overfitting.

Two such constructive algorithms are described in Chapters 4 and 5, coming from the work

published in (Murray-Smith and Gollee, 1994) and (Murray-Smith, 1992).

Chen et al (Chen et aI., 1991) used orthogonal least squares for the clustering task. Their

algorithm is a constructive one, which uses every training point as a candidate centre. Each

CHAPTER 2. METHODS FOR TRAINING MODELS 46

time a unit is added to the network, it chooses the best candidate centre by attempting to

minimise the variance in the model output due to the network parameters. The Resource Al­

location Net described in (Platt, 1991) is a constructive algorithm, where when a pattern is

presented which causes an error larger than a given threshold a new unit would be added at

that point. Wynne-Jones suggests a constructive method where existing units in the network

are split into two. The Hierarchical Self-Organising Learning (HSOL) algorithm, a hierarch­

ical strategy for the construction of single layered basis function networks for classification is

described in (Lee and Kil, 1991). Units are added to the network in a coarse to fine strategy.

(Carlin, 1992) applied HSOL to modelling problems and similar coarse-to-fine ideas have been

used for spline-based modelling applications (e.g. ASMOn in (Kavli, 1992)). (Fritzke, 1994)

describes a constructive method based on a self-organising map framework. The LSA al­

gorithm which splits the input space orthogonally to the axes of the input space is described in

(Johansen and Foss, 1994b). The spline-based MARS algorithm (Friedman, 1991) mentioned

earlier is also a gradual constructive method.13

2.5.4 Pre-structuring the local model net

The straightforward local model network, where the local models are simple linear models, can

be viewed as a general structure which is well suited for use in modelling dynamic systems. A

major advantage of the local model nets is, however, their ability to allow the introduction of

a priori knowledge to define the model structure for a particular problem. This leads to more

interpretable models which can be more reliably identified from a limited amount of observed

data.

Incorporating local models based on a priori knowledge

The most general form of information is the expected order of the system, and the form of

model to be identified (e.g. simple linear ARX models etc). If more knowledge is available, the

local models could be physically oriented models, possibly with only a subset of their variables

to be identified, thus allowing the engineer to easily create grey-box models. A generalised

form would allow the designer to specify a pool of feasible local models, which could be locally

tested for suitability in the various operating regimes defined by the basis functions.

In many cases, there will not be sufficient data to train the model throughout the input space.

This is especially true in areas outside normal desired operation, where the model may have

l3The Model Merging algorithm described in (Omohundro,1991) attacks the problem in a different way,
using a fine-to-coarse learning algorithm, where each training point is initially viewed as a model, and in­
creasingly global models are created by merging the existing models. This has the disadvantage of being more
computationally intensive than the top down methods, and will tend to overtrain where coarse-to-fine methods
tend to over-generalise. Other workers have produced constructive algorithms for a variety of network types,
e.g. Caacade-correlation (Fahlmann and Lebiere, 1990) and GAL (Alpaydin, 1991), but these IItructures lose
the locality advantages of the basis function networks, and cannot easily introduce a priori knowledge, unlike
local model nets.

CHAPTER 2. METHODS FOR TRAINING MODELS 47

to be very robust, and well understood. These situations can be covered by fixing a priori

models in the given areas, and applying learning techniques only where the data is available

and reliable.

Incorporating a priori knowledge of non-linearity into the basis functions

Locality of representation provides advantages for learning efficiency, generalisation and trans­

parency. It is, however, very difficult to automatically find the 'correct' level of locality for a

given subspace of an arbitrary problem. The problems of dimensionality can also be reduced

in many systems with a large number of inputs, as there are often combinations of input di­

mensions which are of no interest, or which are additively or linearly related. The problem

can then be decomposed, if the user already has a priori knowledge about the system be­

ing modelled, thus allowing the user to treat the system as an additive combination of lower

dimensional sub-models. (The use of such physically based knowledge makes on-line adapt­

ation of the system's parameters much more feasible). The statisticians have developed the

theory of additive modelling techniques, e.g. (Hastie and Tibshirani, 1990, Friedman, 1991)

to support such decompositions. (Hrycej, 1992) also describes similar methods for the mod­

ularisation of neural networks. Also, because of the strong links between Fuzzy membership

functions and Basis Functions (see our review in (Haas and Murray-Smith, 1993), or the books

(Harris et aI., 1993, Brown and Harris, 1994)), the a priori knowledge of how best to decom­

pose the problem could be expressed as linguistic rules with accompanying basis functions.

(Bridgett et aI., 1994) analyses the functionality of the MARS and ASMOD algorithms and

relates them to fuzzy systems.

High dimensional Local Models, low dimensional Basis Functions

The decomposition of the input space is especially interesting for nonlinear, high order dynamic

systems, as the input space is very large (and in practice such high dimensional input spaces

are often impossible to fill with data), but the nonlinearity may only be dependent on a small

number of the inputs. Local model nets are well suited for modelling such systems because

although the system may be globally strongly nonlinearly dependent on the inputs,it may be

possible to use the most important subset of the inputs to partition the input space. The

system can then be localIy approximated sufficiently accurately by simple (possibly linear)
models which use the entire input vector, so

~ C 1/l,dim~ < dim1/l. (2.32)

In the dynamic systems' case, a dramatic reduction in the input space used for the nonlinear

partition could be achieved by including only a subset of the delayed values of the inputs and

state in ~, while all are present in 1/l (i.e. the dimension of ~ is usually smaller than that of

1/l).

CHAPTER 2. METHODS FOR TRAINING MODELS 48

The well-known consequences of the 'curse of dimensionality ' can be greatly reduced by defining

a lower dimensional projection of the input space for the location of the basis functions and

the evaluation of the distance metric (shown in Figure 2.20). This greatly simplifies the scale

of task facing the structure identification algorithm .

High dimensional
Input vector

t/J

Low-dimensional
Subset of

inputs

Full
dimensionality

Basis Functions

Model Weighting Vector

Local Models
--t---- --,

A

Y

Figure 2.20: A mixed order hybrid Local Model Net system, where the operating point ¢ has

a lower dimension than the model inputs ..p .

CHAPTER 2. METHODS FOR TRAINING MODELS 49

2.6 Conclusions

2.6.1 Engineering deficits of neural net solutions

The idea of creating a model of a given system by examining its behaviour, as opposed to

gaining an understanding of the physical processes within the system, was not an innovation

of the neural network field. The related fields of Statistics, System Identification, Cybernetics

and Machine Learning all offer much support in both theoretical and practical aspects of the

modelling task. Although the last decade has seen the publication of thousands of papers on

neural networks, the deficiencies of many artificial neural networks for reliable use in practical

applications are now becoming obvious to many working in the field. While networks like the

multi-layer percept ron have been applied with success in a number of real applications, the

lack of clear methods for training, analysis and validation lessen their applicability to difficult,

or safety-critical projects. The 'curse of dimensionality' is a basic fact of life when producing

models from data, making it necessary to introduce a priori knowledge-a procedure which is

not well supported in multi-layer perceptrons. The lack of an engineering methodology also

makes project administration in any such work more difficult, due to the unpredictability of

success or failure, the variation in time needed to achieve a solution and the uncertainty about

the quality of the final trained model.

2.6.2 Local Model Basis Function nets for practical problems

Local Model nets can be seen as a more general implementation of the more widely used basis

function net. Local Model Nets have fewer of the engineering problems described above. The

two main advantages of the architecture are:

• given local basis functions, i.e. limited overlap between models, a significantly higher level

of transparency is achieved. This allows the easy local introduction of tools from other

modelling paradigms (system identification, statistics etc.), and makes it easier to build

a priori knowledge into the architecture in the form of partially or fully parameterised

physical models.

• the partition also simplifies the evaluation of local confidence limits, and therefore leads to

more efficient parameter and structure identification algorithms. The localised confidence

estimates and constructive structure identification methods have a further advantage, as

it becomes possible to automatically determine local sparsity in the training data so that

more data can be demanded in active learning systems, if necessary.

• an enhanced representation, making it more suitable for modelling high dimensional and

dynamic systems. Although the basis functions are still local, the more powerful local

models associated with them allow the representation to be significantly more global,

CHAPTER 2. METHODS FOR TRAINING MODELS 50

without the problems seen in more powerful fully global representations such as polyno­

mial approximations, or the curse of dimensionality in fully local methods such as RBF

nets.

The local model nets seem therefore to be a promising framework for the improvement of the

'learning engineering' problems which this thesis set out to attack. The local nature of the

basis functions makes it easier to develop constructive structure identification algorithms. The

Local Model Nets are more interpretable than other neural network architectures, and thus

allow existing modelling techniques to be more easily integrated. This makes the framework

potentially very powerful, as it can benefit from the wealth of theory and experience in domains

such as statistics and system identification.

Chapter 3

Aspects of Local Model Networks

The methods used for the global optimisation of the parameters in local model net­

works are analysed, revealing frequent problems with ill-conditioning. Global op­

timisation methods are computationally expensive, and produce poorly interpretable

final models when the underlying structure is not physically meaningful.

Local learning methods utilise the locality in the network structure to provide a more

computationally efficient, more flexible and often more robust alternative. Local

learning also has a regularisation effect on the optimisation, and often produces

more interpretable results than global learning. The simultaneous use of a variety

of local optimisation routines in heterogeneous local model nets is outlined.

Methods which use the local nature of the network structure to provide state­

dependent estimates of model accuracy are described. These use the basis functions

to interpolate general local error statistics. Methods for estimating the covariance

of local model parameters are given, and the detection of extrapolation is discussed.

An investigation of normalisation of the basis functions reveals that normalisa­

tion can fundamentally alter properties of the basis functions in a manner not

appreciated by many researchers: the shape is no longer uniform, maxima of basis

functions can be shifted from their centres, and the basis functions are no longer

guaranteed to decrease monotonically as distance from their centre increases. In

many cases basis functions can re-appear far from the basis function centre. The

consequences for model interpretation and learning algorithm development are out­

lined.

3.1 Local Learning vs. Global Learning

The optimisation process described in Section 2.5.1 is based on the assumption that all of the

parameters 6 would be optimised simultaneously with a single regression operation. This is

51

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 52

not always computationally feasible if a large number of training patterns or local models are

needed for a particular problem (see Section 3.1.3). A further problem is that the global nature

of the observation can lead to the trained network being less transparent, as the parameters of

the local models cannot be interpreted independently of neighbouring nodes. Also, even with

robust identification algorithms, ill-conditioning in the design matrix can lead to the 'optimal'

network parameters consisting of delicately balancing large positive and negative weights which

minimise the output error on the training set, but which are not robust when confronted with

new examples - i.e. the model generalises poorly.

3.1.1 Problems with global optimisation methods

The condition of the design matrix is very important for the robustness of the optimisation

process. The condition number of a square matrix A is defined to be

c(A) = IIAIlIiA -111. (3.1)

The larger the condition number, the larger the effect of slight changes in the matrix A on the

solution of the pseudoinverse A +. As the weights are dependent on A + , a slight change in

data would lead to different weights, so generalisation is likely to be poor. SVD is used to

avoid robustness problems, but it is still important to try to improve the condition of the design

matrix. The condition number for the pseudoinverse of A can be easily calculated from the

singular values produced by the SVD (see Appendix A.4 in (SOderstrom and Stoica, 1989)), as

the norm of a matrix IIAII = 81 (the largest singular value) and the norm of the pseudoinverse

is IIA + II = .!. ' where there are n, nonzero singular values, so the condition number is

81
c(A) =-.

8 n •

Ill-conditioning in Local Model Networks

(3.2)

RBF nets with widely varying basis function sizes can have condition problems, because the

smaller basis functions will have relatively few data points in their receptive fields, compared

to the larger ones, leading to them being treated as singularities in some cases. Local model

networks, with global optimisation, tend to be more prone to ill-conditioning than simple RBF

nets, because of the increased level of correlation between basis elements in the regression

problem - the same inputs appear in each local model, the only difference being differing

weightings provided by their basis functions. 1

lThe condition can be improved slightly by norming the inputs to the individual local models by using
deviation from the centre (or operating point in conventional linearisation theory) as an input to the local

models "'dev = 1/1;,,; , so that the regression bases are in the same numerical range, but there is less correlation ,
between bases.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 53

A one-dimensional example is used to illustrate the relationship between the properties of the

networks and the associated singular values for a variety of local model nets. The arbitrarily

chosen nonlinear function is

y(x) = cos(6x2
) + e(X), (3.3)

where the additive noise term e(X) is Gaussian with a varying standard deviation of o-(x) =
OAexp (-Ix - !14.6). The examples plotted in Figure 3.1 used 401 training examples (see

Figure 3.5 on page 63 for a plot of the training data).

Even using deviation inputs to the local models, the condition of the design matrix still deteri­

orates rapidly with increasing numbers of local models, as can be seen from the example in

Figure 3.3(b).

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS

RBF linOUt., valu .. , Cotdlon .6.DO I
10' .---r--r--..--'--r--r--r__r_ __ ---,

'0'

(a) RBF Singular Values

lin • ., local Moct.I alngular vaJu. • . CondiUon • 2.32s..0.4

'0'

'0"

(c) Linear Local Model Singular Values

Ouadratic local Model I'ngulat V.Iu." Con6fjon • 1.561 • .00
'0' .----.----.---:........,..----.----.-- -,

'0'

,o~

'0"

'0"

'0"

RBF rnocS.I output. rNan .qu.rtd . rrot _ 0.002 HI
1.5.--~-~-~-~-r_~-~-~-~__,

0.5

-0.5

-,

~
~

- 1.5 o~-::'o. ':---:0:':2-":0.:'". ---'0"' .• ---'-:0':-.5 --:0 .• :---:0:';.7- ":0.':-. - o:': .• :---:!

(b) RBF Approximation

0.5

-0.5

-,

(d) Linear Local Model Approximation

Ouadratic Lot" MocW output, mlln .qu~ enor • 0.00"2
' .5r--~--'--~-~-r_~-~-~--'-__,

~
0.5

-0.5

-,

'O"0~----'=----:'':-0---:'':-5---:20:-----::25:---!30 -1.50!:-~:--7.-7;;-;;;---;;~~::---:'::;---:';---::--.J
0.' 0.2 0.3 0.. 0.5 0.' 0.7 0.' 0 .•

(e) Quadratic Local Model Singular Values (f) Quadratic Local Model Approximation

54

Figure 3.1: A set of 10 basis functions is fixed and used to represent the system using constant,
linear and quadratic local models. The singular values for piecewise constant, linear and
quadratic models are plotted. The drops in the singular values at 11 in the linear local model
case, and at 11 and 22 in the quadratic model case are less pronounced than in Figure 3.2.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS

RBF siogulill vllues , Condition • 1.403
'O'r--~-~-"-'::'-~-~-~-~-~--'

(a) RBF Singular Values

'0'

,O"OL --;---7"----::------!"---:'':-o --:':'2:----:'~. -"7.,.:----::U--!.2O

(c) Linear Local Model Singula r Values

Quadr.tic Local Uodtl,lngull, valu •• , Condhion • 3.321.+04
'0' ,---.----.----.----.-----,---,

'0'

10 ... 0:---:----:,':-. ---::'';-5 ---::20:-----::.':-5 ----:!30

(e) Quadratic Local Model Singular Values

RBF model output, mean .qu't~ erfOf • 0.006171
' .5r-~-~-~---:.~-r--~-__::!:===_~___,

1=,1
0.5

-0.5

- , .~--::"0. ,:---:O:':: .• --:' •. c:-3 ---'0"'.'--=0':".5 -"' •.• ::---:.:';.'--:'0.':"". - 0:': .• :---'

(b) RBF Approximation

liMa' local MocMloutpUl. m.an lqua,.ct ' ffOf' • 0 .0053D5
1.5,-~-~-~-""':"--r--"':"""-~-~-~___,

1= 1
0.5

-0.5

- 1 ~--::":__~-~-~_7-~::--~-~-~~ o 0.' 0.2 0.3 0.' 0.5 0.' 0.7 0.' 0.8

(d) Linear Local Model Approximation

Quadratic: Local Model output, me.n .qu.,.d t not" . O.01 12e
' .Sr-~--'--~-"--'--~--'--~-~---,

~
~

(f) Quadratic Local Model Approximation

55

Figure 3.2: The same case as in Figure 3.1, but with basis functions half the size. Notice the
sharp drops in the singular values at 11 in the linear local model case, and at 11 and 22 in the
quadratic model case. These indicate that the basis functions associated with the higher order
inputs are more likely to contribute to poor conditioning in learning. Note also the effect of
narrow basis functions on the smoothness of the RBF model output - the normalised basis
functions are more step-like, reducing the smoothness of the model output.

CHA PTER 3. ASPECTS OF LOCA L MOD EL NETWORKS 56

Effect of basis function overlap factor on condition

Figure 3.3 (a) shows the increase in condition number wi th increas ing numbers of local models,

when the relati ve overlap remains identical. To better understand the role of overl ap, Fig­

ure 3.3 (b) shows the increase in condition number in a local model net wi th a fi xed number of

uni ts (seven) when the overlap is increased . T he interpretation of this for learning systems is

that an increase in the number of models, or the level of overlap of the bas is fun ctions can lead

to a poorl y cond itioned optimisation p roblem, and models which do not generalise well. Too

few models, however , will obviously lead to poor approximation , and too little overl ap leads

to non-smooth approximations.

Condition nt.ll'lbM 01 v.rio~ local Model Net,
10" 10"

Conditk:ln nurro ... tor tnct ... lng oy.,., IlIC1ot'

I -~(rrodoil
Ouat*allc ModeIa 10"

10'0
10'·

.'

lO' 1O"

i 10" !
1'0'

.5

---] 10'

-------- 10'

RBF
- Lil.., mode ..

Oulldr.tlc Modell

10'

.. /------------
10' //
10'

0 5 10 15
Numb., of lQoCl,I Mode ..

(a) Constant relative O verlap for net with uniform
basis fun ctions evenly space , with (I = ICI - c21·

10'

10'

10'
0 0 .2 o.~ 0.8 0.8 1 12 1 .~ 1.8 1.8

Bull F..-.c1lon wldlh

(b) Va rying Overla p. T he x-ax is shows the scaling
fac tor for the basis fun ction wid th . I represents a
width rela ted to the dista nce between centres, i.e .
(I = ICI - C21.

Figure 3.3: Condition number increasing with number of local models or with overl ap. Basis
functions were normalised.

3 .1.2 Local learning

An alternative to global learning is to locally estimate the parameters of each of the local

models (as defined in equation (2 .18)) independently2. As described in (Murray-Smith , 1994) ,

potentia l advantages of local learning include:

• T he local optimisation will be more computationally effi cient (see Section 3.1.3) .

2this assumes that the bas is functions achieve a pa rti t ion of unity .

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 57

• In the global case the design matrix (<<I) has many elements which are close to zero since

only a small number of validity functions are significantly non-zero at any point in the

input space. Also, given a large degree of overlap, many local model bases will appear

very similar. Both features can lead to poor conditioning of the optimisation equations

and numerical problems.

The restriction involved in local learning means that the final locally trained network

will often be more robust when facing new data than a globally trained model.

• Heterogeneous local model networks can be defined which use a variety of optimisation

algorithms (possibly also nonlinear), each suited to the individual local model type.

• If global training is used, the parameters of a 'local' model can often have no local

meaning, as they depend on interaction with their neighbours to produce the correct

model behaviour, whereas locally trained local models can be interpreted independently

of neighbouring local models. This is extremely important, as an oft-cited advantage of

local model networks is that the trained local models are easier to interpret than other

representations as they are already in a locally interpretable form3•

Local learning with weighted least squares

For the global criterion it is possible to set a(.,pi) = 1 for all i, or to select a function a(.,pi)

to weight the importance of areas of the input space to the optimisation process (similarly to

equation (2.21). To achieve local learning it is necessary to define a set of local criteria. A

given local model's basis function can be used to define that model's relevance for any g:ven

input. For the local criteria, on the other hand, the weights must be chosen to take direct

account of the interactions of the validity functions. Our confidence in a given observation

regarding its relevance for the i-th local model is directly reflected in the i-th validity function.

The local weighting functions should therefore be set as

ai(.,p) = Pi(~)' (3.4)

where ~ is the subset of .,p related to the basis functions, which results in a set of local

estimation criteria for the i-th local model (where i = l..nM) of

1 Ni _

Ji(8i) = N. LPi(tPi.)(Yi. - Yi,Y· (3.5)
, 1e=1

where Ni is the number of examples in the local training set Vi limited to the receptive field

of local model i, and Yi. is the output from local model i, for data point k from Vi. In this

case the estimate of the local model parameter vector 8j is given by 8j = argminJj(8j). In

matrix terms the operation is now

• T -1 T 8i = (c)j Qi«lj) «Ij QjY, {3.6}
-----------------------------3The reduction in interference will also possibly make it more suitable for use with on-line adaptation
algorithms.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 58

where <J.)i is an Ni x (n,p + 1) vector,

(3.7)

where the regression variables are:

(3.8)

where the k refers to the kth example in local training set Vi. Qi is an Ni x Ni diagonal

matrix, where the diagonal elements are the activations of the basis function of the ith model

over the training set 1)i,

Pi(~iJ 0 0 0

0 Pi(~i,) 0 0
Qi= (3.9)

0 0 0

0 0 0 Pi(¢iN) •

The local learning method is therefore to compute noM locally weighted least squares regres­

sions, one for each local model, using only the training data 1)i within the model's receptive

field, and with only the bases related to the given local model's parameters. The analog­

ous method for straightforward RBF networks would be to set the weight of a unit to the

weighted average of t.he data points in its receptive field, as in (Pantale6n-Prieto et al., 1993).

(Johansen and Foss, 1992a) applied local learning to local model networks, but did not use

the basis functions as a weighting function.

To gain a better understanding of the difference in the cost function associated with the local

learning technique the global and local cost functions can be expanded. First the local one:

(3.10)

so the local learning cost function is

(3.11)

where 'Vi = <J.)i8 i.

The global least squares cost function

J (8) = ~ (y _ 'V) T (y _ y) , (3.12)

so

(3.13)

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 59

where Y = i)0, c) being as defined in Section 2.5.1,

J(O) = ~(yTY_20TclTY+OTclTclO). (3.14)

Consider only the subset of the parameters Oi associated with local model i resulting from the

global optimisation of O. Decomposing the design matrix cI into Ai and ri gives more insight

into the interplay of the neighbouring basis functions with the parameters for model i,

(3.15)

where the parameters Oi are supported by r i, the submatrix of cI for inputs covered by basis

function Pi (.)

(~ ...
r i = :

o

... ~) . .
o

(3.16)

The parameters 0i are also affected by the matrix Ai containing the inputs supported by

neighbouring basis functions other than i.

(Pl (4),,)<1>" Pic (~il)<Pil Pi(')O Pn.}.A~i1)<Pil). Ai= (3.17)

PI(~iNJ<PiNi Pic (~jNJ<PiN; Pi (·)0 PnM (~iNi) <PiN;

Decomposing the cost functional to highlight the effect of the other basis functions on model

i's parameters, gives

J(O) = ~(yTy - 20TriY - 20T AiY + OT c)T i)0)

~ (yTy _ 20; c)? QTy - 20T Ai Y + OT ciT clO) ,

To better understand the differeace in the cost functions we examine OT c)T C)O, where

(3.18)

(3.19)

(3.20)

which clearly shows the interaction between the overlapping local models (the Ai terms) and

local model i (the ri term). By multiplying by the weights we can bring the equation into a

form more comparable with the local cost function in equation (3.11).

OT c)T C)O = o;r; AjO + O;rTrOj + OT A;rjOi + OT AT AjO (3.21)

= oT cI? QT AjO + Or cI? QT QjcljOi + OT AT Qjc)jOj + OT AT AjO (3.22)

(3.23)

so that the cost function for OJ is

, 1 T AT T AT T A
J (0) = N (Y Y - 2Yj Qi Y + Y j Qi QjYj -

TAT TT A TT 20 Ai Y + YiQi AjO + 0 Ai Qj Yj + 0 Aj AjO). (3.24)

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 60

The local form's YTQiYi from equation (3.11) corresponds to a YTQTQiYi. The global

yTy corresponds to the weighted yT Qi Y in the local functional.

The major effect of local learning on the cost functional is to remove the Ai terms. Ai consists

of model i's neighbouring basis functions which overlap with i, so the greater the level of

overlap, the more significant the difference between cost functions. High levels of overlap lead

to Ai being more significant and leading to a higher correlation with the off-diagonal term,

which becomes the major contributing factor to the poor conditioning of global optimisation

problems in local model nets.

3.1.3 Global VS. local SVD for computational ef'ort

The effort needed to find the pseudoinverse using SVD for a (p x q) matrix is roughly

(Noble and Daniel, 1988),

, (3.25)

In terms of the design matrix for a basis function network, p relates to the number of training

points and q is the number of basis terms. The cubic term shows the importance of the smallest

dimension of the matrix on the complexity of the calculation. As the set of linear equations

should be over-determined, the smaller number is q, representing the number of basis elements,

and this implies that the product of the number of local models and the number of their

parameters is the crucial factor with regard to computational effort. To compare global and

local learning, calculate Oglobal for a homogeneous local model net, with linear local models,

where p = Nand q = nMn.p, where n.p represents the full dimension of the model's input

space, and O'oca' where p = Ni (number of training points in local model i's receptive field,

q = n.p and which is repeated nM times. It is difficult to compare the methods exactly, as the

reduction in the number of training points in a particular area is dependent on the problem in

question and will vary for each local model, but even using the conservative estimate, which

expects N to be the same in both cases,

(3.26)

and

(3.27)

Even ignoring the speed-up gained by the reduced number of points (as Ni $ N), the local

variant will be faster for all nM greater than 1. The effort for local learning also increases

linearly in nM as opposed to the cube of (nMn.p), which makes local learning far more suitable
for larger problems.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 61

3.1.4 Local learning experiments

Approximation of a I-D noisy function

The system described in equation 3.3 is used to give an impression of the regularisation effect

of local learning on the final solution of a learning problem, comp~red to global learning. The

function is shown below in Figure 3.4. The global learning was carried out using the SVD

algorithm, zeroing singular values smaller than 10-5 • In the figures shown here, the inputs

to the local models were not deviations from the centre, but the absolute value. Experiments

where the local models used deviations from their centres resulted in the same order of model

mismatch and ill-conditioning. The cost measures were taken from the model's deviation from

1000 noise free points randomly distributed throughout the input space.

For smaller training sets (101 patterns), the robustness of the local learning is immediately

obvious, both in the smoother response, and in the lower error on the training data. Figure 3.5

shows the same problem with 401 patterns, but even though the amount of training data has

increased, the global measure is still worse than that from local learning.

Even when there are 1001 training points, although the global approximation is now better

than the local one, the parameters of the global model have little physical significance, in the

sense of being a local approximation to the real system.

The robustness of local learning is demonstrated experimentally with artificial test examples

in Chapters 4 and with real applications in Chapter 6. A hierarchical form of local learning is

introduced in Chapter 5.

Robustness of locally learned solutions

Ideally, a learning algorithm should robustly deliver a solution which has as high a level of

accuracy as possible, and which responds robustly to new data, i.e. it is likely to generalise

well. The smoothness of the resulting model is also important for many applications. In many

cases, a smooth model which has a poorer least squares cost is better than a 'more' exact but

'wrinkled' model. For example, in model based predictive control, the optimal control setting

is often found using gradient search methods, which, if the model is not smooth, would then

be subject to many local minima and would lead to unreliable control. The examples here,

the two-dimensional example shown in Figure 4.12 on page 103, and the practical results in

Chapter 6 indicate that local learning can often have a smoothing effect on the trained model's

response. It cannot be stated generally, as the weaker approximation abilites of local learning

may force the structure identification algorithm to use a far larger number of basis functions,

leading to a less robust network, but in a number of examples in this thesis an improvement

in smoothness was noted.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS

Global Learning, J = 0.0237, 101 points
2 r---------~----------_,

1 • '.

o

-1

-2L---------~~--------~
o 0.5

Local Learning , J = 0.01727,101 points
2r-----------~--------__.

o

-1

"""""7'\.:N.~- •
...: . .. ~ .

-2L-----------~--------~ o 0.5

Local Models with Global Learning

0.5

o

-0.5

-1

-1.5
0

0.5

0

-0.5

-1

-1 .5
0

0.5

Local Models with Local Learning

0.5

62

Figure 3.4 : Experimental comparison of Global and Local Learning for 101 training points.
The left hand side shows the target function , the noisy training data and the trained network 's
response. The cost functional J in the figure titles, is the same as equation (2 .21) where the
weighting function a(x) = olx) · J is evaluated on the model's deviation from the noise-free
outputs. The right hand side of each figure shows the normalised basis functions and the
associated local linear models.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 63

Global Learning, J = 0.005863, 401 points Local Models with Global Learning
2.---------~-----------,

o
05\\\

o ::.' .. :' .. ~. :,::: ; ~ .: : :

-0.5
-1

-1

-2L---------------------~ o 0.5
-1.5 '-----------------------o 0.5

Local Learning, J = 0.005896,401 pOints Local Models with Local Learning
2.---------~--------__,

0.5 ..
. ,

0

-0.5

-1

_2L---------~-----------'
o 0.5

-1.5
0 0.5

Figure 3.5 : Local vs. Global estimation - continu ation of Figure 3.4 for 401 training points.

Global Learning, J = 0.003758, 1001 pOints
2~---------------------'

o

-1

-2~--------~--------~ o 0.5

Local Learning, J = 0,00585, 1001 pOints
2 .---------~-----------,

o

-1

-2 '---------------------' o 0.5

0.5

o
-0.5

-1

Local Models with Global Learning

-1 . 5'------~---~
o 0.5

Local Models with Local Learning

0.5

0

-0.5

-1

-1.5
0 0.5

Figure 3.6: Local vs. G lobal estimation - continuation of Figure 3.4 for 1001 training points.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 64

3.1.5 Training heterogeneous local model nets

The local learning method can a lso be used as a method for optimising the parameters of local

model nets which a re not linear in the parameters, so that each local model locally app lies

its own optimisation a lgorithm . For example, in Figure 3.7 the three local models could have

three different optimisation algorithms. It (tfJ) is an ARX model, and could use an linear

optimisation routine, h(tfJ) is a step model, which could be adapted by a local line search,

and h(tfJ) is a neural network, e.g. a multi-layer percept ron which cou ld be optimised by an

algorithm such as back-propagation. T he basis fun ctions could a lso be pre-st ructured usmg

fuzzy rules, or some a priori choice of basis function.

Figure 3.7: Heterogeneous local model network with multi-algorithm optimisation

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 65

3.2 Estimating the Confidence in a Trained Network

When using learning systems like neural networks for tasks such as classification, prediction,

modelling or control it is essential to have an estimate of the system's accuracy for any given

operating region. There is little sense in reacting to the output provided by such a system

with no clear estimate of the accuracy of the information. Such confidence limits often provide

necessary information for further processing - which algorithms are most suitable, which can

be ignored, what is the likely cost of a mistake? The relevance of good estif!1ates of model

accuracy for model based controllers and model based fault diagnosis systems is obvious, and

this has long been an area of research in conventional statistics, where a variety of methods

for the analysis of samples, the validation of models, etc., has been developed. The methods

developed in standard statistics or identification tend to produce global measures of accuracy

for the system. The methods developed for the simpler techniques are, however, not suitable for

methods which have varying representational complexity in different areas of the input space.

An example of the inadequacy of global measures of error is the maximum absolute error of a

model. In some cases this can increase during training, e.g. learning to model a step function,

as shown in Figure 3.8:

Max error 0---...1 M"e~r
Figure 3.8: As the model improves its average performance, the worst error can increase!

Despite the problems described above, the general problem of how to estimate the confidence

in the system for given situations is even more relevant for the case of complex non-linear

methods such as neural networks than for linear systems.

The confidence in the output of the trained empirical model at run-time is related to several

factors:

• The accuracy achieved at modelling the input-output behaviour, which is related to

- the accuracy achieved on the given data

- the accuracy of the information in the training set.

- the ratio of data available against model complexity (parsimonious models are preferred4) •

• The measurement noise on the inputs at run-time.

4Pruning methods for model reduction are described in Section 4.2.4. These can be seen as simple methods
for the automatic detection and reduction of non-parsimonious model structures.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 66

• The performance of the model as a whole, used as it is intended to be used .

• The sense of the fitted model in the light of a priori knowledge.

The last point is important for an improved understanding of the model's limits, and in order

to try to learn more about the process being modelled. In local model networks where the local

model structures are based on physical insight, this becomes even more important. The local

interpretation will depend, however, on the parameters being identified locally, as described in

Section 3.1.2. Well-known statistical techniques can be applied to estimate the variance of the

estimated parameters, as described in Section 3.2.3.

One important aspect, however, is the suitability of the model for the purpose intended of it.

In many applications important aspects of the real process may have been ignored during the

modelling process, or cost functions which seemed suitable, may not produce the desired result

when coupled with other system components - this is especially true in dynamic systems. It
is usually too expensive, dangerous or time-consuming to test all proposed models in the real

system, so other methods must be available to eliminate faulty models in advance.

Cross-validation methods are described in the next section which use the local nature of the

basis functions to produce local confidence limits, show how standard statistical methods can

be used to determine the covariance of the model parameters, and discuss methods for the

detection of model extrapolation in areas in which it had insufficient training data.

3.2.1 Local confidence measures

The bulk of model validation techniques used in day-to-day system identification are based on

measuring the difference between the model outputs and the observed outputs on validation

data sets not used to develop the model. The majority of these are global methods which

do not produce state-dependent results, even though the errors found in the system may vary

dramatically throughout the input space. The local model network structure is well suited to the

production of local estimates of accuracy because of the partitioning of the input space inherent

to the model structure. The well-known model validation methods which can be applied to

conventional systems can now be applied at a local level, and the results interpolated by the

basis functions associated with the local models.

The statistics reSUlting from the local test are weighted by the basis function activations for a

given input to give a local estimate of the given statistic. If a general error statistic li is locally

acquired for each local model i = l..nM, the global estimate l(~) for a given operating point

~ is
noM

i(~) = EiiPi(~). (3.28)
i=l

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 67

Examples of error statistics

As an example of the above technique, cross-validation methods can be applied locally to give

local estimates of worst errors, variance and bias. This is a very simple method, but can still

be very useful. The most straightforward error statistics are the local mean and worst errors

on a single validation set. The mean absolute error can be derived as,

(3.29)

using the basis function activation to weight the errors, where N; is the number of points from

the validation set in Pi. The mean squared error can be defined similarly.

(3.30)

The use of the basis function to weight the error becomes more complex for local worst error

estimates. The weighted form is

(3.31)

which tends to underestimate the worst error, whereas using a cutoff point' for the basis

function activation, to determine whether an error will be defined as being associated with a

given local model,

(3.32)

is too conservative.

Illustrative example

The results of the implementation for the function z = (y - 0.5)2 sin(211'z sin(lI'(z - 0.1)3)) are

shown in Figure 3.10, with the basis functions organised in a grid. The target function is

shown in Figure 3.9. Data points were noise-free and uniformly randomly distributed Over the

entire input space. The weighted worst absolute error statistic from equation (3.31) was used.

The results seem intuitively compatible with the model's approximation of the function. The

confidence bands for the solution are larger where the target function is more complex and the

model therefore a poorer fit. Further experimental results with the various error statistics are

given with the rolling mill application in Chapter 6.

3.2.2 Detecting extrapolation

Extrapolation is the act of estimating the response of a system, assuming certain restrictions

such as smoothness constraints, beyond the bounds of knowledge about that system, and can

often lead to unpredictable results. This happens with learning systems when the trained

CHAPTER 3. ASPECTS OF LOCA L MODEL NETWORKS 68

Figure 3.9: Test function . z is vertical axis. x and yare right and left axes respectively

model is presented with data outwith the area covered by the training data. Leonard et

al. (Leonard et aI., 1992) describe a 'Validity Index' net which warns the user when a value is

being extrapolated. Another method by Kramer is the use of ' Rho-nets' (Kramer, 1993) , which

uses basis function networks to create a probability distribution function of the data existing

in the training set, and then notifies the user if the inputs stray from this area at run-time. 5

This method has also been used in constructive structure identification algorithms for bas is

function nets (e.g. (Raipala and Koivo, 1992, Roberts and Tarassenko, 1994))

As described in Section 3.3.1, the use of normalised basis functions leads to the basis functions

covering larger areas of the input space, and means that the methods described above cannot

be as eas ily used to detect extrapolation in normalised BF or Local Model nets.

3.2.3 Estimating covariance of weight estimates from the residuals

If the local models being used are based on underlying physical structures, it is often interesting

to examine the parameters after training in order to interpret the physical relevance of the

model. It is therefore useful to know the covariance of a given parameter estimate. The

covariance estimation problem for locally trained local model nets is equivalent to that of an

optimal weighted linear local model ,

(3 .33)

such that the real output vector Y will be defined by the model's parameters (OJ) and its
res iduals (D) :

(3.34)

5This can be very important for model-based predictive control, where the optimisation routines can produce
very 'unnatural' inputs, lying outside the sampled data range so that the model behav s I f th
intended of the model ' e poor y or e purpose

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 69

o.

0.'

0.7

0.'

O.! 0 0 0

0.'

0.3
0

I 0.2

0. '

o 0 0.2 0.' 0 .• O'

(a) Model Output (b) B8.B is Fu nctions

0.3

0.25

0.'
0.2

0 .3
0.15

0 .2
0 .1

0 .05
0 .1

o 0 o 0

(c) Locally Estimated Maximum Error (d) Me8.Bured Absolute Error

Figure 3.10: Forming local confidence limits from 'worst error ' cro s-validation results . The
model is trained on the test function shown in Figure 3.9 using local learning .

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 70

where eli; is as defined in equation (2.25). The estimates of the parameters for a weighted least

squares system are:

(3.35)

(3.36)

where 80 indicate the 'true' parameters for the given structure, and 8; represent the differences.

If Q is the unweighted form, then the differences 8; of the parameters can be found by taking

the pseudoinverse of the design matrix eli;, otherwise the general form is:

(3.37)

where R is the covariance matrix of the residuals (R = EDDT),

A - - T T -1 T T)-1 cov(J, = E(Ji(Ji = (~i Qi~i) ~i QiRQi~i(~i Qi~i (3.38)

in the unweighted case (Q, = ~; I)

(3.39)

where the covariance of the output signal (Le. the measured errors at the output) is iTo.

When using these methods to examine the local model's parameters it is important to remember

that the covariance statistics here assume that the model structure is capable of modelling the

underlying system, which will not be true in many cases.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 71

3.3 The Effect of Normalisation of the Basis Functions

As described in Section 2.3.1, normalisation of the basis functions is sometimes desired be­

cause it results in every point in the input space being covered by the basis functions to

the same degree, i.e. the basis functions form a partition of unity across the input space. In

many cases the use of normalised basis functions has resulted in an improvement in perform­

ance. While the approximation capabilities of normalised networks have been demonstrated

(Benaim, 1994), in (Shorten and Murray-Smith, 1994) we observed that the side-effects of nor­

malisation had not been considered in detail by most authors. Normalisation is used by many

authors, e.g. for RBF nets in (Moody and Darken, 1989) and (Jones et aI., 1989), for local

model nets in (Johansen and Foss, 1992a) and for fuzzy systems in (Takagi and Sugeno, 1985)

and (Brown and Harris, 1994). Use of normalisation is most relevant for RBF nets, as other

networks which partition the input space in an axis-orthogonal manner (e.g. B-Spline nets),

can be designed to achieve a partition of unity without normalisation.

The output of a normalised basis function network (BFN) is described by taking the standard

basis function network, described in equation (2.10), where the basis functions plc(;j,) are

normalised forms of a basis function p(;j,),

(3.40)

3.3.1 Side-effects of normalisation for the basis functions

Normalisation leads to a number of side effects other than the intended partition of unity

described in Section 2.3.1, which can have important consequences for the resulting network.

Change of shape of basis function

Unnormalised networks usually use homogeneous basis functions, sometimes with differing

widths. In normalised nets this is not the case - the shape of the basis functions is usually

quite different from the un-normalised basis function, and the shape is influenced not only by

the basis function's width, but also by the proximity of the other functions in the network.

Note the decrease in basis function maxima in the normalised case shown in Figure 3.11. As

the width of the basis function decreases the normalised network becomes less smooth, and

tends towards a crisp nearest-neighbour classifier.

The basis function centred at (0.6097,0.0361) from the network in example 2 (see normalised

contour plot shown in Figure 3.17) is shown in Figure 3.12 for both cases. Note the multiple

peaks, reduced maximum and convoluted surface of the normalised version.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 72

~Baai.F!IIdiorw ~ ea.. FunckIN
, .,

\ r-\ ,
0.'

"
,.

0, 0.'
, .

0.'
, .,

" 0.1 , .
" : \ , , , , , , , , , , '

0 .7 " " 0.7
" " "

, , ,
I

,
I ,

0.' : /' .
"

'\ " 0.' ., , ' \: : ' , , , , , , ,
O.S o.

, , , , , 0.5

, , , , ,
0 .'

,
0.'

, , " ,'"1 ,.
" , ,

0.3 0.3 ,
,

0.2 0.2 , , , ,
,

D •• D . • " "
00 0 - -I: ' '1-

0 D •• 0.2 0 .' 0.' 0.' 0 .• 0.7 0 .• 0 .'

Figure 3.11: Change in shape due to normalisation . As the original functions become wider
the normalised basis functions become less square and their maxima are reduced . Edge basis
functions tend to unity as they move to the limits of their support .

0.8 1.2

0 .6

0.4

0.2

o 0 o 0

(a) Normalised Basis Function (b) Unnormalised Basis Function

Figure 3.12: Effect of Normalisation on Basis Function Shape. The normalised basis function
has a far more complex surface than before, with many local maxima.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 73

Cove r ing of the input-space

In the case where the basis function used is non-compact in nature, for example when Gaussians

are used, then normalisation results in the whole of the input space being covered and not just

the region of the input space defined by the training data. It can be seen from Figures 3.11

and 3.13 that in the normalised case the activation tends toward unity at the edges of the space.

This can lead to unpredictable and often unstable behaviour in dynamic models if the operating

point drifts outside the region of the input space that has been learned during training. It also

reduces the ability of a basis function net to detect extrapolation using the methods described

in Section 3.2.2.

Irregular networks: reactivat ion and shift in maxima

A further difficulty with normalised basis functions involves two further phenomena. If centres

are not uniformly spaced, or if basis functions of differing widths are used , the maximum of

the basis function may no longer be at its centre. A further effect of varying basis widths is

that the basis function can become multi-modal, meaning that it can now also increase as the

distance function increases, instead of continuously decreasing - the unit ' reactivates'. These

effects are shown in Figure 3.13.

0.4

0.3

0.2

0.1

Unnormalised Balls Functiona

./-" ...
\

\

/
/

/
I

I
i
I
I

.I \,

i
!
i

!
!

00 0.1 0.2 0.3 0.4 0.5 0.6

(a) Unnormalised Basis Functions

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1

Nom\aiaed Ballo FunctioN

/ _ .. \
, '.

/ \ . ,
I

\

0.2 0.3

;
I

i
I

0.8 0.9

(b) Normalised Basis Functions

Figure 3.13: Shift in maxima and reactivation . Note the reactivation of the centre basis
function , the reduced maximum of the right hand basis function , and the shift in maximum
for all three functions . The vertical lines show the positions of the basis functions centres to
emphasise the centre-shift effect

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 74

Figure 3.14: Reactivation example. The point in the input space x where the basis function
reactivates can be determined from the units ' centres (C1 and C2, where C1 is furthest from the
input x) and their widths (0'1 and 0'2) .

The reactivation occurs when neighbouring basis functions have differing widths. A one­

dimensional example shown in Figure 3.14 using two basis functions illustrates how the phe­

nomenon occurs . The reactivation point x, assuming monotonically decreasing basis functions,

is the point at which the distance metric d1 is no longer smaller than d2 , so it can be determined

from the functions ' centres and widths.

For a Euclidean distance metric,

(x ~lC1 r < (x ~2C2 r '
0'2 1 x - C2 1 -< 7--~
0'1 1 x - C1 I '

(3.41)

(3.42)

(3.43)

Equation (3.43) shows that reactivation only occurs when the ratio between 0'1 and 0'2 is less

than the ratio of the unweighted distances from the centres. This implies that in networks

with uniformly wide basis functions, reactivation cannot occur. The shift in the position of the

activation function 's maximum occurs when neighbouring basis functions are either unevenly

spaced or have differing widths.

This behaviour can cause problems if the network is being used to estimate an underlying

probability distribution as is the case when local linear models are being used to approximate

the function (Johansen and Foss, 1992c) (Johansen and Foss, 1992b) . Within this fr amework ,

reactivation can lead to models becoming significantly active in regions in which they were

never intended to operate. The examples in this section demonstrates the effect of this on a

regression problem .

Effects of normalisation on multi-dimensional problems

The effects of normalisation can become more pronounced as the input dimension increases.

Due to the increased number of neighbouring basis functions in higher dimensions, the cumu­

lative activation in a given region tends to increase with dimension, leading to normalised basis

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 75

functions often having dramatically reduced maxima. Note also that the difference between the

normalised radial and ellipsoidal basis functions is less extreme than the difference between

the original functions - in many cases normalisation makes the use of more complex distance

metrics less significant. See Figures 4.6 and 4.7 on page 93.

3.3.2 Effect of normalisation on optimal network parameters

The robustness of a trained network is closely related to the magnitUde of the basis function

parameters. For example, with noisy data, large weights can cause potentially large errors

or even instability. This section examines what happens to the least squares weight solution

for the estimated weights 6, when a given basis function network as defined by the network

structure parameters M = (nM, P1...n,M (.)), is normalised.

We consider the system described by equation (2.10) where the exact form of the basis function

is defined by the activation function used and whether it is normalised or not. We also assume

that the output observations are all positive6 • Equation (2.23) can be decomposed to include

a matrix C
y = CCl9, (3.44)

where N is the number of observations, CI is the Nxnq, design matrix of basis function activa­

tions from the training set, 9 is the nq,x1 vector of weights and C is a NxN positive definite

diagonal matrix (this assumes basis functions which are positive for all of their support). In

the unnormalised case C is simply the identity matrix, while in the normalised case C's entries

are given by

(3.45)

Then the normalised output Y is,

Y = C-1y = Cl9, (3.46)

since C is invertible. Therefore the solution to equation (3.46) can be written,

(3.47)

which can be written

9 = JC-1y, (3.48)

where J is an nq,xN matrix and assuming that the inverse (CIT CI)-l exists. Expanding equa­

tion (3.48) yields,

(3.49)

6In practice this is not a restriction since the output can be normalised to lie in the interval (0,1) during the
pre-processing stage. At the output the inverse operation can be carried out.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 76

where 8i denotes the ith normalised weight, jmn is the mn entry of J. After some manipulation

the following inequality can be obtained from equation (3.49),

(3.50)

where c;~~ and c~!n are the maximum and minimum entries of the C-1 matrix and 8j denotes

the ith weight under the constraint that the C matrix is the identity matrix, i.e. the network

is not normalised.

Equation (3.50) indicates that the magnitude of optimal weights may be increased or decreased

after normalisation of the basis functions. An increase in weights typicalry occurs when the

widths are large (as E:~ p(d(~; Cj, (Tj)) is then also large), whereas a decrease in weight mag­

nitude tends to be associated with small widths. In multidimensional cases, the effect of large

basis functions becomes even more dramatic, for the reasons described in Section 3.3.1. It is

therefore important not to normalise blindly, but to compensate for the normalisation by alter­

ing the design criteria for the structure (centre positions and width magnitudes) identification

procedure.

Example 1: Modelling a pulse function

A simple one-dimensional example is used to illustrate the effects of normalisation - a pulse

function defined between 0 and 1, which is 1 for 0.2 < z < 0.7 and zero elsewhere. The

training data consists of 100 points spread uniformly throughout the input space. Five basis

functions (centred at [0.15 0.25 0.450.65 0.75]) are used to model the function. The model's

approximation of the target function is shown, with the associated basis functions.

The example in Figure 3.15 shows the reactivation of the large basis function in the normalised

case. This forces the model to 'sag' in the middle, as the edges of the basis function are far

removed from the main part, and the approximation becomes an average of far removed areas

of the input space. The approximation is locally flatter than the non-normalised case, because

of the ability of the normalised model to approximate constant surfaces.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 77

Unnormalised Basis Functions Modei output
1 .5r--~-~--~-~--'

0.8

0.6

0 .4

0.2

-0 .5L--~-~--~-~---'

0.2 0 .4 0 .6 0.8 o 0.2 0.4 0.6 0.8

Normalised Basis Functions Model outpul
1 .2,---~-~--.,......,...-~---,

0.8

0.4 0.6 0.8

Figure 3.15: Normalisation example. The pulse function is modelled with and without norm­
alisation. In the normalised case, the reactivation of the centre basis function is clearly visible,
leading to the sag in the middle of the model output plot. Note the unnormali:;ed model's
inability to model the flat area of the pulse, due to the lack of a partition of unity.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 78

Example 2: Modelling a two dimensional Function

Figures 3.16 and 3.17 show the effect of normalisation on the representation of a 2-D function

with basis functions which have little overlap, and those with greater overlap (the (J'S are twice

as large in Figure 3.17) . The response plots were created using the same basis functions , but

the weights were trained individually for the normalised and unnormalised cases. Note the

relative robustness of the normalised network to the change in width parameters, whereas the

unnormalised network provides a very poor representation with the smaller basis functions.

1.5 --)~

0 .5

0
1

0 0

(a) Normalised Model Output

o 0

(c) Unnormalised Model Output

':J v
0

0

0

0.1 0 0

0.1

0

0 .•

0.5
0

..) 0

0.3

0.2

0
0,1 0 o 00

0 0 0 0

0
0 0.2 0.' 0 .• 0.'

(b) Normalised Basis Functions

(d) Unnormalised Basis Func­
tions

~

Figure 3.16: Effect of Change of Shape on Model Representation - Wide BFs. Both models
produce a good approximation of the target function . Compare this to Figure 3.17, where the
narrower basis functions lead to a large difference for the unnormalised model.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS

o 0

(a) Normalised Model Output

o 0

(c) Unnormalised Model Output

(b) Normalised Basis Functions

(d) Unnormalised Basis Func­
tions

79

Figure 3.17: Effect of Change of Shape on Model Representation - Narrow BFs. The Unnor­
malised model is far less robust to changes is the basis function size, as shown by its inability
to model the function . The normalised model performs only slightly worse than in Figure 3.16.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 80

3.4 Conclusions

3.4.1 Local learning as a robust optimisation algorithm

Two methods (global and local learning) for optimising the local model parameters using singu­

lar value decomposition were compared. The problems involved in a global optimisation were

examined. These are: the drastic increase of effort with increasing numbers and complexity

of local models, and the ill-conditioning common to such regression problems. This leads to

non-robust, and poorly interpretable models.

The advantages of the new local learning methods are:

• The analysis of the computational complexity shows that local learning is faster than

global learning (linear increase with number of local models, as opposed to cubic in the

number of parameters). This speeds up the learning process significantly.

• Local learning can be seen as a simple form of regularisation, meaning that the local

methods often produce models with higher accuracy, and greater robustness than globally

optimised methods (especially in noisy, poorly populated or high dimensional problems),

without having to resort to expensive cost functionals.

• A further point is that the parameters found for locally trained networks can be more

interpretable as local approximations to the real system than those for globally trained

ones. Globally trained local models cannot be meaningfully examined without taking

account of neighbouring local models.

• The structure also allows more flexibility in the use of optimisation algorithms, which

will be especially useful with heterogeneous local model networks which require a variety

of nonlinear optimisation algorithms for the different local models.

In general, the experience gained during this work indicates that local learning will tend to

be better than global learning when there is insufficient training data, or noisy training data.

Global learning will tend to do well when faced with smooth underlying nonlinearities in low

dimensional spaces well populated by training data.

Future work

There are a number of interesting aspects which are still to be fully investigated in local

learning. The relationship between local learning and other regularisation methods (e.g. the

smoothing splines work in (Hastie and Tibshirani, 1990)) may provide insight, and could lead

to the application of the ideas in other structures. The application of local methods in adaptive

control is obviously interesting for on-line parameter adaptation, with minimal interference

with other areas of the model.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 81

3.4.2 Local confidence limits

The local confidence interpolation methods described in this section are simple applications of

the local modelling philosophy to the model validation stage, which produce more significant

measures of model accuracy than global methods, and allow the local use of many conventional

statistical methods. The dangers of extrapolation were pointed out, with the observation that

the normalisation of basis functions makes many of the extrapolation detection techniques

from the literature inapplicable to normalised nets. The use of well known methods for the

estimation of variance in the parameters of local model nets was described.

Apart from being important for the interpretation and validation of trained networks, local

confidence estimates can be used to improve the learning process itself, by directing the search

for a better model structure to those areas with the poorest confidence limits. The model

structure identification algorithms in Chapters 4 and 5 are based on such ideas.

Future work

The methods described here basically interpolate local error estimates to produce state-dependent

global ones. There is obviously plenty of room for the integration of a great variety of stat­

istical tests existing for linear systems into this framework. More direct use of the confidence

limits for the detection of model structure mismatch is obviously interesting for use in structure

identification algorithms, as are better methods for validating the dynamic aspects of the local

models.

The methods used in this work for the prediction of model error were fairly straightforward

applications of the local model philosophy, but they do not consider the effect of noise on the

inputs at run-time. This can vary during operation, or in different areas of the input space.

It is also possible that some sensors could fail totally. It is obviously desirable for a model to

continue to operate, while having poorer confidence in its results.

3.4.3 Effects of basis function normalisation

Phenomena which occur in basis function networks when a partition of unity is achieved

by normalisation of the basis functions were discovered and analysed. These effects can be

summarised as follows:

1. Normalisation leads to a change in shape of basis function. This can lead to a loss in

smoothness ofrepresentation if the widths of units are too narrow (i.e. little overlap). If

there is a great deal of overlap between units, the maxima of the model validity functions

are drastically reduced.

CHAPTER 3. ASPECTS OF LOCAL MODEL NETWORKS 82

2. If non-compact basis functions (e.g. Gaussians) are used normalisation leads to the whole

of the input space being covered. This is important, as it makes some extrapolation

detection techniques unusable, and it seriously affects the stability of dynamic basis

function models.

3. For irregular networks the maxima of the units shift away from the centres, and the

units can reactivate in other parts of the input space. Reactivation, and the resulting

non-localised behaviour of individual basis functions means that the very motivation

behind much of the work carried on local RBF nets, i.e. localised behaviour, is no longer

guaranteed.

4. Normalisation also affects the magnitude of the 'optimal' parameters 8 for a given net­

work. This can subsequently affect the robustness and stability (for dynamic systems)

of the network, depending on the level of overlap before normalisation.

5. The above effects become even more pronounced as the input dimension increases, due

to the larger number of neighbouring basis functions.

While partitioning unity is highly desirable for many modelling applications, these phenomena,

or side-effects, can lead to unpredictable network behaviour. It is therefore important that

researchers and users of local model nets, BF nets or fuzzy systems should consider these

effects when designing both networks and training algorithms, and when interpreting and

validating trained networks.

Future work

It is important that the effect of normalisation be better understood, especially with respect

to the stability of dynamic models built with basis function networks. Many aspects of basis

function nets and local model nets rely on the locality of the basis functions. The results

presented in this chapter may lead to the development of new training algorithms which try

to minimise the side-effects. The significance of the results here should also be noted in the

related fields of fuzzy logic and in the recent models based on mixtures of probability density

functions.

Chapter 4

Structure Identification in Local

Model Networks

This chapter describes a novel constructive structure identification algorithm for

local model networks which gradually adds to the model structure by placing extra

representation in 'complex' areas of the input space. The search for 'complex­

ity' is repeated at ever decreasing scales, as far as the training data will allow.

A new method for estimating ellipsoidal distance metrics for the basis functions

is described. To prevent structural over fitting, stopping and pruning criteria are

developed. Local model structure selection methods are also suggested

Active selection methods which construct a training set automatically are intro­

duced. The algorithms described allow the training set to be constructed in step

with the model structure, selecting the most suitable training data for the given

problem, and available training data.

The algorithms are demonstrated on several static and dynamic test systems.

4.1 Constructive Structure Identification

The structure identification problem was introduced in Section 2.5.3, and the previous methods

were reviewed. As stated, the goal of the structure identification procedure for local model

nets is to provide a problem-adaptive learning scheme which automatically relates the density

of basis functions, the associated local model structures and the size of their receptive fields to

the local complexity and importance of the system being modelled. The aim is to find a model

structure M which allows the network to best minimise the given cost function in a robust

manner. Minimising r(M, 1», from equation (2.20), over the possible model structures leads

83

CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 84

to the 'super-optimal' cost, using a priori knowledge about the process structure 1\,$,

J**(V, 1\,s} = minJ*(M, V).
M

(4.1)

This is a general statement of the problem, and much of the work in the area of structure

identification formulates the task as an explicit search or optimisation problem where the

task is to find the structure associated with the minimum of the given cost function. The

construction becomes a multi-step process: At each step various options are constructed, the

model parameters optimised, and the structure with the best cost-complexity value chosen. The

procedure is then repeated at the next stage of construction. Unfortunately the search space is

usually very large and such algorithms therefore suffer from the 'curse of dimensionality' and

scale up badly to larger problems. This becomes even more acute when multiple search paths

are followed, where not only the best option is chosen at each step, but several of the best

model structures are chosen and used for future steps.

To produce efficient, practical algorithms the following observations about the modelling prob­

lem should be noted:

1. Although highly desirable, the distribution of training data will probably not be directly

related to the complexity of the observed process.

2. The process will probably have varying levels of complexity throughout different areas

of the input space.

3. The training data will not be uniformly distributed, and because of the physical con­

straints inherent to the process being modelled, there will be areas of the input space

which cannot be filled with data.

These points have a number of implications for constructive algorithms for local model nets.

The first point implies that we should consider the local complexity of the process output in the

improvement of model structure, as opposed to unsupervised learning techniques, which only

consider the density of the input data, regardless of the output response. The second point

implies the need for a multi-resolution technique which will find model structure representing

varying volumes of the input space (varying levels of 'locality'). The last point lets us reduce

the volume of the input space we consider for new local models to only points covered by the

available training data.

4.1.1 The constructive approach

The constructive approach starts off with a simple model. The parameters are then estimated,

and the model validated. The validation helps determine the areas of the input space where

the representation is still unsatisfactory so that new degrees of freedom can be added to the

CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 85

model in these areas. This generally leads to a sequence of model structures of increased

representational ability (i.e. increasing degrees of freedom in the model structure, although

sometimes the model structure may be reduced). The basic algorithm for a constructive struc­

ture identification algorithm is therefore:

1. Initialise model struf't.ure using a priori knowledge.

2. Estimate model parameters from training data.

3. Validation (Determine model quality, and where model structure most needs improve­

ment)

4. Improve model structure, if necessary and feasible, given the available data. (Can involve

an increase or decrease in degrees of freedom)

5. Goto Step 2 if validation unsatisfactory.

Constructive techniques which gradually enhance the model representation in this manner have

a number of advantages.

• The network first allocates representation where most needed, according to the complex­

ity heuristic. The main features of a process are captured first, then the details. This is

an implicit style of regularisation, as the model construction process can now be seen as

a gradual increase in variance and decrease in bias. Learning continues until the desired

level of bias-variance trade-off is achieved.

• Modelling accuracy and generalisation ability tend to be improved, as the model structure

is extended as a far as possible to fit the data, while the overfitting protection inherent

to the constructive algorithm limits overtraining.

• A priori knowledge can be introduced in the form of a pool of local model structures,

so that the local model structure best suited to a local area of the input space is chosen.

This automatically creates a heterogeneous model structure.

• The proportion of the available training data used can also be selectively extended during

learning to have a density matching the density of the basis functions, improving the

quality of the parameter estimates, and speeding up the learning process. If there is

insufficient data in certain areas of the input space, the constructive algorithm can be

linked to an active learning procedure which interacts with its environment to obtain

more information.

The constructive procedure is illustrated in Figure 4.1 where the model complexity is increased

gradually for a two-dimensional function approximation problem. The algorithm used to con­

struct this network is the Multi-Resolution Constructive (MRC) algorithm for local model nets,
described in the next section.

CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 86

RMOtution: 0.1887.2 duae.r. R..oUian: 0.1H1, " duet.,. RMoItAon: 0.1011, ,I duitM
0.7

0.9
0 .• o

0.'

0 .• 0.7

0 .•
0.'

0 .•

0.3
0.'

0.2
0.3

0.2

0.1
0.1

~ .. 0 .• 0 .• 00 0.2 0.' 0 .•

.
D.I " :" \; : -. , , '

'.~ .. ~. '

D.I

D.' ..
D.' ' , .. .

" U "," : •
. ;:. ',, :. ,:

. ~. " " . ".~.
~~~D.'~D~'~"'-O~'~D~'~D.I~'~'~~~' ~~~,,~~~~-7~,~I-' ~~~,~'~,,~,~.-J, D~,-7,,~,~ .• ~,.~,~.~,.~.·~·:~~I~·~~~, ~·~,.I~:·~·,~.,~··~ 

Figure 4.1: A gradual approach to constructing a model. The model responses are shown for 
a series of stages in model development , shown by the contour plots of the basis functions. 
The bottom row shows the training data used - note that the set is expanded with the model 
structure. The target function is that shown in Figure 3.9 on page 68. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 87 

4.2 The Multi-Resolution Constructive Algorithm 

This section describes the Multi-Resolution Constructive Algorithm, which differs from the 

existing constructive algorithms in a number of ways. The conventional methods tend to 

basically apply search techniques to find a model structure which minimises the cost-complexity 

functional. The method used here is to use a 'model mismatch' or 'complexity heuristic' to 

indicate the areas of the input space with the worst errors, or greatest complexity and to 

develop the model structure in this area. The options for model structure extension are also 

drastically reduced by restricting the possible positions of basis function centres to be on input 

points in the training set. This leads to a relatively simple method for extending the model 

structure which expends its effort in predicting where new structure would be useful, rather 

than trying out the options and selecting the best of them. The process is described below: 

1. The model starts off with a minimal representation (perhaps only one linear model, 

depending on the state of the a priori knowledge) and searches for 'coarse' complexity. 

It refines the model structure at ever increasing levels of resolution until the desired 

accuracy has been achieved, or the training data has been exhausted. 

2. To determine where to add the extra representation the 'complexity' heuristic is needed. 

This decides where new models should be placed, based on a weighted local statistic 

of the training data, or from measured model residuals. To enforce the gradual nature 

of the approximation the new centres must be a minimum distance dmin from existing 

centres.1 

3. Given the suggested location of the new model centre the desired overlap with neigh­

bouring regions is determined, thus completing the basis function optimisation for this 

stage of the model construction. 

4. If a pool of local model structures has been defined, the best fitting local model for each 

basis function can be chosen by estimating the local model parameters for the new model 

structure and running cross-validation runs. If the receptive field of any given basis 

function has too few units to reliably estimate the associated local model parameters it 

can be removed (and Step 3 is repeated), or the local model structure simplified. 

5. If the model is still not accurate enough, the search for the next most 'complex' area of 

the input space is then restarted. This is repeated until either no further local models 

can be added, or the added models do not bring any improvement, whereupon the scale 

of the 'complexity window' is reduced, and the search is restarted at the finer resolution. 

The details about each of these stages are described in the following sections. 

Idmin is related to the current resolution of search (Twin. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 88 

4,2,1 Scheduling the multi-scale search for complexity 

The search principle is shown in Figure 4.2, where the radial complexity window described in 

Section 4.2.2 is applied at different scales, starting off by searching for coarse complexity and 

refining the search as learning progresses. The resolution of the window lTwi n is reduced by a 

factor of >. each iteration, starting at an initial size of IT max. 

" 
.. , I, • 

,. . '~."' .. . ,' . .:. 
°l=Omax 

. .,-
• I I, • 

. ,''': ~.". : .' . I:: ;:: 
.,' . .: .... ".' . 

",::/:' ::~, ':':'" .', .\"\": .:.', .. ' ,"I'\~ H" '.. '. -,. . ... ,: .:} . . \"", .......... " .. 
...•.. 's'·- ~ ..• :! .... ,: ':.' ., .•.. 

I .... .1 ... :. : I, .. • : .. : 

.. . ..... , -' . 
• ~ : : .... ,,_ .. '.. :.' I, 

I" •• ', .... :.. .. .. " ,I. I 
.. ~!. .. .. .... 0(.. .. ...... 
.. .........:.: ... : ..... :.:, .' 

" .. 0; I' ... ':' .' ." '1 • . :~ ", !.r.......... .......... .. 
.' ,,'~~. " .. : ........ :: i :: 

.. , II" ..... e.-I ...... , ..... 

On=A n- Omax 

Figure 4.2: Multi-Resolution Windowing. The complexity measure is applied at different 
scales, and at each scale lTi the 'window' is centred on points from the training set. The points 
corresponding to the greatest values of the complexity measure are those suggested as new 
centres for basis functions. 

As new models must be a certain minimum distance away from previous models, the input 

space will gradually be filled with basis functions, the density being determined by the current 

resolution. Once no more basis functions can be inserted at this resolution the algorithm 

moves on to the next, finer search stage. To prevent non-complex areas of the input space 

being unnecessarily filled with local models, the search at a given resolution is abandoned if 

over a window of ncutof f successive insertions no improvement in mean cross-validation error 

is made (n cut off = 4 was used for the experiments in this work) . 

Choice of algorithm parameters 

In general, the algorithm worked well on a range of problems without the need to fiddle with 

the parameters . Once the initial model was built, the user could alter parameters to try and 

improve the approx;mation, but the initial results were usually satisfactory. 

The choice of initial search resolution IT max , reduction rate >. and number of window resolutions 

n re • involves the usual trade-offs in parameterisation. A large number of iterations will make 

the process more robust, but also more expensive. Having>. too small, or starting with a small 

O'max will lose the multi-resolution nature of the algorithm, as the resolution jumps from a 

coarse level to a relatively fine window . Setting these parameters to be too large will increase 

the number of iterations and the computational cost. 

The scaling factor "I is used to determine the minimum distance a new centre has to have 

from existing centres dmin = 'YlTwin. This has an effect on the manner in which complexity is 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 89 

increased during learning. The 0' win defines the size of the complexity window being used, but 

if'Y is too small, the gradual nature of the approximation will also be lost, as the algorithm 

will place too many units in the complex areas of the input space (where 'complex' is defined 

for the current level of search), at the cost of other areas. 

The variance in conventional search-style algorithms, such as decision trees, which recursively 

partition the input space comes from the effect of making a non-optimal decision early in the 

construction process which has a serious effect on following stages of learning, as the amount 

of available data has been drastically reduced. This is less of a problem in the multi-resolution 

constructive algorithm because the multi-stage nature of the algorithm brings added robustness. 

From experimental experience, the learning algorithm does not seem to be overly sensitive to 

early decisions, whereas in decision trees this is not so. The variance in network size tends to 

be due to the decision to stop construction at a given level. 

4.2.2 Complexity detection -- where are extra units needed? 

The multi-resolution cluster algorithm uses a 'complexity detection' heuristic to place new 

local models. The heuristic was inspired by the Vector Field Approach to Cluster Analysis 

(Andrews, 1983). Observation 3 above indicates that we should simplify the search task by 

assuming that the training data covers the significant areas of the input space adequately for 

the initial search (an assumption which must be true for any degree oflearning to take place). 

Initially, all training points which are a minimum distance dmin = 'YO'win from existing centres 

are viewed as possible centres Cnew for the new basis function. The centre Cnew E nn., and 

the 'complexity' of the mapping in a windowed area, where p(.) is the windowing function2, 

around this point is measured using 

(4.2) 

where N is the number of neighbouring data points used, fi can be a general error statistic3 , 

but which is often simply 

ei = IYi -- Yil· (4.3) 

The function d(·) is a distance measure. The complexity is estimated by an analogy to the 

concepts of forces acting on a mass in physics. The weighting of the forces depends on their 

associated error statistic (ei). The windowing function focusses the heuristic's attention on 

the level of locality currently being examined. The larger the level of Ftotal, the larger the 

estimated complexity. 

2In this work a Gaussian bell was used, as defined in equation (2.13). 
3If pruning is not used it can make sense to use e; = lAy; lIe;l. where Ay; = 11; -Yeenlre, as this prevents 

the system allocating nodes in relatively simple areas of the input space, purely because the initial windowing 
size is too coarse to capture the finer model structure. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 90 

O""i;:---::--"" _ 

- , 

Figure 4.3: Windowed_Complexity Estimate . The weighting function pC) weights the error 
measures e i at points tPi around the prototype centre. The window function is usually chosen 
such that points further from the centre have less effect on the outcome of the complexity 
estimate. 

The major disadvantage of the complexity heuristic is its computational load. It can require a 

maximum of N 2 calculations of the weighting function and the associated offset for each proto­

type centre. However, as extra basis functions are added for any given resolution, the number 

of potential centres sinks, due to the distance constraint dmin covering a higher percentage of 

the training points. This means that the search for complexity gets faster as the model grows . 

The computational effort can also be reduced by limiting the search by using only a subset of 

the training data as potential centres by applying active selection . Hierarchical decomposition 

of the input space also limits the number of data points under consideration, as described in 

Chapter 5 . 

4.2.3 Overlap determination 

Given a set of basis function centres we need to define the basis function widths u, which 

determine the level of overlap between neighbouring local models. When basis functions are 

used where centres can be distributed unevenly throughout the input space finding the 'correct' 

degree of overlap is a difficult problem . The conventional method is to set the radius (J"j 

proportional to the average distance of the k nearest neighbours from the centre Cj, 

( 4.4) 

In many cases this will be unsatisfactory, as the immediately neighbouring units could be widely 

varying distances apart in different directions, meaning that the resulting level of overlap with 

the neighbouring basis functions would vary greatly. Too much overlap leads to problems 

with poor estimation and singularities in the regress ion process. With too little overlap and 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 91 

normalisation the mapping loses smooth interpolation between local models, and the behaviour 

further away from the centre becomes unpredictable, because of the interaction with other 

basis functions. In Section 3.1.1 it was shown that the condition of the design matrix is highly 

dependent on the level of overlap between basis functions. More powerful distance metrics 

such as the ellipsoidal distance metric in equation (4.5), where CTj is a positive definite square 

matrix, as in (Poggio and Girosi, 1990, Roscheisen et aI., 1992) can be used to provide more 

flexible basis functions 

- 1- IT -11- I d(q,jcj,O'j)= q,-Cj CTj q,-Cj, (4.5) 

which potentially allow a more even level of overlap with the neighbouring units. The overlap 

optimisation problem is therefore to robustly determine the matrix CT for each basis function 

from the distance of the neighbouring units. 

Use of a 'covariance' heuristic 

To make a fast estimate of CT j, a heuristic is used which calculates the 'covariance' of the set 

of centres Cn surrounding the chosen centre Cj (which serves as the 'mean' in the calculation). 

The inverse of the 'covariance' estimate can then be used to define the distance function, as 

used in equation (4.5): 
(4.6) 

where En is the expected value over the set of chosen neighbouring centres Cn • The results of 

this technique are shown in Figure 4.4. 

The problem with this technique is that we are interested in estimating the distance to the 

nearest neighbours in all directions around the centre. It is not sufficient to take the k nearest, 

as they could all be in the same area. To avoid this, the algorithm demanded a minimum angle 

between neighbouring centres before they were included in Cn to be used for the covariance 

estimate, as shown in Figure 4.5. 

Spherical, ellipsoidal or axis-orthogonal ellipses? 

The ellipsoidal basis functions demand an extra n(n2+1) free parameters, and the variance inher­

ent in this increase in parameterisation is not trivial. To reduce the variance we used singular 

value decomposition (SVD) to determine the inverse of the 'covariance' matrix CT. This allows 

us to apply simple regularisation ideas to the distance metric by altering the singular val­

ues, and thus reducing the degrees of freedom in the final distance metric. In our experiments, 

however, we found that the minimal improvement in performance compared to the simple RBF 

net was usually not enough to justify the use of fully parameterised ellipsoidal distance met­

rics. More restricted axis-orthogonal elliptical basis functions, where CT is a diagonal matrix, 

can be easily derived by only considering the diagonal terms of the covariance matrix. The 

use of these simplified distance metrics tended to lead to networks with higher accuracy and 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 92 

0.5r------- _ -------, 

0.' o 

0.3 

0.2 

0.1 

" .1 

" .2 o 

... > 0.5 

.() .. 

.. ~IL,-.5--------7"-------=O. 5 .(l.S .(l.S 

(a) Neighbouring cent res (b) Basis Function 

Figure 4.4: Using the 'covariance' measure to determine the basis functions' size and orienta­
tions. Neighbouring points are found and the desired overlap is estimated. 'x' is the centre of 
the unit being adjusted , and the '0' points are the centres of neighbouring units. The surface 
plot on the right shows the shape of the resulting basis function. 

Figure 4.5: Eliminating centres with a common direction. The neighbouring points are used 
to define a 'covariance' matrix which is used to determine the overlap between neighbouring 
units. Neighbours in the same direction are ignored . 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 93 

better generalisation . Figures 4.6 and 4.7 show the contours of the basis functions found for a 

two-dimensional problem with the given centres, using the three styles of distance metric with 

and without normalisation. Note from Figure 4.7 that when the basis fun ctions are normalised , 

0.7 

0.' 

0 .5 

0.' 

::~ 
0 .1 

o 

0.' 0.1 

::~ 0 .3 

0.' 

0.1 
o 

~~--~02~~0~.---70.1~--~~~ 

Figure 4.6: Radial , Ellipsoidal and Axis-orthogonal ellipsoidal basis functions. Contours are 
drawn at a level of 0.5. 

there is often little difference between the various options . 

Figure 4.7: Normalised Radial, Ellipsoidal and Axis-orthogonal ellipsoidal basis functions. 
Contours are drawn at a level of 0.5. 

T he heuristic method described in this section could be seen as a fast initialisation routine, 

which could be further optimised by iterative gradient techniques , as in (Poggio and Girosi, 1990) . 

4.2.4 Preventing overfitting 

The problem of differentiating between errors due to noise on the training data and errors due 

to bias caused by an inadequate model structure is often a difficult one. Overfitting is the 

result of extending the structure so fa r that noise is learned , instead of system structure. In 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 94 

Section 2.5.1 we discussed ways of reducing the variance in the parameter estimation phase. 

It is also possible to reduce variance by limiting the model structure, which can be done by 

stopping growth, pruning structure, or careful selection of local model structures. 

3topping model growth 

A simple constraint on the structure identification algorithm is to require a minimum number 

of data points within the receptive field of a given local model for it to be considered viable, 

i.e. only if Ptotal/ > Nmin, where Nmin is the minimum number of training points needed and 

N 

Ptotal/ = L: PI (4)i) (4.7) 
i=l 

is a heuristic 'count' of the local data points for smoothly overlapping basis functions. Nmin 

is dependent on the level of noise on the data and the complexity of the local model. The local 

model structure selection criteria described in Section 4.2.5 uses this style of data count to 

encourage the algorithm to choose simpler models when data is sparse, and stopping growth 

can be viewed as the extension of this local structure selection to the case of preferring no 

increase in model structure to other model structures. 

Pruning techniques 

Further pruning techniques, which merge neighbouring local models if their parameters are 

similar enough, have also been successfully applied to simplify the networks. These rely on the 

use of local learning techniques, as described in Section 3.1.2, to ensure that the parameters 

have a strictly local interpretation. 

The distance between the local model parameter vectors is then calculated c5i/c = lei - 81c1 , 
and the most' similar min6i j, i,j = l..nM local models were merged into one, and the new 

basis function centred between the old ones. 

The pruning algorithm can be applied during the constructive process, not just at the end of it. 

When the algorithm moves to a finer level of resolution the pruning stage is started, redundant 

models are removed, and only then are new models added. 

4.2.5 Local model structure selection 

The structure optimisation extends also to the model structures of the individual local models. 

These need not be homogeneous, the user can define a pool of possible local models which can 

then be inserted into a given operating regime, with the 'best' one being chosen. This would 

allow a more robust fitting of models to operating regimes, taking the amount of data and the 

local process complexity into account. Such a cost-complexity functional is 

J(Mi) = li 

(1 ...1!.!:L) 
Plolo/; 

(4.8) 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 95 

where {i is a statistic such as mean squared error, as defined in equation (3.30) and the 

( 1 -~) part is a GCV penalty term, where Pi represents the number of parameters in 
pta"a'i 

local model structure Mi. fJ, (0:::; fJ < I), is a factor which can be related to the level of noise 

in the training data. 

The resulting local model net will be a heterogeneous structure, as shown in Figure 3.7 where 

each local model could be different. If all local models are linear in the parameters, the standard 

global optimisation techniques remain valid. This will be true in the most straightforward 

example of heterogeneous LMN's, where the local models are linear, but with varying dynamic 

order. If some local models require nonlinear optimisation techniques, the heterogeneous local 

learning methods described in Section 3.1.2 can be used. 

4.3 Active Learning with Local Model nets 

As mentioned in Section 2.2.2, interest in active learning has grown in recent years. Local 

model networks are well suited to the application of these techniques for a number of reasons: 

In local model nets where the local models are linear in the parameters, a number of existing 

statistical methods for linear systems can be applied at local level, reducing the computational 

load in a similar manner to the local learning techniques described in Section 3.1.2. The basis 

functions give a clear indication of the data points related to any given local model, so that 

areas with insufficient data can be easily identified. The methods described in Section 3.2 for 

estimating the local confidence in the network for any given unit can be used to guide the 

search for new training data, collecting more in areas where the model has poor confidence in 

its accuracy. 

Confidence estimates can be linked with Experiment Design techniques to produce the 'optimal' 

sampling of the input space for a given regression problem (Fedorov, 1972). This is done by 

adding samples where the uncertainty in the model is greatest. The experiment design frame­

work has recently been applied to networks with a structure identical to local model networks 

in (Cohn et al., 1994). If local basis functions are used, this is obviously an improvement 

to the general experiment design philosophy, as the locality can be used to better determine 

regions of low confidence, and to select new areas for sampling. 

4.3.1 Active selection of training data in Local Model Nets 

In many learning problems, there is a large number of data points present in the training 

set 'D, but often most are in 'uninteresting' areas of the input space. Such areas are often 

straightforward to model because they are usually the setpoints of the system, where control 

is most accurate, and it makes little sense to have such a large proportion of the training data 

representing such simple areas of the input space. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 96 

It is important therefore to reduce the training set V to a V opt , where the 'optimal' training set 

depends on the current model structure and a cost-complexity functional to weight the relative 

importance of residuals, costs of expanding the data set and computational effort. This should 

lead to a more computationally tractable optimisation process with a more information-rich 

training set. 

Selecting from Local Training Sets 

An active selection algorithm for use in conjunction with the iterative constructive algorithm 

was developed. The method selects a given number of training points from the full data set 

randomly from the receptive field of each local model. The points are deemed to be within the 

local model's training set 1)i I if the activation of the model's basis function is above a specified 

minimum activation level C, i.e. 

,pE1)i, if Pi(d(~;Ci'O"i»>C. (4.9) 

The global training set 1)opt is then created by reducing the subsets Vi, i = l..nM and com­

bining the reduced subsets (the 1)iop,). There is a variety of methods which can be used to 

find the optimal local training sets. The simplest is to randomly select training data from the 

local set Vi. A slightly more sophisticated method is to weight the probability of a point's 

inclusion by the associated value of the basis function Pi (d«(j)j Ci, (Ti)). The size of the local 

data sets depends on the expected noise level in the data and the complexity of the associated 

local models. 

The process is illustrated in Figure 4.8. Two models were allowed a maximum number (N = 
500) of training points to learn from. One had only the 500 points, and used all of them. The 

other used an active selection system to choose its points from a training set of 5000 (for the 

experiment Nmin = 30), but was allowed no more than 500 at anyone moment. The system 

trained using active selection performed better on a uniformly distributed independent test set 

of 1000 patterns. 

Unevenly distributed training data 

Unevenly distributed training data is a common feature of real industrial processes which 

are often relatively simple around the normal operating conditions, where most of the data is 

collected. The process often becomes increasingly complex as the operating point moves away 

from the given setpoint, and because such areas are harder to control, the process spends less 

time in them, and there is less data available for training. The importance of not just using the 

given distribution of data to model the target process is shown by the example in Figure 4.9, 

where the data is distributed most heavily in a relatively simple area of the target system. The 

data had additive normally distributed noise with a variance of 0.02. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 97 

(a) Response- Trained with fixed train­
ing set 

(d) Response - Trained using Active 
learning 

.... 
0.' 

;' ... 
.. I • " . '\ . .' . . 

0.8 • '<: :',.. :. . ..... . 
0.7 • ' " .. ' : •• ~ •• • '. • . .. : ....... " . . ,,: 
0.8 •• : " • ' : " : : . ~ : • • .'. • 

'. '.,-.. ... 
",-, 

0 .4 :".: • ': .' ':: .: ....... ~:= '. ,"': .. 
0.3 ' : •. ' .. .. ,' .: • • ,',. ., . : <. . 
02 .' ,:" • . ... • '. " ~ .. ':'. . 

" .: '. : •.. ~ : .. ~ . . ' 
0 .1 • .. ' :" '\ ':. 

o • ,:....,' .: I ": 
0.2 0.' 0.' 0.' 

(b) 500 Training Data 

. .... : 
0.' • 

.. '., ' 
0.' . :. ~ . 
0.7 

0 .• 

0.' 

0.' 

D .• 

... ' . ...... 

0.2. ':', 

0 1 • • • . . '" 
00 D .• 

:' .. : 
" . ... ,' . 

' . 
:-. .. . .... . 

.. ' " ::: \" 
" y"~. ; :~:: . :,;':: 

: <':-: >~y/.::: ... 
0.' oe 0 .• 

(e) 500 Training Data 

(c) 57 Basis Functions 

0.' 0.' 0 .• 

(f) 62 Basis Functions 

Figure 4.8: Active Selection and Random Selection of the same number of training data. Target 
function is shown in Figure 4.16 on page 106. Both algorithms could use only 500 points at 
any given stage of learning. The active selection algorithm, could however choose its 500 from 
a total set of 5000. Active learning had mean error 1.99%, worst of 59.6%. Fixed data set had 
a mean error of 2.27% and a worst error of 96 .5% (results from a randomly distributed test 
set of 1000 points.) 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 98 

(a) Model Response - Trained with 
fixed training set 

o 0 

(d) Model Response - Trained using 
Active learning 

(b) 1000 Training Data (c) 80 Basis Functions 

(e) 742 Actively Selected 
Training Data 

(f) 49 Basis Functions 

Figure 4.9: Use of active learning to cope with training set distributions which are not related 
to the process complexity. The active learning system produces a model structure more suited 
to the local complexity of the system than the model produced using the larger fixed training 
set, which has concentrated its structure on the area of the input space with greatest data 
density. Target function is that shown in Figure 3.9 on page 68 . 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL, MODEL NETWORKS 99 

Adding randomly selected patterns 

One danger of using constructive algorithms with active learning is that the trained model can 

become very 'narrow-minded', and dependent on the initial conditions. If the initial training 

data or model structure is biased towards one area of the input space, the constructive algorithm 

will start to develop there. Due to the more complex model structure in that area, the system 

will demand more local data, allowing it to develop even further, eventually becoming 'locked­

in' to that one aspect of the process, ignoring other equally complex areas of the input space. 

To make the active selection process more robust, a set of NranJ. data points Vr was selected 

randomly from the whole training set V, regardless of process complexity or model structure. 

nM 

'Dopt = U Vjopt U Vr 
i=l 

(4.10) 

The use of such active selection schemes speeds up the training process and the new distribution 

of the training points can improve the robustness of the training process. The fact that the 

training set is changed after each iteration also tends to make the structure identification 

algorithm more robust, as poor structure which by chance was well suited to one set of data 

will be discovered at the next iteration when the data set changes. 

4.4 Illustrative Examples 

In order to evaluate the use of the new cor .::tructive techniques described in the previous 

chapters we use a variety of test systems to illustrate the algorithm's strengths and weaknesses 

and we compare the algorithms with competing methods. 

The robustness of the constructive algorithms and the parameter estimation routines can be 

verified using cross-validation techniqups. For the cross-validation experiments in this thesis 

a 5-fold cross-validation is used to measure robustness of learning algorithms. This means 

that the model is trained 5 times with 80% of the data randomly chosen as the training set 

and tested each time on the remaining 20%. The quality index used to determine the model 

performance trained on the training set Vj was the average absolute error from each pattern p 

in the associated test set 'Ti • 
1 N 

Eab.; = N L IYp - 1/pl· 
p=l 

Also important is the worst error found in the data set, 

(4.11) 

(4.12) 

The cross-validation results are then found by taking the mean and variance of the results from 

the set of training sets. 
1 J 

Emean = 7 EEj • 

j=l 
(4.13) 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 100 

and 
1 J 2 

E tJar = f t; (Ei - Emean) , ( 4.14) 

where f is the number of 'folds' in the cross-validation process. If there is a high variance in 

the error produced on the training set over the various folds, it implies that there are some data 

patterns which map to a complex surface which the model is unable to represent. This could 

be due to disturbances, or simply to an inadequate sampling of the input space. If, however, 

the errors produced on the test sets vary greatly, and the errors on the training set do not, it 

implies that the architecture chosen is over parameterised (too powerful) for the given training 

set. The cross-validation results therefore give us an estimate of the robustness of the learning 

algorithms' models in the experiments. 

The interpretability of trained networks is discussed in Section 6.3.4. It is difficult to determine 

whether a model is parsimonious or not, if little a priori knowledge about the system is avail­

able. One method is to apply pruning techniques to the model, as described in this chapter, 

and to observe the effect on the model accuracy. The consistency of an algorithm is easier 

to validate, as the same problem can be attacked with increasing amounts of data, and the 

resulting models compared. 

4.4.1 Static examples 

Unless otherwise stated, the MRC algorithm was used to create local model nets. Training was 

global, the initial window size was O"maz = 0.2/2, ,\ = 0.6, nre• = 5, "y = 'l- and Nmin = 15n.p, 

TJ = 0.02, Nde. = 1.5Nmin, Nrand = Nde •• Basis functions were normalised. 

Mars 

This is a benchmark from the non parametric statistics literature, used in (Gu et al:, 1990, 

Friedman, 1991). 

2 exp (8 [(x - 0.5)2 + (y - 0.5)2]) 

Z = exp (8 [(x - 0.2)2 + (y - 0.7)2]) + exp (8 [(x - 0.7)2 + (y - 0.2)2)) 
(4.15) 

It is typical of a smooth nonlinear function, which should be relatively easy for a learning system 

to model. It is a collinear function (where the nonlinearity is dependent on linear combinations 

of the input dimensions), which makes it more difficult for methods which partition the input 

space orthogonal to the axes of the input space. 

To give an impression of the effect of the noise on the training set, the 300 pattern training sets 

are plotted for the 2-dimensional benchmarks, with and without noise (normally distributed, 

variance = 0.02). The target tolerance 1] was set to 0.005 for noise free examples, and 0.02 for 

noisy data. 

The response of Local Model Network trained on the Marsl data is shown in Figure 4.11. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 101 

0.8 

0 .6 

0 .• 

0 .2 

o 0 

(a) Marsl training data 

0 .• 

o 0 

(c ) Marsl function 

0.8 

0.6 

0 .• 

0.2 

o 

-0.2 
1 

'0 ' .: • • 

0.8 

. ., ,:.0 . . . 
.;" .: ... . \. 

o 0 

(b) Marsl noisy training data 

Figure 4.10: Marsl test function and 300 training points . z axis is vertical. x and yare right 
and left respectively. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 102 

0.8 

0.6 

0.4 

0.2 

o 
1 

0.8 

0.6 

o 0 

(a) LMN Response nre. = 5, >. = 0.6,1) = 0.005 

o 0 

(c) LMN Response on noisy data nr .. = 5, >. = 0.6,1) = 0.02 

(b) LMN with 11 ellipsoidal Basis 
Functions. Contours are drawn 
at 0 .5 

(d) LMN Basis Functions for 
noisy data. Contours are drawn 
at 0 .5 

Figure 4.11: Resulting LMN responses for mars1 benchmark (300 training points) using global 
learning. Note the effect the noise has on the smoothness of the approximation. This is due 
to the model structure extending too far, in an attempt to model the noise . Compare to the 
network response for the locally trained network in Figure 4.12. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL. MODEL NETWORKS 103 

0.8 

0.4 

0.2 

o , 

o 0 

(a) LMN Response on noisy data nr •• = 5,'\ = 0.6,1) = 0.02, using 
local learning. 

(b) LMN Basis Functions for 
noisy data. Contours are drawn 
at 0 .5 

Figure 4.12: Resulting LMN responses for mars1 benchmark (300 training points) using local 
learning. Note the far smoother response than that of the globally trained network in Fig­
ure 4.11. 



CHAPTER 4. STRUCTURE IDENTIFICATI ON IN LOCAL MODEL NETWORKS 104 

)( 10-3 Training aV9fage Training worst 
6 0.025 

.----
.----

0.02 .--r-

4 r-.-- 0.01 5 
r- r- -

2 

0 

1 n 0 

0.0 

0.005 

o o 

X 10-3 Test average 
8 

Test worst 
0.025 

6 r-
.----

r- r-
0.02 

r-
0.0 1 5 

4 r- .----

2 In 
0 

1 

In 0 

0.0 

0.005 

o o 

(a) Mars! problem, 300 t ra ining points and local 
models 

10 -l Training average 
1.5 

X Training worst 
0 .015r----- ___ ~ 

r-
1 r- 0.01 

r- r- r-

o. 5 

a 

x 1 O~ T •• t average 
1 . 5 

T.at worst 
0.015,---------, 

.--
r-

1 r- 0.01 
r- .--

o .5 

a a 

(b) Mars! problem, 1000 training points and local 
models 

Figure 4.13: Cross-validation results fo r Local Model Net on noise-free Mars example. Error 
decreases with the increased amount of t raining data. 

Training average 
0.1 

0.08 -
0.06 

~In 
- .--

0 

0.04 

0.02 

a 

T861av ... ge 
0.1 5 

.--
- ,--1 o. 

.--

0.0 5 In 
0 

Training worM 
0.06.-----=------., 

0.06 

0.04 

TMI_ 
o. 1 

,--
0.06 

0.06 .--
c-

In~ 
0 

0.04 

0.02 

(a) Mars! problem, 300 training points a nd MARS 
a lgorith m 

0.05 

0.04 

0.03 

0.0 2 

0.0 1 

a 

0.05 

0.04 

0.03 

0.02 

0.0 1 

a 

,--

.--

c-

,-
c-,--

-
.--

r-

Training woral 
0.04 

.--
0.03 

0.02 
r- ,--,--

0.0 1 In a 

0.04 
.--

0.03 
.--

r-
0.02 .-- r-

0.0 1 

a a 

(b) Mars! problem, 1000 training p oints and 
MARS a lgor ithm 

Figure 4.14: Cross-validation results for MARS algorithm on the noise-free Mars example. 
Note that MARS performs worse on t raining and test measures than the Local Model Net, 
and there is less similarity in the results for t raining and test runs than there is with the Local 
Model Nets. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCA L MODEL NETWORKS 105 

0.6 

0.5 

g 
" 1l .. 
fij 
~ 

10° r----.---.----,---~----._--_.----r_--_r--_. 

10- ' 

10-2 

lO-' L----'-----':-----7-------"-----':----'------'----'------.J 
o 4 6 8 10 12 14 16 18 

number 01 models 

(a) LMN Learning curve. Note the glitches towards the end 
of learning, where the network prunes units with insufficient 
training data. 

MARSr._ 

o 0 

(b) MARS Response on clean data (c) MARS Response on noisy data 

Figure 4.15: MARS response to mars! function, trained with 300 data points 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCA L MODEL NETWORKS 106 

Squiggle 

This benchmark has several aspects: the influence of y is as a linear multiplication, whereas x 

has a highly nonlinear behaviour. The nonlinearity is also of varying complexity, having very 

high frequency components at large values of x, and changing very slowly in the middle. 

z = (y - 0.5) sin (101l'x sin(x - 0.5)3) (4 .16) 

0.5 

" ' : 

N 0 

. . 
: ", ... . • • • ; .•• • f. • 

. . :.: :.~:~~.: .. ~: .. ;~::): ': .~ : .. ::~ ~L :~.> ::': .. 
-0.5 

o 0 

(a ) Squiggle functi on (b) Squiggle training data 

Figure 4.16: Squiggle test function and 300 training data points 

This is an extremely difficult benchmark for most learning systems. Because of the ext reme 

variation in complexity it shows the necessity of intelligent construction of the training set for 

such systems, using either experiment design techniques, or active learning . 

The MARS algorithm performs very well on the Squiggle function, because the nonlinearity 

is axis-orthogonal, and the function is only highly nonlinear in x, and MARS strength lies in 

its ability to separate important inputs from unimportant inputs when developing the model 

structure. Other axis orthogonal schemes such as LSA (Johansen and Foss, 1994b) produce 

similar results , and it would be expected that ASMOD would also work well on this example. 

Rotated Squiggle 

To show the disadvantage of axis-orthogonal representations, however, all we have to do is 

rotate the function. In this case it has been rotated by ~ radians. The rotated squiggle 

function and various responses are shown in Figure 4.19 . T he mean absolute error for MARS , 

trained on 1000 points was 0.0237 (used 64 basis functions). LMN achieved a mean error of 

0.0043 with 62 local models (with ellipsoidal distance metrics) . 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 107 

0.5 

o 

-0.5 
1 

0 .0 5 

0.004 

0.0 3 

0.0 2 

0.0 1 

0 

O. 1 

0.0 8 

0.06 

0.004 

0.0 2 

(a) LMN Response 

Training average Training ...,.., 
0 . 8~--~-__ ~ 

r-
r- -

0.8 
r- r-

rest average Toot...,.., 
1.5.----------, 

-

r-r- ,...-r-

(c) Squiggle problem, 300 training points and 
Local Model Net 

(b) LMN Basis Functions. Contours 
a re drawn at 0.5 

TrUlIng ov __ 

0.02r----=----=--~ 

0.015 

0.01 

TMlov __ 

O.Oo4r-------=---, 

0 .03 

0.02 

0.2 5 

o. 2 

0.1 5 

'n 0 

o. 

0.05 

o 

1.5 

Training_II 

r-
,...-

r-
r-

(d) Squiggle problem, 1000 training points and 
Local Model Net 

Figure 4.17: Resulting LMN for Squiggle benchmark (1000 training points), with 38 axis­
orthogonal ellipsoidal basis functions and global learning. Compare with MARS response in 
Figure 4.18 which is very close to the original function . The LMN for the noisy data had 
Nmin = 30, instead of 15, and 7J = 0.02 instead of 0.005 for the noise free case, which lead it 
to produce a good model with 30 local models. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 108 

o 0 

(a) LMN Response on noisy data 

o 0 o 0 

(b) MARS Response on clean data (c) MARS Response on noisy data 

Figure 4.18: MARS responses and LMN response on noisy data. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 109 

o 0 

(a) Rotated Squiggle function (b) MARS Rotated Squiggle response 

o 0 

(c) LMN Rotated Squiggle response (d) LMN Rotated Squiggle response 

Figure 4.19: Rotated Squiggle responses. Note the difficulty MARS has in comparison with the 
original Squiggle benchmark, due to the non-axis orthogonal nonlinearity, whereas the LMN 
copes well with the change. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 110 

4.4.2 Dynamic systems 

The static examples above are interesting test cases for constructive algorithms, because they 

can be easily visualised, and as they are synthetic, data can be easily created with varying 

degrees of noise. They are, however, not high dimensional and the uniform data distribution is 

also not typical of modelling applications for dynamic systems. One major difference between 

static and dynamic systems is that in the static case the input dimension of the problem is 

known, whereas in dynamic systems this is not necessarily the case. In the modelling examples 

in this thesis the learning algorithms do not identify the order of the system, the user defines 

it before learning starts. 

Measuring model quality for dynamic systems 

A straightforward measure of network accuracy is the one-step-ahead prediction measure, where 

previous system inputs and outputs are fed to the model, which should then predict the system 

output at the next time step: 

(4.17) 

where 11 = !(1fJ), and 1fJ = [YIc-lI •• " YIc-n, UIc-lI ••• UIc-n]. It is obviously important to com­

pare the errors produced at each stage with the expected change in the output between samples. 

If the sampling rate is too high, the learning system can have difficulty in learning the sys­

tem's dynamics. In practice, unless interpreted carefully, the one-step ahead method can give 

misleadingly good results for a model which in reality is a poor representation of the process. 

A more realistic test of the system's modelling ability is to leave the model free-running over 

a horizon of h steps, with its own output states being fed back and to see whether the model 

reacts in the same way as the target system - the Multiple-step-ahead prediction test. 

1 N-hm+h 

Em.h = N _ h L: L: (Ylc - YIc)2 , 
m=llc=m 

where 11 = !(1fJ), and 1fJ = [Y1c-I, ••• , YIc-n, UIc-I,'· .UIc-n] 

Nonlinear time-series example 

A two input one output nonlinear system is described by the following equation: 

y(t) = [0.8 - 0.5 exp( _y2 (t - 1))] y(t - 1) - O.lsin(lI'y(t - 1)) 

+ [0.3 + 0.9 exp( _y2 (t - 1))] y(t - 2) + e(t), 

(4.18) 

(4.19) 

(4.20) 

where e(t) is zero mean Gaussian noise, with variance 0.01. The inputs x(t) = [y(t - l)y(t -
2)], and the output is y(t). The response surface for the function without noise is shown in 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS III 

0.6 

-0.6 

- 1 

-1.5 

Y(I- 1, 
y~-2) 

(a) Target function 

Training data 

~L-----0~.2~--~D.7.--~~0~.6~---70.8~--~ 

(c) Training Data - 1000 examples 

0.9 

0.1 

0 .7 

0.8 

0.5 

0 .• 

0.3 

02 

0.1 

0.9 

0.8 

0.7 

0 .8 

0 .5 

0 .• 

0.3 

0.2 

0.1 

~L-----0~.2~--~0.~. ----~0~.8~--~0.78 ----~ 

(b) Target Phase portrait (norma lised 
to same range as experiments) 

Training ell,. 

.' . . " 

' . . : 
,' : . 

.. .. 

• 0 ° • 
; . . 

°0~--~O~.2~--~0.-.--~~0~.8----~0.-8----~ 

(d) Training Data - 200 examples 

Figure 4.20: 4.20(a) Time series function response. Figure 4.20(b) Phase portrait . Fig­
ure 4.20(c) and Figure 4.20(d) are noisy data sets. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCA L MODEL NETWORKS 112 

Figure 4.20. The time series represents an unstable equilibrium, enclosed by a stable attracting 

limit cycle. This process has been used in (Chen and Billings , 1992) and (Harris et aI., 1993). 

Two sets of experiments were performed with the given data, one with 1000 points, as used in 

(Harris et al., 1993), and another more difficult case, where only 200 training points were used. 

To test the results a free- running simulation was used , where the model was given the initial 

value [0.1 , 0.1] . The results of the 1000 set experiments are shown in Figures 4.21 and 4.22. 

Both locally and globally trained models capture the essential dynamics of the process. The 

-- -_ .. 
0 .' 0.' 

o. o. 
0.1 0.' 

0.< 

0.' 

0' 

01 

y(1- 2) ~~~0~.2--~0.~' --~0~'--~0.'~~ 0.2 O. O' 

(a) Model Response (b) Test run (c) Basis Functions 

Figure 4.21: Time series model. Local model net with local learning, trained on 1000 examples. 

-,- - ...... _ F..-.. 

y(t-2) 

0.' o. 

IT? ~~\ l .. :·;··::::·: .1 0; 

~.:J ::1 
01 ( 

0~0---0~2~~0~' --~0~'--~0.'~~ ~~--~»~~o.~. ~~o~.--~o.~~ 

0.' 

0.1 

o. 
0.' 

0.' 

0' 
02 

0. ' 

(a) Model Response (b) Test run (c) Basis Functions 

Figure 4.22 : Time series model. Local model net with global learning, trained on 1000 ex­
amples. Note the smoother approximation of the locally trained model. 

process is modelled with a small number of basis functions, compared to the work reported 

in (Chen and Billings, 1992) , which used over 30 basis functions to approximate the same 

problem. Note, however , the difference in the phase portraits between the locally and globally 

trained systems. The local method produces a far smoother model. The results from the more 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 113 

-,-

"""1 
,~-2) 

(a) Model Response (b) Test run (c ) Basis Functions 

Figure 4.23: Time series model. Local model net with local learning, trained on 200 examples. 

-,- - ...... _F_ 
... 
•• 

I 

• . 1 
. ,, ' 

... 
•• •.. ,'" 
• . 3 

• . 2 

" . , . • ..• •.. . .. . .. 
(a) Model Response (b) Test run (c) Basis Functions 

Figure 4.24 : Time series model. Local model net with global learning, trained on 200 examples . 
The locally trained model still approximates the process well, while the global method does 
not provide a stable solution. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 114 

difficult 200 point problem are shown in Figures 4.23 and 4.24. The globally trained model 

in Figure 4.24 proved to be unable to produce a robust free-running simulation, because of 

the poor generalisation. This is also visible in the form of the response plot, which is highly 

variable outside the area covered by the training data. This problem with robustness in a 

free-running simulation is one which is of great importance for the practical use of dynamic 

models, but which has been often disregarded in the literature, as Lhe accuracy of models is 

often evaluated only on one-step-ahead prediction tests. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 115 

4.5 Conclusions 

4.5.1 Structure identification in Local Model Networks 

The new Multi-Resolution Constructive (MRC) structure identification algorithm proposed in 

this chapter has a number of advantages. The procedure is relatively fast, and automatic­

ally determines its own structure for a given modelling problem. The complexity detection 

heuristic performs well at allocating resources to the more complex areas of the model's state­

space, although it is likely that more efficient ways can be found of implementing the basic idea. 

The algorithm also limits overfitting by the simple but very effective method of gradual con­

struction, stopping structural growth in areas which are not sufficiently populated by training 

examples. Pruning methods which compare neighbouring local models' parameters to detect 

overparameterisation were also successfully used. 

A new algorithm for determining the size and shape of the basis functions was developed. It is 

based on a 'covariance' measure of the surrounding centres. Radial, axis-orthogonal ellipsoidal 

and fully ellipsoidal basis functions were used. The axis-orthogonal ellipses tended to produce 

the most robust models. From the experience in this work, the algorithm works well for 

relatively low dimensional problems, but becomes less robust with increasing input dimension. 

It is interesting that the algorithm, despite its relatively simple search technique can model 

some extremely nonlinear systems better than other more sophistica.ted algorithms, such as 

MARS. This reflects the representa.tion of the nonlinearity inherent to the competing model 

structures. Axis-orthogonal structures such as LSA, MARS or ASMOD produce better and 

more interpretable models for some systems, whereas MRC produces better models when the 

nonlinearity is at an angle through the input space. 

The dependence on the training data of the MRC algorithm, is both a strength and a weakness 

of the algorithm. From experience, the MRC algorithm tends to perform poorly at ignoring 

unimportant input dimensions, but the computational effort does not increase exponentially 

with input dimension, meaning that the problem can still be used usefully on higher dimensional 

problems. The increase of computational effort with the amount of training data can be 

controlled by using the active selection techniques described in this chapter. 

The disadvantages of the limited amount of feedback4 in the MRC algorithm become more 

obvious when noisy data is used, especially when the data distribution is skewed, as the 

algorithm tends to fit model structure in the wrong areas of the input space. Local learning 

proved to be a remedy for some of these problems, performing well with the noisy systems. 

Future work 

The structure identification problem is far from solved, and this should remain a major research 

area in machine learning in the near future. The problems with the methods described in this 

"Here the feedback discussed is the effect of the new model on the cost-complexity measure. 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 116 

chapter are that they tend not to cope well with a. la.rge number of relatively unimportant input 

dimensions. 

The criterion for stopping construction is not particularly robust, especially when local learning 

is used, and it seems to be the main source of variance in the algorithm's performance. The 

effect of changing the reduction schedule for the multi-resolution complexity 'window' is still 

not fully understood, leaving too many 'fiddle factors' (the values used in this work, however, 

proved to be reasonably general, working well on a variety of problems). It also indicates 

the need for hierarchical structure identification, which as learning progresses, revises earlier 

structure decisions, producing a more parsimonious, robust and interpretable model. 

Local Controller Networks are the obvious generalisation of Local Model networks, where the 

local functions can be viewed as controllers, instead of models. The framework is clearly similar 

to gain scheduling in conventional control (Shamma and Athans, 1991), and has recently been 

described as the use of Heterogeneous Control Laws in (Kuipers and Astrom, 11:)94). The 

methodology could, however, benefit from the use of structure identification algorithms such 

as MRC to automatically place the controllers. In the linear case, the transfer from local 

model to local controller is easiest to imagine: The local model network for a given system 

could be created, and the corresponding local controllers then created using conventional linear 

design techniques. A global nonlinear controller is then the result of the interpolated linear 

controllers. It would seem that locally trained iocal models are better suited for the creation 

of local controllers, due to their local interpretability. 

Initial experiments have shown the structure to be well-suited for classification purposes. The 

work will be published in a future paper. 

4.5.2 Active learning 

Active learning was easily introduced to the local model networks. The algorithm described 

in this chapter for active selection of important data from the training set, in conjunction 

with the constructive structure identification algorithm was found to make the learning process 

more efficient and in some cases led to more accurate models. Active selection also lets the 

constructive algorithm cope better with non-uniformly distributed training data. The local 

nature of the basis functions makes the task of selecting the new inputs easier than with other 

archi tectures. 

The improvement gained by using active learning, in speed and accuracy is demonstrated again 

in Chapter 6. 

Future work 

The extension of the automatic modelling methodology to the unsupervised automated creation 

of training sets is an important goal, but for industrial applications there are still many practical 



CHAPTER 4. STRUCTURE IDENTIFICATION IN LOCAL MODEL NETWORKS 117 

and safety aspects which have to be dealt with. The next step following the work in this thesis 

would be to apply the theory of experiment design, as in (Cohn et al., 1994). 

The use of active learning in its active sampling form in dynamic systems requires an existing 

controller to perform the experiment, and in the case of large expensive industrial plant it is 

not always going to be possible to allow the learning system to stimulate the process as it 

pleases! This should not, however, be seen as an indication that active learning has no role in 

modelling real dynamic systems, as the online version can be implemented with a human in 

the loop - the active learning system could be seen as an experiment assistant who describes 

where the system lacked data, so that the engineer could design an experiment which would 

provide the missing information. 

The active learning area, be it active sampling or active selection, is likely to be of benefit to all 

areas of learning systems, but the application of active learning in nonlinear dynamic systems 

is very much in its infancy. The development of methods which automatically explore the input 

space of a dynamic system within defined constraints will be an important extension of the 

research which should be significant both for engineers developing models of given processes, 

and for future intelligent, autonomous machines which have to cope with a continually changing 

environment. 



Chapter 5 

Hierarchies of Local Models 

Th e Learning Hierarchy of Models (LHM) Network is described. This is ffi clively 

a hierarchy of Local Model Nets where the local models can consist of furth er sub­

networks. Parameter estimation methods are developed which apply conventional 

regression techniques by first unravelling the hierarchy. Local methods f or estim­

ating the parameters of sub-trees within the model are introduced. A consir·uctive 

algorithm for the structure is described. The constructive algorithms QI'e compared 

with MARS and fiat Local Model Nets on a number of test system s. 

5.1 The LHM Architecture 

The Local Model Net framework can be extended by replaced by allowing the local models 

to also be sub-networks instead of simple linear models. A hierarchy of models can then be 

iteratively constructed to model the target system. Simpler local models a re replaced by sub­

networks , leading to the new hierarchical model structure having an increas ing representational 

abi lity. 

Figure 5.1: Local Models can be replaced by sub-networks to improve representational ability 

The top level of an LHM structure can be described as a local model net, 

nMo 

1f(t) = i( tI; (t -l);M) = L idtl; (t - l) ;Mi)Pi(¢), (5 .1) 
i = 1 

118 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 119 

where the level in the hierarchy of the bas is functions and local models is indicated by the 

number of subscripts, and nM • . indicates the number of local models at level 2 in model j , the 
J 

child of model i. The model structures Mi a re the local model st ructures (e.g . linear ARX 

model, a priori models) , or are again genera l LHM structures defining the form of the hiera rchy 

of sub-models below the current level in the tree. 

We assume, for simplicity, that the operating point is 4> at each level. A local model at the 

next level in the tree, Ji (1/J( t - 1); M;) , can be defined as 

nMi 

Ji( 1/Ji(t - 1) ; Mi) = L: k (1/; (t - 1); MiJpi j (4)) . (5.2) 
j=1 

5.1.1 Soft-splits 

Here, a binary 'soft-split' is assumed at each stage (nM = 2), giving each parent model 

two children . The subspace is therefore partitioned by a soft-split oriented o rthogonal to a 

hyperplane (unless the basis functions were of unequal s ize, which would lead to a curved 

partition) . In the simplest form of partition, both local models' basis functions can be thought 

(a) 

20 • Cr 

Figure 5.2: (a) The soft split from above and (b) The split from the side 

of as two interlocked identical ridge functions, with opposite signs. The hyperplane produced 

by the intersection of the two functions is defined by the vector of angle weights a, a E nn. 
in the equation a4> = O. The split can be created from two normalised radi al basis functions 

with equal widths. The centres are placed orthogonal to the plane defined by vector a, and are 

both a away from the centre cp of the parent local model (through which the pl ane defined by 

a passes). The exact form of the non-linear split function is only restricted by the fact that 

it must sum to unity, and that smoothness is a des irable feature. The splits a re optimised to 

partition the input space at each stage in a way which will reduce the modelling error as far as 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 120 

possible. The adaptation of the orientation of the splits is discussed in Section 5.4.3. Spli tt ing 

the input space is usually better for eliminating ' uninteresting' dimensions tha n the methods 

described in the previous chapter, which were limi ted to the data poin ts in the t ra ining set. 

This makes the st ructure more suitable for high-d imensional modelling problems. 

Figure 5 .3 : The Learning Hierarchy of Models a rchi tecture. A tree of local models is produced, 
where the leaves of the tree consist of the local models, the results of which a re interpolated 
with the results from other leaf models by the parent basis fun ctions of the higher levels of the 
st ructure. 

5.2 Optimising the Local Model Parameters 

Once the hierarchy and the basis functions in the LHM architecture have been fi xed, the 

st ructure can be treated as a linear (in the parameters) system , and the parameters of the 

local models can be optimised using standard least squares a lgorithms such as SVD , exac tly 

as with BF and local model nets . This is done by unravelling the t ree to become a stand ard 

local model network , as shown below for a two level t ree: 

(5.3) 

If the local models are linear , and the tree binary, 

(5.4) 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 121 

which leads to each local model effectively being weighted by a cumulative basis function 

Peum(d(1/J)) which is the product of parent models' basis functions back up the hierarchy to 

starting level s:' 
h(;) 

Peum.(d(1/I)) = II (pP(.). (/ 1) ), 
1=. I' - 1'(/) 

(5.5) 

where the p(l) at each level I from starting level 8 to final level h indicates the relevant node 

in the tree on the path to the i-th leaf. The cumulative basis function design matrix ~eum can 

then be used in the same manner as for the flat local model net. Ileum is composed of the 

inputs to the local models on the leaves of the tree, weighted by the cumulative basis functions. 

The hierarchical network can now be represented in the non-hierarchical form: 

nM 

y = ~ (1/I[(t - 1)0;) IIcum.(~)' (5.6) 
i=l 

where nM is the number of leaf nodes. This format allows the parameters (J to be estimated 

using the standard estimation methods described earlier. The method is, however, similarly 

plagued by ill-conditioned design matrices, leading again to the need to apply solutions such 

as local learning. 

5.2.1 Sub-tree optimisation using weighted least squares 

The local learning ideas described in Section 3.1 can also be applied to the hierarchy of models. 

The weight optimisation procedure can be carried out at any position in the tree, for the sub­

tree below the selected node. The optimisation process for subtrees can be made a weighted 

least squares procedure, by using the cumulative effect of a node's parents basis functions as 

the weighting function. This weighting function 0("') (assuming that the start level 8 is not 

the top level) is then 

0(1/1) = t! (PP(O)'P<._I)p(.») . (5.7) 

A sub-tree with M leaves and n", input dimensions and local linear models would become a 

general linear least squares problem with M n", parameters. The solution to the problem is 

then the same as that described above. Locally optimising a sub-tree is especially relevant 

when adding new units to the tree, as the effect of various possibilities can be evaluated 

without optimising the whole tree. As with the flat networks, the effect of the more localised 

optimisation will be that. the optimisation stage will be faster, as well as sometimes being 

more robust and interpretable. The representational ability of the network to learn a given 

training set will, however, often be reduced. The hierarchical nature of the architecture gives 

the designer more control over the level of locality used in learning than with the flat Local 

Model Net. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 122 

5.3 Confidence Limits with LHM 

The methods described in Section 3.2.1 for the interpolation of local estimates of accuracy 

can be easily extended to the hierarchical case. The local error statistic from a leaf node can 

be weighted by the leaf node's parents' basis functions. The two level net is again used to 

illustrate the concept, 

(5.8) 

The error estimation can obviously also be unravelled to produce 

npcum 

i(~) = L iiPcum,(~), (5.9) 
i::1 

where the i's at the leaves have been reordered into a vector form. As with the sub-tree 

optimisation, the hierarchical structure of the model can be used to give the developer greater 

control of the scope of the error statistics. Higher level models can derive their statistics from 

lower level ones, as in equation (5.8), or the error statistics can be calculated from the 'global' 

model below that point in the hierarchy. 

5.3.1 Using local error statistics to indicate poor model structure 

A structure identification algorithm usually uses a cost-complexity term for optimisation. The 

cost is generally the degree to which the model differs from the test data. The method used in 

this work was to take the local mean squared error statistic, i.e. the network's squared errors at 

all Ni points in local training set 'Vi within local model ;i("")'S receptive field, then weighted 

by the local model's cumulative basis function Pcum,(~), as described in Section 3.2.1: 

1 Ni _ 

J(Mi) = ii = N- LPcum,(¢)(y(t) - y(t»2, 
• 1::1 

(5.10) 

Complexity terms 

The complexity aspect of the optimisation functional is a. term which penalises over-complex 

networks. It results in simpler networks, which have slightly poorer performance on the training 

data, but which are expected to show more robustness in the face of new data, and which are 

less likely to have spurious 'folds' in their mappings l , A simple way of penalising complexity in 

the resulting model is to use a weighted product of the parameters used in the local model and 

the breadth of the model's basis function. The GCV (Generalised Cross Validation) term below 

1 important if the model is to be used in a model-based controller, where an optimisation procedure makes 
use of the model's derivatives 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 123 

is based on (Craven and Wahba, 1979, Wahba, 1990) which will penalise complex models (i.e. 

local models with a poor data-to-parameters ratio), 

1 
GCV(Mi) = /lEi. . 

1- N, 
(5.11) 

The range term below is a heuristic which penalises models with smaller basis functions more 

heavily. If used in a constructive structure identification algorithm this will bias the algorithm 

to split models covering more of the input space first, thus having a smoothing effect on the 

resulting mapping, 

(5.12) 

The cost complexity functional can then be created by taking the product of the components. 

Pi is a measure of the complexity of the local model i (usually the number of parameters). The 

parameters"Y and f3 can be adjusted to fit the type of problem. For example, a model to be 

used in a control system should usually be as smooth as possible, so would possibly have a 

higher"Y than a model which was to be used in simulation. The /3 factor (0 ~ /3 < 1) can be 

related to the level of noise in the training data. The overall cost-complexity measure is then 

J(M ,) _ " (1 + "YO"i) 
, - (, ( ) , 

1 - /lEi. N, 

(5.13) 

where £i is as defined in equation (5.10). Ni can be derived as in equation (4.7). 

5.4 The Constructive Algorithm 

The weight optimisation technique described above should find the best parameters 8 to fit 

the data, given the fixed basis functions. The difficult part, however, as for conventional Basis 

Function nets, is the adaptation of the number, position and size of the basis functions. As with 

conventional LMN's, the problem space is initially partitioned using the a priori knowledge 

available. Local models can be either simple linear models, nonlinear models, or partially or 

fully parameterised models. This acts as the first approximation to the system being modelled. 

The method used for extending the hierarchical method was, once the current architecture 

has been optimised and tested, and had not yet met the tolerance requirement, to iteratively 

refine an existing local model by splitting its input space and replacing it with a sub-network 

containing two local models. 

As in conventional decision tree theory, there are a variety of methods used for construction 

of the hierarchy, e.g. multiple-step look ahead or blind search using a fixed number of nodes. 

We use a simple method which at each construction stage adds children to the most promising 

(i.e. where the extra representation is most needed) leaf in the tree. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 124 

Which local model should be split? 

The choice of where to extend the model by splitting a sub-model is a crucial one, to which 

there is no generally correct answer. The choice must be made efficiently to minimise the 

training error, while still leading to good generalisation. The method used is to define a cost­

complexity function which evaluates the potential benefit brought by a particular split, allowing 

the system to choose the spIlt which minimises the function most. The cost-complexity function 

is designed to provide a compromise between model complexity and accuracy. The cost term 

tries to decrease the network's error bias for the given training data, while the complexity 

penalty decreases the network's error variance, so that it will be able to generalise properly. 

The work in decision trees produced a variety of such functions. These systems usually made 

axis-orthogonal splits, meaning that not only should a leaf be chosen for splitting, but the 

dimension to be split should be chosen as well. In many cases, each possibility was tried out 

and the resulting cost-complexity measure recorded, the largest one then becoming the new 

node. The technique used in this work is different - a node is selected for splitting where it 

seems most needed (where the cost-complexity function, as described in Section 5.3.1, at the 

leaves is greatest). The angle of the split through the input space is then optimised locally, 

thus reducing the computational effort dramatically. 

When not to split? 

The cost-complexity function encourages the system to grow nodes where they are most needed, 

and where there is enough data to train the new models. In some cases, though, the chosen 

node may turn out not to be suitable for splitting for one of the following reasons: 

1. There is insufficient data in this area of the input space to robustly train the new local 

models, given the level of noise and the number of parameters to be optimised. 

2. The cross-validation process after training shows that the new models are worse than the 

old model, indicating that the system has started to overtrain, probably due to insufficient 

local training data. (This method is expensive, but general) 

3. The centres of the new unit are closer than a predefined minimum (can be related to the 

noise on the input variables, or expected complexity). 

In this case, the I!ew models are removed, and the old model is marked as being unsuitable for 

further splitting. 

5.4.1 One-dimensional example 

To illustrate the constructive process, a one dimensional version of the 'Squiggle' test function 

y = sin (101I'zsin(z - 0.5)3) (5.14) 

is modelled. Figure 5.4 shows the gradual approximation of the target function. 



CHA PTER 5. HIERARCHIES OF LOCA L MODELS 125 

0.8 

0.6 1.8 

O. 1.6 

,. 
1.2 

-0.' O.S 

-0.6 0.6 

-0.8 0.' 

- 1 0.2 

- 1 2 
-0.5 -0 ' - 0.3 -0.2 - 0 .1 0 0 .1 0.2 03 O. 0.5 -~. 5 -0. -03 -02 - 0 1 0 0.1 0 .2 03 O. 05 

08 

0 9 

06 
08 

O. 0.7 

0.6 
02 

0 5 

0.' 

- 02 0.3 

0 .2 

-0.' 
0 .1 

- 06 
-05 -0.' -0.3 -0.2 - 0.1 0 .1 02 03 0.' 05 -%.5 0 .2 0 .3 0.' 0.5 

F igure 5.4 : Construction of a one-dimensional LHM Model Structure. T he Model's response 
a nd worst error estimates are shown on the left , and the model st ructure i shown on the 
right . T he shaded area indicates the model's own weighted worst confidence limi ts a round the 
estimate. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS L26 

0.6----~-~-~-_,_-__r_-~-_,_-__,.-__. 

0.9 

08 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0.1 0.2 0.3 0.4 0 5 -0~. 5 -0.4 - 0.3 -0.2 -0. I 

-%5 -04 -0.3 - 02 - 0 .1 05 

0 .6----~-~-~-_,_-__r_-~-_r-__,.-__. 

0.4 09 

0.2 

-0.4 

-o~ .5 -0.4 -O .~ -0.2 - 0.1 0.1 0.2 0.3 04 0.5 

0.5 

Figure 5.5: Continuation of Figure 5.4 . 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 127 

5.4.2 Axis-orthogonal partitions 

Finding the optimal partition for the basis functions is a vital aspect of the learning algorithm. 

The straightforward method, as suggested in (Johansen and Foss, 1994b), is to try all possible 

axis-orthogonal splits, optimise the parameters and use the split which improves the cost­

complexity function most. A more sophisticated method is at each step to have a limited 

search horizon, where future splits are attempted, and the split which minimises the multi-step 

optimisation problem is chosen. This is the same basic technique as the optimisation used in 

(Breiman et al., 1984) or (Friedman, 1991). The smoothness of the split could also be adapted. 

In the implementations described in this thesis the smoothness, dependent on (f is not adapted. 

For axis-orthogonal splits (f is chosen so that the space is divided using the same proportions 

at each step, forcing a continuous increase in the absolute 'sharpness' of the splits in any given 

dimension as submodels are added. 

The restriction of splits to hyperplanes orthogonal to the axes makes the method simple to 

implement, but it scales up poorly to higher dimensions and more complex models, especially 

when look-ahead search is used. It is also difficult to have truly hierarchical learning in such 

a system, as this requires a constant cycle of pruning and construction of nodes2 , with no 

opportunity for gradual optimisation of parent nodes' splits, as learning progresses. 

5.4.3 Axis-oblique partitions 

Splits may be axis-oblique, i.e. the split depends on several variables, which also brings a 

number of problems. For axis-orthogunal splits, the width of the soft split could be easily 

determined by the previous splits. For oblique splits, there is no easy analytical way of de­

termining the width of the split. The method used here estimates the separation between the 

centres using the available training data in the local model's receptive field, and its distance 

from the separating hyperplane. The covariance D(¢) of the points from the separating hy­

perplane a~ = 0 can then be measured and the separation of the children set proportional to 

the standard deviation, i.e. 

(5.15) 

and the centres can then be set in a similar manner, 

CI = Cp ± aO", (5.16) 

where Cp is the parent's centre, and CI is the new centre. A more general approach is to allow 

full flexibility in the partitioning of the input space. 

2pruning is necessary, otherwise early 'mistakes'-non-optimal splits-lower the quality of the final results 
drastically, as they dramatically reduce the amount of training data available to their children 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 

0 .5 

a 

-0.5 

0.5 

-0.5 -0.5 

(a) LHM Response 

0 .5 

• 
o. • 
o. 3 

o. 2 

o. , 
0 

-0. , 
-0. 2 

-0. 3 

-0 .. 

128 

. 
V . . . 

(\"(\ t1 . 

(b) LJ-IM Basis Functions. Con­
tours a re drawn at 0 .5 

0.' 

Figure 5.6: Squiggle results for ax is-orthogonal LHM . T he fun ction is eas ily approximated 
due to the limited nature of the model structure being well-suited to the target fun ction . T he 
contours (0.5) of the leaf models ' basis fun ctions are shown , to give an impress ion of the model 
structure found . 

o .• ,------~---__, 

02 

.. , 
0 .5 .. , ... 

.. j~. -~--~----~o. -0.5 -0.5 

Figure 5.7: Contour and 3d representations of leaves of model tree for ax is-oblique partition. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 

1.5 

0.5 

0.5 

1.5 

0.5 

a 
0.5 

- 0.5 -0.5 

(a) LHM Response. 

-0.5 -0.5 

(c) LH~I Response for noisy data. 

129 

~~ . 

~~'PL// 
:0 j::?! 

0.5 / 

::~ x IJ 

0.5 

"".5 
-0.5 0.5 

(b) LHM Basis FUnctions. Con­
tours are dra wn at 0.5. 

(d) LHM Basis Functions. Con­
tou rs are drawn at 0.5 

Figure 5.8: Mars! results with LHM and axis-oblique partitions. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 130 

Optimisation of the new split 

Partitioning the input space orthogonal to the axes is a useful restriction of the search space in 

many applications, but it is restricted in the types of system it can model well, and there is no 

possibility for gradual changes in hierarchical manner. Increasing the freedom of the partition 

should give the model more flexibility to better model systems where the nonlinearity depends 

on a combination of variables. 

The use of smooth splits allows a variety of gradient-based optimisation algorithms to be 

applied to find the optimal partition, which is not possible in the classical decision tree meth­

odology due to their crisp partitions. For simplicity, however, the method used in this thesis 

is simulated annealing (Kirkpatrick et al., 1983) to optimise the split parameters. The vector 

a is initialised to have the same value as the parent split (making the useful assumption that 

the direction of greatest nonlinearity is probably not going to change dramatically). The split 

angle is then randomly altered, 

a(t) + 6(t) 
a(t + 1) = lIa(t) + 6(t)1I (5.17) 

the width determined, as in equation (5.15) from the local data, and the local models are locally 

optimised using SVD. The potential split is evaluated on test data by treating the two local 

Old split 

C 
-: J} •• OC}(t+l) 

\ 

'0 Cl(t) 

, New Split 

(a+d)x = 0 

Figure 5.9: Adjusting the split angle. The split is rotated around the centre by the random 
variable d. The local models are trained, and if the new split provides a better model, this is 
chosen as the starting point for futUre splits. As time passes the changes become smaller, until 
the split converges. 

models as a representation of the system locally (the cumulative basis function of the parent 

model is used to weight the validation results). The best split is then used as the starting point 

for further random alterations. The random 6 vector responsible for the alterations initially 

allows large changes - equivalent to high temperature in the annealing analogy - but the 

'temperature' T is gradually reduced, until the split has converged to a steady position. The 

process can be visualised as randomly rotating a hyperplane around the parent's centre. The 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 131 

annealing sched ule used in this work was to have the temperature related to an exponenti a l 

decay, which was related to the number of iterations desired before adaptation was completed , 

T(t) = exp (_4_t_) 
tmax 

(5.18) 

i.e. each element of J is a normally distributed random variable with variance T(t ) proportional 

to the exponentially decaying annealing schedule 

J(t) = N (O , T (t)) , (5.19) 

where t indicates the iteration, from 1 to tmax . The use of linear regress ion methods, and only 

the local data points means that the learning process can be quite fast, despite the s implicity 

of the optimisation technique. 

The results for the Squiggle benchmark are shown in Figure 5.10 . Note that despite the 

increased degree of freedom in the model structure, the learning algorithm copes well and 

produces a good model. Compare the results here with those for the local model net in 

Figure 4 .11(a), which required 62 local models to achieve a lower accuracy. T he real benefit 

comes with non-axis-orthogonal nonlinearities such as those shown in Figures 5.8 and 5.11. 

0.5 

o 

- 0.5 

0.5 

0.5 

-0.5 -0.5 

(a) LHM Response 

::1\ ~v~ 
01 V 

)( \It • ~ 

O~~ ~ 0 
~ 0 ""0"'" .. l1il 

(b) LHM Basis Functions. Con­
tours are d rawn at 0 .5 

0.' 

Figure 5.10: Squiggle results for axis-oblique LHM. Despite the extra degrees of freedom the 
learning algorithm does well. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 

0.5 

o 

-0.5 
0 .5 

-0.5 -0.5 

(a) LHM Response 

0.5 

~ 

132 

0.0 

0.' 

0.> 

0.' 

0.1 

0 

-0.1 

-0.' 

.... > 

-0.' 

(b) LHM Basis FuncLions. Con­
Lours are drawn aL 0 .5 

Figure 5.11: Rotated Squiggle results for axis-oblique LHM . Compare with Figure 4.19 where 
LMN and MARS responses are given. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 133 

5.5 Conclusions 

The Learning Hierarchies of Models structure is a new architecture which is well suited to 

constructive learning algorithms. There are many overlaps with decision trees in symbolic 

machine learning, but the advantage of the LHM architecture lies in the soft-splits of the 

input space, and the local models in the leaves, making the architecture more suitable for the 

representation of continuous dynamic systems. 

Due to the hierarchical nature of the model structure, where local models can hide entire 

sub-trees of other models, it is well suited to constructive structure identification algorithms. 

Unlike in flat local model nets, where the addition of a new model means that the neighbouring 

units must adjust their basis functions and parameters, the replacement of a given leaf model 

in an LHM does not affect the other models in the structure. Also, because of the partition 

of unity inherent to the soft splits, normalisation is not necessary, so the problems found in 

Section 3.3.1 with normalisation are no longer relevant. 

The axis-oblique splits used to partition the input space are an important feature of the LIIM 

architecture, as they differentiate the methods more from conventional methods which partition 

the space using only one variable at a time. Simulated annealing proved to be useful, despite 

its simplicity. Other more sophisticated optimisation algorithm may produce better results. 

As the nonlinearity is achieved by splitting the input space, the hierarchical extension of the 

local model framework has the potential to produce more efficient methods for representing 

and identifying unknown model structures. It copes better with high-dimensional spaces than 

non-hierarchical methods. 

The local confidence estimates and the local learning methods can be easily integrated into 

the hierarchical structure. This also provides interesting potential for controlling the level of 

locality of the local learning, and active learning through the hierarchy. 

Future work 

The most straightforward extensions to the theory described here would be to the structure 

adaptation algorithm so that more flexible structures are created. e.g. optimisation of the 

separation of child nodes, use of smarter optimisation algorithms for the partitioning angles. 

A major advantage of axis-oblique partitions with the hierarchical architecture is the potential 

for hierarchical structure adaptation. This would mean that once a model had grown children, 

and had improved its representation of the system, the partitioning decisions made earlier 

could be adjusted to take account of the better understanding of the underlying system. If this 

is done gradually during the learning process a more efficient, parsimonious and interpretable 

approximation should be possible. Such hierarchical structure identification and adaptation is 

obviously also of great interest in adaptive control situations. 



CHAPTER 5. HIERARCHIES OF LOCAL MODELS 134 

The binary tree LHM structure with homogeneous linear local models developed in this thesis 

is the most basic form of the structure but the framework can be viewed in a more general 

manner, if the interface between the child and parent is made more powerful. The task of 

the sub-model can be viewed as being exactly the same as that of the original problem, just 

at a smaller spatial scale, with a reduced portion of the data set. This means that all of the 

considerations used initially in framing the modelling problem are also relevant at this level 

(i.e. which inputs are important? can the problem be decomposed into an additive model of 

several input spaces? if the system is a dynamic one, what model order should be used, what 

sampling speed should be used?). The concept of hierarchy in the time-domain could be used 

to produce hierarchies of models working at different sampling speeds, allowing the system to 

cope with stiff systems with a wide range of time constants. Different types of hierarchy from 

the simple binary tree could also be considered. If this were linked with the more powerful 

child/parent interface and heterogeneous local models (which could be dynamic models, expert 

systems, etc.), the LHM has the potential to become a much more general representation than 

simply a method for representing nonlinear systems. 



Chapter 6 

Rolling Mill & Robot Actuator 

Modelling Examples 

To show the methods in use for practical applications, the local model networks 

and learning hierarchies of models networks are applied to real problems, with data 

measured from physical systems. 

They are used to produce a predictor which can model the roll gap in a rolling mill 

based on data sampled from a real mill. The Local Model net produced the best 

results in terms of accuracy, and generalisation ability, compared to multi-layer 

perceptrons, MARS, linear models and RBF networks. The interpretability of the 

trained network is discussed and visualised. 

The methods are applied to a second example, a robot actuator modelling problem. 

6.1 Rolling Mill Problem Description 

To demonstrate the practical applicability of the modelling structures, methodology and al­

gorithms developed in this thesis, the methods were applied to the task of modelling a rolling 

mill from real data. Rolling mills, are examples of complex nonlinear processes, where a wide 

variety of physical effects play a significant role. Despite the obvious usefulness of rolling 

mills, and long practical experience with their operation, the physical models developed for 

them tend to be highly complex (too complex for on-line use), and because of the uncertainties 

in industrial processes the models tend to be of little practical use. In practice, the control 

algorithms used in real mills tend to be simple enough to be adapted by the operators, and are 

often developed in a very heuristic manner. This suggested that the use of learning methods to 

better model the poorly understood characteristics of the rolling process would be a productive 

path to follow. 

135 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 136 

The mill inves tigated is shown in Figure 6.1, and is a four-high s ingle stand aluminium rolling 

mill. A coil is placed on the left and the material is threaded into the roll bite, where the 

materi a l is reduced and exits to be collected again in a coil on the o ther s ide . 

. Figure 6.1 : Single stand of a rolling mill. 

The strip moves with a velocity VI and enters the roll gap with a thickness hi . It exits with a 

thickness h2 and a velocity V2, preserving the mass-flow relationship, 

(6 .1 ) 

The strip is deformed by two cylindrical rolls which apply a force f w to the material to produce 

a flat strip of a pre-determined thickness, as shown in Figure 6.2. 

The roll gap is varied by exerting force on the backup roll bearing . This force is transferred 

to the centre of the backuproll, to the centre of the work roll and then to the strip . Flat strip 

is produced when the force on both sides is equivalent . Roll gap position is measured on both 

s ides and is averaged to give the roll gap variable So. The setting for the roll gap is a function 

of strip input thickness and the elastic deformation of the surrounding mill hous ing and roll 

bearings (shown in Figure 6.2 as springs). 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 137 

Figure 6.2: Roll bite 

6.1.1 Nonlinearities in the rolling process 

The rolling process is nonlinear in a number of ways. The deformation characteristics of the 

rolled material, the work rolls and the surrounding mill housing are nonlinear. The material 

undergoes elastic deformation , then plastic deformation, followed by elastic relaxation . T his, 

combined with the elastic deformation of the work rolls and mill housing, is a process which is 

very hard to describe with simple differential equations. Further complexity is added by the 

effect of variations in temperature on the process (materia ls change their properties, the rolls 

swell) . Lubrication effects further confuse the situation , and are very difficult to model from 

first principles. 

6.1.2 Measurement noise and disturbances 

Many of the disturbances in the modelling process are obviously closely related to the complex, 

unmeasured and poorly understood processes described above. As can be seen in Figure 6.2, 

the sensors for the measurement of h2 are a distance l2 away from the roll bite, leading to a 

dead time between actuation and sensing which varies with operating speed VI. The sensors are 

usually X-ray gauges measuring the thicknesses h[ and h2 , and these measurements tend to be 

very noisy. The rolling force can be measured either directly (the more accurate way)by load 

cells, or indirectly by using pressure transducers from the hydraulic cylinders and converting 

this quantity to force. The methods used in this application are the indirect methods . The 

strip velocities are calculated from the deflection rolls, and the work roll velocity is calculated 

using the tacheometer of the drive system. In each case the measured quantity is the angular 

velocity, which when combined with the roll diameter can give the actual roll speed. Due to 

the complex nature of the disturbances and the poorly understood interactions, it did not seem 

promising to build explicit disturbance models. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 138 

6.1.3 Modelling goals 

The goals of the learning task were therefore to try to produce a model of the system which 

reliably represented the data, and which could be used in a model-based control algorithm. 

The variable of interest is dh 2 , a measure of the deviation from the reference output thickness. 

At present, the acceleration and deceleration phases are poorly modelled and controlled, so 

an improvement in model accuracy in those phases would be a major contribution to making 

the rolling process more economic by avoiding wastage caused by roll material which does 

not meet the accuracy specifications. In the general case it is obviously desirable to have a 

system which can cope with different types of metal and different reduction schedules. One 

possibility is to hand segment the training data into different training sets for different types 

of metal, then to bring them together committee-style using a classification network to decide 

which model matches the current strip best. Another possibility is to amalgamate a variety of 

independently trained models, to try to produce an 'average' general model. The method used 

in this thesis, however, concentrates on producing a single model from a training set composed 

of a variety of training runs, from a single type of strip. 

Important areas of the input space 

In many modelling applications there are given areas of the input space which are especially 

important to model accurately, because the model-based system needs particular accuracy in 

a given situation, bandwidth or region. In the rolling process, the long periods of relative 

stability, where the velocity does not change, are obviously important, as despite the fact 

that the modelling here is easier, this phase is where the mill produces most of its product. 

The acceleration and deceleration phases are, however, important because it is much more 

difficult to achieve an accurate model, so more data is needed to produce robust accurate 

representations of the physical process. The trade-off between the two areas is one for the 

engineer to decide on. (A further possibility is of course, to treat the three areas separately, by 

segmenting the training data, and associating a local model with each phase of the operation) 

6.2 Rolling Mill Training and Test Data 

We have described the complex nature of the problem, which makes it clear that there is little 

hope of a clean, uniform, conflict free training set. Each run of a rolling mill is going to 

produce slightly different results, many of the reasons for which cannot be directly measured 

(e.g. temperature differences, different roll materials, possibly different machine settings). To 

give an impression of the distribution of the data in the input state-space, the correlation 

between various inputs is shown in Figure 6.4. To improve the numerical robustness of the 

learning process, the data was normalised so that each variable was distributed between 0 and 1. 
The normalised data are shown in Figure 6.5. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 139 

Oala Acquisilion 
1B.-----r_----r----.-----,----~----~----, 

16 

1. 

12 

OJ . v2 

. . 
0 
0 20 .0 60 eo 100 120 1.0 

nne(s ) 

(a) Mill Velocity (Input/Output) 

Data Aoquillltion 
26.g.----.----~-----r----~----~----==:_ 

G 
26.85 

26 .• 

26.75 

~ 26.7 

:!. 
~ 26.65 

26.6 

26.55 

26.5 

26 .• S0L..--~2O:-----<O=------:80~----:80:-----::1"!::00:----~12O:;;------;-:I<O 
T1mo(I) 

(c) Roll Gap 

Data AcquiSItIOn 
0 .15r----,----~----~----~----~----r_--___, 

0.1 

-11.05 

-11.1 
0 20 .0 80 80 

TImefa) 
100 

~ 
~ 

120 

(b) Strip Thickness (Input / Output) 

1<0 

0. 5. ,----r----.---====-~-----r----~--___, 

[ill 0 .• 

0.3 

-11.3 

-II .• 

-II . SO~----:2O:-----<O=--------:60~----:eo~--~I00=----1~2O:-----'I<O 
llmo(l) 

(d) Velocity derivatives 

Figure 6.3: Observed data from mi ll 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 140 

,. .. ,--------------------, 
26 .85 

26 .8 

26.75 

:::- 26.7 

~ ".6' 
" .6 

26 .55 

/~. 

/' 

26.65 26.6 2fU5 28.7 26.75 2'6.' 2tI.85 2I.Q 
00(') 

(a) Roll gap (so) correlation 

26 .• ,---.__--.__--_--_--_--. 

26.85 

26.8 

26.75 

28.7 

~ 
26.66 

26.6 

215.55 

26.5 

26.45
0 

0.15 

•.. 

.... 
~ 
€ 

-0.05 

-0.' • 

r > 

• •• 
vl(t) 

(c) Speed against Roll gap correlation 

>. 

• 
"'(1) 

•• 

(e) Input thickness (dhJ n) against input ve­
locity (viJ correl a~ion 

'2 

'2 

•.•• r---~---~--~---~---, 

0.' 

' .05 

-0.05 

. ::. 

.. . , 
.. < 

" ." " •.. ~ ...... 
.;#~?~" 

.... .... 

-Oj7.----O~.~0.---~--~0~.05~--0~.---0~. " 
dtlln(1) 

(b) Input thickness (dh l n) correlation 

.2r---~--~--,_--~--_r--_, 

(d) Input velocity (VI) correlation 

0 . •• , _____ -_- _-_-_-_- -, 

0.' 

0 .05 

-0.05 

., .:' . 
':.'. : .. , ~ ....... 

..()~... 21.' 21.66 2&.6 28.& 28.7 
00(') 

.. ... 
'~ .' 

20.75 2tU 28.'6 26.1 

(f) Roll gap against Input thickness corre la­
tion 

Figure 6.4: Observed data from mill - state portraits for a single run 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 141 

0 .9 

0.8 

0.7 

0 .3 

0.2 

0.1 

-'\ 

\ Iii ., -

} !', 

, I 

Normalised data 

. ",. :" ~ "." .". ~t . ... ; ... . . ...... _: .• . •.. ,' .;:;' : ..... ',. . '. ": ', ~'! , .. : • • ". ", ... 

v1 

v2 

dh1n 

-- dh2n 

I - - sO 
\1 , 
tt '-,------' 

\ 
\ 

O ~~------------------~--------------------~----------------------L-~ o 500 1000 1500 
Time 

Figure 6.5: Normalised training data 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 142 

Notation 

So 

/w 

input thickness deviation 

output thickness deviation 

input thickness deviation (time aligned) 

output thickness deviation (time aligned) 

strip input velocity 

strip output velocity 

roll gap 

roll force 

6.2.1 Pre-processing used 

Filtering and time alignment 

The data used for modelling is low-pass filtered and down-sampled to a more appropriate 

frequency for the modelling task. The filtering was done offline using a 32-order FIR filter and 

the MATLAB filtfilt{ ) routine, which results in zero-phase distortion after passing through 

the data set in both forward and backward directions. 

One of the main difficulties in modelling aspects of rolling mills is that delays in sensor meas­

urements are inevitable, due to the distance of the thickness gauges from the roll bite. These 

delays are also velocity dependent, so the dr1.ay for the forward sensors is 

(6.2) 

where V1 is the input velocity, and 11 is the distance from the roll bite, as shown in Figure 6.2. 
To make the modelling task more straightforward, the data was pre-processed so that it would 

be referenced to the roll bite, such that the new thickness dh 1n is given by 

(6.3) 

where at the sampling rates used, td1 varies from eight sample delays at low speed, to 2 sample 

delays at top speed. The output thickness is analogously, 

(6.4) 

where td2 = T;. This time shifting was validated by checking correlations between the thickness 

variation and the roll force signal, confirming that the time-shift was accurate to within one 

sample. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 143 

Sampling rate 

The mill has a variety of subsystems with different bandwidths-the hydraulic system has a 

bandwidth of 15-20Hz, the roll eccentricity effects are 12-15 Hz, but the most important effects 

are dominated by the slowest subsystems. From experience, the sampling time needed to cope 

with the change in response from the moment of sensing a disturbance, actuating the hydraulics 

and moving the rolls is between I-2Hz. This is what was used in the design of the filtering and 

sampling algorithms. 

The original data was sampled at 100Hz. Using the old rule of thumb that the sampling rate 

should be around 8-10 times the closed loop bandwidth (Ljung, 1987), the data was down­

sampled to a frequency of I, = 12.5 Hz. 

6.2.2 Planning the experiment 

The problems of acquiring the data in many industrial processes are non-trivial, involving a 

great deal of time and money. In this case the data existed already, having been taken from 

a real plant under normal operating conditions. We had no influence over the experiments 

performed, and new experiments were deemed too costly to be worthwhile. Four different 

runs, each similar to that shown earlier were used for training, and the data selected from the 

combined data sets. The sets used to produce the training data are shown in Figure 6.6. The 

data are normalised to be within the limits defined by the maxima found in training and test 

sets. The test data used to validate the trained model were taken from five different runs with 

the same type of strip. The sets used for the validation are shown in Figure 6.7. 

Open questions 

The methods used to prepare the training data all seem to be practical measures aimed at a 

concrete enginee~ing solution, but there are still many open questions. How many data do we 

require to be confident that our model is general enough? How will the model react to different 

materials, or reduction schedules? Will hot mills, where the input thickness is more variable 

need more runs? 

6.3 Rolling Mill Modelling Results 

6.3.1 Modelling specifications 

Model structure and order 

The local model structures used were linear models based on delayed inputs (equivalent to an 

FIR filter structure). 

(6.5) 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 144 

Normalised Training data 

0.8 

0 .7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

... J." • 

v1 
v2 

---- dh1r 
-- dh2r 
. - . - sO 

°0L--------1~OO-0--------2000~-------3~OOO~------~4700=0~--~~5000~------~6=OO~0--~ 
Training Examples 

Figure 6.6: Combi ned training sets 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXA MPL ES 145 

Normalised Validation data 

0.9 

0.8 I. 

0.2 v1 
v2 
dh1 

0.1 - - dh2 
.- .. sO 

0 
0 1000 2000 3000 4000 5000 6000 7000 

Validation Examples 

Figure 6.7: Combined Validation sets from 5 different strips of the same materia l. x-axis 
ind icates time, y-axis indicates the normalised value of the va rious variables. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 146 

where 

The previous measured output thickness could not be used for control purposes, because of 

the dead time in the output measurement process. The order nu of the processes involved was 

not clear in advance, so mudels with a variety of dynamic orders were used. In general, models 

with an order of around nu = 7 performed best. It is not clear whether this is due to high 

order dynamics or low order dynamics with the effect of unknown dead times. 

Selection of the cost function for optimisation 

The cost function used will depend on the noise on the training data and the relative importance 

of the area of the input space. In this case we simply applied the quadratic cost function, as 

the active learning and constructive algorithm would automatically devote more resources to 

the more complex acceleration and deceleration phases. 

Parameter selection for learning algorithm 

Ideally, the need to fiddle with the parameters of the learning algorithm should be kept to a min­

imum. In practice, this can prove to be highly important for the modelling process. The results 

in this chapter with the local model nets were obtained using the following parameter settings: 

(1ma:t: = 0.2..;nJ, A = 0.6, n re6 = 3, '1 = 0.5~, Nma:t: = 1000, Nmin = 10nop, ncutoJ/ = 4. The 
distance metrics used for the basis functions were axis-orthogonal ellipses. The basis functions 

in all nets were normalised. 

Reducing the operating space 

In order to allow a more straightforward and robust model structure, the dimension of the space 

in which the operating regimes are placed was reduced. The operating point ¢ is defined by 

the inputs So, VI and dh1n, so these are the variables used to place the basis function centres. 

The local models inputs ..p are composed of So, VI and dhln, delayed nu times, where nu is 

the order of the tapped delay line on the inputs. Other variables were not found to contribute 

significantly to a reduction in the model error. 

As mentioned in Section 2.5.4, in some applications it makes sense to form a rough partition 

of the input space initia:ly, as seems logical to the development engineer. The results in this 

chapter did not use this technique, although it may prove useful in future work (e.g. to form an 

explicit partition of the acceleration and deceleration phases from the normal operating speed 

phase). 

The distribution of the data points in the basis function space (this can also be viewed as the 

state-space in which the current operating point ¢ is defined) is shown in Figure 6.8. The four 

runs which make up the training set are shown here. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 147 

0.8 

0 .6 
c 
:c 
"'0 0 .4 

0.2 

o 
0.8 

0 .8 

0.' 

0.' 
c 
~ 

'0 0.4 

0.2 

o 
0.' 

o 0 

" 

(a) Run 1 

10 o 0 

" 

(e) Run 3 

0.8 

0.8 

~ O. 

0.' 

02 

o 
0.7 

0 .8 

0 .8 

~o. 

0 .2 

o 
0.5 

" 

(b) Run 2 

0.' 
".). 
' i 

o 0 

" 

(d) Run 4 

Figure 6.8: Training data distribution in operating point space over the four runs. See Fig­
ure 6.4 for 2-dimensional slices fo the space. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 148 

U se of cross-validation to estimate robus tness 

T he results given in this chapter are all one-step-ahead prediction resul ts. As noted earlier, 

models of dynamic systems should normally be validated by applying the exogenous inputs 

and letting the system run , feeding back the model states as opposed to the measured states. 

For the rolling mill , however, the model is not autoregress ive as ti,e dead time involved in the 

sensor feedback would mean that the data would not be available for use in a control algorithm . 

The one-step-ahead prediction is therefore the ultimate off- line test in this case. The potential 

problems involved in on- line application of the model for control purposes are described late r. 

6.3.2 Benchmark algorithms 

Linear modelling results 

To provide a st raightforward benchmark for the local model nets, we tra ined a simple non­

autoregress ive linear model (as in equation (6 .5)) using the same data as the LMN. The results 

were surpr isingly good for such a simple structure, as shown in Figure 6.9. 

0.2~-----r------.------'-------r------r------.------'-----~ 

0.15 

0.1 

-0.1 

-0.15 

-0.2 

-0.25 

-0.3 0L---1..J.OO-O--2-0""'0-0--3-0'-OO---4-"OO-0--S-0""'0-O--6-0'-0-O--7--'Oo- 0-----laooo 

Figure 6.9: Mill model residuals for linear model on the validation data. Mean squared er­
ror = 0.00049. The plot shows the error residuals on the combined thickness modelling results 
from 5 strips used in the validation runs shown in Figure 6. 7. The x-axis is time. y-axis 
indicates magnitude of the residual. Note the large errors in the acceleration and deceleration 
phase. 



CHAPTER 6. ROLLING MILL & ROBOT ACT UATOR MO DELLING EXAMPLES 149 

Figure 6. 10 shows a cross-validation plot of the linear modelling resul ts, showing that they are 

consistent over the d ifferent folds, as would be expected for such a simple model. 

Training average Training worst 
0.01 5 o. 4 

o. 3 
r- r- r- r-

r-0.0 1 
r-r-r-,-r---

o. 2 

0 .005 
o. 1 

0 o 6 
0 

Test average Test worst 
0.01 5 O. 4 

r- - r- - r- O. 
0.01 

3 r---
r- r-

o. 2 
- r---

0 .005 
o 1 

0 
6 

Figure 6.10 : Cross-validation resul ts for linear model 

MLP modelling results 

To provide a benchmark with the more t raditional neural networks methods, a mul ti-laye r 

percept ron was applied to the problem . A network wi th a single hidden layer of 30 neurons 

wi th sigmoidal activation functions was used . T he outpu t unit was a linear one. T he t ra ining 

was carried out over 8000 runs through the training set of 6497 patte rns, presented in a random 

order. T he straightforward back-propagation algorithm was used wi th a learning rate of 0.1. 

(Other settings were tried , but had little effect on the outcome.) T he modelling accuracy was 

found to be not as good as the MRC algorithm 's, and t raining duration was several days, as 

opposed to minutes for the other methods. An interesting comparison is wi th the simple linear 

model, which proved to be more accurate than the potentially powerful MLP. T he reasons for 

the MLP 's poor perfN mance were not investigated in detail , but the problem proably lies in 

the ineffi cient learning algorithm , back-propagation . 

MARS r e sults 

As a benchmark with the methods developed in the stati stical communi ty the MARS structure 

identi fi cation algori thm was used. The results again , were not as good as the linear , or Local 

Model or LHM methods, as shown in Figure 6.12. T his is probably due to the axi s-orthogonal 

nature of the parti tioning of the input space, combined wi th the lack of local linear models in 

the standard setup. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 150 

§ 
~ 
.~ 

"0 
Cl 

JE 
Qj 
"0 
o 
E 

30 unit MLP, after 8000 Iterations 
0.3..-----.--...,.-----,..-----.--...,.------,..-----.-----, 

0.2 

0.1 

-0.1 

-0.2 

-0.30L_-1-0.L0-0_L20""'0-0--3-J00'--0--4-0""0-0---=-SO:1:0=-=0---=6-:00::-::0:----:7::0~0:-0---:::!8000 

Figure 6.11: Mill model residuals for MLP with 30 units on the validation data. Mean squared 
error = 0.00065. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 151 

c: 
o 
~ 
.~ 

MARS model, max_basis = 100 
0.4~----~----'------r-----r----~----~~----T---~ 

0.2 

'C 
0)-0.2 
:E 
Q) 
'C o 
E 

-0.4 

-0.6 

-0.SOL.----1-0 ..... OO--2-0 ..... 0-0--3-0 ..... 0-0--40 ..... 0-0--S0 ...... 0-0--60...LO-0--7...L00-O--S....J000 

Figure 6.12: Mill model residuals for MARS on the validation data. Mean squared er­
ror = 0.0017. Large errors especially in the acceleration and deceleration phase. Model even 
worse than a linear model. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 152 

Training lIV8fBge 

0.01 5 ..--==""-""':"-r;=~....,..--, 
Training wom 

0.5 

0.01 

o. • r- ,- -
,- r-

3 o. 

a. 2 
0.005 

o. 1 

a o 

Test Iverage Test WOfSI 

0.02 0 ,5 

_,--r-.--
.--

0.015 
,-- r-_ 0 .• 

0.3 .--
0 .0 1 r-

0.2 

0 .005 0, 1 

a o 
0 

6 o 

(a) Cross-validation results for MARS with max­
imum of 20 basis fun ctions and nu = 7 

6 

6 

0,015 
Training average 

o. 
Training wofll 

3 
,--

.--,--r-r-r- .--
00 1 a. 2 r- r-

r-

0 .005 0 , 1 

0 0 o 

Test average Tel ' 'NOrIt 
0.015 0 .3 

r-
'-- r- -'--- ,--

0 ,0 1 0 .2 
- r-

0, 1 In 
0 

0 ,005 

(b) Cross-validation results for MARS with max­
imum of 100 basis fun ctions a nd nu = 7 

I 

Figure 6.13 : Cross-validation results for MARS on mill data. Reasonably robust with a cross­
validation on the training data , but performed badly when face with data from a totally different 
run . 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 153 

6.3.3 Local model net results 

Local learning 

The error results for a LMN with 21 models, trained locally are shown in Figure 6.14 

0.2.------,r-------r---,.---,----r----,---.,------, 

0.15 

0.1 

-0.1 

-0.15 

-0.2 

-0.25 OL_-10..l..0-0--20.J.O-O--3...100-0--4..JOL...OO--5-0J....OO--6-0~O-:-O--=7O.J.O--O--S..JOOO 

Figure 6.14: Mill model residuals for LMN (local training) on the validation data. Mean 
squared error = 0.00040. 

The mean absolute errors on the training set at each stage of the local learning model con­

struction are shown in Figure 6.15(b). The cross-validation results are given in Figure 6.15(a), 

and indicate that the approximation process is relatively robust. 

Other parameter settings for learning were used, for example, letting the training continue for a 

further resolution level, which lead to the smallest training residuals, with an average absolute 

error of 0.85 

Global learning 

The error results for a LMN with 23 models, trained globally are shown in Figure 6.14. The 

global method used was SVD, where singular values which were a factor of 104 smaller than 

the largest singular value were zeroed. Note the poorer performance in the acceleration and 

deceleration phases, compared to the locally trained model. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 154 

Training average 
0.015,.----=-----, 

0.01 ,.-,.- r- ,.- .--

0.005 

Test aVMage 
0 .0 15 

0 .0 1 r-r-r- r- -

0.005 

0 o 

0 .4 

0 .3 

0 .2 

o. 1 

o o 

o. 3 

o. 2 

o. 1 

0 o 

Training worst 

r- ~ 

.--r-

:n 
Test worst 

,--

r- - ,--

(a) Cross-validation results for Local Model Net 
construction. The results are relatively consistent. 

0 .0135 

0.013 

~ 0.0125 

6 ~ 0 .012 

6 

)00115 

0.011 

omos 

0.01 

0 ·00II5~:-----:---:--""7"--;;10;--~1-:;;2--:14:----;';' 6;--~'-:;;8--;:20~ 
Ntmbef of modela 

(b) Local Learning Error Curve. The gli tch in the 
graph indicates that a model was removed at this 
stage, due to a lack of training data. 

Figure 6.15: Cross-validation resu lts for net construction, and training error development 
during a single construction run. 

c: 
o 
~ 
.~ 

"C 
OJ 
.!:: 

LMN with global learning and 23 local models 
0.6r-----,------,-----,------.-----,------,------,-----, 

0.4 

0.2 

o 

~ -0.2 
o 
E 

-0.4 

- 0.6 

-0.8 0L-----
1
-'00-0----2-0-'-0-0----3-'00-0----4-0-'-0-0----s-'0'-00-----60..1.

0
-
0
----7-01...

0
-
0 
---.-J

8000 

Figure 6.16: Mill model residuals for LMN (global training) on the validation data. Mean 
squared error = 0.0036 . 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 155 

0 .01 35 

~ 
~ 0 .0" 5 
~ 
< 
; 0.011 
~ 

0.Q105 

0 .01 

0.0095 

0 ·00<IL-:--:---:--=8--7'0:----:'~2 -""'.--""6:----:'':-8 -20~ 
Number ~ local modet. 

Figure 6. 17: Global Learning Error Curve. Global optimisation performs well on training set , 
but poorly on validation set. Glitch in curve indicates pruning of models. 

To compare the robustness of the local and global parameter estimation, independently of the 

structure identification, the structure which produced the residuals in Figure 6.14 was fixed , 

and a cross-validation experiment was carried out, where only the local model parameters were 

adapted , both locally and globally. The errors are, in general, slightly better in the global case . 

How does this fit in with the res idual plots in Figures 6.14 and 6.16 , where the local results 

are clearly better? The difference is that the validation resul ts from the cross-va lidation done 

here use data points extracted from the rolling runs used for t raining, whereas the res idu a ls 

are plotted on validation data from completely fresh runs, which provide a better test of the 

modelling framework . 

Summary of results on validation data 

Table 6.1 summarises the modelling results tested on the validation data. The Local Model 

nets consistently provided the highest level of accuracy, producing both the smallest average 

errors and smallest maximum errors. Surprisingly, the simple Linear model performed better 

than MARS and Multi-Layer Perceptrons. This is not to say that an MLP could not be trained 

to produce better results , but it does indicate the lack of robustness in the widely used learning 

algorithms, such as back-propagation, which have trouble identifying a linear system . 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 156 

Tralnlng .. erage 
0.Q15,..--------, 

0.01 - r-- - - r--

0.005 

4 8 

Tes1 ..... ge 
0.015~----'---.., 

0.01 _ - r- - r-

0.005 

0.3 

0.2 

o. 1 

0.3 

0.2 

0.1 

Training_ 

r---r--r--

II 
2 4 

Toot_ 

r--
r--

_r--

2 4 

(a) Cross-validation results for a fixed structure 
Local Model Net with local learning of paramet­
ers. 

8 

• 

Training ..... ge 
0.01 

r---r---
0.008 

0.006 

0.004 

0.002 

0 
0 2 4 8 

Toot_ 

0.25 

0.2 

0.15 

o. 1 

0.05 

0 o 

Tralning_ 

-r-
_r-

4 8 

TooI_ 
0.01 

r----
0.3,--------, 

0.006 

0.008 
0.2 

0.004 

0.002 

0 
0 2 4 8 4 

(b) Cross-validation results for a fixed structure 
Local Model Net with global learning of paramet­
ers. 

8 

Figure 6.18: Cross-validation Comparison between local and global learning. In both cases 
the parameter estimation process seems to produce robust results. )Iowever, the residuals 
on completely new validation data (shown in Figures 6.14 and 6.16 show that local learning 
produced better generalisation ability). 

Model Type Mean abs error Mean squared error Max abs error 
Linear model 0.0116 0.00049 0.28 
MARS (19 BF's) 0.0168 0.0014 0.45 
MARS (85 BF's) 0.0162 0.0017 0.63 
RBF (39 Basis 0.0185 0.0017 0.72 
Functions) 
MLP (30 Units) 0.0144 0.00065 0.29 
LMN (gl, axis-orth) 0.0235 0.0036 0.78 
LMN (U,RBF, nu 0.0151 0.00068 0.32 
=2) 
LMN (Il, no active) 0.0118 0.00059 0.32 
LMN (ll,RBF, nu 0.0115 0.00045 0.26 
=5) 
LMN (Il, ellipse) 0.0116 0.00044 0.227 
LMN (ll,RBF) 0.0111 0.00046 0.264 
LMN (local learn- 0.0110 0.00040 0.22 
ing, axis-orth) 

Table 6.1: Summary of mill modelling results on validation run. gl - global learning, II -
local learning, ellipse - full ellipsoidal distance metric, axis-orth - axis-orthogonal ellipsoidal 
distance metric. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 157 

6.3.4 Interpreting the trained models 

Can the final machine learned model be interpreted to give the human engineer a better un­

derstanding of the system in question? This is a question which has often been ignored in the 

li terature on learn ing systems, but one which is very important in indust ria l s ituations. There 

will usually be a trade-off between flexibility and interpretability , which will depend on their 

relative importance for a given application. 

The positions of the basis functions can be visualised in a three dimensional plot, as shown in 

Figure 6.19. This gives us some insight into the location of complexity in the problem 's state 

space. The hyper-ellipsoids in the figure correspond to the scales of the distance metrics of 

the basis functions . The constructive algorithm seemed to develop models with the complexity 

in the ' intuitively correct' areas of the input space. The acceleration and deceleration phases 

are deemed the most complex, and these were covered to a greater extent than the constant 

velocity area, which in general was covered by only one or two models. The resulting models 

were also reasonably small, the overfitting protection limiting the detrimental effects of sparse 

data in the complex areas of the input space - the model structures found tended to have less 

than 20 local models, despite training sets of over 6000 examples . 

O .'r--~-~--~-~----' 

" 

(a) BF Contour plot 

sa a a 
vI 

(b) 3-D plot of Basis functions for roll mill model. T he basis 
functions are shown here in the unnormalised form , basically 
as ellipsoids representing the volume equivalent to that of the 
contour plot at 0.5 . 

Figure 6.19: Visualisation of the mill model operating regimes . 

A further aid to understanding the model is to go through the validation runs examining the 

model output and actual output, while viewing the current position ¢ in the operating space . 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 158 

T he top plot in Figure 6.20 shows the model and actual output, while the plot below shows the 

run fo~ the entire trai ning se t in the operating space, with the portion being examined above 

is marked as the darker area. 

T he use of such visualisation tools lets the developer examine the areas of the operating space 

responsible for large model deviations, to t ry and determine possible inadequacies in the model 

st.rllcture (e.g. too few local models in a particular region, ill-suited local model st ructures, 

etc .) with the aid of visualisation tools such as shown in Figure 6.19. T hese too ls are ob­

viously limited to any three given dimensions, but can still provide useful insight in many 

cases. Fu rther development of such tools would allow the user to select certain a reas of the 

inputs space and find the nearest local models, so that their st ructu res and pa rameters can 

be investigated , or gain more insight about the model workings . In genera l, as noted in 

(J ohansen and Foss, 1994a), there should always be room for the human user to intervene in 

the modelling process . To give a more detailed feeling for the accuracy of the model, three 

0 .38.----.----.-----,----,-----,----.----.-----.----.---~ 

0.3L----L----~--~----~--~~--~----~--~----~--~ 

100 120 140 160 180 200 220 240 260 280 300 

0.5 

o 
0.8 

0.4 0.6 

l
u -1' .. ". mill 

0.8 

Figure 6.20: Model and Real Mill output, with the related a rea of the input space. T he 
visualisation tool allows you to examine the model res iduals, while viewing the current position 
in the operating space below (the subset of the data corresponding to the model plot above is 
highlighted). More powerful tools would allow the use such plots in conjunction with images 
such as Figure 6.19, where the local model closest to the data shown could be 'clicked ' on and 
the structure and parameters viewed . 

areas of the test data set are plotted in Figures 6.21 to 6.23. 



OJ 
o 
o 

o 

.... 
8 

CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 159 

a. (f) < 3 3 ~ 0 ...... 
->. 0 
:J 0 a. 

c: ~ 
-0 0 

~ c: 
-0 
~ 

Figure 6.21: Detailed validation modelling runs with LMN and local learning. LMN model 
in acceleration phase. Despite the changes in the inputs, the model performs well , although it 
goes off track between 1760 and 1820. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES ]60 

'" 8 

'" '" 8 

a 
W 

a 

'" 
~ -- ~- --" .- -. 

.... -,- .. , 

--- - - -.. 

. - ...... . - - ... 

"- -. -.-

-. -'- -" 

". -. ~ ... -. 

.- -- .' . 

.... ,'­-- -.. 

. -

. ... ::.";' 

...• -: ... 

"­_. -' _. 
.- -- "-

. _ 1'-

,::-- .:' -. _ .. .-- ... - _ .. 

a 

'" 

i 

I 
I 

Q. 
~ 

" 

a 
i:c 

III ~ a 

I 
~ 
g 
.g 
S 

I 

I 

3 
8. 
~ 
0 

~ 
S 

a 
Co 

Figure 6.22 : Detailed validation runs with LMN and local learning, in constant velocity phase. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 161 

9 0 0 0 0 0 a 0 0 

~0r------,,------,N-------.WC-'-__ ~~~-=~_~r-__ ~ __ ~r-______ ~r-____ -,m,-____ -,w g 

I\) 
ex> 

8 

I\) 
ex> 
(Jl 

-0 

~., _., .. . 

"":..:. ":::. 

( 

.. :-. ... 

Figure 6.23: Detailed validation modelling runs with LMN a nd 10 al learning. LMN mod I in 
deceleration phase. Again model does well despite the changing tate o f the phy i a l yst m . 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLfiVG EXAMPLES L62 

§O~ ____ ~ ______ ~ ____ ~~ ____ -T ______ ~ ______ '-____ ~ ______ ~ ______ T-____ ~ 

o c 2 : 
~- --~~----------~~~~~--

.. :~' 

..... 
8 

..... 
U1 

.... 0 

8 

" / 

. -
-~-~.---~.....-.=-~ . - ' - . ' ----- .. - ' 

<=-~~> . 
~. 

-c::::=~"---. _ . _.~ ____________ __ 

~--------------~ . - ' 

- "- ~-

I 

I 
I 

I 
I I 

0. en < 3 3 :::r 0 ..... 
0 ..... 

:J 0 0. 
c: CD .... 0 "0 
S. c: .... 

"0 

.~ 

L-____ -L ______ ~ ____ ~~~ __ ~~ __ ~ ______ ~ ____ _L ______ ~ ____ ~~ __ ~ 

Figure 6.24 : Detailed validation modell ing runs with linear model. Compare with the LMN 
Model in Figure 6.21. The linear model does not manage to come as close to the actual output 
in the area of large output changes between 1600 and 1700. Nevertheless, the linear model 
could still prove to be useful in a real application because of its simplicity. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 163 

6.3.5 Analysing the local confidence limits 

By examining the local error statistics (as defined in Section 3.2 . L) for the local mod Is the 

location of the worst errors can be deduced , poss ibly helping the engineer lea rn where the 

complexity in the real process is, or where insufficient experimenta l data exists . T he tes t run 

is plotted below, where the error is shown, with the network's es timation of its own accuracy. 

average error confidence pklts 
0.035 

0.03 

0 .025 

0.02 

0 .015 

0.01 

0005 

.. 
1000 2000 3000 4000 5000 

(a ) Error statistics a nd LMN 's weighted average 
error prediction on the training set used to derive 
the es timates. 

average error conI~ plot .. 
0.03 

0.025 

0.02 

0.015 • 

0 .01 

0.005 

-" 
1000 2000 3000 4000 5000 6000 7000 8000 

(b) E rror stat istics and LMN's we ight 'd Iw crage 
error pred iction on the va lida ti on se t . 

F igure 6.25: State-dependent average error sta tistics on the t rain ing and validation data 

What happen s when we close the loop? 

Despite the validation process, the real test of the model wi ll only happ n wh n it is us d 

as it was intended in the real system. In this case, any false assumptions ab ut tit syst 10 , 

or disturbances on the t ra ining data will become immediately a ppa rent. O nce a 'ontrol! r is 

built which uses the model from the learning phase, it may also mak the old model in valid . 

This is because the new, improved controller will impose a d ifferent type of stimu lation n 

the process, which will cover different areas of the input space, and which m ay produc quit 

different responses from the process. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 164 

0.25

1 
021 

0 . 15 , 
0 .1 

0 .05 

-0.05 

-0.1 

worst error confidence pk>ts 

(a) Model res iduals a nd LMN's local worst error 
prediction on the training set used to derive the es­
timates. T he worst error from the local model's re­
ceptive fi e ld is taken (where basis function> 0.1), 
so t he a lgorithm tends to overestimate the worst 
erro r . 

0.
25r 

0 .2r 

0.15 . 

~. 

- 0 .15 -

worst etror confidence pk>ls 

1000 2000 3000 4000 5000 6000 7000 8000 

(c ) Model residuals and LMN's local worst error 
prediction on the validation set. 

worst .rror confidence plots 

-0.1 

-0.15 

(b) Model residua ls and LMN 's we ighted worst er­
ror prediction on the training set lIsed to derive the 
estimates. Because the wors t error is we ighted the 
a lgorithm tends to underestimate the ma ximum er­
ror 

worat error confidence pk>tI 
0 .2 

0.15 

8000 

(d) Model residuals a nd LMN's we ighted worst 
error prediction on the validation set. 

Figure 6.26: State-dependent worst error statistics on the training and validation data. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 165 

6.4 Robot Actuator Modelling 

The robot application described in this section is based on data sampled from a physical 

system, supplied by Tom Kavli, SINTEF, Oslo. The application and the data sets have been 

described for modelling work in (Kavli, 1992) and in (Johansen and Foss, 1994b). A brief 

overview is given here: 

Many industrial robot applications now demand high dynamic accuracy. Model based control 

schemes have the potential to improve performance, but the use of hydraulic manipulators has 

suffered due to the lack of good nonlinear models for the hydraulic components. Model based 

control schemes have been more successful on electric direct drive arms with low friction and 

linear actuators. The goal of the learning task is to form a model of the servo valve/actuator 

system of a hydraulic robot. The robot is an ABB Trallfa TR4000 Robot, specially designed for 

spray painting, where tracking accuracy over a desired trajectory is extremely important. The 

control signal u is described as a function of the joint position q, velocity q and acceleration ij: 

u=f(q,q,ij). (6.7) 

The nonlinearities are due to: 

• the changing moment arm of the cylinder over the operating range, 

• the nonlinear damping coefficient due to the quadratic flow/pressure relation for turbulent 

flow and, 

• the changing pressure gain characteristics for the servo valve at different flow rates. 

The data was sampled by logging the data at 100Hz, while the manipulator moved along a 

randomly generated path. The velocity and acceleration signals were calculated by low pass 

filtering the data and differentiating the joint positions. The linear effects in the system were 

subtracted from the data to emphasise the nonlinearity of the system. The training data 

consisted of 8000 training points and the test set had 1000 points. 

6.4.1 Experimental results 

The ASMOD results * are taken from (Kavli, 1992). LSA (Local Search Algorithm) results + 
are from (Johansen and Foss, 1994b). The LMN results were obtained by using the algorithms 

described in this thesis, as well as the active selection algorithm to reduce the number of points 

in the training set (the training set was reduced to a maximum of 1200 points). 

The MARS results are shown in Figure 6.30(a). The cross-validation results for the local 

model net with local learning are shown in Figure 6.29(a) is compared with the global learning 

case in Figure 6.29(b). Note the poor performance of local learning in the cross-validation 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 166 

Model Type Test Error (NRMS) 

LSA+ 17 
MLP (3-20-1) 23 
ASMOD*(Quadrat.) 15 
ASMOD*(Linear) 17 

RBF* 23 

MARS 17 
LMN (local learning) 18 
LMN (global learning) 17 
LHM (axis oblique) 18 
LMN (local learning) 18 
LMN (global learning) 17 

Table 6.2: Robot modelling results on the test set. The only method to provide better results 
than the LMN was the ASMOD model with quadratic splines (and a large number of pa rameters 
at 512 basis functions). Local Modelling proved to lead to slightly worse results, and required 
a larger number of parameters, but produced 'safer ' extrapolation to areas with little training 
data. 

qdol 

(a) LMN Basis Functions for the robot model 

0.8 

~0.8 

!04 
0.2 

qdot o 0 

(b) Ro b ot training data 

Figure 6.27: Distribution of robot training data and local models' basis functions. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MOD ELLING EXAMPLES 167 

resul ts. Only one of the runs produces a mean error s im il a r to that of the global op ti m isat ion . 

T hi s is, however , due to a weakness in the structure iden tification a lgori thm , which stops 

growing when the error stops decreas ing . In global learning, the greater degree of freedom for 

the optimisation means that the addi tional local models have a mo re pro no unced effect, a nd 

construction continues. By a ltering nrc. to 5 for local learning p roduced the resul ts shown 

in F ig ure 6.28 (b) , where a la rger number of local m odels were buil t, bu t whi ch achieved an 

improvement in accuracy to that close to the globally t ra ined model. 

T he problems with ill-conditio ning for glo ba l learning a re less preva len t in thi s applicat io n, due 

to the low dimensionali ty, accompanied by large amounts of t ra ining data, a nd the appa rent 

sm oothness of the underlying process nonlinearity. 

0. 1 "",,-~-~-~---r-~~-"---"'--' 0.11 r---r--'--"'--~--r--'--"'--~--r--, 

0 .09 

0.08 

~ 0.07 

.§O,06 
~O.O7 

~ 
ilO 06 j 

0.05 

0.04 

0 .03 

o .o20L_~--:10:---'-:-:5--::20:-=~2S=5 ==30~=~35~=-:' 40 
NOOIber 01 models 

(a ) LMN erro r curve with global learning 

r 
0.05 

0 .04 

0.03 

0 .02
0 W 20 30 40 ~ 00 ro 00 00 ~ 

Number of local mocklIa 

(b) LMN erro r cur ve with local learning 

Figure 6. 28: T he progress of the average absolu te error as new m odels a re added to the robo t 
modelling exa mple. Note that local learning finishes earlier tha n globa l learning. 

Vi sualisation of tht system 

T he following surfaces are representations of the inpu t space as seen thro ugh different sli ces 

through the space . The corners of the plots are areas where the system had no tra ining da ta, 

a nd are therefore unreliable. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 168 

0.5 

0 .4 

0 .3 

0 .2 

0 .1 

o o 

0 .6 

0 .4 

0 .2 

o o 

Tra ining avera go 

,-,-'-

In 
Test average 

'-.-r- r-

In 

0.4 

0.3 

0.2 

o. I 

0.4 

0.3 

0.2 

o. I 

o o 

Training worst 

,-
,- ,- r-

Test worst 

r- r-r-
r-

(a) LMN resu lts with local learn ing 

r-

.-

Training NAMS 
0.2 

Tra ining worst 
3 

0 .15 
,- ,-'- ,-r- r-'-

2 r- ,--,--
o. I 

o. I oos 

0 0 o 

Te., NRMS Test WOfst 
o. 2 0 .2 5 

,-r-r- .-
5 r-

r-
2 r- ,--0.1 o. 

0 .1 5 r-
o. I r-

o. I 
0.0 5 

0 .0 5 

0 0 

(b) LMN resu lts with g lobal lea r ning 

Figure 6.29: Cross-validation results fo r the Trallfa robot with Local Model Nets. Note the 
poor performance of local learning in all but one example. By increasi ng nr e• to 5, the local 
learning could perform better , as shown in Figure 6.28(b) 

Troinlng NRMS 
0.15,r----=-------, 

,---.-,---r-'--

0.1 

0.05 

Test NRMS 
0.15 - r-.-

o. I 

0.0 5 

0 

Training worst 
0.2 r-,- ,--- ,---

0.15 

o. I 

O.OS 

0 

Test worst 
0.2 

r- ,-- ,--
0.15 

,--

o. I 

O.OS 

0 

(a) MARS resul ts with maximu m number of basis 
func t ions set to 200 

Figure 6.30: Modell ing resu lts for the Trallfa robot with MARS. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 169 

q dot dol o 0 

(a) Speed and acceleration , with position at 0 .5. (b) Position and accelera tion with speed a t 0.5. 

q dot 

(c) Position a nd speed with accele ration at 0.5 . 

Figure 6.31: Output responses for slices through the robot actuator model. Note the way 
the model response surface flies off in the corners where data does not exist. This is one 
disadvantage of normalised basis functions, where the basis functions are supported through 
the whole input space, combined with global learning, which produces less robust models . 
Compare the plots here to those achieved with local learning in Figure 6.32. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 170 

-' --" -"'/ , . ... . ' 

.- --~-.-.. -. 
... . 

0.6 

q dol do. qdol 
qdo, o 0 

(a ) Speed and acceleration, with position at 0.5 . (b) Position and accelera tion with speed at 0.5. 

0.8 

0.6 

0 .4 

0.2 

0.8 

q dol do' 
o 0 

(c) Position and speed with accelera tion at 0.5. 

Figure 6.32: Output responses for slices through the robot actuator model using local learning . 
Compare the plots here to those achieved with local learning in Figure 6.31. The locally trained 
models provide a less dramatic form of extrapolation outside the populated area of the input 
space. 



CHAPTER 6. ROLLING MILL & ROBOT ACTUATOR MODELLING EXAMPLES 171 

6.5 Conclusions 

6.5.1 Rolling mill results 

The rolling mill application provided an interesting environment for testing the local model 

network methodology and the constructive algorithms proposed in this thesis. To solve the 

problem meant dealing with the practical problems of data acquisition, pre-processing, and 

variable selection. In some ways though it is also not an ideal choice to show off the structure, 

due to the poor available understanding of the system, and the difficulty in performing exper­

iments to acquire data, or to validate the usefulness of models produced. Despite the relative 

deficit of formalised a priori knowledge about the system, the local model network methods 

proved to be the most accurate, and most interpretable representations of the rolling mill pro­

cess. The MARS algorithm was relatively fast, but did not have the desired accuracy, and the 

conventional MLP neural network was very slow during training, and produced low-accuracy 

models. 

The validation phase used cross-validation techniques to test the robustness of the learning 

algorithms, as well as using validation sets from completely different runs. This showed up 

some interesting features in the experimental setup. The local learning techniques led to 

significantly more accurate models for new validation data than globally trained ones, even 

though they were found to be slightly less accurate on 5-fold cross-validation runs based on 

partitions of the training set. This seems to indicate that the local learning produced a more 

robust model of the mill, at the expense of accuracy on the training data. 

The state-dependent error estimates proved, despite their simplicity, that they could capture 

the areas of the input space where the model is least accurate - the acceleration and deceleration 

phases. Other tools were used which helped interpret the model, including the visualisation of 

model residuals, accompanied by the position of the data in the operating space of the local 

model net's basis functions. This can also be combined with slices through the basis functions, 

in the form of either contour plots or ellipsoidal plots of basis functions in three dimensions. 

6.5.2 Robot actuator results 

The results obtained by the Local Model Net are comparable with the results quoted in the 

original work (Kavli, 1992) and also with those in (Johansen and Foss, 1994b). The problem 

is low dimensional, the nonlinearity seems to be fairly smooth, and there is an abundance of 

training data. This means that other model structures can also cope with the problem, and 

that while the local model nets perform well at the modelling task, the po~ential advantages of 

local model nets are not as evident as in other applications. A further interesting result from. 

the experiment pointed out weaknesses in the structure identification algorithm working with 

local learning, where it often stops construction too early. Using a larger nre• lead to better 

results, but also needed a larger number of parameters. 



Chapter 7 

Conclusions 

7.1 Local Model nets 

The work undertaken has shown that Local Model Nets have a great deal of potential as 

a general model structure, suitable for a wide variety of empirical modelling and learning 

tasks. An important aspect of the architecture is that it forms a link between the world of 

learning systems such as neural networks and the more conventional world of systems theory 

and statistical modelling. The local nature of the models means that the trained networks 

are more transparent, and can easily integrate a priori models from the other paradigms. 

Knowledge about the process being modelled can be used in hybrid local model nets to better 

cope with high-dimensional systems. 

7.1.1 Local Model Net extensions 

This thesis extends the understanding of local model networks in several respects: 

• The Local Learning methods developed in this work have a regularisation effect which in 

many cases improve the generalisation of the trained net, as the methods overcome some 

of the conditioning problems discovered in the parameter estimation phase of training. 

The nature of the conditioning problems had previously gone unnoticed, and this work 

demonstrated the dependence of the condition on the level of overlap between models. 

• Methods have been developed which use the local nature of the basis functions to allow 

local error estimates to be interpolated to produce a state-dependent error statistic for 

the whole network. Such statistics are useful for the validation and interpretation phases 

of modelling and are useful for on-line application in model-based control and diagnosis 

systems. The techniques were applied to the rolling mill problem and produced error 

estimates which corresponded well with the measured residuals on a validation run. 

172 



CHAPTER 7. CONCLUSIONS 173 

• The effect of the widely used normalisation technique for basis function nets has been 

analysed, and hitherto undocumented results were discovered. These have a serious effect 

on the smoothness of the representation and can compromise the local nature of the basis 

functions. Normalisation still has advantages in that it produces a partition of unity, and 

makes the model less sensitive to a poor choice of basis functions, but the unexpected 

side-effects described in Section 3.3.1 should be taken into account when interpreting 

trained basis function nets, and when developing new learning algorithms. 

The thesis also provides descriptions of a number of practical techniques for use in Local Model 

Networks: 

• New Local Learning methods were developed for the parameter estimation phase in Local 

model nets. These methods are far less computationally expensive than the global ones, 

and can often result in more interpretable local models. In general, with a reasonable 

level of basis function overlap, the local optimisation tends to cope better than global 

learning in high-dimensional, noisy or sparsely populated learning problems. Section 4.4 

gives examples of how the local learning methods performed more robustly on noisy test 

functions, and Chapter 3 demonstrates the better generalisation ability of locally trained 

local models on the rolling mill application. 

Local learning is also well-suited to heterogeneous local model nets, where a variety of 

types of local model can be used, each with its own optimisation algorithm. This makes 

the local model framework much more general than the basic homogeneous linear local 

model structure, allowing it to integrate a variety of styles of model and methods of 

knowledge representation . 

• The new Multi-Resolution Constructive (MRC) structure identification algorithm for 

Local Model networks has been developed. This allows the network to fit the basis 

functions to the data set in a gradual, problem-adaptive manner. The constructive nature 

of the algorithm speeds up the modelling process by reducing the amount of 'fiddling' 

needed to produce a good model. It also tends to find more accurate models, as the 

complexity is increased as needed for the given problem, while overfitting is limited by 

taking the local density of the training data into account. The fact that trained models 

are now being trained in minutes as opposed to days with previous learning techniques 

obviously better supports the interactive nature of the modelling process . 

• Active data selection techniques have been developed for local model nets. These speed 

up the learning process by automatically selecting a training set for the current model 

structure, where the number of data points needed is reduced, but the most informative 

data is chosen from the complex areas of the input space. Training tends also to be 

more robust with respect to the distribution of the training data, as demonstrated in 

Section 4.3 with synthetic examples and in Chapter 6 on the real applications. 



GHAPTER 7. GaNGL USIONS 174 

1.1.2 Learning Hierarchies of Models 

The novel Learning Hierarchy of Models architecture is a hierarchical extension of the local 

model networks, which due to the split-like nature of its partitioning mechanism decomposes 

high dimensional spaces more efficiently than flat Local Model nets. 

A new constructive algorithm which automatically grows tree-like structures to fit the target 

function is described. The soft-splits can be axis-oblique, making the structure more powerful 

than other more restricted hierarchical structures which are limited to partitioning the input 

space one variable at a time. Local learning, error estimation and active learning can all be 

applied in a hierarchical manner. 

Use of soft, axis-oblique splits provides the potential for hierarchical structure adaptation, 

where gradual structure learning occurs simultaneously at several levels of the structure at 

differing timescales. This is likely to lead to more efficient learning algorithms, which produce 

more parsimonious models. It is also interesting for on-line use for structure adaptation in 

time-varying systems. The architecture can also be seen as a fuzzy decision tree, and could 

apply methods from both decision tree theory and fuzzy systems. 

1.1.3 Experimental work 

To demonstrate the applicability of the methods to real industrial processes data was taken 

from an aluminium rolling mill and a robot actuator: 

• Data has been taken from an aluminium rolling mill to train a predictive model of the strip 

thickness using local model nets. This was a real application of the modelling techniques 

to aspects of a nonlinear, dynamic process which were poorly understood. The Local 

Model Net techniques described in this thesis have produced the most accurate modelling 

results known to date on this problem, and further testing with an on-line implementation 

is planned . 

• The Trallfa robot actuator nonlinearities were also learned successfully. This problem has 

been used as a test example for a number of other structure identification algorithms, and 

it is characterised by its low dimensionality, smooth nonlinearities and large training set. 

Despite its relatively simple nature, the problem demonstrated that the methods could 

still be competitive on more straightforward, low-dimensional problems. 

7.2 Outlook 

The training algorithm used to identify the underlying structure of the basis functions is a 

practical but still relatively ad hoc routine, and there is certainly a great deal of progress to 



CHAPTER 7. CONCLUSIONS 175 

be made in the area of structure construction algorithms. User friendly methods for the easy 

integration of a priori knowledge into the network will become more and more important as the 

demands for accuracy, robustness and transparency increase. There are many opportunities for 

the development of easy-to-use tools which allow the developer to creatively build engineering 

knowledge directly into the modelling process, leaving the learning algorithms to cope with 

the uncertainty in the process, and to warn the user where more information is needed. Tools 

based on the ideas described in this thesis are likely to benefit the developer in the computer 

intensive, data driven areas of modelling. Despite the improvements in tools, it is perhaps 

relevant to quote one of the leading system identification researchers, Lennart Ljung: 

'Thinking, intuition and insight cannot be made obsolete by automated model 

construction' (Ljung, 1987) 

An immediately practical view of the methods described in this thesis is to see them as 

computationally- and data-intensive ways of supporting more traditional modelling methods, 

allowing the engineer to better understand the system by reproducing the behaviour with a 

learned model, understanding the behaviour and then creating a 'hand built' simplified model 

which exhibits the essential behaviour of the structurally more complex learned model. This is 

then more easily understood and validated, and is therefore more likely to be used in practical 

applications. 



Appendix A 

Notation 

A.I 

AT 
A- l 

A+ 

Bj,p 

Cov(x) 

t 

u 

cp 
y 

iJ 
v 
Vi 

Ji 
M 

Notation used 

the transpose of matrix A 

the inverse of matrix A 

the pseudoinverse of matrix A 

Basis Spline j of order p 

the covariance matrix of vector x 

knot of a basis spline 

system inputs 

information vector inputs 

position of basis function i's centre in the input space 

operating point state 

outputs 

estimate of outputs 

the training set of input-output pairs 

the training set of input-output pairs in receptive field of basis function i 

basis vector for regression 

the design matrix for the regression problem 

the design matrix for the local regression problem for local model i 

cost function 

cost due to model variance 

cost due to model bias 

optimal cost for parameter optimisation 

optimal cost for structure optimisation 

cost functional for optimisation of parameters of local model i. 

the whole model structure 

176 



APPENDIX A. NOTATION 177 

M(6) 

Mi 

nt/J 

nclJtoJ J 

N 

Ni 

Nde, 

Nmin 

Nrand 

p, 
p(.) 

Pi( .) 

ptotal 

nn 
s 

erwin 

6 

a(·) 

a 

-y 

D(tP) 
,x 

Qmin 

*,x 
X 
y , ,., 
11·11 

the model structure parameterised by 6 

the model structure of local model i 

number of input dimensions to local models 

number of basis functions 

dimension of basis vector for regression 

number of new units added for 'stopping window 

number of resolution stages in multi-resolution clustering 

dimension of basis function space 

dynamic order of local models in rolling mill model 

number of training patterns 

number of training patterns for local model i 

number of data points desired for a given local model for active selection 

minimum number of training patterns in the receptive field of a local model 

number of data points randomly chosen from entire training set during active selection 

the number of parameters in local model I 

the basis activation function 

the basis activation function for basis function i (can be after normalisation) 

the cumulative activation of a basis function over the whole training set 

Euclidean n-dimensional space 

the process being modelled 

scaling matrix (or factor) for distance function of the basis function 

current window size for the complexity window of Chapter 4 

coarsest (initial) window size for the complexity window of Chapter 4 

weights 

error weighting function for weighted least squares problems 

weighting matrix for distance metric 

scaling factor for minimum distance between units 

scaling factor for the distance from centre for calculation of er 

reduction factor for window size in iterative cluster algorithm 

minimum angle between two neighbouring centres for covariance calculation 

weighting of cost function in cost-complexity optimisation 

the experiment used to gather the training data V 

the vector of outputs in training set V 

threshold for basis function activation 

Euclidean norm 

Matrix norm 



APPENDIX A. NOTATION 

A.2 

ANN 

ANOVA 

ARMAX 

ARX 

ART 

ASMOD 

BF 

BP 

CART 

CMAC 

EBF 

FIR 

GCV 

GSS 

HME 

HSOL 

103 
k-N-N 

LHM 

LMN 

LMS 

LSA 

LTU 

LVQ 

MARS 

Abbreviations 

Artificial Neural Network 

AN alysis Of VAriance 

Auto-Regressive Moving Average model with eXternal variable 

Auto-Regressive model with eXternal variable 

Adaptive Resonance Theory 

Adaptive Splines MODelling 

Basis Function 

Back-Propagation 

Classification And Regression Trees 

Cerebellar Model Articulation Controller 

Ellipsoidal Basis Function 

Finite Impulse Response 

Generalised Cross-Validation 

Generalised Smoothing Splines 

Hierarchical Mixtures of Experts 

Hierarchical Self-Organising Learning 

Iterative Dichotomiser 3 

k-Nearest-Neighbour 

Learning Hierarchy of Models 

Local Model Network 

Least Mean Squared 

Local Search Algorithm 

Linear Threshold Unit 

Learning Vector Quantisation 

Multiple Adaptive Regression Splines 

MLP Multi-Layer Percept ron 

NARMAX Non-linear Auto-Regressive Moving Average model with eXternal variable 

peA Principle Component Analysis 

PDP Parallel Distributed Processing 

PDF Probability Distribution Function 

PID Proportional Integral Derivative 

PLS Partial Least Squares 

PNN Probabilistic Neural Network 

PVM Predictive Value Maximisation 

RBF Radial Basis Function 

RCE Restricted Coulomb Energy 

RK Reproducing Kernels 

SOM Self-Organising Map 

178 



APPENDIX A. NOTATION 

SVD 

TDNN 

VI-Net 

Singular Value Decomposition 

Time-delay neural network 

Validity Index Net 

179 



References 180 

References 

Astrom, K. J. (1987). Adaptive feedback control. Proc. IEEE 75, 185-217. 

Aizermann, M., Braverman, E., and Ronzonoer, L. (1964). Theoretical foundations of the potential 

function method in pattern recognition learning. Automatika i Telemekhanika 25, 147-169. 

Albus, J. S. (1972). Theoretical and experimental aspects of a cerebellar model. PhD thesis, University 

of Maryland. 

Albus, J. S. (1975a). Data storage in the cerebellar model articulation controller (CMAC). Trans. 

ASME. Jnl. Dyn. Sys. Meas. and Control 63, 228-233. 

Albus, J. S. (1975b). A new approach to manipulator control: The cerebellar model articulation 

controller (CMAC). Trans. ASME. Jnl. Dyn. Sys. Meas. and Control 63, 220-227. 

Alpaydin, E. (1991). GAL: Networks that grow when they learn and shrink when they forget. Technical 

Report 91-032, Int. Compo Sci. Inst., Berkeley. 

Anderson, J. A. and Rosenfeld, E., editors (1988). Neurocomputing: Foundations 0/ Research. MIT 

Press, Cambridge. 

Anderson, J. A. and Rosenfeld, E., editors (1990). Neurocomputing 2: Directions/or Research. MIT 

Press, Cambridge. 

Andrews, H. C. (1983). Introduction to Mathematical Techniques in Pattern Recognition. Robert E. 

Krieger. 

Atkeson, C. G. (1990). Memory-based approaches to approximating continuous functions. In Workshop 

on Nonlinear Modelling and Forecasting, Santa Fe Institute. Addison-Wesley. 

Back, A. D. and Tsoi, A. C. (1991). FIR and I1R synapses, a new neural network architecture for 

time series modeling. Neural Computation 3,375-385. 

Bakshi, B. R. and Stephanopoulos, G. (1993). Wave-Net: a Multiresolution, Hierarchical Neural 

Neural Network with Localized Learning. AIChE Journal 39. 

Banan, M. R. and Hjelmstad, K. D. (1992). Self-organization of architecture by simulated hierarchical 

adaptive random partitioning. In IJCNN, Baltimore, volume III, pages 823-828. 

Barnes, C. et aI. (1991). Applications of neural networks to process control and modelling. In Artificial 

Neural Networks, Proceedings of 1991 Intern at. ConI· Artij. Neur. Nets, volume 1, pages p321-326. 

Barron, A. R. and Barron, R. L. (1988). Statistical learning networks: a unifying view. In Computer 

Science and Statistics: Proc. of fU st Interface, pages 192-203. 

Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press, Princetnn, NJ. 

Benaim, M. (1994). On Functional Approximation with Normalised Gaussian Units. Neural Compu­

tation 6, 319-333. 

Bently, J. L. (1975). Multidimensional binary search trees used for associative searching. Communic­

ations of the ACM 18, 509-517. 

Billings, S. A. (1980). Identificatilln of nonlinear systems-a survey. lEE Proc.,Pt D 127, 272-285. 

Billings, S. A. and Chen, S. (1989). Extended model set, global data and threshold model identification 

of severly non-linear systems. Int. J. Control 50, 1897-1923. 

Billings, S. A. and Voon, W. S. G. (1987). Piecewise linear identification of non-linear systems. Int. 

J. Control 46, 215-235. 

Bishop, C. (1991). Improving the generalization properties of Radial Basis Function neural networks. 

Neural Computation 3, 579-588. 



References 181 

Bishop, C. M. (1994). Training with noise is equivalent to Tikhonov Regularization. Submitted for 

publication. 

Bottou, L. and Vapnik, V. (1992). Local learning algorithms. Neural Computation 4, 888-900. 

Breiman, L. et al. (1984). Classification and Regression Trees. Wadsworths &; Brooks, Monterey, Ca. 

Bridgett, N. et al. (1994). Associative memory network construction algorithms. In IMACS Int. Symp 

on Signal Processing, Robotics and Neural Networks, pages pp29D-293. Lille, France. 

Broomhead, D. S. and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. 

Complex Systems 2, 321-355. 

Brown, M. and Harris, C. (1994). Neurofuzzy Adaptive Modelling and Control. Prentice Hall, Hemel­

Hempstead, UK. 

Carlin, M. (1992). Radial Basis Function networks and nonlinear data modeling. In Neuro-Nimes 92, 

pages 623-633. 

Chen, S. and Billings, S. A. (1989). Representation of non-linear systems: The NARMAX model. Int. 

J. Control 49, 1013-1032. 

Chen, S. and Billings, S. A. (1992). Neural networks for non-linear dynamic system modelling and 

identification. Int. J. Control 56,319-346. 

Chen, S. and Billings, S. A. (1994). Neural networks for nonlinear dynamic system modelling and 

identification. In J., H. C., editor, Advances in Intelligent Control, pages 85-112, London. Taylor 

and Francis. 

Chen, S., Billings, S. A., and Grant, P. M. (1990). Non-linear system identification using neural 

networks. Int. J. Control 51, 1191-1214. 

Chen, S., Cowan, C. F. N., and Grant, P. M. (1991). Orthogonal Least Squares learning algorithm 

for Radial Basis Function networks. Trans. IEEE on Neural Networks 2. 

Cleveland, W. S., Devlin, S. J., and Grosse, E. (1988). Regression by local fitting. Journal of 

Econometrics 37, 87-114. 

Cohn, D. (1994). Neural network exploration using optimal experiment design. In Cowan, J. D., 

Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems 6, 

San Franciso, CA. Morgan Kaufmann Publishers. 

Cohn, D., Atlas, L., and Ladner, R. (1990). Training connectionist networks with queries and selective 

sampling. In Touretzky, D. S., editor, Advances in Neural Information Processing Systems 2. 

Morgan Kaufmann Publishers, San Mateo, CA. 

Cohn, D., Ghahramani, Z., and Jordan, M. I. (1994). Active learning with statistical models. Submitted 

to NIPS'94. 

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the correct 

degree of smoothing by the method of generalized cross-validation. Numerical Math. 31,317-403. 

Dasarathy, B. (1990). Nearest Neighbour Pattern Classification Techniques. IEEE Computer Society 

Press. 

Deprettre, E. F., editor (1988). SVD and Signal Processing: Algorithms, Analysis and Applications. 

North Holland. 

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. John Wiley &; Sons. 

Fahlmann, S. E. and Lebiere, C. (1990). The cascade-correlation learning architecture. In Touretzky, 

D. S., editor, Advances in Neural Information Processing Systems 2, pages 524-532. Morgan 

Kaufmann Publishers, San Mateo, CA. 



References 182 

Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press, New York. 

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 

179-188. 

Foss, B. A. and Johansen, T. A. (1993). On local and fuzzy modelling. In 9rd Int. Con/. on Industrial 

Fuzzy Control and Intelligent Systems, Houston, Texas. 

Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. Annal!' of Statistics 19, 1-141. 

Fritzke, B. (1994). Supervised learning with growihg cell structures. In Cowan, J. D., Tesauro, G., 

and Alspector, J., editors, Advances in Neural Information Processing Systems 6, pages 255-262. 

Morgan Kaufmann Publishers, San Franciso, CA. 

Fu, K. S. (1970). Learning control systems - review and outlook. Trans. IEEE on Automatic Control 

16, 210-221. 

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the Bias/Variance Dilemma. 

Neural Computation 4, 1-58. 

Girosi, F., Jones, M., and Poggio, T. (1993). Priors, Stabilizers and Basis Functions: from regulariz­

ation to radial, tensor and additive splines. MIT AI Memo 1430, MIT. 

Golub, G. H. and van Loan, C. F. (1989). Matrix Computations. Johns Hopkins University Press. 

Goodwin, G. C. and Payne, R. L. (1977). Dynamic System Identification: Experiment Design and 

Data Analysis. Academic Press, New York. 

Gu, C. et al. (1990). The computation of GCV function through Householder tridiagonalization and 

application to the fitting of interaction spline models. SIAM J. Matrix Analysis, 457-480. 

Haas, R. and Murray-Smith, R. (1993). Fuzzy/Neuro-Kombinationen - Konzepte und Perspekt­

iven. Technischer Bericht, Daimler-Benz Research, Berlin. E-rnail:haas@Dbresearch-berlin.de, 

murray@DBresearch-berlin.de. 

Harris, C., Moore, C. G., and Brown, M. (1993). Intelligent Control: Aspects of Fuzzy Logic and 

Neural Nets. World Scientific. 

Hartman, E. and Keeler, J. D. (1991). Predicting the future: Advantages of semilocal units. Neural 

Computation 3, 566-578. 

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Monographs on Statistics 

and Applied Probability 43. Chapman and Hall, London. 

Haykin, S. (1991). Adaptive Filter Theory, 2nd ed. Prentice-Hall. 

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmillan. 

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York. Partially reprinted in 

(Anderson and Rosenfeld, 1988). 

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. 

Addison-Wesley, Redwood City. 

Hlavackova, K. and Neruda, R. (1993). Radial Basis Function networks. Neural Network World 1, 

93-101. 

Holden, S. B. (1994). On the Theory of Generalization and Sell-Structuring in Linearly Weighted 

Connectionist Networks. PhD thesis, Cambridge University. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, 

Ann Arhor. 

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational 

abilities. Proceedings of the National Academy of Sciences, USA 79, 2554-2558. 



References 183 

Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like 

those of two-state neurons. Proceedings of the National Academy of Sciences, USA 81, 3088-3092. 

Hrycej, T. (1992). Modular Learning in Neural Networks: A Modularized Approach to Neural Network 

Classification. John Wiley and Sons. 

Hunt, K. J. et al. (1992). Neural networks for control systems: a survey. Automatica 28, 1083-1112. 

Hutchinson, J. M. (1994). Radial Basis Function Approach to Financial Time Series Analysis. PhD 

thesis, Massachusetts Institute of Technology, Dept. EECS. 

Isaksson, A. J., Ljung, L., and Stromberg, J.-E. (1991). On recursive construction of trees as models 

of dynamical systems. In 90th Con/. on Decision fJ Control, Brighton, pages 1686-1687. 

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Transactions on Systems, 

Man, and Cybernetics 1,364-378. 

Jacobs, R. A. et al. (1991). Adaptive mixtures of local experts. Neural Computation 3,79-87. 

Jang, J. S. R. and Sun, C. T. (1993). Functional Equivalence between Radial Basis Function networks 

and Fuzzy Inference Systems. Trans. IEEE on Neural Networks 4, 156-158. 

Johansen, T. A. and Foss, B. A. (1992a). A NARMAX model representation for adaptive control 

based on local models. Modelling, Identification and Control 13, 25-39. 

Johansen, T. A. and Foss, B. A. (1992b). Nonlinear local model representation for adaptive systems. 

In Proceeding of the Singapore Int. Con/. on Intelligent Control and Instrumentation, volume 2, 

pages 677-682. 

Johansen, T. A. and Foss, B. A. (1992c). Representing and learning unmodeled dynamics with neural 

network memories. In Proceedings 0/ the American Control Conference, Chicago, II., pages 3037-

3043. 

Johansen, T. A. and Foss, B. A. (1993). State-space modeling using operating regime decomposition 

and local models. In Preprints 12th IFAC World Congress, Sydney, Australia, 19·23 July. Extended 

paper in Technical Report 93·40· W, Department of Engineering Cybernetics, Norwegain Institute 

of Technology, Trondheim. 

Johansen, T. A. and Foss, B. A. (1994a). A dynamic modeling framework based on local models and 

interpolation - combining empirical and mechanistiv knowledge and data. Submitted to Computers 

and Chemical Engineering. 

Johansen, T. A. and Foss, B. A. (1994b). Identification of non-linear system structure and parameters 

using regime decomposition. To be presented at the IFAC Symposium on System Identification, 

Copenhagen. 

Jones, R. D. et al. (1989). F\mction approximation and time series prediction with neural networks. 

Technical Report 90-21, Los Alamos National Lab., New Mexico. 

Jordan, M. I. and Jacobs, R. A. (1991). Hierarchies of adaptive experts. In Moody, J. E., Hanson, 

S. J., and Lippmann, R. P., editors, Advances in Neural In/ormation Processing Systems 4. Morgan 

Kaufmann Publishers, San Mateo, CA. 

Jordan, M. I. and Jacobs, R. A. (1993). Hierarchical Mixtures of Experts and the EM algorithm. 

Technical Report 9301, MIT, Computational Cognitive Science. 

Kavli, T. (1992). Learning Principles in Dynamic Control. PhD thesis, University of Oslo. 

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science 

220, 671-680. 



References 184 

Kodratoff, Y. and Michalski, R. S., editors (1990). Machine Learning: an artificial intelligence ap-

proach (Vol. 3). Morgan Kaufmann, Los Altos. 

Kohonen, T. (1990). The self-organizing map. Proceeding of the IEEE 78, 1464-1480. 

Kolodner, J. (1993). Case Based Reasoning. Morgan Kaufmann. 

Kramer, M. A. (1993). Diagnosing dynamic faults using modular neural nets. IEEE Expert . 

Kramer, M. A., Thompson, M. 1., and Phagat, P. M. (1992). Embedding theoretical models in neural 

networks. In Proc. American Control Conference, Chicago, II., pages 475-479. 

Kuipers, B. and Astrom, K. (1994). The composition and validation of heterogeneous control laws. 

Automatica 30, 233-249. 

Kurcova, V. (1992). Universal approximation using feedforward neural networks with Gaussian Bar 

units. In Proc. ECAI'92, Vienna, pages 193-197. 

Lane, S. H., Handelman, D. A., and Gelfand, J. J. (1991). Higher order CMAC neural networks -

theory and practice. In Proc. American Control Conference, Boston, USA, pages 1579-1585. 

Lee, S. and Kil, M. R. (1991). A gaussian potential function network with hierarchically self-organizing 

learning. Neural Networks 4, 207-224. 

Leonard, J. A., Kramer, M. A., and Ungar, L. H. (1992). A neural network architecture that computes 

its own reliability. MIT Industrial Liason Report 3-7-92, MIT, Dept. of Chemical Engineering. 

Leontaritis, I. J. and Billings, S. A. (1985). Input-output parametric models for non-linear systems. 

Int. J. Control 41, 303-344. 

Ljung, L. (1987). System Identification - Theory for the User. Prentice-Hall, Englewood cliffs, New 

Jersey, USA. 

Lowe, D. (1994). Non local Radial Basis Functions for forecasting and density estimation. In IEEE 

Intern. Conf. on Neural Networks, volume II, pages 1197-1198, Florida. 

Mason, J. C. and Parks, P. C. (1992). Selection of neural network architectures: Some approximation 

theory guidelines. In In: K. Warwick, G. W. :rwin, K. J. Hunt (Eds), Neural networks lor control 

and systems, pages 151-180. Peter Peregrinus. 

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. 

Bulletin of Mathematical Biophysics 5, 115-133. 

Mesarovic, M. D., Macko, D., and Takahara, Y. (1970). Theory of Hierarchical, Multilevel Systems. 

Academic Press. 

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1983). Machine Learning: an artificial 

intelligence approach. Morgan Kaufmann, Los Altos. 

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1986). Machine Learning: an artificial 

intelligence approach (Vol. 2). Morgan Kaufmann, Los Altos. 

Miller, W. T., Sutton, R. S., and Werbos, P. J., editors (1990). Neural Networks/or Control. MIT 

Press, Cambridge, MA. 

Minsky, M. L. and Papert, S. A. (1969). Perceptrons. The MIT press, Cambridge, Mass. 

Moody, J. and Darken, C. (1989). Fast-learning in networks of locally-tuned processing units. Neural 

Computation 1, 281-294. 

Murray-Smith, R. (1992). A Fractal Radial Basis Function network for modelling. In Inter. ConI. 

on Automation, Robotics and Computer Vision, Singapore, volume 1, pages NW-2.6.1-NW-2.6.5. 

E-mail:murray@DBresearch-berlin.de. 

Murray-Smith, R. (1994). Local Model Networks and Local Learning. In Fuzzy Duisburg, '94, pages 



References 185 

p404-409. E-mail:murray@DBresearch-berlin.de. 

Murray-Smith, R. and Gollee, H. (1994). A constructive learning algorithm for local model networks. 

In Proc. IEEE Workshop on Computer-intensive methods in control and signal processing, Prague, 

Czech Republic, pages 21-29. E-mail:murray@DBresearch-berlin.de. 

Murray-Smith, R., Neumerkel, D., and Sbarbaro-Hofer, D. (1992). Neural Networks for Modelling and 

Control of a Non-linear Dynamic System. In IEEE Symposium on Intelligent Control, Glasgow, 

pages p404-409. E-mail:murray.neumerk@DBresearch-berlin.de. 

Murray-Smith, R. and Thakar, S. (1993). Combining Case Based Reasoning with neural 

networks. In AAAI'99 Workshop on AI in Service and Support, Washington DC. E-

mail:murray.thakar@DBresearch-berlin.de. 

Neumerkel, D., Murray-Smith, R., and Gollee, H. (1993). Modelling dynamic processes with clustered 

time-delay neurons. In Proc. International Joint Conference on Neural Networks, Nagoya, Japan. 

E-mail:neumerk.murray.gollee@DBresearch-berlin.de. 

Noble, B. and Daniel, J. W. (1988). Applied linear algebra. Prentice-Hall Int., 3rd edition. 

Omohundro, S. M. (1987). Efficient algorithms with neural network behavior. J. Complex Systems 1, 

273-347. 

Omohundro, S. M. (1991). Bumptrees for efficient function, constraint and classification learning. In 

Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information 

Processing Systems 9, pages 693-699. Morgan Kaufmann Publishers, San Franciso, CA. 

Pantaleon-Prieto, C. J., de Maria, F. D., and Figueiras-Vidal, A. (1993). On training RBF networks. 

In Neural Networks and their Industrial & Cognitive Applications, Nimes, France, pages 279-288. 

Pao, Y.-H. (1992). Functional link net computing. Computer, 76-79. 

Park, J. and Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. 

Neural Computation 3, 246-257. 

Park, J. and Sandberg, I. W. (1993). Approximation and Radial-Basis-Function networks. Neural 

Computation 5, 305-316. 

Parker, D. (1985). Learning-logic. Tech. Report. TR-47, Center for Computational Research in 

Economics and Management Science, MIT, MA. 

Platt, J. (1991). A Resource-Allocating Network for function interpolation. Neural Computation 3, 

213-225. 

Plutowski, M. (1994). Selecting Training Exemplars for Neural Network Learning. Ph.D. Thesis, 

University of California, San Diego, USA. 

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. In Proceedings 01 the 

IEEE, volume 78, pages 1481-1497. 

Pottmann, M., Unbehauen, H., and Seborg, D. E. (1993). Application of a general multi-model ap­

proach for identification of highly nonlinear processes - a case study. Int. J. Control 57, 97-120. 

Powell, M. J. D. (1987). Radial Basis Functions for multi variable interpolation: A review. In Al­

gorithms for Approximation, pages 143-167, Oxford. Clarendon Press. 

Press, W. H. et al. (1988). Numerical Recipes (C): The Art 01 Scientific Computing. Cambridge 

Press, UK. 

Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis. Academic Press. 

Quinlan, J. (1992). Learning with continuous classes. In Australian AI ConI, pages 343-348. 

Quinlan, J. (1993). C4.5 Programs for Machine Learning. Morgan Kaufmann. 



References 186 

Raipala, J. and Koivo, H. N. (1992). Self-generating radial base network in fault diagnosis. In Inter. 

ConI. on Automation, Robotics and Computer Vision, Singapore, volume 1, pages NW-3.2.1-NW-

3.2.5. 

Rich, E. (1988). Artificial Intelligence. McGraw-Hill. 

Roberts, S. and Tarassenko, L. (1994). A probabilistic resource allocating network for novelty detec­

tion. Neural Computation 6, 270-284. 

Roscheisen, M., Hofmann, R, and Tresp, V. (1992). Neural control for rolling mills: Incorporating 

domain theories to overcome data deficiency. In Moody, J. E., Hanson, S. J., and Lippmann, R P., 

editors, Advances in Neural In/ormation Processing Systems 4, pages 659-666, San Mateo, CA. 

Morgan Kaufmann. 

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization 

in the brain. Psychological Review 65,386-408. 

Rosenblatt, F. (1962). Principles 0/ Neurodynamic •. Spartan, New York. 

Rumelhart, D. E., Hinton, G. E., and Williams, R J. (1986). Learning internal representations by error 

propagation. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed ProceSling. 

MIT Press, Cambridge, Mass. 

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed ProceSling: Explorations in the 

Microstructure. of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, Mass. 

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of 

Research and Development 3, 210-229. 

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. part II-recent 

progress. IBM Journal of Research and Development 11,601-617. 

Sanger, T. D. (1991a). A tree-structured adaptive network for function approximation in high­

dimensional spaces. IEEE Trans. on Neural Networks 2, 285-293. 

Sanger, T. D. (1991b). A t.ree-structured algorithm for reducing computation in networks with separ­

able basis functions. Neural Computation 3, 67-78. 

Sanner, R. M. and Slotine, J.-J. (1992). Gaussian networks for direct adaptive control. IEEE Trans. 

Neural Networks 3, 837-863. 

Sbarbaro, D. G. (1992). A comparative study of different learning algorithms for gaussian networks. 

In IFA C symposium on Intelligent Components and Intrument. for Control Applications. Malaga, 

Spain, pages 301-305. 

Sbarbaro-Hofer, D. (1992). Connectionist Feedforward Networks lor Control 01 Nonlinear S"dems. 

Ph.D. Thesis, Department of Mechanical Engineering, Glasgow University, Glasgow, Scotland. 

Shamma, J. S. and Athans, M. (1991). Gain scheduling: Potential hazards and possible remedies. In 

Proceedings American Control Conlerence, Bodon, Ma., pages 516-251. 

Shavlik, J. W. and Ditterich, T. G. (1990). Readings in Machine Learning. Morgan Kaufmann, San 

Mateo. 

Shorten, R. and Murray-Smith, R. (1994). On Normalising Basis Function networks. In 4th Irish 

Neural Networks ConI., Univ. College Dublin. 

Sjoberg, J., Hjalmarsson, H., and Ljung, L. (1994). Neural networks in system identification. Technical 

Report LiTH-ISY-I-1622, Dept. of Electrical Engineering, Linkoping University, Sweden. Ftp 

address: 130.236.24.1 cd pub/Reports/1994. 

Sjoberg, J. and Ljung, L. (1992). Overtraining, regularization, and searching for minimum in neural 



References 187 

networks. In Proc. IFAC Symposium on Adaptivve Systems in Control and Signal Processing, 

Grenoble, France., pages 669-674. 

Sjoberg, J., T.McKevey, and LjWlg, L. (1993). On the use of regularization in system identification. 

In Proc. 12th World Congress IFAC, Sydney Australia., volume 7, pages 381-386. 

Skeppstedt, A., LjWlg, L., and Miilnert, M. (1992). Construction of composite models from observed 

data. Int. J. Control 55, 141-152. 

Sklansky, J. (1966). Learning systems for automatic control. IEEE Trans. on Automatic Control 11, 

6-19. 

Soderstrom, T. and Stoica, P. (1989). System Identification. Prentice Hall, Englewood Cliffs, NJ. 

Specht, D. F. (1991). A general regression neural network. Trans. IEEE on Neural Networks 2. 

Steinbuch, K. (1961). Die Lernmatrix. Kybernetik 1, 36-45. 

Steinbuch, K. (1963). Automat und Mensch. Springer Verlag. 

Stokbro, K., Umberger, D. K., and Hertz, J. A. (1990). Exploiting neurons with localized receptive 

fields to learn chaos. Complex Systems 4, 603--622. 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Royal Statistical' 

Soc. B 36, 111-133. 

Stromberg, J .-E., Gustafsson, F., and LjWlg, L. (1991). Trees as black-box model structures for 

dynamical systems. In European Control Conference, Grenoble, pages 1175-1180. 

Sugeno, M. and Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems 

26,15-33. 

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications for modding 

and control. IEEE Trans. on Systems, Man and Cybernetics 15, 116-132. 

Thrun, S. D. (1992). The role of Exploration in Learning Control. In Handbook of Intelligent Control: 

Neural Fuzzy and Adaptive Approaches. Van Nostrand Reinhold. 

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutionl of Ill-posed problems. Winston, Washington 

DC. 
Tong, H. (1990). Non-linear Time Series: A Dynamical SYltem Approach. Oxford University Prells. 

Oxford Statistical Science Series 6. 

Tsypkin, Y. Z. (1971). Adaptation and Learning in A utomatic Systems. Academic Press, New York. 

Tsypkin, Y. Z. (1973). Foundationl of the Theory of Learning Systems. Academic Press, New York. 

Vaccaro, R. J., editor (1991). SVD and Signal Processing II: Algorithms, AnalYIJis and Applications. 

Elsevier. 

van der Veen, A.-J., Deprettre, E. F., and Swindlehurst, A. L. (1993). Subspace-based signal analysis 

using singular value decomposition. IEEE Proceedings 81, 1277-1308. 

Wahba, G. (1990). Spline models for observation data. In Regional Conference Serie, in Applied 

Mathematics, Philadelphia, PA. SIAM. 

Wahba. G. (1992). Multivariate fWlction and operator estimation, based on smoothing splines and 

reproducing kernels. In Casdagli, M. and Eubank, S., editors, Nonlinear Modeling and Forecasting, 

SFI Studies in the Sciences of Complexity, volume XII. Addison-Wesley. 

Wang, L.-X. (1994). Adaptive Fuzzy Systems and Control: Design and Stabilitll Anaillsis. Prentice 

Hall. 

Warwick, K., Irwin, G. W., and (Eds), K. J. H., editors (1992). Neural network, for control and 

sllstems. Peter Peregrinus. 



References 188 

Wassermann, P. D. (1993). Advanced methods in neural computing. Van Nostrand Reinhold, New 

York. 

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems that Learn. Morgan Kaufmann, San 

Mateo, California. 

Werbos, P. J. (1974). Beyond regression: New Tools for Prediction and Analysis in the Behavioral 

Sciences. PhD thesis, Masters Thesis, Harvard University. 

Werntges, H. W. (1993). Par~:tions of unity improve neural function approximation. In Proc. IEEE 

Int. Conf. Neural Networks, pages 914-918, San Francisco, CA. Vol. 2. 

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In 1960 IRE WESCON Convention 

Record, volume 4, pages 96-104. IRE, New York. 

Wiener, N. (1948). Cybernetics: or Control and Communication in the Animal and the Machine. MIT 

Press. 

Xu, L., Jordan, M. I., and Hinton, G. (1994). An alternative model for mixtures of experts. Submitted 

to NIPS'94. 

Zbikowski, R. (1994). Recurrent Neural Networks: Some Control Problems. Ph.D. Thesis, Department 

of Mechanical Engineering, Glasgow University, Glasgow, Scotland. 

Zhao, Y. (1992). On Projection Pursuit Learning. PhD thesis, MIT, Dept. of Mathematics and the 

AI Lab. 



Index 

a priori information, 38, 46, 66 

easy integration, 175 

explicit, 20 

fuzzy rules, 47 

implicit, 20 

in local model nets, 46 

integrating models, 40 

internal structures, 32 

smoothness constraints, 39 

ABBMOD,lO 

active learning, 49, 85, 95, 106, 116, 146 

coping with unevenly distributed data, 

96 

experiment design, 95 

online, 116 

active sampling, 23, 117 

active selection, 23, 90, 95, 99, 115, 117 

Adaline, 15 

adaptability, 1 

adaptation, 13, 16, 47 

hierarchical, 133 

on-line, 80 

adaptive control, 13 

use of local methods, 80 

adaptive systems, 20 

additive model, 134 

additive models, 14, 24, 47 

ART, 16 

ARX model, 64 

ASMOD, 10,31,46,47, 106, 165 

autonomous action, 1 

autonomous adaptation, 12 

189 

autonomous machines, 117 

autonomously learning systems, 23 

B-Spline nets, 71 

B-Splines, 28 

back-propagation, 16, 26, 64, 149, 155 

Balltrees, 37 

basis function, 28 

as cost weighting function, 57 

change of shape with normalisation, 71 

clustering of, 44 

gaussian, 28 

gradient optimisation of, 44 

lattice distribution, 42 
loss of locality, 73 

normalisation, 91 

normalisation, 71 

normalised, 30 

overlap, 29 

overlap determination, 90 

reactivation, 73 

shift in maximum, 73 

similarity to fuzzy set, 47 

structure identification, 43 

basis function network, 27 

effects of normalisation, 81 

Basis Function Network (BF Net), 27 

Basis-Function Trees, 37 

Best Linear Unbiased Estimator (BLUE), 

39 

BF nets, 82 

bias, 26, 67, 85, 93,124 

bias-variance trade-off, 24, 43 



INDEX 

binary tree, 45, 134 

black-box modelling, 8 

C4.5,37 

CART, 14,37 

Cascade-correlation, 46 

Case-Based Learning, 14 

centre-shift effect, 73 

chi-squared function, 39 

classifier systems, 16 

clustering, 12, 44, 45 

CMAC, 16,30 

complexity detection, 89 

condition number, 41, 52 

confidence limits, 49, 65, 81 

LHM,122 

consistency, 43, 100 

constructive, 99 
constructive algorithms, 46 

constructive hierarchical method, 37 

constructive structure identification, 43, 49, 

68, 83, 116, 123 

constructive structure identification techniques, 

45 

cost function, 146 

cost functional, 38, 39, 80 

local and global differences, 59 

cost-complexity, 39 

cost-complexity function, 124 

cost-complexity functional, 94 
GCV term, 123 

range term, 123 

cost-complexity term, 122 

count of training points in local model, 94 

covariance measure to determine basis func-

tions' size and orientations, 92 

covariance of model parameters, 68 

covariance of the model parameters, 66 

cross-validation, 99, 171 

cross-validation to estimate robustness, 148 

190 

cumulative basis function, 121 

curse of dimensionality, 24, 30, 32, 42, 48, 

49 

cybernetics, 13 

dead time, 137, 146, 148 

decision trees, 14, 32 

degrees of freedom, 45, 85 

design matrix, 40 

dimensionality reduction, 32, 33, 47 

rolling mill, 146 

distance metric, 29 

ellipsoidal, 91 

disturbances, 20, 137 

dynamic systems, 8, 35, 110, 148 

effect of normalisation, 82 

high order, 47 

model validation, 66 

modelling with local model nets, 46 

modelling with trees, 37 

Empirical Modelling, 7 

empirical modelling 

disadvantages, 17 

error estimation, 66 
Expectation Maximisation techniques (EM), 

37 

experiment design, 20,21,27, 28, 95, 117, 

143 

expert networks, 34 

exploiting, 23 

exploring, 22, 23 

Extended Model Set, 31 

extrapolation, 67, 73 

flexibility, 157 

Fractal Radial Basis Function Nets, 37 

function approximation, 3 

Functional Link Network, 31 

fuzzy logic, 19, 30, 36 

fuzzy models, 47 



INDEX 

fuzzy systems, 82 

gain scheduling, 116 

Gaussian Bar, 31 

GCV,26 

generalisation, 24-26, 85, 124, 172 

Genetic algorithms, 16 

global learning, 153 

gradient descent, 44 

Heterogeneous Control Laws, 116 

heterogeneous local model networks, 80 

Hierarchical Mixtures of Experts, 37 

Hierarchical Self-Organising Learning, 46 

hierarchical structure adaptation, 133 

hierarchy, 36 

hierarchy in the time-domain, 134 

HSOL,46 

103, 10,37 

ill-conditioning, 41, 52, 167 

ill-posed problem, 39 

information vector, 9 

input space 

decomposition of, 47 

interpolating memory, 42 

interpolation, 36 

interpretability, 4, 18, 43, 100, 116, 157 

k-d trees, 37 

knowledge representation, 24 

learning, 38 

learning algorithm, 24 

learning process, 38 

least squares, 39 

Lernmatrix, 15 

LHM,118 

linear model 

rolling mill, 148 

local averaging methods, 30 

local complexity, 43, 83 

local confidence measures, 66 

Local Controller Networks, 116 

local cross-validation measures, 67 

local interpretation, 66 

local learning, 56, 153 

hierarchical, 121 

local model network, 32, 49 

Local Model networks, 116 

local model structure selection, 91 

locality, 32 

LSA, 46, 106, 165 

machine learning, 14 

MARS, 10, 14,37,46, 106, 135 

rolling mill, 149 

matrix inversion, 40 

measurement noise, 65 

Mixture Models, 31 

MLP, 26 

model 

pre-structuring, 46 

structure, 24 

validation, 25 

model accuracy, 65 

Model Merging algorithm, 46 

model structure 

pre-structuring, 146 

Model Trees, 37 

model validation 

multiple-step-ahead, 110 

one-step-ahead, 110 

model-free methods, 30 

modelling problem, 7, 17 

observations about, 84 

modular networks, 27,47 

191 

multi-layer perceptron, 36, 49, 64, 135, 149 

Multi-Resolution Constructive algorithm, 87 

mUltiple-input single-output (MISO), 9 

multiplicative models, 24 

NARMAX,13 



INDEX 

narrow-minded models, 99 

NARX, 9 

nearest-neighbour classifier, 71 

neural networks, 13,15-18,49 

disadvantages, 17 

noise, 8, 20, 22, 23, 39, 40, 137 

on-line adaptation, 13 

optimisation 

gradient descent, 44 

organisational aspects, 21, 27 

orthogonal least squares, 45 

overfitting, 25, 45, 83, 173 

prevention, 93 

overfitting effect, 25 

parameter estimation, 38 

effect of normalisation, 75 

robustness, 153 

parameter optimisation, 120 

parsimonious, 100, 116 

parsimonious model, 43 

parsimony, 7 

partition of unity, 56, 71 

pdf,68 

perceptrons, 15 

Phi-nets, 31 

Polynomial methods, 31 

Potential Functions, 30 

projection pursuit, 14, 32 

pruning, 94 

pseudoinverse, 40, 60 

RBF, 13, 14,29 

related fields, 30 

RBF network, 31,40, 135 

locality, 32 

modelling and control, 31 

parameter estimation, 40 

time series forecasting, 31 

universal approximation, 31 

192 

receptive field, 28, 29, 43, 45, 83 

regression, 14, 40, 41, 51, 52, 58, 90, 95 

in hierarchical nets, 118 

regularisation method, 39 

Regularisation Theory, 31 

reinforcement learning, 12 

robustness, 20, 32,43 

rolling mill, 135 

sampling rate, 143 

self-organising, 12 

self-organising map, 44 

semiIocal units, 31 

sensors, 137 

simulated annealing, 130 

singular values, 41, 52-54,61 

Smooth Threshold Autoregressive, 35 

Smoothing methods, 30 

soft splits, 37 

soft-split, 119 

splines, 14 

split 

axis-orthogonal,71 

split angle, 130 

split optimisation, 130 

splitting a sub-model, 124 

axis-oblique, 127 

axis-orthogonal, 127 

split adaptation, 131 

State Dependent Models, 35 

state-dependent error statistics 

LIIM,122 

statistics, 3, 14 

stiff systems, 134 

stopping model growth, 94 

structure identification, 44 

constructive 

hierarchical, 123 

iterative techniques, 45 

local model network, 83 



INDEX 

recursive partitioning, 45 

supervised learning, 12 

SVD, 40, 52, 61, 91, 130, 153 

computational effort, 60 

system identification, 3, 13 

time-invariant processes, 38 

transparency, 17, 32, 43 

universal approximation, 31 

unsupervised learning, 12 

variable interaction, 23, 47 

variance, 26, 28, 39, 43, 46, 67, 85, 89, 91, 

94, 116,124 

weight decay, 39 

weighted least squares, 39, 57 

well-posed, 39 

193 


