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Abstract

A fully-analytical general perturbation solution to a restricted low-thrust circular to

circular Lambert rendezvous problem with tangential thrust and an optional coast arc

is developed. The solution requires no iteration and is solved rapidly to generate a full

range of possible manoeuvres to achieve the desired goal. The speed of the solution

allows for large-scale problems involving numerous spacecraft and manoeuvres to be

studied; this is demonstrated by applying the method to a range of mission scenarios.

In the first scenario, a full range of manoeuvres providing rapid flyover of Los Angeles

is generated, giving an insight to the trade-space and allowing the manoeuvre that best

fulfils the mission priorities to be selected. Using a CubeSat equipped with electro-

spray propulsion, these manoeuvres can reduce the time to overflight by more than

85%, for less than 20 m/s velocity change, when compared with a non-manoeuvring

satellite. The second scenario considers a constellation of 24 satellites that can ma-

noeuvre to provide targeted coverage of a region of the Earth as required. A full set of

manoeuvres for all satellites is generated for four sequential targets, allowing the most

suitable manoeuvre strategy to be selected; regional improvements in coverage of more

than ten times are shown to be achievable when compared to a static constellation. Fi-

nally, deploying a constellation of spacecraft by using low-thrust manoeuvres to achieve

the desired configuration is studied. Deploying a constellation of 24 satellites using this

technique could reduce launch costs by 75% compared with traditional methods. These

cases demonstrate the advantages that manoeuvrable satellites can provide, but it is

the analytical general perturbation solution, which allows for rapid exploration of these

complex problems, that is the key contribution of this work.

Thesis Supervisor: Prof Malcolm Macdonald, University of Strathclyde
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Image taken from a game produced by Glasgow School of Art Digital Design Studio as part of
the Space for Art project. The game, based on the work presented in this dissertation, challenges
players to manoeuvre satellites and provide targeted coverage to regions of the Earth, without
exhausting the available propellant.
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Chapter 1

Introduction

Traditionally, satellites have been designed to operate in static parking orbits, in which

they revolve around the Earth governed by natural orbit mechanics. Any on-board

propulsion systems are, generally, only used for orbit insertion and maintenance. The

exception to this are military reconnaissance satellites, such as the US Keyhole class

satellites, which carried large amounts of propellant enabling them to lower their al-

titude and provide extremely high resolution images of their targets [1, 2]. The ad-

vantages provided by a responsive space system such as this are numerous, and are

not limited to military operations. Satellites capable of frequent, agile manoeuvres

could also enhance existing civil and commercial in-space capabilities by providing

more frequent coverage of regions of interest, enabling on-demand overflight targeting,

and offering bespoke look-angles and lighting conditions. They could also facilitate a

wide range of missions that are of contemporary interest, but are yet to be realised,

such as orbital debris removal and in-orbit servicing. However, the high propellant

mass, and associated high launch cost, required to permit such agility has, to date, rel-

egated these capabilities to the realm of the military, for whom financial considerations

are of secondary concern to their requirements for increased resolution and rapid data

delivery.

The dawn of “New Space” in recent years however, is changing the landscape of

the space industry. In particular, the shift toward smaller satellites, requiring shorter

development times and utilising off-the-shelf-components and standardised buses, has

1
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driven down the cost of access to space. Alongside this, the miniaturisation of com-

ponents has seen these small satellites reach a juncture in which they are capable of

providing truly valuable scientific and commercial data [3–7]. Amongst these recent

developments are propulsion systems for small satellites, both impulsive and electric,

which could enable manoeuvrable small satellite missions in the very near future [8–11].

This class of mission has the advantage of being able to offset the increased risk and

shorter mission life associated with manoeuvrable satellites against their relatively low

mission cost.

The recent body of work undertaken by Co et al. [12–14] proposes the use of

agile, manoeuvrable satellites as a means of enabling Operationally Responsive Space

(ORS). ORS is a military concept that originally aimed to support the warfighter

through the rapid launch of satellites, providing targeted support when and where it

was needed [15]. This concept has since been extended to include in-orbit agility, in the

form of agile instrument usage, frequent or rapid slewing, and active manoeuvring to

change the satellite orbit [16–18]. Co et al. identify electric propulsion as an efficient,

low-cost method of facilitating manoeuvrable satellites and providing a responsive in-

orbit system. However, they note that all manoeuvres require a trade-off between the

propellant used and the time taken to carry out the manoeuvre. As such, in order

to assess the value of manoeuvrability, it is necessary to investigate this trade-off and

consider the improvement in performance that can be enabled by manoeuvrability in

the context of the associated cost. Quantifying this trade-off is difficult for a number

of reasons. Firstly, the solution is highly dependent on the orbit parameters of the

responding satellite, as well as the desired final satellite position; this makes it difficult

to draw general conclusions about responsive capabilities without investigating a large

number of disparate scenarios. Secondly, there is a wide range of possible trade-off

criteria that may be of interest, depending on the mission priorities. Co et al. select

a solution for their analyses by providing a compromise between propellant usage and

manoeuvre time, however, the results will vary depending on the relative weighting

given to each parameter. In addition, other potentially important parameters, such as

look-angle to target and the local time at flyover, are not considered in the trade. Thus,

the algorithm and the associated results presented can only be considered applicable to
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missions that share their priorities with those assumed by Co et al.. Defining a general

solution applicable to all possible mission goals is extremely challenging, and as such it

would be beneficial to provide full knowledge of all possible responsive manoeuvres for

a given scenario, alongside their associated parameters, allowing the mission designer or

operator to quantify the resulting trade-off using their own unique criteria. Finally, Co

et al. note that any scenario will have a range of discrete overflight opportunities, the

number of which will increase as the allowable manoeuvre time increases, and each of

these needs to be investigated in order to quantify the trade-off. Complicating matters

further, each of these discrete opportunities will have a flyover window associated with

it, within which varying the manoeuvre parameters can provide a different flyover time

and a different look-angle to the target at flyover. This creates a discontinuous solution

space that is not ideal for exploration by numerical optimisers, but which the user must

navigate to formulate a reliable trade-off. The available literature to-date has not been

able to provide a full overview of this solution space, meaning it is difficult to develop

any insights or form any general conclusions about what this trade-space may look like.

These findings have inspired the main thesis of this work:

“Manoeuvrable satellites can provide increased performance when compared to tradi-

tional static satellite missions, however there is an inherent, quantifiable trade-off be-

tween the achievable performance, the manoeuvre time and the propellant required, that

can be presented as a full solution space, providing insight to this complex problem.”

To investigate this trade-off it will be necessary to analyse a range of mission scenar-

ios, each with thousands of possible manoeuvres to trade between. As such, a method

of analysis that can be solved quickly, can be scaled across multiple satellites, and can

be applied to a range of distinct missions is required. Further, a full overview of the

solution space produced is needed to allow the engineer or operator to trade-off between

the manoeuvre cost and time, and assess the corresponding benefit of the responsive

system, if any. This is a key requirement of the proposed concept of operations for an

ORS system [19]. This desire for a rapid, scalable solution enabling an insight into the

capabilities of manoeuvrable satellites forms the basis of this dissertation.
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1.1 Satellite Manoeuvrability

1.1.1 Lambert’s Problem

At its most basic level, the problem of manoeuvring a satellite from one point to an-

other can be considered as a specific presentation of Lambert’s Problem. This posits

the problem of determining an orbit given two position vectors and the time of flight

between them. Originally presented as an orbit determination problem [20], it can also

be used to describe an orbit transfer between two points [21]. This was originally posed

considering impulsive transfers and numerous solutions have been proposed including

the classic solutions by Gauss, Lambert and Euler [22]. These solutions are all geo-

metric in nature but require iteration to find a solution. Bate’s method uses universal

variables to ease this iterative process [23]. Most recent work in this area has focused

on increasing the efficiency of the available numerical solutions to Lambert’s problem

[24–26]. Breaking with this trend, a recent analytical solution has been developed for

a single-impulse transfer that is extremely fast and non-iterative, making it ideal for

preliminary trajectory design, or to provide an initial guess for the existing iterative

methods [27].

The consideration of Lambert’s problem as applied to low-thrust trajectories came

much later than the impulsive transfer formulation. Inspired by missions such as

SMART-1 [28], which pioneered solar-electric propulsion as an enabler for deep-space

exploration, these solutions primarily focused on lunar and inter-planetary trajectories.

These problems were mainly solved using either direct [29] or indirect numerical meth-

ods [30]. These both are highly dependent on the initial guesses provided and must be

iterated to find a solution. As a result, quick, low-fidelity solutions have been developed

as a method of providing accurate initial guesses. These predominantly take the form

of shape-based solutions in which the trajectory is described by a geometrically defined

spiral [31, 32] or a sequence of connected spirals or arcs [33]. These solutions are gener-

ally restricted to planar trajectories obtained using tangential thrust in order to form

an analytical solution. Other approaches exist that attempt to combine the accuracy

of numerical solutions with the speed of analytical expressions. One such solution is

that presented in [34], which uses analytical formulations of the equations of motion
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to create slightly modified Keplerian arcs and combines them in a finite elements ap-

proach to enable a numerical solution. Another method, presented by Avanzini et al.,

uses perturbative expansions of the equinoctial elements to formulate the low-thrust

Lambert problem as a two-point boundary problem [35]. They divide the trajectory

into a series of arcs and impose an arrival time boundary constraint to obtain a solu-

tion. This solution has the ability to consider large plane and eccentricity changes, and

provides a compromise between accuracy and speed. However, it requires iteration to

find a final solution and, as is stated, the efficiency of the method is thus highly depen-

dent on the accuracy of the provided initial guess. In addition, many of these solutions

are not applicable for low-thrust transfers in Earth orbit as they do not account for

the perturbations caused by an oblate central body. Gao does consider the perturbing

effect of an oblate central body in his solution in order to include Earth escape, using

continuous tangential low-thrust, in the trajectory optimisation [36]. This is done by

averaging the change in each of the orbit elements as a result of the perturbing forces

over a single orbit and then integrating these with respect to the orbital energy until

escape conditions are reached. While this allows for a relatively quick solution it does

require incremental integration of the governing equations of motion [37].

1.1.2 Satellite Reconnaissance

Extending Lambert’s problem to consider the ground track of the satellite, rather than

its in-orbit position, produces the satellite reconnaissance problem. This requires a

flyover of a target, or targets, on the surface of the central body. Passive satellite

reconnaissance focuses on the design of a satellite orbit that can maximise coverage

of a target, or targets, without the use of a propulsion system; instead, natural orbit

perturbations are often exploited to produce a favourable ground track. This problem

has received great attention in recent years and primarily focuses on the use of numer-

ical methods, such as differential evolution, to identify the orbit parameters that can

maximise the desired coverage metrics [38–40].

The availability of a propulsion system on-board a satellite could enable a greater

degree of flexibility with regards to satellite reconnaissance, by allowing operators to

re-task a satellite to flyover a newly identified target. In particular, electric propulsion,
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which is highly efficient, could allow for the flyover of numerous successive targets

throughout a satellite mission. This concept was apparently first proposed by Guelman

and Kogan in 1999 [41]. Their work aimed to find a trajectory capable of passing over

a set of targets in a given time, as well as determining the associated thrust profile that

would minimise propellant consumption. They considered only quasi-circular orbits

that are unperturbed except for applied tangential low-thrust manoeuvres, and were

able to define the trajectory connecting two sequential targets as a two-point boundary

problem that could be solved analytically. They determined the problem of scheduling

sequential flyovers to be a discrete optimisation problem and thus used a simulated

annealing method to identify the minimum propellant solution. Jean and de Lafontaine

extended this work by incorporating the effects of the first zonal harmonic of an oblate

central body, also known as J2, and generalising the method to give an expression for

the time to target flyby following in-plane, low-thrust circular to circular manoeuvres

described by either cubic or quartic guidance laws [42]. They then incrementally search

through the possible solutions to find a trajectory with an acceptable acceleration

profile.

The use of high-thrust manoeuvres to provide overflight of a target has also been

studied. Although less efficient than electric propulsion in terms of propellant usage,

high-thrust, impulsive transfers can potentially offer a faster response than a low-thrust

system that must gradually change the spacecraft orbit parameters over a period of

time. Showalter et al. proposed the use of high-thrust responsive manoeuvres in a

military context to increase the persistence of coverage available to a region, while

simultaneously increasing the unpredictability of the satellite’s motion [43]. They as-

sumed the spacecraft experienced only two-body Keplerian forces and used particle

swarm optimisation to identify single and multiple pass responsive targeting manoeu-

vres capable of meeting a set of criteria. This work identified interesting relationships

between the time of flight and the distance to the target at flyover and concluded that

this concept of responsive overflight targeting was an interesting premise for further

investigation. Zhu et al. developed a solution using a circular to circular Hohmann

transfer to achieve flyover of a given ground target [44]. Multiple objectives are consid-

ered, including maximising coverage time of the target and minimising the propellant
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required for the orbit transfer. Combining these into a fitness function, Zhu et al. use

particle swarm optimisation and differential evolution to select a satellite from an avail-

able set and to optimise the manoeuvre trajectory. However, they note that an optimal

solution cannot be guaranteed. This is a weakness of all numerical techniques that have

been used to tackle this problem to date, for both low- and high-thrust scenarios, as

they do not provide a complete view of the solution space.

There have been some recent attempts to solve the reconnaissance problem ana-

lytically. Work by Zhang et al. provides approximate, semi-analytical solutions to

the targeting problem for coplanar tranfers using high-thrust propulsion [45, 46]. This

method, based on Kepler’s equations and considering up to four impulsive manoeuvres,

can be applied to both circular and elliptical orbits and allows for the minimum en-

ergy trajectory to be found. The results are found to be sub-optimal compared with

a numerical solver, but Zhang et al. highlight that they could provide an initial guess

for higher precision models and may be useful in cases where fast computational speed

is desired. For low-thrust propulsion, Zhang and Cao propose a semi-analytical shape-

based method using coplanar transfers to adjust the longitude of the spacecraft ground

track relative to a non-manoeuvring reference [47]. However, this is only applicable

to cases in which the final orbit is predefined, and requires iteration to determine the

shape-function coefficients for a minimum energy solution. Co et al. have developed a

control algorithm that allows a single satellite in a circular orbit to pass over a given

target using low-thrust electric propulsion, considering both continuous thrust and

thrust-coast manoeuvres [12–14]. Co et al. use the difference in time of flyover between

the manoeuvring satellite and a non-manoeuvring reference satellite as a metric, and

can solve for this using a single equation. This method requires that the reference satel-

lite’s position be numerically propagated for a given time using third-party software.

Using the produced ground track, the method identifies all close passes to the target

that occur within the propagation time. These close passes are then ordered in terms of

the soonest encounter, if the fastest overflight solution is desired, or by order of closest

pass if the minimum propellant solution is desired. Discarding those that are infeasible,

the fastest, or minimum energy, feasible solution can be found. This work by Co et al.

has a number of advantages; being based on a straightforward, analytical expression,
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this solution allows an unprecedented insight into the problem, providing, for example,

the possible reach of a manoeuvre of this type in a given time, and the impact of the

initial orbit parameters on the manoeuvre efficiency. This work also includes a com-

parison of the effectiveness of in-plane and out-of-plane manoeuvres, concluding that

out-of-plane manoeuvres can allow for fine adjustments to the target flyover time, but

they are highly inefficient compared with in-plane manoeuvres. Co et al.’s method also

has the advantage of providing a range of feasible solutions for each manoeuvre to be

performed, allowing the operator to manually select the desired strategy. However, its

accuracy is limited as it does not consider the effect of J2 on the satellite mean motion;

this introduces significant errors when directly considering the position of the satellite’s

ground track. The greatest limitation to this method however, is its reliance on the

numerical propagation of the reference satellite as a starting point for the manoeuvres.

This propagation can be time consuming and in order to accommodate this Co et al.

limit their searches to just three days in the future, potentially missing lower propellant

options available beyond this point. The propagation must also be repeated for each

additional manoeuvre, as well as for any additional satellites, and so the applicability

of this method for large scale constellations, or scenarios involving multiple targets and

manoeuvres, is questionable.

1.1.3 Constellation Reconfiguration

Applying the solution to Lambert’s problem across multiple satellites arranged in a

constellation allows for so-called constellation reconfiguration, where reconfiguration is

taken to mean the changing of a constellation from one formation to another through

the manoeuvring of the constituent satellites. This could be used, for example, to

re-establish even satellite spacing following a unit failure, to adapt an existing constel-

lation to accommodate additional spacecraft, or to position satellites in a constellation

following launch injection. Incorporating consideration of the satellite ground track, as

in the case of satellite reconnaissance, could additionally allow the coverage provided

by the constellation to be altered in response to changing mission requirements. The

reconfiguration of satellite constellations is thus an appealing option to enable respon-

siveness and adaptability in orbit, as well as having the potential to reduce launch costs
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and reduce risk associated with large scale missions by enabing staged deployment [48].

Crisp et al. considered the problem of deploying a constellation of satellites from

a single launch injection point using nodal precession to achieve the desired spacing of

the orbit planes through right ascension of the ascending node [49]. Their case studies

considered satellites in circular orbits and used in-plane thrust to change the satellite

altitude, resulting in a difference in the orbit period and nodal drift rate of the satel-

lites; no inclination change is considered. They used a semi-analytical orbit propagator,

which considered J2 effects as well as atmospheric drag, and were able to accurately

recreate the deployment of the FORMOSAT-3/COSMIC constellation [50, 51]. How-

ever, this method required that the initial and final orbit parameters of the constellation

be known in advance, meaning it is not an ideal method for trade-space exploration.

Baranov et al. proposes that reconfiguring a constellation could most efficiently be

achieved through the use of an intermediate drift orbit [52]. They use linearised equa-

tions of motion to evaluate the propellant cost of achieving a desired satellite separation

in argument of latitude, right ascension of the ascending node, inclination and altitude

using two impulsive transfers to enter and exit the intermediate drift orbit. Baranov

et al. investigate these effects for Earth, Mars and Lunar orbits and note that in each

case the initial orbit parameters of the satellites influence the efficiency with which the

manoeuvres can be achieved. They also highlight that increasing the time spent in the

drift orbit tends to reduce the amount of propellant required. Leppinen also considered

constellation deployment from a single launch injection point, but proposed the use of

drag-augmentation devices to achieve a desired change in altitude and thus control the

orbital precession of the satelites; no controlled change in inclination or eccentricity is

considered [53]. The proposed method estimates the desired change in right ascension

of the ascending node of a satellite using Gauss’s equations and then uses a third-party

orbit propagator to complete the simulation based on the provided initial guess. This

method, however, is of limited accuracy as it estimates the relative change in right as-

cension of the ascending node that can be achieved between two satellites at constant

altitudes, without considering the gradual change in relative drift that would occur as

the satellites’ altitudes change. In addition, its reliance on drag-augmentation devices

means that satellites must initially be launched to a higher altitude than the mission
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orbit requires; this can increase launch costs and also places an upper bound on the

operational orbit of the satellites. Foster et al. recently published work on a novel

method of satellite in-plane phasing using differential drag [54]. This method uses sim-

ulated annealing to sequentially solve the problems of assigning the satellites to the

optimal orbit slots, as well as generating the optimal command profile to achieve this

phasing in the shortest time. This method has been successfully used to deploy some

of Planet’s Dove satellites, though inaccuracies in predicting the ballistic coefficient of

the satellites resulted in issues in on-orbit implementation [54].

Work by Davis focused on the expansion of a constellation through the addition of

supplementary satellites, and proposed the use of Hohmann transfer manoeuvres for

such a reconfiguration [55]. He approximated the solution to Lambert’s problem using

a 4th order polynomial and then used the auction algorithm proposed by De Weck et

al. to assign the satellites to appropriate slots in the final constellation [56]. Ferringer

et al. considered the opposite problem, of reconfiguring a satellite constellation after

a loss of capacity has occurred. They simplify the problem to consider only satellites

in circular orbits and use only in-plane phasing to reconfigure, due to the high pro-

pellant costs associated with plane change manoeuvres. They used a multi-objective

evolutionary algorithm to solve the problem of both designing the new constellation

and reassigning the satellites within it [57]. Appel et al. developed a method for con-

stellation reconfiguration to enable expansion of an existing constellation through the

addition of satellites using co-planar manoeuvres in both circular and eccentric orbits.

They approached the problem by concurrently optimising the transfer trajectory of

each spacecraft to minimise propellant usage, and the assignment of each satellite to a

new orbit slot [58]. Appel et al. achieved this by providing a coupled set of terminal

orbit parameters for the satellites and using an indirect method of numerical optimisa-

tion, based on the calculus of variations, to solve the resulting set of differential equa-

tions. Through combined optimisation of both trajectory and orbit slot assignment,

this method avoids having to calculate all possible transfer trajectory combinations in

order to find the optimal assignment. This method is presented asssuming two-body

Keplerian dynamics only, though it is stated that perturbations could be incorporated

into the solution. This work does not consider constellation design, instead assuming
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that the final constellation configuration is known in advance. It also assumes that this

final configuration can be defined in terms of the relative satellite positions in the final

constellation. This is a fair assumption when considering expansion of constellations

designed for global coverage, as Appel et al. do, but limits the applicability to other

scenarios. For example, providing targeted coverage to a region relies not only on the

relative positions of the satellites, but also on their position relative to the Earth and,

as such, is dependent on the manoeuvre time; such a mission could not be considered

by this method without extension of the work. Fakoor et al. use a similar approach to

Appel et al., optimising the assignment of the satellites to the target orbits, and the

orbital transfer in one step, but their work is not constrained to consider only coplanar

transfers [59]; they use hybrid invasive weed optimisation/particle swarm optimisa-

tion to achieve this. Mushet and McInnes used coupled selection equations to allocate

satellites in a constellation to targets on the Earth and design low-thrust manoeuvres

using tangential thrust to shift their repeating ground tracks to pass over these targets

[60]. They also applied an artificial potential field controller to generate the associated

thrust profile. The model used excluded any orbit perturbations and is applicable only

to circular orbits.

Consideration has also been given to how to design a constellation to enable efficient

future reconfiguration. Legge considers constellations consisting of satellites that can

transfer from their nominal orbits to repeating ground track orbits to obtain frequent

flyovers of targets [61]. These manoeuvres are assumed to be performed using coplanar,

circular to circular Hohmann transfers. Legge highlights that traditional constellation

designs are non-optimal for reconfigurable missions and that when designing for re-

configuration, unusual constellation architectures can offer improved performance. In

particular, Legge proposes asymmetrical constellation patterns that are shown to out-

perform traditional symmetric configurations. His work concludes that constellations

capable of reconfiguration have a lifecycle cost, excluding operational costs, of 20–70%

less than static constellations that provide similar levels of persistence of coverage. This

clearly demonstrates the advantages these constellations can provide and motivates fu-

ture work in the area. Legge’s work however does not consider the option of using

electric propulsion for reconfiguration, an area he suggests warrants further investiga-
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tion. A significant constraint on the usability of Legge’s work is that his design and

optimisation tools were implemented on a 1024-processor cluster using parallel comput-

ing resources, restricting their use to those with access to high-performance facilities.

Even with such high-powered computing, the run time for 85 cases was on the order

of three months. Paek et al. have built on Legge’s work by developing a tool that can

run numerous reconfigurations and use a genetic algorithm to concurrently optimise

satellite and constellation design [62]. However, this tool also requires long run times,

and the authors highlight that the length of time required to propagate the satellite

manoeuvres is a key limitation of the process.

1.2 Key Contributions

The preceding literature review has highlighted that there exists a gap in the research

pertaining to manoeuvrable satellites. Much of the existing body of work has focused

on applying optimisation techniques to both satellite reconnaissance and constellation

reconfiguration. These offer techniques to solve specific reconnaissance and reconfigu-

ration problems, and allow for optimal control and scheduling profiles to be identified.

They can also consider a variety of manoeuvre profiles, including in- and out-of-plane

thrusting, varying acceleration, and plane change manoeuvres, and can concurrently

optimise the thrust profile and direction to minimise transfer time or fuel usage. How-

ever, these methods do not allow for a full overview of the solution space to be generated

and thus restrict the insight available to the user. They also require long run times

when multiple satellites or complex scenarios are considered. In addition, the research

has overwhelmingly focused on impulsive manoeuvres, in spite of the notable advan-

tages provided by low-thrust systems. Research by Co et al. stands alone as offering

a straight-forward, analytical solution to the reconnaissance problem using low-thrust

propulsion. It achieves this by restricting the problem to consider only circular or-

bits with a constant inclination. This reduces the generality of the solution, but offers

benefits in terms of solution speed and the insights obtained. However, the need to

numerically propagate the satellite orbit before applying the technique limits its scal-

ability.

The work described in this dissertation aims to complement the existing research
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by providing a solution to the satellite targeting problem that is fully-analytical, quick

to solve, and scalable across multiple satellites and manoeuvres. It will also be general,

allowing it to be applied to problems of rendezvous, as well as satellite reconnaissance,

and scalable to the problem of constellation reconfiguration. To enable this, a general

perturbation method based on the Gauss-Lagrange variation of parameters (VOP)

equations is developed. These equations express the change in classical orbital elements

over time as a function of applied accelerations or perturbations. Creation of a fully-

analytical solution will require simplification of the problem; as such, this work will

focus on a restricted Lambert rendezvous problem, considering only satellites in circular

orbits, performing circular to circular, coplanar transfers using low-thrust tangential

thrusting, with an optional coast arc. The accuracy of the developed solution will be

investigated before being applied across a range of mission scenarios to demonstrate

the applicability and scalability of the resulting solution.

The key contributions of this body of work are

1. A fully-analytical method that approximates the solution to the presented re-

stricted Lambert rendezvous problem. This considers low-thrust circular to cir-

cular, coplanar transfers using tangential thrusting with an optional coast arc,

and includes central body perturbations of the first zonal harmonic, J2.

2. A fully-analytical solution to the satellite reconnaissance problem based on the

developed solution to the restricted low-thrust Lambert problem. This allows

for a manoeuvre selection trade-off to be performed by explicitly defining the

distance to the target at flyover, equivalent to the target look-angle, in terms of

the change in velocity required for the manoeuvre, and the time taken for the

manoeuvre.

3. A quantification of the performance improvement provided by the responsive

system versus the manoeuvre cost, in terms of change in velocity, for a range of

responsive scenarios.
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Chapter 2

Method

A review of the existing literature, presented in Chapter 1, has highlighted the need for

a solution to the satellite rendezvous problem that can be analysed quickly to obtain a

full view of the solution space, and can be applied to diverse scenarios, including satel-

lite reconnaissance and constellation reconfiguration. To address this, an analytical

general perturbation solution to a restricted Lambert rendezvous problem will be de-

veloped using the Gauss-Lagrange variation of parameters (VOP) equations. General

perturbation techniques were selected as they can be solved analytically over a cer-

tain time interval by introducing approximations to the governing equations of motion

[63, 64].

The restricted problem addressed considers only circular to circular, coplanar trans-

fers performed using low-thrust manoeuvres applied in the tangential direction, as pre-

vious research has shown out-of-plane thrusting to be highly inefficient compared with

in-plane thrusting when a change in the satellite ground track is desired [14]. A single,

optional coast arc is included in the manoeuvre as this has been shown to significantly

reduce the amount of propellant required to achieve flyover of a target [12]. Note that

in order to maintain a fully-analytical solution the orbit inclination is assumed to re-

main constant, and the satellite is assumed to maintain a constant altitude during the

coast arc by thrusting to counteract the effect of atmospheric drag; this assumption

is applied to all ‘coasting phases’ and ‘coast arcs’ throughout this work. The effect

of atmospheric drag is neglected during the altitude change phases of the manoeuvre.

15
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In addition, to allow the VOP equations to be integrated over the change in semi-

major axis that occurs during the manoeuvre and obtain an analytical solution, it is

assumed that the acceleration provided by the propulsion system is constant. This as-

sumes that the propulsion system is not throttled during the manoeuvre, and that the

spacecraft mass remains constant; this is a valid assumption when considering the use

of low-thrust electric propulsion for which the propellant mass consumed will be very

small compared to the spacecraft mass. The resulting satellite manoeuvre strategy is

a 3-phase manoeuvre that consists of:

� Phase 1 : An altitude change manoeuvre in which the satellite increases or de-

creases its altitude relative to its initial orbit. This is done using continuous

low-thrust propulsion with a constant acceleration.

� Phase 2 : A coast arc in which the satellite is assumed to maintain a constant

altitude by thrusting to counteract the effect of atmospheric drag.

� Phase 3 : A second altitude change phase in which the satellite moves to the

desired final altitude; this may or may not be the same as the initial altitude at

the beginning of phase 1. This manoeuvre is performed using continuous low-

thrust propulsion with a constant acceleration of the same magnitude as in phase

1.

The 3-phase manoeuvre is shown in Figure 2.1. This use of three phases is similar to

the three sequence transfer found by Cerf to offer the minimum propellant low-thrust

transfer between circular orbits when the effects of J2 are included [65]. Note that not

all phases are required to be present for the solution to be valid; one or more of the

phases can be excluded without fundamentally altering the solution presented.

The proposed manoeuvre strategy exploits the natural orbital motion of the satellite

to achieve the desired change in the location of the satellite or sub-satellite point.

Changing the satellite’s altitude has a direct effect on the orbit period and can be

used to change the satellite’s true anomaly. In addition, the magnitude of the natural

disturbances perturbing the satellite orbit are dependent on the satellite altitude. Thus,

by changing the altitude of the satellite, these perturbations can be exploited to achieve

the desired change in the satellite’s orbital elements, and consequently its ground track.
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Figure 2.1: Schematic of 3-phase manoeuvre. Initial orbit (a0), intermediate orbit (a1), and
final orbit (a3) are marked by dashed lines.

Knowing this, an analytical expression can be created that defines the change in right

ascension of the ascending node (RAAN) and argument of latitude (AoL) achieved

during the 3-phase manoeuvre as a function of the total time taken and the total change

in velocity (∆V ) required for the manoeuvre. This is then linked to the spacecraft

ground track to determine the sub-satellite point location after the 3-phase manoeuvre

has been performed.

To create a fully-analytical solution that can be rapidly solved, only secular per-

turbations of the orbit are considered in the developed solution. These are long-term,

non-periodic perturbations, which, if left unaltered, will cause an ever increasing change

in the orbital elements. This is distinct from long-periodic and short-periodic varia-

tions, which cause periodic variations in the orbital elements as a function of the orbit

period, and the motion of the line of apsides or the line of nodes. It is necessary to

carefully consider which secular perturbations should be included in the general pertur-

bation solution, in order to maintain a balance between accuracy and solution speed.

For a spacecraft in low Earth orbit (LEO), such as the Earth observation (EO) satel-

lites considered in this dissertation, secular orbit perturbations come from four primary
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sources: the non-spherical gravitational field of the Earth; the presence of additional

gravitational fields; the effect of atmospheric drag (also called ‘atmospheric friction’);

and disturbances caused by solar radiation pressure [63, 64].

The perturbing effect of the non-spherical gravitational field of the Earth is domi-

nated by the first zonal harmonic, also known as J2, which is caused by the oblateness

of the Earth about its polar axis. This is the most significant disturbance for LEO

satellites and its effect is of key importance in accurately determining the position

of the satellite post-manoeuvre. The next largest disturbing term due to the Earth’s

oblateness, J3, is three orders of magnitude smaller than J2. Due to the relatively small

effect of the higher order disturbance terms of J3 and beyond, it was decided not to

include them in the developed general perturbation solution. However, it is of note that

it would be straightforward to include their secular effects, were it deemed desirable, by

incorporating them into the disturbing function used in the Langrange VOP equations

in Section 2.1.

The Sun and the Moon are the two main external gravitational fields that will

disturb the orbit of an Earth orbiting satellite, but their effect is generally much smaller

than that of the central body for satellites at altitudes lower than geosynchronous orbit.

Over long periods, on the order of years, these effects can become significant, but over

the time scales considered herein their effect will remain small. As such it was deemed

acceptable to exclude them from the solution.

The magnitude of the perturbing effect of atmospheric drag is highly dependent

on the spacecraft properties, as well as the orbit altitude, but for a LEO satellite

it is generally considered to be the most significant disturbance after central body

oblateness. Atmospheric drag can have a notable impact on the satellite orbit, and

its consideration for long-duration scenarios is vital. However, it was not possible to

directly include its effects in the general perturbation solution whilst maintaining a

fully-analytical solution. To tackle this, two simplifications are adopted. Firstly, it is

assumed that the satellite thrusts to counteract the effects of atmospheric drag and

maintain a constant altitude during phase 2, the coast arc, as well as during any other

coast phases. Secondly the effect of atmospheric drag is not considered during the

altitude change manoeuvre phases; this is deemed an acceptable simplification due to
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the relatively short duration of these phases.

Solar radiation pressure effects are also highly dependent on spacecraft, and orbit,

properties. For the cases considered herein, the spacecraft are assumed to operate at

altitudes less than 800 km, in which regime the effect of solar radiation pressure is much

smaller than that of atmospheric drag. As such, the effects of solar radiation pressure

are not considered in the solution.

Based on the above discussion, the general perturbation solution describing the

3-phase satellite manoeuvre can be developed including only the secular effects of J2,

with the effects of atmospheric drag accounted for indirectly during the coast arc. The

accuracy of this simplification will be explored in Chapter 4.

2.1 Fundamental Equations

The time rate of change of a satellite’s orbital elements can be expressed as a sum

of the conservative and non-conservative perturbing forces acting on the satellite [66].

The Lagrange VOP equations provide a convenient method to determine the effect of

conservative forces acting on the satellite, while the Gauss VOP equations are more ap-

propriate for the consideration of non-conservative perturbations, such as those caused

by a constant applied thrust.

2.1.1 Lagrange Variation of Parameters Equations

The Lagrange VOP equations describe the time rate of change of the orbital elements

as a result of a disturbing function, R. These are given by [67] and [63] as
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where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right

ascension of the ascending node, ω is the argument of perigee and t is time. M0 is the

initial value of the mean anomaly, with the final mean anomaly given by M = M0 +nt

such that
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where n is the mean motion defined as n =
√
µ/a3, with µ being the standard gravi-

tational parameter of Earth.

To consider only the secular effects of J2, the relevant disturbing function can be

averaged over one orbit period as in [67] and [63] to give

Ravg = −3

2
n2R2

eJ2

(
1

(1− e2)3/2

)(
sin2 (i)

2
− 1

3

)
(2.8)

where Re is the mean radius of the Earth, and J2 is the coefficient of the second-order

zonal harmonic of Earth. In an unperturbed system dM
dt = n and is constant. However

for an orbit perturbed by an oblate central body this is not the case, as is indicated by

the presence of the disturbing function, R, in equation (2.7). To account for this, let

dM
dt = n̄, where n̄ is the perturbed, or anomalistic, mean motion. Taking the partial

derivatives as required and inserting the results into equation (2.7) gives an expression

for the anomalistic mean motion as

n̄ = n

[
1− 3R2

eJ2

√
1− e2

4p2

(
3 sin2 (i)− 2

)]
(2.9)

where p is the semi-latus rectum defined as p = a(1− e2).

Continuing with the method described in [67], inserting the partial derivatives of

(2.8) into equations (2.1)–(2.7), and using equation (2.9), gives the rate of change of

the orbital elements of a satellite experiencing secular J2 perturbations, as
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(
da

dt

)
J2

= 0 (2.10)(
de

dt

)
J2

= 0 (2.11)(
di

dt

)
J2

= 0 (2.12)(
dΩ

dt

)
J2

= −3n̄R2
eJ2

2p2
cos (i) (2.13)(

dω

dt

)
J2

=
3n̄R2

eJ2

4p2

(
4− 5 sin2 (i)

)
(2.14)(

dM

dt

)
J2

= n̄ = n

[
1− 3R2

eJ2

√
1− e2

4p2

(
3 sin2 (i)− 2

)]
. (2.15)

For a circular orbit, e = 0 and p = a, which is equal to the orbit radius. This

further reduces equations (2.13), (2.14), and (2.15) to

(
dΩ

dt

)
J2

= −3n̄R2
eJ2

2a2
cos (i) (2.16)(

dω

dt

)
J2

=
3n̄R2

eJ2

4a2

(
4− 5 sin2 (i)

)
(2.17)(

dM

dt

)
J2

= n̄ = n

[
1− 3R2

eJ2

4a2

(
3 sin2 (i)− 2

)]
. (2.18)

2.1.2 Gauss Variation of Parameters Equations

The Gaussian form of the VOP equations provides a description of the time rate of

change of the orbital elements as a result of perturbations that are expressed as dis-

turbing accelerations or specific forces. The standard form of the Gauss VOP equations

are given by [63] and [68] as

da

dt
=

2

n
√

1− e2

(
e sin (θ)AR +

p

r
AS

)
(2.19)

de

dt
=

√
1− e2

na

(
sin (θ)AR +

[
cos (θ) +

e+ cos (θ)

1 + e cos (θ)

]
AS

)
(2.20)
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di

dt
=

r cos (u)

na2
√

1− e2
AW (2.21)

dΩ

dt
=

r sin (u)

na2
√

1− e2 sin (i)
AW (2.22)

dω

dt
=

√
1− e2

nae

(
− cos (θ)AR + sin (θ)

[
1 +

r

p

]
AS

)
− r cot (i) sin (u)

h
AW (2.23)

dM0

dt
=

1

na2e
([p cos (θ)− 2er]AR − [p+ r] sin (θ)AS) (2.24)

where the specific angular momentum h =
√
µp, θ is the true anomaly, r is the orbit

radius and u is the argument of latitude. AS , AR and AW are the acceleration compo-

nents of the disturbing force in the transversal direction, radial direction and normal

to the orbital plane respectively.

The only non-conservative force being directly considered is the spacecraft propul-

sion system acceleration; atmospheric drag does produce a non-conservative force, but

it is assumed to be compensated for during any coast arcs, and it is neglected during

the altitude change phases. During the altitude change phases, the propulsion system

acceleration will be continually applied in the tangential direction, corresponding to

the AS acceleration component as all orbits are assumed to be circular. As this force

is small, the orbit can be assumed to remain circular throughout the manoeuvre. Con-

sidering this non-conservative force only (i.e. AR = AW = 0) equations (2.19) to (2.24)

reduce to

(
da

dt

)
thrust

=
2

n
√

1− e2

(p
r
AS

)
(2.25)(

de

dt

)
thrust

=

√
1− e2

na

([
cos (θ) +

e+ cos (θ)

1 + e cos (θ)

]
AS

)
(2.26)(

di

dt

)
thrust

= 0 (2.27)(
dΩ

dt

)
thrust

= 0 (2.28)(
dω

dt

)
thrust

=

√
1− e2

nae

(
sin (θ)

[
1 +

r

p

]
AS

)
(2.29)(

dM0

dt

)
thrust

=
1

na2e
(− [p+ r] sin (θ)AS) . (2.30)
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With the assumption that a circular orbit is maintained, e = 0, p = r = a and(
de
dt

)
thrust

= 0. As the propulsion acceleration is assumed to be constant throughout

the altitude change phases, all periodic terms (i.e. those that are a function of the true

anomaly, θ) can be ignored as the resulting perturbations will be zero when averaged

over a single orbit period. The resulting equations are then

(
da

dt

)
thrust

=
2

n
Aprop (2.31)(

de

dt

)
thrust

= 0 (2.32)(
di

dt

)
thrust

= 0 (2.33)(
dΩ

dt

)
thrust

= 0 (2.34)(
dω

dt

)
thrust

= 0 (2.35)(
dM0

dt

)
thrust

= 0 (2.36)

where Aprop is the propulsion system acceleration.

2.1.3 Combined Lagrange and Gauss Equations

Summing the equations from Sections 2.1.1 and 2.1.2, and using equation (2.9) to

account for the change in mean motion as a result of J2, gives full expressions for the

time rate of change of the orbital elements under the influence of J2 and with constant

applied thrust. These are

da

dt
=

(
da

dt

)
J2

+

(
da

dt

)
thrust

=
2

n̄
Aprop (2.37)

de

dt
=

(
de

dt

)
J2

+

(
de

dt

)
thrust

= 0 (2.38)

di

dt
=

(
di

dt

)
J2

+

(
di

dt

)
thrust

= 0 (2.39)

dΩ

dt
=

(
dΩ

dt

)
J2

+

(
dΩ

dt

)
thrust

= −3n̄R2
eJ2

2a2
cos (i) (2.40)
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dω

dt
=

(
dω

dt

)
J2

+

(
dω

dt

)
thrust

=
3n̄R2

eJ2

4a2

(
4− 5 sin2 (i)

)
(2.41)

dM

dt
=

(
dM

dt

)
J2

+

(
dM

dt

)
thrust

= n

[
1− 3R2

eJ2

4a2

(
3 sin2 (i)− 2

)]
= n̄. (2.42)

As the argument of perigee is undefined for circular orbits, it is helpful to instead

consider the change in argument of latitude, u, defined as u = θ + ω. For a circular

orbit, θ = M and as such the rate of change of the argument of latitude can be defined

as

du

dt
=
dM

dt
+
dω

dt
= n̄+

3n̄R2
eJ2

4a2

(
4− 5 sin2 (i)

)
. (2.43)

2.2 Conversion to Mean Orbital Elements

The solution of the equations described in Section 2.1 includes thrust and secular

perturbations resulting from the first zonal harmonic, J2; no periodic contributions are

considered due to the averaging of the disturbing function [67]. The resulting orbital ele-

ments calculated using these expressions are thus mean elements, as the short-periodic

and long-periodic contributions have been ignored. Hence, for a consistent solution,

mean elements should be used in the calculation of these expressions. There are many

accepted methods to calculate mean orbital elements; for the analysis presented herein,

Brouwer’s definition of mean orbital elements is used [69]. The use of a different mean

element set will impact the results obtained, however the practical issues of converting

from osculating to mean elements and vice-versa do not affect the fundamental method

presented [66, 70].

Of particular note is the conversion from osculating to mean semi-major axis.

Brouwer’s conversion from mean to osculating semi-major as presented by Jean and de

Lafontaine [42] is

a = ā+
3J2R

2
e

2ā
sin2 (i) cos (2ū) (2.44)

where ā is the mean semi-major axis and ū is the mean argument of latitude. From this,

a calculation of the mean semi-major axis from the osculating can be approximated as
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ā = a− 3J2R
2
e

2a
sin2 (i) cos (2u) . (2.45)

As will be discussed in Section 2.3, forming a fully-analytical solution describing the

3-phase transfer requires that the altitude change manoeuvres be integrated over the

semi-major axis, rather than over time. As such, this conversion from osculating to

mean semi-major axis can be implemented into the solution in two different ways, either

by integrating over the mean semi-major axis or by integrating over the osculating semi-

major axis.

2.2.1 Integration over Mean Semi-Major Axis

The most straightforward implementation of the method is to integrate over the mean

semi-major axis. In this case, the mean semi-major axis should first be calculated using

equation (2.45) and the numerical value then used in the equations of motion. This

gives the governing equations as

dā

dt
=

2

n̄
Aprop (2.46)

de

dt
= 0 (2.47)

di

dt
= 0 (2.48)

dΩ

dt
= −3n̄R2

eJ2

2ā2
cos (i) (2.49)

du

dt
= n̄+

3n̄R2
eJ2

4ā2

(
4− 5 sin2 (i)

)
(2.50)

where

n̄ = n

[
1− 3R2

eJ2

4ā2

(
3 sin2 (i)− 2

)]
. (2.51)

When integrated, these equations will be integrated over the mean semi-major axis, ā.
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2.2.2 Integration over Osculating Semi-Major Axis

An alternate method of implementation is to integrate over the osculating semi-major

axis. This is achieved by including the conversion from osculating to mean semi-major

axis as part of the equations of motion. However, incorporating the conversion from

osculating to mean semi-major axis directly into the equations of motion prevents a

fully-analytical solution being obtained due to the complex functions produced during

integration. To avoid this issue, the osculating semi-major axis value can be used in

the equation for the rate of change of the semi-major axis with minimal impact on the

solution accuracy. This gives the governing equations of motion as

da

dt
=

2

n̄′
Aprop (2.52)

de

dt
= 0 (2.53)

di

dt
= 0 (2.54)

dΩ

dt
= −3n̄R2

eJ2

2ā2
cos (i) (2.55)

du

dt
= n̄+

3n̄R2
eJ2

4ā2

(
4− 5 sin2 (i)

)
(2.56)

where n̄ is as given by equation (2.51), ā is as given by equation (2.45) and

n̄′ = n

[
1− 3R2

eJ2

4a2

(
3 sin2 (i)− 2

)]
. (2.57)

Both the solution integrating over the mean semi-major axis and the solution inte-

grating over the osculating semi-major axis have a similar level of accuracy, however

there are certain considerations when integrating over the osculating semi-major axis

that will be discussed in Section 3.2. For speed and simplicity, the solution has been

integrated over the mean semi-major axis for all analyses in Chapters 3 and 4, except

where otherwise stated. For ease of comparison with numerical solutions, the solution

has been integrated over the osculating semi-major axis for the analyses in Chapters 5

and 6.
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2.3 Change in Right Ascension of the Ascending Node

and Argument of Latitude

2.3.1 Integration over Mean Semi-Major Axis

The rate of change of RAAN and AoL of the satellite when integrating over the mean

semi-major axis are described by equations (2.49) and (2.50) respectively. During the

coast arc the semi-major axis can be assumed to remain constant and equations (2.49)

and (2.50) can be integrated over time to produce expressions for the change in RAAN

and AoL during this phase such that

∆Ω2 =

∫ t2

t1

dΩ

dt
dt (2.58)

and

∆u2 =

∫ t2

t1

du

dt
dt (2.59)

where ∆Ω2 and ∆u2 are the changes in RAAN and AoL in phase 2, and t1 and t2 are

the time at the beginning and end of phase 2 respectively.

During the altitude change phases, the semi-major axis is not constant and varies

according to equation (2.46). As a result, equations (2.49) and (2.50) cannot be directly

integrated over time. By combining equations (2.46) and (2.49), an expression for the

change in RAAN as a function of the mean semi-major axis can be produced in the

form of

dΩ

dā
= −3n̄2R2

eJ2

4ā2Aprop
cos (i) . (2.60)

Assuming inclination and acceleration remain constant throughout the altitude change

manoeuvre, equation (2.60) can be integrated with respect to the mean semi-major

axis to give the change in RAAN over the course of the altitude change manoeuvre as

∆Ω1 =

∫ ā1

ā0

dΩ

dā
dā (2.61)

and
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∆Ω3 =

∫ ā3

ā2

dΩ

dā
dā (2.62)

where ∆Ω1 and ∆Ω3 are the change in RAAN in phase 1 and phase 3 respectively, ā0

and ā1 are the mean semi-major axis at the beginning and end of phase 1 respectively,

and ā2 and ā3 are the mean semi-major axis at the beginning and end of phase 3

respectively.

Similarly, combining equation (2.46) and equation (2.50) gives an expression for the

change in AoL as a function of the mean semi-major axis as

du

dā
=

n̄2

2Aprop

(
1 +

3R2
eJ2

4ā2

(
4− 5 sin2 (i)

))
. (2.63)

This can be integrated with respect to the mean semi-major axis to give the change in

AoL over the course of the altitude change manoeuvres as

∆u1 =

∫ ā1

ā0

du

dā
dā (2.64)

and

∆u3 =

∫ ā3

ā2

du

dā
dā (2.65)

where ∆u1 and ∆u3 are the change in AoL in phase 1 and phase 3 respectively.

2.3.2 Integration over Osculating Semi-Major Axis

When integrating over the osculating semi-major axis, the rate of change of RAAN

and AoL of the satellite are described by equations (2.55) and (2.56). These can be

integrated over time to produce expressions for the change in RAAN and AoL during

phase 2 as given by equations (2.58) and (2.59).

The rate of change of the osculating semi-major axis of the satellite is as given by

equation (2.52) for the case in which the equations are integrated over the osculating

semi-major axis. In this case, the expressions for the change in RAAN and AoL during

the altitude change phases as a function of the change in osculating semi-major axis

become
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dΩ

da
= −3n̄n̄′R2

eJ2

4ā2Aprop
cos (i) (2.66)

and

du

da
=

n̄n̄′

2Aprop

(
1 +

3R2
eJ2

4ā2

(
4− 5 sin2 (i)

))
(2.67)

respectively, where ā is as given by equation (2.45). Integrating these with respect to

the osculating semi-major axis gives the change in RAAN and AoL over the course of

the altitude change manoeuvres as

∆Ω1 =

∫ a1

a0

dΩ

da
da (2.68)

∆Ω3 =

∫ a3

a2

dΩ

da
da (2.69)

∆u1 =

∫ a1

a0

du

da
da (2.70)

and

∆u3 =

∫ a3

a2

du

da
da (2.71)

where a0 and a1 are the osculating semi-major axis at the beginning and end of phase

1 respectively, and a2 and a3 are the osculating semi-major axis at the beginning and

end of phase 3.

2.4 Full Analytical Description of 3-Phase Manoeuvre

Combining the equations derived in Section 2.3 to account for all three phases of the

manoeuvre gives fully-analytical expressions for the RAAN and AoL of the satellite

after the manoeuvre is complete. That is,

Ωtotal = Ω0 + ∆Ω1 + ∆Ω2 + ∆Ω3 (2.72)
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and

utotal = u0 + ∆u1 + ∆u2 + ∆u3 (2.73)

where ∆Ωj and ∆uj are the change in RAAN and AoL in the jth phase respectively.

These expressions, while complete, express the final RAAN and AoL in terms of the

semi-major axis at the end of phase 1 and the time required for the coast arc. For the

purposes of this work it is more useful to express these changes in terms of the total

manoeuvre time, ttotal, and the required change in velocity.

2.4.1 Integration over Mean Semi-Major Axis

In order to express equations (2.72) and (2.73) in terms of the total manoeuvre time,

the coast time is expressed as

t2 = ttotal − t1 − t3 (2.74)

where t1 and t3 are the time taken for the phase 1 and phase 3 manoeuvres respectively.

Integrating equation (2.46) with respect to time for phases 1 and 3 independently and

rearranging gives an expression for t1 as

t1 =

√
µ
(
ā

5/2
0

{
20ā2

1 + 3J2R
2
e

[
2− 3 sin2(i)

]}
+ 3ā

5/2
1 J2R

2
e

[
3 sin2(i)− 2

]
− 20ā

5/2
1 ā2

0

)
20ā

5/2
0 ā

5/2
1 Aprop

(2.75)

with t3 being calculated using the same expression but with ā2 in place of ā0, and

ā3 in place of ā1. Substituting these into equation (2.74), with the assumption that

ā2 = ā1, and then into equations (2.72) and (2.73) allows the final RAAN and AoL of

the satellite at the end of the 3-phase manoeuvre to be expressed in terms of the total

time required for the manoeuvre, ttotal, and the mean semi-major axis of the satellite

at the end of phase 1, ā1.

It is then possible to express the mean semi-major axis of the satellite at the end

of phase 1 in terms of the change in velocity required to change the altitude of the

satellite over the full manoeuvre, ∆Valt. Assuming a small propellant mass flow rate
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and a small propellant mass fraction [71], the change in velocity required to change the

satellite altitude in phase 1 can be approximated as

∆V1 =

∣∣∣∣√ µ

ā1
−
√
µ

ā0

∣∣∣∣ (2.76)

with ∆V3 calculated using a similar expression but with ā3 in place of ā0. From this,

an expression for the mean semi-major axis at the end of phase 1 as a function of the

total ∆V required for altitude change manoeuvres, ∆Valt, can be derived as

ā1 =
4µā0

µ+ ā0

(√
µ
ā3
±∆Valt

)(
2
√

µ
ā0

+
√

µ
ā3
±∆Valt

) (2.77)

where ∆Valt = ∆V1+∆V3. Note this does not include the change in velocity required for

atmospheric drag compensation during the coast arc, ∆V2; this is discussed in Section

2.5. In equation (2.77), a ‘+’ should be used in place of ‘±’ in the case where the satellite

decreases its altitude in phase 1 and increases it in phase 3, whilst a ‘−’ should be used

in place of ‘±’ in the case where a satellite raises its altitude in phase 1 and lowers it in

phase 3. Using this definition of ā1 in equations (2.72) and (2.73), and assuming that

the initial and final altitude of the satellite are known, fully-analytical expressions are

produced for the RAAN and AoL at the end of the 3-phase manoeuvre as a function

of the total time required for the manoeuvre and the ∆V used to change the satellite

altitude. Full expressions for ∆Ω1, ∆Ω2, ∆Ω3, Ωtotal and ∆u1, ∆u2, ∆u3 and utotal as

a function of ∆Valt and ttotal are given in Appendix A for the case in which integration

is performed over the mean semi-major axis. Note that the equations are derived in

such a way that only a single propulsive acceleration value for Aprop is required; in the

case that the satellite raises its altitude in phase 1 a positive value should be used,

whilst if the satellite lowers its altitude in phase 1 a negative value should be used.

2.4.2 Integration over Osculating Semi-Major Axis

For the method in which the equations of motion are to be integrated over the osculating

semi-major axis, the expression for t1 is obtained by integrating equation (2.52) with

respect to time giving
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t1 =

√
µ
(
a

5/2
0

{
20a2

1 + 3J2R
2
e

[
2− 3 sin2(i)

]}
+ 3a

5/2
1 J2R

2
e

[
3 sin2(i)− 2

]
− 20a

5/2
1 a2

0

)
20a

5/2
0 a

5/2
1 Aprop

(2.78)

with t3 being calculated using the same expression but with a2 in place of a0, and a3 in

place of a1. Substituting into equation (2.74), with the assumption that a2 = a1, and

then into equations (2.72) and (2.73) allows the final RAAN and AoL of the satellite at

the end of the 3-phase manoeuvre to be expressed in terms of the total time required

for the manoeuvre, ttotal, and the osculating semi-major axis of the satellite at the end

of phase 1, a1.

The osculating semi-major axis of the satellite at the end of phase 1 can then be

expressed in terms of the change in velocity required to change the altitude of the

satellite over the full manoeuvre. The ∆V required to change the altitude of the

satellite in phase 1 is approximated as

∆V1 =

∣∣∣∣√ µ

a1
−
√
µ

a0

∣∣∣∣ . (2.79)

with ∆V3 calculated using a similar expression but with a3 in place of a0. From this,

an expression for the osculating semi-major axis at the end of phase 1 can be derived

as

a1 =
4µa0

µ+ a0

(√
µ
a3
±∆Valt

)(
2
√

µ
a0

+
√

µ
a3
±∆Valt

) . (2.80)

Using this definition of a1 in equations (2.72) and (2.73) gives fully-analytical expres-

sions for the RAAN and AoL at the end of the 3-phase manoeuvre for the case in which

the equations are to be integrated over the osculating semi-major axis. Full expressions

for ∆Ω1, ∆Ω2, ∆Ω3, Ωtotal and ∆u1, ∆u2, ∆u3 and utotal as a function of ∆Valt and

ttotal are given in Appendix B for the case in which integration is performed over the

osculating semi-major axis.
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2.5 Atmospheric Drag Compensation during Coast Arc

The acceleration caused by the force of atmospheric drag can be approximated by

~Aatm = −1

2

CDα

m
ρv2
rel

~vrel
| ~vrel|

(2.81)

where vrel is the relative velocity between the spacecraft and the atmosphere, CD is the

spacecraft coefficient of drag, α is the spacecraft effective area, m is the spacecraft mass

and ρ is the atmospheric density at the spacecraft altitude. Making the assumption

that the atmosphere is static, and that the atmospheric drag force acts only in the

negative transversal direction gives

Aatm = −1

2

CDα

m
ρv2 (2.82)

where v is the satellite velocity, which, for a circular orbit, can be expressed as

v =

√
µ

ā
. (2.83)

The atmospheric density can be approximated using an exponential density model [72]

as

ρ = ρref exp

[
−
href − h1

H

]
. (2.84)

where href is the reference altitude, ρref is atmospheric density at the reference altitude,

h1 is the spacecraft altitude and H is the scale height of the atmosphere. For all cases

considered in this dissertation, this exponential model is implemented in the general

perturbation method using the CIRA-72 atmospheric model for 25–500 km, and CIRA-

72 with exospheric temperature T∞ = 1000 K for 500–1000 km, as presented in [72].

Once the acceleration caused by atmospheric drag has been calculated for the given

coast arc altitude using equation (2.82) the necessary ∆V to counteract this acceleration

can be calculated as the required acceleration multiplied by the time of the coast phase,

∆V2 = Aatmt2. (2.85)
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This atmospheric drag compensation ∆V2 is added to the ∆V required for altitude

change, ∆Valt, to give the total change in velocity as

∆Vtotal = ∆Valt + ∆V2. (2.86)

It is of note that because the atmospheric model used is divided into altitude bands

for the calculation of atmospheric density, it is not possible to express Ωtotal and utotal

in terms of ∆Vtotal whilst maintaining a fully-analytical solution. As such, the possible

manoeuvre options are first calculated as a function of ∆Valt, and ∆V2 is then calculated

and added to this to be included in the manoeuvre selection trade-off.

2.6 Analytical Description of Relative Satellite Motion

If the goal of a manoeuvre is to position the satellite relative to another satellite, it is

necessary to account for the continued motion of the other satellite, herein referred to

as the reference satellite, throughout the manoeuvre. The difference in RAAN between

the manoeuvring satellite and the reference satellite can be calculated as

Ωdif = Ωtotal − Ωref (2.87)

where Ωtotal is as given by equation (2.72) and, assuming the reference satellite performs

no manoeuvres, Ωref can be calculated using equation (2.49) for the change in RAAN

of a non-manoeuvring satellite, or equation (2.55) if integrating over the osculating

semi-major axis.

The difference in AoL between the manoeuvring satellite and the reference satellite

can be similarly calculated as

udif = utotal − uref (2.88)

where utotal is as given by equation (2.73) and uref is calculated using equation (2.50), or

equation (2.56) if integrating over the osculating semi-major axis. The full integrated

solutions to these equations are given in Appendix A for the method in which the

equations are integrated over the mean semi-major axis. Due to the size of the equations
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for Ωdif and udif produced by the method in which the equations are integrated over

the osculating semi-major axis, these full expressions are not given; instead equations

for Ωref and uref are given in Appendix B, alongside the equations for Ωtotal and utotal.

2.7 Analytical Description of Ground Track Motion

If the aim of the manoeuvre is to target a specific point of interest (POI) on the ground,

it is necessary to link the RAAN and AoL of the satellite post-manoeuvre to changes

in the satellite ground track. Using spherical geometry, the geocentric latitude of the

satellite’s sub-satellite point (SSP), δSSP , at a given time can be calculated from the

orbital elements by

δSSP = sin−1 (sin i sinutotal) (2.89)

with the corresponding geocentric longitude of the SSP, ΨSSP , given as

ΨSSP = tan−1

(
cos i sinutotal

cosutotal

)
− ωet+ Ωtotal − Ωet0 (2.90)

where Ωet0 is the right ascension of Greenwich at epoch (i.e. at t = t0), and ωe is the

angular rate of rotation of the Earth [73]. It is necessary to include the inverse tangent

function in this form to allow for the quadrant of the angle to be correctly determined.

The haversine formula given by

d = 2Re sin−1

[√
sin2

(
δSSP − δPOI

2

)
+ cos (δSSP ) cos (δPOI) sin2

(
ΨSSP −ΨPOI

2

)]
(2.91)

can be used to calculate the great-circle distance between the sub-satellite point and the

point of interest on the ground after the manoeuvre, assuming the geocentric latitude,

δPOI , and longitude, ΨPOI , of the point of interest are known [74]. Note that the use of

geocentric latitude and longitude values in equation (2.91) assumes a spherical Earth

for the calculation of the distance between the satellite SSP and POI; due to the short

distances being considered any errors arising from this will be small [75].

Using equations (2.89) and (2.90), the haversine distance, d, can be expressed in



CHAPTER 2 METHOD 36

terms of the orbital elements, and thus, using equations (2.72) and (2.73), as a function

of the manoeuvre time, ttotal, and the change in velocity required for the altitude change

manoeuvre, ∆Valt.

The partial derivative of equation (2.91) with respect to time, ∂d
∂ttotal

can be found

analytically. By identifying the values of ttotal for which ∂d
∂ttotal

= 0, the extrema of the

distance function, d, for a given ∆Valt can be identified. Throughout this work, this

is implemented using the ‘EventLocator’ method available in Wolfram Mathematica,

which uses numerical methods to locate the roots of the function [76]. The second

partial derivative, ∂2d
∂t2total

, can also be found analytically. Evaluating this at the locations

of the extrema of d enables the minima of the function to be distinguished from the

maxima. Any of these minima that have a value less than half the swath width of the

satellite can be identified as manoeuvres that will finish with the point of interest in

view of the satellite, assuming the satellite payload has a conical field of view. This

full set of possible manoeuvres can then be evaluated by the user, providing them

a full view of the solution space and the ability to select the manoeuvre that best

meets their mission criteria. Each of these solutions will have a corresponding ∆V

cost, manoeuvre time and distance to target associated with it; this is in contrast to

the classical presentation of Lambert’s problem in which the manoeuvre time is given.

While it is possible to calculate manoeuvres requiring a given time using the derived

method, due to the restrictions placed on the manoeuvres (i.e. only circular to circular,

coplanar manoeuvres are considered), a rendezvous or target flyover requiring a given

manoeuvre time cannot be guaranteed. Throughout this work, this method derived

herein will be referred to as the ‘general perturbation method’.



Chapter 3

Analysis

The method of satellite manoeuvring outlined in Chapter 2 requires that satellites be

manoeuvred to different altitudes to achieve a change in their relative positioning or

ground track. This can be done by either raising or lowering the satellite’s altitude rel-

ative to its initial position. An example of the full solution space that can be produced

using the fully-analytical general perturbation method derived in Chapter 2 is shown

in Figure 3.1 as a 3-dimensional plot, and in Figure 3.2 as a contour plot. These show

the distance from the point of interest to the sub-satellite point plotted for manoeuvre

times up to one day, for an altitude-lowering manoeuvre using a range of ∆Valt values

from 0–120 m/s. The POI in this case is Los Angeles and the orbital constants and

orbit parameters used are given in Tables 3.1 and 3.2. The manoeuvre durations that

will finish with the POI in view for a given ∆Valt can be found by locating the minima

of the solution, as described in Section 2.7, and identifying those that fall within view

of the satellite; these solutions are shown as red dots in Figure 3.2. Some of the solu-

tions found will be infeasible as the required ∆Valt cannot be produced in the allotted

time using the defined propulsion system acceleration; these solutions can be readily

discarded.

Figure 3.3 shows the same surface as Figure 3.1 plotted over a smaller region. The

black contours are drawn along paths of constant manoeuvre time. These contours can

be seen to cross the troughs and peaks of the surface, demonstrating how the function

can vary with ∆Valt. A single contour for a manoeuvre time of 121.25 hours is shown

37
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in Figure 3.4. It is clear that the function varies smoothly with ∆Valt, and that for a

given manoeuvre time and ∆Valt range there will be a minimum distance to the target

corresponding to a single ∆Valt value. Identifying these minima for which the target is

in view gives the list of possible solutions for the specified time and ∆Valt range.

Figure 3.1: Distance to point of interest plotted as a function of total time and ∆Valt required
for the manoeuvre.
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Figure 3.2: Distance to point of interest plotted as a function of total time and ∆Valt required
for the manoeuvre. Red dots indicate manoeuvres that end with the target in view of the satellite.
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Table 3.1: Orbital constants.

Parameter Symbol Value Units

Gravitational Parameter µ 3.986× 1014 m3/s2

Radius of Earth Re 6.371× 103 km
Coefficient of J2 for Earth J2 1.0827× 10−3 —
Angular velocity of Earth ωe 7.2921× 10−5 rad/s

Table 3.2: Orbit parameters.

Parameter Symbol Value Units

Propulsion acceleration Aprop ±1.1667× 10−4 m/s2

Inclination i 51.64 deg
Initial/final osculating semi-major axis a0, a3 6773 km
Initial/final mean semi-major axis ā0, ā3 6767 km
Initial AoL u0 0 deg
Initial RAAN Ω0 0 deg
Latitude of POI δtarget 34.05 deg
Longitude of POI Ψtarget -118.24 deg
Epoch — 01 Jan 1990 00:00:00 —
Right ascension of Greenwich at epoch Ωet0 100.39 deg
Swath width s 200 km

Figure 3.3: Zoomed graph of distance from sub-satellite point to point of interest plotted as a
function of total time and ∆Valt. Contours drawn at constant manoeuvre time.
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Figure 3.4: Graph of distance from sub-satellite point to point of interest plotted as a function
of ∆Valt for a manoeuvre time of 121.25 hours.

3.1 Comparison of Satellite-Lowering and -Raising

Manoeuvres

This section will compare the RAAN and AoL change achievable using both satellite-

lowering and satellite-raising manoeuvres. The parameters given in Tables 3.1 and

3.3 are used for this investigation. In all cases the results presented show the change

in RAAN, Ωdif , and AoL, udif , that can be achieved when compared with a non-

manoeuvring reference satellite. It is assumed for this investigation that the satellite

begins and ends its manoeuvres at the same altitude.

Table 3.3: Analysis mission parameters.

Parameter Symbol Value Units

Propulsion acceleration Aprop ±1.1667× 10−4 m/s2

Inclination i 45 deg
Initial/final osculating semi-major axis a0,a3 6971 km
Initial/final mean semi-major axis ā0,ā3 6965 km
Initial AoL u0 0 deg
Initial RAAN Ω0 0 deg
∆V for altitude change ∆Valt 30 m/s
Manoeuvre time ttotal 7 days
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3.1.1 Changing Right Ascension of the Ascending Node

Figure 3.5 shows contours of desired RAAN change and the corresponding manoeuvre

time and ∆Valt for both satellite-lowering and -raising manoeuvres. This graph shows

that for a given desired change in RAAN, a lowering manoeuvre requires less time

than a raising manoeuvre using the same ∆Valt. The relative difference between the

two increases as the desired RAAN separation increases. For example, it is possible to

achieve a separation of 45 deg in RAAN in 100.5 days with a ∆Valt of 200 m/s using

a satellite-lowering manoeuvre. For the satellite-raising manoeuvre, a separation of 45

deg can be achieved with a ∆Valt of 200 m/s in 107.9 days; a difference of more than

seven days. A separation of 90 deg in RAAN is achievable in 191.0 days with a ∆Valt

of 200 m/s using a satellite-lowering manoeuvre. For the satellite-raising manoeuvre,

a separation of 90 deg can be achieved with a ∆Valt of 200 m/s in 206.1 days; a

difference of 15 days. These results indicate that if the primary goal is separation of

satellites through RAAN, the satellite-lowering manoeuvre is more efficient. This is as

would be expected; considering equation (2.49) shows that the rate of change of RAAN

is proportional to 1/ā7/2 and as such the relative difference in the rate of change in

RAAN of two satellites separated by altitude will increase as their altitudes decrease.

3.1.2 Changing Argument of Latitude

Figure 3.6 shows contours of AoL change and the corresponding manoeuvre time and

∆Valt for both the satellite-lowering and -raising manoeuvres. As was the case for

RAAN, a satellite-lowering manoeuvre requires less time than a satellite-raising ma-

noeuvre to achieve the desired AoL change using the same ∆Valt, and the relative dif-

ference between the two increases as the desired AoL separation increases. As before,

these results indicate that if the primary goal is separation of satellites, the satellite-

lowering manoeuvre is more efficient. This is also expected, as considering equation

(2.50) shows that the rate of change of AoL is proportional to (1 + ā2)/ā7/2, meaning

that the relative difference in the rate of change of AoL of satellites separated by alti-

tude will increase as their altitude decreases. It is of note that the same effect will also

be seen considering smaller changes in AoL less than one revolution, but these values

are used for illustrative purposes.
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Figure 3.5: Comparison of manoeuvre time necessary to achieve a desired change in RAAN as
a function of ∆Valt for satellite-lowering and -raising manoeuvres.
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3.2 Investigation of Effect of Orbit Parameters

The initial orbit parameters of the satellite will have an impact on the effectiveness

of the manoeuvres. It is useful to quantify this dependence on initial orbit conditions

to determine preferable orbits for manoeuvrable satellites to occupy. The analytical

nature of the solution is beneficial in this investigation as it allows the change in RAAN

and AoL to be easily calculated as functions of the variable, or variables, of interest.

These can be plotted as continuous functions giving a full overview of the solution and

providing a deeper insight into the method.

An investigation into the effect of initial orbit parameters is carried out for the

3-phase manoeuvre with the parameters given in Tables 3.1 and 3.3 used, excluding

the parameter being investigated. Unless otherwise stated, a 30 m/s ∆Valt and a

manoeuvre time of seven days is used for the investigation. The results presented show

the change in RAAN, Ωdif , and AoL, udif , that can be achieved when compared with

a non-manoeuvring reference satellite as calculated using equations (2.87) and (2.88).

3.2.1 Varying Inclination

Change in right ascension of the ascending node

The effect of varying inclination on the achievable change in RAAN is shown in Figure

3.7 (a) for an altitude-lowering manoeuvre, and in Figure 3.7 (b) for an altitude-raising

manoeuvre. These graphs provide the intuitive result that as the orbit inclination

approaches 90 deg, the achievable RAAN separation approaches zero. This is because

the rate of change of RAAN due to J2 is zero at 90 deg inclination, as expressed

by equation (2.16). Also clear is that when using an altitude-lowering manoeuvre, for

prograde orbits (i.e. orbit inclination is less than 90 deg) the relative RAAN change will

be negative while for retrograde orbits (i.e. orbit inclination is 90–180 deg) the change

in RAAN will be positive. The opposite is true for the satellite-raising manoeuvre.

Figure 3.8 shows the same analysis as Figure 3.7, but is integrated over the os-

culating semi-major axis, using the equations as described in Appendix B. It can be

seen that when using this method the solution becomes unstable for certain inclination

values. This is due to the existence of the sin2 (i) term in the conversion from the os-
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culating to mean semi-major axis as shown in equation (2.45) that causes the solution

to tend to infinity as the inclination approaches zero and 180 deg.

The minimum inclination for which the solution is valid when integrating over the

osculating semi-major axis was investigated by plotting a seventh order polynomial

curve fit to the solution for a satellite-lowering manoeuvre, as shown in Figure 3.9.

Taking the difference between the solution and the curve fit gives the deviation in

change in RAAN from the expected trend. The curved surface distance between the

resulting sub-satellite point as calculated using the general perturbation solution and

the RAAN as given by the expected trend gives the results shown in Figure 3.10; this

is done for an AoL of 0 deg as this gives the largest deviation due to the presence of the

cos (2u) term in the conversion from osculating to mean semi-major axis as given by

equation (2.45). Further examination of these results reveals the maximum deviation

from the trend in kilometres for different inclination ranges, as shown in Table 3.4.

This shows that for inclination values between 15–165 deg, the maximum deviation

is less than 6 km for the case considered. For inclination values between 10–170 deg,

the maximum deviation increases to more than 500 km. As a result of this, it is

recommended that the method integrating over the osculating semi-major axis should

not be used for inclinations less than 15 deg or greater than 165 deg.
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Figure 3.7: Achievable change in RAAN as a function of inclination for (a) an altitude-lowering
manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and with a manoeuvre time of
7 days.
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Figure 3.8: Achievable change in RAAN as a function of inclination integrating over the oscu-
lating semi-major axis for (a) an altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre
using 30 m/s ∆Valt and with a manoeuvre time of 7 days.
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Figure 3.9: Curve fit to general perturbation solution integrating over the osculating semi-major
axis for change in RAAN over a range of inclinations.

Table 3.4: Maximum difference between sub-satellite point location as calculated by the general
perturbation solution integrated over the osculating semi-major axis and the expected trend for
change in RAAN for ranges of inclination.

Inclination range, deg 50–130 20–160 15–165 10–170 5–175 0–180

Maximum deviation, km 0.2 1.4 5.7 541.9 20014.5 20014.5
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Figure 3.10: Difference between sub-satellite point location as calculated by the general pertur-
bation solution integrated over the osculating semi-major axis and the expected trend.

Change in argument of latitude

The effect of varying inclination on the achievable change in AoL is shown in Figure

3.11 (a) for an altitude-lowering manoeuvre, and in Figure 3.11 (b) for an altitude-

raising manoeuvre. These graphs show that the AoL separation achievable decreases

as the inclination of the satellite approaches 90 deg, with a difference of approximately

2 deg between the maximum and minimum possible separation. This is a very small

difference compared to the magnitude of the separation, which is just less than 180 deg,

demonstrating that the inclination of the responsive satellite is of small consequence if

the goal is to achieve separation in AoL. Contrary to the RAAN, the AoL change will be

positive for both prograde and retrograde orbits for an altitude-lowering manoeuvre; for

an altitude-raising manoeuvre, the change in AoL will be negative for all inclinations.

Figure 3.12 shows the same analysis as Figure 3.11, but is calculated by integrating

over the osculating semi-major axis. The instability of the solution identified when

considering the effect of inclination on the change in RAAN is also visible here. As was

done for the RAAN investigation, a seventh order polynomial curve fit is performed,

and the resultant deviation in the position of the sub-satellite point compared to the

expected trend is calculated for a reference AoL of 0 deg. These results are given

in Table 3.5. In this case, for inclination values between 15–165 deg, the maximum
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deviation is approximately 25 km; this is almost 20 km greater than in the RAAN

case, but is of a similar magnitude to other error sources, as will be seen in Chapter

4. For inclination values between 10–170 deg, the maximum deviation increases to

more than 1000 km. This remains consistent with the prior recommendation that for

inclinations less than 15 deg or greater than 165 deg, the method that is integrated

over the osculating semi-major axis should not be used.
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Figure 3.11: Achievable change in AoL as a function of inclination for (a) an altitude-lowering
manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and with a manoeuvre time of
7 days.
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Figure 3.12: Achievable change in AoL as a function of inclination integrating over the osculating
semi-major axis for (a) an altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre using
30 m/s ∆Valt and with a manoeuvre time of 7 days.
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Table 3.5: Maximum difference between sub-satellite point location as calculated by the general
perturbation solution integrated over the osculating semi-major axis and the expected trend for
change in AoL for ranges of inclination.

Inclination range, deg 50–130 20–160 15–165 10–170 5–175 0–180

Maximum deviation, km 2.9 10.1 25.2 1049.3 19370.0 19842.3

Displacement of sub-satellite point

If the reason for manoeuvring a spacecraft is to achieve a change in the position of

the sub-satellite point, then the manoeuvre effectiveness can be quantified in terms

of the curved surface distance between the manoeuvred satellite’s sub-satellite point,

as compared with that of a non-manoeuvring reference satellite. The effect of varying

inclination on the achievable distance is shown in Figure 3.13 (a) for an altitude-lowering

manoeuvre, and in Figure 3.13 (b) for an altitude-raising manoeuvre. These graphs

show that the distance achievable decreases as the inclination of the satellite approaches

90 deg, with a difference of approximately 100 km between the maximum and minimum

achievable distance. This is very small compared to the total distance achieved which is

just less than 20,000 km. This is because the change in AoL is the primary contributor

to the displacement of the sub-satellite point, as demonstrated by the similar trend

seen in Figures 3.11 and 3.13. This indicates that the inclination of the satellite orbit

will have relatively little impact on the maximum distance achievable.

Also evident from Figure 3.13 is that a satellite-lowering manoeuvre produces a

greater change in the location of the sub-satellite point than an altitude-raising ma-

noeuvre, though the difference, which is approximately 100 km, is very small compared

to the total distance. This is consistent with the findings from Section 3.1 that an

altitude-lowering manoeuvre is a more efficient means of changing the RAAN and AoL

of a satellite. Note that the distance shown in both Figures 3.13 (a) and 3.13 (b) is

positive, as only the magnitude of the distance is considered here and not the direction.
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Figure 3.13: Displacement of sub-satellite point as a function of inclination for (a) an altitude-
lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and a manoeuvre time
of 7 days.

3.2.2 Varying Initial Altitude

This section investigates the effect of varying the satellite initial altitude on the ma-

noeuvre effectiveness. To maintain consistency, it is decided that the satellite should

always return to its initial altitude at the manoeuvre end (i.e. ā3 = ā0), and as such

both the initial and final altitude of the satellite are varied.

Change in right ascension of the ascending node

The achievable change in RAAN as a function of the satellite initial altitude is shown

in Figure 3.14 (a) for an altitude-lowering manoeuvre, and in Figure 3.14 (b) for an

altitude-raising manoeuvre. From this it can be seen that the achievable RAAN sepa-

ration increases with decreasing altitude. This is as expected, due to the nature of J2,

as discussed in Section 3.1. For an altitude-lowering manoeuvre, the relative RAAN

change will be negative for all initial altitudes while for an altitude-raising manoeuvre

the change in RAAN will be positive.

Change in argument of latitude

The achievable change in AoL as a function of the satellite initial altitude is shown

in Figure 3.15 (a) for an altitude-lowering manoeuvre, and in Figure 3.15 (b) for an

altitude-raising manoeuvre. As with RAAN, the achievable AoL separation increases

with decreasing altitude. Here, for an altitude-lowering manoeuvre, the relative AoL
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change will be positive for all initial altitudes while for an altitude-raising manoeuvre

the change in AoL will be negative.
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Figure 3.14: Achievable change in RAAN as a function of initial altitude for (a) an altitude-
lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and with a manoeuvre
time of 7 days.
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Figure 3.15: Achievable change in AoL as a function of initial altitude for (a) an altitude-lowering
manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and with a manoeuvre time of
7 days.

Displacement of sub-satellite point

The displacement of the sub-satellite point as a function of the satellite initial altitude is

shown in Figure 3.16 (a) for an altitude-lowering manoeuvre, and in Figure 3.16 (b) for

an altitude-raising manoeuvre. These graphs show that the displacement, in general,

increases as the initial altitude of the satellite decreases. The reason for the apparent

decrease in distance below approximately 500 km altitude is that at this point the

sub-satellite point has been displaced by more than half the circumference of the Earth
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and thus the absolute distance between the sub-satellite points of the manoeuvred and

reference satellites begins to decrease. The oscillation seen in the distance near the

maximum is likely due to difficulties in the calculation of the haversine distance as the

longitude difference approaches 180 deg. This instability is a well documented issue

with this method of calculating the curved surface distance between two points [74].
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Figure 3.16: Displacement of sub-satellite point as a function of initial altitude for (a) an
altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt and with a
manoeuvre time of 7 days.

3.2.3 Varying Manoeuvre Time and ∆V

Change in right ascension of the ascending node

The crucial variables for control of the satellite manoeuvre are the manoeuvre time

and the ∆Valt used. The achievable change in RAAN is shown in Figure 3.17 (a) as a

function of these parameters for an altitude-lowering manoeuvre, and in Figure 3.17 (b)

for an altitude-raising manoeuvre. In both graphs the solution is only plotted for cases

in which the manoeuvre time is sufficient to achieve the corresponding ∆Valt. As would

be expected, the achievable RAAN separation increases with increased manoeuvre time

and increased ∆Valt. However this relationship is non-linear.

Considering the change in RAAN as a function of time only for a ∆Valt of 30 m/s

using an altitude-lowering manoeuvre gives the results in Figure 3.18 (a) from which it

is clear that for a given ∆Valt the change in RAAN achievable increases almost linearly

with time. A similar result is obtained using an altitude-raising manoeuvre as shown in

Figure 3.18 (b). Note that a minimum manoeuvre time of 3 days is required to achieve
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a ∆Valt of 30 m/s. This sets the lower limit of the presented graphs.

For a constant manoeuvre time of 30 days, the results in Figure 3.19 (a) are obtained

for an altitude-lowering manoeuvre. From this it can be seen that whilst the change in

RAAN achievable increases with increasing ∆Valt, the relative increase lessens as the

amount of ∆Valt increases. Figure 3.19 (b) shows a similar result for an altitude-raising

manoeuvre.
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Figure 3.17: Achievable change in RAAN as a function of manoeuvre time and ∆Valt for (a) an
altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre.
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Figure 3.18: Achievable change in RAAN as a function of manoeuvre time for (a) an altitude-
lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt.
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Figure 3.19: Achievable change in RAAN as a function of ∆Valt for (a) an altitude-lowering
manoeuvre, (b) an altitude-raising manoeuvre with a manoeuvre time of 30 days.

Change in argument of latitude

The achievable change in AoL as a function of manoeuvre time and ∆Valt is shown

in Figure 3.20 (a) for an altitude-lowering manoeuvre, and in Figure 3.20 (b) for an

altitude-raising manoeuvre. These solutions are only plotted for cases in which the ma-

noeuvre time is sufficient to achieve the corresponding ∆Valt. The negative number of

revolutions achieved using the altitude-raising manoeuvre indicates that the manoeu-

vred satellite will lag the reference satellite. As would be expected, the achievable AoL

separation increases with increased manoeuvre time and increased ∆Valt.

Considering the change in AoL as a function of time only for an altitude-lowering

manoeuvre using a ∆Valt of 30 m/s, gives the results in Figure 3.21 (a) from which it

is clear that for a given ∆Valt the change in AoL achievable increases almost linearly

with time. A similar result is obtained for an altitude-raising manoeuvre as shown in

Figure 3.21 (b).

For a constant manoeuvre time of 30 days the results in Figure 3.22 (a) are obtained

for an altitude-lowering manoeuvre. From this it can be seen that the change in AoL

as a function of ∆Valt follows the same trend as the change in RAAN; the change in

AoL achievable increases with increasing ∆Valt, but the relative increase lessens as the

amount of ∆Valt increases. Figure 3.22 (b) shows a similar result for an altitude-raising

manoeuvre.
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Figure 3.20: Achievable change in argument of latitude as a function of manoeuvre time and
∆Valt for (a) an altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre.
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Figure 3.21: Achievable change in argument of latitude as a function of manoeuvre time for (a)
an altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt.
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Figure 3.22: Achievable change in argument of latitude as a function of ∆Valt for (a) an altitude-
lowering manoeuvre, (b) an altitude-raising manoeuvre with a manoeuvre time of 30 days.
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Displacement of sub-satellite point

The displacement of the sub-satellite point as a function of manoeuvre time and ∆Valt

is shown in Figure 3.23 (a) for an altitude-lowering manoeuvre, and in Figure 3.23 (b)

for an altitude-raising manoeuvre. In both graphs the solution is only plotted for cases

in which the manoeuvre time is sufficient to achieve the corresponding ∆Valt.

Considering the displacement of the sub-satellite point as a function of time only

for an altitude-lowering manoeuvre using a ∆Valt of 30 m/s gives the results in Figure

3.24 (a) from which it is clear that for a given ∆Valt the displacement of the sub-

satellite point increases almost linearly with time. A similar result is obtained using

an altitude-raising manoeuvre as shown in Figure 3.24 (b).

For an altitude-lowering manoeuvre with a constant manoeuvre time of one day, the

results in Figure 3.25 (a) are obtained. From this it can be seen that the displacement

of the sub-satellite point as a function of ∆Valt increases with increasing ∆Valt but, as

with RAAN and AoL, the relative increase lessens as the amount of ∆Valt increases.

Figure 3.25 (b) shows a similar result for an altitude-raising manoeuvre.

(a) (b)

Figure 3.23: Displacement of sub-satellite point as a function of manoeuvre time and ∆Valt for
(a) an altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre.
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Figure 3.24: Displacement of sub-satellite point as a function of manoeuvre time for (a) an
altitude-lowering manoeuvre, (b) an altitude-raising manoeuvre using 30 m/s ∆Valt.
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Figure 3.25: Displacement of sub-satellite point as a function of ∆Valt for (a) an altitude-lowering
manoeuvre, (b) an altitude-raising manoeuvre with a manoeuvre time of 1 day.



Chapter 4

Validation: Rapid Flyover

In this chapter, the developed general perturbation method will be applied to a simple

scenario to quantify its accuracy and to illustrate the applicability of the method before

applying it to more complex scenarios in Chapters 5 and 6.

4.1 Validation Case Description

The scenario investigated in this chapter considers a satellite in the same orbit as the

International Space Station (ISS). The goal of the proposed mission is to reduce the

revisit time of the satellite over Los Angeles, California. This kind of operation could be

desirable, for example, in response to an earthquake in the region. The orbital constants

used for the analysis are given in Table 4.1, the initial satellite orbit parameters are

given in Table 4.2, and the spacecraft properties are given in Table 4.3. The ground

track of the satellite as plotted over a single day is shown in Figure 4.1 with the location

of the target also indicated.

The satellite propulsion system acceleration is calculated assuming a 3 kg satellite

(e.g. a 3U CubeSat [77, 78]), equipped with the TILE electrospray propulsion system,

developed by the Space Propulsion Laboratory of the Massachusetts Institute of Tech-

nology (MIT), that produces a nominal thrust of 350 µN and has a specific impulse of

760 seconds [8, 79–82]. For a 3 kg 3U Cubesat carrying 50 g of propellant, this equates

to a maximum ∆V of 120 m/s, assuming a constant nominal thrust and a constant

acceleration. This is a valid assumption as the propellant accounts for just 1.6% of the

57
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spacecraft wet mass and would see a change in acceleration of just 0.00264 mm/s2 if

the full propellant mass were used, a change of less than 2.5%.

Table 4.1: Orbital constants.

Parameter Symbol Value Units

Gravitational Parameter µ 3.986× 1014 m3/s2

Radius of Earth Re 6.371× 103 km
Coefficient of J2 for Earth J2 1.0827× 10−3 —
Angular velocity of Earth ωe 7.2921× 10−5 rad/s

Table 4.2: Orbit parameters.

Parameter Symbol Value Units

Propulsion acceleration Aprop ±1.1667× 10−4 m/s2

Inclination i 51.64 deg
Initial/final osculating semi-major axis a0, a3 6773 km
Initial/final mean semi-major axis ā0, ā3 6767 km
Initial AoL u0 0 deg
Initial RAAN Ω0 0 deg
Latitude of POI δtarget 34.05 deg
Longitude of POI Ψtarget -118.24 deg
Epoch — 01 Jan 1990 00:00:00 —
Right ascension of Greenwich at epoch Ωet0 100.39 deg
Swath width s 200 km

Table 4.3: Spacecraft parameters.

Parameter Symbol Value Units

Coefficient of drag CD 2.2 —
Satellite mass m 3 kg
Satellite cross-sectional area α 0.03 m2
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Figure 4.1: Ground-track of non-manoeuvring satellite plotted over a one-day period.

4.2 Comparison with Numerical Simulation

The results produced by the general perturbation solution are compared with the results

produced by a numerical simulation, to quantify its accuracy. The results presented here

are for the general perturbation method integrated over the mean semi-major axis; the

results for the general perturbation method integrated over the osculating semi-major

axis are given in Appendix C. A comparison will be made against three numerical

simulations, incorporating different perturbations; the first will include central body

perturbations up to J2 only, the second will include central body perturbations to J2

and atmospheric drag, and the third simulation will include central body perturbations

modelled using an 18th order tesseral model as well as atmospheric drag. The numerical

simulator propagates the position of the spacecraft using a set of modified equinoctial

elements [83], and is implemented using MatLab’s ‘ode45’ function [84] that uses an

explicit variable step size Runge Kutta (4,5) formula, the Dormand-Prince pair [85].

A relative and absolute error tolerance of 1×10−8 are used for all solutions. The

solution refinement factor, which specifies the number of output points for each solution

step, is set to 30. Atmospheric drag is modelled in the numerical simulator using the

U.S. Standard 1976 atmosphere model [86]; this is a more recent, and more detailed,

atmospheric model than that employed in the general perturbation solution.
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4.2.1 Non-manoeuvring Satellite

For a non-manoeuvring satellite (i.e. ∆Valt = 0 m/s) the distance from the sub-satellite

point to Los Angeles is shown in Figure 4.2 for a 16-day period as calculated by the

analytical general perturbation method. The horizontal line is drawn at half the swath

width, taken to be 100 km, indicating the distance at which the POI will be visible to

the satellite, assuming a conical field of view. This solution assumes that the satellite

maintains a constant altitude over the time considered by performing atmospheric drag

compensation manoeuvres. This was calculated to require 3.22 m/s ∆V . The times of

each of the target flyovers and the distance of the SSP from the POI at that time as

calculated by the general perturbation solution are given in Tables 4.4 – 4.6.
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Figure 4.2: Distance from sub-satellite point to point of interest plotted as a function of total
time for a non-manoeuvring satellite as calculated by the general perturbation method.

A comparison is first made to a numerical simulation considering a non-manoeuvring

satellite subject to the effects of J2 only; the effects of atmospheric drag, higher order

central body effects and all other perturbations are ignored. By propagating the nu-

merical simulator over 16 days, the times at which the POI is predicted to be in view

can be found. These times are given in Table 4.4 with the corresponding distance to

the POI at that time.

A second comparison is made against the same numerical simulator but with the
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inclusion of atmospheric drag. To model the atmospheric drag compensation thrust,

the thrust is set to be equal to the transversal component of the atmospheric drag

perturbation throughout the simulation. The times at which the POI is found to be in

view for this case are given in Table 4.5 with the corresponding distance to target at

flyover. The total ∆V required for atmospheric drag compensation over the 16 days

was found to be 2.53 m/s. This value is 20% less than the amount calculated using

the general perturbation method; this discrepancy is likely due to the use of the more

detailed atmospheric model in the numerical method.

A final comparison is made against the numerical simulator including an 18th order

tesseral model of the central body perturbations, as well as atmospheric drag. The

times at which the POI is found to be in view in this simulation are given in Table 4.6

with the corresponding distance to the target. The total ∆V required for atmospheric

drag compensation over the 16-day period was found to be 2.52 m/s.

Tables 4.4, 4.5 and 4.6 show a close correlation between the general perturbation

and numerical methods. The greatest difference in flyover time identified between

the general perturbation and numerical models is less than 5 seconds and the largest

difference in distance to target at flyover is approximately 16 km. It is of note that

the general perturbation method misses a pass at 3.083 days identified by the three

numerical solutions. This pass is at a distance of approximately 95 km from the POI

and so this is likely due to errors in the accuracy of the general perturbation method.

In addition, the general perturbation method identifies a pass at 13.91 days that is not

identified by the three numerical simulations. This implies that in this case the general

perturbation method has under-estimated the distance to the target and identified a

pass that would not occur in reality.

Table 4.4: Comparison of flyover times for non-manoeuvring satellite calculated using the general
perturbation method versus numerically including only central body effects to J2.

Gen. perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 29.11 4.76 -8.59
2 1.433 55.24 1.433 67.61 -0.47 -12.37
3 — — 3.083 94.84 — —
4 13.912 86.67 — — — —
5 15.209 52.53 15.209 49.68 -1.77 2.86
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Table 4.5: Comparison of flyover times for non-manoeuvring satellite calculated using the gen-
eral perturbation method versus numerically with the inclusion of central body effects to J2 and
atmospheric drag.

Gen. perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 29.11 4.76 -8.59
2 1.433 55.24 1.433 67.57 -0.48 -12.34
3 — — 3.083 94.97 — —
4 13.912 86.67 — — — —
5 15.209 52.53 15.209 47.97 -3.69 4.56

Table 4.6: Comparison of flyover times for non-manoeuvring satellite calculated using the general
perturbation method versus numerically with the inclusion of perturbations due to atmospheric
drag and an 18th order tesseral model.

Gen. perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 10.53 1.47 9.98
2 1.433 55.24 1.433 70.85 1.35 -16.2
3 — — 3.083 95.93 — —
4 13.912 86.67 — — — —
5 15.209 52.53 15.209 47.22 3.22 5.31

Figures 4.3, 4.4, and 4.5 show the haversine distance between the sub-satellite points

as calculated by the general perturbation method and the three numerical solutions over

the same 16-day period as in Figure 4.2. From these results it is clear that the distance

between the calculated SSPs oscillates over time. This is due to the short periodic

variations in the orbital elements caused by J2 that are not included in the general

perturbation solution. This is a key consideration when using this method, and in-

deed all general perturbation methods, as due to the averaging of the disturbances over

the orbit, these short periodic changes cannot be captured by the solution and thus

the results produced will be at their most accurate after an integer number of orbit

revolutions. Due to these oscillating differences, it is useful to consider the maximum

difference and mean difference between the general perturbation and numerical meth-

ods. These are shown in Figures 4.3, 4.4, and 4.5 where the mean and maximum values

are calculated over a one-day period in each case. These results show a general increase

in the maximum difference over 16 days when comparing with the numerical simula-

tion including J2, as well as with J2 and atmospheric drag. When comparing with the
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numerical simulation including the 18th order tesseral model, the maximum difference

first decreases before increasing, suggesting that the long periodic effects caused by the

oblate central body are responsible for some of these differences. The largest maximum

difference in the 16-day period is approximately 32 km. The mean difference increases

slowly from 14–17 km in all cases. These results indicate that for an analysis up to

16 days, an error bound of 30–35 km can be applied to the calculated distance to the

target. It should be noted that this error bound is defined based on the specific case

considered herein; cases with different orbit and satellite parameters may be subject to

greater or lesser errors. Passes three and four from Table 4.4, which were not identified

by the general perturbation solution and numerical solutions respectively, are just 5 km

and 15 km from the edge of the swath respectively and thus fall within the proposed

error bound.
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Figure 4.3: Haversine distance between sub-satellite points as calculated by general perturbation
and numerical solution including J2 for a non-manoeuvring satellite.



CHAPTER 4 VALIDATION: RAPID FLYOVER 64

0 2 4 6 8 10 12 14 16

Time from epoch, days

0

5

10

15

20

25

30

35

D
iff

er
en

ce
 in

 c
al

cu
la

te
d 

su
b-

sa
te

lli
te

 p
oi

nt
, k

m

Maximum difference
Mean difference

Figure 4.4: Haversine distance between sub-satellite points as calculated by general perturbation
and numerical solution including J2 and atmospheric drag for a non-manoeuvring satellite.
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Figure 4.5: Haversine distance between sub-satellite points as calculated by general pertur-
bation and numerical solution including atmospheric drag and 18th order tesseral model for a
non-manoeuvring satellite.
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4.2.2 Manoeuvring Satellite

The general perturbation method is now used to calculate the time required to flyover

the target when the satellite is manoeuvred using a given ∆Valt. Considering the results

from Section 4.2.1, it was decided that the manoeuvre should begin 1.433 days from

epoch, at the time of the second viewing instance as calculated by the general pertur-

bation method and given in Tables 4.4 – 4.6, with the aim of reducing the subsequent

flyover time of the POI from the 13.8 day gap that would otherwise exist; this assumes

that the pass at 3.083 days, found by the numerical simulations, would be too short

and too close to the edge of the swath width to be of value, and that the pass at 13.91

days identified by the analytical solution is not a valid pass. In order to compare with

the numerical simulations, only a single manoeuvre is analysed; the results for a range

of ∆Valt values will be investigated in Section 4.3. A 3-phase altitude-lowering ma-

noeuvre, using 30 m/s ∆Valt is arbitrarily selected for this purpose. At the end of the

manoeuvre, the satellite will return to its initial altitude, as would likely be necessary

to ensure consistent observation conditions. Using 30 m/s ∆Valt, the general pertur-

bation method identifies three possible manoeuvres in a 13-day period, with different

coast arc durations, that would end with the satellite in view of the target. These are

shown in Table 4.7 with the corresponding distance from the SSP to the POI at closest

approach. The shortest possible flyover time using 30 m/s ∆Valt is found to be 5.06

days from epoch, shortening the time of flyover by more than ten days when compared

with the non-manoeuvring case.

Table 4.7: Flyover times for manoeuvring satellite with 30 m/s ∆Valt calculated using the general
perturbation method.

Possible Fly-
over Instance

Time from
epoch, days

Manoeuvre
time, days

Distance from
SSP to POI, km

1 5.06 3.62 54.50
2 8.32 6.88 28.81
3 11.94 10.50 57.19
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The numerical simulations described in Section 4.2.1 are now used to investigate

the solution for a manoeuvring satellite found using the general perturbation method.

In order to simulate the entire mission, the satellite is first propagated 1.433 days

from epoch in its initial orbit to reach viewing instance two from Tables 4.4 – 4.6 as

calculated by the general perturbation method. At this point the 3-phase manoeuvre

is carried out, based on the solution found using the general perturbation method for

the first achievable flyover. This consists of an initial altitude change manoeuvre using

15 m/s ∆V to lower the orbit, lasting 35.71 hours, followed by a 15.54 hour coasting

phase. Finally a 35.71 hour altitude change manoeuvre, using another 15 m/s ∆V ,

raises the orbit back to its initial altitude. For the simulations including atmospheric

drag, the satellite is assumed to perform atmospheric drag compensation during phase

2, the coast arc, as well as before and after the manoeuvre. Figure 4.6 shows the ground

track of the manoeuvring satellite over the five-day manoeuvre period. Figure 4.7 is

a smaller region of the same plot, showing the position of the satellite relative to the

target at the end of the manoeuvre.

Figure 4.6: Ground-track of manoeuvring satellite plotted over the 5.06 day period from epoch
to manoeuvre end.
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Figure 4.7: Section of Figure 4.6 showing satellite position relative to target at end of manoeuvre.

Figures 4.8, 4.9 and 4.10 show the distance from the sub-satellite point to the target

as calculated using the haversine formula at each time step throughout the mission for

the three numerical cases. The horizontal line indicates the distance at which the POI

will be visible to the satellite, and the vertical dotted line indicates the time at which the

manoeuvre starts. The first two peaks in these figures correspond to viewing instances

one and two, which occur before the manoeuvre begins. The third peak, seen in all

cases, corresponds to the pass that occurs at the end of the manoeuvre, as predicted

by the general perturbation method, providing a flyover of the target at 5.06 days from

epoch. The exact time of the closest pass found by each of the numerical simulations

is given in Table 4.8 along with the distance to the target at that time.

The closest pass found by the numerical solution including only J2 occurs just 1.19

seconds earlier than predicted by the general perturbation method, and the distance

from the SSP to the POI at this time is found to be 67.17 km, which is a difference of

12.67 km. This falls within the expected error range as found in Section 4.2.1. After the

manoeuvre is completed the satellite will remain in its orbit and the numerical solution

predicts additional flyovers of the target at 6.35, 8.00, and 9.30 days from epoch.

The numerical simulation including atmospheric drag as well as J2 identifies the

closest pass as occurring 39 seconds earlier than predicted by the general perturbation
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solution. The distance from the SSP to the target at this time is found to be 57.67 km,

which is a difference of 3.18 km. This difference in predicted time of flyover is due to

the effect of atmospheric drag during the altitude-lowering and -raising manoeuvres,

when no atmospheric drag compensation is assumed to take place. If atmospheric drag

compensation is performed during phase 1 and phase 3 in addition to the coast phases,

the predicted flyover occurs just 1.2 seconds earlier than it is predicted by the general

perturbation solution, at a distance of 67.15 km from the POI, giving a difference of

12.65 km when compared with the general perturbation method.

The numerical simulation with an 18th order tesseral model and atmospheric drag

predicts the closest pass to be 41 seconds earlier than predicted by the general perturba-

tion solution. The distance from the SSP to the target at this time is found to be 56.34

km; a difference of 1.85 km. If atmospheric drag compensation is performed during

the lowering and raising manoeuvres in addition to the coasting phases, the predicted

flyover occurs just 2 seconds earlier than it is predicted by the general perturbation

solution, at a distance of 65.98 km from the POI, giving a difference of 11.5 km when

compared with the general perturbation method.
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Figure 4.8: Distance from sub-satellite point to target throughout mission for numerical simula-
tion including only J2 perturbations. Manoeuvre begins at 1.433 days following the solution given
by the general perturbation method.
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Figure 4.9: Distance from sub-satellite point to target throughout mission for numerical simu-
lation including J2 and atmospheric drag. Manoeuvre begins at 1.433 days following the solution
given by the general perturbation method.
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Figure 4.10: Distance from sub-satellite point to target throughout mission for numerical simu-
lation including atmospheric drag and an 18th order tesseral model. Manoeuvre begins at 1.433
days following the solution given by the general perturbation method.
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Table 4.8: Comparison of flyover times for manoeuvring satellite calculated using the general
perturbation method versus numerically.

Time from
epoch, days

Distance to
target, km

Difference
in time, sec

Difference in
distance, km

General perturbation method 5.06 54.50 — —
Numerical: J2 5.06 67.17 1.19 12.67
Numerical: J2 and atmospheric drag 5.06 57.67 39.36 3.18
Numerical: J2 and atmospheric drag
w/ compensation during altitude
change

5.06 67.15 1.20 12.65

Numerical: 18th order tesseral and at-
mospheric drag

5.06 56.34 41.17 1.85

Numerical: 18th order tesseral and at-
mospheric drag w/ compensation dur-
ing altitude change

5.06 65.98 2.33 11.5

The results of this analysis imply that the effects of atmospheric drag are the largest

contributor to the discrepancy in the time of flyover as predicted by the general per-

turbation method, however the largest difference is very small at less than one minute

over a five-day simulation. The difference in the distance to the target at flyover does

not show consistent improvement with the addition of atmospheric drag compensation

during phase 1 and phase 3, suggesting that the periodic effects of the central body

perturbations, particularly J2, have the largest impact on this variation, within the

time period considered.

4.3 Rapid Flyover Mission Results

As shown in Section 4.2, if no manoeuvres are performed there is a 13.8 day gap between

flyovers of Los Angeles after its second viewing at 1.433 days from epoch. It has been

shown that an altitude-lowering manoeuvre using 30 m/s ∆Valt can reduce the time

between flyovers from 13.8 days to 3.6 days. The same scenario is investigated here for a

range of ∆Valt values from 0–120 m/s in increments of 1 m/s, for both altitude-lowering

and altitude-raising manoeuvres. Using the general perturbation method, the shortest

possible time in which a pass can be made over Los Angeles is calculated for each ∆Valt

value. The corresponding atmospheric drag compensation ∆V for each manoeuvre is

then calculated using equation (2.85) and added to give the change in velocity required

for the full manoeuvre, ∆Vtotal. For all solutions the atmospheric drag compensation
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∆V required was found to be less than 3.1 m/s, with those manoeuvres requiring a

longer coast time at a low altitude the most affected. All possible manoeuvres are shown

in Figure 4.11 where the circles indicate altitude-lowering manoeuvres, and the squares

show altitude-raising manoeuvres. Note that the time shown is the time taken for the

manoeuvre, not the time from epoch. These results show that the minimum achievable

flyover time for a ∆Vtotal less than 120 m/s is 1.65 days, or 39.61 hours, achieved with

a ∆Vtotal of just 1.34 m/s using an altitude-raising manoeuvre. This gives a decrease

in flyover time of more than 12 days when compared with the non-manoeuvring case.
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Figure 4.11: Shortest possible time to flyover for a given ∆Vtotal as calculated by the general
perturbation method.

Each manoeuvre option in Figure 4.11 will have a corresponding minimum distance

to the target at flyover, which will define the payload look-angle. This is shown in

Figure 4.12 for the solutions requiring a manoeuvre time of approximately 1.6 days

and a ∆Valt of 0–17 m/s; these are all altitude-raising manoeuvres. Figure 4.12 shows

that for a ∆Valt of 1 m/s the minimum distance to the target will be more than 90 km

at flyover. Increasing ∆Valt increases the required manoeuvre time but also reduces

the minimum distance to the target at flyover; however this trend gives diminishing
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returns as ∆Valt is increased further. These insights obtained from the solution space

can be extremely valuable to an operator, allowing for an informed trade-off between

mission goals, and are difficult to gain through numerical methods alone.
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Figure 4.12: Minimum distance to target for selected solutions as a function of manoeuvre time
and required ∆Valt as calculated by the general perturbation method.

A 12.09 m/s manoeuvre, predicting a distance to target at flyover of 48 km and

requiring a manoeuvre time of 39.66 hours, is selected as a compromise between ∆V ,

flyover time and look-angle at flyover. This predicts a flyover time of 3.06 days from

epoch. The manoeuvre is analysed using the numerical propagator described in Section

4.2 including atmospheric drag and an 18th order tesseral model. The satellite is first

propagated 1.433 days from epoch in its initial orbit and the 3-phase altitude-raising

manoeuvre is then carried out. Atmospheric drag compensation is assumed to be

performed during the phase 2 coast arc, as well as before and after the manoeuvre, but

not during the altitude-raising and -lowering phases. Figure 4.13 shows the distance

from the sub-satellite point to the target as calculated using the haversine formula at

each time step throughout this simulation. The horizontal line indicates the point at

which the target will be in view of the satellite, and the vertical dotted line marks the

time at which the manoeuvre begins. A peak can be seen in this figure corresponding

to a pass that occurs at 3.06 days from epoch. This pass occurs just 7 seconds earlier
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than predicted by the general perturbation solution with the distance from the SSP

to the target at this time found to be 38 km; this is 10 km closer than that predicted

by the general perturbation solution. The total ∆V required is found to be 12.07 m/s

including that required for atmospheric drag compensation, a difference of just 0.02

m/s when compared with the general perturbation solution.
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Figure 4.13: Distance from sub-satellite point to target throughout mission for the numerical
simulation including atmospheric drag and an 18th order tesseral model. Altitude-raising ma-
noeuvre begins at 1.433 days following the solution given by the general perturbation method.

It is of interest to note that the solution shown in Figure 4.13, requiring 12.09 m/s

∆V and a manoeuvre time of 39.66 hours, only has one possible subsequent flyover of

the target, at approximately 4.3 days from epoch, and this will be close to the edge of the

swath and of poor quality. Thus, if subsequent flyovers are desired, further manoeuvres

will be required. Revisiting the results seen in Figures 4.8, 4.9 and 4.10, it can be

seen that although the initial manoeuvre takes longer and requires 30 m/s ∆Valt, there

are numerous subsequent natural flyovers in the following days. This is an interesting

observation that implies that, depending on the mission goals, it may be useful to look

ahead at future natural flyovers for each manoeuvre option and include these as trade-

off criteria. This would be possible using the general perturbation solution with minor

adaptations.



Chapter 5

Constellation Reconfiguration

The general perturbation solution to the satellite overflight targeting problem developed

in Chapter 2, and validated in Chapter 4, is now applied to a constellation reconfigura-

tion scenario to demonstrate the ease with which intricate problems can be examined

and valuable insights gained. The scenario to be analysed considers a constellation of

24 satellites tasked with fire detection and subsequent manoeuvring to provide targeted

coverage of fire outbreaks.

The proposed fire response mission is based on a modified version of the nano-

satellite constellation proposed by the Universitat Politécnica de Catalunya for global

fire detection [87]. They identify a need for near-real-time, global fire monitoring capa-

bility and suggest a constellation of CubeSats equipped with a high resolution optical

system could provide such a service. They state that a minimum six hour revisit time

is required for all regions of interest, but a one hour revisit is desirable. They propose

a constellation at 600 km altitude with four orbit planes inclined at 55 deg and six

satellites per plane, for 24 total satellites. A similar constellation is under development

by the Spanish company AISTECH who envision a 100 nano-satellite constellation,

with the first due for launch in 2018 [88].

The ability of a responsive constellation comprising manoeuvrable satellites to pro-

vide the desired coverage will be compared with the performance of a traditional, static

constellation. For the responsive constellation, the “ReCon” concept proposed by the

Massachusetts Institute of Technology will be used [61, 89, 90]. In this concept, the

74
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Earth observing constellation has two operational modes that it can manoeuvre be-

tween. The first is a global observation mode (GOM) in which the satellites are spread

out to provide even coverage of the observation region. The second mode is regional ob-

servation mode (ROM) in which some of the satellites are moved into repeating ground

track (RGT) orbits over a specific point of interest to provide improved coverage of the

region. For the proposed mission, the constellation in GOM would be used to detect the

outbreak of fire, and then would transition to ROM to provide more frequent revisits

of the affected area. Once targeted coverage is no longer required, the constellation

would return to GOM and continue global observations. This strategy is visualised in

Figure 5.1 [61].

Figure 5.1: Visualisation of the ReCon concept [61].

Sequential fire outbreaks in four different locations are considered to assess the

ability of a responsive constellation to provide increased coverage across a range of

latitudes. The areas considered are the Cairngorms National Park, Scotland; Yosemite

National Park, California; Agulhas National Park, South Africa; and the Lagunas de

Montebello National Park, Mexico. These areas were selected due to their historical, or

predicted future, propensity for fire outbreaks. Cairngorms National Park is a region

of spectacular beauty in Scotland that is of high conservation importance due to its

unique flora and fauna, however it is at increasing risk of fire outbreak [91, 92]. Yosemite

National Park is the third most visited national park in the world with almost 4 million

visitors annually but it has a very high fire risk in the drier months [93–95]. Agulhas

National Park is situated approximately 210 km from Cape Town and surrounds the

southern-most tip of Africa. On December 26th 2009, the Agulhas National Park was

devastated by a fire that burnt over 60% of the park [96, 97]. Lagunas de Montebello

National Park, Mexico is a small protected area on the border of Guatemala that was
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subject to extensive fires in 1998 [98] and the entire Chiapas region is highlighted as

one of the highest risk areas for wildfires [99]. The park itself is experiencing extreme

damage and degradation due to deforestation and as such many efforts are currently

being put in place to further protect the region [100].

The constellation proposed for this study is based on the constellation proposed

by the Universitat Politécnica de Catalunya for fire monitoring [87], but with an in-

clination of 60 deg to incorporate mainland UK wholly in the observable region. This

constellation is composed of 24 satellites in four evenly spaced orbit planes. For an

orbit inclined at 60 deg, a repeat ground track of 15 orbits per day requires a mean

altitude of 513.087 km as calculated for a circular orbit using the method described in

[61] and [101]. The initial mean altitude of the GOM constellation is arbitrarily selected

as 542.857 km. From this altitude a satellite requires a minimum 17 m/s ∆V to reach

the ROM orbit altitude. The parameters of the constellation are given in Table 5.1 and

the initial position of the satellites are given in Appendix G. The proposed swath width

of 50 km is based on the mission design of the Universitat Politécnica de Catalunya

[87]. Although the swath width would in fact vary due to the difference in constellation

altitude, the proposed payload is a theoretical, early-stage design and so the use of

a 50 km swath is deemed appropriate for the purpose of this investigation. For this

study, the use of 3U CubeSats equipped with electrospray propulsion is assumed and

the constants given in Table 3.1 and the spacecraft parameters in Table 4.3 are used.

In order to transition between GOM and ROM, two satellites per plane will be

manoeuvred into repeating ground track orbits (i.e. eight satellites in total), with

one satellite per plane providing coverage of the target region on the upwards pass,

and the other providing coverage on the downwards pass. Moving additional satellites

provides limited benefit as there are only two positions in each RGT orbit plane that

provide a flyover of the target. Thus the manoeuvring of more satellites would result in

multiple satellites positioned very close together, providing overlapping coverage and

limited increased utility. The satellites remaining in the GOM orbit are not re-phased

to provide even coverage from this altitude, however they will still provide incidental

coverage of the target. These satellites could be re-phased but that would incur an

additional ∆V cost.
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Table 5.1: Fire response constellation mission parameters.

Parameter Value Units

Propulsion acceleration ±1.1667× 10−4 m/s2

Inclination 60 deg
GOM osculating/mean altitude 550 / 542.857 km
ROM osculating/mean altitude 520.261 / 513.087 km
Number of orbit planes 4 —
Number of satellites per plane 6 —
RAAN spacing between orbit planes 90 deg
In plane spacing between satellites 60 deg
Phasing between satellites in adjacent planes 0 deg
Epoch 01 Jan 1990 00:00:00 —
Right ascension of Greenwich at epoch 100.39 deg
Instrument swath 50 km

For all targets, the region of interest is assumed to be a rectangle encompassing the

national park with the parameters given in Table 5.2 and shown in Appendix D. The test

scenario considered is selected arbitrarily, but is designed to consider locations across

a range of latitudes and incorporate different reconfiguration scenarios. In the scenario

the fire outbreaks occur sequentially in each region as follows: 1. Cairngorms, 2.

Yosemite, 3. Agulhas, 4. Lagunas de Montebello. For each outbreak, the constellation

will manoeuvre to ROM and then remain in ROM for seven days before transitioning

back to GOM. The constellation then remains in GOM for seven days before the next

fire is detected. The exception to this is the transition between targeting Yosemite and

Agulhas; in this case the fire in Agulhas is assumed to be detected while the constellation

is still targeting Yosemite and so a direct transition from ROM to ROM occurs. This

time-line is shown in Figure 5.2, where each arrow indicates a reconfiguration of the

constellation.

Table 5.2: National park locations.

Point of Interest Minimum
Latitude, deg

Maximum
Latitude, deg

Minimum
Longitude, deg

Maximum
Longitude, deg

Cairngorms 56.58 57.66 -4.64 -2.65
Yosemite 37.49 38.18 -119.89 -119.20
Agulhas -34.83 -34.68 19.63 20.02
Lagunas de Montebello 16.07 16.12 -91.74 -91.63
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Figure 5.2: Fire response mission scenario.

5.1 Method

In order to decide which satellites should be manoeuvred during each reconfiguration,

and what form these manoeuvres should take, each satellite is analysed using the general

perturbation method described in Chapter 2, producing a list of all possible manoeuvres

that each satellite could perform that would conclude with the satellite over the target

region and in a repeating ground track orbit. This is done for a ∆Valt range of 17–

120 m/s in steps of 1 m/s, for up to 10 days total manoeuvre time, and considers

both altitude-raising and altitude-lowering manoeuvres. In addition to the ∆Vtotal

required for the manoeuvre, the satellites are assumed to perform atmospheric drag

compensation at all times when not manoeuvring; this applies to the satellites in GOM

and ROM. As this ∆V is dependent on the length of the manoeuvres selected, it cannot

be included in the trade space while maintaining a fully-analytical solution, and so it

is instead calculated after the mission scenario has been defined. Compared to the ∆V

required for manoeuvring, these values are extremely small and relatively consistent

across all satellites in either ROM or GOM, and as such their exclusion from the trade

space is deemed acceptable.

The full set of possible manoeuvres for all satellites to target the Cairngorms are

shown in Figure 5.3, where the colour is scaled to the z-axis showing the distance to the

target at the end of each possible manoeuvre. The results in the foreground of the graph

have been discarded as the time allocated for these manoeuvres would be less than that

required to achieve the necessary ∆V . This leaves 1979 possible manoeuvres, each of
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which will have a corresponding manoeuvre time and ∆V associated with it. For all

solutions shown the satellite SSP will pass within the region of interest, however it can

be seen that the distance from the SSP to the centre of the POI will vary depending on

the manoeuvre selected. This full overview of the solution space allows the operator to

identify all possible solutions and then select those that best meet their mission criteria,

whether that be to minimise time to first viewing, minimise propellant usage, minimise

distance to target at flyover, or a compromise between all three.

In order to select the ‘best’ manoeuvres from the full solution set, the solutions

are grouped first by orbit plane and then by whether they will view the target on an

upwards or downwards pass. A simple additive multi-attribute utility function is then

applied to produce a single utility score for each solution [102, 103]. The solution in

each grouping with the highest utility function is then selected. In some cases where

the difference in utility function between satellites was small, a judgement was made

to select the preferred solution; this was done to bring the desired outcome in-line with

what a mission operator would likely select, while avoiding the need to fine-tune the

utility function, which is outside the scope of this work.

Figure 5.3: Full set of solutions for Cairngorms flyover.

A simple additive multi-attribute utility function can be described by

U(X) =

N∑
n=1

knUn(Xn) (5.1)

where Xn is a single attribute, Un(Xn) is the utility function of a single attribute, kn is a

weighting factor for a single attribute, and U(X) is the multi-attribute utility function.
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The weighting factors determine the relative weighting to be given to each attribute

considered. The attributes considered are ∆Vtotal, manoeuvre time, and distance to the

centre of the region of interest at the end of the manoeuvre. Each of these is normalised

against the range of possible values of the attribute to give a utility between 0 and 1.

That is,

Un =
Xworst −Xn

Xworst −Xideal
(5.2)

where Xworst is the worst possible value of the attribute and Xideal is the best possible

value. For ∆V , the worst possibility is the maximum possible ∆V so Xworst = 120 m/s,

while the ideal case is the minimum possible ∆V so Xideal = 17 m/s. For manoeuvre

time the worst option is the maximum time possible so Xworst = 10 days, while Xideal =

0 days. For distance to the centre of the region of interest at the end of the manoeuvre

the worst possible value is half the swath width, so in this case Xworst = 25 km, while

Xideal = 0 km.

5.1.1 Return to Global Monitoring Constellation

Once the fire has been dealt with, it is assumed that the constellation would return to

GOM mode to continue global observation. This is considered a non-urgent manoeuvre,

and so the minimum ∆V possible is used, with the required satellite in-plane phasing

being achieved by the satellite remaining in the RGT orbit for as long as is necessary

before manoeuvring. In this case, there is essentially no phase 1 manoeuvre, and

instead the satellite coasts as in phase 2 before raising its altitude to return to the

GOM constellation. To calculate the required manoeuvre time for each satellite, a

simplified version of the general perturbation method is used in which the time and

∆V for phase 1 are both set to zero.

Taking any satellite in the same plane and at the GOM altitude as a reference,

the desired difference in the final AoLs of the manoeuvring satellite and the reference

satellite can be specified, as described in Section 2.6, and thus the total required ma-

noeuvre time calculated to achieve the desired spacing using the minimum ∆V of 17

m/s. All possible solutions are investigated for each plane and the solutions selected

to give the shortest total manoeuvre time for each plane. It is of note that on return
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to GOM using this method, the satellite spacing within each orbit plane will return

to 60 deg, however the RAAN of the manoeuvred satellites will have a slight variation

from the other satellites. This could be readjusted by raising the altitude of these satel-

lites above the GOM altitude and allowing them to drift in RAAN before re-phasing.

For this study the orbit planes were not adjusted and the largest difference in RAAN

between two satellites in the same plane was less than 2 deg at the end of the mission.

5.1.2 Direct Manoeuvre from ROM to ROM

When manoeuvring to target Agulhas National Park the constellation is assumed to

begin manoeuvring directly from observing Yosemite with no transition to GOM, as

indicated in Figure 5.2. The general perturbation method is used, as normal, to select

the satellites to manoeuvre. Any satellites remaining in RGT orbits over Yosemite

are returned to GOM using the minimum possible ∆V of 17 m/s, with the required

satellite in-plane phasing being achieved by the satellite remaining in the RGT orbit

for as long as required. This is similar to the standard return to GOM manoeuvre but

due to additional satellites moving from GOM to ROM there is a wider range of orbital

slots available to return to, increasing the complexity of the analysis.

5.2 Comparison of Non-Weighted and Weighted Utility

Functions

Before analysing the full mission, a comparison will be made between the results ob-

tained using a non-weighted and a weighted utility function, considering only the first

reconfiguration to target the Cairngorms. For the non-weighted utility function each

variable is given equal weight, while the weighted utility function is adjusted to priori-

tise minimising manoeuvre time, while reducing the importance of the distance to the

target at flyover. The ∆Vtotal required is taken as the normal value, so k∆V = 1 and

relative weightings are given to the manoeuvre time and distance to target respectively

as ktime = 3 and kdistance = 0.5.

To select the ‘best’ solutions for each plane, the solutions are grouped by orbit

plane and then according to the pass type: up or down. Each solution is then assigned
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a utility function. Figure 5.4 (a) shows the utility calculated with the non-weighted

function for all solutions for orbit plane 1 that result in an upwards pass over the

Cairngorms; Figure 5.4 (b) shows the corresponding solution using the weighted utility

function. Figure 5.5 (a) shows the non-weighted utility for the orbit plane 1 solutions

that result in a downwards pass over the target. Figure 5.5 (b) shows the same results

for the weighted utility function. The blue dots are those manoeuvres in which the

altitude is lowered in phase 1 and the orange dots are those in which the altitude is

raised in phase 1. Similar results are obtained for all other orbit planes and are given

in Appendix E.

From these results, those manoeuvres with the highest utility in each plane, and

for each pass type, are selected as the final solution. These are presented in Table 5.3

for the non-weighted utility function and in Table 5.4 for the weighted utility function.

From this is it is clear that the utility function selected, or correspondingly the user’s

priorities, can have a significant impact on the solution that is determined to be the

‘best’. For orbit planes 1–3, the same satellites are selected to manoeuvre by both utility

functions but there are differences in the ∆Vtotal and manoeuvre time, and hence the

distance to the target at flyover. In the case of plane 4, the two satellites selected to

manoeuvre are entirely different depending on the utility function used.
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Figure 5.4: Utility of manoeuvre versus satellite number for orbit plane 1 for upwards pass over
the Cairngorms for (a) the non-weighted case, (b) the weighted case.
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Figure 5.5: Utility of manoeuvre versus satellite number for orbit plane 1 for downwards pass
over the Cairngorms for (a) the non-weighted case, (b) the weighted case.

Table 5.3: Selected satellite manoeuvres to target the Cairngorms using unweighted utility
function.

Satellite ∆Vtotal,
m/s

Time,
days

Distance,
km

Pass type Manoeuvre
Type

Plane 1
4 29.00 3.02 2.85 Downwards Lower
5 22.02 2.87 0.59 Upwards Lower

Plane 2
7 20.00 2.13 8.45 Upwards Raise
12 17.01 2.28 8.07 Downwards Raise

Plane 3
13 26.03 3.51 3.71 Downwards Lower
14 23.00 2.38 5.09 Upwards Lower

Plane 4
20 34.05 4.74 0.18 Downwards Lower
23 26.02 3.61 0.16 Upwards Raise

Table 5.4: Selected satellite manoeuvres to target the Cairngorms using weighted utility function.

Satellite ∆Vtotal,
m/s

Time,
days

Distance,
km

Pass type Manoeuvre
Type

Plane 1
4 18.01 2.03 18.80 Downwards Lower
5 17.01 1.88 9.64 Upwards Lower

Plane 2
7 19.00 2.13 8.79 Upwards Raise
12 17.00 2.28 8.07 Downwards Raise

Plane 3
13 23.01 2.52 13.07 Downwards Lower
14 21.01 2.38 5.75 Upwards Lower

Plane 4
21 17.00 1.78 19.92 Downwards Raise
22 17.02 2.62 18.08 Upwards Raise
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5.2.1 Coverage Results for Non-Weighted and Weighted Utility

Functions

In order to quantify the effect that utility function selection can have on the results, the

coverage of the Cairngorms region available from the constellation is considered over

a one-week period after the manoeuvres have been performed (i.e. in ROM mode) for

both the non-weighted and weighted utility function solutions. The coverage analysis

is performed using an orbit propagator that considers only the secular effects of J2

and considers the Earth to be spherical for the purposes of determining the latitude

and longitude of the sub-satellite point. Comparison with the coverage available from a

non-manoeuvred static constellation, as well as coverage of the other regions of interest,

will be investigated in Section 5.4, after the utility function has been selected.

Figure 5.6 shows the total time in the one-week period analysed that a region

of the Cairngorms has been viewed after the constellation reconfiguration has been

carried out following (a) the unweighted solution, and (b) the weighted solution. After

the manoeuvres have been carried out following the unweighted solution, the average

coverage time is 4.5 minutes, with the best viewed regions receiving 8.8 minutes total

coverage. For the weighted solution the average coverage time is 5.1 minutes, with the

best viewed regions receiving 8.4 minutes of coverage in the one-week period.

Figure 5.7 shows the maximum time between viewings for regions of the Cairngorms

in the one-week period analysed after the constellation reconfiguration has been carried

out following (a) the unweighted solution, and (b) the weighted solution. For the

unweighted case, a one-week analysis shows the average revisit time for any point in

the Cairngorms is 4.1 hours, with the most frequently viewed point having an average

revisit of 2.0 hours. The longest time that any individual region in the Cairngorms

is not viewed is 43.5 hours, and the longest time for which the entire Cairngorms

area is not viewed is 3.1 hours. For the weighted case, a one-week analysis shows

the average revisit time for any point in the Cairngorms is 3.4 hours, with the most

frequently viewed point having an average revisit of 1.9 hours. The longest time that

any individual region in the Cairngorms is not viewed is 17.7 hours, and the longest

time for which the entire Cairngorms area is not viewed is 3.1 hours.

The results obtained show that the weighted solution gives slightly worse coverage
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than the unweighted solution, but requires a much shorter transfer time; it requires

just 2.62 days for complete reconfiguration, while the unweighted solution requires 4.74

days. The weighted solution also performed better in terms of maximum revisit time,

with the longest gap in coverage for a localised region of just 17.7 hours, compared with

43.5 hours in the unweighted case. This high revisit gap in the unweighted case is due

to the distance to target parameter being ranked equally with the other parameters

and causing the coverage to be focused on the centre of the target region. For this

fire response case study in which speed is of high importance, and regular coverage of

the entire region of interest is desired, the weighted solution will be taken as the ‘best’

option and this utility function will be used for all future solution selection. The results

of this investigation highlight that the weighting of the trade-off criteria will have an

impact on the final coverage available. However, the speed of the general perturbation

solution means that the impact of a variety of utility functions can rapidly be analysed,

in order to fine-tune the selection criteria.

(a) (b)

Figure 5.6: Total time that a region of the Cairngorms has been in view over 1 week after
manoeuvring following (a) the unweighted solution and (b) the weighted solution [104].
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(a) (b)

Figure 5.7: Maximum time that a region of the Cairngorms has not been seen over 1 week after
manoeuvring following (a) the unweighted solution and (b) the weighted solution [104].

5.3 Comparison against Numerical Simulation

The same numerical simulator used in Chapter 4 to compare with the general per-

turbation method, including atmospheric drag and an 18th order tesseral central body

perturbation model, is used to analyse the accuracy of the proposed manoeuvres for the

fire response constellation for the weighted case to target the Cairngorms, as described

in Section 5.2. All satellites to be manoeuvred, with manoeuvre descriptions given in

Table 5.4, are considered separately and are analysed for one week from manoeuvre

start.

Figures 5.8 and 5.9 show the distance between the sub-satellite point and the centre

of the Cairngorms for the manoeuvred satellites in orbit plane 1 (i.e. Satellites 4 and

5) over the one-week period. Similar graphs for the other orbit planes are given in

Appendix F. The horizontal line is drawn at half the swath width and indicates the

distance at which the centre of the Cairngorms will be visible to the satellite. In

all cases, close approaches can be seen at the expected times of flyover, with daily

close approaches thereafter indicating that the satellite has finished in, or close to, the

repeating ground track orbit as desired. The errors in the final altitude are caused by

the manoeuvres taking place over a non-integer number of orbits, leading to differences

in the expected final altitude due to the short-term periodic perturbation effects of the

central body.
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The time of the flyover at the end of each satellite’s manoeuvre and the correspond-

ing distance at this time as calculated by the numerical simulator and the general

perturbation method are given in Table 5.5. Comparing the two sets of results, they

agree well; the largest error in flyover time is just 5 seconds and the largest error in

the distance to the target is 23 km. This falls within the maximum expected errors as

a result of excluding periodic J2 effects as discussed in Chapter 4.

Figure 5.8: Distance from sub-satellite point to centre of the Cairngorms plotted as a function
of total time for Satellite 4 using numerical solution.

Figure 5.9: Distance from sub-satellite point to centre of the Cairngorms plotted as a function
of total time for Satellite 5 using numerical solution.
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Table 5.5: Comparison of flyover times for manoeuvred satellites calculated using general per-
turbation method versus numerical method.

Gen. Perturbation Numerical Absolute Difference

Satellite Manoeuvre
Time, days

Distance to
target, km

Manoeuvre
Time, days

Distance to
target, km

Time,
sec

Distance to
target, km

4 2.03 18.80 2.03 16.87 <0.5 1.93
5 1.88 9.64 1.88 32.63 <1 22.99
7 2.12 8.79 2.12 8.56 <0.5 0.23
12 2.28 8.07 2.28 9.89 <0.5 1.82
13 2.52 13.07 2.52 3.59 5 9.49
14 2.38 5.75 2.38 24.30 3 18.55
21 1.78 19.92 1.78 36.45 3 16.53
22 2.62 18.08 2.62 36.83 2 18.75

5.4 Results

5.4.1 Mission Overview

Having defined the utility function to be used and ensured the accuracy of the method

by comparison with a numerical simulator, the general perturbation method is used to

define the full sequence of manoeuvres required to provide coverage of all four target

regions as defined in Section 5.1. These manoeuvres and the corresponding orbital

elements at the beginning and end of each reconfiguration are given in Appendix G.

Table 5.6 summarises the entire mission. The mission takes just less than 83 days,

assuming seven days for each GOM and ROM phase, and requires 1011.23 m/s total

∆V , including that required for atmospheric drag compensation throughout. This is

just 35% of the total available across the constellation. Satellite 10 uses the largest

proportion of propellant, requiring a ∆V of almost 99 m/s. Satellite 3 and Satellite 11

perform no altitude changing manoeuvres throughout the mission and require just 1.6

m/s ∆V for atmospheric drag compensation. The average ∆V used across all satellites

is 42 m/s, thus it is likely that the constellation could perform numerous further re-

configurations before all propellant would be depleted. The standard deviation of the

propellant usage across all satellites is 20.19 m/s.

It is possible to balance propellant usage by individual satellites, to help ensure

that no satellite runs out of propellant prematurely. This was done by including each

satellite’s remaining propellant in the manoeuvre selection utility function. To do this,



CHAPTER 5 CONSTELLATION RECONFIGURATION 89

an additional attribute term, Ufb, was added to the utility function to account for the

propellant remaining on board each satellite. This was included in equation (5.1) with

a weighting kfb = 2. In this case Xworst is the minimum possible remaining ∆V , 0 m/s,

Xideal is the maximum possible ∆V , 120 m/s, and Xn is the actual remaining ∆V . In

this scenario, the first two reconfigurations to target the Cairngorms and Yosemite are

the same as for the case with no propellant balancing. However, beyond this point

the scenario changes due to the new utility function. The full mission summary is

given in Table 5.7. The mission takes 10 days longer than the previous case, and

uses approximately 80 m/s more ∆V across the constellation; this is 38% of the total

available constellation, giving an increase of just 3% when compared with using no

propellant balancing. However, the total ∆V used by each individual satellite across

the constellation is reduced. The standard deviation of the propellant usage across all

satellites is reduced to 16.8 m/s, with only Satellite 23 having not manoeuvred, and

the largest amount of ∆V used by a single satellite being 79.18 m/s used by Satellite

19.

The total cumulative ∆V used over time for the cases with and without propellant

balancing is shown in Figure 5.10. From this it can be seen that the total propellant

used across the constellation is higher when propellant balancing is considered. This is

because less favourable manoeuvres must be selected to avoid the repeated use of the

same satellites and hence a greater depletion of their individual propellant. The effect

of this is shown in Figure 5.11 which shows the maximum ∆V used by an individual

satellite during each targeting manoeuvre. It is clear that when considering propellant

balancing, satellites are required to perform higher ∆V manoeuvres at the later stages

of the mission, to avoid repeated use of those satellites that have already manoeuvred.

Figure 5.12 shows the total ∆V used by each satellite to complete the mission for both

cases. Here it can be seen that although the inclusion of propellant balancing uses a

greater ∆V overall, it does reduce the maximum ∆V used by the individual satellites.

This assessment of the impact of a change in mission priorities is a valuable insight

that is facilitated by the use of the general perturbation solution, as its speed allows

for the impact of such decisions to be quickly analysed and compared.
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Table 5.6: Fire response mission ∆V and time for each section.

Section Section
time, days

Total
time, days

Section
∆V , m/s

Total
∆V , m/s

Start 0.00 0.00 0 0
Manoeuvre to target Cairngorms 2.62 2.62 149.98 149.98
Observing Cairngorms in ROM 7.00 9.62 3.93 153.91
Return to GOM 12.32 21.94 141.94 295.85
Time in GOM 7.00 28.94 3.28 299.12
Manoeuvre to target Yosemite 4.84 33.78 180.05 479.18
Observing Yosemite in ROM 7.00 40.78 3.93 483.11
Manoeuvre to target Agulhas 7.97 48.76 191.02 674.12
Observing Agulhas in ROM 7.00 55.76 3.93 678.06
Return to GOM 9.21 64.97 140.48 818.54
Time in GOM 7.00 71.97 3.28 821.81
Manoeuvre to target L. de Mont. 3.79 75.76 185.49 1007.30
Observing L. de Mont. in ROM 7.00 82.76 3.93 1011.23

Table 5.7: Fire response mission with propellant balancing; ∆V and time for each section.

Section Section
time, days

Total
time, days

Section
∆V , m/s

Total
∆V , m/s

Start 0.00 0.00 0 0
Manoeuvre to target Cairngorms 2.62 2.62 149.98 149.98
Observing Cairngorms in ROM 7.00 9.62 3.93 153.91
Return to GOM 12.32 21.94 141.94 295.85
Time in GOM 7.00 28.94 3.28 299.12
Manoeuvre to target Yosemite 4.84 33.78 180.05 479.18
Observing Yosemite in ROM 7.00 40.78 3.93 483.11
Manoeuvre to target Agulhas 10.68 51.46 236.55 719.66
Observing Agulhas in ROM 7.00 58.46 3.93 723.59
Return to GOM 14.05 72.51 143.01 866.60
Time in GOM 7.00 79.51 3.28 869.88
Manoeuvre to target L. de Mont. 6.31 85.82 217.83 1087.70
Observing L. de Mont. in ROM 7.00 92.82 3.72 1091.42
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balancing.
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Figure 5.12: ∆V used by each satellite in the fire response mission with and without propellant
balancing.

5.4.2 Coverage of Targets

In order to assess the improvement in coverage and revisit time that could be achieved

through the use of the proposed responsive constellation, a comparison is made with a

static constellation of 24 satellites inclined at 60 deg and at a mean altitude of 542.9 km;

this is the same as the initial GOM constellation with no manoeuvres performed. The

coverage available from both the static constellation and the responsive constellation is

analysed for each region over a one-week period using an orbit propagator that considers

only the secular effects of J2 and considers the Earth to be spherical for the purposes of

determining the latitude and longitude of the sub-satellite point. A summary of these

results is given in Table 5.8, where the average coverage and revisit time refers to the
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mean value across the entire region of interest. Peak coverage refers to the maximum

coverage available to any single location within the region of interest. Maximum local

revisit time refers to the maximum time that any single location within the region is

not viewed.

Figure 5.13 to Figure 5.16 visually depict the total time in a one-week period that

the region has been viewed by the responsive constellation and the static constellation.

From these results it is clear that in all cases, manoeuvring the constellation improves

the average coverage provided across the target region. A more significant increase is

seen in those targets at lower latitudes as the coverage available to them from the static

constellation is lower when compared to targets at the upper latitudes of the satellites’

visible region. For example, the Cairngorms see an improvement in average regional

coverage of approximately 1.8 times after manoeuvring, while the Yosemite region sees

an improvement of more than 6 times.

Figure 5.17 to Figure 5.20 show the average revisit of each region from both the

static and responsive constellations. For all regions there is a reduction in the average

revisit time when using the responsive constellation, with the reduction in revisit time

most significant at the lower latitudes where the revisit time of the static constellation

is higher. Also of note is that the revisit time provided by the responsive constellation

is consistent for all latitudes, with a revisit time of between 2.5–3.5 hours for all regions

considered; this is expected as the predominance of coverage is provided by the eight

satellites in evenly spaced RGT orbits, with additional incidental coverage from the

satellites in GOM. This is in contrast to the static constellation, which will provide

more frequent revisits at higher latitudes.

The results presented in this section demonstrate that the proposed responsive con-

stellation can improve the revisit time from the six hours proposed by the Universitat

Politécnica de Catalunya [87] to approximately three hours. However it cannot reach

the one hour capability desired; this could theoretically be achieved with 24 satellites if

they were spread across 12 orbit planes, but all satellites would be required to partake

in each targeting manoeuvre, and this would decrease the number of reconfigurations

possible before all propellant was depleted. The consistent revisit time provided to

the target regions from ROM is an additional advantage when comparing with a static
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constellation that must be designed for coverage of the lower latitudes, providing an

excess of coverage elsewhere. These results demonstrate the insights that can be rapidly

obtained through the application of the general perturbation solution to complex re-

configuration problems with thousands of possible solutions.

Table 5.8: Coverage of target regions over 7 days for both static and responsive constellations.

Cairngorms Yosemite Agulhas L. de Montebello
Static Responsive Static Responsive Static Responsive Static Responsive

Average coverage
of region (mins)

2.8 5.1 1.0 5.5 1.0 6.7 0.64 6.7

Peak local cover-
age (mins)

3.2 8.4 1.1 8.4 1.1 7.5 0.7 6.96

Average revisit
time (hrs)

5.6 3.4 16.1 3.15 16.7 2.7 23.8 2.7

Maximum local
revisit time (hrs)

15.5 17.7 56.8 11.86 62.3 5.9 48.6 5.9

(a) (b)

Figure 5.13: (a) Total time that a region of the Cairngorms has been seen in a 1-week period
for (a) the static constellation, (b) the responsive constellation [104].

(a) (b)

Figure 5.14: (a) Total time that a region of Yosemite has been seen in a 1-week period for (a)
the static constellation, (b) the responsive constellation [104].
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(a) (b)

Figure 5.15: (a) Total time that a region of the Agulhas has been seen in a 1-week period for
(a) the static constellation, (b) the responsive constellation [104].

(a) (b)

Figure 5.16: (a) Total time that a region of Lagunas de Montebello has been seen in a 1-week
period for (a) the static constellation, (b) the responsive constellation [104].

(a) (b)

Figure 5.17: (a) Average revisit time of the Cairngorms in a 1-week period for (a) the static
constellation, (b) the responsive constellation [104].
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(a) (b)

Figure 5.18: (a) Average revisit time of Yosemite in a 1-week period for (a) the static constel-
lation, (b) the responsive constellation [104].

(a) (b)

Figure 5.19: Average revisit time of the Agulhas in a 1-week period for (a) the static constella-
tion, (b) the responsive constellation [104].

(a) (b)

Figure 5.20: Average revisit time of Lagunas de Montebello in a 1-week period for (a) the static
constellation, (b) the responsive constellation [104].



Chapter 6

Constellation Deployment

Traditionally, the launching of satellite constellations has been extremely costly, with a

different launch required for each orbit plane to be populated. This can stifle and even

prohibit some missions requiring numerous orbit planes as the launch cost increases

beyond what can be justified for the mission. An alternative deployment strategy,

patented in 1993, proposed launching all satellites into a single orbit plane and then

manoeuvring them to different altitudes, utilising the Earth’s natural perturbing effects

to achieve the desired separation of right ascension of the ascending node [105]. This

was successfully demonstrated by the FORMOSAT-3/COSMIC mission in 2006 [50, 51],

and is proposed for the upcoming FORMOSAT-7/COSMIC-2 mission [106, 107]. The

FORMOSAT-3/COSMIC satellites were deployed by launching them into a low altitude

orbit and exploiting the natural perturbations of the Earth’s J2 effect to produce the

desired RAAN change. They were then raised to their desired final orbit altitude using

low-thrust propulsion, with the manoeuvres timed appropriately to obtain the desired

orbit plane spacing between the satellites. This method requires a relatively small

amount of propellant compared with traditional, high-thrust plane-change manoeuvres,

but this comes at the expense of requiring a long deployment time. However if the

deployment could be done alongside the satellite commissioning phase, the lost mission

time could be reduced. It may also be possible to provide a partial service during the

remaining deployment time, depending on the mission requirements.

This chapter applies the general perturbation method developed in Chapter 2 to

96
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the challenge of constellation deployment, to investigate the possible cost savings that

could be made by using this deployment strategy in place of traditional launch methods.

The key complexity of this deployment strategy comes from the fact that although the

relative orbit plane spacing is defined, for the cases considered herein, the absolute

position of the orbit planes is not defined. As such, the solution space is extremely large,

and the manoeuvre selected for one satellite will impact the solutions available to the

others. The analytical nature of the general perturbation solution offers an advantage

in this case, compared to numerical optimisers, as it allows for the full solution space to

be explored and insights gained into the interplay between the manoeuvre selection for

each satellite. In order to validate the general perturbation method’s applicability to the

satellite deployment problem, the actual deployment of the FORMOSAT-3/COSMIC

constellation will be analysed, and the possible reduction in deployment times that

could be achieved using the 3-phase manoeuvre are examined. Following this, the

method will be applied to the fire monitoring constellation described in Chapter 5 to

gain insights into the technique and investigate the possible reduction in launch costs

that could be achieved.

6.1 FORMOSAT-3/COSMIC Constellation Deployment

FORMOSAT-3/COSMIC is a Global Positioning System (GPS) radio occultation mis-

sion that performs global atmospheric measurements contributing to climate monitor-

ing and weather forecasting [50, 51]. The constellation consists of six satellites, dubbed

FM1 – FM6, that were initially launched to a 516 km altitude circular parking orbit at

72 deg inclination. These satellites were then raised to an altitude of 800 km, with the

timing of the manoeuvres phased so as to achieve a 30 deg RAAN separation between

the satellites. The order of manoeuvring was as follows: 1. FM5, 2. FM2, 3. FM6,

4. FM4, 5. FM3, 6. FM1. The six satellite manoeuvres were carried out over an 18

month period in 2006 and 2007. One of the satellites, FM3, experienced a solar array

deployment failure and could not complete the orbit-raising manoeuvre. The other

five satellites all reached the required final altitude and achieved the desired RAAN

separation [51].
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6.1.1 Deployment Time Calculated using General Perturbation

Method

The FM5 satellite was the first of the FORMOSAT-3/COSMIC satellites to be raised to

the final altitude. Using this as a reference satellite for all other manoeuvres, equation

(2.87) for the relative change in RAAN of two satellites, given as

Ωdif = Ωtotal − Ωref (6.1)

can be used to express the desired RAAN of all other satellites relative to FM5 as a

function of time, the ∆V required to change the satellite altitude, the given orbital

parameters and the propulsion system acceleration, Aprop.

The FORMOSAT-3/COSMIC satellites are equipped with a blow-down mono-

propellant hydrazine propulsion system that produces a thrust between 1.1 N (at be-

ginning of life) and 0.2 N (at end of life). This gradual change in thrust and spacecraft

mass over time will result in a varying acceleration profile. As the general perturbation

method assumes a constant acceleration, an average acceleration will be estimated for

the satellites and taken as the acceleration value. With a satellite dry mass of 54 kg and

an average propellant usage across all manoeuvred satellites of 4.65 kg of an available

6.65 kg [51], this average acceleration can be estimated as

Aprop =
Fmax + Fmin
2(mdry + P )

(6.2)

where Fmax and Fmin are the maximum and minimum available thrusts respectively,

mdry is the satellite dry mass and P is the average mass of the on-board propellant

during the manoeuvre, calculated as

P =
Pstart + Pend

2
(6.3)

where Pstart is the maximum available propellent mass and Pend is the average propel-

lant mass remaining at the end of the manoeuvre. In this case, Pend is 2 kg giving an

average acceleration, Aprop, of ±0.0111 m/s2.

Assuming circular orbits are maintained throughout the manoeuvre, the ∆V re-
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quired to raise the satellites’ altitudes from the initial parking orbit to the desired final

orbit can be calculated using equation (2.76) as 151.7 m/s. This allows the achievable

RAAN separation to be described as a function of time only. Solving this for the de-

sired satellite separations gives the results shown in Figure 6.1 and Table 6.1, where

the epoch (i.e. t = 0) is assumed to occur at the time that FM5 reaches the desired

800 km altitude. The total times shown here consist of the time spent in the initial

orbit as well as the time required to complete the orbit-raising manoeuvre.
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Figure 6.1: Required time to deploy FORMOSAT-3/COSMIC satellites as calculated using the
general perturbation method.

6.1.2 Comparison with Two-Line Element Data

Using the two-line element (TLE) data of the FORMOSAT-3/COSMIC satellites, it is

possible to track the satellites through their actual deployment manoeuvres, as shown

in Figure 6.2, and thus to determine the true time required to achieve the desired

RAAN separation. Note that the epoch in Figure 6.2 is taken as the time at which

FM5 reaches the desired final altitude. The satellite positions derived from the TLE

data are in the true equator mean equinox (TEME) coordinate system and, as such,

there will be inherent discrepancies between the TLE values and the values calculated
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using the general perturbation method, however it is considered sufficiently accurate

for the purposes of this comparison. These results are shown in Table 6.1. Note that

as the RAAN separation is calculated in reference to FM5, the time shown is the time

from when FM5 reaches its final orbit. These results show that for FM6, FM4 and FM1

the general perturbation method accurately predicts the time required to achieve the

given RAAN separation with less than 2% error for FM4 and FM1 and less than 6%

error for FM6. FM3 cannot be used for comparison as it never reached the desired final

orbit altitude, and the error in the prediction of the time for FM2 can be explained by

the approximately 40 day pause at 700 km altitude during its manoeuvre. This was

due to a change in the mission parameters that originally called for a 24 deg RAAN

separation between orbit planes. There is also a noticeable change in the gradient of

the TLE data after this pause that would affect the results; this may have been due to

the need to fine-tune the deployment after the change in mission requirements. While

the consideration of atmospheric drag and other influences would likely give improved

results, the current solution is considered to be sufficiently accurate to predict the

required time for constellation deployment.

Table 6.1: Time required to achieve desired RAAN separation; calculated values versus two-line
element data. Spacecraft marked with an asterix (*) cannot be used for comparison due to issues
that occurred during their deployment.

Spacecraft Desired RAAN
separation w.r.t.
FM5, deg

Calculated ma-
noeuvre time,
days

TLE manoeuvre
time, days

Difference in
time, days

FM5 0 0 0 —
FM2* -30 95 157 62
FM6 -60 191 202 11
FM4 -90 288 291 3
FM3* -120 385 — —
FM1 -150 482 476 6
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Figure 6.2: Two line element data from FORMOSAT-3/COSMIC constellation showing constel-
lation deployment manoeuvres.

6.1.3 Using 3-Phase Manoeuvre to Reduce Deployment Time

The actual deployment strategy for the FORMOSAT-3/COSMIC constellation as de-

scribed in Section 6.1.2 uses the minimum possible ∆V for the manoeuvre; the satellite

coasts at the initial altitude until the required phasing time has passed and then ma-

noeuvres to the final altitude. This manoeuvre uses just over 66% of the available

propellant. Using the additional propellant to initially lower the satellite altitude could

reduce the deployment time of the individual satellites and the overall constellation.

Assuming that 4.65 kg of propellant can provide 151.7 m/s ∆V , linear extrapolation

predicts that the full 6.65 kg of propellant could provide 217 m/s ∆V . This is likely an

under-estimation as the 4.65 kg of propellant must also have provided thrust for atmo-

spheric drag compensation before and after the altitude-raising manoeuvre; however

it is considered a valid estimate for this illustrative example. The average propulsion

system acceleration will change due to the use of the additional on-board propellant.

Taking the case in which all on-board propellant is used, the average acceleration as

calculated using equations (6.2) and (6.3) is ±0.0113 m/s2.

Knowing the maximum available ∆V and the desired satellite spacing, the general

perturbation method can be used to calculate the deployment time for each satellite as

a function of the ∆V used, including that required for atmospheric drag compensation
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during the coasting phase and after the manoeuvre is completed. For consistency, the

∆V required for atmospheric drag compensation for all satellites is calculated to 500

days from epoch; beyond this time all satellites will have reached the desired final orbit

and so any additional ∆V required for atmospheric drag compensation beyond this

time will be consistent across all spacecraft. The results of this are shown in Figure

6.3. The point markers indicate the minimum ∆V solutions used by the constellation

for the actual deployment, with the inclusion of the ∆V that would have been required

for atmospheric drag compensation throughout the manoeuvres and up to 500 days

from epoch.
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Figure 6.3: Required time to deploy FORMOSAT-3/COSMIC satellites using 3-phase manoeuvre
as calculated using the general perturbation method for a range of ∆V .

Table 6.2 shows the possible reduction in deployment time for each satellite if the

maximum ∆V of 217 m/s is used. For FM2, the satellite with the shortest deployment

time, there is a possible 17.9% reduction in deployment time when the full available

on-board propellant is used. However, the possible percentage reduction in deployment

time decreases as the deployment time increases. This is because for longer deploy-

ments a higher proportion of the available propellant is required for atmospheric drag

compensation, reducing the amount available to change the satellite altitude. Consid-
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ering FM1, which has the longest deployment time, using the maximum available ∆V

reduces the time required to deploy from 482 days to 431 days. This is more than the

deployment time required by FM3 using the minimum ∆V , and so the time to full

constellation deployment could be reduced by more than 50 days just by increasing the

amount of propellant used by FM1. The minimum altitude that would be reached if

all satellites used the maximum available ∆V is 473 km by FM2.

Table 6.2: Time required to achieve desired RAAN separation using 3-phase manoeuvre.

Desired RAAN
separation w.r.t.
FM5, deg

Manoeuvre time
for minimum
∆V , days

Manoeuvre time
for maximum
∆V , days

Possible reduc-
tion in deploy-
ment time

FM5 0 0 0 —
FM2 -30 95 78 17.9%
FM6 -60 191 162 15.2%
FM4 -90 288 249 13.5%
FM3 -120 385 339 11.9%
FM1 -150 482 431 10.6%

6.2 Deployment of Fire Monitoring Constellation

The fire monitoring constellation proposed and investigated in Chapter 5 consists of 24

satellites in four evenly spaced orbit planes. Using traditional constellation deployment

strategies, this would require four individual launches, one per plane, each carrying six

3 kg satellites. This could be extremely costly compared to the development and

manufacturing costs of the satellites. As such, it is of interest to consider alternate

deployment strategies such as that used by the FORMOSAT-3/COSMIC constellation

discussed in Section 6.1. For the analysis below it is assumed that the mission will

last a total of eight years from launch; any time spent to deploy the constellation is

assumed to result in a reduction in useful mission time, though it is possible that a

partial service could be provided during deployment. An end-of-life de-orbit strategy,

and any associated ∆V requirements, is not considered herein.
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6.2.1 Decoupling of RAAN and AoL Change

Full deployment of this constellation will require that the satellites are placed in the

desired orbit planes, corresponding to a change in RAAN, as well as spaced correctly

within the orbit planes, corresponding to a change in AoL. As both the RAAN and

the AoL separation manoeuvres are performed by varying the satellite’s altitude, it is

impossible to vary one without affecting the other. However, due to the relatively short

time required to change the satellite’s AoL compared with its RAAN, as can be seen

by comparing Figures 3.5 and 3.6 in Section 3.1, it is assumed that the RAAN change

can be performed first, and that the AoL change can be completed in the desired orbit

plane with minimal effect on the satellite RAAN.

To investigate this, the resultant RAAN change is calculated for the case in which

the argument of latitude is changed by a full revolution of 360 deg. The fire monitoring

constellation orbit parameters as given in Table 5.1, and the constants and parameters

given in Tables 3.1 and 4.3 are used. The general perturbation solution, in the form

given by equation (2.88), can be solved to find the manoeuvre time required to achieve a

change in AoL, udif , of 360 deg compared to a non-manoeuvring reference satellite as a

function of the ∆V required for the altitude change manoeuvres. The change in RAAN

of the satellite with respect to a non-manoeuvring reference, Ωdif , as given by equation

(2.87), can be used to determine the resultant change in RAAN that would occur as

the AoL is changed by 360 deg. This is calculated by replacing the manoeuvre time in

equation (2.87) with the expression for the time required to achieve the desired 360 deg

AoL change. These results are shown in Figure 6.4. From this it can be seen that the

maximum change in RAAN that would occur as the AoL is changed by 360 deg will

be less than -0.6 deg for all ∆Valt values considered. This interdependence between the

two parameters is a valuable insight that is uniquely enabled by the analytical nature

of the presented general perturbation method.
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Figure 6.4: Manoeuvre time and corresponding RAAN separation as a function of ∆V required
for altitude change, for a change in AoL of 360 deg.

6.2.2 Satellite Distribution

The desired spacing of the satellites in the fire monitoring constellation relative to each

other is described in Tables 5.1 and G.1. However, for deployment, it is also necessary

to define the position of each satellite with respect to the launch injection point. As

shown in Chapter 3, achieving a desired change in RAAN or AoL can be done more

efficiently in one direction than in the other, by the use of either an altitude-lowering or

altitude-raising manoeuvre. This means that evenly distributing the satellites in both

directions from the launch injection point is unlikely to be the most efficient deployment

method.

The constellation being considered consists of four orbit planes evenly distributed

through 360 deg (i.e. 90 deg separation between each plane). Recall that in Chapter

3 it was determined that an altitude-lowering manoeuvre will always be more efficient

than an altitude-raising manoeuvre if the goal is to achieve a desired satellite separation

through RAAN or AoL. As such, there are two possibilities to deploy the satellites into

the desired planes. The first option is that all satellites can lower their altitudes and
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move in the ‘same direction’, achieving a negative change in RAAN, hereafter referred

to as a co-directional manoeuvre; this is illustrated in Figure 6.5 (a). In this case the

shortest deployment time will occur when the satellites in one plane immediately use a

minimum ∆V manoeuvre to reach the desired final altitude; all other planes can then

be phased relative to this plane to achieve the desired configuration. The other option

is that some satellites can lower their altitudes, giving a negative change in RAAN,

while others raise their altitudes, giving a positive change in RAAN, with the satellites

then moving in ‘opposite directions’; this will be referred to as a contra-directional

manoeuvre and is illustrated in Figure 6.5 (b). 

ΔΩn ΔΩm 

Ωdif 

(a)

 

ΔΩn ΔΩm 

Ωdif 

(b)

Figure 6.5: (a) A co-directional manoeuvre and (b) a contra-directional manoeuvre. Red dots
represent launch injection points, grey dots represent orbit planes being deployed.

In order to determine whether a contra-directional or co-directional manoeuvre will

be more efficient for a given scenario, the time required to deploy the two orbit planes

furthest from the launch injection point, plane n and plane m, can be considered. To

do this, the desired separation between the two orbit planes, Ωdif , is defined, and

a requirement is set that the satellites in both planes must reach their desired orbit

at the same time; this will provide the shortest possible deployment time for these

planes. In the case of either a contra-directional or co-directional manoeuvre, the

RAAN separation between planes n and m after the manoeuvre is given by
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Ωdif = ∆Ωn −∆Ωm. (6.4)

Having defined Ωdif , equation (6.4) can be solved to find the deployment time for planes

n and m as a function of the ∆V used for the manoeuvres.

Spacing the satellites through AoL within the plane can be similarly considered. As

described in Section 6.2.1, the assumption is made that the AoL phasing manoeuvres

occur after the satellites have achieved the desired orbit plane spacing. As such, all

satellites will start and finish this manoeuvre at the final desired orbit altitude. For

this case then, if a co-directional manoeuvre is to be used, one satellite per plane can

perform no manoeuvres and act as a reference satellite for the manoeuvring satellites.

6.2.3 Costing

Launch costs are a difficult attribute to define with confidence. They are often mission

specific and prices are rarely publicly available. However, the recent development of

smaller launch vehicles aimed at the small satellite market has made strides towards

not only cost reduction, but also accessibility and openness [108, 109]. One such vehicle

is the Electron, developed by Rocket Lab Ltd, which had its first successful launch on

May 25th 2017, and on January 21st 2018 successfully deployed CubeSats into orbit

for its customers Planet and Spire Global [110]. As of writing, Rocket Lab Ltd are

offering flights to 500 km sun-synchronous orbit (SSO) with a nominal payload of 150

kg, and are looking to expand their orbit offerings in the coming years [111]. They

are currently quoting a price of $240,000 per 3U CubeSat for rideshare launches, with

a fairing capable of holding up to 24 3U CubeSats [112]. Dedicated launches are also

available with prices upon request. This system will be used as a baseline for comparing

the different constellation deployment strategies.

The fire monitoring constellation has a 60 deg inclination and as such is not com-

patible with the current Electron launch offerings to SSO. For the traditional launch

method, in which a dedicated launch is required for each orbit plane, it is assumed that

a dedicated launch to the desired 60 deg inclination, 543 km altitude orbit could be

procured at the same cost as the currently available launch to SSO (i.e. $240,000 per

3U CubeSat). It is also assumed that the vehicle launching to this orbit would have
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the same maximum capacity of 24 3U CubeSats. For the single launch with in-orbit

deployment, it is assumed that the Electron will launch to a 500 km altitude orbit

inclined at 60 deg inclination. This is assumed to require the same cost of $240,000 per

3U CubeSat and have the same maximum capacity of 24 3U CubeSats.

6.2.4 Traditional Launch

Traditional launch methods require a dedicated launch for each orbit plane to be pop-

ulated. For the proposed constellation, this would require four dedicated launches to

543 km altitude, each carrying six 3U CubeSats, for a total mass of 18 kg per launch.

Assuming that a dedicated launch would be necessary due to the specific orbit require-

ments (i.e. rideshare would not be an option), the cost per launch is taken to be the

cost of launching the Electron launch vehicle at the full capacity of 24 3U CubeSats,

even though only six would actually be on board each vehicle. Based on the launch

cost of $240,000 per 3U CubeSat, this is estimated to cost $5.76 million per launch, for

a total launch cost of $23 million for all four planes. It is possible that the remaining

slots on-board the vehicle could be sold to other parties as rideshare opportunities,

reducing this cost, but, as this is challenging to predict, for the purposes of this work

the maximum cost of $5.76 million per launch is assumed.

Assuming one launch per quarter, in line with Rocket Lab’s current launch schedule,

the constellation could be fully deployed within a year. The amount of ∆V required for

atmospheric drag compensation for an eight year mission in the case of direct injection

to 543 km altitude is calculated as 51 m/s, noting that those satellites launched later

would require slightly less ∆V for this purpose. This value of 51 m/s will be taken as

the baseline, minimum atmospheric drag compensation ∆V , and all other cases will be

benchmarked against this value.

After injection the satellites will need to be distributed within the orbit plane. This

would be done in the same manner as in the case of a single launch with in-orbit

deployment and is discussed in Section 6.2.5.
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6.2.5 Single Launch and In-Orbit Deployment

A single Electron launch to 500 km altitude at 60 deg inclination is assumed to be

capable of carrying 24 3U CubeSats. Thus it would be possible to deploy the full

fire monitoring constellation at 500 km altitude on a single launch vehicle at a cost of

$5,760,000.

Manoeuvre type selection

Using the method described in Section 6.2.2, the time required to manoeuvre the satel-

lites into the two orbit planes furthest from the launch injection point is investigated

for both a co-directional manoeuvre and a contra-directional manoeuvre. With four

evenly spaced orbit planes, the desired separation between these furthest planes will be

270 deg. Knowing this, equation (6.4) can be solved to find the deployment time for

these two planes as a function of the ∆V used. The results of this are shown in Figure

6.6, where the ∆V shown is only that required for the altitude change manoeuvre; any

∆V required for atmospheric drag compensation is not included. It is assumed that

in the contra-directional case the satellites in the two orbit planes being manoeuvred

use the same amount of ∆V , and the ∆V shown in Figure 6.6 is the total required for

one satellite in each of the two orbit planes being considered to complete the manoeu-

vre. For the co-directional case, it is assumed that the satellites in one plane use the

minimum required ∆V to reach the final orbit altitude and the satellites in the other

orbit plane manoeuvre relative to this; again the ∆V shown in Figure 6.6 is the total

required for one satellite from each of the two orbit planes to complete the manoeuvre.

The minimum ∆V required for each satellite to reach the final desired altitude is found

to be 27.6 m/s; as Figure 6.6 shows the combined ∆V required for two satellites to

deploy, it is plotted for values ranging from twice this, 55.2 m/s, to 200 m/s.

The results from Figure 6.6 show that for a given total ∆Valt a co-directional ma-

noeuvre will always be faster than a contra-directional manoeuvre for the ranges consid-

ered. This is shown more clearly in Figure 6.7 (a), which shows a smaller portion of the

same graph. Of note is that a turning point is found at approximately 1020 m/s ∆Valt,

as shown in Figure 6.7 (b). For values of ∆Valt greater than this, a contra-directional

manoeuvre will be faster; however, these values are unrealistic for the case considered.
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It is of note that there may be operational reasons, such as a desire to balance propel-

lant usage across the constellation, that would favour the use of a contra-directional

manoeuvre; however for the work herein only the deployment time is considered.
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Figure 6.6: Manoeuvre time and corresponding ∆Valt to reach furthest two orbit planes for both
co-directional and contra-directional manoeuvres for deployment from a dedicated Electron launch
to a 500 km altitude, 60 deg inclined orbit. The ∆Valt shown includes the ∆V required for one
satellite from each of the two orbit planes to be deployed.
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Figure 6.7: Manoeuvre time and ∆Valt to reach furthest two orbit planes for co- and contra-
directional manoeuvres after deployment from a dedicated Electron launch. (a) shows a zoomed
portion of Figure 6.6, and (b) shows a turning point in the data at a high ∆V range.
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Orbit plane placement

Having established that a co-directional manoeuvre will be more efficient than a contra-

directional manoeuvre for the ∆V range of interest, the time and ∆V required to place

all four orbit planes can be analysed. It is assumed that the satellites in plane 4 will

immediately manoeuvre to reach the desired final orbit altitude using the minimum

possible ∆V , and all other planes will be positioned relative to this, with plane 3 to be

separated from plane 4 by -90 deg, plane 2 by -180 deg, and plane 1 by -270 deg.

The time and ∆V required to deploy one satellite in each of the four orbit planes is

shown in Figure 6.8, where the time and ∆V required by the satellite in plane 4 is fixed

and indicated by the red dot. In order to directly compare with a traditional launch,

the deployment ∆V shown in Figure 6.8 is calculated as

∆Vdeploy = ∆Vtotal + ∆Vatm −∆Vbase (6.5)

where ∆Vtotal is the ∆V required for the deployment manoeuvre, ∆Vatm is that required

for atmospheric drag compensation for the eight-year mission and ∆Vbase is the baseline

value of 51 m/s that was found in Section 6.2.4 to be required for atmospheric drag

compensation throughout the eight-year mission if traditional launch methods were

used. This is plotted for ∆V values up to a maximum of 200 m/s per satellite.

The dashed horizontal line on Figure 6.8 indicates the time that would be required

to deploy plane 1, if the satellites in this plane were to use the maximum available

∆V of 200 m/s each; this is the minimum time in which the full constellation can be

deployed for this maximum ∆V . If the goal is to minimise time to total constellation

deployment, then the ∆V used by the satellites in the other planes can be reduced

while still ensuring that they reach their desired orbit at the same time as the satellites

in plane 1. This is indicated by the intersection of the dashed line with the orange curve

in Figure 6.8 for the satellites in plane 2. There is no intersection of the dashed line and

the green curve as, even using the minimum possible ∆V , the satellites in plane 3 will

reach their final orbit more quickly than the satellites in plane 1. This solution gives

a minimum constellation deployment time while also minimising the total ∆V used

across the constellation. The corresponding times and ∆V values for this minimum



CHAPTER 6 CONSTELLATION DEPLOYMENT 112

D
ep
lo
ym
en
tT
im
e
,
da
ys

50 100 150 200
0

500

1000

1500

2000

2500

Plane 1

Plane 2

Plane 3

Plane 4

Deployment ΔV, m/s

Figure 6.8: Manoeuvre time and ∆V to deploy all four orbit planes from a dedicated Electron
launch to a 500 km altitude, 60 deg inclined orbit. Dashed line indicates minimum time for full
constellation deployment for a maximum ∆V of 200 m/s. The ∆Vdeploy shown is that required to
deploy a single satellite in each orbit plane.

time / minimum ∆V constellation deployment are given in Table 6.3.

Also shown in Table 6.3 are the deployment times that would be required for each

orbit plane if all satellites used the minimum possible ∆V to reach the final orbit

and were to remain at the injection orbit altitude, compensating for atmospheric drag

effects, until the desired orbit spacing was achieved. Note that in this case the de-

ployment ∆V required includes both the 27.6 m/s required to raise the altitude, as

well as the additional ∆V required for atmospheric drag compensation at this lower

coasting altitude, beyond the baseline 51 m/s that would be required for satellites in

the final, higher altitude, orbit for the same duration. Also given is the deployment

time for each plane if all satellites were to minimise their deployment time by using the

maximum ∆V of 200 m/s; the exception to this is the satellites in plane 4 that use the

minimum possible ∆V to immediately manoeuvre to the desired orbit altitude. The

lowest altitude reached for a manoeuvre requiring 200 m/s ∆V is 398 km.
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Table 6.3: Manoeuvre time and ∆V for constellation deployment from a dedicated Electron
launch for a range of scenarios. The ∆V given is that required to deploy a single satellite in each
orbit plane.

Min. time/∆V
deployment

Min. ∆V
deployment

Min. time
deployment

Plane 1
Time, days 1266 2800 1266
Deployment ∆V , m/s 200 86 200

Plane 2
Time, days 1266 1868 724
Deployment ∆V , m/s 103 67 200

Plane 3
Time, days 935 935 304
Deployment ∆V , m/s 47 47 200

Plane 4
Time, days 3 3 3
Deployment ∆V , m/s 28 28 28

Satellite placement within the orbit plane

Distributing the satellites through AoL within the orbit plane is assessed in a similar

manner to the orbit plane placement. With six satellites per plane, the desired sep-

aration between the furthest two satellites will be 300 deg. The comparison between

a co-directional and contra-directional manoeuvre to place these furthest satellites is

shown in Figure 6.9 where it is assumed for the contra-directional manoeuvre that both

satellites use the same ∆V . In the co-directional case it assumed that one satellite re-

mains in place while all other satellites move relative to it. As before, atmospheric

drag compensation ∆V is neglected for this comparison. For the range of ∆Valt values

considered it can be seen that a contra-directional manoeuvre will always be faster for

the same total ∆V . It is also clear that for both manoeuvre types there is a ∆V value

that will give a minimum time manoeuvre. For the contra-directional manoeuvre this

minimum time is found to be 5.26 days and requires 106 m/s ∆V , i.e. 53 m/s for each

of the two manoeuvring satellites.

It is of note that the region around the minimum time solution is very flat, and so

an operator may accept an increased manoeuvre time in order to significantly reduce

the amount of ∆V required. For example, reducing the amount of ∆V used to 50 m/s

(i.e. 25 m/s per satellite) requires just 6.81 days deployment time, which is just 1.5

days more than the minimum time solution. This is especially true as, compared to

the time to phase the satellites through RAAN, the manoeuvre times required to space

the satellites through AoL are relatively short. In particular, for those planes that are
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Figure 6.9: Manoeuvre time and corresponding ∆Valt to reach furthest two satellite positions
within an orbit plane for both co-directional and contra-directional manoeuvres.

deployed first (e.g. planes 3, and 4 from Figure 6.8 and Table 6.3) it may be possible

to use a very small amount of ∆V and still achieve the desired AoL spacing before

the satellites in plane 1 reach their final orbit. For example, using just 1 m/s ∆V ,

the time to space the satellites through AoL is 279 days, which would still allow the

satellites in plane 3 and 4 to be positioned before the satellites in planes 1 and 2 have

reached their final orbit plane. Due to the steepness of the solution at the lower ∆V

range, increasing the ∆V used to just 5 m/s significantly reduces the deployment time

to 56 days. The full view of the solution space is extremely valuable in this case as

it allows the operator to thoroughly investigate the deployment options available. As

this distribution in AoL occurs in the final orbit, the results will be the same for all

deployment strategies considered.

Note that for the contra-directional manoeuvre the position of both the furthest

satellites to be placed will be dependent on the ∆V selected for their manoeuvres; this

is in contrast to the co-directional manoeuvre in which the position of one satellite is

determined in advance. Once the desired manoeuvre ∆V for the two furthest satellites
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has been selected, the other satellites can be placed relative to these positions. As this

selection will be dependent on the mission priorities, and as the solution will be same

for all deployment strategies, the ∆V required to phase the satellites through AoL is

not included in the total deployment ∆V presented in the results in Section 6.2.7.

6.2.6 Deployment from the International Space Station

Launching from the International Space Station is an alternative option opted for by

many small satellite operators. Launches from the ISS provide an orbit with an apogee

of 380 – 420 km and inclination of 51.6 deg, with just 100 – 250 days of operation

expected before the satellite will deorbit [109]. However, constellations of satellites with

propulsive capability could use this as an initial parking orbit to obtain the desired orbit

plane spacing before transitioning to the final mission orbit. It is of note that as only

in-plane manoeuvres are to be used for deployment, the final constellation achieved

from this launch would have an inclination of 51.6 deg, rather than the desired 60 deg.

The cost of launching a CubeSat to the ISS was not publicly available at the time

of writing. However it is assumed to be similar or lower cost per 3U CubeSat as the

cost of an Electron launch as discussed in Section 6.2.3. As such, a cost of $240,000

per 3U CubeSat is assumed for this case.

Manoeuvre type selection

A comparison of the co-directional and contra-directional manoeuvres for orbit plane

separation after deployment from the ISS is shown in Figure 6.10. The ∆V shown on

the graph is the total for one satellite from each of the two orbit planes being considered

to complete the manoeuvre, and it is assumed that in the contra-directional case the

manoeuvring satellites in both planes use equal amounts of ∆V . The ∆V required for

atmospheric drag compensation is not included in this comparison. The minimum ∆V

required for each satellite to reach the final desired altitude from the injection orbit,

assumed to be a 402 km altitude circular orbit, is found to be 82.5 m/s, which is much

higher than that required for the dedicated Electron launch. As with the dedicated

launch, for the ranges considered, a co-directional manoeuvre will always be faster

than a contra-directional manoeuvre for the same total ∆V .
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Figure 6.10: Manoeuvre time and corresponding ∆Valt to reach furthest two orbit planes for
both co-directional and contra-directional manoeuvres after deployment from the ISS. The ∆Valt
shown includes the ∆V required for one satellite from each of the two orbit planes to be deployed.

Orbit plane placement

The time and ∆V required to deploy one satellite in each orbit plane using co-directional

manoeuvres from an ISS launch is shown in Figure 6.11; this is the additional deploy-

ment ∆V required, ∆Vdeploy, as given by equation (6.5). Solutions for ∆V values up

to 300 m/s are shown, as no solutions exist for plane 1 using less than 200 m/s. The

minimum time / minimum ∆V solution for complete constellation deployment is given

in Table 6.4, assuming that the satellites in plane 1 use the minimum possible ∆V

of 219 m/s to deploy. Also given are the results for the minimum ∆V deployment

manoeuvres, and minimum time manoeuvres in which all satellites use 200 m/s ∆V ,

with the exception of plane 1, which is assumed to use the minimum possible in all

cases. The lowest altitude that would be reached by any satellite using the maximum

allowable ∆V is 365 km.
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Figure 6.11: Manoeuvre time and ∆V to deploy all four orbit planes from the ISS. The ∆Vdeploy
shown is that required to deploy a single satellite in each orbit plane.

Table 6.4: Manoeuvre time and ∆V for constellation deployment from the ISS for a range of
scenarios. The ∆V shown is that required to deploy a single satellite in each orbit plane.

Min. time/∆V
deployment

Min. ∆V
deployment

Min. time
deployment

Plane 1
Time, days 746 746 746
Deployment ∆V , m/s 219 219 219

Plane 2
Time, days 500 500 465
Deployment ∆V , m/s 174 174 200

Plane 3
Time, days 254 254 202
Deployment ∆V , m/s 128 128 200

Plane 4
Time, days 8 8 8
Deployment ∆V , m/s 83 83 83

6.2.7 Results

A comparison of all three methods for the deployment of the 24 satellite fire monitoring

constellation is given in Table 6.5. Also given are the results for a deployment scenario

using two Electron launches. All results are for the strategy resulting in minimum time

to full constellation deployment with minimum ∆V ; this corresponds to the first column

in Tables 6.3 and 6.4. Note that these results show the deployment ∆V , ∆Vdeploy,

and as such exclude the baseline 51 m/s that would be required for atmospheric drag

compensation over the eight-year mission in the case of direct injection into the desired

final orbit. It also does not include any ∆V required for in-plane phasing as the
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amount used will be at the discretion of the operator. The results in Table 6.5 show

that deployment from a single launch, whether using the Electron launch vehicle or

from the ISS, can offer a theoretical reduction in launch costs of 75% when compared

with traditional launch methods. However, this comes at the cost of an increased

deployment time of 2–3.5 times that of a traditional launch.

Table 6.5: Summary of deployment times, costs and required ∆V for each deployment method.

Deployment Method Time to de-
ploy, years

Deployment ∆V for
all satellites, m/s

Cost, $

Traditional Launch 1 0 23,040,000
Single Launch: Electron 3.5 2268 5,760,000
Single Launch: ISS 2 3624 5,760,000
Two Launches: Electron 1.1 2220 11,520,000

Comparing a launch aboard Rocket Lab’s Electron launch vehicle with a launch from

the ISS, the launch from the ISS offers the clear advantage of a shorter deployment time,

requiring just two years to fully deploy. However, deployment from the ISS requires a

∆V of more than 200 m/s for the satellites in plane 1, and requires more than 1300 m/s

extra deployment ∆V across the constellation when compared with a single Electron

launch. The Electron launch requires 3.5 years to fully deploy, but requires 40% less

∆V across the constellation than the ISS launch. In addition, deployment from the ISS

would result in a constellation in which the orbit planes are inclined at 51.6 deg, rather

than the desired 60 deg. This would restrict the field of coverage of the constellation

to between ± 51.6 deg latitude and would clearly impact the mission performance.

An alternative launch strategy to reduce the constellation deployment time could

be to use two Electron launches, each carrying 12 satellites to be deployed into two

orbit planes. As shown in Table 6.3, the time required to deploy two planes separated

by 90 deg (i.e. plane 3 and plane 4) is just 304 days if a ∆V of 200 m/s is used by the

satellites in plane 3; this corresponds to the far-right column of Table 6.3. Assuming

that two sequential Electron launches could be procured three months apart, the total

time to constellation deployment could be reduced to just 395 days, or 1.1 years if the

satellites in the second plane of the second launch were to use the maximum ∆V of

200 m/s to deploy. The satellites in the second plane of the first launch would require

142 m/s ∆V to reach their final orbit in 394 days, completing their manoeuvres at the
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same time as the satellites on the second launch. This gives a total deployment ∆V

of just 2220 m/s. However, this would double the launch costs to $11,520,000. These

results are summarised in Table 6.5.

Having identified the possible deployment options, it will be up to the mission de-

signer to trade-off all competing parameters and select the launch that provides the

best solution for their specific mission, noting that a lower injection altitude, and lower

inclination, corresponds to a shorter deployment time. However, satellites at lower

altitudes will also be required to use a greater proportion of their propellant for at-

mospheric drag compensation during coasting phases. For this reason, comparison of

different launch injection altitudes and inclinations is not straightforward, and a full

exploration of the solution space would be required for an informed trade-off to be pos-

sible. The speed and flexibility of the general perturbation method would enable such

a trade to be rapidly performed across a wide range of injection altitudes and final or-

bits, providing an unprecedented insight into the problem of constellation deployment.

The analytical nature of the method also allows for the interplay between the satellite

deployment manoeuvres to be examined and the impact that the manoeuvres used for

one orbit plane can have on the other orbit planes assessed. Such techniques will be-

come increasingly valuable as the size of the constellations being launched continues to

increase. It is notable that the general perturbation method in its current form, while

capable of highlighting trends and supporting trade-offs, is restricted to considering

circular to circular, coplanar manoeuvres and, as such, the results produced may be

sub-optimal. However, the insights provided could be used by an experienced operator

or designer to better inform their decisions and rapidly explore alternative deployment

strategies.



Chapter 7

Conclusions and Future Work

The main thesis of this work proposed in the introduction was:

“Manoeuvrable satellites can provide increased performance when compared to tradi-

tional static satellite missions, however there is an inherent, quantifiable trade-off be-

tween the achievable performance, the manoeuvre time and the propellant required, that

can be presented as a full solution space, providing insight to this complex problem.”

In order to investigate this theory, a fully-analytical solution to a restricted low-thrust

Lambert rendezvous problem was derived from general perturbation methods, to pro-

vide a fast, flexible method of analysing satellite manoeuvres across a range of scenarios.

This restricted problem considers circular to circular, coplanar transfers using tangen-

tial low-thrust. The conclusions drawn from the subsequent investigations using this

method are presented in the following section, followed by a short discussion of possible

further extensions of this work.

7.1 Conclusions

A fully-analytical solution developed from general perturbation methods can be used to

solve the restricted, circular to circular, coplanar, low-thrust Lambert rendezvous prob-

lem and gain an insight into the capabilities of a manoeuvrable satellite, or satellites,

that would be difficult to achieve using numerical methods alone. This solution can

be applied to a range of scenarios, such as identifying suitable manoeuvres to achieve

120
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a desired orbit position relative to a non-manoeuvring reference satellite, obtaining a

desired spacing between multiple manoeuvring satellites, and can be extended to in-

clude the satellite’s ground track to directly allow overflight targeting of a location on

the surface of the Earth. The full solution space for these problems can be generated

almost instantaneously and used to gain insight into the complex and non-intuitive

trade-space. The speed of the solution means it is scalable across numerous satellites,

allowing multifaceted scenarios with thousands of possible manoeuvres to be analysed

extremely quickly.

If the goal of a mission is to achieve a desired separation in either right ascension

of the ascending node or argument of latitude between a manoeuvring satellite and a

non-manoeuvring reference, then a 3-phase manoeuvre in which the satellite altitude

is lowered in phase 1 using a constant acceleration, coasts at a constant altitude in

phase 2, and then raises its altitude in phase 3 using a constant acceleration, is more

efficient than a similar manoeuvre in which the satellite altitude is raised in phase 1

and lowered in phase 3. Initial orbit parameters have an impact on the efficiency with

which manoeuvres can be carried out; satellites at low inclinations and low altitudes

can be manoeuvred more efficiently to achieve a desired change in right ascension

of the ascending node and argument of latitude. As such, orbit and constellation

design for responsive missions should be done with future manoeuvrability taken into

consideration from the outset. Increasing the change in velocity used for a manoeuvre

will reduce the time required to achieve a desired change in right ascension of the

ascending node or argument of latitude, but this effect gives diminishing returns as the

change in velocity is increased. If flyover of a given target is required, increasing the

change in velocity used for the manoeuvre will not necessarily reduce the time required

to achieve flyover.

The assumptions and simplifications necessary to obtain a fully-analytical solution –

such as the assumption that atmospheric drag compensation manoeuvres are performed

throughout all coasting phases but not throughout the altitude changing manoeuvres,

and the omission of higher order central body perturbations – do have an impact

on the accuracy of the solution, but comparison with a numerical simulation including

atmospheric drag and an 18th order tesseral model shows that the general perturbation



CHAPTER 7 CONCLUSIONS AND FUTURE WORK 122

method is sufficiently accurate to plan overflight targeting manoeuvres up to at least

two weeks in the future. The omission of atmospheric drag effects during the altitude

changing phases of the manoeuvre is the largest contributor to inaccuracies in the

predicted time of flyover when performing an overflight targeting manoeuvre. However,

it is the periodic oscillation caused by the first zonal harmonic of the central body that is

the largest contributor to the error in the predicted position of the sub-satellite point.

The exclusion of this periodic oscillation from the solution is due to the averaging

of the central body disturbance function over the orbit period; this simplification is

fundamental to all general perturbation methods and thus to increase the accuracy of

the predicted sub-satellite point location would require that a semi-analytical, or fully

numerical, method be used that could incorporate these effects.

How to best select the manoeuvre, or manoeuvres, to perform from the full range

of possible solutions for any scenario will depend on the specific mission requirements.

This selection may not be straightforward as there are multiple trade-off criteria to

be considered. A different set of mission priorities will lead the operator to select a

different manoeuvre, or set of manoeuvres, as the ideal solution. Detailed investigation

of these criteria is outside the scope of this work, but the speed and ease with which the

proposed method of manoeuvre design can be solved means that the effect of different

priorities, and the introduction of additional trade-off criteria, can be rapidly assessed

and compared.

Responsive missions, using manoeuvres defined by the general perturbation method

and carried out by satellites equipped with existing propulsion technology, can pro-

vide a significant reduction in flyover time of a target when compared with a non-

manoeuvrable spacecraft. The time reduction possible will be highly dependent on

the case being studied but in any case a minimum time solution will exist. There is

an inherent trade-off between the time to flyover, the change in velocity required for

the manoeuvre, and the look angle to the target at closest approach. The relationship

between these competing parameters forms a discontinuous solution space, making it

an ideal problem for the general perturbation method as numerical optimisers may

struggle to explore such a solution set.

A responsive constellation of small satellites can provide significant improvements
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in the volume and frequency of data collection when compared with a static constel-

lation. The improvement in coverage available is dependent on the target latitude, as

a static constellation will naturally provide better coverage to latitudes at the upper

and lower ranges of its region of coverage; in contrast, a responsive constellation in

which the satellites can manoeuvre into repeating ground track orbits over the region

of interest can provide relatively consistent coverage, and a consistent revisit time, to

all regions targeted, irrespective of their latitude. This makes such a system partic-

ularly attractive for scenarios in which targets may lie across a range of latitudes, or

for a mission in which the targets are primarily close to the equator, but there is an

additional requirement to have coverage available at higher and lower latitudes, for

example to provide ground station access. Analysis of such a scenario is challenging

as the large number of satellites available to manoeuvre results in thousands of possi-

ble outcomes for each reconfiguration, all of which must be analysed and compared to

identify the best solution to meet the mission goals. The rapid solution provided by

the general perturbation method makes such a detailed analysis possible, allowing for

an in-depth consideration of the solution space and an informed trade-off between the

many competing options.

The proposed solution to the restricted low-thrust Lambert problem can be used

to define the manoeuvres required to deploy a satellite constellation through right as-

cension of the ascending node and argument of latitude from a single launch injection

point. It is possible to identify, for a given scenario, whether a co-directional manoeu-

vre, in which all satellites phase their right ascension of the ascending node or argument

of latitude in the same direction (either positive or negative), or a contra-directional

manoeuvre, in which the satellites phase their parameters in opposite directions (one

positive and one negative), will be more efficient. A clear turning point is identifiable

as a function of the change in velocity and time required for the manoeuvre, beyond

which one technique will be more efficient than the other. A minimum constellation

deployment time exists for a given maximum change in velocity, though the time to

deploy some satellites can be shorter, and that minimum time is defined by the satel-

lites manoeuvring to the furthest orbit plane. As such, the most efficient deployment

strategy may be one in which the satellites in each plane use a different amount of
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propellant. This deployment technique can reduce launch costs significantly, and al-

though the deployment manoeuvre time can be lengthy, the time to total constellation

deployment can be comparable with traditional launch methods due to the possible

wait time between subsequent launches.

The presented general perturbation method can be used to quickly analyse a range

of complex scenarios requiring responsive spacecraft manoeuvring. It can be scaled to

consider large constellations whilst maintaining its solution speed and can produce a

full overview of the solution space in question, avoiding the need to limit the search

space prematurely, or rely on optimisers that may overlook valuable solutions. The

analytical nature of the method also allows for unique insights to be obtained without

requiring the solution to be numerically evaluated at multiple points. Based on these

observations the core thesis of this work can be deemed to be confirmed.

7.2 Future Work

Future work to improve the accuracy of the developed method, whilst maintaining its

speed, would be extremely valuable. Atmospheric drag has been shown to be a key

source of inaccuracy. The inclusion of this perturbation in the developed general per-

turbation method would not only improve accuracy, but could also remove the need

to assume that atmospheric drag compensation is performed throughout the coast-

ing phases. For some manoeuvres, this may in fact be advantageous as the effects

of atmospheric drag could be used to naturally lower the satellite altitude, reducing

the amount of propellent needed to manoeuvre. However, including this perturbation

while still maintaining a fully-analytical solution may not be possible; instead a semi-

analytical method may be required to include perturbations due to atmospheric drag

and improve the accuracy of the solution. Inclusion of other disturbing forces such

as higher order central body effects, solar radiation pressure and third body effects

would also improve the accuracy of the solution, but their impact is predicted to be

much less than from the inclusion of atmospheric drag. Additional improvements in

accuracy could be achieved by developing the method to calculate the position of the

sub-satellite point considering an oblate Earth, rather than a spherical Earth. Exten-

sion of the work to elliptical orbits would also be a valuable development. This would
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require a complete reworking of the governing equations of motion and it is likely to be

challenging to obtain a fully-analytical solution. To enable these advances, the general

perturbation method could be used as an initial estimate, with a semi-analytical or

fully numerical analysis used to fine-tune the results and provide an optimal control

profile for the manoeuvre.

Further constraints could be added to the manoeuvre to bound arrival time and

ensure specific lighting conditions at flyover, or to achieve desired look angles during

target passes. The relationship between the time of sequential flyovers by satellites

in a constellation could also be constrained, to provide simultaneous coverage of a

target, or provide repeated passes in quick succession. Manoeuvres could be used to

target not only regions of interest, but also ground stations, to expedite data downlink

and reduce the overall time from target identification to data delivery. This would

require consideration of the overflight targeting of both the region of interest and the

ground station in tandem, as using a less favourable manoeuvre to flyover the target

may make it easier to subsequently target the ground station and complete the data

delivery. In a similar way, it may be of interest to consider the long-term impact of

the manoeuvres in the trade-space. For example, the manoeuvre that provides the

fastest, or most propellant efficient, solution may only provide one flyover followed by

a long gap; another manoeuvre that is less favourable for the initial flyover however,

could provide repeated flyovers in a short period, making it more favourable in the

long-term, if continued coverage is desired.

The breadth of scenarios considered could also be extended. Staged deployment

of constellations, or reconfiguration of constellations following the addition or loss of

satellites, has not been addressed in this body of work. It was highlighted in the liter-

ature review that this scenario has been looked at in some detail in the past, primarily

using numerical optimisers; however, the use of the general perturbation method could

provide further insight into this challenge, and may provide alternative solutions that

have previously not been considered. Another area that could be of interest for future

studies is the application of the technique to non-standard constellation architectures,

such as asymmetric constellations, or pseudo-random constellations that can arise as a

result of using rideshare launches. Active debris removal, or spacecraft servicing, are
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other scenarios to which the method could be applied, to determine optimal trajectories

to visit the greatest number of targets, for example. The method could also be applied

to obtain close-approach passes for satellites with inter-satellite communication capa-

bilities. In addition, the method could theoretically be extended to applications beyond

Earth orbit to analyse inter-planetary trajectories, or to design rendezvous missions to

multiple bodies, such as asteroids or comets.

One factor that emerged during this body of work, but was not explored, is the effect

of performing multiple sequential manoeuvres. In this work, each manoeuvre, or set of

manoeuvres, was considered individually and the ‘best’ manoeuvres chosen from the

available options by considering their individual properties. However, each manoeuvre

choice will impact the next phase of an extended scenario, and thus impact the future

manoeuvre choices that are available. This creates an expanding decision tree, with

potentially thousands of manoeuvre choices available at each branch. For multiple

sequential manoeuvres, this decision tree becomes extremely large and considering all

possible scenario outcomes becomes challenging. Due to the extremely fast solution

speed of the general perturbation method, it may be possible to explore large numbers

of solutions extremely quickly and offer some insight into the expansive decision tree.

Coupling the method with an optimiser could allow for even larger and more complex

scenarios to be quickly explored and a range of possible solutions found.



Appendix A

Full Analytical Equations for

Change in Right Ascension of the

Ascending Node and Argument

of Latitude as Integrated Over

Mean Semi-Major Axis
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where for the case where the satellite altitude is lowered in phase 1,

β = a0

(√
µ

a3
+ ∆Valt

)(
2

√
µ

a0
+

√
µ

a3
+ ∆Valt

)
+ µ

while for the case in which the satellite altitude is raised in phase 1

β = a0

(√
µ

a3
−∆Valt

)(
2

√
µ

a0
+

√
µ

a3
−∆Valt

)
+ µ.
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Argument of Latitude Equations
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where for the case where the satellite altitude is lowered in phase 1,
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while for the case in which the satellite altitude is raised in phase 1
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β = a0

(√
µ

a3
−∆Valt

)(
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√
µ
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√
µ

a3
−∆Valt

)
+ µ.



Appendix B

Full Analytical Equations for

Change in Right Ascension of the

Ascending Node and Argument

of Latitude as Integrated Over

Osculating Semi-Major Axis

137



A
P
P
E
N
D
IX

B

F
U

L
L

A
N

A
L
Y

T
IC

A
L

E
Q

U
A

T
IO

N
S

F
O

R
C

H
A

N
G

E
IN

R
IG

H
T

A
S
C

E
N

S
IO

N
O

F
T

H
E

A
S
C

E
N

D
IN

G
N

O
D

E
A

N
D

A
R

G
U

M
E

N
T

O
F

L
A

T
IT

U
D

E
A

S
IN

T
E

G
R

A
T

E
D

O
V

E
R

O
S
C

U
L

A
T

IN
G

S
E

M
I-M

A
J
O

R
A

X
IS

138

Right Ascension of the Ascending Node Equations
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2
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2
(

4µa0
β − 3γβ

8µa0
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√
µ
[
−640a2
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(
µa0
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5/2 + 96

(
−2 + 3 sin2(i)
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β
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5/2J2R

2
e + a
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(
320µ2a20
β2 + 3
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2− 3 sin2(i)
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J2R

2
e
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µa0
β
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√
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−320µ2a20a
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3
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(
−2 + 3 sin2(i)
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2
e + 32
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µa0
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2− 3 sin2(i)

)
J2R
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(
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+tt

}√
µ(

4µa0
β − 3γβ

8µa0

)
3

1 +
3
(

1− 3 sin2(i)
2

)
J2R

2
e

2
(

4µa0
β − 3γβ

8µa0

)
2



∆Ω3 =− 1

7560
√

2ApropJ2R2
e

cot(i) csc7(i)

{
1(

2 csc2(i)a2
3 − 3J2R2

e

)
3

csc6(i)

√
µ

a3
3

a3

√
µa3

3(
−3γ + 2a2

3

)
3

[432γ(129− 236 cos(2i)

+ 171 cos(4i))a6
3 − 64(129− 236 cos(2i) + 171 cos(4i))a8

3 − 2268(57− 108 cos(2i) + 83 cos(4i))a4
3γ

2

+2835(43− 84 cos(2i) + 73 cos(4i))a2
3γ

3 + 102060(1 + 3 cos(2i)) sin2(i)γ4
]

+
1

β
(

3γ − 32µ2a20
β2

)
3
4µ

√
β3

µ2a3
0

a0

√√√√ µ4 csc6(i)a3
0

β3
(

32µ2 csc2(i)a20
β2 − 3J2R2

e

)
3

[
−4194304µ8(129− 236 cos(2i) + 171 cos(4i))a8

0

β8

− 580608µ4(57− 108 cos(2i) + 83 cos(4i))a4
0γ

2

β4
+

45360µ2(43− 84 cos(2i) + 73 cos(4i))a2
0γ

3

β2

+102060(1 + 3 cos(2i)) sin2(i)γ4 +
1769472γµ6(129− 236 cos(2i) + 171 cos(4i))a6

0

β6

]}

Ωtotal =
1

7560
√

2ApropJ2R2
e

cot(i) csc7(i)

{
1(

3γ − 2a2
0

)
3

√
µ

a3
0

a0

(
102060γ4(1 + 3 cos(2i)) sin2(i)

+ 2835γ3(43− 84 cos(2i) + 73 cos(4i))a2
0 − 2268γ2(57− 108 cos(2i) + 83 cos(4i))a4

0 + 432γ(129− 236 cos(2i)

+171 cos(4i))a6
0 − 64(129− 236 cos(2i) + 171 cos(4i))a8

0

)√ µ csc6(i)a3
0(

2 csc2(i)a2
0 − 3J2R2

e

)
3
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+
1

β
(

32µ2 csc2(i)a20
β2 − 3J2R2

e

)
3
4µ csc6(i)

√
β3

µ2a3
0

a0

√√√√ µ4a3
0

β3
(
−3γ +

32µ2a20
β2

)
3

[
102060γ4(1 + 3 cos(2i)) sin2(i)

+
45360γ3µ2(43− 84 cos(2i) + 73 cos(4i))a2

0

β2
− 580608γ2µ4(57− 108 cos(2i) + 83 cos(4i))a4

0

β4

+
1769472γµ6(129− 236 cos(2i) + 171 cos(4i))a6

0

β6
− 4194304µ8(129− 236 cos(2i) + 171 cos(4i))a8

0

β8

]}

− 1

7560
√

2ApropJ2R2
e

cot(i) csc7(i)

 1

β
(

3γ − 32µ2a20
β2

)
3
4µ

√
β3

µ2a3
0

a0

[
102060γ4(1 + 3 cos(2i)) sin2(i)

+
45360γ3µ2(43− 84 cos(2i) + 73 cos(4i))a2

0

β2
− 580608γ2µ4(57− 108 cos(2i) + 83 cos(4i))a4

0

β4

+
1769472γµ6(129− 236 cos(2i) + 171 cos(4i))a6

0

β6

−4194304µ8(129− 236 cos(2i) + 171 cos(4i))a8
0

β8

]√√√√ µ4 csc6(i)a3
0

β3
(

32µ2 csc2(i)a20
β2 − 3J2R2

e

)
3

+
1(

2 csc2(i)a2
3 − 3J2R2

e

)
3

csc6(i)

√
µ

a3
3

a3

√
µa3

3(
−3γ + 2a2

3

)
3

[
102060γ4(1 + 3 cos(2i)) sin2(i) + 2835γ3(43− 84 cos(2i)

+ 73 cos(4i))a2
3 − 2268γ2(57− 108 cos(2i) + 83 cos(4i))a4

3 + 432γ(129− 236 cos(2i) + 171 cos(4i))a6
3 − 64(129

−236 cos(2i) + 171 cos(4i))a8
3

]}
− 1

2
(
− 3βγ

8µa0
+ 4µa0

β

)
2
3 cos(i)

√
µ(

− 3βγ
8µa0

+ 4µa0
β

)
3
J2R

2
e

{
1+

3
[
1− 3 sin2(i)

2

]
J2R

2
e

2
[
− 3βγ

8µa0
+ 4µa0

β

]
2



√
µ
[
−640a2

0

(
µa0
β

)
5/2 + 96

(
−2 + 3 sin2(i)

) (µa0
β

)
5/2J2R

2
e + a

5/2
0

(
320µ2a20
β2 + 3

(
2− 3 sin2(i)

)
J2R

2
e

)]
640Apropa

5/2
0

(
µa0
β

)
5/2
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−

√
µ

[
−320µ2a20a

5/2
3

β2 + 3
(
−2 + 3 sin2(i)

)
a

5/2
3 J2R

2
e + 32

(
µa0
β

)
5/2
(
20a2

3 + 3
(
2− 3 sin2(i)

)
J2R

2
e

)]
640Aprop

(
µa0
β

)
5/2a

5/2
3

+ tt

+ Ω0

Ωref = −3 cos(i)

√
µ(

− 3γ
2aref

+ aref

)
3
J2R

2
e

1 +
3
(

1− 3 sin2(i)
2

)
J2R

2
e

2
(
− 3γ

2aref
+ aref

)
2

 tt

2
(
− 3γ

2aref
+ aref

)
2

where

γ = J2R
2
e sin2(i)

and, for the case where the satellite altitude is lowered in phase 1,

β = a0

(√
µ

a3
+ ∆Valt

)(
2

√
µ

a0
+

√
µ

a3
+ ∆Valt

)
+ µ

while for the case in which the satellite altitude is raised in phase 1

β = a0

(√
µ

a3
−∆Valt

)(
2

√
µ

a0
+

√
µ

a3
−∆Valt

)
+ µ.
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Argument of Latitude Equations

∆u1 =− 1

918540
√

2Aprop
√

µ
a30
a7

0J
6
2R

12
e

csc12(i)

[
µa3

0(
−3γ + 2a2

0

)
3

]
3
2
{

18600435(1 + 3 cos(2i)) sin18(i)J10
2 R20

e

+ 229635 sin12(i)a2
0J

6
2R

12
e

[
−216γ3 + 3(1 + 3 cos(2i))J2R

2
e

(
−180γ2 + 3γκ

)]
− 2835 sin6(i)a4

0J
3
2R

6
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 432κγ3 − 25920γ4

)
− 216γ3

(
144γ2 + 3γκ

)]
+ 2268 sin4(i)a6

0J
2
2R

4
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 459κγ3 − 25920γ4

)
− 6γ

(
5184γ4 + 108γ3κ+ 9γ2ζ

)]
+ 64a10

0

[
3(1 + 3 cos(2i))J2R

2
e

(
18ζγ2 + 918κγ3 − 51435γ4

)
− 6γ

(
13203γ4 + 351γ3κ+ 18γ2ζ

)]
−432γa8

0

[
−6γ

(
10368γ4 + 351γ3κ+ 18γ2ζ

)
+ 3(1 + 3 cos(2i))J2R

2
e

(
−51435γ4 + 918γ3κ+ 18γ2ζ

)]}
)

+
1

3674160
√

2Apropµ7
√

β3

µ2a30
a7

0J
6
2R

12
e

β7 csc12(i)

 µ4a3
0

β3
(
−3γ +

32µ2a20
β2

)
3

 3
2
{

18600435(1 + 3 cos(2i)) sin18(i)J10
2 R20

e

+
3674160µ2 sin12(i)a2

0J
6
2R

12
e

[
−216γ3 + 3(1 + 3 cos(2i))J2R

2
e

(
−180γ2 + 3γκ

)]
β2

− 1

β4
725760µ4 sin6(i)a4

0J
3
2R

6
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 432κγ3 − 25920γ4

)
− 216γ3

(
144γ2 + 3γκ

)]
+

1

β6
9289728µ6 sin4(i)a6

0J
2
2R

4
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 459κγ3 − 25920γ4

)
− 6γ

(
5184γ4 + 108γ3κ+ 9γ2ζ

)]
+

1

β10
67108864µ10a10

0

[
3(1 + 3 cos(2i))J2R

2
e

(
18ζγ2 + 918κγ3 − 51435γ4

)
− 6γ

(
13203γ4 + 351γ3κ+ 18γ2ζ

)]
−

28311552γµ8a8
0

[
−6γ

(
10368γ4 + 351γ3κ+ 18γ2ζ

)
+ 3(1 + 3 cos(2i))J2R

2
e

(
−51435γ4 + 918γ3κ+ 18γ2ζ

)]
β8

}
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∆u2 =


√

µ(
− 3βγ

8µa0
+ 4µa0

β

)
3

1 +
3
(

1− 3 sin2(i)
2

)
J2R

2
e

2
(
− 3βγ

8µa0
+ 4µa0

β

)
2



+

3
(

2− 5 sin2(i)
2

)√
µ(

− 3βγ
8µa0

+
4µa0
β

)
3
J2R

2
e

1 +
3

(
1− 3 sin2(i)

2

)
J2R2

e

2
(
− 3βγ

8µa0
+

4µa0
β

)
2


2
(
− 3βγ

8µa0
+ 4µa0

β

)
2


− 1

2Aprop

− 9γ
√
µ

10a
5/2
0

+
2
√
µ

√
a0

+
9γ
√
µ

320
(
µa0
β

)
5/2
−
√
µ√
µa0
β

+
3
√
µJ2R

2
e

5a
5/2
0

−
3
√
µJ2R

2
e

160
(
µa0
β

)
5/2

+
1

2Aprop

− 9γ
√
µ

320
(
µa0
β

)
5/2

+

√
µ√
µa0
β

+
9γ
√
µ

10a
5/2
3

−
2
√
µ

√
a3

+
3
√
µJ2R

2
e

160
(
µa0
β

)
5/2
−

3
√
µJ2R

2
e

5a
5/2
3

+ tt



∆u3 =− 1

918540
√

2Aprop
√

µ
a33
a7

3J
6
2R

12
e

csc12(i)

[
µa3

3(
−3γ + 2a2

3

)
3

]
3
2
{

18600435(1 + 3 cos(2i)) sin18(i)J10
2 R20

e

+ 229635 sin12(i)a2
3J

6
2R

12
e

[
−216γ3 + 3(1 + 3 cos(2i))J2R

2
e

(
−180γ2 + 3γκ

)]
− 2835 sin6(i)a4

3J
3
2R

6
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 432κγ3 − 25920γ4

)
− 216γ3

(
144γ2 + 3γκ

)]
+ 2268 sin4(i)a6

3J
2
2R

4
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 459κγ3 − 25920γ4

)
− 6γ

(
5184γ4 + 108γ3κ+ 9γ2ζ

)]
+ 64a10

3

(
3(1 + 3 cos(2i))J2R

2
e

(
18ζγ2 + 918κγ3 − 51435γ4

)
− 6γ

(
13203γ4 + 351γ3κ+ 18γ2ζ

))
−432γa8

3

[
−6γ

(
10368γ4 + 351γ3κ+ 18γ2ζ

)
+ 3(1 + 3 cos(2i))J2R

2
e

(
−51435γ4 + 918γ3κ+ 18γ2ζ

)]}
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+
1

3674160
√

2Apropµ7
√

β3

µ2a30
a7

0J
6
2R

12
e

β7 csc12(i)

 µ4a3
0

β3
(
−3γ +

32µ2a20
β2

)
3

 3
2

{
18600435(1 + 3 cos(2i)) sin18(i)J10

2 R20
e

+
1

β2
3674160µ2 sin12(i)a2

0J
6
2R

12
e

[
−216γ3 + 3(1 + 3 cos(2i))J2R

2
e

(
−180γ2 + 3γκ

)]
− 1

β4
725760µ4 sin6(i)a4

0J
3
2R

6
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 432κγ3 − 25920γ4

)
− 216γ3

(
144γ2 + 3γκ

)]
+

1

β6
9289728µ6 sin4(i)a6

0J
2
2R

4
e

[
3(1 + 3 cos(2i))J2R

2
e

(
9ζγ2 + 459κγ3 − 25920γ4

)
− 6γ

(
5184γ4 + 108γ3κ+ 9γ2ζ

)]
+

1

β10
67108864µ10a10

0

[
3(1 + 3 cos(2i))J2R

2
e

(
18ζγ2 + 918κγ3 − 51435γ4

)
− 6γ

(
13203γ4 + 351γ3κ+ 18γ2ζ

)]
−

28311552γµ8a8
0

[
−6γ

(
10368γ4 + 351γ3κ+ 18γ2ζ

)
+ 3(1 + 3 cos(2i))J2R

2
e

(
−51435γ4 + 918γ3κ+ 18γ2ζ

)]
β8

}

utotal =− 1

918540
√

2Aprop
√

µ
a30
a7

0J
6
2R

12
e

csc12(i)

[
µa3

0(
−3γ + 2a2

0

)
3

]
3
2
{

18600435(1 + 3 cos(2i)) sin18(i)J10
2 R20

e

+ 229635 sin12(i)a2
0J

6
2R

12
e

[
−216γ3 + 3

(
−180γ2 + 3γκ

)
(1 + 3 cos(2i))J2R

2
e

]
− 2835 sin6(i)a4

0J
3
2R

6
e

[
−216γ3

(
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Appendix C

Comparison with Numerical

Simulation: Integrating Over

Osculating Semi-major Axis

The results produced by applying the general perturbation solution integrated over the

osculating semi-major axis to the scenario described in Chapter 4 are here compared to

the results produced by numerical simulations. A comparison is made to three numeri-

cal simulations, as in Chapter 4; first a comparison is made to the numerical simulation

including J2 perturbations only, secondly a comparison is made with a simulation in-

cluding J2 perturbations and atmospheric drag, and finally a comparison is made to a

simulation with an 18th order tesseral model and atmospheric drag included.

C.1 Non-manoeuvring Satellite

For a non-manoeuvring satellite (i.e. ∆Valt = 0 m/s) the distance from the sub-satellite

point to Los Angeles is shown in Figure C.1 for a 16-day period as calculated by the

general perturbation method integrated over the osculating semi-major axis. The hori-

zontal line is drawn at half the swath width, taken to be 100 km, indicating the distance

at which the POI will be visible to the satellite, assuming a conical beam. This solu-

tion assumes that the satellite maintains a constant altitude over the time considered

148
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by performing atmospheric drag compensation manoeuvres. This was calculated to

require 3.22 m/s ∆V2. The times of each of the target flyovers and the distance of the

SSP from the POI at that time as calculated by the general perturbation solution, and

each of the numerical simulations, are given in Tables C.1–C.3.
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Figure C.1: Distance from sub-satellite point to point of interest plotted as a function of total
time for a non-manoeuvring satellite as calculated by the general perturbation method integrated
over the osculating semi-major axis.

Considering the results in Tables C.1, C.2 and C.3, the general perturbation so-

lution integrated over the osculating semi-major axis agrees closely with the results

produced by the numerical simulations. The greatest difference in flyover time identi-

fied between the general perturbation and numerical models is less than 5 sec and the

largest difference in distance to target at flyover is approximately 16 km. As was the

case using the general perturbation solution integrated over the mean semi-major axis,

the general perturbation integrated over the osculating semi-major axis misses a pass

at 3.083 days identified by the three numerical solutions, whilst identifying a pass at

13.91 days that is not identified by the three numerical simulations.
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Table C.1: Comparison of flyover times for non-manoeuvring satellite calculated by the general
perturbation method integrated over the osculating semi-major axis versus numerically including
only central body effects to J2.

Gen. Perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 29.11 4.76 -8.58
2 1.433 55.24 1.433 67.61 -0.47 -12.37
3 — — 3.083 94.84 — —
4 13.912 86.98 — — — —
5 15.209 52.84 15.209 49.68 -1.77 3.16

Table C.2: Comparison of flyover times for non-manoeuvring satellite calculated by the general
perturbation method integrated over the osculating semi-major axis versus numerically with the
inclusion of central body effects to J2 and atmospheric drag.

Gen. Perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 29.11 4.76 -8.59
2 1.433 55.24 1.433 67.57 -0.48 -12.34
3 — — 3.083 94.97 — —
4 13.912 86.98 — — — —
5 15.209 52.84 15.209 47.97 -3.69 4.87

Table C.3: Comparison of flyover times for non-manoeuvring satellite calculated by the general
perturbation method integrated over the osculating semi-major axis versus numerically with the
inclusion of perturbation due to atmospheric drag and an 18th order tesseral model.

Gen. Perturbation Numerical Difference

Viewing
Instance

Time from
epoch, days

Distance to
target, km

Time from
epoch, days

Distance to
target, km

Time from
epoch, sec

Distance to
target, km

1 0.136 20.52 0.136 10.53 1.47 9.98
2 1.433 55.24 1.433 70.85 1.35 -16.2
3 — — 3.083 95.93 — —
4 13.912 86.98 — — — —
5 15.209 52.84 15.209 47.22 3.22 5.61

Figures C.2, C.3, and C.4 show the haversine distance between the sub-satellite

points as calculated by the general perturbation solution integrated over the osculating

semi-major axis and the three numerical solutions over the same 16-day period as

in Figure C.1. These results follow the same trends as when considering the general

perturbation solution integrated over the mean semi-major axis as discussed in Chapter

4. The largest maximum difference in the 16-day period is approximately 32 km and

the mean difference increases slowly from 14–16 km in all cases.
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Figure C.2: Haversine distance between sub-satellite points as calculated by the general pertur-
bation solution integrated over the osculating semi-major axis and numerical solution including
J2 for a non-manoeuvring satellite.
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Figure C.3: Haversine distance between sub-satellite points as calculated by the general pertur-
bation solution integrated over the osculating semi-major axis and numerical solution including
J2 and atmospheric drag for a non-manoeuvring satellite.
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Figure C.4: Haversine distance between sub-satellite points as calculated by the general pertur-
bation solution integrated over the osculating semi-major axis and numerical solution including
atmospheric drag and 18th order tesseral model for a non-manoeuvring satellite.

C.2 Manoeuvring Satellite

The general perturbation method integrated over the osculating semi-major axis is

now used to calculate the time required to flyover the target when the satellite is

manoeuvred using a given ∆Valt. As in Chapter 4, the altitude-lowering manoeuvre

will begin 1.433 days from epoch and use 30 m/s ∆Valt. For such a manoeuvre, the

general perturbation solution integrated over the osculating semi-major axis identifies

three possible manoeuvres in a 13-day period that would end with the satellite in view

of the target. These are shown in Table C.4 with the corresponding distance from the

SSP to the POI at closest approach. The shortest possible flyover time using 30 m/s

is found to be 5.06 days from epoch.

A comparison is then made with the three numerical simulations as described in

Chapter 4. The closest pass found by the numerical solution including only J2 occurs

just 1.29 seconds later than predicted by the general perturbation method integrated

over the osculating semi-major axis, and the distance from the SSP to the POI at this

time is found to be 67.17 km, which is a difference of 13.3 km. The numerical simulation
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including atmospheric drag as well as J2 identifies the closest pass as occurring 37

seconds earlier than predicted by the general perturbation solution integrated over the

osculating semi-major axis. The distance from the SSP to the target at this time is

found to be 57.67 km, which is a difference of 3.8 km. If atmospheric drag compensation

is performed during phase 1 and phase 3 in addition to the coast phases, the predicted

flyover occurs just 1.29 seconds after it is predicted by the general perturbation solution

integrated over the osculating semi-major axis, at a distance of 67.15 km from the

POI, giving a difference of 13.28 km. The numerical simulation with an 18th order

tesseral model and atmospheric drag included predicts the closest pass to be almost

39 seconds earlier than predicted by the general perturbation solution integrated over

the osculating semi-major axis. The distance from the SSP to the target at this time

is found to be 56.34 km; a difference of 2.5 km. If atmospheric drag compensation

is performed during the lowering and raising manoeuvres in addition to the coasting

phases, the predicted flyover occurs just 0.16 seconds after it is predicted by the general

perturbation solution integrated over the osculating semi-major axis, at a distance of

65.98 km from the POI, giving a difference of 12.11 km. These results are summarised

in Table C.5.

Table C.4: Flyover times for manoeuvring satellite with 30 m/s ∆Valt calculated by the general
perturbation integrated over the osculating semi-major axis.

Possible Fly-
over Instance

Time from
epoch, days

Manoeuvre
time, days

Distance from
SSP to POI, km

1 5.06 3.62 53.87
2 8.32 6.88 27.20
3 11.94 10.50 59.88
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Table C.5: Comparison of flyover times for manoeuvring satellite calculated by the general
perturbation method integrated over the osculating semi-major axis versus numerically.

Time from
epoch, days

Distance to
target, km

Difference
in time, sec

Difference in
distance, km

General perturbation method 5.06 53.87 — —
Numerical: J2 5.06 67.17 1.29 13.3
Numerical: J2 and atmospheric drag 5.06 57.67 -36.87 3.8
Numerical: J2 and atmospheric drag
w/ compensation during altitude
change

5.06 67.15 1.29 13.28

Numerical: 18th order tesseral and at-
mospheric drag

5.06 56.34 -38.68 2.5

Numerical: 18th order tesseral and at-
mospheric drag w/ compensation dur-
ing altitude change

5.06 65.98 0.16 12.11



Appendix D

Fire Response Target Regions

 
 

Figure D.1: Cairngorms National Park region of interest [104].
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Figure D.2: Yosemite National Park region of interest [104].

 

Figure D.3: Agulhas National Park region of interest [104].
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Figure D.4: Lagunas de Montebello National Park region of interest [104].
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Figure E.1: Utility of manoeuvre versus satellite number for orbit plane 1 for upwards pass over
the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.2: Utility of manoeuvre versus satellite number for orbit plane 1 for downwards pass
over the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.3: Utility of manoeuvre versus satellite number for orbit plane 2 for upwards pass over
the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.4: Utility of manoeuvre versus satellite number for orbit plane 2 for downwards pass
over the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.5: Utility of manoeuvre versus satellite number for orbit plane 3 for upwards pass over
the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.6: Utility of manoeuvre versus satellite number for orbit plane 3 for downwards pass
over the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.7: Utility of manoeuvre versus satellite number for orbit plane 4 for upwards pass over
the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.8: Utility of manoeuvre versus satellite number for orbit plane 4 for downwards pass
over the Cairngorms for the unweighted case. Blue dots are satellite-lowering manoeuvres. Orange
dots are satellite-raising manoeuvres.
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Figure E.9: Utility of manoeuvre versus satellite number for plane 1 for upwards pass over the
Cairngorms for the weighted case.Blue dots are satellite-lowering manoeuvres. Orange dots are
satellite-raising manoeuvres.
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Figure E.10: Utility of manoeuvre versus satellite number for plane 1 for downwards pass over
the Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots
are satellite-raising manoeuvres.
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Figure E.11: Utility of manoeuvre versus satellite number for plane 2 for upwards pass over the
Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots are
satellite-raising manoeuvres.
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Figure E.12: Utility of manoeuvre versus satellite number for plane 2 for downwards pass over
the Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots
are satellite-raising manoeuvres.
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Figure E.13: Utility of manoeuvre versus satellite number for plane 3 for upwards pass over the
Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots are
satellite-raising manoeuvres.
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Figure E.14: Utility of manoeuvre versus satellite number for plane 3 for downwards pass over
the Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots
are satellite-raising manoeuvres.
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Figure E.15: Utility of manoeuvre versus satellite number for plane 4 for upwards pass over the
Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots are
satellite-raising manoeuvres.
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Figure E.16: Utility of manoeuvre versus satellite number for plane 4 for downwards pass over
the Cairngorms for the weighted case. Blue dots are satellite-lowering manoeuvres. Orange dots
are satellite-raising manoeuvres.
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Figure F.1: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 4 using numerical solution.
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Figure F.2: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 5 using numerical solution.

Figure F.3: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 7 using numerical solution.
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Figure F.4: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 12 using numerical solution.

Figure F.5: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 13 using numerical solution.
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Figure F.6: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 14 using numerical solution.

Figure F.7: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 21 using numerical solution.
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Figure F.8: Distance from sub-satellite point to centre of the Cairgorms plotted as a function of
total time for Satellite 22 using numerical solution.
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Table G.1: Initial positions of fire detection constellation satellites.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 0 0

Satellite 2 542.857 0 60

Satellite 3 542.857 0 120

Satellite 4 542.857 0 180

Satellite 5 542.857 0 240

Satellite 6 542.857 0 300

Orbit Plane 2

Satellite 7 542.857 90 0

Satellite 8 542.857 90 60

Satellite 9 542.857 90 120

Satellite 10 542.857 90 180

Satellite 11 542.857 90 240

Satellite 12 542.857 90 300

Orbit Plane 3

Satellite 13 542.857 180 0

Satellite 14 542.857 180 60

Satellite 15 542.857 180 120

Satellite 16 542.857 180 180

Satellite 17 542.857 180 240

Satellite 18 542.857 180 300

Orbit Plane 4

Satellite 19 542.857 270 0

Satellite 20 542.857 270 60

Satellite 21 542.857 270 120

Satellite 22 542.857 270 180

Satellite 23 542.857 270 240

Satellite 24 542.857 270 300
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G.1 Cairngorms National Park

Table G.2: Selected satellite manoeuvres to target the Cairngorms.

∆V , m/s Manoeuvre

Time, days

Distance to

target, km

Pass type Manoeuvre

Type

Orbit Plane 1
Satellite 4 18.01 2.03 18.80 Downwards Lower

Satellite 5 17.01 1.88 9.64 Upwards Lower

Orbit Plane 2
Satellite 7 19.00 2.13 8.79 Upwards Raise

Satellite 12 17.00 2.28 8.07 Downwards Raise

Orbit Plane 3
Satellite 13 23.01 2.52 13.07 Downwards Lower

Satellite 14 21.01 2.38 5.75 Upwards Lower

Orbit Plane 4
Satellite 21 17.00 1.78 19.92 Downwards Raise

Satellite 22 17.02 2.62 18.08 Upwards Raise
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Table G.3: Positions of satellites after manoeuvre to target Cairngorms.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 350.363 228.300

Satellite 2 542.857 350.363 288.300

Satellite 3 542.857 350.363 348.300

Satellite 4 513.087 350.059 112.888

Satellite 5 513.087 350.060 172.453

Satellite 6 542.857 350.363 168.300

Orbit Plane 2

Satellite 7 513.087 80.091 273.386

Satellite 8 542.857 80.363 288.300

Satellite 9 542.857 80.363 348.300

Satellite 10 542.857 80.363 48.300

Satellite 11 542.857 80.363 108.300

Satellite 12 513.087 80.098 208.773

Orbit Plane 3

Satellite 13 513.087 170.054 296.403

Satellite 14 513.087 170.056 354.923

Satellite 15 542.857 170.363 348.300

Satellite 16 542.857 170.363 48.300

Satellite 17 542.857 170.363 108.300

Satellite 18 542.857 170.363 168.300

Orbit Plane 4

Satellite 19 542.857 260.363 228.300

Satellite 20 542.857 260.363 288.300

Satellite 21 513.087 260.069 46.656

Satellite 22 513.087 260.118 76.245

Satellite 23 542.857 260.363 108.300

Satellite 24 542.857 260.363 168.300
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Table G.4: Positions of satellites after 7 days in ROM mode targeting Cairngorms.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 324.127 124.265

Satellite 2 542.857 324.127 184.265

Satellite 3 542.857 324.127 244.265

Satellite 4 513.087 323.424 255.976

Satellite 5 513.087 323.425 315.541

Satellite 6 542.857 324.127 64.265

Orbit Plane 2

Satellite 7 513.087 53.456 56.474

Satellite 8 542.857 54.127 184.265

Satellite 9 542.857 54.127 244.265

Satellite 10 542.857 54.127 304.265

Satellite 11 542.857 54.127 4.265

Satellite 12 513.087 53.463 351.861

Orbit Plane 3

Satellite 13 513.087 143.419 79.791

Satellite 14 513.087 143.421 138.011

Satellite 15 542.857 144.127 244.265

Satellite 16 542.857 144.127 304.265

Satellite 17 542.857 144.127 4.265

Satellite 18 542.857 144.127 64.265

Orbit Plane 4

Satellite 19 542.857 234.127 124.265

Satellite 20 542.857 234.127 184.265

Satellite 21 513.087 233.434 189.744

Satellite 22 513.087 233.483 219.333

Satellite 23 542.857 234.127 4.265

Satellite 24 542.857 234.127 64.265
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Table G.5: Possible satellite manoeuvres to return to GOM from targeting the Cairngorms.
Selected manoeuvres in bold.

Slot in orbit plane Manoeuvre Time, days

Orbit Plane 1

Satellite 4
1 2.18

2 3.88

Satellite 5
1 0.49

2 2.19

Orbit Plane 2

Satellite 7
1 12.93

2 11.23

Satellite 12
1 4.56

2 2.86

Orbit Plane 3

Satellite 13
1 12.28

2 13.98

Satellite 14
1 10.62

2 12.32

Orbit Plane 4

Satellite 21
1 2.36

2 4.06

Satellite 22
1 1.52

2 3.22
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Table G.6: Positions of satellites after returning to GOM from targeting Cairngorms.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 277.955 139.261

Satellite 2 542.857 277.955 199.261

Satellite 3 542.857 277.955 259.261

Satellite 4 542.857 277.174 319.261

Satellite 5 542.857 277.174 19.261

Satellite 6 542.857 277.955 79.261

Orbit Plane 2

Satellite 7 542.857 6.690 79.261

Satellite 8 542.857 7.955 199.261

Satellite 9 542.857 7.955 259.261

Satellite 10 542.857 7.955 319.261

Satellite 11 542.857 7.955 19.261

Satellite 12 542.857 7.077 139.261

Orbit Plane 3

Satellite 13 542.857 96.593 139.261

Satellite 14 542.857 96.593 199.261

Satellite 15 542.857 97.955 259.261

Satellite 16 542.857 97.955 319.261

Satellite 17 542.857 97.955 19.261

Satellite 18 542.857 97.955 79.261

Orbit Plane 4

Satellite 19 542.857 187.955 139.261

Satellite 20 542.857 187.955 199.261

Satellite 21 542.857 187.174 259.261

Satellite 22 542.857 187.174 319.261

Satellite 23 542.857 187.955 19.261

Satellite 24 542.857 187.955 79.261
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G.2 Yosemite National Park

Table G.7: Positions of satellites at detection of fire outbreak in Yosemite.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 251.719 35.226

Satellite 2 542.857 251.719 95.226

Satellite 3 542.857 251.719 155.226

Satellite 4 542.857 250.938 215.226

Satellite 5 542.857 250.938 275.226

Satellite 6 542.857 251.719 335.226

Orbit Plane 2

Satellite 7 542.857 340.454 335.226

Satellite 8 542.857 341.719 95.226

Satellite 9 542.857 341.719 155.226

Satellite 10 542.857 341.719 215.226

Satellite 11 542.857 341.719 275.226

Satellite 12 542.857 340.841 35.226

Orbit Plane 3

Satellite 13 542.857 70.357 35.226

Satellite 14 542.857 70.357 95.226

Satellite 15 542.857 71.719 155.226

Satellite 16 542.857 71.719 215.226

Satellite 17 542.857 71.719 275.226

Satellite 18 542.857 71.719 335.226

Orbit Plane 4

Satellite 19 542.857 161.719 35.226

Satellite 20 542.857 161.719 95.226

Satellite 21 542.857 160.938 155.226

Satellite 22 542.857 160.938 215.226

Satellite 23 542.857 161.719 275.226

Satellite 24 542.857 161.719 335.226
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Table G.8: Selected satellite manoeuvres to view Yosemite.

∆V , m/s Manoeuvre

Time, days

Distance to

target, km

Pass type Manoeuvre

Type

Orbit Plane 1
Satellite 1 25.02 3.11 0.39 Downwards Lower

Satellite 2 17.02 2.77 0.68 Upwards Raise

Orbit Plane 2
Satellite 9 17.01 2.03 18.30 Upwards Raise

Satellite 10 33.00 3.36 21.45 Downwards Raise

Orbit Plane 3
Satellite 16 21.05 3.61 4.70 Downwards Lower

Satellite 18 20.04 4.25 2.47 Upwards Raise

Orbit Plane 4
Satellite 19 19.03 3.51 2.38 Upwards Raise

Satellite 20 26.03 4.84 8.28 Downwards Raise
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Table G.9: Positions of satellites after manoeuvre to target Yosemite is completed.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 513.087 233.329 226.818

Satellite 2 513.087 233.412 235.708

Satellite 3 542.857 233.575 194.630

Satellite 4 542.857 232.794 254.630

Satellite 5 542.857 232.794 314.630

Satellite 6 542.857 233.575 14.630

Orbit Plane 2

Satellite 7 542.857 322.310 14.630

Satellite 8 542.857 323.575 134.630

Satellite 9 513.087 323.369 322.327

Satellite 10 513.087 323.470 319.199

Satellite 11 542.857 323.575 314.630

Satellite 12 542.857 322.697 74.630

Orbit Plane 3

Satellite 13 542.857 52.213 74.630

Satellite 14 542.857 52.212 134.630

Satellite 15 542.857 53.575 194.630

Satellite 16 513.087 53.331 45.692

Satellite 17 542.857 53.575 314.630

Satellite 18 513.087 53.510 54.626

Orbit Plane 4

Satellite 19 513.087 143.461 145.357

Satellite 20 513.087 143.574 134.808

Satellite 21 542.857 142.794 194.630

Satellite 22 542.857 142.794 254.630

Satellite 23 542.857 143.575 314.630

Satellite 24 542.857 143.575 14.630
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Table G.10: Positions of satellites after 7 days in ROM mode targeting Yosemite.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 513.087 206.694 9.906

Satellite 2 513.087 206.777 18.796

Satellite 3 542.857 207.339 90.595

Satellite 4 542.857 206.558 150.595

Satellite 5 542.857 206.558 210.595

Satellite 6 542.857 207.339 270.595

Orbit Plane 2

Satellite 7 542.857 296.074 270.595

Satellite 8 542.857 297.339 30.595

Satellite 9 513.087 296.734 105.415

Satellite 10 513.087 296.836 102.287

Satellite 11 542.857 297.339 210.595

Satellite 12 542.857 296.461 330.595

Orbit Plane 3

Satellite 13 542.857 25.977 330.595

Satellite 14 542.857 25.977 30.595

Satellite 15 542.857 27.339 90.595

Satellite 16 513.087 26.696 188.780

Satellite 17 542.857 27.339 210.595

Satellite 18 513.087 26.875 197.714

Orbit Plane 4

Satellite 19 513.087 116.826 288.445

Satellite 20 513.087 116.940 277.896

Satellite 21 542.857 116.558 90.595

Satellite 22 542.857 116.558 150.595

Satellite 23 542.857 117.339 210.595

Satellite 24 542.857 117.339 270.595
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G.3 Agulhas National Park

Table G.11: Selected satellite manoeuvres to view Agulhas.

∆V , m/s Manoeuvre

Time, days

Distance to

target, km

Pass type Manoeuvre

Type

Orbit Plane 1
Satellite 1 14.01 1.88 1.06 Downwards Raise

Satellite 6 22.00 2.25 19.72 Upwards Lower

Orbit Plane 2
Satellite 9 27.05 5.46 3.01 Upwards Raise

Satellite 10 15.01 2.13 1.70 Downwards Raise

Orbit Plane 3
Satellite 15 24.01 2.74 0.14 Upwards Lower

Satellite 16 8.04 2.38 0.14 Downwards Raise

Orbit Plane 4
Satellite 20 8.05 2.62 3.26 Downwards Raise

Satellite 24 18.04 3.98 5.25 Upwards Raise

Table G.12: Possible manoeuvres to return satellites remaining in RGT over Yosemite to GOM
for observation of Agulhas. Selected manoeuvres in bold. The italicised solution for Satellite 19
is an invalid solution as the total manoeuvre time would be less than that required to achieve the
desired total ∆V and as such is ignored.

Slot in orbit plane Manoeuvre Time, days

Orbit Plane 1 Satellite 2

1 11.34

2 9.64

3 7.94

Orbit Plane 3 Satellite 18

1 7.97

2 9.67

3 13.07

Orbit Plane 4 Satellite 19

1 2.01

2 3.71

3 0.31
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Table G.13: Positions of satellites after manoeuvring to target Agulhas.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 513.087 176.379 69.504

Satellite 2 542.857 176.481 66.654

Satellite 3 542.857 177.450 246.654

Satellite 4 542.857 176.669 306.654

Satellite 5 542.857 176.669 6.654

Satellite 6 513.087 177.038 321.660

Orbit Plane 2

Satellite 7 542.857 266.184 66.654

Satellite 8 542.857 267.450 186.654

Satellite 9 513.087 266.584 62.995

Satellite 10 513.087 266.528 157.399

Satellite 11 542.857 267.450 6.654

Satellite 12 542.857 266.572 126.654

Orbit Plane 3

Satellite 13 542.857 356.088 126.654

Satellite 14 542.857 356.087 186.654

Satellite 15 513.087 357.031 145.668

Satellite 16 513.087 356.379 249.250

Satellite 17 542.857 357.450 6.654

Satellite 18 542.857 356.577 246.654

Orbit Plane 4

Satellite 19 542.857 86.868 126.654

Satellite 20 513.087 86.626 336.227

Satellite 21 542.857 86.669 246.654

Satellite 22 542.857 86.668 306.654

Satellite 23 542.857 87.450 6.654

Satellite 24 513.087 87.182 232.372



APPENDIX G FIRE RESPONSE SELECTED MANOEUVRE SEQUENCE 187

Table G.14: Positions of satellites after 7 days in ROM mode targeting Agulhas.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 513.087 149.744 212.592

Satellite 2 542.857 150.245 322.619

Satellite 3 542.857 151.214 142.619

Satellite 4 542.857 150.433 202.619

Satellite 5 542.857 150.433 262.619

Satellite 6 513.087 150.403 104.748

Orbit Plane 2

Satellite 7 542.857 239.949 322.619

Satellite 8 542.857 241.214 82.619

Satellite 9 513.087 239.949 206.083

Satellite 10 513.087 239.893 300.487

Satellite 11 542.857 241.214 262.619

Satellite 12 542.857 240.336 22.619

Orbit Plane 3

Satellite 13 542.857 329.852 22.619

Satellite 14 542.857 329.852 82.619

Satellite 15 513.087 330.396 288.756

Satellite 16 513.087 329.745 32.338

Satellite 17 542.857 331.214 262.619

Satellite 18 542.857 330.342 142.619

Orbit Plane 4

Satellite 19 542.857 60.633 22.619

Satellite 20 513.087 59.992 119.315

Satellite 21 542.857 60.433 142.619

Satellite 22 542.857 60.433 202.619

Satellite 23 542.857 61.214 262.619

Satellite 24 513.087 60.547 15.460
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Table G.15: Possible satellite manoeuvres to return to GOM after observing Agulhas. Selected
manoeuvres in bold.

Slot in orbit plane Manoeuvre Time, days

Orbit Plane 1

Satellite 1
1 5.63

2 7.33

Satellite 6
1 8.68

2 10.38

Orbit Plane 2

Satellite 9
1 9.21

2 10.91

Satellite 10
1 6.54

2 8.24

Orbit Plane 3

Satellite 15
1 8.57

2 1.77

Satellite 16
1 5.64

2 9.03

Orbit Plane 4

Satellite 20
1 9.97

2 6.57

Satellite 24
1 2.71

2 9.51
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Table G.16: Positions of satellites after returning to GOM from observing Agulhas.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 114.849 121.335

Satellite 2 542.857 115.721 1.335

Satellite 3 542.857 116.690 181.335

Satellite 4 542.857 115.909 241.335

Satellite 5 542.857 115.909 301.335

Satellite 6 542.857 115.430 61.335

Orbit Plane 2

Satellite 7 542.857 205.425 1.335

Satellite 8 542.857 206.690 121.335

Satellite 9 542.857 204.946 181.335

Satellite 10 542.857 204.945 241.335

Satellite 11 542.857 206.690 301.335

Satellite 12 542.857 205.812 61.335

Orbit Plane 3

Satellite 13 542.857 295.328 61.335

Satellite 14 542.857 295.328 121.335

Satellite 15 542.857 295.818 1.335

Satellite 16 542.857 294.946 241.335

Satellite 17 542.857 296.690 301.335

Satellite 18 542.857 295.818 181.335

Orbit Plane 4

Satellite 19 542.857 26.109 61.335

Satellite 20 542.857 25.139 1.335

Satellite 21 542.857 25.909 181.335

Satellite 22 542.857 25.909 241.335

Satellite 23 542.857 26.690 301.335

Satellite 24 542.857 25.915 121.335
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G.4 Lagunas de Montebello National Park

Table G.17: Positions of satellites at detection of fire outbreak in Lagunas de Montebello.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 88.613 17.300

Satellite 2 542.857 89.485 257.300

Satellite 3 542.857 90.454 77.300

Satellite 4 542.857 89.673 137.300

Satellite 5 542.857 89.674 197.300

Satellite 6 542.857 89.194 317.300

Orbit Plane 2

Satellite 7 542.857 179.189 257.300

Satellite 8 542.857 180.454 17.300

Satellite 9 542.857 178.710 77.300

Satellite 10 542.857 178.710 137.300

Satellite 11 542.857 180.454 197.300

Satellite 12 542.857 179.576 317.300

Orbit Plane 3

Satellite 13 542.857 269.092 317.300

Satellite 14 542.857 269.092 17.300

Satellite 15 542.857 269.582 257.300

Satellite 16 542.857 268.710 137.300

Satellite 17 542.857 270.454 197.300

Satellite 18 542.857 269.582 77.300

Orbit Plane 4

Satellite 19 542.857 359.873 317.300

Satellite 20 542.857 358.904 257.300

Satellite 21 542.857 359.673 77.300

Satellite 22 542.857 359.673 137.300

Satellite 23 542.857 0.454 197.300

Satellite 24 542.857 359.679 17.300
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Table G.18: Selected satellite manoeuvres to view Lagunas de Montebello.

∆V , m/s Manoeuvre

Time, days

Distance to

target, km

Pass type Manoeuvre

Type

Orbit Plane 1
Satellite 5 23.04 3.48 0.28 Downwards Lower

Satellite 6 22.03 3.04 2.32 Upwards Lower

Orbit Plane 2
Satellite 8 27.02 3.73 3.40 Downwards Raise

Satellite 10 32.00 3.29 22.94 Upwards Raise

Orbit Plane 3
Satellite 17 19.03 3.54 4.89 Upwards Raise

Satellite 18 17.02 2.99 1.13 Downwards Raise

Orbit Plane 4
Satellite 22 17.01 2.25 17.90 Downwards Raise

Satellite 23 27.04 3.79 0.71 Upwards Lower
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Table G.19: Positions of satellites after manoeuvre to target Lagunas de Montebello is completed.

Mean Altitude, km RAAN, deg AoL, deg

Orbit Plane 1

Satellite 1 542.857 74.427 74.907

Satellite 2 542.857 75.299 314.907

Satellite 3 542.857 76.268 134.907

Satellite 4 542.857 75.487 194.907

Satellite 5 513.087 75.300 10.880

Satellite 6 513.087 74.828 126.827

Orbit Plane 2

Satellite 7 542.857 165.003 314.907

Satellite 8 513.087 166.248 87.245

Satellite 9 542.857 164.524 134.907

Satellite 10 513.087 164.473 226.169

Satellite 11 542.857 166.268 254.907

Satellite 12 542.857 165.390 14.907

Orbit Plane 3

Satellite 13 542.857 254.906 14.907

Satellite 14 542.857 254.906 74.907

Satellite 15 542.857 255.396 314.907

Satellite 16 542.857 254.524 194.907

Satellite 17 513.087 256.216 287.145

Satellite 18 513.087 255.306 190.661

Orbit Plane 4

Satellite 19 542.857 345.687 14.907

Satellite 20 542.857 344.717 314.907

Satellite 21 542.857 345.487 134.907

Satellite 22 513.087 345.354 277.280

Satellite 23 513.087 346.068 18.700

Satellite 24 542.857 345.493 74.907
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Image taken from a game produced by Glasgow School of Art Digital Design Studio as part of
the Space for Art project. The game, based on the work presented in this dissertation, challenges
players to manoeuvre satellites and provide targeted coverage to regions of the Earth, without
exhausting the available propellant.
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