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Abstract

We describe a model of buoyancy-driven flow in a saturated reactive porous

medium, the porosity and permeability of which evolve through precipitation and

dissolution as a mineral is lost or gained from the pore fluid. We consider two

scenarios: convection driven solely by solutally induced buoyancy effects with a

vertically varying equilibrium solubility, and convection driven by a combination

of thermally and solutally induced buoyancy effects where the solubility of the

dissolved component depends on the temperature. In both cases we characterise

the onset of convection using linear stability analysis, and explore the further

development of the coupled reaction–convection system numerically.

For solutal convection, at low Rayleigh numbers the effect of the reaction–permea-

bility feedback is shown to be destabilising, while at higher Rayleigh numbers

the porosity evolution has a stabilising effect. Over longer timescales, reaction–

permeability feedback triggers secondary instabilities in quasi-steady convective

circulation, leading to rapid reversals in the direction of circulation. Over very

long timescales, characteristic patterns of porosity emerge, including horizontal

layering as well as the development of vertical chimneys of enhanced porosity.

For thermosolutal convection we find that, when the system is solutally unsta-

ble, the behaviour of the system is qualitatively the same as for solutal convec-

tion, regardless of whether the system is thermally stable or unstable. How-

ever, new, interesting behaviour is seen when the system is solutally stable. The

long-term evolution of the porous layer depends on whether the underlying ther-

mal or solutal gradient dominates. When the solutal gradient dominates, the

reaction-permeability feedback triggers a secondary instability, resulting in the

lateral migration of the concentration and temperature fields and rapid reversals

in the direction of circulation. However, when the thermal gradient dominates,

the reaction-permeability feedback tends to suppress the circulation, although it

re-emerges after a long quiescent period.
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Chapter 1

Introduction

The circulation of fluid under the influence of buoyancy forces is believed to

occur in many geological settings (Nield and Bejan 2006; Phillips 1991, 2009),

although it has been directly observed only occasionally (e.g. Stevens et al.

2009). Such fluid usually contains a rich cocktail of dissolved minerals, however,

the amount of solute in the fluid is unlikely to be conserved: it may be dissolved

from or precipitated onto the rock matrix as its solubility varies with temperature,

pressure and the local rock chemistry. The role of such processes in controlling

the structure of rocks and the characteristic patterns of mineral deposition is still

not fully understood.

In this thesis we examine two idealised models of reactive convection in a porous

medium where the rock matrix is allowed to evolve through precipitation and

dissolution as a mineral is lost or gained from the fluid. Rather than studying a

detailed geochemical model of a particular system we consider a simple, but phys-

ically founded, model with the aim of elucidating the fundamental mechanisms

which control the evolution of the porous matrix.

The thesis is structured as follows. In chapter 2 we present a review of the

literature pertaining to reactive convection in porous media. We also introduce

our mathematical model of flow and transport in a reactive porous medium with

evolving porosity.

In chapter 3 we consider the simplest model in which reaction-convection inter-
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Chapter 1 2

actions can occur: convection driven solely by solutally-driven density effects,

where precipitation and dissolution strive to restore the local concentration to

some equilibrium value that varies with depth. We carry out a linear stability

analysis of the onset of convection and then validate the stability results using

a numerical model. Further numerical simulations are carried out to examine

the longer-term behaviour of the system and to identify the mechanisms which

control the evolution of the porous matrix.

In chapter 4 we consider the same model as in chapter 3, but change the boundary

conditions at the top and bottom of the layer from Dirichlet to Neumann condi-

tions. We carry out a linear stability analysis to examine what effect this change

in boundary conditions has on the onset of reactive convection. The stability

analysis results are verified using a numerical model, and numerical simulations

are carried out to investigate the longer-term evolution of the system.

In chapter 5 we extend the model presented in chapter 3 to consider reactive

convection driven by a combination of thermal and solutal density effects, and

perform a linear stability analysis of the onset of convection. In chapter 6 we

validate the results of the stability analysis using a numerical model and perform

simulations to investigate the long-term behaviour of the system.

Finally, in chapter 7 we summarise the work contained in this thesis and discuss

the most promising directions for future work.



Chapter 2

Literature review and model

description

In this chapter we present a review of the literature pertaining to reactive convec-

tion in porous media. We also introduce the governing equations of our models

along with some caveats concerning their use.

2.1 Porous media

A porous medium is a material consisting of both solid and fluid phases, where the

solid phase consists of a solid matrix with an interconnected void in which the fluid

phase is found. This matrix can be formed either from a single solid with holes

(e.g. a sponge), or a number of smaller solids packed closely together with small

gaps between them (e.g. sand). For our purposes, the prototypical porous media

are porous rocks such as sandstone or limestone. The interconnectedness of the

pores allows fluid to flow through the material, and in the simplest configuration

the pore space is filled with a single fluid (single-phase flow), whereas with two-

phase flow a liquid and a gas share the pore space (Nield and Bejan 2006; Phillips

1991, 2009).

Naturally occurring porous media contain an irregular distribution of pores which

vary in both shape and size. At the microscopic pore scale the flow quantities
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Chapter 2 4

(velocity, pressure, etc.) are irregular, and study at this level requires detailed

knowledge of the internal structure of the porous medium. The computational re-

sources required to consider a sufficiently large domain will almost always exceed

reasonable limits. For example, recent numerical pore scale simulations of reactive

multiphase flow, on a cuboidal domain consisting of approximately 20× 20× 30

pores, had running times ranging from 12 to 60 h on 2000 processors (Parmigiani

et al. 2011). The alternative is to use a macroscopic approach, in which the flow

quantities are averaged over volume elements with a length scale large enough to

contain many pores, but shorter than the length scale of the macroscopic flow

domain (Nield and Bejan 2006, §1.1).

The porosity φ of a porous medium is defined as the volume fraction of connected

voids that allow fluid movement (Phillips 1991, §2.1). Hence, 1−φ is the volume

fraction occupied by solid if all the void space is interconnected. If the void space

is not all connected then we must consider an effective porosity, defined as the

ratio of connected void to total volume (Nield and Bejan 2006, §1.2).

In naturally occurring porous media the porosity φ rarely exceeds 0.6, but higher

porosities can occur when the porosity is due to dissolution, particularly in car-

bonates. In massive fractured carbonates φ can be as low as 0.01, and igneous and

metamorphic rocks almost always have φ < 0.01. Typical values for sandstone

lie in the range 0.08 < φ < 0.38 (Nield and Bejan 2006, Table 1.1).

2.2 Natural convection in a porous medium

Natural, or free, convection is a fluid motion generated by density differences

between different regions of a fluid as a result of temperature or solutal gradients.

When acted upon by gravity these density differences result in buoyancy forces:

lighter, less dense fluid seeks to rise relative to heavier, more dense fluid, while

heavier fluid sinks relative to its lighter surroundings. If the buoyancy forces are

strong enough to overcome the viscous forces that act to dissipate fluid motion,

then the fluid will be susceptible to instability and convective motion will occur.

The ratio of buoyancy forces to viscous forces acting on a fluid in a porous medium
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is given by the dimensionless Rayleigh-Darcy number, or Rayleigh number for

short,

Ra =
ρ̂0ĝβ̂T K̂ĥ∆T̂

µ̂κ̂T
. (2.1)

Here, ρ̂0 is some reference density of the fluid, ĝ is the gravitational acceleration,

β̂T is the thermal expansion coefficient, K̂ is the permeability of the porous

medium, ĥ is the thickness of the porous layer, µ̂ is the dynamic viscosity of the

fluid, κ̂T is the thermal diffusivity, and ∆T̂ is the temperature difference across

the layer. See §2.6 for further discussion of these parameters. Throughout this

thesis, a caret ˆ will denote a dimensional variable, while dimensionless variables

are unadorned.

The study of fluid convection in a horizontal layer began with the quantitative

experiments of Bénard in 1900 (Drazin 2002, §6.1). He melted a 1 mm deep layer

of wax in a metal dish by heating the base. When the base was hot enough to

melt all the wax, there was, at first, no motion in the wax, but once the base

was heated past some critical temperature, a hexagonal pattern developed on the

surface of the wax. Bénard deduced that this pattern was a result of the presence

of convection cells below.

Lord Rayleigh (1916) modelled this problem by assuming an infinite layer of fluid,

bounded above and below by stationary horizontal plates which are maintained

at constant uniform temperatures, with the bottom plate hotter than the top

plate. He found that once the temperature difference across the layer exceeded

some critical value, an instability appeared in the form of cellular convection.

More than four decades later, it was determined that the main cause of Bénard

cells in thin liquid films was the surface tension gradient rather than the buoyancy

force (Pearson 1958). Regardless, the problem of density driven convection has

come to be known as Rayleigh-Bénard convection. It remains a fundamental

paradigm for nonlinear dynamics including instabilities and bifurcations, pattern

formation, chaotic dynamics and developed turbulence (Bodenschatz et al. 2000;

Kadanoff 2001).

The theoretical study of natural convection in a porous medium dates back to the

independent linear stability analyses of Horton and Rogers (1945) and Lapwood



Chapter 2 6

(1948). It is considered the porous media analogue to Rayleigh-Bénard convection

in a pure fluid layer; that is, convection in a fully saturated, infinite horizontal

porous layer as a result of a vertical temperature gradient so that cooler, denser

fluid lies above warmer, less dense fluid.

When the upper and lower boundaries are taken to be impermeable and isother-

mal, both Horton and Rogers (1945) and Lapwood (1948) found that the critical

Rayleigh number required for convection to occur is Racrit = 4π2, with corre-

sponding critical horizontal wavenumber mcrit = π. Therefore, when the tem-

perature difference across the layer is such that Ra < 4π2 the conductive base

state remains stable, but when the temperature difference is increased such that

Ra > 4π2 an instability appears in the form of cellular convection which, at the

stability threshold, has horizontal wavenumber π.

As well as two impermeable and isothermal boundaries, Lapwood (1948) also con-

sidered various combinations of impermeable, free (constant pressure), constant

temperature and constant heat flux boundaries. The critical Rayleigh number and

corresponding critical wavenumber for various combinations of boundary condi-

tions were given by Nield (1968) (see Table 2.1). As the boundary conditions

are relaxed, the critical Rayleigh number decreases as expected, along with the

critical wavenumber.

In the late 1960s and early 1970s, four sets of authors (Elder 1967; Katto and

Masuoka 1967; Combarnous and LeFur 1969; and Buretta 1972), each using

different experimental set-ups, measured critical Rayleigh numbers which were

generally within about 20% of the theoretical critical value Racrit = 4π2 (Murray

and Chen 1989). The major contributions to the error in Racrit are errors in

the precise determination of the permeability and the heat conductivity of the

medium (Elder 1967; Murray and Chen 1989).

Many authors have considered variations on the classical Horton-Rogers-Lapwood

problem. The effect of nonlinear basic temperature profiles was investigated by

Nield (1975), who found that it is possible for the critical Rayleigh number to

be lower with a curved temperature profile than with a linear profile. The effect

of the Coriolis force on linear and nonlinear convection has been studied (see,

for example, the review of Vadasz 2000) motivated by practical applications in
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Fluid Thermal
lower upper lower upper Racrit mcrit

IMP IMP CTP CTP 4π2 ≈ 39.48 π ≈ 3.14
IMP IMP CTP CHF 27.10 2.33
IMP IMP CHF CHF 12 0
IMP FRE CTP CTP 27.10 2.33
IMP FRE CHF CTP 17.65 1.75
IMP FRE CTP CHF π2 ≈ 9.87 π/2 ≈ 1.57
IMP FRE CHF CHF 3 0
FRE FRE CTP CTP 12 0
FRE FRE CTP CHF 3 0
FRE FRE CHF CHF 0 0

IMP: impermeable. FRE: free.
CTP: constant temperature (isothermal). CHF: constant heat flux.

Table 2.1: Values of the critical Rayleigh number Racrit and the corresponding
critical wavenumber mcrit for various boundary conditions (after Nield 1968). The
subscripts l and u refer to lower and upper, respectively. Reproduced from Nield
and Bejan (2006, §6.2).

engineering, for example in centrifugal filtration processes and rotating machin-

ery. However, in geophysical settings the effect of the Coriolis force is generally

negligible. Furthermore, the external constraint of a magnetic field on linear and

nonlinear magnetoconvection, with its applications in the study of convection in

the Earth’s interior as well as in the study of bifurcation and chaotic phenomena,

has been investigated (see Rudraiah (1984), and references therein).

At intermediate Rayleigh numbers, the patterns of convection become less regular

and much more complicated as newly unstable modes grow to larger amplitudes

than the original roll cells and supplant them (Palm et al. 1972; Rudraiah and

Srimani 1980). The dynamics and bifurcation structure of convection for interme-

diate Rayleigh numbers (600 ≤ Ra ≤ 1250) have been thoroughly explored both

theoretically and computationally by Graham and Steen (1994). They found that

this Rayleigh number regime is characterised by thermal plumes that emerge from

thin thermal boundary layers at the top and bottom of the domain. These plumes

drive resonant instabilities that lead to periods of quasi-periodic, subharmonic or

weakly chaotic behaviour.
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As the Rayleigh number is increased further the dynamics of the convection be-

come increasingly complicated as we enter a regime of convective turbulence in

which the fluid swirls in highly structured but never-repeating patterns. The

dynamics of high Rayleigh number convective turbulence and the associated en-

hancement of the heat transport still present many challenges for theory and

experiment (Otero et al. 2004).

2.3 Thermosolutal convection

In many geological settings the circulating fluid often contains minerals in solu-

tion, and therefore it is of interest to consider the onset of convection in a porous

medium where the density gradients that provide the driving buoyancy force are

induced by the combination of temperature and solutal gradients. As with single-

diffusive convection, the dimensionless Rayleigh number provides an indication

of the potential for instability, and thus for convective heat transfer. However,

since there are two sources of buoyancy in thermosolutal convection, we need to

consider two Rayleigh numbers: the thermal Rayleigh number Ra, as defined in

the previous section, and the solutal Rayleigh number RaC = NLeRa, where

Le = κ̂T/κ̂C is the ratio of the thermal diffusivity to the molecular diffusivity of

the solute, known as the Lewis number, and N = β̂C∆Ĉ/β̂T∆T̂ is the buoyancy

ratio (Nield and Bejan 2006, §9.1).

While a stratified layer of a single-component fluid is stable if the density de-

creases upwards, a similar layer of a fluid containing two components, which can

diffuse relative to each other, may be dynamically unstable. In a fluid layer, the

interesting effects in thermosolutal convection arise because heat diffuses more

rapidly than a dissolved substance. Hence, this process is often called double-

diffusive convection. In a porous medium the system is also double-advective;

because heat is shared between the fluid and rock matrix, while the solute is

confined to the pore space, heat is advected more slowly than the solute. This

difference in advection and diffusion rates is crucial to the stability properties of

the thermosolutal system (Phillips 1991, §5.2).

The onset of double-diffusive convection in a porous medium was first studied
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theoretically by Nield (1968) who considered the double-diffusive generalisation

of the Horton-Rogers-Lapwood problem: convection in a fully saturated, infinite

horizontal porous layer as a result of linear vertical temperature and concentration

gradients. Using a linear perturbation analysis and considering the limiting case

where the transport is isoadvective, he derived critical conditions bounding the

onset of convection.

When both the thermal and solutal gradients are destabilising the double-diffusive

situation is qualitatively the same as the single-diffusive one. However, interest-

ing new phenomena occur when the thermal and solutal gradients contribute in

opposite senses to the stability of the system.

If the thermal gradient is stabilising, but the solute gradient is destabilising, an

upwardly displaced particle will end up lighter than its surroundings, since heat

diffuses more rapidly than the solute, and therefore continue to move upwards.

Similarly, a downwardly displaced particle will be heavier than its surroundings

and continue to move downwards. This results in monotonic instability. The

stability boundary given by Nield (1968) in this regime has been verified by

experiments in a Hele-Shaw cell by Cooper et al. (1997).

The resulting flow pattern in this regime is known as ‘fingering’, since the same

instability in a pure fluid layer appears in the form of ‘fingers’ that grow downward

from the upper part of the layer (Turner 1985). The linear stability analysis of

Nield (1968) was extended by Taunton et al. (1972) to determine the conditions

under which fingers develop in a porous medium. However, the question arises

as to whether fingers can form fast enough in a porous medium before they are

destroyed by dispersive effects. Visualisation and flux experiments conducted

by Imhoff and Green (1988) using a salt-sugar system found that fingering did

occur, but it was unsteady in contrast to the quasisteady fingering found in a

pure fluid layer. Many authors have highlighted the importance of fingering in

the vertical transport of contaminants in groundwater (Imhoff and Green 1988;

Van Dam et al. 2009 and references therein) however, it was only recently that

field evidence of fingering associated with natural free convection was found (Van

Dam et al. 2009).

Alternatively, when the thermal gradient is destabilising, but the solute gradient
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is stabilising, an upwardly displaced particle will lose heat and end up heavier

than its surroundings and therefore begin to sink. Similarly, a downwardly dis-

placed particle will end up lighter than its surroundings and therefore will rise

again. The restoring forces acting on the particle may return it to its equilibrium

state at a speed greater than its original outward speed, resulting in a growing

oscillatory motion. This is known as overstable behaviour (Nield and Bejan 2006,

§9.1). In this regime the resulting flow pattern can ultimately be either penetra-

tive, where convection cells penetrate upwards and occupy the entire layer, or

layered, where convection occurs as a series of stacked convection cells (Olden-

burg and Pruess 1998). Both experiments in a Hele-Shaw cell (Griffiths 1981),

and numerical experiments (Oldenburg and Pruess 1998) have shown that lay-

ered double-diffusive convection is possible, with the numerical results suggesting

that this state is favoured in an anisotropic porous medium where the vertical

permeability is smaller than the horizontal permeability.

Rudraiah et al. (1982) applied nonlinear stability analysis to the case of a porous

layer with isothermal and isosolutal boundaries. They found that when the solutal

gradient is stabilising and the thermal gradient is destabilising, a finite amplitude

solution to the system is possible for subcritical values of the thermal Rayleigh

number Ra. The minimum values of Ra for which a steady solution is possible lie

below the critical values for the linear instability of the base state; consequently

there is a range of Rayleigh numbers for which nonlinear instability and subcritical

convection are possible.

The linear stability theory was extended by Murray and Chen (1989) to include

the effects of a nonlinear basic salinity profile and temperature-dependent viscos-

ity and volumetric expansion coefficients. It is seen that with variable viscosity

and volumetric expansion coefficients, both the critical thermal Rayleigh num-

ber Ra and the critical wavenumber are reduced. Their experiments with glass

beads in a box with rigid isothermal upper and lower boundaries agreed with

the new reduced critical Ra to within 10%. Furthermore, in the presence of a

stabilising solutal gradient, they found that the onset of convection was marked

by a dramatic increase in the heat flux at the critical Rayleigh number, and as

the temperature difference was reduced to subcritical values, the heat flux curve

established a hysteresis loop.
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Further linear and nonlinear stability analyses, analytical and numerical studies

were undertaken by Mamou and Vasseur (1999) for both Dirichlet and Neumann

thermal and solutal boundary conditions. Using both linear and nonlinear pertur-

bation theories they investigated the onset and development of convection. De-

pending on the boundary conditions and the governing parameters of the problem

(the thermal and solutal Rayleigh numbers, the Lewis number, and the aspect

ratio of the porous enclosure), four different regimes were found to exist: the pure

diffusive regime, the subcritical convective regime, the overstable regime and the

supercritical regime. Their numerical results also indicated the existence of mul-

tiple solutions which depend on the initial conditions, as well as suggesting the

possible occurrence of travelling waves in infinite horizontal enclosures.

2.4 Reactive convection in a porous medium

The models describing single- and double-diffusive convection in a porous medium

have many applications in environmental and geophysical fluid dynamics. These

include the dolomitisation of carbonate platforms, in which original calcium car-

bonate rock is converted into calcium magnesium carbonate, either wholly or in

part, by percolation of fluids through the rock. This process usually, but not

always, improves the reservoir quality of the rock by increasing porosity and

permeability (Kaufman 1994). Large-scale convective circulation of groundwater

containing dissolved minerals in sandstone aquifers has also been proposed to ex-

plain the location of uranium-ore deposits (Raffensperger and Garven 1995a,b).

Furthermore, models of double-diffusive convection have been used to explain

convection patterns and heat transfer in geothermal reservoirs (Oldenburg and

Pruess 1998). The exchange of dissolved species with the porous medium is

believed to be important in many of these settings. However, the effect these

processes might in turn have on the convective motion has received relatively

little attention.

When a nonisothermal chemical reaction takes place, the heat generated (or con-

sumed) by the exothermic (or endothermic) reaction creates density gradients,

which can drive instabilities. The first study of reactive convection in a porous
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medium was undertaken by Steinberg and Brand (1983, 1984) who presented a

linear and weakly nonlinear analysis of the chemically-driven instability of a reac-

tive binary mixture in a porous medium. However, they restricted their analysis

to the regime where the first order reaction occurred over much shorter timescales

than solutal diffusion, i.e. a fast reaction, so solutal diffusion could be neglected.

They found that an endothermic reaction leads only to monotonic instability

when the system is heated from below, while an exothermic reaction leads to

monotonic instability if the system is heated from above, but oscillatory instabil-

ity if the system is heated from below. Furthermore, the presence of a reaction

affects the critical wavenumber at which the onset of convection occurs.

Gatica et al. (1989) and Viljoen et al. (1990) considered a more complicated

exothermic reaction term with the purpose of describing how reactive flow af-

fects the stability boundaries of the system. They assumed that the Lewis

number Le = 1, so the solutal and thermal diffusion rates were identical and

overdamped behaviour was impossible. However, Subramanian and Balakotaiah

(1994) showed that the Lewis number has a pronounced effect on the stability

boundaries. They considered an exothermic first order reaction and examined

the stability of the conduction solution with respect to convective perturbations.

It was found that increasing Le shifts the stationary stability boundary towards

higher values of the thermal Rayleigh number.

More recently, Pritchard and Richardson (2007) investigated the effect of a therm-

ally-controlled reaction on the onset of thermosolutal convection in a porous

medium, using a model based on that of Steinberg and Brand (1983), but where

solutal diffusion is not neglected. Unlike that study, however, they neglected

any thermal contribution from the reaction, and considered the case where the

dominant contribution to buoyancy comes from the change in solute concentra-

tion rather than from changes in temperature. They also found that the critical

wavenumber depends on the reaction rate, although the dependence is qualita-

tively different from that found by Steinberg and Brand (1983). When the solutal

gradient is destabilising, the reaction tends to stabilise the system. If the sys-

tem is weakly solutally destabilised then the reaction can stabilise the system

even in the absence of diffusion, but for strongly destabilised systems, diffusion

is essential to the stability.
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2.5 Flow–reaction feedback

A particular feature of reactive flow in a porous medium, including convective

flow, is the possibility of feedback as the exchange of minerals alters the perme-

ability of the medium, which in turn alters the patterns of flow: inhomogeneous

permeability may even control whether large-scale flow is able to occur (Sharp

and Shi 2009). A general discussion of flow-reaction feedback has been presented

by Phillips (1991, 2009). Some specific problems which have received particular

interest are detailed in this section.

2.5.1 Reaction-infiltration instability

Perhaps the most thoroughly studied topic is the reaction-infiltration, or wormhol-

ing, instability. In this process, fluid is forced through a porous medium and, if

the fluid is undersaturated with respect to the porous medium, dissolution of

the porous medium will commence. As the reaction protrudes into the unaltered

region, the flow of the undersaturated fluid tends to be focussed to the tip of the

protrusion, forming fingers of relatively high permeability, which further dissolve

the medium in these channels, thus enhancing the permeability still further.

Chadam et al. (1986) developed a nonlinear model of flow–reaction feedback

for the reaction-infiltration instability, under the assumption that the porous

medium contains only a single reactive mineral and the fluid contains only a

single reactive chemical species. Making a thin reaction front approximation,

they performed a linear stability analysis of the dissolution fingers and found

that there is a critical wavelength above which disturbances may become linearly

unstable. These predictions were confirmed by numerical simulations.

Chadam et al. (1991) extended this model to allow for the possibility that the dis-

solved solute can increase the viscosity of the fluid. This set-up corresponds to the

unstable situation of forcing a less viscous fluid into one with a higher viscosity,

as with the Saffman-Taylor instability. However, unlike the Saffman-Taylor insta-

bility, chemical reactions are central to the reaction-infiltration instability, where

instabilities result from porosity/permeability changes. Therefore, the front ve-
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locity is slower than the fluid velocity, in contrast to the Saffman-Taylor instability

where they are identical. They found that, with this coupling of the Saffman-

Taylor and reaction-infiltration instabilities, as the viscosity change increases and

as the porosity/permeability change increases, the number of modes that lose

stability also increases. A further extension to include velocity-dependent hydro-

dynamic dispersion was proposed by Chadam et al. (2001), who found that the

inclusion of this dispersion truncates the interval of unstable modes with large

wavenumbers.

A simpler model was proposed by Hinch and Bhatt (1990). They used simpler

reaction equations than Chadam et al. (1986), and ignored large-scale hydrody-

namic dispersion. Furthermore, they kept the porosity of the medium fixed, but

allowed its permeability to vary as a function of the concentration of the dissol-

uble minerals. Their linear stability analysis suggested that the dissolution front

was most unstable to disturbances with wavelengths comparable to the thickness

of the front.

More recently, Zhao et al. (2008) numerically modelled a three-dimensional dis-

solution front. For the numerical simulation of dissolution fronts it is common

to perturb the initial planar front to generate a more complicated morphological

shape during its evolution. However, Zhao et al. argue that the shape of the

resulting dissolution front may be strongly dependent on its initial perturbation.

To remove this possible dependency, they instead add a small randomly generated

perturbation to the initial homogeneous porosity field, thus allowing the initial

dissolution front to evolve freely. Their numerical model was verified against an-

alytical solutions, and it was noted that the initial porosity perturbation did not

affect the initial planar shape of the dissolution front during its propagation.

2.5.2 Convection with feedback

Despite the widespread occurrence of convective fluid circulation in geological

formations, the possibility that it might also experience flow–reaction feedback

does not seem to have received much attention from mathematical modellers.

An exception is the work of Bolton et al. (1996, 1997, 1999), who constructed
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a detailed mathematical model of buoyancy-driven flow in a quartz–silicic acid

system. Their main interest was in how reaction–convection feedback modified

rocks with pre-existing permeability structures, such as fracture zones and fault

zones. They found extremely complicated patterns of coupled flow and trans-

port, in which both thermosolutal effects and the finite timescale associated with

reactions appeared to be important.

There are also some parallels to be drawn between reactive convection in geology

and the behaviour of the mushy layers that form during the solidification of a

multi-component fluid. These mushy layers separate the completely liquid phase

from the completely solid phase and are, in essence, a reactive anisotropic porous

medium through which the residual fluid can flow (Nield and Bejan 2006 §10.2.3;

Worster 1997).

During solidification natural convection can occur as a result of two mechanisms:

in order for the melt to solidify it must be cooled, and consequently the resulting

thermal gradients lead to thermal convection; also, if the melt consists of differ-

ent chemical components, then solutal convection can be driven by gradients in

concentration if one or more component is preferentially incorporated into the

solid (Worster 1997). In contrast with porous media convection models, however,

within a mushy layer the temperature and concentration of the fluid are strongly

coupled, and the buoyancy field is dominated by the concentration field, so there

are no double-diffusive convection effects.

To simplify the analysis, some assumptions are made to create an ideal mushy

layer: the fluid phase is isotropic and Boussinesq, the solid phase forms a station-

ary rigid matrix whose permeability is locally isotropic, and the solid and liquid

phases are in local thermal equilibrium (Worster 1997).

In our model of reactive convection, which will be introduced in §2.6, we will

make many of the same simplifying assumptions; however, there are some key

differences between our model of reactive convection and that of convective flow

in an ideal mushy layer that should be noted. The most obvious difference is the

boundary conditions, as mushy layers are typically bounded between pure solid

and liquid phases; other differences include the relative insignificance of latent

heat when compared to the temperature difference across the porous layer, the
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inclusion of solutal diffusion, and the dependence of reaction rate on porosity

which arises because the reaction involves the direct exchange of solute with the

solid matrix. Furthermore, our solid matrix is composed of solute as opposed

to a difference phase of the fluid species. Thus, although we may expect loose

analogies with mushy layer convection, we may also expect distinct behaviour.

2.5.3 Other contexts

Another flow–reaction process that has received attention from modellers is the

propagation of gravity currents through a reactive medium in both unconfined

permeable layers (Raw and Woods 2003) and layers of finite depth (Verdon and

Woods 2007). The mechanisms involved are similar to those in the reaction-

infiltration instability, although now the density of the injected fluid is different

from that of the host fluid, owing to the different chemical composition of the

fluids. Therefore, buoyancy forces induced by the difference in density of the two

fluids, rather than an external pressure difference, drives the flow.

The dynamics and thermodynamics of magma chambers have been studied by

Hallworth et al. (2005). Here, a homogeneous layer of saturated reactive porous

media is heated from above. The heat flux causes the minerals on the rock matrix

at the top of the layer to dissolve, which increases the density of the fluid and

therefore drives convection in the lower layer. As this high concentration fluid

mixes into the lower layer it precipitates onto the rock matrix, resulting in the

release of latent heat, increasing the temperature of the lower layer. Eventually,

the porous layer develops into a three-layer stratified system comprising pure

fluid overlying a fluid-saturated nonreactive porous medium, in turn overlying

the evolved saturated reactive porous medium.

A variation of dissolution-driven convection may be encountered during the geo-

chemical sequestration of carbon dioxide. Here, the dissolution of buoyant carbon

dioxide near the top of the layer into the pore fluid increases the density of the

fluid; once the denser layer reaches a critical thickness it becomes unstable to

convective overturning (Ennis-King et al. 2005; Riaz et al. 2006). This dissolved

carbon dioxide can then react with minerals in the porous medium, altering its
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porosity and permeability (Ennis-King and Paterson 2007).

2.6 Model equations

While models as complicated as Bolton et al.’s are undoubtedly required to de-

scribe real geological systems, there is also a case for studying more heavily ide-

alised models to identify the key mechanisms and interactions involved in reactive

convection. In this thesis we build upon the work of Pritchard and Richardson

(2007) to include the effects of porosity evolution as a result of reactive convection.

In this section we detail our model of buoyancy-driven flow and solute transport

in a saturated horizontal porous medium, the porosity and permeability of which

evolve through precipitation and dissolution as a mineral is lost or gained from

the pore fluid.

2.6.1 Continuity equation

Consider the fluid flow across a unit cross-sectional area of a rock matrix perpen-

dicular to the mean pore velocity v̂. Over the fraction φ of interconnected voids

the mean flow velocity is v̂, while over the solid or inactive voids it will be zero.

Therefore, averaged over the whole area, the flow per unit cross-sectional area is

û = φv̂. This velocity û is commonly known as the transport velocity, and can

be interpreted as the velocity with which a fluid would be moving if it occupied

the whole space and had the same volume flux (Phillips 1991, §2.5).

We assume that the mass density of the fluid is independent of the species con-

centration, which allows the flow and transport problems to be decoupled (Has-

sanizadeh and Leijnse 1988, Bear 2004, §5). This assumption is valid for real

world fluid-rock interactions, for example, in a saturated layer of quartz rich

sandstone or calcium carbonate. The density of quartz-saturated water can be

up to 0.1% higher than that of pure water (Anderson and Burnham 1965), while

the density of calcium carbonate saturated water can be up to 8% higher (Ca-

ciagli and Manning 2003). However, this assumption is a poor description for

salt-water systems since the density of salt-saturated water is 35% higher than
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that of pure water.

The conservation of fluid mass is derived by equating the rate of increase of fluid

mass within an arbitrary volume of the porous medium to the net mass flux of

fluid into this volume. The total mass of fluid in the volume can increase as a

result of both advection and diffusion of fluid across the bounding surface, as well

as a reaction within the volume which results in the transfer of chemical species

from the solid to the fluid phase. Hence, under the assumption that the advective

flux of fluid mass across the bounding surface of the volume is much greater than

the diffusive flux, fluid mass conservation can be expressed as

∂

∂t̂
(ρ̂fφ) + ∇̂ · (ρ̂f û) = Q̂C , (2.2)

where ρ̂f is the fluid density, û is the transport velocity, and Q̂C is the rate of

addition of solute mass to the fluid per unit time per unit volume as a result of

a reaction.

Similarly, the conservation of solid mass can be written as

∂

∂t̂
[(1− φ)ρ̂s] = −Q̂C , (2.3)

where ρ̂s is the solid matrix density. From (2.3) we see that Q̂C is the same size

as the first term in (2.2). Therefore, under the assumption that the fluid flow

is much faster than the rate of addition of species to the fluid and the rate of

change of porosity, the fluid mass conservation (2.2) can be written as

∇̂ · (ρ̂f û) = 0. (2.4)

It is important to note that although this assumption is reasonable for buoyancy-

driven convection, it is less reasonable for the reaction-diffusion instability which

emerges at low Rayleigh numbers.
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2.6.2 Darcy’s law

In 1856 Henry Darcy published his famous report on the public fountains of Dijon

(translated in Bobeck 2004), which included an equation relating the volumetric

flow rate through a column of sand to the pressure difference along the column.

In modern notation, neglecting body forces such as gravity, this is expressed as

û = −K̂
µ̂

∂p̂

∂x̂
, (2.5)

where µ̂ is the dynamic viscosity of the fluid, ∂p̂/∂x̂ is the pressure gradient in the

flow direction, and K̂ is the permeability of the medium which we will discuss in

more detail in the next section. A three-dimensional tensorial form of this exper-

imental result has been derived theoretically using volume averaging techniques

by Whitaker (1986), who made no constitutive assumptions nor restricted his

analysis to either spatially periodic or homogeneous porous media. However, we

note that Whitaker does not actually derive the form of the permeability tensor

K̂, leaving that task for experimental or numerical investigation.

Darcy’s law is only valid if the transport velocity û is sufficiently small, such that

Re ∼ 1, where Re = ρ̂f ûδ̂/µ̂ is the microscopic Reynolds number with length

scale δ̂ given by the typical pore or particle diameter. Characteristic diameters

are usually 1 − 10 µm for sandstone and limestone, but could be as large as 10

cm for coarse gravel beds (Phillips 1991, §§2.6-2.7). Therefore, for Darcy’s law

to remain valid, the flow of water through sandstone requires flow velocities of

0.1−1 ms−1, while flow through very permeable material would require very slow

flow velocities of 10−5 ms−1.

Darcy’s law becomes increasingly inaccurate as the flow velocity is increased so

that 1 . Re . 10, as seen in very fast flows in permeable material. This transition

is not one from linear to turbulent flow, but one where the form drag due to solid

obstacles becomes comparable to the surface drag due to friction. This deviation

from the linearity of Darcy’s law is well described by the Forchheimer extension

∇̂p̂ = − µ̂
K̂

û− cF K̂−
1
2 ρ̂f |û|û, (2.6)
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where cF is a dimensionless form-drag constant (Nield and Bejan 2006, §1.5.2).

For our study we use a two-dimensional form of (2.5) and include gravity so that

û = −K̂
µ̂
∇̂p̂− K̂

µ̂
ρ̂f ĝez, (2.7)

where ez is a unit vector in the z-direction.

2.6.3 Permeability

The permeability of a medium is a measure of the ability of that medium to

allow fluids to pass through it. It can vary over many orders of magnitude in a

single medium; for example, values range from 10−10 − 10−14 m2 for sandstone,

and 10−10 − 10−12 m2 for limestone (Phillips 2009, Table 2.1). In general the

permeability K̂ is a second-order tensor, but in the case of an isotropic medium

it simplifies to a scalar.

For a porous medium that consists of particles of approximately spherical shape

with a distribution of particle diameters D̂p, the Carmen-Kozeny relationship,

K̂ =
D̂2
p2
φ3

180(1− φ)2
, (2.8)

provides a satisfactory expression for the permeability, where

D̂p2 =

∫∞
0
D̂3
ph(D̂p)dD̂p∫∞

0
D̂2
ph(D̂p)dD̂p

, (2.9)

and h(D̂p) is the density function for the distribution of diameters D̂p, (Nield and

Bejan 2006, §1.5). However, this relationship breaks down if the particles are not

spherical or if there is a broad particle-size distribution.

For more general porous media, the relationship between the permeability K̂

and porosity φ depends on the geometry of the fluid pathways. Generally, K̂ ∼
10−2φδ̂2, where δ̂ is the characteristic diameter of the fluid pathways. Typical

values of δ̂ were given in §2.6.2. Following Phillips (1991, §4.7), in an evolving
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porous medium, if the pathways are predominantly tubular then φ ∼ nδ̂2, where

n is the number of tubes per cross-sectional area, so as the pore diameter changes

K̂

K̂0

=

(
φ

φ0

)2

, (2.10)

where the subscript 0 represents initial quantities before any evolution. However,

if the fluid flows along a network of intersecting cracks or fissures, then φ ∼ λ̂δ̂,

where λ̂ is the length of crack per unit area, and so

K̂

K̂0

=

(
φ

φ0

)3

. (2.11)

More generally, the permeability can be modelled by

K̂(φ) = K̂0

(
φ

φ0

)b
, (2.12)

where the exponent b typically lies between 2 and 3 inclusive. In this work we

will take b = 2 throughout.

2.6.4 Heat equation

To derive an equation that expresses the first law of thermodynamics in a porous

medium, we first assume that the diffusion of heat across a grain of porous ma-

terial is rapid enough so that the solid and fluid phases are in local thermal

equilibrium. Hence, we can write T̂s = T̂f = T̂ , where T̂s and T̂f are the temper-

atures of the solid and fluid phases, respectively. Furthermore, we assume that

heat conduction in the solid and fluid phases occur in parallel so that there is no

net heat transfer from one phase to the other, and that radiative effects, viscous

dissipation, and the work done by pressure changes are negligible.

Therefore, the first law of thermodynamics in a porous medium may be written

as (Nield and Bejan 2006, §2.1)

(ρ̂ĉ)m
∂T̂

∂t̂
+ (ρ̂ĉ)f û · ∇̂T̂ = ∇̂ · (k̂m∇̂T̂ ) + Q̂T , (2.13)
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where

(ρ̂ĉ)m = φ(ρ̂ĉ)f + (1− φ)(ρ̂ĉ)s, (2.14)

k̂m = φk̂f + (1− φ)k̂s, (2.15)

Q̂T = φQ̂f + (1− φ)Q̂s, (2.16)

are the volumetric heat capacity of the saturated medium, the overall thermal

conductivity, and the overall heat production per unit volume of the medium,

respectively, and the subscripts s and f refer to the solid and fluid phases, respec-

tively. In this thesis we assume that there is no heat generation and consequently

the Q̂T term is neglected.

If we assume that the thermal conductivity of the fluid and solid phases are equal,

then (2.13) can be rewritten as

(ρ̂ĉ)m
∂T̂

∂t̂
+ (ρ̂ĉ)f û · ∇̂T̂ = k̂m∇̂2T̂ . (2.17)

The effective thermal diffusivity of the medium κ̂T can be calculated by dividing

the thermal conductivity of the medium k̂m by its volumetric heat capacity (ρ̂ĉ)m

(Phillips 1991, §2.8). The thermal conductivity of a saturated quartz matrix lies

in the range 2−6 Wm−1K−1, and the volumetric heat capacity of saturated quartz

is approximately 106 JK−1m−3 (Bolton et al. 1996). Therefore, the effective

thermal diffusivity in saturated quartz is of the order of 10−6 m2s−1.

2.6.5 Dissolved solute equation

The total mass of dissolved species in a unit averaging volume is φĈ, where Ĉ

represents the mass concentration of dissolved species per unit volume of fluid.

The rate of change of the total mass of species is the net result of (i) the advection

of solute into the volume by the movement of the interstitial fluid, (ii) diffusion

and macroscopic dispersion, and (iii) addition of solute to the fluid by dissolution

from, or removal of solute from the fluid by precipitation onto, the rock matrix
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(Phillips 1991, §2.9). Therefore, the dissolved solute balance can be written as

∂

∂t̂
(φĈ) + ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ) + Q̂C , (2.18)

where κ̂C is the molecular diffusivity of the solute through the fluid, and Q̂C is

the rate of addition of solute to the fluid per unit volume.

As a typical value we will use the molecular diffusivity of dissolved silica: κ̂C =

10−9 m2s−1 (Bolton et al. 1996). Therefore, a typical Lewis number is Le =

κ̂T/κ̂C ≈ 103.

2.6.6 Equation of state and Oberbeck-Boussinesq approx-

imation

For solutal convection we take the density to be given by the linear approximation

ρ̂f (Ĉ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0)], (2.19)

where ρ̂0 is the fluid density at some reference concentration Ĉ0. For thermoso-

lutal convection the density is given by

ρ̂f (Ĉ, T̂ ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0) + β̂T (T̂ − T̂0)], (2.20)

where ρ̂0 is the fluid density at some reference concentration Ĉ0 and reference

temperature T̂0.

In order to simplify the analysis in this work, we assume that the Oberbeck-

Boussinesq approximation is valid. Here, all properties of the saturated medium

and of the fluid are set constant except for the density, but changes in the density

may be ignored except in the buoyancy terms β̂T∆T̂ and β̂C∆Ĉ. This approxima-

tion remains valid as long as density changes ∆ρ̂f remain small when compared to

the reference density ρ̂0 throughout the flow region and temperature and concen-

tration variations are insufficient to cause the various fluid and solid properties

of the medium to vary significantly from their mean values.
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Under the Oberbeck-Boussinesq approximation, the continuity equation (2.4) be-

comes

∇̂ · û = 0. (2.21)

2.6.7 Reaction and porosity evolution

The source term Q̂C in the solute transport equation (2.18) represents the in-

crease or decrease in the amount of solute in the fluid as a result of the physical

process of dissolution or precipitation of the solid phase, respectively. The de-

tailed chemical kinetics of this process are not very well understood, however it is

known that Q̂C is proportional to the active surface area of rock exposed to the

fluid within the pore network, the rate constant for the reaction, and a function

of the precipitation and dissolution activities involved (Phillips 1991, §2.9). To

overcome the lack of understanding, these factors, as well as the temperature

dependence of the reaction, are lumped together in terms of an overall reaction

rate. This lumped reaction rate can vary over many orders of magnitude: labo-

ratory measurements on silicate minerals are relatively high (0.6− 6× 10−7 s−1),

whereas those inferred from deep ocean cores in siliceous sediments are five orders

of magnitude smaller (Phillips 1991, §2.9).

Near equilibrium it can be expected that the reaction is first order, so the rate of

production or disappearance of a dissolved substance is linearly proportional to

the difference between the local concentration and the equilibrium concentration.

Hence,

Q̂C = k̂(φ)(Ĉeq − Ĉ), (2.22)

where Ĉeq is the equilibrium concentration of solute, which will in general depend

on the local pressure, temperature and rock mineralogy.

Our lumped reaction rate k̂(φ) ≥ 0 implicitly depends on the surface area of rock

exposed to the fluid within the pore network. This should reduce to zero when

either there is no rock or there are no pores. Therefore, for exploratory purposes

we take

k̂(φ) = k̂refφ(1− φ), (2.23)
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where k̂ref is some reference reaction rate which we define using the initial porosity

φ0 and initial reaction rate k̂0, so

k̂0 = k̂refφ0(1− φ0). (2.24)

With this definition of the reaction rate we assume there is no supply limitation

of solute; that is, we assume that the porous medium consists entirely of soluble

species. In realistic geological settings this assumption is unlikely to hold, how-

ever, it provides a reasonable starting point for exploring the effect of porosity

evolution on reactive convection.

Alternative forms of the reaction rate were proposed by Chadam et al. (1986)

and Zhao et al. (2008) when considering a dissolution front in reactive-infiltration

instabilities. In both cases the reaction is limited by the supply of solute. There-

fore, no reaction can occur once the porosity reaches a final value φfinal. Chadam

et al. (1986) define their reaction rate as

k̂(φ) = k̂(φfinal − φ)
2
3 , (2.25)

where they argue the 2/3 power is typical of a simplified surface dissolution and

is included for specificity. Zhao et al. (2008) take a similar approach and define

their reaction as

k̂(φ) = k̂(φfinal − φ). (2.26)

Here k̂ is a constant reaction rate. It is important to note that both these ex-

pressions only consider the dissolution of solute from the rock matrix, however

they could easily be extended to allow for precipitation.

Using mass conservation arguments, if ρ̂s is the solid matrix density, which is

typically about 2 × 103 kg m−3 for sandstone, then the source term Q̂C can be

expressed as

Q̂C = ρ̂s
∂φ

∂t̂
, (2.27)

and thus the rate of change of porosity is proportional to the reaction rate,

∂φ

∂t̂
=
k̂(φ)

ρ̂s
(Ĉeq − Ĉ). (2.28)
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Note that combining (2.18) and (2.28) gives the conservation equation for the

total mass of the chemical species

∂

∂t̂
(φĈ + (1− φ)ρ̂s) + ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ), (2.29)

where, since we assume that the porous medium consists entirely of solute, ρ̂s =

Ĉs, the mass concentration of solute in the solid phase.

2.6.8 Summary of model equations

In summary, our model of buoyancy-driven flow and solute transport in a satu-

rated horizontal porous medium is governed by:

Continuity equation

∇̂ · û = 0, (2.30)

Darcy’s Law

û = −K̂0

µ̂

(
φ

φ0

)2

∇̂p̂− K̂0

µ̂

(
φ

φ0

)2

ρ̂f (Ĉ, T̂ )ĝez, (2.31)

Thermal energy balance

(ρ̂ĉ)m
∂T̂

∂t̂
+ (ρ̂ĉ)f û · ∇̂T̂ = (ρ̂ĉ)mκ̂T ∇̂2T̂ , (2.32)

Dissolved species balance

∂

∂t̂
(φĈ) + ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ) + k̂0

φ(1− φ)

φ0(1− φ0)
(Ĉeq(ẑ)− Ĉ), (2.33)

Porosity evolution (solid species balance)

∂φ

∂t̂
=
k̂0

ρ̂s

φ(1− φ)

φ0(1− φ0)
(Ĉeq(ẑ)− Ĉ), (2.34)

Equation of state

ρ̂f (Ĉ, T̂ ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0) + β̂T (T̂ − T̂0)]. (2.35)
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Reactive solutal convection

In this chapter we consider the simplest model in which interactions between con-

vective circulation and an evolving porous medium may occur: convection driven

solely by solutally-induced density effects, in which the solute may be exchanged

with the porous matrix by a first-order reaction which attempts to restore the

local solute concentration to some local equilibrium value that varies with depth

in the medium. This model can be thought of as a simple model of vertically

varying rock geochemistry, or as representing thermally-controlled solubility in a

system in which rapid thermal diffusion preserves a uniform geothermal temper-

ature gradient.

In §3.1 we present a model of flow and transport in a porous medium with evolving

porosity. We then, in §3.2, carry out a linear stability analysis of the onset of

convection, paying particular attention to the permeability feedback effects which

enter on a timescale generally slower than that of the flow. In §3.3, we validate the

stability analysis using a numerical model, and carry out a sequence of numerical

experiments to investigate the longer-term behaviour of the system. In particular,

we seek to identify and interpret particular feedback mechanisms which control

the evolution of the porous matrix. Finally, in §3.4 we summarise our results and

draw some general conclusions.

This chapter has been published in the Journal of Fluid Mechanics (Ritchie and

Pritchard 2011), in substantially the form in which it appears here.

27
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3.1 Model description

We consider an initially homogeneous and isotropic porous layer of depth ĥ with

solutal mass concentrations Ĉ0 and Ĉ1 imposed at the bottom and top, respec-

tively (figure 3.1). The bottom and top layers are presumed to be impermeable,

and we impose chemical equilibrium at the boundaries.

������������������������������

������������������������������
ẑ

x̂

ẑ

ĈeqĈ0 Ĉ1

ĥ Porous medium

Impermeable boundary with Ĉ = Ĉ0

Impermeable boundary with Ĉ = Ĉ1

Figure 3.1: Schematic of the system under consideration.

We take x̂ and ẑ as the horizontal and vertical coordinates, respectively, with ẑ

increasing upwards. Making a Boussinesq approximation, the flow is governed

by the equations of mass conservation and Darcy’s law (§§2.6.1 and 2.6.2). The

governing equations can be derived from the full thermosolutal system presented

in chapter 2 in the limit κ̂T → ∞, β̂T = 0. The appropriate equations are

therefore

∇̂ · û = 0, (3.1)

û = −K̂0

µ̂

(
φ

φ0

)2

∇̂p̂− K̂0

µ̂

(
φ

φ0

)2

ρ̂f (Ĉ)ĝez, (3.2)

∂(φĈ)

∂t̂
+ ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ) + k̂0

φ(1− φ)

φ0(1− φ0)
(Ĉeq(ẑ)− Ĉ), (3.3)

∂φ

∂t̂
=
k̂0

ρ̂s

φ(1− φ)

φ0(1− φ0)
(Ĉeq(ẑ)− Ĉ), (3.4)

ρ̂f (Ĉ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0)]. (3.5)

Here K̂0 is the initial permeability, µ̂ is the fluid viscosity, ρ̂f is the fluid density,

û is the two-dimensional fluid velocity, κ̂C is the molecular diffusivity of the
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solute through the fluid, and k̂0 is the initial reaction rate; Ĉ represents the mass

concentration of solute in the fluid, and Ĉeq(ẑ) is the equilibrium concentration

of solute, which we assume varies linearly in ẑ. The choice of a linearly varying

equilibrium concentration will permit us to define a non-evolving diffusive base

state for the system. As before, a caret ˆ denotes a dimensional variable, while

dimensionless variables are unadorned.

We seek an initial steady state solution where û = 0 and there is no lateral

variation. We then find a linear distribution of solute concentration,

Ĉs(ẑ) = Ĉ0 + (Ĉ1 − Ĉ0)
ẑ

ĥ
= Ĉeq(ẑ). (3.6)

3.1.1 Non-dimensionalisation

Equation (3.3) may be simplified by using (3.1) to obtain

φ
∂Ĉ

∂t̂
+ (û · ∇̂)Ĉ = κ̂C∇̂ · (φ∇̂Ĉ) + k̂0

φ(1− φ)

φ0(1− φ0)
(Ĉeq(ẑ)− Ĉ). (3.7)

We now define dimensionless variables as

x̂ = ĥx, û =
κ̂C

ĥ
u, t̂ =

φ0ĥ
2

κ̂C
t, p̂ =

κ̂C µ̂

K̂0

p, Ĉ = Ĉ0 + (Ĉ1 − Ĉ0)C, (3.8)

to obtain the dimensionless governing equations

∇ · u = 0, (3.9)

∇p = −
(
φ

φ0

)−2

u−RCCez −
RC

β̂C(Ĉ1 − Ĉ0)
ez, (3.10)

φ

φ0

∂C

∂t
+ (u · ∇)C = ∇ · (φ∇C)− k0

φ(1− φ)

φ0(1− φ0)
(C − z), (3.11)

∂φ

∂t
= −δk0

φ(1− φ)

1− φ0

(C − z), (3.12)
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with the boundary conditions

w = 0 and C = z at z = 0 and at z = 1. (3.13)

The dimensionless parameters k0, δ and RC are defined as

k0 =
ĥ2k̂0

κ̂C
, δ =

(Ĉ1 − Ĉ0)

ρ̂s
, RC =

K̂0ĝĥβ̂C(Ĉ1 − Ĉ0)

µ̂κ̂C
. (3.14)

The parameter RC is a solutal Rayleigh number, positive values of which cor-

respond to an unstable solutal density gradient. The parameter k0 > 0 is a

Damköhler number which provides the dimensionless reaction rate for the sys-

tem: note that estimates for geochemical reaction rates may vary by many orders

of magnitude (Phillips 2009, §2.8). Finally, δ is a matrix evolution parameter,

which may be assumed to be much less than unity since mass concentrations of

solute are typically much smaller than the density of the solid mineral (Phillips

2009, §2.8).

3.2 Linear stability analysis

We define infinitesimal perturbation variables, denoted by a dash, as

u′ = u, C ′ = C − z, p′ = p+
1

2
RCz

2 +
RC

β̂C(Ĉ1 − Ĉ0)
z, φ′ = φ− φ0, (3.15)

and assume that the amplitude of the perturbations are much smaller than the

matrix evolution parameter δ, in order to retain the δ term at linear order. The

alternative assumption that δ is smaller than the amplitude of the perturbations

is discussed in appendix A.1.
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By neglecting second-order quantities, we may simplify (3.9)–(3.12) to obtain

∇ · u′ = 0, (3.16)

∇p′ = −u′ −RCC
′ez, (3.17)

∂C ′

∂t
+ w′ = φ0∇2C ′ +

∂φ′

∂z
− k0C

′, (3.18)

∂φ′

∂t
= −δk0φ0C

′, (3.19)

with boundary conditions given by

w′ = 0 and C ′ = 0 at z = 0 and at z = 1. (3.20)

Note that at this linear order there is no effect of varying porosity and perme-

ability in the velocity equation (3.17). Therefore only the solute fields feel the

effect of porosity evolution.

We seek solutions of the form

u′ = U(z)eimxeσt, w′ = W (z)eimxeσt, p′ = P (z)eimxeσt

C ′ = χ(z)eimxeσt, φ′ = Φ(z)eimxeσt
(3.21)

where the real parts are assumed, the wave number m is a positive real number,

and U,W,P, χ,Φ and σ are generally complex. Substituting these into (3.16)–

(3.19) we obtain

imU(z) +
d

dz
W (z) = 0, (3.22)

imP (z) = −U(z), (3.23)

d

dz
P (z) = −W (z)−RCχ(z), (3.24)[

φ0

(
d2

dz2
−m2

)
− k0 − σ

]
χ(z) = W (z)− d

dz
Φ(z), (3.25)

σΦ(z) = −δk0φ0χ(z). (3.26)
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Equations (3.22)–(3.26) can be combined and simplified to give[
φ0

(
d2

dz2
−m2

)
− δk0φ0

σ

d

dz
− (k0 + σ)

] [
d2

dz2
−m2

]
W (z) = m2RCW (z),

(3.27)

while W (z) must satisfy the boundary conditions

W (z) = 0 and

(
d2

dz2
−m2

)
W (z) = 0 at z = 0 and at z = 1. (3.28)

Adapting the approach of Chandrasekhar (1961, §15) for Rayleigh–Bénard con-

vection, we seek solutions to (3.27) in the form W (z) ∝ exp(qz), where q is a root

of the auxiliary equation[
φ0(q2 −m2)− δk0φ0

σ
q − (k0 + σ)

]
[q2 −m2] = m2RC . (3.29)

In general we may write

W (z) = A1e
q1z + A2e

q2z + A3e
q3z + A4e

q4z, (3.30)

and the boundary conditions (3.28) may be written as

B ·


A1

A2

A3

A4

 = 0 (3.31)

where

B =


1 1 1 1

eq1 eq2 eq3 eq4

(q2
1 −m2) (q2

2 −m2) (q2
3 −m2) (q2

4 −m2)

(q2
1 −m2)eq1 (q2

2 −m2)eq2 (q2
3 −m2)eq3 (q2

4 −m2)eq4

 . (3.32)

For nontrivial solutions, therefore, we require that

det(B) = 0. (3.33)
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3.2.1 Reaction but no matrix evolution

Before considering the full linear stability problem, it is helpful to examine the

rather simpler case δ = 0, so the reaction acts to eliminate solutal perturbations

but does not modify the porosity.

If we take δ = 0, then the terms in (3.29) that are linear in q disappear, and it

has roots q1 = −q2 and q3 = −q4 = −iq0, where

q1 =

[
1

2φ0

(k0 + σ + 2φ0m
2 +

√
(k0 + σ)2 + 4φ0m2RC)

]1/2

,

q0 =

[
− 1

2φ0

(k0 + σ + 2φ0m
2 −

√
(k0 + σ)2 + 4φ0m2RC)

]1/2

.

(3.34)

The condition (3.33) for nontrivial solutions therefore becomes

((k0 + σ)2 + 4φ0m
2RC) sinh(q1) sin(q0) = 0. (3.35)

For this reduced problem the principle of exchange of stabilities holds (see ap-

pendix A.2), so for marginal stability we set σ = 0. Equation (3.35) then has

solutions given by

k2
0 + 4φ0m

2RC = 0, (3.36)

or q1 =

[
1

2φ0

(k0 + 2φ0m
2 +

√
k2

0 + 4φ0m2RC)

]1/2

= 0, (3.37)

or q0 =

[
− 1

2φ0

(k0 + 2φ0m
2 −

√
k2

0 + 4φ0m2RC)

]1/2

= nπ, (3.38)

where n ∈ Z.

It is straightforward to show that solutions (3.36), (3.37) and (3.38) with n = 0

each give repeated roots in (3.29), and therefore cannot lead to a non-trivial

solution of the linear problem. Solution (3.38) with n 6= 0 gives

RC = RC,0(m) =
(φ0(n2π2 +m2) + k0)(n2π2 +m2)

m2
, where n ∈ Z, (3.39)
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and the four solutions to (3.29) remain linearly independent.

The quantity RC,0(m) takes its minimum value, Rcrit
C,0, when

n = 1 and m = mcrit
0 = π

(
1 +

k0

π2φ0

)1/4

, (3.40)

so

Rcrit
C,0 = φ0π

2

[
1 +

(
1 +

k0

π2φ0

)1/2
]2

(3.41)

If we set k0 = 0 in (3.39) and (3.40), then we recover the marginal stability

condition Rcrit
C,0 = 4φ0π

2 for single-diffusive solutal convection in a non-evolving

porous medium. Figure 3.2 illustrates how Rcrit
C,0 increases with increasing k0.

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50

k0

Rcrit
C,0

Figure 3.2: Stability boundary for Rcrit
C,0 with φ0 = 0.1 given by (3.41).

It can be seen from (3.40) that increasing the reaction rate k0 both stabilises the

system (by eliminating destabilising solutal perturbations) and favours the devel-

opment of narrower convection cells. Pritchard and Richardson (2007) found the

same qualitative behaviour in solutally destabilised double-diffusive convection

with a reaction term, reflecting the strong similarity between these models. We

will discuss below (§3.2.3) how the predictions with δ = 0 relate to the onset of

convection in the full system.
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3.2.2 Linear stability analysis of the full problem

When δ 6= 0, an analytical solution to (3.33) in terms of σ is not available.

Therefore, the stability problem was investigated numerically by a continuation

method, tracking σ as RC changed, while keeping all other parameters fixed. A

numerical solution to (3.35) for a large initial value of RC was used as an initial

guess. This method was implemented in Maple 12, using the built-in routine

fsolve.

Unfortunately, the task of tracking the solution branch is numerically very labo-

rious, largely because the analytical solutions for qi are prohibitively complicated

and so nested numerical solutions of (3.29) and (3.33) are required. Additionally,

we found that to track a single branch it was necessary to reduce RC in steps no

larger than 10−2, with smaller steps being required close to the bifurcation point

discussed below (§3.2.3). On a desktop computer, the calculation of the results

shown in figure 3.3 required around two hours to produce. This effectively pre-

cluded the thorough investigation of the full problem defined by (3.33): instead,

a less formal Galerkin approach was employed both in order to search parameter

space and to provide insight into the solution structure.

3.2.3 Galerkin approach to the linear stability problem

In the Galerkin approach, the vertical structure of the perturbations is approx-

imated by a severely truncated Fourier series in z, producing a set of equations

that may more readily be solved to provide rapid estimates of the stability be-

haviour.

3.2.3.1 Galerkin approach

We start with the system of equations (3.22)–(3.26), subject to the boundary

conditions

χ = 0 and W = 0 on z = 0 and on z = 1, (3.42)
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and to the usual non-triviality condition that the solution is not identically zero.

Eliminating U , Φ and P we obtain the system

− 1

m2

d2W

dz2
= −W −RCχ, (3.43)

φ0

(
d2χ

dz2
−m2χ

)
− (k0 + σ)χ = W +

δk0φ0

σ

dχ

dz
, (3.44)

subject to the same boundary conditions. It is possible to further eliminate either

χ or W as in (3.27), but as this complicates the boundary conditions we retain

both.

We will seek approximate solutions in the form

W (z) = sin(πz) +W2 sin(2πz), χ(z) = χ1 sin(πz) + χ2 sin(2πz). (3.45)

Note that the boundary conditions are automatically satisfied and that the non-

triviality condition has been imposed by normalising the sin(πz) component of

W (z). We know that in the limit δ = 0 this approximation will become ex-

act, with W2 = 0 = χ2; meanwhile we expect the second harmonics to be the

first Fourier mode excited by interactions, as in the study of reactive convection

by Gatica, Viljoen, and Hlavacek (1989) and in nonlinear convection problems

close to the stability boundary (see e.g. Rudraiah, Srimani, and Friedrich 1982;

Mamou and Vasseur 1999; Pritchard and Richardson 2007). Note that with this

normalisation W 6= 0. The alternative scenario of normalising with respect to

the concentration field χ to allow W = 0 is discussed in more detail in §3.2.3.5.

With four unknowns, we can choose to satisfy four integral conditions. The natu-

ral ones are obtained by extracting the first and second Fourier sine components

of (3.43) and (3.44):∫ 1

0

sin(πnz)

[
− 1

m2

d2W

dz2

]
dz =

∫ 1

0

sin(πnz) [−W −RCχ] dz, (3.46)∫ 1

0

sin(πnz)

[
φ0

(
d2χ

dz2
−m2χ

)
− (k0 + σ)χ

]
dz =∫ 1

0

sin(πnz)

[
W +

δk0φ0

σ

dχ

dz

]
dz,

(3.47)
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for n = 1 and for n = 2. This yields a system of four algebraic equations,

π2

2m2
= −1

2
− RC

2
χ1, (3.48)

−1

2

(
φ0π

2 + φ0m
2 + k0 + σ

)
χ1 =

1

2
− 4δk0φ0

3σ
χ2, (3.49)

2π2W2

m2
= −1

2
W2 −

RC

2
χ2, (3.50)

−
(

2φ0π
2 +

φ0m
2

2
+
k0 + σ

2

)
χ2 =

1

2
W2 +

4δk0φ0

3σ
χ1. (3.51)

The most productive approach to these equations is to eliminate W2, χ1 and χ2

to obtain an equation for σ. Before doing so, it is helpful to express the Rayleigh

number in terms of the critical condition for δ = 0. We define RC = RC,0(m)+∆,

where RC,0(m) is given by (3.39). We can now write the growth rate for δ = 0 as

σ = σ0 =
m2∆

π2 +m2
. (3.52)

With this notation, we find that σ 6= 0 satisfies the quartic

a4σ
4 + a3σ

3 + a2σ
2 + a1σ + a0 = 0, (3.53)

where

a4 = 9m4 + 36π4 + 45π2m2, (3.54)

a3 = 27π2k0(m2 + π2) + 54π2φ0m
4 + 189π4φ0m

2 + 135π6φ0

−
(
18m4 + 45π2m2

)
∆,

(3.55)

a2 = −(135π4φ0m
2 + 54π2φ0m

4 + 27π2k0m
2)∆ + 9m4∆2, (3.56)

a1 = 0, (3.57)

a0 =
(
256π4 + 320π2m2 + 64m4

)
φ2

0k
2
0δ

2. (3.58)

Because (3.53) is a polynomial, it is straightforward to locate all the complex

roots numerically (for example, using the fsolve command in Maple), and thus

to track all the solutions through parameter space.
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3.2.3.2 The behaviour of roots σ(RC ;m)

Figure 3.3 shows representative results of the unstable roots of σ when the

wavenumber m and all the parameters except ∆ are fixed, while ∆ is varied

about zero. Note that we have not shown the stable roots in figure 3.3. For

this, and all subsequent figures in this section, the default parameter values were

φ0 = 0.1, k0 = 10, m = 3 and δ = 0.1: this rather large value of δ was chosen to

make deviations from the case δ = 0 as apparent as possible.

When ∆ is large and positive, so RC is somewhat larger than RC,0, the branch

of σ with largest real part closely tracks σ0. It deviates weakly from this as ∆

is reduced, until this branch and the one below merge. This occurs at about

∆ ≈ 0.7 in figures 3.3(a) and (b); more generally (see the asymptotic analysis in

§3.2.3.3.1) the point at which this occurs scales as ∆ ∼ δ2/3 and σ ∼ δ2/3. At this

bifurcation point the values of σ become complex. As ∆ is further reduced, <(σ)

continues to fall, but never reaches zero, asymptoting toward it as ∆→ −∞ (see

§3.2.3.3.3); meanwhile =(σ) first increases rapidly in magnitude and then decays.

This behaviour appears to be generic for all values of m, although the position

of the bifurcation point changes with m.

This behaviour may be interpreted physically. It is straightforward to show from

(3.22)–(3.26) that the principle of the exchange of stabilities does not hold for

the base state, since when σ = 0 and δ 6= 0, (3.26) requires χ = 0, and the system

may be reduced to d2W/dz2 = m2W with W (0) = 0 = W (1) and no non-trivial

solutions. Thus, although the system with δ 6= 0 can mimic the system with

δ = 0 closely (to within O(δ2): see §3.2.3.3.2), as RC → RC,0 something must

break down. What emerges is a weakly growing travelling mode, which will be

discussed further in the next section. It is interesting and unexpected that the

system is unstable for all values of RC , even when RC is reduced well below RC,0.

Figure 3.3 also compares the predictions of the Galerkin analysis with those from

the full numerical solution of (3.33), again taking a relatively large value of δ.

Good agreement can be seen for values of ∆ as low as the bifurcation point; even

thereafter, the real part of the growth rate is tracked very accurately, while errors

in the imaginary part are of the order of 10%. Further comparisons were carried
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Figure 3.3: Behaviour of σ close to ∆ = 0, for k0 = 10, δ = 0.1, φ0 = 0.1 m = 3.
Figure (a) shows <(σ), while figure (b) shows =(σ). Solid lines are full numerical
solutions to the linear problem; dashed lines are Galerkin solutions for the upper
two roots; dotted line in (a) shows the results for δ = 0.

out for smaller values of δ, with correspondingly still better agreement. Note that

the numerical solution tracks only one branch below the bifurcation point, and

it appears to be arbitrary whether it selects the positive or the negative solution

for =(σ).

3.2.3.3 Asymptotic analysis of the quartic in the Galerkin approach

To analyse the asymptotic behaviour of σ, it is helpful to rewrite the quartic

(3.53) as

a4σ
4 + (b3 − c3∆)σ3 + (d2∆2 − c2∆)σ2 + b0δ

2 = 0, (3.59)

where

a4 = 9m4 + 36π4 + 45π2m2, (3.60)

b3 = 27π2k0(m2 + π2) + 54π2φ0m
4 + 189π4φ0m

2 + 135π6φ0, (3.61)

c3 = 18m4 + 45π2m2, (3.62)

d2 = 9m4, (3.63)

c2 = 135π4φ0m
2 + 54π2φ0m

4 + 27π2k0m
2, (3.64)

b0 =
(
256π4 + 320π2m2 + 64m4

)
φ2

0k
2
0. (3.65)
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We will always take δ � 1, and seek asymptotic scalings for σ and ∆ in terms of

δ.

3.2.3.3.1 Small ∆: location of the bifurcation point

We start by looking at the asymptotics for ∆ � 1. We first eliminate all terms

in (3.59) which must be sub-dominant, obtaining

a4σ
4 + b3σ

3 − c2∆σ2 + b0δ
2 ≈ 0. (3.66)

There will always be a negative, order-unity solution σ ∼ −b3/a4; all other roots

of the quartic must be small in magnitude. Taking σ � 1 and retaining only

possible dominant terms, we can reduce the equation further to the cubic

b3σ
3 − c2∆σ2 + b0δ

2 ≈ 0. (3.67)

The bifurcation can occur if all three of these terms are of the same order. This

requires σ ∼ δ2/3 and ∆ ∼ δ2/3, so we set σ = δ2/3Σ and ∆ = δ2/3D, with Σ and

D of order unity, to obtain

f(Σ) ≡ b3Σ3 − c2DΣ2 + b0 ≈ 0. (3.68)

The discriminant of (3.68) is given by

Λ = 4c3
2b0D − 27b2

3b
2
0 (3.69)

and it is apparent that for sufficiently large D, Λ will be strictly positive and

(3.68) will have three real roots, while for smaller values of D, Λ will be negative

and (3.68) will have only one real root and two complex ones. We locate the

bifurcation point by requiring Λ = 0, giving

D =

(
27b2

3b0

4c3
2

)1/3

, and hence Σ =

(
2b0

b3

)1/3

. (3.70)
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(δ, m) Numerical (∆, σ) Asymptotic (∆, σ)
(0.1, 3) (0.7540, 0.2393) (0.7564, 0.2405)
(0.01, 3) (0.1629, 0.0510) (0.1630, 0.0518)
(0.001, 3) (0.0352, 0.0110) (0.0351, 0.0112)
(0.0001, 3) (0.0076, 0.0022) (0.0076, 0.0024)
(0.1, 10) (0.4421, 0.2683) (0.4411, 0.2677)
(0.01, 10) (0.0951, 0.0570) (0.0950, 0.0577)
(0.001, 10) (0.0205, 0.0120) (0.0205, 0.0124)

Table 3.1: Comparisons of (3.70) with numerical solutions of (3.53). Parameter
values: k0 = 10, φ0 = 0.1.

Comparisons of (3.70) with numerical solutions of (3.53) in Table 3.1 suggest

that these asymptotics capture the behaviour of the solutions well.

3.2.3.3.2 Regular perturbation to σ0

When ∆ = O(1), we expect that there will be a solution branch with σ ≈ σ0.

To locate this branch, we set σ = σ0 + σ1 in (3.59), obtaining an equation of the

form

A4σ
4
1 + A3σ

3
1 + A2σ

2
1 + A1σ1 + A0 +B0δ

2 = 0, (3.71)

where all constants except δ and σ1 are implicitly of order 1, though not neces-

sarily positive. Seeking a regular perturbation so σ1 � 1, this reduces to

A1σ1 +B0δ
2 ≈ 0, i.e. σ1 ∼ −

B0

A1

δ2. (3.72)

Thus the effect of matrix evolution on the growth rate of instabilities is negligibly

small, O(δ2), as long as we are away from the δ = 0 stability boundary.

3.2.3.3.3 Behaviour as ∆→ −∞

Finally, we investigate the behaviour of the dominant solution branch as ∆ →
−∞. Taking σ ∼ ∆α for some α, we find two possibilities. If α = 1 then we

have a balance between the σ4, σ3 and σ2 terms, and it is easy to show that both
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resulting solutions have negative real part. More interestingly, for any negative

value of α we find that the leading order balance must be between the σ2 term

and the σ0 term, eventually giving solutions of the form

σ ∼ δσ0 = ± δ

∆
k0φ0

(
−256π4 + 320π2m2 + 64m4

9m4

)1/2

, (3.73)

regardless of the value of α chosen. These leading order terms are imaginary,

which means that these solution branches must then have real part smaller than

O(δ/∆).

To find the leading order real part, we set σ = δσ0 + δ2σ1 in (3.59), and obtain

σ1 = −32

9

k2
0φ

2
0(33π4m2 + 15π2m4 + 2m6 + 20π6)

m6∆3
, (3.74)

which is strictly real, and tends to zero from above as ∆→ −∞. This is consistent

with figure 3.3, and reinforces the fact that the system is always unstable, no

matter the value of RC .

3.2.3.4 Eigenfunction structure and instability mechanism

The Galerkin stability analysis provides not just the complex growth rate σ but

also the quantities W2, χ1 and χ2 that define the corresponding vertical eigen-

function. To elucidate the mechanism involved in the instability, it is useful to

examine these quantities.

We first identify how the second harmonic alters the shapes and relative phases

of the various perturbations. We may write

w(x, z, t) = <
(
eimxe(σR+iσI)t (sin(πz) +W2 sin(2πz))

)
= eσRt [sin(πz) cos(mx+ σIt) + |W2| sin(2πz) cos(mx+ σIt+ θ)] ,

(3.75)

where θ = arg(W2). It is clear that |W2| controls the relative strength of the

second harmonic. The relative phase θ then controls the way in which the second

harmonic distorts the first. If θ = 0, then the second harmonic accentuates the
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perturbation in 0 < z < 1
2

and reduces it in 1
2
< z < 1: the net effect is to

distort the convection cells by squashing them downwards towards the base of

the layer. Similarly, if θ = ±π, the second harmonic squashes the convection cells

upwards. If 0 < θ < π, the enhancement in the lower region and the reduction in

the upper region are both displaced leftward: the effect is that the vertical axis

of the convective cell is tilted slightly to the right, with an additional downward

(0 < θ < π
2
) or upward (π

2
< θ < π) squashing. Conversely, if −π < θ < 0, the

cells are tilted slightly to the left.

Similar interpretations can be given for other quantities. For example, |χ1| and

|χ2| measure the importance of the first and second harmonics in the concen-

tration perturbation; arg(χ1) describes the horizontal offset between C ′ and w′,

while arg(χ2/χ1) describes the relative phase of the second harmonic to the first

in C ′, and thus describes the manner in which the concentration perturbations

are distorted by the second harmonic. In what follows, we will also consider the

porosity perturbation φ′, defining Φ1 and Φ2 in the obvious manner and obtaining

them via (3.26).

Figures 3.4 and 3.5 show how the amplitudes and phases of the perturbations

to vertical velocity, concentration and porosity vary as ∆ changes. They should

be read in conjunction with figure 3.6, which illustrates how the corresponding

spatial structure of the fastest-growing eigenfunction behaves as ∆ is reduced.

All the cases plotted in figure 3.6 lie in the regime where σ is fully complex: the

bifurcation point for these parameter values occurs at approximately ∆ = 0.7.

For values of ∆ to the right of the bifurcation point (∆ ≈ 0.7), the perturbations

to concentration and porosity are both small (figure 3.4(a)) and are in phase such

that maxima of the first harmonic of φ′ correspond to minima of the first harmonic

of χ (figure 3.4(b)). A change in trend is immediately noticeable at the bifurcation

point: although the first harmonic of concentration continues to vary smoothly,

and it remains almost perfectly in phase with the velocity (arg(χ1) ≈ −π, as can

be seen in figure 3.4(b)), the trend in the amplitude of the porosity perturbation

alters, and it is no longer perfectly in phase with the concentration perturbation:

as arg(Φ1) decreases (figure 3.4(b)), the extrema of φ′ move rightwards relative

to those of w′ and C ′.
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This is the situation that is beginning to emerge in figures 3.6(a) and (b), where

∆ = 0.5. The pattern of flow, concentration and porosity is very similar to that for

simple convection. Downflow draws down higher concentrations from the upper

boundary while upflow draws up lower concentrations from the lower boundary.

Upflow occurs in high-permeability regions and downflow in low-permeability re-

gions: since the concentration and porosity perturbations are still approximately

‘in phase’, the reaction will tend to amplify the porosity perturbation. The small
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Figure 3.6: Eigenfunctions from the Galerkin analysis, with the leftward-
propagating mode taken in each case. Left-hand column: streamlines super-
imposed on φ perturbation. Right-hand column: streamlines superimposed on
C perturbation. Parameters were φ0 = 0.1, k0 = 10, m = 3. In (a) and (b),
∆ = 0.5; in (c) and (d), ∆ = 0; in (e) and (f), ∆ = −1. In each case the val-
ues of ψ on the streamlines are evenly spaced, and in each plot darker shading
corresponds to lower values; scales are arbitrary.

phase difference between C ′ and φ′ is just apparent, but the distortion caused by

the second harmonics is almost imperceptible at this stage.

As ∆ is reduced a little further, the concentration and porosity continue to move

further out of phase (figure 3.4(b)), the porosity perturbation grows in importance

(figure 3.4(a)), and the second harmonics start to become apparent. The relative

phases of all the second harmonics are in the range (π
2
, π) (figure 3.5(b)), so they

tilt the convection pattern rightward. This can be seen in figures 3.6(c) and (d)

for ∆ = 0: the velocity and concentration perturbations are still closely in phase,

but the leftward offset of the porosity perturbation is greater and the rightward

tilting of the cells is more evident. Note that it is at roughly this value of ∆ that

the migration rate of the pattern is greatest (see figure 3.3(b)).

As ∆ is reduced still further, the phase difference between the porosity and con-
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centration perturbations approaches π
2

(figure 3.4(b)), so they are almost exactly

a quarter of a period out of phase: this is visible in figures 3.6(e) and (f) (∆ = −1).

The importance of the second harmonics increases (figure 3.5(a)) and their phase

difference from the first harmonic approaches π
2

(figure 3.5(b)), so they tend to

tilt the cells rightward without squashing them upward or downward. The tilting

is now clearly evident.

We are now in a position to discuss the mechanisms that maintain this ampli-

fying travelling-wave mode. Recall that the concentration perturbation equation

(3.18) contains two source terms which must balance the dissipative effects of the

reaction and diffusion terms. The first of these sources is the convective term

−w′; the second is the term ∂φ′/∂z which represents net diffusive transport due

to gradients in porosity superimposed on the background vertical gradient of con-

centration. When the porosity perturbation is weak and the system is dominated

by convection, the convective source term dominates. When the porosity pertur-

bation is stronger and convective flow is weak, the importance of the porosity-

gradient mechanism increases. Because the porosity perturbation is offset from

the concentration perturbation, the effect of this term is felt differently by dif-

ferent parts of the concentration field. Given a ‘cell’ of high C ′, it can be seen

by comparing figures 3.6(e) and (f) that the porosity gradient will be negative

both to the top left and to the bottom right of this ‘cell’, and positive to the

top right and the bottom left of it. Since the cell is already tilted to the right,

this mechanism acts to maintain the tilting against buoyant effects that would

tend to restore it to an upright convective cell, and diffusive effects that would

tend to eliminate the perturbation altogether. Meanwhile, the offset between C ′

and φ′ has the additional effect of causing the porosity perturbations to migrate

leftward. Essentially, then, this mode of behaviour can be characterised as a kind

of reaction–diffusion instability which is parasitic on the background vertical con-

centration gradient. This reaction–diffusion instability is discussed in more detail

in the next section.

The modes described here, comprising travelling-wave patterns of tilted cells, are

reminiscent of similar patterns seen in mushy layers (Anderson and Worster 1996)

and in nonlinear simulations of double-diffusive convection (Mamou and Vasseur

1999; Mamou, Vasseur, and Hasnaoui 2001). The mechanisms, however, are
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Figure 3.7: Eigenfunctions from the Galerkin analysis for RC = 0; (a) shows the
φ perturbation, while (b) shows the C perturbation. Parameters were φ0 = 0.1,
k0 = 10, m = 3. In each plot darker shading corresponds to lower values; scales
are arbitrary.

distinct: the mushy-layer process depends crucially on the release of latent heat

and on the timescale of solidification (Anderson and Worster 1996, §5), while the

process in non-reactive convection depends on the double-diffusive effects which

permit overstable oscillations.

3.2.3.5 Reaction–diffusion instability

In order to further elucidate the mechanisms involved in the reaction-diffusion

instability we return to the system of equations given by (3.43) and (3.44) subject

to the boundary conditions (3.42). We will seek approximate solutions in the form

W (z) = W1 sin(πz) +W2 sin(2πz), χ(z) = sin(πz) + χ2 sin(2πz). (3.76)

Note that the boundary conditions are automatically satisfied but, in contrast to

§3.2.3.1, we have imposed the non-triviality condition by normalising the sin(πz)

component of χ(z) rather than the sin(πz) component of W (z). This normalisa-

tion now allows us to study the reaction-diffusion unencumbered by any distrac-

tions from the velocity field since it allows the solution W = 0.

Figure 3.7 illustrates the spatial structure of the fastest-growing eigenfunction

when RC = 0 and W = 0. The porosity and concentration perturbations are

both tilted rightwards and are a quarter period out of phase. As above, this
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offset between the φ′ and C ′ perturbations causes the porosity gradient to be felt

differently by different parts of the concentration field; this in turn maintains the

tilting of the cells, while causing the porosity perturbations to migrate leftwards.

Note that the tilting in this case is more pronounced than when RC 6= 0 since

there are now no convective terms trying to hold cells upright. This mechanism

was discussed in detail in the previous section.

3.2.3.6 Predictions of stability behaviour

It is easy to scan systematically across (RC ,m)-space and thus locate the fastest-

growing perturbation for each value ofRC : for all values of the parameters consid-

ered, there was a single unambiguous maximum over m. We confine the discussion

in this section to the branch with the highest value of <(σ), noting that when

=(σ) 6= 0 the complex conjugate of the branch plotted will also be a solution (see

figure 3.3).
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Figure 3.8: (a) The real and imaginary parts of the maximum growth rate; and (b)
the corresponding wavenumber. Parameters were φ0 = 0.1, k0 = 10 and δ = 0.1.
In (a), the solid line denotes <(σmax) and the dashed line denotes =(σmax); note
the logarithmic scale.

Figure 3.8 illustrates how the wavenumber and growth rate of the fastest-growing

perturbation vary with RC , for a specific value of k0. In figure 3.8(a) it is clear

that the emergence of oscillatory modes at RC ≈ 19 coincides with a rapid, but

not catastrophic, decrease in growth rates. There is a small, but noticeable, rapid

change in the favoured wavenumber at this point, which appears to be genuine
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rather than a plotting artefact.

Figure 3.9 extends figure 3.8 to demonstrate how the stability of the system

varies with RC and k0, again taking δ = 0.1 to emphasise the effect of the matrix

evolution. It is evident from this figure that the stability boundary Rcrit
C,0 from

the case δ = 0 provides a good estimate of the boundary between two regimes

of behaviour. For RC & Rcrit
C,0, matrix evolution is insignificant: =(σmax) is zero,

and the favoured wavenumber mmax increases along the stability boundary but is

otherwise independent of k0 in this regime. For RC . Rcrit
C,0, the travelling-wave

mode dominates, with <(σmax) very close to zero and =(σmax) decaying gradually

away from the boundary. In this regime, mmax does vary somewhat with k0, and

for sufficiently small values of RC the favoured wavenumber becomes very small.
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This indicates that when buoyancy effects are very small the instability favours

extremely long-wave perturbations: in practice these may not be realised within

a finite or a periodic domain.

3.3 Numerical results

A full numerical integration of the system was carried out in order both to test the

predictions of the linear stability analysis and to examine the nonlinear behaviour

and flow–permeability feedback over longer timescales.

The dimensionless system (3.9)–(3.12) was written in streamfunction form as

∇ ·
[(

1 +
φ′

φ0

)−2

∇ψ′
]

= −RC
∂C ′

∂x
, (3.77)(

1 +
φ′

φ0

)
∂C ′

∂t
+
∂ψ′

∂x
+

(
∂ψ′

∂x

∂C ′

∂z
− ∂ψ′

∂z

∂C ′

∂x

)
= (φ0 + φ′)∇2C ′

+
∂φ′

∂z
+

(
∂φ′

∂x

∂C ′

∂x
+
∂φ′

∂z

∂C ′

∂z

)
− k0

(
1 +

φ′

φ0

)
(1− (φ0 + φ′))

(1− φ0)
C ′,

(3.78)

∂φ′

∂t
= −δk0(φ0 + φ′)

(1− (φ0 + φ′))

(1− φ0)
C ′, (3.79)

where u′ = −∂ψ′/∂z and w′ = ∂ψ′/∂x. This formulation eliminates the need

to include pressure and impose continuity, and makes the numerical integration

significantly easier. The corresponding form of the boundary conditions (3.20) is

∂ψ′

∂x
= 0 and C ′ = 0 at z = 0 and z = 1. (3.80)

This system was integrated using the finite element package Comsol Multiphysics

v3.5a in a rectangular domain, 0 < x < 10, 0 < z < 1, with the boundary

conditions (3.80) applied on the horizontal boundaries, and periodicity imposed

on the vertical boundaries. Numerical experiments were conducted both with

zero initial conditions and with initial conditions into which a small periodic
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perturbation had been introduced,

C ′(x, z, 0) = z(1− z)ε sin(πx), φ(x, z, 0) = φ0 + 0.01z(1− z) sin(πx), (3.81)

where ε = 10−3. There was no perceptible difference between the results for the

two cases.

To verify that our numerical model converged a number of simulations were con-

ducted over 5000 time units using various values for the relative and absolute

tolerances. For simulations with no reaction (k0 = 0) and with a slower reaction

(k0 = 10) we found that our solution had converged with a relative tolerance of

10−3 and an absolute tolerance of 10−4.

The robustness of our numerical model was checked by conducting simulations

using 1120, 4480, 17920, and 71680 triangular mesh elements. Model results

were mesh independent when we used at least 4480 elements, however, the time

to conduct each simulation increased dramatically. Therefore, for all the tests

conducted we used 4480 mesh elements. This ensured our results were mesh

independent to two significant figures (see Tables B.3 and B.4), yet the time to

complete each simulation was reasonable (of the order of 10 mins on a desktop

PC). Further details of the tolerance and mesh independence testing can be found

in appendix B.1.

3.3.1 Stability boundary and the onset of convection

Recall that figure 3.2 shows the critical stability curve when δ = 0 given by (3.41).

This curve gives the values of Rcrit
C,0 used in our simulations.

Figure 3.10 summarises a large number of numerical experiments carried out to

validate the linear stability analysis against the numerics. In each simulation

we took φ0 = 0.1 and δ = 0.001; each simulation was 1500 time units long and

was started from the initial conditions (3.81). This length of simulation ensured

that the system had enough time for convection to develop, even in the marginal

cases. The criterion used to distinguish between non-convective and convective

cases was whether by the end of the simulation the maximum value of |u| was
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greater or less than 10−1.
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Figure 3.10: RC/Rcrit
C,0 from numerical tests with φ0 = 0.1 and δ = 0.001. The

points represent non-convective (+) or convective (�) behaviour.

Figure 3.11 shows the maximum absolute velocity for RC/Rcrit
C,0 = 0.99, 1.00, and

1.01. When RC/Rcrit
C,0 = 0.99 (figure 3.11(a)) the maximum velocity was always

well below the cut-off point for convective behaviour, and when RC/Rcrit
C,0 = 1.01

(figure 3.11(b)) the maximum velocity was always well above the cut-off point.

When RC/Rcrit
C,0 = 1.00 (figure 3.11(c)), however, we can see the transition from

non-convective to convective behaviour at k0 ≈ 14.

As can be seen from figure 3.10(b) the linear stability result for δ = 0, (3.39),

agrees well with the numerical results. This suggests, in agreement with §3.2.3,

that the effects of porosity evolution on the onset of convection are rather subtle.
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Figure 3.12: Streamlines for simulations with (a) k0 = 0, and (b) k0 = 40. In
both cases there was no porosity evolution (δ = 0) and the Rayleigh number was
1% above the critical Rayleigh number given by (3.41).

A key qualitative prediction of the linear stability analysis is that along the line

RC = Rcrit
C,0 the wave number of the fastest-growing perturbations should increase

with the reaction rate. Figure 3.12 shows the streamlines for two simulations:

one with no reaction (k0 = 0) and one with a higher reaction rate (k0 = 40).

In each case the Rayleigh number was 1% above the critical Rayleigh number

given by (3.39). For no reaction, both (3.40) and the numerics give a wavenum-

ber of π, corresponding to a wavelength of 2. For k0 = 40, (3.40) predicts the

wavenumber to be mcrit
0 ≈ 7.98, and the numerical results show the wavenumber

to be m ≈ 7.54. The discrepancy can be attributed to the horizontal periodic-

ity of the numerical domain: the numerical value of m corresponds to 12 pairs

of counter-rotating cells in 0 ≤ x ≤ 10, while the theoretically predicted value

would require between 12 and 13 such pairs. Similar discretisation errors were

noted by Pritchard and Richardson (2007).

3.3.2 Long-term behaviour

In order to examine the long-term behaviour of the system we pay particular

attention to two cases: one with a ‘slower’ reaction (k0 = 10) and one with a

‘faster’ reaction (k0 = 40). Each simulation was 5000 time units long, and we

took φ0 = 0.1 and δ = 0.001. In each case we used four values of the Rayleigh

number: the critical Rayleigh number given by (3.39), and 10%, 20%, and 50%

above this value.
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3.3.2.1 Reference case: k0 = 10 and RC = 1.1Rcrit
C,0

We first consider the slow reaction with k0 = 10. As a reference case for the long-

term behaviour we begin by focusing on the simulation with a Rayleigh number

10% above the critical value, RC = 20.42 (compared with Rcrit
C,0 ≈ 18.56). Figure

3.11 shows the evolution of the concentration perturbation C ′, the porosity φ, and

the absolute velocity |u| for the left half of the domain as well as the horizontally

averaged porosity φ for the whole domain. The solid lines on the concentration

and porosity plots are the streamlines, and the arrows on the absolute velocity

plot are the velocity field.

By t = 100 steady convection has been established (figure 3.11(a)). At this time

the concentration and porosity fields are in phase: that is, regions of C ′ > 0 coin-

cide with regions of lower porosity (φ < φ0) and regions of C ′ < 0 coincide with

regions of higher porosity (φ > φ0). From (3.19) we expect porosity to decrease

where C ′ > 0, and to increase where C ′ < 0. As the flow is buoyancy driven,

downward flow is favoured where C ′ > 0, drawing down higher concentrations

from the top boundary, and upward flow is favoured where C ′ < 0, drawing up

lower concentrations from the bottom boundary: this is the essential mechanism

that sustains convection. Furthermore, flow is faster in areas of higher porosity,

shown by the closer packed streamlines in regions of φ > φ0 which coincide with

the darker areas of the absolute velocity field. Hence, upward flow is faster than

downward flow.

Once steady convection has been established, the porosity field continues to evolve

until it triggers a secondary instability in the form of a phase shift. Figure 3.11(b)

shows the fields at t = 200, just before the phase shift. Comparing with figure

3.11(a), we can see that although the concentration field is the same, the porosity

field has evolved further and now has more pronounced areas of high and low

porosity. The horizontally averaged porosity field φ indicates that the lower half

of the domain is dominated by lower porosity as a result of the precipitation in

downwelling regions, while the upper half is dominated by higher porosity as a

result of the dissolution in upwelling regions. As a result of this evolution the

absolute velocity field now has more pronounced areas of upwards flow coinciding

with areas of higher porosity. Also, the centres of the circulation cells have moved
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upwards slightly.

Part-way through the shift (t = 215, figure 3.11(c)), the concentration field has

moved approximately an eighth of a cell (0.25 x-units) to the right, but the poros-

ity field remains the same as before the shift. Also, in the absolute velocity field

we see that the upwards flow has remained in approximately the same position,

but the downwards flow has shifted towards the right, while there is a slight tilting

of the cells to the left (most apparent in the concentration field). By the end of

the shift at t = 250 (figure 3.11(d)) the concentration field and streamlines have

moved a half cell (one x-unit) to the right, and the centre of the circulation cells

has moved slightly downward, but the porosity field is still effectively unchanged.

There is still downward flow where C ′ > 0, but this now coincides with high

porosity regions. Therefore, downward flow is now faster than upward flow.

Further evidence of this phase shift can be seen in figures 3.12(a) and (b), which

show the maximum absolute velocity throughout the whole domain. From these

figures we see that convection develops and is maintained for approximately 200

time steps, but there is a dip in the velocity around the time of the phase shift

as the circulation slows and then re-establishes itself. After this shift, the system

settles back into a quasi-equilibrium state of almost steady convection.

The secondary instability occurs as a result of the positive feedback between the

concentration and porosity fields which causes clogging in the downflow regions.

This clogging eventually reaches some critical state and displaces the downflow

sideways resulting in narrower convection cells. These are overcome by diffusion,

and the circulation begins to shut down before it is replaced by a reversed cir-

culation. Bolton, Lasaga, and Rye (1999) identified a similar mechanism which

acted to displace the ‘stalk’ of rising thermal plumes in their simulations. The

sideways migration of these fully developed, nonlinear convection cells is also

reminiscent of the migration of small-amplitude cells seen in the linear analy-

sis close to RC = Rcrit
C,0 (§3.2.3.4). Unlike the phenomenon seen in the linear

case, the tilting and sideways movement here is readily halted by the tendency

of buoyancy-driven convection to favour stationary, upright cells.

At t = 250 (figure 3.11(d)) the concentration and porosity fields are out of phase:

areas of large positive concentration perturbations now coincide with areas of high
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porosity, and vice versa. In these high concentration (C ′ > 0) areas porosity will

decrease, and in low concentration C ′ < 0 areas porosity will increase. Therefore,

the porosity evolution strives to get the concentration and porosity fields back

into phase.

The porosity evolution is shown in figures 3.12(a) and (b), plotted with the max-

imum absolute velocity to display the correlation with the phase shifts. At the

time of the phase shift (denoted by the vertical dotted line) the porosity contrast

has reached a local maximum, with a peak in the maximum porosity and a trough

in the minimum porosity. After the shift, the maximum porosity decreases and

the minimum porosity increases, because the concentration and porosity fields

are now out of phase. By t ≈ 500, the concentration and porosity fields are back

in phase and so now the porosity contrast begins to increase again at a similar

rate to before the phase shift.

By t = 710 (figure 3.11(e)), the porosity is now back in phase with the con-

centration field. There is faster upwards flow in regions of higher porosity, and

slower downflow in low porosity regions, as before the first phase shift. Note that

there is now a distinct vertical asymmetry in the circulation and porosity field:

there is more dissolution towards the top of the domain and the circulation has

correspondingly moved upwards to this higher porosity region. Further evidence

of this asymmetry can be seen in the horizontally averaged porosity as the region

of lower porosity now extends over more than half the domain. After this, the

system goes through another phase shift, again moving one half cell to the right,

displaying the same behaviour as with the first shift. This shift can be seen in

figures 3.12(a) and (b) as the sharp dip in |u|max at t ≈ 750. These figures also

show similar porosity behaviour to the first phase shift, with the porosity contrast

peaking around the time of the shift.

From figures 3.12(a) and (b) we can see that the system only undergoes two rapid

phase shifts, and subsequent changes take place over a much longer timescale. By

t = 1500 (figure 3.11(f)) the system is back in phase, but with the circulation field

shifted a further quarter cell to the right. There is now a more distinct vertical

asymmetry in the circulation and porosity fields, with higher porosity regions and

the centres of the circulation cells now even closer to the top of the domain. Also,
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the magnitude of the concentration perturbations and the absolute velocity are

reduced.

By t = 3000, (figure 3.11(g)), the circulation has shifted a further quarter cell to

the right but the system is still in phase, with upflow concentrated in more highly

permeable vertical channels. Alternate high-permeability channels are more pro-

nounced: this can be explained as the result of an instability whereby a slightly

more permeable channel ‘steals’ flux from its neighbours and thus experiences

more rapid dissolution. This is akin to the ‘screening’ effect that causes dissolu-

tion patterns to be dominated by a few large fingers (Daccord 1987; Hoefner and

Fogler 1988). This screening effect competes with the convective circulation to

set the favoured wavenumber of the system, leading to the alternation that is ob-

served. There is a superficial similarity between the high permeability channels

here and the chimneys observed in mushy layers (Worster 1997), although the

channels here are merely regions of enhanced porosity rather than regions where

the porous matrix has been entirely dissolved. The layering of high porosity over

lower porosity regions is also more pronounced at this stage than at earlier times.

The slow evolution continues and by t = 4000 (figure 3.11(h)) the fields have

changed considerably. The concentration perturbations are now very small and

there is distinct layering in the porosity field, with a low porosity barrier in the

middle of the domain and regions of higher porosity at the top and bottom of the

domain, as seen in the φ plot. This low porosity barrier is pierced by occasional

high porosity channels, but it cannot extend to the lower boundary since the

boundary conditions there fix the concentration at its equilibrium value Ceq, and

hence fix the porosity at φ = φ0. There is still evidence of the period-doubling

seen at earlier times, with alternate high porosity channels more pronounced.

From the streamlines and the absolute velocity field we see that because of this

barrier, two-layered convection has developed. In the top layer the concentration

and porosity fields are in phase, but in the bottom layer they are out of phase.

By the end of the simulation at t = 5000 (figure 3.11(i)) only the lower layer

where the concentration and porosity fields are out of phase has survived and it

now penetrates the upper layer. The period-doubling has survived, but there is

now more pronounced alternate downflow in the high porosity channels. Note
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that even after more than 1000 time units the lower layer has not yet reversed

phase.

3.3.2.2 Effect of varying the Rayleigh number

Figure 3.12 shows the porosity evolution and maximum absolute velocity for each

of the convective Rayleigh numbers with k0 = 10. Initial adjustment to steady

convection happens very rapidly, within roughly the first ten time units. The

system then evolves gradually until the first phase shift, the signature of which

is a sharp drop in the maximum absolute velocity. The higher the Rayleigh

number, the longer it is before the phase shift occurs. The porosity contrast is at

its greatest when a phase shift occurs, and the higher the Rayleigh number the

greater the porosity change when the system shifts. This behaviour is expected

since as we increase the Rayleigh number, we are increasing the concentration

difference between the top and bottom of the domain. Therefore, we expect to

see bigger absolute velocities and to require bigger porosity differences to trigger

a phase shift.

When RC = Rcrit
C,0 the system appears for around a thousand timesteps to be non-

convective (figure 3.10(b)), but after this time a weak circulation does develop.

This reflects the fact that even at or below the ‘threshold’ RC = Rcrit
C,0 the system

remains weakly unstable, as shown in §3.2.3. Meanwhile, when RC = 1.2Rcrit
C,0

and RC = 1.5Rcrit
C,0 we see similar behaviour to that with RC = 1.1Rcrit

C,0.

3.3.2.3 Effect of varying the reaction rate

We now consider the faster reaction with k0 = 30. To allow direct comparison

with the long-term behaviour in the slow reaction case we focus on a simulation

with a Rayleigh number 10% above the critical value, RC = 47.34 compared with

Rcrit
C,0 ≈ 43.03. Figure 3.13 shows the evolution of the concentration perturbation

C ′, the porosity φ, and the absolute velocity |u| for the left half of the domain

as well as the horizontally averaged porosity φ for the whole domain, while figure

3.14 shows the corresponding evolution of the maximum velocity and the porosity

contrast. The most prominent difference between figure 3.14 and figure 3.12 is
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Figure 3.12: Maximum absolute velocity |u| and maximum and minimum porosity
φ throughout the whole domain when k0 = 10. Here the solid line represents the
maximum velocity, the dashed line represents the maximum porosity and the
dashed-dotted line represents the minimum porosity. In (a) RC = Rcrit

C,0, (b)
RC = 1.1Rcrit

C,0, (c) RC = 1.2Rcrit
C,0, and (d) RC = 1.5Rcrit

C,0.

that the higher reaction rate and higher Rayleigh number lead to faster evolution

of the system. What is of more interest is whether the qualitative development

also changes.

Buoyancy-driven convection has been established by t ≈ 10 (not shown): at

this time the convection pattern closely resembles figure 3.11(a), and there are

ten pairs of counter-rotating cells in the full domain, corresponding to a wave

number of m ≈ 6.28. However, (3.40) predicts a rather higher critical wave

number mcrit
0 ≈ 7.44, and by t = 50 (figure 3.13(a)) additional convection cells

have appeared at x ≈ 3.5 and x ≈ 9.5. These subsequently expand so that

there are twelve pairs of counter-rotating cells in the domain, corresponding to
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a wavenumber of m ≈ 7.54. The emergence of the two pairs of counter-rotating

cells, on top of an existing although weakly defined porosity structure, results in a

less uniform cell pattern, with some cells now tilting and slightly more pronounced

upflow in some channels than others (figure 3.13(b)). Note from figure 3.14 that

the emergence of the extra cells does not affect the maximum absolute velocity.

Once convection has been established with an appropriate wave number, the

porosity field evolves until it triggers a secondary instability, as with the slower

reaction rate (§3.3.2.1). Figure 3.13(b) shows the fields at t = 180, just before

the phase shift (compare figure 3.11(b) for the case k0 = 10). As before, the

concentration perturbation and porosity fields are initially in phase before the

shift, while after the phase shift (t = 210, figure 3.13(c)) the concentration per-

turbation field and streamlines have moved a half cell (≈ 1 x-unit) to the right,

and now the cells are more upright. Furthermore, the concentration perturbation

and porosity fields are now out of phase. The overall pattern is similar to figure

3.11(d), although the strengths of the cells are less uniform: this may be because

the faster reaction promotes the ‘screening’ effect in which cells compete with

their neighbours for flux (§3.3.2.1).

The phase shift can also be seen in the maximum absolute velocity and porosity

contrast (figure 3.14). Convection develops and is maintained for almost 200 time

steps, but there is a dip in the velocity around the time of the phase shift (marked

by the vertical dotted line) as the circulation slows and then re-establishes itself.

After this shift, the system settles back into a quasi-equilibrium state of steady

convection, with the maximum velocity and porosity contrast first declining and

then gradually increasing again as the porosity comes back into phase with the

concentration. (Precisely analogous behaviour can be seen in figure 3.12.)

By t = 380 (figure 3.13(d)), the concentration and porosity fields are back in

phase, although the porosity perturbations are small and the centres of the cir-

culation cells have moved upwards. No further rapid phase shifts occur, but

the slow evolution continues. At first the porosity contrast becomes more pro-

nounced, with ‘eyes’ of high porosity developing at the top of the layer and regions

of lower porosity in the middle of the domain; meanwhile the circulation pattern

becomes more irregular than §3.3.2.1, with a weak lower layer of counter-rotating



Chapter 3 63

cells forming in places and flow in the middle of the layer focussed into a few

narrow channels (figure 3.13(e)): the picture is reminiscent of figure 3.11(h), but

the flow pattern is more irregular and the overall porosity contrast more strongly

dominated by the ‘eyes’ near the upper boundary. As the simulation continues,

the qualitative picture is unaltered (figure 3.13(f)), but the maximum velocity

gradually declines (figure 3.14) and the low porosity barrier becomes more pro-

nounced, now extending over three quarters of the domain. This suggests that

the very long-term attractor of the system may be a non-convective state with a

considerably decreased porosity throughout the layer.

3.4 Discussion and conclusions

We have investigated the behaviour of an idealised mathematical model of geo-

chemical convection in a reactive porous medium. The model can be obtained

from the full thermosolutal model described in chapter 2, in the limit of very high

thermal diffusivity and finite solutal diffusivity with negligible thermal expansion.

Although the porosity evolution is slow on the timescale of convection and reac-

tion, it exerts an unexpected influence on the stability properties of the system.

When the system is strongly buoyantly unstable, the reaction acts to remove

destabilising solute and thus to stabilise the system. However, when the system

is close to the threshold of instability (as calculated without porosity evolution), a

new unstable mode becomes available, and persists even when the Rayleigh num-

ber is reduced below the critical value for buoyant instability. This new mode is

essentially a reaction–diffusion instability which is driven by solute fluxes caused

by the interaction between the porosity perturbation and the background vertical

concentration gradient.

Over longer timescales, the porosity evolution introduces further new behaviour:

although quasi-steady convective circulation becomes established as in non-reactive

convection, it cannot persist indefinitely. Instead, the porosity changes associated

with the circulation become steadily more pronounced, and ultimately trigger a

relatively rapid reorganisation of the flow in which the entire pattern of convective

cells shifts sideways by half a wavelength.
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Figure 3.14: Maximum absolute velocity |u| and (a) maximum and (b) minimum
porosity φ throughout the whole domain when φ0 = 0.1, δ = 0.001, k0 = 30
and RC = 1.1Rcrit

C,0. Here the solid line represents the maximum velocity and the
dashed line represents the maximum or minimum porosity.

The repeated interplay between episodes of quasi-steady convection and the rapid

reorganisations that punctuate them eventually develops a layered porosity struc-

ture, with the centre of the layer being dominated by a low-porosity band bro-

ken by occasional higher-permeability vertical channels, and pockets of enhanced

porosity occurring nearer the top and the bottom of the layer. There appears to

be no long-term steady convective state towards which the system asymptotes,

although once layering has become established there is a tendency for the strength

of convection to decrease.

These findings complement the numerical experiments of Bolton et al. (1996;

1997; 1999) by demonstrating that geochemical convection can spontaneously

give rise to heterogeneous porosity fields, and not merely enhance heterogeneities

that already exist. Their wider implication is that in situations where long-term

convective transport is simulated in order to determine patterns of mineralisation,

such as ore deposition (e.g. Raffensperger and Garven 1995a,b), it may be essen-

tial to incorporate flow–reaction–permeability coupling in order to capture even

the outline of the mineralisation patterns. Another implication is that, because of

the development of instabilities which scale in a nonlinear manner with the ma-

trix evolution rate δ, simulations which accelerate the rock evolution to reduce

runtime may thereby distort their results in unexpected ways. This implication

was supported by further numerical simulations (omitted here for brevity) which
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found that increasing δ by a factor of ten resulted in more pronounced tilting of

the circulation cells, as well as triggering earlier and more frequent episodes of

rapid flow reorganisation and a more strongly layered porosity structure.

The most natural extension of the work described in this chapter is to the full

thermosolutal system. Firstly, however, we will briefly consider the effect of

Neumann boundary conditions at the top and bottom of the layer.
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Reactive solutal convection with

Neumann boundary conditions

It is well known that in non-reactive single-diffusive porous medium convection

changing from constant solutal concentration (Dirichlet) to no-flux (Neumann)

boundary conditions reduces the critical Rayleigh number from Rcrit
C = 4π2 to

Rcrit
C = 12 (see table 2.1), as well as changing the vertical structure of the per-

turbations (Nield and Bejan 2006). The most realistic boundary conditions are

mixed boundary conditions which are a linear combination of Dirichlet and Neu-

mann boundary conditions. However, in this thesis we focus our attention on the

extremal cases of either Dirichlet or Neumann boundary conditions.

In this chapter we examine the effect that Neumann boundary conditions at the

top and bottom of the layer have on both the onset of convection and the long-

term behaviour of reactive convection in an evolving porous layer. As well as

changing the vertical structure of the perturbations, this change in boundary

conditions also means that the porosity φ can now evolve at the top and bottom

boundary. Furthermore, in contrast to Dirichlet conditions, Neumann conditions

ensure that the total amount of solute within the layer is conserved. We use the

same model as in the previous chapter, so the dimensionless governing equations

are given by (3.9)–(3.12).

In §4.1 we carry out a linear stability analysis of the onset of convection. We

67
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then, in §4.2, validate this stability analysis using a numerical model, and carry

out a sequence of numerical experiments to investigate the longer-term behaviour

of the system. Finally, in §4.3 we summarise our results and draw some general

conclusions.

4.1 Linear stability analysis

The non-dimensional linearised governing equations are given by (3.16)–(3.19),

but these are now subject to the boundary conditions

w′ = 0 and
∂C ′

∂z
= 0 at z = 0 and at z = 1. (4.1)

We seek Fourier mode solutions of the form

u′ = U(z)eimxeσt, w′ = W (z)eimxeσt, p′ = P (z)eimxeσt,

C ′ = χ(z)eimxeσt, φ′ = Φ(z)eimxeσt,
(4.2)

where the real parts are assumed, the wave number m is a positive real number,

and U,W,P, χ,Φ and σ are generally complex. Substituting these into (3.16)–

(3.19), and combining and simplifying gives (3.27), which we repeat here[
φ0

(
d2

dz2
−m2

)
− δk0φ0

σ

d

dz
− (k0 + σ)

] [
d2

dz2
−m2

]
W (z) = m2RCW (z).

(4.3)

In contrast to problem in chapter 3, W (z) must now satisfy the boundary condi-

tions

W (z) = 0 and
d

dz

(
d2

dz2
−m2

)
W (z) = 0 at z = 0 and at z = 1.

(4.4)

Using the same approach as in §3.3, we seek solutions to (4.3) in the form W (z) ∝
exp(qz), where q is a root of the auxiliary equation (3.29), i.e.[

φ0(q2 −m2)− δk0φ0

σ
q − (k0 + σ)

]
[q2 −m2] = m2RC . (4.5)
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In general we may write

W (z) = A1e
q1z + A2e

q2z + A3e
q3z + A4e

q4z, (4.6)

and the boundary conditions (4.4) may be written as

B ·


A1

A2

A3

A4

 = 0, (4.7)

where

B =


1 1 1 1

eq1 eq2 eq3 eq4

q1(q2
1 −m2) q2(q2

2 −m2) q3(q2
3 −m2) q4(q2

4 −m2)

q1(q2
1 −m2)eq1 q2(q2

2 −m2)eq2 q3(q2
3 −m2)eq3 q4(q2

4 −m2)eq4

 . (4.8)

Note that rows 3 and 4 differ from those of the matrix B defined in (3.32). For

nontrivial solutions, therefore, we require that

det(B) = 0. (4.9)

4.1.1 Reaction but no matrix evolution

It is helpful, as before, to examine the rather simpler case with δ = 0 before we

consider the full linear stability problem. As with Dirichlet boundary conditions

(cf. §3.3.1), (4.5) has roots q1 = −q2 and q3 = −q4 = −iq0, where

q1 =

[
1

2φ0

(k0 + σ + 2φ0m
2 +

√
(k0 + σ)2 + 4φ0m2RC)

]1/2

,

q0 =

[
− 1

2φ0

(k0 + σ + 2φ0m
2 −

√
(k0 + σ)2 + 4φ0m2RC)

]1/2

.

(4.10)
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Figure 4.1: Stability boundary for Rcrit
C,0 with δ = 0 and φ0 = 0.1; the dashed line

represents the stability boundary for constant solutal boundary conditions with
δ = 0.

The condition (4.9) for nontrivial solutions therefore becomes

2(q1q0m
4 − q3

1q
3
0 + q1q

3
0m

2 − q3
1q0m

2)(cosh q1 cos q0 − 1)+

(2q4
0m

2 + 2q4
1m

2 − q6
1 + q6

0 − q2
1m

4 + q2
0m

4) sinh q1 sin q0 = 0
(4.11)

As before, for this reduced problem the principle of exchange of stabilities holds

(see Appendix A.2), so for marginal stability we set σ = 0.

We solve (4.11) numerically using Maple 12 and the built-in routine fsolve. We

specify the parameters φ0 and k0 and solve (4.11) for RC,0(m). For each m the

value of RC given by q0 = π was used as an initial guess.

When k0 = 0 we recover the marginal stability condition Rcrit
C,0 = 12φ0 and

mcrit
0 = 0 for single-diffusive convection with no-flux boundary conditions in a

non-evolving porous medium. Figure 4.1 illustrates how Rcrit
C,0 increases with in-

creasing k0. It is apparent that Rcrit
C,0 for Neumann boundary conditions asymp-

totes to the critical Rayleigh number for Dirichlet boundary conditions as the

reaction rate is increased, suggesting that the reaction negates any effect that

Neumann conditions may have on the onset of convection.
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δ = 0.1 δ = 0.001
m Dirichlet BCs (∆, σ) Neumann BCs (∆, σ) Dirichlet BCs (∆, σ) Neumann BCs (∆, σ)
3 (0.7721, 0.2464) (0.7598, 0.2400) (0.03612, 0.01166) (0.03553, 0.01123)
4 (0.6057, 0.2527) (0.5969, 0.2432) (0.02832, 0.01186) (0.02790, 0.01148)
5 (0.5317, 0.2567) (0.5249, 0.2477) (0.02485, 0.01208) (0.02453, 0.01169)
6 (0.4939, 0.2612) (0.4884, 0.2541) (0.02307, 0.01226) (0.02281, 0.01199)
7 (0.4728, 0.2637) (0.4688, 0.2591) (0.02207, 0.01232) (0.02186, 0.01215)
8 (0.4603, 0.2679) (0.4565, 0.2619) (0.02148, 0.01250) (0.02130, 0.01223)

Table 4.1: Comparisons of bifurcation point with constant and no-flux boundary
conditions for δ = 0.1 and δ = 0.001. Parameter values: k0 = 10, φ0 = 0.1.

4.1.2 Linear stability analysis of the full problem

When δ 6= 0, an analytical solution to (4.9) in terms of σ is not available. There-

fore, as in §3.2.2, the stability problem was investigated numerically by a con-

tinuation method, tracking σ as RC changed, while keeping all other parameters

fixed. A numerical solution to (4.11) for a large initial value of RC was used as

an initial guess. This method was implemented in Maple 12, using the built-in

routine fsolve.

Figure 4.2 shows representative results when the wavenumber m and all the pa-

rameters except ∆ = RC −RC,0(m) are fixed, while ∆ is varied about zero. The

default parameters were k0 = 10, φ0 = 0.1, and δ = 0.1. Comparing this to figure

3.3 for Dirichlet boundary conditions with the same parameter values, we see that

the behaviour is very similar. When ∆ is large and positive the branch of σ with

largest real part closely tracks σ0. It deviates weakly from this as ∆ is reduced,

and at ∆ ≈ 0.7 the values of σ become complex. As ∆ is further reduced, <(σ)

continues to fall, but never reaches zero, asymptoting toward it as ∆ → −∞.

Meanwhile, =(σ) first increases rapidly in magnitude and then decays.

Table 4.1 compares the location ∆ of the bifurcation point and the value of σ at

this point for Dirichlet and Neumann boundary conditions for two values of δ:

δ = 0.1 and δ = 0.001. We can see that for both sets of boundary conditions the

bifurcation occurs at approximately the same value of ∆, and the growth rate σ

is approximately the same, too. This agrees with our observations when δ = 0

(§4.1.1) that the reaction negates any effect the Neumann boundary conditions

may have on the onset of convection.
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Figure 4.2: Behaviour of σ close to Rcrit
C,0 for k0 = 10, δ = 0.1, φ0 = 0.1, m = 3.

Figure (a) shows <(σ), while (b) shows =(σ). The dotted line shows the result
for δ = 0.

4.2 Numerical results

A full numerical integration of the system was carried out in order both to test the

predictions of the linear stability analysis and to examine whether the change of

boundary conditions affects the nonlinear behaviour and flow-permeability feed-

back over longer timescales.

The dimensionless system of equations was written in streamfunction form (3.77)–

(3.79), with corresponding boundary conditions

∂ψ′

∂x
= 0 and

∂C ′

∂z
= 0 at z = 0 and z = 1. (4.12)

This system was integrated using the finite element package Comsol Multiphysics

v3.5a in a rectangular domain, 0 < x < 10, 0 < z < 1, with the boundary

conditions (4.12) applied on the horizontal boundaries, and periodicity imposed

on the vertical boundaries. Numerical experiments were conducted both with

zero initial conditions and with initial conditions into which a small periodic

perturbation had been introduced,

C ′(x, z, 0) = z(1− z)ε sin(πx), φ(x, z, 0) = φ0 + 0.01z(1− z) sin(πx), (4.13)

where ε = 10−3. There was no perceptible difference between the results for the
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Figure 4.3: RC/Rcrit
C,0 from numerical tests with φ0 = 0.1 and δ = 0.001. The

points represent non-convective (+) or convective (◦) behaviour.

two cases.

4.2.1 Stability boundary and the onset of convection

Recall that figure 4.1 shows the critical stability curve when δ = 0. This curve

gives the values of Rcrit
C,0 used in our simulations.

Figure 4.3 summarises a large number of numerical experiments carried out to

validate the linear stability analysis. In each simulation we took φ0 = 0.1 and

δ = 0.001; each simulation was 1500 time units long and was started from the

initial conditions (4.13). This length of simulation ensured that the system had

enough time for convection to develop, even in the marginal cases. The criterion

used to distinguish between non-convective and convective cases was whether by

the end of the simulation the maximum value of |u| was greater or less than 10−1.

Note that when k0 = 0 the model does not become unstable around Rcrit
C,0; in fact,

convection only occurs within the first 1500 time units when RC ≈ 1.25Rcrit
C,0.

A key qualitative prediction of the linear stability analysis with Dirichlet bound-

ary conditions is that along the line RC = Rcrit
C,0 the wavenumber of the fastest-

growing perturbations should increase with the reaction rate. We would expect

similar behaviour with Neumann boundary conditions since the stability bound-

ary is similar to that with Dirichlet boundary conditions. Figure 4.4 shows the

streamlines for two simulations: one with no reaction (k0 = 0) and one with a
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Figure 4.4: Streamlines for simulations with (a) k0 = 0 and RC = 1.25Rcrit
C,0, and

(b) k0 = 40 and RC = 1.01Rcrit
C,0. In both cases there was no porosity evolution

(δ = 0).

higher reaction rate (k0 = 40). For k0 = 0 the Rayleigh number was 25% above

the critical Rayleigh number, and for k0 = 40 the Rayleigh number was 1% above

the critical Rayleigh number. The values of Rayleigh number used guaranteed

the model was unstable. When there is no reaction the linear stability analysis

predicts a wavenumber mcrit
0 = 0, while the numerical results produce convection

with a wavenumber m ≈ 1.26. However, if we increase the length of the simula-

tion to 8000 time units, the wavelength increases until it is the size of the domain,

corresponding to a wavenumber m = π/5. Furthermore, with this longer length

of simulation convection can occur with a Rayleigh number 1% above the critical

value.

For k0 = 40, the linear stability analysis predicts the wavenumber to be mcrit
0 ≈

7.97, and the numerical results show the wavenumber to be m ≈ 7.54. The

discrepancy can be attributed to the horizontal periodicity of the numerical do-

main: the numerical value of m corresponds to 12 pairs of counter-rotating cells

in 0 ≤ x ≤ 10, while the theoretically predicted value would require between 12

and 13 such pairs. Similar discretisation errors were noted in §3.3.1 with Dirichlet

boundary conditions and by Pritchard and Richardson (2007).

4.2.2 Long-term behaviour

When examining the long-term behaviour of the system we will pay particular

attention to two cases: one with a slower reaction k0 = 10 and one with a faster

reaction, k0 = 30. Each simulation we describe lasted for 5000 time units and
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employed the parameters φ0 = 0.1 and δ = 0.001. We will present results for four

values of the Rayleigh number: the critical Rayleigh number, and 10%, 20%, and

50% above this value.

4.2.2.1 Reference case: k0 = 10 and RC = 1.1Rcrit
C,0

We first consider the slow reaction with k0 = 10. As a reference case for the long-

term behaviour we begin by focusing on the simulation with a Rayleigh number

10% above the critical value, RC = 19.90 (compared with Rcrit
C,0 ≈ 18.10). Figure

4.5 shows the evolution of the concentration perturbation C ′, the porosity φ,

and the absolute velocity |u|, for the left half of the domain. The solid lines on

the concentration and porosity plots are the streamlines, and the arrows on the

absolute velocity plot indicate the velocity field.

Comparing figure 4.5 with figure 3.11 for the Dirichlet boundary condition case,

we see that the long-term evolution of this system has many similarities with

the Dirichlet model. By t = 100 steady convection has been established (figure

4.5(a)). At this time the concentration and porosity fields are in phase: that is,

regions of C ′ > 0 coincide with regions of lower porosity (φ < φ0) and regions of

C ′ < 0 coincide with regions of higher porosity (φ > φ0).

Once convection has been established, the porosity field evolves until it triggers a

secondary instability, as with the Dirichlet boundary condition case (cf §3.3.2.1).

Figure 4.5(b) shows the fields at t = 215 just before the phase shift. Although

the concentration field is the same as in figure 4.5(a), the porosity field has

evolved further and now has more pronounced areas of high and low porosity.

As a result of this evolution the absolute velocity field now has more pronounced

areas of upwards flow coinciding with areas of higher porosity. The centres of the

circulation cells have also moved upwards slightly.

Part-way through the shift (t = 230, figure 4.5(c)), the concentration field has

moved approximately a quarter of a cell (0.25 x-units) to the right, but the poros-

ity field remains the same as before the shift. Also, in the absolute velocity field

we see that the upwards flow has remained in approximately the same position,

but the downwards flow has shifted towards the right, while there is a tilting of
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the cells to the left (most apparent in the concentration field). By the end of

the shift at t = 255 (figure 4.5(d)) the concentration field and streamlines have

moved a half cell (0.5 x-units) to the right, and the centre of the circulation cells

has moved slightly downward, but the porosity field is still effectively unchanged.

There is still downward flow where C ′ > 0, but this now coincides with high

porosity regions. Therefore, downward flow is now faster than upward flow.

Further evidence of this phase shift can be seen in figure 4.6(b), which shows the

maximum absolute velocity and porosity contrast throughout the whole domain.

Convection develops and is maintained for approximately 200 time steps, but

there is a dip in the velocity around the time of the phase shift as the circulation

slows and then re-establishes itself. After this shift, the system settles back into a

quasi-equilibrium state of almost steady convection, with the maximum velocity

and porosity contrast first declining and then gradually increasing again as the

porosity comes back into phase with the concentration. The same behaviour can

be seen in figure 3.12 which shows the maximum absolute velocity and porosity

contrast throughout the whole domain with constant boundary conditions.

By t = 700 the concentration and porosity fields are back in phase, with faster

upwards flow in regions of higher porosity and slower downflow in regions of

lower porosity, as before the first phase shift. As with constant solutal boundary

conditions, the system only undergoes two rapid phase shifts, and subsequent

changes take place over much longer timescales.

The long-term behaviour of the system is qualitatively the same as for Dirichlet

boundary conditions, but the porosity evolution is marginally slower. By t = 4000

(figure 4.5(h)) the concentration perturbations are very small and there is distinct

layering in the porosity field, with a low porosity barrier in the middle of the

domain which is pierced by occasional high porosity channels. There is evidence

of period-doubling with alternate high porosity channels more pronounced. From

the streamlines and the absolute velocity field we see that because of this barrier,

two-layered convection is beginning to develop. By the end of the simulation

at t = 5000 (figure 4.5(i)) the lower layer has moved upwards, penetrating the

upper layer. The period-doubling has survived but there is now more pronounced

downflow in alternate high porosity channels.



Chapter 4 77

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↑
↑

↑
↑

↑
↓

↓
↓

↓
↓

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↑
↑

↑
↑

↑
↓

↓
↓

↓
↓

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↓
↓

↓
↓

↓
↑

↑
↑

↑
↑

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↓
↓

↓
↓

↓
↑

↑
↑

↑
↑

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↓
↓

↓
↓

↓
↑

↑
↑

↑
↑

(a
)
t

=
10

0

(b
)
t

=
21

5

(c
)
t

=
23

0

(d
)
t

=
25

5

(e
)
t

=
70

0



Chapter 4 78

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↓
↓

↓
↓

↓
↑

↑
↑

↑
↑

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↑
↑

↑
↑

↑
↓

↓
↓

↓
↓

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↑
↑

↑
↑

↑
↓

↓
↓

↓
↓

0
1

2
3

4
5

−
0

.
1

0

−
0

.
0

5

0
.
0

0

0
.
0

5

0
.
1

0

0

0
.
51

0
1

2
3

4
5

0
.
0

6

0
.
0

8

0
.
1

0

0
.
1

2

0
.
1

4

0
.
1

6

0
.
1

8

0

0
.
51

0
1

2
3

4
5

0.00.20.40.60.81.0

0
.
5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

z

x

z

x

z

x

↓
↓

↓
↓

↓
↑

↑
↑

↑
↑

(f
)
t

=
15

00

(g
)
t

=
30

00

(h
)
t

=
40

00

(i
)
t

=
50

00

F
ig

u
re

4.
5:

E
vo

lu
ti

on
w

it
h
k

0
=

10
.

S
h
ad

in
g

in
d
ic

at
es

so
lu

ta
l
co

n
ce

n
tr

at
io

n
p

er
tu

rb
at

io
n
C
′
(l

ef
t)

,
p

or
os

it
y
φ

(c
en

tr
e)

,
an

d
ab

so
lu

te
ve

lo
ci

ty
|u
|(

ri
gh

t)
.

S
ol

id
li
n
es

ar
e

st
re

am
li
n
es

an
d

ar
ro

w
s

in
d
ic

at
e

th
e

ve
lo

ci
ty

fi
el

d
b
u
t

ar
e

n
ot

d
ra

w
n

to
sc

al
e.



Chapter 4 79

4.2.2.2 Effect of varying the Rayleigh number

Figure 4.6 shows the porosity evolution and maximum absolute velocity for each

of the convective Rayleigh numbers with k0 = 10. Comparing with figure 3.12

for Dirichlet boundary conditions, we see that the model exhibits almost the

same behaviour with both sets of boundary conditions. However, with Neumann

boundary conditions the system settles down to the slow timescale evolution

sooner, and therefore the final state of the system is slightly different.
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Figure 4.6: Maximum absolute velocity |u| and maximum and minimum porosity
φ throughout the whole domain when k0 = 10. Here the solid line represents the
maximum velocity, the dashed line represents the porosity. In (a) RC = Rcrit

C,0,
(b) RC = 1.1Rcrit

C,0, (c) RC = 1.2Rcrit
C,0, and (d) RC = 1.5Rcrit

C,0.

4.2.2.3 Effect of varying the reaction rate

We now consider the faster reaction with k0 = 30. To allow direct comparison

with the long-term behaviour in the slow reaction case we focus on a simulation
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with a Rayleigh number 10% above the critical value (RC = 47.0524 compared

with Rcrit
C,0 ≈ 42.7749). Figure 4.7 shows the evolution of the concentration per-

turbation C ′, the porosity φ, and the absolute velocity |u|, for the left half of

the domain, while figure 4.8 shows the corresponding evolution of the maximum

velocity and the porosity contrast. The most prominent difference between figure

4.8 and figure 3.14 for Dirichlet boundary conditions is that the system settles

down to the slow timescale evolution much sooner with the Neumann boundary

conditions (at t ≈ 1500 compared with t ≈ 3100). This effect was also seen with

a slower reaction rate and higher Rayleigh numbers (§4.2.2.2). This suggests that

Neumann boundary conditions stabilise the system to rapid readjustments over

time.

Buoyancy-driven convection has been established by t ≈ 10 (not shown): at this

time the convection pattern closely resembles figure 4.5(a), and there are ten pairs

of counter-rotating cells in the full domain, corresponding to a wave number of

m ≈ 6.28, compared to the critical wavenumber mcrit
0 ≈ 7.42. In contrast to the

situation with Dirichlet boundary conditions, however, additional cells do not

appear and the simulation continues with a lower wavenumber than predicted by

the linear stability analysis.

As with the slower reaction, once convection has been established the porosity

field evolves until it triggers a secondary instability. Figure 4.7(a) shows the fields

at t = 250, just before the phase shift. As before, the concentration perturbation

and porosity fields are initially in phase before the shift, while after the phase shift

(t = 290, figure 4.7(b)) the concentration perturbation field and streamlines have

moved a half cell (≈ 1 x-unit) to the right, and now the cells are more upright.

Furthermore, the concentration perturbation and porosity fields are now out of

phase. As before, the phase shift can also be seen in the maximum absolute

velocity and porosity contrast (figure 4.8).

By t = 700 (figure 4.7(c)), the concentration and porosity fields are back in phase,

although the porosity perturbations are small and the centres of the circulation

cells have moved upwards. After this time, as with the Dirichlet boundary con-

dition case with increased reaction rate (§3.3.2.3), the porosity contrast becomes

more pronounced, with ‘eyes’ of high porosity developing at the top of the layer



Chapter 4 81

and regions of lower porosity in the middle of the domain; meanwhile the circula-

tion pattern becomes more irregular (figure 4.7(d)). By the end of the simulation,

the circulation is now marginally stronger in the lower half of the domain (figure

4.7(e)), but the maximum velocity and porosity has continued to decline (figure

4.8).

4.3 Summary and conclusions

In this chapter we have investigated the effect of changing the top and bottom

boundary conditions from Dirichlet to Neumann conditions on both the onset of

convection and the long-term behaviour in a reactive and evolving porous layer.

Although this change of boundary conditions has a strong effect on the onset of

convection in a non-reactive and non-evolving layer, reducing the critical Rayleigh

number from RC = 4π2 to RC = 12, the introduction of a reaction between

the saturating fluid and the rock matrix negates this difference. The reaction

stabilises the system and, as the reaction rate is increased, the critical Rayleigh

number with Neumann boundary conditions asymptotes to that with Dirichlet

boundary conditions. Furthermore, when the porosity is allowed to evolve, the

systems with Dirichlet and Neumann boundary conditions exhibit very similar

behaviour.

Over longer timescales with Neumann boundary conditions, the system undergoes

fewer phase shifts and therefore settles into a phase of slow evolution at an earlier

point in the simulation. This suggests that these boundary conditions stabilise

the system to these rapid reorganisations.

A variety of other boundary conditions could of course be investigated (Lapwood

1948, Nield and Bejan 2006). However, the results of this chapter suggest that

these are unlikely to lead to qualitatively new behaviour. Therefore, in the next

chapter we extend this simple model to consider the full thermosolutal system.
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Figure 4.8: Maximum absolute velocity |u| and (a) maximum and (b) minimum
porosity φ throughout the whole domain when k0 = 30 and RC = 1.1Rcrit

C,0. Here
the solid line represents the maximum velocity and the dashed line represents the
porosity.



Chapter 5

Thermosolutal convection: linear

stability analysis

In this chapter and the next we build upon the work of chapter 3, and consider

reactive double-diffusive convection in an evolving porous layer, bounded above

and below by impermeable layers held at constant concentration and tempera-

ture. This model is an extension of the fixed porosity model of Pritchard and

Richardson (2007). Following Pritchard and Richardson (2007), we will neglect

the thermal contribution of the reaction, and focus on the effect on convection of

the solute exchange between the fluid and the porous matrix as the temperature

varies.

In §5.1 we recapitulate our model of flow and transport in a porous medium

with evolving porosity. We then, in §5.2, carry out a linear stability analysis of

the onset of convection, paying particular attention to the permeability feedback

effects which enter on a timescale generally slower than that of the flow.

In chapter 6 we will investigate the longer-term behaviour numerically.

84
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5.1 Model Description

We consider an initially homogeneous and isotropic porous layer of depth ĥ with

solutal mass concentrations Ĉ0 and Ĉ1 and temperatures T̂0 and T̂1 imposed at

the bottom and top, respectively. The bottom and top layers are presumed to be

impermeable, and we impose chemical equilibrium at the boundaries.

We take x̂ and ẑ as the horizontal and vertical coordinates, respectively, with ẑ

increasing upwards. The appropriate governing equations, which were discussed

in detail in chapter 2, are

∇̂ · û = 0, (5.1)

û = −K̂
µ̂

(
φ

φ0

)2

∇̂p̂− K̂

µ̂

(
φ

φ0

)2

ρ̂f ĝez, (5.2)

(ρ̂ĉ)m
∂T̂

∂t̂
+ (ρ̂ĉ)f (û · ∇̂)T̂ = (ρ̂ĉ)mκ̂T ∇̂2T̂ , (5.3)

∂(φĈ)

∂t̂
+ ∇̂ · (ûĈ) = ∇̂ · (φκ̂C∇̂Ĉ) + k̂0

φ(1− φ)

φ0(1− φ0)
(Ĉeq(T̂ )− Ĉ), (5.4)

∂φ

∂t̂
=
k̂0

ρ̂s

φ(1− φ)

φ0(1− φ0)
(Ĉeq(T̂ )− Ĉ), (5.5)

ρ̂f (Ĉ, T̂ ) = ρ̂0[1 + β̂C(Ĉ − Ĉ0) + β̂T (T̂ − T̂0)]. (5.6)

Here K̂0 is the initial permeability, µ̂ is the fluid viscosity, ρ̂f is the fluid density,

and û is the two-dimensional fluid velocity; T̂ represents the temperature and

we assume local thermal equilibrium between the fluid and the rock matrix; Ĉ

is the mass concentration of solute in the fluid, and Ĉeq(T̂ ) is the equilibrium

concentration of solute at a given temperature; κ̂T is the effective diffusivity of

heat through the saturated medium, and κ̂C is the molecular diffusivity of the

solute through the fluid. The volumetric heat capacity of the fluid is given by (ρ̂ĉ)f

and that of the saturated medium is given by (ρ̂ĉ)m = φ(ρ̂ĉ)f +(1−φ)(ρ̂ĉ)s, where

the subscript s denotes properties of the solid rock matrix. As before, a caret ˆ

denotes a dimensional variable, while dimensionless variables are unadorned.

Following Jupp and Woods (2003) and Pritchard and Richardson (2007), we take
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the equilibrium concentration to vary linearly in T̂ . We write

Ĉeq(T̂ ) = Ĉ0 + γ̂(T̂ − T̂0) (5.7)

and assuming chemical equilibrium on the boundaries gives

γ̂ =
Ĉ1 − Ĉ0

T̂1 − T̂0

. (5.8)

The coefficient γ̂ may be positive or negative; if γ̂ > 0 then the solubility increases

with temperature (as with a prograde mineral, such as silica), while if γ̂ < 0 then

the solubility decreases with temperature (as with a retrograde mineral, such as

anhydrite, see Jupp and Woods (2003) and references therein). In the majority of

solutions the solubility increases with temperature; however, natural gypsum is

a notable exception with the solubility decreasing from 2.4× 10−5 kg m−3 at 293

K to 2.2× 10−6 kg m−3 at 353 K (Phillips 2009, §2.9). It therefore follows that,

with a prograde mineral, the gradients of concentration and temperature must

be the same sign, and so they contribute in opposing senses to the stability; with

a retrograde mineral, the gradients of concentration and temperature must be of

opposite sign and so be either both stabilising or destabilising. As a result of

our assumption of chemical equilibrium at the boundaries, we cannot choose the

stability properties independently of the pro- or retrograde nature of the mineral.

We seek an initial steady state solution where û = 0 and there is no lateral

variation. We then find a linear distribution of temperature and thus of solute

concentration,

T̂b(ẑ) = T̂0 + (T̂1 − T̂0)
ẑ

ĥ
, Ĉb(ẑ) = Ĉ0 + (Ĉ1 − Ĉ0)

ẑ

ĥ
. (5.9)

The initial distribution of solute corresponds to Ĉb = Ĉeq(T̂b).
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5.1.1 Streamfunction formulation and non-dimensionalisation

Equation (5.4) may be simplified using (5.1) to obtain

φ
∂Ĉ

∂t̂
+ (û · ∇̂)Ĉ = κ̂C∇̂ · (φ∇̂Ĉ) + k̂(φ)(Ĉeq(T̂ )− Ĉ). (5.10)

We write û(x̂, ẑ, t̂) in terms of a streamfunction ψ̂(x̂, ẑ, t̂) so that u′ = −∂ψ′/∂z
and w′ = ∂ψ′/∂x. We then define dimensionless variables as

x̂ = ĥx, ψ̂ = φ0κ̂Tψ, t̂ =
ĥ2

κ̂T
t,

Ĉ = Ĉb(ẑ) + (Ĉ1 − Ĉ0)C ′, T̂ = T̂b(ẑ) + (T̂1 − T̂0)T ′,

(5.11)

where T ′ and C ′ are perturbations to the base state temperature and concen-

tration fields, respectively. We can then eliminate p̂ to obtain the dimensionless

governing equations

∇ ·

[(
φ

φ0

)−2

∇ψ

]
= −RC

∂C ′

∂x
−RT

∂T ′

∂x
, (5.12)

∂T ′

∂t
− λ

[
∂ψ

∂z

∂T ′

∂x
− ∂ψ

∂x

(
1 +

∂T ′

∂z

)]
= ∇2T ′, (5.13)

φ
∂C ′

∂t
− φ0

[
∂ψ

∂z

∂C ′

∂x
− ∂ψ

∂x

(
1 +

∂C ′

∂z

)]
=

1

Le

[
φ ∇2C ′ +

∂φ

∂x

∂C ′

∂x
+
∂φ

∂z

(
1 +

∂C ′

∂z

)]
+ k0

φ(1− φ)

1− φ0

(T ′ − C ′),
(5.14)

∂φ

∂t
= δk0

φ(1− φ)

1− φ0

(T ′ − C ′), (5.15)

subject to the boundary conditions

∂ψ

∂x
= 0, T ′ = 0, and C ′ = 0 at z = 0 and at z = 1. (5.16)
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The dimensionless parameters k0, δ, λ, Le, RT and RC are defined as

k0 =
ĥ2k̂0

φ0κ̂T
, δ =

(Ĉ1 − Ĉ0)

ρ̂s
, λ =

φ0(ρ̂ĉ)f
(ρ̂ĉ)m

, Le =
κ̂T
κ̂C
,

RT =
K̂0ρ̂0ĝĥβ̂T (T̂1 − T̂0)

φ0µ̂κ̂T
, RC =

K̂0ρ̂0ĝĥβ̂C(Ĉ1 − Ĉ0)

φ0µ̂κ̂T
.

(5.17)

The parameters RT and RC can be either positive or negative, with positive

values encouraging instability. We can define

Rsolute
C =

K̂0ρ̂0ĝĥβ̂C(Ĉ1 − Ĉ0)

µ̂κ̂C
= φ0LeRC ,

Rtemp
T =

K̂0ρ̂0ĝĥβ̂T (ρ̂ĉ)f (T̂1 − T̂0)

µ̂(ρ̂ĉ)mκ̂T
= λRT ,

(5.18)

where Rsolute
C and Rtemp

T are the Rayleigh numbers which emerge naturally from

the pure solutal and pure thermal problems, respectively. The Lewis number Le

is known to be greater than unity (§2.6.5), and the dimensionless reaction rate

(Damköhler number) k0 > 0: recall that estimates for geochemical reaction rates

may vary by many orders of magnitude (§2.6.7). The differential heat transport

rate λ clearly satisfies 0 < λ ≤ 1, and for the purposes of this study we will take

it to be constant. Finally, δ is a matrix evolution rate, the magnitude of which

may be assumed to be much less than unity since mass concentrations of solute

are typically much smaller than the density of the solid mineral (Phillips 2009,

§2.8). In contrast to chapter 3, this parameter is not necessarily positive since

we may take Ĉ1 ≶ Ĉ0.

5.2 Linear stability analysis: general problem

By defining the porosity perturbation as φ′ = φ − φ0 and assumming that the

magnitudes of perturbations to the base state are small, we may simplify (5.12)–

(5.15) to obtain

∇2ψ = −RT
∂T ′

∂x
−RC

∂C ′

∂x
, (5.19)
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∂T ′

∂t
+ λ

∂ψ

∂x
= ∇2T ′, (5.20)

∂C ′

∂t
+
∂ψ

∂x
=

1

Le

[
∇2C ′ +

1

φ0

∂φ′

∂z

]
+ k0(T ′ − C ′), (5.21)

∂φ′

∂t
= δk0φ0(T ′ − C ′), (5.22)

subject to the boundary conditions

∂ψ

∂x
= 0, T ′ = 0, and C ′ = 0 at z = 0 and at z = 1. (5.23)

We seek Fourier-mode solutions of the form

ψ = Ψ(z)eimxeσt, T ′ = Θ(z)eimxeσt,

C ′ = χ(z)eimxeσt, φ′ = Φ(z)eimxeσt,
(5.24)

where the real parts are assumed, the wave number m is a positive real number,

and Ψ,Θ, χ,Φ and σ are generally complex. Substituting these into equations

(5.19)–(5.22) we obtain(
d2

dz2
−m2

)
Ψ(z) = −im (RTΘ(z) +RCχ(z)) , (5.25)

(
d2

dz2
−m2 − σ

)
Θ(z) = imλΨ(z), (5.26)

(
1

Le

(
d2

dz2
−m2

)
− k0 − σ

)
χ(z) = imΨ(z)− 1

Leφ0

d

dz
Φ(z)− k0Θ(z), (5.27)

σΦ(z) = δk0φ0 (Θ(z)− χ(z)) . (5.28)
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Equations (5.25)–(5.28) can be combined and simplified to give[
1

Le

(
d2

dz2
− δk0

σ

d

dz
−m2

)
− k0 − σ

]
×[(

d2

dz2
−m2 − σ

)(
d2

dz2
−m2

)
− λm2RT

]
Θ(z)

= λm2RC

[
1

λ

(
d2

dz2
−m2 − σ

)
− 1

Le

δk0

σ

d

dz
− k0

]
Θ(z),

(5.29)

while Θ(z) must satisfy the boundary conditions

Θ(z) = 0,

(
d2

dz2
−m2 − σ

)
Θ(z) = 0,

and

(
d2

dz2
−m2 − σ

)(
d2

dz2
−m2

)
Θ(z) = 0,

(5.30)

at z = 0 and z = 1.

Again adapting the approach of Chandrasekhar (1961, §15) for Rayleigh–Bénard

convection, as in §3.2, we seek solutions to (5.29) in the form Θ(z) ∝ exp(qz),

where q is a root of the auxiliary equation

1

λm2RC

[
1

Le

(
q2 − δk0

σ
q −m2

)
− k0 − σ

] [(
q2 −m2 − σ

) (
q2 −m2

)
− λm2RT

]
=

[
1

λ

(
q2 −m2 − σ

)
− 1

Le

δk0

σ
q − k0

]
.

(5.31)

In general we may write

Θ(z) = A1e
q1z + A2e

q2z + A3e
q3z + A4e

q4z + A5e
q5z + A6e

q6z, (5.32)

and the boundary conditions (5.30) may be written as

B · [A1, A2, A3, A4, A5, A6]T = 0, (5.33)
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where the elements of the matrix B are given by

b1j = 1, b2j = eqj , b3j = (q2
j −m2 − σ), b4j = (q2

j −m2 − σ)eqj ,

b5j = (q2
j −m2)(q2

j −m2 − σ), b6j = (q2
j −m2)(q2

j −m2 − σ)eqj ,
(5.34)

for j = 1 . . . 6. For nontrivial solutions we require that

det(B) = 0. (5.35)

Using column operations the determinant can be simplified to

(eq2 − eq1)(eq4 − eq3)(eq6 − eq5)(eq3 − eq1)(eq5 − eq1) det(C) = 0. (5.36)

The details of the column operations and the form of the matrix C are given in

Appendix A.3.

5.3 Linear stability analysis: special cases

Before considering the full linear stability problem, it is helpful to recover some

results for the rather simpler case with δ = 0 presented in Pritchard and Richard-

son (2007).

With δ = 0 the terms in (5.31) that are linear in q disappear, and it becomes a

cubic in q2. Therefore, it has roots q1 = −q2, q3 = −q4, and q5 = −q6, and the

determinant condition (5.35) becomes

sinh(q1) sinh(q3) sinh(q5)×[
(q1 − q3)2(q1 + q3)2(q1 − q5)2(q1 + q5)2(q3 − q5)2(q3 + q5)2

]
= 0. (5.37)

Hence, for linearly independent roots we require either

q1 = inπ, q3 = inπ, or q5 = inπ where n ∈ Z. (5.38)
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Now, setting q = inπ in (5.31) results in the solvability condition

aσ2
0 + bσ0 + c = 0 (5.39)

where we define σ = σ0 as the growth rate for δ = 0 and, defining M = m2 for

convenience,

a = (M + n2π2),

b =

(
1 +

1

Le

)
(M + n2π2)2 + k0(M + n2π2)−M(RC + λRT ), (5.40)

c =
1

Le
(M + n2π2)3 + k0(M + n2π2)2 −M(M + n2π2)

(
RC +

λRT

Le

)
− k0Mλ(RC +RT ).

This is identical to the solvability condition given by equations (3.7) and (3.8)

of Pritchard and Richardson (2007). The stability boundaries of the system

correspond to the condition Re(σ0+) = 0 where σ = σ0± are the two roots of

(5.39).

5.3.1 No reaction: k0 = 0

When there is no reaction (k0 = 0) we recover classic double-diffusive convection

(see e.g. Nield and Bejan 2006 §9, Phillips 1991 §5.3), and the growth rate σ0+

is determined by (5.39) and (5.40) with k0 = 0. Instability will occur whenever

Re(σ0+) > 0 with n ∈ N, i.e. whenever (i) b < 0 , or (ii) b > 0 and c < 0 (so that√
b2 − 4ac > b ).

(i) If b < 0 then

RT >

(
1 +

1

Le

)
(M + n2π2)2

Mλ
− RC

λ
. (5.41)

The lowest value of RT for which b < 0 occurs is when n = 1, M = π2, so

RT > Rb
T (RC) =

(
1 +

1

Le

)
4π2

λ
− RC

λ
. (5.42)

When crossing this boundary b2 − 4ac < 0, so the instability is oscillatory.
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(ii) If c < 0, then

RT >
(M + n2π2)2

Mλ
− Le

λ
RC . (5.43)

The lowest value of RT for which c < 0 occurs is when n = 1, M = π2, so

RT > Rc
T (RC) =

4π2

λ
− Le

λ
RC , (5.44)

with the additional requirement that condition (5.42) is not satisfied, i.e. that

b > 0. When crossing this boundary σ0+ = 0 (i.e. the principle of exchange

of stabilities holds), so the loss of stability is through an exponentially growing

perturbation.

Hence, instability will occur if either (5.42) or (5.44) is satisfied, and the system

will be stable if neither is satisfied. An illustration of the stability boundaries is

given in figure 5.1(a).

The intersection of Rc
T with the RT−axis occurs when RT = 4π2/λ < Rb

T (0).

Therefore, Rc
T determines the stability criterion Rtemp

T < 4π2 for pure thermal

convection (Nield and Bejan 2006 §6; Lapwood 1948). Similarly, the stability

criterion for pure solutal convection is given by Rsolute
C < 4φ0π

2 (as in chapter 3).

The lines RT = Rb
T and RT = Rc

T intersect at the critical value

Rcrit
C = − 4π2

Le(Le− 1)
. (5.45)

When RC < Rcrit
C , the criterion RT < Rb

T gives stability, while when RC > Rcrit
C ,

the criterion RT < Rc
T gives stability.

5.3.2 Reactive case: k0 > 0

We now consider the case of reactive double-diffusive convection with a non-

evolving rock matrix. The results in §§5.3.2–5.3.2.2 are presented in detail in

Pritchard and Richardson (2007), but it is useful for this study to recap some

general features of the stability diagram in the (RC ,RT ) plane.

We will determine two boundaries: (i) the boundaryRT = Rb
T,0(RC) above which
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there exist (M,n) such that b < 0, and (ii) the boundary RT = Rc
T,0(RC) above

which there exist (M,n) such that c < 0. The unstable region is then the union

of the regions RT > Rb
T,0 and RT > Rc

T,0. Furthermore, we will also determine

the axis intercepts and examine how increasing the reaction rate k0 affects the

stability diagram.

(i) If b < 0 then

RT > f(M,n) =
1

λ

((
1 +

1

Le

)
(M + n2π2)2

M
+ k0

(M + n2π2)

M
−RC

)
. (5.46)

Clearly f(M,n) is least restrictive when n takes its minimum value, n = 1. Hence,

f(M, 1) will be least restrictive when we choose M such that f(M, 1) is minimised

over M . Now,

∂f

∂M
= 0 =⇒ M = Mb = π

[
k0Le+ π2(1 + Le)

1 + Le

]1/2

(5.47)

where Mb is the unique solution for real, positive M . Note that (5.47) corrects

equation (3.15) of Pritchard and Richardson (2007). Therefore, the instability

condition is given by

RT > Rb
T,0(RC) =

π2

λ

(
1 +

1

Le

)(
1 +

√
1 +

k0Le

π2(1 + Le)

)2

− RC

λ
. (5.48)

Note that both Mb and Rb
T,0(RC) are increasing functions of k0, and so the effect

of the reaction rate is to increase the threshold of instability and increase the

wavenumber at the threshold of instability, resulting in narrower convection cells.

(ii) If c < 0 then

RT > Rc
T,0(RC) = min

M,n
g(M,n), (5.49)
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where

g(M,n) =
k0Le

k0Le+M + n2π2
×[

(M + n2π2)2

M
−RC

(
1 +

(M + n2π2)

k0λ

)
+

1

Le

(M + n2π2)3

Mk0λ

]
. (5.50)

We will write Rc
T,0 = g(M,n) to indicate the boundary c = 0 for given values

of (M,n), while Rc
T,0(RC) will represent the minimum over (M,n) of g, i.e. the

stability boundary if M , n are not imposed.

The global minimum of g(M,n) over M and n always occurs on the boundary

n = 1 and corresponds to a local minimum over M (see appendix A.4, which

corrects Pritchard and Richardson 2007). Denoting this minimum by M = Mc

and taking n = 1, the condition ∂g/∂M = 0 leads to a quartic equation for Mc,

M4
c

Le2
+

(
2k0

Le
+

2π2

Le2

)
M3

c +

(
2k0π

2 + k0λRC

Le
−RCk0 + k2

0

)
M2

c

+

(
−2k0π

4

Le
− 2π6

Le2

)
Mc − k2

0π
4 − 2k0π

6

Le
− π8

Le2
= 0,

(5.51)

and we have Rc
T,0(RC) = g(Mc, 1).

5.3.2.1 Axis intercepts

We first consider the intercepts when RC = 0. Here there is no solutal contribu-

tion to buoyancy, and so we have pure thermal convection. When RC = 0, the

axis intercept of Rb
T,0 is given by

Rb
T,0(0) =

π2

λ

(
1 +

1

Le

)(
1 +

√
1 +

k0Le

π2(1 + Le)

)2

. (5.52)

For the axis intercept of Rc
T,0 we first note that (5.51) has the unique positive

solution Mc = π2 for RC = 0. Therefore, the axis intercept is given by

Rc
T,0(0) = g(π2, 1) =

4π2

λ
< Rb

T,0(0), (5.53)
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and so Rc
T,0(0) will always lie below Rb

T,0(0). Hence, instability will occur when

RT > Rc
T,0(0).

The other case to consider occurs when there is no direct thermal contribution to

buoyancy, i.e. when RT = 0, but there is still a solutal contribution. As before,

instability will occur if there exists some M > 0 such that either (i) b < 0, or (ii)

c < 0 and b > 0.

(i) We already have the full solution (5.48) for the boundary RT = Rb
T , therefore

requiring Rb
T,0 = 0 gives the boundary

RC = Rb
C,0 = π2

(
1 +

1

Le

)(
1 +

√
1 +

k0Le

π2(1 + Le)

)2

. (5.54)

(ii) When c < 0, with n = 1 and general M ,

Rc
C,0 = S(M) =

k0Le(M + π2)2 + (M + π2)3

LeM(k0λ+M + π2)
. (5.55)

There is not a simple expression for the positive real root of dS/dM = 0, but we

note that

S(M) ≤ k0(M + π2)

M
+

1

Le

(M + π2)2

M

< S1(M) =
k0(M + π2)

M
+

(
1 +

1

Le

)
(M + π2)2

M
,

(5.56)

where S1(M) is the value of RC from (5.46) for which b = 0 when RT = 0 and

n = 1. This means that minM S(M) < minM S1(M), so the curve RT = Rc
T,0

always intercepts the RC axis to the left of the curve RT = Rb
T,0. This suggests,

together with the result that Rc
T,0(0) < Rb

T,0(0), that for RC > 0 the stability

boundary for k0 > 0 is given by the criterion c = 0 rather than by b = 0.

5.3.2.2 Critical reaction rate

We have seen that for pure double-diffusive convection when RC < Rcrit
C , the

stability boundary is given by RT = Rb
T,0 , while when RC > Rcrit

C , the stability
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Figure 5.1: Linear stability boundaries for λ = 0.25, Le = 10, and (a) k0 = 0,
(b) k0 = 5, (c) k0 = 20. The solid lines represent stability boundaries on which
σ0+ = 0, the dashed lines represent stability boundaries on which Re(σ0+) = 0
but Im(σ0+) 6= 0, and the dotted lines represent the continuation of Rb

T,0 and
Rc
T,0 above the boundary. The numbered arrows on (b) and (c) represent the

transects taken when examining the stability of the full problem (§5.4.1.1).

boundary is given by RT = Rc
T,0 (§5.3.1) . By examining the limits RC → ±∞

we can investigate how this changes as the reaction rate k0 increases.

Following Pritchard and Richardson (2007), we see that as RC → ∞, Rc
T,0 <

Rb
T,0, and so the curve RT = Rc

T,0 always provides the stability boundary. In the

other limit, RC → −∞, Rc
T,0 < Rb

T,0 if and only if

k0 > kcrit
0 =

π2

1− λ

(
1− 1

Le

)
. (5.57)

Therefore, the stability boundary is given by RT = Rb
T,0 for sufficiently small k0.

As k0 is increased, the curve RT = Rc
T,0 drops below RT = Rb

T,0 and so becomes
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the stability boundary.

It is important to note that the condition k0 > kcrit
0 does not itself guarantee

that Rc
T,0 lies below Rb

T,0 for all RC . However, numerical investigation suggests

that Rc
T,0 < Rb

T,0 for all RC once k0 is even very slightly above this boundary.

Therefore, we may take k0 ≈ kcrit
0 as marking the reaction rate above which Rb

T,0

becomes irrelevant.

5.3.2.3 Description of stability boundaries

Figure 5.1 illustrates the evolution of the stability boundaries Rb
T,0 and Rc

T,0 in

the (RC ,RT )-plane as k0 is increased from 0. When k0 = 0 (figure 5.1(a)), the

stability boundary is given by Rb
T,0 in the solutally stable (SS) regime RC < 0

and by Rc
T,0 in the solutally unstable (SU) regime RC > 0. In the SS regime the

transition to instability is through a growing oscillatory mode as Im(σ0+) 6= 0,

whereas in the SU regime Im(σ0+) = 0 and the transition to instability is by di-

rect onset of steady-state convection with finite amplitude. Furthermore, in the

SS regime as RC decreases, Rb
T,0 increases. Hence, a greater destabilising tem-

perature gradient is required to overcome the stabilising concentration gradient

and allow the system to become unstable.

Increasing the reaction rate to k0 = 5 < kcrit
0 (figure 5.1(b)) decreases the size of

the unstable region with Rb
T,0 moving up everywhere, and Rc

T,0 moving upwards

and rightwards in the SU regime and downwards in the SS regime. Physically, in

the SU regime the reaction tends to eliminate destabilising solutal perturbations

and so stabilises the system, so a greater value of RC is required to allow the

system to become unstable.

As the reaction rate is increased further to k0 = 20 > kcrit
0 (figure 5.1(c)) the Rc

T,0

stability boundary moves even further rightwards in the SU regime, stabilising the

system. The boundaryRc
T,0 has now passed entirely below the boundaryRb

T,0 and

so the transition to instability is always by direct rather than oscillatory onset.

In the SS regime, the Rc
T stability boundary has moved further downwards since

a supercritical reaction rate destabilises the system by weakening the stabilising

solutal perturbations. Hence, a lower value of RT is required for instability in
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this regime than when k0 = 0.

5.4 Linear stability analysis: full problem

Now that we have recovered some stability results from the reduced problem with

δ = 0, we consider the stability of the full problem. When δ 6= 0, an analytical

solution of (5.36) in terms of σ is not available. Therefore, we follow the approach

of chapters 3 and 4 for reactive solutal convection and investigate the stability

problem numerically using a continuation method, tracking σ as RT is changed,

while keeping RC and all other parameters fixed. A numerical solution to (5.37)

for a large value of RT was used as an initial guess.

The task of tracking each solution branch is numerically very laborious, largely

because the analytical solutions for qi are prohibitively complicated and so nested

numerical solutions of (5.31) and (5.36) are required. As with the solutal convec-

tion problem (§3.2.2) we found that to track a single branch it was necessary to

reduce RT in steps no larger than 10−2, with smaller steps required around the

bifurcation points discussed below (§5.4.1). Additionally, to track the bifurcation

point accurately we needed to further simplify the determinant (5.36). When

δ 6= 0,

(eq2 − eq1)(eq4 − eq3)(eq6 − eq5)(eq3 − eq1)(eq5 − eq1) 6= 0. (5.58)

Therefore, to track each solution branch, we are only required to solve det(C) = 0.

Nevertheless, each set of plots within figures 5.2 and 5.3 each took around twelve

hours to produce on a desktop computer. This effectively precluded the thorough

investigation of the full problem defined by (5.36): instead, as before, we employed

a less formal Galerkin approach in order to both search parameter space and

provide insight into the solution structure.
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5.4.1 Galerkin approach to the linear stability problem

We start with the system of equations (5.25)–(5.28), subject to the boundary

conditions

Ψ = 0, Θ = 0 and χ = 0 on z = 0 and z = 1, (5.59)

and to the usual non-triviality condition that the solution is not identically zero.

Rearranging (5.28) we see that

Φ(z) =
δk0φ0(Θ(z)− χ(z))

σ
, (5.60)

and then we can eliminate Φ(z) from (5.27) to obtain the system(
d2

dz2
−m2

)
Ψ(z) = −im (RTΘ(z) +RCχ(z)) , (5.61)

(
d2

dz2
−m2 − σ

)
Θ(z) = imλΨ(z), (5.62)

(
1

Le

(
d2

dz2
−m2

)
− k0 − σ

)
χ(z) =

imΨ(z)− 1

Le

δk0

σ

(
d

dz
Θ(z)− d

dz
χ(z)

)
− k0Θ(z), (5.63)

subject to the same boundary conditions.

We seek approximate solutions of the form

Ψ(z) = sin(πz) + Ψ2 sin(2πz), (5.64)

Θ(z) = Θ1 sin(πz) + Θ2 sin(2πz), (5.65)

χ(z) = χ1 sin(πz) + χ2 sin(2πz). (5.66)

Note that the boundary conditions are automatically satisfied and that the non-

triviality condition has been imposed by normalising the sin(πz) component of

ψ(z). We know that in the limit δ = 0 this approximation will become exact with
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Ψ2 = Θ2 = χ2 = 0.

With six unknowns we can choose to satisfy six integral conditions. The natural

ones are obtained by extracting the first and second Fourier sine components of

(5.61)–(5.63):∫ 1

0

sin(πnz)

[
d2Ψ

dz2
−m2Ψ

]
dz =

∫ 1

0

sin(πnz) [−imRTΘ− imRCχ] dz, (5.67)∫ 1

0

sin(πnz)

[
d2Θ

dz2
−m2Θ− σΘ

]
dz =

∫ 1

0

sin(πnz)[imλΨ]dz, (5.68)∫ 1

0

sin(πnz)

[
1

Le

(
d2χ

dz2
−m2χ

)
− (k0 + σ)χ

]
dz =∫ 1

0

sin(πnz)

[
imΨ− 1

Le

δk0

σ

(
dΘ

dz
− dχ

dz

)
− k0Θ

]
dz,

(5.69)

for n = 1 and for n = 2. This yields a system of six algebraic equations,

−1

2

(
π2 +m2

)
= −im

2
(RTΘ1 +RCχ1) , (5.70)

−1

2

(
4π2 +m2

)
Ψ2 = −im

2
(RTΘ2 +RCχ2) , (5.71)

−1

2

(
π2 +m2 + σ

)
Θ1 =

1

2
imλ, (5.72)

−1

2

(
4π2 +m2 + σ

)
Θ2 =

1

2
imλΨ2, (5.73)

−1

2

1

Le

(
π2 +m2 + Le(k0 + σ)

)
χ1 =

1

2
(im− k0Θ1) +

4

3

1

Le

δk0

σ
(Θ2 − χ2), (5.74)

−1

2

1

Le

(
4π2 +m2 + Le(k0 + σ)

)
χ2 =

1

2
(imΨ2 − k0Θ2) +

4

3

1

Le

δk0

σ
(χ1 −Θ1).

(5.75)

We can then eliminate Ψ2, Θ1, Θ2, χ1, and χ2 and find that σ satisfies the sextic

a6σ
6 + a5σ

5 + a4σ
4 + a3σ

3 + a2σ
2 + a1σ + a0 = 0, (5.76)

where the coefficients ai are omitted here for brevity. These may readily be
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obtained by using the commands

sigeq:=subs(solve(eqset,psi2,Theta1,Theta2,chi1,chi2,sigma),sigma):

a i:=coeff(lhs(sigeq),sigma,i);

in Maple for 0 ≤ i ≤ 6. Here eqset refers to the algebraic system (5.70)–(5.75).

It is straightforward to locate all the complex roots of (5.76) numerically, for

example using the fsolve command in Maple, and thus to track all the solutions

through parameter space.

5.4.1.1 Behaviour of roots σ

To examine the behaviour of σ it is helpful to express the thermal Rayleigh num-

ber in terms of the critical conditions for δ = 0. We define RT = Rb
T,0(RC ,m) +

∆b, where Rb
T,0(RC ,m) is given by (5.46) with n = 1 and M = m2, and

RT = Rc
T,0(RC ,m) + ∆c where Rc

T,0(RC ,m) is given by (5.50) with n = 1

and M = m2. In this and future sections we will focus on two reaction rates: a

subcritical reaction rate k0 = 5 and a supercritical reaction rate k0 = 20. When

k0 = 5 the stability boundary is given by Rb
T,0 for RC . −10 and by Rc

T,0 for

RC & −10 (figure 5.1(b)). When k0 = 20, the stability boundary is given solely

by Rc
T,0 (figure 5.1(c)).

Figures 5.2 and 5.3 show the behaviour of σ as RC is increased for k0 = 5 and

k0 = 20, respectively, where the wavenumber m and all other parameters except

∆c are fixed. For this, and all subsequent figures in this section, the default

parameters were φ0 = 0.1, Le = 10, λ = 0.25, and δ = 0.1 for RC > 0, δ = −0.1

for RC < 0. We note that the value of the Lewis number used is smaller than

the predicted value Le ≈ 1000 given in §2.6.5, however, the value Le = 10 is

still bigger than unity and allows for the faster diffusion of heat than solute. The

large value of |δ| was chosen to make deviations from the δ = 0 case as apparent

as possible.

For k0 = 5 we consider two different values of RC (indicated by the numbered

arrows on figure 5.1(b)) in order to cross both stability boundaries:
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(i) when RC = −15, Rc
T,0 > 0 and we have a stabilising solutal gradient and a

destabilising temperature gradient;

(ii) when RC = 30, Rc
T,0 < 0 and we have a destabilising solutal gradient and a

stabilising temperature gradient.

We first considerRC = −15 (figure 5.2(a, b)). When δ = 0 the stability boundary

is given by RT = Rb
T,0 (figure 5.1(b)) and the transition to instability is through

a growing oscillatory mode where Im(σ) 6= 0. When ∆b is large and positive the

dominant σ branch very closely follows that of σ0+. However, below ∆b ≈ 0.3,

the dominant branch switches to one which appears to asymptote to zero as

∆b → −∞, with Im(σ) = 0.

When RC = 30 (figure 5.2(c, d)) the branch of σ with the largest real part closely

tracks the σ0+ branch when ∆c is large and positive. It deviates weakly from this

as ∆c is reduced, until this branch and the one below merge. This occurs at

∆c ≈ 11.8, and at this bifurcation point the values of σ become complex. As ∆c

is further reduced, Re(σ) continues to fall and asymptotes to zero as ∆c → −∞.

The behaviour of the stability branches is very similar to that seen in reactive

solutal convection (cf. figure 3.3).

For k0 = 20 we consider three different values ofRC , as indicated by the numbered

arrows on figure 5.1(c), in order to cover the three regimes of interest in double-

diffusive convection:

(i) when RC = −50, Rc
T,0 > 0 and we have a stabilising solutal gradient and a

destabilising temperature gradient;

(ii) when RC = 10, Rc
T,0 > 0 and we have destabilising solutal and temperature

gradients;

(iii) when RC = 50, Rc
T,0 < 0 and we have a destabilising solutal gradient and a

stabilising temperature gradient.

We first consider RC = −50 (figure 5.3(a, b)). When ∆c is large and positive,

the branch of σ with the largest real part closely tracks the σ0+ branch. As ∆c

is reduced σ deviates from the σ0+ branch and asymptotes to zero from above

as ∆c → −∞. Along this branch Im(σ) = 0. The sub-dominant σ branch also

displays some interesting behaviour. As ∆c → ∞, Re(σ) tends to zero from

below, with Im(σ) 6= 0. As ∆c is reduced Re(σ) decreases until ∆c ≈ −2.9 where
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Figure 5.2: Behaviour of σ for k0 = 5, φ0 = 0.1, Le = 10, λ = 0.25, m = 3, and
(a, b) RC = −15, δ = −0.1 close to ∆b = 0, (c, d) RC = 30, δ = 0.1 close to
∆c = 0. The left-hand column shows Re(σ), while the right-hand column shows
Im(σ). Solid lines are full numerical solutions to the linear problem; dashed lines
are Galerkin solutions; dotted lines in the left-hand column show the results for
δ = 0. Roman numerals on (a, b) are to aid in identifying the corresponding real
and imaginary parts of each σ branch.

this branch bifurcates with the upper branch tending to zero from below, and the

lower branch tending to σ0+ as ∆c → −∞. At the bifurcation point the values

of σ become strictly real.

We next consider RC = 10 (figure 5.3(c, d)) and RC = 50 (figure 5.3(e, f)). In

both these cases we have a destabilising solutal gradient and the behaviour of the

σ branches is very similar to that seen with k0 = 5 (figure 5.2(e, f)), as well as to

that seen in reactive solutal convection (figure 3.3). In each case the position of

the bifurcation point changes. When RC = 10 (figure 5.3(c, d)) the bifurcation

occurs at ∆c ≈ 2.2, and when RC = 50 (figure 5.3(e, f)), it occurs at ∆c ≈ 4.3.
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It can be shown that the bifurcation point scales as ∆c ∼ |δ|2/3 and σ ∼ |δ|2/3

(see §5.4.2.1).

Figures 5.2 and 5.3 also compare the predictions of the Galerkin analysis with

those from the full numerical solution of (5.36). In each case, good agreement

can be seen, with errors in the imaginary part of the order of 10% or smaller.

Note that full solutions for the subdominant branches were obtained by using the

Galerkin solution as an initial guess.

It is clear that there are three different scenarios of interest, which depend on the

signs of the underlying thermal and solutal gradients. The first scenario occurs

when the solutal gradient is destabilising and, regardless of the thermal gradient,

the behaviour of σ closely resembles that seen in chapter 3 for reactive solutal

convection. This similarity in behaviour is unsurprising since faster thermal dif-

fusion means that the thermal gradient is secondary in solute-driven convection.

In the second and third scenarios the solutal gradient is stabilising and the ther-

mal gradient is destabilising. If the reaction rate is subcritical then the dominant

branch switches from being strictly real to complex as ∆b increases (figures 5.2(a,

b)), whereas if the reaction rate is supercritical then the dominant branch remains

strictly real as ∆c increases (figures 5.3(a, b)).

5.4.2 Asymptotic analysis of the sextic in the Galerkin

approach

To analyse the behaviour of σ close to critical values of RT we assume RC = O(1)

and rewrite the sextic (5.76) as

a6σ
6 + (b5 − c5RT )σ5 + (b4 − c4RT + d4R2

T )σ4 + (b3 − c3RT + d3R2
T )σ3

+ (b2− c2RT + d2R2
T + e2δ

2)σ2 + (e1− f1RT )δ2σ+ (e0− f0RT + g0R2
T )δ2 = 0.

(5.77)

Here the coefficients ai, bi, ci, di, ei, fi, and gi are of order unity, but not neces-

sarily positive since they may depend on RC . We will always take |δ| � 1, and

seek asymptotic scalings for σ in terms of δ.
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Figure 5.3: Behaviour of σ close to ∆c = 0, for k0 = 20, φ0 = 0.1, Le = 10,
λ = 0.25, m = 3, and (a, b) RC = −50, δ = −0.1, (c, d) RC = 10, δ = 0.1,
(e, f) RC = 50, δ = 0.1. The left-hand column shows Re(σ), while the right-
hand column shows Im(σ). Solid lines are full numerical solutions to the linear
problem; dashed lines are Galerkin solutions; dotted lines in the left-hand column
show the results for δ = 0. Roman numerals on (a, b) are to aid in identifying
the corresponding real and imaginary parts of each σ branch.

5.4.2.1 Small ∆c: location of the bifurcation point

To analyse the asymptotic behaviour of σ around ∆c, it is helpful to rewrite (5.77)

with RT = Rc
T,0(RC ,m) + ∆c as
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a6σ
6 + (b5 − c5∆c)σ5 + (b4 − c4∆c + d4(∆c)2)σ4 + (b3 − c3∆c + d3(∆c)2)σ3

+ (e2δ
2 − c2∆c + d2(∆c)2)σ2 + (e1 − f1∆c)δ2σ + (e0 − f0∆c + g0(∆c)2)δ2 = 0,

(5.78)

where all the coefficients ai–gi are different from those in (5.77) but are still of

order unity and not necessarily positive.

To locate the bifurcation point we consider ∆c � 1 and eliminate all terms in

(5.78) which must be sub-dominant, obtaining

a6σ
6 + b5σ

5 + b4σ
4 + b3σ

3 + (e2δ
2 − c2∆c)σ2 + e1δ

2σ + e0δ
2 ≈ 0. (5.79)

If σ is of order unity then σ ∼ −b5/a6; all other roots of the sextic must be small

in magnitude. Taking σ � 1 we can eliminate further sub-dominant terms and

reduce the equation to the cubic

b3σ
3 + (e2δ

2 − c2∆c)σ2 + e1δ
2σ + e0δ

2 ≈ 0. (5.80)

The bifurcation can only occur if the σ3, σ2, and σ0 terms are all of the same

order. This requires δ2 < ∆c, and σ ∼ |δ|2/3 and ∆ ∼ |δ|2/3. Therefore, setting

σ = |δ|2/3Σ and ∆ = |δ|2/3D, with Σ and D of order unity, we obtain

f(Σ) ≡ b3Σ3 − c2DΣ2 + e0 ≈ 0. (5.81)

The discriminant of (5.81) is given by

Λ = 4c3
2e0D − 27b2

3e
2
0. (5.82)

It is apparent that if both c2 and e0 have the same sign, then for sufficiently

large D, Λ will be strictly positive and (5.81) will have three real roots, while for

smaller values of D, Λ will be negative and (5.81) will have only one real root

and two complex ones. Alternatively, when either c2 or e0 are negative, then for

sufficiently small D, Λ will be strictly positive and (5.81) will have three real
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roots, while for larger values of D, Λ will be negative and (5.81) will have only

one real root and two complex ones.

We can rewrite c2 and e0 as

c2 = c20 − c21RC , where c20, c21 > 0, (5.83)

e0 = RC(e01 + e02RC), where e01, e02 > 0. (5.84)

Hence, c2 > 0 for RC < c20/c21, and e0 > for RC > 0 or RC < −e01/e02.

We locate the bifurcation point by requiring Λ = 0, giving

D =
3

2

(2b2
3e0)

c2

1/3

, and hence Σ =
(2b2

3e0)

b3

1/3

for e0 > 0, (5.85)

and

D = −3

2

(2b2
3|e0|)
c2

1/3

, and hence Σ = −(2b2
3|e0|)
b3

1/3

for e0 < 0. (5.86)

Comparisons of (5.85) and (5.86) with numerical solutions of (5.76) are shown

in table 5.1. We take Le = 10, λ = 0.25, and φ0 = 0.1 throughout, and in table

5.1(a) RC = 50, k0 = 20, so that e0 > 0, and in (b) RC = −10, k0 = 20, so that

e0 < 0. The results suggest that these asymptotics capture the behaviour of the

solutions well.

5.4.2.2 Regular perturbation to σ0

When RT = O(1), we expect that there will be a solution branch with σ ≈ σ0+.

To locate this branch, we set σ = σ0+ +σ1 in (5.77), obtaining an equation of the

form

A6σ
6
1 +A5σ

5
1 +A4σ

4
1 +A3σ

3
1 + (B2δ

2 +C2)σ2
1 + (B1δ

2 +C1)σ1 +B0δ
2 = 0, (5.87)
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(a)

(δ, m) Numerical (∆c, σ) Asymptotic (∆c, σ)
(0.1, 3) (4.2256, 0.3083) (4.2879, 0.3102)
(0.01, 3) (0.9209, 0.0672) (0.9238, 0.0668)
(0.001, 3) (0.1989, 0.0145) (0.1990, 0.0144)
(0.1, 10) (14.4471, 0.4539) (14.7499, 0.4497)
(0.01, 10) (3.1636, 0.0973) (3.1778, 0.0969)
(0.001, 10) (0.6840, 0.0210) (0.6846, 0.0209)

(b)

(δ, m) Numerical (∆c, σ) Asymptotic (∆c, σ)
(-0.1, 3) (-1.9418, -0.1551) (-1.9456, -0.1578)
(-0.01, 3) (-0.4191, -0.0334) (-0.4192, -0.0340)
(-0.001, 3) (-0.0904, -0.0071) (-0.0903, -0.0073)
(-0.1, 10) (-0.4552, -0.3539) (-0.4661, -0.3451)
(-0.01, 10) (-0.1000, -0.0730) (-0.1004, -0.0744)
(-0.001, 10) (-0.0217, -0.0151) (-0.0216, -0.0160)

Table 5.1: Comparisons of (5.85) and (5.86) with the bifurcation point obtained
from numerical solutions of (5.76). Parameter values: Le = 10, λ = 0.25, and
φ0 = 0.1, and (a) k0 = 20, RC = 50, (b) k0 = 20, RC = −10.

where all coefficients except δ and σ1 are implicitly of order 1, though not neces-

sarily positive. Seeking a regular perturbation so σ1 � 1, this reduces to

C1σ1 +B0δ
2 ≈ 0, i.e. σ1 ∼ −

B0

A1

δ2. (5.88)

Thus the effect of matrix evolution on the growth rate of instabilities is negligibly

small, O(δ2), as long as we are away from the δ = 0 stability boundary. This

result is similar to that found in chapter 3.

5.4.3 Eigenfunction structure and instability mechanism

As well as providing the complex growth rate σ, the Galerkin stability analysis

also provides the quantities W2, Θ1, Θ2, χ1, and χ2 that define the corresponding

vertical eigenfunction. To elucidate the mechanism involved in the instability, it

is useful to examine these quantities.
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As in chapter 3 we may write

ψ(x, z, t) = <
(
eimxe(σR+iσI)t (sin(πz) + Ψ2 sin(2πz))

)
= eσRt [sin(πz) cos(mx+ σIt) + |Ψ2| sin(2πz) cos(mx+ σIt+ θ)] ,

(5.89)

where θ = arg(Ψ2). The reader is referred to §3.2.3.4 for discussion of the ef-

fect of the second harmonic on the shapes and relative phases of the various

perturbations.

We will consider three different scenarios as described in §5.4.1.1: firstly the com-

bination of a destabilising solutal gradient with either a stabilising or destabilis-

ing thermal gradient; secondly a destabilising thermal gradient with a stabilising

solutal gradient and a subcritical reaction rate so the onset of instability is os-

cillatory; and thirdly a destabilising thermal gradient with a stabilising solutal

gradient and a supercritical reaction rate.

In our formulation, when the thermal gradient is destabilising T̂1 − T̂0 < 0, so

T ′ < 0 in regions which become warmer than the base state, and T ′ > 0 in

regions which become cooler. Similarly, when the solutal gradient is stabilising

Ĉ1−Ĉ0 < 0, so C ′ < 0 in regions of higher concentration, and C ′ > 0 in regions of

lower concentration. Therefore, in order to avoid confusion when considering the

spatial structure of the fastest-growing eigenfunction we define T̃ = −sgn(RT )T ′

and C̃ = sgn(RC)C ′. With this reformulation, T̃ > 0 and C̃ > 0 will always

correspond to regions of higher temperatures and concentrations, respectively,

while T̃ < 0 and C̃ < 0 will correspond to regions of lower temperatures and

concentrations, respectively. We also define φ̃ via (5.60), so that φ̃ > 0 will

always correspond to regions of higher porosity, while φ̃ < 0 will correspond to

regions of lower porosity.

5.4.3.1 Scenario one: destabilising solutal gradient

In this section we consider the combination of a destabilising solutal gradient with

either a stabilising or a destabilising thermal gradient. Recall from (5.22) that the

porosity evolution is driven by the difference T̃ − C̃. Regardless of the direction
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is |Φ2|, and dotted line is |ψ2|. In (b), solid line is arg(χ2/χ1), dashed line is
arg(Θ2/Θ1), dashed-dotted line is arg(Φ2/Φ1), and the dotted line is arg(ψ2); the
light dotted line is π. The four lines are practically indistinguishable. Parameter
values: φ0 = 0.1, k0 = 5, δ = 0.1, m = 3, Le = 10, λ = 0.25, RC = 30.

of the thermal gradient, the amplitude of the concentration perturbation C̃ will

always dominate the amplitude of the thermal perturbation T̃ since the diffusion

of heat is much faster than the diffusion of solute through the fluid. Therefore,

these situations are analogous to those found in chapter 3 for reactive solutal

convection, where the porosity evolution is driven solely by the concentration

perturbation.
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Figure 5.6: Eigenfunctions from the Galerkin analysis. Left-hand column:
streamlines superimposed on concentration perturbation C̃. Centre column:
streamlines superimposed on temperature perturbation T̃ . Right-hand column:
streamlines superimposed on porosity perturbation φ̃. Parameters were φ0 = 0.1,
k0 = 5, δ = 0.1, m = 3, Le = 10, λ = 0.25, RC = 30. In each case the values of ψ
on the streamlines are evenly spaced, and in each plot darker shading corresponds
to lower values; scales are arbitrary.

We first consider the combination of a destabilising solutal gradient and a sta-

bilising thermal gradient (arrow (ii), figure 5.1(b)). Figures 5.4 and 5.5 show

how the amplitudes and phases of the perturbations to the streamfunction, tem-

perature, concentration and porosity vary as ∆c changes for k0 = 5, RC = 30.

They should be read in conjunction with figures 5.2(c, d) which illustrate the

behaviour of σ with ∆c, and figure 5.6 which illustrates how the corresponding

spatial structure of the fastest-growing eigenfunction behaves as ∆c is reduced.

All the cases plotted in figure 5.6 lie in the regime where σ is fully complex; the

bifurcation for these parameter values occurs at ∆c ≈ 12.

For values to the right of the bifurcation point (∆c ≈ 12), the perturbations to
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concentration, temperature, and porosity are all small (figure 5.4(a)) and are in

phase (figure 5.4(b)) such that maxima of the first harmonic of φ̃ correspond to

minima of the first harmonics of C̃ and T̃ . A change in trend is immediately

noticeable at the bifurcation point: although the first harmonics of concentration

and temperature continue to vary smoothly, and they remain almost perfectly in

phase with the streamfunction (arg(χ1), arg(Θ1) ≈ −π/2, as can be seen in figure

5.4(b)), the trend in the amplitude of the porosity perturbation alters. As arg(Φ1)

decreases (figure 5.4(b)), φ̃ is no longer perfectly in phase with the concentration

and temperature perturbations, with its extrema moving rightwards relative to

those of ψ, C̃, and T̃ .

This is the situation that is beginning to emerge in figure 5.6(a), where ∆c = 11.

The pattern of flow, concentration, temperature, and porosity is very similar to

that of simple convection; downflow draws down higher concentrations and tem-

peratures from the upper boundary while upflow draws up lower concentrations

and temperatures from the lower boundary. Upflow occurs in high-permeability

regions and downflow in low-permeability regions: since the concentration and

temperature perturbations are still approximately ‘in phase’ with the porosity

perturbations, the reaction will tend to amplify the porosity perturbation. The

small phase difference between the porosity perturbation and the concentration

and temperature perturbations is just apparent.

As ∆c is reduced a little further, the concentration and temperature perturba-

tions continue to move further out of phase with the porosity perturbations (figure

5.4(b)), the porosity perturbation grows in importance (figure 5.4(a)), and the

second harmonics start to become apparent. The relative phases of all the second

harmonics are in the range (π
2
, π) (figure 5.5(b)), so they tilt the convection pat-

tern rightward. This can be seen in figure 5.6(b) for ∆c = 2; the streamfunction,

concentration, and temperature perturbations are still closely in phase, but the

rightward tilting of the streamfunction, concentration and porosity cells is more

evident. The tilting in the temperature cells, however, is harder to discern since

|Θ2| � |Θ1| (figures 5.4(a), 5.5(a)).

As ∆c is reduced still further, the phase difference between the porosity and

concentration and temperature perturbations approaches π
2

(figure 5.4(b)), so
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they are almost a quarter of a period out of phase; this is visible in figure 5.6(c)

(∆c = −2). The importance of the second harmonics increases (figure 5.5(a))

and their phase difference from the first harmonic approaches π
2

(figure 5.5(b)), so

they tend to tilt the cells rightward without squashing them upward or downward.

The tilting in the streamfunction, concentration and porosity fields is now clearly

evident.

Similar behaviour can also be seen when the thermal gradient is destabilising

and the reaction rate is increased (arrow (ii), figure 5.1(c)). Figures 5.7 and 5.8

show how the amplitudes and phases of the perturbations to the streamfunction,

temperature, concentration and porosity vary as ∆c changes for k0 = 20, RC =

10. They should be read in conjunction with figure 5.3(c, d) which illustrate the

behaviour of σ with ∆c, and figure 5.9 which illustrates how the corresponding

spatial structure of the fastest-growing eigenfunction behaves as ∆c is reduced.

All the cases plotted in figure 5.9 lie in the regime where σ is fully complex; the

bifurcation for these parameter values occurs at ∆c ≈ 2.2.

Again, we see that just to the left of the bifurcation point at ∆c = 2 (figure

5.9(a)), the pattern of flow, concentration, temperature, and porosity is very

similar to that of simple convection. In this case downflow draws down higher

concentrations and lower temperatures from the upper boundary while upflow

draws up lower concentrations and higher temperatures from the lower boundary.

Upflow occurs in high-permeability regions and downflow in low-permeability

regions.

As ∆c is reduced the phase difference between the porosity and concentration

and temperature perturbations approaches π
2

(figure 5.7(b)), so they are almost

a quarter of a period out of phase; this is visible in figure 5.9(c) (∆c = −1).

Furthermore, the importance of the second harmonics increases (figure 5.8(a)) and

their phase difference from the first harmonic approaches π
2

(figure 5.8(b)), so they

tend to tilt the cells rightward without squashing them upward or downward. The

tilting of the porosity and concentration fields is clearly evident (figure 5.9(c)),

but the tilting of the streamfunction is harder to discern since |ψ2| is much smaller

than in the previous stabilising thermal gradient case.

The mechanisms that maintain this amplifying travelling-wave mode are very
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similar to those noted in §3.2.3.4 for reactive solutal convection. Recall that

the temperature perturbation equation (5.20) contains one source term, the con-

vective term ∂ψ/∂x, which must balance the dissipative effect of the diffusion

term. The concentration perturbation equation (5.21), however, contains two

source terms which must balance the dissipative effects of the reaction and dif-



Chapter 5 116

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

0 1 2 3 4 5 6

0

0.5

1

(a) ∆c = 2

(b) ∆c = 0.5

(c) ∆c = −1

z

x

z

x

z

x

Figure 5.9: Eigenfunctions from the Galerkin analysis. Left-hand column:
streamlines superimposed on concentration perturbation C̃. Centre column:
streamlines superimposed on temperature perturbation T̃ . Right-hand column:
streamlines superimposed on porosity perturbation φ̃. Parameters were φ0 = 0.1,
k0 = 20, δ = 0.1, m = 3, Le = 10, λ = 0.25, RC = 10. In each case the val-
ues of ψ on the streamlines are evenly spaced, and in each plot darker shading
corresponds to lower values; scales are arbitrary.

fusion terms: the convective term, and the term ∂φ′/∂z, which represents net

diffusive transport due to gradients in porosity superimposed on the background

vertical gradient of concentration. When the porosity perturbation is weak and

the system is dominated by convection, the convective source term dominates

in both the temperature and concentration equations. When convective flow is

weak, however, diffusion dominates the temperature perturbation equation and

the importance of the porosity gradient mechanism in the concentration pertur-

bation equation increases. This mechanism acts to maintain the tilting against

buoyant effects that would tend to restore cells to upright convective cells, and

diffusive effects that would tend to eliminate the perturbation altogether. Mean-

while, the offset between C̃ and φ̃ has the additional effect of causing the porosity
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perturbations to migrate leftward.

5.4.3.2 Scenario two: stabilising solutal gradient, destabilising ther-

mal gradient, subcritical reaction rate

In this and the subsequent section we consider the combination of a stabilising

solutal gradient with a destabilising thermal gradient. Here, we consider this

combination along with a subcritical reaction rate, so the transition to instability

is through a growing oscillatory mode.

Figures 5.10 and 5.11 show how the amplitudes and phases of the perturbations to

the streamfunction, temperature, concentration and porosity vary as ∆b changes

for k0 = 5 and RC = −15. They should be read in conjunction with figures 5.2(a,

b) which illustrate the behaviour of σ with ∆c, and figure 5.12, which illustrates

how the corresponding spatial structure of the fastest-growing eigenfunction be-

haves as ∆b is reduced. We recall that at ∆b ≈ 0.4 we abruptly switch stability

branches in order to remain on the dominant branch (figure 5.2(a, b)). For values

of ∆b & 0.4 the dominant values of σ are complex, but for ∆b . 0.4 the dominant

values are strictly real.

For ∆b > 0.4, the perturbations to concentration, temperature, and porosity are

all small (figure 5.10(a)) and are approximately in phase (figure 5.10(b)) such that

the maxima of the first harmonics of C̃ and T̃ roughly coincide with the minima

of the first harmonic of φ̃. The slight offset between extrema of C̃, T̃ , and φ̃ can

be seen more clearly in figure 5.12(a), but the pattern of flow, concentration, tem-

perature, and porosity is still very similar to that of simple convection; downflow

draws down lower concentrations and temperatures from the upper boundary,

while upflow draws up higher concentrations and temperatures. Upflow occurs

in low-permeability regions and downflow in high-permeability regions.

A change is immediately noticeable when the dominant branch abruptly switches

at ∆b ≈ 0.4: the first harmonic of φ̃ increases (figure 5.10(a)), and the perturba-

tions are now out of phase (figure 5.10(b)) with the extrema of C̃ and T̃ moving

leftwards, and the extrema of φ̃ moving rightwards relative to those of ψ. The

second harmonics are now all non-zero (figure 5.11(a)), with the relative phases
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

(a) (b)

∆b ∆b

|Φ2|

|Θ2|
|χ2|

|ψ2|
arg

(
χ2

χ1

)
arg

(
Θ2

Θ1

)
arg

(
Φ2

Φ1

)
arg(ψ2)

Figure 5.11: (a) Amplitudes and (b) relative phases of the second harmonics as
functions of ∆b. In (a), solid line is |χ2|, dashed line is |Θ2|, dashed-dotted line
is |Φ2|, and dotted line is |ψ2|. In (b), solid line is arg(χ2/χ1), dashed line is
arg(Θ2/Θ1), dashed-dotted line is arg(Φ2/Φ1), and the dotted line is arg(ψ2).
The light dotted lines are π, π

2
, −π

2
, and −π. Parameter values: φ0 = 0.1, k0 = 5,

δ = −0.1, m = 3, Le = 10, λ = 0.25, RC = −15. The jump at ∆b ≈ 0.4 is a
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of the second harmonics of ψ and T̃ equal to π, and those of C̃ and φ̃ equal

to 0 (figure 5.11(b)). Therefore, the temperature and streamfunction fields are

squashed upwards, whereas the concentration and porosity fields are squashed

downwards. This can be seen in figure 5.12(b) for ∆b = 0; downflow is now oc-
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Figure 5.12: Eigenfunctions from the Galerkin analysis. Left-hand column:
streamlines superimposed on concentration perturbation C̃. Centre column:
streamlines superimposed on temperature perturbation T̃ . Right-hand column:
streamlines superimposed on porosity perturbation φ̃. Parameters were φ0 = 0.1,
k0 = 5, δ = −0.1, m = 3, Le = 10, λ = 0.25, RC = −15. In each case the
values of ψ on the streamlines are evenly spaced, and in each plot darker shading
corresponds to lower values; scales are arbitrary.

curring in low-permeability regions and upflow in high-permeability regions, and

it is evident that the circulation and temperature cells have moved upwards, but

the porosity and concentration cells have moved towards the bottom of the layer.

By comparing the magnitudes of the individual terms in (5.20) and (5.21) as

∆b is reduced we can elucidate the mechanisms that cause the upwards squash-

ing of the circulation and temperature cells, and the downward squashing of the

porosity and concentration cells. For ∆b > 0.4, before the branch switch, the

porosity perturbation is weak and the system is dominated by convection. After

the branch switch, although vertical convection still balances with diffusion in

the temperature perturbation equation (5.20), it now balances with the ∂φ′/∂z
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term in the concentration perturbation equation (5.21). This results in an offset

between the porosity and circulation cells as faster vertical velocities must cor-

respond to higher vertical porosity gradients. Therefore, the porosity cells move

towards the bottom of the layer and the circulation cells move upwards. This off-

set then results in the temperature cells moving upwards, and the concentration

cells moving downwards.

5.4.3.3 Scenario three: stabilising solutal gradient, destabilising ther-

mal gradient, supercritical reaction rate

We now consider the combination of a stabilising solutal gradient with a desta-

bilising thermal gradient along with a supercritical reaction rate, so the onset of

convection is through a monotonic instability.

Figures 5.13 and 5.14 show how the amplitudes and phases of the perturbations to

the streamfunction, temperature, concentration and porosity vary as ∆c changes

for k0 = 20, RC = −50. They should be read in conjunction with figures 5.3(a, b)

which illustrate the behaviour of σ with ∆c, and figure 5.15, which illustrates how

the corresponding spatial structure of the fastest-growing eigenfunction behaves

as ∆c is reduced. Recall in this case there is no bifurcation point and for all

values of ∆c, σ is strictly real.

At ∆c = 3, the perturbations to concentration, temperature, and porosity are

all small (figure 5.13(a)), and are out of phase (figure 5.13(b)) such that the

maxima of C̃, T̃ , and φ̃ all coincide. This is the situation in figure 5.15(a);

downflow draws down lower concentrations and temperatures from the upper

boundary, while upflow draws up higher concentrations and temperatures from

the lower boundary. Downflow occurs in low-permeability regions and upflow in

high-permeability regions.

As ∆c is reduced the first harmonic of φ̃ grows in importance, while those of C̃ and

T̃ remain small (figure 5.13(a)), and the second harmonics become more appar-

ent (figure 5.14(a)). Furthermore, the temperature and streamfunction cells are

squashed upwards (arg(ψ2) = arg(Θ2/Θ1) = π, figure 5.14(b)), and the concen-

tration and porosity cells are squashed downwards (arg(χ2/χ1) = arg(Φ2/Φ1) =
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Figure 5.14: (a) Amplitudes and (b) relative phases of the second harmonics as
functions of ∆c. In (a), solid line is |χ2|, dashed line is |Θ2|, dashed-dotted line
is |Φ2|, and dotted line is |ψ2|. In (b), solid line is arg(χ2/χ1), dashed line is
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each set of lines are practically indistinguishable. Parameter values: φ0 = 0.1,
k0 = 20, δ = −0.1, m = 3, Le = 10, λ = 0.25, RC = −50.

0, figure 5.14(b)). This squashing of cells can be seen in figures 5.15(b) and (c)

for ∆c = 0 and ∆c = −3, respectively. Note that the amplitudes of the first and

second harmonics are much smaller here than in the subcritical reaction case, and

hence the squashing of cells is not as evident as in figures 5.12(b) and (c).

The behaviour here is identical to that seen in the subcritical reaction case after

the abrupt branch switching (∆b < 0.4). As in that case, vertical convection
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Figure 5.15: Eigenfunctions from the Galerkin analysis. Left-hand column:
streamlines superimposed on concentration perturbation C̃. Centre column:
streamlines superimposed on temperature perturbation T̃ . Right-hand column:
streamlines superimposed on porosity perturbation φ̃. Parameters were φ0 = 0.1,
k0 = 20, δ = −0.1, m = 3, Le = 10, λ = 0.25, RC = −50. In each case the
values of ψ on the streamlines are evenly spaced, and in each plot darker shading
corresponds to lower values; scales are arbitrary.

balances with diffusion in the temperature perturbation equation (5.20), and it

balances with the ∂φ′/∂z term in the concentration perturbation equation (5.21),

for all values of ∆c. This results in an offset between the porosity and circulation

cells, which in turn causes the upwards movement of circulation and temperature

cells, and downwards movement of the porosity and concentration cells.
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5.5 Summary of linear stability analysis

We have performed a linear stability analysis to investigate how the evolution of

a reactive porous medium affects the onset of thermosolutal convection.

We have revisited the linear stability analysis of non-evolving reactive thermoso-

lutal convection, as presented in Pritchard and Richardson (2007), and noted that

precipitation and dissolution change the positions of the stability boundaries from

those in pure thermosolutal convection. Increasing the reaction rate stabilises the

system in the solutally unstable regime as the reaction eliminates destabilising

solutal perturbations. A strong reaction rate (k0 > kcrit
0 ) destabilises the system

in the solutally stable regime as it weakens the stabilising solutal perturbations.

As with solutal convection, the porosity evolution influenced the stability bound-

ary, even though it occurs over a longer timescale than convection and reaction.

Regardless of the reaction rate and the exact destabilising nature of the thermal

and solutal gradients, when the system is close to the threshold of instability (as

calculated without porosity evolution), a new unstable reaction-diffusion mode

becomes available, and this mode persists when the thermal Rayleigh number is

reduced below the critical value required for buoyant instability. This unstable

reaction-diffusion mode was also seen in chapter 3 for subcritical values of the

solutal Rayleigh number.

In the solutally unstable regime, regardless of whether the system was thermally

stable or unstable, the behaviour of the growth rate σ and the perturbation

structures revealed by the Galerkin analysis are qualitatively identical to those

obtained in chapter 3 for reactive evolving solutal convection. Recall that the

model of reactive solutal convection is derived from the full thermsolutal model

in the limit κ̂T →∞ and β̂T = 0, and therefore can be thought of as thermosolutal

convection with an infinite Lewis number. Although we use a lower value of the

Lewis number, Le = 10, for thermosolutal convection, this similarity in behaviour

is unsurprising since we still have faster thermal diffusion than solutal diffusion,

and so the thermal gradient is secondary in solute-driven convection.

Different behaviour was seen in the solutally stable regime, however. Here, the

reaction rate plays an important role at the onset of convection, with a ‘slow’



Chapter 5 124

subcritical reaction leading to an oscillatory instability, but a ‘faster’ supercrit-

ical reaction leading to a monotonic instability. Instead of the tilted cells and

lateral movement seen in the solutally unstable case, the Galerkin analysis shows

a vertical displacement of the cells, with the porosity and concentration cells be-

ing squashed towards the bottom of the layer, while circulation and temperature

cells are squashed towards the top of the layer.

In the next chapter we will use numerical techniques to verify the linear stability

analysis and investigate the long-term evolution in both the solutally stable and

unstable regimes.
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Thermosolutal convection:

numerical results

In this chapter we validate the stability analysis of chapter 5 using a numeri-

cal model, and carry out a sequence of numerical experiments to investigate the

longer-term behaviour of the system. In particular, we seek to identify and inter-

pret particular feedback mechanisms which control the evolution of the porous

matrix. Finally, we summarise our results and draw some general conclusions.

6.1 Numerical simulations

A full numerical integration of the system was carried out in order both to test the

predictions of the linear stability analysis and to examine the nonlinear behaviour

and flow-permeability feedback over longer time scales.

Since preliminary numerical simulations encountered problems with negative poro-

sities which developed at isolated grid points, we define Φ = ln(φ) to ensure

values of φ remain positive. Furthermore, we define T̃ = −sgn(RT )T ′ and

125
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C̃ = sgn(RC)C ′ as in §5.4.3, and rewrite (5.12)–(5.15) as

∇ ·

[(
exp(Φ)

φ0

)−2

∇ψ

]
= −RCsgn(RC)

∂C̃

∂x
+RT sgn(RT )

∂T̃

∂x
, (6.1)

∂T̃

∂t
− λ

[
∂ψ

∂z

∂T̃

∂x
− ∂ψ

∂x

(
−sgn(RT ) +

∂T̃

∂z

)]
= ∇2T̃ , (6.2)

exp(Φ)
∂C̃

∂t
− φ0

[
∂ψ

∂z

∂C̃

∂x
− ∂ψ

∂x

(
sgn(RC) +

∂C̃

∂z

)]
=

1

Le
∇·

(
exp(Φ)

∂C̃

∂x
, exp(Φ)

(
sgn(RC) +

∂C̃

∂z

))

−k0
exp(Φ)(1− exp(Φ))

1− φ0

(sgn(RCRT )T̃ + C̃),

(6.3)

∂Φ

∂t
= −δk0

(1− exp(Φ))

1− φ0

(sgn(RT )T̃ + sgn(RC)C̃), (6.4)

This redefinition guarantees that T̃ > 0 and C̃ > 0 will correspond to regions of

higher temperatures and concentrations, respectively, while T̃ < 0 and C̃ < 0 will

correspond to regions of lower temperatures and concentrations, respectively.

The system (6.1)–(6.4) was numerically integrated using the finite element pack-

age Comsol Multiphysics v3.5a. The equations were solved in a rectangular do-

main, 0 < x < 10, 0 < z < 1, and the boundary conditions (5.16) were applied on

the horizontal boundaries, while periodicity was imposed on the vertical bound-

aries. For all numerical simulations described here, the initial conditions were

taken to be

T̃ (x, z, 0) = C̃(x, z, 0) = z(1− z)ε sin(πx),

Φ(x, z, 0) = ln(φ0 + 0.01z(1− z) sin(πx)),
(6.5)

where ε = 10−3.

To verify that our numerical model converged a number of simulations were con-

ducted over 5000 time units using various values for the relative and absolute

tolerances. We used two reaction rates, k0 = 5 and k0 = 20, and three values of

the solutal Rayleigh number, RC = −15, RC = 10 and RC = 30, to cover each
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convective quadrant of the stability diagram (see figure 5.1). We found that our

solution had converged with a relative tolerance of 10−3 and an absolute tolerance

of 10−4.

The robustness of our numerical model was checked by conducting simulations

using 1120, 4480, 17920, and 71680 triangular mesh elements. Model results

were mesh independent when we used at least 4480 elements, however, the time

to conduct each simulation increased dramatically. Therefore, for all the tests

conducted we used 4480 mesh elements. Further details of the tolerance and

mesh independence testing can be found in appendix B.2.

6.1.1 Stability boundary and the onset of convection

Figure 6.1 summarises a large number of numerical simulations carried out to

validate the linear stability analysis against the numerics. Each simulation was

1500 time units long and was started from the initial conditions (6.5). This length

of simulation ensured that there was enough time for convection to develop, even

in the marginal cases. Convection was said to have developed if the maximum

value of |u| was greater than 10−1 by the end of the simulation.

Figure 6.1(a) shows the results for k0 = 5, while (b) shows the results for k0 = 20.

In both cases the linear stability results for δ = 0 (see §5.3.2) agree very well with

the numerical results. This suggests that the effects of porosity evolution on the

onset of convection are rather subtle, as also seen for single-diffusive convection

(see §3.3.1).

6.1.2 Long-term behaviour

When examining the long-term behaviour of the system, we will consider three

different scenarios as in §5.4.3: firstly the combination of a destabilising solutal

gradient with either a stabilising or destabilising thermal gradient; secondly a

destabilising thermal gradient with a stabilising solutal gradient and a subcritical

reaction rate so the onset of instability is oscillatory; and thirdly a destabilising

thermal gradient with a stabilising solutal gradient and a supercritical reaction
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Figure 6.1: Numerical tests of the stability boundaries for λ = 0.25, Le = 10,
φ0 = 0.1, |δ| = 0.001, and (a) k0 = 5, (b) k0 = 20. The solid lines represent
RT = Rb

T and RT = Rc
T (cf. figures 5.1(b, c); the points represent either the

non-convective (+) or convective (×) case.

rate so the onset of instability is direct. Each simulation we describe lasted for 104

time units and used the parameters φ0 = 0.1, |δ| = 0.001, Le = 10, and λ = 0.25.

For each value of the solutal Rayleigh number RC used we take the corresponding

thermal Rayleigh number to be 10% above its critical value as defined in §5.3.2.
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6.1.2.1 Scenario one: destabilising solutal gradient

In this section we consider the combination of a destabilising solutal gradient

with either a stabilising or destabilising thermal gradient. Recall from §5.4.3.1

that these situations are analogous to those found in reactive solutal convection

where the porosity evolution is driven solely by the concentration perturbation.

Therefore, we expect the long-term behaviour to be similar to that presented

in §3.3.2. However, will we discover that there are some subtle differences that

result from the relative strength of the thermal gradient when compared with

the solutal gradient. When the solutal gradient dominates the thermal gradient

a slow lateral migration of the convection pattern occurs and, when the thermal

gradient dominates the solutal gradient, we see the complete suppression and

re-emergence of convection over long time scales.

Stabilising thermal gradient

We first consider the combination of a destabilising solutal gradient with a sta-

bilising thermal gradient. Figure 6.2 shows the evolution of the concentration

perturbation C̃, temperature perturbation T̃ and the porosity φ for the left half

of the domain for RC = 30, RT = −348 and k0 = 5. The solid lines on each plot

are the streamlines, which are evenly spaced with the same contours used at each

time.

By t = 70, steady convection has been established (figure 6.2(a)). At this time all

the fields are in phase; that is, regions of C̃ > 0 and T̃ > 0 coincide with regions

of lower porosity (φ < φ0), and regions of C̃ < 0 and T̃ < 0 coincide with regions

of higher porosity (φ > φ0). From (6.4), we expect porosity to decrease where

C̃ > 0 and T̃ > 0 and to increase where C̃ < 0 and T̃ < 0, since the concentra-

tion perturbations are larger than the temperature perturbations throughout the

domain because thermal diffusion is faster than solutal diffusion. As the flow is

buoyancy-driven, downward flow is favoured where C̃ > 0 and T̃ > 0, drawing

down higher concentrations and temperatures from the top boundary, and up-

ward flow is favoured where C̃ < 0 and T̃ < 0, drawing up lower concentrations

and temperatures from the bottom boundary: this is the essential mechanism
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that sustains convection.

Once steady convection has been established, the porosity field continues to evolve

with porosity increasing in regions which coincide with C̃ < 0 and T̃ < 0, and

decreasing in regions which coincide with C̃ > 0 and T̃ > 0. This evolution

continues until it triggers a secondary instability in the form of a phase shift.

Figure 6.2(b) shows the fields at t = 300, part-way through the shift. We can see

that both the concentration and temperature fields have moved approximately an

eighth of a cell (0.25 x-units) to the right, but the porosity field remains the same

as before the shift. Furthermore, there is a slight tilting of the concentration,

temperature and circulation cells to the left. This tilting is most apparent in the

streamlines.

By the end of the shift at t = 500 (figure 6.2(c)), the concentration and tem-

perature fields along with the streamlines have moved a half cell (approximately

a half x-unit) to the right, but the porosity field is still effectively unchanged.

Downward flow still occurs in regions where C̃ > 0 and T̃ > 0, but this now

coincides with high-porosity regions.

Further evidence of the phase shift can be seen in figure 6.6(a), which shows

the maximum absolute velocity. We can see that convection develops and is

maintained for approximately 350 time steps before the velocity dips slightly

around the time of the phase shift as the circulation slows and then re-establishes

itself.

As in reactive solutal convection (see §3.3.2), the secondary instability occurs as

a result of the positive feedback between the porosity field and the concentration

and temperature fields, which results in clogging in the downflow regions. This

clogging eventually reaches some critical state and displaces the downflow side-

ways resulting in tilted convection cells. These are overcome by diffusion and the

circulation begins to shut down, before being replaced by a reversed circulation.

The sideways migration of these of these fully developed, nonlinear convection

cells is reminiscent of the migration of small amplitude cells seen in the linear

analysis close to RT = Rc
T,0 (§5.4.3.1). However, unlike the phenomenon seen in

the linear case, the tilting and sideways movement here is readily halted by the

tendency of buoyancy-driven convection to favour stationary, upright cells.
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At t = 500 the concentration and temperature fields are out of phase with the

porosity field: regions of large positive concentration and temperature perturba-

tions now coincide with regions of high porosity and vice versa. In these C̃ > 0

and T̃ > 0 regions porosity will decrease, and in C̃ < 0 and T̃ < 0 regions porosity

will increase. Therefore, the porosity evolution strives to get the concentration

and temperature fields back into phase with the porosity field.

Figure 6.6(a) also shows the porosity evolution, plotted with the maximum ab-

solute velocity to illustrate the correlation with the phase shifts. At the time

of the phase shift, the porosity contrast has reached a local maximum, with a

peak in the maximum porosity and a trough in the minimum porosity. After

the shift the maximum porosity decreases and the minimum porosity increases

as now the porosity field is out of phase with the concentration and temperature

fields. By t ≈ 600, the porosity field is back in phase with the concentration and

temperature field and the porosity contrast begins to increase again at a similar

rate to that before the phase shift. This behaviour of the maximum velocity and

porosity contrast is the same signature of a phase shift as seen in chapter 3 for

solutal convection (cf. figure 3.12).

At t = 800 (figure 6.2(d)), the porosity is approximately back in phase with

the concentration and temperature fields. There is now a vertical asymmetry

in the porosity field with more dissolution towards the top of the domain, and

correspondingly the centres of the circulation cells have moved slightly upwards

towards these high porosity regions.

From figure 6.6(a) we can see that the system undergoes many phase shifts, but

each subsequent shift occurs over a longer time scale. By t = 1500 (figure 6.2(e))

the system has undergone another phase shift and the concentration, temperature

and circulation cells have shifted a further half cell to the right. There is still

subtle evidence of a vertical asymmetry in the porosity and circulation fields,

with higher porosity regions and the centres of the circulation cells appearing in

the top of the domain.

By t = 3000 (figure 6.2(f)), the vertical asymmetry in the porosity and circulation

cells is more distinct. There is clear evidence of layering in the porosity field

with low porosity dominating the lower half of the domain. The system is still
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undergoing slow phase shifts, and the concentration, temperature and circulation

fields have shifted a further half cell to the right.

This slow rightwards movement and porosity layering continues through to the

end of the simulation. At t = 5000 (figure 6.2(g)) the concentration, temperature

and circulation fields have shifted a further half cell to the right and the leftward

tilting is still obvious. Here the dashed contours represent additional stream-

lines to aid with the flow visualisation. The layer of low porosity has moved

upwards slightly and, correspondingly, the centres of the circulation cells have

moved upwards, too.

By t = 7500 (figure 6.2(h)), the temperature, concentration and circulation cells

have shifted further to the right. The low porosity barrier in the centre of the

domain is now pierced by higher porosity channels, but the centres of the cir-

culation cells remain near the top of the domain, so very little flow reaches the

bottom of the domain. By t = 10000 (figure 6.2(i)) the high porosity channels

have evolved sufficiently to allow the circulation to span the full height of the do-

main. Note that in these channels the flow is much faster, as seen by the tighter

packed streamlines.

Similar behaviour can be seen when the reaction rate is increased to k0 = 20.

Figure 6.3 shows the evolution of the concentration perturbation C̃, temperature

perturbation T̃ and the porosity φ for the left half of the domain for RC = 30,

RT = −13 and k0 = 20, while figure 6.6(b) shows the corresponding evolution of

the maximum absolute velocity and the porosity contrast. The most prominent

difference between figure 6.6(a) and (b) is that the higher reaction rate leads to

faster evolution of the system.

Buoyancy-driven convection has been established by t ≈ 30 (not shown); at

this time the convection pattern closely resembles figure 6.2(a), with 10 pairs

of counter-rotating cells in the full domain. Once steady convection has been

established, the porosity field continues to evolve until it triggers a secondary

instability, as with the slower reaction rate. Figure 6.3(a) shows the fields at

t = 200, just before the first phase shift. As before, the concentration and

temperature fields are in phase with the porosity field. Note that the streamlines

are tighter packed in the higher porosity regions, indicating that upward flow is



Chapter 6 133

faster than downward flow.

By the end of the shift at t = 300 (figure 6.3(b)), the concentration and tem-

perature fields along with the streamlines have moved a half cell (approximately

one half x-unit) to the left, but the porosity field is still effectively unchanged.

Furthermore, the concentration and temperature fields are now out of phase with

the porosity. The overall pattern is similar to figure 6.2(c).

The phase shift can also be seen in the maximum absolute velocity and porosity

contrast (figure 6.6(b)). Convection develops and is maintained for approximately

200 time units, but there is a dip in the velocity around the time of the phase

shift as the circulation slows and re-establishes itself. After this shift, the system

settles back into a quasi-equilibrium state of steady convection with the maximum

velocity and porosity contrast first declining then gradually increasing again as

the porosity comes back into phase with the concentration and temperature fields.

Analogous behaviour can be seen in figure 6.6(a), although with a faster reaction

rate we note that the dip in the maximum velocity is much sharper, and the

change in the porosity contrast occurs over a shorter period of time. The sharper

dip of the maximum velocity and faster change of the porosity contrast was

also seen for reactive solutal convection when the reaction rate was increased

(§3.3.2.3).

By t = 500 (figure 6.3(c)), the porosity field is back in phase with the concen-

tration and temperature fields, and, as with the slower reaction rate, there is a

vertical asymmetry in the porosity field with more dissolution towards the top of

the domain. However, in this case alternate high porosity channels are more pro-

nounced, as seen by the tighter packed streamlines in alternate downflow regions.

The system undergoes two more rapid phase shifts; figure 6.3(d) shows the fields

at t = 1500 after the last rapid shift. The porosity field is again out of phase with

the concentration and temperature fields, but now the circulation is much slower.

The system now settles into a regime of slow evolution and, although there are

no more rapid phase shifts, a slow movement to the left continues, similar to the

constant movement seen in the slower reaction rate case. However, note that

in this case the symmetry has been broken in the opposite sense, with both the

direction of the tilt and the migration reversed from the slower reaction case. This



Chapter 6 134

movement can be seen as the small peaks in the maximum velocity and changes

in the porosity contrast in figure 6.6(b), which are analogous to the signature of

the faster phase shifts.

As this slow evolution continues, first the porosity contrast becomes more pro-

nounced (figure 6.3(e)), with ‘eyes’ of high porosity developing near the top of the

layer and regions of lower porosity in the centre of the domain. Alternate high

porosity channels remain more pronounced. Precisely analogous behaviour was

seen in §3.3.2.3 for reactive solutal convection. However, here the slow evolution

of the porosity field is hampered by the almost continual slow leftward migration

of the circulation, concentration and temperature fields. While reactive solutal

convection can be thought of as thermsolutal convection in the limit of infinite

Lewis number (cf. §5.5), in the thermosolutal case Le = 10, and so thermal dif-

fusion is much slower. Although thermal diffusion is faster than solutal diffusion

in both cases, with thermosolutal convection it is not fast enough to restore the

tilted cells to their upright position and hence cease the lateral migration of the

cells.

At t = 4500 (figure 6.3(f)), the ‘eyes’ of high porosity have developed into higher

porosity channels, but since the porosity field is out of phase with the concentra-

tion and temperature fields, by t = 6000 (figure 6.3(g)) these channels have been

blocked, and the layer is dominated by lower porosity, with regions of higher

porosity towards the bottom. Once the fields are back in phase, these high

porosity regions begin to move back upwards from the bottom of the layer(figure

6.3(h)), until eventually they span the height of the domain (figure 6.3(i)). This

layering behaviour is analogous to that seen with a slower reaction rate (figures

6.2(g)-(i)), but the faster reaction rate causes it to occur over a faster timescale.

Destabilising thermal gradient

We now consider the combination of a destabilising solutal gradient with a desta-

bilising thermal gradient. Figure 6.4 shows the evolution of the concentration

perturbation C̃, the temperature perturbation T̃ and the porosity φ for the left

half of the domain for RC = 10, RT = 25 and k0 = 5, while the corresponding

evolution of the maximum absolute velocity and the porosity contrast is shown in
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figure 6.6(c). Although the behaviour in this case is very similar to that seen with

a slow reaction rate and a stabilising thermal gradient (figures 6.2 and 6.6(a)),

there are some subtle differences.

In this case steady convection is established by t ≈ 130 (not shown). At this

time all the fields are in phase; that is, regions of C̃ > 0 and T̃ < 0 coincide with

regions of lower porosity (φ < φ0), and regions of of C̃ < 0 and T̃ > 0 coincide

with regions of higher porosity (φ > φ0).

As in the stabilising thermal gradient case, the porosity field evolves until it

triggers a secondary instability. Just before the phase shift (figure 6.4(a)), the

porosity field is in phase with the concentration and temperature fields, while

afterwards the concentration and temperature fields and the streamlines have

moved a half cell to the right, resulting in the porosity field now being out of

phase with the concentration and temperature fields (figure 6.4(b)). This is the

same shifting mechanism as seen in the stabilising thermal gradient case, and the

overall pattern after the shift is similar to that seen in figure 6.2(c).

Comparing figures 6.6(a) and (c) we can see that the phase shifts take longer

with a destabilising thermal gradient, since the porosity contrast signature of

increasing then decreasing occurs over more time units. However, this difference

could be a result of the lower solutal Rayleigh number RC as opposed to an effect

caused by the destabilising thermal gradient. Furthermore, while the maximum

velocity remains at a similar level throughout the simulation for RT < 0 and k0 =

5, it reduces to about half its initial value after t ≈ 5000 with the destabilising

thermal gradient.

Despite these very subtle differences, the long-term behaviour is very similar

with both cases undergoing a continuous rightwards migration throughout the

simulation, with the porosity field tending towards a layered structure as in figure

6.2(i).

Finally, figure 6.5 shows the evolution of the concentration perturbation C̃, tem-

perature perturbation T̃ and the porosity φ for the left half of the domain for

RC = 10, RT = 122 and k0 = 20, while the corresponding evolution of the

maximum absolute velocity and the porosity contrast is shown in figure 6.6(d).

As seen before, the higher reaction rate leads to faster phase shifts, and a faster
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evolution of the system.

Buoyancy-driven convection has been established by t ≈ 10 (not shown), with 5

pairs of counter-rotating cells in the full domain. At this time all the fields are

in phase, and the porosity field continues to evolve until it triggers a secondary

instability, as with all previous cases. Figure 6.5(a) shows the fields just before

the first phase shift at t = 50. Note that the streamlines are tighter packed in

higher porosity regions, so upward flow is faster than downward flow. During the

phase shift, the concentration, temperature and circulation fields tilt to the left

and begin moving rightwards (figure 6.5(b)) until, after the shift, the fields have

moved a half cell (≈ 1 x-unit) to the right, and the concentration and temperature

fields are now out of phase with the porosity field (figure 6.5(c)). Now, from the

streamlines we see that downward flow is faster than upward flow.

Again, the phase shift can be seen in the maximum absolute velocity and poros-

ity contrast (figure 6.6(d)), with the dip in the maximum velocity at the time

of the phase shift as the circulation slows then re-establishes itself. After the

shift the system settles back into a quasi-equilibrium state of steady convection

with the maximum velocity and porosity contrast first declining then gradually

increasing again as the porosity comes back into phase with the concentration

and temperature fields. Analogous behaviour can be seen in all subplots of figure

6.6, although with a faster reaction rate we note that the dip in the maximum

velocity is much sharper, and the change in the porosity contrast occurs over a

shorter period of time.

By t = 180 (figure 6.5(d)), the porosity field is back in phase with the concentra-

tion and temperature fields. As with previous cases, there is a distinct vertical

asymmetry in the porosity field with more dissolution towards the top of the

domain, and the centres of the circulation cells have moved upwards.

The system undergoes two more rapid phase shifts; figure 6.5(e) shows the fields

just after the last rapid shift at t = 530. The porosity field is now out of phase

with the concentration and temperature fields, and the circulation is beginning to

slow. The system now settles into a regime of slow evolution where the circulation

is almost non-existent.

By t = 3000 (figure 6.5(f)), the concentration and temperature perturbations
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are now much smaller and the vertical asymmetry is now very distinct, with

a region of lower porosity dominating the centre of the domain, with a region

of much higher porosity at the top boundary and a region of slightly higher

porosity at the bottom boundary. Here the dashed contours represent additional

streamline contours to aid in the visualisation of the flow. The lower region of

higher porosity begins to push its way upwards (figure 6.5(g)) with new circulation

cells, squashing the original circulation cells upwards. This reversal of flow brings

all the fields back into phase with each other (t = 6000, figure 6.5(h)). The

upwards migration of the high porosity layer continues (t = 8000, figure 6.5(i)),

until convection is suddenly re-established at t ≈ 9500.

Figure 6.5(i) shows the fields at the end of the simulation. The concentration and

temperature perturbations are slightly bigger than before the re-establishment of

convection, and there is evidence of further rightwards movement. Note that there

are now 6 pairs of counter-rotating cells in the full domain, corresponding to a

wavenumber of m ≈ 3.77, whereas previously there were 5 pairs corresponding to

a wavenumber of m ≈ 3.14. Allowing for the quantisation of m which is imposed

by the horizontal periodicity of the computational domain, both of these values

compare well with the critical wavenumber mcrit
C,0 ≈ 3.56 predicted by (5.51).

6.1.2.2 Scenario two: stabilising solutal gradient, destabilising ther-

mal gradient, subcritical reaction rate

In this and the subsequent section we consider the combination of a stabilising

solutal gradient with a destabilising thermal gradient. Here, we consider this

combination with a subcritical reaction rate and we recall that in this case the

transition to instability is through a growing oscillatory mode.

Figure 6.7 shows the evolution of the concentration perturbation C̃, the tem-

perature perturbation T̃ and the porosity φ for the left half of the domain for

RC = −15, RT = 299 and k0 = 5 at the onset of convection. The solid lines

on each plot are the streamlines, which are evenly spaced. Note the different

magnitudes on each subset of plots.

At t = 2 (figure 6.7(a)) all the fields are in phase; that is, regions of C̃ > 0
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Figure 6.6: Maximum absolute velocity |u| (solid) and maximum and minimum
porosity φ (dashed) throughout the whole domain for (a) k0 = 5, RC = 30,
RT = −348; (b) k0 = 20, RC = 30, RT = −13; (c) k0 = 5, RC = 10, RT = 25;
(d) k0 = 20, RC = 10, RT = 122.
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and T̃ > 0 coincide with regions of lower porosity (φ < φ0), and regions of

C̃ < 0 and T̃ < 0 coincide with regions of higher porosity (φ > φ0). At this

time we have upwards flow in C̃ > 0 and T̃ > 0 regions, and downwards flow

in C̃ < 0 and T̃ < 0 regions. However, by t = 2.2 (figure 6.7(b)), the flow

direction has switched, but the concentration, temperature and porosity fields

have remained in phase. The concentration and temperature fields move a half

cell by t = 2.3 (figure 6.7(c)), so again we have upwards flow in C̃ > 0 and T̃ > 0

regions, but now the concentration and temperature fields are out of phase with

the porosity field. The fields remain out of phase, and by t = 3 (figure 6.7(d))

nonlinear effects have become significant as seen by the plumes of high and low

concentration perturbations.

The oscillatory onset can also be seen in the inset of figure 6.10(a), which shows

the maximum absolute velocity. We can see that the maximum velocity grows as

convection tries to establish but then drops as the flow direction changes. This

occurs twice before the phase shift at t = 2.3, after which the velocity grows

rapidly as convection is established.

Since nonlinear effects enter the system so rapidly, there is not a chance to see

the upward movement of the circulation and temperature fields and downwards

movement of the concentration and porosity fields predicted by the Galerkin

analysis of §5.4.3.2. However, the concentration and temperature fields are out

of phase with the porosity field, as predicted.

Figure 6.8 shows the long-term evolution of the concentration perturbation C̃,

temperature perturbation T̃ and porosity φ for the left half of the domain. The

solid lines on each plot are the streamlines, which are evenly spaced with the

same contours used at each time. These should be read in conjunction with

figure 6.10(a) which shows the evolution of the maximum absolute velocity, and

the maximum and minimum porosity.

At t = 100 (figure 6.8(a)) the concentration and temperature fields are very

similar to those at the onset of convection (t = 3, figure 6.7(d)), but the porosity

field has begun to evolve with porosity increasing where C̃ < 0 and T̃ < 0 and

decreasing where C̃ > 0 and T̃ > 0, in agreement with (6.4). Therefore, the

porosity is reduced slightly near the top of the layer, and correspondingly the
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centres of the circulation cells have moved down towards the bottom of the layer.

This region of reduced porosity is pierced by higher porosity channels which

correspond with the downflow regions of the circulation. Here, downflow is faster

than upflow as seen by the tighter packed streamlines.

The porosity continues to evolve and by t = 500 (figure 6.8(b)) the region of

lower porosity at the top of the domain has extended downwards, squashing the

circulation cells even more. High porosity channels still pierce the low porosity

region in areas of downwards flow, but now upflow under the low porosity barrier

is faster than downflow.

Figure 6.10(a) shows the evolution of the maximum absolute velocity, and we can

see that convection is established and maintained until t ≈ 750 when the porosity

evolution has forced the circulation into too small a region to be maintained

(figure 6.8(c)). We then enter a regime of slow porosity evolution which strives

to reach a state where convection can be maintained again.

At t = 1000 (figure 6.8(d)) the circulation is still contained in the lower half of the

domain, but additional counter-rotating cells have formed in the high porosity

region at the bottom of the channels. Again, the dashed contours are additional

streamlines to aid with the flow visualisation. By t = 5000 (figure 6.8(e)) these

new circulation cells have pushed upwards and now extend the full height of the

domain, squashing the original circulation cells even further at the bottom of the

domain. Note that further pairs of counter-rotating circulation cells have formed

at the top of the domain at the top of the high porosity channel, and by t = 10000

(figure 6.8(f)) these circulation cells have started to dominate the domain.

From the maximum porosity curve in figure 6.10(a), we can split the slow evo-

lution regime into two regions: one where the maximum porosity decreases

(t ≈ 750 − 10000), and one where it increases (t ≈ 10000 − 180000). These

regions correspond to periods where the system is dominated by faster upflow,

and faster downflow, respectively.

By t = 15000 (figure 6.8(g)), the new circulation cells have extended to cover most

of the domain, and the high porosity channel is now more evident. This channel

continues to be eroded (t = 17500, figure 6.8(h)) until vigorous convection can

be reestablished (t = 17600, figure 6.8(i)). The downwards movement of the
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circulation cells continues, however, and by the end of the simulation (t = 20000,

figure 6.8(j)) the very vigorous convection is localised in high porosity regions

near the bottom of the domain (note the different scale on the porosity plot).

The maximum porosities of φ = 0.8 observed at the end of this simulation may not

be physically realistic in the context of naturally occurring porous media, where

φ rarely exceeds 0.6 (see §2.1). This high porosity is a result of our assumption

that there is no supply limitation of solute in the porous medium (cf. §2.6.7).

We would expect a more complete model to predict lower maximum porosities;

however, our results strongly suggest that even in such a model the complete

depletion of the reactive mineral from parts of the rock matrix may be expected.

6.1.2.3 Scenario three: stabilising solutal gradient, destabilising ther-

mal gradient, supercritical reaction rate

We finally consider the combination of a stabilising solutal gradient with a desta-

bilising thermal gradient along with a supercritical reaction rate, so the transition

to instability is by direct onset of finite amplitude convection. Figure 6.9 shows

the long-term evolution of the concentration perturbation C̃, temperature per-

turbation T̃ and porosity φ for the left-half of the domain. The solid lines on

each plot are the streamlines, which are evenly spaced with the same contours

used at each time. These should be read in conjunction with figure 6.10(b) which

shows the evolution of the maximum absolute velocity, and the maximum and

minimum porosity.

Convection is established by t ≈ 2 (not shown). At this time the fields are out of

phase with regions of C̃ > 0 and T̃ > 0 coinciding with regions of higher porosity

(φ > φ0), and regions of C̃ < 0 and T̃ < 0 coinciding with regions of lower porosity

(φ < φ0). From (6.4), we expect porosity to increase where C̃ < 0 and T̃ < 0 and

to decrease where C̃ > 0 and T̃ > 0. As the flow is buoyancy driven, downward

flow is favoured where C̃ < 0 and T̃ < 0, drawing down lower concentrations and

temperatures from the top boundary, and upward flow is favoured where C̃ > 0

and T̃ > 0, drawing up higher concentrations and temperatures from the bottom

boundary: this is the essential mechanism that sustains convection.
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Once convection has been established, the flow very quickly becomes dominated

by nonlinear effects. Therefore, there is not a chance to see the upward move-

ment of the circulation and temperature fields and downwards movement of the

concentration and porosity fields predicted by the Galerkin analysis of §5.4.3.3.

However, the concentration and temperature fields are out of phase with the

porosity field, as predicted.

Since the diffusion of solute is much slower than the diffusion of heat, the concen-

tration perturbations are carried around by the flow; this is the picture that has

emerged by t = 100 (figure 6.9(a)) where we have plumes of low concentration

being pulled towards the bottom of the domain, and those of high concentration

being pulled towards the top of the domain by the circulation. The porosity field

continues to evolve with porosity increasing in regions which coincide with C̃ < 0

and T̃ < 0, and decreasing in regions which coincide with C̃ > 0 and T̃ > 0.

Therefore, the porosity is reduced near the top of the layer, and correspondingly

the centres of the circulation cells have moved downwards. However, this region

of low porosity is pierced by higher porosity channels in which fluid is carried

towards the bottom of the layer. Furthermore, we have faster downflow than

upflow, as can be seen by the tighter packed streamlines in these regions.

From figure 6.10(b) we can see that the maximum velocity increases as convection

is established, and then suddenly convection is halted at t ≈ 130. During this

time, the porosity contrast has increased dramatically, but once convection is

halted we enter a regime of slow porosity evolution. This is identical behaviour

to that seen in the previous section with a lower reaction rate, although in this

case the period of vigorous convection is much shorter.

Figure 6.9(b) shows the fields at t = 130 just as the convection is halted. The

dashed contours represent additional streamlines which are plotted to aid with the

visualisation of the flow. By this time, both the concentration and temperature

perturbations are greatly reduced, and, although the porosity field looks similar

to that at t = 100, the porosity contrast between the regions of high and low

porosity has increased. As a result of the region of low porosity extending across

the top half of the domain, the circulation has been squashed further towards the

bottom of the layer, and hence, the vigorous convection cannot continue resulting
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in this much slower circulation.

By t = 500 (figure 6.9(c)), the circulation has been squashed even further towards

the bottom of the domain, and there is now no circulation in the top half of the

domain. Small additional circulation cells have appeared at the bottom of the

domain in the high porosity regions, and these grow in size (t = 1000, figure

6.9(d)), until by t = 2000 (figure 6.9(e)) they extend the full height of the domain.

Note that throughout this evolution, the region of high porosity at the bottom

of the layer has become thinner, so now most of the layer is dominated by lower

porosity. However, channels of slightly higher porosity still pierce the domain,

but these now contain fluid moving upwards towards the top of the domain.

Furthermore, the top of these channels now contain a pair of counter-rotating

circulation cells.

By t = 5000 (figure 6.9(f)), the circulation cells that appeared at the top of the

higher porosity channels have increased in size, and, in the region of downflow

the porosity has increased. These circulation cells continue to push downwards,

until by t = 7000 (figure 6.9(g)) they almost dominate the domain.

From the maximum porosity curve in figure 6.10(b) we can see that the slow evo-

lution can be split into three regions: from t ≈ 130−2000 the maximum porosity

remains constant, then from t ≈ 2000−6000 it decreases, before increasing again

from t ≈ 6000. These regions correspond to periods where the system is domi-

nated by faster downflow in high porosity regions, then faster upflow, and finally

faster downflow, respectively. A similar pattern was seen in the previous section

for a subcritical reaction rate.

By t = 9000 (figure 6.9(h)) the centres of the circulation have moved downwards,

and the porosity has increased further in the downflow channel. The porosity

continues to increase until, by t = 10000 (figure 6.9(i)) vigorous convection is

able to return.
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Figure 6.10: Maximum absolute velocity |u| (solid) and maximum and minimum
porosity φ (dashed) throughout the whole domain for (a) k0 = 5, RC = −15,
RT = 199; (b) k0 = 20, RC = −15, RT = 245.

6.2 Summary of long-term behaviour

A common feature of all the numerical simulations is the interaction between

processes operating at different time scales. The long-term behaviour of the

system, however, depends on the strength of the thermal gradient relative to that

of the solutal gradient.

In each case, convection is established over dimensionless time scales of order

1− 10 and, over a slower time scale of order 100, the cells tend to establish and

reinforce an in-phase porosity pattern on the rock matrix. Recall that the matrix

evolution parameter |δ| = 0.001 in these simulations. Now, if the solutal gradient

dominates, then the longer term behaviour resembles that of reactive solutal con-

vection as seen in chapter 3: the reinforcement results in the clogging of downflow

regions, which drives a secondary instability in the form of a phase shift that re-

verses the direction of the circulation over time scales of order 10. Over extremely

long time scales of order 1000, the repeated interaction between the circulation

and the concentration and porosity fields results in a layered porosity structure

penetrated by high porosity channels but, in contrast to solutal convection, there

is an almost continual lateral migration of the circulation and concentration fields.

If the thermal gradient dominates, however, then the reinforcement of the in-phase

porosity structure results (over time scales of order 100) in the circulation being
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forced into too small a region to be maintained. Once convection is suppressed,

a slow porosity evolution over timescales of order 1000 occurs, again resulting in

a layered porosity structure penetrated by high porosity channels. However, now

there is an almost continual vertical movement of the circulation cells. Eventually,

the porosity evolves sufficiently to allow the return of very vigorous, localised

convection in regions of high porosity.

Comparing figures 6.10(a) and (b) it appears that there could be a relationship

between the reaction rate and the timescale required for the re-emergence of

vigorous scaling. In fact, further numerical simulations (not shown) with the

porosity evolution parameter δ increased by a factor of ten, reduce the timescale

for re-emergence by a factor of ten for both reaction rates. This result suggests

that the timescale for the re-emergence of convection depends on both the reaction

rate k0 and the porosity evolution parameter δ.

Higher reaction rates favour a more rapid evolution of the system. In the case of

a dominant solutal gradient, they bring forward the onset of the secondary insta-

bility, and with a dominant thermal gradient they result in quicker suppression

of convection. In both cases they also accelerate the very slow evolution of the

rock matrix.
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Conclusions

7.1 Summary of results

In this thesis we have examined two idealised models of reactive convection in a

porous medium where the rock matrix is allowed to evolve through precipitation

and dissolution as a mineral is lost or gained from the fluid. Rather than studying

a detailed geochemical model of a particular system we considered a simple, but

physically founded, model with the aim of elucidating the fundamental mecha-

nisms which control the evolution of the porous matrix, through a combination

of linear stability analyses and numerical simulations.

We began by considering the simplest model in which interactions between con-

vective circulation and an evolving porous medium may occur: reactive solutal

convection, where the solute may be exchanged with the porous matrix by a first-

order reaction which attempts to restore the local solute concentration to some

local equilibrium value that varies with depth in the medium. This model can

be obtained from the full thermosolutal model, in the limit of very high thermal

diffusivity and finite solutal diffusivity with negligible thermal expansion.

Although the porosity evolution is slow on the timescale of convection and re-

action, we find, through a linear stability analysis, that it exerts an unexpected

influence on the stability properties of the system. When the system is strongly

buoyantly unstable, the reaction acts to remove destabilising solute and thus

159
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Figure 7.1: Schematic of the phase-shift mechanism. The shading indicates the
porosity field with darker shading corresponding to lower values; the solid lines
indicate the pattern of fluid flow.

to stabilise the system. However, when the system is close to the threshold of

instability (as calculated without porosity evolution), a novel reaction-diffusion

instability mode becomes available, which persists even when the Rayleigh num-

ber is reduced below the critical value for buoyant instability.

Over longer timescales, the positive feedback between the concentration and

porosity fields results in the porosity decreasing in downflow regions, but increas-

ing in upflow regions. These porosity changes become steadily more pronounced,

and ultimately trigger a relatively rapid reorganisation of the flow in which the

entire pattern of convective cells tilts and shifts sideways by half a wavelength.

This phase-shift mechanism is illustrated in figure 7.1.

The repeated interplay between episodes of quasi-steady convection and the rapid

reorganisations that punctuate them eventually develops a layered porosity struc-

ture, with the centre of the layer being dominated by a low-porosity band bro-

ken by occasional higher-permeability vertical channels, and pockets of enhanced

porosity occurring nearer the top and the bottom of the layer (figure 7.2(a),

cf. figure 3.11(e)). There appears to be no long-term steady convective state
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(a)

(b)

Figure 7.2: Schematic of the long-term pattern of the porosity field for (a)
solutally-driven convection, and (b) thermally-driven convection. The shading
indicates the porosity field with darker shading corresponding to lower values;
the solid lines indicate the pattern of weak fluid flow.

towards which the system asymptotes, although once layering has become estab-

lished there is a tendency for the strength of convection to decrease.

Similar long-term behaviour was seen when the top and bottom boundary con-

ditions were changed from Dirichlet to Neumann conditions. With Neumann

boundary conditions, however, the system underwent fewer phase shifts and set-

tled into a phase of slow evolution at an earlier point in the simulation, suggesting

that these boundary conditions stabilise the system against the rapid reorganisa-

tions.

The model was extended to consider reactive double-diffusive convection in an

evolving porous layer, bounded above and below by impermeable layers held at

constant concentration and temperature. After revisiting the stability analysis of

Pritchard and Richardson (2007) for non-evolving reactive thermosolutal convec-

tion, we performed a linear stability analysis to investigate how the evolution of

a reactive porous medium affects the onset of thermosolutal convection.

As with solutal convection, the porosity evolution allows an unstable reaction-
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diffusion mode to become available, which persists when the thermal Rayleigh

number is reduced below the critical value required for buoyant instability. This

reaction-diffusion mode appears regardless of the reaction rate and the exact

destabilising nature of the thermal and solutal gradients. With a destabilising

solutal gradient the reaction-diffusion instability results in the same tilting of the

cells seen with solutal convection. However, with a stabilising solutal gradient

the reaction-diffusion instability results in vertical squashing of the entire pattern

of convective cells.

If the solutal gradient is destabilising then, regardless of the thermal gradient,

the behaviour of the system is qualitatively identical to that seen for solutal

convection: the positive feedback between the concentration and porosity fields

results in the clogging of downflow regions, which drives a secondary instability in

the form of a phase shift that reverses the direction of the circulation (figure 7.1).

Over extremely long time scales, the repeated interaction between the circulation

and the concentration and porosity fields results in a layered porosity structure

penetrated by high porosity channels, with an almost continual lateral migration

of the circulation and concentration fields (figure 7.2(a), cf. figure 6.2(i)).

Different behaviour was seen in the solutally stable regime, however. Here, the

reaction rate plays an important role at the onset of convection, with a ‘slow’ sub-

critical reaction leading to an oscillatory instability, but a ‘faster’ supercritical

reaction leading to a monotonic instability. Over long timescales the reinforce-

ment of the in-phase porosity structure results in the circulation being forced into

too small a region to be maintained. Once convection is suppressed, a slow poros-

ity evolution occurs, again resulting in a layered porosity structure penetrated by

high porosity channels. However, now there is an almost continual vertical move-

ment of the circulation cells. Eventually, the porosity evolves sufficiently to allow

the return of very vigorous, localised convection in regions of high porosity (figure

7.2(b), cf. figure 6.9(i)).

Higher reaction rates favour a more rapid evolution of the system. In the case of

a dominant solutal gradient, they bring forward the onset of the secondary insta-

bility, and with a dominant thermal gradient they result in quicker suppression

of convection. In both cases they also accelerate the very slow evolution of the
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rock matrix.

Our results complement the numerical experiments of Bolton et al. (1996; 1997;

1999) by demonstrating that geochemical convection can spontaneously give rise

to heterogeneous porosity fields, and not merely enhance heterogeneities that

already exist. Their wider implication is that in situations where long-term con-

vective transport is simulated in order to determine patterns of mineralisation,

such as ore deposition (e.g. Raffensperger and Garven 1995a,b), it may be essen-

tial to incorporate flow–reaction–permeability coupling in order to capture even

the outline of the mineralisation patterns. Another implication is that, because of

the development of instabilities which scale in a nonlinear manner with the ma-

trix evolution rate δ, simulations which accelerate the rock evolution to reduce

runtime may thereby distort their results in unexpected ways.

Our results from the full thermosolutal model with a destabilising solutal gradi-

ent suggest that a reduced solutal model does capture the fundamental feedback

mechanisms which drive the evolution of the rock matrix in solutally driven con-

vection. However, thermal diffusion does play an important role; a lower value of

the Lewis number, and hence slower thermal diffusion, results in a weaker restor-

ing force, leading to a continual lateral migration of the pattern of convective

cells.

Our simulations with stabilising solutal gradient have shown that there exists

the possibility of entirely depleting the rock matrix of reactive mineral in places,

resulting in very localised porosity. Finally, we note the importance of running

numerical simulations for a sufficiently long time, since our results suggest that

vigorous convective circulation can return, even after long quiescent periods.

7.2 Future work

The most natural extension of the work on reactive thermsolutal convection would

be to investigate the effect of Neumann boundary conditions. However, the re-

sults for solutal convection suggest that any fundamental effect on the long-term

behaviour from the boundary conditions is minimal. We could also consider
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more complex geometries, for example, horizontal convection or the Elder prob-

lem (Elder 1967) which considers convection in a rectangular box heated over

the central half of its base. It might also be useful to compare our numerical

simulation results to those obtained with a more specialised numerical solver, or

with alternative approaches such as spectral methods.

As noted in all our simulations, the porosity evolution allows an unstable reaction-

diffusion mode to become available, which persists when the Rayleigh number is

reduced below the critical value required for buoyant instability. However, in our

analysis we noted that our assumption of a divergence-free velocity field is strictly

no longer valid in this regime. Therefore, a more important line of work would

be study the reaction–diffusion instability in more detail without this limiting

assumption.

Another avenue would be to consider more detailed models of the geochemistry,

including multiple species or more complicated reaction laws. In light of the

results on thermally-driven reactive thermosolutal convection, the first step would

be to remove the assumption of no supply limitation, and instead only allow the

porosity to evolve to a fixed value such that φfinal < 1.

The aim of this work would be to determine just how robust our instability

and long-term evolution mechanisms are to increased model complexity; that is,

we want to determine if our fundamental mechanisms are in fact fundamental to

reactive convection with porosity evolution, or if they are particular to our simple

idealised models.
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Technical details of various

mathematical results

A.1 Perturbation amplitudes

We now linearise the dimensionless governing equations (3.9)–(3.12), assuming

that the amplitude of the matrix evolution parameter δ is smaller than the am-

plitude of the perturbations. Hence, the linearised equations are given by

∇ · u′ = 0, (A.1.1)

∇p′ = −u′ −RCC
′ez, (A.1.2)

∂C ′

∂t
+ w′ = φ0∇2C ′ +

∂φ′

∂z
− k0C

′, (A.1.3)

∂φ′

∂t
= 0. (A.1.4)

Since the porosity field is fixed in time, we can split the perturbations into a

steady φ-dependent part with no flow, plus a time-dependent part, such that

C ′ = Cφ + C̃, p′ = pφ + p̃, u′ = ũ, (A.1.5)
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where the subscript φ denotes the φ-dependent part of the perturbation. There-

fore (A.1.1)–(A.1.4) can be rewritten into a convective part given by

∇ · ũ = 0, (A.1.6)

∇p̃ = −ũ−RCC̃ez, (A.1.7)

∂C̃

∂t
+ w̃ = φ0∇2C̃ − k0C̃, (A.1.8)

and a porosity-dependent part given by

∇pφ = −RCCφez, (A.1.9)

φ0∇2Cφ − k0Cφ = −∂φ
′

∂z
. (A.1.10)

Since there is no porosity evolution, the linearised convective and porosity-depend-

ent systems are decoupled. The linearised convection equations are equivalent to

those for the reduced case of a reaction but no porosity evolution studied in §3.2.1.

Therefore, in this case, the effect of porosity evolution would enter the system as

a non-linear effect.

A.2 Principle of the exchange of stabilities when

δ = 0

Adapting the approach of Chandrasekhar (1961, §11), we show that for the re-

duced problem with a reaction but no matrix evolution the principle of the ex-

change of stabilities is valid, so marginal stability is characterised by σ = 0.

Throughout this appendix we will use the notation D = d/dz for brevity.

Let G(z) = (D2 −m2)W (z), so equation (3.27), with δ = 0, becomes

[
φ0(D2 −m2)− (k0 + σ)

]
G(z) = m2RCW (z). (A.2.1)

We multiply equation (A.2.1) by G∗, the complex conjugate of G, and integrate
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over the range of z, obtaining∫ 1

0

G∗
[
φ0(D2 −m2)− (k0 + σ)

]
Gdz = m2RC

∫ 1

0

G∗Wdz. (A.2.2)

Integrating by parts and using G(z) = (D2−m2)W (z), this may be rewritten as∫ 1

0

{φ0|DG|2 + (φ0m
2 + k0 + σ)|G|2}dz −m2RC

∫ 1

0

{|DW |2 +m2|W |2}dz = 0,

(A.2.3)

regardless of whether Dirichlet (W (z) = 0 and G(z) = 0) or Neumann (W (z) = 0

and DG(z) = 0) boundary conditions must be satisfied at the top and bottom of

the layer.

The real and imaginary parts of equation (A.2.3) must vanish separately. The

imaginary part is given by

=(σ)

∫ 1

0

|G|2dz = 0 (A.2.4)

which is satisfied only if =(σ) = 0. Therefore, σ must be real, and marginal

stability is characterised by σ = 0.

A.3 Reduction of determinant

The determinant of B, with elements given by (5.34), can be simplified by per-

forming seven column operations. We first subtract the first column from each

of the other six columns, and then subtract column three from column four, and

column five from column six. The corresponding Maple code for the column

operations is given below.

B1:=ColumnOperation(B,[2,1],-1):

ColumnOperation(B1,[3,1],-1,inplace):

ColumnOperation(B1,[4,1],-1,inplace):

ColumnOperation(B1,[5,1],-1,inplace):

ColumnOperation(B1,[6,1],-1,inplace):
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ColumnOperation(B1,[4,3],-1,inplace):

ColumnOperation(B1,[6,5],-1,inplace):

We then expand the determinant by the first row, and take the first element of

each column out as a common factor of that column. Therefore,

det(B) = (eq2 − eq1)(eq4 − eq3)(eq6 − eq5)(eq3 − eq1)(eq5 − eq1) det(C), (A.3.1)

where the matrix C is given by
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A.4 Minimising g(M,n) over M and n

We wish to minimise g(M,n) over M and n, where M ≥ 0 and n ≥ 1, with

the extra condition that n ∈ N. To begin we will ignore the last condition and

assume that n varies continuously.

The global minimum of g(M,n) over (M,n) may occur either:

(a) within the (M,n) region of interest and so it must also be a local minimum

over M and n simultaneously,

(b) at the boundary of the region, or

(c) in one of the limits M →∞ or n→∞.

If the minimum occurs at the boundary n = 1, but not in one of the limits of

M , then it must correspond to a local minimum of M ; while, if it occurs at the

boundary M = 0, but not in one of the limits of n, then it must correspond to a

local minimum of n.

We will deal with option (c) first. In the limit M → ∞, g ∼ M/λ, while in the

limits n → ∞ and M → 0, g ∼ n4π4/(Mλ). Therefore, the global minimum

cannot occur in either of these limits. We are left with two possibilities: either

the global minimum occurs within the (M,n) region, or on the boundary n = 1.

We will attempt to locate an internal local minimum in the region n > 0, M > 0.

If no minimum occurs in this region then the global minimum must occur on the

boundary n = 1, while if a minimum does exist, we will need to determine if it

occurs for n ≥ 1 and if it is a global minimum.

For general values of M , ∂g/∂n = 0 if and only if F (n) = 0 where

F (n) = n6π6 + (2k0Le+ 3M)n4π4 + (4k0LeM + 3M2 + k0Le
2)n2π2

+M(M + k0Le)
2 +

1

2
k0MLeRC(λ− Le).

(A.4.1)

Now dF/dn > 0 for all n > 0, and so F (n) has a root for n > 0 if and only if

F (0) < 0. Hence, g(M,n) has a local minimum over n if and only if

M < MF =

[
1

2
k0LeRC(Le− λ)

]1/2

− k0Le. (A.4.2)
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Therefore, any local minimum over n can be a local minimum over both M

and n only if M < MF . If RC < 0, then MF ∈ C (since Le > λ) and the global

minimum over n must occur on n = 1. Also, if MF < 0, then the global minimum

over n must occur on n = 1 for any physical value of M . We therefore need to

worry about a local minimum over n if and only if MF > 0; i.e. if and only if

k0 < kF =
(Le− λ)

2Le
RC . (A.4.3)

We now consider the variation of g(M,n) over M , keeping n general. Now,

∂g/∂M = 0 if and only if

M4

Le2
+

(
2k0

Le
+

2n2π2

Le2

)
M3 +

(
2k0n

2π2 + k0λRC

Le
−RCk0 + k2

0

)
M2

+

(
−2k0n

4π4

Le
− 2n6π6

Le2

)
M − k2

0n
4π4 − 2k0n

6π6

Le
− n8π8

Le2
= 0,

(A.4.4)

and so there can be at most four local extrema of g(M,n). Since g(M,n) → ∞
as M → ∞ and M → 0, and g(M,n) → −∞ as M → −∞, there must be at

least one local minimum in the physical range M > 0. We can show that

∂2g

∂M2
=

2n2π2

λM3
+

2k0Le(Le− λ)

λ(k0Le+M + n2π2)3
RC , (A.4.5)

and so, for RC > 0, g(M,n) cannot have more than a single local minimum in the

range M > 0. We have already shown that if RC < 0 then the global minimum

must occur on the boundary n = 1. Therefore, there is only one minimum over

M to be concerned about. We will denote this minimum M = Mc.

Now, if we can prove that the unique value of Mc given by (A.4.4) which minimises

g(Mc, n) must always be greater than MF regardless of the value of n, then

we will have shown that the global minimum corresponds to n = 1. This will

follow if we can show that ∂g/∂M(MF , n) < 0 for all n > 0 (when M = Mc,

∂g/∂M(Mc, n) = 0 for all n > 0, and so if MF < Mc then ∂g/∂M(MF , n) < 0

for all n > 0).

The sign of ∂g/∂M is the same as as the sign of G(M,n) where G(M,n) is given
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by (A.4.4) multiplied by Le2. Substituting in M = MF and rearranging, we find

that (correcting Pritchard and Richardson (2007))

G(MF , n) =
16k4

0

β4

(
−P 4 − P 3 − β

4
(2− β)P 2 +

1

4
(1− β)2P − 1

16
(1− β)2

)
(A.4.6)

where

P =
n2π2√

2k0LeRC(Le− λ)
, β =

√
2k0Le

RC(Le− λ)
. (A.4.7)

Now, 0 < β < 1 for k0 < kF , and it is simple to show by plotting G(P, β) that

there are no points in the range P > 0, 0 < β < 1 at which G ≥ 0.

We have shown that there is no local minimum over (M,n) within the range

M > 0, n > 0. Therefore, along with our earlier results, the global minimum of

g(M,n) over M and n always occurs on the boundary n = 1 and corresponds to

a local minimum over M given by Mc. We note that this result is consistent with

the extra requirement that n ∈ N. Hence, Rc
T,0(RC) = g(Mc, 1).
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Tolerance testing and mesh

independence

All numerical simulations in this thesis were performed using Comsol Multiphysics

v3.5a, a finite element numerical solver software package designed for various

physics and engineering applications. It allows for the direct entry of coupled

systems of partial differential equations which are to be solved on a user-specified

domain. It has a number of inbuilt numerical solvers, and the user has full control

over the size, shape and number of mesh elements used.

However, Comsol is designed to be treated as a ‘black box’ solver which gives the

user only limited access to the numerical methods and tolerances. Therefore, it

is important that all models are tested for convergence and mesh independence

before their results are believed.

B.1 Solutal convection

The overall performance of the model was verified both for convection with no

reaction or porosity evolution and for convection with a reaction but no porosity

evolution. In both cases the model reproduced the linear stability results found

in §3.2: details are given in §3.3.1.
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In order to check the convergence of our numerical model, simulations for 0 ≤ t ≤
5000 were conducted using two different reaction rates, k0 = 0 and k0 = 10, and

four different Rayleigh numbers: the critical Rayleigh number given by (3.41), and

10%, 20%, and 50% above this value. Each simulation was conducted using 4480

triangular mesh elements: absolute tolerances were varied between 10−3 and 10−6

while relative tolerances were varied between 10−2 and 10−5. For each simulation

we noted the values for the maximum and minimum porosity φ, the maximum

and minimum concentration perturbation C ′, and the maximum absolute velocity

|u| over all timesteps (tables B.1 and B.2); we also plotted the maximum absolute

velocity against time for each set of tolerances to check for convergence over all

time steps (figures B.1 and B.2). A relative tolerance of 10−3 and an absolute

tolerance of 10−4 were found to give convergence of all key quantities to four

significant figures while maintaining a reasonable solution time.

The mesh independence of the numerical method was tested similarly by con-

ducting simulations with 1120, 4480, 17920, and 71680 triangular mesh elements

and using the same reaction rates and Rayleigh numbers used for the tolerance

testing. Each simulation lasted 5000 time units and used a relative tolerance of

10−3 and an absolute tolerance of 10−4. The same metrics as before were used to

assess convergence.

When no reaction occurred (k0 = 0), the solution was essentially mesh-indepen-

dent: steady convection developed when the Rayleigh number was above the

threshold Rcrit
C,0, and all key quantities converged to three significant figures as

long as at least 4480 mesh elements were employed (see table B.3 and figure B.3).

The mesh-dependence at higher reaction rates is more subtle, as illustrated by

figure B.4. It is apparent from this that 1120 mesh elements are insufficient to

resolve the behaviour consistently, whereas for 4480 or more mesh elements the

evolution is qualitatively similar. However, particularly for the convective cases

with Rayleigh numbers 10%, 20%, and 50% above the critical value, increasing the

number of mesh elements results in the porosity evolving for longer before the first

phase shift, signified by the reversal in porosity evolution (figure B.5). We also see

that the maximum absolute velocity behaves in a similar way when we use at least

4480 mesh elements (figure B.4). As the number of mesh elements is increased,
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RC = Rcrit
C,0

Relative tol. Absolute tol. φmax φmin C ′max C ′min |u|max Solution time (s)
10−2 10−3 0.1025 0.0975 0.0017 -0.0017 0.0032 199.129
10−3 10−4 0.1025 0.0975 0.0017 -0.0017 0.0032 203.590
10−4 10−5 0.1025 0.0975 0.0017 -0.0017 0.0032 319.443
10−5 10−6 0.1025 0.0975 0.0017 -0.0017 0.0032 315.264

RC = 1.1Rcrit
C,0

10−2 10−3 0.1025 0.0975 0.1903 -0.1908 0.4198 189.759
10−3 10−4 0.1025 0.0975 0.1903 -0.1908 0.4197 242.955
10−4 10−5 0.1025 0.0975 0.1903 -0.1908 0.4197 345.560
10−5 10−6 0.1025 0.0975 0.1903 -0.1908 0.4197 369.354

RC = 1.2Rcrit
C,0

10−2 10−3 0.1025 0.0975 0.2564 -0.2572 0.6006 239.001
10−3 10−4 0.1025 0.0975 0.2562 -0.2570 0.6001 308.030
10−4 10−5 0.1025 0.0975 0.2562 -0.2570 0.6001 294.580
10−5 10−6 0.1025 0.0975 0.2562 -0.2570 0.6001 271.754

RC = 1.5Rcrit
C,0

10−2 10−3 0.1025 0.0975 0.3565 -0.3582 1.0037 217.484
10−3 10−4 0.1025 0.0975 0.3566 -0.3584 1.0040 247.962
10−4 10−5 0.1025 0.0975 0.3566 -0.3584 1.0039 269.467
10−5 10−6 0.1025 0.0975 0.3566 -0.3584 1.0040 315.894

Table B.1: Tolerance testing results for k0 = 0.

the resolution of the numerical solution is increased and less numerical noise

is encountered. Therefore, the porosity evolution can continue for longer before

triggering an instability in the form of a phase shift. Since each solution displayed

the same behaviour when at least 4480 elements were used we concluded that

4480 elements were sufficient for mesh independence. However, it is important to

note that the inception of the secondary instability is sensitive to the amount of

numerical error introduced into the system.

B.2 Thermosolutal convection

In order to check the convergence of our numerical model, simulations were con-

ducted using two reaction rates, k0 = 5 and k0 = 20, and three values of the

solutal Rayleigh number, RC = −15, RC = 10 and RC = 30, to cover each

convective quadrant of the stability diagram (see figure 5.1). In each case we

take the thermal Rayleigh number RT to be 10 % above its critical value. Each
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Figure B.1: Maximum |u| throughout the whole domain when k0 = 0 for (a)
RC = Rcrit

C,0, (b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0, and (d) RC = 1.5Rcrit
C,0. Here

the solid line represents the solution with a relative tolerance of 10−2 and an
absolute tolerance of 10−3, the dashed line is for a relative tolerance of10−3 and
an absolute tolerance of 10−4, the dashed-dotted line is for a relative tolerance
of 10−4 and an absolute tolerance of 10−5, and the dotted line is for a relative
tolerance of 10−5 and an absolute tolerance of 10−6. The early stage adjustment
is shown in each insert.

simulation lasted 5000 time units and was conducted using 4480 triangular mesh

elements; absolute tolerances were varied between 10−3 and 10−6 while relative

tolerances were varied between 10−2 and 10−5. For each simulation we noted

the values for the maximum absolute velocity |u|, maximum and minimum tem-

perature perturbation T̃ , maximum and minimum concentration perturbation C̃,

and the maximum and minimum porosity φ over all timesteps (tables B.5 and

B.6); we also plotted the maximum absolute velocity against time for each set of

tolerances to check for convergence over all time steps (figures B.6 and B.7). It is

apparent from the maximum absolute velocity plots that a relative tolerance of at

most 10−3 and an absolute tolerance of at most 10−4 are required for convergence.
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RC = Rcrit
C,0

Relative tol. Absolute tol. φmax φmin C ′max C ′min |u|max Solution time (s)
10−2 10−3 0.1099 0.0901 0.0273 -0.0264 0.3952 234.324
10−3 10−4 0.1099 0.0901 0.0274 -0.0265 0.3965 264.216
10−4 10−5 0.1100 0.0900 0.0275 -0.0265 0.3971 456.089
10−5 10−6 0.1100 0.0900 0.0275 -0.0265 0.3971 677.814

RC = 1.1Rcrit
C,0

10−2 10−3 0.1878 0.0433 0.1358 -0.1320 3.2947 322.900
10−3 10−4 0.1873 0.0434 0.1358 -0.1320 3.2859 413.828
10−4 10−5 0.1869 0.0435 0.1358 -0.1320 3.2772 567.453
10−5 10−6 0.1869 0.0434 0.1358 -0.1320 3.2786 796.890

RC = 1.2Rcrit
C,0

10−2 10−3 0.2307 0.0321 0.1898 -0.1865 5.6307 372.950
10−3 10−4 0.2300 0.0322 0.1885 -0.1859 5.6073 397.753
10−4 10−5 0.2283 0.0323 0.1885 -0.1859 5.6026 779.454
10−5 10−6 0.2283 0.0323 0.1885 -0.1859 5.6016 992.461

RC = 1.5Rcrit
C,0

10−2 10−3 0.4195 0.0109 0.2746 -0.2751 16.9673 525.023
10−3 10−4 0.4191 0.0109 0.2746 -0.2751 16.9487 839.878
10−4 10−5 0.4182 0.0109 0.2746 -0.2751 16.8920 997.964
10−5 10−6 0.4182 0.0109 0.2746 -0.2751 16.8901 1545.282

Table B.2: Tolerance testing results for k0 = 10.

The mesh independence of the numerical method was tested similarly by con-

ducting simulations with 1120, 4480, 17920, and 71680 triangular mesh elements

and using the same reaction rates and Rayleigh numbers as used for the toler-

ance testing. Again, each simulation lasted 5000 time units and used a relative

tolerance of 10−3 and an absolute tolerance of 10−4. The same metrics as before

were used to assess convergence.

As with reactive solutal convection, the mesh independence of the numerical

method is hard to discern. Figures B.8 and B.9 show the maximum absolute

velocity for k0 = 5 and k0 = 20, respectively. When the solutal gradient dom-

inates, the behaviour is similar to the reactive solutal case with an increase in

mesh elements resulting in the porosity evolving for longer before the first phase

shift (figures B.8(b,c) and B.9(b,c)). When the thermal gradient dominates, the

length of convecting period was very similar regardless of the number of mesh

elements used (figures B.8(a) and B.9(a)). Since in both cases the maximum

absolute behaviour behaves in a similar way when at least 4480 mesh elements

are used, we concluded this was sufficient for mesh independence.
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RC = Rcrit
C,0

No. elements φmax φmin C ′max C ′min |u|max Solution time (s)
1120 0.1025 0.0975 0.0017 -0.0017 0.0034 56.705
4480 0.1025 0.0975 0.0017 -0.0017 0.0032 203.590
17920 0.1025 0.0975 0.0017 -0.0017 0.0032 1245.031
71680 0.1025 0.0975 0.0017 -0.0017 0.0032 8580.568

RC = 1.1Rcrit
C,0

1120 0.1025 0.0975 0.1900 -0.1906 0.4314 56.279
4480 0.1025 0.0975 0.1903 -0.1908 0.4197 241.958
17920 0.1025 0.0975 0.1903 -0.1908 0.4164 1743.812
71680 0.1025 0.0975 0.190 -0.191 0.4156 19883.028

RC = 1.2Rcrit
C,0

1120 0.1025 0.0975 0.2562 -0.2570 0.6172 66.958
4480 0.1025 0.0975 0.2562 -0.2570 0.6001 334.743
17920 0.1025 0.0975 0.2562 -0.2570 0.5953 1997.250
71680 0.1025 0.0975 0.256 -0.257 0.5942 20760.437

RC = 1.5Rcrit
C,0

1120 0.1025 0.0975 0.3568 -0.3585 1.0294 54.092
4480 0.1025 0.0975 0.3566 -0.3584 1.0040 308.282
17920 0.1025 0.0975 0.3566 -0.3583 0.9969 1654.938
71680 0.1025 0.0975 0.3566 -0.3584 0.9952 22467.623

Table B.3: Mesh independence test results for k0 = 0.
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RC = Rcrit
C,0

No. elements φmax φmin C ′max C ′min |u|max Solution time (s)
1120 0.1042 0.0958 0.0129 -0.0129 0.1929 52.779
4480 0.1099 0.0901 0.0274 -0.0265 0.3965 256.188
17920 0.1101 0.0901 0.0261 -0.0260 0.3854 1199.540
71680 0.1092 0.0912 0.0247 -0.0247 0.3660 5455.824

RC = 1.1Rcrit
C,0

1120 0.1778 0.0464 0.1352 -0.1313 3.4370 89.551
4480 0.1872 0.0434 0.1358 -0.1320 3.2830 395.722
17920 0.1868 0.0436 0.1359 -0.1321 3.1870 1938.908
71680 0.1852 0.0440 0.1359 -0.1321 3.1342 9248.919

RC = 1.2Rcrit
C,0

1120 0.2296 0.0332 0.1880 -0.1852 6.0223 92.654
4480 0.2303 0.0321 0.1885 -0.1859 5.6073 478.448
17920 0.2359 0.0294 0.1885 -0.1860 5.5147 2014.583
71680 0.2479 0.0279 0.1885 -0.1860 5.5361 9385.604

RC = 1.5Rcrit
C,0

1120 0.4342 0.0123 0.2745 -0.2754 16.1901 174.565
4480 0.4190 0.0109 0.2746 -0.2751 16.9535 751.606
17920 0.4167 0.0108 0.2747 -0.2751 15.3585 4298.313
71680 0.4167 0.0108 0.2747 -0.2751 15.9415 16465.349

Table B.4: Mesh independence test results for k0 = 10.

RC = −15, RT = 299

Relative tol. Absolute tol. φmax φmin C̃max C̃min T̃max T̃min |u|max

10−2 10−3 0.3162 0.0101 0.7463 -0.6514 0.4230 -0.4056 104.8682
10−3 10−4 0.3162 0.0096 0.7604 -0.6492 0.4231 -0.4046 104.5554
10−4 10−5 0.3174 0.0095 0.7585 -0.6493 0.4231 -0.4046 105.7292
10−5 10−6 0.3179 0.0094 0.7592 -0.6493 0.4232 -0.4046 105.5019

RC = 10, RT = 25
10−2 10−3 0.1205 0.0742 0.0932 -0.0866 0.0057 -0.0062 0.8161
10−3 10−4 0.1203 0.0743 0.0789 -0.0684 0.0046 -0.0051 0.6512
10−4 10−5 0.1203 0.0742 0.0731 -0.0678 0.0046 -0.0048 0.6236
10−5 10−6 0.1204 0.0741 0.0731 -0.0678 0.0046 -0.0048 0.6239

RC = 30, RT = −348
10−2 10−3 0.1582 0.0353 0.6834 -0.5983 0.0259 -0.0305 8.0181
10−3 10−4 0.1559 0.0411 0.1307 -0.1313 0.0053 -0.0057 1.6417
10−4 10−5 0.1544 0.0413 0.1283 -0.0963 0.0040 -0.0041 1.4642
10−5 10−6 0.1535 0.0416 0.1286 -0.0958 0.0040 -0.0041 1.4628

Table B.5: Tolerance testing results for k0 = 5.
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Figure B.2: Maximum |u| throughout the whole domain when k0 = 10 for (a)
RC = Rcrit

C,0, (b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0, and (d) RC = 1.5Rcrit
C,0. Here

the solid line represents the solution with a relative tolerance of 10−2 and an
absolute tolerance of 10−3, the dashed line is for a relative tolerance of10−3 and
an absolute tolerance of 10−4, the dashed-dotted line is for a relative tolerance
of 10−4 and an absolute tolerance of 10−5, and the dotted line is for a relative
tolerance of 10−5 and an absolute tolerance of 10−6.
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Figure B.3: Maximum |u| throughout the whole domain when k0 = 0 for (a)
RC = Rcrit

C,0, (b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0, and (d) RC = 1.5Rcrit
C,0. Here

the solid line represents the solution with 1120 mesh elements, the dashed line is
for 4480 mesh elements, the dashed-dotted line is for 17920 mesh elements, and
the dotted line is for 71680 mesh elements. The early stage adjustment is shown
in each insert.
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Figure B.4: Maximum |u| throughout the whole domain when k0 = 0 for (a)
RC = Rcrit

C,0, (b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0, and (d) RC = 1.5Rcrit
C,0. Here

the solid line represents the solution with 1120 mesh elements, the dashed line is
for 4480 mesh elements, the dashed-dotted line is for 17920 mesh elements, and
the dotted line is for 71680 mesh elements.

RC = −15, RT = 245

Relative tol. Absolute tol. φmax φmin C̃max C̃min T̃max T̃min |u|max

10−2 10−3 0.2862 0.0290 0.6172 -0.6173 0.3491 -0.3426 71.6773
10−3 10−4 0.2843 0.0288 0.6172 -0.6173 0.3491 -0.3426 70.6192
10−4 10−5 0.2844 0.0287 0.6172 -0.6172 0.3491 -0.3426 70.7904
10−5 10−6 0.2849 0.0286 0.6172 -0.6172 0.3492 -0.3426 70.9154

RC = 10, RT = 122
10−2 10−3 0.1445 0.0662 0.4707 -0.7683 0.0850 -0.0931 12.9209
10−3 10−4 0.1894 0.0568 0.3182 -0.3292 0.0844 -0.0816 11.4413
10−4 10−5 0.1909 0.0564 0.3179 -0.3293 0.0845 -0.0815 11.5738
10−5 10−6 0.1908 0.0563 0.3180 -0.3295 0.0845 -0.0816 11.5826

RC = 30, RT = −13
10−2 10−3 0.1464 0.0668 0.2165 -0.1864 0.0236 -0.0163 6.6800
10−3 10−4 0.1346 0.0710 0.0663 -0.0657 0.0078 -0.0078 2.3958
10−4 10−5 0.1374 0.0693 0.0690 -0.0650 0.0082 -0.0078 2.3705
10−5 10−6 0.1361 0.0698 0.0679 -0.0651 0.0080 -0.0078 2.3449

Table B.6: Tolerance testing results for k0 = 20.
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Figure B.5: Maximum porosity φ throughout the whole domain when k0 = 0 for
(a) RC = Rcrit

C,0, (b) RC = 1.1Rcrit
C,0, (c) RC = 1.2Rcrit

C,0, and (d) RC = 1.5Rcrit
C,0.

Here the solid line represents the solution with 1120 mesh elements, the dashed
line is for 4480 mesh elements, the dashed-dotted line is for 17920 mesh elements,
and the dotted line is for 71680 mesh elements.
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Figure B.6: Maximum |u| throughout the whole domain when k0 = 5 for (a)
RC = −15, (b) RC = 10, and (c) RC = 30. Here the solid line represents the
solution with a relative tolerance of 10−2 and an absolute tolerance of 10−3, the
dashed line is for a relative tolerance of10−3 and an absolute tolerance of 10−4,
the dashed-dotted line is for a relative tolerance of 10−4 and an absolute tolerance
of 10−5, and the dotted line is for a relative tolerance of 10−5 and an absolute
tolerance of 10−6.
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Figure B.7: Maximum |u| throughout the whole domain when k0 = 20 for (a)
RC = −15, (b) RC = 10, and (c) RC = 30. Here the solid line represents the
solution with a relative tolerance of 10−2 and an absolute tolerance of 10−3, the
dashed line is for a relative tolerance of10−3 and an absolute tolerance of 10−4,
the dashed-dotted line is for a relative tolerance of 10−4 and an absolute tolerance
of 10−5, and the dotted line is for a relative tolerance of 10−5 and an absolute
tolerance of 10−6.
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RC = −15, RT = 299

No. elements φmax φmin C̃max C̃min T̃max T̃min |u|max

1120 0.3185 0.0112 0.7698 -0.7036 0.4204 -0.4045 91.2987
4480 0.3178 0.0094 0.7592 -0.6493 0.4232 -0.4046 105.4822
17920 0.3219 0.0098 0.7177 -0.6462 0.4235 -0.4045 92.5187
71680 0.3222 0.0096 0.7165 -0.6457 0.4237 -0.4045 92.4604

RC = 10, RT = 25
1120 0.1188 0.0765 0.0712 -0.0659 0.0044 -0.0047 0.6232
4480 0.1204 0.0741 0.0731 -0.0679 0.0046 -0.0048 0.6236
17920 0.1201 0.0739 0.0741 -0.0686 0.0046 -0.0049 0.6346
71680 0.1200 0.0741 0.0750 -0.0693 0.0047 -0.0050 0.6476

RC = 30, RT = −348
1120 0.1493 0.0443 0.1270 -0.0956 0.0041 -0.0041 1.5852
4480 0.1534 0.0416 0.1286 -0.0958 0.0040 -0.0041 1.4629
17920 0.1521 0.0429 0.1255 -0.0954 0.0040 -0.0041 1.3893
71680 0.1476 0.0458 0.1234 -0.0954 0.0040 -0.0041 1.3651

Table B.7: Mesh testing results for k0 = 5.

RC = −15, RT = 245

No. elements φmax φmin C̃max C̃min T̃max T̃min |u|max

1120 0.2819 0.0142 0.6480 -0.6461 0.3497 -0.3431 72.1939
4480 0.2839 0.0288 0.6172 -0.6172 0.3491 -0.3426 70.6612
17920 0.2770 0.0294 0.6144 -0.6144 0.3491 -0.3426 64.1274
71680 0.2764 0.0293 0.6143 -0.6142 0.3492 -0.3426 61.9186

RC = 10, RT = 122
1120 0.1895 0.0558 0.3089 -0.3210 0.0820 -0.0787 12.0820
4480 0.1879 0.0570 0.3178 -0.3292 0.0844 -0.0815 10.7764
17920 0.1813 0.0593 0.3236 -0.3346 0.0862 -0.0834 10.6712
71680 0.1783 0.0592 0.3289 -0.3392 0.0876 -0.0850 11.0441

RC = 30, RT = −13
1120 0.1343 0.0701 0.0635 -0.0616 0.0075 -0.0073 2.2484
4480 0.1364 0.0698 0.0685 -0.0651 0.0081 -0.0078 2.3627
17920 0.1352 0.0705 0.0678 -0.0645 0.0080 -0.0077 2.1966
71680 0.1354 0.0704 0.0683 -0.0645 0.0080 -0.0077 2.1847

Table B.8: Mesh testing results for k0 = 20.
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Figure B.8: Maximum |u| throughout the whole domain when k0 = 5 for (a)
RC = −15, (b) RC = 10, and (c) RC = 30. Here the solid line represents the
solution with 1120 mesh elements, the dashed line is for 4480 mesh elements, the
dashed-dotted line is for 17920 mesh elements, and the dotted line is for 71680
mesh elements.
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Figure B.9: Maximum |u| throughout the whole domain when k0 = 20 for (a)
RC = −15, (b) RC = 10, and (c) RC = 30. Here the solid line represents the
solution with 1120 mesh elements, the dashed line is for 4480 mesh elements, the
dashed-dotted line is for 17920 mesh elements, and the dotted line is for 71680
mesh elements.
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