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SUMMARY 

The continuous medium analyses of two- and three- 

dimensional multi-storey shear wall structures are 

presented in this thesis. 

The system of planar coupled walls with contin- 

uously variable stiffness has been analysed and two 

methods of solution, the Galerkin and the finite 

difference methodsy proposed. The results of tests on 

perspex models with tapered width agreed reasonably well 

with the analytical results. 

A new technique which enables important design 

quantities for uniform coupled wall systems on flexible 

bases to be evaluated rapidly has been developed. The 

desIgn curves for several standard load cases, vertical 

and lateral loadss have been produced. These design 

curves are applicable to two coupled wall systems or any 

symmetrical system with three coupled walls. 

The lateral-load analysis of symmetrical shear wall 

and shear wall-frame structures has been presented. The 

bending and torsional actions of the applied loads are 

analysed separately. Each separate analysis is reducible 

to the analysis of an equivalent analogous plane system. 

The method is particularly suitable for analysing a 

symmetrical structure which consists of a few distinct 

groups of coupled wall assemblies. Asymmetrical shear 

wall and shear wall-frame structures have also been 

treated, 

Finally the structure composed of thin-walled 



assemblies has been analysed by using Vlasov's theory for 

thin-walled beams of open section. The theoretical 

results were compared with the results of tests on a 

fourteen-storey perspex model. Reasonable agreement was 

obtained between theory and experiment. 
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CHAPTER I 

INTRODUCTION 

1.1 Multi-storey Structures 

The relatively high cost and scarcity of land in 

and around large cities have given rise to a rapid 

increase in the number of multi-storey buildings for both 

residential and commercial purposes. With the increasing 

use of light partitioning and high strength concrete and 

steel reinforcement in tall buildings, the effects of wind 

or seismic loads have become more significantp and the 

provision of adequate lateral stiffness against lateral 

forces constitutes a major consideration in the design of 

tall structures. 

The structural systems for tall buildings currently 

in use consist of one or more of the three basic units,, 

namely, frame, wall and tube(32) . Generally, as the 

height of a building increasesp a point is reached beyond 

which the consideration of lateral stiffness and not 

strength will govern the design of the structure. There- 

fore, the choice of the structural system adopted dependsq 

to a large extent, on the number of storeys and the 

magnitudes of the expected lateral forces. Concrete 

frame buildings can, generally, be economically built up 

to the height of between fifteen and twenty storeys. 

Buildings which derived all of their lateral strength from 

shear walls are feasible up to between thirty and forty 

storeys. Hotels and apartment buildings incorporating 
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shear walls and frames are feasible up to seventy storeys. 

Above these heights tube-in-tube or multiple frame-tube 

systems appear to be more economical. 

A large proportion of tall concrete buildings is 

of shear wall construction, i. e. consisting of shear walls 

only, or shear wall-frame construction which consists of 

shear walls acting in conjunction with parallel plane 

frames. The prevalence of these types of structural 

systems is due to the advantages in the speed of 

construction) low reinforcing steel requirement and 

adequate lateral stability to a considerable height. The 

study made in this research mainly concerns these types of 

structural systems. 

In present building terminology, the term "shear 

wall" signifies a structural unit in the form of single 

wall or core capable of withstanding lateral forces. 

Shear walls may be planar or non-planar and may be 

connected by either connecting beams or floor slabs or a 

combination of both. The terms "coupled (shear) walls" 

and "(shear) walls with openings" are commonly used to 

describe shear walls in which the connecting members must 

be considered as moment-resistant elements. If shear 

walls are connected solely through floor slabs which may 

be considered as capable of transmitting only in-plane for- 

cesp they are commonly described as cantilevered (shear) 

walls or cantilevered cores. 

1.2 Previous Research 

In recent years there has been considerable interest 
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in the analysis and design of multi-storey structures, 

as witnessed by the large number of published works 

devoted to the subjects. An extensive review of liter- 

ature on shear wall structures published prior to 1965 

was presented by Coull and Stafford Smith(14). Present 

techniques for the analysis of two- and three-dimensional 

systems were reviewed by a committee ofýthe American 

Concrete Institute(32) and by Stamato(30). A selective 

review of the methods available for the elastic analysis 

of tall concrete structuresp and the classification of the 

particular techniques most appropriate to the different 

structural systems was presented by Coull and Stafford 

Smith(15). All sources give comprehensive lists of the 

published literature. In view of the ready availability 

of the noted papers and the published literature listed 

in the papers, only a brief review of relevant previous 

works will be presented here. 

The majority of the earlier studies of shear wall 

structures and many of the more recent works have 

concentrated on two-dimensional systems. In the analysis 

of planar coupled shear walls, one of the following three 

methodsp namely, the frame analogy, the finite element 

method and the continuous medium method, is generally 

employed. In the frame analogy, the coupled wall system 

is analysed as a frame, the finite width of the wall 

being incorporated by a stiff arm connecting the end of 

the beam to the centroidal axis of the wall( 
20) 

. The 

finite element method replaces the coupled walls by inter- 

connected plane stress elementsy and the solution is 
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obtained using matrix techniques. In the third method, 

the continuous medium approach, the discrete system of 

connecting beams is replaced by continuous laminae of 

equivalent flexural rigidity. By assuming points of 

contraflexure at the mid-span of the substitute system, 

conditions of compatibility and equilibrium yield a 

second-order governing differential equation. A closed 

form solution for the problem can easily be achieved if 

the walls are uniform. 

Of the three methods of analysisp the frame analogy 

and the finite element technique which are basically 

discrete analyses give more accurate results, and are 

readily adaptable to the variations in geometry of the 

coupled walls. The amount of computation involved in 

these two methods, however, is large and increases with 

height. The use of either of these methods in the design 

office is rarely justified because of the time and expense 

involved. The continuous medium method, on the other 

hand, yields a slightly less accurate result but the 

computation involved is much less and its accuracy 

increasesýwith height, without additional computation. 

Although restricted to systems with simple geometry, the 

analysis can be carried out by hand or small desk calcul- 

ator. The simplicity of the method has enabled. the 

production of simple design curves(9) which enable a 

rapid and accurate analysis of the structure for standard 

load cases. 

The technique of replacing the discrete beam system 

by a continuous medium was first proposed by Chitty(3) 
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in the analysis of a cantilever composed of a number of 

parallel beams interconnected by cross bars. Further 

developments were due to Beck(')y Rosman 
(25) 

p and Magnus( 21) 

who have extended the original analysis to take account 

of the axial deformations of the walls,, shear deformations 

of the connecting beams, flexural deformation of walls and 

beamsp and the effects of different foundation conditions. 

Cases of walls with stepwise variation in cross-sections 

and walls with linearly tapered thickness were analysed 

by Coull and Puri( 12p13) 
and Michael 

(22) 
j respectively. 

Several papers on the analysis of shear wall-frame 

systems were published, notably those by Rosenblueth and 

Holtz 
(24) 

, Cardan 
(2) 

, Rosman 
(26) 

p Khan and.. Sbarounis(19), 

and recently by Heidebrecht and Stafford Smith( 18) 
. The 

analyses presented were essentially plane analyses since 

only the displacement in the direction of the applied load 

was assumed. 

Three-dimensional analysis of complete structures 

were presented by Clough, King and Wilson 
(4) 

, Gluck 
(16) 

Rosman 
(27), 

Coull and Irwin"". Heidebrecht and Swift(17) 
(32) 

and many other authors Most of the analyses employ 

the concept of a continuous medium. However, the 

formulation of the analyses are such that to achieve 

solutions considerable matrix manipulation is required. 

1.3 Scope of the Thesis 

This thesis is concerned with the investigation of 

multi-storey structures by using the continuous medium 

approach. This approach is adopted because the computation 
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involved is not excessive and simple design curves may 

be produced. Furthermore$ it is possible to formulate 

the analysis such that in the case of shear wall 

structures with a few coupled wall assemblies (or a few 

groups of identical coupled wall assemblies), the analysis 

of the complete structures may be carried out manually or 

with the aid of a small desk calculator. 

Two- and three-dimensional shear wall systems have 

been studied. The first part of the analysis deals with 

two-dimensional coupled wall structures. Planar coupled 

walls with continuously variable stiffness subjected to 

lateral forces have been considered, and theoretical 

solutions are verified by testing perspex models of 

coupled walls with tapered width. The analysis is able 

to deal with coupled walls on elastic foundation. Coupled 

wall systems of uniform cross-sections (two wall and 

symmetrical three wall systems) supported on flexible 

bases and subjected to vertical and lateral loads have 

been investigated, and design curves presented for several 

standard load cases applicable to various base conditions. 

A study of symmetrical three-dimensional structures 

subjected to lateral loads has been made. The bending 

and torsion of symmetrical shear wall structures are 

analysed as two separate equivalent plane problems. The 

method is valid for structures composed of planar or non- 

planar coupled wall assemblies. The analysis is extended 

to deal with symmetrical shear wall-frame structures. In 

additionp asymmetrical three-dimensional structures are 

also treated. 
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Finally, a general thin-walled shear wall structure 

is analysed using Vlasov's theory for thin-walled beams 

of open sectionp and an experimental investigation was 

carried out to substantiate the analysis. 

In this thesis Figures and Tables are referred to 

by chapter number and are included at the end of the 

relevant Chapter. 



8 

CHAPTER 2 

COUPLED SHEAR WALLS WITH CONTINUOUSLY VARIABLE 
STIFFNESS 

2.1 Notation 

The following symbols are used in this Chapter: - 

A,, A2= cross-sectional areasof walls I and 2 

1= distance between the centroids of walls 1 

and 2 

b= length of connecting beams, 

Ic= second moment of area of connecting beams- 

Ir= reduced second moment of area of connecting 

beams 

IV 12 second moments of area of walls 1 and 2- 

I 11+12 

h storey height 

E modulus of elasticity 

H total height of the coupled wall system 

M static applied moment 

MV M2 bending moments in walls 1 and 2 

S 11 S2 = horizontal shear forces in walls 1 and 2 

Gp v = shear modulus and Poisson's ratiop respectively 

z = co-ordinate of the vertical axis for a 

coupled wall system, the origin of the 

vertical axis is at the top of the system. 

u = lateral displacement 

q = vertical shear distribution in the continuous 

medium z 

T q dX = integral shear force 
ý 

0 
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A, 4= auxiliary vertical ordinatesp with the 

origins at the top of the coupled wall 

system 

non-dimensional co-ordinate 

Q= the integral of relative direct stress of 

the walls 

+Aq dX Id 

B., Rjct., 15 = structural parameters 

Kvj) K 
v2 = vertical stiffnesses of foundations under 

walls I and 2 respectively 

KejA K 
02 = rotational stiffnesses of foundations under 

walls I and 2 respectively 

EK b= equivalent stiffness distribution of 

continuous medium 

7 4K 

Other'subsidiary symbols are defined locally in the text. 

2.2 Introduction 

In the study of coupled shear walls,, the continuous 

medium approach is the method of analysis in which the 

discrete system of connecting beams is replaced by a 

continuous medium of equivalent stiffness. The 

substitute medium is assumed to span the openings through- 

out the height of the walls. By assuming points of 

contraflexure at the mid-span positions of the substitute 

mediump a governing differential equation for the structure 

may be established. 
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Earlier works have concentrated on the analysis of 

uniform walls 
(1p21225) 

or walls with stepwise variations 
(12)13) 

in the cross-sectional dimensions The distance 

between the centroidal axes of the walls is then either 

a constant or a step function. The governing differential 

equations for such systems are essentially second-order 

equations with constant coefficients. 

If the distance between the centroidal axes of the 

walls is a continuously variable function, for instance 

coupled walls with tapered width, the order of the 

governing differential equation will generally be greater 

than two. The coefficients of the governing equation 

will also be variable functions. In this Chapter an 

analysis of coupled shear walls with continuously variable 

stiffness is presented. The integral of relative direct 

stress of the walls (resulting from the vertical shear 

distribution) is used as the redundant function. Two 

methods of approximate solutions., the finite difference 

and the Galerkin methods, are proposed. 

2.3 General Theory 

In the analysis of coupled shear walls by the 

continuous medium approach, a number of assumptions are 

postulated in order to simplify the analysis. 

2.3.1 Assumptions 

The following assumptions are made: - 

11 The discrete system of connecting beams is replaced 

by a continuous medium or a system of laminae which 

are mutually independent in their deformations. 
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2. The equivalent stiffness distribution (stiffness 

per unit height) of the continuous medium is a 

differentiable function of the height ordinate. 

Its integral between half a storey above and below 

any connecting beam must be compatible with the 

stiffness of the beam. 

3. Points of contraflexure occur at the mid-span 

positions of the substitute laminae. 

4- The simple beam theory is taken to be valid for 

individual wall. 

The connecting beams are axially rigid so that the 

deflections of the walls are equal. Thusp the 

moment carried by each wall is proportional to its 

second moment of area. 

2-3.2 Differential Equation 

Consider a general system of coupled walls under 

lateral loading as shown in Fig. 2.1. The discrete 

system of connecting beams of the real structure is trans- 

formed into an equivalent continuous medium as shown in 

Fig. z. 2. The equivalent stiffness distribution of the 

continuous medium is expressed as EK b' where E is the 

modulus of elasticity and Kb the equivalent distribution 

of the second moment of area of the continuous medium. 

By making a cut along points of contraflexure of the 

substitute laminae, i. e. at the mid-span positions, only 

the vertical shear distributions and axial forces act on 

the laminae at the cut section since the bending moments 

are zero by virtue of the property of. the point-of contra- 
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flexure. From considerations of the cut structure, the 

relative vertical displacements 81' 821 83 of the cut 

ends of a lamina due to bendings of the walls, bendings 

of the cantilevered lamina, and axial deformations of the 

walls are, respectively, 

8, du 
dz 

b3 
2 12EK b 

+q dÄ ] dg 3A1A2 

Z0 

in which, 

u= lateral displacement of the walls 

z= vertical ordinate, with the origin atthe top of 

the walls 

A,. * A2= cross-sectional areas of walls I and 2 

A "ý = auxiliary vertical ordinates 

I= distance between centroidal axes of the walls 

b= length of connecting beams 

q= vertical shear distribution in the continuous 

medium 

H= height of the wall 

For compatibilityp the relative vertical displacement 

at the cut ends must vanish, hencej 
. 

al 

or 
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, du 
+ 

b3 
dz 12EK b A2 q dA 

Id 

= 

From the moment-curvature relationships, the 

moments in walls 1 and 2 may be written asp 

2 
M= EI du=M-g, 

zq 
dA -M 1 dz 20a 

(2.2) 

2z 
M =ý E, du-9q dX +M 22 dz 22a 

0 

where, 

M = static applied moment 

M = bending moment due to axi al forces in the 
a 

continuous medium 

M 11 M2 = bending moments in walls 1 and 2p respectively 

IV 12 = second moments of area of walls I and 2.. 

respectively, 

gly g2 ý distances between points of contraflexure and 

the centroids of walls I and 2, respectively 

From equation (2.2)p the overall moment-curvature 

relationship for the 
' 

structure becomes, 

M+M= EI d2u M-1q dX (2-3) 
12 dz 2 

0 

in which I is the sum of the second moments of area of 

walls I and 2. 
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Let, 

b3 R 12K b 

I+1 (2-4) 
AIA2B 

Hr 

(I +19qd7, dý 

zA20 

and hence, 
z 

112 -1 q dX dz B 

0 
(2-5) 

q (Bd2Q + 
dB 

. 112) 
dz 2 dz dz 

By differentiating equation (2.1) with respect to 

zj substituting fox du from, equation (2-3)) then 
dz 2 

multiplying by and re-arranging terms, a governing RB 

differential equation for the structure is established as, 

3Q RB 2 2Q R dB 
12]0 d+ d( /1) d-+ d(l * dz) I- 

dz3 

I 

RB dz 

] 

dz 21 RB dz RB - lR 

dQ 
_ 

[L- 
.]Q 

Ml (2.6) 
dz RB dz IRB 

or 

d3Q +cA! 2 +c Ap. +c+c0 (2-7) 
dz3 1 dz 22 dz 34 

where, 



15 

2 
1 d( RB. /1) 
RB dz 

I 
dB) 

c1A dz 
2 RB dz 

(2.8) 

c1 
RB dz 

c mi 
IRB 

In general t 

mi 

ci = (2 i=o 

he function Ci will be of the form, 

ni 

DizJ)/()Lk Z"") 
k=O 

in which Dj! p Lk' m, j ni are constants which depend on 

the applied loads as well as the geometry of the coupled 

wall system. Thereforep the governing differential 

equation may generally be expressed as, 

d 3! 2 
+id2Q+J (Z) u+J (Z) Q+J (Z) 

dz3 2(Z) dz 23 dz 

=0 (2.9) 

in which the coefficients Ji(z) are some*polynomials of z. 

The governing differential equation (2.6) is valid 

for any coupled wall system provided that the parameters 

Ry By ly dB differentiable functions of z over the dz "" 

interval 0 :Sz :5H. The bending moment M may be due to 

concentrated or distributed loads or a combination of 

both. If the load system includes concentrated loads, 

a single moment expression valid over the entire height 

of the walls may be obtained by employing Macaulay's 

brackets 
(6). 
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Usually the storey height (h) and the second 

moments of area of connecting beams (I 
c) are constant 

throughout the height of the walls. For such a case, 

the second moment of area per unit height for the 

continuous medium is a constant and given by Kbý IC /h. 

If the second moments of area of the connecting beams 

are not constant but may be approximately represented by 

a smooth function fI (z), the value for Kb may then be 

taken as Kbý fj(z) 

h 

The shear deformations of connecting beams may also 

be incorporated in the analysis by using the reduced 

second moments of area of connecting beams. For coupled 

walls with uniform connecting beams, it may be shown that 

by taking the shear deformation of connecting beams into 

account, the second moment of area per unit height of the 

continuous medium becomes, 

I 
r -h 

where, 

I= reduced second moment of area of connecting beams 
r 

C 

12EI 
+ 

b3GA 
S lu E 

shear modug of connecting beams =- 2(l +v 

Poisson's ratio 

As = effective cross-sectional area of connecting 

beams 

-1 x cross-sectional area, if connecting beams are 6 
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rectangular in cross-sections. 

2-3.3 Boundary Conditions 

The boundary conditions for the governing differential 

equation (2.6) are obtained as follows: - 

At the top, z=0, 
S! Q 

-0 from equation (2-5), dz (2.10) 

At the base, z=H, 

from equation (2-4), 0 (2.11) 

At a fixed base the rotation is zero, therefore 

du 
0 dz (2.12) 

By substituting q from equation (2-5) into equation 

(2.1), then evaluating at z=H, and using equations (2.11) 

and (2.12), an additional boundary condition at the base 

is obtained as, 

at z=H, 
d2Q_(. 1 dB dQ) (2.13) 

2B Tz- jz 
dz 

The three boundary conditions for the governing 

differential equation are those given by equations (2.10), 

(2.11) and (2.13). 

2.3.4 Internal Forces and Displacement 

The vertical forces in walls 1 and 2 are given by, 

z ýO 

(2.14) 
z 

N2q dX 

0 
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in which N1 and N2 are the vertical forces in wals I and 

2 respectively. 

The internal bending moments in walls I and 2 are 

proportional to their second moments of area since both 

walls deflect equally, and are given by, from equations 

(2.2) and (2-3), 

m 
II 
Y- (M 

z 

q dX 

0 

m 2 
Y- (m l q dA 

0 

(2.15) 

z 
From the expression for q dX given in 

equation (2-5), the'vertical forces and internal bending 

moments in the walls may be written in terms of Q as 

follows, 

NB 112 dz 

B 112 2 dz 

II 
(M +1B -q-2) dz 

m 
12 

(M +1B 12) 
21 dz 

(2.16) 

The lateral wall deflection, uy may be obtained 

by integrating equation (2.1) oncey or integrating equation 

(2-3) twice. By integrating equation (2-3) twice, the 
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deflection may be written asy 

HHHH 

dA dý + 
1B 112 dA)d I dz 

zz 

- z) (! Lu-) 
+ (U) (2.17) 

dz HH 

in which (11-u) and (u) are the rotation and the lateral dz HH 

displacement, respectively, at the bases of the walls. 

For walls on a rigid foundation, 

(du) (U) 0 dz HH 

and equation (2.17) reduces to, 

HHHH 
m dX dij +1B 112 dX )d 

EII dz 

zqz 

(2.18) 

From considerations of the equilibrium of wall 

elements, the horizontal shear forces in the walls and 

the distribution of the horizontal force in the continuous 

medium may be shown to be, 

s dM dM 
a 

d(M I+g, q dA 
if -z 7z- 

dz 

dM d(M 2+ 92 
0q 

dA 

z 

s2 dz dz 
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dS 2 
c dz 

contd. 

where, 

S11 S2 = horizontal shear forces in walls I and 2 

respectively, 

w= distributed axial force in the continuous medium c 
91' 92' Ma = as defined previously. 

The vertical force and the horizontal force in any 

connecting beam at level zi may be obtained by integrating 

the vertical shear distribution q and the distributed 

aýial force wc respectively, over half a storey height 

above and below the level concernedp i. e. 

z+ 
h/ 2 

b) q dX 

z- 
h/2 

(2.20) 

Z. +h /2 
JL 

wc dÄ 

h/2 

where 

(V 
b) vertical force in the connecting beam at the 

level zi 

(F 
b) axial force in the connecting beam at the 

level z. I 



21 

2-3-5 Coupled Wall Systems with Second-order 

Governing Differential Equation 

In deriving the governing differential equation (2.6), 

it has been assumed that the wall cross-sectional areas, 

the equivalent stiffness distribution of the continuous 

medium, and the distance between the centroidal axes of 

the walls are continuously variable functions of height. 

If any of these functions is a constant, simplification 

of the governing differential equation may be achieved. 

System with Constant Parameter I 

Consider a coupled wall system with constant distance 

between the centroidal axes of the walls, for instance 

walls with tapered thickness. As 1 is constant, the 

derivative 
d(1/1) 

vanishes and the governing differential dz 

equation (2.6) becomes, 

3 29 d (RELB) 2 dQ+Id_+1dz 
32dz2 

[ILB 

dz RB - lR 
dz 

[R 

Bdz 

dO mi 0 dz IRB 
(2.21) 

The differential equation (2.21) consists of only 

the derivatives of Q but not Q itself. Hencep by adopting 

the first derivative ! j2 
as a new redundant function the dz 

differential equation (2.21) may be reduced to a second- 

order equation. 

Define, T= integral shear force q d, \ (2.22) 
z 

0 
Then, from equation (2.4) 

I 
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dX 

A2 
dz 

d 29 1 dT 
+I 

dB T 
dz 2B. jz 

B2 
dz 

(2.23) 

d3Q Id2T2 dB dT Id2BT 

dz3 B' dz 2B20 Jz * UZ 
B2 d Z2 

2 dB 2T 

B2 dz 

29 dd 11L Substitution of 
A2 

.9, 
from equation (2.23) dz dz 2 dz3 

into (2.21) yields a second-order differential equation 

for T as a function of z as, 

d2TI dR dT 1+ ! ý) 
T+ (I-) M0 (2.24) ýZ2 ýfz *UzBI IR 

Equation (2.24) is valid for coupled wall systems 

with variable R, B., I provided that the derivative dR 
dz 

exists and 1 remains constant throughout the height of 

the walls. 

Consider a special case of coupled wall system 

with tapered thicknessp shown in Fig. 2-3. The thicknesses 

of the walls and the connecting beams are equal and given 

by, 

(1 H+ 
cc 

in which tH is the thickness at the base and C the vertical 
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distance between the base of the wall and the extrapolated 

point of zero thickness. It may be shown that the 

coefficients of T and M in equation (2.24) are constantsy 

and equation (2.23) may be written as, 

d2TI dT 2/ 2M 
-4T+ 

(2.25) 
dz 2 (z +C- H) dz 

where, 

13 
2= 12 

constant 
b3h 

042 = 13 
21 constant (2.26) 

1- d- 
constant A2 

Ic= second moment of area of connecting beams. 

If both walls of the tapered coupled wall system 

are identical and completely tapered., the resulting 

differential equation will be identical to that given by 

(22) 
Michael 

Systems with Constant Parameter 1 and R 

For a coupled wall system with constant distance 

between the centroidal axes of the walls, and constant 

cross-sectional dimensions of the connecting beams, the 

parameters I and R become constant and the governing 

differential equation is reduced further to, 

d2T12 (-L + 
!: 

-: ) T+0 (2.27) 
d2BI IR 
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Uniform Coupled Walls 

For a uniform coupled wall system, all the para- 

meters 11 R, B, I do not vary with height. Consequently, 

the governing differential equation becomes a second- 

order differential equation with constant coefficients, 

and may be written as, 

d2T2 

dz 2 cl- T '62M 

or, in terms of the vertical shear distribution function 

q, 

d 2q 22 dM 
q ýj- z dz 2z 

in which c4' 
22 

are as given in equation (2.26). 

If each coupled wall system is free at the top and 

fixed to a rigid foundation at the base, the boundary 

conditions in terms of T are given by, 

at z=0, T=0 

at z=H, 
dT 

=0 dz 

(2.28) 

(2.29) 

(2-30) 

and in terms of q by, 

at z=0, 

at 

dq 
_0 dz 

q=0 
(2.31) 

2.4 Methods of Solution 

The governing differential equation (2.6) in its 

most general form will be an ordinary differential equation 

with variable coefficients. The coefficients become 
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constant only when the coupled wall system is uniform. 

one general method of solving an ordinary differential 

equation with variable coefficients is the method of 

undetermined coefficients. 

Consider the differential equation (2.9), which is, 

i (Z) ýi91 +J (Z) !2+J (Z) =0 l(z) 
d3Q3 + J2(Z) 

A2 
+ j3 dz 4 dz dz 

A solution in the form of an infinite power series may 

be first assumed, 
cho 

aZn n 
n=o 

where ailare undetermined constant coefficients. Subst- 

itution of Q, U, dQP ! 222 
obtained from the assumed dz dz 2 dz3 

solution into the differential equation leads to an 

expression in terms of powers of z. By grouping the like 

powers of z together and then imposing the condition that 

the coefficient of each power of z must vanish - 

independently, recursive formulae for the undetermined 

coefficients may be obtained. The solution for Q is 

then expressible in terms-of a few unknown constants. 

These unknown constants are*determined from the known 

boundary conditions and, hence, the complete solution for 

Q is obtained. 

Each recursive formula will usually involve more 

than two undetermined coefficients and., consequently, 

leads to a complicated expression for the solution. The 

labour involved in evaluating the solution may prove to 

be prohibitively heavy, since frequently the solution will 
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be a slowly converging function so that a large number of 

terms are required to be evaluated. Therefore, any 

approximate method which can significantly reduce the 

computational effort at the cost of a slightly less 

accurate result is preferable. Two such methods of 

solution are proposed, namely, the Galerkin method and 

the finite difference method. 

2-4-1 Formulation in Terms of an Independent 

Dimensionless Variable 

For convenience in applying the proposed methods 

of solution, the problem will be formulated in terms of 

an independent dimensionless co-ordinate. Define the 

dimensionless co-ordinate .9 as, 

T) =� Oýtlý1 

Then,, z= 9H 
dil 

=1 dz H 

d'Q 

dz Hid Tj 

In terms of the dimensionless variable Ip the 

differential equations (2.6), (2.9) and the boundary 

condition equations (2.10), (2.11), (2.13) become, 

respectively, 

RB 2 
29 (R dB )2 

iia +1 
d(l )]d_+ [1 d 17 U- H 12 H2 

d 113 RB 2 dq d12 RB dj RB - IR 

! j2 
- 

[lH2 d('/I) p_ MlH3 0 (2-32) 
dq RB dn IRB 

. 
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ýd39 d 2! 2 F, ( )+F+F do- +F )Q 
dý 3 2(ý ) 

dý 23 d9 

P 5( (2-33) 

at 0, (dQ )=0 dTl 
0 

at I=1, (Q) =o (2-34) 

at 71 2) 
(. 1 dB ! ft2) 

dTj ' dj 

where F. ( 9) are some polynomials of 9 In equation JL 
(2.34) and the subsequent analysis, unless defined other- 

wise, brackets with subscript H or 0 signify that the 

expression enclosed within the brackets is to be evaluated 

at =I or 01 respectively. 
du d2u 

The expressions for T, q2 M=M+M9- t12 d-9 'd 
n2 

become, respectively, 

T 11 dQ 
H dq 

qI (B 11ý2 + dB dQ 

H2 dj 2 dq dq 

mm+m=M -+. IB dQ (2-35) 
t12H dj 

du (11- (B 
d2 dB g 2- % 1!. Q )L 

dn 1H dý2+ 
7il dý 

d2u2 (M + 
IB dQ 

d-q 2 ETI H dj 
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2.4.2 The Galerkin'Method 

The Galerkin method assumes an approximate solution 

in the form, 

Qn ý-- 
ýaf 

(z) 
j=O ii 

where ai are constants, and fi (z) are appropri ate functions 

which satisfy the boundary conditions. The integer n 

may assume any arbitrary value. The accuracy of the 

approximate solution Qn increases with an increasing value 

of n, but this is also accompanied by an increase in 

compution. The coefficients ai are determined by using 

the criterion of minimizing the absolute value of the 

error function over the interval of definition of Q 
n* 

The final solution gives an analytical expression for Qn 

(29) 
which is defined overthe whole interval 

Consider the general governing differential equation 

(2-33) which may be expressed as, 

bj Ijd aj 3+d2 cj dj 
i=o dq i=o i=o 

mdmei 
dj ýJ) +( 57 ej o (2-36) 

i=o i=o 

or simply 

0 (2-37) 

in which aj, bjs cj, dj, ej, ma, m b' mc' md' me are 

constants depending on the geometry of the coupled wall 

system as well as the loading function. 
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As all the coefficients and the non-homogeneous 

function of the differential equation (2-36) are poly- 

nomial of the variable 9p it is convenient to assume an 

approximate solution as a polynomial of n. 

Let the assumed approximate solutionp Qn, be 

n 
n 

5-- 0C 1 
(2-38) 

i=O 

where oC 3- are undetermined constants. The integer n 

is arbitrary. 

As the coupled walls are assumed fixed to rigid 

foundations, the boundary conditions are those given by 

equation (2-34). 

(dQ- )=0 
di 

0 

(Q) 
H0 

(d 
29 

(dQ 
2Hd 

in which (I . 
dB ) 

Bd9H 
(2.39) 

Imposing the boundary conditions ( dQ )= (Q) 0, d il 0H 

(d 
2Q 

7(112) on the approximation Q yields, 2dn dq HýH 

respectively, 

0ý- 1= 

04 0+ CýOl +000 Oe-n (2.40) 

oc- 2+6 oe-3 + ... i(i-l) mi oo. + n(n-I)cv- n 

17 (2 &-2 +oooi o4i +n o-n) 
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From equation (2.40)s it may be shown that 

n 

C> 2 2(l + 
i=3 

(2-41) 

n 
(>(- 0 04 i1+ i(l + i2 /(2 

-2 
i=3 

Substituting ol-, = 0, and of- 2' (ý"-'O from equation 

(2-41) into equation (2-38)gives., 

n 
Qn cýi( gi + oi 92 + ýi) 

i=3 

or simply 

n 
! 2n ý- 

O(i fj( 9 

i=3 

where 
i(i + Pi 

2(l 

ýi + i( 1 

2(1 - 17 ) 

fj( I)= 11 
i+ 

Di 1 

(2-42) 

Each of the functions fi(j ) satisfies the boundary 

conditions (2-34) identically, since it may be shown that 

dfj(l 

d at 

fj( Tj o at 71 

d2fi 
-(- 

dfi( 9) 

d921; d Tj at 
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The error resulting from using the approximation 

Qn is, 

error function =L (Qn) -L(Q) 

= Qn), since L(Q) = 

The minimization of the error function L(Q ) over 

the interval 0 -, 1 -: 5 1 is accomplished by imposing on the 

error function a set of orthogonality condition 
(29) 

L(Q 
n) 

fk(I ) dq 0 

i 

0 

or k=3,, 4., n 

n 
L( C4. f d9 =0 

Z: 
3. i(9))fk(9 

0 i=3 

(2-43) 

yielding a set of (n-2) linear algebraic equations for 

the determination of the constants oci of the approximate 

solution. 

The required system of (n-2) simultaneous linear 

equations involving (n-2) unknowns 4i may be obtained by 

the direct integration of equation (2-43). Upon 

integratingp it may be established that the general form 

of the linear equation is, 

nma Ak Pk 
aj ++ 

JL J+i-2 j+i j+i-2 
i=3 i=o 

mb Fk 
bj I i(i-1) ++ k+j+i-I j+i+l j+i-1 

i=o 
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2 Pi( 1A+ Fk) 
k+j+l +T+-3 j+l 

m c 

cj j( ++ 
Fk) 

k+j+i j+i+2 i+i 
i=o 

1 lok + 
Fk 

2 Pi(T+--j+2 + 3-+4 j+2 

dII 
Yok Fk 

d+ k+j+i+l + j+i+3 i+i+l 
i=o 

ýoi (I+ 
Rk 

+ 
Fk) 

+ ýi( 
I+ 

_ýfk +Fk k+j+3 j+5 j+3 k+j+l j+3 j+l 

Pk 
+ _Lk) = () 

1 
ej( i+ (2-44) k+j+l i+3 i+l 

j=O 

where k= 3t 4, ... n. 

The constants oL., and hence the complete solution 

for P-n y are obtained by solving the system of simultaneous 

linear equation generating by equation (2-44). The 

integral shear force, vertical shear distribution and 

bending moment become, from equation (2-35)p 

n 
57- o4j (i +2 Oil 
i=3 

nn 
B 5- i-2 +2 Di + ý! B T 

cti 
H21 i=3 

dj 
i=3 

(i 9'- 
1 

Pi T) )I 

(2.45) 
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n 
MM+ 1B T 

oli (i Tli-I +2 (2-45) tH 
i=3 contd. 

The lateral deflection u may be obtained by 

integrating equation (2.1), using the boundary condition 

of zero deflection at the base, 

Qn H2 RB 
d2 Qn 

U1 dTi 7"12. dTi 

In d Tj 

dB Qnd 

dq* dq (2-46) 

where the non-dimensional auxiliary ordinate R= -L H 

2-4-3 The Finite Difference Method 

In this method the differential equation is replaced 

by an approximating difference equation and the continuous 

interval by a set of discrete points. The interval of 

n,, 0: 5 n: S ly is divided into arbitrary n equal sub- 

intervals of length rH= 
R. The discrete points are n 

numbered as shown in Fig. 2-4j where the points 0 and 

(n+2) are extrapolated points at n=- -1 and 1+ 
nn 

respectively. The central and forward difference 

operators 
(28) 

, each with an error of the order (Hr) 2, 
are 

shown in Appendix I. As the differential equation is of 

the third-order and only one boundary condition, 
ý2 

= 0, 

d3Q 
dq 

exists at the top; the forward operator for 
d9 3 will 

have to be used in establishing the difference equation 

for the point at the top of the walls. 

From the differential equation (2-33), using the 
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central difference operators, the difference equations 

for the points 2 to n may be shown to be 

13 (-9-i-2 + 2Qi_l - 2Qi+l + Qi+2) 
2r 

F ýi) '1-2- (Qi-l - 2Q i+ ! 2i+1 
r 

Qj+, ) +F( ýj) Qj 
4 5( 

where i=2., 3. ... n 

ýi= (i - 

Qi = value of Q at ý=Ii 

(2-47) 

At the point 11 using the forward difference 

operator for d3Q 
3 and central difference operators for 

29 
dý 

d_ 
and 

dQ 
the difference equation becomes, 

d T) 
2 dj 

F, (O) '3 (- 5Q, + 18Q2 - 24Q3 + 14Q4 - 3Q5) 
2r 

F2 (0) 12 (Qo - 2Q, + 9-2) +F 3(o) 
IT (- Qo + 9-2) 

2r 

F 4(0) Ql +F5 (0) = (2-48) 

Three additional equations are obtained from the 

boundary conditionsp equation (2-34). Using the central 

difference operatorsp the boundary conditions become, 
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(dQ )= 
dq 0 

(Q) 
H= 

(d 
2Q dQ )= 

d ri 
dnH 

QO - Q2 ý0 

! 2n+l =0 

Q+Q+E1; (Q - Qn+2 o 
n+2 n2n 

(2-49) 

where *ý is as previously defined in equation (2-39). 

Equations (2-47)-(2-49) constitute a system of 

(n+3) simultaneous linear equations in (n+3) unknowns Qij 

where i=0,1) ... (n+2). Hence, the system possesses 

a unique solution. Theoreticallyj the accuracy of the 

solution may be improved indefinitely by increasing the 

number of the intervals. 

Using the central operatorsy the internal forces 

become, from equation (2-35)j 

(B T 
JL 2rH 

3- 

q, (Qj 
2 

('112 2Qi + Q, +, 
) 

Hr JL 

+ (dB) 

(2-50) 

dq 
Q+Q 2r i-i i+d 

(M Mi + (1B Qi_l + Qi+l) 
t 

3.2Hr 

where the subscript i denotes the functional value at 

9= 9i. 
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From equation (2-35), 

d2uH2 (M + 
1B dQ 

d12R dq 

Therefore, the deflection ui at the point i becomes, on 

using the central difference operators, 

1 112 1 

r2, 
(uj_j - 2ui + ui+, ) 

E*I 
JL 

+ Qi+l)l 

(2.51) 

For walls on rigid foundations, the displacement and the 

rotation at the bases must be zero. Therefore, using 

the central differenceoperator, the boundary conditions 

become, 

. 
(U)H =09u n+ I ý-- 0 

du )=ouu0 dq Hn- n+2 "'ý 

By setting i equal to (n+1) in equation (2.51) and 

making use of the boundary conditions shown above, the 

deflection un may be determined. The deflections ui 

at the other points may then be successively determined. 

The finite difference method gives solutions at a 

set of discrete points, and anywhere else the solutions 

must be determined by interpolation. 

2.4.4 Exact Solutions for Uniform Coupled Wall 

Systems 

The Galerkin and the finite difference methods 
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presented in the two previous sections are the general 

methods of solutions, applicable to both uniform and 

non-uniform coupled wall systems. However, if the 

coupled wall system is uniform and the loading function 

relatively simple, an exact closed form solution may be 

easily achieved using the standard method of solving the 

differential equation with constant coefficients. A 

brief treatment of the exact solution will be given here 

since it acts as a reference solution with which to 

compare solutions obtained by the two proposed methods 

of solution. 

The governing differential equation for a uniform 

coupled wall system, equation (2.29), may be written in 

terms of the non-dimensional variable as, 

d2q 
012 11 q 13 

2H dM (2. S2) 
d .92- 

dr) 

The complete solution for q takes the form, 

KI cosh? n +K2 sinh 79 +qp (2-53) 

in which qp is the particular integral solution which 

depends on the loading functionp and 7= c-C 11. The 

constants K, p K2 are constants of integration which may 

be determined from the known boundary conditions at the 

top and the base. For walls on rigid foundations and 

free at the top, the boundary conditions are given by, 

(q) =0 

II 

(dq )=0 
dq 

0 

(2.54) 

and the complete solution for q may be shown to be 
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q= cosh7ri 
sinh 7 (dqp) (q ) 

7cosh7 
I 

dYl 
n=o P Tj=j 

_ 
sinh71l (dqp) +q 7d 11 71 =O p (2. SS) 

Consider a uniform coupled wall system subjected 

to three separate standard lateral load cases as shown 

in Fig. 2.5. The three load cases are, 

1. a concentrated load P at the top of the system 

2. a uniformly distributed load w per unit height 

3. a triangularly distributed load vý(l per unit 

height. 

The particular integral solutions for the standard load 

cases 1,2 and 3 are, respectively, 

P 
- 

if' 

WH (2.56) 
pw 1R T) 

(q 
72 

Hence, the complete solutions for the three standard 

load cases 1,2 and 3 become, rýespectively, 

qP cosh7? l 
p ill cosh7' 

qw WH (sinh7 -7 ) cosh7n sinh7il 
1p 7cosh7 7 +1 

1 
(2-57) 

tt H Csinh7 -7/2 + '17 
qJ3. IV 7 cosh7 - cosh? Tl 
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sinh7l) + T, I t) 
21] 

7272 

The corresponding lateral displacements are, 

pH3 
up + -1 .9 6 

111 (sinh7n - sinh7 
-12 

1 
7cosh7 

WH4 q14 
EI 

I-n+ Ln )(i 
F 86 24 

(2-57) 
contd. 

__11.1(12_1) +7 
(sinh7 - sinh7l) ) -cosh7 (1-rl)+l 

p7272 cosh 

11 

,j H4 1 1,9 +4_ %ý El 
1 

120 24 120 v 

___ 12 13 
-I (*-i +1 ) 

lfl/'ý-7/2)(sinh7? 1-sinh? -7? lcosh7+2'cosh7)+I-cosh7(1-11) 

p74 cosh7 

11 

(2.58) 

2-5 Coupled Walls on Flexible Bases 

In the preceding analysis the coupled wall system 

is assumed fixed to a rigid foundation so that the 

displacements at the bases are all zero. Complete fixity 

at the bases does not always occur in practice since the 

foundation is usually flexible. If the foundation is 

deformable the effects of base movements must be taken 

into account in the analysis. In the following analysis 
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it is assumed that each wall is supported on separate 

elastic foundation which yields vertically and rotationally 

under the actions of the imposed vertical force and 

bending moment, respectively. 

Let 

KvI, K 
v2 = vertical stiffnesses of the foundations under 

walls I and 2 respectively 

K91, K 
82 ý rotational stiffnesses of the foundations under 

walls I and 2 respectively, 

The relative vertical displacement, SH, due to 

the vertical movements of the bases may be written as, 
H 

SH (K +Kq dA (2-59) 
V1 v2 

0 

In consequence, the compatibility condition for the 'cut' 

continuous medium becomes, cf@ equation (2.1), 

H 
du 

++ -1 (. 1 
+ d, \ dq dz 12EK bEIAIA21 

z0 

H=0 (2.60) 

Following the same procedure as before, it may be 

shown that all the governing differential equations 

derived previously are valid. The boundary conditions 

lip = (Q) =0 are still valid, but the boundary dz 
Z=O z=H 

condition based on zero rotation at the base needs to be 

changed. 

From the assumption of equal wall displacements the 

rotation at the bases must be equal, consequently, 
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(M )=Kl (du) 
1H dz H 

(2.61) 

(M K du 
2) H 82(dz) H 

in which (Ml) ) and (du) are the bending moments 
H' 

(M2 
H dz H 

at the bases of walls I and 2 and the rotation at the 

bases respectively. The base rotation may be written as, 

using equations (2.3) and (2.61), 

H 
(du) , ((M) -iq dX (2.62) dz HKaH 

0 

where, 

(M , 
)= moment at z=H, due to the applied loads 

Ke =K ei +K 02 

From equations (2.59), (2.60), (2.56), and (2-5), 

a base boundary condition may be established as, 

at z=H, 

(d 
2 2) 

+ (. L dB+I+I 1_2 )( lm ) 
dz 2H dz HB dz RK 

V1 
RK 

v2 
RK 0H RBK 8H 

(2.63) 

In terms of the non-dimensional variable 

equation (2.63) becomes, 

(d 
2! 2 - (112) K (2.64) 

dý 2)H + 4; dj H 

where, 

ILB + _I (I+1 . 
12) 

H (1 _- (2.65) 
HB dj RK 

V1 
K 

v2 
KaH 
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K1m) (2.65) 
RBK 

8H contd. 

The rest of the analysis, with the exception of 

the solution by the Galerkin method, may be carried out 

as before provided that the base boundary condition 

(2.65) is employed instead of that given by equation 

(2.13). For the Galerkin method, a slight modification 

is required. This is necessary since the boundary 

condition given by equation (2.65) is not homogeneous; 

ie. the right hand side of the equation does not vanish. 

Homogeneous boundary conditions may be obtained by choosing 

a new function., Fn (TI), defined by 

Fn( n)= Qn( 9)- -X'( ý) (2.66) 

as the redundant function for the problem. 

By assuming that the function -x (-q) has the form, 

-Al. (71)= 
2(l - -ý )(1-1) (2.67) 

the homogeneous boundary conditions in terms of F 
n(I 

may be shown to be, 

dF 
( 

dn 
n) 

71 =0 
0 

0 (2.68) 
n) 

d2F+ý 
(dFn) 0 (-2 dj dý =1 

Following the same procedure as before, it may be 

shown that the approximate solution F 
n(ý 

) is given by, 
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n 

i=3 

where, 

Pi T, 

+ 

2(1 - Z; ) 

(2.69) 

(2-70) 

2 i(I + ý7 20 

2(l - 

The system of simultaneous linear equations for 

the determination of the unknowns ot i is that given by 

equation (2-44), but with the following terms added to 

the left hand side of the equation, 

nmb 

b j(il(ý-I) 
( 

kT+ I+ -3 +ýk 
i=3 j=o 2(ý -1) 

m c (i) K +37 ci 
i=o 2(ý; -1) 

I+ lok +Pk k+2 42 

md 

+d ID k+1+ Pk 
+ 

Pk 1: 
j 2( k+ 1 

Pk k+3 53 
j=O 

1 

After the function Fn (I ) has been determined, the 

solution for Qn(9 ) is obtained from equation (2.66). 

Although only the case of coupled walls supported 

on separate elastic foundations have been considered. 

The analysis may be readily extended to deal with other 

types of flexible bases, for instance, coupled walls on 

I 
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a portal frame hinged to a rigid foundation (cf. section 

3-4.2). 

2.6 Experimental Investigation 

Experimental investigation of plane coupled wall 

structures of tapered width, relatively simple systems 

of coupled walls of variable stiffness whose behaviour 

are described by third-order differential equations with 

variable coefficients, was undertaken. The purposes were 

to substantiate the theory, to compare the two proposed 

methods of solution, and to investigate the effects of 

the taper of the walls. 

2.6.1 Model Counled Walls 

Acrylic perspex was chosen as model material due to 

ease in machining and availability. Perspex has the 

advantages of having reasonably linear stress-strain 

relationship and low value of modulus of elasticity which 

allows for reasonable large deflection under loads. Its 

undesirable properties are sensitivity to changes in 

humidity and temperature, and tendency to creep under 

loads. 

Three perspex models of plane coupled walls were 

constructed and tested. Each model consisted of two 

identical plane walls connected by a series of evenly 

spaced connecting beams of uniform cross-section. Apart 

from the differences in the slopes of the outer edges 

of the walls, all the three models were geometrically 

identical. Model 1 with uniform wall cross-sections, 
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zero wall slope, was used as the datumo The wall slopes 

of models 2 and'3 were 
1/20 

and 
2/ 15 respectively. All 

models were made from the same sheet of perspex, 12.6 mm 

thick, in order to avoid as far as possible any variation 

in the properties of model material. The connecting 

beams and the wall openings were made by cutting away 

the perspex to form rectangular openings. The connecting 

beams were 6 mm deep and 36 mm long with 24 mm spacing 

between the beam axes. The geometry of a typical model 

was shown in Fig. 2.6. The average width of each wall 

of each model was equal to 72 mm. Each model was 

cemented into a slot in a 25.4 mm thick perspex base, 

using Tensol No. 7 cement. 

2.6.2 Test Equipment 

The test frame was constructed from 6 in x6 in 

steel channel sections welded together to form a three- 

foot high frame on to which a pair of 6 in x6 in x2 ft 

long I-beams rigidly connected by two strips of steel 

plate were bolted to form the support for the models. 

In the experiments, the models were mounted horizontally 

with the plane of the walls lying in a vertical plane. 

Fifteen light alloy hangers, from which the dead weights 

were suspended to simulate lateral load on the model, were 

connected to the model by means of Terylene cord, Fig. 2.7. 

Five dial gauges with sensitivity of 0.0001 in per division, 

supported by a Dexion perforated steel angle attached to 

the frame, were used for measuring the deflections of the 

models. In addition, three more dial gauges were used to 
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detect possible rotation and vertical displacements of 

the perspex base during loading so that any necessary 

corrections for the measured wall deflections could be 

made. 

Electrical resistance strain gauges, Japanese type 

PL 10, were used for measuring the strains in the walls. 

Twenty electrical strain gauges were attached to each 

model using Eastman 710 adhesive. Four strain gauges 

were placed along the mid- third c_ storey level, and eight 

gauges on each side of the model along the mid-, second 

floor level. All the strain gauges were placed normal 

to the base to measure the longitudinal strains in the 

walls. The Baldwin-Lima-Hamilton strain indicator 

equipment which records the strains directly in microstrains 

was used. Compensating gauges were incorporated in order 

to eliminate as far as possible errors resulting from 

variations in the temperature, humidity etc., during the 

experiments. 

Positions of strain gauges, dial gauges and applied 

loads were shown in Fig. 2.6. 

2.6.3 Test Procedure 

The base of the model was fixed to the steel plate 

of the support by means of 2 in xI in hollow steel 

sections strap bolted across the base in an attempt to 

eliminate base rotation. The verticality of the plane 

of the walls was ascertained before the model was loaded 

in order to prevent any twisting of the model under loads. 

After the model was securely bolted to the frame and the 
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dial gauges positioned, the reading of all the gauges were 

recorded in the no-load position. 

The loads were applied in equal increments by means 

of 200 gm dead weights placed on each hanger. Ten load 

increments were applied to make the final load per load 

point reached 2 kgf. The deflections and strains 

readings were recorded for every load increment. Each 

model was tested at least twice to check the consistency 

of the results. A standard time of 5 minutes was 

allowed to elapse after each load-increment before gauge 

readings were taken, to permit the gauges to settle to 

reasonably stable values. The sequences of the readings 

of the gauges for every load increment were kept the 

same. 

2.6.4 Experimental Results 

Experimental results were evaluated. The deflections 

of the models and the strains in the walls per load 

increment were given in Tables 2.1 and 2.2 respectively. 

For the purposes of comparison between experimental 

and theoretical results, the modulus of elasticity and 

Poisson's ratio of perspex were determined using perspex 

specimen cut out from the same sheet of perspex from 

which the models were made. Using the standard beam 

test, the modulus of elasticity and Poisson's ratio for 

the model material were found to be 312.3 kgf/mm 2 
and 

0.38 respectively. 

2.6.5 Theoretical Solutions 

For the system of tapered coupled walls with 
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identical connecting beams, the governing differential 

equation (2-32) reduces to, 

BIl d39- 
+ I(2ldB -B 

A) d 2Q 

-H2 (1 dB ! jl + Ll 1ý3B). 

dý 3 dj dqd12H2 dq dj RR 

dQ +(H2, dl H3jL2 M=0 (2-71) 
dj R dq R 

where 
AIA2 

AI +A 2 
I=11 

A 
121 

I reduced second moment of area of connecting r 
beams 

From a typical model geometry shown in Fig. 2.19, 

B 2t ýH + g) 
dB 2tH 
di 

It 6H+ g) (2-72) 

b tan H+ g) , 
dl H tan d-9 

where t is the thickness of the wall, 0 the slope of the 

wall width, and g the distance between the top of the 

wall and the point of extrapolated zero wall width. 

Substitution of equation (2-72) into (2-71) leads 

to an expression of, the form, 

5i 3p 42 
ý4 Fa d (Z: bj I 

j) A: 2- 
2+(-Ci dj 

j=0 dj 3 
j=0 

dI j=0 

Ir 
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3 
H3 2 

+ (7 dj jj) b+ tan H+ g)) M=0 
j=0 

(2-73) 

Where aj, bj, cj, dj are geometrical parameters which 

may be readily evaluated using equations (2-71) and 

(2-72). The expression for M will depend on the applied 

load. For the three standard load cases, namely a 

concentrated load P at the top of the wall, a uniformly 

distributed load w and a triangularly distributed load 

, -$. 
(I -n ), the expressions for M become, respectively, 

mp= PIH I 

MW = -21- W( 9 H) 2 (2-74) 

tt (. 1 22-132 
H6 Tj H 

The theoretical solutions for the experimental 

models were obtained using both the Galerkin and the 

finite difference methods of solutions. Computer 

programmes for both methods were written in FORTRAN. 

The programmes were used to determine qj N, M19 u, 

extreme fibre strains and the relative vertical displace- 

ment of the walls, i. e. 
2 
E* 

The Galerkin programme allows up to the fifth- 

order approximationg or five undetermined constants. In 

the finite difference programme the number of the 

intervals may be varied from four to thirty. These 

variations provide a mean to check the convergence of both 

methods of solutions (c. f. Figs. 2.8 - 2.10). 
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The exact solution for uniform wall model was also 

determined in order to compare with the proposed 

solutions. It was found that the Galerkin solution with 

five undetermined constants, and the finite different 

solution with 30 sub-intervals, were indistinguishable 

from the exact solution. 

2.6.6 Comnarison and Discussion of Results 

Comparison between the Galerkin and the Finite 

Difference Methods 

The agreement between the solutions by the two 

methods are excellent. The results obtained from the 

Galerkin method using five undetermined constants and 

those from the finite difference method with 30 sub- 

interval are almost identical. These are the values 

used for comparing with the experimental results. 

In order to investigate the convergence of the 

proposed solutions, the number of the discrete points and 

the number of the undetermined constants used in the 

computer programmes were varied. The solutions for Q/E 

calculated by both methods, with different numbers of 

discrete points and undetermined constants, are shown in 

Figs. 2.8 - 2.10. The solutions by both methods converge 

rapidly, and little more accuracy could be gained by 

using more than 8 sub-interval for the finite difference 

method or more than 3 undetermined constants for the 

Galerkin method. For uniform wall model, which exact 

closed form solution exists, the Galerkin method with 5 

undetermined constants and the finite difference method 
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with 30 sub-intervals give virtually identical solutions 

to the exact solution. 

The Galerkin method possesses the advantages of 

giving the solution in analytical form and, for practical 

purposes, a third-order approximation will be sufficient. 

The finite difference method, on the other hand, gives 

only discrete point solutions and for a comparable 

accuracy about 8-10 subintervals are needed. 

Comparison between Experimental and Theoretical 

Results 

Experimental and theoretical strains in wall 1 of 

each model, at the levels 57 mm, and 33 mm above the base, 

are shown graphically in Figs. 2.11 and 2.12. The 

agreements between the experimental and theoretical strains 

are good, the discrepancies are between 5 and 10 per cent. 

The differences between the deflections as shown in Fig. 

2.13 are, on the other hand, considerable. In all cases 

the experimental deflections are greater than those 

predicted by the theory. The differences between the 

theoretical and experimental deflections at the top of 

the models are between 20 and 35 per cent. 
As the strains predicted by the theory were in good 

agreement with the experimental results, the disparity of 

the deflections of the models was rather unreasonably 

large. It was found that under the applied loads support 

movements occurred as well as base rotations. For the 

test frame used, which was relatively flexible, it was 

very difficult to detect all the movements which had some 

effects on the measured deflections of the model. A 
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small and undetected base rotation, as small as 

tan- 1 1/10000, could result in the measured maximum 

deflection being twice that predicted by the theory. 

Creep of perspex, elastic deformation of the perspex 

base plate, and possible relative rotation of the model 

unit with respect to the perspex base could also contri- 

bute to errors in the measured deflections. Most of 

these sources of errors have the tendency to produce 

increasingly larger measured deflections for the points 

further away from the base. These were exactly the 

results obtained, as shown in Fig. 2.13. 

Comparison between Uniform and Tapered Coupled Walls, 

The effects on forces and displacement in the 

coupled walls due to tapering wall widths may be deduced 

from the theoretical curves shown in Figs. 2.14-2.18. 

The applied load is taken to be a uniformly distributed 

load. 

From Figs. 2.14 and 2.15 it may be seen that 

considerable reductions of the vertical shear distribution 

and the axial forces in the walls are obtained when the 

walls are tapered. The reduction in the vertical shear 

distribution is fairly constant throughout the height of 

the wall except near the base. The location of the 

maximum vertical shear distribution shifts upwards as the 

wall slope increases. 

Fig. 2.16 shows that as the relative flexural 

rigidity between the top and the base decreases, i. e. the 

wall slope increases, a greater bending moment is carried 
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by the lower part of the wall. The differences between 

the bending moments carried by the tapered and the 

uniform coupled walls are not very significant. However, 

remarkable reductions in the maximum wall stresses at the 

base are obtained with increasing wall slopes as seen in 

Fig. 2.17. The maximum wall stresses for the models 

2 and 3 are, respectively, only 80 and 60 per cent of 

that of the uniform coupled walls. 

Considerable reductions in the maximum wall 

deflections are also obtained as a result of increasing 

wall slopes, Fig. 2.18. The maximum deflections of the 

models 2 and 3 are only 0.88 and 0.63 of that of the 

uniform coupled walls. 

From the analysis based on the three models, it is 

evident that considerable reduction in the materials used 

can be achieved if the walls are tapered instead of 

uniform. 

2.7 Conclusions 

A continuous medium analysis of coupled shear walls 

of variable dimensions has been presented* In the 

analysis the integral of the relative direct stress, 
H 

+q dX dV , has been used as A12 

z0 

the redundant function. The behaviour of the coupled 

wall system is found to be governed by an ordinary third- 

order differential equation. The differential equation 

is valid for coupled wall systems of arbitrary geometry 

provided that the parameters Rp Bp 1, dB 
, defined earlierp dz 
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are all differentiable functions of z over the interval 

0 :5z :5H. 

When the distance between the centroidal axes of 

the walls is constant throughout the height of the system, 

the third-order differential equation can be reduced to a 

second-order equation. The differential equation for 

a coupled wall system with tapered thickness derived by 

Michael 
(22) 

may be directly obtained from the third-order 

differential equation derived in this Chapter. The 

second-order differential equation for uniform coupled 

wall system, which possesses a closed-form solution, is 

also one of the simplified forms of the general differ- 

ential equation. 

The coefficients of the differential equation are, 

in general, variables. The differential equation with 

variable coefficients does not usually render itself to 

a straightforward integration solution. Therefore, in 

most cases, only approximate solutions may be achieved. 

Two methods of approximation have been proposed, the 

Galerkin method and the finite difference method. The 

solutions by both methods converge rapidly and are in 

good agreement with each other. 

The validity of the theory has been confirmed by 

experiments using perspex models. The theory has been 

used to investigate the behaviour of coupled walls with 

tapered widths. From the analysis of the tapered coupled 

wall systems with the same average wall widthsp it may be 

concluded that the deflection, wall stresses and the axial 

force in the wall become smaller as the wall slope increases. 
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CHAPTER 3 

DESIGN CURVES FOR COUPLED' SHEAR WALLS ON 

FLEXIBLE BASES SUBJECTED TO VERTICAL AND 

LATERAL LOADS, 

3.1 Notation 

The following symbols are used in this Chapter. 

A,. * A2 cross-sectional areas of walls 1 and 2 

1= distance between the centroids of walls 1 and 2 

b= length of connecting beams 

Ic= second moment of area of connecting beams 

10= second moment of area of the beam of portal 

frame 

1 1' 12 = second moments of area of walls 1 and 2 

h = storey height 

h0 = height of supporting portal frame 

H = total wall height 

E = modulus of elasticity 

Kvj, K 
v2 = vertical stiffnesses of elastic foundations 

under walls I and 2 

KOj,, 
_K 02 = rotational stiffnesses of elastic foundations 

under walls I and 2 

L = distance between bases of columns of portal 

frame 

q = vertical shear distribution in the continuous 

medium 

z = height above base of wall 

U = horizontal deflection 

T) = non-dimensional height co-ordinate, z/H 
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uH= deflection at the top 
H 

T= integral shear force q dA 

z 

Xt= auxiliary height co-ordinates 

stress in wall 

Other subsidiary symbols are defined locally in the 

text. 

3.2 Introduction 

In the analysis of uniform coupled walls by the 

continuous medium approachp the behaviour of the structure 

has been shown to be governed by a second-order 

differential equation with constant coefficients. As a 

closed form solution may be obtained, simple design curves 

for the determination of forces and displacements may be 

produced. 

Based on this technique, a simple design method was 
(9210) 

presented The method enables the analysis of a 

pair of coupled walls or symmetrical three wall system 

with two bands of connecting beams to be carried out very 

rapidly. Its simplicity has found favour in design 
(23) 

offices and has also been utilised in a design booklet 

Curves were produced for three standard lateral load cases, 

namelyp a uniformly distributed loadp a triangularly 

distributed loadp and a point load at the top. The 

latter two cases may be used for seismic design calculations$ 

whil st the superposition of the first two yields a general 

trapezoidal load distribution. Formulae which allow 
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similar design curves to be plotted for any load forms 

which can be described by a polynomial in the height 

co-ordinate were also presented(7). All the theories and 

curves, however, referred to the particular case of walls 

rigidly built in at foundation level. 

Many other base conditions occur in practice. For 

example, shear walls are often discontinued at the first 

floor level to provide an open concourse, lobby or other 

non-uniform structure on the ground floor. In this case 

the continuous medium analysis may again be used, provided 

the base is taken at first floor level and the lower 

boundary conditions are altered to include the load- 

deformation characteristics of the supporting structure. 

In other cases, the walls may be supported on independent 

foundations which yield vertically and rotationally under 

the actions of wall axial forces and bending moments, 

respectively. 

Although the earlier technique could be used to 

provide design curves for such situations, a very large 

number of curves would be needed to describe the behaviour 

of the structure in view of the large number of parameters 

required to describe the range of base conditions which 

might occur in practice. For instance, in the case of 

flexible foundations a complete set of design curves would 

be required for each combination of vertical and 

rotational stiffnesses of each footing. The large number 

of curves required makes the technique impractical for 

other than rigid foundation conditions. 

A new simple technique which overcomes the disadvan- 
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tages of the earlier method, and enables a single set of 

curves to be used for any base condition has been 

developed. A set of curves is generally required for 

each standard load case. 

A general treatment of uniform coupled walls on 

flexible basesp and subjected to lateral and vertical 

loads is presented in this chapter. Four standard lateral 

load casesp three standard vertical load cases and a 

special case of concentrated moments at the top are 

considered. These are, respectively, a concentrated 

lateral load at the top, a uniformly distributed lateral 

load per unit height, a triangularly distributed lateral 

load per unit height, a polynomially distributed lateral 

load per unit height, concentrated vertical loads at the 

top passing through the centroids of the walls, uniformly 

distributed vertical loads per unit height, triangularly 

distributed vertical load per unit height, and finallyp 

concentrated moments at the top proportional to the second 

moments of area of the walls. Four sets of design curves, 

covering all but one of the standard load cases, are 

produced. A general polynomially distributed lateral 

load is the standard load case left out, but formulae 

are given to allow similar design curves to be plotted for 

a particular power series. Design examples are also 

given to illustrate the application of the method. A 

part of the new technique developed, dealing only with 

lateral load cases2 has recently been published as a 

paper 
(8). 
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3-3 General Theory 

As the basic continuous medium theory of coupled 

shear walls has been fully treated in the previous Chapter, 

only the fundamental assumptions and equations are 

restated here. 

Consider a system of two uniform coupled shear walls 

subjected to lateral and vertical loadings as shown in 

Fig. 3.1. The fundamental assumptions of the technique 

are 

1. axial deformations of the connecting beams are 

considered negligible so that both walls deflect 

equally; the connecting beams then deform with 

boints of contraflexure at their mid-span positions. 

2. the discrete connecting beams, each with second 

moment of area IcI may be replaced by a uniform 

continuous medium of equivalent stiffness EI 
c 

/h per 

unit height (E and h are modulus of elasticity and 

storey heýght respectively); the set of discrete 

shear forces in the connecting beams may then be 

replaced by a corresponding continuous vertical 

shear distribution of intensity q per unit height. 

If the substitute medium is 'cut' along the line of 

points of contraflexure (at mid-span positions), then, 

under th6 action of the applied loads and the internal 

shear and axial forces, no relative movement occurs at the 

cut. The compatibility equation at any height z may be 

shown to be 

! i-U b3h )q -1(. 
1 + .1Hq dA dC- dz (12EI 

IEA, 

A2 



6o 

zzH 
V dX dr; +1VdX d'ý- EA EA 22 

00 rl- 

+pH dX -1H dX o 
[! 
ý-Alj EA 2 

P2 

zz 

00 

(3. ') 

Where the five terms represent the relative vertical 

displacements at the cut ends due to2 respectivelyp the 

slope of the wallsp the cantilever bending action of the 

cut laminap the axial deformations of the walls resulting 

from the distributed vertical load and the concentrated 

vertical load at the top, and the movements of the bases. 

H= total wall height 

1= distance between the centroidal axes of walls 

1 and 2 

A,., A2 = cross-sectional areas of walls I and 2 

U = lateral deflection 

z = height above base of walls 

IN = auxiliary height co-ordinates 

VV V2 = intensity (per unit height) of the distributed 

vertical loads acting on walls 1 and 2 

p, Hp P2 H = concentrated vertical loads passing through 

the centroidal axes of walls 1 and 2 respectively 

b = length of connecting beams 

From the moment-curvature relationshipsy the total 

internal bending moment for the coupled wall system may 

be written asy 
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Mt EI d7u 
M- 1T (3.2) 

dz 2 

where, 

Mt sum of moments in walls 1 and 2 

MI+M2 

I sum of second moments of area of walls I and 2 

II+12 

M moment due to applied loads 

Mv+M1 

M moment resulting from lateral loads 

H 

pl (A z) d+ pOH (H - z) 

z 

p N) = intensity of distributed lateral load 

pOH = concentrated lateral load at the top 

Mv= moment due to distributed vertical loads 

ýH 
V1eI dA -V2e2 dX 

zz 

e,, e 2= eccentricities of distributed vertical loads V 

and V2 with respect to the centroidal axes of 

walls I and 2, respectively; positive if it 

lies between the centroidal axes of the walls 
H 

T integral shear force =q dA 

z 

As both walls deflect equally the curvatures are 

equal, and the moment carried by each wall is proportional 

to its second moment of areao Thereforej the bending 

moments in walls 1 and 2 are, respectively, 
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I 
M1 =- Mt 

m2 
21 Mt 

(3-3) 

On differentiating equation (3-1) with respect to 
2 

z, substituting for from equation (3.2)p and them 
dz 

differentiating again, the governing differential 

equation may be written as, 

oc 
dz2 

2 dM I A-L) 
13 (a-z -1dz (3-4) 

where, 

/32 
121 

cI 
b3 hI 

A2 

(3-5) 

H 

H+ V2dX (p, H +V dA "A! 
2 

(P2 
A1 

zz 

The general solution of equation (3-4) is 

(3.6) 

cosho4. z +B2 sinh cc z+qp (3-7) 

where BI and B2 are constants of integration which must 

be evaluated from the known boundary conditions at the 

top and the base, and qp is the particular integral part 

of the solution which depends only on the form of the 
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applied loading. 

If the walls are free at the top as is usually the 

case, there is no bending moment in the substitute system 

at the top and the curvature, 
du there must be zero. 
dz 2 

By differentiating equation (3-1) with respect to z, then 

evaluating at z=H, the top boundary condition in terms 

of the vertical shear distribution q becomes, 

at z=H, (Aa) 'C' dz Hi 
(ý )H (3.8) 

where = H(PI _ 
L2) 

(3-9) 
H A, A2 

From equations (3-7) and (3.8)s the coefficient B2 

may be eliminated and the general solution for q becomess 

for the coupled wall system which is free at the top$ 

q=B cosh7 (I H sinh7n (! 
22) 21 

1 cosh7 7, cosh7 dz H 
13 1( ý )H 

q 

where, 

Z 
H 

cWL H 

dq 
0 value of 

dqv 
evaluated at z=H dz H dz 

(3.10) 

(3.11) 

The integral shear force T and the internal wall moment 

Mt become, respectivelyj 

TBH sinh 7 (1 - 71 
1 7cosh7 

(3.12) 
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MM-B HI sinh 7 (1 - Tj (3-13) t1 7cosh7 

where, 

ýH 
qlý) d+H2 

[(dqT)) 21 

, y2 dz H- 
13 )H 

z 

cosh7TI 
cosh7 

(3-14) 

On integrating equation (3.2) and putting in the 

boundary conditions at the base, the maximum deflection 

uH at the top of the structure becomesp 

H31 tanh7 1A du B+ H(U- 
Z Hi Ti ( 

73 72 Ei Z) 0+ 
(U)o 

where, 

H41 ( (dql3) a2 72 . 74 dz H 
)H 

cosh7 

H z H ý ý 
q dX dq dz + M dN d ti 

0 0 IE 

(3-16) 

and (du) and (u) are the rotational and lateral dz 00 
displacements, respectively, at the base level of the 

coupled wall system resulting from flexibility of the 

foundations or supporting structure. 

In the subsequent analysiss unless defined otherwise$ 

brackets with subscript H or 0 signify that the expression 

enclosed within the brackets is to, ýbe evaluated at z=H 

or 0, respectively. 

The axial forces NI and N2 in walls 1 and 2 
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respectively are given by, 

H 

N=BH sinh 7 (1 -11 + pjH -V dX (3-17) 
1 7cosh7 1 

z 

N=BH sinh 7 (1 -H-V dX (3-18) 21 7cosh-f P2 2 
z 

tensile force being considered positive. 

3.4 Base Conditions 

The lower boundary condition, and hence the constant 

BI in the previously derived equations, depends on the 

properties of the supporting structure (or foundation) as 

well as the form of connection between the walls and 

supporting structure. In this study two main types of 

base configurations are considered, namely walls on 

footings supported on elastic foundationsp and walls 

supported on trapezoidal or rectangular portal frames 

hinged to a rigid foundation. For walls on a portal 

frame, it is assumed that the axial deformations of the 

columns may be neglected in comparison with the relative 

vertical displacement of the tops of the columns due to 

sway of the frame. 

3.4.1 Walls on Separate Elastic Foundations 

For this type of base configuration it is assumed 

that each wall is supported on an elastic foundation such 

that the rotation and vertical displacement of each footing 

is proportional to the imposed bending moment and axial 

force at the base. The special case of a rigid found- 

ation may be obtained by putting the foundation rotational 
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and vertical stiffnesses equal to infinity. 

As both walls deflect equally because of the high 

in-plane stiffness of the connecting beams and associated 

floor slabs, the slope at the base will be the same for 

each. The base rotation condition becomes, 

2 
(d u) 

( du ) 
(M 

t)o EI dz 20 
(3-19) 

dz 0 
791 +K e2 K ei +K 92 

in which K 91 and K 
02 are the rotational stiffnesses of 

the foundations under walls I and 2 respectively. 

The relative vertical displacement at the base is 

(NI) 
0 

(N 
2)0 

K 
VI 

K 
v2 

H 

(T) A+K+K (P2 H+v2 dX 
VI v2 v2 0 

H 
(p, H +v1 dX 

V1 0 

where K 
V1 and K 

v2 are the vertical stiffnesses of the 

foundations under walls 1 and 2 respectively. 

(3.20) 

On evaluating equation (3-1) at z=0, then 

substituting for (q)os by using the expressions dz o-' 
derived earlierp the constant B1 may be obtained as, 

=K(2 

)0 

-K+ Kc( i7 )0 )- (q ) 
m 

B1. b(ý)0 
tanh-i 

p0 (3.21) 
(1 + HK Kb 
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where, 

121 12E 
3 (K +K bh ei 2 92 

KI+ -I- (K + Ký, ) ('+') b12 el K 
V1 

K 
v2 

K 
(K 

91 +K 92) 
12K 

V1 
(3.22) 

a2 dq 
211 (A 

0=-( 
(-2) 

13 
(ý)X i) + 

72 dz H-iH cosh7 

dX 

H+HV dX (Kvl) H+V dX pi IK 
v2 

(P2 
,2 

00 

Mo = moment (due to applied loads) at z=0 

(q 
p 

)0 = the particular integral solution evaluated at 

z=0 

If the walls are fixed to footings which rest on 

elastic foundations of subgrade modulus Kp the stiff- 

nesses Kvlp K 
v2 p Kelp K 

82 are given by, 

KI ý-- KA f1 

(3.23) 
K 

v2 
KA f2 
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K KI fl 
(3.23) 

K 02 KI f2 contd. 

where 

Afl, A f2 ý cross-sectional areas of the footings under 

walls 1 and 2 respectively 

I fl, I f2 ý second moments of area of the footings under 

walls I and 2 respectively 

For walls hinged to separate footings it may be shown 

that 

B 
(M)O/i - Wo 

I (H tanh7 
7 

(3.24) 

The lateral deflection at the base of the walls is 

usually zero, therefore, 

(u) 0=0 
and from equations (3-1) and (3.20), the rotation at the 

base is given by 

(du) =i( )(q) + 
(T) 

0(1+1) 
dz 01 12EI 

c01K vl 
K 

v2 

1K 
I (p, H +vI dX 
V1 0 

1KI (P2H +v2 dX (3.25) 
vv 20 

3.4.2 Walls on Trapezoidal Frame 

For a coupled wall system supported on a trapezoidal 
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portal frame hinged to a rigid foundation as shown in 

Fig. 3.2(a), it is assumed that the portal beam also 

deforms with a point of contraflexure at its mid-clear 

spanp the length of the beam under each wall being assumed 

rigid. The force system acting on the portal frame is 

then as shown in Fig. 3.2(b). The expression for'the 

shear force Q0 in the portal beam may be obtained from 

statics and, subsequently, using the compatibility equation 

for the Icut' portal beam in conjunction with the 

compatibility equation (3-1) for the cut lamina at z= 01 

the expression for B, becomes 

(dMl) +C 
B= 

(hL) (I a) I (M) 
0- 

(0) 
0L-h 0( dz 0 

)] 
-(qp) 

0 
HI 

+ c) tanh Y 
M07 

(3.26) 

where 

10= second moment of area of the portal beam 

ho height of the portal frame 

L distance between the bases of columns 1 and 2 

C tan 81 (p, H +vI dX tan 02 (P2 H+V2 dX 

zz 

(3.27) 

8V 82 = the angles between the vertical axis and columns 

1 and 2., respectively; the angle is positive 

if the base of the column slopes outwards 

(cf. Fig. 3.2(a))* 

In the limiting case of walls resting on columns, 
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i. e. 10 = 0, the constant BI reduces to 

hC- (ý) L 00 dz 00 (3.28) 
tanh7 

7 

If the walls are hinged to separate rigid columns 

which are fixed to a rigid foundation, it may be shown 

that the expression for B1 is that given by equation 

(3.24). 

From the deformed configuration of the portal frame, 

tacitly assumed that the columns are rigidp the lateral 

displacement and the relative vertical displacement of 

the tops of the columns may be shown to be, respectively, 

(u) = Ih (du) 
00 dz 

(du) 
dz 0 

On substituting the expression for 3 into equation 

(3-1), then evaluating at z=0, the rotation at the base 

of the walls becomes, 

('u)O (q)O (3.29) 
dz L 12EI 

C 

and hence, from the expression for the lateral displace- 

ment at the tops of the columnss 

(U)o (ho) () (q)o (3-30) 
L 12EI 

c 
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3.5 Solutions for Standard Load Cases 

All the equations derived are applicable to lateral 

and vertical loading systems* They are valid for complex 

combination of loading situations which may consist of 

concentrated lateral load at the top, concentrated vertical 

loads at the tops passing through the centroidal axes of 

the walls, and distributed lateral and vertical loads 

of whatever forms. I 

In general, the codified design loading systems 

may be obtained by-superimposing a few standard load casesy 

each of which possesses a simple solution and may be 

readily evaluated. Initially seven standard load cases 

consisting of four lateral load cases and three vertical 

load cases are considered. 

The seven standard load cases are as follows: - 

(a) Concentrated lateral load at the top, pOH. 

(b) A uniformly distributed lateral load per unit height, 

WO* 

(c) A triangularly distributed lateral load per unit 

height, jjýoj . 

(d) A distributed polynomial lateral load per unit height, 

n PnI. 

(e) Concentrated vertical loads pjH, P2 H, passing through 

the centroidal axes of walls 1 and 2 respectively. 

Uniformly distributed vertical loads per unit height 

wV w2' with eccentricities'ej, e2, acting on walls 

and 2 fespectively. 

(g) Triangularly distributed vertical loads per unit 
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height., 1310 -*9 ), 132(l - 1) with eccentricities 

e,, e2, acting on walls 1 and 2 respectively. 

The particular integral solution qp, and the 

complete solution for q, for each of the seven standard 

load cases are as follows: - 

p0H 

(3.31) 

B cosh 7 (1 - 11 )+q 
1 cosh7 p 

w0H 

(3-32) 

qB cosh 7 (1 - T) + sinh 771 (WOH)+ q 
1 cosh7 7cosh7 1Fp 

0H, 2 
qp 22 

(3.33) 

cosh 7 (1 -11 ) sinh7r1 ( "3011)+ 
q 1 cosh7 7cosh7 ip p 

pnHn sin 
2( rlr ) 

n-r) 
(d) q 

2_ 
(n/ T1 

p IV (n+l) (n-r). / r+l 

qB cosh 7 (1 - 71 + (sinh 7 T) 
Pn H 

1 cosh7 7cosh7 lp 

, 7r 
n2 (r ") 

n sin 2 )+ (Z (n-r-l)/' r+l 
r=- I 

(3-34) 
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qp =0 

qB cosh 7 (1 -ri ) 
+(sinh7ri (3-35) 1 cosh7 7cosh-/ 

P2) 
A2 

qp= 
Ll 

(e, +I)-2 (e +I) lF 1A I lp 2 1A 2 

(3-36) 

cosh 7 (1 
cosh7 

(g) qp = (, t), (el + 1A 
I)- 

'J2 (e 
2+ 1A 2) 

)-, 

(1 -1 � ifi 

(3-37) 

cosh 7 (1 
+(sinh-ITi - -). cosh7 1 P7 cosh7 

( 51(11 IA 1)- 
tý2(e 2+ 1A 2)) 

q 

The solutions given in equations (3.31) to (3-37) 

are obtained on the assumption that the eccentricities 

eI and e2 are constant throughout the height of the walls. 

3.6 Symmetrical Three Coupled Wall System 

Many pierced shear walls, particularly those at the 
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end faces of the buildingp contain two symmetrical bands 

of openings. For a symmetrical three coupled wall system 

(Fig- 3-3) supported on a base structure which is 

symmetrical with respect to both geometry and force- 

deformation characteristics, and subjected to lateral 

loads or anti-symmetrical vertical loads or a combination 

of both load systems, the mode of deformation will be 

anti-symmetric with respect to the axis of symmetry. if 

the walls are acted upon by a symmetrical vertical load 

system the mode of deformation will be symmetric. In 

either case, it can be shown that the behaviour of the 

structure may be completely described by a single second- 

order governing differential equation. 

When the actual vertical load system is neither 

symmetric nor anti-symmetric but equivalent to a combin- 

ation of both types of loadings, the analysis for each 

type of vertical loading may be carried out independently. 

The forces and displacements are then superimposed to 

give the actual value&. 

Symmetrical Three Coupled Walls under Lateral Load 

or-Anti-symmetrical vertical Load Systems or a 

Combination of the Two Load Systems 

For this particular type of loading the vertical 

shear distributions in the substitute laminae are equal 

and opposite and2 hence2 the axial force in the middle 

wall is zero. Following the same procedure as before2 

it may be shown that the equations (3-4)2 (3-10)p (3-12) 

(3-14)2 (3-15)2 (3-17)2 (3.21)2 (3.24) to (3.26) and 
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(3-31) to (3-37) are still applicable provided that the 

following parameters are redefined as, 

w V2P2220 

Mv 2VI el dX 

z 

I= 21 1+12 

+I 
All 

121 12E 

b3h 
(2K 

ei +K 92) 

(2K 
ei +K 92. 

) 

K 
vl 

1 

2 
12 

(K 
ei +K 02) 

vl 

V2 co 

2[ H41 (dq-p) 21 

74 dz HA(ý 
)H) 

2+I 
ýH ýz ýH 

q dA dk dz (12 7 
cosh7 p 

00 

+ j, 
ýH 

M dX d Cr 
I 

00 

The wall moment, axial force in the middle wall, 

rotational and lateral displacements at the base, z=0, 
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become, respectively, 

(Mt)o =M- 2(B Hl sinh7 (1 -11 ) 
1 7cosh7 

= 2) 0 

(du)o =Z( )(q)o , for walls on frame 
(3-38) 

dz L 12EI 
c 

2h 0 (q)O , for walls on frame 0L 12EI 
c 

Symmetrical Three Counled Walls Under Symmetrical 

Vertical Loading 

From the symmetry of the structure and loading 

system it follows that the lateral deflection of the 

middle wall must be zero and the vertical shear distri- 

butions in the substitute laminae are equal. As the 

connecting beams are axially stiffs the end walls also 

have zero deflection. Thereforej the bending moments 

in all the walls vanish identically. 

Following the same procedure of analysis as before, 

it may be shown that equations (3-4)s (3-10), (3-12), 

(3-14), OeI7), (3.21), (3.26) and (3-35) are valid 

provided that the following parameters are redefined as, 

I= 21 1+12 

(. 1 + A2 

121 
c) 12 E 

b3h 
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2(KI+K2 
VI v2 

Kc21 
K 

VI 

H 
L C 

2h 0 
P2 H+V2 dA 

0 

Equations (3-36) and (3-37) may also be used 

provided el and e2 are deleted from the equations. 

For walls hinged to separate footings supported on 

elastic foundationss the constant B, must be evaluated 

from equation (3.21). The rotational and lateral 

displacements of the system at all levels are zero. 

The axial force in the middle wall is to be evaluated 

r OM., 

H 

N 2(B H sinh 7 (1 
Hvd 21 7cosh, 7 P2 2 

(3-39) 
3.7 Design Method 

3-7.1 Basis of Design-Method 

The non-homogeneous part of the general governing 

differential equation (3-4) is a function of the form of 

the applied loads2 the positions of the vertical loads 

and the wall structural parameters. Therefore2 the 
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particular integral solution qp and its integral or 

derivative and, hence, the functions 0 and P will also 

be functions of the same set of parameters. From 

consideration of equations (3-10), (3-12), (3-13), (3-15), 

(3-17), (3-18), (3.25), (3.29) and (3-30) it is evident 

that all the expressions for generalised forces and 

displacements consist of two distinct parts. One part 

depends on the applied loads and wall parameter alone 

whereas the other part depends on, in addition, the lower 

boundary condition. Any desired quantity may then be 

expressed as, 

quantity =B1k1 F1(7 pq )+F3 +(load xk 2)ý 

load form) (4-40) 

where k1, k2 are simple structural constants and F1, F2 

are functions of 7 and-9. Function F2 is dependent on 

load form but F, is completely independent of load form. 

The term F3 exists only in the case of displacement u 

but it is dependent on load form and base conditions 

(cf. equations (3-15), (3.25), (3.29), (3-30)). Therefore, 

for a specified standard load case, it is possible to 

prepare design curves which are applicable to any base 

configuration. Any desired design quantity may be 

obtained by superposition of the two distinct parts. The 

influence of a particular base configuration is reflected 

in the parameters B1 and the term F 3* 

In order to facilitate the production of design 

curves, the forces and displacement of interest will be 
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expressed in non-dimensional terms. These quantities 

are expressed mathematically in the form, 

BFQ + FQ + FQ 123 (3.4') 

The superscript Q denotes a generalised force or 

displacement quantities (i. e. Q refers to q) T, Mt or uH), 

and 

fP- = non-dimension generalised force or displacement 

quantity 

B =a function of B and other wall parameters 

FQ =a function of 7 (does not depend on load form) 

FQ 2 =a function of 7 (depends on load form) 

FQ 3 =a constant which depends on load form, base 

conditions and ot her structural parameters (exists 
u 

only, for f 

Following equation (3-41), the non-dimensional force 

and displacement paramet ers fq"fT, fH are given by, 

BFq+Fq 12 

BFT+FT 12 

(3-42) 

(3-43) 

UH uHuHuH 

fBF1+F2+F3 (3-44) 

The parameters B, FuH and functions FP-, FQ of equations 312 

(3-42)to (3-44) for different load cases will be given 

subsequently in the Chapter. 

To systemmatise the design method, classification 

of structures and standard load cases considered are 
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given as follows. 

Wall-load Categories 

The wall-load interactions are grouping into three 

main categories, namelyp 

A: - Two coupled walls subjected to vertical or lateral 

loads. 

B: - Symmetrical three coupled wall system subjected to 

lateral or anti-symmetrical vertical loads. 

C: - Symmetrical three coupled wall system subjected to 

symmetrical vertical loads. 

Load Cases 

a: Concentrated lateral load at the top, pOH 

b: A uniformly distributed lateral load per unit 

height., w0 

C: A triangularly distributed lateral load per unit 

height, jol 

d: A polynomially distributed lateral load per unit 

n height, PnI 

e: Concentrated vertical loads p1H., P2 H passing through 

the centroidal areas of walls 1 and 2 respectively 

f: Uniformly distributed vertical load per unit height, 

w 1' w2 with eccentricities els e2 acting on walls 

1 and 2 respectively 

9: Triangularly distributed vertical loads per unit 

height, .3 (1 and '32(l with eccentricities 

e1j, e2 acting on walls 1 and 2 respectively 

el: Concentrated vertical loadsj p, Hs - p, H passing 

through the centroidal axes of walls I and 3 
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respectively. 

eff: Concentrated vertical loads, plHo P2H, pjH passing 

through the centroidal axes of walls 1.2 and 3 

respectively. 

fI: Uniformly distributed vertical loads per unit 

height, w,, - w, with eccentricities e, p e, acting 

on walls I and 3 respectively. 

Uniformly distributed vertical loads per unit 

height, wV w2' w, with eccentricities e,, 0, e2 

acting on walls 1,2 and 3 respectively. 

gI: Triangularly distributed vertical loads per unit 

height, -al(I -1 )., - jl(l -9 ) with eccentricities 

el, el acting on walls 1 and 3 respectively. 

g Triangularly distributed vertical loads per unit 

height, -31 (1 -I), -62 (1 -I), (I -9) with 

eccentricities el, 0, el acting on walls 1,2 and 

3 respectively. 

The load cases g, gg 11 are included to permit 

cases with linearly varying vertically distributed load 

(a linear function of height) to be treated. If the 

actual vertical load acting on a symmetrical three coupled 

wall system is equivalent to a combination of symmetrical 

and anti-symmetrical standard load cases, the solutions 

for the actual loading may be obtained by combining the 

solutions for the standard load cases. 

Walls with Moments at the Tops 

Under certain circumstances the tops of the walls 

may be subjected to concentrated momentsj for instance, 
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when the walls are subjected to concentrated vertical 

loads which do not pass through the centroidal axes of 

the walls. In such a case, the method of analysis carr- 

ied out previously is valid provided that the ratio of 

the moments at the tops and the ratio of the second 

moment of areas of the walls are equal. This is neces- 

sary because of the assumption of equal wall deflection. 

Two additional load cases are then considered: - 

M: concentrated moments mIH,, m2H acting at the tops 

of walls I and 2 respectivelys with the ratio 
m 

in 2 
12 , (two coupled wall system) 

m concentrated moments mI Hp m2H, mjH acting at the 

tops of walls 
1 

1., 2 and 3 respectivelyo with the 

ratio 
-" 

=1 m22 

With the applied moments at the tops., the top 

boundary condition becomesp 

2 
at z=H (I'gz )H 3 (M)H (3-45) 

where 

(M)H = total moment at the top 

= H(m 1+m 2) for load case m (3-46) 

= H(2m I+m 2) for load case mI 

and the solution for q becomes 

q=B cosh 7 (1 
+H sinh7T) 2 (3-47) 

1 cosh 7 7cosh7 13 (M) 
H 

Following the earlier procedure, the displacement 

and forces in the walls may be similarly obtained. 
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Classification of Structural-load Svstem 

The structural-load system will be classified as 

Yy, where the capital letter Y and the lower case letter 

y refer to. wall-load group and applied load case 

respectively. The whole range of structural-load 

systems considered are then, 

Aaj, Ab, Ac, Aa, Ae, Af, A9, A 

Ba, Bb, Bc, BdIB 
el , Bfj, B911BmI 

c it, CC ti e 

Parameters in the Expressions for Forces and 

Displacement Functions 

Def ine: - 

R=1,2,2 for wall-load categories A, B, C respectively 

RI=1,, 2,0 for wall-load categories A, B, C respectively 

G, = pl, w,, 31 for load cases e or el or e", f or fl 

or f", g or g' or g", respectively; otherwise 

=0 

G2ý P2' W2' 'ý52 for load cases e or el or elf, f or I or 

ffl, g or gl or g" respectively; otherwise G20 

G0 PO' wO' '30' Pn for load cases a, b, c, d 

respectively; otherwise Go =0 

0 for load cases a, b, c, d; otherwise 

I= RI 1+12 

W= -k (Gl (Rlel +IG (R e++ -A)G 1A 222 1A 20 

(M)H 

H (3-48) 
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The structural-load parameters 13 
22 

which 

are valid for all structural-load systems may then be 

expressed asp 

/32 = 
121 

c 
b 

3hI 

OC 
221p 

(3-49) 
2-R, 

R+ 1121+ A2 

7= 

From equations (3.10)y (3-13)y (3.15)p the non- 

dimensional quantities fq, fT, fH are obtained as, in 

the form of equations (3-42) to (3-44)s 

BFq+Fq 12 

T=BFT+FT WH 12 

uHu=BFu+u+u 

W,. H, 3H 

where 

B= (111 ) 

q co h7 (1- 11 
1 cosh 7 

FT sinh 7 (1- 71 
1 7cosh7 

(3-50) 

0 

all structural-load 
systems and all 
load cases 

FuH tanh7 I 
17372 

Expressions for Fq, FT, FH for different load 
222 

cases are given in tables 3-1 to 3-4. The parameters 
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B and FH depend on load form$ wall-load category and 3 
base conditions and, in general, must be determined for 

each different combination of these variables. 

Using equations for B, 
j, 

(A-u-) Mos derived earlier dz 0" u 
and equation (3-15), the parameters B and F3 or 

different combinations of load forms, wall-load categories 

and support systems may be determined. As a large 

number of different combinations is involved, it will be 

cumbersome to give expressions for B and FH for all 3 

different combinations considered. However, by 

introducing a number of new parameters, it is possible 

to reduce the formulae to a small number. The following 

parameters are introduced. 

Structural-load Parameters 

RI 
(-T-) (G 

1eI-G2e2) 
(WI) + 

Rl 11 (G tan 9G tan 8 DWI12 2) 

1 -1 
11 (G 

Kv, 
G 3DWIK 

v2 
2) 

1 -1 ( 11 )G 
D 2W 2 

where 

(3-52) 

D=2 for load cases g or g' or g1t,, otherwise D=I 

8 92 = as defined previously in section 3.4.2. 

Wall-base Parameters 

Let 

DI=0., for walls hinged to footings, otherwise D 1=1 
(3-53) 



85 

B and FH depend on load formp wall-load category and 3 
base conditions and, in general, must be determined for 

each different combination of these variables. 

Using equations for B,, (! i-u) Wo, derived earlier dz 0' u 
and equation (3-15), the parameters B and F3 for 

different combinations of load forms, wall-load categories 

and support systems may be determined. As a large 

number of different combinations is involved, it will be 

cumbersome to give expressions for B and F 
uH 

for all 3 
different combinations consideredO However, by 

introducing a number of new parameters, it is possible 

to reduce the formulae to a small number. The following 

parameters are introduced. 

Structural-load Parameters 

RI 
il = 7f- (7) (G 1eI-G 2e2) (WI) + (1 

i= 
RI !I (G tan 0G tan 0 2DW112 2) 

(3-52) 

-1 
11 (G 

Kv, 
G 3DW1 Kv2 2) 

(H) G 4D 2W 2 

where 

D2 for load cases g or g' or g"j. otherwise D=1 

8 92 = as defined previouslyin section 3.4.2. 

Wall-base Parameters 

Let 

D1= 01 for walls hinged to footings, otherwise D1=1 (3-53) 
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D21. ' for walls on a portal frame or on columns, 

otherwise D2 : -- 0 

D 0. for walls on columns$ otherwise D1 33 'ý 

KV1, K 
v2 ý"O , for walls on a portal frame or 

121 
columns (3-53) 

12HE contd. R( 0) for walls on footings fA (R 
1 K91+ K 

82) 

HI 

Mc, 0, for walls on a portal frame 
0 

and on columns, respectively 
R, 

+Di (I - 
11- 1 ). 

fR R) +[(Rl 2 

(D + (D 1) 
Rl)(R 

K+K 1-R1 ei e2)' 

1 W... + 
vi 

The wall-base parametersp r1 to r7p are defined as, 

r, = (' 1) 1+ Dj(D +(D 1)11-)( /ý - 1) 
L131-RI 

R 
+ (D + (D pf 

11 

D+ (D 1 .)R, 
31-R 

EI (1+ 
(2 -R1)) 

HI 
Z-vl 

v2 

1+D (R 1- 1) 21L 
2 EI 

6 
1H 2K 

V1 
RI) 

D 2(('- R 

(3-54) 
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Using the parameters introduced, it may be shown 

that only a few formulae for B and FH need to be given, 3 
since many of them have the same expressions. For 

instancep the formulae for structural-load systems 

Aaj, Af., Ba, Bfi, C. ti are given by, 

h0T 
q) rl(1+--,: --) - r. (F -r (F 

B 2)0 320 
T 

r3+r2 (F1)0 

rh0+rr 
T)o q) 

O+r J l(JI + -IF J2) 03 2(F 2-r3 
(F 

27 

r3+ r2(F Po 

FH=i (r (fT. )0+ _L ((f q) 
0-r 3Z 

[r, 
42 6J3 

+ -t. ( (1-R)(1-y-) + 3 

(3-55) 

where, (F q) 
0., 

(F T )01 (F T) 
, (fq) 

01 
(f T )0 are values of 2210 

the appropriate functions at z=0. All other parameters 

are as defined previously. 

For simplicity, and in order that important 

parameters and expressions may be obtained rapidly, the 

following tables are presented. 
_ 

Table 3. '1 Expressions for fQ.. FQ and B for structural- 

load systems Aa, Af,. B 
a, 

Bft, Cfn 

Table 3.2 Expressions for A0 
and B for structural- JL 

load systems A, A., B, BC it b9b99 



88 

Table 3.3 Expressions for fQ,, f? and B for structural- I 
load systems AcBc 

Table 3.4 Expressions for fQ, F? and B for structural- JL 
load systems AeAM, BeBM1, Ce it 

Table 3.5 Expressions for structural-load parametersi 

(i. e. R, Rl' ý(- ' W' JI' J2' JV JV I' 

V ,7), for structural-load systems Aa-' 

Ab, Ac, Ad, Ae, Af, A9 and Am 

Table 3.6 Structural-load parameters for structural- 

load systems Ba, Bb2 Bc2 Bd2 Bet2 Bfi2 B9 I'v 

BMI 

Table 3-7 Structural-load parameters for structural- 

load systems Ce Its cf lip C9 ti 

Table 3.8 Wall-base parameters, (i. e. r1 to r7), for 

all support systems considered* 

In addition expressions for 
0, FP- and B for 

Ii 

structural-load systems Ad and Bd are also given in 

Appendix II. 

3.7.2 Maximum Shear Distribution in the Continuous 

Medium. 

The height n at which the maximum vertical shear 

distribution in the continuous medium occurs may be 

determined by solving the equation obtained by different- 

iating equation (3-42) and equating to zero. That is, 

dF q dFq 
B -a 11 + dj 

2=0 (3-56) 
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The maximum vertical shear distribution is then 

evaluated from equation (3-42). 

Using the expressions given in Tables 3.1-3-42 

equation (3-56) becomesp 

For standard load cases a2 f2 f12f 

sinh -/ (i -I )=0 (3-57) 
I 

For standard load cases b, g, gi 19 If 

B -ysinh 
, 

7(l -1 )= cosh7q - cosh7 (3-58) 

For standard load case c, 

B 7sinh 7(l -9)= cosh7n - ýcosh7 _ 
sinh 

7 
7(1 - r) ) 

(3-59) 

For standard load case e, el, e ft I M, mI 

B sinh -Y(i -1 )= 7cosh7l (3.6o) 

For standard load case d, 

n-1 2 r7r 
B 7sinh 7(l cosh7 

[ n/ sin (2 
(n-r-1) r+l 

11 
(n-r-1) I- 

coshlil 
r=- 

2(r 'r ) 
n sin 2 

r+I U. 61) 

From equation (3-52) it may be seen that the 

maximum vertical shear distribution for each of the 

standard load cases a, f, fl, f It invariably occurs at the 

tops of the walls, i. e. at 1, for negative value of 

B. 
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3.7.3 Stresses in the Walls 

Since all walls deflect equallyp the bending moment 

carried by each wall is proportional to its flexural 

rigidity. The bending stresses are then obtained using 

ordinary beam theory, and, by superimposing the axial 

stresses due to the axial force, N, the total stress 

distribution may be evaluated. 

For a general two-wall system such as that shown 

in Fig. 3.4, the extreme fibre stresses may be readily 

shown to be 

+FJ-I Kj)) 
1211A112 

(fT( I+ ý2 A' 
6B621F (-1-2 J1+2 Kl)) 

All All 

(3.62) 

+ 
ý*3) 

+F c A21 21A21 

ýA 
j+ 12 K 

D _ý 
A12111A1 

2» 

For a general symmetrical three coupled walls 

system such as that shown in Fig. 3.5, the extreme fibre 

stresses are given by 

(RI) 612-2R+F (( 
R1J, 

12 Kj)) 
A 11 

Al 1 

6 (fT( I+ 2(Rl) F((Ll) 
ý6 

J+I Kj)) 
FA112RR11A112 

(3.63) 
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I+ 2(Rl) RA2 12 R 

((! -') 
A7 

jIK R11A212 2)) 

RI) I- 2(RI) HRA212R 

F((! Ll) IK 

A12 

(3.63) 
contd. 

( _fT (I 
All 2 + 2( 

Rl) 

R 

ý6) 
I 

! 1) 1 

(_fT (I- 2( 
RI) 

Al 12R 

-F« 
Rl) ÄS 

j 1 

where 

6 WH1 
FI 

K 
G11 

KG21 (3.64) 
W2ýW 

for standard load cases a, f, 

fI and f" 



92 

IA 
(I _ n)2 for standard load cases 2 

b, g, gI and 9" 

(. 1 -1 + 
TI 

3 

32 6-) for standard load 

case c 

[1 T) 
+(II)n n+2 P T-n -+2 n+1) (n +1) - T-n -+2) 

1 

for standard load case d 

for standard load case e, ee 

I mj, m 

(3.64) 
contd. 

ý. = distance between the point at which the stress is 3. 

evaluated and the centroid of the corresponding 

wall. 

Equations (3.62) and (3.63) are valid-for all 

structural-load systemsO 

3-7-4 Design Curves 

The design curves for the relevant non-dimensional 

functions for each standard load case may be conveniently 

produced from the expressions given in Tables 3.1-3-4. 

It has been stated earlier in the Chapter that usually a 

set of design curves is required for each standard load 

case. This follows from the fact that the particular 

integral solutions of different standard load cases will, 

in general, be different. However, whenever the 
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particular integral solutions of any two load cases are 

proportional to each other, there will be correspondences 

of the expressions of forces and displacement functions 

due to these load cases. The design curves for both 

load cases will then be identical. From consideration 

of Tables 3.1-3.4, it is evident that there are 

correspondences between the following standard load 

cases: - 

1. Triangularly distributed vertical loads and a 

uniformly distributed lateral load. 

2. Uniformly distributed vertical loads and a 

concentrated lateral load at the top. 

Concentrated vertical loads at the tops passing 

through the centroidal axes of the walls and 

concentrated moments at the tops of the walls. 

Both of the standard load cases which are paired 

together have identical design curves. The corres- 

pondences between the lateral and vertical load cases are 

shown diagrammatically in Fig. 3.13- 

Four sets of design curves, Figs. 3.6-3.9, 

corresponding to structural-load systems (A 
a, 

Af, B 
a' 

Bf t, Cf ti), (A b, A9, B9, B91, c9 ti), (A 
c, 

Bc), (A 
e, 

Aml, 

Bet, Bm1, C 
ell), respectively, are presented for a semi- 

graphical determination of q, T, u., the wall extreme 

fibre stresses and the position of the maximum vertical 

shear distribution. The curves cover the range of 

combinations of wall configurations and loading systems 

likely to be encountered in practice* In addition) 
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similar design curves for any lateral polynomial load 

form applicable to structural-load systems Ad and Bd 

may be produced, using equation (3.61) and Appendix II. 

3.7.5 Use of Design Curves 

For a given structural-load system, for instance 

the structural-load system Aap the structural-load 

parameters and the wall-base parameters are first 

determined from Tables 3.5 and 3.8 respectively. The 

parameter B is then evaluated from the expression given 

in Table 3-1P making use of the design curves in Fig. 3.6. 

The vertical shear distribution and the integral 

shear force at any level are obtained using equations 

(3-42)j (3-43) and the design curves for 0 
and FT. The 

II 

wall extreme fibre stresses are obtained from equations 

(3.62). The position of the maximum value of the 

vertical shear distribution may be rapidly determined 

from the design curves B against 7- The maximum 

deflection at the top is obtained using equation (3-44) 
u 

and the design curves for Fi The design quantities 

for other structural-load systems may be obtained in a 

similar manner provided that the appropriate Tables and 

curves are used. 

3.8 Example Problems 

In order to illustrate the use of the design curves 

and to show the changes in design quantities resulting 

from changes in base conditions, a few design examples 

are presented. 
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Example 1: Two coupled walls under lateral load. 

The system of coupled walls shown in Fig. 3.10 is 

considered. The wallsp of total height 54 m and storey 

height 2.7 m, are supported on a portal frame of 3m in 

height. The second moment of area of the portal beam is 
4 

0.02 m The walls and connecting beams are 0.30 m 

thick, and the depth of each connecting beam is 0.40 m. 

The elastic modulus of the concrete is taken to be 

72 2.394 x 10 KN/m Assume that the wall system is 
I 

subjected to a uniformly distributed load of intensity 

15-47 KN/m. 

With the given data 

H= 54.0 m io = 0.02 m4 

h= 2.7 m I = o. oo16 m4 c 
A1= 2.1 m2 11 = 8.575 m4 

A2 3.0 m2 12 = 25.0 m4 

1 10.5 m ho = 3.0 m 

The structural-load system is of the type Ab 

(cf. section 3.7-1). Therefore, the structural-load 

parameters are, from Table 3.5, 

R=IJ, = 1.0 

RI=I 

-/ý =0 

w= 835-38 KN 

= 1.2465 

= 3.2567 

I 

20 

130 

140 

1 33-575 

The wall-base parameters become, from Table 3.8, 
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rI=1.9944 r21.6 r3=I 

r4=0r51 r6 =r7 

As the structural-load system is Ab' the 

appropriate set of design curves to be used is that 

given in Fig. 3.7. From the design curves, 

(F q)o = 1.0 1 

(F q)o 
= 1.0 

1 

T (F2)0 = 0-595 

On substituting relevant parameters into the 

expression for B given in Table 3.21 the value for B is 

found to be 

B=-0.5612 

From the design curves, Table 3.2, equations (3-42) 

to (3-44) and the value of B which has been determined, 

the non-dimensional quantities fq, fT ,fuH and, hence, 

other design quantities may be rapidly evaluated. 

From Table 3.2 and equation (3-44) it is found that 

fH=o. o8o86 

therefore, the deflection at the top relative to the base 

of the wall becomes, 

RW H3 f 
uH 

HIEP 

= 0.0086 

Consider the typical case of the base of the 

T 
structure, 0. On evaluating (f )0 using equation 

(3-43) and the design curves, then substituting (f T )0 
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and other relevant parameters into equation (3.62), the 

extreme fibre stresses at points A, B, Cp D (Fig- 3-10) 

are found to be, 

6A = 1460 KX/M2 

6B ý -87 KX/M2 

6c = 625 KN/M2 

6D= 
-1585 KN/M 2 

From Fig- 3.7(d) it is found that the maximum shear 

intensity, q max , occurs at a height I=0.21, hence, 

qm 
w (f q) 

ax 1VI =0.21 

and on substituting the appropriate values of parameters, 

q max = 34-15 KN/m 

If it is assumedl conservatively, that q max may be 

used to calculate the maximum bending moment, M 
max , in any 

connecting beam, then 

M= R34-15 x 2.7 x 2) = 91 KN-m 
max 2 

To show the effects of different base conditions 

on design quantitiesp it is assumed that the coupled walls 

are supported on elastic foundation of subgrade modulus K. 

Three different values of subgrade modulus are assumedp 

and the resulting calculation tabulated in Table 3.9. 

In each set of calculations it is assumed that the footings 

and the walls have the same cross-sectional dimensions. 

The differential settlementp ap between the bases of the 
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walls is calculated from equation (3.20). 

From Table 3.9 it may be seen that the maximum 

deflectionj the differential settlement and the maximum 

intensity of vertical shear distribution increase with 

decreasing foundation stiffness (subgrade modulus). 

Exam2le 2: Two coupled walls under vertical loads. 

The coupled wall system of the previous example is 

again considered. The floor slab is taken to be 0.20 m 

thick and the weight of the concrete 2307 Kgf/m3o A 

live load of 1.5 KN/m2 is assumed acting on each floor,, 

and the contributary loading area of each floor is as 

shown in Fig. 3.11. It is assumed that the vertical load 

acting on each wall can be considered as distributed 

uniformly throughout the height of the wall. 

From the given loading datas the uniformly 

distributed vertical loads and the corresponding 

eccentricities are found to bep 

w1= 168.95 KN/m 

w2= 234.66 KN/m 

el = 0.36981 KN/m 

e2 = 0.366og KN/m 

The structural-load system is of the type Af,, and 

the corresponding set of design curves to be used is 

Fig. 3.6. 

Following the same design method illustrated in the 

previous examples similar design quantities may be rapidly 
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evaluated. Three different values of sub-grade modulus 

are considered, and the resulting calculation ý§hown in 

Table 3.10. 

The differential settlement is evaluated from equation 

(3.20), i. e. 

(T) (T I+I) wH 
+ 

W2 H 

V, 
K 

v2 
Kv, K 

v2 

The minus values of the shear intensity and the 

maximum deflection indicate that the shear distribution 

acts downwards on wall 1 and the walls deflect to the 

left. 

From the results it may be seen that the maximum 

shear intensity and the extreme-fibre stresses of the 

walls are not greatly affected by the changes in the 

stiffness of the foundation, although the maximum 

deflection and the differential settlement are consider- 

ably affected, 

Comparisons between the lateral and vertical 

loadings, Tables 3.9 and 3.10, show that the wall extreme 

fibre stresses and the differential settlement due to a 

practical vertical loading are more significant than those 

due to lateral loading, and the opposite occurs regarding 

the maximum deflection and the vertical shear distribution. 

However, the maximum deflection and the vertical shear 

distribution due to the vertical loading may become 

significant if the load parameter W is not small. This 

situation may arise if the floor load is far from uniform 

so that the eccentricities are of opposite signs. For 
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example, assuming that in the previous example the 

vertically distributed load wI has the eccentricity of 

-0-36981 m instead of + 0.36981 m. The load parameter 

W is then found to be -141.253 KN. Following the same 

calculation as before, similar design quantities are 

obtained and these are tabulated in Table 3.11. From 

Tables 3.10 and 3.11 it may be seen that the maximum 

deflection and the maximum intensity of vertical shear 

distribution increase considerablyO 

Example 1: Symmetrical three coupled walls under lateral 

load. 

Consider a typical symmetrical three coupled wall 

system shown in Fig. 3.12. The width of the walls I and 

2 are 4.5 m and 6m respectively. Other geometrical 

dimensions and the elastic modulus of the concrete are 

identical to those used in the earlier examples. The. 

cross-sectional dimensions of the footings are taken to 

be the same as those of the walls above them. A 

lateral loading, wo, of intensity 15-47 KN/m is again 

assumed. 

From the given data, the structural parameters are 

found to be, 

1=7.25 mI=o. oo16 m4 c 
Al = 1, '35 m21=2. '2781 m4 

A2 = 1.8 m22=5.4 m4 

The structural-load system belongs to the type B b* 

The structural-load parameters then become, 
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R=2111p=2.14031 

R=212=07=5.4115 

-Y- =013=0=9.95625 

w= 835-38 KN 14=0 

The set of design curves to be used is Fig. 3.7. 

The rest of the calculations are carried out in a similar 

manner to those of the two coupled wall system, except 

that the extreme fibre stresses are determined from 

equation (3.63). The resulting calculation is shown in 

Table 3.12. The relative vertical displacement., a, is 

the differential settlement between the outer and middle 

walls. 

3-9 Conclusion 

Based on the continuous medium method of analysis, 

a new technique which enables the design of coupled shear 

walls on flexible bases to be carried out rapidly has 

been developed. The technique is applicable to any load 

form which can be described by analytical function. The 

load system may be either lateral or vertical loads or 

a combination of both. 

Curves have been presented for the evaluation of 

forces, wall extreme fibre stresses, the maximum 

deflection, position of the maximum vertical shear 

distributionj in a system of two coupled walls or a 

symmetrical three coupled wall system. Four sets of 

design curves have been produced, covering load cases and 

base conditions likely to be encountered in practice. 
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In additionp formulae for a general polynomial load form 

have been given in Appendix II. 

For each standard load casep the complete solution 

for a coupled wall system on any base condition may be 

obtained using only one set of design curves. The 

variation of important design quantities under different 

base conditions can be rapidly investigated. 
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CHAPTER 

SYMMETRICAL THREE DIMENSIONAL SHEAR WALL STRUCTURES 

4-1 Notation 

The following symbols are used in this Chapter: - 

A = cross-sectional area of'a wall 

1 = distance between the centroids of walls a 

and b of a coupled wall assembly 

b = length of connecting beam 

I = second moment of area of connecting beams 
c 
I = second moment of area in general 

I I = second moments of area about the major and 
M n 

minor principal axes, respectivelyp of a wall 

h = storey height 

E = modulus of elasticity 

K = stiffness, or number of groups of coupled 

wall assemblies 

X, YJ Z = structural co-ordinate axes 

z = height co-ordinate (along the vertical Z axis) 

'r, = auxiliary height co-ordinates 

u = horizontal displacement 

9 = horizontal rotation 

M = moment in general 

S = shear force in general 

C = cosine of an angle 

R = horizontal projection of a vector on a 

horizontal axis 

q= vertical shear distribution in the substitute 
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lamina of a coupled wall assembly 

analogous vertical shear distribution 

Other subsidiary symbols are defined locally in the 

text. 

4,2 Introduction 

The development of multi-storey residential and 

hotel buildings has led to the extensive use of coupled 

shear walls and service cores as the main load-bearing 

elements. Although it is theoretically possible to 

analyse completely a three-dimensional shear wall structure 

using modern computer-orientated techniquesp-the large 

increase in the number of degrees of freedom inherent in 

the three dimensional analysis often causes the 

techniques to be either extremely lengthy or beyond the 

capacity of available computers. Simpler techniques, 

usually involving simplifying assumptionsp which enable 

solutions to be achieved with less computation arep 

therefore, desirable. one technique which promises a 

great reduction in the computational effort is the 

continuous medium approachp since the amount of computation 

involved in this approach does not depend on the number 

of storeys of the structures. 

The functional and practical requirements of multi- 

storey residential and hotel buildings tend to evolve 

structures with regular assemblies of coupled shear walls 

interspersed with service cores. Many of these buildings 

also possess overall plan. forms which are symmetrical. 

An analysis of regular symmetrical cross-wall 
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structures by the continuous medium approach has been 
(5) 

recently presented In this Chapterp a continuous 

medium method of analysis for general symmetrical three- 

dimensional structures consisting of uniform coupled 

wall assemblies and cantilevered walls is presented. it 

is shown that the analysis of symmetrical structures can 

be reduced to the analyses of simple analogous plane 

systems. The method is particularly useful if the 

coupled wall assemblies are identical and in-plane 

symmetrical (i. e. the plane of the connecting beams is a 

plane of symmetry of the coupled wall assembly). For 

such a casep the analysis of the complete structure can 

be rapidly performed since closed form solutions may be 

obtained. 

4.3 Analysis of Plane Systems with Rigid Pin-ended 

Connectina Links 

Consider initially a plane system consisting of 

three coupled wall assemblies and one cantilevered core 

constrained to act together by a system of rigid pin- 

ended connecting links, as shown in Fig. 4.1. The 

structure is subjected to a lateral in-plane load W. it 

is assumed that the connecting beams deform with points 

of contraflexure at their mid-length$ but are axially 

rigid so that all the walls have equal horizontal 

deflections. Ordinary beam theory is taken to be valid 

for individual wall or core. 

4.3.1 Governing Differential Equations 

Using the usual assumptions of the continuous medium 
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technique, the compatibility equations for the 'cut' 

laminae of the coupled wall assemblies 1,2 and 3 are, 

respectively, 

du 
Oh 

I(II) ýz ýH 
-L(1)q dz E 121 .iTAA CJL ai bi 

0 q, d, \ d 

i=1,2,3 

0 (4-1) 

where the four terms represent the relative vertical 

displacements at the cut edges resulting from, 

respectivelys the slopes of the wallss the deflections 

of the connecting beams, the axial deformations of the 

walls and the settlements of the walls. 

u= horizontal deflection 

1 
IL = distance between the centroids of walls a and b 

of assembly i 

aiy bi = symbols referred to walls a and b respectively 

of coupled wall assembly i 

qj = vertical shear distribution in the continuous 

medium of coupled wall assembly i 

Hp h, E= total height of walls, storey height, and 

modulus of elasticity, respectively 

= relative vertical displacement between the JL 
bases of walls ai and bi 

Ici,, bi = second moment of area and clear span of the 

connecting beams respectively., of coupled wall 

assembly i 
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A 
ai 

A bi ý cross-sectional areas of walls ai and bi 

z= height ordinate 

A 
.9= auxiliary height ordinates. 

Using the differential equation for the deflected 

curve, the moment-curvature relationship for any 

individual wall r (coupled wall or cantilevered core) 

may be written as, 

EI 
d211 

=M=M+M (4.2) 
r dz 2r rv rh 

Ir= second moment of area of wall r 

Mr= internal moment of wall r 

M 
rv 2M rh = moments due to the vertical and horizontal 

forces respectively, acting externally to 

wall r. 

Addition of the moment-curvature relationships of 

all the walls in the structure leads to an overall moment- 

curvature relationship of the form, 

3H 
EI d2u 

=M-Ii qi dX (4-3) 
dz 2 

z 

M= moment due to externally applied load W 

I= sum of second moments of area of all the walls 

(Iai +I bi) + Icr 

I 
ai' 

Ibi' Icr = second moments of area of walls aip bi 

and the cantilevered core respectively 

On differentiating equation (4-1) with respect to 
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z, combining with (4-3)p and then differentiating again, 

the following governing differential equations for the 

plane system are obtained, 

d 2q, 

CK, 
2 

qi 
7.3 1qi, q, ) 2 dM (4-4) 

dz 2i 
(> 

kk Ai U-Z 
k=l 

i=1, 

where 

121.1 . 
13 

2i Cl 
0hI 

JL 

0-1 
22 (4-5) i Ai li Pi 

I+I) 
A 

ai 
A bi 

4.3.2 Boundary Conditions 

The boundary conditions for the system of 

differential equations (4-4) are determined from the known 

conditions at the tops and the bases of the walls. 

At the upper free end, the bending moments in all 
2 

U 

z 
the walls are zero, so that the curvature ýz2 is zero. 

Hence, on differentiating equation (4-I)o the upper 

boundary conditions in terms of the vertical shear 

distributions become, 

dqi 
at z=H, dz = 0,1,2 

ý, 
3 (4.6) 
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If the walls are rigidly built in at the lower end, 
du . the slope ýF- is zero and, from equation (4-1). the Z 

lower boundary conditions become$ 

at z=0, qi 0 1,2., 3 (4- 7) 

4-3-3 Forces and Disp lacement 

From the known boundary conditionsp equations 

(4.6) and (4-7). the complete solutions for the vertical 

shear distribution functions qi may be obtained by 

solving the set of differential equations (4-4). The 

deflection and forces may then be obtained as follows: - 

Horizontal Deflection 

The deflection, u, may be determined by integrating 

equation (4-1) once, or integrating equation (4-3) twice. 

By integrating equation (4-3) twicej the horizontal 

deflection becomes, 

M dA de liqi dÄ dV- ) EI 

0000 i=l 

_ (du) Z_ 11 (4-8) dz 00 

in which (11-u) and u are the rotation and horizontal dz 00 
deflection at the base, i. e. z=0, respectively. For 

an infinitely rigid foundation, the rotation and horizon- 

tal deflection at the base are both equal to zero. 

Axial Forces in the Walls 

The axial vertical force in the cantilevered core 
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will be zero because the rigid pin-ended links transmit 

only axial forces. The axial forces in the coupled 

walls are given byy 

N 
ai qi dX N bi (4-9) 

in which N 
ai and N bi are the axial forces in coupled 

walls ai and bi respectively. The forces may be tensile 

or compressive depending on the direction of qi. 

Moments in the Walls 

As the curvatures of all the walls are equal, the 

moment in each wall will be proportional to its flexur-al 

rigidity. From equation (4.2) and (4.3) the internal 

wall momentj Mrj may be written as, 

EI du 
r dz 2 

ýH 
qi dX (4-10) 

JLL j=l 
z 

Shear Forces and Lateral Forces 

From considerations of the equilibrium of the cut- 

sections of coupled walls and the equilibrium of an 

elemental wall element, Fig. 4.2, the horizontal shear 

force and the distributed lateral force on any coupled 

wall may be shown to bep 

S 
dM 

rh 
dM 

r+ 
dMrv 

dz dz dz 
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dS d2Md2M 
Wrr rv (4-12) 

dz dz 2 dz 2 

where 

S= horizontal shear force in an individual wall r 

W= distributed horizontal force (arising from the 
r 

distributed forces transmitted by the rigid 

pin-ended connecting links and the externally 

applied distributed load acting directly on the 

wall) acting externally on an individual wall r 

"r= internal wall moment =M rv 
+M 

rh 
" 

rh = component of moment due to horizontal forces 

acting externally on wall r 

" 
rv = component of moment due to vertical shear 

distribution acting on wall r 

The expressions for M 
rv 

for the coupled walls ai and bi 

are given by, 

H 

for wall ai, m 
rv 

gai 
ýqI 

dX 

z 
(4-13) 

for wall bij m 
rv 

gbi qi dX 

z 

in which g ai and gbi are the distances between points of 

contraflexure and the centroids of walls ai and bi 

respectively. 

Equations (4-11) and (4-12) are also valid for the 

cantilevered core. As the connecting links are assumed 

to be incapable of transmitting vertical forces, the 

component of moment due to the vertical forces will be 
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zero for the cantilevered core. 

Generally the shear force at the top of each wall, 

obtained by evaluating equation (4-11) at z=H, does 

not vanish. To produce this shear force, a resultant 

concentrated lateral force must be acting at the top of 

the wall. Hence it can be deduced that concentrated 

axial forces exist in the top connecting links and the 

top substitute laminae. Using equation (4-11), the 

resultant concentrated lateral force at the top of any 

wall r may be written as, 

dM dM 
Pr (Tz r) 

z=H 
- (dz ry) 

z=H 
(4-14) 

in which P is the resultant concentrated lateral force 
r 

at the top of wall r. 

For any coupled wall assembly i, (i = 1,2 or 

the lateral forces acting externally on the assembly 

become., from equations (4-10) to (4-14)p 

W. W+ 
E(I 

ai 
+I bi) d4 U 

dqj 

3- am 
Wbi =I 

dz4 
az 

(4.15) 

p+p 
E(I 

ai 
+ Ibi) d3u +1 qil i ai bi 

I- 
I dz3 i 

Z=H 

Wi, Pi = distributed lateral force and resultant 

concentrated lateral force at the top 

respectively, acting externally on coupled wall 

assembly i 
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Axial Forces in the Connecting Links and the 

Substitute Lamina 

From the equations derived earlier in the Chapter 

it may be seen that the vertical shear distributions, 

internal wall moments, horizontal shear forces, lateral 

forces on each wall, and the deflection of the structure 

are independent of the actual wall-wise distribution of 

the Applied loads. These functions are dependent only 

on the resultant applied load W. However, as will be 

seen subsequently, the axial forces in the connecting 

links and the substitute lamina are dependent on the 

wall-wise distribution of the applied loads. Therefore, 

to determine these axial forces the actual applied load 

on each wall must be known. 

Assume that the resultant applied load W is of 

the form, 

3 
W E- (Wai + Wbi) + Wcr 

i=l 

where,, 

W 
ai' 

W bi distributed lateral applied loads on coupled 

walls ai and bi respectively 
ff 

cr 
distributed lateral-applied load on the 

cantilevered core. 

By making a fictitious vertical cut along'any 

series of rigid pin-ended connecting links and then 

considering the equilibrium, of a horizontal element of 

either part of the partitioned-structurep the axial forces 

in the rigid pin-endedIinks may be determined. The 
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axial forces in any substitute lamina may also be 

determined in a similar manner. For instance, the axial 

forces in the connecting links between the coupled wall 

assemblies 1 and 2, and the axial forces in the 

substitute lamina of the assembly 2 may be shown to be, 

E(I 
al 

+I bd d4u +1 
ýql 

w+w 1,2 dz4 1 dz al 
+ Wbl 

E(I 
al 

+I bd 
I 

(d3u) - jjql) 
dz3 

z=H 
I 

z=H 

(4.16) 
E(I +I+I 4u dq 

w2 al bl a2) d+11 
Iý -Z4 1 -d z 

ýq 2+ TV ga2 dz a1+ 
lRb I+ 'Ra 2 

E(I 
al 

+I bl +I 
ad d3u 

c2=-I- (- - ga2 (q 
2) 

z=H-11(ql) dz3)z=H Z=H 

where, 

w 1,2 ý distributed axial force in the connecting links 

between the assemblies I and 2 

C 1,2 ý concentrated axial force in the top connecting 

link between the assemblies 1 and 2 

w2 distributed axial force in the substitute 

lamina of the assembly 2 

C2 concentrated axial force in the top substitute 
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lamina of the assembly 2. 

From consideration of equation (4-16) it is evident 

that the axial forces in the connecting links and the 

substitute lamina depend on the actual wall-wise 

distribution of the applied loads. 

4-3-4 Plane Systems with Groups of Identical 

Coupled Wall Assemblies 

Consider a general plane system consisting of m 

cantilevers (walls and cores) and K distinct groups of 

coupled walls. The numbers of the coupled wall 

assemblies in groups 1., 2s 3 ... Kp are n1, n2$n3 ***nK', 

respectively$ and the coupled wall assemblies within the 

same group are identical. 

Following the same procedure as beforej it may then 

be shown that there will be K independent second-order 

governing differential equations of the form, 

d2 Qj K 
22 (> lj pj 2 dM 

dz 2i Qi - /-Ii 
j=l 

-- 
li Q i) = Ai uz 

i=1,2, 

where, 

12 1 l. 
13 

2C IL a- 
bg h 

2. 

n. 
c2.2. ei 

ai 
+i bi) + 'cr 



lis 

n. al. 3- ai 

bi n bi 

Icr ý sum of second moments of area of all the 

cantilevers 

cz 
221 
i /Ili i Pi 

+ 
A 

ai 
A bi 

n. A 
al I at 

A bi ý ni A bi 

Qi = 

q, vertical shear distribution in each assembly 

of coupled wall group i 

(4-18) 
contd. 
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The parameters li, bi, Ici' 
ail 

Ibi IA ai pA bi are those 

of a typical assembly of coupled wall group i. 

Comparison of equations (4.4), (4-5) and (4-17), 

(4-18) shows that the general plane system can be trans- 

formed into an analogous plane system consisting of one 

simple cantilever and K coupled wall assemblies. The 

I---- 
stiffness components, Icip A 

ai' 
A bi' Iai' Ibi of the 

analogous coupled wall assembly i are the combined values 

of the corresponding properties of the real assemblies of 
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coupled wall group i. The stiffness I 
cr of the 

analogous cantilever is the combined second moments of - 

area of all the cantilevers. 

All the equations derived previously are valid for 

the analogous plane system, recognising that the trans- 

formed analogous properties are to be used. The forces 

in any real assembly of coupled wall group is except the 

axial forces in the substitute lamina, are equal to 1/ni 

of the corresponding forces in the analogous coupled wall 

assembly i. The forces in any real cantilever are 

proportional to those of the analogous cantileverp where 

the proportional ratii are the ratii of the second 

moments of area of the real and analogous cantilevers. 

The deflections of the real and analogous structures 

will be equal. 

The axial forces in the rigid pin-ended connecting 

links and the substitute laminae must be determined from 

the actual structural configuration and actual loading of 

the system. 

4.4 Assumptions and Basis of the Reduction of 

Symmetrical Three-dimensional Structures to 

Equivalent Plane Systems 

In the analysis of three-dimensional structures, the 

following assumptions are made: 

1. The floor slabs are infinitely rigid in their own 

planes so that the overall cross-sections of the 

structures suffer only rigid body displacements in 

their own planes. 



117 

2* Resistance to out of plane deformations of the 

floor slabs are negligible so that the floor slabs 

may be considered as transmitting only in-plane 

axial forces. 

Ordinary beam theory is taken to be valid for 

individual wall$. 

St. Venant's torsion may be neglected due to the 

relatively small thickness of each wall. 

The usual assumptions of the continuous medium 

approach are valid. 

Consider a symmetrical three-dimensional shear wall 

structure., the plan of which is shown in Fig. 4.3o 

consisting of a number of coupled wall assemblies and 

cantileveredelements such as open-section cores and plane 

walls. The vertical axis of symmetry OZ is the line of 

intersection of the planes of symmetry OZX and OZY. The 

loading function W is assumed acting obliquely, to the 

planes of symmetry. 

The applied load W can be replaced by a statically 

equivalent load system consisting of the loads WX and Wy, 

acting in the planes of symmetry OZX and OZY respectively, 

and the accompanying torsional moment M T* For a linear 

structure, the actions of these three load vectors may 

be analysed independently and then superimposed to give 

the solution to the actual loading system. 

Under the action of the load W which passes through 
y 

the axis of symmetry OZ, the symmetrical structure will 

be deflected in the Y direction onlyO The displacements 



118 

of all the walls must be equal because they are 

constrained to act together by the assumed infinitely 

rigid floor slabs. The analysis then becomes that of 

a plane system since only one deflection function, 

deflection in the Y direction, will be sufficient to 

describe the behaviour of the structure. From the 

assumption that only the horizontal in-plane forces 

are transmitted through the floor slabp the reduced plane 

system can be considered as having rigid pin-ended 

connecting links and, hence, the method of analysis 

described earlier in the Chapter is applicable. The 

behaviour of the structure subjected to the load Wx may 

be analysed in a similar manner. 

Under the action of the torsional moment M T' the 

symmetrical structure will rotate about the axis of 

symmetry OZ. The resultant horizontal displacement of 

each wall will be proportional to its distance from the 

axis of rotation OZ by virtue of the assumption 1. The 

proportional constant is the horizontal rotation about 

the vertical axis. 

According to the assumption 4s the torsional 

resistance of the structure is due entirely to the 

differential shearing action of each wall. Using 

ordinary beam theory, the torsional equilibrium equation 

may be established in terms of the unknown vertical shear 

distributions in the laminae and the third derivative of 

the horizontal rotation. From the continuity equations 

for the 'cut' laminae and the overall torsional equili- 
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brium equation, a system of simultaneous second-order 

governing differential equations for the structure may 

be obtained. The system of differential equations thus 

obtained may be shown to be identical to those derived 

from an analogous plane system with rigid pin-ended 

connecting links subjected to a lateral loading function. 

The structural properties and the loading function of 

the analogous plane system are the transformed values of 

those of the real structure. The transformation 

characteristics depend on the relative orientation of the 

principal axes as well as the types (planar or non-planar) 

of the walls in the real structure. 

The analyses of different classes of symmetrical 

three-dimensional shear wall structures are presented in 

detail in the subsequent sections. 

4-5 Structures Composed of Cantilevered Wall and In- 

Plane Symmetrical Coupled Wall Assemblies 

A coupled wall assembly is termed in-plane 

symmetrical if the connecting beams axes lie in a 

vertical plane of symmetry of the assembly. The plan 

of a typical symmetrical structure composed of cantilevers 

and in-plane symmetrical coupled wall assemblies is shown 

in Fig. 4.3. The structure consists of three distinct 

groups of coupled wall assemblies, designated as groups 

1,2 and 3, and a number of cantilevers. Any lateral 

load W may be replaced by the statically equivalent loads 

Wx, Wy acting in the planes of symmetry OZX and OZY 

respectivelys and the accompanying torsional moment M,. 
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The numbers of the cantilevers and the coupled wall 

assemblies in groups 1,2,3 are denoted as n cr , n,, n 2' 
n3 respectively. For the structure shown in Fig. 4.3, 

the values of n cr , n,, n2, n3 are 4,81 4,4 respectively. 

Throughout the analysis the shear centre axis of each 

wall is taken as the vertical wall axis. 

Several variable integer notations and letter- 

integer notations are used in the analysisp these are 

defined as follows: - 

i-j : refers to assembly i of coupled wall group i 

cr-k : refers to cantilever cr-k 

aij bi : refer to walls a and bp respectively$ of a 

typical assembly of coupled wall group 

ai-j., bi-i : refer to walls a and b, respectively, of 

coupled wall assembly i-i 

4.5.1 Analysis of Pure Bending Action 

For simplicity, it will be assumed that the major 

principal axes of the walls a and b of each in-plane 

symmetrical coupled wall assembly are perpendicular to the 

axes of the connecting beams, Under the action of the 

applied load Wx, passing through the axis of symmetry OZ, 

all the walls deflect equally in the X direction and with 

zero component of deflection in the Y direction. The 

continuity equations for the 'cut' substitute laminae of 

the coupled wall groups 11 2 and 3 may be written as, 

respectively, 
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c du 
_I() ql_i - -! ( 

1+1). 
1-i dz E 121 

cl 
EA 

al 
A bl 

zH 

dX d--, 

0 

i=1,2, ... 

c du I() !(II). 
2 2-j dz E 121 

c2 
2-i EA 

a2 
A b2 

z 

q 2-i dX dl; - 2-j ý0 

n 

c ! LU- I( )3h 
q11-+I). 3 3-k dz E 121 3-k -T (T 

A 0 a3 b3 

z 

qdX di; - 0 3-k 3-k 

k=1,2 ... n3 

wherej 

(4.19) 

qi_j = vertical shear distribution in the substitute 

lamina of assembly i-i 

= relative vertical displacement between the 
JL-j 

bases of walls ai-i and bi-j 

A 
ai ,A bi = cross-sectional areas of walls a and b, 

respectively, of a typical assembly of 

coupled wall group i 
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li, bij, Ici = distances between the centroids of walls 

a and b., clear distance between walls a 

and b, and second moment of area of 

connecting beams, respectively, of a 

typical assembly of coupled wall group i 

C i-i = cosine of the angle the vertical plane of 

connecting beams of assembly i-j makes 

with the X axis 

u= horizontal displacement of the structure in 

the X direction 

However, as will be shown subsequently in section 

4.7.1, under the pure bending action the vertical shear 

distributions in the in-plane symmetrical coupled wall 

assemblies which are identical are proportional to one 

another. The proportional ratiosare the ratios of the 

displacements of the assemblies along the planes of their 

connecting beams. Therefore, for the case considered, 

the relationships between the vertical shear distributions 

of the assemblies of the same group may be written as, 

C. - 
q i-j c 

: L-3 qi-k (4.20) 
i-k 

In consequence, only one independent continuity 

equation exists for each group of the coupled walls. 

Adopting the coupled wall assemblies 1-1,2-1, and 3-1s 

as the reference assemblies for groups 1,2 and 3 

respectively, a set of three independent continuity 

equations for the structure may be written as, 
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býh du 
i dz 121 .) 

"i-1 -EA 
1 

E 
ei. ai 

A bi 

zH 

q i-1 dX d0 (4.21) 

0 
1,2,3 

Using the differential equation of the deflected 

curve of a beam, (cf. equation (4.2)), and the linear 

property of the system, the moment equilibrium of the 

structure may be established as, 

2E1d23n ýH 
c-1 11 

=M-) qi_l dA 
I dz 2 i=i i=i c i-i 

z 

(4.22) 

in whichj 

Il +12+13+ Icr 

n. 3. 

m, a3- 
+Im 

bi) c 2_j 1., 2, 
JL 2Ti Cl-I j=l 

n 
C2 + (i -c2 cr c2 cr-k m, cr-k cr-k), n)cr-k 

1-1 k=l 

3 ni 
c 2- (In, 

ai 
+ In, bi)(1 i 

j=l 

(4.23) 

C cosine of the angle the minor principal axis of 
cr-k 

cantilever cr-k makes with the X axis. 

Im, 
cr-k' 

In, 
cr-k -"ý the major and minor principal second 
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m,, ai' 
Impbi 

I 
nyai-' 

In. bi 'ý 

M= 

moments of area, respectively, of 

cantilever cr-k 

the major principal second moments of 

area of walls ai and bi respectively 

the minor principal second moments of 

area of walls ai and bi 

moment about the Y axis, due to the 

applied load Wx 

From equations (4.21) and (4.22), the set of 

governing differential equations for the structure under 

the action of the load Wx may be shown to be, 

d2 Qi 223 
ii ( 1: ij Q1 

dz 2 Qi 
j=l 

2d 
(M/C 

1-1) 
/: 3i dz 

i=1, 

where, 

Qj Biv i-i q, 
_j 

V. 
c 1-1 

JL-j Ci-i 

n. 12 /C2 
3. 

Z: (C 

j. 1 

12 1iIB 
/3jL 0h 

JL 

(4.24) 

(4.25) 

= 
�1i )J± 
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I(AI+I) (4.25) 
B ai 

A bi contd. JL JL 

For the structure free at the top and rigidly 

fixed to an undeformable foundation., the boundary 

conditions for the set of differential equations (4.24) 

may be shown to be, 

at z=H, 
dQ 

0i= 1p 2P 3 dz 
(4.26) 

at z=0, Qi 0i=1,2,3 

Inspections of equations (4-17), (4-18), (4.24) and 

(4.25) show that the analysis of pure bending action can 

be reduced to the analysis of an analogous plane system. 

It may be shown that the set of differential equations 

given by equation (4.24) is identical to that obtained 

from an analogous plane system consisting of three 

analogous coupled wall assemblies and one cantilever, 

and subjected to a horizontal loading system which 

produces a total moment at any level equal to CM 

There are direct correspondences between the 

parameters of the analogous coupled wall assemblies and 

those of the real coupled wall assemblies. The parameters 

of an analogous coupled wall assembly i are the trans- 

formed parameters of the real assemblies of coupled wall 

group i. The transformation relationships may be shown 

to be as follows: - 

B. I 
m, ai JL M, aJL 

(4.27) 
B bi iImj bi 
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BI 
ci i C3. 

B. A 
. al I ai 

Abi ýBiA bi 
(4.27) 

b b. contd. 
JL 

JL JL 

h 

Where the parameters with the upper hat, are the 

analogous parameters. 

For the analogous cantilever, its second moment of 

area is given by, 

Icr = Icr (4.28) 

where Icr is the same as that given in equation (4.23). 

The analogous loading system is a linear trans- 

formation of the actual load Wýs cf. equations (4-4) and 

(4.24), and given by, 

Wx 
W= C1_1 (4.29) 

where W is the analogous applied load. 

The analogous plane system considered is based on 

the plane of connecting beams of the datum assembly 1-1 

since all the transformations are related to that plane, 

i. e. involving C, 
_,, 

In general, any assembly may be 

chosen as the datum assembly but the parameters of the 

analogous system must be changed accordingly. 

The behaviour of the structure under the action of 



127 

the load Wy may be similarly analysed, and an equivalent 

analogous plane system obtained. If the assembly 1-1 

is chosen again as the datum assembly, the equations 

derived earlier are applicable provided that, 

MWx is replaced by Wy 

(ii) u is redefined as the deflection in the direction 

of the applied load Wy 

(iii) C i-j and C 
cr-k are redefined as sines, instead 

of cosines, of the corresponding angles. 

4.5.2 Analysis of Pure Torsional Action 

Under the action of the torsional moment M T' the 

symmetrical structure will rotate about the axis of 

symmetry OZ. The resultant horizontal displacement of 

any wall will be proportional to its distance from the 

axis of rotation due to the assumed infinite in-plane 

rigidity of the floor slabs. Therefore, for any wall, 

d= 9x L (4-30) 
magnitude of 

where d is the resultant horizontal displacement, L theA 

horizontal vector of the shear centre of the wall, and 

e the horizontal angle of rotation. The component of 

horizontal displacement in any direction may be obtained 

by resolving d vectorially. 

Using the continuous medium technique, the contin- 

uity equation for each coupled wall assembly may be 

obtained. However, 'as will be shown subsequently in 

section 4.7.2p the vertical shear distributions in 

identical in-plane symmetrical coupled wall assemblies 
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under the pure torsional action are proportional to one 

another. The proportional ratios are the ratios of the 

distances of the planes of connecting beams of the 

assemblies from the axis of rotation. In consequence, 

only one independent continuity equation may be obtained 

from each distinct group of coupled walls. Adopting the 

assemblies 1-1,2-1,3-1 as the reference assemblies for 

coupled wall groups 1,2,3 respectively, a set of 

independent continuity equations for the structure may 

be shown to bep 

R de býh 
+I L 

i-I dz 
(IJ2I 

cl 
EA 

ai 
A bi 

z H, 

dX di - 
0 rc 

i=I, 

where Ri_j is defined as the distance of the plane of 

connecting beams of coupled wall assembly i-j from the 

axis of rotation. 

Using ordinary beam theory, the moments in each 

individual wall about its principal axes may be written 

as, 

mm =m mh 
+ mmv 

Mn=M 
nh +M nv 

where, 

= EI Rda 
mm dz 2 

= EI Rde 
nn dz 2 

(4-32) 

Mn 'ý internal wall moments about the major and minor MM -' 
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principal axes respectively 

* 
mh' 

M 
nh = moments about the major and minor principal 

axes respectively, due to horizontal loads 

* 
mv ,M nv = moments about the major and minor principal 

axes respectively, due to vertical loads 

*m, Rn= projections on the major and minor principal 

axes, respectively, of the horizontal vector 

of the shear centre of the wall (a horizontal 

vector of any point is the component vector 

which is perpendicular to the axis OZ) 

On differentiating equation (4-32),, the orthogonal 

horizontal shear forces in each wall becomej 

s 
dM 

nh 
_- EI R 

d39 + 
dM 

ny 
mý- -dz nn dz3 dz 

(4-33) 

s 
dM 

mh =_ EI R 
d39 

+ 
dMmv 

n=- dz mm dz3 dz 

in which SM and Sn are the horizontal cross-sectional 

shear forces in the directions parallel to the major and 
I 

minor principal axes respectively. The expressions of 

M 
nv and M 

mv 
for any coupled wall may be obtained from 

equation (4-13). 

For practical structure, the thickness of each wall 

is usually small in comparison with its other dimensions. 

Consequently, the St. Venant's torsion is comparatively 

insignificant and can usually be neglected. Therefore, 

by neglecting the St. Venant's torsion, the torsional 

resistance of the structure consists entirely of the 

torsional resistances developed by the cross-sectional 
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shear forces. Hencep for the torsional equilibrium of 

the structure, 

M (S R+SR (4-34) 
T all walls mnnm 

where 
2: 

(S R+SR) is the summation of the 
all walls mnnm 

torsional resistance developed by each wall. 

On substituting the expressions for shear forces 

given in equation (4-33) into equation (4-34)s the 

overall torsional equilibrium equation becomes$ for the 

structure considered$ 

R2 EI d3a 
=_M+3 

ni 
) qi (4-35) 

It3TR dz i=1 j=1 i-I 

where, 

3ni2 
It 2' 

7= (Ri_j )(Im, 
ai 

+Im, bi) + It, 
cr R1 i=1 j=1 

3nI 

11Z: 
E 

(I R2+IR2 t, cr = -2 n, ai n, ai-i n, bi nbi-j R 1-1 3. =1 J=1 

n r22 T, (Im, 
cr-k 

R 
m, cr-k + "n, 

cr-kRn, cr-k) k=l 

(4-36) 

R 
n, ai-j = projection of the horizontal vector of the 

shear centre of wall ai-i on its minor principal 

axis. 

R 
n, bi-j = projection of the horizontal vector of the shear 

centre of wall bi-j on its minor principal axis. 

R 
m., cr-k ,R n2cr-k - projections of the horizontal vector of 
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the shear centre of cantilever cr-k on its major 

and minor principal axes respectively. 

On multiplying the continuity equations for the 

assemblies 1-11 2-11 3-1y by IIR2 
R22: 

ý 
1 -j 1-1 j=1 

121n32 R 2- R respectively, R 1-1 R 2-1 j=J 2-j R1_IR 3-1 j=1 3-j' 

then differentiating twice and substituting for d3e from ý -z37 

equation (4-35). the set of governing differential 

equations for the structure under pure torsion may be 

obtained as, 

04 
22312 MT 

Ai (j=l AA izl-l 

1,2,3 (4-37) 

wherej 

D. t. q X X-j i-j 

n. 
5--: l 0- 

R 2_ i=i JL 
11 

R 1-1 
R i-j 

12 11D. 
(4-38) 

2 ci i JL 
0hI 

JL t 

C. Ci2 
2 

1 13i 1i Pi 

+ 
't 

+AI) 
al bi 
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For the structure free at the top and rigidly 

fixed to an undeformable foundation, the boundary 

conditions are the same as those given by equation (4.26). 

Comparisons between equations (4-17), (4-18), 

(4-37) and (4-38) show that thp pure torsional analysis 

can be reduced to the analysis of an analogous plane 

system. The set of governing differential equations 

obtained from equation (4-37) is identical to the system 

of differential equations for an analogous plane system 

consisting of three analogous coupled wall assemblies and 

one analogous cantilever, subjected to a horizontal 

loading system which produces a total horizontal shear 

at any level equal to 
MT The analogous parameters 
R 

are given byp 

.1 

A D. A 
ai 3. ai 

A bi =DiA bi 

DI 
m, aJL 3. in., a 3- (4-39) 

m, bi DiIm,, bi 

DI 
C3. i ci 

lcr ý It, 
cr 

where the parameters with the upper inverted hat2 2 

are the analogous parameters. 

The analogous loading system is an equivalent 

horizontal loading which produces a total horizontal shear 
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at any level equal to R 

MT 
i. e. 

dM MT 
(4-40) dz R 

in which M is the moment at any level resulting from the 

analogous loading system. 

The analogous plane system considered is based on 

the datum assembly 1-12 since all the transformations are 

related to the assembly 1-12 i. e. involving the constant 

Rj_j* Generally any assembly may be chosen as the datum 

assembly, but the analogous parameters must be changed 

accordingly. 

4.5.3 Relationship between Real and Analogous 

Forces and Displacements 

The analyses of pure bending and pure torsional 

actions can be conveniently carried out using the equiv- 

alent analogous plane systems. After the analogous 

forces and displacements have been determined they can 

be transformed back to give the real forces and displace- 

ments in the real structure. 

Pure Torsional Action 

From considerations of equations (4-3) and (4-35), 

it may be shown that the displacement of the analogous 

system is the in-plane displacement of the plane of the 

connecting beams of the datum assembly. Thereforep for 

the system considered in which the assembly 1-1 is chosen 

as the datum assemblyp the horizontal rotation of the 

structure may be expressed as, 
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-d a 0=R (4.41) 

where da and E) are the analogous displacement and the 

horizontal angle of rotation of the structure respectively. 

The sense of the rotation e will be the same as that of 

the applied torsional moment M,,. From considerations 

of equations (4-30)y (4-32), (4-33) and (4-38) it may 

be established that the magnitudes of the real and 

analogous forces are related by, 

F (4-42) 

in which FrjFa"fS, fd are the real force, the 

corresponding analogous force, the corresponding real- 

analogous stiffness factor and the corresponding real- 

analogous action factor respectively. 

The factors fS and fd may be expressed asp 

K 
fs Tr 

a 

G 

Gr 
a 

where,, 

(4-43) 

Kr= real stiffness appropriate to the force considered 

Ka= corresponding appropriate analogous stiffness 

Gr= distance between the plane (vertical) of action 

of the force considered and the axis of rotation 

oz 

G distance between the axis of rotation OZ and the 
a 

datum plane upon which the analogous system is 

based 
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The plane of action of any vertical shear distribu- 

tion qi_j is the plane of connecting beams of assembly i-j. 

The planes of actions of moment and shear forces (moments 

about the principal axes and shear forces in the direct- 

ions parallel to the principal axes) of any wall are 

taken to be the planes which pass through the shear centre 

of the wall., since the shear centre axis of each wall is 

used as the reference wall axis. The appropriate 

stiffnesses for the transformations of the vertical 

shear distributions are the cross-sectional areas of the 

coupled wall assemblies. For the transformations of 

bending moments and shear forces the appropriate stiff- 

nesses are the second moments of area. Howeverp it is 

to be noted that in using equation (4-42) to determine 

the internal moment and shear force in the plane 

perpendicular to the connecting beams of each coupled 

wall the corresponding appropriate analogous forces'and 

stiffnesses are those of the analogous cantilever. 

From equations (4-42) and (4-43)o the expressions 

for real forces can be easily obtained. For instancep 

the vertical shear distribution qi_j, and the moment 

m 
m., cr-k are given byp respectivelyp 

Q: L i-j DiR 1-1 

(4-44) 
lmgcr-k R 

m, cr-k MM 
my cr-k R cr Icr 1-1 
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in which M 
cr 

is the moment in the analogous cantilever. 

The horizontal forcesy parallel to the plane of 

connecting beams, acting externally on any real coupled 

wall assembly i-i are given byp cf. equation (4-12), 

W. .=-d (S +s JL-j dz n, ai-j n, bi-j 

(4-45) 

p i-j =- (S 
n, ai-i 

+sn.. bi-j) 
z=H 

where 

w 
1-i ý distributed horizontal forcey parallel to the 

plane of connecting beams, acting externally on 

assembly i-j 

P i-i = concentrated horizontal force at the top, parallel 

to the plane of connecting beamsp acting 

externally on assembly i-j 

Sn, 
ai-j-2 

Sn, bi-j = shear forces in the walls ai-i and 

bi-j, respectively, acting parallel 

to the plane of the connecting beams 

The force W 
1-i 

(or Pi_j) is positive if its direction has 

the same sense as that of the component of displacement 

along the plane of the connecting beams. 

It has been shown in section 4.3.3 that the axial 

forces in the substitute lamina, and hence in the 

connecting beams, depend on the actual distributions of 

the loads on the walls a and b of the assembly. 

Therefore, to determine the axial forces in the 

substitute lamina of any real coupled wall assembly a 

pattern of wall-wise distribution of the loads,, trans- 
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mitted through the floor slabs, must be postulated. As 

an illustration, suppose that the loads transmitted 

through the floor slabs and acting on each coupled wall 

assembly i-j are divided between wall ai and bi in 

proportion to their second moments of area. The 

distributed axial force ýWi-j and the top concentrated 

axial force Ci_j in the substitute lamina of any coupled 

wall assembly i-j may then be shown to be, respectively. 

d 
w 

3. -j 
j-Z (S 

n, ai-j 
+ 7c W 

i-i 

(4-46) 

C. (s +P I-j n, ai-i z=H 

I 
in which 7r, is equal to TI 

mgai-i 

m, ai-i m, bi-j 

Pure Bending Action 

In the case of pure bending action) the analogous 

displacement is the component. of real displacement along 

the plane of connecting beams of the datum assembly. 

The relationships between the real and the analogous 

forces given by equation (4-42), and the expressions 

given by equations (4-45), (4-46) are valid provided that 

the parameters Ga and Gr are redefined as follows: 

Ga= cosine of the angle the plane of connecting beams of 

the datum assembly makes with the directioncf the 

applied load which causes the pure bending action. 

Grý cosine of the angle the plane of connecting beams of 
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the assembly considered makes with the direction of 

the applied, load. 

4.6 Structures on Elastic Foundations 

In the preceding analysis it has been assumed that 

full fixity exists at the base of the structure. However, 

the theory can be extended to deal with flexible 

foundation conditions. It will be assumed that each 

wall is supported on a linearly elastic foundation such 

that the rotational and vertical displacements of the 

base are proportional to the imposed bending moment and 

vertical force, respectively. It is further assumed that 

the foundations under the walls which are identical possess 

identical force-deformation characteristics. 

4.6.1 Lower Boundary Conditions for Pure Bending 

Action 

Consider the pure bending action, under the load 

WX., of the structure shown in Fig. 4-3. From the moment- 

curvature relationships and equation (4-9)y it can be 

shown that the rotation at the base of each wall and the 

relative vertical displacement between the bases of walls 

a and b of any coupled wall assembly i-j may be written 

as, 

2 
(du) = 

Ei (d u) 
dz 

z=O 
Ka dz 2 

z=O 
(4-47) 

H 
(-K +K qi_j dX 

v, ai v, bi 
0 
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where, 

2 
2 Ci_j (Koln, 

ai 
+K0 

in, bi) c 1-1 i=l j=l 

+ (I -c 
2_ (K 
i en, ai 

+K Gn, bi)l 

er 
c2K+ (I -c2 )K 

cr-k empcr-k cr-k oncr-k 

(4-48) 

am, ai 

e n., ai 

= sum of the transformed rotational stiff- 

nesses of the foundation under each wall 

= rotational stiffness, about the major 

principal axis of a typical wall ai of 

coupled wall group iy of the foundation 

under the wall 

= similarly defined as Kem, 
ai, 

but referred 

to the minor principal axis of the wall 

K 
v, ai' 

K 
v, bi ý vertical stiffnesses of the foundations 

under walls ai and bip respectivelyp of 

a typical assembly of coupled wall group 

i, 
K 

em, bi ,K Qn, bi , Kom, 
cr-k' 

K 
Gn, cr-k are defined in a 

similar manner, and Ci_j, I are as previously defined in 

section 4.5-1. 

From equations (4-21), (4-22), (4.24), (4o47), 

(4-48) the lower boundary conditions for Qi may be shown 

to bep 
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at z=o, 

Q=2 Ei 
m 

z=O 1 
K C, - 11- 

8 Bi Kv 
y ai 

Kv 
sbi 

dX (4-49) Qi d), i P-i 

0 

i=1, 

where ! 2ijj 13i., Bi are as previously defined in equation 

(4.25). 

It may be shown that the boundary conditions given 

by equation (4-49) are identical to the lower boundary 

conditions for the equivalent analogous plane system. 

The rotational and vertical stiffnesses of the analogous 

foundations are related to those of the real foundations 

by the following relationshipsp 

K B. K 
v, al I v. al 

K 
v, bi BiKv, bi 

K em, ai 
BiK amai 

(4-50) 
K em, bi BiK em., bi 

13ni3 K 
(), cr 2> 

(K 
on, ai 

+K on, bi) 
=(Bi). 

c 1-1 i=l i=i i=l 

n 
2 Sr 

(C2 (K 
gnpai +K en)bi) + r-k) ý1-1 

k=l c 

n cr 
(K 

em,, cr-k -K qn2cr-k) +21 ->- K 
qnj cr-k C11 k=1 

rotational stiffness of the analogous cantilever 
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where the parameters with the upper hat, are the 

analogous parameters. 

4.6.2 Lower Boundary Conditions for Pure 

Torsional Action 

Consider the pure torsional action, under the 

torsional moment M T2 of the structure shown in Fig. 4.3. 

In a similar manner as in the case of pure bending action, 

the horizontal rotation of the structure at the base and 

the relative vertical displacement between the bases of 

walls a and b of any coupled wall assembly may be shown 

to be, respectively, 

(do )= 
EIt 

(d 
29 

) (4-51) 
dz 

Z=O 
K to dz 2 

Z=O 

H 
ýi-j (K I+Kq, 

-i 
dX (4-52) 

v. aJ. v, bi 
0 

where, n 

K=IZ: 
7 (R 2K+R2K 

te 2 m, ai-i em, ai m, bi-j Gm, bi) R 1-1 JL=l i=l 

ni 
(R 2K+R2K 

R 2_ n, ai-i Gn, ai nbi-j on, bi) 

n 
2 2r 

(2K+ R2 K 
R2- k=l 

lt;,, cr-k omcr-k n, cr-k qn, cr-k) 
11 

(4-53) 

and other parameters are as defined or given earlier. 

On integrating equation (4-35)o making use of the 
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upper boundary conditions of zero moments at the topj 

the second derivative of the horizontal rotation of the 

structure at z=0 may be written as, 

(d 
20 

)I(IH MT dX +R3 ii 

H 

QidX 
dz 2 

Z=o 
EIt j2 i=l 1-1 00 

(4-54) 

in which Qi, i=1,2,3, are as previously given in 

equation (4-38). 

From equations (4.31)s (4-37), (4-38), (4-51) and 

(4-52), the lower boundary conditions for Q. may be 

shown to be, 

at z= 

Qj 21 
, 
4i EIt 

[R 

1-1 K to 

H 

MT dX Di. 
L111 

0 

H3H 

+K dX K 
Li 

j 1-i dX 
vp al v., bi to i=l 

i=1,2,3 (4-55) 

in which Di, i=1,2,3, are as given previously in 

equation (4-38). 

As in the case of pure bending action, the lower 

boundary conditions given by equation (4.55) may be 

obtained from the equivalent analogous plane system 

supported on the elastic foundations. The rotational 

and vertical stiffnesses of the analogous foundations are 

related to those of the real foundations by the 
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following relationships, 

K 
Om i Di K i ,a a m, a 

K em, bi Di K 
9mbi 

K D. K 
v, ai I v, ai 

K 
v., bi D. 

i 
K 

v, bi 

3 ni 
K 

cr 2 (R 
n, ai-j 

K 
an, ai 

+Rn, bi-j Kan, bi) R1 

n cr 
(R 2 Ke +R2K 

R 2_ k=l m, cr-k mcr-k n, cr-k on, cr-k) 
11 (4-56) 

where the parameters with the upper inverted hatp ', 

are the analogous parameters. 

4.7 Constrained Displacements of Identical Non-planar 

Coupled Wall Assemblies 

From the analysis presented so far in this Chapter, 

it is evident that by using the continuous medium 

approach the analysis of any symmetrical structure 

composed of cantilevers and in-plane symmetrical coupled 

wall assemblies may be reduced to the analyses of the 

analogous plane systems for bending and torsional actions. 

The behaviour of the analogous plane system for either 

bending or torsional action is described by a system of 

second-order governing differential equations with the 

vertical shear distributions as dependent variables. 

Although there may be a large number of coupled wall 
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assemblies in the structure, the number of the 

independent differential equations for the system will 

be at most n, where n is the number of 0 
the distinct groups 

of coupled wall assemblies. The reduction of the total 

number of the differential equations) generally one 

equation for each coupled wall assembly, to a system of 

n (or less than n) equations is possible because of the 

linear relationships between the vertical shear 

distributions in the identical in-plane symmetrical 

coupled wall assemblies. It may be noted that the linear 

relationships between the vertical shear distributions 

in the identical in-plane symmetrical coupled wall 

assemblies under both the pure bending and torsional 

actions have been stated and used in sections 4.5.1 and 

4.5.2, without proofs being given. The validity of the 

statements will be substantiated in this section. 

If the coupled wall assemblies are not in-plane 

symmetrical, the vertical shear distributions in the 

assemblies will not generally be linearly related although 

the assemblies are identical. Consequently, the number 

of the independent differential equations are usually 

greater than the number of the distinct groups of coupled 

wall assemblies present in the structure. The exact 

number of the independent differential equations for 

either the bending or torsional actions will depend on the 

relative positions and orientations of the assemblies. 

The behaviours of non-planar coupled wall assemblies 

which are identical and subjected to the constrained 
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translation and the constrained rotationp i. e. corres- 

ponding to the pure bending action and the pure 

torsional action respectively of symmetrical structuresp 

will be investigated in the present section. 

4.7.1 Constrained Translation 

Consider the two identical non-planar coupled wall 

assembliesp I and 2, shown in plan in Fig. 4.4. Assume 

initially that both assemblies undergo independent 

translational displacements, and define, 

U. resultant horizontal displacement vector of the 
3. 

assembly i, i=I or 2, 

the centroidal vector, a horizontal vector passing 

through the centroids of both walls a and bp of 

assembly i 

the angle the vector U. makes with the vector Ci 

centroidal 
plane = the plane which contains the centroidal axes of 

both walls of each assembly 

Using the continuous medium approachp the contin- 

uity equations for the assemblies 1 and 2 may be written 

as., respectively, 

Cos 
dU I (b3h )qj +zHq dX dt- 01 
dz E 121 EAaAb1 

0 G. 

0 

1 Cos 
2-2 

- -1 (b3h )q 
2 --! (-! +-! ) 

zq 
dX dr, - 02 ýiz E 121 EAaAb2 

0 

0 

(4-57) 
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in which 1 is the distance between the centroids of 

walls a and b. From ordinary beam theory., it may be 

shown that the bending moments in the centroidal planes 

of the assemblies 1 and 2 are, respectively, 

d 2UI 

m EI I Cos 01 
dz 2m el -1q1 dX 

z 

(4-58) 
u 

m EI 
ýL2 

mq dX 
22 Cos 02 

dz 2 e2 2 

z 

wherep 

M IP M2 internal bending moments in the centroidal 

planes of assemblies 1 and 2 respectively 

M 
elp 

Me2 = external moments about the axes perpendicular 

to the centroidal planes of assemblies I and 

2 

I. =11 Cos 
JL Cos m,, a 

(Oi + ýna) cos ýna +(In, 
a)' 

cos"i + Tma) Cos ýma + Im,, b cos(Oi+ ýnb)cos ýnb 

I 
nb cos(Oi + 

ýmb) 
cos ýmb] 

i=1, (4-59) 

ýmas ýna the angles the centroidal vector of the 

assembly make with the major and minor 

principal axesp respectively, of wall a 

ýmbl ýnb similarly defined as ýma and ýna 
) but 

referred to wall b 



147 

I 
m, a ,I na ý second moments of area about the major and 

minor principal axes-respectively, of wall 

a 

I 
myb' 

In., b = similarly defined as Impa and Inia, but 

referred to wall b 

From equations (4-57), and (4-58) the governing 

differential equations for the assemblies become, 

d2 qi 22 dM 
el .L 

c >, / q 13 --. 19 
1=I or 2 (4.6o) 

dz 2iii dz 

in whichj 

13 
2 12 1cI 

b3h I. 
JL (4.61) 

22 
13i .12Ab 

If the assemblies are constrained to move together 

so that U1 and U2 are equal(such as that in the case of 

the pure bending of a structure) and 11 is equal to 1 2-' 

the following differential equation may be derived, 

,d2 
Q- 

- 
121 

(1 + -1 ) 9- =o (4.62) 
dz 2AAaAb 

in which, 

2 (4.63) 
Cos cos 02 

The solution for Q, assume that the assemblies are free 

at the tops, is trivial, i. e. 
_Q 

= 0. Thereforep from 

equation (4.63)s 
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Cos 

q2 Cos 72 (4.64) 

or the ratio of the vertical shear distributions is 

equal to the ratio of the displacements in the directions 

of the centroidal vectors of the ass6mblies. 

It may be shown, by substituting relevant parameters 

into equation (4-59), that the equality of 11 and 12 is 

always satisfied for the following simple cases: - 

The angles between the resultant horizontal 

displacement and the centroidal planes of assemblies 

1 and 2 are equal. 

(ii) The centroidal vector is the common principal axis 

for both walls a and b of the assembly, in which 

Cos 01 
case qq ---F. An in-plane symmetrical 2 Cos 2 
coupled wall assembly belongs to this category of 

non-planar coupled walls since the plane of 

symmetry is the common principal plane for both 

walls. 

4-7.2 Constrained Rotation 

Consider the two identical non-planar coupled wall 

assembliesp 1 and 2p shown in plan in Fig- 4-5. The 

assemblies are assumed to be constrained to rotate about 

the vertical axis OZ. 

Define, 

Pai' Ubi = resultant horizontal displacement vectors for 

the shear centre axes of walls a and b of 

assembly i, i. e. walls ai and bi 
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C1 = centroidal vector, a horizontal vector passing 

through the centroids of both walls a and bj 

of assembly i 

SjL 
= shear centre vector, a horizontal vector 

passing through the shear centres of both walls 

a and b, of assembly i 

Obi = the angles the vectors U 
ai and U-bi make with 

the vector S 
~i 

e horizontal angle of rotation of each assembly, 

about the axis OZ 

P= the angle between the vectors Ci and Si 

R 
ai pR bi = distances between the axis of rotation OZ and 

the shear centres of walls ai'and bip 

respectively 

R 
JL perpendicular distance between the axis of 

rotation OZ and the plane of the shear centres 

(shear centre plane) of assembly i 

rajrb horizontal distances between points of contra- 

flexure of the substitute lamina and the 

centroids of walls a and bj respectively. 

J 
aij 

Jbi = projections of ra and rb on the vectors U 
ai 

and U bi i respectively 

The continuity equations for the substitute laminae 

of the assemblies 1 and 2 may be written as, 

(R J+RJ 
b3h )qi -I (I +I). 

ai ai bi bi) ddz' - 'El (121 
cEAaAb 

ýH 
qi dX dý 0 (4.65) 

i=1,2 
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Using ordinary beam theory, bending moments in the 

shear centre planes of assemblies I and 2 are given by, 

respectively, 

R'Idem Cos pq dX I' ti -2 el I dz 
z 

mRId 
29 

m1 cosp 

Hq 

dX 
22 t2 dz 2 e2 2 

z 

where, 

R 
I al 

ti R. 
[Im, 

a cos(oai + ýnsai)cos ýnai 
JL 

Ina cos(oai + ý-, 
ai)cos 

ým, 
ai 

I 

R 

R 
bi 

m, b Cos (Obi + ýnjbi)cos ýnjbi 

JL 

(4.66) 

In., bi cos(Obi + ýmqbi)cos ým, 
bi] 

i= lp 2 (4.67) 

ým, 
ai' ai = the angles the vector Si make with the 

major and minor principal axes, 

respectively, of wall ai 

ým, 
bi' 

ýn, 
bi = similarly defined as ýmai and ýn, 

ai' 
but referred to wall bi 

M 1' M2 = redefined as the components of internal 

moments in the shear centre planes of 

assemblies I and 2 respectively 

M 
el' 

Me2 = redefined as the external moments about 
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the axes perpendicular to the shear centre planes 

of assemblies 1 and 2 

and the other parameters are as defined earlier. 

From equations (4.65), (4.66), the governing 

differential equations for the assemblies may be written 

asp 

d qi 2 
2 1 

q i dz 

in which, 

13 
2 121 

cI. 
i b3hI ti 

JL 

i=1,2 

(R J+RJ 
R ai ai bi bi 

3. 

21 ti 
CKý /Ci 1 Cos p+- JL 11 

3. 
Cos 

AaAb 

(4.68) 

(4.69) 

Generally the vertical shear distributions q, and 

q2 are not linearly related., and the governing 

differential equations are independent. However, if the 

parameters I ti and I t2 are equal and 11 is equal to 1 
21 

then, from equation (4.66), 

R LL (M cosp el R2 e2 q2 dX +I cosp qI dX 

z 

(4-70) 

From equations (4.65), (4.68) and (4-70) it may be 

shown that the vertical shear distributions in the 

2 
dM 

ex 
13 i dz 
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assemblies are proportional to each other. The 
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relationship between q, and q2 is given by, 

q=1 (4-71) 1R2 '2 

The validity of equation (4-71) depends on the 

equalities of I ti and It2-' and 11 and 120 It can be 

shown that these equalities are always satisfied for the 

following simple cases: - 

R 
al ý-- R 

a2 and R bI ý-- R b2l in which case q, =q2 

irrespective of the geometry of the walls. 

(ii) The plane of the connecting beams is the centroidal 

plane and the shear centre plane, in which case 

I-1 An in-plane symmetrical coupled wall q2R20 

assembly belongs to this type of non-planar coupled 

walls. 

4-8 Structures with General Non-T)Ianar Coupled Wall 

Assemblies 

It has been shown in the previous section that the 

constrained translation and rotation, corresponding to 

the pure bending and the pure torsional actions of 

symmetrical structures respectively, of general non- 

planar . coupled wall assemblies, which are identical do not 

necessarily ensure that the vertical shear distributions 

in the assemblies are linearly related. However$ from 

the geometry of the assemblies and the positions and 

orientations of the assemblies in the structures, it can 

generally be determined which assemblies have vertical 
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shear distributions which are linearly related. 

As an illustration, consider the symmetrical 

structure shown in plan in Fig. 4.6. Each coupled wall 

assembly is a non-planar assemblyj and there are only 

two distinct groups of coupled wall assemblies. Under 

the pure bending action due to the load Wy, the vertical 

shear distributions in identical assemblies which have 

the same relative orientation with respect to the Y axiss 

i. e. the angles between the Y axis and the centroidal 

planes of the assemblies are the same, will be linearly 

related. Therefore, all the assemblies may be divided 

into three bending groups, namely, 

bending group I: - assemblies 1,8,9,16 

bending group 2: - assemblies 3,4,5,6,11,12,13,14 

bending group 3: - assemblies 2,7,10,15 

The vertical shear distributions in the assemblies of the 

same groups will be linearly related and, consequently, 

the behaviour of the structure under the pure bending 

action may be described by a system of three independent 

differential equations. 

Under the pure torsional action, the vertical shear 

distributions in identical assemblies which have the same 

relative positions and orientations with respectto the 

axis of symmetry OZ, i. e. R 
ai ý- R 

aj and R bi R bil will 

be equal. Therefore, all the assemblies may be divided 

into four torsion groups2 namely, 

torsion group I: - assemblies_l, 8,9,16 

torsion group 2: - assemblies 3,6,11,14 
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torsion group 3: - assemblies 42 5j 12,13 

torsion group 4: - assemblies 2j 7j 10,15 

In consequence, the behaviour of the structure under the 

pure torsional action may be described by a system of 

four independent differential equations. 

It may be noted that the assemblies which behave 

similarly, i. e. the vertical shear distributions in the 

assemblies are linearly related, under the pure bending 

action may behave differently under the pure torsional 

action, for instance, the assemblies 3 and 4. 

Whether the symmetrical structure consists of 

planar or non-planar coupled wall assemblies. or a 

combination of both typess the procedures for establishing 

the equivalent analogous plane systems presented earlier 

are applicable. The final forms of the analogous 

differential equations are the same as those given earlier. 

However, the expressions for the analogous parameters 

will be slightly different since the plane of the 

connecting beams may not be the centroidal plane and the 

shear centre plane of the assembly. 

4-8-1 Pure Bending Action 

As noted earlier, from the geometry of the structure 

it is possible to determine which coupled wall assemblies 

behave similarly under the pure bending action or the 

pure torsional action* Assume that under a pure bending 

action, the coupled wall assemblies of a symmetrical 

structure can be separated into K groups such that the 

vertical shear distributions of the assemblies within the 

I- 
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same group are linearly related. The numbers of the 

coupled wall assemblies in groups 1,2,3 ... K are 

n,, n 2' ... nk respectively. Assume that the structure 

also consists of, in addition, n cr cantilevers. 

Following the same procedure carried out in 

section 4.5.1, it may be shown that the differential 

equations and the expressions of the parameters given by 

equations (4.24) and (4.25) respectively are valid, 

provided that some of the parameters are redefined as 

follows: - 

Ci-i cosine of the angle the centroidal plane of the 

assembly i-j makes with the direction of the 

displacement of the structure 
K 

(I- 
J., a 

+ Ii, b) + Icr 

n. JL 

C2 11 j=1 

n. IL 

i,, b2 c11 j=l 

c2(, _C2 
pa ma,, i-i 

+ Inpa 
ma., i-j)) 

(Ic2+, I( 1-C 2 
m, b mb., i-i n, b mb, i-i 

n cr 
iIF(Ic2+I(, _C2 cr c 2_ k=l m, cr-k cr-k n., cr-k cr-k) 

11 

(4-72) 

Cma, i-j' mb., i-i cosines of the angles the centroidal 

plane of assembly i-j make with the 

major principal axes of walls ai-i and 
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bi-i respectively. 

In a similar manner as in the case of symmetrical 

structures with in-plane symmetrical coupled wall 

assembliesp the relationships between the real and 

analogous stiffnesses may be established. The displace- 

ment of the analogous plane system is the component of 

the real displacement along the centroidal plane of the 

datum assembly 1-1. After the analogous vertical shear 

distributions and displacement have been determined, all 

other real forces may be easily evaluated. 

4.8.2 Pure Torsional Action 

By following a similar procedure established in 

section 4-5.2, but taking into account the fact that the 

coupled wall assemblies may be non-planar assemblies, the 

differential equations for an analogous plane system for 

the pure torsional action may be shown to be, 

d2QK 
OC2 pL Qj - LjQj) 

2 MT 

dz 2iiAR 

1,2, .. 00 K (4-73) 

where, 

MT= the torsional moment applied to the structure 

K= number of groups of coupled walls which behave 

differently (i. e. the vertical shear distributions 

in the assemblies of different groups are not 

linearly related) 

Qj =Dit, 
_j 

q, 
_j 
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i-j = 
I-j 

n. 

Di 
JL R 

(RI 

R i-j = distance of the shear centre plane of assembly. 

i-j from the axis of symmetry of the structure 

R I-1 ý distance of the shear centre plane of the datum 

assembly 1-1 from the axis of symmetry 

Qi = vertical shear distribution in the analogous 

coupled wall assembly i 

n. number of coupled wall assemblies in coupled wall 
JL 

group i 

G i-j 

(R 
-J i_j +Ri 

R i-j m, al-j n., a n$ai-i m$ai-j 

R 
m, bi-i i 

n, bi-i +R 
nbi-i 

i 
m, bi-j) 

J. Ji projections of a line between a point 
m, ai-i n, ai-j 

of contraflexure, of assembly i-j, and 

the centroid of wall ai-j, on its major 

and minor principal axesp respectively 

Jm, bi-i JJJ npbi-i similarly defined as Jmpai_j and 

Jn,, 
ai-i p but referred to wall bi-i 
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n. 
2 121 

Cl 
JL 

Li_j 
b ýhI j=l 

It 

R 
1-3 L i-j 2 

(R 
ai-ijai-i 

+R bi-jjbi-j) R 1-1 

R 'R ý distances of the shear centres of walls ai-j bi-j 

ai-j and bi-j from the axis of rotation, 

respectively 

J projection of a line between a point of ai-j 

contraflexure of assembly i-j and the 

centroid of wall ai-j on an axis parallel 

to the horizontal displacement of the 

shear centre of wall ai-j 

J similarly defined as J , but referred bi-i ai-i 

to wall bi-i 

Kn'. 
' FI 

+I t i-j t cr , j=1 

(I R2+IR2 i-j R2 mai mai-j n,, ai nai-j 
1-1 

+IR2+IR2 bi bi bi j bi -i np m, n, - m, 

n cr 

t 

E: 
(I R2+IR2 

r km 2 k k k , cr - cr- ncr- n, cr- k=1 mc R 
_ 

R projection of the horizontal vector of the 
m, ai-i 

shear centre of wall ai-j on its major 
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principal axis 

R 
m,, bi-j similarly defined as Rmpai-j , but referred to 

wall bi-j 

Cz 
22L 
I 'Ci iPi 

=II+I) Pi A 
al 

A bi 

n. 3. 

G. 
j=l I_j 

Li_j 

other parameters are as defined previously in this 

Chapter. 

If the coupled wall assemblies are in-plane 

symmetricalp thenp 

G. -=1. JL-j 3. 

= ii 
R12 

and all the parameters reduce to those given in equation 

(4-38). 

4-9 Closed Form Solutions for Standard Load Cases 

Any structure which is reducible to analogous plane 

systems with no more than one analogous coupled wall 

assembly for each system can be analysed rapidly since 

closed form solutions may be easily obtained. Example 

of the structures which fall into this category are shown 

in Fig. 4-7. For such structures, the analogous 



16o 

governing differential equations for the pure bending 

action and the pure torsional action are given by, 

respectively, 

d2B 

dz 2 ot2 
2 d(M/cos 

.B QB 13 i dz (4-74) 

d2T 

dz 2 cx 
2Q2mT 

/c TR 

in which, 

(4-75) 

M= moment due to the lateral load system which acts 

in the plane of symmetry of the structure 

MT= applied torsional moment 

= the angle the direction of the applied load makes 

with the centroidal plane of the datum assembly 

R= the distance between the shear centre plane of 

the datum assembly and the axis of symmetry of the 

structure 
2.222 

and the analogous parameters "B2 04 B and ai., 04 T are 

the parameters evaluated from equations (4.25) and (4-38) 

respectively. 

For the three standard lateral load cases2 namely2 

a concentrated load P at the top, a uniformly distributed 

load w per unit height and a triangularly distributed 

load per unit heightp the solutions for the pure H 

bending actions due to these loads are2 respectively2 

(Q )p See ý(, _ 
cosh 1(1- '0 )) 

p 
ý- 1-p- cosh7 
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(Q )= wH (sinh7 -7) cosh 'I (I 
Bw1p... 

017 
cosh-I 

sinh 70-11), 
+(, _, ) 

(Q Lý H [-Csinh'l 
- 

7/2 + 1/7 )cosh 7(l - dtý 
1pI cosh7 

sinh 'I (I 
+11 ý2 

I] 
17 22 

11 2 

(4-76) 

z in which Tj = ff and 7= O"B H 

The corresponding analogous displacementsy uy may 

be shown to be, 

= 
Z-H 

sec EI 

1p 

sin 'l (1- *q )- sinh7 T) 
3 

cosh-i 
2 

wH4 a (1-'9 
+ (U)w = See 8- 6- )(i- l) 

EI 24 p 

1 112 
+ 'lsinhl 7sinli'1(1-11)-coshlli +i 

p1222 cosh-1 

13H4 
See ý( 11 

-- 
(1- 11)5 

15 EI 

1 

120 24 120 

(111132-I) _I 
( '1-Y 

- 
2L21 

-p)-V72, (16 ý+I 
p74cosh7 

I 
sinh 70-ý cosh 7(1-1 sinh7 +17cosh'i +11] 

(4-77) 
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The marameters I and ýL are the analogous parameters for 

the pure bending action, and QB and u are the analogous 

solutions. 

If the applied loads do not pass through the axis 

of symmetry of the structure but act with eccentricity 

e, the structure will also be subjected to torsion. For 

constant eccentricity e, it may be shown that the 

analogous solutions for the pure torsional actions due 

to the three standard load cases are those given by 

equations (4-76), (4-77), provided that sec 0 is replaced 

by E and the analogous torsional parameters are used R 
instead of the analogous bending parameters. 

4.10 Example Problem 

To illustrate the application of the analysiss a 

symmetrical three dimensional shear wall structure shown 

in Fig. 4.8 has been chosen as an example problem. A 

number of structures of this nature have been constructed 

recently for hotel buildings. The structure considered 

possesses three planes of symmetrys namely$ the vertical 

planes OZXa , OzX b and OZXc. The coupled wall assemblies, 

I to 18, are identical, and the walls 19 to 21 are plane 

cantilevered walls. For the purposes of analyses, it 

is assumed that the bending action is produced by a 

uniformly distributed load of I KN/m, acting in the plane 

of symmetry OZX 
a, and the torsional, action is produced by 

a uniformly distributed torsional moment of 1 KN-m/m. 

The modulus of elasticity for the material is taken to be 
2 24, OOOYOOO KN/M 

As all the coupled wall assemblies are in-plane 
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symmetrical, there is only one analogous coupled wall 

assembly in each of the equivalent analogous plane 

systems for the bending and the torsional actions. 

Therefore, the solutions for the analogous vertical 

shear distributions and the analogous displacements 

given by equations (4-76) and (4-77) respectively are 

applicable, The analogous bending parameters and the 

analogous torsional parameters are those given by 

equations (4.25) and (4-38) respectively. 

From the geometry of the structure (Figs. 4.8-4-9). 

equations (4.25), (4-38), and adopting assembly I as the 

datum assembly, the following relevant parameters are 

obtained, 

H= 75 mIc=0.0026042 m4 

h=3mE= 24s000s000 KN/m 
2 

b=1.7 mAa= Ab = 1.875 m2 

1=9.2 

bending torsion 

R= 30.5 M 

B 12 D= 9-5102 

P 1.2669 P 1.2257 

1 254-13 m4 1= 170-33 m4 

7 7.7709 7= 8.3115 

W 1 KN/m we = 1 kN-m/m 

With these parameters, the following functions have been 

evaluated. 

Bending Action 

(i) vertical shear distribution in the assembly 1 
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(ii) horizontal displacement of the structure 
(iii) total shear force (in the direction of the applied 

load) taken by the three cantilevers 

Torsional Action 

M vertical shear distribution in the assembly I 

(ii) rotation of the structure 

(iii) total torsional resistance contributed by the 

three cantilevers 

Variations of these functions with height are shown 

graphically in Figs. 4-10-4-12. As noted earlier in this 

Chapter, inspection of Fig. 4.12 shows that concentrated 

lateral forces exist at the top of the walls. 

4.11 Conclusion 

It has been shown that the analyses of the pure 

bending and the pure torsional actions of any symmetrical 

shear wall structure consisting of in-plane symmetrical 

coupled wall assemblies are reducible to the analyses of 

analogous plane systems. The properties of the analogous 

plane systems are the transformed properties of the real 

structure. Generally any assembly may be chosen as the 

datum assembly, however, the transformation relationships 

based on different datum assemblies are usually different. 

The theory has been extended to deal with structures 

supported on elastic foundations, and structures 

consisting of planar and non-planar coupled wall assemblies. 

Closed form solutions for the three standard lateral load 

cases, namely, a top concentrated load) a uniformly 
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distributed load and a triangularly distributed load, 

have been presented. The solutions are valid for any 

structure which is reducible to equivalent analogous 

plane systems with only one analogous coupled wall 

assembly for each system. The solutions presented are 

also applicable to the three standard torsional loadings, 

namely, a concentrated torsional moment at the top, a 

uniformly distributed-torsional moment per unit height 

and a triangularly distributed torsional moment per unit 

height. 
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CHAPTER 5 

SYMMETRICAL SHEAR WALL-FRAME STRUCTURES 

S. 1 Introduction 

Structures consist entirely of cantilevered walls 

and coupled walls have been analysed in Chapter 4- The 

method of analysis may also be used to analyse directly 

symmetrical shear wall and frame (wall-frame) structures 

provided that the lateral stiffnesses of the frames are 
P' 
negligible in comparison with those of the walls and, in 

addition, the connections between walls and frames do not 

provide significant bending restraint. Howeverp if 

th e frames are relatively stiff it is necessary to consider 

the effects of interaction between the walls and frames* 

If a cantilevered wall and a frame are allowed to 

deform independently under similar horizontal load 

conditions, the former will deform in bending configur- 

ation and the latter in shear configuration(15"8$19),, as 
i 

shown in Fig. 5.1- For a coupled wallp the mode of 

deformation will be based on a bending configuration 

since it is assumed that the ordinary beam theory is valid 

for individual wall. Thereforep any wall-frame 

structure may be considered as consisting of a combin- 

ation of two types of structural units, which are 

basically different in the deformed configurations# 

constrained to act together by the rigid floor slabs. 

An analysis of symmetrical wall-frame structures in which 

frames are treated as shear beams acting with flexural 
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beams (walls) will be presented in this Chapter. 

5.2 Cantilevered Wall-Coupled Wall-Frame Structure 

Consider initially the behaviour of the basic 

flexural and shear beams shown in Fig. 5.2. The moment 

in the flexural beam is proportional to the rate of 

change of the rotation., whereas the shear force in the 

shear beam is assumed proportional to the rate of change 

of'the lateral deflection. The force-deformation 

relationship for each type of beam may be expressed 

mathematically as2 
I 

MB K B 

d2uB 

dz 2 

K 
duS 

S dz 

(5.1) 

in , which the subscripts B and S refer to the flexural and 

shear beams respectively. 

M= bending moment 

S= shear force 

KB flexural rigidity of the flexural beam. 

KS shear rigidity of the shear beam 

z height ordinate 

U lateral displacement in the X direction 

The flexural and shear rigidities are given by, 
'? i, -, ' ý 

I1 11 
KB= EI 

(5.2) 

Ks= GA 
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where Ep I= modulus of elasticity and second moment 

of areap respectivelys of the flexural 

I beam 

Gj, A= shear modulus and effective cross- 

sectional area in shear., respectively, of 

the shear beam. 

From consideration of the equilibrium of elemental 

. elements of both types of beams, Fig. S-3# the following 

relationships may be obtained, 

&I B d3u B 
B dz B dz3 

2m 

dH s 
s dz 

d4u 

dz4 

K 
dus 

S dz 

(5-3) 

22 d MS dus 
WS 

dz 2Ks dz 2 

where wB and wS are the distributed horizontal forces 

acting on the flexural and shear beams respectively. 

If the flexural beam is also subjected to a 

distributed vertical load q per unit heighto such as in 

the case of a coupled wall, the horizontal shear and the 

distributed horizontal load may be shown to be 

respectively, Fig. 5-4o 

S 
dM B+ &f BV (5-4) 

BH -dz dz 
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2mB 

BH 2 
z 

where 

m BV 

dz 2 

H 

q L dz 

z 

(5-4) 
contd. 

bending moment resulting from the 

distributed vertical load q acting at a 

distance L from the centroid of the cross- 

section. 

Equations (5.1)-(5-4) are the basic equations from 

which the governing differential equations for a 

symmetrical wall-frame structure may be derived. A 

symmetrical wall-frame structure shown in Fig. 5.5 will 

be considered. The structure consists of four identical 

planar coupled wall assembliesp two cantilevered walls 

and four frames. The structure is assumed acted upon by 

a horizontal loading system which produces a horizontal 

moment M and a torsional moment MT about the vertical 

axis of symmetry. The pure bending action and the pure 

torsional action are analysed separately. All the 

assumptions made in Chapter 4 are assumed to be valid. 

In the analysisp the cantilevered walls and the 

individual coupled walls are treated as flexural beams. 

The plane frames are treated as shear beams. The shear 

rigidity of any plane frame depends on the member stiff- 

nessesp the frame configuration and the rigidity of the 

joints. The contribution of a single column to the 

shear rigidity of an equivalent shear beam is determined 

BV 
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by assuming that points of contraflexure, occur at mid- 

length positions of beams and columns. The total shear 

rigidity of a plane frame is the combined shear rigidity 

of all the columns in a typical storey of the frame. 

The expression for the shear rigidity contributed by a 

single column may be obtained by considering the 

horizontal force-deflection relationship for a single 

interior column shown in Fig- 5.6. The shear rigidity 

may be shown to be 

12 111 
Ks=Ex (- ýh2 Co )x1+2 

11 
col 

h( 
I dl I d2 
ij + -d) 

2 

(5-5) 

where., 

I 
col = second moment of area of the column 

h= storey height 

dly d2 "ý total length of adjacent beams 

I d, "I d2 = second moment of areas of corresponding 

adjacent beams 

Equation (5.5) is also valid for an exterior column 

provideo that the second moment of area of one of the 

adjacent beams is assumed to be zero. 

5.2.1 Analysis of Pure Bending Action 

Consider the structure shown in Fig- 5-52 subjected 

to a lateral load which acts along the X axis. The 

loading system will produce only pure bending of the 
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structure. As the displacements of all the components 

are identical2 the continuity equation for the substitute 

lamina of any coupled wall assembly is given byp for a 

structure on a rigid foundationp 

IzH 
du b3h )q +I)q dX dtf =0 dz E 121 EAAb 

0 

(5.6) 

The horizontal shear forces in coupled wall 

assembly i, cantilevered wall cr-k and frame f-i are 

given by, respectively (cf. equations (5.1)-(5-4)),, 

S. K d3u + iq 
Xi dz3 

s 
cr-k 

K 
cr-k dz3 

sf-j = Kf-j du 
dz 

where 

K=EIi= E(I 
a+I b) 

IIb= second moment of areas of walls a and b of 

coupled wall assembly 

K 
cr-k 

EI 
cr-k 

(5-7) 

I 
cr-k second moment of area of cantilevered wall cr-k 

Kf 
_j 

shear rigidity of f rame f -j 

The total applied horizontal shear at any level may 

be expressed in terms of the applied moment M asi 
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dM 
applied shear dz (5.8) 

The total internal horizontal shear becomes, from 

equation (5-7). 

internal shear = EK d3u EK + nlq (5-9) 
BB ýz3 + SB 

where 

K BB = bending-flexural rigidity 

cr 

K Ki + 
cr-k) k=l 

K SB bending-shear rigidity 
nf 

K E j=1 f-j 

n,,, n cr , nf := 22 4P 4 respectively for thle structure 

considered. 

For the horizontal equilibrium of the structure, 

the applied shear must be balanced by the internal shearp 

hence., 

EK du 
= EK 

d3u 
- nýq - 

dM (5-10) 
SB dz BB dz3 dz 

Substitution of 
A-u from equation (5-10) into (5.6), and dz 

then differentiating twice with respect to z yields, 

(1EK d5u 
=K (b3h )IL - (-! + -1 )q) +1 

d3m 
BB) dz5 SB( 121 

c dz 2AaAb -dz,. -3 

+n2 d2q 
11 dz 2 
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Differentiating equation (5.6) four times with respect to 

z leads to, 

34 d5 u (h_h )dq++0 (5.12) ý75 121 
c dz4 Aa Ab dz 2 

From equations (5-11) and (5-12), d5u 
may be ý _z5 

eliminated and the fourth-order governing differential 

equation for q is obtained as, 

d4q 2g2q+ K4 2 d3m 

z4 
oz B_2 tB q /CB 3 d dz dz 

121 

13 
2cI 

K 
BB 

ct2 
2n+ KBB 

(. L 
+ .1)+ 

KSB 
(b3h 

B 13B 112AaAb12 121c 

2K SB (I +1 "B 1AaAb 

(5-14) 

The four constants of integration for the solution 

of q may be determined from the following boundary 

conditions: - 

At z=0, 
du 

=0 (5-15) 
dz 

evaluating equation (5.6) at z= 01 using equation 

(5-15)j gives 

(q)0 =0 (5.16) 

I At z= H$ the bending moments in the coupled walls vanish$ 
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hence, 

(ýj2u) -=0 
dz 2H 

Differentiating equation (5.6) with respect to zp then 

evaluating at z=H yields 

(! 12) =o dz H 
(5.18) 

From equations (5-10), (5-15) and (5-16), the third 

derivative of the displacement u at z=0 becomesp 

3 
(d'u) I (dM) 
dz3 0 EK BB dz 0 

(5-19) 

Differentiating equation (5.6) twice with respect to zj 

then evaluating at z=0, using equations (5.16) and 

(5,19), gives 

2 
(d q) 

/32 (AM) (5.20) 
d20B dz 0 

Differentiating equation (5-10) with respect to zp then 

evaluating at z= H2 using equations (5-17)j (5-18)p 

leads to 

(d4u) I (d 
2M) 

dz4 H EK BB dz 2H 
(5.21) 

Differentiating equation (5.6) three times with respect 

to zp then evaluating at z=H, using equations (5.18) 

and (5.21), yields 

3- 22 
. 
a) (, ) (5.22) 

dZ3 HB dz 2H 

Hence, the boundary conditions for q areo 
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at z=o, q0 

d2q2 dM 

dz 2 13B dz 

at z=H, 
dq 0 dz 

d3q 2d2m 

dz3 
/-IB 

dz 2 

(5.23) 

After the vertical shear distribution q has been 

solved, the displacement u may be obtained by integrating 

equation (5.6), i. e. 

I (b h)I 
uqdX++ 

3z 

121 
aAb 

0 00 

qdX dv-; dI+ (u) 
0 

(5.24) 

in which (u) 
0 is the displacement at the base, which is 

zero for a structure on a rigid foundation. 

If there are J groups of identical in-plane 

symmetrical coupled wall assemblies in the structurej the 

J fourth-order differential equations will be of the formj 

d4q 
e 2) d2qe 

+( K4 , 32) 1 x)q ý-z4 
ed z2 

BeeBee 

1n d2q d2q 3m 
rrre 

t62) 
d0 (5.25) 

1)12 "e -T-2 B 
r=l e dz zIe dz3 

e=1,2 �. � J 
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where 

42) 
12(1 de 1e 

BeKh b3 BB e 

e subscript denoting properties associated 

with a typical assembly of coupled wall 

group e 

n cr 
K (E K+ BB k=l cr-k e=l eE 

e sum of flexural rigidity of all assemblies 

of coupled wall group e 

OC2 
K BB 11 

ee 
le 

[n 

e+ T-2 A 
ae 

+Abe 

K0 
+SBhe 

12 12(1 
c e 

ne number of identical assemblies in coupled 

wall group e 

4)(, 
4 

2K SB (I+I 
Be B) 

eIeA ae 
A be 

(5.26) 

The boundary conditions given by equation (5.23) are 

valid for each q e* 
The number of differential equations 

is equal to the number of distinct groups of coupled shear 

wall assemblies., and does not depend on the number of the 

frames;, All the frames are not necessarily identical 

since only the symmetry of overall structure is required. 

Once the vertical shear distributions and the displacement 
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u have been obtained, all other forces in each component 

may be easily determined from equations (5-1)-(5-4). 

Although all the derivations are based on the 

structural configuration with parallel walls and framep 

there will be little difficulty in dealing with walls 

and frames of different orientation. Indeed, non-planar 

wall components can also be treated employing the same 

general procedure given in detail in Chapter 4- 

5.2.2 Analysis of Pure Torsional Action 

Consider the symmetrical structure shown in Fig. 

5.5 under the torsional moment M T" From symmetryp the 

structure will rotate about the vertical axis of symmetry. 

The horizontal displacement u of any point will be 

proportional to its distance (Y ordinate) from the axis 

of symmetry, i. e. u= ye , where a is the angle of 

twist of the structure. 

The continuity equation for the substitute lamina 

of any coupled wall assembly i may be written asp 

do I b3h IIzH 
Yi qi (- + -1 ) qi dX d* =0 dz -E 121 AAb 

0 r-. 

(5.27) 

where 

yi Y ordinate of coupled wall assembly i 

q vertical shear distribution in coupled wall assembly 

i 

As the coupled wall assemblies in Fig- 5.5 are in- 

plane symmetricalp the vertical shear distributionsare 
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linearly related (this has been shown in the previous 

Chapter)* The linear relationship is given bys 

I- 
constant (5.28) 

Yi Y, 

Consequently., there exists only one independent continuity 

equation for the structure. Adopting the coupled wall 

assembly 1 as the datum assembly, the continuity equation 

for the structure becomesp 

ydaIAq (I + .1)qdX dr; =0 1 dz E 121 1AAb 

ýH 

1 

0 

(5.29) 

From equations (5.1)-(5.4)p the horizontal shear 

forces in the coupled wall assembly i, cantilevered wall 

cr-k and frame f-j may be written asp respectivelyp 

S 
JL 

K 
jL yj 

d3e +I qi 
dz3 

s 
cr-k 

K 
cr-k Ycr-k d38 (5-30) 

dz3 

sda f-j 'f-j Yf-j dz 

in which yi, Ycr-kl yf_j are the Y ordinates of the 

coupled wall assembly, cantilevered wall and frame 

respectively. The parameters Ki, K, K, 
_j 

are as 
q cr-k 

defined previously. 

By assuming that the St. Venant's torsion may be 

neglected due to small value of the torsional stiffness 

of an individual component relative to the bending 
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stiffness, the torsional resistance of the structure is 

solely developed by the shearing actions of the 

components. The contribution of torsional resistance 

due to coupled wall assembly i,, cantilevered wall cr-k 

and frame f-j are thenlrespectivelyp 

2 d3 f) (M S. y. K-+y. lq. 
R JL JL i Yi ; 

z3 II 

sK2A (MR) 
cr-k 

ý cr-kycr-k cr-k Ycr-k 
dz3 

sKy2 
do (MR) 

f -j 
f-jyf-j f-j f-j dz 

For the structure considered, the total torsional 

resistance-, MR 2 may be written as, 

1 cr 
MR ý- Siyi + 

ý- 
Scr-kycr-k +$ f-jyf-j (5-32) 

i=l k=l j=1 

#1 and upon substitution) using equations (5-31) and (5*28), 

n, ncr 
d3a 72 MR 7 Kgý +K cr-k cr-k) dz3 i=l JL k=l 

n. n1 
d8 2 2- 2 

+ dz K 
_j 

7 f_j + q, 7i (5-33) 

For the torsional equilibrium of the structurep 

the total torsional resistance and the applied torsional 

moment must be equal. Hence,, 

MR ": - MT (5-34) 

Substituting MR from equation (5-33) into (5-34). and 
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2 then dividing by y, yields 

E( 
AK da Kq1 

MT 
(5-35) 

dz3 BT - dz ST I yj 
RT 

y2 1 

where 

K BT = torsional-flexural rigidityp with respect to 

assembly Ip of the flexural components 

cr 
12 (2- Ki yý + 

Z: 
Ky 2 3L cr-k 6r-k) Ey 1 i=l k=l , 

K ST torsional-shear rigidity, with respect to 

assembly Ip of the shear components 

1. 
nf2 

ýY-2 > Kf 
_j 

yf 
_j 

In12 
T27 Yj 

Yl i=l 

(5.36) 

Following exactly the same steps of derivation 

which have led to equations (5.1l)-(5.13)p a fourth- 

order differential equation for the structure under the 

pure torsional action may be shown to bep 

d4q 2d 
2q 

I+4q2d2 
(M 

T/yd 

dz4 
01-i 

dz 2T1 Aý 
dz 2 

where 

13 
2 121 

C) 
T b3h K 

BT 

(5-37) 

(5-38) 
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42K ST(l 
+I TT1AaAb 

ol 
2=2 

-L ++K ST 
A 

T 13 1[ Rj + 
KBT 

( 
T12AAb2 121 

(5-38) 
contd. 

Proceeding in a similar manner as in the case of 

pure bending actionp the boundary conditions for the 

pure torsional action are found to be as follows: - 

(q )=0 
10 

dql 

H 

d2q 
(5-39) 

-41) 
=_42 (M /Yl) 

dz20TT 

d3q 2 
_! 

L ( 'I) 
=- /IT (M 

T/yd dz3 H 
dz 

Once the vertical shear distribution q, has been 

solved, the values of all other qi may be obtained using 

the linear relationship given by equation (5.28). The 

angle of rotation, a, may be obtained by integrating 

equation (5.29), i. e. 

z 
q dN + (-1 +I 

Ely, 1211 
cAaAb 

0 

ZH 

qId, \ dg do I+(8)0 (5-40) 
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in which (e )0 is the horizontal rotation at the base., 

which is equal to zero for a structure on a rigid 

foundation. 

It has been shown previously in Chapter 4 that 

under a pure torsion the vertical shear distributions of 

identical in-plane symmetrical coupled wall assemblies 

are linearly related* Thereforep if there are J groups 

of identical coupled wall assemblies in the structure 

there will be only J independent fourth-order differ- 

ential equations. Consider a symmetrical wall-frame 

structure similar to that shown in Fig. 5-5p but with J 

groups of identical coupled wall assemblyp subjected to 

a torsional moment M T* Select one assembly from each 

group of identical wall assembliesp groups 1 to Jp and 

designate the vertical shear distribution in the 

respresentative assemblies as qi_lp i= 1j, 2p' ... J 

respectively. 

Following the foregoing method of analysis and 

taking assembly 1"I as the datum assemblys it may be 

shown that the J fourth-order differential equations for 

pure torsion will be of the formp 
I 

d4q. d 2qi_l 

-- i-I 2 

dz4 JL dz 2 

(R 
iti 

/t, )J, qj_l - Ril, qi_l 

q22 
MT 

(5-41) 
JL 

Ai t iyl-l 
-dz 2 

1., 2,, ... J 
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where 

/32 
12 1 

Ci 
1i 

K BT bg h 
IL 

K BT = torsional-flexural rigidity., with respect to 

assembly I-Ip of all the flexural components in 

the structurep cf. equation (5-36). 

i= subscript referring to coupled wall group i 

ýý = 132 
K ST (1+I 

JL 1- AA 
JL ai bi 

K ST torsional-shear rigidityp with respect to 

assembly 1-1p of all the shear components in the 

structurep c. f. equation (5-36). 

+ 
KBT 

( 3, 
Cý? ,211+1)+ 

KST 
(Oh 

JL 

[R 

J? A 
ai 

A bi 1ý 121 
cl 3. JL 

ti 
YI-I 

yi-I 

Yi_j =Y ordinate of assembly i-I 

n. 
R-12 

JL 25 yi-j 
YI-I j=l 

n, = number of identical assemblies in coupled wall 

group 

yi_j Y ordinate of assembly i-jv I. e. assembly 

of coupled wall group i 

(5-42) 

The four boundary conditions for each qi_l may be 
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shown to be as followsy 

= 

=0 dz H 

=-21 
dz 20 Ai (t 

iyi_i 
) (MT) 

0 

=-2(I) (dMT) 
dz3 H 

"i tiyl-l dz H 

(5-43) 

After the shear distributions qi_l have been 

determinedp the vertical shear distribution qi_j in any 

assembly i-j with the y ordinate yi_j may be obtained 

using the linear relationship, 

q i-j 
() 

Yi- I 
(5-44) 

The analysis is still valid even though the frames 

are not all identical. Alsoas in the case of pure 

bending, the analysis of pure torsional action presented 

can be readily extended to deal with general wall-frame 

structures with non-planar flexural components. However, 

when dealing with truly-non-planar coupled wall assemblies 

it should be recognised, as have been shown in Chapter 4. 

that the relationships between the vertical shear 

distributions of identical coupled wall assemblies are 

not necessarily linear. 
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5.2.3 Closed Form Solutions for Standard Load 

Cases 

If there is only one governing differential 

equation for the structure, i. e. when the coupled wall 

assemblies are identical and in-plane symmetricalp a 

closed form solution may be easily obtained. A solution 

for the differential equation (5-13) is given by, 

c1e 
Ni z+c2e- Ni z+c3e X2 z+c4 

e- 
X2 z+qp 

(5-45) 

in which2 

22/ Cý 
22 

(21) +vA 122 

22 

X2 
oc c>cB) 2 

2A 22 

qpý particular integral solution 

(5-46) 

c constants of integration which may be determined 

from the boundary conditions2 equation (5,23). 

When the characteristic roots, X1, q X 
2, are real 

number and different, which is. usually the case unless 

the parameter ý4 is relatively large, the solution may B 

be written asp 

q=k1 cosh X1z+k2 rinh Xjz +k 3' cosh X2z+k4 sinh X2z 

+qp (5-47) 

in which k12 k2kIk are constants of integration. 234 

Assume that the characteristic roots of the 
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differential equation are real and different. The 

solution for pure bending actions due to the three 

standard load casesy namelyy a uniformly distributed 

load w per unit heighty a concentrated load P at the top 

and a triangularly distributed load vý(! ) per unit H 

heighty are respectivelyy 

w 13 
2 H3 

qw =B7 '12' 11 
12_ 

2) wV 
12 

22 

q=-p- 
AýH 

71. - 7 (5-48) 
p 72 2) p 2-' 

1- 72 

2 H3 
q 

12_ 12) 12 

ý, 
j 

( 1. t 

where 

cosh 72 (1 
sinh 721_ 

Ow( 71" 72''1 cosh 72 72 

I 
-( cosh 

sinh 

cosh 71 71 

71 = z/H 

71 ýx1H 

72 -`ý x2H 

0( 
cosh 7 2(1-1 cosh 7,0- 

p 71' 72' TI cosh 72 cosh 71 

'71 " 72 12 sinh 7 21 
22 72 '72 7ý 

(5-49) 
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cosh 7 2(l 
cosh 72 

sinh '711 
(L- 

cosh ll, (l 
- 71 72 

-cosh 71 
1 

(5-49) 
contd. 

The corresponding displacement functions for the 

three standard load cases arep respectivelyp 

24 
w 13i Hr 

uw = -ý2 F71 
El( 12 2) w I' 2'rl 

1- 

up = 

13 
2 H3 
B 

p( 
712 72' 1) (5-50) 

El( . 72 _2 1 72) 

13 
2 H4 B 

ICIý El( 72 -7 
2) Fa ( 71 ' 72 

12 

where 

F( 71,72, ilh 77 
3 

w 21 2'1 
ýw( 

1' 
c 

) (I , 72 2A 
1 72 a 

22 2_ 2L2 
1 

ýw(72,1)- 72 Yw(7j, j)-(7j 72)(1-29 )I 

[sinh7ý + (1-cosh7ý )( I+ tanh7 7cosh'I 
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3 

7 1'2'1) ý (b121 ýP( 72" ýP( 71 
'h 

Aa Ab 
1 

[72 
72 ýP( 11 72 2 

1 1 
ýP( 

21 72h 

ýp(7., J) = -L ( sinh-11 + tanh7-(l - cosh7l )) 

F (b3h )I 71 " 72 121 72 71 + 
c272 72 1 

2-2Aa Ab 
71 72 

2 
(4(, Il. , 1)44(72 

2) 
I tKy( 72 72 1- 72 

(. 72 sinh 72 71 _(72 
2) ) 12 2- 72 sinh 1- 72 

( _L( ,22 
'72 

) 
2_ 71 )2 2 71 72 +( '71 

( 
'72 

coshY ++(I _j). 1 72 2 

sinh 7(1- 71 )- sinh 7 
cosh rl 

(5.5') 

It may be shown that there are correspondences 
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between the expressions for the solutions for pure 

bending and pure torsional actionss between the following 

pairs of standard loadingsp 

1. Uniformly distributed load w per unit height and 

uniformly distributed torsional moment Mw per unit 

height. 

2. Concentrated load P at the top and concentrated 

torsional moment Mp at the top. 

Triangularly distributed load %ý-ý per unit height H 

and triangularly distributed moment M per unit H 
height. 

The solutions for pure torsional actions for the 

three standard torsional moments, namelys a uniformly 

distributed torsional moment per unit heightp a 

concentrated torsional moment at the top and a triangularly 

distributed torsional moment per unit height, are given 

by, respectively, 

(Mw/yl) /32 H3 T 
qwm 

?2 
2) 

11 - '72 

22 

q 
(Mp/yl) /3T H 

Pm 22 ( 71 72) 

= 

2 (M, 
3/yl) 1/3ý 

72 _ 72 12 

22 (MW/Y1) 
'GT H 

wm 22 EI ( 71 - 72) 

Ow ( 71P 72'1 ) 

OP ( 71' 72'1 ) 

0 
vý 

( 71 ' 72 'I) 

F7 71 ' 



igo 
(M /y2) 2H2 

0p-i 
Ar 

F -72 Pm 22P( 71 
-' EI ( 71 '72 ) 

(M /Y2) 2 H3 
13.1 /3T 

F7 om 22 2' El( 71- 7p 

(5.52) 

where 

8= horizontal rotation of the structure 

T )2 

Z2- 
T 1,4 2T 

(5-53) 

2 

yj =y ordinate of the datum assembly 

q, wm., qPmq %m = vertical shear distributions in the 

datum assembly due to the standard 

torsional moments Mp Mpy M (-K)p 
wH 

respectively. 

Other functions2 namely2 Ow, Op, 
* 

0, Fj, Fp,, F are as w t$ 
given previously. 

5-3 Cantilevered Wall-Frame Structures 

When the symmetrical structure consists of frames 

and cantilevered walls onlys the continuity equations 

(5.6) and (5.27) become trivial. The equilibrium 

equations (5-10) and (5-35) then become the governing 



191 

differential equations for pure bending and pure torsiony 

respectively. As there is no coupled walls in the 

system, the distributed vertical shear force q is zero2 

and the equilibrium equations (5-10) and (5-35) reduce 

toj respectively, 

d3u 
_ p2 du 

-1 (dM) (5-54) 
dz3 B dz Kc dz 

d30 2 dg MT 
(5-55) 

dz3 
PT J-- KCA 

where 

2KF2K FA p-Sp_K BKcT CA 

nfn cr 
KF Kf 

_j 
KC )K 

cr-k (5-56) 

k=l 

nf2 cr 2 K FA K: C_j y f-j K CA 
EK 

cr-k Ycr-k 
k=l 

Equation (5-54) is the governing differential 

equation for pure bending, and (5-55) for pure torsion. 

The boundary conditions for zero moment at the top and 

complete fixity at the base yieldo 

at z=0., u 

du 
dz 

at z=H, 
du 

dz 2 

0 

0 (5-57) 
z 

d 29 
0 

dz 2 
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The complete solutions for equations (5-54) and 

(5-55) may be written asp 

u=C1 cosh 7B +c2 sinh 17 B +c3+ up (5.58) 

=k1 cosh n7 T +k2 sinh 17T +k3+ E) p 
(5-59) 

where 

7B ý PB H' 

Z 

7T ý-- PT 

up '1 
8p= particular integral solutions for pure 

bending and pure torsion respectively. 

ci2 k. = constants of integration for pure bending and 3. 

pure torsion respectively; these constants 

may be determined from the boundary conditions 

given in equation (5-57). 

If the structure is subjected to a uniformly 

distributed lateral load w per unit height acting with a 

constant eccentricity e, the horizontal and rotational 

displacements of the structure may be shown to bep 

respectivelyp 

47B sinh 7B + 1) 
(cosh 

K 
(WHZ) 

cosh 7 c 74 B 
7B 

B 

-7 sinh 1222 B 
7B + 7i (I- 'L 9 

wH 
4-, 

f(7 

(5.60) 
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4 
)f 1 (ewH (5.61) K CA 74 7V 

T 

It may be noted that both the horizontal and the 

rotational displacements possess the same form of 

solutionsp i. e. involving the function f-, & It may be 

shown that the similarity between the expressions for 

the horizontal and the rotational displacements occurs 

also in the other standard load casiýs of a concentrated 

load at the top and a triangularly distributed load. 

If the lateral stiffnesses oi the'frames are small 

in comparison with those of the cantilevered walls and 

may thus be neglecteds the governing differential equations 

for pure bending and pure torsion may be shown to bep 

respectively, 

d2um 

dz 2Kc 

(5.62) 

d3 mT 

dz3 K CA 

The solutions for the horizontal and the 

rotational displacementsp i. e. u and g, may be easily 

obtained by directly integrating equation (5.62). For 

the particular cases of a uniformly distributed lateral 

load w per unit height and a uniformly distributed 

torsional moment we per unit height the solutions, 

subjected to the boundary conditions given in equation 

(5.57), are given by, respectively, 
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I H4 
92 14) K (K-Z) (6 4 93 + 

c 24 

I (wH4) R-C 24 (5.63) 

I (weH4) 
K CA 24 

It may again be noted that the solutions for the 

horizontal and the rotational displacements possess the 

same form, i. e. involving the function f(j). The solutions 

for other standard load cases may be similarly obtained 

by direct integrations. 

5.4 Example Problem 

To give an example of the effects of incorporating 

the lateral stiffness of frames in the analysisy a 

structure shown in Fig. 5.7 is considered. Both bending 

and torsional actionsy due to a uniformly distributed 

load I KN/m and a uniformly distributed torsion 1 KN-m/m 

respectively, are analysed. The results obtained by 

considering wall-frame interaction are compared with 

those obtained by assuming that the lateral stiffness of 

the frames may be neglected. 

From Fig. 5-7s 

H= 45.0 m 

h=3.0 M 

1=8. o M 

ic = 3.125 x 10-3 m4 

Aa = Ab = l- 8m2 

2.4 x 107 KN/m 2 

and based on datum assembly Ip the following parameters 

are obtainedj 
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Lateral Stiffness of Frames Considered 

K BB 45.278 m4 
K SB 4.3566 x 10- 2m2 

4 
kB 1.6705 x 10- 

6 
m-4 

bending action 

0ý 
2 
B 1.1533 x 10-2 M- 

2 

71 4.8017 

72 0.54504 

K BT 22-464 m4 

K si 1.6846 x 10-2 m2 

4 
T 1.3019 x 10 -6 m-4 

tor 

C4 
2 
T 1.1745 x 10 -2 m-2 

4.8548 

72 0.46404 

(ii) Lateral Stiffness of Frames Neglected 

45.278 m4 

1.1965 
bending action 

B4 

4.6266 

22-464 m4 

1.1875 

D 2.08 

1 4.7186 

1.1745 x 10 -2 M-2 

4.8548 

0.46404 

torsional action 

torsional action 
I 
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Three functions, namelyp the vertical shear 

distribution, wall moment in the coupled wall assembly 1, 

and the displacement of the structure, are shown 

graphically in Figs. 5.8 - 5.13. When the lateral 

stiffness of the frames is consideredj vertical shear 

distribution and displacement are obtained using equations 

(5-48) to (5-52). Equations (4-76) and (4-77) are used 

when the lateral stiffness of the frames is neglected. 

The wall moment is determined using the moment-curvature 

relationship. 

It may be seen from Figs. 5.8-5-13 that in 

neglecting the lateral stiffness of the framesp the 

displacementj vertical shear distribution and the maximum 

wall moment are all overestimated. In the lower region 

of the structure, a considerable proportion of bending 

moment is carried by the frame system. 

5.5 Conclusion 

From the analysis the following conclusions can be 

drawn. For a symmetrical coupled wall-frame structurep 

the governing differential equations for pure bending and 

pure torsion are fourth-order equations. In each casep 

provided that the coupled, wall assemblies are planar or 

in-plane symmetrical, the number of the differential 

equations will be equal to the number of distinct groups 

of coupled wall assemblies. For a symmetrical canti- 

levered wall-frame structure the differential equations 

for the displacement functions are third-order equations. 



197 

The analysis is also applicable to structure with non- 

planar components. 

From consideration of equation (5.1) it may be 

deduced that the rotation at the base of the shear beam 

and that of the support will generally be incompatible. 

For any loading system, the rotation at the base of the 

beam is proportional to the shear force at the base, 

whereas the rotation of the support is proportional to 

the imposed moment. Therefores it should be noted that 

the behaviour of the shear beam as represented by 

equation (5.1) is valid only when the beam acts in 

conjunction with flexural beam. The interactive forces 

between the flexural and shear beams provide additional 

force system to satisfy the rotational. compatibility at 

the base of the shear beam. 

Regarding the load distributions between walls and 

frames,, the following points may be noted. From the top 

boundary condition of zero moment at the top it is evident 

that the distributed load acting on the frame must 

vanish at the top (c. f. equation (5-3)). The base 

boundary condition of zero rotation implies that the 

shear forces at the bases of all the frames vanish. 

Thereforep at the base, all the shear forces are taken 

by the walls. 
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CHAPTER 

ASYMMETRICAL STRUCTURES 

Introduction 

The relatively simple methods-of analysis presented 

in Chapters 4 and 5 are able to be achieved because of 

the symmetry of the structures. Due to symmetryp any 

lateral loading in a plane of symmetry will produce only 

pure bending of the structurep and under a pure torsional 

moment the structure will rotate about its axis of 

symmetry. With these known characteristics of a 

symmetrical structures any lateral loading system may be 

replaced by an equivalent system which consists of a 

torsional moment and the loads which produce only pure 

bendings of the structure. The analyses for pure bending 

action and pure torsional action can be carried out 

separately, and the solutions are then superimposed to 

give the actual solutions. Under the pure bending action 

the vertical shear distributions in identical in-plane 

symmetrical coupled wall assemblies are linearly related 

(cf. section 4-7-0- Under the pure torsional action the 

vertical shear distributions in identical coupled wall 

assemblies with the same relative orientation with respect 
I 

to the axis of symmetry are equal (cf. section 4.7.2), and 

are linearly related irrespective of their relative 

orientations whenever the identical assemblies are in- 

plane symmetrical. Therefore)-for a structure consisting 

of groups of identical coupled wall assemblies2 the number 
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of the indeterminate functions to be determined is 

usually small. 

If the structure is asymmetrical the methods of 

analysis employed in Chapters 4 and 5 are not directly 

applicable. The structure must be analysed by consid- 

ering the total loading system which is capable of 

producing both bending and torsion of the structure 

simultaneously. As a result, the, number of-governing, 

differential equations for the vertical shear distributions 

will generally be equal to the number of coupled wall 

assemblies present in, the structurep even though some of 

the assemblies may be identical. Howeverp for an 

asymmetrical structure consisting of a few coupled wall 

assemblies or consisting of cantilevered walls and 

framesp the methods are still relatively economical in 

comparison with the conventional stiffness or flexibility 

analyses. 

6.2 Cross-wall Structures Composed of Cantilevered 

Walls and Coupled Wall Assemblies 

Consider a simple cross-wall structure shown in 

Fig. 6.1. The axes OX, OYp OZ are structural co-ordinate 

system with OZ as vertical axis* A loading function W 

is assumed acting perpendicular tol. the long face of the 

structurep and with eccentricity 
I _e 

with respect to the 

plane OYZ. The same set of assumptions stated in 

section 4.4 is assumed to be valid. 

The geometrical relationships between the 

displacements of the reference axis OZ and the displace- 
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ments of the axis of individual wall J are given by 

v+ xj 

(6.1) 
01=a 

in which 

v. 9 8= translational displacement in the Y directionj 

and rotational displacement about the vertical 

axis, respectivelyp of a point on the reference 

axis OZ 

vjp Gj = the corresponding displacements of the axis of 

wall J 

xi=X ordinate of the axis of wall J 

Using the continuous medium approachp the contin- 

uity equation for the substitute lamina of any coupled 

wall assembly i is given byp for a structure on a rigid 

foundation, 

dv AzH 

uz -1 q qi dX dr-, 
JL 121 iAA 

ci ai bi 
0 rr 

(6.2) 

where the parameters E, hp H, b,,, li, qi, A 
ai ,A bi' Ici 

are as previously defined in Chapter 4. 

From ordinary beam theory, the internal momentg in 

the coupled wall assembly i and cantilevered wall cr-k 

are given by, respectivelyp 

EI i=M. 
- li qi dX 

i dz 2 

z 
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EI 
dv 

cr-k =m (6-3) 
cr-k dz 2 cr-k 

where 

M. component of moment due to the transmitted 
JL 

horizontal force acting on coupled wall 

assembly i 

M 
cr-k moment due to the transmitted horizontal 

force acting on cantilevered wall cr-k 

I 
cr-k second moment of area of cantilevered wall 

cr-k 

IX=I 
ai 

+ lbi 

ai' 
Ibi - second moment'of areas of walls a, and b 

respectivelyp of coupled wall assembly i 

v cr-k 
displacement in the Y direction of the axis 

of cantilevered wall cr-k. 

The corresponding cross-sectional'shear forces are., 

dm. d3v. 
a- i 

Z 
S. =- -= =- EI. + 1, q, 

IL Z a. dz3 

(6-4) 

dM 
cr-k 

d3v 
cr-k S 

cr-k -- dz =- EI 
cr-k dz3 

in which S are the cross-sectional shear forces V Scr-k 

in the coupled wall assembly i and the cantilevered wall. 

cr-k respectively. ,I 
For the force equilibrium of the structurep it may 

be shown that2 
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n d3v. n cr d3 Ver-k 
E 

[T-j, 

dz3 
+EI 

cr-k dz3 

1 

k=l 

dM n 

Z+ 
li qi (6.5) 

i=l , 

in which 

M= applied static moment 

n= number of coupled wall assemblies in the structure 

n cr = number of cantilevered walls in the structure. 

By assuming that the St. Venant's torsion is 

comparatively insignificant since the thickness of each 

wall is relatively small in comparison with its width, 

the torsional resistance of the structure may be 

considered as arising solely from the differential 

shearing action of all the walls. Therefore2 the 

torsional equilibrium equation for the structure becomes2 

nn cr 
MT sixi+F Scr-k xcr-k (6.6) 

k=l 

where 

MT = static applied torsion due to the eccentricity 

e of the applied load 

xi=X ordinate of the plane'of coupled wall assembly 

i 

x cr-k ýX ordinate of the axis 'Of cantilevered wall cr-k 

Substitution of equation (6-4) into. (6.6) leads top 

n d3v n cr d3v n 

E( Iix+ 
-k 

x cr-k 
cr-k Mr+ liqi 

dz3 cr dz3 k=l 
(6-7) 
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Using the geometrical relationships given by 

equation (6.1), the force and torsional equilibrium 

equations become, respectively, 

K d3v +K d3g dM +ýn liqi (6.8) 
dz3 x dz3 dz 

x 
d3v +K d3q Mr +n lixiqj (6.9) 
dz3 A dz3 i=l 

nn cr 
cr-k) 

i=l k=l 

nn cr 
x 

E( ixi+ýI cr-k xcr-k) (6.10) 
i=l k=l 

nn 
2 cr 2 

AýTiiZ cr-k xcr-k) 
i=l k=l 

As the choice of the location of the origin of the 

co-ordinate system is arbitrary, the differential 

equations (6.8) and (6.9) may be uncoupled by locating 

the origin at the equivalent centroid of combined wall 

stiffness. With the equivalent centroid of combined 

wall stiffness as the origin, 

K=0 (6.11) 

and equations (6.8) and (6.9) become, respectivelyp 
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d3v dM 
n 

K 
dz3 

+ liq, (6.12) 

KA d3q 
MT +ýn li xi qi (6.13) 

dz3 
i=l 

In equation (6.13) the torsional moment MT is the 

moment with respect to the vertical axis of the new 

co-ordinate system. Differentiating equation (6.2) 

twice with respect to z yields,, 

13v d3e IIId 
2qi 

1. + 1. x. lb 20 (6.14) 3.3 3. JL 3 -E(! -. -i)'I' 
dz dz a3- dz 

For the structure with n coupled wall assemblies, 

there will be n equations of the form . given by equation 

(6.14). From equations (6.12)-(6.14) it may be shown 

that the n simultaneous second-order governing differ- 

ential equations for the structure are of the formp 

d q, 
&. 

2FA2( dm m 
dz 2i 717 T) 

i=1,2, P 

where 

121 . 1. 
C3-) 1 

0hK 
X 

oc 

ýi =, 
Kx? 

+K(1+-1) KA IL El ?A 
ai 

A bi 
IL 
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n 
(T q Di - qi D. JL rr 3_91 

r=l 

2 ii (i +Kxr) 
i., r ", 3r RA- 

With the usual boundary conditions of zero moment 

at the top and zero rotation, at the base, the boundary 

conditions for q. become, 
I 

at z=0, qi 

at z=H, 
dqi 

dz 

f or all -i 

f or all i 
(6.17) 

The displacement functions v and 8 may be 
i 

obtained by integrating equations (6.12) and (6.13) 

respectively. The boundary conditions for the 

displacement functions are as followsp 

at z=0, v= 
dy dO 0 
dz dz 

at z=H, 
dvd90 
ý-z2 = ý-z2 

(6.18) 

6-3 Cross-wall Structures Composed of Cantilever Walls 

and Frames 

An analysis of asymmetrical cross-wall structure 

composed entirely of cantilevered walls and frame will be 

presented in this section. Consider-an asymmetrical 

structure consisting of n cr 
cantilevered walls and nf 

frames, a typical plan of which is as shown in Fig. 6.2. 

Each frame component is treated as a vertical cantilevered 

shear beam. The load-deformation relationships for a 
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shear beam are those given in Chapter 5 (equation (5-3))- 

Following the same procedure in establishing the 

equilibrium equations carried out in section 6.2p the 

force and torsional equilibrium equations for the 

structure considered may be shown to bep respectivelyp 

K 
dý 

+K 
d3ý3 K dv K do dM 

c dz3 CX dz3 F dz FX dz dz 

d3v A dv dG KC3C ý- +K-K 
Z3 

K 
z3 

CA dz3 FX Tz- - FA dz MT 

where 
n er cr 

KcEý Icr-k s KCX -: - E Z: 
er-k x cr-k 

k=l k=l 

nfnf 
KF Kf_j K FX K, 

_j 
x, 

_j 
j=l j=l 

Kf_j = shear rigidity of frame f-j 

xf_j =X ordinate of the plane of frame f-i 

cr 2f2 K CA ýET icr-k x cr-k pK FA Kf-j xf-j 
k=l 

(6.19) 

(6.20) 

(6.21) 

The shear rigidity K, 
_j 

is evaluated as described in 

section 5.2. 

By choosing the equivalent centroid of combined 

wall stiffness as the origin for the co-ordinate systemy 

K cx =0 (6.22) 
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and equations (6.19) and (6.20) reduce to, respectivelyy 

K d3v 
_K 

11-V 
-K 

do dM (6.23) 
C dz3 F dz FX dz dz 

K d3v 
-K 

dv 
-Kda 

(6.24) 

Z3 
FX Fz- FA dz MT 

CA 

From equations (6.23) and (6.24), a differential 

equation for the displacement v may be obtained as, 

d5v 
_ .2 d3v ýqv 1 (d3m 2 dM 3m 

d7 dz3 dz ýK 
CA dz3 

uz T) 

(6,25) 

KK 2F+ FA 
iZ -C K CA 

K2KK FX -F FA (6.26) 
KCK CA 

2K FA 
K CA 

K FX 
K CA 

For the structure on a rigid foundation and free at the. 

topp the boundary conditions may be shown to bep 

at z=0 
dy 
dz 

d3v I dM 

dz3 K CA dz 
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at z H, d 

dz 2 

d4v 1d2m 

d z4 
K CA dz 2 

(6.27) 

The solution for the displacement v may be written 

I a s., 

c1 cosh rIz+c2 sinh r1z+c3 cosh r2 z 

+c4 sinh r2z+c5+vp (6.28) 

2 a2 4 r12+ , C4 -4ý) 

oc 
2 ý&-ý --4 

114ý 

(6.29) 

C constants of integration which may be evaluated 

from equation (6.27) 

vp particular integral solution of equation (6.25) 

By integrating equation (6.23)p the rotational displace- 

ment is obtained asp 

a=IK (112V - (ý12v-) )-Kv+ (M) M] (6-30) 
K FX 

[c 

dz 2 dz 20F0 

in which 

dv 
curvature at z 0' 

dz 20f 

Mo = applied static moment-at the base., z=0 

If the lateral stiffnesses of the frames are small 
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in comparison with those of the walls and may be 

neglectedp the governing differential equations becomep 

from equations (6.23) and (6.24)p 

K d3v dM 
c dz3 dz 

(6-31) 

K d3g 
CA aZ3 

The boundary conditions are given byp 

at z= Op V 
dy d-0 
dz dz 

at z=H, 
d2vd 29 

0 

(6-32) 

dz 2 dz 2 

The solution for the displacement functions are simplyp 

by directly integrating equation (6-30P 

z 
v-IMdX dr; (6-33) KC 

00 

MdXd S- d (6-34) ""CA T 

It may be seen that equations (6-33) and (6-34) 

represent the pure bending action and the pure torsional 

action respectively. Under the pure torsion the structure 

rotates about the vertical axis OZ. To produce pure 

bending the applied load must act along the plane OYZ. 

6-4 Structures with Non-planar Walls 

Although sections 6.2 and 6.3 dealt only with 
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asymmetrical cross-wall structurey with slight modific- 

ations the analyses can be readily extended to deal with 

fully three dimensional structures. For a fully three 

dimensional structure there will be three equilibrium 

equationsp namelyp a torsional equilibrium equation and 

two force equilibrium equations in two orthogonal 

directions. The number of independent displacement 

functions will likewise be threep i. e. corresponding to 

the number of equilibrium equations. The shear centre 

axis of each wall must be used as the wall axis instead 

of the centroidal akiso From geometry, the relationships 

between the displacements of the shear centre axis of any 

wall i and the displacements of the reference axis OZ 

may be shown to bey Fig. 6-3y 

U. Cos Oi sin Oi 0 10 -Yi u 3. 
, 

vi -s3. n Oi Cos Oi 0 01x v I 

ei 
. 

L01J 
* 
L 

ol 01- 

1 

9- 

(6-35) 

where 

u, v, displacements along X and Y axes and rotation 

about vertical axiss respectivelyp of the 

reference axis OZ 

u displacements along xi and axes and i, vi, Gi 

rotation about vertical axisp respectivelyp of 

the shear centre axis of wall i 

R. P Y-- principal axes of wall i 
JL 3. 
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x i., Yi ýX and Y ordinates respectively of the shear 

centre axis of wall i 

0i the angle the axis makes with the X axis 

Following similar procedure carried out earlierp 

expressions for the three equilibrium equations for an 

asymmetrical structure composed of cantilevered walls and 

coupled wall assemblies may be established. These 

equations are expressible in terms of applied loadsp 

vertical shear distribution functionsp and the third 

derivative of displacement functions (i. e. 
d3u d3v 

d38_ dz3 ' dz3 

dz3 
Consequentlyp using the continuity equations for 

the substitute laminaep a system of simultaneous second- 

order differential equations for the structure may be 

obtained. Generally there will be as many differential 

equations as there are series of connecting beams. Only 

a brief outline of the analysis has been given here to 

avoid repetition since detailed analysis may be obtained 

from the next Chapterp Chapter 7P which, treats all walls 

as thin-walled beams of open sections (thin-walled beam 

theory is a more general theory which includes ordinary 

beam theory as a special case). 

For an asymmetrical structure consisting of non- 

planar cantilevered walls and plane frame with different 

orientations, further assumptions regarding the stiffness 

of the frame may be made* It may be assumed that out of 

plane stiffness of each frame can be neglected, and the 

axis of each equivalent shear beam is located at the 

equivalent centroid of stiffness of columns within the 
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frame. With these additional assumptions similar 

analysis may be carried out as before, and three 

simultaneous third-order differential equations for the 

three displacement functions) i. e. u, v., 8) may be 

obtained from the three equilibrium equations. 

Special Case of Asvmmetrical Cantilevered Wall 

Structures 

Provided that the stiffnesses I of the frames may be 

neglectedp it can be shown that an asymmetrical structure 

composed of non-planar cantilevered walls and frames may 

be analysed as a combination of pure bending and pure 

torsional actions. 

Consider again Fig. 6.2$ but now assumeýthat all the 

walls are non-planar and the stiffnesses of the frames 

may be neglected. Following the method of analysis 

outlined earlierp treating each wall as a three 

dimensional component with three degrees of freedom of 

displacements, the equilibrium equations for the structure 

may be expressed as (c. f. equation (7-7 W7.10) of the 

next Chapter). 

d3u 
11 12 13 dz3 

px 

c 21 c 22 c 23 d3v Z-- -py (6.36) 

dz3 

d39 
c 31 32 33 

-dz3 
-MT 

where,, 
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P V, Py = total (from the top to level z) applied loads 

along the X and Y directions respectively 

MT = total (from the top to level z) twisting 

moment about OZ axisy due to eccentricity of 

the applied loads 

Xy YY Z= axes of an arbitrarily chosen auxiliary 

co-ordinate system 

c ij =C ji if iýj, i. e. the coefficient matrix is 

symmetric 

U, vB = as defined previously 

The expressions for cij'are those given in equation 

(7-12)o As the choice of the-auxiliary co-ordinate 

system is arbitrary, any point at the baselevel may be 

chosen as the origin and an arbitrary orientation of the 

vertical axis selected. Assume'that'a new co-ordinate 

system with axes 0C XC '0CYc, 0czc is selected (Fig. 6-4). 

Let 0 be the angle of relative orientation of the two 

systems) and x0y yo the ordinates of the new origin with 

respect to. the original system. It can be shown) using 

expression for cij given in equation (7-12),, that x0p yo, 

may be uniquely determined such that the equilibrium 

equations in this new frame of reference reduce to, 

d3u' 
k 11 00 

dz3 
c- 

_PX 
a 

d3v 
0k 22 0 

dZ3 
C, 

_P (6.37) 
Ya 

00k 33 
d3e 

3 "M T 
dz a 
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where 

PX 
a, 

P 
Ya 

total applied loads along the Xc and YC 

directions respectively 

mT total twisting moment. about 0cZc axis due 
a 

to eccentricity of the applied loads with 

respect to this axis-, 0, 

uc2 Vc., displacements in the Xc and Yc directions 

and rotation about vertical axis, respectively, 

of the new reference axis OCZC, 

From equation (6-37) it isevident that Zc axis is 

the axis of rotation of the structure under'pure torsion. 

Loading along the 0XZ and O'Y Z planes will produce cccccc 
deflections in the Xc and Yc directions respectively. 

Thusp it can be concluded that an 'asymmetrical structure 

of the type considered may be analysedas a combination 

of pure bending and pure torsional actions. 

6.5 Conclusions 

The analysis of asymmetrical structures consisting 

of ýantilevered and coupled walls shows that the behaviour 

of the structure may be described by a system of 

simultaneous second-order differential equations for the 

vertical shear distributions. ; The number-of differential 

equations will generally be equal to the number of series 

of connecting beams although some of the coupled wall 

assemblies are identical. However, since the differential 

equations are of second-order onlyp the method may still 

be economical if the number of the coupled wall 

assemblies present in the structure is not large. 
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In the case of asymmetrical structures consisting 

of cantilevered walls and framesp a closed form solution 

may be achieved by solving a fifth-order differential 

equationy equation (6.25). if the lateral stiffnesses 

of the frames are small in comparison with those of the 

walls and may be neglected, the two equilibrium equations 

lead to two independent third-order differential 

equationsy equation (6-30.9-which may be solved 

separately. Effectively, the structure may be analysed 

as subjected to pure bending and pure torsion. This is 

possible since it has been shown that (cf. -equations 

(6-33)-(6-34))the axis of rotation and the, plane in 

which the load must act in order to produce pure bending 

can be determined from geometry alone. 

The analyses can be readily extended to cover 

cases where the walls are non-planar and the frames are 

differently orientated. It has also been shown, for 

the special case of non-planar cantilevered walls 

structurep that the axis of rotation and the orthogonal 

vertical planes which the loads miist act in order to 

produce pure bending actionsfmay be determined from 

geometry of the structure. Hence, this type of structure 

may be analysed as a combination of pure bending and pure 

torsional actions. The pure bending and pure torsional 

actions can be analysed independently, and solution for 

each action may be easily obtained by solving a single 

third-order differential equation* 
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CHAPTER_Z 

SPATIAL STRUCTURES COMPOSED OF THIN-WALLED 

ASSEMBLIES 

7-1 Introduction 

Throughout Chapters 4 to 6 it has been tacitly 

assumed that the plane cross-sections of wall assemblies 

before loading remain plane during loading. The St. 

Venant's torsion of each wall is also neglected since it 

is assumed that it does not contribute significantly to 

the overall torsional resistance of the structure. For 

most tall buildings the St. Yenant's torsion may safely 

be neglected since the thicknesses of the wall assemblies 

are generally small in comparison with other dimensions. 

On the other hand, the assumption that plane cross-sections 

remain plane during loading may lead to a significant 

error in the solutions. 

Generally most walls have a fairly large degree of 

restraint against rotation at the base level. In 

consequencey the wall cross-sections will warp under 

torsional loading2 and warping or constraint torsion will 

be developed. Although the thicknesses of the walls may 

be small, the effects of warping of the cross-sections 

may be significant. This-is particularly true'regarding 

the stress conditions at the corners or edges of thin-- 

walled assembly subjected to severe torsion. It is then 

desirable that an analysis which takes into account the 

effects of warping of the cross-sections of the wall 

assemblies should be developed. 
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In this Chapter an analysis of a general spatial 

structure composed of thin-walled assemblies is 

presented. Each wall is treated as a thin-walled beam 

of open sectionp and Vlasov's theory for thin-walled 

beams of open section(31) is taken to be valid for 

individual walls. In addition, in order to simplify the 

analysisp it will be assumed that the St. Venant's torsion 

may also be neglected. The method developed is 

particularly suitable for analysing structures with a few 

series of connecting beams since with only a few series 

of connecting beams the analysis may be carried out 

using only a small desk calculator. 

7.2 Formulation of Problem 

The plan of a general thin-walled structure 

containing typical elements is shown in Fig- 7-1- it 

will be assumed that the storey height., h) is constant 

and the wall dross-sections are uniform throughout the 

height of the structure. 

7.2* 1 Assumptions 

The analyses are based on the following assumptions: 

is The floor slabs are rigid in their own planes so that 

the contour of the cross-section retains its shape. 

2. Deformation of the connecting beams occurs only in 

the vertical plane, with points of contraflexure at 

the mid-span positions. 

3- Out-of-plane deformations of the floor slabs can occur 

with negligible accompanying bending moments and 

vertical forceso i. e. the slabs effectively transmit 
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only direct in-plane forces* 

Vlasov's theory for thin-walled beams of open section 

is valid for individual walls. 

The St. Venant's torsion may be neglected. Thereforej, 

the total torsional resistance of the structure 

consists of, 

torsional moments developed by cross-sectional 

shear forces of all the walls (i. e. differential 

shearing action) 

(ii) warping torsional moments of all the walls. 

7.2.2 Compatibility Conditioný 

Each series of connecting beams is replaced by a 

corresponding series of independently actingý-laminae or 

a continuous medium of equivalent'fiexural rigidity. 

The medium is assumed 'cut' along the line, of the points 

of contraflexurep and a self-equilibrating vertical 

shear distribution force system is assumed acting along 

the cut edges. 

Consider two walls, i and jp connected by a series 

of connecting beams i-j as shown in Fig. 7*2(a). The 

walls i and j are also connected to walls k and 

respectively. 

The following symbols are used: - 

S. = the shear centre of wall i 
3. 

C. = the centroid of wall i 
X 

XiP Yi the principal axes of wall i 

Oi_j point of contraflexure 
- 

of connecting beams i-j 

X., Y., Z structural co-ordinate, axesj, positive Z direction 
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is upwards. 

The vertical displacement at the edge of the cut 

lamina i-j, belonging to wall ip is made up of five 

components. of deformation,, namelyp 

1. Axial deformation of wall ip 
a3- 

)p due to vertical 

forcesp 

2. bending about the principal axis : Ri-. 
xi)., 

3- bending about the principal axis fis 

4- warping of the cross-sectionp ( Aei)p 

cantilevered bending action of the lamina due to the 

shear distribution of the cut'edgep ('Abi)* 

Similar components of deformation exist at the cut 

edge belonging to wall j. Assuming that the vertical 

shear distribution along the contraflexure points 0 i-j 

is acting upwards on wall ij the relative vertical 

displacements of the cut edges at Oi_j resulting from 

the corresponding five components of deformation may be 

shown to bej, respectively (cf. Fig. 7-3). - 

a) i-j ai) 
Aaj), 

zH 

A. 
(ýi-j + 4jiL-k) 

3. 
0q, 

"! - 

- xj (;! j+qj dN d IC- 

( AX) 
I-j 

=. ( Axi) -(A Xi) -- ý--: I 

-1 -1 - +V 
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(A 
i-j =( Ayi) -(A yi) 

Ui 'i, i-j + uj 2j, i-j 
Ae)i_j Agi) +( AGj) 

+w JL p JL-j i wi 

Ab) 
3. -j 

A bi) 'Abi) 

0. h 
I-j )( ýj-j - qj-i) 

24EIci_j 

(7.1) 

where I 

Ai = cross-sectional Area of wall i 

bi_j = length of connecting beams i-j 

H= total height of structure 

A, ý; ' = auxiliary height ordinates 

Ici-j = second moment of area of connecting beams i-j 

qi_j = signed vertical shear distribution acting on wall 

I at the cut edge of the lamina i-jp positive 

if acting along positive Z direction 

x and Y. ordinates of the point 0 i, i-j P Yi, i-j ýi3. 

x J'i-j' yj, i-j = 5E 
i and -Y 

i ordinates of the point Oi_j 

u il vi = displacements along the 2. and Yj axes 

respectively, of the shear centre Si" 

= rotation about the výrtical`axis, -of the shear 3- 

centre Si 

(prime) = symbol denotes differentiation with respect 
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to z 

W. -= principal sectorial ordinate of the point Oi_j. 9 1.9 3. -j 

with respect to wall i (cf. Appendix III). 

The expressions for A, 
j) are obtai 

I 
ned f- rom 

(31) 
Vlasov's theory for thin walled beams of open section 

Equation (7-1) and subsequent derivations will be based 

on the right-hand system of co-ordinate axes. 

For displacement compatibility at the cut edges of 

the lamina i-jj the relative vertical displacement at 

the cut edges must vanishp hencep 

++ i-j +( 'ýb) +( 6x) 
y i-j 3. -j 

i-j 

(7.2) 

From geometry2 the local wall displacements 

vi., ei can be expressed in terms of the structural 

(global) displacements by the following transformation 

relationshipss 

U. Cos Oi sin Oi 01 0 -yi U 
3. 

V -sin Oi Cos Oi 00 1 xiV I 

L0 
0 0 1JL 0 18 

J 
(7-3) 

where 

u., v and 9 = displacem ents alon g the Xy-, Y axess and the 

rotation about the vertical axisp respect. 

ively., of a po int along the reference Z axis 

Oi the angle the axis 52i makes with the X axisp 
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counter-clockwise angle'is positive, 

xi$ yi = X- and Y-ordinates of the shear centre Sie 

Substituting equations (7-1) into (7.2),, differ- 4, 

entiating twice with respect to z2 and then transforming 

'the local displacements into the global displacements by 

means of equation (7-3) leads t02 

III fit fit 
hO 

Ru+Rv+R91+ JL-J 
i, j qj u V. .0 24EI i-j 3. -j 

i-i ci-j 

+ qi-k) 
Aj. 

L 

ý: 1- (7-4) 

where 

Ru 
i-j 

= E(x 
ci -x ci) 

E= modulus of elasticity 

R 
Vi-i = E(y 

ci - Ycj) 

Ra 
i-j 

E-, 
-i 

+ yi(xi-j - Xci) I lui, i-j j, i 

- XJLL(yi-j - Yci) - Yj (xi-j -x ci) 

xi (yi-j - YCA 

(7-5) 

Xci,, Yci X- and Y-ordinates of the centroid C 

xi-jo Yi-j X- and Y-ordinates of the point 0 i-j 

The compatibility equations for the other series of 

connecting beams may be similarly established. 
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7.2-3 -Equilibrium Conditions 

Let 

Fxi,, Fyip 'xiP fyi = cross-'sectiona; shear forces of 

wall i in directions Xj, Yp X and i 
Y respectively i 

T torsional moment of resistance about JL 
the axis OZp contributed by the 

cross-sectional shear forces of 

wall i 

t. = warping torsion contributed by wall i JL 
Mt= total applied moment above any level 

zp about the axis, OZ 

= P 
X., P components of total, applied force 

y 

above any level zp in the X and Y 

directions respectively 

For the equilibrium of the structure in the X and 

Y directionsp the following equations must be satisfiedp 

m 
FP 

xi x 

(7.6) 
m 

F 
yi 

Py 

and for the torsional equilibriump 

m 

(Ti + ti) Mt (7-7) 

m 
in which is the summation taken over all the walls 
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in the structure. 

Equations (7.6) and (7-7) may be expressed asp 

m 
(f cos fyi sin Oi) P, xi x 

m (7-8) 

cos Oi + fxi sin Oi) py 

m 
[ti 

- (fýi cos Oi - fyi sin Oi)y. + (f . cos JL YJL - 

X3. sin OP X. Mt 

in which Oip xis yi are as defined previously. 

From Vlasov's theory$ the cross-sectional shear 

forces f 
xi-' 

f 
yi and the warping, torsion ti are given by 

(cf* Appendix III)$ 

Ri, 
.- EI ri fit 

X3. 
r 

i-r 
. 

3. -r yi i 

EI YJL r 
i-r 

Yly 
i-r xiV X 

wiyi-r )- 'EI 
wi 

9i 

where 

I 
xi., 

Iyi second moments of area of wall i about axes 

xi and fi respectively 

I principal sectorial moment of inertia(, 31) 
of 

Wi 
wall i 

sum of all -q. R. 
- for wall i (4i-r 52i2i-d 

i-r ip3, r 
rZ 
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T- (qi-r 7i., 
i-d and 'd are similarly 

r r 
defined. 

From equations (7-3)y (7.8)'and (7.9ý the equili- 

brium conditions for the structurý may be expressed as$ 

C 11 C 12 C 13 u 
fit 

C 21 C 22 C 23 v 
fit Q2 (7-10) 

C 31 C 32 C 33 3 

or simply, 

C] 
fdtIIj 

(7.11) 

in which, 
m 

CE (I Cos 
20i + Ixi sin2o. ) 

11 yi JL 

m 
22 =E (I 

yi sin 
20i + Ixi Cos 

. 

20i) 

m 
c33 -ý E [I 

wi 
+ jy, (yi cos Oi xi sin Oi) 2 

+I 
xi 

(yi-sin Oi + xi cos 
2 

m 
c 12 E cos Oi sin oi (Ixi - 17i) 

C 21 

mIt 
c 13 E Iyi Cos Oi (. Yi Cos-Oi xi sin Oi) 

+ Ixi sin Oi (yi sin Oi + Xi Cos Oi) 

I= 31 
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m 

23 E 
[I, 

i sin Oi (yi cos Oi -xi sin Oi) 

XJL cos Oi (yi sin Oi +xi Cos 

C 32 

m 

3 i-r (xiLi, i-r - yiKi, i-r - wii-r) 
r 

- 

JL i r x i i sin ý Cos 
p - -r p JLSJL-r I 3L 

K 
lpi-r x i.. i-, cos sin 

m 
Q2 Li i r 

p 
.. - y r 

m 

Ql Ki i r. 
) Px 

. _ r 

(7-12) 

7.2-4 Governing Differential Equations 

From equation (7-10P the third derivatives of the 

disPlacements becomep 

d fill =[F] 

ýQ 1 
(7-13) 

in which [F] is the inverse matrix of [C] 

Consequentlyp equation (7.4) may be written as., 

fQj T [F IT ýRi_jý +() ii-j -- (-L + -L) qi-j 
121 

ci-j 
AiAi 
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q, qj-l - A. -k 3. 

in which ýýjj T 
and [F ]T are the transposed matrices 

of 
fQj 

and 
[F] 

jt and,. 

i_j 

I 
ýý 

Ui-i 

v IL-i 

JL-j 

(7.15) 

For a structure with n series of connecting beams2 

there will be n differential equations of the form given 

by equation (7-14). These equations form a system of 

governing differential equations for the structure. 

The system of differential equations may be expressed in 

matrix form as, 

[/3]f 
q111 + 

[C; 

'-' R '(7-16) 

where 
Iq I 

column matrix of vertical sh ear distributions, 

(n elements) 

d2 
dz 

TR 
column matrix (n elements) 

3 square matrices (n xn elements) 

The elements of matrices 
[131 

p 
lot 11 

and R 
I;,: 

may be 

determined using the differential equation, (7-14). 
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7o2,5 Boundary Conditions 

For a structure on a rigid foundation and free at 

the topp the following boundary conditions apply: - 

At the base, z= OP 

I r, 
3.2 

71 
i, U, u0 

-1 

JL P vip V, V0 (7-17) 

0 

at the top, z H, 

u JLI 
U0 

vi PV0 (7-18) 

0 

From equations (7-02 (7.2)p (7-17) and (7-18), the 

boundary conditions for the system of governing 

differential equations are given by, in terms of the 

shear distributions, 

at z=0,4i_j =0 all i-i 
(7-19) 

-f at z=H, qi_j =0 all i---j 

7.2.6 Solutions 

From equations (7-16) and (7.19) the solutions for 

the vertical shear distributions may be obtained by using 

any standard method of solving a system of simultaneous 

differential equations with constant coefficients, The 

displacements up v., a are then determined by directly 
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integrating equation (7-13)p using the boundary conditions 

given by equations (7-17) and (7-18). The local wall 

displacements U-y -v follow from the transformation 
JL V ei 

relationshipsp equation (7-3). 

The longitudinal stress, 6ps at any'point, in the 

cross-section of wall i is given by (cf. Appendix III)j* 

H 

pA 
dN -BRp+ -7iyp 7- e i'Wp 

r 
z (7.20) 

where 

X '9 Yx and'Y. - ordinates, respectivelyp of the 
ýp p i- I 

point considered 

wp = principal sectorial ordinate of that point 

7-3 Experimental Investigation 

In order to substantiate the validity of -the 

assumptions made in the analysis-and to enable the - ,, 

accuracy of the method of analysis toýbe assessed, the 

experimental investigation described in the present- 

section was undertaken. 

7-3-1 Model Shear Wall Structure 

From the various model material available such as 

araldite., perspex2 aluminium. etc. p perspex acrylic-was 

chosen as an appropriate material for model construction 

owing to its ease of machiningy fabricating2 and 

availability in a wide range of sizes and thicknessesy 

and relative cost. As relatively complex model was 
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neededy considerable wastage of construction material 

was difficult to avoid in fabricating the'model*, " In 

consequence, the cost of the construction material became 

one of the important factors in dictating, the choice of 

the material adopted. Perspex has the mechanical 

property advantages of having a reasonably'linear'stress 

strain relationship and a low; value of, the modulus of 

elasticity which allows for reasonably large-deflections 

and strains under loads. Its less desirable properties 

are sensitivity to humidity, and temperature changes and 

tendency to creep under loadp whilst the thickness'i'-, 

variation is greater than one would normally desiree, 

Construction of Model 

It was decided to build and test a 14-storey high 

model consisting of 3 non-planar walls interconnected by 

two series of connecting beams. The storey height 

adopted was 50 mm. Fig. 7.4 shows the plan view of the 

wall assembly. 

Perspex sheets of two standard thicknesses were 

chosen for the construction of the model. The nominal 

thicknesses of the coupled wall assembly and the floor 

slabs were inch and 
1/16 inch respectively. The 

coupled wall assembly was assembled from 9 components of 

plane perspex sheet. All components were made with an 

extra length of material at the base for fixing into 

slots in the base plate which was a 2011 x 1811 plate of 

1 inch thick perspex. The connecting beams and wall 

openings were made by cutting away the perspex to form 
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rectangular openings, These openings were made with 

small radius fillets at all corners to reduce, stress 

concentration at the connecting beam-wall junctions. 

Fig* 7.5 shows the configuration for openings and. 

connecting beams. 

The slots in the floor. slabs required to accommodate 

the wall assembly were cut slightly oversize for ease in 

sliding the floor slabs along the height of the walls 

during assembly. The out-of-plane rigidity of, the floor 

slabs were minimised by using thin perspex. 9,1/16 inch 

thick perspex sheetsp and by cutting out. material from 

the slabs in several areas to form openings-and. prevent 

coupling of the walls. The continuity and general in- 

plane rigidity of the floor slabsp needed"for transmitting 

direct in-plane forces and for retaining, the overall 

contour of the assembly, were ensured by providing at 

least 20 mm minimum width of material around the assembly. 

Small holes of 3 mm diameter, were drilled. in the floor 

slabs for the purpose of hanging weights., The slab 

configuration is shown inFig. 7.6., 

The wall components were first assembledp then 

fitted into the slots in the base plate and cemented. 

The floor slabs were slid down along the wall assemblys 

kept in positions and then cemented to the'assemblYO 

Tensol No- 7 cement was used throughout for the-assembly 

of the model. The complete model fixed tIo the test frame 

is shown in Fig. 7-9- 
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Strain Gauges 

Electrical resistance strain gaugesp Japanese type 

PL 10., were used for measuring the strains"induced in the 

model when tested. The gauges were attached to the wall 

assembly at a height of 125 mm above the base2 midway 
between the second and the thir 'd floor slabs. ' 'This 

position which was in the region of relatively high 

stresses was selected in order'that-the strain I readings 

would be reasonable. It was'also, far enough above the 

base not to be affected by any local effects caused by 

the base-to-wall connection. At the mid-floor position' 

the localized effects of slab-wall', and-connecting beam- 

wall interactions would also be minimum. 

The positions of the strainýgauges along the contour 

of the wall assembly is shown in Fig. -7o7. "-- All gauges 

were placed parallel to the longitudinal direction of the 

assemblyj to give the measured strain along'the 

longitudinal direction. The gauges'and terminal strips 

for the wire leads were glued to the perspex'by-Eastman 

710 adhesivey and varnished over for insulation'and ':, 

protection. 

7.3.2 Test Frame 

The frame on which the model was mounted during the 

tests is shown in Fig- 7-10*- It consisted, of a pair of 

vertical mounting units I metre apartp connected by 

horizontal and inclined bracing members1to form a stiff 

self-supporting box frame. 'The end of the frame. which', 

it was intended to use to support the base plate of the 
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model was further stiffened by bracing*an additional 

mounting unit to it at a short distance apart, 

Each mounting unit consisted of two vertical legs 

of 3" x 1.511 steel channels welded to 611 x 611 base plates,, 

and set at 0.75 metre apart by welding to two 0.5 inch 
.. ý-i. *_ 'ý" j. 

thick by 6 inch wide steel plates. The steel plates 

were provided with a regular array of holes for 
' 
use in 

fixing models to the frame, and were set near the upper 

ends of the supporting legs to provide adequate clearance 

below the model to hang weights. The bracing consisted 

of cut lengths of 211 x I" rectangular hollow sections with 

welded end plates which were tapped for bolting to the 

mounting units. 

To strengthen the mounting units used to support the 

base plate of the model,, 0.511 diameter screwed rods and 

several short lengths of hollow sections were used to 

bolt and brace the horizontal steel plates of the two 

adjacent mounting units to make them act together more 

effectively as a unit (cf. Fig. 7.10), Three 0.511 steel 

plates were placed vertically across the horizontal steel 

plates of the mounting unit; the base of the model was 

then placed in direct contact with these vertical steel 

plates. To minimise movements of the perspex base 

during the tests2 two strips of 0.5" steel plates and two 

hollow sections were placed vertically and horizontallys 

respectivelyp across the base.,, (Fig- 7.11). The 

hollow sectionsp the steel plates and the base of the 

model were firmly attached to the mounting units by 0.51, 
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diameter screwed rods to form a stiff foundation for the 

wall assembly. 

7-3-3 Test Procedure 

The model was set up in the test'frame such that 

wall 2 was nearest to the ground and the plane of 

symmetry of the model lay in a vertical plane. Fig. 

7-12 illustrated the model orientation as used in the 

I 
tests. The lateral loading was simulated by applying 

loads at each floor level in the form of 0.5 kg. weights 

on light alloy hangers suspended by "Terylene" cord 

connected to the floor slabs through the 3 mm dimeter 

holes. In each test the plane of the loads was a 

vertical plane parallel to the plane of symmetry of the 

model. Loads were applied with great care to avoid any 

impact effect on the structure. The, loads were applied 

in increments of 0.5 kgf per load point to a maximum of 

2 kgf per load point. A standard time of 10 minutes was 

allowed to elapse after each load increment before gauge 

readings were taken, to permit the gauges to settle to 

reasonably stable values. The sequences of the gauge 

readings for every load increment were kept the same. 

In order to minimise errors due to creep in the perspex, 

the model was unloaded by increments-and gauge readings 

were again taken. The mean. of, the results obtained 

from the loading and unloading of the model was used in 

the comparison of the experimental and analytical results. 

Three tests were carried out using the same model 

orientation. The three tests undertaken were as follows 
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(cf. Fig. 7.6). 

Test number I: Applied loads lay in the plane of 

symmetry of the model. 

Test number 2: The plane of the applied loads 

bisected the web of wall 3 (80 mm 

eccentricity). 

Test number 3: The plane of the applied loads passed 

through . the outer corn6rs of'wall 3 (120 

mm eccentricity). 

7-3-4 Measurements of Strains and Deflections 

Strýtins 

A Baldwin-Lima-Hamilton strain indicator was used 
in measuring the strains induced in the model by the 

applied loads. The equipment gave strain readings, 

directly in units of microstrainso To minimise any 

effect on the readings due to temperature and humidity 

changes in the laboratory during testso and local heating 

caused by the current passing through the gauge during 

the actual measurement of strainy compensating "dummy" 

gauges were incorporated in the circuit. 

Deflections 

Arrangements were made to measure the defle ctions 

at various points on the model using "John Bull" dial 

gaugesy type 2U, with a maximum travel of 12.7 mm and a 

sensitivity of 0.002 mm. The deflectionsy, in the 

direction of the applied loadso of the model were 

measured by gauges supported 
'on 

a light I'Dexion" frame- 
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work attached to the test frame. Two parallel sets of 

dial gauges were positioned above the assemblyp near the 

outer corners of walls I and 3. Each set consisted of 

7 dial gauges for measuring the deflections at alternate 

mid-storey levels. The positions of the 14 points (DI 

to D14) along the walls at which their deflections in 

the direction of the applied load were measured are- 

shown in Fig. 7.8. It was attempted to detect any 

rotation of the base plate about a horizontal axis 

parallel to the plane of the base by using'two dial- 

gauges to measure the displacements normal'to the, base. 

The two gauges were set 100 mm apart along'a vertical 

linep and held in positions by magnetic stands attached 

to the steel backing plates. '-One additional gauge was- 

used to try to detect any vertical movement of the base 

plate. 

7-3-5 Determinations of the Modulus of Elasticity 

and Poisson's Ratio of Perspex 

In order to compare analytical results with 

experimental results it was necessary to evaluate the 

elastic properties of the model material. The modulus 

of elasticity and Poisson's ratio were determined from 

specimens cut out from the same sheet of perspex used-to 

make the wall assembly* Two. beam specimens,,. nominally 

2 inches wide by 12 inches long were used. _Standard 

beam testing procedures using equal, loading, at the third 

points of the span2 were f ollowed., ý, -, ý Each specimen was 

tested twice and the mean values of the, modulus of-,, 
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elasticity and Poissonts ratio'were adopted. - The' modulus 

of elasticity and Poisson's ratio were found'to'be 310 

kgf/mm2 7-I, I and 0.36 respectively. I '- ý%ý'"-- '"' ,,, 

7-3.6 Experimental Results 

The measured longitudinal strains in the walls for 

the three tests are given in Table 7.1. The deflections 

in the direction of the applied load are given in table 

7.2. The values of the deflections tabulated in, Table 2 

have already been adjusted to allow for the base move- 

ments detected in the tests* The, rotations of the model 

as calculated from the relevant experimental deflections 

are tabulated in Table 7.3. 

In order to be able to compare the experimental and 

analytical deflections in the direction normal to the 

plane of symmetry of the models an additional set of dial 

gauges was used in test No* 3 to measure horizontal. 

deflections of the model. The positions-of the dial 

gauges., D15 to D21, are shown in Fig. 7-8- The 

experimental results for the deflections normal to the 

plane of symmetry are given in Table 7.4. 

7-4 Analytical Results 

Theoretical analyses of, the model. wereýcarried out,. 

using the equations derived in Sections, 
-7.2.1 

to 7.2.6 

and the elastic properties of the perspex given in 

Section In the analyses each loading system was 

taken to be equivalent to a combination of a uniformly 

distributed load and a concentrated load at the top. The 
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top concentrated load was taken to be one half of the 

load actually applied at the top of the modelp and the 

uniformly distributed load equivalent to the, total applied 

load distributed uniformly across the whole length 

(height) of the model. To simply assune that the, --ý 
loading system could be treated as equivalent to the 

total applied load distributed uniformly across the 

length of the model would be, less logical. The. applied 

load at the top of the model could not realistically be 

considered as arising from a load distributed over one 

half of the 14th storey and-one half of an imaginary 15th 

storey. The combination of loads mentioned earlier was 

then adopted since it was thought to be a more realistic 

representation of the actual loading of. the model, 

The positions of the shear centres and the centroids 

of the walls and the structural co-ordinate system are 

shown in Fig. 7.13. The shear centre axis of wall 2 is 

taken to be the reference vertical axis OZ, In all tile 

tests the components of the applied loads along the X 

axis were zero because the loads were applied normal 

to the X axis. 

7-4.1 Solutions of Differential Equations. 1. ý-,, 

From equation (7-14).. the governing differential 

equations for the model may be written asp 

A) 
qtl 1+ 

-L) q -L q 121 2-1 - (A A 2-1 A 2-3 
c122 

=-u 
2-1 

u 
fit +Rv 

2-1 
v 

fit +R 
82-1 

9 
111 ) 
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3 
q" +qq 121 2-3 A 2-3 -A 2-1, 

c 
X2 

32 

(R 
uu+Rvv+R8 

"1 
,e 

III ) 
2-3 2-3 2-3 

(7,21) 

in which q 2-1 and q 2-3 are assumed-acting_upwards on 

wall 2. 

From geometry andstructural, properties of the 

model, and relevant expressions derived previouslys 

equation (7.21) becomes,, 

q 2-1 BIq 
2-1 B2q 2-3 py+, 12mt 

11 
2-3 - B, q 2-3 B2q 2-1 py14 mt 

(7,22) 

where 

B 1.17287 x 10- 

B2 5-52039 x 10- 
6 

13 - 6.47724 x 10- 
8 

12 =-J4 1-31875 x 10- 10 

-2 mm 

-2 mm 

j=- 

jr=- 

Closed form solutions for the vertical shear 

distributions q 2-1 and q 2-3 may be obtained. It may be 

shown that the solutions are given byp 

qw 
[K 

+K +'K 
2-1 ýIw12 Ow 

2 3' 11 

ipi 
[K 

10p( ril )+K2 op (72) +K 
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w 
[K, ýw K fi 

2-3 2 
ýw ( 12) + K4 (1 - ii) 

j 

+ ipi 
[K, 

ýp K2 ýp '12 ), +K4 

(7,23) 

where 

w= uniformly distributed applied load per unit height 

P= top concentrated load 

H= total height of the model (700 mm) 

71 =H 

HBB 22 

Ow( 7 cosh 7(1 sinhI71 
coshI 7coshl 

7 cosh W1 
p cosh7 

z/H 

H(R I+R 2) 
ýI 2(B +B 2) 

Ri+Je 2 

R23+14e 

e eccentricity of the, applied-loads;! equal to 000 

mm., - 80.0 mm and -120 mm for the test Nos. Ip 2 

and 3 respectively* 

H(R R 2) K2BB 
2 
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H(R 2B2-RIBI 

(B 2B2 
1 2) 

H(R 
IB2-RB K4 

(B 2_2 
: i: 

-l 
IB 2) 

The displacement functions uy vy e are then determined 

by integrating equation (7-13)- From the geometrical 

relationshipsp equation (7-3)p the, displacements of. any 

point in the model may be evaluated., The analytical 

displacements are compared, with those obtained experi- 

mentally and are shown graphically,, in, Figý., 7.14-7-19- 
I 

The longitudinal ýtresses in, the walls are 

determined from equation (7.20) and, the results are, 

compared with those obtained from the testsp Figs. 7*20- 

7,22. 

To investigate the effects of neglecting warping,,. 

deformation of the cross-sections of, the walls# the model 

is again analysed by assuming that plane. cross-sections 

of the walls remain plane during loadingp i. e. using 

ordinary beam theory. The resultslare shown by-super- 

imposing the analytical curves onto_Figs- 7.14-7,22p. so 

that direct comparisons can be made between the experi- 

mental results and the results obtained by. using the 

ordinary beam theory and the thin-walled beam theory. 

7-5 Comparison and Discussion of Results 

In the comparison of resultsp the limitation 

imposed by the degree of accuracy attainable experimentally 

and any deviation of the real structure from the idealised 
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mathematical model must be recognisede ' For any practical 

experimental investigation it, is-inevitable that a number 

of sources of errors are present. Some errors may be 

minimised with little extra carewhereas others are not 
determinable, Some of the possible sources*of errors 

will be indicated. 

The electrical resistanceýstrain gauges and the 

strain indicator equipment are items of, precision scient- 

ific equipment, therefore., theInherent', inaccuracy in 

strain readings would be very small, ---Effects of changes 
in humidity, temperature'were taken'into account by 

using compensating gauges. '' One possible source' ýof error 

which might have influenced the results of the strains 

obtained could be the local-stiffening of the perspex 

due to the strain gauges and their adhesive*' This 

would result in strain readings which were lower than the 

actual values. Strain readings of gauges'near the 
. 

corners of the model could also'be affected, byýlocalized 

stress concentrations. I .. 

In the experimental studies where full fixity at 

the base of the structure was required., it was usually 

found that this-requirement could rarely be'met. - The 

flexibility of the base-was a source of-errors encountered 

in'most of the experimentsO 'In-this study, considerable- 

effort had been made to stiffen the'test framep but it 

was found that base movements were, still, detectable. 

Although the model deflections, were' adjusted to compensate 

for the movements of thebasep it was anticipated that 

undetected residual frame deformations arising from the 
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flexibility of the frame existeds and this would 

contribute to errors in the measured deflections. 

Deformations local to the foot of the wall assembly and 

within the depth of the perspex base could also occur. 

It was difficult,, to the point of being impractical.. to 

measure accurately these deformations. The tendency 

would be2 therefores to produce results for the 

deflection and rotation of the model rather larger than 

would be the case if the base of the wall assembly was 

truly rigid. As noted earlierj one of the undesirable 

properties of the perspex is its tendency to creep under 

sustained loadingp therefore$ creep effects would also 

contribute to errors in the measured, deflections. 

Furthermore$ as several components were made and then 

assembled to form the complete structures- the inaccuracy 

in fabrication$ misalignment andnon-uniform joint 

rigidity could well be potential sources of errors. 

The estimation of the inaccuracy due toýany 

particular source of error was. extremely, difficult to 

determine. However, the combined strain inaccuracy due 
11 1 

. 
to experimental deficiencies could be estimated using 

static checks. As test number I produced only, pure 

bending of the assemblys any, variation of. stresses or 

strains across the thickness. of. the walls. -would, be. small. 

Therefore, with little lossin accuracy., 'the 
strains 

measured along the outer surface of the walls could be 

considered as representative.,,,, of strain distributions in 

the walls. The static checks results, per load_ 

incrementy of test number I are as follows: - 
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Forces 

tensile force in the model _'' 10090 gmf 

compressive force in the model 8530. gmf 

unbalanced force 1560; 'gmf'-ý 

, -error as percentage of combined 

forces 8-4 % 

Moments 

moment due to the applied loads 1s8002000 gmf-mm. 

moments calculated from the stress distributions: - 
(i) moment about an axis along the webs of walls 1 

and 3., 

moment 1,726, ooo gmf-mm 

error 4-1 % 

-(ii) moment about an axis along the web of wall 2., 
_ 

moment 1,960,, 000_gmf-mm 

error 8.9 % 

Average error for moment = 10-1 + 8-9) 6.5% 

The static checks results show that the errors for 

forces and moments are less than 10%0 Ifencep the 

accuracy of the experimentally determined strains may be 

estimated to be within 10% of the actual values. Howevers 

this estimation does not truly reflect the degree of 

accuracy attainable regarding the deflections of the model. 

Since some sources of errors only marginally, affect the 

static checks but can produce large errors in the ,, 

measured deflections. For instancep a rigid body rotation 

of the base has insignificant effects on the static check 
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results but will produce large errors for the measured 
deflection at the top of theýmodele 

ý, - Def lections 

Comparisons between the experimental and analy- 

tical results for the deflections in the direction of 

the applied loads are shown graphically'in'Figs- 7-14-7,, 16. 

The measured deflections of almost all the points are 

greater than the analytical deflections. At, the top of 

the model the maximum deflections obtained analytically 

was approximately 80 per cent of the'experimental values. 

As noted earlier2 flexibility of the base and creep 

effects were expected to be the sources of discrepancy in 

the results. Creep tends to increase the deflections 

and has a cumulative effect on, points further away from 

the baseO The effect of rotational flexibility of the 

base on the deflections also amplifies towards the top* 

Both sources of errors have a tendency to produce 

increasingly larger deflection towards the top, which was 

verified by Figso7ol4-7-164p- 

The differences between the analytical deflections 

obtained by using the ordinary beam theory and the, thin- 

walled beam theory are not great; ', and for the testý . 

number I the solutions are'identical since the structure 

underwent only pure bending. 

Comparison for the deflections normal. to the plane 

of, symmetry is shown in Fig. 7.17. The experimental, - 0% 

results agree reasonably well with the-analytical results* 
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"_f! Rotations 

Comparisons of rotations for test numbers 2 and, 32 

Figs. 7.18 - 7.199 show that analytical results are again 

smaller than the experimental results. ý The discrep-,. - 
ancies are of similar magnitudes to those of the - 
deflections, The rotation at the top calculated from 

the thin-walled beam theory was approximately 82 per, 

cent of the experimental results. -The ordinary beam 

theory predicted slightly smaller rotation;. approx- 

imately, 77 per cent of the experimental value.,,. 
-I 

ý,, 

Strains 

Comparisons of strains are shown graphically in 

Figs. 7.20-7.22. The strains in the walls'obt4ained 

experimentally show a general pattern of distribution 

which bears a close relationship to the distribution 

predicted by the thin-walled beam theory. With the 

exception of strains in the straight flange-8f'wall'2 and 

at a few positions near the corner pointsp the'experimen- 

tal results and analytical results obtained'from the 

thin-walled beam theory agreed'-reasonably wellý "The 

analytical results predicted by'the ordinary beam theoryp 

hoýweverp were not in good agreement, with the experimental 

results. The discrepancies between'the'experimental 

results and the ordinary beam solutions for points near 

the'corners or edges were generally very marked. The 

agreement was extremely poor at the edges of the return 

webs of walls I and 2y for tests number 2 and 3- It is 

to be noted that the strain distributions for test 
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number I predicted by both theories were identical since 

the applied load did not produce torsion of the models 

Relatively large discrepancies between experimental 

and analytical (thin-walled beam theory) strains in the 

straight flange of wall 3 for tests number 2 and 3 were 

not expected because reasonably good agreement was 

obtained for the rest of the walls. The possibility of 

the gauges being damaged during assembly was remote since 

the readings were consistant throughout the tests. 

Connecting beam-wall interaction was also unlikely to, 

produce errors which were confined to the flange of wall 

3 without significantly affecting the connected flange of 

wall 2. Accepting that the discrepancies could not 

reasonably be explained in the context of theoretical 

deficiency, the differences in the results were most 

likely to be the effects of fabrication or assembly 

errors. Careful measurements'showed that there were 

slight errors in the model dimensions. The distances 

between the inner corners of walls 1 and 3 measured at 

the base and the top of the model. were found to be 81 mm, 

and 79 mm respectively instead of a constant distance of 

80 mm throughout the height of the assembly* This 

indicated that there was a slight distortion of the 

straight flange of wall 21 which might account for the 

discrepancies localized to the flange of the wall. 

7.6 Conclusion 

The experimental investigation shows that the 

continuous medium approach can be successfully used to 
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analyse non-planar thin-walled coupled wall structure 

provided that thin-walled beam theory is used instead of 

6rdinary beam theory, The ordinary beam theoryp although 

giving deflections and rotations which are only slightly 

less than those predicted by the thin-walled beam theorys 

gJLves a prediction of strains which is greatly different 

from those obtained experimentally, 'particularly in the 

vicinity of most corners and edges of the walls. 

Experimental results obtained were based on a model 

which had been designed to conform to the assumptions 

made in the analysis. Thereforep it must be recognized 

that., strictly2 the conclusions drawn are valid for the 

idealized structure. Idealization of real structures 

involves a certain degree of approximationp and this will 

reduce the accuracy of the solutions. 
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Table 7.1 

Strain in Wall Assembly Due to Loading of 0-5 kgf 

per Storey 

Strain 
gauge 
number 

Longitudinal strains at 125 mm. above base 
in/in 

Test No. I Test No. 2 Test No* 3 

1 -90 5 37 
2 -90 8 29 
3 -61 4 34 
4 7 36 48 

5 64 63 61 

6 95 69 61 

7 93 51 29 
8 87 30 -2 
9 63 7 -23 

10 14 -36 -64 
11 -37 -79 -101 
12 27 -42 -78 
13 -17 -85 -117 
14 -65 -121 -149 
15 -87 -131 -157 
16 -89 - 88 -89 
17 -83 -36 -17 
18 -61 -4 26 

19 -16 51 84 

20 35 112 148 

21 -42 -9 9 

22 9 53 75 

, 
23 57 109 135 

24 84 136 163 

contd. contd. contd. contd. 



Table 7.1 (contd. ) 

Strain 
gauge 
number 

Longitudinal strains at 125'mm above base 

in/in' 

Test No. I Test No. 2 Test No. 3, 

25 93 131 
ýý51 

26 93 114 ý, 127 

27 66 70 75 

28 2 -25 
29 -61 -129 158 

30 -92 --; 171 '-209 

31 -95 -180 -221 



Height Deflection in the direction of applied* 
above loads 

base nm 
mm 

Test No. I Test No. 2 Test No* 3 

wall I* 
(DI to D7) 

75 0.026 o. oo6 -0.003 175 0-087 0.038 0.008 
275 o. 169 0.071 0,020 
375 0.266 -0., 115 -0-038 
475 0.360 0.150 0.043, 
575 0.452 0.184 0.053 
675 0.541 0.222 0.059 

Eall 
(D8 to D14ý 

75 0.028 0.039 0-047 
175 0.087 0.144 o. 168 
275 o. 167 0.277 0-326 
375 0.266 0.425 0.504 
475 0-36o 0.580 o. 685 
575 0.450 0-728 o. 865 
675 0.541 0-876 1-039 

The distances between the points at which the 

deflections were measured and the plane of 
symmetry of the model were 118 mm (cf. Fig. 7-8). 

Deflection of Model Due to Loading of 0-5 kgf 

per Storey 

Table 7.2 



Height 
above 

Rotation of Model(radian) 

base 
Test No. I Test No. 2 Test No. 3 mm 

75 0.0 0-00014 0.00021 
175 0.0 0.00045 moo68, 
275 0.0 0.00087, 0.00130 
375 0.0 0,00131 0.00197 
475 0.0 0.00182'' 0. '00272' 

575 000 0.00231 0.00344 
675 0.0 0.00277 0-00415 

Rotation of Model Due to Loading"of 0.5 kgf per Storey 

Table 7.3 

Height 
above 

base* 
mm 

Deflection normal to the pl a ne-of 
symmetry 

mm 

75 o. oo4 
175 0.019 
275 0.042 

375 0.074 
475 01110 
575 0-140 
675 0.162 

Dian gauge positions were'shown in. Fig. 7.8. 

Deflection Normal to the Plane of Symmetry of the 
Model due to Loading -of 0.5, kgf per Storey, with 
eccentricity 120 mm (test number 3) 

Table 7.4 ,, 
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CHAPTER 

GENERAL CONCLUSIONS 

The use of the continuous medium method for the 

analysis of two- and three-dimensional multi-storey shear 

wall structures has been examined in this thesis, 

Experimental investigations were undertaýenj when they 

were necessaryp to substantiate the analyses. 

Plane coupled wall systems with continuously variable 

stiffness have been analysedp and experimental 

investigations on coupled walls with tapered width were 

carried out using perspex models. The'strains in tile 

walls predicted by the theory agreed well with the 

experimental resultsp but considerable discrepancies 

occurred regarding the deflections of'the'walls. In all 

three models testedp including a model with uniform wallap 

the deflections obtained experimentally were considerably 

larger than those predicted by the'theory. 11oweverp in 

the case of a uniform coupled wall it has been well 

established that the continuous medium approach yields 

accurate results. Therefore., there was considerable 

indication that experimental deficiencies existed which 

had the effects of giving larger measured deflections. 

It is believed that the discrepancies'in the deflections 

were mainly due to undetected support movements caused 

by deformations of the test frame under'loading 

conditions. Elastic deformations of the perspex base 

plates and creep of the models could also increase the 
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measured deflections. Taking these effects into consid- 

eration,, the analysis can be considered as being 

reasonably substantiated by the experimental 

investigations. Between the two methods of solution 

proposed., the Galerkin method and the finite difference 

methodp the Galerkin method is preferable since it gives 

analytic solutions and for practical purposes sufficient 

accuracy is obtained using only three undetermined 

constants. The effects of an elastic foundation has 

also been considered in the analysis. 

The technique put forward in Chapter 3 is valuable 

for the investigation or design of coupled shear walls 

on flexible basesp subjected to lateral or vertical loads 

or a combination of both loads. The formulae and 

design curves presented enable important design quantities 

in coupled walls on flexible bases to be evaluated 

rapidly. Although only four sets of design curves have 

been producedp they cover a large number of lateral and 

vertical load cases (due to the correspondences-between 

the design curves for lateral and vertical load cases). 

The curves are valid for two coupled walls and. -, any 

symmetrical system with three walls which are connected 

by two series of connecting beamss provided that the wall 

cross-sections are uniform throughout their heights. 

The design curves presented can be very useful in the 

design officep since the variation of importantýdesign 

quantities under different sets of proposed, base - 

conditions can be investigated rapidly with minimum 
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computatione 

The lateral-load analysis of symmetrical three- 

dimensional multi-storey shear wall'structures has been 

carried out as two separate analyseso bending and torsion 

being treated separately. As shown in Chapter 4p each 

separate analysis is reducible to the analysis of. an 

equivalent analogous plane systemO' The solution is 

achieved by solving a system of simultaneous second-order 

differential equations with vertical shear distributions 

as dependent variablesO The method of analysis is 

very efficient in dealing with symmetrical shear wall 

structures comprising a large number of coupled wall 

assemblies which are identical or of a few distinct groups. 

The advantages of the method is exemplified by the examplc 

problem in Chapter 42 where the shear wall structure 

consisting of three cantilevered walls and'eightecn 

identical coupled wall assemblies was analysed. The 

solutions for the eccentrically loaded structure were 

obtained by solving only two second-order differential 

equationsp one at a time. The amount of computation 

involved was small and could be achieved easily by hand 

J- 
computation. The method presented is valid-whether the 

coupled wall assemblies are planar or non-planar systems. 

By treating frames as vertical cantilever shear'' 

beamsy i. e. it is assumed that the shear force in each 

frame is proportional to the rate of change of'th'e lateral 

deflection of the framep the method has, been extended to 

deal with symmetrical shear wall-frame structures* 
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Howeverp for, shear wall-frame structuress the govcrning 

differential equations become fourth-order equations 

with vertical shear distributions as dependent variables. 

Closed form solutions for standard load casess namelyp 

concentrated lateral load (or torsion) at the topp 

uniformly distributed lateral load (or, torsion) per unit 

heightj triangularly distributed lateral load, (or, torsion) 

per unit height., have been presented. These closed form 

solutions are applicable to symmetrical structures with 

identical in-plane symmetrical coupled wall assemblies. 

Asymmetrical cross-wall structures have-been 

treated in Chapter 6. Under an arbitrary lateral 

loading system it is not generally possible to separate 

the analysis into bending and torsional analyses. The 

centre of rotation of an asymmetrical structurep in 

generalp varies with height and is not predetermined. 

In consequencey the vertical sheaý distributions in 

identical. coupled wall assemblies are no longer linearly 

related. Thereforep the analysis given is, suitable only 

for shear wall or shear wall-frame structures with 

relatively few coupled wall assemblies. 

The analysis of three-dimensional thin-walled-, 

structures presented in Chapter 7 has taken into account 

the warping of the wall cross-sections. Vlasov's theory 

for thin-walled beams of open section has been assumed 

valid for individual walls. An associated experimental 

investigation on a fourteen-storey perspex, model 

structure consisting of three non-planar walls inter- 

connected by two series of connecting beams was. undcrtaken. 
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The experimental results substantiated the analytical 

predictions2 and indicated that neglecting the warping 

of the wall cross-sections could result in considerable 

errors in the prediction of stressýdistributions in the 

walls2 particularly at the points having relatively large 

values of sectorial co-ordinates. The method of 

analysis presented is applicable to thin-walled structures 

consisting of cantilevered and coupled walls of any 

configuratione The coupled wall assemblies may be 

singly- or multiply-connected2 or self-connected 

assemblies. The method can be advantageously used to 

analyse structures with relatively few series of 

connecting beams since the solutions can be achieved 

manually. For structures with a large number of series 

of connecting beams2 the advantages of the method diminish 

because the amount of computation involved increases with 

an increasing number of the series of connecting beams. 

In the light of the experimental results obtained 

from the thin-walled models caution should be exercised 

when the expressions given in Chapters 4s 5 and 6 are 

usedp since the analyses in these chapters have been 

based on the assumption that the ordinary beam theory is 

valid for individual walls. If the thicknesses of the 

walls are relatively small and the torsional loadings 

large$ slight modification should be made to the 

torsional analyses in Chapters 4 and 5 and to the analysis 

presented in Chapter 6 in order to take account of the 

warping of the wall cross-sections. Howevers no 

modification is necessary if each wall is planar or made 
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up of straight plates intersecting at one common point. 

For such wall configurationsp the sectorial co-ordinates 

along the cross-sectional profile of each wall are 

identically equal to zero. In consequencep the 

expressions obtained using ordinary beam theory or 

Vlasovts theory for thin-walled beams of open section 

will be identical. 
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APPENDIX I 

FINITE DIFFERENCE OPERATORS 

r 

i-3 i! 2 iýl i i+l i+2 i+3 

(a) Central Operators (error of'o'r'der r 
2ý 

2r d 
dq 

22 
r-= 2 d9 

2r3d3 ý7 = 

M WO 

(b) Forward Operators (error of order r2) 

(1+3) 

2r d 
dj 

r2d2 

2r3 d3 
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APPENDIX II 

DESIGN EXPRESSIONS FOR A POLYNOMIALLY DISTRIBUTED 

LATERAL LOAD OF INTENSITY Pn In PER UNIT HEIGHT 

Following the same method of analysis established 

in Chapter 2, the design expressions for a polynomially 

distributed lateral load of intensity, Pn In per unit 

height are found to be as follows: - 

wPH 
n 

q, qlp fw 

T T1P 
7H 

uH EIp uH 

RW H3 

Eq cosh '/(I - 11 ) 
I cosh 'I 

FT sinh I(1- 
17 cosh 17 

Fu tanhI I 
17372 

qnn sin 
2 (r22 (n-r) 

+( sinh 
F 7cosh*7 2- (n+l) Tn--r). / 7 r+j 

n sin 
2( 2 

r+l 

n 2( . 
Ir 

n sin 2 

7 r+l 
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n 2(zl 
n sin 2 coshl I 

(n-r-1) /7 r+3 cosh7 

F 
UH I+n! 
2 6(n+l) T -n+ T/ 

2(p 7T 
sin 2 

ý7 
r+l 

n2 'r 7r) 
nI sin 

(2 
(n-r+3)! 7 r+l 3(n+i) 

n 
n. 1 2 (r* 

sin 2+1 
1 

(n-r-l)/ 
-/ r+l -, 

74 7 4cosh 7 

ilZ 
[r, ((: ET) p(1 - 

IIn/ (2(n+l) 6(n+l) + -(-n+4)/) 

rIh0-r (F T 
Tn + -2) -n -+l ))2 2)0 (F2 

0 
T 

r3+r2 (Fl)o 

In the formulaes 0! is equal to unity and a 

negative factorial is infinite. Other parameters are as 

defined in Chapter 3- 
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APPENDIX III 

SUMMARY OF VLASOVIS THEORY FOR THIN-WALLED BEAMS 

OF OPEN SECTION 

Vlasov's theory for thin-walled beams of open 
(31) 

section is based on two main simplifying assumptions 

namelyp 

1. The shape of the out-line of a cross-section remains 

unchanged under loadingp i. e. the contour of the 

beam profile is invariable (the beam profile is the 

cross-section of the middle surface of. the thin- 

walled beam). 

2. The middle surface of the beam is free of shear 

def ormation, i. e. 

(9 ý ap- () s (9 z 
IIII (III-1) 

where, (Fig. III-1)s 

longitudinal displacement of a point along. the 

the profile 

transverse tangential displacement of that point 

s= profile ordinate 

z= longitudinal axis of the beam 

From these two assumptionsp the longitudinal '-- 

displacement ý(zjs) of a point R in the profile of'a 

cross-section along the Z axis may be shown to be, 

(Z) y el (Z) w 0( jz) -U (Z)X -v% 
(111-2) 
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where 

K. (z) =a function of z only for a given set of the 

origin 02 sectorial pole p and sectorial origin 

r (Fig, 111-2) 

x2y = x- and y- co-ordinates. of the point R 

W= sectorial co-ordinate of the point R; it is 

defined as double the area enclosed by straight 

lines pr and pR and the curved rR (Fig. 111-2), 

u(z) = displacement along the X directions of the 

sectorial pole p2 

v(z) = displacement along the Y directions of the 

sectorial pole 

O(z) = angle of rotation in the plane OXY of the profile; 

positive if it is a clockwise rotation when 

viewing by facing the positive Z directions 

(prime) = symbol denoting differentiation with respect 

to z 

The sectorial co-ordinate w is positive if the 

radius pr moves clockwise when viewing by facing the 

positive Z direction. 

Vlasov assumed further that the normal stresses are 

constant over the thickness of the beam and that the 

tangential stresses over the beam vary. linearly (Fig. 

111-3)- The state of stress in the cross-section can 

then be expressed by the longitudinal stresses 6 (z., s),, 

the average tangential stresses -r(z,, s)., aýý the 

torsional moment Ta (Z). The torsional moment Ta(z) 

which arises from the differences in the tangential 
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stresses at the outer and inner surface of the beam, 

(Fig. III-3), is assumed to be distributed uniformly over 

the cross-section. .1t, 

From the stress-strain relationship and the assumed 

inflexibility of the contour of the cross-section it may 

be shown thatp 

6 (Z., s) =E 
[ý(Z) 

- u"(Z)x - 
�wý 

- 8"(Z)wl vy 

s 

(z , s) = -1 
r-/-(Z) 

-ýp ds' -"E (K (z)J(s) - z 

fit 

where 

E = modulus of elasticity 

= thickness of the beam 

= a function of z only 
s 

J(S) dA 

0 

dA = d( 8 s) 

s 
i (S) = ydA X 

0 

s 
i (S) = xdA 

0 

s 
j (S) = w dA 

0 

("-3) 
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PZ projection of the external surface forces on 

the Z axis 

The generalized cross-sectional forces are given 

by 

N 6 dA = longitudinal force 
A 

M = 6 ydA = moment about the X axis x 
A 

M ýý 6xdA = moment about the Y axis y 
A 

B ý dwdA = bimoment (111-4) 
A 

= f TSdx = cross-sectional shear force in x 
the X direction 

f = TSdy = cross-sectional shear force in y 
the Y direction 

t= TSdw = torsional moment about the 

sectorial pole due to the shear 

stress 7p clockwise torsional 

moment being positive 

where 
ýA 

integration taken over the whole cross-section 

integration taken over the whole curve of the 

cross-sectional profile. 

If the beam is subjected only to transverse surface 

forces and longitudinal edge forces, (Fige III-4)s the 

expressions for the generalized forces given by equation 



267 

(111-4) become., provided that the co-ordinate system is 

the generalized principal co-ordinate system(31) 

, 
height 

N= EA ý(z) (q 1+q2 
)dz 

Z 
M= EI uz yy 

11 M=- EI v 

EI 9 

' ill (q 
1x1+q2x 2) - EI u 

fy = (q 
lyl +q 2Y2) - E, 

xv 
III (Z) 

t= (q 
1w1+q2 w2) - Ei 

w9 
111 

where 

Ix y2 dA IyX2 dA 
A 

IW2 dA 
__ W 

ýA 

ql$ q2 longitudinal shear distributions at edges 1 and 

2, (Fig. 111-4) 

XV x2X co-ordinates (principal) at edges 1 and 2 

Y1, Y2 Y co-ordinates (principal) at edges 1 and 2 

WV w2 principal sectorial co-ordinates at edges I and 2 

The principal generalized co-ordinate system for a 

cross-section is defined as follows: - 

(i) The X and Y axes are the principal axes. 

(ii) The sectorial pole is located at the shear centre 



268 

of the cross-section. 

(iii) The sectorial origin is located at the point 

which results in wdA 0 
A 

The expression for the longitudinal stress, equation 

(III-3)p then becomesp 

6(zss) =N-E( (Z) x+ (Z) y+J (Z) w) 

m Bw 
+y+ lw 
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