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SUMMARY

The continuous medium analyses of two- and three-

dimensional multi-storey shear wall structures are

presented in this thesis,

The system of planar coupled walls with contin-
uously variable stiffness has been analysed and two
methods of solution, the Galerkin and the finite
difference methods, proposed, The results of tests on
perspex models with tapered width agreed reasonably well
with the analytical results,

A new technique which enables important design
quantities for uniform coupled wall systems on flexible
bases to be evaluated rapidly has been developed. The
design curves for several standard load cases, vertical

and lateral loads, have been produced. These design

curves are applicable to two coupled wall systems or any

symmetrical system with three coupled walls.,

The lateral-load analysis of symmetrical shear wall
and shear wall-~frame structures has been presented. The

bending and torsional actions of the applied loads are

f

analysed separately. Each separate analysis is reducible
to the analysis of an equivalent analogous plane system,

The method is particularly suitable for analysing a
symmetrical structure which consists of a few distinct
gsroups of coupled wall assemblies. Asymmetrical shear

wall and shear wall-frame structures have also been

treated,

Finally the structure composed of thin-walled




assemblies has been analysed by using Vlasov'!s theory for
thin-walled beams of open sectione. The theoretical
results were compared with the results of tests on a
fourteen-storey perspex model., Reasonable agreement was

obtained between theory and experiment,
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CHAPTER 1

INTRODUCTION

1.1 Multi-storey Structures

The relatively high cost and scarcity of land in
and around large cities have given rise to a rapid
increase in the number of multi-storey buildings for both
residential and commercial purposes. With the increasing
use of light partitioning and high strength concrete and
steel reinforcement in tall buildings, the effects of wind
or seismic loads have become more significant, and the
provision of adequate lateral stiffness against lateral
forces constitutes a major consideration in the design of
tall structures,

The structural systems for tall buildings currently
in use consist of one or more of the three basic units,
namely, frame, wall and tube(32). Generally, as the
height of a building increases, a point 1is reached beyond
which the consideration of lateral stiffness and not
strength will govern the design of the structure, There-
fore, the choice of the structural system adopted depends,
to a large extent, on the number of storeys and the
magnitudes of the expected lateral forces. Concrete
frame buildings can, generally, be economically built up
to the height of between fifteen and twenty storeys.
Buildings which derived all of their lateral strength from
shear walls are feasible up to between thirty and forty

storeys. Hotels and apartment buildings incorporating




shear walls and frames are feasible up to seventy storeys.

Above these heights tube-in-tube or multiple frame-tube

systems appear to be more economical.,

A large proportion of tall concrete buildings is
of shear wall construction, i.e., consisting of shear walls
only, or shear wall-frame construction which consists of
shear walls acting in conjunction with parallel plane
frames, The prevalence of these types of structural
systems is due to the advantages in the speed of
construction, low reinforcing steel requirement and
adequate lateral stability to a considerable height. The
study made in this research mainly concerns these types of

structural systems,

In present building terminology, the term "shear
wall" signifies a structural unit in the form of single
wall or core capable of withstanding lateral forces.
Shear walls may be planar or non-planar and may be
connected by either connecting beams or floor slabs or a
combination of both., The terms "coupled (shear) walls"
and "(shear) walls with openings" are commonly used to
describe shear walls in which the connecting members must
be considered as moment-resistant elements, If shear

walls are connected solely through floor slabs which may
be considered as capable of transmitting only in-plane for-

ces, they are commonly described as cantilevered (shear)

walls or cantilevered cores.

1.2 Previous Research

In recent years there has been considerable interest




in the analysis and design of multi-storey structures,
as witnessed by the large number of published works

devoted to the subjects., An extensive review of liter-

ature on shear wall structures published prior to 1965

(14)

was presented by Coull and Stafford Smith Present

techniques for the analysis of two- and three-~-dimensional
systems were reviewed by a committee of the American

(32) and by Stamato(30). A selective

Concrete Institute
review of the methods available for the elastic analysis
of tall concrete structures, and the classification of the
particular techniques most appropriate to the different
structural systems was presented by Coull and Stafford
Smith(ls). All sources give comprehensive lists of the
published literature., In view of the ready availability

of the noted papers and the published literature listed

in the papers, only a brief review of relevant previous

works will be presented here,

The majority of the earlier studies of shear wall
structures and many of the more recent works have
concentrated on two-dimensional systems, In the analysis
of planar coupled shear walls, one of the following three
methods, namely, the frame analogy, the finite element
method and the continuous medium method, is generally
employed. In the frame analogy, the coupled wall system
is analysed as a frame, the finite width of the wall
being incorporated by a stiff arm connecting the end of
the beam to the centroidal axis of the wall(zo). The
finite element method replaces the coupled walls by inter-

connected plane stress elements, and the solution is
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obtained using matrix techniques. In the third method,
the continuous medium approach, the discrete system of
connecting beams is replaced by continuous laminae of
equivalent flexural rigidity. By assuming points of
contraflexure at the mid-span of the substitute system,
conditions of compatibility and equilibrium yield a
second-order governing differential equation, A closed
form solution for the problem can easily be achieved if
the walls are uniform,

Of the three methods of analysis, the frame analogy
and the finite element technique which are basically
discrete analyses give more accurate results, and are
readily adaptable to the variations in geometry of the
coupled walls, The amount of computation involved in
these two methods, however, is large and increases with
height. The use of either of these methods in the design
office is rarely Justified because of the time and expense
involved., The continuous medium method, on the other
hand, yields a slightly less accurate result but the
computation involved is much less and its accuracy
increases with height without additional computation.
Although restricted to systems with simple geometry, the
analysis can be carried out by hand or small desk calcul-
ator, The simplicity of the method has enabled the

(9)

production of simple design curves which enable a

rapid and accurate analysis of the structure for standard
load cases.
The technique of replacing the discrete beam system

(3)

by a continuous medium was first proposed by Chitty




in the analysis of a cantilever composed of a number of

parallel beams interconnected by cross bars. Further

(1) (25)

s Rosman y and Magnus(zns

developments were due to Beck
who have extended the original analysis to take account
of the axial deformations of the walls, shear deformations
of the connecting beams, flexural deformation of walls and
beams, and the effects of different foundation conditions.
Cases of walls with stepwise variation in cross-~sections
and walls with linearly tapered thickness were analysed
by Coull and Puri(12’13) and Michael(zz), respectively.
Several papers on the analysis of shear wall-frame
systems were published, notably those by Rosenblueth and
(26) (19)

Holtz(24), Cardan(z), Rosman » Khan and.Sbarounis
and recently by Heidebrecht and Stafford Smith(IS). The
analyses presented were essentially plane analyses since

only the displacement in the direction of the applied load

was assumed,
Three-dimensional analysis of complete structures

were presented by Clough, King and'Wilson(4), Gluck(lé),

Rosman(27), Coull and Irwin(ll). Heidebrecht and Swift(17),
and many other authors(Bz). Most of the analyses employ
the concept of a continuous medium. However, the
formulation of the analyses are such that to achieve

solutions considerable matrix manipulation is required,

1.3 Scope of the Thesis

This thesis is concerned with the investigation of
multi-storey structures by using the continuous medium

approach, This approach is adopted because the computation



involved is not excessive and simple design curves may

be produced. Furthermore, it is possible to formulate
the analysis such that in the case of shear wall
structures with a few coupled wall assemblies (or a few
groups of identical coupled wall assemblies), the analysis
of the complete structures may be carried out manually or
with the aid of a small desk calculator.

Two- and three-dimensional shear wall systems have
been studied. The first part of the analysis deals with
two-dimensional coupled wall structures. Planar coupled
walls with continuously variable stiffness subjJected to
lateral forces have been considered, and theoretical
solutions are verified by testing perspex models of
coupled walls with tapered width. The analysis is able
to deal with coupled walls on elastic foundation, Coupled
wall systems of uniform cross-sections (two wall and
symmetrical three wall systems) supported on flexible
bases and subjected to vertical and lateral loads have
been investigated, and design curves presented for several
standard load cases applicable to various base conditions.

A study of symmetrical three-dimensional structures
subjected to lateral loads has been made. The bending
and torsion of symmetrical shear wall structures are
analysed as two separate equivalent plane problems., The
method is valid for structures composed of planar or non-
planar coupled wall assemblies., The analysis is extended
to deal with symmetrical shear wall-frame structures. In

addition, asymmetrical three-dimensional structures are

also treated.




Finally, a general thin-walled shear wall structure
is analysed using Vlasov'!s theory for thin-walled beams
of open section, and an experimental investigation was
carried out to substantiate the analysis.

In this thesis Figures and Tables are referred to
by chapter number and are included at the end of the

relevant Chapter,



CHAPTER 2

COUPLED SHEAR WALLS WITH CONTINUOUSLY VARIABLE

STIFFNESS

21 Notation

The following symbols are used in this Chapter:-

cross-sectional areasof walls 1 and 2
distance between the centroids of walls 1
and 2

length of connecting beams.

second moment of area of connecting beams.

reduced second moment of area of connecting

beams .

second moments of area of walls 1 and 2-

I1 + 12

storey height

modulus of elasticity

total height of the coupled wall system

static applied moment

bending moments in walls 1 and 2

horizontal shear forces in walls 1 and 2

shear modulus and Poisson'!s ratio, respectively
co-ordinate of the vertical axis for a

coupled wall system, the origin of the

vertical axis is at the top of the system.

lateral displacement

vertical shear distribution in the continuous

medium ”

S q d\

0

integral shear force =



A s E = auxiliary vertical ordinates, with the
origins at the top of the coupled wall
system

N = non-dimensional co-ordinate =j%
0 = the integral of relative direct stress of
the walls
H =
= [(-51— + g q d\ ] d e
1 2
Z O

B, Ry dy8 = structural parameters

Kvl’ sz = vertical stiffnesses of foundations under
walls 1 and 2 respectively

Kel’ ng = protational stiffnesses of foundations under
walls 1 and 2 respectively

EKb = equivalent stiffness distribution of
continuous medium

4 = o« H

Other subsidiary symbols are defined locally in the text,
2.2 Introduction

In the study of coupled shear walls, the continuous
medium approach is the method of analysis in which the

discrete system of connecting beams is replaced by a

continuous medium of equivalent stiffness, The

substitute medium is assumed to span the openings through-
out the height of the walls. By assuming points of
contraflexure at the mid-span positions of the substitute
medium, a governing differential equation for the structure

may be established,
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Earlier works have concentrated on the analysis of

uniform walls(1’21’25) or walls with stepwise variations

in the cross-sectional dimensions(12’13). The distance
between the centroidal axes of the walls is then either
a constant or a step function. The governing differential
equations for such systems are essentially second-order

equations with constant coefficients.,

If the distance between the centroidal axes of the
walls is a continuously variable function, for instance
coupled walls with tapered width, the order of the
governing differential equation will generally be greater
than two, The coefficients of the governing equation
will also be variable functions., In this Chapter an
analysis of coupled shear walls with continuously variable
stiffness is presented. The integral of relative direct
stress of the walls (resulting from the vertical shear
distribution) is used as the redundant function, Two
methods of approximate solutions, the finite difference

and the Galerkin methods, are proposed.

2.3 General Theory

In the analysis of coupled shear walls by the
continuous medium approach, a number of assumptions are

postulated in order to simplify the analysis.

2,31 Assumptions

The following assumptions are made: -
1, The discrete system of connecting beams is replaced
by a continuous medium or a system of laminae which

are mutually independent in their deformations.
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2, The equivalent stiffness distribution (stiffness
per unit height) of the continuous medium is a
differentiable function of the height ordinate,
Its integral between half a storey above and below
any connecting beam must be compatible with the
stiffness of the beam,

3e Points of contraflexure occur at the mid-span

positions of the substitute laminae,

4. The simple beam theory is taken to be valid for
individuél wall.

5 The connecting beams are axially rigid so that the
deflections of the walls are equal, Thus, the
moment carried by each wall is proportional to its

second moment of area.

2.3.2 Differential Equation

Consider a general system of coupled walls under
lateral loading as shown in Fig. 2.1. The discrete
system of connecting beams of the real structure is trans-
formed into an equivalent continuous medium as shown in
Fige 2.2 The equivalent stiffness distribution of the

continuous medium is expressed as EKb, where E is the
modulus of elasticity and Kb the equivalent distribution

of the second moment of area of the continuous medium,

By making a cut along points of contraflexure of the
substitute laminae, i.e. at the mid-span positions, only
the vertical shear distributions and axial forces act on
the laminae at the cut section since the bending moments

are zero by virtue of the property of. the point -of contra-
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flexure. From considerations of the cut structure, the

relative vertical displacements 81: 00 3 3 of the cut
ends of a lamina due to bendings of the walls, bendings
of the cantilevered lamina, and axial deformations of the

walls are, respectively,

% =lg_121;
b3
% = TzEK. ¢
b
H R
5, = % g [("1_1'4_%;) % a dr ] dx
Z 0
in which,
u = lateral displacement of the walls
Z = vertical ordinate, with the origin at the top of
the walls
Al’ A2 = cross-sectional areas of walls 1 and 2
A 38§ = auxiliary vertical ordinates
1 = distance between centroidal axes of the walls
b = length of connecting beams
q = vertical shear distribution in the continuous
medium
H = height of the wall

For compatibility, the relative vertical displacement

at the cut ends must vanish, hence,

51-+ 821+ 83 = 0

or
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2 H 3
du b 1 1 .1
Laz T 12ex 1+ % & [(Al + Az) g q d":l dS
Z 0

= 0 (2.1)

From the moment-curvature relationships, the

moments in walls 1 and 2 may be written as,

9 v/
M = EIL cu = M- g q d\ - M
1 1 d 2 | a
Z
0
(2.2)
) Z
M, = EI, &% = _g qadn +M
2 2 d 2 2 a
v/
0
where,
M = static applied moment
Ma = bending moment due to axial forces in the
continuous medium
Ml,jM2 = bending moments in walls 1 and 2, respectively
Il’ 12 = second moments of area of walls 1 and 2,
respectively-
€12 &y = distances between points of contraflexure and

the centroids of walls 1 and 2, respectively

From equation (2.2), the overall moment-curvature

relationship for the structure becomes,
Z

2
M +M. = EI &4 _ Mm.-1 q dA (2.3)
1 2 2

0
in which I is the sum of the second moments of area of

WallS 1 and 2-



U
D
|
;e

b
1 1 1
x ta =35 (244)
Al A2 B
H 5
1 1
S l:(z' +X') g q dA ] ds = Q
1 2
y/ O
and hence,
y 4
25 (oo
0
(2.5)
2
= _ (pd 90 dB do
1 (dez + dz ° dz)

By differentiating equation (2.1) with respect to
2

zy, substituting for 'g—% from-equation (2,3), then
dz
multiplying by -~ gﬁ' and re-arranging terms, a governing

differential equation for the structure is established as,

3 RB2 2 R, dB
d_g - 1 L&). .d_g + l‘_... iLl'_dZ) - .!_.. -
dZ3 RB dz de RB dz RB

1/

dQ 1 d(71) — M1
dz [RB * dz 2 IRB - (2.0)
or
d—32 + C d—zg + ¢c. Y8 L co+c, = o0 (2.7)
dz3 1 4,2 2 dz 3 4 °

l2

IR

].
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RB2
c - L a1
1 RB dz
(B;QE)
C _ 1 d'l1 dz
2 RB dz

(2.8)

@
I
;
II—l
Q.
o~
Y
-
e’

M1
4 ~ IRB

In general the function Ci will be of the form,

nm. Il.
1 3

C, = (Z D.zY) / ( E Lkzk)
j=o 9 k=0

in which Dj’ L,» m,, n, are constants which depend on
the applied loads as well as the geometry of the coupled
wall system, Therefore, the governing differential

equation may generally be expressed as,

3 2
3, (2) :—Z% + 3,(z) j—z% + J,(2) i 3,(2)Q + I (2)

in which the coefficients Ji(z) are some polynomials of z.

The governing differential equation (2.6) is valid

for any coupled wall system provided that the parameters

R, B, 1, gg- are differentiable functions of z over the

interval 0 = z < H, The bending moment M may be due to
concentrated or distributed loads or a combination of
both., If the load system includes concentrated loads,

a single moment expression valid over the entire height
of the walls may be obtained by employing Macaulay's

(6)

brackets




- r % D ] i L o

16

Usually the storey height (h) and the second
moments of area of connecting beams (Ic) are constant
throughout the height of the walls. For such a case,
the second moment of area per unit height for the
continuous medium is a constant and given by K, ='Ic/h.
If the second moments of area of the connecting beams
are not constant but may be approximately represented by

a smooth function fI(z), the value for Kb may then be

= £1(2) |
h

The shear deformations of connecting beams may also

taken as Kb

be incorporated in the analysis by using the reduced

second moments of area of connecting beams, For coupled
walls with uniform connecting beams, it may be shown that
by taking the shear deformation of connecting beams into

account, the second moment of area per unit height of the

continuous medium becomes,

Ir
Ky = &
Where,
Ir = preduced second moment of area of connecting beams
= T
C
12EIc
(1 +——2)
b GAS
u/ll.l ) E
G = shear modus of connecting beams = 2(1 +7 )
YV = Poisson's ratio
AS = effective cross-sectional area of connecting
beams

~% X cross-sectional area, if connecting beams are
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rectangular in cross-sections,

233 Boundary Conditions

The boundary conditions for the governing differential

equation (2.6) are obtained as follows:-

At the tOp, Z = 0,

frém equation (2.5), %%‘ = 0 (2.10)
At the base, z = H,
from equation (2.4), Q = 0 (2.11)
At a fixed base the rotation is zero, therefore

e (2.12)

dz

By substituting q from equation (2.5) into equation
(2.1), then evaluating at z = H, and using equations (2.,11)

and (2,12), an additional boundary condition at the base

1s obtained as,

2

_ a0 _ 1 dB d9
at z = H, 2 = -(F5 4z ° p (2.13)

The three boundary conditions for the governing

differential equation are those given by equations (2.10),

(2,11) and (2.13).

2.3.4 Internal Forces and Displacement

The vertical forces in walls 1 and 2 are given by,

0 (2.14)
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in which N1 and N2 are the vertical forces in wals 1 and

2 respectively.

The internal bending moments in walls 1 and 2 are

proportional to their second moments of area since both

walls deflect equally, and are given by, from equations

(2.2) and (2.3),

Z

4
M1='f—(M-l g qdy )
T 0
(2.15)
T Z
M, = =2 (M -1 dr )
2 I - 1
O
Z
From the expression for S q dA given in
O

equation (2.5), the vertical forces and internal bending

moments in the walls may be written in terms of Q as

follows,
_ do
Nl - B dz
_ do
Ny B 4z
(2,16)
I, 40
M, = 'EZ M+1 B*QQ)
2 I dz

The lateral wall deflection, u, may be obtained
by integrating equation (2.1) once, or integrating equation

(2.3) twice. By integrating equation (2.3) twice, the
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deflection may be written as,

H H H H
u=-%;- g %d)\dg +g (g %%% dr ) d§
Z g z 5
- (- 2)(§D + (w) “ (2.17)

H H

in which (%%' and (u) are the rotation and the lateral
H H

displacement, respectively, at the bases of the walls,

For walls on a rigid foundation,

and equation (2.,17) reduces to,

H H H H

-1 M 1B dO
Z g zZ €

(2.18)

From considerations of the equilibrium of wall
elements, the horizontal shear forces in the walls and

the distribution of the horizontal force in the continuous

medium may be shown to be,
y 4

g . odM M, d(M, + g go q d) )
1 dz dz P
Z
g (2.19)
dM d(M2 + g, qdi )
S, = —2 = 0

2 dz dz
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W = - —2 (2.19)
© dz coatd.
where,
Sl’ 52 = horizontal shear forces in walls 1 and 2
respectively
W, = distributed axial force in the continuous medium
gy gz,Ma = as defined previously.

The vertical force and the horizontal force in any
connecting beam at level z, may be obtained by integrating
the vertical shear distribution q and the distributed
axial force W, respectively, over half a storey height

above and below the level concerned, i.e.

h
z . + /2
Z .
1 h
z, - /2
(2.20)
h
z, + /2
(Fb)z = Wc d A
1 h
z, - /2
where
(Vb) = vertical force in the connecting beam at the
Z .
i
level z.
(Fb) = axial force in the connecting beam at the
Z .
i

level =z.
i
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2,3.5 Coupled Wall Systems with Second-order
Governing Differential Equation

In deriving the governing differential equation (2.6),
it has been assumed that the wall cross-~sectional areas,
the equivalent stiffness distribution of the continuous
medium, and the distance between the centroidal axes of
the walls are continuously variable functions of height.

If any of these functions is a constant, simplification
of the governing differential equation may be achieved.

System with Constant Parameter 1

Consider a coupled wall system with constant distance
between the centroidal axes of the walls, for instance

walls with tapered thickness, As 1 is constant, the

1
derivative giaéll vanishes and the governing differential

equation (2.6) becomes,

do _ M1_

dz - IRB (2.21)

l
-

The differential equation (2.21) consists of only

the derivatives of Q but not Q itself. Hence, by adopting

the first derivative %%* as a new redundant function the

differential equation (2.21) may be reduced to a second-

order equation.

Define, T = integral shear force = q d) (2.,22)

Then, from equation (2.4)
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H
_ I
0 = = d
Z
a0 _ I
dz B
440 { dr 1 dB
> = "B az T Zaz°"T
dz B
(2.23)
ado _ 1 a®r 2 as dr _1_ d’B
dz3 B dz2 B2 dz dz B2 dzz
2
2 dB
+ = (=) T
B2 dz
dog d’0 4’9
Substitution of 1o 9 > 3 from equation (2.23)
dz dz

into (2.21) yields a second-order differential equation

for T as a function of z as,

2 2
atr {1 dR dT 1 ,1 , 1° 1,
,2 “R°dz*dz "R (3 + )T + (Fg)M 0 (2.24)

Equation (2.24) is valid for coupled wall systems
with variable R, B, I provided that the derivative'%g
exists and 1 remains constant throughout the height of
the walls.

Consider a special case of coupled wall system

with tapered thickness, shown in Fig., 2, 3. The thicknesses

of the walls and the connecting beams are equal and given

by,
_ H =z

in which tH is the thickness at the base and C the vertical




23

distance between the base of the wall and the extrapolated
point of zero thickness, It may be shown that the
coefficients of T and M in equation (2.24) are constants,

and equation (2.23) may be written as,

2
d™T 1 dT 2 2 _
2~ (z+C-m dz - T+ M =0 (2.25)
Z
where,
2 12 Ic
BT = = (_f) 1 = constant
b h
ol = 2 = 6
= 471l p = constant (2.26)
1L = 1 <+ % ('i- + “i" ) = constant
1 1 2
IC = second moment of area of connecting beams.

If both walls of the tapered coupled wall system
are identical and completely tapered, the resulting
differential equation will be identical to that given by

Michael(zz).

Systems with Constant Parameter 1 and R

For a coupled wall system with constant distance

between the centroidal axes of the walls, and constant

cross~-sectional dimensions of the connecting beams, the

parameters 1 and R become constant and the governing

differential equation is reduced further to,

2 2
dr 1.1, 1° ML _
5 _R(B+ I)'1'+IR 0 (2.27)
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Uniform Coupled Walls

For a uniform coupled wall system, all the para-
meters 1, R, B, I do not vary with height, Consequently,

the governing differential equation becomes a second-
order differential equation with constant coefficients,

and may be written as,

d T 2 2
'—'“E - AT = = 8 M (2-28)
dz

or, in terms of the vertical shear distribution function

Qs
d%q 2 2 dM
2 - o'q = - g = (2.29)

in which cLZ, /32 are as given in equation (2.26).

If each coupled wall system is free at the top and

fixed to a rigid foundation at the base, the boundary

conditions in terms of T are given by,

atz=0, T =0

(2.30)
at z = H, *§§= 0
and in terms of q by,
at z = 0, -gg = 0

(2.31)
at z = H, q = 0

2.4 Methods of Solution

The governing differential equation (2,6) in its
most general form will be an ordinary differential equation

with variable coefficients. The coefficients become
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constant only when the coupled wall system is uniform,
One general method of solving an ordinary differential
equation with variable coefficients is the method of

undetermined coefficients,

Consider the differential equation (2.9), which is,

3 2 |
d-9 d 0 doQ _
Jl(z) 3 + J2(z) 2 + J3(z) e+ J4(z) Q0 + J5(z) =

A solution in the form of an infinite power series may

be first assumed,

oo
n
Q = -EE a_z
n=0
where;ylare undetermined constant coefficients. Subst-

2 3
itution of Q, QQB Q_Q" a-9 obtained from the assumed
dz dz2 dz3
solution into the differential equation leads to an
expression in terms of powers of =z, By grouping the like

powers of z together and then imposing the condition that

the coefficient of each power of z must vanish -
independently, recursive formulae for the undetermined
coefficients may be obtained, The solution for Q is
then expressible in terms of a few unknown constants,
These unknown constants are determined from the known
boundary conditions and, hence, the complete solution for
Q is obtained.

Each recursive formula will usually involve more
than two undetermined coefficients and, consequently,
leads to a complicated expression for the solution.‘ The
labour involved in evaluating the solution may prove to

be prohibitively heavy, since frequently the solution will
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be a slowly converging function so that a large number of
terms are required to be evaluated. Therefore, any
approximate method which can significantly reduce the
computational effort at the cost of a slightly less

accurate result is preferable, Two such methods of

solution are proposed, namely, the Galerkin method and

the finite difference method,

241 Formulation in Terms of an Independent

Dimensionless Variable

For convenience in applying the proposed methods
of solution, the problem will be formulated in terms of
an independent dimensionless co-ordinate. Define the

dimensionless co-ordinate n as,

1
Then, z = nH g—g— = H
i i
do _ 1  d9
dz™ HY dnt

In terms of the dimensionless variable n s the

differential equations (2.6), (2.9) and the boundary

condition equations (2.10, (2.11), (2.13) become,

respectively,

2
o [y a0 ] fe . [ apl oy
dn 3 RB> i d n i

do [1H2 d(?/1) ] 0 - MK = 0 (2.32)
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3 2
Fo(n) 2, + F(n) &2, + Fo(n) §5 + F,(q)0

dn 3 dn an
+ FS(T]) — b, (2-33)
_ d9 _
at 0 =0, (g; )0 = 0
at n =1, (@) = o (2.34)
, o
d 1 d d
at n = 1, (_22) = - ('ﬁ"—% e a%)
dn 4 H
where Fi(r]) are some polynomials of n . In equation

(2.34) and the subsequent analysis, unless defined other-

wise, brackets with subscript H or 0 signify that the

expression enclosed within the brackets is to be evaluated

at n =1 or 0, respectively.
. du d2u
The expressions for T, q, M, = M, +M2"Eﬁ" dT]2
become, respectively,
v - _B do
~ ~ H dn
2
1 d O dB dO
q =-= (B + T )
H2 dﬂ 2 dn dq
_ _y + 1B dO
M, = M, +M, =M+ 3 dn (2.35)
du _R_(pd’Q ,dB dQ, _HQy 1
dn 1IH 27 2 N dn 1 ° k
2 2
g.._u.. =H_.(M+.];_Bi ig_)
2 EL H dq
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2.4.2 The Galerkin Method

The Galerkin method assumes an approximate solution

in the form,
n

0, =2 a; £(2)

n 3=0 J

where aj are constants, and fj(z) are apprOprigte functions
which satisfy the boundary conditions. The integer n

may assume any arbitrary value, The accuracy of the
approximate solution Qn increases with an increasing value
of n, but this is also accompanied by an increase in
compution, The coefficients a; are determined by using
the criterion of minimizing the absolute value of the

error function over the interval of definition of Qn'

Tﬂe final solution gives an analytical expression for Qn
(29)

which is defined over the whole interval

Consider the general governing differential equation

(2.33) which may be expressed as,

a d3g b d2g C d
(3> a; n) S5 + (3 b ) 42 (3 e5 ) Ei—%
J= dT] j= N j=
"d e
+ (S din?) 0+ (5 e5nY) =0 (2.36)
J= J=
or simply

constants depending on the geometry of the coupled wall

nm m m m are
> b" 2 d’

C e

system as well as the loading function.
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As all the coefficients and the non-homogeneous
function of the differential equation (2.36) are poly-
nomial of the variable n s it is convenient to assume an
approximate solution as a polynomial of n .

Let the assumed approximate solution, Qn’ be

n :
i
0 T D X, 1 (2.38)
1=0
where L, are undetermined constants., The integer n

is arbitrary.
As the coupled walls are assumed fixed to rigid
foundations, the boundary conditions are those given by

equation (2. 34) 9

d
(_Q_) — 0
dr] 0
(Q) _
H = 0
2
(Q_Q_) - 5 QQQ_)
d 2 dn
n - H H
in which 5 = - (%, -g—ﬁ—)H (2.39)
Imposing the boundary conditions (%%—) = (Q) = 0,
0 H
2
(d—%) = ?(%Q‘) on the approximation Q_  yields,
d 1] H T] H . .
respectively,
o(.l = 0
0(.0 + ocl + eee Ocn — 0 (2.40)

2d2+6063+ o e e i(i—l)oci " N +n(n—1)0<.n —_—

§(2 0"2 + oo io{-i eee -+ nOC.n)



From equation (2.40), it may be shown that

Il

mé = ETTA:EFT. EE:: i cxi(i§ + 1 - i)
1=3
(2.41)

o¢0=_t0<i [1+ (i(1 +% ) - i° )/(2—2§)]
i=3

Substituting 04—1 = 0, and Loy Xy from equation

(2.41) into equation (2.38) gives,

I
' 2
% =Z°‘i(’11+ﬂi’l *ops)
1=3
or simply (2.42)
Il
Qn =§ difl(q)
1=
wh _ i(1 + ¢ - i2
ere P ; 2(1 —¢)
. .2
! _ (2 -28) +4i(1 +&) - d
+ 2(1 =% )
i 2
Ei(n) = 7+ Py 0+ py

Each of the functions f.(n ) satisfies the boundary

conditions (2.34) identically, since it may be shown that

df;(n )
itn
rram 0 at n =0
a*£,(n) JEiln) -

dT]2 dn
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The error resulting from using the approximation

Qn is,

error function

L(Q,) -L(Q)
= L(Q,), since L(Q) = 0

The minimization of the error function L(Qn) over

the interval 0= n <1 is accomplished by imposing on the

(29)

error function a set of orthogonality condition

1
g L(Qn) fk(Tl) dﬂ =0

0

or k = 3, 4, s N

1 n

\ L(D o £;(n))f(n) dy =0

0 1=23

(2.43)

yielding a set of (n-2) linear algebraic equations for

the determination of the constants di.Of the approximate
solution,

The required system of (n-2) simultaneous linear
equations involving (n-2) unknowns ot; may be obtained by
the direct integration of equation (2.43). Upon
integrating, it may be established that the general form

of the linear equation 1is,

I m
a P
(s : 1 Fk Kk
Z"‘i 2 a5 ii-1)E-2) GGz Y 37 T TR
i=3 J=
Im
b 1 Py Mk

tD b { i(1-D (3757 ¥ 37547 ¥ 37-1
J=0
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1 Px MK }
t2 A Y33 IR

n

- p :
., 1 k k
T Z €5 {1(k+j+i T Jj+i+2 + Jj+i

+ s t T35

1 Pr Hi }
*2 2GS 5 T e

s
+ d. { S S __"L + - Hk
J k+34+i+1 J+1+3 J+i+1
J=0
1 P P 1 Ay Hie ‘
AT T e v o) TS Y I T TR
me
1 P P,
+Z eslgmmT t 33t 30 ~O° (2.44)
Jj=0

where k = 3, 4, eoe Il

The constants A s and hence the complete solution
for Qn’ are obtained by solving the system of simultaneous

linear equation generating by equation (2.44). The

integral shear force, vertical shear distribution and

bending moment become, from equation (2.35),

o= -B ST (inil 42 )
H = 1 N PiM
I I
a =-1, [ B e (di-1)q* P2 ) v ol
H 1:3 l=3

(2. 45)
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-

M, = M+-1—}-I§ oL; (i + 2 0. ) (2.45)

3 contd,

i

The lateral deflection u may be obtained by
integrating equation (2.1), using the boundary condition

of zero deflection at the base,

1 0 H2 1 sz
n - RB n -
u — l @ dn - _i- @ > 2 ® dn
dn
N N
1
dQ
R dB n
- g 1 * an* dn dn (2.46)
n
where the non-dimensional auxiliary ordinate n =*€% .

2643 The Finite Difference Method

In this method the differential equation is replaced
by an approximating difference equation and the continuous
interval by a set of discrete points. The interval of

ns 0= n =1, 1s divided into arbitrary n equal sub-

intervals of length rH=*E. The discrete points are

numbered as shown in Fig. 2.4, where the points 0 and

. 1 1
(n+2) are extrapolated points at n= - - and n=1 + =

respectively. The central and forward difference
Operators(zs), each with an error of the order (Hr)z, are
shown in Appendix I. As the differential equation is of
the third-order and only one boundary condition,~%2'= 0,
exists at the top; the forward operator for 3323 will

i

have to be used in establishing the difference equation

for the point at the top of the walls.

From the differential equation (2.33), using the
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central difference operators, the difference equations

for the points 2 to n may be shown to be

io1 ~ 29540 *Q,)

1

1
+ Fo(my) ;E'(Qi_l - 2Q; +Q;.4)

1
+ Fa( M) 57 (= Q4 1 + Q) +F (M) Q5 + Fel(ny) =0
(2.47)

where i=2, 3, veo N

-
I

value of Q at T = 0,

At the point 1, using the forward difference

3
operator for'--d-—g‘3
an

and central difference operators for

2
d 0 and-gg— s the difference equation becomes,
2 dn

dn

1

2r3

+ F,(0) ;15 (9 = 20, + 0,) + F,(0) 33 (= Q5 + Q,)
r

+ F4(0) Ql + F5(0) - O (2-48)

Three additional equations are obtained from the
boundary conditions, equation (2.34). Using the central

difference operators, the boundary conditions become,
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Q _ _

( )H = 0, Qh+1 = 0 (2.49)
2

d_g - 'ggg_ = 0,

(dn 2 dn )

|
O

1§
Otz ¥ &t 2 (8 - 0p40)

where S is as previously defined in equation (2.39).
Equations (2.47)-(2.49) constitute a system of

(n+3) simultaneous linear equations in (n+3) unknowns Q.5

where i = 0, 1, ... (n+2), Hence, the system possesses

a unique solution, Theoretically, the accuracy of the
solution may be improved indefinitely by increasing the
number of the intervals,

Using the central operators, the internal forces

become, from equation (2.35),

B
‘i = - (EFﬁ'i (- Q; 1 +9544)
1 B
qi = "H_z- [ :E)i (Qi—l — 2Qi + Qi-l"l)
(2.50)
dB. 1
MR T 2r (= Q%1+ Qity)
1
1
M) = My + (EgF'. (- Qi 1+ Q4q)
1 1

where the subscript i denotes the functional value at

N= TNz



From equation (2.35),

dzu _ EE.(M +.l§ do )
dtlz EI H dny

Therefore, the deflection u; at the point i becomes, on

1

using the central difference operators,

H

_ H_ 1_
jop —2uy; tu) = Fo. I,

1B 1
[Mi MR T P Qi+1)]
(2.51)
For walls on rigid foundations, the displacement and the

rotation at the bases must be zero. Therefore, using

the central differenceoperator, the boundary conditions

become,

(u)y = 0, Wt = O

du

(—) =0 u - u = 0
dn H ’ n n+2

By setting i equal to (n+l1) in equation (2.51) and
making use of the boundary conditions shown above, the
deflection u_ may be determined, The deflections u.

at the other points may then be successively determined,

The finite difference method gives solutions at a

set of discrete points, and anywhere else the solutions

must be determined by interpolation,

2,4.4 Exact Solutions for Uniform Coupled Wall
Svstems

The Galerkin and the finite difference methods
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presented in the two previous sections are the general
methods of solutions, applicable to both uniform and
non-uniform coupled wall systemns, However, if the
coupled wall system is uniform and the loading function
relatively simple, an exact closed form solution may be
easily achieved using the standard method of solving the
differential equation with constant coefficients, A
brief treatment of the exact solution will be given here
since it acts as a reference solution with which to
compare solutions obtained by the two proposed methods
of solution,

The governing differential equation for a uniform

coupled wall system, equation (2.29), may be written in

terms of the non-dimensional variable as,
d%q 2 2., dM

s - oL“H q = « A4 H an (2.52)
dn N

The complete solution for q takes the form,

qQ = K, coshTn + KZ sinh 7n + qp (2.53)

in which qa, is the particular integral solution which
depends on the loading function, and 7 =« H, The
constants Kl’ K2 are constants of integration which may
be determined from the known boundary conditions at the
top and the base. For walls on rigid foundations and

free at the top, the boundary conditions are given by,

(2.54)

and the complete solution for q may be shown to be



dq
1 = Feol [ sinh 7 (g7 - (a)) _ ]
n= n=1
. dq
. sinh7n (_E) +
7 dn 7y Ip (2.55)

Consider a uniform coupled wall system subjected
to three separate standard lateral load cases as shown
in Fig. 2.5. The three load cases are,

1. a concentrated load P at the top of the system

2, a uniformly distributed load w per unit height

3. a triangularly distributed load (1 -7 ) per unit
height,

The particular integral solutions for the standard load

cases 1, 2 and 3 are, respectively,

= B
(qp)P In

(a) LI | (2.56)

= =H _ 1 g

Hence, the complete solutions for the three standard

load cases 1, 2 and 3 become, respectively,

1 - cosh7n

= —0
@i, = 10 ¢ cosh? )

. N .
wH [ (sinh? 7 ) cosh?y i s1q?7n +1 1 (2.57)

qw = .lp Tcosh’
1
W H (sinhy -7/2 + /1)
qu = _I" [ > Cosh7? cosh7n



39

B L S & —-L-} (2.57)

Contd-

The corresponding lateral displacements are,

3 1
Up ~ PH [(3 2 _in)@ -‘F)
~L__ ~ (sinh?7n - h7 )
- T 72 { n -1 sin ")’cc::sh']Slrl }]
_owit T,y 1 1 4 1
U EL I:(a -3 T n7)(1 -F)

- L {3(y2-1) + LLsinh? = sinh7n ]-cosh?(l-ﬂ}+l}]

M7 7~ cosh
u _vuh? (<Ll - in + A4 ’)(1 - 1)
v  EI 120 ~ 81 7T 27 0 120 ' M

_{ 1 -7/2)(sinh?n-sinh7~7ncoshY+?cosh?)+1-cosh7(1- {]

H 74 cosh?7

(2,58)

2,5 Coupled Walls on Flexible Bases

In the preceding analysis the coupled wall system
1is assumed fixed to a rigid foundation so that the
displacements at the bases are all zero., Complete fixity
at the bases does not always occur in practice since the
foundation is usually flexible, If the foundation is
deformable the effects of base movements must be taken

into account in the analysis. In the following analysis
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it is assumed that each wall is supported on separate
elastic foundation which yields vertically and rotationally
under the actions of the imposed vertical force and

bending moment, respectively,

Let

Kvl’ sz = vertical stiffnesses of the foundations under
walls 1 and 2 respectively

Ke1’ KBZ = rotational stiffnesses of the foundations under

walls 1 and 2 respectively.

The relative vertical displacement, SH’ due to

the vertical movements of the bases may be written as,

H
k) = (-—l— -+- —L) g q dA (2-59)

'In consequence, the compatibility condition for the t!cut!?

continuous medium becomes, cf. equation (2.1),

2 H ~ €
du b 1 1 1
14z F (o) a4+ 3 g [(AIJ“XZ)g qd"]de
Z

0

+ O = 0 (2.60)

Following the same procedure as before, it may be

shown that all the goverping differential equations

derived previously are valid, The boundary conditions

do _ _ . .

(1) = (0Q) = 0 are still valid, but the boundary
z=0 z=H

condition based on zero rotation at the base needs to be

changed.

From the assumption of equal wall displacements the

rotation at the bases must be equal, consequently,
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du
(M) Ko1(az

H H

(2.601)

du
(M,) = K, ,(57)
2 H 82 ‘'dz 1
in which (M,) , (M,) and (QE are the bending moments
1 H 2 H dz H
at the bases of walls 1 and 2 and the rotation at the

bases respectively, The base rotation may be written as,

using equations (2.,3) and (2.61),

H
du 1
(5— = = ((M) =1 q dx ) (2.62)
dz 'y Ko H
O
where,

(MH)=: moment at z = H, due to the applied loads

Kg = Kgy + Rygo

From equations (2.59), (2.60), (2.56), and (2.5),

a base boundary condition may be established as,

at z = H,

Q) 4 (92 ddB, 1 1 1T,

dzz 1 dz H B dz RKvl RKvZ RK9 H RBK9 H
(2.63)

In terms of the non-dimensional variable Ul

equation (2,63) becomes,

2
(=) + ¢ = «x (2.64)
dn H MH
WheI"E,
_ 2
_ 1 d8 1,1 1 1
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1 M
) (2.65)
RBKB H contd,

K = (

The rest of the analysis, with the exception of
the solution by the Galerkin method, may be carried out

as before provided that the base boundary condition
(2.65) is employed instead of that given by equation

(2.13). For the Galerkin method, a slight modification

is required., This is necessary since the boundary
condition given by equation (2.65) is not homogeneous;

ie, the right hand side of the equation does not vanish.

Homogeneous boundary conditions may be obtained by choosing

a new function, Fn(T]), defined by

F(n) = Q(n) - x(n) (2.66)
as the redundant function for the problem,
By assuming that the function <« (n ) has the form,

(1) = ey (1- ) (2.67)

the homogeneous boundary conditions in terms of Fn(T])

may be shown to be,

(an)
— = ()
2
dF - dF
(—3) S = 0
d'r] 1~|=1 N 1-]=

Following the same procedure as before, it may be

shown that the approximate solution Fn(q ) is given by,
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Il
Fn(q) = g ol s ( 1]1+ As 1-12 + |.|i) (2.69)
where,
b = i(1 +5 ) = i°
1 2(1 -5 )
(2.70)

=
N
1

The system of simultaneous linear equations for
the determination of the unknowns oLi is that given by
equation (2.44), but with the following terms added to

the left hand side of the equation,

J2(% -1)

n m
b
i)(i-1) K 1 Ak
Zdi Zb(l&_)—- —_— o — Fk)
i=3

J=0

C . Y/ M
s RKERTD SIS WA S &
jg JZ(E-I) k+2 4 2
m

d
K 1 P 1, Pr Pk
+Zd:i'2_ﬁ;‘_-_i')' ("E-?T‘T"“k*i?ﬁ*'s“*s)

After the function Fn(r]) has been determined, the
solution for Qn(r]) is obtained from equation (2,66).

Although only the case of coupled'walls supported
on separate elastic foundations have been considered.
The analysis may be readily extended to deal with other

types of flexible bases, for instance, coupled walls on

-,
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a portal frame hinged to a rigid foundation (cf, section

3.402).

2,6 Experimental Investigation

Experimental investigation of plane coupled wall
structures of tapered width, relatively simple systems
of coupled walls of variable stiffness whose behaviour
are described by third-order differential equations with
variable coefficients, was undertaken, The purposes were
to substantiate the theory,to compare the two proposed

methods of solution, and to investigate the effects of

the taper of the walls,

2,0.,1 Model Coupled Walls

Acryiic perspex was chosen as model material due to
ease in machining and availability, Perspex has the
advantages of having reasonably linear stress-strain
relationship and low value of modulus of elasticity which
allows for reasonable large deflection under loads, Its
undesirable properties are sensitivity to changes in
humidity and temperature, and tendency to creep under

loads.,

Three perspex models of plane coupled walls were

constructed and tested, Each model consisted of two
identical plane walls connected by a series of evenly
spaced connecting beams of uniform cross-section, Apart
from the differences in the slopes of the outer edges
of the walls, all the three modelé were geometrically

identical., Model 1 with uniform wall cross-sections,
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zero wall slope, was used as the datum, The wall slopes
of models 2 and 3 were 1/20 and 2/15 respectively. All
models were made-from the same sheet of perspex, 12,6 mm
thick, in order to avoid as far as possible any variation
in the properties of model material, The connecting
beams and the wall openings were made by cutting away

the perspex to form rectangular openings, The connecting

beams were 0 mm deep and 36 mm long with 24 mm spacing

between the beam axes, The geometry of a typical model
was shown in Fig, 2.6. The average width of each wall
of each model was equal to 72 mm, Each model was

cemented into a slot in a 25,4 mm thick perspex base,

using Tensol No, 7 cement,

2,6,2 Test Equipment

The test frame was constructed from 6 in x 6 in
steel channel sections welded together to form a three-
foot high frame on to which a pair of 6 in x 6 in x 2 ft
long I-beams rigidly connected by two strips of steel
plate were bolted to form the support for the models,

In the experiments, the models were mounted horizontally
with the plane of the walls lying in a vertical plane,
Fifteen light alloy hangers, from which the dead weights
were suspended to simulate lateral load on the model, were
connected to the model by means of Terylene cord, Fig. 2.7,
Five dial gauges with sensitivity of 0.,0001 in per division,
supported by a Dexion perforated steel angle attached to
the frame, were used for measuring the deflections of the

models, In addition, three more dial gauges were used to
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detect possible rotation and vertical displacements of
the perspex base during loading so that any necessary
corrections for the measured wall deflections could be
made,

Electrical resistance strain gauges, Japanese type
PL 10, were used for measuring the strains in the walls,
Twenty electrical strain gauges were attached to each
model using Eastman 710 adhesive. Four strain gauges
were placed along the mid- third <« storey level, and eight
gauges on each side of the model along the mid-second
floor level, All the strain gauges were placed normal
to the base to measure the longitudinal strains in the
walls, The Baldwin-Lima-Hamilton strain indicator
equipment which records the strains directly in microstrains
was used, Compensating gauges were incorporated in order
to eliminate as far as possible errors resulting from
variations in the temperature, humidity etc., during the
experiments,

Positions of strain gauges, dial gauges and applied

loads were shown in Fig, 2.6,

2.,60.3 Test Procedure

The base of the model was fixed to the steel plate
of the support by means of 2 in x 1 in hollow steel
sections strap bolted across the base in an attempt to
eliminate base rotation, The verticality of the plane
of the walls was ascertained before the model was loaded
in order to prevent any twisting of the model under loads.

After the model was securely bolted to the frame and the
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dial gauges positioned, the reading of all the gauges were

recorded in the no-load position,

The loads were applied in equal increments by means
of 200 gm dead weights placed on each hanger, Ten load
increments were applied to make the final load per load
point reached 2 kgf. The deflections and strains
readings were recorded for every load increment, Each

model was tested at least twice to check the consistency

of the results, A standard time of 5 minutes was
allowed to elapse after each load.increment before gauge

readings were taken, to permit the gauges to settle to

reasonably stable values, The sequences of the readings

of the gauges for every load increment were kept the

Same,

2,6.,4 Experimental Results

Experimental results were evaluated, The deflections

of the models and the strains in the walls per load
increment were given in Tables 2,1 and 2.2 respectively,
For the purposes of comparison between experimental
and theoretical results, the modulus of elasticity and
Poisson's ratio of perspex were determined using perspex
specimen cut out from the same sheet of perspex from

which the models were made, Using the standard beam
test, the modulus of elasticity and Poisson's ratio for

the model material were found to be 312,3 kgf/mm2 and

0.38 respectively,

2,6,5 Theoretical Solutions

For the system of tapered coupled walls with
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identical connecting beams, the governing differential

equation (2.32) reduces to,

3 2 3
d dB dl, 4d°0Q 2, I dB dl T1 1°B
pr1 4L 4+ r(2188 _ p 4L - g3, 48 di , 11 1B,
dn 3 dn dn’ gn 2 42 dn dn T R R
2 3,2
dO HT dl HY1 _
where
A A
12
B = . I =I, + I
A1+A2 1 2
. _ b’h
121
r
I = reduced second moment of area of connecting

beams

From a typical model geometry shown in Fig; 2,190,

dB

B = 2t H + ’ —— = 2tH
(T] g) d.rl
I = % (nH + g) (2.72)
, dl _
l=b+tanﬁ(qH+g),T"Htanﬂ

where t is the thickness of the wall, § the slope of the
wall width, and g the distance between the top of the

wall and the point of extrapolated zero wall width,

Substitution of equation (2.72) into (2.71) leads

to an expression of 'the form,
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3
: 3
+(Zdj T]J) Q—HT{ (b + tan £ (nH + g)) 2M=0
3=0
(2.73)
Where a

;2 bj’ Cs dj are geometrical parameters which
may be ?eadily evaluated using equations (2.71) and
(2,72). The expression for M will depend on the applied
-load. For the three standard load cases, namely a
concentrated load P at the tbp of the wall, a uniformly
distributed load w and a triangularly distributed load

4 (1 ~n ), the expressions for M become, respectively,

Mp = PnH
Mw = % W(r]H)z (2.74)
M, = u(d pH? - % %)

The theoretical solutions for the experimental
models were obtained using both the Galerkin and the
finite difference methods of solutions, Computer
programmes for both methods were written in FORTRAN,

The programmes were used to determine q, Ny, My»5 u,
extreme fibre strains and the relative vertical displace-
ment of the walls, i.e. %4

The Galerkin programme allows up to the fifth-
order approximation, or five undetermined constants, In
the finite difference programme the number of the
intervals may be varied from four to thirty, These

variations provide a mean to check the convergence of both

methods of solutions (c.f. Figs. 2.8 - 2,10).
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The exact solution for uniform wall model was also
determined in order to compare with the proposed
solutions, It was found that the Galerkin solution with
five undetermined constants, and the finite different
solution with 30 sub-intervals, were indistinguishable

from the exact solution.

2,6,6 Comparison and Discussion of Results

Comparison between the Galerkin and the Finite
Difference Methods

The agreement between the solutions by the two
methods are excellent, The results obtained from the
Galerkin method using five undetermined constants and
those from the finite difference method with 30 sub-
interval are almost identical. These are the values
used for comparing with the experimental results,

In order to investigate the convergence of the
proposed solutions, the number of the discrete points and
the number of the undetermined constants used in the
computer programmes were varied, The solutions for Q/E
calculated by both methods, with different numbers of
discrete points and undetermined constants, are shown in
Figs. 2,8 - 2,10, The solutions by both methods converge
rapidly, and little more accuracy could be gained by
using more than 8 sub-interval for the finite difference
method or more than 3 undetermined constants for the
Galerkin method. For uniform wall model, which exact
closed form solution exists, the Galerkin method with §

undetermined constants and the finite difference method
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with 30 sub-intervals give virtually identical solutions
to the exact solution.

The Galerkin method possesses the advantages of
giving the solution in analytical form and, for practical
purposes, a third-order approximation will be sufficient.,
The finite difference method, on the other hand, gives
only discrete point solutions and for a comparable

accuracy about 8-10 subintervals are needed,

Comparison between Experimental and Theoretical
Results

Experimental and theoretical strains in wall 1 of
each model, at the levels 57 mm and 33 mm above the base,
are shown graphically in Figs. 2,11 and 2,12, The
agreements between the experimental and theoretical strains
are good, the discrepancies are between 5 and 10 per cent,
The differences between the deflections as shown in Fig,
2,13 are, on the other hand, considerable, In all cases

the experimental deflections are greater than those

predicted by the theory, The differences between the
theoretical and experimental deflections at the top of

the models are between 20 and 35 per cent,

As the strains predicted by the theory were in good
agreement with the experimental results, the disparity of
tﬁe deflections of the models was rather unreasonably
large, It was found that under the applied loads support
ﬁovements occurred as well as base rotations, For the
test frame used, which was relatively flexible, it was
very difficult to detect all the movements which héd some

effects on the measured deflections of the model; A
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small and undetected base rotation, as small as

tan“1 1/10000, could result in the measured maximum

deflection being twice that predicted by the theory,
Creep of perspex, elastic deformation of the perspex
base plate, and possible relative rotation of the model
unit with respect to the perspex base could also contri-
bute to errors in the measured deflections. Most of
these sources of errors have the tendency to produce
increasingly larger measured deflections for the points
- further away from the base, These were exactly the

results obtained, as shown in Fig. 2.13.

Comparison between Uniform and Tapered Coupled Walls

The effects on forces and displacement in the
coupled walls due to tapering wall widths may be deduced
from the theoretical curves shown in Figs, 2.,14-2,.18,

The applied load is taken to be a uniformly distributed

load.

From Figs. 2.14 and 2,15 it may be seen that
considerable reductions of the vertical shear distribution
and the axial forces in the walls are obtained when the
walls are tapered, The reduction in the vertical shear
distribution is fairly constant throughout the height of
the wall except near the base. The location of the

maximum vertical shear distribution shifts upwards as the

wall slope increases,

Fig. 2.16 shows that as the relative flexural

rigidity between the top and the base decreases, i.e. the

|

wall slope increases, a greater bending moment is carried
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by the lower part of the wall. The differences between
the bending moments carried by the tapered and the
uniform coupled walls are not very significant. However,
remarkable reductions in the maximum wall stresses at the
base are obtained with increasing wall slopes as seen in
Fige 2.17. The maximum wall stresses for the models

2 and 3 are, respectively, only 80 and 60 per cent of
that of the uniform coupled walls.

Considerable reductions in the maximum wall
deflections are also obtained as a result of increasing
wall slopes, Fige 2.18. The maximum deflections of the
models 2 and 3 are only 0.88 and 0,63 of that of the
uniform coupled walls.

From the analysis based on the three models, it is
evident that considerable reduction in the materials used

can be achieved if the walls are tapered instead of

uniform,

2.7 Conclusions

A continuous medium analysis of coupled shear walls
of variable dimensions has been presented, In the

analysis the integral of the relative direct stress,

H S
I:(;l{ +31.. ) qd)\:l d¥ , has been used as
1 2

0 - g
/4 0

the redundant function., The behaviour of the coupled
wall system is found to be governed by an ordinary third-
order differential equation, The differential equation
is valid for coupled wall systems of arbitrary geometry

dB : :
provided that the parameters R, B, 1, 3, » defined earlier,
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are all differentiable functions of z over the interval
0< z < H.

When the distance between the centroidal axes of
the walls is constant throughout the height of the system,
the third-order differential equation can be reduced to a
second-order equation, The differential equation for
a coupled wall system with tapered thickness derived by

Michael(zz)

may be directly obtained from the third-order
differential equation derived in this Chapter, The
second-order differential equation for uniform coupled
wall system, which possesses a closed-form solution, is
also one of the simplified forms of the general differ-
ential equation;

The coefficients of the differential equation are,

in general, variables. The differential equation with

variable coefficients does not usually render itself to
a straightforward integration solution. Therefore, in
most cases, only approximate solutions may be achieved.
Two methods of approximation have been proposed, the

Galerkin method and the finite difference method, The

¥

solutions by both methods converge rapidly and are in
good agreement with each other,

The validity of the theory has been confirmed by
experiments using perspex models, The theory has been
used to investigate the behaviour of coupled walls with
tapered widths, From the analysis of the tapered coupled
wall systems with the same average wall widths, it may be
concluded that the deflection, wall stresses and the axial

force in the wall become smaller as the wall slope increases,
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CHAPTER 3

DESIGN CURVES FOR COUPLED_ SHEAR WALLS ON
FLEXTBLE BASES SUBJECTED TO VERTICAL AND
LATERAL LOADS

Notation

The following symbols are used in this Chapter,

cross-~sectional areas of walls 1 and 2

distance between the centroids of walls 1 and 2

length of connecting beams

|

second moment of area of connecting beams

second moment of area of the beam of portal

frame

second moments of area of walls 1 and 2

storey height

height of supporting portal frame

total wall height

modulus of elasticity

sz = vertical stiffnesses of elastic foundations
under walls 1 and 2
K92 = potational stiffnesses of elastic foundations

under walls 1 and 2

distance between bases of columns of portal

frame -

vertical shear distribution in the continuous

medium

height above base of wall

horizontal deflection

non-dimensional height co-ordinate, z/H



u, = deflection at the top .

T = integral shear force = S q dA
7

A,8 = auxiliary height co-ordinates

6 = stress in wall

Other subsidiary symbols are defined locally in the

text,

362 Introduction

In the analysis of uniform coupled walls by the
continuous medium approach, the behaviour of the structure
has been shown to be governed by a second-order
differential equation with constant coefficients. As a
closed form solution may be obtained, simple design curves
for the determination of forces and displacements may be
produced.

Based on this technique, a simple design method was
presented(g’lo). The method enables the analysis of a
pair of coupled walls or symmetrical three wall system
with two bands of connecting beams to be carried out very

rapidly. Its simplicity has found favour in design

offices and has also been utilised in a design booklet(zs).
Curves were produced for three standard lateral load cases,
namely, a uniformly distributed load, a triangularly
distributed load, and a point load at the top. The

latter two cases may be used for seismic design calculations,
whiist the superposition of the first two yields a general

trapezoidal load distribution. Formulae which allow
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similar design curves to be plotted for any load forms

which can be described by a polynomial in the height
co-ordinate were also presented(7). All the theories and
curves, however, referred to the particular case of walls
rigidly built in at foundation level,

Many other base conditions occur in practice. For
example, shear walls are often discontinued at the first
floor level to provide an open concourse, lobby or other
non-uniform structure on the ground floor, In this case
the continuous medium analysis may again be used, provided
the base is taken at first floor level and the lower
boundary conditions are altered-to include the load-
deformation characteristics of the supporting structure.
In other cases, the walls may be supported on independent
foundations which yield vertically and rotationally under

the actions of wall axial forces and bending moments,

respectively,

Although the earlier technique could be used to
provide design curves for such situations, a very large

number of curves would be needed to describe the behaviour
of the structure in view of the large*number of parameters

required to describe the range of base conditions which

might occur in practice, For instance, in the case of

flexible foundations a complete set of design curves would

be required for each combination of vertical and

rotational stiffnesses of each footing. The large number

of curves required makes the technique impractical for

other than rigid foundation conditions.

A new simple technique which overcomes the disadvan-
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tages of the earlier method, and enables a single set of
curves to be used for any base condition has been
developed, A set of curves is generally required for
each standard load case.

A general treatment of uniform coupled walls on
flexible bases, and subjected to lateral and vertical
loads is presented in this chapter., Four standard lateral
load cases, three standard vertical load cases and a
special case of concentrated moments at the top are
considered, These are, respectively, a concentrated
lateral load at the top, a uniformly distributed lateral
load per unit height, a triangularly distributed lateral
load per unit height, a polynomially distributed lateral
load per unit height, concentrated vertical loads at the
top passing through the centroids of the walls, uniformly
distributed vertical loads per unit height, triangularly
distributed vertical load per unit height, and finally,
concentrated moments at the top proportional to the second
moments of area of the walls, Four éets of design curves,
covering all but one of the standard load cases, are
produced. A general polynomially distributed lateral

load is the standard load case left out, but formulae

are given to allow similar design curves to be plotted for
a particular power series, Design examples are also
given to illustrate the application of the method, A
part of the new technique developed, dealing only with
lateral load cases, has recently been published as a

(8)

paper
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33 General Theory

As the basic continuous medium theory of coupled
shear walls has been fully treated in the previous Chapter,
only the fundamental assumptions and equations are

restated here.

Consider a system of two uniform coupled shear walls

subjected to lateral and vertical loadings as shown in

Fig. 3.1. The fundamental assumptions of the technique

are

1. axial deformations of the connecting beams are
considered negligible so that both walls deflect
equally; the connecting beams then deform with
points of contraflexure at their mid-span positions.,

2. the discrete connecting beams, each with second

moment of area Ic,.may be replaced by a uniform
continuous medium of equivalent stiffness EIc/h ﬁer
unit height (E and h are modulus of elasticity and
storey height respectively); the set of discrete
shear forces in the connecting beams may then be
replaced by a corresponding continuous vertical

shear distribution of intensity q per unit height,

If the substitute medium is 'cut! along the line of
points of contraflexure (at mid-span positions), then,
under the action of the applied loads and the internal

shear and axial forces, no relative movement occurs at the

cut, The compatibility equation at any height z may be

shown to be

du b3h 1 ,1 1
L a3z - (12EIc)q = I:E (x. * Az) g qdxdz
O &
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(3.1)

Where the five terms represent the relative vertical

displacements at the cut ends due to, respectively, the

slope of the walls, the cantilever bending action of the

cut lamina, the axial deformations of the walls resulting

from the distributed vertical load and the concentrated

vertical load at the top, and the movements of the bases.
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From

total wall height

distance between the centroidal axes of walls

1 and 2

cross-sectional areas of walls 1 and 2

lateral deflection

height above base of walls

auxiliary height co~ordinates

intensity (per unit height) of the distributed
vertical loads acting on walls 1 and 2
concentrated vertical loads passing through

the centroidal axes of walls 1 and 2 respectively

length of connecting beams

the moment~curvature relationships, the total

internal bending moment for the coupled wall system may

be written

asSy
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dzu
M, = EI— = M- 1T (3.2)
dz
where,
Mt = sum of moments in walls 1 and 2
=JM1 +JM2
I = sum of second moments of area of walls 1 and 2
= I1 + 12
M = moment due to applied loads
=Mv + Ml
Ml = moment resulting from lateral loads
H
= g p(A)( A=2z)dr + pyH (H - 2)
z
p'(k) = intensity of distributed lateral load
pOH = concentrated lateral load at the top
M# = moment due to distributed vertical loads
H H
= gvl e, d A - g V2 e, dA
z Z

eys €, eccentricities of distributed vertical loads V1

and V, with respect to the centroidal axes of

2
walls 1 and 2, respectively; positive if it

lies between the centroidal axes of the walls

T = 1ntegral shear force = g q d

As both walls deflect equally the curvatures are
equal, and the moment carried by each wall is proportional
to its second moment of area. Therefore, the bending

moments in walls 1 and 2 are, respectively,
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_ 1
My = 7 M
. (3.3)
_ 2
Mz - I Mt

On differentiating equation (3.1) with respect to

2
z, substituting for d g from equation (3.2), and them

dz
differentiating again, the governing differential

equation may be written as,

2
dq 2 _ 2,dM I dV¥
dzz oK q ﬁ (dz - 1 dz ) (3-4)
where,
,62 _ 12Icl
bShI
2 2 | 3.5
T 1 1
= 1 4+ = (= + -—)
i 12 ‘A, T A,
H H
1 , 1
d =r(pZH+gV2d?\)-K-(p1H+ngdA)
2 ., 1 -
(3.6)
The general solution of equation (3.4) is
q = B1 cosholz + B2 sinh ol z -+ qp (3.7)

where B1 and B2 are constants of integration which must

be evaluated from the known boundary conditions at the

top and the base, and qp is the particular integral part

of the solution which depends only on the form of the



applied loading.
If the walls are free at the top as is usually the

case, there is no bending moment in the substitute system

dzu

at the top and the curvature, 5 » there must be zero.
dz

By differentiating equation (3.1) with respect to z, then

evaluating at z = H, the top boundary condition in terms

of the vertical shear distribution q becomes,

at z (dz)H (¢ )H
Pl Pz
wh = H((— —_— 3.0

From equations (3.7) and (3.8), the coefficient B,
may be eliminated and the general solution for q becomes,

for the coupled wall system which is free at the top,

. dqg
B cosh 7 (1 -n ) H sinh7n P _
a =B, cosh? ‘7cosh'7 [ ( dz)H ﬂ l( ll)) )
+ e 10
a, (3.10)
Where,
Z
n = H
7 = o H - (3.11)
dq dq
(—"2) = value of —P  evaluated at z = H
dz H dz

The integral shear force T and the internal wall moment

Mt become, respectively,

T = B H sinh 7 (1 -7 ) + g (3.12)

Ycosh?



where,
H
2 dqg
g = g q_ dr  + [(—-ﬂ) - & T()) ]-
. p 72 dz H ~ o1 lp H

On integrating equation (3.2) and putting in the
boundary conditions at the base, the maximum deflection

up at the top of the structure becomes,

3
H 7 1 VY d
u,, = Blﬁl(ﬁ-‘%—__—ﬁ) + &=+ H(gD) + (u)y  (3.15)
0
where,
4 dq
74 ((dz )H a 1 (qj)H } (1 - coshy 377)
H ,z H H [,§
—lg g gqu)\di’dz+ g gMdJ\dE
0 ‘0 ‘& 0O ©

(3.16)

and (%%’ and (u)0 are the rotational and lateral
0
displacements, respectively, at the base level of the

coupled wall system resulting from flexibility of the
foundations or supporting structure,

In the subsequent analysis, unless defined otherwise,

brackets with subscript H or 0 signify that the expression

enclosed within the brackets is to.be evaluated at z = H

or 0, respectively.

The axial forces N1 and N2 in walls 1 and 2



respectively are given by,

H

o sinh 7 (1 =7 )
Ny = By TS coshn P - pyl - Ve dd o (3.17)

Z
H

= sinh 7 (1 -7 )
N, =-B/H = g - f - p,H - V, dx  (3.18)
Z

tensile force being considered positive,

3.4 Base Conditions

The lower boundary condition, and hence the constant
B1 in the previously derived equations, depends on the
properties of the supporting structure (or foundation) as
well as the form of connection between the walls and
supporting structure. In this study two main types of
base configurations are considered, namely walls on
footings supported on elastic foundations, and walls
supported on trapezoidal or rectangular portal frames

hinged to a rigid foundation, For walls on a portal
frame, it is assumed that the axial deformations of the
columns may be neglected in comparison with the relative
vertical displacement of the tops of the columns due to

sway of the frame,

3.4.1 Walls on Separate Elastic Foundations

For this type of base configuration it is assumed
that each wall is supported on an elastic foundation such
that the rotation and vertical displacement of each footing
is proportional to the imposed bending moment and axial
force at the base, The special case of a rigid found-

ation may be obtained by putting the foundation rotational
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and vertical stiffnesses equal to infinity.
As both walls deflect equally because of the high
in-plane stiffness of the connecting beams and associated

floor slabs, the slope at the base will be the same for

each, The base rotation condition becomes,

(QEE)
(g'.“_l — (_Mt'_).g___ — _-___—__EI dzz O (3 19)
dz”, Kor T Kgo Kg1 * Kgo

in which K91 and ng are the rotational stiffnesses of

the foundations under walls 1 and 2 respectively.

The relative vertical displacement at the base 1is

(N,) (N,)
Kvl Kv2
H
= (T) (= + =) + =— (p,H + v, dA ) (3.20)
0 'K K K Py 2 '
vl V2 v2 0
H
1
e (v
vl
0
where Kvl and sz are the vertical stiffnesses of the

foundations under walls 1 and 2 respectively.

On evaluating equation (3.1) at z = 0, then
substituting for (q)o, (%%0, by using the expressions

derived earlier, the constant B1 may be obtained as,

(M),
(1 4+ HK K E.@.E.llz_) ’
a b 94



where,
. _ (12IC) 12E
a b3h (K81 + K92
— 1 D S S
Kb L+ 72 (Kgy + Kgod (g + %
vl v2
o (Kgy +Kgo)
vl
2 dq
= H_ —D 2 L —_—

(ﬂ)o 2 ( (3Z )H - A T WPy -1+

H

d)
S p
0
H H
Kvl
(Y)o = (p1H+ g V1 dA ) - (E:;)(sz+ g v, d) )
0 O

(M)0 = moment (due to applied loads) at z = 0

(q )0 = the particular integral solution evaluated at

z =0

If the walls are fixed to footings which rest on
elastic foundations of subgrade modulus K, the stiff-

are given by,

nesses Kvl’ sz, K 1 K

B 82

Kvl - KAfl

(3.23)

v2 KAfZ

~
I
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Rg1 = Klgy
. (3.23)
g2 = KIf2 contd.,
where
Afl’ Afz = cross-sectional areas of the footings under
walls 1 and 2 respectively
Ifl’ If2 = second moments of area of the footings under

walls 1 and 2 respectively

For walls hinged to separate footings it may be shown

that

(H tanh? ) ’

7

The lateral deflection at the base of the walls is
usually zero, therefore,
(W) = O

and from equations (3.1) and (3.20), the rotation at the

base is given by

3 (T)
du 1 ,b%vh 0 1 1
(5= = = ( y(q), + (77— + ™)
dz 0 L 12EIc 9, 1 Kvl sz
H
1
- 1K (le + g vV, dA )
vl
O
H
1
+ 15— (pH + Q Vv, di ) (3.25)
\'/ 0

3¢4e2 Walls on Trapezoidal Frame

For a coupled wall system supported on a trapezoidal
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L

portal frame hinged to a rigid foundation as shown in

Fig. 3.2(a), it is assumed that the portal beam also
deforms with a point of contraflexure at its mid-clear
span, the length of the beam under each wall being assumed
rigid., The force system acting on the portal frame is
then as shown in Fig. 3.2(b). The expression for the
shear force QO in the portal beam may be obtained from
statics and, subsequently, using the compatibility equation
for the 'cut! portal beam in conjunction with the
compatibility equation (3.1) for the cut lamina at z = 0,
the expression for B, becomes

1 Ic dMl ,
GO |0y - By L - hyl () + C ] (e

B1 =
(1 + (HIc tanh 7 )
hl 7
0
(3.26)
where
I0 = second moment of area of the portal beam
h0 = height of the portal frame
L = distance between the bases of columns 1 and 2
H H
C = tan 91(p1H+ &Vld)\)—tan 92(p2H+SV2d7\)
Z Z
(3.27)
8¢5 92 = the angles between the vertical axis and columns

1 and 2, respectively; the angle is positive
if the base of the column slopes outwards

(Cf. Fig- 3-2(3))‘

In the limiting case of walls resting on columns,
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i,e, I. = 0, the constant B, reduces to

dM, y
M.) - h - h,C - L _
_— (M) o (33 )0 0 ( )0 (3.28)

(1 H tan??’ )

If the walls are hinged to separate rigid columns
which are fixed to a rigid foundation, it may be shown

that the expression for B, is that given by equation

(3'24)i e

From the deformed configuration of the portal frame,
tacitly assumed that the columns are rigid, the lateral
displacement and the relative vertical displacement of

the tops of the columns may be shown to be,respectively,

(W) = Mo(g; )
3 =-(-1) (§

0

On substituting the expression for § into equation

(3.1), then evaluating at z = 0, the rotation at the base

of the walls becomes,

3
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