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Abstract 

This PhD thesis aimed to develop two broad classes of multiscale frameworks for peridynamic 

theory to address two pressing needs: first is increased computational efficiency and the second is 

characterisation of heterogeneous media. To achieve these goals, two multiscale frameworks were 

proposed: model order reduction methodologies and homogenization frameworks. The model 

order reduction schemes were designed to improve computational efficiency, while the 

homogenization methodology aimed to provide frameworks for characterisation of heterogeneous 

materials within the peridynamic theory. Two specific model order reduction schemes were 

proposed, including a coarsening methodology and a model order reduction method based on 

static condensation. These schemes were applied to benchmark problems and shown to be 

effective in reducing the computational requirement of peridynamic models without 

compromising the fidelity of the simulation results. Additionally, a first-order nonlocal 

computational homogenization framework was proposed to characterise heterogeneous systems 

in the framework of peridynamics. This framework was utilised to characterise the behaviour of 

elastic and viscoelastic materials and materials with evolving microstructures. The results from 

these studies agreed with published results. The thesis achieved the goal of contributing to the 

development of efficient and accurate multiscale frameworks for peridynamic theory, which have 

potential applications in a wide range of fields, including materials science and engineering. 

 

 



iv 
 

Acknowledgements  

I would like to express my gratitude to: 

• My first supervisor Prof. Erkan Oterkus for his guidance and support 

• My second supervisor Prof. Selda Oterkus for her guidance and support 

• Administrative staff of NAOME for their support 

• My sponsors, the Petroleum Technology Development Fund (PTDF) for awarding me the 

scholarship. 

• My employer, Ahmadu Bello University Zaria for granting me the fellowship to undertake 

this research. 

• My friends and colleagues in NAOME and especially within the Peridynamic Research 

centre for their support and friendship. 

• My family for the love and support. 

• And finally, and most importantly, to Allah SWT for the gift of life, guidance, and health.  

 

  



v 
 

Dedication  

 

“Truly, my prayer and my service of sacrifice, my life and my death are (all) for Allah, the Cherisher of the worlds.” 

Al-Qur’an 6:162 

  



vi 
 

Table of Contents 

Author statement ........................................................................................................................................ ii 

Abstract ....................................................................................................................................................... iii 

Acknowledgements .................................................................................................................................... iv 

Dedication .................................................................................................................................................... v 

Table of Contents ...................................................................................................................................... vi 

Table of Figures ......................................................................................................................................... xi 

List of Tables ............................................................................................................................................ xvi 

Nomenclature .......................................................................................................................................... xvii 

Chapter 1 ...................................................................................................................................................... 1 

1.0 Introduction .................................................................................................................................... 1 

1.1 Motivations ................................................................................................................................. 2 

1.2 Research objectives .................................................................................................................... 3 

1.3 Research workflow ..................................................................................................................... 4 

1.4 Research contributions .............................................................................................................. 5 

1.4.1 Methodologies of the first category ................................................................................ 5 

1.4.2 Methodologies of the second category ........................................................................... 7 

1.4.3 Research output.................................................................................................................. 8 

1.5 Thesis structure ........................................................................................................................ 10 

Chapter 2 .................................................................................................................................................... 11 

2.0 Literature Review and Theoretical Foundations ...................................................................... 11 

2.1 State-of-the-art in Peridynamic multiscale modelling ......................................................... 11 

2.2 Nonlocal vector calculus primer ............................................................................................ 14 

2.2.1 Nonlocal divergence and gradient operators and their adjoint ................................. 16 

2.2.2 Interaction kernels and domains .................................................................................... 17 

2.2.3 Nonlocal interaction operators ...................................................................................... 18 

2.2.4 Nonlocal integral theorem .............................................................................................. 18 

2.2.5 Nonlocal weighted operators ......................................................................................... 20 



vii 
 

2.2.6 Nonlocal differential operators for peridynamic application .................................... 21 

2.3 Peridynamic theory .................................................................................................................. 22 

2.3.1 Important concepts ......................................................................................................... 22 

2.3.2 Governing equation of motion in Peridynamics ......................................................... 23 

2.3.3 Bond-based peridynamic model .................................................................................... 25 

2.3.4 State-based peridynamic model ..................................................................................... 30 

2.4 Discretization of the Peridynamic model ............................................................................. 37 

Chapter 3 .................................................................................................................................................... 39 

3.0 Coarsening Method for Linear Peridynamic Theory .............................................................. 39 

3.1 Peridynamic coarsening formulation. .................................................................................... 39 

3.2 Discretization of the coarsening method .............................................................................. 42 

3.3 Coarsening the Micromodulus Function .............................................................................. 43 

3.3.1 Coarsening of one-dimensional micromodulus functions ......................................... 43 

3.3.2 Coarsening of two-dimensional micromodulus function .......................................... 45 

3.4 Numerical Results .................................................................................................................... 47 

3.4.1 One-dimensional homogeneous bar under tension loading ...................................... 47 

3.4.2 One-dimensional composite bar under tension loading ............................................ 48 

3.4.3 One-dimensional homogeneous bar with a defect ..................................................... 49 

3.4.4 Two-dimensional homogeneous plate under tension loading................................... 51 

3.4.5 Two-dimensional composite plate under tension loading ......................................... 53 

3.5 Computational cost .................................................................................................................. 55 

3.6 Conclusions ............................................................................................................................... 56 

Chapter 4 .................................................................................................................................................... 57 

4.0 Static condensation for linear peridynamics ............................................................................. 57 

4.1 Introduction to MOR using Static condensation ................................................................ 57 

4.2 Reduced static PD models. ..................................................................................................... 58 

4.3 Reduced dynamic models........................................................................................................ 59 

4.4 Reduced eigenvalue models .................................................................................................... 60 



viii 
 

4.5 Condensation of the micromodulus function ...................................................................... 61 

4.6 Numerical results ...................................................................................................................... 63 

4.6.1 Reduction of static problems ......................................................................................... 63 

4.6.2 Reduced Eigenproblems ................................................................................................. 66 

4.6.3 Reduction of dynamic problems .................................................................................... 68 

4.7 Conclusion................................................................................................................................. 73 

Chapter 5 .................................................................................................................................................... 74 

5.0 Static condensation of peridynamic heat transport model ..................................................... 74 

5.1 The nonlocal peridynamic heat transport model ................................................................. 74 

5.2 Relationship between micro-conductivity and thermal conductivity ............................... 79 

5.2.1 One-dimensional micro-conductivity ........................................................................... 80 

5.2.2 Two-dimensional micro conductivity function ........................................................... 82 

5.3 The discrete heat conduction equation ................................................................................. 82 

5.4 Static condensation of the peridynamic head conduction model ..................................... 83 

5.4.1 Handling boundary conditions ...................................................................................... 84 

5.4.2 Condensation of parameters of peridynamic heat conduction model ..................... 85 

5.5 Numerical verification ............................................................................................................. 86 

5.5.1 A homogenous bar with constant temperature applied at both ends. ..................... 86 

5.5.2 Numerical study of heat conduction in plate with a pre-existing crack ................... 88 

5.5.3 Example 1. Case I: Dirichlet boundary condition ....................................................... 90 

5.5.4 Example 2. Case II: Neumann boundary condition ................................................... 91 

5.5.5 Example 3. Neumann boundary condition with retained nodes selected randomly.

 93 

5.5.6 Example 3. Nonuniform condensation ........................................................................ 94 

5.6 Conclusion................................................................................................................................. 96 

Chapter 6 .................................................................................................................................................... 97 

6.0 Introduction .................................................................................................................................. 97 

6.1 A Computational Homogenization Framework for Peridynamics ................................... 97 



ix 
 

6.1.1 Effective material constants ........................................................................................... 97 

6.1.2 Micro-macro scale transition .......................................................................................... 99 

6.1.3 RVE boundary volume constraints ............................................................................. 102 

6.1.4 Bounds for effective properties. .................................................................................. 106 

6.1.5 Computational implementation of the PDCHT ....................................................... 107 

6.2 Validation of the homogenization scheme ......................................................................... 109 

6.2.1 Comparing the PDCHT results with bounding theorems and other established 

methods. .......................................................................................................................................... 111 

6.2.2 Comparing the PDCHT results with results from published works ...................... 114 

6.2.3 Effective properties of RVE with elliptical fibre inclusion ..................................... 115 

6.3 Conclusion............................................................................................................................... 118 

Chapter 7 .................................................................................................................................................. 120 

7.0 Homogenization of Materials with Evolving Microstructure and Damage ...................... 120 

7.1 Introduction ............................................................................................................................ 120 

7.2 Summary of implementation strategy for PDCHT ........................................................... 120 

7.3 Numerical implementation of the first order homogenization ....................................... 121 

7.3.1 Material softening due to crack propagation. ............................................................ 122 

7.3.2 Damage evolution due to randomly distributed microcracks ................................. 124 

7.4 Conclusion............................................................................................................................... 127 

Chapter 8 .................................................................................................................................................. 129 

8.0 Computational homogenization of viscoelastic composites ................................................ 129 

8.1 Introduction ............................................................................................................................ 129 

8.2 Linear viscoelastic constitutive model ................................................................................. 130 

8.3 Dynamic properties ................................................................................................................ 133 

8.4 Computational homogenization ........................................................................................... 134 

8.4.1 Definition of scales and homogenization rule ........................................................... 135 

8.4.2 Localization and solution of the microscale RVE problem .................................... 136 

8.4.3 RVE volume constraint problem ................................................................................ 137 



x 
 

8.5 Implementation strategy ........................................................................................................ 138 

8.6 Numerical examples ............................................................................................................... 139 

8.6.1 Two-phase composite with elastic inclusion and viscoelastic matrix ..................... 140 

8.6.2 Two-phase composite with viscoelastic inclusion and matrix phases. ................... 143 

8.6.3 Effect of nonlocality on the effective mechanical properties of composites ........ 145 

8.7 Conclusion............................................................................................................................... 149 

Chapter 9 .................................................................................................................................................. 151 

9.0 Conclusion and future work ..................................................................................................... 151 

9.1 Summary of contributions .................................................................................................... 151 

9.1.1 Model order reduction methodologies ....................................................................... 151 

9.1.2 Computational homogenization framework .............................................................. 152 

9.2 Future work ............................................................................................................................. 153 

9.2.1 Future research direction in the model reduction schemes ..................................... 153 

9.2.2 Future research direction in computational homogenization ................................. 154 

References ................................................................................................................................................ 155 

 

 

 

 

 



xi 
 

Table of Figures 

Figure 2-1: Interaction Domain .............................................................................................................. 18 

Figure 3-1. A Peridynamic body showing model levels 0, 1 and 2. ................................................... 39 

Figure 3-2. Schematic representation of the one-dimensional coarsening process ........................ 44 

Figure 3-3. Micromodulus function associated with a uniform bond constant. ............................. 44 

Figure 3-4. Micromodulus function associated with a bond constant function having triangular 

profile. ......................................................................................................................................................... 45 

Figure 3-5. Micromodulus function associated with a bond constant function having inverted 

triangular profile. ....................................................................................................................................... 45 

Figure 3-6. Detailed level 0 and coarsened level 1 bodies for coarsening of two-dimensional 

micromodulus function ............................................................................................................................ 46 

Figure 3-7. Coarsening of two-dimensional micromodulus function: (a) 𝒙 − 𝒙 interaction (b) 𝒙 −

𝒚 interaction (c) 𝒚 − 𝒙 interaction, and (d) 𝒚 − 𝒚 interaction. ......................................................... 46 

Figure 3-8. Displacement fields for a one-dimensional homogeneous bar under tension loading

 ..................................................................................................................................................................... 48 

Figure 3-9. Displacement fields for levels 0, 1, and 2 for a one-dimensional composite bar under 

tension loading .......................................................................................................................................... 49 

Figure 3-10. One-dimensional homogeneous bar with a defect ........................................................ 50 

Figure 3-11. Schematic representation of the coarsening process for example 3.4.3. .................... 50 

Figure 3-12. Coarsened displacement fields in a one-dimensional homogeneous bar with a defect

 ..................................................................................................................................................................... 51 

Figure 3-13. Discretisation and coarsening of the two-dimensional homogeneous plate. ............ 51 

Figure 3-14. Profile of 𝒙 −axis displacement field: (a) Detailed (Level 0) model and (b) Coarsened 

(Level 1) model. ......................................................................................................................................... 52 

Figure 3-15. Profile of y−axis displacement field: (a) Detailed (Level 0) model and (b) Coarsened 

(Level 1) model. ......................................................................................................................................... 52 

Figure 3-16: Profile of displacement field along a grid line of points in the 𝒚 −direction ............ 53 

Figure 3-17: Profile of displacement field along a grid line of points in the x-direction................ 53 

Figure 3-18: Discretisation and coarsening of the two-dimensional composite plate. ................... 54 

Figure 3-19: Displacement fields for levels 0, 1, and 2 for a two-dimensional plate under tension 

loading. ....................................................................................................................................................... 54 

Figure 4-1: Schematic representation of 1D reduction process ......................................................... 62 

Figure 4-2: Coarsening of 1D Micromodulus function. ..................................................................... 62 



xii 
 

Figure 4-3: A schematic representation of the composite bar showing hard and soft material strips.

 ..................................................................................................................................................................... 63 

Figure 4-4: Displacement fields for detailed and reduced models ..................................................... 64 

Figure 4-5: Schematic representation of the PD model of plate for static response analysis ........ 65 

Figure 4-6: Displacement profile in x-direction (a) Detail model (b) Condensed mode................ 65 

Figure 4-7: Displacement profile in y-direction (a) Detail model (b) Condensed model ............... 65 

Figure 4-8: A bar with one end fixed and one end free. ..................................................................... 66 

Figure 4-9: Comparison of eigenvalues from the full PD model and reduced model.................... 67 

Figure 4-10: Discretization and condensation of the full PD model. ............................................... 68 

Figure 4-11: Time-history response of material points located at (a) 𝑥 = 0.0995, and (b) 𝑥 =

0.4995, for both full and reduced models. ............................................................................................ 69 

Figure 4-12: Displacement values at all nodes at (a) 5000th time step, (b) 10000th time step, (c) 

20000th time step, and (d) 26000th time step. ..................................................................................... 69 

Figure 4-13: Time-history response of material points located at (a) 𝑥 = 0.0995 (b) 𝑥 = 0.2995 (c) 

𝑥 = 0.4995 and (d) 𝑥 = 0.7995 for both the Full PD model and Condensed model. ................... 70 

Figure 4-14: Displacement values at all nodes at (a) 5000th time step, (b) 10000th time step, (c) 

20000th time step, and (d) 26000th time step. ..................................................................................... 71 

Figure 4-15: Time-history response of material points located at 𝑥 = 0.0995, 0.2995, 0.4995 and 

0.7995 for both the Full PD model and Condensed model. .............................................................. 72 

Figure 4-16: Displacement values at all nodes at (a) 10000th time step, (b) 20000th time step, (c) 

50000th time step, and (d) 86000th time step ...................................................................................... 72 

Figure 5-1 : Comparison of micro-conductivity functions. ................................................................ 82 

Figure 5-2 : A discretized bar to illustrate condensation of the micro-conductivity functions. .... 85 

Figure 5-3 : Static condensation of micro-conductivity functions of a homogeneous bar: (a) 

Constant micro-conductivity, (b) Linear micro-conductivity and (c) Quadratic micro-conductivity

 ..................................................................................................................................................................... 85 

Figure 5-4 : Static condensation of micro-diffusivity functions of a homogeneous bar: (a) 

corresponding to constant micro-conductivity, (b) corresponding to linear micro-conductivity and 

(c) corresponding to quadratic micro-conductivity.............................................................................. 86 

Figure 5-5 : A homogeneous bar subjected to constant temperature at both ends. ....................... 87 

Figure 5-6 : Temperature distribution in a homogeneous bar subjected to constant temperature at 

both ends corresponding to retaining every 2nd node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. ................................................................................................................................ 87 



xiii 
 

Figure 5-7: Temperature distribution in a homogeneous bar subjected to constant temperature at 

both ends corresponding to retaining every 5th node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. ................................................................................................................................ 87 

Figure 5-8: Temperature distribution in a homogeneous bar subjected to constant temperature at 

both ends corresponding to retaining every 10th node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. ................................................................................................................................ 88 

Figure 5-9 : Example 2 problem setup: A plate with pre-existing crack ........................................... 89 

Figure 5-10 : Schematic representation of static condensation .......................................................... 89 

Figure 5-11 : Dirichlet boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10− 5 s  (b) Full model corresponding to 𝑡 = 7×10− 4 s  (c) Full 

model corresponding to 𝑡 = 7×10− 3 s  (d) Reduced model corresponding to 𝑡 = 7 × 10− 5 s  

(e) Reduced model corresponding to 𝑡 = 7×10− 4 s , (f) Reduced model corresponding to 𝑡 =

7×10− 3 s .................................................................................................................................................. 90 

Figure 5-12 : Temperature profile along the grid at 𝑥 = −5.5×10− 5 𝑚 parallel to the 𝑦 −axis of 

the plate with Dirichlet boundary condition. ........................................................................................ 91 

Figure 5-13 : Neumann boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10− 5 s (b) Full model corresponding to 𝑡 = 7×10− 4 s (c) Full 

model corresponding to 𝑡 = 7×10− 3 s (d) Reduced model corresponding to 𝑡 = 7×10− 5 s (e) 

Reduced model corresponding to 𝑡 = 7×10− 4 s, (f) Reduced model corresponding to 𝑡 =

7×10− 3 s. ................................................................................................................................................. 92 

Figure 5-14 : Temperature profile along the grid at 𝑥 = −5.5×10− 5 m parallel to the 𝑦 −axis of 

the plate with Neumann boundary condition. ...................................................................................... 92 

Figure 5-15: Neumann boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10-5 s,  (b) Full model corresponding to 𝑡 = 7×10-4 s (c) Full 

model corresponding to 𝑡 = 7×10-3 s (d) Reduced model corresponding. .................................... 93 

Figure 5-16: Temperature profile along a grid of the plate with Neumann boundary condition and 

condensation achieved through random selection of nodes. ............................................................. 94 

Figure 5-17 : Adaptive condensation: Temperature distribution across the plate: (a) Full model 

corresponding to 𝑡 = 10 s (b) Full model corresponding to 𝑡 = 20 s, (c) Full model corresponding 

to 𝑡 = 30 s, (d) Reduced model corresponding to 𝑡 = 10 s, (e) Reduced model corresponding to 

𝑡 = 20 s, (f) Reduced model corresponding to 𝑡 = 30 s, ................................................................... 95 

Figure 5-18 : Adaptive condensation. Temperature profile along a grid of the plate with Neumann 

boundary condition. .................................................................................................................................. 95 



xiv 
 

Figure 6-1: Schematic Representation of Homogenization Process: Defining Representative 

Volume Element (RVE) in a Heterogeneous Material ........................................................................ 98 

Figure 6-2: Example square RVE showing corresponding boundary regions. .............................. 104 

Figure 6-3: RVE geometry showing various configuration. ............................................................. 110 

Figure 6-4: Evolution of the effective stiffness tensor of glass in epoxy-matrix composite – 

LDBVC (a) 𝐶11 ∗= 𝐶22 ∗ (b) 𝐶22 ∗ (c) 𝐶33 ∗ and (d) 𝐶12 ∗ ..................................................... 111 

Figure 6-5: Evolution of the effective elastic constants – LDBVC (a) Effective bulk modulus, (b) 

Effective shear modulus and (c) Effective Elastic modulus ............................................................. 112 

Figure 6-6: Evolution of the effective stiffness tensor of glass in epoxy-matrix composite – PBVC 

(a) 𝐶11 ∗= 𝐶22 ∗ (b) 𝐶22 ∗ (c) 𝐶33 ∗ and (d) 𝐶12 ∗ ..................................................................... 112 

Figure 6-7: Evolution of the effective elastic constants – PBVC (a) Effective bulk modulus, (b) 

Effective shear modulus and (c) Effective Elastic modulus ............................................................. 112 

Figure 6-8: Evolution of effective elastic constant obtained using the LDBVC and PBVC ....... 113 

Figure 6-9: Evolution of effective stiffness ratio under LDBVC (a) 𝜑 = 1.07 (b) 𝜑 = 3.44 ..... 115 

Figure 7-1: RVEs with (a) Single subscale crack (b) Two interacting subscale cracks ................. 122 

Figure 7-2: Evolution of the component C22 of the effective stiffness tensor (a) RVE with a single 

propagating crack, (b) RVE with two coalescing cracks ................................................................... 123 

Figure 7-3: Elastic anisotropy index for the single crack and coalescing cracks ........................... 124 

Figure 7-4: Arrangement of randomly distributed microcracks (a) Horizontally aligned (b) 

Randomly aligned. ................................................................................................................................... 125 

Figure 7-5: Evolution of damage due to random cracks (a) Horizontally aligned, (b) Randomly 

aligned. ...................................................................................................................................................... 125 

Figure 7-6: Elastic anisotropy index for cracks aligned horizontally and randomly. .................... 126 

Figure 8-1: Micro computational domain showing solution and boundary domains. .................. 136 

Figure 8-2: RVE showing microstructure topology of composites. ................................................ 140 

Figure 8-3: Effective stress relaxation stiffness tensor. Graph showing the 𝐶11 component.... 142 

Figure 8-4: Effective relaxation modulus obtained from the effective stress relaxation stiffness 

tensor. ....................................................................................................................................................... 142 

Figure 8-5: Effective loss tangent in frequency domain ................................................................... 143 

Figure 8-6: Component 𝐶11 of the effective stiffness tensor of a two-phase matrix-inclusion 

composite system with both matrix and inclusion made of viscoelastic materials. ...................... 144 

Figure 8-7: Effective relaxation modulus of the composite system obtained from the effective 

stiffness tensor. ........................................................................................................................................ 144 



xv 
 

Figure 8-8: Effective loss tangent of a two-phase matrix-inclusion composite system made of 

viscoelastic inclusion and matrix. ......................................................................................................... 145 

Figure 8-9: Effect of nonlocality on the effective relaxation modulus of a two-phase matrix-

inclusion composite system ................................................................................................................... 146 

Figure 8-10: Effect of nonlocality on the effective loss modulus of a two-phase matrix-inclusion 

composite system .................................................................................................................................... 147 

Figure 8-11: Effect of nonlocality on the effective storage modulus of a two-phase matrix-inclusion 

composite system .................................................................................................................................... 147 

Figure 8-12: Creep strain during stress relaxation in a bar for effective relaxation moduli obtained 

from different degree of nonlocality. ................................................................................................... 149 



xvi 
 

List of Tables 

Table 2-1: Micromodulus functions with their corresponding bond force constants .................... 30 

Table 4-1: Natural frequencies of the first five modes computed using the full PD model, reduced 

PD model and FE analysis. ..................................................................................................................... 67 

Table 6-1: Material properties of the constituents of RVEs............................................................. 110 

Table 6-2: Effective material properties for boron/aluminium composite (𝑐1 = 0.47) ............. 114 

Table 6-3: Evolution of the elastic modulus in directions 1 and 2 (Glass in aluminium: circular 

inclusion) .................................................................................................................................................. 116 

Table 6-4: Evolution of the elastic modulus in directions 1 and 2 (Graphite in aluminium: circular 

inclusion) .................................................................................................................................................. 116 

Table 6-5: Evolution of the elastic modulus in directions 1 and 2 (Glass in aluminium: elliptical 

inclusion) .................................................................................................................................................. 116 

Table 6-6: Evolution of the elastic modulus in directions 1 and 2 (Graphite in aluminium: elliptical 

inclusion) .................................................................................................................................................. 117 

Table 8-1: Prony coefficients for effective relaxation modulus data ............................................... 141 

Table 8-2: Coefficients of Prony series representation of effective relaxation modulus .............. 143 

 

  



xvii 
 

Nomenclature  

Acronyms   

ADR Adaptive Dynamic Relaxation 

BBPD Bond-based Peridynamics 

CCM Classical Continuum Mechanics 

FE Finite Element  

FEM Finite Element Method 

HMM Heterogenous Multiscale Method 

IVCP Initial Volume Constraint Problem 

LDBVC Linear Displacement Boundary Volume Constraint 

LTEHOT Linear Thermoelastic Higher-Order Theory 

NOSBPD Non-ordinary State-based Peridynamics 

OSBPD Ordinary State-based Peridynamics 

OSBPDHT Ordinary State-based Peridynamic Homogenization Theory 

PBVC Periodic Boundary Volume Constraint  

PD Peridynamic, Peridynamics 

PDCHT Peridynamic Computational Homogenization Theory 

PMB Prototype Microelastic Brittle 

RVE Representative Volume Element 

SBPD State-based Peridynamics 

UC Unit Cell 

VAMUCH Variational Asymptotic Method for Unit Cell Homogenization 

VCP Volume Constraint Problem 

  

Symbols and Notations  

(∙)𝑠 Symmetric tensor operator 

(∙)𝜔 Weighted operator 

ℋ𝑥 Family of point 𝑥 

𝐓̂ Material constitutive model 

𝐓 Force state 

𝐗 Reference position vector state 

𝐘 Deformation state 

𝑠0 Critical bond stretch 

𝐄 Nonlocal Green-Lagrange strain tensor 

𝐅 Deformation tensor 

𝐊 Shape tensor 

𝐌 Deformed bond direction vector 

𝐟 Force density 

𝐭 Force density functions 

𝐸 Young’s modulus 

𝐻 Heaviside step function 

𝑊 Total strain energy 

𝑐 Bond elastic constant 

𝑠 Bond stretch 

𝑤 Micropotential 



xviii 
 

𝑪 Micromodulus function 

𝒖 Displacement vector 

𝒟 Nonlocal divergence operator 

𝒢 Nonlocal gradient operator 

𝒩 Nonlocal point interaction operator 

𝒮 Point interaction operator 

𝛿 Horizon 

𝜇 Time-dependent damage criteria 

𝜉 Bond length  

𝜔 Weight function 

𝜺 Infinitesimal strain tensor 

𝜼 Relative displacement vector 



1 
 

Chapter 1 

1.0 Introduction 

Understanding how materials behave through theoretical and applied mechanics has contributed 

immensely to the advancement recorded in many fields of human endeavours including oil and 

gas exploration and exploitation, civil infrastructures, automobile, and the aerospace as well as 

biomedical industries [1]. To adequately characterise materials for any meaningful application 

requires a good understanding of their mechanical properties. Mathematical modelling is 

increasingly gaining acceptance as a tool to characterise the behaviour of material and structures 

[2]. This is because of the many advantages that mathematical modelling offers. An important 

advantage offered by mathematical modelling over physical experimentation is that it allows for 

the prediction of the behaviour of materials and structures under a range of conditions, some of 

which can be difficult or impossible to achieve through physical experimentation. This is 

particularly important in the design and optimization of materials and structures, as it allows for 

the exploration of a larger space of input parameters to identify key factors that govern the 

behaviour of the system. 

Classical continuum theory has long been the dominant mathematical framework for the study of 

materials and structures by scientists and engineers. Despite its success in modelling a wide range 

of physical processes, the classical continuum theory has been shown to be deficient in its ability 

to model an increasing number of phenomena accurately and/or efficiently. This limitation can be 

attributed primarily to the mathematical structure of the classical theory.  

The classical theory relies on partial differential equations to relate the properties of a material to 

its state. The use of derivatives inherently presupposes the principle of local action [3] which 

implies that the state of a material at a point depends solely on the value of the field variable at 

that point. This description of material effectively makes the classical theory a local theory, and 

the locality is manifested by the absence of an internal length parameter, a characteristic of the 

classical theory that has been identified as responsible for the unphysical solutions in the modelling 

of materials exhibiting size effects and strain softening behaviour [4, 5], for example. 

Furthermore, the use of derivatives in the classical continuum theory also implies that the material 

behaviour is smooth and continuous at least in the solution variables, which is not always the case. 

Many materials exhibit discontinuous behaviour, such as cracking and fragmentation, and since 

these derivatives are not defined in the presence of such discontinuities, the equation of motion 

of the classical theory becomes undefined. This limitation makes the computational simulation of 
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discontinuous material response based on the classical continuum framework an unresolved 

problem [6]. These deficiencies of the classical continuum theory have led to the development of 

nonlocal continuum theories and modelling frameworks with extended capabilities in modelling 

the behaviour of materials and structures. See [7-9] for review of nonlocal theories. 

One of the alternative continuum theories developed to overcome the deficiencies of the classical 

theory is the Peridynamic theory [10] which is a continuum but nonlocal reformulation of the 

classical theory using integral rather than differential operator. The use of integral operator 

introduces the notion of nonlocal action in the peridynamic theory which allows the state fields at 

a point in a material to be influenced by the state field at points located at a finite distance away. 

This mathematical structure endows the peridynamic theory with two desirable characteristics.  

The first is that the use of integral operators eliminate the smoothness and continuity requirements. 

This allows the fundamental governing equation of motion of peridynamics to be valid in both 

continuous and discontinuous material response. Secondly, the nonlocality that emerges from the 

integral formulation endows peridynamics with an internal length parameter called horizon which 

is the parameter that controls the degree of nonlocality in the peridynamic framework. The 

presence of the internal length parameter gave the peridynamic theory the capability to model 

processes and phenomenon such as size dependent behaviour [11] and strain softening 

phenomenon [12]. These extended capabilities have motivated the use of peridynamic theory to 

study a wide range of engineering problems [13-29].  

1.1 Motivations  

To fully leverage the capabilities of peridynamics as a simulation tool, it is imperative to develop 

multiscale frameworks. This endeavour is motivated by physics as well as computational 

considerations. The physics-based consideration stems from the fact that many observable 

behaviour of materials are influenced by phenomena and processes occurring over multiple length 

scales [30, 31]. To accurately model the behaviour of materials will therefore require a 

computational framework that will couple the multiple scales in a consistent manner that will allow 

the exchange of information between the scales.  

The numerical motivation for a multiscale framework for peridynamic theory is driven by the 

requirement for increased efficiency in computation. As a nonlocal model, peridynamics is not as 

computationally efficient as the local classical continuum theory [32, 33]. thus, is because the 

nonlocal interactions allowed in peridynamics result in larger degrees of freedom in the system and 
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thus a larger number of equations to be solved compared to the classical continuum theory. This 

translates to a requirement for additional computational resources. 

Efforts have already been expended in the development of multiscale frameworks for PD, aiming 

to overcome these challenges and broaden the applicability of PD to a wide range of problems. In 

section 2.1 of this thesis, a comprehensive state-of-the-art review will be presented, assessing the 

existing multiscale methodologies developed for PD, and highlighting potential research gaps that 

need to be addressed. 

1.2 Research objectives 

Considering the foregoing motivations for the development of multiscale methods within the 

framework of peridynamics, this thesis proposes two broad categories of multiscale frameworks 

for the peridynamic theory. Through the implementation of these frameworks, this thesis aims to 

expand the scope and capabilities of peridynamic theory as a tool for numerical characterisation 

of materials. 

The first category are termed model order reduction (MOR) methodologies and are motivated by the 

requirement for increased computational efficiency to alleviate the inherent computational 

deficiency of peridynamic model due to nonlocal interactions. The goal in developing these 

frameworks is to reduce the number of degrees of freedom in a system while still capturing its 

essential behaviour. This is achieved by eliminating the internal (or subscale) degrees of freedom 

and replacing them with a set of reduced order equations that can adequately describe the 

behaviour of the system. A major advantage to be derived from utilizing these frameworks is 

reduction in computational cost. Another advantage is that reducing the degrees of freedom of the 

system will allow peridynamics to be utilised in solving large-scale problems that would otherwise 

be impossible due to computational resource constraints. 

The second category of multiscale frameworks developed are called computational homogenization 

methodologies. The goal in developing these frameworks is to derive effective macroscopic 

properties of a material or structure from the properties of its microstructure. This is achieved by 

averaging the properties of the microstructure over a representative volume element (RVE) and 

deriving effective properties that can be used to model the behaviour of the material or structure 

at the macroscopic scale. By providing a means to accurately extract the effective behaviour of 

materials using information from the microstructure, the proposed homogenization framework 

provides a pathway of gaining a deeper understanding of the relationship between microstructure 

and material properties. In particular, the nonlocal homogenization framework proposed in this 
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thesis provide the unique advantage of leveraging on the extended capabilities of peridynamic 

theory to study the effects of nonlocal driven phenomena and processes, such as size effect and 

strain softening, as well as discontinuous responses, such as cracks occurring at the subscale on 

the effective behaviour of materials at the macroscale.  

1.3 Research workflow 

To achieve the objectives of this thesis, a comprehensive work plan was designed, encompassing 

literature review, mathematical framework conceptualization, computational scheme 

development, numerical validation, and dissemination of the research findings. 

Workflow: 

1. Literature Review: The initial phase in the research involved conducting an extensive 

literature review to explore existing research on multiscale frameworks for peridynamics. 

Various published papers, journal articles, and conference proceedings were analysed to 

understand the state-of-the-art and identify potential research gaps and opportunities for 

meaningful contributions. The limitations and weaknesses of existing approaches were 

critically evaluated to guide the subsequent research. 

2. Conceptualization and Mathematical Frameworks: Based on the insights gained from the 

literature review, the mathematical frameworks for the proposed multiscale frameworks 

were conceptualized and developed. For the MOR framework, the mathematical 

framework of the coarsening method is extended from its original one-dimensional form 

to two-dimension. A new MOR framework based on the static condensation protocol for 

implementation within the PD modelling framework was also conceptualised and the 

necessary mathematical equations for the reduction procedure were derived. The 

theoretical conceptualization of the CH framework involved defining the microscale and 

macroscale domains, followed by the selection of appropriate scale transition operators 

that link the microscale and macroscale fields. Subsequently, during the derivation of the 

mathematical framework, rigorous mathematical analysis was performed to establish the 

equations and relationships that accurately capture the effective properties and behaviour 

of the heterogeneous material at the macroscale. 

3. Development of Computational Scheme: Subsequently, the proposed multiscale 

frameworks were implemented into computational schemes. To achieve this, custom 

computer codes were written in MATLAB to numerically solve the developed multiscale 

frameworks. The implementation involved devising numerical and computational 



5 
 

algorithms to handle the coupling between different scales, perform matrix operations, and 

address boundary conditions appropriately. Particular attention was given to ensuring 

computational efficiency and accuracy, as well as overcoming any challenges specific to 

peridynamic modelling. 

4. Numerical Validation and Benchmarking: To validate the developed computational 

schemes, extensive numerical validation and benchmarking were carried out. Numerous 

test cases and benchmark problems, including material characterization of 

elastic/viscoelastic materials and evolving microstructures, were simulated to assess the 

performance and accuracy of the proposed multiscale frameworks. The results were 

thoroughly compared with high-fidelity models (in the case of MOR frameworks) and 

results from literature (in the case of CH theory) to verify their accuracy and efficiency. 

5. Thesis Writing and Dissemination: Throughout the research, efforts were made to 

continuously document all steps, methodologies, and results in a clear and coherent 

manner. Regular presentations and discussions with supervisors and peers provided 

valuable feedback and insights. As the research progressed, the findings were disseminated 

through conference presentations, journal publications, and a book chapter to contribute 

to the advancement of the state-of-the-art in the field of computational characterizations 

of materials using PD. 

In summary, the comprehensive research work plan implemented in this study proved highly 

effective in achieving its objectives. By conducting an extensive literature review, conceptualizing 

robust mathematical frameworks, developing efficient computational schemes, performing 

thorough numerical validations, and disseminating the findings, this thesis successfully expanded 

the scope of applicability of PD and made significant strides in advancing the field of multiscale 

modelling for PD theory. 

1.4 Research contributions 

This thesis presents a significant contribution to the field of multiscale modelling within the 

peridynamic computational framework. The research aims to achieve increased computational 

efficiency and the ability to characterise the effective properties of heterogeneous materials 

through the development of the two categories of multiscale methodologies.  

1.4.1 Methodologies of the first category 

These are the so-called MOR methods. The goal of developing these methodologies is to increase 

the computational efficiency of peridynamic theory. Generally, methodologies belonging to this 
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category seek to reduce the computational requirement of solving high-fidelity model by replacing 

it with a reduced-order model having fewer degrees of freedom, while still maintaining a high level 

of accuracy and reliability in the results. This is usually achieved using techniques such as the 

coarsening method [34, 35], static condensation [36], proper orthogonal decomposition [37, 38], and reduced basis 

method [39-41] among others.  

The first technique explored to develop a model order reduction framework for the peridynamic 

theory is the coarsening method. The contribution made in this thesis in this regard is to generalise 

the coarsening method to two-dimension which was originally proposed and implemented for 1D 

problems in [34]. Beyond expanding to higher dimensions, another contribution of this thesis is 

the implementation of various micromodulus functions within the coarsening framework. Results 

of numerical investigation conducted demonstrated the robustness of the technique in reducing 

the order of the peridynamic model for a range of problems, without compromising on predictive 

capability. 

Addressing real-world engineering challenges and achieving increased accuracy are the key 

motivations for extending the coarsening method from one dimension to higher dimensions. Many 

engineering problems, such as structural analysis, material characterization, and fluid-structure 

interaction for example, inherently involve phenomena occurring in higher-dimensional space. 

Extending the coarsening method to higher dimension will therefore expand its scope of 

application to these problems. Furthermore, the extension of the coarsening method to higher 

dimensions offers significant advantages in terms of increased accuracy of simulations. By enabling 

the representation of large and complex systems with fewer degrees of freedom, this method 

preserves essential features of simulation results that would otherwise only be attainable with high-

resolution models. 

Despite its proven effectiveness, the coarsening algorithm is limited by the requirement that 

boundary regions with applied forces or prescribed non-zero displacements must be retained in 

the coarse model, thus limiting the flexibility in choosing which degrees of freedom to eliminate 

or retain. Additionally, the algorithm is not suitable for solving dynamic equilibrium problems. To 

address these limitations, a novel MOR technique was proposed employing the static condensation 

method. This marks the first-ever utilization of the static condensation protocol to reduce the 

order of peridynamic models, paving the way for unprecedented flexibility in selecting degrees of 

freedom. A series of numerical simulations were conducted to demonstrate the efficiency and 

effectiveness of this proposed framework. The results showed that the proposed method was able 

to reduce the order of both static and dynamic problems without compromising the accuracy of 
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the results. Furthermore, the static condensation framework was extended to reduce the order of 

peridynamic heat models, with numerical investigations demonstrating its effectiveness and 

efficiency in this regard. 

While this thesis has successfully implemented the static condensation MOR framework to some 

benchmark mechanical and heat transport models, potential applications such as test-analysis-

model (TAM) development and reanalysis remain promising avenues for future research, 

providing valuable tools for test/analysis correlation, system identification, and re-solving of 

structural models with modified conditions. 

1.4.2 Methodologies of the second category 

As mentioned in 1.2, methodologies belonging to this category are generally called CH frameworks 

and are motivated by the requirement to have a framework that allows the determination of 

effective properties of microscopically heterogeneous materials. In this regard, a peridynamic 

computational homogenization theory (PDCHT) was proposed. To ensure consistency with the 

nonlocal nature of the peridynamic theory, the development of this theory is anchored on the 

framework of a newly proposed nonlocal vector calculus [42, 43]. The theory is validated through 

numerical solution of Representative Volume Elements (RVE) from composite materials and 

comparison with established methodologies demonstrated the effectiveness of the proposed 

homogenization theory. 

The PDCHT is then utilised to characterise the effective behaviour of materials with evolving 

microstructure. In this contribution, the proposed PDCHT was utilized to study the evolution of 

effective material response of damaged media. In particular, the framework is applied to model 

and study the effect of stationary and propagating micro cracks and their interactions on the 

effective properties of materials. 

Subsequently, a peridynamic computational framework for homogenization of viscoelastic 

composite was proposed. The time dependent behaviour of viscoelastic materials as represented 

by the Boltzmann integral constitutive model introduces an additional layer of nonlocality to the 

peridynamic homogenization framework. This temporal nonlocality is taken onboard by 

incorporating the Boltzmann integral constitutive model into the PDCHT framework, which 

allows for the capture of time-dependent response. This proposed framework was then validated 

by conducting numerical simulations on RVE of viscoelastic composite materials and comparing 

the results with those obtained using established methodologies. The results demonstrate the 
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effectiveness and efficiency of the proposed framework in capturing the time-dependent 

behaviour of viscoelastic composite materials and determining their effective properties. 

1.4.3 Research output 

This section presents the research output of this thesis in the form of journal articles, conference 

papers, and book chapter. The works presented here is a culmination of the research conducted 

over the course of this study, which aimed to develop two classes of multiscale modelling 

frameworks for peridynamics. These frameworks were developed to address the need for increased 

computational efficiency and provide a method for characterizing the effective properties of 

materials with complex microstructure or those exhibiting nonlocal behaviour. The following is 

the lists of research output: 

A. Journal articles: 

1. Galadima, Y. K., Oterkus, S., Oterkus, E., Amin, I., El-Aassar, A.-H., & Shawky, H. (2023). 

Effect of phase contrast and inclusion shape on the effective response of viscoelastic 

composites using peridynamic computational homogenization theory. Mechanics of Advanced 

Materials and Structures, 1-9. 

https://doi.org/https://doi.org/10.1080/15376494.2023.2218364  

2. Galadima, Y. K., Oterkus, S., Oterkus, E., Amin, I., El-Aassar, A.-H., & Shawky, H. (2023). 

A nonlocal method to compute effective properties of viscoelastic composite materials 

based on peridynamic computational homogenization theory. Composite Structures, 319, 

117147. https://doi.org/https://doi.org/10.1016/j.compstruct.2023.117147  

3. Galadima, Y. K., Oterkus, S., Oterkus, E., Amin, I., El-Aassar, A.-H., & Shawky, H. (2023). 

Modelling of viscoelastic materials using non-ordinary state-based peridynamics. 

Engineering with Computers. https://doi.org/10.1007/s00366-023-01808-9 

4. Galadima, Y. K., Xia, W., Oterkus, E., & Oterkus, S. (2023). A computational 

homogenization framework for non-ordinary state-based peridynamics. Engineering with 

Computers, 39(1), 461-487. https://doi.org/10.1007/s00366-021-01582-6 

5. Galadima, Y. K., Xia, W., Oterkus, E., & Oterkus, S. (2022). Peridynamic computational 

homogenization theory for materials with evolving microstructure and damage. 

Engineering with Computers. https://doi.org/10.1007/s00366-022-01696-5 

https://doi.org/https:/doi.org/10.1080/15376494.2023.2218364
https://doi.org/https:/doi.org/10.1016/j.compstruct.2023.117147
https://doi.org/10.1007/s00366-023-01808-9
https://doi.org/10.1007/s00366-021-01582-6
https://doi.org/10.1007/s00366-022-01696-5
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6. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2022). Static condensation of peridynamic 

heat conduction model. Mathematics and Mechanics of Solids, 0(0), 10812865221081160. 

https://doi.org/10.1177/10812865221081160 

7. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2021). Model order reduction of linear 

peridynamic systems using static condensation. Mathematics and Mechanics of Solids, 26(4), 

552-569. https://doi.org/10.1177/1081286520937045 

8. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2020). Investigation of the effect of shape of 

inclusions on homogenized properties by using peridynamics. Procedia Structural Integrity, 28, 

1094-1105. https://doi.org/10.1016/j.prostr.2020.11.124 

9. Galadima, Y., Oterkus, E., & Oterkus, S. (2019). Two-dimensional implementation of the 

coarsening method for linear peridynamics. AIMS Material Science, 6(2), 252-275. 

https://doi.org/http://dx.doi.org/10.3934/matersci.2019.2.252 

B. Conference Presentations 

1. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2023). A Non-Ordinary State-Based 

Viscoelastic Peridynamic Computational Homogenisation Model to Calculate the 

Effective Properties of Viscoelastic Composite Materials ASME 2023 International 

Mechanical Engineering Congress and Exposition (IMECE2023), Boston, Massachusetts, 

USA. 

2. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2023). Modelling the Mechanical response of 

Single Crystal S2 Ice using Non-Ordinary State-Based Peridynamics. 27th International 

Conference on Port and Ocean Engineering under Arctic Conditions, Glasgow, United 

Kingdom. 

3. Galadima, Y. K., Oterkus, E., Oterkus, S., Amin, I., El-Aassar, A., & Shawky, H. (2023). 

Effect of Phase Contrast on the Effective Instantaneous and Equilibrium Response of 

Viscoelastic Composites using Peridynamic Computational Homogenization Theory 

International Conference on Advanced Topics in Mechanics of Materials, Structures and 

Construction (AToMech1), Al Khobar, Saudi Arabia. 

4. Galadima, Y. K., Xia, W., Oterkus, E., & Oterkus, S. (2022). A Non-Ordinary State-Based 

Peridynamic Computational Homogenisation Model by Considering Damage. ASME 

2022 International Mechanical Engineering Congress & Exposition, Columbus, OH, USA.  

https://doi.org/10.1177/10812865221081160
https://doi.org/10.1177/1081286520937045
https://doi.org/10.1016/j.prostr.2020.11.124
https://doi.org/http:/dx.doi.org/10.3934/matersci.2019.2.252
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5. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2020). Homogenization of Peridynamic 

Models: Effect of Inclusion Shape on Effective Properties. First Virtual European 

Conference on Fracture (VECF1), Online.  

6. Galadima, Y. K., Oterkus, E., & Oterkus, S. (2018). A Two-Dimensional Implementation 

of the Coarsening Method for Linear Peridynamics. ASME 2018 International Mechanical 

Engineering Congress & Exposition, Pittsburgh, PA, USA.  

C. Book chapter 

1. Galadima, Y. K., Xia, W., Oterkus, E., & Oterkus, S. (2021). Chapter 17 - Multiscale 

modeling with peridynamics. In E. Oterkus, S. Oterkus, & E. Madenci (Eds.), Peridynamic 

Modeling, Numerical Techniques, and Applications (pp. 371-386). Elsevier. 

https://doi.org/https://doi.org/10.1016/B978-0-12-820069-8.00018-4  

1.5 Thesis structure 

The remainder of this thesis is structured as follows: Chapter 2 provides a state-of-the-art literature 

survey and the introduction of the mathematical and theoretical basis of the frameworks proposed 

in this thesis. This includes a primer on nonlocal vector calculus, which is essential for the 

construction of important concepts in the multiscale frameworks proposed as well as the 

fundamental theory of peridynamics, covering the bond-based and state-based variants of the 

theory. Chapter 3 presents the development of the coarsening method, its generalization to 2D, 

and numerical examples to validate the methodology. Chapter 4 introduces the peridynamic static 

condensation multiscale framework, along with numerical studies to validate the framework. The 

static condensation framework is extended in chapter 5 to reduce the order of peridynamic heat 

transport model. Chapter 6 presents the development of the PDCHT and numerical studies that 

utilize the proposed theory to characterize the effective elastic properties of heterogeneous 

materials. Chapter 7 focuses on the use of the PDCHT in characterizing materials with evolving 

microstructure. Chapter 8 presents an extension of the PDCHT to homogenize viscoelastic 

composites. Finally, Chapter 9 provides concluding remarks and recommendations for future 

work. 

https://doi.org/https:/doi.org/10.1016/B978-0-12-820069-8.00018-4
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Chapter 2 

2.0 Literature Review and Theoretical Foundations 

This chapter begins with a comprehensive state-of-the-art literature survey, exploring relevant 

background information and studies pertinent to the research presented in this thesis. 

subsequently, the chapter presents a brief introduction to vector calculus, laying the mathematical 

foundation for various aspects of the research. Lastly, the fundamental theory of peridynamics is 

thoroughly reviewed, encompassing both the bond-based and state-based formulations. 

2.1 State-of-the-art in Peridynamic multiscale modelling 

This section will provide a review of the state-of-the-art in multiscale modelling within the 

peridynamic framework. Multiscale modelling aims to capture the behaviour of a system at 

multiple scales of length and time, and the peridynamic framework offers a unique platform to 

address this challenge. To strike a balance between acceptable model fidelity and computational 

cost, increasing amount of research effort is being expended to develop a range of multiscale 

enrichment protocols for the peridynamic theory. The objective of these protocols is to enhance 

the capability of peridynamics in capturing and utilizing information across spatial scales at an 

acceptable computational cost. To achieve this objective, researchers have adopted one of two 

approaches. The first approach involves developing a framework that allows for the coupling of 

various resolutions of peridynamic model or coupling of peridynamic model with models based 

on other theories of mechanics to leverage the strengths of the coupled theories. This approach 

falls under the purview of concurrent multiscale modelling. The second approach involves frameworks 

that permit coupling of models at different length scales in the same part of a computational 

domain. These are categorized as hierarchical multiscale modelling frameworks. 

A variety of concurrent multiscale modelling frameworks for peridynamics have been proposed. 

These approaches can broadly be categorised into monomodel and multimodel approaches. In the 

monomodel approach, peridynamics is used to model the entire computational domain. Multiscale 

capability is achieved by refining the grid appropriately to resolve details at different length scales. 

Development in this respect include the adaptive grid refinement method proposed in [44-46]. 

Refinement of the grid requires changing the grid density and the horizon which in turn induces a 

change in the micromodulus function of the peridynamic model. This change is done relying on a 

scaling algorithm. A variable horizon method was proposed in [47] to solve the problem of ghost 

forces that is a consequence of using variable horizon by introducing the concept of partial stress 

and a splice technique. To resolve the problem of ghost forces without recourse to the partial stress 
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and splice technique of [47], a dual horizon method [48] was proposed with extended capability of 

covering both bond-based peridynamics and state-based peridynamics. The dual horizon method 

was extended as Voronoi-based peridynamics in [49] for non-uniform discretization based on 

Voronoi diagrams. 

The multimodel concurrent approaches are hybridization frameworks that focus primarily on 

developing coupling methodologies that allow peridynamics to be used concurrently with other 

modelling frameworks such as the classical continuum or atomistic modelling theories. The goal 

is to leverage on the advantages offered by each of the coupled models. These methods can broadly 

be classified as kinematic-based, force-based or energy-based coupling methods. In the kinematic-

based methods [28, 50-52], coupling is achieved by implementing a contact algorithm over the 

interface region that requires the satisfaction of a series of kinematical constraints. The force-based 

approaches [53-59] rely on the balance of force in the interface region to achieve coupling of the 

models. In some cases, nonlocal weight functions are used to account for the contributions from 

the models in the balance of force. In the energy-based approach, coupling relies on the principle 

of energy conservation in the interface region. Two notable subclasses of the energy-based 

approach have been proposed such as the morphing methods [60-65] and the Arlequin coupling 

method [66]. 

In the hierarchical multiscale subclass, several researchers have dedicated their efforts to 

developing various hierarchical frameworks for the PD theory. These frameworks can be broadly 

classified into two categories: MOR frameworks and homogenization frameworks. One specific 

methodology within the MOR category, known as the coarsening method, was proposed in [34] 

for the linear PD one-dimensional model. The primary aim of the coarsening method is to capture 

the behaviour of high-fidelity models using a reduced number of degrees of freedom. This 

reduction in model order is achieved by substituting the original high-fidelity model with a 

surrogate model that contains fewer degrees of freedom. 

The limitation of the coarsening method to one-dimensional applications is a significant research 

problem that motivates further investigation and development. The extension of the coarsening 

framework to higher dimensions presents several compelling reasons and research motivations. 

Firstly, higher-dimensional problems are prevalent in various scientific and engineering disciplines, 

and being able to model these systems efficiently and accurately is of utmost importance. Secondly, 

the reduced computational cost associated with the coarsening method allows for the analysis of 

larger and more complex systems, leading to advancements in understanding and design. Lastly, 

by extending the coarsening method to higher dimensions, we can bridge the gap between the 
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theoretical framework and its practical implementation, enabling PD to have a more significant 

impact in engineering applications. 

Addressing the research gap of extending the coarsening framework to higher dimensions is a 

fundamental research problem that drives a significant portion of this thesis. By developing and 

validating an extended coarsening methodology for higher-dimensional problems, this thesis aims 

to overcome the current limitations and open new possibilities for efficient and accurate multiscale 

modelling in the peridynamic theory. The successful extension of the coarsening framework to 

higher dimensions will contribute to advancing the field of peridynamics and provide valuable 

insights for a wide range of applications, such as material science, structural analysis, and 

computational mechanics. 

With respect to the second category of the hierarchical frameworks the earliest attempt at 

developing a homogenization framework for peridynamics appeared in [67, 68] in which a two-

scale solution expansion of the peridynamic equation for a heterogeneous medium was proposed 

based on the concept of two-scale convergence. The framework is a three-step solution strategy 

of computing an average displacement field as a solution of a peridynamic macroscopic equation 

and computing micro-level displacement field from solution of a microscopic equation. The 

displacement field of the heterogeneous medium is found by superimposition of the micro 

displacement field unto the macro field in a final step. Although the mathematical framework was 

developed, numerical validation for the method is yet to be done. 

A class of mean-field homogenization methods that can be categorised as a generalization of the 

self-consistent methods of the classical theory to peridynamics were proposed in [69-71] by 

extending the effective field hypothesis of the classical elasticity of composites to the nonlocal 

peridynamic framework. The effective elastic properties of a heterogeneous medium are 

determined through the introduction of a stress polarization tensor. 

Among the homogenization methodologies exist a class designated as full field (computational) 

homogenization techniques which achieve a much higher resolution of the microscopic fields than 

the mean-field methods. A BBPD unit cell approach to predict the effective thermoelastic material 

properties of heterogeneous microstructures was proposed in [72]. Deriving from the strength of 

PD, this framework allows the determination of effective properties in the presences of 

discontinuities such as debonds, voids and microcracks which enables the determination of a 

damage tensor for progressive failure analysis. Another BBPD homogenization framework that 

seek to generalise a computational homogenization approach from the locally elastic case to the 

peristatic case for composite materials with a periodic structure was proposed in [73]. 
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However, it is worth noting that all the homogenization frameworks discussed above were 

developed specifically for the BBPD. A systematic survey of the literature reveals a significant 

research gap: the absence of a homogenization framework for the SBPD. The state-based theory 

is a more generalized theory compared to the BBPD theory, as it alleviates some of the restrictions 

and limitations of the BBPD theory, allowing for the modelling of more generalized materials. 

This research gap motivates the development of a homogenization framework specifically tailored 

for the SBPD model. 

Developing a homogenization framework for the SBPD model is crucial for advancing the state-

of-the-art in the field of PD simulations and expanding its applicability to a wider range of materials 

and structures. It will allow for the characterization of heterogeneous materials with discontinuous 

response and nonlocal behaviour, providing insights into their effective properties and failure 

mechanisms. By filling this research gap, this thesis aims to contribute to the development of a 

comprehensive multiscale framework for peridynamics, facilitating its broader adoption in various 

fields, including material science, structural analysis, and computational mechanics. 

In summary, the literature review has highlighted the existing MOR and homogenization 

frameworks for PD. MOR frameworks, such as the coarsening method, aim to increase 

computational efficiency by capturing the behaviour of high-fidelity models using fewer degrees 

of freedom. However, a research gap exists as the original proposal of the coarsening method was 

limited to one dimension, calling for its extension to higher dimensions. In addition to addressing 

this gap, this thesis aims to explore the development of other MOR methods with extended 

capabilities. Furthermore, the absence of a homogenization framework specifically designed for 

the SBPD theory poses a limitation in characterizing more generalized materials. This thesis also 

aims to fill this research gap by developing a comprehensive homogenization framework for the 

SBPD model. Through these contributions, this research enhances the scope of application of PD 

as a computational tool in material science and structural analysis, thereby advancing the field of 

multiscale modelling within the PD framework. 

2.2 Nonlocal vector calculus primer 

In this section, the mathematical framework that underlies the development of the multiscale 

frameworks in this thesis will be presented. This framework is built upon a nonlocal vector 

calculus, which provides a robust mathematical foundation that is consistent with the nonlocal 

nature of the PD theory. Nonlocal vector calculus [42, 43] is a mathematical framework that 

extends classical vector calculus to incorporate nonlocal, or long-range, interactions between 

points in a system. In classical vector calculus, the behaviour of a point in space is influenced only 
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by its immediate neighbours, whereas in nonlocal vector calculus, the behaviour of a point can be 

influenced by all other points in the system. This framework is particularly useful for modelling 

phenomena that exhibit nonlocal interactions, such as wave propagation [74], diffusion [75, 76], 

and image processing [77]. The presentation of the nonlocal calculus in this section will rely on the 

work presented in [42]. 

In developing the nonlocal vector calculus, two types of functions and operators are defined. Let 

𝑘,𝑚 and 𝑛 be positive integers and let 𝒙 and 𝒙′ be points in ℝ𝑛. For a given domain Ω ⊆ ℝ𝑛, 

functions or operators that maps Ω into ℝ𝑚×𝑛 or ℝ𝑛 or ℝ are called point functions or operators, 

respectively. On the other hand, functions, or operators from Ω × Ω into ℝ𝑚×𝑛 or ℝ𝑛 or ℝ are 

called two-point functions or operators, respectively. Point functions and two-point functions 

could be scalar, vector or tensor valued functions. 

A very important concept to start with in this review is the nonlocal flux. Given a tensor two-point 

function 𝝍 ∶ ℝ𝑛 ×ℝ𝑛 ⟶ℝ𝑘, then the definition  

 ℱ(Ω1, Ω2; 𝒒) ≔ ∫ ∫ 𝝍(𝒙, 𝒙′)
Ω2

𝑑𝒙′𝑑𝒙
Ω1

 (2-1) 

is the nonlocal flux of 𝒒 from Ω1 into Ω2 where ∫ 𝝍(𝒙, 𝒙′)
Ω2

𝑑𝒙′ is identified as the nonlocal flux 

density into the region Ω2 from point 𝒙 ∈ Ω1. It can be deduced from (2-1) that the nonlocal flux 

is not necessarily zero even if the intersection of the closures of Ω1 and Ω2 is an empty set. This 

is in stark contrast with the local flux which is zero if Ω̅1 ∩ Ω̅2 = ∅. The nonlocal flux density is 

related to the intensive quantity 𝒒 through a constitutive relation. If 𝝍(𝒙, 𝒙′) is assumed to be 

antisymmetric, then the following statements are true: 

1. There is no self-interaction, i.e., 

 ∫ ∫𝝍(𝒙, 𝒙′)
Ω

𝑑𝒚𝑑𝒙
Ω

= 𝟎 (2-2) 

2. The nonlocal action-reaction principle holds for Ω1, Ω2 ⊂ Ω 

 ∫ ∫ 𝝍(𝒙, 𝒙′)
Ω2

𝑑𝒙′𝑑𝒙
Ω1

+∫ ∫ 𝝍(𝒙, 𝒙′)
Ω1

𝑑𝒙′𝑑𝒙
Ω2

= 𝟎 (2-3) 

The action-reaction principle given by (2-3) simply states that the flux from Ω1 into Ω2 is equal to 

the flux that exits Ω2 into Ω1. 
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2.2.1 Nonlocal divergence and gradient operators and their adjoint 

Given the two-point function 𝒗 ∶ ℝ𝑛 ×ℝ𝑛 ⟶ℝ𝑘 and the scalar two-point function 𝑢 ∶ ℝ𝑛 ⟶

ℝ. Let 𝜶(𝒙, 𝒙′):ℝ𝑛 ×ℝ𝑛 ⟶ℝ𝑚 be an antisymmetric vector two-point function. The action of 

nonlocal divergence operator 𝒟 and its adjoint 𝒟∗ on 𝒗 and 𝑢 respectively are defined as 

 𝒟(𝒗)(𝒙) ≔ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′))
ℝ𝑛

𝑑𝒙′      ∀ 𝒙 ∈ ℝ𝑛 (2-4) 

and 

 𝒟∗(𝑢)(𝒙, 𝒙′) ≔ −(𝑢(𝒙′) − 𝑢(𝒙))⊗ 𝜶(𝒙, 𝒙′)     ∀ 𝒙 ∈ ℝ𝑛 (2-5) 

Where 𝒟(𝒗)(𝒙) ∶ ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑘 and 𝒟∗(𝑢)(𝒙, 𝒙′) ∶  ℝ𝑛 ⟶ℝ𝑚 × ℝ𝑘 

Given the scalar two-point function 𝜂 ∶  ℝ𝑛 ×ℝ𝑛 ⟶ℝ and the vector point function 𝒖 ∶  ℝ𝑛 ⟶

ℝ𝑘 . For a given antisymmetric vector two-point function 𝜷(𝒙, 𝒙′):ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑚 , the action 

of the nonlocal gradient operator 𝒢 and its adjoint 𝒢∗ on 𝜂 and 𝒖 respectively are defined as 

 𝒢(𝜂)(𝒙) ≔ ∫ (𝜂(𝒙, 𝒙′) + 𝜂(𝒙′, 𝒙)
ℝ𝑛

𝜷(𝒙, 𝒙′)𝑑𝒚      ∀ 𝒙 ∈ ℝ𝑛 (2-6) 

and  

 𝒢∗(𝒖)(𝒙, 𝒙′) ≔ −(𝒖(𝒙′) − 𝒖(𝒙)) ∙ 𝜷(𝒙, 𝒙′)     ∀ 𝒙 ∈ ℝ𝑛 (2-7) 

where 𝒢(𝜂)(𝒙) ∶ ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑘 and 𝒢∗(𝒖)(𝒙, 𝒙′) ∶ ℝ𝑛 ⟶ℝ. 

Observe that, unlike in local calculus which deals with point functions only, nonlocal calculus 

involves two kinds of functions: point and two-point functions. This therefore necessitates the 

definition of alternative forms of the nonlocal operators defined in (2-8)-(2-7). The alternative 

forms of the nonlocal divergence and gradient operators were given in [42] to be the pairs 𝒟,−𝒢∗ 

and 𝒢,−𝒟∗. For example, in the alternative pair 𝒟,−𝒢∗, while 𝒟 operates on tensor two-point 

functions, −𝒢∗ operates on tensor point functions. Similarly, for the pair 𝒢,−𝒟∗,  𝒢 operates on 

vector two-point functions while −𝒟∗ operate on vector point functions. 

It is possible to apply the nonlocal divergence operator on a tensor function and the nonlocal 

gradient operator on a vector function. Let 𝜶(𝒙, 𝒙′):ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑚 be an antisymmetric vector 

two-point function. Given the tensor two-point function 𝚿:ℝ𝑛 ×ℝ𝑛 ⟶ℝ𝑚×𝑘and the vector 

two-point function 𝒗:ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑘 . The nonlocal divergence is defined by its action on 𝚿 as 
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 𝒟(𝚿)(𝒙) ≔ ∫ (𝚿(𝒙, 𝒙′) + 𝚿(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′))𝑑𝒙′

ℝ𝑛
      ∀ 𝒙 ∈ ℝ𝑛 (2-8) 

where 𝒟(𝚿)(𝒙) ∶ ℝ𝑛 ×ℝ𝑛 ⟶ℝ𝑚×𝑘. The action of the nonlocal adjoint operator 𝒟∗ on 𝒗 is 

given by: 

 𝒟∗(𝒗)(𝒙, 𝒙′) ≔ −(𝒗(𝒙′) − 𝒗(𝒙)) ⊗ 𝜶(𝒙, 𝒙′)     ∀ 𝒙 ∈ ℝ𝑛 (2-9) 

where 𝒟∗(𝒗)(𝒙, 𝒙′) ∶  ℝ𝑛 ⟶ℝ𝑚 × ℝ𝑘. The nonlocal gradient of 𝒗 is given by: 

 𝒢(𝒗)(𝒙) = ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ⊗ 𝜷(𝒙, 𝒙′)𝑑𝒙′

ℝ𝑛
      ∀ 𝒙 ∈ ℝ𝑛 (2-10) 

where 𝒢(𝒗)(𝒙):ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑚×𝑘. The action of the nonlocal adjoint operator 𝒢∗ on 𝚿 is given 

by: 

 𝒟∗(𝒗)(𝒙, 𝒚) = −(𝚿(𝒙′) − 𝚿(𝒙)) ∙ 𝜶(𝒙, 𝒙′)     ∀ 𝒙 ∈ ℝ𝑛 (2-11) 

2.2.2 Interaction kernels and domains 

In (2-8)-(2-7), the two-point vector functions 𝜶(𝒙, 𝒙′) and 𝜷(𝒙, 𝒙′)are also known as the 

interaction kernels. In the context of Peridynamics, these kernels are assumed to have a finite 

domain that does not map to zero. Given two points 𝒙, 𝒙′ ∈ ℝ𝑛 , and 𝛿 ∈ ℝ+. Let ℬ𝛿(𝒙) be a ball 

or radius 𝛿 centered at 𝒙, then for example, the interaction kernel 𝜶(𝒙, 𝒙′) is nonzero only if 𝒙′ ∈

ℬ𝛿(𝒙), i.e. 

 𝜶(𝒙, 𝒙′) {

≠ 0                  ∀ 𝑦 ∈ ℬ𝛿(𝒙) 

= 0                   ∀ 𝑦 ∉ ℬ𝛿(𝒙)
 (2-12) 

where 𝛿 is the interaction radius also known as the horizon in the context of PD. Interaction 

kernels that satisfy (2-12) are called truncated kernels [78] or localized kernels [79]. Another key 

concept that is connected to the notion of truncated kernels is the interaction domain. Let Ω ⊂

ℝ𝑛 be a bounded open set. The interaction domain Ω𝐼 consist of points outside of Ω that interact 

with points in Ω. Given the truncated interaction kernel 𝜶(𝒙, 𝒙′), an interaction domain Ω𝐼 is 

defined as 

 Ω𝐼 = {𝒚 ∈ ℝ
𝑛\Ω ∶ ∃ 𝒙 ∈ Ω ∶  𝜶(𝒙, 𝒙′) ≠ 0} (2-13) 
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The interaction subdomain contains all the points 𝒙′ in the complement domain ℝ𝑛\Ω that 

interact with points 𝒙 in Ω. Many geometrical relationships exist between Ω and Ω𝐼 [42]. A typical 

such relationship is shown in Figure 2-1. 

 

Figure 2-1: Interaction Domain 

2.2.3 Nonlocal interaction operators 

Given a domain Ω, let Ω𝐼 be the interaction domain associated with Ω as defined in 2.2.2. 

Corresponding to the nonlocal divergence operator 𝒟(𝒗)(𝒙), a point interaction operator 

𝒩(𝒗): ℝ𝑛 × ℝ𝑛 ⟶ℝ  is defined as 

 𝒩(𝒗)(𝒙) ≔ −∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙
Ω∪Ω𝐼

𝜶(𝒙, 𝒙′)𝑑𝒙′      ∀ 𝒙 ∈ Ω𝐼 (2-14) 

Corresponding to the nonlocal gradient operator 𝒢(𝜂)(𝒙) , a point interaction operator 𝒮(𝜂)(𝒙) ∶

ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑚×𝑘 is defined as 

 𝒮(𝜂)(𝒙) ≔ −∫ (𝜂(𝒙, 𝒙′) + 𝜂(𝒙′, 𝒙)
Ω∪Ω𝐼

⊗𝜷(𝒙, 𝒙′)𝑑𝒙′      ∀ 𝒙 ∈ Ω𝐼 (2-15) 

2.2.4 Nonlocal integral theorem 

A very important outcome of the nonlocal operators developed in the proceeding subsections is 

statement of the nonlocal Gauss theorem. Recall from (2-2) that: 

∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙
Ω∪Ω𝐼

𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼

= 𝟎 
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∫ ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙
Ω∪Ω𝐼

𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼Ω

+∫ ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙
Ω∪Ω𝐼

𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼Ω𝐼

 = 𝟎 

∫ ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼ℝnΩ

+∫ ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼Ω∪Ω𝐼Ω𝐼

 = 𝟎 

 

∫𝒟(𝒗)(𝒙)𝑑𝒙
Ω

= −∫ ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′𝑑𝒙
Ω∪Ω𝐼Ω∪Ω𝐼Ω𝐼

    (2-16) 

 

∫𝒟(𝒗)(𝒙)𝑑𝒙
𝛺

= ∫ 𝒩(𝒗)(𝒙)
𝛺𝐼

𝑑𝒙    (2-17) 

Consider the right-hand side of (2-16). If the kernel function 𝜶(𝒙, 𝒙′) is antisymmetric and (2-2) 

holds, then: 

−∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′

Ω∪Ω𝐼

𝑑𝒙
Ω𝐼

= −∫ ∫(𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′

Ω

𝑑𝒙
Ω𝐼

 

                             = ∫ ∫ (𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙) ∙ 𝜶(𝒙, 𝒙′)𝑑𝒙′

Ω𝐼

𝑑𝒙
Ω

 (2-18) 

From (2-18) and considering (2-3), it can be deduced that ∫ 𝒩(𝒗)(𝒙)
𝛺𝐼

𝑑𝒙 in (2-17) represents 

the flux from Ω into Ω𝐼. Thus (2-17) is the mathematical statement of the nonlocal Gauss theorem 

which postulate that the integral of the nonlocal divergence of 𝒗 over Ω is equal to the total flux 

exiting Ω into Ω𝐼.  

We next consider the nonlocal analogue of integration by parts expressions involving the nonlocal 

divergence and gradient operators. Given the point functions 𝑢(𝒙):ℝ𝑛 ⟶ℝ and 𝒗(𝒙):ℝ𝑛 ⟶

ℝ𝑚 
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∫𝑢𝒟(𝒗)𝑑𝒙
𝛺

−∫ ∫ 𝒟∗(𝑢) ⋅ 𝒗𝑑𝒙′

Ω∪Ω𝐼

𝑑𝒙
Ω∪Ω𝐼

= ∫ 𝑢𝒩(𝒗)
𝛺𝐼

𝑑𝒙    (2-19) 

 

∫𝒗 ⋅ 𝒢(𝑢)𝑑𝒙
𝛺

−∫ ∫ 𝒢∗(𝒗)𝑢𝑑𝒙′

Ω∪Ω𝐼

𝑑𝒙
Ω∪Ω𝐼

= ∫ 𝒗 ⋅ 𝒮(𝑢)𝑑𝒙
𝛺𝐼

    (2-20) 

2.2.5 Nonlocal weighted operators 

Because the classical continuum theory is a local theory, the functions utilised are point functions. 

This is not the case with peridynamics which is a nonlocal theory, hence some of the function 

utilised are point functions while some are two-point functions. The differential operators defined 

in 2.2.1 are operators that act on two-point functions. To complete the definition of the nonlocal 

operators, another class of operators that act on point functions need to be defined.  

Given the point function 𝒖 ∶ ℝ𝑛 ⟶ℝ𝑘 and the point function 𝑣 ∶ ℝ𝑛 ⟶ℝ. Let 

𝜔(𝒙, 𝒙′): ℝ𝑛 ×ℝ𝑛 ⟶ℝ+ and let the operators 𝒟 and 𝒢 be as defined in 2.2.1, then the weighted 

nonlocal divergence operator acting on 𝒖 is defined as 

 𝒟𝜔(𝒖)(𝒙) ≔ 𝒟(𝜔(𝒙, 𝒙′)𝒖(𝒙))          ∀𝒙 ∈ ℝ𝑛 (2-21) 

The weighted nonlocal gradient operator acting on 𝑣 is defined as: 

 𝒢𝜔(𝑣)(𝒙) ≔ 𝒢(𝜔(𝒙, 𝒙′)𝑣(𝒙))          ∀𝒙 ∈ ℝ𝑛 (2-22) 

The extended application of the weighted nonlocal divergence and gradient operators on tensor 

and vector fields respectively follows as in (2-8) and (2-10). Also, as is with the unweighted 

nonlocal operators, adjoint operators can also be defined for the weighted nonlocal operators. Let 

𝒟∗ and 𝒢∗ be as defined in  2.2.1 and 𝜔:ℝ𝑛 × ℝ𝑛 ⟶ℝ be a non-negative symmetric function 

known as the weight function, then the action of the adjoint operator 𝒟𝜔
∗  corresponding to the 

nonlocal weighted divergence operator on 𝑣 is defined as 

 𝒟𝜔
∗ (𝑣)(𝒙) ≔ ∫𝒟∗(𝑣)(𝒙, 𝒚)𝜔(𝒙, 𝒚)𝑑𝒙′

ℝ

          ∀𝒙 ∈ ℝ𝑛 (2-23) 

The action of the adjoint operator 𝒢∗ corresponding to the nonlocal weighted gradient operator 

𝒢𝜔
∗  on 𝒗 is defined as 
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 𝒢𝜔
∗ (𝒗)(𝒙) ≔ ∫𝒢∗𝒗(𝒙, 𝒙′)𝜔(𝒙, 𝒚)𝑑𝒙′

ℝ

          ∀𝒙 ∈ ℝ𝑛 (2-24) 

The relationship established between 𝒟 and −𝒢∗ and between 𝒢 and −𝒟∗ allows us to respectively 

write (2-21) and (2-22)  as 

 𝒟𝜔(𝒖)(𝒙) = −𝒢𝜔
∗ (𝒖(𝒙))         ∀𝒙 ∈ ℝ𝑛 (2-25) 

and 

 𝒢𝜔(𝑣)(𝒙) = −𝒟𝜔
∗ (𝑣(𝒙))          ∀𝒙 ∈ ℝ𝑛 (2-26) 

Equations (2-25) and (2-26) serves to define two forms to each of the weighted nonlocal 

divergence and gradient operators, respectively and have been shown to be equal [42]. For 

example, from (2-25), the first form of the weighted nonlocal divergence is given by: 

 𝒟𝜔(𝒖)(𝒙) = ∫ 𝜔(𝒙, 𝒚)(𝒖(𝒙′) − 𝒖(𝒙)) ∙ 𝜶(𝒙, 𝒙′)
ℝ𝑛

         ∀𝒙 ∈ ℝ𝑛 (2-27) 

and the second form is given by: 

 𝒟𝜔(𝒖)(𝒙) = ∫ 𝜔(𝒙, 𝒚)(𝒖(𝒙) + 𝒖(𝒙′)) ⋅ 𝜶(𝒙, 𝒙′)𝑑𝒙′
ℝ𝑛

         ∀𝒙 ∈ ℝ𝑛 (2-28) 

2.2.6 Nonlocal differential operators for peridynamic application 

Often, the governing equations in the classical continuum theory are expression of physical balance 

laws that are composed of partial differential operators. Although the peridynamic theory as a 

nonlocal model, replaces the spatial derivatives with integral operators, it can be shown to have 

retained the structure of the balance law in the classical theory. This is achieved by introducing 

nonlocal analogues of the differential operators used in the local theory. The nonlocal operators 

presented in section 2.2 will be used to derive application specific nonlocal differential operators 

and the generalised notion of nonlocal derivative for application in peridynamics. Let 

𝜔:ℝ𝑛 ×ℝ𝑛 ⟶ℝ be a non-negative weight function of compact support in ℬ𝛿(𝒙) ⊂ ℝ
𝑛 where 

ℬ𝛿(𝒙) is a ball of radius 𝛿 > 0 centered at 𝒙. Let a shape tensor [80]  𝐊:ℝ𝑛 × ℝ𝑛 ⟶ℝ𝑛×𝑛 be 

defined as  

 𝐊 = ∫ 𝜔(|𝝃𝒙𝒙′|)𝝃𝒙𝒙′⨂𝝃𝒙𝒙′𝑑𝑉𝒙′
ℬ𝛿(𝒙)

 (2-29) 
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Where 𝝃𝒙𝒙′ = 𝒙
′ − 𝒙 and 𝒙′ ∈ ℋ𝑥 = {𝒚 ∈ ℝ

𝑛 ∶ |𝒙′ − 𝒙| ≤ 𝛿 }. Let 𝜶(𝒙, 𝒙′) = 𝜷(𝒙, 𝒙′) =

𝝃𝒙𝒙′𝐊
−1, then the nonlocal unweighted and weighted divergence and gradient operators from 

(2-4), (2-6), (2-25)and (2-26) are respectively given as  

 𝒟(𝒗)(𝒙) ≔ [∫ ((𝒗(𝒙, 𝒙′) + 𝒗(𝒙′, 𝒙)) ∙ 𝝃𝒙𝒙′)𝑑𝒙
′

ℝ𝑛
] 𝐊−1      ∀ 𝒙 ∈ ℝ𝑛 (2-30) 

 

 𝒢(𝜂)(𝒙) ≔ [∫ (𝜂(𝒙, 𝒙′) + 𝜂(𝒙′, 𝒙))𝝃𝒙𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1       ∀ 𝒙 ∈ ℝ𝑛 (2-31) 

 

 𝒟𝜔(𝒖)(𝒙) = [∫ 𝜔(𝒙, 𝒙′)(𝒖(𝒙′) − 𝒖(𝒙)) ∙ 𝝃𝒙𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1         ∀𝒙 ∈ ℝ𝑛 (2-32) 

 

 𝒢𝜔(𝑣)(𝒙) = [∫ 𝜔(𝒙, 𝒙′)(𝑣(𝒙′) − 𝑣(𝒙))𝝃𝒙𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1         ∀𝒙 ∈ ℝ𝑛 (2-33) 

Where (2-32) and (2-33) appeared in [81] defined as the notions of nonlocal material divergence 

and gradient operators respectively. From (2-28), the second form of the weighted nonlocal 

divergence operator is: 

 𝒟𝜔(𝒖)(𝒙) = [∫ 𝜔(𝒙, 𝒙′)(𝒖(𝒙′) + 𝒖(𝒙)) ∙ 𝝃𝒙𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1         ∀𝒙 ∈ ℝ𝑛 (2-34) 

2.3 Peridynamic theory 

Before proceeding to develop the governing equation of the peridynamic theory, some important 

concepts in peridynamic theory would be presented. 

2.3.1 Important concepts 

Given a bounded open domain Ω ∈ ℝ𝑛, in Peridynamics, a continuum point 𝒙 ∈ Ω interacts with 

infinitely many other points located within its domain of influence. If this domain of influence is 

assumed to be a ball ℬ𝛿(𝒙) of radius 𝛿 > 0 centered at 𝒙, then 𝛿 is called the horizon of 𝒙, such 

that:  

 ℬ𝛿(𝒙) = {𝒙
′ ∈ ℛ: |𝒙′ − 𝒙| < 𝛿} (2-35) 
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Where ℬ𝛿(𝒙) is called the family of 𝒙. Interaction between two points 𝒙 and 𝒙′ is called a bond 

and the distance 𝝃 = 𝒙′ − 𝒙 in the undeformed reference configuration is called the bond length. 

The relative displacement vector 𝜼 in the deformed configuration is given by: 

 𝜼 = 𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡) (2-36) 

where 𝒖(𝒙′, 𝑡) and 𝒖(𝒙, 𝑡) are respectively, the displacement vectors of points 𝒙 and 𝒙′, and the 

magnitude 𝜂 = |𝜼| is designated as the bond elongation. A scalar-valued function 𝑠 designated as 

bond-stretch is defined as: 

 𝑠 =
|𝝃 + 𝜼| − |𝝃|

|𝝃|
 (2-37) 

which in more explicit form can be written as 

 𝑠 =
((𝝃 + 𝜼) ∙ (𝝃 + 𝜼))

1
2⁄ − (𝝃 ∙ 𝝃)

1
2⁄

(𝝃 ∙ 𝝃)
1
2⁄

 (2-38) 

A deformed bond direction vector 𝐌 is a vector-valued function that is defined through the relationship: 

 𝐌(𝝃, 𝑡) =
𝒚(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡)

|𝒚(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡)|
 (2-39) 

𝐌(𝝃, 𝑡) is a unit vector that point from the position of 𝒙 towards the position of 𝒙′ in the 

deformed configuration.  

2.3.2 Governing equation of motion in Peridynamics 

Computational simulation in the peridynamic framework is governed by a statement of nonlocal 

balance law which postulates the dependence of the rate of change in the content of an extensive 

quantity over a given domain on the rate at which the quantity is produced within the domain and 

a flux through the boundary of the domain. Consider a deformable body ℬ occupying the open 

domain Ω ⊆ ℝ𝑛. Let Ω̃ ⊆ Ω be an open subregion, then a quantitative statement of a balance law 

for Ω can be stated as 

 𝒜(Ω̃, 𝒒) = 𝒫(Ω̃) − ℱ(Ω̃, ℝ𝑛\Ω̃; 𝒒) (2-40) 

Where (2-40) postulate that 𝒜(Ω̃, 𝒒) (the time rate of change of the intensive quantity 𝒒) is equal 

to 𝒫(Ω̃) (the rate at which the quantity is produced within the subdomain by sources, minus 

ℱ(Ω̃, ℝ𝑛\Ω̃; 𝒒) (the rate at which the intensive quantity exit the subdomain). Let the quantity (𝒒) 
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to be balanced be the momentum density so that 𝒒 = 𝜌𝒖̇ where 𝒖̇ is the velocity of a point in Ω̃ 

and 𝜌 is the density of the material. Let 𝒃 denote the rate of production of 𝒒 in Ω̃, then: 

 𝒜(Ω̃, 𝒒) =
𝜕

𝜕𝑡
∫𝒒(𝒙, 𝑡)
Ω̃

𝑑𝒙 = 𝜌∫
𝜕2𝒖

𝜕𝑡2Ω̃

𝑑𝒙    and    𝒫(Ω̃) = ∫𝒃(𝒙, 𝑡)𝑑𝒙
Ω̃

 (2-41) 

To obtain an expression for the rate at which the flux of 𝒒 exits the subdomain Ω̃, let Ω̃𝐼 ⊂ Ω be 

the domain interacting with Ω̃ as defined in (2-13), then:  

 ℱ(Ω̃, Ω̃𝐼; 𝒒) = ∫ 𝒩𝜔(𝚿)(𝒙)
𝛺𝐼

𝑑𝒙 (2-42) 

Applying the nonlocal Gauss theorem (2-17), then (2-42) can be written as 

 ℱ(Ω̃, Ω̃𝐼; 𝒒) = ∫𝒟𝜔(𝚿)(𝒙)𝑑𝒙
𝛺

 (2-43) 

Thus (2-40) becomes: 

 𝜌∫
𝜕2𝒖

𝜕𝑡2Ω̃

𝑑𝒙 = −∫𝒟𝜔(𝚿)(𝒙)𝑑𝒙
𝛺

+∫𝒃(𝒙, 𝑡)𝑑𝒙
Ω̃

 (2-44) 

which owing to the arbitrariness of 𝛺̃, (2-44) localizes to the field equation: 

 𝜌
𝜕2𝒖

𝜕𝑡2
= −𝒟𝜔(𝚿)(𝒙) + 𝒃(𝒙, 𝑡) (2-45) 

From (2-34), (2-45) can be written as 

𝜌
𝜕2𝒖

𝜕𝑡2
= −[∫ 𝜔(𝒙, 𝒚)(𝚿(𝒙′) + 𝚿(𝒙) ∙ 𝝃𝒙𝒙′)𝑑𝒙

′

ℝ𝑛
] 𝐊−1 + 𝒃(𝒙, 𝑡) 

                          = ∫ 𝜔(𝒙, 𝒚)(𝚿(𝒙′)𝐊−1 ∙ 𝝃𝒙′𝒙 −𝚿(𝒙)𝐊
−1 ∙ 𝝃𝒙𝒙′)

𝛀𝐬∪𝛀𝑰

𝑑𝒙′ + 𝒃(𝒙, 𝑡) (2-46) 

Where (2-46) follows from the antisymmetric property of 𝝃. By writing  

 𝐭 = 𝜔(𝒙, 𝒚)𝚿𝐊−1𝝃 (2-47) 

and since 𝜶(𝒙, 𝒙′) = 0 whenever 𝒙′ ∉ ℬ𝛿(𝒙), then (2-46) can be written as 

 𝜌
𝜕2𝒖

𝜕𝑡2
 = ∫ (𝐭(𝒙′ − 𝒙) − 𝐭(𝒙 − 𝒙′))

ℬ𝛿(𝒙)

𝑑𝒙′ + 𝒃(𝒙, 𝑡) (2-48) 
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Equation (2-48) is the general statement of peridynamic equation of motion, where 𝐭(𝒙′ − 𝒙) and 

𝐭(𝒙 − 𝒙′) are the force density functions at 𝒙 and 𝒙′ respectively. Sometimes (2-48) is written in 

a more simplified way as: 

 𝜌𝒖̈(𝒙, 𝑡) = ∫ 𝐟(𝒙, 𝒙′, 𝑡)
ℬ𝛿(𝒙) 

𝑑𝒙′ + 𝒃(𝒙, 𝑡)         ∀𝒙 ∈ ℬ (2-49) 

Such that 

 𝐟(𝒙, 𝒙′, 𝑡) = 𝐭(𝒙′ − 𝒙) − 𝐭(𝒙 − 𝒙′) (2-50) 

is a vector valued pairwise force density function that represents the force density that the material 

located at 𝒙′ exerts on 𝒙. The determination of the pairwise force density 𝐟(𝒙, 𝒙′, 𝑡) will require a 

material constitutive model 𝐓̂ which is typically an expression showing the dependence of the force 

density at a point on relevant physical quantities at the point such as the deformation 𝒚, the rate 

of deformation 𝒚̇, temperature 𝑇 and damage 𝒟 amongst others. The general form is given by: 

 𝐭 = 𝐓̂(𝒚, 𝒚̇, 𝑇, 𝒟,… ) (2-51) 

The specific arguments that go into (2-51) depends on the material response anticipated such as 

elastic, thermoelastic, viscoelastic, and plastic response. On the other hand, the functional form of 

(2-51) depends on the assumption made about the mechanism of bond deformation. This gives 

rise to two broad categories of peridynamic models; bond-based [10] and state-based [80] models.  

2.3.3 Bond-based peridynamic model 

The bond-based peridynamic (BBPD) model assumes that each bond in a material has its own 

constitutive relationship, which is independent of other bonds, and is defined such that.: 

 𝐭 = 𝐓̂(𝒚, 𝝃) (2-52) 

2.3.3.1 Linear microelastic model 

The linear microelastic model is the simplest model in BBPD. This model approximates the behaviour 

of a material by modelling it as a network of an infinite number of springs which respond to change 

in the state of the material in a linear manner. The linear microelastic material model is developed 

by selecting the tensor quantity 𝚿 in (2-47) such that the pairwise force function in (2-50) takes 

the form [82, 83]: 

 𝐟 = f(𝑠)𝐌(𝝃, 𝑡),           (2-53) 

where f is a scalar-valued function called the scalar bond force [50] and is given by 
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 f(𝑠) = 𝑐(𝝃)𝑠(𝝃, 𝑡) (2-54) 

In (2-54), 𝑐(𝝃) is a function that is characteristic of the material and is called the bond elastic stiffness 

constant or bond constant for short. Notice that the pairwise force function 𝐟(𝒙, 𝒙′, 𝑡) in (2-53) is 

defined only by the reference and deformed positions of the interacting particles 𝒙 and 𝒙′ and is 

aligned with the deformed bond between them, with the force density 𝐭(𝒙′ − 𝒙) at 𝒙 being equal 

but opposite to the force density 𝐭(𝒙 − 𝒙′) at 𝒙′. For a microelastic (the PD equivalent of an 

elastic material in CCM), the pairwise force function 𝐟(𝒙, 𝒙′, 𝑡) between any two particles 𝒙 and 

𝒙′ is conservative, i.e., there exist a scalar-valued microelastic potential 𝑤 defined such that the 

scalar bond force 𝑓(𝑠) is expressed as:  

 𝑓(𝑠) =
𝜕𝑤

𝜕𝜂
(𝑠) =

1

𝜉

𝜕𝑤

𝜕𝑠
(𝑠)           ∀𝜉, 𝜂 (2-55) 

The micropotential (𝑤) is the energy in a single bond and represents a local strain energy density 

[82] which from (2-55), considering (2-54), is given as: 

 𝑤(𝝃, 𝑡) =
𝑐(𝝃)𝑠2𝜉

2
 (2-56) 

The total strain energy at a point 𝒙 is therefore the sum of the microelastic potential contribution 

from all bonds in ℋ𝒙 and is expressed as 

 𝑊(𝒙, 𝑡) =
1

2
∫ 𝑤(𝝃, 𝑡)𝑑𝝃
ℋ𝒙

 (2-57) 

Since the strain energy in both Peridynamic (PD) and Classical Continuum Mechanics (CCM) is 

the work done by external forces on the material, equation (2-57) in PD represents the same 

quantity as in CCM and offers a straightforward way of calibrating the function 𝑐(𝝃). By equating 

(2-57) with the strain energy expression from CCM, the expression for the bond constant for 

microelastic materials can be determined. 

2.3.3.1.1 Bond constant in one-dimension 

Let 𝛿 be the horizon that is characteristic of the material, then using (2-56) in (2-57) and assuming 

a one-dimensional problem: 

 𝑊 =
𝐴

4
∫ 𝑐(|𝜉|)𝑠2|𝜉|𝑑𝜉
𝛿

−𝛿

 (2-58) 

If we assume 𝑐(|𝜉|) to be independent of bond length i.e.,  
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 𝑐(𝝃) = 𝑐0 (2-59) 

then (2-58) becomes. 

 𝑊 =
𝐴

4
∫ 𝑐0𝑠

2|𝜉|𝑑𝜉
𝛿

−𝛿

=
𝐴𝑐0𝑠

2𝛿2

4
 (2-60) 

the strain energy density (𝑊) from classical continuum theory is: 

 𝑊 =
𝐸𝑠2

2
 (2-61) 

Equating (2-60) and (2-61) yields 

 𝑐0 =
2𝐸

𝐴𝛿2
 (2-62) 

In the case where 𝑐(|𝜉|) is dependent on the bond length and assumed to have a triangular profile, 

i.e.,  

 𝑐(𝝃) = 𝑐1 (1 −
𝜉

𝛿
) (2-63) 

Then (2-58) becomes: 

 𝑊 =
1

4
∫ 𝑐1 (1 −

|𝜉|

𝛿
) 𝑠2|𝜉|𝑑𝜉

𝛿

−𝛿

=
𝐴𝑐1𝑠

2𝛿2

12
 (2-64) 

 Equating (2-64) with (2-61) gives: 

 𝑐1 =
6𝐸

𝐴𝛿2
 (2-65) 

In the case where the dependency of 𝑐(|𝜉|) result in an inverted triangular profile [84], in which 

case, bonds closer to the principal point are softer than bonds further away from it, such that, 

 𝑐(𝝃) = 𝑐2 (
𝜉

𝛿
) (2-66) 

for bonds within the horizon. In this case, (2-58) becomes: 

 𝑊 =
𝐴

4
∫ 𝑐2 (

|𝜉|

𝛿
) 𝑠2|𝜉|𝑑𝜉

𝛿

−𝛿

=
𝐴𝑐2𝑠

2𝛿2

6
 (2-67) 

Also, equating (2-67) with (2-61) gives: 
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 𝑐2 =
3𝐸

𝐴𝛿2
 (2-68) 

2.3.3.1.2 Bond constant in two-dimension 

In the two-dimensional case, let 𝛿 be the radius of sphere ℋ describing the horizon. Then the 

two-dimensional equivalence of the bond constants (2-62), (2-65), and (2-68) are respectively given 

as 

 𝑐0 =
9𝐸

𝜋𝛿3ℎ
,     𝑐1 =

36𝐸

𝜋𝛿3ℎ
(1 −

𝜉

𝛿
),     𝑐2 =

8𝐸

𝜋𝛿4ℎ
𝜉 (2-69) 

where 𝛿 is the horizon, ℎ is the out of plane thickness, 𝐸 is the elastic modulus, and 𝐴 is the cross-

sectional area.  

2.3.3.2 Prototype microelastic brittle material 

If the microelastic material model described by (2-52)-(2-54) considering 𝑐(𝝃) = 𝑐0 is modified to 

include a time-dependent damage criteria 𝜇(𝝃, 𝑡) such that 

 𝐟(𝒙, 𝒙′, 𝑡) = 𝑓(𝑠) 𝐌〈𝝃〉𝜇(𝝃, 𝑡) (2-70) 

then the linear microelastic material is designated as the prototype microelastic brittle (PMB) material. 

The function 𝜇(𝝃, 𝑡) takes values between 0 and 1, with 1 representing the pristine undamaged 

state and 0 representing the completely damaged state. As the material undergoes loading, the 

function 𝜇(𝝃, 𝑡) changes from 1 to 0 according to a prescribed damage law, indicating the 

progression of damage or failure in the material. A simple damage law that has been used 

extensively in the PD research community is the one that prescribes a critical bond stretch 

threshold 𝑠0 beyond which a bond is deemed to have been broken. The functional form of 𝜇(𝝃, 𝑡) 

then takes the form: 

 𝜇(𝝃, 𝑡) = 1 − 𝐻(𝑡 − 𝑡𝑏𝑟𝑒𝑎𝑘) (2-71) 

where 𝐻 is the Heaviside step function and 𝑡𝑏𝑟𝑒𝑎𝑘 is the time at which 𝑠(𝜉, 𝑡) ≥ 𝑠0. The critical 

bond stretch 𝑠0 is a material property and can be calibrated to ensure that the energy released 

during fracture or damage matches the known critical energy release rate for the material [82, 83, 

85].  

2.3.3.3 Linearized Bond-Based Peridynamic Model 

With the definition of 𝑠 in (2-38), the pairwise force function 𝐟(𝜼, 𝝃) in (2-53) or (2-70) is a 

nonlinear function of 𝜼. To linearize 𝐟(𝜼, 𝝃) in 𝜼, the small perturbation hypothesis is invoked 
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which has as one of its implications that 𝜂 ≪ 1. A first order Taylor series expansion of 𝐟(𝜼, 𝝃) 

say in (2-53) around 𝜼 = 𝟎 yields: 

 𝐟(𝜼, 𝝃) = 𝐟(𝟎, 𝝃) + ∇𝜼𝐟(𝟎, 𝝃) ∙ 𝜼 (2-72) 

where ∇𝜼 denotes the gradient operator with respect to 𝜼. If the internal force in the bond in the 

undeformed configuration is assumed to be zero, then the first term in (2-72) vanishes, and (2-72) 

reduces to: 

 𝐟(𝜼, 𝝃) = ∇𝜼𝐟(𝟎, 𝝃) ∙ 𝜼 (2-73) 

Introducing (2-53) into (2-73) and noting the explicit expressions for 𝑠 and 𝐌 in (2-37) and (2-39) 

respectively yields 

𝐟(𝜼, 𝝃) = 𝛻𝜼 (𝑐(𝝃) (
|𝝃 + 𝜼| − |𝝃|

|𝝃|
) (

𝝃 + 𝜼

|𝝃 + 𝜼|
))|

𝜼=𝟎

𝜼 

= 𝑐(𝝃)𝛻𝜼 ((
1

|𝝃|
−

1

|𝝃 + 𝜼|
) (𝝃 + 𝜼))|

𝜼=𝟎

𝜼 

= 𝑐(𝝃)(𝛻𝜼 (
1

|𝝃|
−

1

|𝝃 + 𝜼|
) ⊗ (𝝃 + 𝜼) + ((

1

|𝝃|
−

1

|𝝃 + 𝜼|
)𝛻𝜼(𝝃 + 𝜼)))|

𝜼=𝟎

𝜼 

 

                

= 𝑐(𝝃)
(𝝃 ⊗ 𝝃)

|𝝃|𝟑
𝜼         ∀𝝃, 𝜼 (2-74) 

Equation (2-74) can be written as 

 𝐟(𝜼, 𝝃) = 𝑪(𝝃)𝜼          ∀𝝃, 𝜼 (2-75) 

where  

 
                
𝑪(𝝃)𝜼 =𝑐(𝝃)

(𝝃⊗ 𝝃)

|𝝃|𝟑
         ∀𝝃 (2-76) 

is a tensor valued function called the micromodulus. Notice that the pairwise function in (2-75) is 
now a linear function of the relative displacement. The micromodulus functions corresponding to 
the bond constants derived above for 1D and 2D are provided in Table 2-1. Substituting (2-75) 
into (2-49), yields: 

 𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫ 𝑪(𝒙′ − 𝒙)(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡))𝑑𝑉𝒙′
ℋ𝒙

+ 𝑏(𝒙, 𝑡) (2-77) 
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Equation (2-77) is the linearized bond-based peridynamic equation of motion. 

Table 2-1: Micromodulus functions with their corresponding bond force constants 

 Bond Constant 𝑐(𝝃) Micromodulus function 𝑪(𝝃) 

1D 

2𝐸

𝐴𝛿2
 

2𝐸

𝐴𝛿2|𝜉|
 

6𝐸

𝐴𝛿2
 

6𝐸

𝐴𝛿2|𝜉|
(1 −

|𝜉|

𝛿
) 

3𝐸

𝐴𝛿2
 

3𝐸

𝐴𝛿3
 

2D 

9𝐸

𝜋𝛿3ℎ
 

9𝐸

𝜋𝛿3ℎ|𝜉|3
[
𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] 

36𝐸

𝜋𝛿3ℎ
(1 −

𝜉

𝛿
) 

36𝐸

𝜋𝛿3ℎ|𝜉|3
(1 −

|𝜉|

𝛿
) [

𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] 

8𝐸

𝜋𝛿4ℎ
𝜉 

8𝐸

𝜋𝛿4ℎ|𝜉|2
[
𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] 

 

2.3.4 State-based peridynamic model 

The material model represented by the linear microelastic material (2-53), the prototype 

microelastic brittle material (2-70) or other material models within the bond-based framework 

assume that individual bond connected to a primary point x responds independently of all other 

bonds within the family of x. Additionally, the pairwise force generated in a bond due to 

deformation is collinear with the bond in the deformed configuration. As a result of these 

assumptions, it was shown that the elastic response of a bond-based material model always results 

in a Poisson's ratio of 1/3 for 2D and 1/4 for 3D isotropic solids. The constraint on the Poisson's 

ratio within bond-based models restricts the range of material behaviours that can be reproduced. 

To overcome this, and other limitations of bond-based models, a state-based peridynamic (SBPD) 

framework was proposed [80].  

The state-based model, in contrast to the bond-based approach, considers the deformation of all 

bonds within a family when determining the response of a given bond. This eliminates the 

restriction on the Poisson's ratio and extends the capability of the SBPD model to model materials 

with Poisson's ratio spanning the entire permissible range. This extended capability of the SBPD 

framework is made possible by the introduction of mathematical objects known as states, which 



31 
 

are non-local operators that map bonds to scalar or vector quantities. To define the domain ℋof 

the state, let 𝛿 > 0 be the horizon of a point 𝒙 in a body 𝕭. Then: 

 ℋ = {𝝃 ∈ (ℝ\𝟎)|(𝝃 + 𝒙) ∈ (ℬ𝛿(𝒙) ∩ 𝕭)} (2-78) 

is the family of bonds for the point 𝒙. Equation (2-78) allows for a more precise definition of a 

state. Let ℒ𝑚 be the set of all tensors of order 𝑚, then a state of order 𝑚 associated with the point 

𝒙 is a function 𝐀〈∙〉 ∶ ℋ ⟶ ℒ𝑚. Angle brackets are used to indicate the bond acted upon by the 

state. A state that maps vectors in ℋ to a scalar is called a scalar state. Similarly, a state that maps 

vectors in ℋ to vectors is called a vector state. The set of all states of order 𝑚 is denoted by 𝐴𝑚, 

thus if the set of all scalar states is denoted 𝒮, then 𝒮 = 𝐴1 and similarly if the set of all vector 

states is denoted 𝒱, then 𝒱 = 𝐴2. Let 𝜔〈𝝃〉 be an influence function obtained when the scalar 

state 𝜔 ∈ 𝒮 acts on 𝝃, then the tensor product of two vector states 𝐀 ∈ 𝒱 and 𝐁 ∈ 𝒱 is defined 

as 

 𝐀 ∗ 𝐁 = ∫ 𝜔〈𝝃〉
ℋ

𝐀〈𝝃〉⨂𝐁〈𝝃〉𝑑𝑉𝜉 (2-79) 

Perhaps the most important state in the peridynamic formulation is the vector state and there are 

three important vector states that are worth mentioning here: the reference position vector state, 

deformation state 𝐘 and the force vector state 𝐓. 

The reference position vector state 𝐗 is a function whose value is the bond it acts on. It is defined 

as 

 𝐗[𝒙]〈𝒙′ − 𝒙 〉 = 𝒙′ − 𝒙 = 𝝃,          𝜉 = |𝝃| (2-80) 

The reference position vector state can be thought of as an identity vector state since it simply 

output the value of its argument. The deformation state 𝐘 is a function operating on each bond 

length 𝝃 = 𝒙′ − 𝒙 in the family of point 𝒙, whose value is the image of the bond in the deformed 

configuration: 

 𝐘[𝒙, 𝑡]〈𝒙′ − 𝒙 〉 = 𝒚′(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡) (2-81) 

where 𝒚′(𝒙′, 𝑡) and 𝒚(𝒙, 𝑡) are respectively the coordinates of the points 𝒙′ and 𝒙 in the deformed 

configuration at time 𝑡. The force state 𝐓 is a function that associate each bond in the family of 

point 𝒙 with some force density vector such that:  



32 
 

 𝐓[𝒙, 𝑡]〈𝒙′ − 𝒙〉 = 𝐭(𝒙′, 𝒙, 𝑡) (2-82) 

A very import tensor (already introduced in section 2.2.6) in the formulation of nonlocal 

differential operators is the shape tensor 𝐊. This tensor can also be defined using the notion of 

states. Following from (2-79), the shape tensor 𝐊 is defined as  

 𝐊 = 𝐗 ∗ 𝐗 (2-83) 

Where 𝐗 is as defined in (2-80). Although vector state and second order tensors both map vectors 

to vectors, they are essentially different. For example, a state is in general nonlinear in its argument 

and is infinite dimensional. In contrast, a second order tensor is linear function of its argument 

and has dimension 9. It was however demonstrated in [80] that given a second order tensor 𝚽, it 

is possible to obtain a vector state through an expansion operation defined as 

 ℇ(𝚽)〈𝝃〉 = 𝚽𝛏            ∀𝛏 (2-84) 

Where ℇ(𝚽)〈𝝃〉 is the vector state expanded from 𝚽. Conversely, given a vector state 𝐀 ∈ 𝒱, a 

second order tensor can be obtained by a reduction operation defined as 

 ℛ(𝐀) = (𝐀 ∗ 𝐗)𝐊−1 (2-85) 

To incorporate the notion of state into the peridynamic equation of motion, the force density 

function in (2-47) is expressed as a function of the force state 𝐓. Recalling the definition of the 

force state in (2-82), (2-47) can be written as: 

 𝐓[𝒙, 𝑡]〈𝒙′ − 𝒙〉 = 𝜔(𝒙, 𝒚)𝚿𝐊−1𝝃 (2-86) 

Compared to (2-84), the right-hand side of (2-86) can be understood to be a vector obtained when 

a vector state ℇ(𝜔〈𝝃〉𝚿𝐊−1) is expanded from a second order tensor 𝜔〈𝝃〉𝚿𝐊−1 acting upon the 

bond 𝝃𝒙𝒙′ or 𝝃𝒙′𝒙 as the case maybe, so that   

 𝐓[𝒙, 𝑡] = 𝜔〈𝝃〉ℇ(𝚿𝐊−1) (2-87) 

then  (2-48) can be written as 

 𝜌
𝜕2𝒖

𝜕𝑡2
 = ∫ (𝐓[𝒙, 𝑡]〈𝒙′ − 𝒙〉 − 𝐓[𝒙′, 𝑡]〈𝒙 − 𝒙′〉)

ℬ𝛿(𝒙)

𝑑𝒙′ + 𝒃(𝒙, 𝑡) (2-88) 

Equation (2-48) is the state-based peridynamic equation of motion. 𝐓[𝒙, 𝑡] and 𝐓[𝒙′, 𝑡] are the 

force states at 𝒙 and 𝒙′ respectively. When these states act upon the bonds 𝝃𝒙𝒙′ and 𝝃𝒙′𝒙 

respectively, the results are bond force density vectors acting at points 𝒙 and 𝒙′ respectively. To 
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complete the development of the SBPD framework, a constitutive material model 𝐓̂ is required 

that will relate the force vector state 𝐓 with the appropriate physical quantities such as the 

deformation vector state 𝐘, the rate of deformation 𝐘̇, temperature 𝑇, damage 𝒟, e.t.c. The general 

form is given by: 

 𝐓[𝐱, 𝑡] = 𝐓̂[𝐘, 𝐘̇, 𝑇, 𝒟,… ] (2-89) 

Two class of material model arises from (2-89). When 𝐓̂ is such that 𝐓 and 𝐘 are colinear, then 𝐓̂ 

is said to be an ordinary state-based peridynamic (OSBPD) material model, otherwise 𝐓̂ is said to 

be non-ordinary state-based peridynamic (NOSBPD) material model [80]. In this thesis, only the 

NOSBPD framework based on the constitutive correspondence model will receive further consideration. 

The motivation for this choice stem from the fact that the correspondence constitutive model 

provides a framework for modelling more general materials and can admit constitutive models 

from classical continuum mechanics. This enables taking advantage of decades of development 

and calibration as well as state-of-the-art in the well-established classical theory. Consequently, it 

allows for the use of familiar quantities such as strain and stress within the peridynamic framework. 

2.3.4.1 Nonlocal kinematic quantities 

In this section, the nonlocal differential operators in section 2.2.6 will be used to derive the 

expression of relevant kinematic objects that are nonlocal analogue of their counterparts in the 

local theory. These quantities are important in the development of the SBPD. 

2.3.4.1.1 Gradient of the displacement and deformation vector fields 

An important quantity in the formulation of continuum mechanics is the gradient of the 

displacement vector. Let 𝒖(𝒙, 𝑡) be the displacement of a point 𝒙 at time 𝑡. Then from (2-33), the 

gradient of the displacement field at 𝒙 as a function of the undeformed bond is given as: 

 𝒢𝜔𝒙(𝒖(𝒙)) = [∫ 𝜔〈𝝃〉(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡))⨂𝝃𝒙,𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1 (2-90) 

Another key kinematic quantity that plays an important role in the development of the state-based 

peridynamic theory is the concept of the deformation tensor. In the nonlocal peridynamic setting, 

the deformation tensor, denoted 𝐅 is the finite dimensional equivalent of the deformation state. 

Let ℒ+ be the set of all second order tensors with positive determinants. Let Ω0 and Ω𝑡 be the 

reference and deformed configuration of a body 𝔅 undergoing deformation. Let 𝒙 be the position 

of a material point in Ω0 and 𝒚 be its position in Ω𝑡. Let 𝐅 ∈ ℒ+ exist such that the deformed 

image of the bond 𝝃𝒙𝒙′ is given by: 
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 𝐘[𝒙, 𝑡]〈𝝃𝒙,𝒙′  〉 = 𝐅𝝃𝒙,𝒙′ = 𝐅(𝒙
′ − 𝒙) = 𝒚(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡) (2-91) 

Using (2-33), the nonlocal material gradient of the deformation as a function of the undeformed 

bond is evaluated as 

 𝒢𝜔𝒙(𝒚) = 𝐅(𝒙) = [∫ 𝜔〈𝝃〉(𝒚(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡))⨂𝝃𝒙,𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1        (2-92) 

Equation (2-92) is the definition of the nonlocal deformation gradient given in [80]. We can further 

write (2-92) as 

𝐅 = [∫ 𝜔〈𝝃〉(𝒖(𝒙′, 𝑡) + 𝒙′ − 𝒖(𝒙, 𝑡) − 𝒙)⨂𝝃𝒙,𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1        

       = [∫ 𝜔〈𝝃〉(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡))⨂𝝃𝒙,𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1

+ [∫ 𝜔(|𝝃|)(𝒙′ − 𝒙)⨂𝝃𝒙,𝒙′𝑑𝒙
′

ℝ𝑛
] 𝐊−1       

 𝐅 = 𝒢𝜔𝒙(𝒖(𝒙)) + 𝐈        (2-93) 

Where the second equality follows from the linearity of the integral operator. Notice that the 

nonlocal deformation gradient is devoid of any notion of the local derivative operator which would 

have required that the deformation field be continuously differentiable (at least in a weak sense for 

the case of Finite Element Method). In its present form, the deformation gradient is still defined 

in the presence of singularities such as cracks. 

2.3.4.1.2 Nonlocal strain tensor 

We can define the notion of strain by comparing the length of a bond before and after 

deformation. Let 𝝃 = 𝒙′ − 𝒙 and  𝝀 = 𝒚(𝒙′) − 𝒚(𝒙), then from (2-80) and (2-91), we have: 

 𝜆2 − 𝜉2 = 𝝀 ∙ 𝝀 − 𝝃 ∙ 𝝃 = 𝝃𝑇𝐅𝑇𝐅𝝃 − 𝝃𝑇𝝃 = 𝝃𝑇(𝐅𝑇𝐅 − 𝐈)𝝃 (2-94) 

If we define a deformation or strain matrix 𝐄 as: 

 𝐄 =
1

2
(𝐅𝑇𝐅 − 𝐈) (2-95) 

Then (2-94) can be written as 

 𝜆2 − 𝜉2 = 2𝝃𝑇𝐄𝝃 (2-96) 
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where 𝐄 is the nonlocal analogue of the Green-Lagrange strain tensor and 𝐅 is the nonlocal 

deformation gradient defined in (2-92). Considering (2-93), (2-95) can be written as 

 𝐄 =
1

2
((𝒢𝜔𝒙(𝒖(𝒙))) + (𝒢𝜔𝒙(𝒖(𝒙)))

𝑇

+ (𝒢𝜔𝒙(𝒖(𝒙)))
𝑇

(𝒢𝜔𝒙(𝒖(𝒙)))) (2-97) 

Following from the assumption of infinitesimal deformation where the displacement gradient is 

small, that is |𝒢𝜔𝒙(𝒖(𝒙))| ≪ 1, we may neglect the nonlinear term in the definition of the Green-

Lagrange strain tensor 𝐄 so that (2-97) reduces to 

 𝐄 ≈ 𝛆 = 𝒢𝜔
𝑠
𝒙
(𝒖(𝒙)) =

1

2
((𝒢𝜔𝒙(𝒖(𝒙))) + (𝒢𝜔𝒙(𝒖(𝒙)))

𝑇

) =
1

2
(𝐅 + 𝐅𝑇) − 𝐈 (2-98) 

where 𝜺 is the infinitesimal strain tensor and 𝒢𝑠 denotes a symmetric tensor operator 

2.3.4.2 constitutive model  

Let 𝑊(𝐘) ∶ 𝒱 ⟶ ℝ be the peridynamic strain energy density, then generally, for an elastic 

material, the force density state can be expressed [80] as  

 𝐓 = ∇𝑊(𝐘) (2-99) 

Where ∇𝑊(𝐘) is the Fréchet derivative of 𝑊(𝐘) with respect to 𝐘. In the correspondence model, 

𝑊(𝐘) is assumed to be equal to the strain energy density Ω(𝐅) ∶ ℒ2 ⟶ℝ from the classical theory 

where the deformation gradient 𝐅 from the local theory is approximated by its nonlocal 

counterpart given by (2-92). So that (2-99) becomes: 

 𝐓 = ∇Ω(𝐅) (2-100) 

Evaluating the Fréchet derivative in (2-100) is shown [80] to result in the expression 

 𝐓〈𝝃𝒙,𝒙′〉 = 𝜔〈𝝃〉𝐏𝐊
−1𝝃𝒙,𝒙′ (2-101) 

where 𝐏 is the first Piola stress tensor. Comparing (2-101) to (2-84), it can be deduced that: 

 𝚿 = 𝐏 (2-102) 

and  

 𝐓 = 𝜔〈𝝃〉ℇ(𝐏𝐊−1) (2-103) 

Thus, in compact notation, the state-based peridynamic balance of linear momentum can be 

written as 
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 𝜌𝒖̈ = −𝒟𝜔(𝐏)(𝒙) + 𝒃(𝒙, 𝑡) (2-104) 

To complete the definition of the nonlocal problem, appropriate constraints need to be applied to 

certain regions of the problem domain. To this end, let the interaction domain Ω𝐼 = Ω𝑐 be the 

constrained volume. Let Ω𝑐 split into two disjoint subdomains Ω𝑐𝑑 and Ω𝑐𝑛 such that Ω𝑐𝑑 ∩

Ω𝑐𝑛 = ∅ and either of Ω𝑐𝑑 and Ω𝑐𝑛 could be an empty set. Ω𝑐𝑑 is the subdomain where Dirichlet 

boundary condition is applied and Ω𝑐𝑛 is the subdomain where Neumann boundary condition is 

applied. Analogous to the boundary value problem of the classical local theory, constraint on the 

solution 𝒖 of (2-45) over Ω is applied as follows: a given function value 𝒈𝑑 is prescribed on the 

solution over Ω𝑐𝑑 such that: 

 𝒖(𝒙) = 𝒈𝑑              ∀𝒙 ∈ Ω𝑐𝑑 (2-105) 

To prescribe the Neumann type constraint, recall that in the classical boundary value problem, this 

involves prescribing a traction or flux density 𝝈 ∙ 𝒏 over the traction boundary. From (2-18) and 

the discussion that follows, the nonlocal flux density over Ω𝐼𝑛 is given by ∫ 𝒩𝜔(𝐏)(𝒙)𝛺𝐼
𝑑𝒙. Let 

𝒈𝑛 be a given function value of the flux density over Ω𝑐𝑛. The Neumann constraint can be stated 

as 

 ∫ 𝒩𝜔(𝐏)(𝒙)
𝛺𝑐𝑛

𝑑𝒙 = 𝒈𝒏             ∀𝒙 ∈ Ω𝑐𝑛 (2-106) 

The presence of the second order time derivative of the solution 𝒖 in (2-104) means in addition 

to the boundary constraints (2-105), (2-106), initial conditions also need to be specified. The initial 

condition involves prescribing the initial values of the solution and its first derivative. Let 𝒖𝐼 and 

𝒖̇𝐼 be the initial values of 𝒖(𝒙) and 𝒖̇(𝒙) respectively, then 

 𝒖(𝒙, 0) = 𝒖𝐼      ∀𝒙 ∈ Ω, for 𝑡 = 0 (2-107) 

and  

 𝒖̇(𝒙, 0) = 𝒖̇𝐼      ∀𝒙 ∈ Ω, for 𝑡 = 0 (2-108) 

are the initial conditions. So that (2-104)-(2-108) gives the complete definition of the nonlocal 

problem: 
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𝜌𝒖̈ = −𝒟𝜔(𝐏)(𝒙) + 𝒃(𝒙, 𝑡) ∀𝒙 ∈ Ω𝑠

𝒖(𝒙) = 𝒈𝑑 ∀𝒙 ∈ Ω𝑐𝑑

∫ 𝒩𝜔(𝐏)(𝒙)
𝛺𝑐𝑛

𝑑𝒙 = 𝒈𝒏 ∀𝒙 ∈ Ω𝑐𝑑

𝒖(𝒙, 0) = 𝒖𝐼 ∀𝒙 ∈ Ω, for 𝑡 = 0

𝒖̇(𝒙, 0) = 𝒖̇𝐼 ∀𝒙 ∈ Ω, for 𝑡 = 0

 (2-109) 

Notice that the constraints (2-105) and (2-106) are prescribed over domains Ω𝑐𝑑 and Ω𝑐𝑛 that have 

positive volume in ℝ𝑛. This contrasts with the classical local theory where constraints are applied 

on domains that have zero volume. For this reason, (2-109) is referred to as initial volume constraint 

problem. 

2.4 Discretization of the Peridynamic model 

As can be seen from (2-48), the governing equation of motion in Peridynamics give rise to a 

continuum model. In order to be amenable to computer implementation, different numerical 

approximation schemes have been proposed such as the meshfree method [82, 86], the collocation 

methods [87, 88] and methods based on finite elements mesh [89, 90]. Due to its simple 

implementation algorithm and relatively low computational cost, the meshfree method suggested 

in [82] is the most widely used [91] and is the preferred method in this work for these same reasons. 

In this approximation method, the discrete form of (2-48) is: 

 𝜌𝑖𝒖̈𝒊 =∑[𝐓[𝒙, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 − 𝐓[𝒙
′, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉]

𝑁

𝑗=1

𝑉𝑗 + 𝒃𝒊     (2-110) 

where 𝜌𝑖 ≔ 𝜌(𝒙𝑖), 𝒖̈𝒊 =
𝜕𝒖𝑖

𝜕𝑡
 with 𝒖𝑖 ≔ 𝒖̈(𝒙𝑖) and 𝑁 is the number of nodes in the 

neighbourhood of node 𝑖. The discretised form of equation (2-77) is 

 𝜌𝒖̈𝑖
𝑛 =∑𝑪(𝑥𝑗 − 𝑥𝑖)(𝑢𝑗 − 𝑢𝑖)𝑉𝑗

𝑁𝑖

𝑗

+ 𝒃𝑖
𝑛 (2-111) 

The assembled PD equations of equilibrium for the body in matrix notation takes the form: 

 [𝑀]{𝒖̈} + [𝑪]{𝒖} = {𝒃} (2-112) 
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Where {𝑢} is a vector of all displacement DoFs, {𝑏} is a vector that collect all applied body forces. 

[𝑀] is a diagonal matrix of mass density, [𝐶] is the micromodulus matrix which is analogous to 

the stiffness matrix in the FE method.  
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Chapter 3 

3.0 Coarsening Method for Linear Peridynamic Theory 

The goal of the coarsening method is to provide a multiscale framework based on peridynamic 

theory that will predict macroscale response of medium based on the underlying evolving 

microstructure, without necessarily resolving all microstructural details. This is achieved by a 

process of successive elimination of points from the medium called coarsening. Each successive 

coarsening results in a medium with reduced material points as well as reduced level of geometrical 

details. However, the property of the coarsened medium is determined such that the effect of the 

excluded material points is implicitly included in the coarsened level simulation. The coarsening 

formulation presented here is adapted from [14] for the completeness of presentation. 

3.1 Peridynamic coarsening formulation. 

To coarsen a detailed model, let ℬ0 be a linear elastic peridynamic body as shown in Figure 3-1. 

Let 𝒜0 be the set of linear admissible displacement field on ℬ0, and let 𝑪𝟎: ℬ0 × ℬ0 → ℓ be the 

micromodulus tensor associated with the material of the body where ℒ is the set of all second 

order tensors. Assume 𝑟0 is a positive number that represents the maximum interaction distance 

for all points in ℬ0, such that if: 

 |𝒒 − 𝒙| > 𝑟0         ⟹     𝐶0(𝒙, 𝒒) = 0      ∀𝒙, 𝒒 ∈ ℬ0 (3-1) 

 

Figure 3-1. A Peridynamic body showing model levels 0, 1 and 2. 

Let ℬ1 ⊂ ℬ0, and let 𝒜1 represent the set of admissible displacement field on ℬ1. ℬ0 and ℬ1 are 

called level 0 and level 1 body, respectively. The objective of this coarsening process is to express 

the internal forces acting on ℬ1 in terms of its own displacements only while implicitly accounting 

for forces that points in ℬ0 − ℬ1 exerts on ℬ1. To achieve this objective, let 𝐱 be an arbitrary 
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point in ℬ1 and let 𝛿1 be a positive number. Let ℋ𝐱
1 be the closed neighbourhood of 𝐱 in ℬ0 with 

radius 𝑟1  

ℋ𝐱
1 = {𝐪 ∈ ℬ0||𝐪 − 𝐱| ≤𝑟1} 

Let ℛ𝐱
1 = ℋ𝐱

1 ∩ ℬ1. Suppose 𝒖1 ∈ 𝒜1 is given and let 𝒖0 ∈ 𝒜0 satisfy the compatibility 

condition: 

 𝒖0(𝐩) = 𝒖1(𝐩)            ∀𝐩 ∈ ℛ𝐱
1 (3-2) 

Outside of ℛ𝒙
1 , assume that 𝒖0 satisfies the equilibrium condition, neglecting interactions between 

ℋ𝒙
1 and its exterior: 

 𝓛0(𝐳) + 𝑏(𝐳) = 0              ∀𝐳 ∈ ℋ𝐱
1 − ℛ𝐱

1 (3-3) 

where: 

 𝓛0(𝐳) = ∫ 𝑪0(𝐳, 𝐩)(𝒖0(𝐩) − 𝒖0(𝐳))𝑑𝑉p
ℋ𝐱
1

      ∀𝐳 ∈ ℋ𝐱
1 (3-4) 

Also, assume that there is no body force density applied outside ℛ𝐱
1 

 𝑏(𝐳) = 0              ∀𝐳 ∈ ℋ𝐱
1 − ℛ𝐱

1 (3-5) 

Further assume that for a given displacement field 𝒖1 (3-2) and (3-3) have a unique solution 𝒖0 

on ℋ𝐱
1, and let 𝑺𝑥

0,1
 be the resolvent kernel that generates this solution: 

 𝒖0(𝐩) = ∫ 𝑺𝑥
0,1(𝐩, 𝐪)(𝒖1(𝒒))𝑑𝑉q

ℛ𝐱
1

      ∀𝐩 ∈ ℋ𝐱
1 (3-6) 

From (3-2) and (3-6), we can infer that: 

 𝑺𝑥
0,1(𝐩, 𝐪) = 𝕀∆(𝐩 − 𝐪)      ∀𝐩 ∈ ℛ𝐱

1, ∀𝐪 ∈ ℋ𝐱
1 (3-7) 

where 𝕀 is the isotropic tensor and ∆ is the three-dimensional Dirac delta function. For the special 

case where 𝒖0 represents a linear rigid translation of points in ℛ𝐱
1 through an arbitrary 

displacement 𝒖̅ , then all points in ℋ𝐱
1 − ℛ𝐱

1 will also translate by 𝒖̅. Therefore, from (3-6), we see 

that: 

𝒖̅ = [∫ 𝑺𝑥
0,1(𝐩, 𝐪)𝑑𝑉q

ℛ𝐱
1

] 𝒖̅      ∀𝐩 ∈ ℋ𝐱
1 

from which we can obtain the following identity 
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 ∫ 𝑺𝑥
0,1(𝐩, 𝐪)𝑑𝑉q

ℛ𝐱
1

= 1           ∀𝐩 ∈ ℋ𝐱
1 (3-8) 

 

Subtracting 𝒖0(𝐳) from both sides of (3-6) and using the identity given in (3-8), yields:  

 𝒖0(𝐩) − 𝒖0(𝐳) = ∫ 𝑺𝑥
0,1(𝐩, 𝐪)(𝒖1(𝒒) − 𝒖1(𝒛))𝑑𝑉q

ℛ𝐱
1

      ∀𝐩, 𝐳 ∈ ℋ𝐱
1 (3-9) 

Substituting this result in (3-4) yields 

 𝓛0(𝐳) = ∫ 𝐂0(𝐳, 𝐩) [∫ 𝑺𝑥
0,1(𝐩, 𝐪)(𝒖1(𝒒) − 𝒖1(𝒛))𝑑𝑉q

ℛ𝐱
1

] 𝑑𝑉p
ℋ𝐱
1

      ∀𝐳 ∈ ℋ𝐱
1 (3-10) 

Reversing the order of integration and rearranging gives 

 𝓛0(𝐳) = ∫ [∫ 𝐂0(𝐳, 𝐩)𝑺𝑥
0,1(𝐩, 𝐪)𝑑𝑉p

ℋ𝐱
1

] (𝒖1(𝒒) − 𝒖1(𝒛))𝑑𝑉q
ℛ𝐱
1

      ∀𝐳 ∈ ℋ𝐱
1 (3-11) 

Recalling that 𝐱 is an arbitrary point in ℬ1, if we denote the force density in any such choice of 𝐱 

by 

 𝓛0(𝐱) = 𝓛1(𝐱)      ∀𝐱 ∈ ℬ1 (3-12) 

Then, from (3-9) and (3-10) we can obtain: 

 𝓛1(𝐱) = ∫ 𝐂1(𝐱, 𝐪) (𝒖𝟏(𝐪) − 𝒖1(𝐱)) 𝑑𝑉q
ℛ𝐱
1

      ∀𝐱 ∈ ℬ1 (3-13) 

where the coarsened micromodulus in level 1 𝐂1: ℬ1 × ℬ1 is defined by 

 𝐂1(𝐳, 𝐪) = ∫ 𝐂0(𝐱, 𝐩)𝑺𝑥
0,1(𝐩, 𝐪)𝑑𝑉p

ℋ𝐱
1

      ∀𝐱, 𝐪 ∈ ℬ1 (3-14) 

Similarly, for any level 𝑚 in the coarsening process, the force density can be obtained from 

 𝓛𝑚(𝐱) = ∫ 𝐂𝑚(𝐱, 𝐪)(𝒖𝒎(𝐪) − 𝒖𝑚(𝐱))𝑑𝑉q
ℛ𝐱
𝑚

      ∀𝐱 ∈ ℬ𝑚 (3-15) 

where the coarsened micromodulus in level m, 𝑪𝑚: ℬ𝑚 × ℬ𝑚 is defined by 

 𝐂𝑚(𝐳, 𝐪) = ∫ 𝐂𝑚−1(𝐱, 𝐩)𝑺𝑥
𝑚−1,𝑚(𝐩, 𝐪)𝑑𝑉p

ℋ𝐱
𝑚

      ∀𝐱, 𝐪 ∈ ℬ𝑚 (3-16) 



42 
 

3.2 Discretization of the coarsening method 

To carry out the numerical implementation of the coarsening method described in the preceding 

section, ℬ0 is discretised into nodes, which for simplicity are taken to have equal volume 𝑣. Let 𝐱𝒊 

be the position of node 𝑖 in level 𝑚𝑖. For any nodes 𝑖 and 𝑗, let 

 𝐂𝒊,𝒋
𝟎 = 𝑣𝐂𝟎(𝐱𝒊, 𝐱𝒋) (3-17) 

The coarsened micromodulus 𝐂𝒊,𝒋
𝟏  is obtained by discretizing (3-14) as  

 𝐂𝒊,𝒋
𝟏 = 𝑣∑𝐂𝒊,𝒌

𝟎 𝐒𝒌,𝒋
𝟎,𝟏

𝑁

𝑘=1

 (3-18) 

To evaluate (3-18), the resolvent kernel 𝐒𝒌,𝒋
𝟎,𝟏

 need to be determined. A convenient means of 

obtaining the kernel function was proposed in [34]. Successive coarsening to higher levels can be 

achieved by following the same procedure as above, so that for any 𝑚 ≥ 1, 

 𝐂𝒊,𝒋
𝒎 = 𝑣∑𝐂𝒊,𝒌

𝒎−𝟏𝐒𝒌,𝒋
𝒎−𝟏,𝒎

𝑁𝑚

𝑘=1

 (3-19) 

To compute the coarsened micromodulus at level 𝑚 for node 𝑖, the resolvent kernel 𝐒𝒌,𝒋
𝒎−𝟏,𝒎

 must 

be determined. A method was suggested in [34] for determining the resolvent kernel. This method 

proceeds by creating and merging two sub-systems of equations into a global system of equations. 

To create such a system, two vectors {𝑢0} representing displacement field in level 0 body and {𝑢1} 

representing displacement field in level 1 body are defined. The relationship between these two 

displacements fields is formulated as follows: 

The displacement fields 𝐮𝒊
𝟎 and 𝐮𝒊

𝟏 for nodes in level 1 body are constrained to satisfy Eq. (3-2): 

 𝐮𝑖
0 = 𝐮𝑖

1                 ∀ 𝑖 ∈ ℬ1 (3-20) 

The second system of equations are obtained by ensuring that the nodes complementary to nodes 

in level 1 body (ℋ𝑥
1 − ℛ𝑥

1) satisfy (3-3), (3-4) and (3-5). Concatenation of these two systems of 

equations results in a global system of equations that has the following form in one dimension: 
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[
 
 
 
 
 
 
 
 
 
𝟏 0 0 0 …

⋮

… 0 𝟏 0 0…

⋮

… 𝐂𝒊,𝒊−𝟏
𝟎 −𝐏𝒊 𝐂𝒊,𝒊+𝟏

𝟎 …

⋮

… 𝐂𝑵,𝑵−𝟏
𝟎 −𝐏𝑵]

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝐮𝟏
𝟎

⋮

𝐮𝑹
𝟎

⋮

𝐮𝒊
𝟎

⋮

𝐮𝑵
𝟎}
 
 
 
 

 
 
 
 

=

{
 
 
 
 

 
 
 
 
𝐮𝟏
𝟏

⋮

𝐮𝑹
𝟏

⋮

𝟎

⋮

𝟎 }
 
 
 
 

 
 
 
 

 (3-21) 

where 𝑅 is the number of nodes in ℛ𝑥
1 ,  𝑁 is the number of nodes in ℋ𝑥

1 and the diagonal elements 

𝐏𝑖 are given by: 

𝐏𝑖 =∑𝐂𝒊,𝒋
𝟎

𝑗≠𝑖

 

In shorthand notation, Eq. (3-21) can be written as: 

 [𝐴]{𝑢0} = {𝑏}  (3-22) 

where [𝐴] is 𝑁 × 𝑁 square matrix in one-dimension and 2𝑁 × 2𝑁 in two-dimension. Let [𝐴] −1 

be the inverse of [𝐴], [𝑆0,1] in one-dimension will be the leftmost 𝑅 columns of [𝐴] −1. In two-

dimension, [𝑆0,1] is the leftmost 2𝑅 columns of [𝐴] −1. 

3.3 Coarsening the Micromodulus Function 

In this section, the coarsened form of various micromodulus functions will be presented. One-

dimensional cases will be followed by a two-dimensional case. 

3.3.1 Coarsening of one-dimensional micromodulus functions 

The one-dimensional problem is a homogeneous bar with a length of 1 m. The elastic modulus of 

the material is assumed to be 200 GPa. Three scenarios will be investigated by considering the 

following micromodulus functions: 

 𝐂(𝜉) =  

{
 

 
2E

𝐴𝛿2|𝜉|
,                                if   |𝜉| ≤ 𝛿

0,                                          if   |𝜉| > 𝛿

 (3-23) 
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 𝐂(𝜉) =  

{
 
 

 
 6E

𝐴𝛿2|𝜉|
(1 −

|𝜉|

𝛿
) , if   |𝜉| ≤ 𝛿

0,                              if   |𝜉| > 𝛿

 (3-24) 

 

 𝐂(𝜉) =  {

3E

𝐴𝛿3
,                       if   |𝜉| ≤ 𝛿

0,                             if   |𝜉| > 𝛿

  (3-25) 

The level 0 horizon is specified as 𝛿0 = 25 mm. The bar is discretized into 400 nodes with spacing 

∆x=2.5 mm. Coarsening of the detailed model to level 1 body is carried out by retaining every 

fourth node of level 0 body. Similarly, coarsening of level 1 body to level 2 body proceeds by 

retaining every second node in level 1 body. Figure 3-2 shows a schematic representation of the 

coarsening process. The micromodulus of the detailed model (level 0) 𝐂0 as well as the coarsened 

micromodulus 𝐂1 and 𝐂2 for the three scenarios are shown in Figure 3-3, Figure 3-4, and Figure 

3-5 These curves are characterized by sharp peaks consistent with the fact that the coarsened 

micromodulus functions are defined only at their respective coarsened regions.   

 

Figure 3-2. Schematic representation of the one-dimensional coarsening process 

  

Figure 3-3. Micromodulus function associated with a uniform bond constant. 

( ) 2

2E
C

A


 
=
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Figure 3-4. Micromodulus function associated with a bond constant function having triangular 
profile. 

  

Figure 3-5. Micromodulus function associated with a bond constant function having inverted 
triangular profile. 

3.3.2 Coarsening of two-dimensional micromodulus function 

The two-dimensional problem is a 500 mm×500 mm square plate with a thickness of 50 mm. Let 

the elastic modulus of the plate be 200 GPa and its micromodulus function be given by 

 𝐂(𝜉) =  

{
 
 

 
 36𝐸

𝜋𝛿3ℎ|𝜉|3
(1 −

|𝜉|

𝛿
) [

𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] , if   |𝒒 − 𝒙| ≤ 𝛿

0,                                                             if   |𝒒 − 𝒙| > 𝛿

 (3-26) 
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Figure 3-6. Detailed level 0 and coarsened level 1 bodies for coarsening of two-dimensional 
micromodulus function 

Coarsening is carried out as shown schematically in Figure 3-6. Every second nodes in every 

second row of the level 0 model is retained in the coarsened level 1 model. Figure 3-7 shows the 

micromodulus function 𝐂0 of level 0 model as well as the coarsened micromodulus 𝐂1 of level 1 

model. It is noticed that the coarsened micromodulus 𝐂1 is characterised by sharp peaks which 

reflects the fact that it is only defined at the coarsened region. Figure 3-7(a) shows the response of 

the 𝑖 − 𝑡ℎ material point in the 𝑥 −direction for a displacement of the 𝑗 − 𝑡ℎ point in the 

𝑥 −direction. Figure 3-7(b) shows the response of the 𝑖 − 𝑡ℎ material point in 𝑥 −direction if the 

𝑗 − 𝑡ℎ point is displaced in the 𝑦 −direction.  Figure 3-7(c) shows the response in 𝑦 −direction 

of the 𝑖 − 𝑡ℎ point when the 𝑗 − 𝑡ℎ point displaces in the 𝑥 −direction, and finally, Figure 3-7(d) 

shows the response of the 𝑖 − 𝑡ℎ point in the 𝑦 −direction when the 𝑗 − 𝑡ℎ point is displaced in 

the 𝑦 −direction. 

 

Figure 3-7. Coarsening of two-dimensional micromodulus function: (a) 𝒙 − 𝒙 interaction (b) 𝒙 −
𝒚 interaction (c) 𝒚 − 𝒙 interaction, and (d) 𝒚 − 𝒚 interaction. 
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3.4 Numerical Results 

This section comprises five numerical experiments to illustrate the application of the coarsening 

method in solving solid mechanics problems. The systems are assumed to be in a state of static 

equilibrium and thus an implicit static solution scheme has been utilized. The first three 

examples focus on one-dimensional bar under tension loading for cases of homogeneous and 

composite materials with and/or without defect. The last two examples demonstrate the capability 

of the coarsening approach for two-dimensional plate problems for isotropic and composite 

materials.  

3.4.1 One-dimensional homogeneous bar under tension loading 

This example is a numerical experiment aimed at illustrating the capability of the coarsening 

method in capturing the correct bulk response of a system even with reduced degrees of freedom 

as opposed to if the degrees of freedom were to be reduced without the coarsening process. 

Consider a bar of length 1 m of material having micromodulus function of the form:  

 𝐂(𝜉) =

{
 
 

 
 6E

𝐴𝛿2|𝜉|
(1 −

|𝜉|

𝛿
) , if   |𝒒 − 𝒙| ≤ 𝛿

0,             if   |𝒒 − 𝒙| > 𝛿

 (3-27) 

The maximum interaction distance δ=10∆x, where ∆x is the length of a material point. The 

detailed model (level 0) is discretized into 1000 points, so that ∆x=1 mm. The elastic modulus of 

the material is E=200 GPa. Coarsening of the level 0 model to level 1 proceeds by retaining every 

fourth node in level 0. Level 2 model retains every second node in level 1 model as shown in Figure 

3-2. Body force density of b=0.001 N⁄mm3 is applied to the rightmost level 2 node, while the third 

leftmost level 2 node is constrained to have zero displacement. The displacement field associated 

with the level 0 and coarsened levels 1 and 2 are shown in Figure 3-8. It is observed that even with 

reduced degrees of freedom as the detailed model is coarsened into level 1 and subsequently level 

2, the displacements fields obtained from all these models are very similar to each other. This 

would not have been the case if the reduction in degrees of freedom were not achieved through 

the coarsening process. 

The analytical solution based on the classical theory to the axial bar problem is of the form. 

 𝑢(𝑥) = (
𝐹

𝐸𝐴
) 𝑥 (3-28) 

Where 𝑥 is the distance from the support, 𝑢(𝑥) is the displacement at point 𝑥, E is the elastic 

modulus, 𝐴 is the cross-sectional area, and 𝐹 is the force applied at the free end of the bar. The 
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result from the analytical model and those from the detail level 0 model as well as the results from 

coarsened levels 1 and 2 model are almost identical.  

To illustrate the need for the coarsening process in achieving model order reduction, the number 

of nodes was reduced from 1000 to 250 and further to 125 without following the coarsening 

procedure. As shown in Figure 3-8, although the results from the coarsened models and the results 

from the models with reduced number of nodes are very close to each other, coarsened model 

results agree better with the analytical solution.  

 

Figure 3-8. Displacement fields for a one-dimensional homogeneous bar under tension loading 

3.4.2 One-dimensional composite bar under tension loading 

In this example, a one-dimensional composite bar with a length of 1m and a cross-sectional area 

of 100 mm2 is considered. The composites bar has a periodic microstructure consisting of 

alternative strips 𝑆hard and 𝑆soft of hard and soft materials, respectively. Each strip is 50 mm in 

length. The horizon for both hard and soft sections is 50 mm. The micromodulus of the composite 

system has the form: 

 

𝐂(𝜉)

=

{
 
 

 
 
6E1
𝐴𝛿2|𝜉|

(1 −
|𝜉|

𝛿
) , if  |𝒒 − 𝒙| ≤ 𝛿 and (𝒙 ∈ 𝑆hard and 𝒒 ∈ 𝑆hard)

2E2
𝐴𝛿2|𝜉|

,         if  |𝒒 − 𝒙| ≤ 𝛿 and (𝒙 ∈ 𝑆soft or 𝒒 ∈ 𝑆soft)     

0,           otherwise                                                                

 
(3-29) 

In other words, bonds with both ends in hard strip have hard properties while bonds with either 

ends in soft strip have soft properties. The elastic moduli of the hard and soft materials are E1=200 

GPa and E2=9 GPa, respectively. The level 0 horizon is specified as δ0=10∆x. Coarsening from 

level 0 to level 1 body is carried out as shown in Figure 3-2 by retaining every fourth node of level 
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0 body. Similarly, level 1 body is coarsened to level 2 body by retaining every second node in level 

1 body. 

Body force density of b=0.001 N⁄mm3 is applied to the three rightmost level 2 nodes, while the 

three leftmost level 2 nodes are constrained to have zero displacement. The computed 

displacements of coarsened level 0, 1, and 2 are shown in Figure 3-9. As expected, computation 

from level 0 revealed the most detailed microstructural information. As the computational region 

gets coarsened, these microstructural details get smoothed out. However, both detailed and 

coarsened models have similar global stretch. This demonstrates the fact that the effective 

properties produced by the coarsening process accurately reflect the bulk properties of the 

composite. 

 

Figure 3-9. Displacement fields for levels 0, 1, and 2 for a one-dimensional composite bar under 
tension loading 

3.4.3 One-dimensional homogeneous bar with a defect 

This example considers a homogeneous bar with a defect. The bar has a length of 1 m. The 

constitutive model of the bar is given by. 

 𝐂(𝜉) =  𝜑(𝒙, 𝒒) {

2E

𝐴𝛿2|𝜉|
, if   |𝒒 − 𝒙| ≤ 𝛿

0,    if   |𝒒 − 𝒙| > 𝛿

 (3-30) 

where 𝜑 is a degrading term given by 
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 𝜑 = {
0.1, if 𝒙 ≤ 𝒙𝑑 ≤ 𝒒 or  𝒒 ≤ 𝒙𝑑 ≤ 𝒙

1.0 otherwise                  

 (3-31) 

 

 

Figure 3-10. One-dimensional homogeneous bar with a defect  

The horizon is specified as δ0=50 mm in level 0 and the bar is discretised into 200 nodes. The 

defect is located at the center of the bar as shown in Figure 3-10. Level 1 contains every third node 

in level 0 and similarly, level 2 contains every third node of level 1 as shown in Figure 3-11. 

Prescribed displacement boundary conditions are applied to the three leftmost and three rightmost 

level 2 nodes. The values of the prescribed displacements are given by 𝑢𝑖
0 = 𝑢𝑖

1 = 𝑢𝑖
2 = 0.01𝑥𝑖 

where 𝑥𝑖 is the coordinate of the node. 

 

Figure 3-11. Schematic representation of the coarsening process for example 3.4.3. 

The displacement fields for the level 0 model as well as the coarsened level 1 and level 2 models 

near the defect is shown in Figure 3-12. The three levels give identical displacement profile except 

close to the site of the defect. This reflects the fact that due to fewer nodes in the coarsened 

models, wider spacing exits between nodes. 
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Figure 3-12. Coarsened displacement fields in a one-dimensional homogeneous bar with a defect 

3.4.4 Two-dimensional homogeneous plate under tension loading 

This example concerns a two-dimensional homogeneous plate under tension loading. The plate is 

a 500mm × 500mm square plate. The micromodulus of the plate is chosen as 

 𝐂(𝜉) =  

{
 
 

 
 8E

𝜋𝛿4ℎ|𝜉|2
[
𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] , if   |𝒒 − 𝒙| ≤ 𝛿

0,                    if   |𝒒 − 𝒙| > 𝛿

 (3-32) 

The horizon for the level 0 body is specified as 𝛿0 = 3.015∆𝑥. The plate is discretized into 200 

points in both 𝑥 and 𝑦 −directions with every point having ∆𝑥 = ∆𝑦 = 2.5 𝑚𝑚. The thickness 

of the plate is ∆𝑥. Coarsening of the detailed model is achieved by retaining every second point in 

the second row as shown schematically in Figure 3-13. 

 

Figure 3-13. Discretisation and coarsening of the two-dimensional homogeneous plate. 

Two boundary layers each consisting of one grid of 100 points are created: one along the top edge 

and the other along the bottom edge. At the top boundary layer, every second point of the detailed 

model is constrained to have zero displacement.  A body force density of 2000 kN⁄m3 is applied 

to every second point in the bottom boundary layer in the detailed model. 
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Figure 3-14. Profile of 𝒙 −axis displacement field: (a) Detailed (Level 0) model and (b) Coarsened 
(Level 1) model. 

 

Figure 3-15. Profile of y−axis displacement field: (a) Detailed (Level 0) model and (b) Coarsened 
(Level 1) model. 
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Figure 3-16: Profile of displacement field along a grid line of points in the 𝒚 −direction 

 

Figure 3-17: Profile of displacement field along a grid line of points in the x-direction 

The displacement field obtained from solving both detailed (level 0) and the coarsened model 

(level 1) are similar as can be seen from Figure 3-14 and Figure 3-15. The displacement profile of 

a specific grid of points along the 𝑦 −axis is plotted and shown in Figure 3-16. It is observed that 

both models result in very similar displacement fields. 

3.4.5 Two-dimensional composite plate under tension loading 

This example will consider a two-dimensional 500 mm×500 mm square plate with periodic 

microstructure consisting of alternative strips Shard and Ssoft of hard and soft materials, respectively 

as shown in Figure 3-18. Each strip is 50 mm in length. The horizon for both hard and soft sections 

is 50 mm. The micromodulus of the composite system is given by. 

 

𝐂(𝜉)

=  

{
 
 

 
 

36𝐸

𝜋𝛿3ℎ|𝜉|3
(1 −

|𝜉|

𝛿
) [

𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ] , if  |𝒒 − 𝒙| ≤ 𝛿 and (𝒙 ∈ 𝑆hard and 𝒒 ∈ 𝑆hard)

9𝐸

𝜋𝛿3ℎ|𝜉|3
[
𝜉𝑥
2 𝜉𝑥𝜉𝑦

𝜉𝑥𝜉𝑦 𝜉𝑦
2 ],        if   |𝒒 − 𝒙| ≤ 𝛿   and (𝒙 ∈ 𝑆soft or 𝒒 ∈ 𝑆soft)  

0,                          otherwise                                                               

 
(3-33) 
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Figure 3-18: Discretisation and coarsening of the two-dimensional composite plate. 

The horizon is specified as δ0=3.015∆x. The plate is discretized into 200 points in both 𝑥 and 

𝑦 −directions with every point having ∆x=∆y=2.5 mm. Coarsening of the detailed model and the 

applied boundary condition is same as that of previous example. 

 

Figure 3-19: Displacement fields for levels 0, 1, and 2 for a two-dimensional plate under tension 
loading. 

The computed displacement profile along the 𝑦 −direction for the identical boundary condition 

for the detailed model (level 0) and the coarsened model (level 1) is shown in Figure 3-19. It is 

observed that because the detailed model included more material points, it has been able to resolve 
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more microstructural details than the coarsened models. However, both models have the same 

global stretch thereby demonstrating that the effective properties obtained using this coarsening 

method are accurate representation of the bulk properties of the composite.  

3.5 Computational cost 

Determination of computational cost savings arising from coarsening a numerical model will 

follow from the idea suggested in [1]. Consider a body that is discretized into 𝑁0 nodes in the level 

0 model. Let J=aNM
n  be the number of arithmetic operations used by a linear solver to solve the 

fully coarsened level M model, where a and 𝑛 are constants (n=3 for Gaussian elimination [1]), 

and NM is the total number of nodes in level M model. Suppose each level has 1 α⁄  as many nodes 

as the previous level, where α is a constant, such that: 

 𝑁𝑀 =
𝑁0
𝛼𝐷𝑀

 (3-34) 

where D is the dimension of the problem (In the example on two-dimensional homogeneous plate, 

𝛼 = 2 and D = 2). The computational effort in determining material properties at level 𝑚 + 1 

from level m is proportional to 𝑁𝑚 since in doing so, the inverse of the matrix 𝐴𝑁𝑚×𝑁𝑚 must be 

computed. Therefore, for some positive constant b, the total arithmetic operations that will be 

used to coarsen a numerical model and solve the fully coarsened level M model can be written as 

𝐽 = 𝑎 (
𝑁0
𝛼𝐷𝑀

)
𝑛

+ ∑
𝑏𝑁0
𝛼𝐷𝑀

𝑀−1

𝑚=0

 

𝐽 = 𝑎 (
𝑁0
𝛼𝐷𝑀

)
𝑛

+ 𝑏N0
1 − 1 𝛼𝐷𝑀⁄

1 − 1 𝛼⁄
 

 𝐽 < 𝑎 (
𝑁0
𝛼𝐷𝑀

)
𝑛

+ 𝑏𝑁0
𝛼

𝛼 − 1
 (3-35) 

It can be concluded from (3-35) that the computational effort of coarsening up to level M in a 

linear solver for a boundary value problem is reduced by a factor of 𝛼𝑛𝐷𝑀 over the computational 

effort needed to solve the detailed level 0 model. For a two-dimensional problem such as the 

example on two-dimensional homogeneous plate, this factor will be 23×2×M = 26M. The 

computational price paid to determine the coarsened properties of the model is less than 

𝑏𝑁0𝛼 (𝛼 − 1)⁄  which is independent of 𝑀. If we are only interested in coarsening up one level 

only, then 𝑀 = 1, so that the reduction factor becomes 26 = 64 times the number of operations 

required to solve the complete model.  
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3.6 Conclusions 

The coarsening method developed in [34] extended for two-dimensional application in this thesis 

has demonstrated its robustness in modelling a range of problems. Moreover, several one-

dimensional problems were considered to investigate the effect of different micromodulus 

functions other than considered in [14]. The examples solved in this work have demonstrated that 

this method is able to relate the bulk response of materials to the details of their microstructure in 

two-dimensional problems. This allows us to reduce the order of the problem without losing 

accuracy in predicting the bulk response of the system. This translates to a reduction in 

computational time and storage required. Another advantage offered by the coarsening method is 

that the model retains its attributes such as boundary conditions and applied force density after 

the coarsening process. This is not the case if the model is reduced without going through the 

coarsening process. In this case, the boundary conditions and applied force density can no longer 

be identically applied as in the original model. 

It is instructive to mention a few caveats related to this method. This coarsening method is 

currently valid only for linear and static problems and the boundary conditions applied in the 

coarsened models must be identical to the boundary conditions of the detailed model.  
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Chapter 4 

4.0 Static condensation for linear peridynamics 

This chapter present a MOR framework based on static condensation method [36] that is similar 

to the coarsening methodology presented in chapter 3.0 in that both methodologies seek to reduce 

the complexity of a PD model and hence computational effort by reducing the DoFs of the model 

and yet still able to accurately predict the response of the system. However, the proposed algorithm 

in this chapter promises to have extended capabilities covering both static and dynamic system 

response. Numerical investigation will be conducted to demonstrate the robustness of the 

algorithm in effectively reducing the order of PD models for static, dynamic, and modal response. 

4.1 Introduction to MOR using Static condensation 

The static condensation scheme is a model order reduction technique widely used in various 

applications such as structural dynamic optimization, eigenvalue problems, vibration analysis, and 

fluid-structure interaction. The main objective of model order reduction schemes is to 

approximate the response of a system with a large number of degrees of freedom using a linear 

combination of a few selected global approximation vectors. This allows the problem to be 

reformulated in terms of a smaller set of discrete variables. The transformation equation: 

 {𝑍}𝒏×𝟏 = [𝑻]𝑛×𝑟{𝜓}𝑟×1 
(4-1) 

is used to map the vector {𝑍} of size 𝑛 representing the degrees of freedom of the original system, 

to the reduced vector {𝜓} of size 𝑟, representing the degrees of freedom of the reduced model 

such that {𝑍} ≫ {𝜓}. Model order reduction schemes can be categorized into physical coordinate 

reduction, generalized coordinate reduction, and hybrid coordinate reduction. In physical coordinate reduction, 

part of the physical coordinates is eliminated to obtain the reduced model, while in generalized 

coordinate reduction, the response is described using a set of generalized coordinates that capture 

the important modes of vibration or deformation. Hybrid coordinate reduction combines physical 

and generalized coordinates in different regions of the system. In this chapter, the physical 

coordinate reduction method based on the static/Guyan condensation [36]is utilised to develop a 

reduction framework for the linear PD model. 

The subsequent sections will outline the formulation and verification of a MOR framework for 

linear PD model utilizing the static condensation scheme. In section 4.2, the expression for static 

condensation of PD static response problem will be derived, to be followed in section 4.3 with the 

derivation of the expression for the static condensation of PD dynamic response analysis. In 
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section 4.4, the modal equations of PD theory will be derived, and the proposed condensation 

algorithm will be applied to obtain the reduced order model for PD eigenproblem. The general 

form of the reduced micromodulus function is presented in section 4.5. Numerical demonstration 

of the capabilities of the proposed reduction algorithm in reproducing the static, dynamic, and 

modal response of PD model using fewer DoFs is presented in section 4.6. 

4.2 Reduced static PD models. 

Consider a linear PD body ℬ that is discretised into N number of material points. Considering 

static response, then (2-112) for a system of 𝑁 material points is: 

 [𝐶]𝑁×𝑁{𝑢}𝑁 = {𝑏}𝑁 
(4-2) 

The objective is to replace this system with a reduced degree of freedom system while maintaining 

the kinematic characteristics of the original system. Let {𝑢𝑎} ⊂ {𝑢}𝑁 be the primary (active) DoFs 

to be retained and {𝑢𝑑} ⊂ {𝑢}𝑁 be the secondary DoFs to be condensed out. 

To carry out the condensation process, the assembled PD equilibrium equations are partitioned as 

follows: 

 [

[𝐶𝑎𝑎] [𝐶𝑎𝑑]

[𝐶𝑑𝑎] [𝐶𝑑𝑑]
] {

{𝑢𝑎}

{𝑢𝑑}
} = {

{𝑏𝑎}

{𝑏𝑑}
} 

(4-3) 

The global vector of DoFs of the system may be written as 

 {𝑢}𝑁 = {𝑢} = {

{𝑢𝑎}

{𝑢𝑑}
} (4-4) 

Multiplying out equation (4-3) we have 

 [𝐶𝑎𝑎]{𝑢𝑎} + [𝐶𝑎𝑑]{𝑢𝑑} = {𝑏𝑎} 
(4-5) 

 [𝐶𝑑𝑎]{𝑢𝑎} + [𝐶𝑑𝑑]{𝑢𝑑} = {𝑏𝑑} 
(4-6) 

Consider the solution to equation (4-6). If [𝐶𝑑𝑑] is non singular, then we can solve for the DoFs 

to be condensed out: 

 {𝑢𝑑} = [𝐶𝑑𝑑]
−1({𝑏𝑑} − [𝐶𝑎𝑑]{𝑢𝑎}) 

(4-7) 

Substituting equation (4-7) into equation (4-5) yields 
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 [𝐶𝐺]{𝑢𝑎} = {𝑏𝐺} 
(4-8) 

Equation (4-8) is the condensed linearized PD equilibrium equation, where:  

 [𝐶𝐺] = [𝐶𝑎𝑎] − [𝐶𝑎𝑑][𝐶𝑑𝑑]
−1[𝐶𝑑𝑎],            {𝑏𝐺} = {𝑏𝑎} − [𝐶𝑎𝑑][𝐶𝑑𝑑]

−1{𝑏𝑑} 
(4-9) 

are the condensed micromodulus matrix and body force vector respectively. If we assume the 

inertia contribution as well as the external forces acting on the secondary DoFs to be negligible, 

this will permit a static relationship between the primary DoFs and the secondary DoFs such that 

equation (4-6) yields: 

 {𝑢𝑑} = [𝑅𝐺]{𝑢𝑎} 
(4-10) 

  where [𝑅𝐺] ∈ 𝑅
𝑑×𝑎 represents the Guyan condensation matrix which is defined as 

 [𝑅𝐺] = −[𝐶𝑑𝑑]
−1[𝐶𝑑𝑎] 

(4-11) 

Introducing equation (4-11) into equation (4-4) gives an expression similar to (4-1): 

 {𝑢} = [𝑇𝐺]{𝑢𝑎} 
(4-12) 

In equation (4-12), [𝑇𝐺] ∈ 𝑅
𝑛×𝑎 is a linear transformation matrix that maps DoFs in the reduced 

model onto DoFs in the full model and is defined as: 

 [𝑇𝐺] = [
[I]
[𝑅𝐺]

] (4-13) 

Where [I] is an 𝑎 × 𝑎 identity matrix. It is easily verifiable that equation (4-9) can be expressed as: 

 [𝐶𝐺] = [𝑇𝐺]
𝑇[𝐶][𝑇𝐺],            {𝑏𝐺} = [𝑇𝐺]

𝑇{𝑏} (4-14) 

Note that the static condensation is so called because we ignored the inertia effect on the deleted 

DoFs. Also note that to obtain the expression for the transformation matrix in equation (4-13), an 

assumption of zero body force density acting on the deleted DoFs was made. However, the fact 

that the expansion of equation (4-14) exactly gives the expression in equation (4-9) shows that this 

assumption does not affect the reduced stiffness matrix and the reduced force density vector. The 

condensed PD equilibrium equations as represented by equation (4-8) yields the exact solution of 

the PD model at the retained material points as would be obtained if we used the detailed model. 

4.3 Reduced dynamic models 

To reduce the order of a dynamic PD model, the equation of motion given in equation (2-112) 

may be written in partitioned form: 
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 [

[𝑀𝑎𝑎] [𝑀𝑎𝑑]

[𝑀𝑑𝑎] [𝑀𝑑𝑑]
] {

{𝑢̈𝑎}

{𝑢̈𝑑}
} + [

[𝐶𝑎𝑎] [𝐶𝑎𝑑]

[𝐶𝑑𝑎] [𝐶𝑑𝑑]
] {

{𝑢𝑎}

{𝑢𝑑}
} = {

{𝑏𝑎}

{𝑏𝑑}
} (4-15) 

If we assume the micromodulus function [𝐶] to be time invariant, then [𝑇𝐺] is independent of 

time and hence the second derivative of equation (4-12) with respect to time yields:  

 {𝑢̈} = [𝑇𝐺]{𝑢̈𝑎} (4-16) 

Introducing equations (4-12) and (4-16) into equation (2-112) and pre-multiplying both sides by 

the transpose of the transformation matrix [𝑇𝐺] gives the equation of equilibrium of the reduced 

model: 

 [𝑀𝐺]{𝑢̈𝑎} + [𝐶𝐺]{𝑢𝑎} = {𝑏𝐺} (4-17) 

where the matrices [𝑀𝐺] and [𝐶𝐺] and the vector {𝑏𝐺} are the condensed mass matrix, condensed 

micromodulus matrix and condensed body force vector respectively associated with the reduced 

model, defined as: 

 [𝑀𝐺] = [𝑇𝐺]
𝑇[𝑀][𝑇𝐺],         [𝐶𝐺] = [𝑇𝐺]

𝑇[𝐶][𝑇𝐺],         {𝑏𝐺} = [𝑇𝐺]
𝑇{𝑏} (4-18) 

If we neglect dynamic effects in the reduced model, equation (4-17) specialises to the reduced 

model for static problem defined in equation (4-8). Since the majority of storage requirement and 

computational effort required to implement this condensation technique is used in the 

computation of [𝐶𝑑𝑑]
−1, a computationally more efficient way to achieve the condensation of the 

PD static model is to employ the standard Gauss-Jordan elimination procedure [92].  

4.4 Reduced eigenvalue models 

Assume that the solution 𝑢 to equation (2-77) is given by the general form of a plane wave: 

 𝑢(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) (4-19) 

where 𝑢 is the displacement of a point 𝑥, 𝐴 is the constant amplitude vector, 𝑘 is the wave number, 

𝜔 is the wave frequency and 𝑡 is time. Substituting equation (4-19) into equation (2-77) and 

assuming no body force applied will yield: 

 −𝜔2𝜌(𝑥)𝐴 = ∫ 𝐶(𝑥, 𝑞)(𝑒𝑖𝑘(𝑞−𝑥) − 1)𝑑𝑉𝑘 ∙ 𝐴
ℋ𝑥

 (4-20) 

Taking Euler’s transformation of equation (4-20) gives 
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−𝜔2𝜌(𝑥)𝑢(𝑥, 𝑡)

= ∫ 𝐶(𝑥, 𝑞)(cos(𝑘(𝑞 − 𝑥)) + 𝑖 sin(𝑘(𝑞 − 𝑥)) − 1)𝑑𝑉𝑘
ℋ𝑥

∙ 𝑢(𝑥, 𝑡) 

(4-21) 

Since the micromodulus function is an even function and sin(𝑘(𝑞 − 𝑥)) is an odd function, 

equation (4-21) reduces to 

 𝜔2𝜌(𝑥)𝐴 = ∫ 𝐶(𝑥, 𝑞)(1 − cos(𝑘(𝑞 − 𝑥)))𝑑𝑉𝑘
ℋ𝑥

∙ 𝐴 (4-22) 

It can be inferred from equation (2-73) that the integral in equation (4-22) can be written in a 

matrix form. Using the simplified notation 

 𝒟(𝑘, 𝜉) = ∫ 𝐶(𝑥, 𝑞)(1 − cos(𝑘(𝑞 − 𝑥)))𝑑𝑉𝑘
ℋ𝑥

 (4-23) 

 with the definition that 𝜉 = 𝑞 − 𝑥, then equation (4-23) can be written as  

 𝜔2𝜌(𝑥)𝐴 = 𝒟(𝑘, 𝜉) ∙ 𝐴 (4-24) 

which gives us a classical eigenvalue problem with the following characteristic equation.  

 |𝒟(𝑘, 𝜉) − 𝜔2𝜌(𝑥)| = 0 (4-25) 

The dispersion matrix 𝒟(𝑘, 𝜉) first appeared in [10]. The eigenvalues and eigenvectors resulting 

from equation (4-25) gives the natural frequencies and natural modes of the peridynamic system. 

Equation (4-25) may be written in matrix form as 

 |[𝒟] − 𝜔2[𝑀]| = 0 (4-26) 

In equation (4-26), [𝑀] = 𝜌[I] is the mass-density matrix and [I] is the identity matrix.  The 

reduced order eigenvalue problem may be stated as  

 |[𝒟𝐺] − 𝜔
2[𝑀𝐺]| = 0 (4-27) 

where [𝒟𝐺] is the statically condensed dispersion matrix, and is defined as 

 [𝒟𝐺] = [𝑇𝐺]
𝑇[𝒟][𝑇𝐺] (4-28) 

4.5 Condensation of the micromodulus function 

This section will illustrate the typical form of a condensed micromodulus function. Consider a 

one-dimensional homogeneous bar of length 1.0 with a micromodulus function of the form: 
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 𝐂(𝜉) =  

{
 
 

 
 1.0 (1 −

|𝜉|

𝛿
)  , if   |𝜉| ≤ 𝛿

0,                           if   |𝜉| > 𝛿

 (4-29) 

The bar is discretised into 100 nodes with interaction distance of 3𝑑𝑥, where 𝑑𝑥 represents the 

distance between successive nodes. The reduced model consists of every fourth node in the 

detailed model as shown in Figure 4-1 in which retained nodes are designated with letter ‘a’ and 

deleted nodes are designated with letter ‘d’. 

 

Figure 4-1: Schematic representation of 1D reduction process 

 

Figure 4-2: Coarsening of 1D Micromodulus function. 

The micromodulus of the detailed model and that of the reduced model is shown in Figure 4-2. 

The micromodulus function of the reduced model as can be seen from Figure 4-2 is defined only 

at the retained DoFs. 
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4.6 Numerical results 

4.6.1 Reduction of static problems 

In this section, a series of numerical experiments will be undertaken to illustrate the application of 

this model reduction technique in coarsening one and two-dimensional PD models.  

4.6.1.1 A bar with periodic microstructure 

Consider a composite bar with length 1.0 and a periodic microstructure consisting of alternate 

strips 𝑆ℎ𝑎𝑟𝑑 and 𝑆𝑠𝑜𝑓𝑡 of hard and soft materials respectively as shown in Figure 4-3. Each strip is 

0.05 in length. The interaction distance in both hard and soft materials is 3𝑑𝑥. The micromodulus 

of the composite system is: 

 

𝐂(𝜉)

=  

{
 
 
 

 
 
 10.0(1 −

|𝜉|

𝛿
) , if   |𝒒 − 𝒙| ≤ 𝛿  and (𝒙 ∈ 𝑆hard and 𝒒 ∈ 𝑆hard)    

1.0 (1 −
|𝜉|

𝛿
) , if   |𝒒 − 𝒙| ≤ 𝛿   and (𝒙 ∈ 𝑆soft or 𝒒 ∈ 𝑆soft)         

0,                                otherwise                                                                      

 

 

(4-30) 

 

Figure 4-3: A schematic representation of the composite bar showing hard and soft material strips. 

Bonds with both ends in a hard strip are assigned hard properties, otherwise, they are given soft 

material properties. Coarsening the detailed model is schematical represented by Figure 4-1. Every 

fourth material point in the detailed model is retained as an active point in the coarsened model. 

In the detailed model, a force density of 𝑏 = 0.002 is applied to the rightmost material point while 

the leftmost material point is constrained from movement. Figure 4-4 shows the displacement 

fields of the detailed as well as coarsened model. 
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Figure 4-4: Displacement fields for detailed and reduced models 

Results of displacement fields from simulation of both the detailed and reduced models shows 

exact matches for all shared material points between the two models and hence both have the 

same global stretch. However, as expected, the reduced model reflects less resolution of 

microstructural information than the detailed model. 

4.6.1.2 Reduction of a static plate model 

The static condensation can be employed in the reduction of static models of PD plates. The 

motivation for this may arises from the need to analyse a very large PD model and if the key focus 

is in determining the global response of the system without the need for a very detailed model. 

The objective in this example is to employ static condensation to eliminate all PD except those 

corresponding to the nodes located at the vertices of the plate as shown in  Figure 4-5. The bottom 

length of the plate is 1.0 while every other edge of the plate is of length 0.5. The micromodulus 

function of the plate material has the form. 

 𝐂(𝜉) = 10.0(1 −
|𝜉|

𝛿
) , if   |𝒒 − 𝒙| ≤ 𝛿  (4-31) 

The maximum interaction distance 𝛿 = 3𝑑𝑥, where 𝑑𝑥 is the horizontal distance between nodes. 

A body force density of 0.001 is applied to the boundary nodes at topmost edge of the plate as 

shown in Figure 4-5. The detailed model is discretized into 100 material points. 
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Figure 4-5: Schematic representation of the PD model of plate for static response analysis 

 

Figure 4-6: Displacement profile in x-direction (a) Detail model (b) Condensed mode 

 

Figure 4-7: Displacement profile in y-direction (a) Detail model (b) Condensed model 
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The reduction procedure is achieved by condensing a group of nodes to form a substructure. At 

the end of the procedure, we are left with four (4) substructures bounded by ten (10) ‘supernodes’ 

as shown in Figure 4-5(b). An examination of the displacement results obtained from the analysis 

of both the detailed and condensed models reveals that the solutions are exact. 

This observation highlights the accuracy and effectiveness of the reduction procedure in capturing 

the essential behaviour of the system. By condensing multiple nodes into a smaller number of 

representative supernodes, the model order reduction technique successfully reduces the 

computational complexity of the analysis without sacrificing accuracy. This is particularly valuable 

in scenarios where computational efficiency is desired, allowing for the analysis of larger-scale 

systems or the exploration of extensive parametric studies. 

4.6.2 Reduced Eigenproblems 

4.6.2.1 A bar with one end fixed and the other free 

Consider a bar of length L = 1 and uniform cross-sectional area 𝐴 = 1 with the following material 

properties: Young Modulus 𝐸 = 1, density 𝜌 = 1. Let the bar be fixed at one end and free at the 

other end as shown in Figure 4-8. 

 

Figure 4-8: A bar with one end fixed and one end free. 

To numerically compute the natural frequencies and mode shapes arising from (4-27), the given 

bar is discretized into 1000 nodes. The interaction distance characteristic of the bar material is 

assumed to be 3𝑑𝑥, with 𝑑𝑥 being the distance between nodes. The material is assumed to have a 

micromodulus function of the form: 

 𝑪(𝜉) =
2𝐸

𝐴𝛿2|𝜉|
 (4-32) 
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Figure 4-9: Comparison of eigenvalues from the full PD model and reduced model 

The first five lowest frequencies of the bar as computed from (4-25) are shown in Table 4-1. These 

frequencies are then validated against frequencies obtained from the characteristic equation of a 

corresponding Finite Element (FE) model of the bar. The eigen values of the first 50 modes are 

presented in Figure 4-9 

Table 4-1: Natural frequencies of the first five modes computed using the full PD model, reduced 

PD model and FE analysis. 

Mode FEM 

Peridynamics Difference between full 

and reduced model (%) Full model Reduced model 

1 1.571 1.569 1.569 0.0006 

2 4.712 4.708 4.708 0.0156 

3 7.854 7.846 7.845 0.0724 

4 10.996 10.984 10.982 0.1987 

5 14.137 14.123 14.118 0.4223 

 

Percentage difference between the natural frequencies computed from modal analysis of the full 

PD model and the reduced order PD model as presented in Table 4-1 shows a difference that 

ranges from 0.0006% to 0.4223%. This error margin coupled with the result presented in Figure 
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4-9 shows that the reduced model can accurately reproduce the lower eigenproperties of the full 

model. 

4.6.3 Reduction of dynamic problems 

In this section, the static condensation technique will be applied to reduce the order of a PD model 

and determine its time-history response. The objective is to determine the effectiveness of the 

model reduction technique in predicting the dynamic response of a given model despite the use of 

fewer DoFs. To illustrate the capabilities and limitation of the dynamic condensation technique, 

the bar shown in Figure 4-8 will be subjected to various excitation to determine the accuracy of 

the dynamic response predicted from the reduced order model. The bar will be assumed to have 

a Young’s modulus of 200 GPa and a density of 7850 KG/𝑚3. The numerical integration method 

used to integrate the discretised peridynamic equation of motion for the transient analysis is the 

forward Euler method. 

4.6.3.1 Free vibration of a bar using peridynamics 

The transient response of the PD bar will be studied. Three initial condition cases will be studied.  

4.6.3.1.1 Case 1: Displacement induced initial excitation 

In this scenario, the bar is given an initial constant strain of 1×10−4. The excitation is immediately 

removed to allow for free vibration of the bar. A transient analysis of the full PD model of the bar 

was conducted. The condensation process proceeded by retaining every forth node of the full PD 

model as shown in Figure 4-10. 

 

Figure 4-10: Discretization and condensation of the full PD model. 
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Figure 4-11: Time-history response of material points located at (a) 𝑥 = 0.0995, and (b) 𝑥 =

0.4995, for both full and reduced models. 

 

Figure 4-12: Displacement values at all nodes at (a) 5000th time step, (b) 10000th time step, (c) 

20000th time step, and (d) 26000th time step. 
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The results of the time-history response of material points located at 𝑥 = 0.0995 and 𝑥 = 0.4995 

arising from both the full PD model and the reduced model are shown in Figure 4-11(a and b) 

respectively. Figure 4-12 shows the displacement values of all nodes at the 5000th, 10000th, 20000th 

and 26000th time steps. These results show that the reduced model closely reproduces the dynamic 

response of the original PD model. However, as can be seen from Figure 4-11, there are some 

errors which arises because of our ignorance of inertia effects at the deleted DoF. 

4.6.3.1.2 Case 2: Force induced initial excitation. 

In this case study, initial constant body force density of 1 × 104 kN/𝑚3 is applied to every second 

node of the discretised PD bar and the force is immediately removed to allow for a free vibration 

of the bar. Equation (4-18) is used to condense the mass matrix, stiffness matrix and the force 

vector. The time-history response of points located at 𝑥 = 0.0995, 𝑥 =  0.2995, 𝑥 = 0.4995 and 

𝑥 = 0.7995 for both the full and reduced models are shown in Figure 4-13 while Figure 4-14 shows 

the displacement values for all nodes at time steps 5000, 10000, 20000 and 26000. The results of 

the time-history analysis of the both the full PD model and the reduced model shows that the 

condensation technique can accurately reproduce the dynamic response of the full PD model of 

the bar. 

 

Figure 4-13: Time-history response of material points located at (a) 𝑥 = 0.0995 (b) 𝑥 = 0.2995 (c) 

𝑥 = 0.4995 and (d) 𝑥 = 0.7995 for both the Full PD model and Condensed model. 
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Figure 4-14: Displacement values at all nodes at (a) 5000th time step, (b) 10000th time step, (c) 

20000th time step, and (d) 26000th time step. 

4.6.3.2 Forced vibration.  

The bar in this case is assumed to be subjected to a time-dependent body force density of the form 

{𝑏(𝑡)} = {𝑏𝑜} sin(𝜔𝑡) such that 𝑏𝑜 is the amplitude of excitation, 𝜔 is the frequency of excitation. 

The force is applied at the rightmost node of the bar.  



72 
 

 

Figure 4-15: Time-history response of material points located at 𝑥 = 0.0995, 0.2995, 0.4995 and 

0.7995 for both the Full PD model and Condensed model. 

 

Figure 4-16: Displacement values at all nodes at (a) 10000th time step, (b) 20000th time step, (c) 

50000th time step, and (d) 86000th time step 
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Results from a transient analysis of the full and reduced models for 𝑏𝑜 = 1 × 104 kN/𝑚3 and 

𝜔 = 5 rad/sec for a total of 86,00 time steps are shown in Figure 4-15 and Figure 4-16. The 

dynamic response of the full PD model was accurately predicted using the reduced model. 

4.7 Conclusion 

A model reduction procedure for PD systems based on static condensation has been developed 

and investigated in this study. The results of numerical experiments presented shows that the 

reduction algorithm based on static condensation technique can closely preserve the characteristics 

and response of the original model. In the static regime, the algorithm has proved to yield identical 

results compared to those obtained from the original model. Although the results of the 

eigenresponse prediction of the reduced model shows some errors as shown in the eigenresponse 

and transient analysis, however, the results show that the proposed algorithm has capabilities of 

accurate prediction of dynamic response at low frequencies. 
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Chapter 5 

5.0 Static condensation of peridynamic heat transport model 

The efficient simulation of heat transport phenomena using PD for practical applications is a good 

motivation for employing model order reduction techniques. This will enable PD to be utilized in 

modelling larger and more complex problems, thus facilitating its broader applications in industrial 

contexts. Using high-fidelity models in certain applications poses challenges due to their size and 

computational complexity. This is particularly evident when verifying the design and performance 

of large and complex systems. The need for reduced models becomes even more apparent in the 

repetitive usage of such systems in a design mode, such as control systems. Notably, control 

systems for manufacturing processes (e.g., brazing, and annealing furnaces) and thermal 

management of optical systems require efficient and responsive control [93]. 

Model order reduction provides a solution by offering simplified models that retain essential 

features. These reduced models enhance computational efficiency without sacrificing crucial 

insights or accuracy. This enables efficient and responsive control in applications like 

manufacturing process control and thermal management of optical systems. 

In this chapter, these motivations are addressed by extending and tailoring the model order 

reduction framework based on static condensation protocol developed in 4.1 for peridynamic heat 

transport models. The proposed reduction framework is expected to significantly decrease the 

computational cost associated with PD transport model, allowing for the simulation of larger and 

more complex heat transport problems while maintaining fidelity to the underlying physics. The 

end goal is to expand the scope of applicability and effectiveness of PD in simulating large-scale 

industrial problems. 

5.1 The nonlocal peridynamic heat transport model 

The groundwork for this extension will begin with the derivation of the peridynamic heat equation 

by restating the peridynamic balance law (2-40). Let the region occupied by a body ℬ be given by 

the open domain Ω ⊆ ℝ𝑛. Let Ω̃ ⊆ Ω be an open subregion, then a quantitative statement of a 

balance law for Ω can be stated in terms of a scalar intensive quantity 𝑞 as: 

 𝒜(Ω̃, 𝑞) = 𝒫(Ω̃) − ℱ(Ω̃, ℝ𝑛\Ω̃; 𝑞) (5-1) 

where (5-1) postulate that 𝒜(Ω̃, 𝑞) (the time rate of change of the intensive quantity 𝑞) is equal 

to 𝒫(Ω̃) (the rate at which the quantity is produced within the subdomain by sources, minus 
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ℱ(Ω̃, ℝ𝑛\Ω̃; 𝑞) (the rate at which the intensive quantity exits the subdomain). The rate of change 

and production of 𝑞 within Ω̃ can be written as 

 𝒜(𝛺̃; 𝑞) =
𝜕

𝜕𝑡
∫𝑞(𝒙, 𝑡)
𝛺̃

𝑑𝒙      and     𝒫(𝛺̃) = ∫𝑏(𝒙, 𝑡)
𝛺̃

𝑑𝒙  (5-2) 

If Ω̃ ⊂ Ω is assumed to interact only with the open subregion Ω̃𝐼 ⊂ Ω𝐼, then (5-1) can be written 

as: 

𝒜(𝛺̃; 𝑞) = 𝒫(𝛺̃) − ℱ(𝛺̃, 𝛺̃𝐼; 𝑞) (5-3) 

From the statement of the divergence theorem which can be stated as the flux of a vector 𝒗 ∈ ℝ𝑛 

out of a region Ω1 ⊂ ℝ
𝑛 is equal to the volume integral of the divergence of 𝒗 over Ω1. Thus 

from (2-1) and (2-4): 

 ℱ(𝛺1, 𝛺2; 𝑞) = ∫ 𝒟(𝒗)(𝒙)
Ω1

𝑑𝒙 = ∫ ∫ (𝒗(𝒙, 𝒚) + 𝒗(𝒚, 𝒙) ∙ 𝜶(𝒙, 𝒚))
𝛺2

𝑑𝒚
Ω1

𝑑𝒙       (5-4) 

If one writes Ω1 = Ω̃ and Ω2 = Ω̃𝐼, then (5-4) becomes: 

ℱ(Ω̃, Ω̃𝐼; 𝑞) = ∫ ∫ (𝒗(𝒙, 𝒚) + 𝒗(𝒚, 𝒙) ∙ 𝜶(𝒙, 𝒚))
Ω̃𝐼

𝑑𝒚
Ω̃

𝑑𝒙 

                          = −∫ ∫(𝒗(𝒙, 𝒚) + 𝒗(𝒚, 𝒙) ∙ 𝜶(𝒙, 𝒚))
Ω̃

𝑑𝒚
Ω̃𝐼

𝑑𝒙 

                          = −∫ ∫ (𝒗(𝒙, 𝒚) + 𝒗(𝒚, 𝒙) ∙ 𝜶(𝒙, 𝒚))
𝛺̃∪𝛺̃𝐼

𝑑𝒚
𝛺̃𝐼

𝑑𝒙 

ℱ(Ω̃, Ω̃𝐼; 𝑞) = ∫ 𝒩(𝒗)(𝒙)
Ω̃𝐼

𝑑𝒙      ∀Ω̃ ⊂ Ω  (5-5) 

where the third equality follows from consideration of (2-2) and the fourth is due to (2-14). The 

balance law (5-1) can now be written as:  

𝜕

𝜕𝑡
∫𝑞(𝒙, 𝑡)
𝛺̃

𝑑𝒙 + ∫ 𝒩(𝒗)(𝒙)
Ω̃𝐼

𝑑𝒙 = ∫𝑏(𝒙, 𝑡)
𝛺̃

𝑑𝒙   ∀ 𝛺̃ ⊂ 𝛺  (5-6) 

 Applying the nonlocal divergence theorem (2-17) yields: 

∫ (
𝜕𝑞(𝒙, 𝑡)

𝜕𝑡
+ 𝒟(𝒗) − 𝑏(𝒙, 𝑡)) 𝑑𝒙

𝛺̃

= 0    ∀ 𝛺̃ ⊂ 𝛺  (5-7) 
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 which owing to the arbitrariness of 𝛺̃, (5-7) localizes to the field equation: 

𝜕𝑞(𝒙, 𝑡)

𝜕𝑡
+ 𝒟(𝒗) − 𝑏(𝒙, 𝑡) = 0   ∀𝒙 ∈ Ω (5-8) 

To uniquely determine 𝑞, (5-8) is required to satisfy some constraint conditions. Let the interaction 

domain Ω𝐼 be split into two disjoint subdomains Ω𝐼𝑑 and Ω𝐼𝑛 such that Ω𝐼𝑑 ∩ Ω𝐼𝑛 = ∅ and either 

of Ω𝐼𝑑 and Ω𝐼𝑛 could be an empty set. Ω𝐼𝑑 is the subdomain where Dirichlet boundary condition 

is applied and Ω𝐼𝑛 is the subdomain where Neumann boundary condition is applied. Analogous 

to the boundary value problem of the classical local theory, constraints on the solution 𝑞 of (5-8) 

over Ω is applied as follows: a given function value 𝒈𝑑 is prescribed on the solution over Ω𝐼𝑑 such 

that: 

𝑞(𝒙) = 𝑔𝑑              ∀𝒙 ∈ 𝛺𝐼𝑑   (5-9) 

To prescribe the Neumann type constraint, recall that in the classical boundary value problem, this 

involves prescribing a flux density 𝒒 ∙ 𝒏 over the flux boundary. From (2-18) and the discussion 

that follows, the nonlocal flux density over Ω𝐼𝑛 is given by ∫ 𝒩(𝑞)(𝒙)
𝛺𝐼

𝑑𝒙. Let 𝑔𝑛 be a given 

function value of the flux density over Ω𝐼𝑛. The Neumann constraint can be stated as 

∫ 𝒩(𝑞)(𝒙)
𝛺𝐼𝑛

𝑑𝒙 = 𝑔𝒏             ∀𝒙 ∈ 𝛺𝐼𝑛 (5-10) 

The presence of the first order time derivative of the solution 𝑞 in (5-8) means in addition to the 

boundary constraints (5-9), (5-10), initial conditions also need to be specified. The initial condition 

involves prescribing the initial values of the solution and its first derivative. Let 𝑞𝐼 and 𝑞̇𝐼 be the 

initial values of 𝑞(𝒙) and 𝑞̇(𝒙) respectively, then: 

𝑞(𝒙, 0) = 𝑞𝐼      ∀𝒙 ∈ 𝛺, 𝑓𝑜𝑟 𝑡 = 0 (5-11) 

and  

𝑞̇(𝒙, 0) = 𝑞̇𝐼      ∀𝒙 ∈ 𝛺, 𝑓𝑜𝑟 𝑡 = 0 (5-12) 

are the initial conditions. So that (5-8)-(5-12) give the complete definition of the nonlocal problem 

which can be stated as 
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{
 
 
 
 
 

 
 
 
 
 
𝜌𝑞̇ = −𝒟(𝑞) (𝒙) + 𝑏(𝒙, 𝑡) ∀𝒙 ∈ 𝛺𝑠

𝑞(𝒙) = 𝑔𝑑 ∀𝒙 ∈ 𝛺𝐼𝑑

∫ 𝒩(𝑞)(𝒙)
𝛺𝐼𝑛

𝑑𝒙 = 𝑔𝒏 ∀𝒙 ∈ 𝛺𝐼𝑑

𝑞(𝒙, 0) = 𝑞𝐼 ∀𝒙 ∈ 𝛺, 𝑓𝑜𝑟 𝑡 = 0

𝑞̇(𝒙, 0) = 𝑞̇𝐼 ∀𝒙 ∈ 𝛺, 𝑓𝑜𝑟 𝑡 = 0

 (5-13) 

  

For the specific case of heat conduction, 𝑞 is the stored internal energy density expressed as:  

𝑞 = 𝜌𝐶𝑣(𝜏(𝒙, 𝑡) − 𝜏
∗(𝒙)) (5-14) 

where 𝜌 and 𝐶𝑣 are the density and specific heat capacity of the material of the body, respectively. 

𝜏 is the temperature of the current state and 𝜏∗ is the temperature of a reference state. Then the 

rate of stored energy is given by: 

𝜕𝑞(𝒙, 𝑡)

𝜕𝑡
= 𝜌𝐶𝑣

𝜕𝜏(𝒙, 𝑡)

𝜕𝑡
 (5-15) 

The stored internal energy density 𝑞 is related to the interaction vector 𝒗 through a constitutive 

law. Let the constitutive law be such that:  

𝒗 =
1

2
(𝜣 ∙ 𝒟∗(𝜏)) (5-16) 

where 𝒟∗(𝑇) = 𝒢(𝑇) is the nonlocal gradient of the temperature field (see 2.2.1). 𝚯 is a second 

order tensor given by 𝚯 = 𝑘𝐈, where 𝑘 is a constant and 𝐈 is the identity tensor. Substituting (5-15) 

and (5-16) into (5-8) and dropping the time and spatial dependence of variables for the sake of 

brevity and write 𝜏(𝒚, 𝑡) = 𝜏′ and 𝜏(𝒙, 𝑡) = 𝜏, we obtain 

𝜕𝑇

𝜕𝑡
= −

1

2𝜌𝐶𝑣
𝒟(𝜣 ∙ 𝒟∗(𝜏)) +

𝑘

𝜌𝐶𝑣
𝑏   ∀𝒙 ∈ Ω 

                           = ∫
𝑘

𝜌𝐶𝑣
((𝜏′ − 𝜏)𝜶 ∙ 𝜶 − (𝜏′ − 𝜏)𝜶 ∙ 𝜶′)𝑑𝑥

𝛺

+
𝑘

𝜌𝐶𝑣
𝑏 

                           = ∫
𝑘

𝜌𝐶𝑣
((𝜏′ − 𝜏)𝜶 ∙ 𝜶 + (𝜏′ − 𝜏)𝜶 ∙ 𝜶)𝑑𝑥

𝛺

+
𝑘

𝜌𝐶𝑣
𝑏 
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𝜕𝑇

𝜕𝑡
= ∫

𝑘

𝜌𝐶𝑣
𝜶 ∙ 𝜶(𝜏′ − 𝜏)

𝛺

𝑑𝒙 +
𝑘

𝜌𝐶𝑣
𝑏          ∀𝒙 ∈ Ω (5-17) 

If we write 𝛾 = 𝜶 ∙ 𝜶, we obtain: 

𝜕𝑇

𝜕𝑡
= ∫

𝑘

𝜌𝐶𝑣
𝛾(𝜏′ − 𝜏)

𝛺

𝑑𝒙 +
𝑘

𝜌𝐶𝑣
𝑏          ∀𝒙 ∈ 𝛺 (5-18) 

The integrand of the integral in (5-17) and (5-18) without the factor 1/(𝜌𝐶𝑣) is the thermal response 

function, and 𝑘 is a peridynamic parameter called the micro-conductivity of bonds. The general 

form [94] of the micro-conductivity is given by. 

𝑘(𝜉, 𝛿) = 𝑘(0, 𝛿)𝑔(𝜉, 𝛿) (5-19) 

where 𝑘(0, 𝛿) = 𝑘0 is a constant and 𝑔(𝜉, 𝛿) is the kernel and gives the spatial distribution of the 

intensity of long-range thermal interaction between material points in a material. The explicit form 

of the micro-conductivity will be given in section 5.2. Analogous to thermal diffusivity of the 

classical heat conduction model, we define a micro-diffusivity function as. 

𝐾 =
𝑘

𝜌𝐶𝑣
𝛾 (5-20) 

Just like the micro-conductivity parameter, the micro-diffusivity function is also a parameter 

intrinsic to the material. Thus (5-18) can be written as 

𝜕𝑇

𝜕𝑡
= ∫𝐾(𝜏′ − 𝜏)

𝛺

𝑑𝒙 + ℎ          ∀𝒙 ∈ 𝛺 (5-21) 

where ℎ =
𝑏

𝜌𝐶𝑣
 is a heat source density. The explicit form of the micro-diffusivity function and 

hence the thermal response function depends on the choice of the kernel function. In what 

follows, some candidate kernel functions will be utilized to derive the explicit forms of the thermal 

response functions that appeared in the literature. It is important to state that the analysis and 

classification or systematic justification of the interaction kernels is not an objective of this thesis, 

rather, the objective is to demonstrate the robustness of the nonlocal operators by showing how 

for appropriate choice of the interaction kernel, the nonlocal operators are able to yield specific 

form of the Peridynamic heat equation. The approach here is to a posteriori select those kernels 

that will result in the form of thermal response functions that are of interest to this study. If we 

define the kernel function as 𝜶(𝒙, 𝒚) =
𝝃

|𝝃|2
, then diffusivity modulus (5-19) becomes: 
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𝐾 =
𝑘

𝜌𝐶𝑣|𝝃|2
 (5-22) 

which leads to a form of the response function that appeared in [95] herein denoted as 𝑓1 given 

by: 

𝑓1 =
𝑘

|𝝃|2
(𝜏′ − 𝜏) (5-23) 

If we, however, define 𝜶(𝒙, 𝒚) =
𝝃

|𝝃|
, then from (5-18) and  (5-21), (5-20) becomes: 

𝐾 =
𝑘

𝜌𝐶𝑣
 (5-24) 

 resulting in a response function that was proposed in [96] herein denoted as 𝑓2 and is expressed 

as: 

𝑓2 = 𝑘(𝜏
′ − 𝜏) (5-25) 

On the other hand, if we define the kernel in (5-18) as 𝛾 =
1

|𝑦−𝑥|
, we obtain from (5-20): 

𝐾 =
𝑘

𝜌𝐶𝑣|𝝃|
 (5-26) 

which corresponds to the form of the response function in [97, 98] given as: 

𝑓3 =
𝑘

|𝝃|
(𝜏′ − 𝜏) (5-27) 

5.2 Relationship between micro-conductivity and thermal conductivity 

The peridynamic micro-conductivity 𝑘 is related to the thermal conductivity 𝜅 from the classical 

heat conduction model using the principle of constitutive correspondence [95, 97]. In [97] this 

relationship is established by assuming equivalence of thermal potential between the peridynamic 

and classical continuum models. To show the explicit form of this relationship, the following 

definitions are made based on [98]: The peridynamic thermal potential is given as  

𝑍(𝒙, 𝑡) =
1

2
∫ 𝑧(𝒚, 𝒙, 𝑡)
ℋ

𝑑𝑉𝒚 (5-28) 

where 𝑧 is the microthermal potential. The microthermal potential is related to the normalized 

response function through: 
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𝑓 =
𝜕𝑧

𝜕𝜃
  (5-29) 

where 𝜃 = 𝜏′ − 𝜏. The form of the microthermal potential corresponding to different form of the 

response functions are obtained by substituting either of equations (5-23), (2-25) or (2-27) into 

(2-29) to respectively obtain: 

𝑧1 = 𝑘
𝜏2

2|𝝃|2
,     𝑧2 =  𝑘

𝜏2

2
,     𝑧3 = 𝑘

𝜏2

2|𝝃|
 (5-30) 

The thermal potential from the classical model is given as:  

𝑍̂ =
1

2
(∇𝜏 ∙ 𝜅∇𝜏) (5-31) 

where 𝜅 is the thermal conductivity of the medium.  

5.2.1 One-dimensional micro-conductivity 

If a linear temperature field of the form 𝑇(𝒙) = 𝑐|𝒙|  is applied such that 𝑐 is a constant and |𝒙| 

is the length of the coordinate vector 𝒙, then (5-30) becomes: 

𝑧1 = 𝑘
𝝃2

2|𝝃|2
,     𝑧2 = 𝑘

𝝃2

2
,     𝑧3 = 𝑘

𝝃2

2|𝝃|
 (5-32) 

 and (5-31) becomes:  

𝑍̂ =
1

2
𝜅𝑐2 (5-33) 

Let 𝛿 be the horizon of material points in the medium, substituting (5-32) into (5-28) assuming 

one-dimensional problem, yields: 

𝑍1(𝒙, 𝑡) =
1

2
∫ 𝑘

𝑐2𝝃2

2|𝝃|2
𝐴

𝛿

−𝛿

𝑑𝜉, 𝑍2(𝒙, 𝑡) =
1

2
∫ 𝑘

𝑐2𝝃2

2
𝐴

𝛿

−𝛿

𝑑𝜉,

𝑍3(𝒙, 𝑡) =
1

2
∫ 𝑘

𝑐2𝝃2

2|𝝃|
𝐴

𝛿

−𝛿

𝑑𝜉 

(5-34) 

where 𝐴 is the cross-sectional area associated with the point 𝑥. If we neglect the effect of distance 

between material points on their interaction and assume a micro-conductivity function of the form 

𝑘(𝑥, 𝑦) = 𝑘0, then (5-34) respectively evaluates to: 
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𝑍1(𝒙, 𝑡) =
1

2
∫ 𝑘0

𝑐2𝝃2

2|𝝃|2
𝐴

𝛿

−𝛿

𝑑𝜉 =
𝑘0𝑐

2𝛿𝐴

2

𝑍2(𝒙, 𝑡) =
1

2
∫ 𝑘0

𝑐2𝝃2

2
𝐴

𝛿

−𝛿

𝑑𝜉 =
𝑘0𝑐

2𝛿3𝐴

6

𝑍3(𝒙, 𝑡) =
1

2
∫ 𝑘0

𝑐2𝝃2

2|𝝃|
𝐴

𝛿

−𝛿

𝑑𝜉 =
𝑘0𝑐

2𝛿2𝐴

4

 (5-35) 

Equating (5-33) and (5-35) respectively yields: 

𝑘1 =
𝜅

𝐴𝛿
,     𝑘2 =

3𝜅

𝐴𝛿3
,     𝑘3 =

2𝜅

𝐴𝛿2
 (5-36) 

In the case where the distance between points is assumed to have considerable effect on the long-

range thermal interaction between them, then the kernel function chosen for the micro-

conductivity function must be able to capture the distribution of intensity of interaction. Typical 

kernel functions used in this case are the linear and quadratic kernel functions given respectively 

as 𝑔(|𝝃|, 𝛿) = (1 −
|𝝃|

𝛿
) and 𝑔(|𝝃|, 𝛿) = (1 − (

𝝃

𝛿
)
2
)
2

so that the micro-conductivity functions 

takes the form 𝑘(𝒙, 𝒚) = 𝑘0 (1 −
|𝜉|

𝛿
) and 𝑘(𝒙, 𝒚) = 𝑘0 (1 − (

𝝃

𝛿
)
2
)
2

 respectively. For example, 

substituting these into the first of (1.50), working out the resulting integral and equating thermal 

potentials from peridynamics with that from the classical theory allow us to obtain expressions for 

the micro-conductivity corresponding to the different forms of the kernel functions respectively 

as 

 
𝑘 =

2𝜅

𝐴𝛿
(1 −

|𝜉|

𝛿
) (5-37) 

and 

 

 𝑘 =
15𝜅

8𝐴𝛿
(1 − (

𝜉

𝛿
)
2

)

2

 (5-38) 

The micro-conductivity functions (5-37) and (5-38) all have compact support within the horizon. 

In other words, the interaction between a given point and any other point in a body cease if the 

distance between them is greater than the horizon (𝛿). The typical forms of different micro-

conductivity functions are presented in Figure 5-1 which represents the graph of 𝑘3 in (5-36) as 

well as (5-37) and (5-38). 
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Figure 5-1 : Comparison of micro-conductivity functions. 

Although the different forms of the thermal response functions and their associated micro 

conductivity functions have been established in the literature as cited, results of numerical 

experiments [67] have shown that the response function (1.43) provide the best approximation to 

the classical solution and would henceforth be used in the development of the proposed model 

reduction methodology. Also, the three different forms of the micro-conductivity functions 

presented in this section will be statically condensed in section 2.2. However, the choice of the 

micro-conductivity used in section 3.0 is limited to the constant function because of its simplicity 

of implementation and because the condensation of the peridynamic heat model with the other 

linear and quadratic micro-conductivity functions follows the same procedure. 

5.2.2 Two-dimensional micro conductivity function 

Following the same procedure laid out in section 5.2.1, the explicit form of the constant and 

triangular micro-conductivity as well as the corresponding diffusivity modulus function can be 

obtained. A constant micro modulus function with its corresponding diffusivity function is given 

as: 

𝑘 =
6𝜅

𝜋ℎ𝛿3
,        𝐾 =

6𝜅

𝜋ℎ𝛿3|𝝃|
 (5-39) 

Interested readers are referred to [98] for discussion on the various forms of the response functions 

and their corresponding micro-conductivity functions. 

5.3 The discrete heat conduction equation 

Different discretization schemes have been proposed for the numerical approximation of balance 

laws arising from the peridynamic theory, such as the meshfree method [82, 86], the collocation 

methods [87, 88] and methods based on finite elements mesh [89, 90]. Due to its simple 
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implementation algorithm and relatively low computational cost, the meshfree method suggested 

in [82] is the most widely used [91] and is the preferred method in this work for these same reasons. 

In this approximation method, the discrete form of (5-21) is:  

𝜏̇𝑖 =∑𝐾(𝜏𝑗 − 𝜏𝑖)𝑉𝑗

𝑁

𝑖

+ ℎ𝑖 (5-40) 

 where 𝜌𝑖 = 𝜌(𝒙𝑖), 𝜏̇ =
𝜕𝜏𝑖

𝜕𝑡
 and 𝑁 is the number of nodes in the neighbourhood of node 𝑖.  

5.4 Static condensation of the peridynamic head conduction model  

The assembled peridynamic transient heat conduction equations for the body in matrix form is 

given by: 

𝑰𝜏̇ + 𝑲𝜏 = ℎ (5-41) 

where 𝑰, 𝑲 ∈ ℝ𝑛×𝑛 are the identity and diffusivity modulus matrices respectively and 𝑛 is the total 

number of degrees of freedom in the system.  In this context, (5-41) is referred to as the full order 

model of the system or simply full model.  The objective of the model reduction is to replace the full 

model having 𝑛 degree of freedom with a reduced order system having 𝑚 degree of freedom, such 

that 𝑚 ≪ 𝑛. The reduced model is expected to preserve the heat conduction characteristics of the 

full model. To proceed with the model condensation, the degree of freedom of the system are 

separated into retained and truncated degrees of freedom. The retained degrees of freedom are 

those to be preserved while truncated degrees of freedom are those to be condensed out in the 

reduced model. Let 𝑟 denote the retained degrees of freedom and let 𝑡 denote the truncated 

degrees of freedom, then (5-41) can be partitioned as follows: 

[
𝑰𝑟𝑟 𝑰𝑟𝑡
𝑰𝑡𝑟 𝑰𝑡𝑡

] {
𝜏̇𝑟
𝜏̇𝑡
} + [

𝑲𝑟𝑟 𝑲𝑟𝑡
𝑲𝑡𝑟 𝑲𝑡𝑡

] {
𝜏𝑟
𝜏𝑡
} = {

ℎ𝑟
ℎ𝑡
} (5-42) 

Neglecting the transient term and assuming there is no heat source at the truncated degrees of 

freedom, then the solution of the second submatrix equation for 𝜏𝑡 yields  

𝜏𝑡 = 𝑹𝐺𝜏𝑟 (5-43) 

where 𝑹𝐺 ∈ ℝ
𝑡×𝑟 is the condensation matrix, defined as 

𝑹𝐺 = −𝑲𝑡𝑡
−1𝑲𝑡𝑟 (5-44) 

The condensation matrix relates the retained degrees of freedom and truncated degrees of freedom 

and is load independent because it is assumed there is no heat source at the truncated degrees of 
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freedom. Also note that in arriving at (5-43), the transient term in (5-42) have been neglected, 

hence this method is called static condensation method. The temperature state of the full model 

may be expressed as 

𝜏 = {
𝜏𝑟
𝜏𝑡
} = 𝑻𝐺𝜏𝑟 (5-45) 

where 𝑻𝐺 ∈ ℝ
𝑛×𝑟 is a transformation matrix given by: 

𝑻𝐺 = [
𝑰
𝑹𝐺
] (5-46) 

where 𝑰 is 𝑟 × 𝑟 identity matrix. If the transformation matrix is assumed to be independent of 

time, differentiating (5-45) with respect to time gives: 

𝜏̇ = 𝑻𝐺𝜏̇𝑟 (5-47) 

Substituting (5-46) and (5-47) into (5-41) and pre-multiplying by 𝑻𝐺
𝑇  yields  

𝑰𝐺𝜏̇𝑟 +𝑲𝐺𝜏𝑟 = ℎ𝐺  (5-48) 

where 𝑰𝐺, 𝑲𝐺 and ℎ𝐺  are the reduced identity matrix, reduced diffusivity matrix and reduced load vector 

respectively associated with the reduced model, defined as 

𝑰𝐺 = 𝑻𝐺
𝑇𝑰𝑻𝐺 ,     𝑲𝐺 = 𝑻𝐺

𝑇𝑲𝑻𝐺 ,     ℎ𝐺 = 𝑻𝐺
𝑇ℎ (5-49) 

5.4.1 Handling boundary conditions 

It is necessary to provide some notes on how the Dirichlet and Neumann boundary conditions 

are handled in this model order reduction scheme. Dirichlet boundary condition is applied when 

a specified value of the temperature is imposed on the boundary volume. In the reduction process 

using static condensation, any region with Dirichlet boundary conditions must be retained in the 

reduced model. This is because, as indicated by equation (5-48), there is no transformation applied 

to the temperature field. To maintain the dynamic behaviour of the system, boundaries with 

Dirichlet conditions must be included in the reduced model. 

On the other hand, Neumann boundary condition is applied when a specified value of heat is 

applied to the boundary volume, rather than temperature. In going from the full model to the 

reduced model, there is a transformation relationship between the heat source term in the full 

model and its counterpart in the reduced model, as defined in equation (5-49). This means that 

regardless of which regions are retained in the reduced model, the characteristics of the full model 
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are preserved. This provides greater flexibility in configuring the reduced model compared to the 

scenario with Dirichlet boundary conditions. 

5.4.2 Condensation of parameters of peridynamic heat conduction model 

The condensation of the micro-conductivity and micro-diffusivity functions will be illustrated 

using an example of a bar as shown in Figure 5-2. The goal is to demonstrate the behavior of the 

peridynamic parameters when subject to static condensation. Let the bar be of length 1unit. Three 

micro-conductivity functions and their corresponding micro-diffusivity functions will be studied: 

the constant (𝑘3 in (5-36)), linear (5-37) and quadratic (5-38) micro conductivity functions. 

 

Figure 5-2 : A discretized bar to illustrate condensation of the micro-conductivity functions. 

 

Figure 5-3 : Static condensation of micro-conductivity functions of a homogeneous bar: (a) 
Constant micro-conductivity, (b) Linear micro-conductivity and (c) Quadratic micro-conductivity 

The horizon is 𝛿 = 0.4 and 𝜌, 𝐶𝑣 = 1. The bar is discretized into nodes with spacing d𝑥 = 0.01. 

Condensation is carried out by retaining every fourth node in the full model as shown in Figure 

5-2. To proceed with the condensation, matrices of the micro-conductivity 𝒌 and the diffusivity 

𝑲 of the bar is computed. These matrices are computed using the expression for 𝑘3 in (5-36) as 

well as (5-37) and (5-38) in the case of micro-conductivity while the diffusivity matrices 

corresponding to these micro-conductivity functions are obtained by substituting the micro-

conductivity functions into (5-27). Condensation is achieved by introducing 𝒌 or 𝑲 into the second 
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expression of (5-49) to obtain the condensed micro-conductivity matrix 𝒌𝐺  or the condensed 

diffusivity matrix 𝑲𝐺. 

The condensed curves of both the micro-conductivity functions and the micro-diffusivity 

functions are characterised by sharp spikes as can be seen from Figure 5-3 and Figure 5-4, 

respectively. This behaviour is expected since the condensed model is defined only at the retained 

degrees of freedom. 

 

Figure 5-4 : Static condensation of micro-diffusivity functions of a homogeneous bar: (a) 
corresponding to constant micro-conductivity, (b) corresponding to linear micro-conductivity and 
(c) corresponding to quadratic micro-conductivity. 

5.5 Numerical verification 

The static condensation scheme described in section 5.4 will be tested on numerical problems to 

verify and demonstrate it capabilities in reducing the order of a peridynamic transient heat 

conduction model. To achieve this goal, the temperature field in a one-dimensional bar and two-

dimensional plate is predicted using the proposed static condensation scheme and the result is 

compared with prediction using the full model.  

5.5.1 A homogenous bar with constant temperature applied at both ends. 

A homogeneous bar initially at zero temperature is subjected to boundary temperature of 1 C 
o  at 

both ends as shown in Figure 5-5 . The bar has a length and thickness of 1 m and 0.01 m 

respectively. The specific heat capacity, thermal conductivity and density of the bar are specified 

as Cv=64 J/kgK, κ=233 W/mK and 𝜌 = 260 kg/m3 respectively. The material of the bar is 

assumed to have a micro-conductivity function of the form given in (5-36). 
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Figure 5-5 : A homogeneous bar subjected to constant temperature at both ends. 

The bar is discretized into 100 nodes thus the spacing between nodes is ∆𝑥 = 0.01. Three instances 

of the model reduction algorithm would be considered in this example. In the first instance, model 

order reduction of the bar is achieved by retaining every 2nd node of the full model. In the second 

instance, reduction is achieved by retaining every 5th node in the full model, and lastly in the third 

instance reduction is achieved by retaining every 10th node in the full model. A time step size of 

∆𝑡 = 10−2 𝑠 is used and the simulation was run for 3000-time steps. 

 

Figure 5-6 : Temperature distribution in a homogeneous bar subjected to constant temperature at 
both ends corresponding to retaining every 2nd node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. 

 

Figure 5-7: Temperature distribution in a homogeneous bar subjected to constant temperature at 
both ends corresponding to retaining every 5th node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. 
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Figure 5-8: Temperature distribution in a homogeneous bar subjected to constant temperature at 
both ends corresponding to retaining every 10th node of the full model and response function (a) 

𝑓1 (b) 𝑓2 and (c) 𝑓3. 

Temperature prediction for both full model and reduced model are presented in Figure 5-6, Figure 

5-7, and Figure 5-8. The reported results are temperature distribution across the bar corresponding 

to time steps 𝑡 = 10 𝑠, 20 𝑠 and 30 𝑠. These results show a good correlation between the full 

model and reduce model irrespective of the reduction algorithm employed thus demonstrating the 

capability of the model order reduction scheme in preserving the dynamics of a one-dimensional 

transient peridynamic heat conduction model in-spite of using fewer degrees of freedom. 

5.5.2 Numerical study of heat conduction in plate with a pre-existing crack 

The static condensation scheme will be used to study temperature distribution in a plate with a 

pre-existing crack. The geometry of the plate is specified as length L = 0.1 𝑚, width W = 0.1 𝑚, 

thickness H = 3.3× 10−4 𝑚 and the crack length 𝑎 = 1.6 × 10−3 𝑚 as shown in Figure 5-9. The 

thermal conductivity, specific heat capacity and density are specified respectively as: 𝜅 =

233 W/𝑚K, 𝐶𝑣 = 64 J/𝑘𝑔K and 𝜌 = 260 𝑘𝑔/𝑚3. 



89 
 

 

Figure 5-9 : Example 2 problem setup: A plate with pre-existing crack 

The numerical implementation of the peridynamic transient heat conduction model proceed by 

discretizing the plate into 90 nodes along each edge, so that we have 8100 nodes. The distance 

between nodes is ∆𝑥 = ∆𝑦 = 1.1×10−4 m. The horizon of the full model is 𝛿 = 3.015∆𝑥. Model 

order reduction on the plate is carried out as shown schematically in Figure 5-10. The condensation 

algorithm adopted is to retain every second node of every second row. The total simulation time 

is 𝑡 = 10−3 s with a time step of ∆𝑡 = 10−6 s. The plate would be studied for two case scenarios: 

Dirichlet and Neumann boundary conditions. 

 

Figure 5-10 : Schematic representation of static condensation 
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5.5.3 Example 1. Case I: Dirichlet boundary condition 

In this case, the plate is subjected to the following initial and boundary volume conditions 

respectively: 

𝑇((𝑥, 𝑦), 0) = 0 𝐶 
𝑜 ,      − 𝐿/2 ≤ 𝑥 ≤

𝐿

2
,    − 𝑊/2 ≤ 𝑦 ≤ 𝑊/2 (5-50) 

 and  

𝑇((𝑥, 𝑦), 𝑡) = 1 𝐶 
𝑜 ,     −

𝐿

2
≤ 𝑥 ≤

𝐿

2
,     𝑦 = −𝑊/2 (5-51) 

Note that in this case, although the condensation algorithm may exclude the boundary nodes, we 

are constrained to still retain them. Temperature distribution in time across the plate for both full 

model and the reduced model are shown Figure 5-11. A profile of the temperature along a grid of 

nodes parallel to the vertical axis of the plate at 𝑥 = −5.5×10−5 m is also shown in Figure 5-12. 

 

Figure 5-11 : Dirichlet boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10−5 s  (b) Full model corresponding to 𝑡 = 7×10−4 s  (c) Full 

model corresponding to 𝑡 = 7×10−3 s  (d) Reduced model corresponding to 𝑡 = 7 × 10−5 s  (e) 

Reduced model corresponding to 𝑡 = 7×10−4 s , (f) Reduced model corresponding to 𝑡 =

7×10−3 s  
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Figure 5-12 : Temperature profile along the grid at 𝑥 = −5.5×10−5 𝑚 parallel to the 𝑦 −axis of 
the plate with Dirichlet boundary condition. 

The results presented in Figure 5-11 and Figure 5-12 show a very good match between predictions 

from the full model and those from the reduced model. The difference between the full model 

and reduce model curves close to the crack location in Figure 5-12 reflects wider spacing between 

nodes in the reduced model due to fewer nodes. Note that all boundary nodes subjected to the 

Dirichlet boundary condition were retained in the reduced model. 

5.5.4 Example 2. Case II: Neumann boundary condition 

The goal in this example is to demonstrate the performance of the model order reduction in 

reducing a 2D model with a Neumann type boundary condition. In this case, in addition to (5-50), 

the plate is subjected to the following conditions: 

ℎ((𝒙, 𝒚), 𝑡) = 107,        0 ≤ 𝑥 ≤ 𝐿,     𝑦 = 0 (5-52) 

 

Figure 5-13((a), (b), (c)) illustrate the full model prediction of the distribution of temperature over 

the plate, while Figure 5-13((d), (e), (f)) are the predicted temperature distribution in the plate from 

the reduced model corresponding to simulation times 𝑡 = 7×10−5 s, 𝑡 = 7×10−4 s and 𝑡 =

7×10−3 s, respectively. Figure 5-14 present the curves of temperature profile along a grid parallel 

to the vertical axis of the plate for both full and reduced model corresponding to simulation times 

𝑡 = 7×10−4 s, 𝑡 = 3.5×10−3 s and 𝑡 = 7×10−3 s respectively. 

 = 0.0007 

 = 0.0035 

 = 0.007 
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The results presented show a near identical match between predictions from the full model and 

those from the reduced model. It is worthy to note that in the case of the Neumann type boundary 

condition, there was no constraint to the choice of nodes to retain and those to be condensed out. 

This potentially allows for the use of fewer degrees of freedom than in the scenario where a 

Dirichlet type boundary condition is imposed. 

 

Figure 5-13 : Neumann boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10−5 s (b) Full model corresponding to 𝑡 = 7×10−4 s (c) Full 

model corresponding to 𝑡 = 7×10−3 s (d) Reduced model corresponding to 𝑡 = 7×10−5 s (e) 

Reduced model corresponding to 𝑡 = 7×10−4 s, (f) Reduced model corresponding to 𝑡 =

7×10−3 s.  

 

Figure 5-14 : Temperature profile along the grid at 𝑥 = −5.5×10−5 m parallel to the 𝑦 −axis of 
the plate with Neumann boundary condition. 

 = 0.0007 

 = 0.0035 

 = 0.007 



93 
 

5.5.5 Example 3. Neumann boundary condition with retained nodes selected randomly. 

In this example, the plate of example 2 will be analysed using the same boundary conditions and 

plate properties. However, in coarsening the plate, instead of following a predetermined pattern 

as done in the previous examples, the retained nodes in this case will be selected randomly. The 

goal is to demonstrate the robustness of the condensation methodology in handling any kind of 

selection pattern during model reduction. In this condensation scheme, 2,025 nodes were 

randomly selected from a total of 8,190 nodes. Result of the temperature distribution over the 

surface of the plate is shown in Figure 5-15 while the temperature profile of nodes that falls along 

a grid located at 𝑥 = −5.5×10−5 m is presented in Figure 5-16.  

 

Figure 5-15: Neumann boundary condition: Temperature distribution across the plate: (a) Full 

model corresponding to 𝑡 = 7×10-5 s,  (b) Full model corresponding to 𝑡 = 7×10-4 s (c) Full 

model corresponding to 𝑡 = 7×10-3 s (d) Reduced model corresponding. 
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Figure 5-16: Temperature profile along a grid of the plate with Neumann boundary condition and 
condensation achieved through random selection of nodes. 

The results presented in Figure 5-15 and Figure 5-16, show good agreement between prediction 

from the full model and the condensed model. This is a demonstration of the robustness of the 

condensation methodology in predicting accurate result irrespective of the algorithm or pattern 

employed in the condensation process. 

5.5.6 Example 3. Nonuniform condensation 

It is sometimes necessary to have high resolution at certain region of the model while such level 

of detail may not be required in other regions. This model order reduction can be selectively 

applied to accommodate this different resolution requirement. For example, high resolution may 

be required around regions close to the crack in the plate in section 5.5.4 to allow for more detailed 

information than is required in regions further away from the cracks. To achieve this, a nonuniform 

condensation algorithm will be implemented in this example where all nodes around the crack are 

retained and regions further away from the crack will be condensed. The region around the crack 

is defined by a square of dimension 0.0033 m×0.0033 m centred around the crack. Model 

reduction of regions away from the crack is achieved by retaining every second node of every 

second row. 

Prediction of temperature distribution in time using the adaptive condensation scheme is presented 

alongside prediction from the full model in Figure 5-17. Temperature profile along a grid of nodes 

parallel to the vertical axis is also presented in Figure 5-18. In addition to the near identical 

prediction from both models as can be seen from Figure 5-17 and Figure 5-18, the temperature 

profile near the crack for both curves are also near identical. This contrasts with the case in sections 
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5.5.3 and 5.5.4 where there is a slight difference between the curves from the full and reduced 

models. 

 

Figure 5-17 : Adaptive condensation: Temperature distribution across the plate: (a) Full model 

corresponding to 𝑡 = 10 s (b) Full model corresponding to 𝑡 = 20 s, (c) Full model corresponding 

to 𝑡 = 30 s, (d) Reduced model corresponding to 𝑡 = 10 s, (e) Reduced model corresponding to 

𝑡 = 20 s, (f) Reduced model corresponding to 𝑡 = 30 s, 

 

Figure 5-18 : Adaptive condensation. Temperature profile along a grid of the plate with Neumann 

boundary condition. 

 = 0.0007 

 = 0.0035 

 = 0.007 



96 
 

5.6 Conclusion 

In this chapter, a nonlocal vector calculus was utilized to derive the general form of the nonlocal 

peridynamic transient heat conduction equation. It was demonstrated how the different explicit 

forms of the peridynamic heat transport equation developed in the literature can be recovered 

from the general form by using specific kernel functions. 

A model order reduction of the nonlocal peridynamic transient heat conduction model based on 

static condensation algorithm was implemented. The results from predictions based on the full 

order model and reduced order model show a near perfect match thus demonstrating the capability 

of the model reduction scheme in preserving the characteristics of the system. The model 

reduction scheme also allows for adaptive implementation of the condensation algorithm so that 

a more detailed model is implemented in regions where higher resolution results are needed for 

greater insight into the numerical predictions.  

The development in this thesis only treats systems with time invariant physical and geometrical 

characteristics. For example, model parameters such as the thermal conductivity or peridynamic 

bonds existing between material points must be time invariant. Because of this constraint, 

treatment of thermal conduction problems in the presence of propagating cracks is beyond the 

capabilities of the present scheme. In a future endeavour, the author would like to extend the 

capabilities of this model order reduction scheme to problems with time dependent properties. 
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Chapter 6 

6.0 Introduction 

This chapter focuses on the development of a multiscale constitutive theory for NOSBPD, within 

the framework of computational homogenization. The objective is to establish a homogenization 

framework that is anchored on a rigorous mathematical foundation that accounts for the nonlocal 

nature of PD. By developing such a computational homogenization framework, this chapter aims 

to provide a platform that bridges the gap between microscopic and the macroscopic behaviour 

of materials. The chapter layout the theoretical foundations, mathematical derivations, and 

computational implementation aspects of the proposed theory. Numerical examples and 

comparative analyses demonstrating the efficacy of the approach in accurately predicting the 

behaviour of materials with complex microstructures will be provided. The developed peridynamic 

computational homogenization theory contributes to the advancement of multiscale modelling in 

PD, enabling improved understanding and predictive capabilities for engineering applications. 

6.1 A Computational Homogenization Framework for Peridynamics 

The homogenization procedure developed in this chapter is a two-scale scheme: a microscopic 

scale represented by an RVE, and a macroscopic scale represented by a homogeneous effective 

medium. The constitutive law of the microscale model is assumed to be explicitly known at every 

point of the micro-domain while the constitutive law of the macromodel is not known everywhere. 

The objective is to retrieve a constitutive law of the macroscale substitute medium from a 

numerical solution of an initial volume constraint problem (IVCP) at the level of the underlying 

microstructure. In this multiscale framework, an RVE is assigned to each integration point of the 

macro continuum. A peridynamic equilibrium solution of the RVE is sought using boundary 

condition generated by the macroscale deformation gradient. The solution of the RVE IVCP yields 

the microscale stress field which is then homogenized to produce macroscale stresses and 

associated material tangent tensor. The coupling of the micro and macro scale is achieved through 

averaging relationships and the energetic equivalence statement of the Hill-Mandel micro-

homogeneity condition.  

6.1.1 Effective material constants 

Consider a heterogeneous medium 𝔅𝑜 with characteristic size of heterogeneities to be 𝑙ℎ𝑒𝑡𝑟𝑜. 

Momentarily, let this medium be replaced by a homogeneous ‘effective’ medium 𝔅ℎ. The original 

heterogeneous medium is the microscale, and the geometrical arrangement and material 

characteristics of the heterogeneities constitute the microstructure while the effective medium is 
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the macroscale. Define a grid on 𝔅ℎ and let each point 𝒙̅ on this grid be associated with a 

neighbourhood Ω𝑠. Let Ω𝑠 be bounded by a region Ω𝑐 of positive volume in ℝ𝑛. Let a sample of 

𝔅ℎoccupying the regions Ω𝑠 and Ω𝑐 be denoted as Ω𝑠
ℎ and Ω𝑐

ℎ respectively. Also, let a sample of 

𝔅𝑜 occupying Ω𝑠 be denoted as Ω𝑠
𝑜 as shown in Figure 6-1.  

 

Figure 6-1: Schematic Representation of Homogenization Process: Defining Representative 

Volume Element (RVE) in a Heterogeneous Material 

Now, define a grid on Ω𝑠 and let the position of points on this grid in the reference configuration 

be denoted as 𝒙. The grid associated with 𝒙̅ is called the macroscale and the grid associated with 

𝒙 is the microscale. Let the characteristic lengths associated with the macroscale and the microscale 

be 𝑙𝑚𝑎𝑐𝑟𝑜 and 𝑙𝑚𝑖𝑐𝑟𝑜 respectively. The morphology and material properties of the constituents of 

𝔅𝑜 in the microscale is called the microstructure of 𝔅ℎ. If Ω𝑠
o exist such that  

 𝑙ℎ𝑒𝑡𝑟𝑜 ≪ 𝑙𝑚𝑖𝑐𝑟𝑜 ≪ 𝑙𝑚𝑎𝑐𝑟𝑜 (6-1) 

then Ω𝑠
o is referred to as a Representative Volume Element (RVE) associated with the macro point 

𝒙̅ where (6-1) is the statement of the principle of separation of scale. This principle requires that 

the scale of the microstructure (or fluctuation of micro field such as stress and strain) should be 

much smaller than the size of the RVE considered which in turn should be much smaller than the 

characteristic length scale of the macro domain (or fluctuation of macro field variables). 

Let 𝔅ℎ be subjected to an affine deformation at its boundary. This will produce a homogeneous 

strain 𝜺̅ (for small deformation). This homogeneous strain will in turn generate a homogeneous 

stress field 𝝈̅ everywhere in 𝔅ℎ. For simplicity, we will assume linear elastic material response in 

both scales, then the material model that relates 𝝈̅ and 𝜺̅ given by the generalised Hooke’s law: 

 𝝈̅ = ℂ∗𝜺̅         or        𝜺̅ = 𝕊∗𝝈̅ (6-2) 
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is the effective or homogenised constitutive law, where ℂ∗ and 𝕊∗ are the effective stiffness and 

compliance tensors, respectively. At the microscale, the constitutive relation in each phase of the 

microscale is given by: 

 𝝈(𝒙) = ℂ(𝒙)𝜺(𝒙)         or        𝜺(𝒙) = 𝕊(𝒙)𝝈(𝒙) (6-3) 

If the condition for the existence of the RVE is satisfied (henceforth, this condition will be 

assumed to be satisfied), then the microscopic deformation will be assumed to admit the following 

decomposition: 

 𝒖(𝒙) = 𝜺̅𝒙 + 𝒖∗(𝒙)      and     𝜺(𝒙) = 𝜺̅ + 𝜺∗ (6-4) 

where 𝒖∗(𝒙) is the displacement fluctuation due to the presence of the microstructure and  𝜺∗ =

𝒢𝒙𝒖
∗(𝒙).  

6.1.2 Micro-macro scale transition 

6.1.2.1 Average theorems  

The transition of mechanical properties from the microscale to the macroscale is achieved using 

volume average relations. Let 𝜓 be a quantity defined over a domain Ω. We denote the volume 

average of 𝜓 over Ω as: 

 〈𝜓〉 =
1

𝑉Ω
∫𝜓𝑑𝑉Ω
Ω

 (6-5) 

where 𝑉Ω is the volume associated with Ω. 

Theorem 4.1: Nonlocal average stress theorem. Let 𝔅 be a heterogeneous body occupying the region 

Ω̅ = Ωs⋃Ω𝑐 where Ωs is the region where solution is sought and Ω𝑐 is the boundary volume. we 

denote the average stress and average strain over Ω𝑠 as 〈𝝈〉 and 〈𝜺〉 respectively. Let 𝔅 be in a state 

of static equilibrium when a constant stress tensor 𝛔̅ is applied on the boundary volume Ω𝑐, then 

the volume average of the stress field in Ωs is equal to 𝛔̅, that is: 

 〈𝛔〉 = 𝛔̅ (6-6) 

Proof: from (2-104), static equilibrium of the RVE in the absence of body forces requires the 

divergence of the Cauchy stress tensor in the case of small deformation to vanish, that is 

 𝒟𝜔(𝝈)(𝒙) = 𝟎 (6-7) 

The Cauchy stress field in Ω𝑠 can be written as 
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 𝝈(𝒙) = 𝝈𝒢𝜔𝒙(𝒙) (6-8) 

Taking the volume average of (6-8) and utilizing (2-20), yields 

 〈𝛔〉 =
1

𝑉Ωs
∫ 𝝈𝒢𝜔𝒙(𝒙)𝑑𝑉Ωs
Ωs

=
1

𝑉Ωs
∫ 𝝈𝒮𝜔𝒙(𝒙)𝑑𝑉Ωs
Ω𝑐

+
1

𝑉Ωs
∫ ∫ 𝒙𝒢𝜔

∗
𝒙
(𝝈)𝑑𝑉Ω̅

Ω̅Ω̅

𝑑𝑉Ω̅ (6-9) 

Considering the relationship 𝒟𝜔 = −𝒢𝜔
∗  and utilizing (6-7), then (6-9) reduces to 

〈𝛔〉 =
1

𝑉Ωs
∫ 𝝈𝒮𝜔𝒙(𝒙)𝑑𝑉Ωs
Ω𝑐

 

           =
1

𝑉Ωs
∫ 𝛔̅𝒮𝜔𝒙(𝒙)𝑑𝑉Ωc
Ω𝑐

 

        =
𝛔̅

𝑉Ωs
∫ 𝒮𝜔𝒙(𝒙)𝑑𝑉Ωc
Ω𝑐

 

         =  
𝛔̅

𝑉Ωs
∫ 𝒢𝜔𝒙(𝒙)𝑑𝑉Ωs
Ωs

 

 = 𝛔̅                (6-10) 

Theorem 4.2: Nonlocal average strain theorem. Let 𝔅 be as defined in theorem 4.1. If 𝔅 is subjected 

to applied displacement on the boundary volume Ω𝑐 generated by a constant strain tensor 𝜺̅ such 

that 𝒖0 = 𝜺̅𝒙 for all 𝒙 ∈ Ω𝑐, then the average of the infinitesimal strain field 𝜺(𝒙) (for all 𝒙 ∈ Ωs) 

is equal to 𝜺̅, that is: 

 〈𝜺〉 = 𝜺̅ (6-11) 

Proof: from (6-5), the volume average of the strain field over Ω is given by: 

〈𝜀𝑖𝑗〉 =
1

𝑉Ωs
∫ 𝜀𝑖𝑗𝑑𝑉Ω
Ωs

=
1

2𝑉Ωs
∫ (𝒢𝑥𝑗(𝑢𝑖) + 𝒢𝑥𝑖(𝑢𝑗)) 𝑑𝑉Ωs
Ωs

                                                          

=
1

2𝑉Ωs
∫ (𝒮𝑥𝑗(𝑢𝑖) + 𝒮𝑥𝑖(𝑢𝑗)) 𝑑𝑉Ωc
Ω𝑐

=
1

2𝑉Ωs
∫ (𝒮𝑥𝑗(𝜀𝑖̅𝑘𝑥𝑘) + 𝒮𝑥𝑖(𝜀𝑗̅𝑘𝑥𝑘)) 𝑑𝑉Ωc
Ω𝑐

 

= −
1

2𝑉Ωs
∫ [∫ (𝜀𝑖̅𝑘(𝑥𝑘 + 𝑥𝑘

′ )⨂𝛽𝑗𝑑𝑉𝒙′ +∫(𝜀𝑗̅𝑘(𝑥𝑘 + 𝑥𝑘
′ )⨂𝛽𝑖𝑑𝑉𝒙′

Ω̅Ω̅

] 𝑑𝑉Ωc
Ω𝑐

          

=
1

2𝑉Ωs
∫ (𝜀𝑖̅𝑘𝒢𝑥𝑘(𝑥𝑗) + 𝜀𝑗̅𝑘𝒢𝑥𝑘(𝑥𝑖)) 𝑑𝑉Ωs
Ωs
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=
1

2𝑉Ωs
∫ (𝜀𝑖̅𝑘𝛿𝑘𝑗 + 𝜀𝑗̅𝑘𝛿𝑘𝑖)𝑑𝑉Ωs
Ωs

                                                                               

=
1

2𝑉Ωs
∫ (𝜀𝑖̅𝑗 + 𝜀𝑗̅𝑖)𝑑𝑉Ωs
Ωs

                                                                                         

= 𝜀𝑖̅𝑗                                                                                                                          

This implies that the volume average of the strain field is completely defined in terms of the strain 

at the boundary volume. 

6.1.2.2 Macrohomogeneity condition 

In order for the averaged fields 〈𝝈〉 and 〈𝜺〉 to be admissible variables in the macroscale 

constitutive relation, the so-called Hill-Mandel macrohomogeneity condition [99] must be 

satisfied. The macrohomogeneity condition provide the basis for the substitution of an initially 

heterogeneous medium with a homogeneous one. This is achieved by prescribing an energetic 

equivalence between the heterogenous medium and the homogeneous substitution medium. Let 

the strain energy density of the underlying classical continuum material be: 

 𝑈 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 (6-12) 

then invoking the principle of constitutive correspondence allows us to write the strain energy of 

the peridynamic model as (6-12). The macrohomogeneity condition is stated as 

 〈𝜎𝑖𝑗𝜀𝑖𝑗〉 = 𝜎𝑖𝑗𝜀𝑖̅𝑗 (6-13) 

In other words, the condition requires that the average strain energy of the heterogeneous medium 

be equal to the strain energy density of the homogeneous medium. The condition under which 

(6-13) is satisfied for a peridynamic continuum material under constitutive correspondence will be 

established through a nonlocal analogue of the Hill’s lemma. 

Theorem 4.3: Nonlocal Hill’s lemma: Consider the body defined in theorem 4.1. Let 𝜎𝑖𝑗 and 𝜀𝑖𝑗 be 

the stress and strain field in 𝔅 under prescribed boundary traction or boundary displacement, then  

 〈𝜎𝑖𝑗𝜀𝑖𝑗〉 − 𝜎𝑖𝑗𝜀𝑖̅𝑗 =
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

 (6-14) 

is the nonlocal Hill’s lemma. 

Proof: We can write the scalar product of the average of the stress and strain tensor as 
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 𝜎𝑖𝑗𝜀𝑖̅𝑗 =
1

𝑉Ω𝑠
∫ 𝜎𝑖𝑗𝜀𝑖̅𝑗𝑑𝑉Ω𝑠
Ω𝑠

=
1

𝑉Ω𝑠
∫ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉Ω𝑠
Ω𝑠

=
1

𝑉Ω𝑠
∫ 𝜎𝑖𝑗𝒢𝜔

𝑠
𝑥𝑗
(𝑢𝑖)𝑑𝑉Ω𝑠

Ω𝑠

 (6-15) 

Thus, we can rewrite (6-13) as: 

〈𝜎𝑖𝑗𝜀𝑖𝑗〉 − 𝜎𝑖𝑗𝜀𝑖̅𝑗 =
1

𝑉Ω𝑠
∫ (𝜎𝑖𝑗𝜀𝑖𝑗 − 𝜎𝑖𝑗𝜀𝑖𝑗 − 𝜎𝑖𝑗𝜀𝑖̅𝑗 + 𝜎𝑖𝑗𝜀𝑖̅𝑗)𝑑𝑉Ω𝑠
Ω𝑠

                                                    

                    =
1

𝑉Ω𝑠
∫ (𝜎𝑖𝑘𝒢𝜔

𝑠
𝑥𝑘
(𝑢𝑖) − 𝜎𝑖𝑘𝒢𝜔

𝑠
𝑥𝑘
(𝑢𝑖) − 𝜎𝑖𝑘𝒢𝜔

𝑠
𝑥𝑘
(𝑥𝑗)𝜀𝑖̅𝑗 + 𝜎𝑖𝑘𝒢𝜔

𝑠
𝑥𝑘
(𝑥𝑗)𝜀𝑖̅𝑗) 𝑑𝑉Ω𝑠

Ω𝑠

 

                    =
1

𝑉Ω𝑠
∫ (𝜎𝑖𝑘𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖) − 𝜎𝑖𝑘𝒮𝜔

𝑠
𝑥𝑘
(𝑥𝑗)𝜀𝑖̅𝑗 − 𝜎𝑖𝑘𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖) + 𝜎𝑖𝑘𝒮𝜔

𝑠
𝑥𝑘
(𝑥𝑗)𝜀𝑖̅𝑗)𝑑𝑉Ω𝑐

Ω𝑐

 

=
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘) (𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖) − 𝒮𝜔

𝑠
𝑥𝑘
(𝑥𝑗)𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

                             

=
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

                                            

which proves (6-14). It is obvious from (6-14) that for the Hill-Mandel condition (6-13) to be 

satisfied will require that: 

 
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

= 0 (6-16) 

Thus, the satisfaction of the Hill-Mandel macrohomogeneity condition requires the integral in 

(6-16) to vanish.  

6.1.3 RVE boundary volume constraints 

In the classical continuum framework, the satisfaction of (6-16) is traditionally achieved in one of 

the following ways: (1) Voigt (or Taylor) assumption, (2) Reuss (or Sachs) assumption, (3) 

Homogeneous displacement (3) Prescribed periodicity in displacement (5) Homogeneous stress, 

and (6) Prescribed periodicity in traction. Methods 1-3 are categorised as deformation driven 

approaches while methods 4-6 are categorised as stress driven approaches. The task now is to 

establish the boundary requirements that will make the lemma (6-14) satisfy the Hill-Mandel 

condition in the nonlocal framework using the methods 1-6. 
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6.1.3.1 Voigt (Taylor) model 

In this method [100], (6-16) is satisfied by assuming a homogeneous deformation of the form 𝑢𝑖 =

𝑥𝑗𝜀𝑖̅𝑗 in Ω̅. This implies a constant strain field 𝜺(𝒙) = 𝜺̅ in the RVE. Inserting this assumption 

into (6-2) yields  

 𝜎𝑖𝑗 = 〈𝜎𝑖𝑗〉 = 〈ℂ𝑖𝑗𝑘𝑙𝜀𝑘̅𝑙〉 = 〈ℂ𝑖𝑗𝑘𝑙〉𝜀𝑘̅𝑙 = ℂ𝑖𝑗𝑘𝑙
∗ 𝜀𝑘̅𝑙       ⟹ ℂ𝑖𝑗𝑘𝑙

∗ = 〈ℂ𝑖𝑗𝑘𝑙〉 (6-17) 

From (6-17), the implication of the Taylor (Reuss) assumption is that the homogenized or effective 

stiffness tensor is simply the volume average of the stiffness tensor of the constituents. It will also 

be noticed that utilizing the Taylor assumption means we can obtain the effective material 

properties without the need to solve the microscale peridynamic (RVE) problem. 

6.1.3.2 Reuss model 

In this model [101], (6-16) is verified by assuming a constant stress 𝝈(𝒙) = 𝝈̅ in Ω̅. If this 

assumption is inserted into (6-2) yields 

  𝜀𝑖̅𝑗 = 〈𝜀𝑖̅𝑗〉 = 〈𝕊𝑖𝑗𝑘𝑙𝜎𝑘𝑙〉 = 〈𝕊𝑖𝑗𝑘𝑙〉𝜎𝑘𝑙 = 𝕊𝑖𝑗𝑘𝑙
∗ 𝜎𝑘𝑙       ⟹ 𝕊𝑖𝑗𝑘𝑙

∗ = 〈𝕊𝑖𝑗𝑘𝑙〉 (6-18) 

thus, meaning that the effective compliance tensor is simply the volume average of the compliance 

tensor of the constituents. As with the Voigt model, the utilization of the Reuss assumption allow 

the determination of the effective properties without recourse to solving the microscopic 

peridynamic (RVE) model.  

6.1.3.3 Constant Traction Boundary Volume Constraint (CTVBC) 

One way of satisfying (6-16) is to prescribe appropriate traction on the boundary volume Ω𝑐. A 

traditional way of achieving this in the classical continuum framework is by applying the so-called 

constant traction boundary condition. In this nonlocal framework, this is achieved by imposing on 

the boundary volume Ω𝑐, a constant traction generated by constant stress field: 

 𝝈(𝑥) = 𝝈̅             ∀ 𝒙 ∈ Ω𝑐 (6-19) 

Substituting (6-19) into (6-16) will vanish the boundary volume integral and therefore satisfying 

the Hill-Mandel condition (6-13). 

6.1.3.4 Linear Displacement Boundary Volume Constraint (LDBVC) 

This boundary condition is also referred to as homogeneous boundary condition in the literature. 

This boundary condition is achieved by applying appropriate displacement field to the boundary 

of the RVE that will varnish the gradient of the displacement terms of the integrand of the 
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boundary volume integral (6-16). A traditional way of achieving this is to apply a linear 

displacement of the form: 

 𝒖(𝒙) = 𝜺̅𝒙       ∀𝒙 ∈ Ω𝑐 (6-20) 

Inserting (6-20) into (6-16) yields: 

1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑥𝑗𝜀𝑖̅𝑗 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

=
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑥𝑗 − 𝑥𝑗)𝜀𝑖̅𝑗) 𝑑𝑉Ω𝑐

Ω𝑐

 

                    =
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)(𝛿𝑗𝑘 − 𝛿𝑗𝑘)𝜀𝑖̅𝑗) 𝑑𝑉Ω𝑐
Ω𝑐

 

             =
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)(𝜀𝑖̅𝑘 − 𝜀𝑖̅𝑘))𝑑𝑉Ω𝑐
Ω𝑐

 

= 0                                                    

Thus, proving (6-20) satisfies the Hill-Mandel condition (6-13). 

6.1.3.5 Periodic Boundary Volume Constraint (PBVC) 

This model is appropriate to model materials with periodic microstructure. The reference 

configuration of the RVE is assumed to be a geometric shape with even number of sides or faces 

for two- and three-dimensional problems, respectively. A square RVE is shown in Figure 6-1 for 

two-dimensional problems, with each pair 𝑖 of the RVE boundary region assumed to be equally 

sized subsets, that is, there should be a one-to-one correspondence between points in Ω𝑖
+ and Ω𝑖

−.  

 

Figure 6-2: Example square RVE showing corresponding boundary regions. 
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In this method, a displacement field of the form (6-4) is applied on the boundary region such that 

for each pair of boundary points (𝒙+ ∈ Ω𝑖
+, 𝒙− ∈ Ω𝑖

−): 

 𝒖∗(𝒙+) = 𝒖∗(𝒙−)  (6-21) 

The difference in displacement between two corresponding boundary points 𝒙+, 𝒙− is then given 

by: 

 𝒖(𝒙+) − 𝒖(𝒙−) = 𝜺̅(𝒙+ − 𝒙−) (6-22) 

To achieve static equilibrium of the RVE, an anti-periodic stress field is applied in the boundary 

domain such that: 

 𝝈(𝒙−) = −𝝈(𝒙+) (6-23) 

for each pair of points in Ω𝑖
+ and Ω𝑖

−. 

Utilizing (6-22) and (6-23) the Hill-Mandel condition is satisfied as follows: 

1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

                                                             

=
1

𝑉Ω𝑠
∑[∫ ((𝜎𝑖𝑘

+ − 𝜎+𝑖𝑘)𝒮𝜔
𝑠
𝑥𝑘
(𝑢𝑖

+ − 𝑥𝑗
+𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐+𝑖

Ω𝑐
+
𝑖

𝑛

𝑖=1

+∫ ((𝜎𝑖𝑘
− − 𝜎−𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖

− − 𝑥𝑗
−𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐−𝑖

Ω𝑐
−
𝑖

] 

=
1

𝑉Ω𝑠
∑[∫ ((𝜎𝑖𝑘

+ − 𝜎+𝑖𝑘)𝒮𝜔
𝑠
𝑥𝑘
(𝑢𝑖

+ − 𝑥𝑗
+𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐+𝑖

Ω𝑐
+
𝑖

𝑛

𝑖=1

−∫ ((𝜎𝑖𝑘
+ − 𝜎+𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖

− − 𝑥𝑗
−𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐−𝑖

Ω𝑐
−
𝑖

] 

         =
1

𝑉Ω𝑠
∑[∫ ((𝜎𝑖𝑘

+ − 𝜎+𝑖𝑘)𝒮𝜔
𝑠
𝑥𝑘
(𝑢𝑖

+ − 𝑢𝑖
− − 𝜀𝑖̅𝑗(𝑥𝑗

+ − 𝑥𝑗
−))⏟                

=0 from (6-22)

)𝑑𝑉Ω𝑐𝑖
Ω𝑐
+
𝑖

]

𝑛

𝑖=1

 

= 0                                                                                                                 
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6.1.4 Bounds for effective properties. 

Predictions from the Voigt and Reuss assumptions were shown in [102] to provide the upper and 

lower bounds to the effective material properties. Effective stiffness and hence the effective elastic 

modulus obtained using any method should lie between this bound. That is, 

 ℂ∗𝑅 ≤ ℂ∗ ≤ ℂ∗𝑉 (6-24) 

where ℂ∗𝑅, ℂ∗𝑉 are the effective stiffness tensors due to Reuss and Voigt assumptions respectively 

and ℂ∗ is the effective stiffness due to any other method. As emphasised in [103], the 

corresponding entries of ℂ∗𝑅, ℂ∗ and ℂ∗𝑉 do not necessarily satisfy (6-24), however, the 

corresponding diagonal terms and eigenvalues are shown to satisfy (6-24). It can also be shown 

that the inequality (6-24) hold true in terms of elastic constants such as bulk and shear moduli. 

Consider a given strain tensor 𝜀𝑘𝑙 at a point, the stress 𝜎𝑖𝑗 acting at the point for a linear 2D 

isotropic media undergoing small deformation is given by (6-23) and the fourth order isotropic 

tensor ℂ𝑖𝑗𝑘𝑙 can be written as: 

 ℂ𝑖𝑗𝑘𝑙 = 𝜅𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑖𝑗𝛿𝑘𝑙) (6-25) 

where 𝜅 and 𝜇 are the bulk and shear moduli respectively. If we define two fourth order isotropic 

tensors 𝐼1 and 𝐼2 as: 

 𝐼1 =
1

2
𝛿𝑖𝑗𝛿𝑘𝑙       and      

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑖𝑗𝛿𝑘𝑙) (6-26) 

Then (6-25) can be written as 

 ℂ = 2𝜅𝐼1 + 2𝜇𝐼2 (6-27) 

It can be shown from (6-27) that the compliance tensor can be written as: 

 𝕊 =
1

2𝜅
𝐼1 +

1

2𝜇
𝐼2 (6-28) 

For the sake of brevity, we will adopt a symbolic notation that will allow us write (6-27) and (6-28) 

as: 

 ℂ = (2𝜅, 2𝜇),         𝕊 = (
1

2𝜅
,
1

2𝜇
)  (6-29) 
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Given a two-phase composite having constituent material constants 𝜅0, 𝜅1, 𝜇0 and 𝜇1 and volume 

fractions 𝑐0 and 𝑐1such that 𝜅1 > 𝜅0 and 𝜇1 > 𝜇0, then the volume average of the stiffness and 

compliance tensor can be written as: 

 [𝑐0ℂ0 + 𝑐1ℂ1],          [𝑐0𝕊0 + 𝑐1𝕊1] (6-30) 

Utilizing (6-38) and (6-39) in (6-24), it can easily be shown that: 

 [
2𝜅0𝜅1

𝑐0𝜅1 + 𝑐1𝜅0
,

2𝜇0𝜇1
𝑐0𝜇1 + 𝑐1𝜇0

] ≤ (2𝜅∗, 2𝜇∗) ≤ [2(𝑐0𝜅0 + 𝑐1𝜅1), 2(𝑐0𝜇0 + 𝑐1𝜇1)] (6-31) 

It follows from (6-31) that: 

 
𝜅0𝜅1

𝑐0𝜅1 + 𝑐1𝜅0
≤ 𝜅∗ ≤ 𝑐0𝜅0 + 𝑐1𝜅1 (6-32) 

and  

 
𝜇0𝜇1

𝑐0𝜇1 + 𝑐1𝜇0
≤ 𝜇∗ ≤ 𝑐0𝜇0 + 𝑐1𝜇1 (6-33) 

where the left-hand sides of (6-32) and (6-33) give the Reuss lower bound while the right-hand 

sides give the Voigt upper bound, and 𝜅∗ and 𝜇∗ and the 2D effective bulk and shear moduli. It is 

noted that the distance between the Reuss lower bound and the Voigt upper bound is large and 

often does not give much information, a tighter bound is achieved using the Hashin-Shtrikman 

bounds [104]. 

 
𝜅0 +

𝑐1
1

𝜅1 − 𝜅0
+

3𝑐0
3𝜅0 + 4𝜇0

≤ 𝜅∗ ≤ 𝜅1 +
𝑐0

1
𝜅0 − 𝜅1

+
3𝑐1

3𝜅1 + 4𝜇1

 
(6-34) 

and 

 
𝜇0 +

𝑐1
1

𝜇1 − 𝜇0
+
6𝑐0(𝜅0 + 2𝜇0)
5𝜇0(3𝜅0 + 4𝜇0)

≤ 𝜇∗ ≤ 𝜇1 +
𝑐0

1
𝜇0 − 𝜇1

+
6𝑐1(𝜅1 + 2𝜇1)
5𝜇1(3𝜅1 + 4𝜇1)

 
(6-35) 

 

6.1.5 Computational implementation of the PDCHT  

To obtain the numerical solution of the RVE in the PDCHT framework, the RVE is discretised 

following the procedure outlined in section 2.4. Being a nonlocal problem, the RVE is subjected 

to appropriate volume constraints. In the numerical validation that follows in section 6.2, the RVEs 

will be subjected to LDBVC and PBVC. Although computational algorithm to implement these 
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boundary conditions in the framework of finite element analysis is well established and discussed 

by many authors [105-108], however, implementing them in a nonlocal boundary value constraint 

problem such as the RVE in the PDCHT framework require special treatment. This is particularly 

the case with the PBVC. To implement the PBVC in the PDCHT framework, The displacement 

driven approach to homogenization is utilised in this work and thus, to determine the effective 

elasticity tensor, the first of (6-2) is employed. Combining this with (6-6) and (6-11) allow us to 

write the expression for the effective elasticity tensor as 

 ℂ𝑖𝑗𝑘𝑙
∗ =

1

𝑉Ω𝑠𝜀𝑘̅𝑙
∫ 𝜎𝑖𝑗𝑑𝑉Ω𝑠
Ωs

 (6-36) 

where the stress field 𝜎𝑖𝑗 in Ω𝑠 is obtained using discretised peridynamic equation of motion 

(2-110) and 𝜀𝑘̅𝑙 is the prescribed strain tensor on the boundary volume. for a two-dimensional 

problem, ℂ𝑖𝑗𝑘𝑙
∗  has six components. However, owing to its symmetric property, only three 

components are independent. Thus, to determine the components of ℂ𝑖𝑗𝑘𝑙
∗  for a two-dimensional 

problem require the application of three loading conditions that result in deformation modes 

which render all but one of the three independent components of the strain tensor to zero. For 

the purpose of this implementation, the applied strain tensors are given as 

 𝜀1̅1 = [
𝑐 0
0 0

] , 𝜀2̅2 = [
0 0
0 𝑐

] , 𝜀1̅2 = [
0 1/2𝑐 

1/2𝑐 0
] (6-37) 

where 𝑐 is the magnitude of the prescribed strain tensor. These strains are then used to generate 

displacement in the boundary volume depending on the boundary condition used. In the case of 

LDBC, the displacement, 𝒖 generated at every node 𝒙𝑖 in the boundary volume after discretization 

of the RVE follows from (6-20) as 

 𝒖𝑖
(1) = {

𝑐𝛼𝑖
0
} , 𝒖𝑖

(2) = {
0
𝑐𝛽𝑖
} , 𝒖𝑖

(3) = {
𝑐𝛽𝑖
𝑐𝛼𝑖
} (6-38) 

where 𝛼𝑖 and 𝛽𝑖 are the components of the coordinates of 𝒙𝑖 in the first and second reference 

direction respectively. To implement the PBVC, nodes in the boundary volume are broadly 

grouped and categorised as ‘facial’ nodes and ‘corner’ nodes. Thus, from Figure 6-2, all nodes in 

boundary sub-volumes Ω1
−, Ω1

+, Ω2
− and Ω2

+ are facial nodes while those in Ω3
−, Ω3

+, Ω4
− and Ω4

+ 

are corner nodes. If we write (6-22) in expanded form for two-dimensional space, we have: 

 {𝑢
𝑖+

𝑣𝑖+
} − {𝑢

𝑖−

𝑣𝑖−
} = [

𝜀1̅1 𝜀1̅2
𝜀1̅2 𝜀2̅2

] {
𝛼𝑖+ − 𝛼𝑖−

𝛽𝑖+ − 𝛽𝑖−
} (6-39) 
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for every pair of points in the i-th pair of two opposite parallel faces. Applying (6-39) to facial pairs 

Ω1
−, Ω1

+, Ω2
− and Ω2

+ result in the following relative displacement boundary constraints. 

 

𝑢1+ − 𝑢1− = 𝜀1̅1(𝛼
1+ − 𝛼1−)

𝑣1+ − 𝑣1− = 𝜀1̅2(𝛼
1+ − 𝛼1−)

}     (𝑎)

𝑢2+ − 𝑢2− = 𝜀1̅2(𝛽
2+ − 𝛽2−)

𝑣2+ − 𝑣2− = 𝜀2̅2(𝛽
2+ − 𝛽2−)

}     (𝑏)

 (6-40) 

With the group of equations in (6-40)-(a) associated with the pair Ω1
−, Ω1

+ and the group (6-40)-(b) 

associated with the pair Ω2
− and Ω2

+ respectively. It will be noticed that each corner volume is 

shared by two facial volumes and applying (6-40) to nodes within these boundary volumes will 

lead to over constrained boundary. In order to eliminate this problem, the following translational 

periodicity is imposed at the corner boundary volumes:  if we write Ω3
− = Ω1

𝑐 , Ω3
+ = Ω2

𝑐 , Ω4
− = Ω3

𝑐  

and  Ω4
+ = Ω4

𝑐 , then volumes Ω1
𝑐 and Ω2

𝑐  are assumed to be images of Ω3
𝑐  under horizontal and 

vertical translational symmetry respectively while Ω4
𝑐  is the image of Ω3

𝑐  under combined horizontal 

and vertical symmetry so that the following relative displacement constraints are imposed between 

nodes in the corner boundary volumes 

 
𝑢𝑐1 − 𝑢𝑐3 = 𝜀1̅2(𝛽

𝑐1 − 𝛽𝑐3)

𝑣𝑐1 − 𝑣𝑐3 = 𝜀2̅2(𝛽
𝑐1 − 𝛽𝑐3)

 (6-41) 

 
𝑢𝑐2 − 𝑢𝑐3 = 𝜀1̅1(𝛼

𝑐2 − 𝛼𝑐3)

𝑣𝑐2 − 𝑣𝑐3 = 𝜀2̅2(𝛼
𝑐2 − 𝛼𝑐3)

 (6-42) 

and 

 
𝑢𝑐4 − 𝑢𝑐3 = 𝜀1̅1(𝛼

𝑐4 − 𝛼𝑐3) + 𝜀1̅2(𝛽
𝑐4 − 𝛽𝑐3)

𝑣𝑐4 − 𝑣𝑐3 = 𝜀1̅2(𝛼
𝑐4 − 𝛼𝑐3) + 𝜀2̅2(𝛽

𝑐4 − 𝛽𝑐3)
 (6-43) 

To eliminate translational rigid body motion of the RVE, nodes within the corner volume Ω3
𝑐  are 

constrained. The determination of the effective elastic tensor in both problems proceeds under 

the assumption of small deformation and plane stress. This allows the use of infinitesimal strain 

tensor and Cauchy stress tensor directly in (2-101). Once the Cauchy stress field in the RVE is 

obtained, (6-36) is used to recover the effective elasticity tensor. 

6.2 Validation of the homogenization scheme 

Having established and justified the peridynamic correspondence homogenization theory 

(PDCHT) in section 6.1, numerical examples are presented in this section to benchmark the 

scheme against the Reus-Voigt and Hashin-Shtrikman bounds discussed in section 6.1.3. 

Prediction from the PDCHT would also be compared against predictions from other classical 
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mean field homogenization methods such as the Eshelby dilute estimate [109] and the Mori-

Tanaka method [110]. Also, the result from the PDCHT will be compared to result obtained from 

computational homogenization based on the Finite Element Analysis. After validation of the 

PDCHT strategy, the framework will be used to predict the effective properties given elliptical 

inclusion in order to observe the influence of inclusion shape on the effective properties predicted 

by the method. All materials considered throughout this section are assumed to be two-phased 

consisting of a matrix phase and a stiffer fibre phase (inclusion). Properties associated with matrix 

will be denoted with the superscript (𝑚) while those associated with the fibre phase will be 

denoted with superscript (𝑓). Both matrix and fibre phases are assumed to be isotropic under 

isothermal linear elasticity. 

 

Figure 6-3: RVE geometry showing various configuration. 

To pursue the objectives of validating the proposed method, three numerical examples will be 

considered. Figure 6-3 shows the RVE configurations to be considered in this section, and the 

properties of the constituent materials for the RVEs to be considered in the numerical examples 

are given in table 1. 

Table 6-1: Material properties of the constituents of RVEs 

Material  𝑬1 = 𝑬1(𝐺𝑃𝑎) 
 𝝂12  𝝁12(𝐺𝑃𝑎) 

 𝜿12(𝐺𝑃𝑎) 

Boron  379.30  0.10  172.41  158.04 

Graphite  235.00  0.20  97.92  130.56 

Glass  73.10  0.22  29.96  43.51 

Aluminium  68.30  0.30  26.27  56.92 

Epoxy   3.45   0.35   1.28   3.83 
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6.2.1 Comparing the PDCHT results with bounding theorems and other established 

methods. 

In this example, effective properties predicted from the PDCHT will be compared against 

computational result from the bounding theorems of Reuss, Voigt and Hashin-Shtrikman, the 

mean field methods of Eshelby and Mori-Tanaka as well as the full-field method based on the 

finite element analysis as implemented by the authors. The material is assumed to be a glass in 

epoxy-matrix composite with properties given in Table 6-1 under a plane strain condition. The 

RVE geometry is assumed to consist of epoxy matrix with a circular glass fibre centrally placed as 

shown in Figure 6-3(a). The problem is solved over the range of all admissible fibre volume 

fractions 0 − 100%. Solutions will be sought considering LDBVC and PBVC. Results from the 

computations are presented below. 

The predicted evolution of the effective elastic stiffness tensor and corresponding effective elastic 

constants from PDCHT, the bounding theorems and other established methods are presented in 

Figure 6-4 and Figure 6-5 respectively for the case of LDBVC. Similar analysis with the same RVE 

subjected to PBVC is conducted and the results are presented in Figure 6-6 and Figure 6-7 

representing the evolution of the effective stiffness tensor and elastic constants respectively. 

 

Figure 6-4: Evolution of the effective stiffness tensor of glass in epoxy-matrix composite – 

LDBVC (a) 𝐶11
∗ = 𝐶22

∗  (b) 𝐶22
∗  (c) 𝐶33

∗  and (d) 𝐶12
∗  
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Figure 6-5: Evolution of the effective elastic constants – LDBVC (a) Effective bulk modulus, (b) 
Effective shear modulus and (c) Effective Elastic modulus 

 

Figure 6-6: Evolution of the effective stiffness tensor of glass in epoxy-matrix composite – PBVC 

(a) 𝐶11
∗ = 𝐶22

∗  (b) 𝐶22
∗  (c) 𝐶33

∗  and (d) 𝐶12
∗  

 

Figure 6-7: Evolution of the effective elastic constants – PBVC (a) Effective bulk modulus, (b) 
Effective shear modulus and (c) Effective Elastic modulus 
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Figure 6-8: Evolution of effective elastic constant obtained using the LDBVC and PBVC 

Prediction from PDCHT of the effective stiffness tensors presented in Figure 6-4 and Figure 6-6 

lie within the Reuss-Voigt bound as well as the tighter Hashin-Shtrikman bound thus satisfying 

(6-24). Similar agreement with the bounding theorems is observed with prediction of the effective 

bulk and shear moduli as presented in Figure 6-5 and Figure 6-7 thus satisfying (6-32) and (6-33) 

for the Reuss-Voigt bounds and (6-34) and (6-35) for the Hashin-Shtrikman bounds.  This is true 

for both the predictions under LDBVC and PBVC. Another consequence of the bounding 

equations (6-24), and (6-32)-(6-35) is that the elastic modulus from any proposed homogenization 

theory is predicted to lie within the Reuss-Voigt and Hashin-Shtrikman bound. The evolution of 

the effective elastic modulus obtained from the proposed theory indeed lies within these bounds 

as shown in Figure 6-5(c) and Figure 6-7(c) for LDBVC and PBVC, respectively. 

The result of prediction from the PDCHT is also compared to predictions from the mean field 

homogenization methods of Eshelby and Mori-Tanaka as well as a full field computational method 

based on FEM solution of the RVE. The results from these methods are also presented in Figure 

6-4 to Figure 6-7. The predictions from both the PDCHT and FEM comply with the bounding 

theorems and compared to predictions from the Mori-Tanaka method, the PDCHT prediction 

gives an upper estimate of the effective properties. It is worthy to note that the prediction in this 

example from the Mori-Tanaka method coincide with those from the Hasin-Shtrikman lower 

bound. This is the case in some situations and has been reported in the literature [111]. Predictions 

from the Eshelby dilute method agrees with results from the PDCHT only for very low fibre 

volume fraction. This is an expected trend as the dilute method is expected to give reasonable 

predictions only for very low (dilute) fibre volume fraction. 
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Since the fibre is assumed to be of circular cross-section, it can be shown that the maximum 

volume fraction that can be achieved with a perfectly circular fibre cross-section is 78.54%. Beyond 

this volume fraction, the circular geometry of the fibre cross-section degenerates and thereby 

causes a change in the morphology of the RVE. This change in morphology is reflected in the 

results predicted from the PDCHT and FEM solutions of the RVE and expectedly not the 

bounding theorems as shown in Figure 6-4 to Figure 6-7. A comparison of the predicted effective 

elastic modulus obtained using both LDBVC and PBVC as shown in Figure 6-8 shows that the 

prediction using the LDBVC provides an upper estimate of the two boundary conditions at least 

within the small deformation regime. This is a tested and proven result from the literature [103, 

112, 113]. 

6.2.2 Comparing the PDCHT results with results from published works 

The objective in this example is to compare predictions from the proposed PDCHT with 

experimental results from [114] and computational predictions from the following references: [72, 

115-118]. The RVE is assumed to be a square array of circular shaped boron fibre placed in the 

centre of aluminium matrix as shown in Figure 6-3(a). The properties of boron and aluminium are 

given in Table 6-1. The RVE volume constrained problem is solved under the assumption of plane 

stress and PBVC. 

Table 6-2: Effective material properties for boron/aluminium composite (𝑐1 = 0.47) 

Models  𝐸11 = 𝐸22  𝜈12  𝜇12 

PDHCT   140   0.185   52.5 

Experiment [114]  140  0.29  52.0 

OSBPDHT [117]  150  0.18  53.4 

PD UC [72]  144.4  0.251  54.3 

FEM [116]  144  0.19  57.2 

LTEHOT [115]  144  0.195  54.34 

VAMUCH [118]   144.1   0.195   54.39 

**OSBPDHT=Ordinary State-based Peridynamic Homogenization Theory; PD 

UC=Peridynamic Unit Cell; FEM=Finite Element Method; LTEHOT=Linear Thermoelastic 

Higher-Order Theory; VAMUCH=Variational Asymptotic Method for Unit Cell Homogenization 

Prediction of effective elastic properties of the composite system from the PDCHT is presented 

in Table 6-2 alongside results from some published references. Analysis of the results shows that 

the prediction from PDCHT provide the closest correlation to the experimental result from [114] 

in the estimate of the effective elastic and shear moduli. Compared to other computational 

methods, prediction of these moduli from the PDCHT gives the lower estimates. However, the 
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effective Poisson’s ratio 𝜈12 = 0.185 predicted by the PDCHT is markedly different from the 

experimental result but agree well with predictions from the FEM, OSBPDHT, FEM, PD UC and 

LTEHOT. 

6.2.3 Effective properties of RVE with elliptical fibre inclusion 

In this example, two RVEs, the first with circular and the second with elliptical fibre inclusions as 

shown in Figure 6-3 (a) and Figure 6-3 (b) respectively will be considered. Two composites will be 

considered. The first is a glass in aluminium-matrix composite and the second is a graphite in 

aluminium-matrix composite with material properties as given in Table 6-1. The stiffness ratio (or 

phase contrast) 𝜑 (𝜑 ≔ 𝐸(𝑓)/𝐸(𝑚)) of the first material is 1.07 while that of the second material 

is 3.44. The objective in this example is to briefly demonstrate the capability of the PDCHT in 

capturing the effect of inclusion shape and phase contrast on the effective behaviour of materials 

using the LDBVC. 

 

Figure 6-9: Evolution of effective stiffness ratio under LDBVC (a) 𝜑 = 1.07 (b) 𝜑 = 3.44 
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Table 6-3: Evolution of the elastic modulus in directions 1 and 2 (Glass in aluminium: circular 
inclusion) 

Glass in aluminium: Circular inclusion, 𝜑 = 1.07 

  PD  FEM  Percentage difference 

𝑐(𝑓)  𝐸1 𝐸2  𝐸1 𝐸2  % ∆ 𝐸1 % ∆ 𝐸2 
0  6.84E+10 6.84E+10  6.83E+10 6.83E+10  1.88E-01 1.88E-01 

0.05  6.87E+10 6.87E+10  6.85E+10 6.85E+10  2.47E-01 2.47E-01 

0.1  6.89E+10 6.89E+10  6.87E+10 6.87E+10  3.17E-01 3.17E-01 

0.15  6.91E+10 6.91E+10  6.89E+10 6.89E+10  3.09E-01 3.09E-01 

0.2  6.94E+10 6.94E+10  6.92E+10 6.92E+10  3.34E-01 3.34E-01 

0.25  6.96E+10 6.96E+10  6.94E+10 6.94E+10  3.50E-01 3.50E-01 

0.3  6.98E+10 6.98E+10  6.96E+10 6.96E+10  3.53E-01 3.53E-01 

0.35   7.01E+10 7.01E+10   6.98E+10 6.98E+10   4.21E-01 4.21E-01 

 

Table 6-4: Evolution of the elastic modulus in directions 1 and 2 (Graphite in aluminium: circular 
inclusion) 

Graphite in aluminium: Circular inclusion, 𝜑 = 3.44 

  PD  FEM  Percentage difference 

𝑐(𝑓)  𝐸1 𝐸2  𝐸1 𝐸2  % ∆ 𝐸1 % ∆ 𝐸2 
0  6.84E+10 6.84E+10  6.83E+10 6.83E+10  1.09E-01 1.09E-01 

0.05  7.22E+10 7.22E+10  7.10E+10 7.10E+10  1.65E+00 1.65E+00 

0.1  7.66E+10 7.66E+10  7.42E+10 7.42E+10  3.08E+00 3.08E+00 

0.15  8.08E+10 8.08E+10  7.81E+10 7.81E+10  3.32E+00 3.32E+00 

0.2  8.56E+10 8.56E+10  8.21E+10 8.21E+10  4.08E+00 4.08E+00 

0.25  9.08E+10 9.08E+10  8.65E+10 8.65E+10  4.69E+00 4.69E+00 

0.3  9.61E+10 9.61E+10  9.13E+10 9.13E+10  5.07E+00 5.07E+00 

0.35   1.03E+11 1.03E+11   9.64E+10 9.64E+10   6.55E+00 6.55E+00 

 

Table 6-5: Evolution of the elastic modulus in directions 1 and 2 (Glass in aluminium: elliptical 
inclusion) 

Glass in aluminium: Elliptical inclusion, 𝜑 = 1.07 

  PD  FEM  Percentage difference 

𝑐(𝑓)  𝐸1 𝐸2  𝐸1 𝐸2  % ∆ 𝐸1 % ∆ 𝐸2 
0  6.84E+10 6.84E+10  6.83E+10 6.83E+10  1.88E-01 1.88E-01 

0.05  6.87E+10 6.87E+10  6.85E+10 6.85E+10  2.65E-01 2.64E-01 

0.1  6.89E+10 6.89E+10  6.87E+10 6.87E+10  3.08E-01 3.08E-01 

0.15  6.91E+10 6.92E+10  6.89E+10 6.89E+10  3.62E-01 3.61E-01 

0.2  6.94E+10 6.94E+10  6.91E+10 6.92E+10  3.49E-01 3.48E-01 

0.25  6.96E+10 6.97E+10  6.94E+10 6.94E+10  3.77E-01 3.76E-01 

0.3  6.99E+10 6.99E+10  6.96E+10 6.96E+10  4.48E-01 4.48E-01 

0.35   7.01E+10 7.02E+10   6.98E+10 6.98E+10   4.50E-01 4.45E-01 
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Table 6-6: Evolution of the elastic modulus in directions 1 and 2 (Graphite in aluminium: elliptical 
inclusion) 

Graphite in aluminium: Elliptical inclusion, 𝜑 = 3.44 

  PD   FEM  Percentage difference 

𝑐(𝑓)  𝐸1 𝐸2  𝐸1 𝐸2  % ∆ 𝐸1 % ∆ 𝐸2 
0  6.84E+10 6.84E+10  6.83E+10 6.83E+10  1.09E-01 1.09E-01 

0.05  7.28E+10 7.19E+10  7.14E+10 7.05E+10  1.91E+00 1.94E+00 

0.1  7.79E+10 7.56E+10  7.53E+10 7.35E+10  3.30E+00 2.90E+00 

0.15  8.36E+10 7.98E+10  7.99E+10 7.66E+10  4.52E+00 4.04E+00 

0.2  9.00E+10 8.38E+10  8.55E+10 8.03E+10  4.98E+00 4.12E+00 

0.25  9.80E+10 8.84E+10  9.18E+10 8.41E+10  6.35E+00 4.80E+00 

0.3  1.08E+11 9.34E+10  9.84E+10 8.77E+10  8.78E+00 6.06E+00 

0.35   1.19E+11 9.82E+10   1.08E+11 9.20E+10   9.18E+00 6.30E+00 

 

The evolution of the normalised effective elasticity modulus (effective stiffness ratio) 𝜑𝑖
∗ =

𝐸𝑖
∗/𝐸𝑖(𝑚) with respect to fibre volume fraction 𝑐(𝑓) for RVEs with both circular and elliptical 

inclusion for the two materials alongside results from FEM simulation of the same problems are 

presented in Figure 6-9. In Table 6-3 to Table 6-6, the evolution of the elastic modulus in directions 

1 and 2 as well as the percentage difference between predictions from PDCHT and FEM are 

presented. 

From the result presented for predictions from both PDCHT and FEM, the effective material 

behaviour as represented by the evolution of the effective elastic modulus for the RVE with 

circular inclusion shows linear behaviour for low material phase contrast (𝜑 = 1.07) and weak 

nonlinear behaviour for higher material phase contrast (𝜑 = 3.44). In the case of RVE with 

elliptical inclusion, the result for lower material phase contrast shows linear behaviour while the 

effective material behaviour at higher material phase contrast shows strong nonlinear behaviour. 

The amplified nonlinearity is because the elliptical inclusion introduces an anisotropy in the 

microgeometry of the composite. Also, the prediction of effective material properties for RVEs 

with circular inclusion from Table 6-3 and Table 6-4 shows an isotropic effective material response 

while predictions for RVEs with elliptical inclusion shows an orthotropic effective material 

behaviour. 

Comparing the results from the PDCHT and FEM, it is noted that at lower material phase contrast, 

the predicted effective behaviour from the two methods shows good agreement for both inclusion 

shapes especially at low material phase contrast. The maximum percentage difference in the 

estimated results from these methods is 0.421% for circular inclusion and 0.45% for elliptical 

inclusion. However, at higher material phase contrast (𝜑 = 3.44), the maximum percentage 
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difference raises to 6.55% for circular inclusion and 9.2% in the case of elliptical inclusion, with 

the predictions from the PDCHT yielding more nonlinear behaviour with increasing material 

phase contrast. This nonlinear effective material behaviour is an expected prediction and has been 

reported in literature [119]. Also, the difference in result between the PDCHT and FEM 

predictions at high material phase contrast also did not come as a surprise because it has been 

reported in the literature [120, 121] that marked difference between different homogenization 

approaches at high stiffness ratio have been observed.  

6.3 Conclusion 

This chapter presented a first order homogenization theory in the framework of the NOSBPD 

correspondence model. The development of the theory is set on a rigorous mathematical 

framework consistent with the nonlocal nature of the peridynamic theory. Using this 

homogenization theory, it is now possible to obtain microstructure informed properties of 

materials for use at the macroscale within the framework of peridynamic modelling. The proposed 

nonlocal homogenization theory is validated by solving benchmark problems and comparing the 

results with those obtained using the Reuss, Voigt and Hashin-shtrikman bounding theorems, the 

mean field methods of Ehelby and Mori-Tanaka as well as the finite element method. These results 

are shown to comply with the bounding theorems as well as agree with results from the mean-field 

and full-field methods mentioned above.  

Comparison of predictions from the proposed homogenization framework with results from the 

literature shows good agreement. Lastly, the PDCHT has been shown to be capable of capturing 

interesting material behaviour some of which have been reported in the literature such as the effect 

of change in the effective material property when the morphology of the RVE changes as 

illustrated in the first example. This effect was demonstrated more elaborately in the third example 

by comparing the prediction for RVEs with circular and elliptical shaped inclusion. The proposed 

method was also shown to be able to capture the effect of material phase contrast on the effective 

behaviour of the composite system. 

The advantage of PDCHT theory over homogenization frameworks based on the classical 

continuum theory, derives from the strengths of the peridynamic theory. This framework is 

therefore especially useful in circumstances involving evolution of the microstructure or problems 

in which nonlocal interaction plays important role in the overall response of the heterogenous 

media. Another advantage that can be leveraged with this development is that because the 

peridynamic correspondence model uses familiar quantities from the classical continuum theory, 

Once the effective material tangent is obtained, we are free to use either of peridynamic theory or 
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the classical continuum theory to characterise the macroscopic response of the medium. Where 

the peridynamic theory is utilised at the macroscale, this result in a standard multigrid method we 

will call the PD2 method. In the case where the classical theory is utilised, this result in what is 

referred to in the literature as Heterogenous Multiscale Method (HMM) [122]. In this case, 

numerical schemes such as the finite element method or the finite difference method can be 

utilised to solve the macro model. 

Since one of the greatest strengths of the peridynamic theory lies in its capability in handling strong 

discontinuity in the response field of a system, this homogenization theory will be applied to 

problems with evolving microstructure such as micro-crack coalescing and propagation in a future 

work. 
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Chapter 7 

7.0 Homogenization of Materials with Evolving Microstructure and Damage 

7.1 Introduction 

Motivated by the development of the peridynamic computational homogenization theory 

(PDCHT) in chapter 6.1, the objective in this chapter is to extend the application of the PDCHT 

to a class of materials with evolving microstructure. In other words, the focus in this chapter is in 

examining the influence of evolving microstructure on the effective response of materials at the 

macroscale. The effective behaviour represents the mechanical state of a point at the macroscale 

and is defined to be the average behaviour of the microstructure over a finite micro-subregion. 

The material properties arising from this state then gives the effective material properties at that 

point. Because the microstructure informs the mechanical condition of the macro-continuum 

point, an evolving microstructure will thus result in changes in material characteristics at the 

macroscale. Evolution of the microstructure refers to energy dissipating processes occurring at the 

microscale such as nucleation, propagation, and coalescing of crack. The irreversible changes 

brought about in a material by these microscale processes that result in degradation of the material 

is referred to as damage. 

To achieve the aim of this contribution, section 7.2 presents a summary of implementation strategy 

of the homogenization framework in the context of evolving microstructure. Benchmark problems 

are then solved in section 7.3, with the results compared to those from [83] and the OSBPDHT 

proposed in [74]. It is noteworthy that the method proposed in this contribution differs from the 

OSBPDHT in that the former is based on the NOSBPD framework, which allows for a more 

generalized material model than the OSBPD. Furthermore, the NOSBPD uses classical continuum 

theory's stress and strain concepts, making hierarchical coupling of PD and CCM models across 

scales a more seamless process. 

7.2 Summary of implementation strategy for PDCHT  

The numerical implementation of the PDCHT involves several steps. In 6.1, the mathematical 

framework of the PDCHT was developed and was utilised to characterise the effective properties 

of composite materials. This chapter extends the PDCHT to characterize materials with evolving 

microstructure. The steps involved in the numerical implementation of the PDCHT are 

summarized below for the purpose of completeness of presentation in this chapter.  

1. The originally heterogeneous peridynamic body is assumed to be macroscopically 

homogeneous and discretised using for example the meshless method [82] into nodes 
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which when taken together forms a grid. The nodes and grid in this scale are denoted 

respectively as the macroscopic nodes and macroscopic grid. 

2. An RVE(P) is assigned to each node P on the macroscopic grid. The RVE is chosen to 

adequately describe all relevant microstructural morphology of the original heterogeneous 

material.    

3. For each macroscopic node P, compute the evolution of the local macroscopic strain 𝜺∗. 

This macroscopic strain is then used to impose appropriate constraint to the boundary 

volume of the assigned RVE. Since the microscale RVE boundary constraint depends only 

on the first-order gradient of the macroscopic displacement field, this method is also called 

first-order homogenization. 

4. The microscale volume constraint problem is solved using (2-88) to yield deformation 

𝒖(𝒙), strain 𝜺(𝒙) and consequently the stress 𝝈(𝒙) field within the RVE(P). 

5. The stress field 𝝈(𝒙) is used in (6-6) via (6-5) to compute the average stress, 𝝈∗ over the 

RVE(P). 

6. For each macroscopic node P, substitute 𝜺∗(P) and 𝝈∗(P) into (6-2) to compute the 

macroscopic stiffness tensor ℂ∗(P). 

7.3 Numerical implementation of the first order homogenization 

We present two numerical problems involving crack growth and accumulation in this section to 

demonstrate the validity of the proposed homogenization framework. The effective elastic tensor 

is determined in both problems based on the assumptions of small deformation and plane stress 

condition, thus justifying the utilisation of the infinitesimal strain tensor and the Cauchy stress 

tensor in (2-103). To accomplish this objective, the benchmark results from [117, 123] are used. 

Since damage accumulation due to nucleation and propagation of cracks is known to induce 

anisotropy in the elastic properties of materials, we provide a brief remark on a suitable measure 

to quantify the crack induced anisotropy on the effective properties of the example material. 

Different measures [124-126] exist that seek to quantify elastic anisotropy of materials. However, 

the method proposed in [127] is preferred in this contribution due to its simplicity and most 

importantly its suitability for two dimensional problems. In this method, the elastic anisotropy 

index 𝐴 for a two-dimensional crystal is given by: 
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𝐴 = ([
1

4
(𝐶11 + 𝐶22 + 2𝐶12) (𝑆11 + 𝑆22 + 2𝑆12) − 1]

2

+ 2 [
1

6
(𝐶11 + 𝐶22 − 2𝐶12 + 4𝐶66)(𝑆11 + 𝑆22 − 2𝑆12 + 𝑆66) − 1]

2

)

1
2

 

(7-1) 

where 𝐶𝑖𝑗 and 𝑆𝑖𝑗 are the components of the elastic stiffness and compliance tensors respectively. 

In (7-1), 𝐴 yields a value of zero for the limiting case of perfect isotropy while deviation from zero 

defines the degree of elastic anisotropy. 

7.3.1 Material softening due to crack propagation. 

In this example, the proposed homogenization scheme will be utilised to study the phenomenon 

of material softening due to the presence and interaction of cracks at the microscale. To this end, 

two scenarios are investigated and the RVEs considered are shown in Figure 7-1. Each RVE is 

taken to be a square of side length W = 1 m and comprise of a matrix material with an elastic 

modulus 𝐸 = 2×109 Pa and a Poisson ratio 𝑣 = 0.3. In the first scenario, the RVE in Figure 7-1(a) 

is utilised, which consists of a single horizontally propagating crack whose origin is at the centre 

of the RVE. The RVE for the second scenario is given in Figure 7-1(b) and consists of two 

coalescing cracks. In the first case, the length of the crack at any given instant of time is L, while 

in the second scenario, the length of each crack is L/2. In both scenarios, the initial length of the 

crack is taken to be L = 0 and the final total length is L = 1 m. 

 

Figure 7-1: RVEs with (a) Single subscale crack (b) Two interacting subscale cracks 
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Note that although one of the key advantages offered by peridynamics is in the modelling of 

autonomous crack propagation. However, in this contribution, the propagation of the crack is 

controlled to be consistent with the propagation in the referenced contributions [117, 123]. To 

achieve the desired crack length consistent with crack propagation in the referenced works, the 

analyses in this example are conducted under a quasi-static loading assumption through multiple 

load steps. The realisation of each load step is represented by a specific length of crack.  

The simulation is done over crack propagation processes spanning twenty-one discrete crack 

lengths in the interval [0-1] and [0-0.5] for the first and second scenarios respectively, which 

translate to a crack growth of 0.05 m for each load step. The distance 𝑟 between the origin of the 

two cracks in Figure 7-1(b) is given as 0.25 m, thus allowing the cracks to coalesce at 𝐿 = 0.5 m. 

 

Figure 7-2: Evolution of the component C22 of the effective stiffness tensor (a) RVE with a single 

propagating crack, (b) RVE with two coalescing cracks 

The effective tangent matrices of the material were evaluated as its microstructure evolved due to 

the single propagating crack and two coalescing cracks, respectively, following the technique 

outlined in section 7.2. Evolution of the 𝐶22 component of the effective tangent stiffness matrices 

for the case of a single propagating crack is presented as Figure 7-2(a) and for the case of two 

coalescing cracks is presented as Figure 7-2(b). These results are compared with results from [117, 

123]. Results from the single propagating crack scenario indicate a smooth relationship between 

material softening and crack growth. However, in the case of the two cracks, an abrupt change in 

the relationship is observed as the two cracks coalesce. This phenomenon is attributed to 

interaction between the coalescing cracks. It was noted in [123] that when multiple crack coalesce, 

this lead to significant increase in a damage energy release rate which lead to amplification of 

damage which in this case is characterized by the sudden change in material softening as observed. 
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In both cases, it is observed from Figure 7-2 (a) and (b) that the results obtained from the proposed 

first order peridynamic homogenization theory correlate well with results from [117, 123]. 

 

Figure 7-3: Elastic anisotropy index for the single crack and coalescing cracks 

To quantitatively measure the degree of anisotropy that may be induced on the elastic property of 

material due to crack growth, (7-1) is utilized to compute the elastic anisotropy index 𝐴 of the 

effective material tensor. Figure 7-3 shows the evolution of the elastic anisotropic indices for the 

case of a single crack and two coalescing cracks. As can be seen from the figure, the propagation 

of cracks results in increasing anisotropy. Comparison of anisotropic indices from the two cases 

shows an almost identical growth trend except for the jump corresponding to crack length close 

to when the two coalescing cracks were about to merge. This jump in elastic anisotropy index 

correlates well with the jump captured in the evolution of the 𝐶22 component of the effective 

material stiffness tensor as shown in Figure 7-2(b). 

7.3.2 Damage evolution due to randomly distributed microcracks 

In this second example, we study the evolution of damage due to randomly distributed microcracks 

of equal length 𝐿. Two case studies would be investigated. In the first case, the RVE consists of 

microcracks that are aligned horizontally Figure 7-4 (a) while in the second case, the microcracks 

in the RVE are randomly aligned Figure 7-4 (b). In both case studies, the material of the RVE is 

taken to consist of an isotropic matrix having an elastic modulus 𝐸 = 2×109Pa and Poisson ratio 

𝑣 = 0.3. 
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Figure 7-4: Arrangement of randomly distributed microcracks (a) Horizontally aligned (b) 
Randomly aligned. 

 

Figure 7-5: Evolution of damage due to random cracks (a) Horizontally aligned, (b) Randomly 

aligned.  

To obtain the effective properties of the material with evolving microstructure as characterised by 

crack growth, the implementation strategy highlighted in section 7.2 was executed. The evolution 

of damage due to randomly distributed cracks is presented in Figure 7-5(a) for cracks that are 

horizontally aligned and in Figure 7-5(b) for cracks that are randomly oriented as a function of 

crack density 𝜌. Each curve represents the evolution of a normalised damage parameter 𝜓𝑛 which 

measures the softening of the elastic modulus and is given as 

 𝜓𝑛 =
𝐸𝑛
∗

𝐸
 (7-2) 

where 𝐸𝑛
∗ is the effective elastic modulus in the coordinate direction 𝑛 = 1,2, such that 𝑛 = 1 

corresponds with the horizontal coordinate axis and 𝑛 = 2 corresponds to the vertical coordinate 

axis. 𝐸 is the elastic modulus of the undamaged matrix material.  

  

 

(a) (b) 
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In the case of horizontally aligned cracks, the damage parameter 𝜓1 remained largely unchanged 

as the damage process progresses as seen in Figure 7-5(a), which suggests that the material 

essentially retained its mechanical properties in the 𝑛 = 1 direction. However, in the 𝑛 = 2 

coordinate direction, the evolution of the damage parameter 𝜓2 shows progressive softening of 

the material as the damage process progresses.  

In the second scenario where the randomly distributed microcracks are given random orientations, 

the results of the computational homogenization as presented in Figure 7-5(b) indicate that while 

the damage due to increasing prevalence of microcracks caused the material to soften, the effective 

material behaviour did not however deviate much from its original isotropic state. 

 

Figure 7-6: Elastic anisotropy index for cracks aligned horizontally and randomly. 

It is inferred from Figure 7-5(a) that the prevalence of horizontally oriented, randomly distributed 

microcracks transformed a hitherto isotropic material into an effective anisotropic material. To 

quantitatively measure the degree of anisotropy induced, (7-1) is employed to evaluate the elastic 

anisotropy index 𝐴. Figure 7-6 show the elastic anisotropy indices for the two cases of horizontally 

aligned and randomly aligned cracks as the cracks accumulate. Figure 7-6 indicate that while the 

accumulation of horizontal cracks has the effect of increasing the anisotropy of the material, the 

accumulation of randomly aligned cracks essentially did not induce much anisotropy in 

comparison.  

For the purpose of model validation, the evolution of effective damage obtained using the PDCHT 

was compared with previous results from OSBPDHT [117]. Results shown in Figure 7-5(a) and 

Figure 7-5(b) show agreement in the overall trend of the results from both methods. However, 

there are noticeable differences in the details of the results because although the same crack 
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densities were used in both studies, the randomness in the distribution and orientation of 

microcracks in both studies made it impossible to exactly reproduce the distribution of the 

microcracks and their orientations as in [117]. Microcracks have been shown to interact with one 

another when their distance apart is less than some minimum value as demonstrated in the results 

presented in Figure 7-2(b). Since each instance of randomly generated microcracks give rise to 

different arrangement and hence different interaction between microcracks, it is expected that 

analysis of two different distribution will yield different results.  It has also been demonstrated in 

the results presented in Figure 7-5 that the orientation of the microcracks has significant influence 

on the effective response. Since two instances of randomly generated cracks with arbitrary 

orientation give rise essentially to two different microstructures, it follows that the variation in the 

result of analysis from these instances of the microstructure is an expected consequence. 

7.4 Conclusion 

In this chapter, the PDCHT developed in chapter 6.1 was utilised to study the evolution of 

effective material response of damaged media. The PDCHT is an energy-based homogenization 

procedure which ensures constitutive equivalence between two structurally dissimilar materials by 

enforcing a strain energy equivalence between them. This computational homogenization was 

performed in a quasi-static analysis framework in which different loading conditions are assumed 

to yield progressive damage either in the form of propagating crack or increasing incidence of 

microcracks. 

Two numerical examples were solved. The first example allows us to study the effect of 

propagating crack and crack interaction on the effective material coefficients. It was demonstrated 

that the presence of crack changes material behaviour in this case from isotropic to mild and 

strongly anisotropic. As cracks propagate, the material exhibits softening in one or both directions. 

In the second example, we studied the damage evolution of a material due to proliferation of 

microcracks. Two case studies were investigated. The first case is when the microcracks are 

randomly distributed but horizontally aligned while the second case is where the randomly 

distributed microcracks are given arbitrary orientations. Effective material coefficients obtained 

from the first scenario shows a strongly anisotropic effective behaviour while in the second case, 

the effective behaviour essentially remained isotropic. However, in both cases, the material 

exhibited softening with increasing damage accumulation.  

A further development of these studies is expected. The foundation laid here can be utilised to 

study phenomena that occur out of interaction of microcracks with macro-cracks. Example of 
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such phenomena is crack shielding and amplification of macrocracks due to interaction with 

microcracks. In this framework, the damage due to microcracks can be homogenised so that their 

interaction with the macrocrack would be applied in an average sense. 
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Chapter 8 

8.0 Computational homogenization of viscoelastic composites 

8.1 Introduction  

The design and optimization of viscoelastic composite materials is an important and growing area 

of research in materials science and engineering. The increasing acceptability of viscoelastic 

composite materials in industries such as civil, aerospace, automotive, and biomedical engineering 

is partly due to the advantage it offers designers and engineers to tailor its microstructure to achieve 

optimal overall or 'effective' performance. This is achieved not only through choosing the optimal 

parameters of the constituent materials but also choosing the optimal layout and arrangement of 

the constituent materials. 

Computational homogenization schemes are a popular method for characterizing the properties 

of viscoelastic composite materials. These schemes are numerical frameworks that are used to 

predict the effective properties of a composite material by simulating the behaviour of the 

individual constituent materials and their interactions at the subscale. Traditionally, most 

computational homogenization schemes for analysis of composite systems [128-130] in general 

and viscoelastic composite systems [131, 132] in particular, have been developed based on classical 

continuum mechanics, which is built upon the assumption of local action as well as smooth and 

continuous deformation. However, there are many mechanisms that give rise to processes in 

composite materials which invalidate these fundamental assumptions of the classical theory.  

Discontinuous material behaviour, such as fracture, presents a significant challenge for modelling 

within the framework of classical continuum mechanics. This is because the theory relies on spatial 

derivatives to describe physical system which necessarily impose the conditions of smooth and 

continuous deformation on the material. This mathematical framework is not suitable for 

modelling fracture processes such as brittle fracture and fragmentation [10]. 

Strain localization in materials that exhibit strain softening due to damage is another problem that 

is difficult to model using the classical continuum theory.  Using the classical framework to model 

such phenomenon presents two problems. The first is the non-uniqueness of the result due to the 

loss of ellipticity of the governing differential equations of the classical theory and the second is a 

numerical problem that typically manifest as the spurious localization of strain into a narrow band 

that is dependent on grid size of the numerical scheme, e.g. element size in finite element model 

[5]. As a result, it is deemed inappropriate to utilise models based on the classical continuum 

framework to characterise materials that exhibit strain-softening behaviour [5, 133].  
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Crazing is a key mechanism of deformation in polymers, which is characterized by the nucleation 

and propagation of small cracks at the surface of the material. The size of the specimen plays a 

crucial role in the behaviour of crazed polymers. This is because as the specimen size decreases, 

the probability of craze nucleation at the surface increases, leading to more deformation. Thus, the 

larger the ratio of surface to volume in the specimen, the more likely it is for crazes to nucleate 

and propagate, leading to a decrease in the mechanical strength of the material. This is a 

manifestation of a more general phenomenon known as size effect. Size effect is known to be 

notoriously difficult to model in the framework of the classical theory. This is because the 

resolution of this effect require a length scale parameter to be present in the constitutive model 

[134]. Unfortunately, such a parameter does not exist in the constitutive model of the classical 

theory.  

Considering these challenges and motivated by the capability of PD to alleviate challenges such as 

the capability to capture the size-scale effects and nonlocal spatial interactions in composites [135], 

quasi-brittle materials [11] and bilayered systems [136], this chapter presents a numerical modelling 

method that utilizes the PDCHT proposed in chapter 6.1 to assess the influence of microscopic 

variations on the macroscopic response of viscoelastic composites. This method involves solving 

boundary value problems in a microscopic domain to calculate a homogenized stiffness based on 

the microstructure of the composite. The PD model represents the material as a network of bonds 

that interact via a nonlocal interaction kernel, allowing for the capture of nonlocal effects and the 

prediction of the effective properties of the composite. 

The remainder of this chapter is organized as follows. In the next section, a brief overview of the 

of viscoelastic constitutive model is provided. Then the proposed homogenization framework is 

described in detail, including the mathematical formulation and the numerical algorithms used to 

solve the resulting equations. Finally, some numerical examples to demonstrate the effectiveness 

of the proposed method will be solved and the results compared with those obtained using other 

approaches. 

8.2 Linear viscoelastic constitutive model  

The constituents of the composites studied in this thesis will be assumed to be isotropic and linear 

in behaviour.  From (2-101), it is clear that the NOSBPD can admit a wide range of constitutive 

models from CCM, and the response function adopted will depend on the type of material 

behaviour anticipated. Since the goal in this chapter is to extend the PDCHT to encompass 

viscoelastic materials, this section will introduce the concept of viscoelastic constitutive model 

from the CCM and derive a form of the constitutive model that can be easily and efficiently 
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implemented within the NOSBPD computational framework. There are two main approaches to 

developing viscoelastic models in CCM: the integral approach and the differential approach. Only 

the integral approach will be pursued in this contribution. The response function in the integral 

form for a linear non-ageing viscoelastic material takes the form: 

 𝜎𝑖𝑗(𝑡) = ∫ 𝐶𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝑑

𝑑𝜏

𝑡

0

𝜀𝑘𝑙(τ)𝑑𝜏 (8-1) 

where 𝐶𝑖𝑗𝑘𝑙(𝑡 − 𝜏) is the fourth order stress relaxation stiffness tensor. The relaxation stiffness 

tensor is typically approximated by a series of decaying exponents also called Prony series such 

that: 

 𝐶𝑖𝑗𝑘𝑙(𝑡) = 𝐶𝑖𝑗𝑘𝑙∞ + ∑ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−

𝑡

𝜏𝑚
)

𝑛

𝑚=1

 (8-2) 

where the first term, 𝐶𝑖𝑗𝑘𝑙∞ is the equilibrium or elastic modulus of the material while each 

subsequent term in the series represent a relaxation mode of the material. Introducing (8-2) into 

(8-1) yields  
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𝜏𝑚
)
𝑑

𝑑𝜏

𝑡

−∞

𝜀𝑘𝑙(τ)𝑑𝜏

𝑛

𝑚=1

           

= 𝜎𝑖𝑗∞
(𝑡) + ∑ ℎ𝑖𝑗𝑚

(𝑡)

𝑛

𝑚=1

                                                         

(8-3) 

where 𝜎𝑖𝑗∞
(𝑡) = 𝐶𝑖𝑗∞𝜀𝑘𝑙

(𝑡) represents the elastic component of the material response, and  

 ℎ𝑖𝑗𝑚
(𝑡) = ∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp

(−
𝑡 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏

𝑡

0

𝑑𝜏 (8-4) 

commonly referred to as state variable is the viscous response of the material. Notice that to obtain 

the stress at a particular time, the constitutive relationship given by (8-3) leads to the requirement 

of computing the integral in (8-4). This is not suitable for implementation in a numerical scheme 

as this will require the entire history of the deformation to be stored. This is obviously not a 

computationally efficient strategy. To obtain a computationally more efficient form of (8-3), 

numerical incremental procedure is normally utilised. To achieve this, the loading time 𝑡 is divided 
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into discrete interval ∆𝑡 such that 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡. Now, considering the time interval [𝑡𝑛, 𝑡𝑛+1], 

the deformation history can be split into two periods of 0 ≤ 𝜏 ≤ 𝑡𝑛 of known deformation and 

𝑡𝑛 ≤ 𝜏 ≤ 𝑡𝑛+1 of unknown deformation. The integral in (8-4) can then be additively split into 

ℎ𝑖𝑗
𝑛+1

𝑚
= ∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp

(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(𝜏)

𝑑𝜏
𝑑𝜏

𝑡𝑛

0

+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

                    = ∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−
𝑡𝑛 + ∆𝑡 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛

0

+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

= ∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−

∆𝑡

𝜏𝑚
) exp (−

𝑡𝑛 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛

0

+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

= exp (−
∆𝑡

𝜏𝑚
)∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp

(−
𝑡𝑛 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛

0

+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp
(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

 = exp (−
∆𝑡

𝜏𝑚
) ℎ𝑖𝑗

𝑛

𝑚
+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp

(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝑑𝜀𝑘𝑙(τ)

𝑑𝜏
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 (8-5) 

If the change in strain in each time interval is assumed to be constant, then we can write: 

 
𝑑𝜀𝑘𝑙
𝑑𝑡

=
∆𝜀𝑘𝑙
∆𝑡

=
𝜀𝑘𝑙
𝑛+1 − 𝜀𝑘𝑙

𝑛

∆𝑡
 (8-6) 

Substitution of (8-6)into (8-5) yields: 

ℎ𝑖𝑗
𝑛+1

𝑚
= exp (−

∆𝑡

𝜏𝑚
) ℎ𝑖𝑗

𝑛

𝑚
+∫ 𝐶𝑖𝑗𝑘𝑙𝑚 exp

(−
𝑡𝑛+1 − 𝜏

𝜏𝑚
)
𝜀𝑘𝑙
𝑛+1 − 𝜀𝑘𝑙

𝑛

∆𝑡
𝑑𝜏

𝑡𝑛+1

𝑡𝑛

 

         = exp (−
∆𝑡

𝜏𝑚
) ℎ𝑖𝑗

𝑛

𝑚
+ 𝐶𝑖𝑗𝑘𝑙𝑚𝜏𝑚

(1 − exp (−
∆𝑡

𝜏𝑚
))
𝜀𝑘𝑙
𝑛+1 − 𝜀𝑘𝑙

𝑛

∆𝑡
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                   = exp (−
∆𝑡

𝜏𝑚
) ℎ𝑖𝑗

𝑛

𝑚
(𝑡𝑛) + 𝐶𝑖𝑗𝑘𝑙𝑚

𝜏𝑚
∆𝑡
(1 − exp (−

∆𝑡

𝜏𝑚
)) [𝜀𝑘𝑙

𝑛+1 − 𝜀𝑘𝑙
𝑛 ] (8-7) 

If we write 𝐴𝑚 =
𝜏𝑚

∆𝑡
(1 − exp (−

∆𝑡

𝜏𝑚
)), then (8-7) can be written as: 

 ℎ𝑖𝑗
𝑛+1

𝑚
 = exp (−

∆𝑡

𝜏𝑚
) ℎ𝑖𝑗

𝑛

𝑚
+ 𝐴𝑚𝐶𝑖𝑗𝑘𝑙𝑚

[𝜀𝑘𝑙
𝑛+1 − 𝜀𝑘𝑙

𝑛 ] (8-8) 

Note that equation (8-8) is a recursive function that depends only on the values ℎ𝑖𝑗
𝑛

𝑚
 and 𝜀𝑘𝑙

𝑛  from 

the previous time step to calculate the stress state at the current time step, thus eliminating the 

requirement to store the entire history of deformation. The components of the stress relaxation 

stiffness tensor can be expressed in terms of relaxation modulus 𝐸(𝑡), shear relaxation modulus 

𝐺(𝑡) and bulk relaxation modulus 𝐾(𝑡) which are the viscoelastic analogues of elastic Young’s 

modulus, shear modulus and bulk modulus, respectively. These viscoelastic moduli are normally 

obtained via experimentation. To utilise these experimental data in mathematical modelling, the 

discrete data are usually approximated using Prony series. In this representation, 𝐸(𝑡), 𝐺(𝑡), and 

𝐾(𝑡) are typically approximated respectively as 

 

𝐸(𝑡) = 𝐸∞ + ∑ 𝐸𝑚e
−
𝑡

𝜏𝑚
𝐸

𝑛

𝑚=1

,     𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑚e
−
𝑡

𝜏𝑚
𝐺

𝑛

𝑚=1

,     𝐾(𝑡)

= 𝐾∞ + ∑ 𝐾𝑚e
−
𝑡

𝜏𝑚
𝐾

𝑛

𝑚=1

 

(8-9) 

where the subscript ∞ designate the equilibrium or elastic response of the viscoelastic material, so 

that the stiffness relaxation tensors 𝐂∞ and 𝐂𝑚 in (8-3) for plane stress condition are respectively 

given as 

 𝐂∞ =
𝐸∞

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

],        𝐂𝑚 =
𝐸𝑚

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] (8-10) 

8.3 Dynamic properties 

Although material properties such as the relaxation modulus arising from the result of static 

measurement are sufficient to produce useful characteristics of viscoelastic materials, however, to 

gain deeper insight into certain rheological characteristics of viscoelastic materials sometimes 

require expressing the mechanical properties in an alternative form. A very popular alternative is 

the representation of viscoelastic properties in the frequency domain, often termed as dynamic 
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properties. This can be achieved through dynamic mechanical tests or by converting the result of 

static measurements.  In this communication, the robustness of the proposed methodology will 

be demonstrated by recovering the effective dynamic properties of viscoelastic composites from 

the effective static properties.  Important dynamic parameters of interest in the characterisation of 

viscoelastic materials are the storage modulus 𝐸′ and loss modulus 𝐸′′. The vector sum of the 

storage and loss moduli is called the complex modulus, and is typically represented as 

 𝐸∗(𝑡) = 𝐸′(𝑡) + 𝐸′′(𝑡)      (8-11) 

where 𝐸′ represents the elastic component of the material response while 𝐸′′ represents the 

viscous component. The tangent of the loss angle or phase lag between stress and strain given by 

 𝛿 = tan(𝜙) =
𝐸′′

𝐸′
      (8-12) 

is called the tangent modulus or loss tangent/damping factor and provides information on the 

proportion of energy lost during a deformation cycle, thus providing a quantitative means to 

measure the degree of viscous response in the total response of a material. The storage and loss 

moduli are respectively given [137] as 

 𝐸′ = 𝐸0 (∑ 𝐸̅𝑚

𝑛

𝑚=1

+ ∑ 𝐸̅𝑚
𝜏𝑚
2 𝜔2

1 + 𝜏𝑚2 𝜔2

𝑛

𝑚=1

) (8-13) 

and  

 𝐸′′ = 𝐸0 (∑ 𝐸̅𝑚
𝜏𝑚𝜔

1 + 𝜏𝑚2 𝜔2

𝑛

𝑚=1

) (8-14) 

where 𝐸̅𝑚 = 𝐸𝑚/𝐸0 and 𝐸0 = 𝐸(𝑡 = 0) is the instantaneous relaxation modulus.  

8.4 Computational homogenization 

 In this contribution, a first-order computational homogenization procedure is proposed for a 

composite made partly or wholly of viscoelastic constituents. The objective is to determine the 

overall mechanical properties of the composite material. This objective is born out of the need to 

understand how the microstructure of the composite material influences its overall behaviour at 

the macroscale. This information is useful in predicting and optimizing the performance of 

composite materials. By understanding the relationship between the microstructure and the 

macroscopic behaviour of composite material, it is possible to design composite materials with 

specific properties and performance characteristics for a particular application.  
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This proposed nonlocal homogenization scheme just like most computational homogenization 

schemes is composed of three main components. The first is the identification of relevant scales 

in the problem which are usually denoted as microscale and macroscale. Secondly, a localization 

procedure that involves finding the stress solution of a mechanical model at the microscale given 

a macrostrain. Lastly, the development of a homogenization rule that yields macroscopic stress 

based on the micro fields of the stress tensor.  

8.4.1 Definition of scales and homogenization rule 

Given a heterogeneous material 𝑀 composed of more than one constituent phase (at least one of 

which is viscoelastic), the objective in this nonlocal first-order computational homogenization 

scheme is to find an equivalent or substitute material 𝑀̅ that will have the same overall behaviour 

as 𝑀. The approximation of 𝑀 with 𝑀̅ is based on two key assumptions. The first is that if the 

constituent phases in 𝑀 exhibit linear behaviour, then the response of the effective (substitute) 

material 𝑀̅ will likewise be linear [138, 139]. Thus, in this regard, the constitutive function that 

relates stress and strain fields in 𝑀∗ takes the linear form: 

 𝜎𝑖𝑗(𝑡) = 𝐶𝑖̅𝑗𝑘𝑙𝜀𝑘̅𝑙(𝑡) (8-15) 

where 𝐶𝑖̅𝑗𝑘𝑙 is the time dependent effective stiffness relaxation tensor, and overbar in (8-15) and 

elsewhere in this chapter indicates field variables associated with the substitute homogeneous 

material. The substitute homogeneous material 𝑀̅ will henceforth be designated as the macroscale. 

The second assumption is that of statistical homogeneity of the composite system 𝑀. This means 

that 𝑀 exhibits the same average behaviour over any randomly selected subregion that is 

sufficiently large in comparison with the size of individual microstructural elements or phase such 

as the size of inclusions [138]. Any such subregion is called a representative volume element (RVE) 

and represents the microscale for the purpose of this homogenization scheme. Since the average 

properties of the composite material are the same within the RVE as they are for the entire 

material, this allows the use of volume average of field over the RVE instead of volume average 

of fields over the entire material.  

Once the implication of linear effective behaviour and statistical homogeneity is granted, the next 

task is to find the relationship between the microscopic field of stress and strain with their 

macroscopic counterparts.  This is achieved through the application of nonlocal stress and strain 

average theorems. Consider a heterogeneous body 𝔅 which occupies a region Ω̅ = Ωs⋃Ω𝑐 such 

that Ωs represents the region where solution is sought and Ω𝑐 represents the boundary region. The 



136 
 

average stress and average strain over Ω𝑠 are denoted as 〈𝝈〉 and 〈𝜺〉 , respectively. The nonlocal 

average stress theorem states that if 𝔅 attains static equilibrium when a constant stress tensor 𝛔̅ is 

applied on the boundary domain Ω𝑐, then the volume average of the stress field in Ωs is equal to 

𝛔̅, that is 

 

Figure 8-1: Micro computational domain showing solution and boundary domains. 

 〈𝛔〉 = 𝛔̅ (8-16) 

On the other hand, the nonlocal average strain theorem states that if 𝔅 is subjected to displacement 

on the boundary domain Ω𝑐 which is produced by a constant strain tensor 𝜺̅ such that 𝒖0 = 𝜺̅𝒙 

for all 𝒙 ∈ Ω𝑐, then:  

 〈𝜺〉 = 𝜺̅ (8-17) 

where the quantities 〈𝛔〉 and 〈𝜺〉 are respectively given by: 

 〈𝛔〉 =
1

𝑉Ωs
∫ 𝝈(𝐱𝜇)𝑑𝑉Ωs
Ωs

 (8-18) 

and  

 〈𝜺〉 =
1

𝑉Ωs
∫ 𝜺(𝐱𝜇)𝑑𝑉Ωs
Ωs

 (8-19) 

8.4.2 Localization and solution of the microscale RVE problem 

To ensure that the macroscale homogeneous material 𝑀̅ can reproduce the behaviour of the 

original microscale heterogeneous material 𝑀, energy equivalence is prescribed between the two 

materials. This energetic equivalence requires the two material systems to have the same internal 
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energy despite possessing different microstructure. This is achieved by satisfying the nonlocal 

macrohomogeneity condition: 

 〈𝜎𝑖𝑗𝜀𝑖𝑗〉 = 𝜎𝑖𝑗𝜀𝑖̅𝑗 (8-20) 

It was shown in 6.1.2.2 that the macrohomogeneity condition is satisfied by the following 

statement of nonlocal Hill's lemma: 

 〈𝜎𝑖𝑗𝜀𝑖𝑗〉 − 𝜎𝑖𝑗𝜀𝑖̅𝑗 =
1

𝑉Ω𝑠
∫ ((𝜎𝑖𝑘 − 𝜎𝑖𝑘)𝒮𝜔

𝑠
𝑥𝑘
(𝑢𝑖 − 𝑥𝑗𝜀𝑖̅𝑗)) 𝑑𝑉Ω𝑐

Ω𝑐

 (8-21) 

where 𝒮𝜔
𝑠  denotes a weighted nonlocal gradient operator, 𝜔(𝒙, 𝒙′): ℝ𝑛 × ℝ𝑛 ⟶ℝ+ is a weight 

function and the superscript 𝑆 implies that 𝒮 is a symmetric gradient operator (please see [42] for 

detailed explanation on nonlocal gradient operator and general element of nonlocal vector 

calculus). The Hill’s lemma (8-21) is satisfied by prescribing appropriate boundary conditions (see 

6.1.2 and 6.1.3). These include application of homogeneous displacement, homogeneous stress, 

and periodic boundary conditions. In this chapter, only the homogenous displacement boundary 

condition will receive attention notably because it is the most compatible of the boundary 

conditions with the peridynamic framework and the easiest to implement. An appropriate 

displacement field is applied to the boundary of the RVE so that the gradient of the displacement 

terms of the integrand of the boundary volume integral (8-21) is vanished. A typical way to achieve 

this is to apply linear displacement of the form: 

 𝒖(𝒙) = 𝜺̅𝒙       ∀𝒙 ∈ Ω𝑐 (8-22) 

which has been shown in 6.1.3 to vanish the right-hand side of (8-21). Equation (8-22) provides 

the boundary volume constraint of the microscale problem in terms of field of macro strain. To 

complete the definition of the computational homogenization scheme, it is necessary to define the 

microscale volume constraint problem. 

8.4.3 RVE volume constraint problem 

Consider the composite material 𝑀. Let Ω represents the region occupied by an RVE of 𝑀. Let Ω 

be assumed to be in a state of static equilibrium.  To formulate a well-posed microscale VCP, Ω is 

split into two sub volumes as shown in Figure 8-1. The first is ΩS where solution is sought and 

the second Ω𝐶 where boundary constraints are imposed. Let 𝝈𝜇 and 𝜺𝜇 be the micro fields stress 

and strain in Ω obtained as solution to the following initial volume constraint problem (IVCP): 
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{
 
 
 
 

 
 
 
 ∫ [𝐓[𝒙𝜇]〈𝒙𝜇

′ − 𝒙𝜇〉 − 𝐓[𝒙
′]〈𝒙𝜇 − 𝒙𝜇

′  〉]
ℬ𝛿(𝒙)

𝑑𝒙𝜇
′ + 𝐛(𝒙𝜇, 𝑡) = 0 ∀𝒙𝜇 ∈ Ω𝑆

𝒖𝜇(𝒙𝜇) = 𝒈𝜇 ∀𝒙𝜇 ∈ 𝛺𝐶

𝒖𝜇(𝒙𝜇, 0) = 𝒖𝜇(𝐼) ∀𝒙𝜇 ∈ 𝛺, for 𝑡 = 0

𝒖̇𝜇(𝒙𝜇, 0) = 𝒖̇𝜇(𝐼) ∀𝒙𝜇 ∈ 𝛺, for 𝑡 = 0

 (8-23) 

where the subscript 𝜇 in (8-23) and anywhere else in this communication designate field variables 

associated with the microscale. The force density vector 𝐓[∙𝜇]〈∙∙〉 is given by (2-87) and the 

response function that relates the micro field stress 𝝈𝜇 and strain 𝜺𝜇 is given by (8-1) (for linear 

material behaviour).  

8.5 Implementation strategy 

The proposed homogenization scheme consists of the following steps:  

1. This step consists of solving the viscoelastic volume constraint problem (8-23) at the 

microscale to obtain the micro fields of stress and strain within the RVE. To do this, a nested 

spatial and time numerical integration strategy is used. In spatial integration, the total force 

acting on a material point is evaluated at a given time, while in time integration, material points 

are tracked over time. Using a meshfree method [63], the spatial integration of the NOSBPD 

model is numerically implemented using a discrete form of the first of (8-23) given as 

 ∑[𝐓[𝒙𝑝, 𝑡]〈𝒙𝑞 − 𝒙𝑝〉 − 𝐓[𝒙𝑞 , 𝑡]〈𝒙𝑝 − 𝒙𝑞〉]

𝑁

𝑞=1

𝑉𝑞 + 𝐛𝑝 = 0 (8-24) 

where 𝑁 denotes the total number of material points located within the horizon of the primary 

material point 𝑝. To compute the current accelerations, velocities, and positions of points, the 

time integration procedure uses the forward Euler method. The explicit time integration of 

(2-110) yields the following acceleration, velocity, and displacement at time 𝑡 = 𝑡𝑛: 

 

𝒖̈𝑝
𝑛 =

𝓛𝑝
𝑛 + 𝐛𝑝
𝜌𝑝

𝒖̇𝑝
𝑛+1 = 𝒖̇𝑝

𝑛 + 𝒖̈𝑝
𝑛∆𝑡

𝒖𝑝
𝑛+1 = 𝒖𝑝

𝑛 + 𝒖̇𝑝
𝑛+1∆𝑡

 (8-25) 
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where 𝓛𝑝
𝑛 = ∑ [𝐓[𝒙𝑝, 𝑡]〈𝒙𝑞 − 𝒙𝑝〉 − 𝐓[𝒙𝑞 , 𝑡]〈𝒙𝑝 − 𝒙𝑞〉]

𝑁
𝑞=1 𝑉𝑞. Since the RVE VCP is a 

quasi-static problem, implementing equation (8-23) using the forward Euler method will 

require solving the model as a dynamic problem and then extracting the steady-state solution 

from the dynamic solution. It is thus proposed in this study to utilize Adaptive Dynamic 

Relaxation (ADR) [83] to recover the steady state solution of equation (8-25). This strategy 

gives rise to two notions of time parameters: a numerical time 𝑡num which defines the time 

necessary for the dynamic solution to converge to the steady-state solution and a material time 

𝑡𝑚𝑎𝑡 which is the period over which the viscoelastic response is measured. For numerical 

implementation, the two times are respectively discretized into interval ∆𝑡num and ∆𝑡mat. 

2. In the second step, macro field stress 𝜎𝑖𝑗 and strain 𝜀𝑖̅𝑗 are obtained as volume averages of the 

micro fields 𝜎𝑖𝑗 and 𝜀𝑖𝑗 using (8-18) and (8-19). The micro field variables are then utilised in 

(8-15) to extract the effective stiffness relaxation tensor 𝐶𝑖̅𝑗𝑘𝑙. 

3. Once the effective stiffness relaxation tensor is obtained, effective viscoelastic material 

functions such as the effective relaxation modulus 𝐸̅(𝑡) and hence 𝐺̅(𝑡) and 𝐾̅(𝑡) are easily 

computed. This is usually achieved by assuming constant Poisson’s ratio. 

4. Prony series (8-9) is then used to mathematically represent the discrete values of the effective 

relaxation moduli determined in step 3 above. To achieve this in the present contribution, a 

least squares curve fitting code was written in MATLAB to determine the coefficients 𝐸∞, 𝐸𝑚 

and 𝜏𝑚
𝐸 . 

5. Dynamic properties such as the storage and loss moduli as well as tangent of phase lag are 

respectively obtained from (8-13), (8-14), and (8-12). 

8.6 Numerical examples 

In this section, the capability of the proposed homogenization scheme to predict the effective 

properties of composite materials made wholly or partly of viscoelastic materials. To achieve this 

aim, computational experiments are carried out to determine the effective material properties of 

two sets of composite materials. The first is a two-phase matrix-inclusion composite in which one 

of the phases is elastic and the other viscoelastic. The second is a two-phase matrix-inclusion 

composite material consisting of a viscoelastic inclusion in a viscoelastic matrix. All numerical 

experiments are conducted for an inclusion volume fraction of 50%. All computations are carried 

out under the assumption of plane stress state and that all constituent materials are isotropic and 
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nonaging and the response is measured in the linear regime. The RVE that is representative of the 

composite materials characterised in this study is shown in Figure 8-2. 

 

Figure 8-2: RVE showing microstructure topology of composites. 

8.6.1 Two-phase composite with elastic inclusion and viscoelastic matrix 

In this numerical example, the composite consists of an elastic inclusion and viscoelastic matrix as 

obtained from [132]. The elastic modulus and Poisson’s ratio of the inclusion phase are respectively 

given as 𝐸 = 20 and 𝜈 = 0.21, while the relaxation modulus and Poisson’s ratio of the inclusion 

phase are given respectively as 𝐸(𝑡) = 3+ 17e−𝑡 and 𝜈 = 0.38.  

To implement this problem, the RVE is discretised into 100 × 100 material points. The choice of 

a horizon size of 3∆𝑥, where ∆𝑥 represents the length of a material point, was made to facilitate a 

comparison of the results obtained from peridynamic simulation with those obtained from classical 

continuum models. It has been previously demonstrated [82] that this horizon size effectively 

yields results that converge towards the classical solution. Simulation is done with time step 

∆𝑡𝑚𝑎𝑡 = 0.01 s over a total period of 103 s. A numerical time step ∆𝑡num = 1 s is used.  

The results of the effective stress relaxation stiffness tensor and effective loss tangent computed 

using the proposed nonlocal computational homogenization scheme and those computed using 

an asymptotic homogenization framework [132] are presented in Figure 8-3 and Figure 8-5, 

respectively. Figure 8-3 shows the effective stress relaxation stiffness tensor computed by both the 

nonlocal computational homogenization scheme and the asymptotic homogenization scheme over 

the specified simulation period. It is clear from the figure that the results obtained by the nonlocal 

computational homogenization scheme closely match those obtained by the asymptotic 

homogenization framework. This agreement indicates that the proposed nonlocal computational 

homogenization scheme can accurately predict the time-domain properties of a heterogeneous 

material, as represented by the component of the effective stress relaxation stiffness tensor. 



141 
 

For further analysis, the effective relaxation modulus of the composite system is extracted from 

the effective stress relaxation stiffness tensor obtained from the simulation. The effective 

relaxation modulus obtained is presented in Figure 8-4. The data presented in Figure 8-4 is curve 

fitted using the curve fitting code developed in MATLAB to obtain the Prony series coefficients. 

This allows for the representation of the data in the form (8-9), which can be useful for further 

analysis and understanding of the underlying dynamics of the system. The Prony coefficients 

obtained are presented in Table 8-1. To compute the effective dynamic properties of the composite 

system, the coefficients of the effective relaxation modulus obtained above are used in (8-13) and 

(8-14) to compute the storage and loss moduli, respectively. These are then used in (8-12) to 

compute the tangent modulus.  

Table 8-1: Prony coefficients for effective relaxation modulus data 

Parameter   Fitted value 

𝐸∞ 

 

5.4219 

𝐸1 

 

7.5459 

𝐸2 

 

7.1634 

𝜏1 

 

2.6270 

𝜏2   0.9876 

 

Figure 8-5 shows the effective loss tangent computed using this proposed framework and 

compared with results from [132]. Again, it can be observed that the nonlocal computational 

homogenization scheme shows good corelation with results obtained by the asymptotic 

homogenization framework. This agreement demonstrates that the proposed nonlocal 

computational homogenization scheme can accurately predict the frequency-domain properties of 

a composite material made of elastic inclusion and viscoelastic matrix, as represented by the 

effective loss tangent. 
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Figure 8-3: Effective stress relaxation stiffness tensor. Graph showing the 𝐶11 component. 

 

Figure 8-4: Effective relaxation modulus obtained from the effective stress relaxation stiffness 
tensor. 
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Figure 8-5: Effective loss tangent in frequency domain 

8.6.2 Two-phase composite with viscoelastic inclusion and matrix phases. 

This example considers a composite with both inclusion and matrix phases to be viscoelastic. The 

material properties are obtained from [132]. The relaxation modulus and Poisson’s ratio for the 

inclusion phase are respectively given as 𝐸(𝑡) = 3+ 17e−𝑡/10 and 𝜈 = 0.38 while those for the 

matrix phase are respectively given as 𝐸(𝑡) = 3+ 17e−𝑡 and 𝜈 = 0.38. The RVE is discretised 

into 100×100 points, and a horizon size of 3∆𝑥 is used for the same reason stated in 8.6.1. 

Table 8-2: Coefficients of Prony series representation of effective relaxation modulus 

Parameter   Fitted value 

𝐸∞ 

 

3.0 

𝐸1 

 

14.5 

𝐸2 

 

2.5 

𝜏1 

 

1.7760 

𝜏2   27.1185 
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Figure 8-6: Component 𝐶11 of the effective stiffness tensor of a two-phase matrix-inclusion 
composite system with both matrix and inclusion made of viscoelastic materials. 

 

Figure 8-7: Effective relaxation modulus of the composite system obtained from the effective 
stiffness tensor. 
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Figure 8-8: Effective loss tangent of a two-phase matrix-inclusion composite system made of 
viscoelastic inclusion and matrix. 

The results of the effective stress relaxation stiffness tensor and effective loss tangent for the 

matrix-inclusion composite made wholly of viscoelastic materials are presented in Figure 8-6 and 

Figure 8-8, respectively. These figures compare the results obtained using this proposed nonlocal 

computational homogenization scheme to those obtained using an asymptotic homogenization 

framework [132]. Figure 8-6 shows a strong corelation between the effective stress relaxation 

stiffness tensor for the composite material computed using both the nonlocal computational 

homogenization scheme and the asymptotic homogenization framework over the entire simulation 

period.  

To enable the determination of the effective dynamic properties of this composite system, its 

effective relaxation modulus is extracted using the procedure stated in 8.6.1. The effective 

relaxation modulus is presented as Figure 8-7 and the coefficients of the Prony series 

representation of the effective relaxation modulus as obtained by curve fitting process are 

presented in Table 8-2. The Prony series coefficients in Table 8-2 are utilised to determine the 

effective loss tangent of the composite system and the result presented in Figure 8-8. The effective 

loss tangent presented in Figure 8-8 shows good agreement with result of computation using the 

asymptotic homogenization in [132]. This demonstrates the capacity of the proposed nonlocal 

homogenization scheme to accurately predict both time and frequency domain effective 

characteristics of composites made wholly of viscoelastic constituents. 

8.6.3 Effect of nonlocality on the effective mechanical properties of composites 

To demonstrate the capacity of the proposed nonlocal homogenization scheme in capturing 

nonlocal interactions, a parametric study on the composite system presented in 8.6.1 will be 



146 
 

undertaken in this section. The purpose of this study is to investigate the effect of the nonlocal 

parameter, as represented by the peridynamic horizon 𝛿, on the effective properties of composites 

in both the time and frequency domains. 

The parametric study will involve varying the horizon size, which is the parameter that controls 

the degree of nonlocal interactions in PD, while keeping all other model parameters fixed. By 

doing so, it is possible to observe how the effective properties of the composite system change as 

the degree of nonlocality is varied. To quantify the effect of the horizon size on the effective 

properties of the viscoelastic composite, the effective stress relaxation modulus, the effective 

storage modulus, and the effective loss modulus will be calculated for a range of different horizon 

sizes. 

 

Figure 8-9: Effect of nonlocality on the effective relaxation modulus of a two-phase matrix-
inclusion composite system 
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Figure 8-10: Effect of nonlocality on the effective loss modulus of a two-phase matrix-inclusion 
composite system 

 

Figure 8-11: Effect of nonlocality on the effective storage modulus of a two-phase matrix-inclusion 
composite system 

Results of the parametric study on the effect of nonlocal interaction on the effective properties of 

the viscoelastic composite are presented in Figure 8-9, Figure 8-10 and Figure 8-11. Figure 8-9 

shows the effective relaxation modulus of the composite for different horizon sizes. The results 

of the parametric study indicate that as the horizon size, which represents the degree of nonlocal 

interaction, increases, the effective relaxation modulus decreases. This demonstrates that an 

increase in nonlocal interaction results in a reduction in the ability of the material to resist stress. 

This phenomenon can be attributed to the fact that increasing the degree of nonlocality leads to a 

more diffused stress distribution throughout the material, which results in a lower stress level 
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within the material. As a result, the average value of the stress field is also reduced, leading to a 

decrease in the effective stiffness of the composite system. 

To study the effect of nonlocal interaction on the dynamic properties of the composite, the 

effective storage and loss moduli were computed over a range of horizon sizes, and the results are 

presented in Figure 8-10 and Figure 8-11, respectively. Analysis of these results shows that 

increasing the nonlocal interaction not only reduces the storage modulus, which is a measure of 

the resistance of the material to deformation under an applied load, but also the loss modulus, 

which is a measure of the material's dissipation of energy.  

Since nonlocal behaviour is the basis for size effects observed in materials [140], attempts will be 

made in the following passage to correlate the results of the parametric studies undertaken and 

presented above with experimental results reported in the literature. When the sample size of a 

material decreases, the surface to volume ratio increases thus increasing the likelihood of 

occurrence and relevance of mechanisms occurring at the surface such as crazing in viscoelastic 

polymer which causes damage and energy dissipation [141] and is also an important mechanism 

of fracture [142]. In other words, the effect that the specimen size as described by the ratio of 

surface area to volume has on the behaviour of polymers manifest as size effect which is 

characterised as nonlocal behaviour. Thus, increasing the surface area to volume ratio can be 

interpreted as increasing the degree of nonlocal interaction in the material. To be able to compare 

the implications of results from the parametric studies with experimental observations, a numerical 

relaxation test to compute the creep strain in a rod of a unit cross-sectional area and unit length is 

undertaken. The creep strain is computed for material stress relaxation moduli corresponding to 

horizon sizes 10∆𝑥, 15∆𝑥 and 20∆𝑥 as presented in Figure 8-9. Results from these simulations are 

presented in Figure 8-12. 
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Figure 8-12: Creep strain during stress relaxation in a bar for effective relaxation moduli obtained 
from different degree of nonlocality. 

Figure 8-12 shows that increasing the horizon size has the effect of increasing the rate of creep as 

indicated by the increasing steepness of the curve. This behaviour correlate well with result of 

experiment in [143] in which increasing the ratio of the surface area to volume of polymers was 

observed to increase the rate of creep for a given applied stress. 

8.7 Conclusion 

In this chapter, a nonlocal computational homogenization scheme, was proposed for determining 

the effective properties of viscoelastic composite materials using NOSBPD theory. The scheme 

builds on an earlier nonlocal homogenization scheme by introducing a further nonlocality in time 

through the integral viscoelastic constitutive model. Numerical experiments were carried out on 

two viscoelastic matrix-inclusion composite systems to demonstrate the capability of the scheme 

in reproducing results from asymptotic homogenization in the framework of classical continuum 

mechanics, and good agreement was found between the results from the proposed scheme and 

those from referenced literature. 

In addition to the numerical experiments, a parametric study was conducted to study the influence 

of nonlocal interaction on the effective properties of the composite materials. The horizon size 

was varied while holding other model parameters constant to investigate the effect of varying the 

degree of nonlocality on the behaviour of the composite system. The results of this parametric 

study showed that as the degree of nonlocality was increased, the effective behaviour of the 

composite system became more ductile. This result highlights the importance of accounting for 

nonlocal interactions when determining the effective properties of viscoelastic composites. 
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This is especially important with the increasing application of viscoelastic materials in 

nanocomposites and nanotechnologies. At these small length scales, the significance of nonlocal 

interactions increases, and thus, it is important to account for these interactions to accurately 

predict the behaviour of the composite system. This proposed scheme provides a useful tool for 

understanding the effect of nonlocal interactions on the effective properties of viscoelastic 

composite materials and could be used as foundation for future studies in this area, especially in 

the context of nanocomposites and nanotechnologies. 

Other potential areas for further research include the application of the proposed scheme to more 

complex geometries, multiphase systems, and other phenomena that lead to nonlocal interactions 

such as fracture. Since fracture is inherently a nonlocal process, as such, a nonlocal framework 

such as the one proposed in this paper is necessary to produce accurate results when analysing 

viscoelastic composite systems undergoing fracture. 
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Chapter 9 

9.0 Conclusion and future work 

9.1 Summary of contributions 

This thesis aimed to advance the frontier of computational simulation of nonlocal and 

discontinuous material response in the framework of peridynamic theory by developing multiscale 

modelling frameworks that enables the exchange of information between multiple scales within 

the peridynamic theory. This aim is motivated by the need to increase the computational efficiency 

of peridynamics and the requirement for a framework that allows for computation of effective 

properties of heterogeneous materials. The thesis proposed two broad categories of multiscale 

modelling frameworks. Methods belonging to the first category are herein designated as model 

order reduction frameworks while the methodology of the second category is called computational 

homogenization framework. 

9.1.1 Model order reduction methodologies 

Two model order reduction schemes were proposed: the coarsening method and the model order 

reduction methodology based on static condensation algorithm. The contributions of this thesis 

in this regard are summarised below: 

• Chapter 3.0 presents the development of the coarsening method for linear peridynamics. 

The contribution of this thesis in this regards was to extend the one-dimensional 

framework originally proposed in [34] to two dimensions. The extended framework was 

then applied to benchmark problems to demonstrate its effectiveness. Results from the 

benchmark numerical problems demonstrated the effectiveness of coarsening 

methodology in reducing the order of static linear peridynamic model without 

compromising on the essential features of the solution.  

• Chapter 4.1 presents the development of a model order reduction methodology for linear 

peridynamics based on static condensation algorithm. To verify its effectiveness, the 

method was applied to reduce the order of one- and two-dimensional models. Results from 

these analyses showed the effectiveness of the proposed scheme in reducing the order of 

static, dynamic, and eigenproblems without compromising the essential characteristics of 

the system.  

• Chapter 5.0 presents an extended application of the proposed model reduction method 

based on static condensation framework to reduce the order of peridynamic heat transport 
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model. Results from benchmark studies demonstrates the effectiveness of the reduction 

methodology in reducing the order of peridynamic heat transport models. Additionally, it 

was demonstrated that this model order reduction scheme allows for condensation to 

proceed by either selecting the degrees of freedom to be retained or eliminated from the 

analysis in a predetermined pattern or randomly selected. Equally, the methodology was 

demonstrated to also allow for adaptive condensation, that is, allowing for high resolution 

simulation to run in one region of the model and lower resolution simulation in other 

regions. 

9.1.2  Computational homogenization framework 

In response to the need for a framework for characterisation of heterogeneous material within the 

peridynamic framework, PDCHT was proposed for characterizing effective behaviour of 

heterogeneous materials at the macro-scale based on mechanisms of deformation and damage 

occurring at a subscale. Contributions made in this regard are summarised below: 

• Chapter 6.1 presents the development of the proposed PDCHT. To set the development 

of the nonlocal homogenization theory on a consistent mathematical framework, a 

nonlocal vector calculus was used to derive expressions for essential nonlocal kinematic 

quantities, the nonlocal average theorems, and the nonlocal macrohomogeneity condition. 

These provided the foundation upon which the peridynamic computational 

homogenization framework rest. To validate the proposed nonlocal homogenization 

scheme, benchmark problems were solved, and the results compared with those obtained 

using the Reuss, Voigt and Hashin-Shtrikman bounding theorems, the mean-field methods 

of Ehelby and Mori-Tanaka, as well as the finite element method. The PDCHT was shown 

to be capable of capturing interesting material behaviour, some of which have been 

reported in the literature, such as the effect of change in the effective material property 

when the morphology of the RVE changes. The proposed method was also shown to be 

able to capture the effect of material phase contrast on the effective behaviour of the 

composite system. 

• Chapter 7.0 presents the application of the PDCHT to characterize the effective response 

of materials with evolving microstructure, since one of the major advantages offered by 

the PDCHT theory over homogenization frameworks based on CCM which derives from 

the strengths of PD theory is in circumstances involving discontinuous material behaviour 

such as propagation of cracks. In this extended application of the PDCHT, two benchmark 

problems involving material softening due to crack propagation and damage evolution due 
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to randomly distributed microcracks was studied. Results from these benchmark studies 

demonstrated the capability of the PDCHT in characterising materials with evolving 

microstructure. 

• Chapter 8.0 presents the development of a PDCHT for viscoelastic heterogeneous media. 

The motivation to develop this framework stems from the desire to develop a 

homogenization scheme that can account for processes and phenomena occurring in 

viscoelastic heterogenous media that are driven by nonlocal behaviour such as size effect 

and fracture for which frameworks based on the classical continuum theory lack the 

capability of modelling. The proposed framework was used to calculate the effective 

properties in both time and frequency domains of two viscoelastic matrix-inclusion 

composite systems. The results of calculations were found to compare well with results 

from the literature. A parametric study was also conducted to investigate the influence of 

nonlocal interaction on the effective properties by varying the horizon size. Results showed 

that increasing the degree of nonlocality reduces the stiffness of the composite system as 

well as increase its rate of creep. The capability to account for nonlocal interaction 

highlights the potential of this proposed scheme to provide a more comprehensive 

understanding of the behaviour of viscoelastic composite materials over a wide range of 

material behaviour. 

9.2 Future work 

This thesis is a key step in a research direction that promises to unlock the potential of 

peridynamics as a tool for the computational characterisation of large-scale systems as well as 

providing a framework for characterisation of the effective properties of systems with evolving 

microstructure or systems exhibiting complex nonlocal responses.  The development of these 

multiscale frameworks for peridynamics presents opportunities for future work. 

9.2.1 Future research direction in the model reduction schemes 

An area for future work for the model order reduction schemes proposed in this thesis involve 

optimizing their computational efficiency. Although the developed frameworks have already been 

demonstrated to be capable of significantly reducing the computational resource requirement, 

there is still room for improvement. One potential approach to increasing efficiency could be to 

incorporate machine learning techniques into the model reduction process, allowing for faster and 

more accurate predictions of material behaviour at different scales. 
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Since the order reduction framework proposed in this thesis is based on the static condensation 

algorithm, it neglects the inertia terms completely and thus while yielding exact reduced static 

solution, it yields reduced results for eigenvalue problems that are exact only for zero frequency. 

To enhance the accuracy of prediction especially for eigenproblems, the dynamic reduction 

algorithm can be used instead of the static condensation algorithm used in this thesis. The dynamic 

reduction algorithm allows for arbitrary choice of the frequency at which the model reduction 

yields exact results. 

9.2.2 Future research direction in computational homogenization 

The foundation laid in this thesis for computational homogenization can be explored on many 

fronts. One avenue for further exploration could be to extend the framework to incorporate more 

complex material behaviours, such as plasticity of functionally graded materials, which are often 

observed in real-world engineering systems. This would require incorporating appropriate 

constitutive model into the framework and developing appropriate coupling strategies between 

different scales. 

Another future research direction is in comparative analysis of computational results from the 

proposed homogenization theory which is a first-order nonlocal computational homogenization 

theory and the second-order computational homogenization theory from the local CCM. This 

promises to yield interesting results because while the first order PDCHT proposed in this thesis 

was demonstrated to be capable of capturing nonlocal material response as manifested in size 

effect, the classical first-order computational homogenization is known to yield inaccurate results 

in this regard and thus motivated the need to develop the so-called second order computational 

homogenization theory. This comparison will not only serve to further validate the results of the 

proposed PDCHT, but also demonstrate the superior capability of the nonlocal homogenization 

scheme compared to its local counterpart.  
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