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Abstract 
 
Although difficult to notice initially, examples of bioinspired technology have now 

become commonplace in society today. Construction materials, aerodynamic 

transport design, photography equipment and robot technology are among many 

research fields which have benefitted from studying evolution-driven solutions to 

common engineering problems. One field of engineering research which has recently 

begun to take inspiration from the natural world is that of acoustical systems such as 

microphones and loudspeakers. Specifically, to solve the problems involved in the 

miniaturisation of these systems, the auditory organs of insects are inspiring new 

design strategies. 

 In this thesis, one such insect auditory system, that of the desert locust 

Schistocerca gregaria, was extensively studied beginning with a comprehensive 

review of the historical observations of the system. Micro-scanning laser Doppler 

vibrometry was then used to characterise the response of the locust ear, providing an 

explanation for the method behind frequency discrimination in the ear. Afterwards, 

finite element models, simulating the ear’s features, were constructed with a view to 

furthering the understanding of each component of the hearing system. Directionality 

of the locust hearing system was also briefly investigated through computational 

modelling. All of these studies were performed with the overall aim of feeding into 

the future design of bioinspired acoustic sensors. 

 Devices constructed using micro-electro-mechanical systems fabrication 

techniques, with similar dimensions to the ear of the parasitoid fly, Ormia ochracea, 

were then experimentally tested using laser vibrometry and simulated using finite 

element analysis. Although not originally designed to operate as such, one MEMS 

structure exhibited some element of mechanical directionality in its response, found 

to be both predictable and repeatable. The objective of this section of the PhD 

research was to test the hypothesis that any system with sufficient degrees of 

freedom is capable of displaying an element of directionality in its vibrational 

response. 
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Chapter 1 : Introduction 
 
“Those who are inspired by a model other than Nature, a mistress above all masters, 

are labouring in vain” - Leonardo Da Vinci 
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1.1 Introduction 

From the observation of wild animals by the earliest humans, in order to hone their 

hunting and survival skills, to the development of cutting edge sharkskin-inspired 

swimming suits, bioinspired technology has developed to the point where examples 

are becoming increasingly common in our daily lives. Benefitting from millions of 

years of evolution-driven research and development, the natural world has already 

solved many problems which engineers are still facing today, with solutions often 

displaying unparalleled efficiency as well as sustainability.  

By following the protocol of biomimicry, one such research field which is 

advancing rapidly is the design, manufacture and testing of biologically-inspired 

acoustic systems. An extensive range of hearing systems can be observed throughout 

the animal kingdom, often displaying sensitivity, compatibility with environmental 

conditions, sophistication and complexity of response, currently unmatched by any 

synthetically engineered acoustic sensor or transducer. Commonly associated 

problems such as miniaturisation, directional sensitivity and frequency selectivity are 

all solved in unique fashion by weird and wonderful creatures.  

Since the Italian anatomist Alfonso Corti published his paper “Research on 

the organ of Corti of the mammalian ear” (Corti, 1851) over 150 years ago, 

researchers worldwide have explored the physiology and mechanisms active within 

the auditory system found throughout the animal kingdom. Analysing and modelling 

these natural systems provides the first step towards the manufacture of cutting-edge 

acoustic systems. 

Fundamentally the auditory system forms one of a number of sensory systems 

which many organisms use to obtain information about their environment 

(Dusenberry, 1992). This information or feedback is processed by the animal and 

may elicit some response mechanism either by the individual or by another. 

Although the full extent of sensory system evolution and the driving forces for that 

evolution across the animal kingdom is unknown, it is widely believed that such 

sensory systems have evolved to perform one or more of the following functions. 

The first of these functions, homeostasis, is defined as the use of feedback 

information (generally from an organism’s external environment) to regulate its 
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internal environment and maintain an equilibrium state of basic conditions including 

temperature, position and water content. 

Timing of developmental, physiological or behavioural changes typically 

relies on sensory information from the surrounding environment. 

 Spatial orientation is another vital function of sensory information and 

incorporates the use of systems for identification of resources such as food, mates or 

certain habitats. Some species of bats have developed a highly sophisticated method 

of spatial orientation, known as echolocation, defined as biological sonar, for the 

detection of prey. This system used by bats will be briefly discussed in a later 

section. 

Another function of sensory information is to provide protection or defence 

from threatening organisms, namely predators. In particular, some species of insects, 

which often fall prey to echolocating bats or other predators, have developed their 

own truly unique hearing system. Capable of not only detecting the sounds made by 

hunters (Frings & Frings, 1957; Miller & Surlykke, 2001; Lane et al., 2008) but in 

some cases tuning to a particular predator (Windmill et al., 2006), these systems are 

believed to have evolved due to the selective pressures associated with the arrival of 

new insect-hunting birds and mammals. These insect auditory systems display 

diverse variety in their morphology and location, dependent on species, and this 

gives rise to differing evasive manoeuvres and associated behaviour (Sales & Pye, 

1975; Robert, 1989; Skals & Surlykke, 2000). Many of these systems are reviewed in 

1.4. 

The analysis of the auditory system of one such insect, the desert locust, 

Schistocerca gregaria, is presented in this thesis. After an experimental study of the 

frequency response of the locust tympana, computational models of the ear are 

constructed and executed using numerical analysis techniques, with a view to better 

understanding the mechanisms involved in the observed response of the system. The 

overall aim is to study the locust ear with a view to directing the future of sensor and 

transducer technology. 

The manufacture of biologically inspired acoustic systems utilises several 

different methods, whether in the design, fabrication or testing of a sensor or 

transducer. Fairly recent developments in silicon crystal fabrication techniques have 
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brought about a shift in miniaturised microphone design towards Micro- Electro- 

Mechanical Systems (MEMS) technology. The second part of this thesis presents 

some computational and experimental methods involved in the characterisation of 

such MEMS structures and considers their potential application as directional 

microphones.  

There follows an introduction to many of the acoustics concepts and a 

description of the material properties, which are relevant to this thesis. 
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1.2 General Acoustics 

1.2.1 Sound Principles 

Loosely defined as a disturbance which travels through space and matter 

accompanied by an energy transfer, waves are classified as either mechanical or 

electromagnetic, depending on their origin and propagation method. Mechanical 

waves require a medium in which to travel and the transfer of energy is achieved 

through some deformation of the matter of this medium. Electromagnetic waves, 

which do not require a medium, are out with the scope of this work.  

Sound waves are an example of a mechanical wave as they can be thought of 

as a disturbance in a fluidic medium (often air). This disturbance can be the end 

result of a vibrating body displacing surrounding air particles from their equilibrium 

position. Displaced particles collide with those in close proximity causing particle 

oscillations within the medium. These oscillations give rise to localised regions of 

increased pressure (compressions) and decreased pressure (rarefactions) through the 

medium (relative to equilibrium pressure), illustrating the characteristic energy 

transfer defined as the propagation of sound. The resultant auditory sensation in the 

ear caused by this disturbance is the basic definition of a sound. Sound waves are 

said to be longitudinal because the vibration of the particles in the medium is in the 

plane of the direction of propagation. The alternative wave type is transverse and 

refers to the situation when the vibration is at 90° to the perceived direction of 

propagation. 
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Figure 1.1 Basic illustration of a sound wave (adapted from HyperPhysics web resources 
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html). 
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The sound field is quantified using two measures: the sound pressure, 𝑝 (Pa) 

and the sound pressure level 𝐿𝑝 (dB SPL). The former is simply the difference 

between the localised instantaneous pressure and the ambient or static, atmospheric 

pressure (1 atm. = 101.325 kPa). Defined as the lower threshold of audition, 20 µPa 

is used as the reference sound pressure, 𝑝0, for sound propagating through air. In the 

real world, there exists a huge range of pressures encountered by animals that 

possess the sense of hearing. Therefore sound pressure level is defined as a base 10 

logarithmic ratio calculated relative to 𝑝0 as follows 

𝐿𝑝 = 20 log10
𝑝
𝑝0

 

[1.1] 

This means 20 µPa (the hearing threshold) is equivalent to 0 dB SPL. Both of these 

sound field quantities are usually quoted as root mean square (RMS) pressure values 

and usually also include a distance from the source, often 1 m. It should be noted that 

𝑝0 changes to 1 µPa for sound propagating through water. 

Sound waves can be simplistically represented as a sinusoid with a measure 

of amplitude on the Y-axis and time on the X-axis. The peaks in this wave match the 

aforementioned compressions or areas of high pressure with the troughs 

corresponding to rarefactions. Fig. 1.1 shows an illustration of this wave. Several 

characteristics are used to define such a sound wave. The time taken for one 

complete cycle is known as the period, 𝑇 (s). The frequency, 𝑓 (Hz), of this sound is 

defined as the number of cycles per second and is related to the period by the 

equation 

𝑓 =  
1
𝑇

 

[1.2] 
The perception of frequency is often known as the pitch of a sound and the human 

audible hearing range is generally accepted as being from 20 Hz to 20 kHz for a 

teenager with fully functional hearing. 

The speed of sound, 𝑣 (ms-1), defined as the distance travelled by a sound 

wave per unit of time, varies depending on the medium of propagation. Since sound 

must have a medium through which to travel then it cannot propagate in vacuum 
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conditions. The arrangement of the constituent particles of the medium determines 

the speed at which sound will propagate and as a general rule sound travels faster 

through solids than liquids, and slower again through gases. Likewise the exact speed 

of sound in air is dependent on the temperature, relative humidity, barometric 

pressure and the fractions of constituent gases (e.g. variations in carbon dioxide 

content have a slight effect) as each of these can have an impact on air density. 

Through dry air at a temperature of 20 °C (often taken as room temperature), with a 

standard pressure of 100 kPa or 1 bar, the speed of sound is approximately 343 ms-1. 

In comparison, the speed of sound in water at 25 °C is 1493 ms-1 or more than four 

times faster. Sound speed is also known as the group velocity of the envelope of a 

sound wave. 

Defined as a particular point in a waveform cycle, the phase has the symbol 

φ, and is measured in degrees or radians. Fig. 1.2 shows one cycle of a basic sinusoid 

with phase on the X-axis. The wavelength is defined as the distance, in metres, 

between two consecutive points at the same phase of the cycle and has the symbol λ 

(the wavelength is labelled in Fig. 1.1). The above definitions for frequency, speed 

and wavelength of sound mean that they are all related through the universal wave 

equation 

𝑣 =  𝑓𝑓. 

[1.3] 
This means that for a sound wave propagating through an isotropic medium, i.e. at 

constant velocity, the frequency and wavelength are inversely proportional to each 

other. 

 The term frequency response is often used to describe the investigation of a 

particular vibrating object, either computationally or experimentally with both 

biological and artificially created specimens. In the case of vibrating bodies, it is 

simply a measure of the amplitude of vibration with respect to a range of operating 

frequencies. 
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Figure 1.2 Basic sinusoid displaying phase along the X-axis. 
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1.2.2 Sound Wave Phenomena 

As with all waves, sound waves exhibit the phenomena of reflection, 

refraction, diffraction and interference. All of these phenomena may take place when 

a sound wave encounters an interface between different media or approaches an 

obstacle. The extent of which each occurs is dependent upon the wavelength (and 

therefore frequency) of the sound, the size of the obstacle or interface boundary and 

the characteristic acoustic impedances of the media at each side of the interface. 

Additionally the characteristic specific acoustic impedance, 𝑍 (rayl), of a material is 

directly proportional to both the density 𝜌 (defined later in 1.3.1) and speed of sound 

in the medium according to the equation 

𝑍 = 𝜌𝑣. 

[1.4] 
Reflection of sound follows the same law of reflection as is defined in optics, 

i.e. for an incident sound wave reflecting off a stationary surface, the angle of 

incidence is equal to the angle of reflection (both angles being measured with respect 

to the surface normal (line perpendicular to the surface at the point of reflection)). An 

assumption is made that the incident beam of sound, the normal to the surface and 

the reflected beam are all coplanar.  

When sound propagates across the interface from one medium of specific 

acoustic impedance to a medium of different impedance, there will be a 

corresponding change of speed usually with an accompanying change in wave 

propagation angle. From [1.4], if the sound travels from a lower to higher impedance 

medium then, for equally dense media, the speed will increase and according to [1.3] 

there will be a decrease in the wavelength of sound (frequency remains constant as it 

is dependent on the sound source). The relationship between the angle and speed of 

sound propagating from medium 1 into medium 2 follows Snell’s Law  
sin 𝜃𝑖

sin 𝜃𝑟
=

𝑣1

𝑣2
 

 [1.5] 

where 𝜃𝑖 and 𝜃𝑟 are the angles of incidence and refraction respectively. 

When two or more coherent sound waves of comparable amplitudes 

propagate simultaneously through the same volume of a medium, e.g. an incident 
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wave and reflected wave, interference effects are observed according to the principle 

of wave superposition. The resultant wave is the point-wise sum with amplitude 

dependent on the instantaneous individual component wave amplitudes which are a 

function of the relative phase difference(s). The term constructive interference is 

given to the effect when two or more component waves have phase difference equal 

to some integer multiple of 2π and this results in the production of positive and 

negative maxima due to the superposition of two wave crests or two troughs. The 

opposite is termed destructive interference and occurs when the phase difference 

between two waves is some odd multiple of π, i.e. the crest of one wave meets the 

trough of the other and vice versa. Superposition in this circumstance results in a 

local minimum. The phase difference at a particular point is dependent on the 

difference in the distances between sources and that point (known as path length 

difference) and the wavelength of the sound. The corresponding pattern of maxima 

and minima is known as an interference pattern and this is also the basis behind 

optical interferometry as mentioned in the description of laser Doppler vibrometry in 

2.1. 

When a sound wave meets an object or an opening then reflections and 

scattering cause a complex spatial arrangement of the original sources and, 

effectively, newly-created sound sources. If the wavelength of the sound is of the 

order of magnitude of the dimensions of the object then an interference pattern will 

form according to the phenomena mentioned above, manifesting itself as a pattern of 

reflections and diffraction fringes of maximum and minimum intensity. When the 

wavelength is much larger than the object dimensions then the corresponding 

diffraction pattern indicates that the sound has all curved around the object or 

through the opening. Therefore the word diffraction is used to define the way that 

waves curve around obstacles or through gaps in their propagation path. Sounds of 

wavelength shorter than an obstacle’s size will reflect more than diffract, often 

resulting in a partial or full acoustic shadow behind the object. Echolocation using 

high frequency (therefore short wavelength according to [1.3]) ultrasound makes use 

of this very concept. Longer wavelength sounds will diffract more (or pass more 

easily) around the object in their path. These four phenomena introduced above have 
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major implications in the field of acoustics when applied to hearing, especially in 

sound localisation. 

The theory of Helmholtz reciprocity also holds for acoustic waves i.e. the 

path of any sound wave travelling through linear, homogeneous media, undergoing 

any of the aforementioned phenomena, will perfectly match that of the same wave in 

the opposite direction. All other things remaining constant, switching the locations of 

a sound source and a receiver will make no change to the perceived sound at the 

receiver. 

As mentioned previously, a vibrating object surrounded by a fluidic medium 

would act as a sound source. A spherical sound source, such as a sinusoidally 

pulsating sphere, will radiate equally in all directions and is therefore known as an 

omnidirectional acoustic monopole with a simple spherical directivity pattern.  

Two monopoles of equal magnitude but opposite phase, some small distance 

apart, constitute an acoustic dipole source. This source shows a more complicated 

figure of eight directivity pattern. Quadrupole sound sources can also be constructed 

using two different configurations of dipole sources, resulting in characteristic 

directivity patterns with four lobes. 

 An important observation is made when either a sound source, a sound-

reflecting body or a detector of sound move in space relative to one or both of the 

others. There becomes an apparent shift in the frequency of the sound, as detected by 

the receiver. If we assume the source and receiver are the same object and remain 

stationary, as is the surrounding medium of air, and the only moving object is the 

reflecting body, then this frequency or Doppler shift (after Christian Doppler, the 

physicist who first studied the concept now known as the Doppler effect) is 

proportional to the magnitude and direction of the velocity of the vibrating reflector. 

As is the case with many of the acoustic phenomena described here, this same 

observation can be made in the case of a source, receiver and reflector of light. 

 As sound propagates through a medium there is an attenuation of the sound 

pressure directly proportional to the distance from the source. Viscosity, density, 

pressure and fluctuations in the medium’s velocity all impact on this attenuation. For 

3-D spherical spreading in a free field the sound pressure is proportional to the 

reciprocal of the distance from the source (in addition to any viscous losses). The 
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attenuation of propagating sound also displays frequency dependence which becomes 

particularly significant for higher frequencies such as ultrasound since higher 

frequency sound experiences greater viscous losses in the fluid medium. 

 Two regions exist with regards to sound sources and receivers: the near-field 

and the far-field. In relation to a sound source, the near-field is the region extending 

from the source boundary to some distance less than one wavelength of the sound. 

Within this region near-field sound can be thought of as a complex interference 

pattern of localised fluid motions, not characteristic of the normal propagation of 

sound. When the distance from a source is very much greater than the ratio of the 

wavelength to 2π, then far-field assumptions are made, whereby sound propagates 

according to the aforementioned basic principles and phenomena. This region 

extends infinitely and within it the sound is assumed to be travelling as a plane-wave. 
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1.3 Mechanical Properties and Structural Characteristics 

1.3.1 Physical and Mechanical Properties 

To analyse the vibrational patterns associated with a particular behaviour or response 

of a system, a number of material properties are important. These properties will of 

course depend on whether the material is homogeneous or nonhomogeneous. 

Isotropic materials are defined as those with uniform material properties in all 

directions. Conversely if the properties of a material vary systematically in a 

directionally dependent manner then the material is termed anisotropic. 

The first important property, the volumetric density of a substance, is defined 

as its mass, 𝑚 (in kg) per unit volume, 𝑉 (in m3), and is given the symbol 𝜌 (kgm-3). 

𝜌 =
𝑚
𝑉

 

[1.6] 
Density is dependent upon the temperature and pressure of the surrounding 

environment since they have a potential effect on the volume through increasing or 

decreasing the kinetic energy of the particles in the matter, thus affecting the particle 

distribution. The density of water is around 1000 kgm-3, of Polyvinyl Chloride (PVC) 

is about 1300 kgm-3 and of iron is about 7860 kgm-3 (all at room temperature and 

pressure of 1 atm.). Vincent and Wegst (2004) found the density of insect cuticles to 

range from 1000 to 1300 kgm-3. 

Vibrational deflection as a result of incident sound waves is a type of 

mechanical strain caused by an engineering stress. The stress, 𝜎 (Nm-2 or Pa), is 

usually defined as the instantaneous applied load (𝐹 in N) divided by the initial 

cross-sectional area of the specimen under load (𝐴0 in m2) 

𝜎 =
𝐹
𝐴0

 

[1.7] 

 For a 3-D cube of material, the applied force, and therefore stress, may be in 

a number of different directions including normal to a face or in the plane of a face, 

with a component in a particular axis direction. Fig. 1.3 shows such a cube, with the 

possible stresses 𝜎𝑖𝑖 defined according to the integers 𝑖 and 𝑗 which correspond to the 

surface and axis direction respectively. 
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The stress tensor for this cube is then defined as 

�𝜎𝑖𝑖� = �
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

� 

[1.8] 

Defined as the ratio between the change in length, ∆𝑙 (m) of a specimen (in 

the same direction as the applied stress) and its original length, 𝑙0 (m), the strain, 𝜖 

(dimensionless), is calculated as 

𝜖 =
∆𝑙
𝑙0

 

[1.9] 

In the linear regime, the force, 𝐹, required to extend or compress a spring by 

a certain distance (𝑥), is proportional to that distance. Known as Hooke’s law this 

can be denoted as 

𝐹 = 𝑘𝑥 

[1.10] 

where 𝑘 is known as the stiffness constant. This is applicable only to the elastic 

deformation of linear isotropic materials. If the deformation distance, 𝑥, is ∆𝑙 from 

above, then substituting for 𝐹 and 𝑥 results in 
𝐹
𝑥

= 𝑘 =
𝜎𝐴0

𝜖𝑙0
 

[1.11] 

Figure 1.3 Cube of material showing possible normal and in-plane 
stresses and their corresponding indices. 
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Cross-multiplying results in 
𝐹𝑙0

𝑥𝐴0
=

𝜎
𝜖

= 𝐸 

[1.12] 

where 𝐸 (Pa) is the modulus of elasticity, or Young’s modulus. This constant is often 

used as a measure of a material’s stiffness or resistance to elastic deformation. The 

Young’s modulus of a perfectly elastic, linear and isotropic material is usually 

defined as the ratio of stress to strain. Therefore Hooke’s law can be interpreted as a 

direct proportionality between the strain of a material and the stress applied to that 

material. A material which obeys Hooke’s law is often known as Hookean. 

The Young’s modulus of metals ranges from about 30 to 800 GPa (Callister, 

2007). For bone this value tends to be 18 – 70 GPa (Wainwright, 1976) and for 

polymers such as PVC, 𝐸 is between 1 and 4 GPa (Callister, 2007). Klocke and 

Schmitz (2011) reviewed insect cuticle mechanical properties and found the modulus 

of elasticity of cuticle from 11 orders of insect species ranged from 1.5 to 20 GPa. 

Wainwright (1976) reported the cuticle of the tibia of the locust as having a Young’s 

modulus of 9.5 GPa, based on Jensen and Weis-Fogh (1962). Rubbers and 

mammalian skin are at the lower end of the spectrum when it comes to stiffness with 

elastic moduli in the range of 0.02 – 100 MPa (Callister, 2007; Agache et al., 1980; 

Gennisson et al., 2004; Liang & Boppart, 2010; Volandri et al., 2011). 

When an object, consisting of isotropic material, undergoes a tensile stress in 

the Z-axis direction there is a corresponding strain, 𝜖𝑧, in the same direction. This 

elongation usually causes constrictions in the X-axis and Y-axis directions 

orthogonal to the initial applied stress. In turn these contractions have associated 

compressive strains 𝜖𝑥  and 𝜖𝑦. Assuming the stress is applied uniaxially then these 

strains are equal to each other, i.e. 𝜖𝑥 = 𝜖𝑦. There exists a ratio, defined as one of the 

lateral strains divided by the axial strain, known as Poisson’s ratio, 𝜈. 

𝜈 = −
𝜖𝑥

𝜖𝑧
= −

𝜖𝑦

𝜖𝑧
 

[1.13] 

Since 𝜖𝑥  and 𝜖𝑧 are usually of opposite sign, the negative sign is included to ‘force’ 𝜈 
to be positive. Theoretically, for perfectly isotropic materials Poisson’s ratio should 
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be exactly 0.25. Known as the incompressible limit, the maximum value of 𝜈 is 0.5, 

at which point there is no net volume change. Rubbers are often very close to this 

value whereas many metals and alloys have a 𝜈 ranging from 0.25 to 0.35, e.g. steel 

is 0.3 (Callister, 2007). 

Anisotropic materials such as crystalline elements or compounds have 

slightly more complex material properties since the structural alignment of the 

crystal must be taken into account. To describe direction-dependent properties in 3-D 

crystal structures we must first consider the notification used for crystallographic 

planes and directions. Miller indices are used, consisting of three-integer triples, 

“hkl” which correspond to the XYZ Cartesian coordinate system. These are used to 

describe a direction or also a plane perpendicular to the direction. They are 

calculated by taking the reciprocal of the coordinates of the intercepts on the XYZ-

axes and then simplifying by the lowest common denominator. For symmetrical 

crystal lattices, there exist groups of equivalent directions or planes which are called 

families. Miller indices are used to describe a number of concepts associated with 

crystallography, some of them explained in Table 1.1. Equations [1.9 – 1.11] above 

describe Hooke’s law for isotropic materials however in the case of anisotropic 

materials, material properties differ in all of the X-, Y- and Z-axis directions. In these 

circumstances the elastic modulus from equation [1.12] becomes a fourth rank 

tensor, with 81 terms, called the stiffness matrix.  

Notation Meaning 
[hkl ] Direction vector with components h, k and l 
<hkl> Family of symmetric direction vectors equivalent to hkl 
(hkl) Crystal plane orthogonal to vector hkl 

Table 1.1 Selected Miller index notation for crystallography applications. 

 

 The properties introduced above are defined for a class termed the elastic 

materials whereby deformation is time independent i.e. strains due to stresses are 

assumed to be instantaneous. Most real materials display some form of anelasticity or 

time-dependent elastic response behaviours, particularly those which display 

viscoelasticity, including many polymeric and biological materials. Processes in the 

micro- and atomic scales are often time dependent, resulting in time dependent 
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deformation behaviour. Time and temperature affect the stress/strain behaviour of 

such materials, with concepts such as stress relaxation and hysteresis common. 
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1.3.2 An Introduction to Insect Cuticle – Material Properties and Microstructure 

Insect integument is often subdivided into an epidermis layer and two layers of 

cuticle, the epicuticle (outermost layer) and the procuticle. The epidermis is the 

innermost single layer of cells responsible for the secretion of cuticle as the insect 

makes the transition from larval stage, through the nymphal instars, to imago or 

adulthood.  

Epicuticle is a layered complex which can be divided into four parts: the 

outer cement layer, a waxy layer, the outer epicuticle and the inner cuticle. Proteins 

and lipids with polyphenols for stability constitute the hydrophobic cement layer and 

its function is believed to be protection of the underlying wax layer. The wax layer is 

a layer of lipidic hydrocarbons present for the purpose of cuticular transpiration and 

waterproofing. Cuticulin is the name given to outer epicuticle and it is universal in 

the insect world. Lining the finest tracheal tubes, called tracheoles, and being a part 

of muscle insertion points are the main presence of this laminar membrane. Also 

laminar in structure, a layer called the inner epicuticle is believed to be responsible 

for cuticle surface repairs.  

Procuticle is the name given to the largest fraction of insect cuticle and in 

general its microstructure normally has three main constituents: a matrix of chitinous 

nanofibres, structural proteins and very rarely deposited calcium usually as calcium 

carbonate. Apart from in the cases of insect eggs, chitin is a structural component of 

all cuticles. With the chemical name poly-β-(1,4)-N-acetyl-D-glucosamine, this 

polysaccharide is closely related to cellulose in chemical properties. It is a 

crystallographic structural polymer consisting of packed nanofibres with an 

estimated stiffness of upwards of 150 GPa. However in reality chitin is viscoelastic 

in nature with its stiffness and extensibility displaying time-dependence i.e. a 

variation with deformation rate. The orientation of the microfibrils within the chitin 

in a particular section of cuticle is, of course, of great importance to the structural 

properties of the part of the insect’s body where that cuticle is located. In the cuticle, 

chitin is always embedded within or closely tied into some form of protein matrix. 

The best-known of these proteins is called resilin which is analogous to rubber in 

many of its properties such as having a Poisson’s ratio very close to the 
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incompressible limit of 0.5. Rubber-like cuticle has been discovered in the locust, 

consisting of heavily-hydrated resilin, a thicker layer of lamellae of solid chitin, all 

covered by thin epicuticle. 

It should be noted that insect cuticle is a very difficult material to 

characterise, particularly because it is a complex composite material displaying a 

varied microstructure throughout the whole insect body. Although many textbooks 

and research papers have attempted to investigate the microstructure of different 

forms of cuticle in relation to the material and mechanical properties (Jensen & 

Weis-Fogh, 1962; Uvarov, 1966; Neville et al., 1976; Wainwright, 1976; Michel & 

Peterson, 1982; Blum, 1985; Vincent & Wegst, 2004; Liu et al., 2006) much has still 

to be discovered in this subfield including the construction of material models 

incorporating all of the aforementioned constituents and their properties, new 

methods for practical testing of cuticle mechanical properties and potentially even 

undiscovered cuticle compositions. The complexities and difficulties in analysing the 

cuticle of a particular insect body part, e.g. a sensory organ, are reflected in the 

modelling of insect systems since material property determination becomes 

problematic. In addition, many structures and regions of an insect body consist of 

specialised cuticles with unique properties suited to their required function. One such 

sensory organ is the locust’s tympanal hearing system. 
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1.3.3 Analytical Eigenmodes of Clamped Circular Disc 

Theoretically a circular plate which is fixed circumferentially and vibrating in vacuo 

has infinitely many eigenmodes or natural shapes of vibration, each having a 

corresponding eigenfrequency (or natural frequency). Fig. 1.4 below shows the first 

six of these modes with yellow representing areas of zero displacement, red for 

displacements towards the reader and green for vibration away from the reader, as 

seen on the side profile images above/below the corresponding plan view. This same 

red-outwards/green-inwards displacement convention is used throughout the thesis. 

Simple eigenmode analyses such as this, with no consideration of damping or 

loading, do not allow for a comparative investigation of the amplitude of deflection 

at each mode. However the amplitudes of the characteristic nodes within one 

particular mode can be accurately compared. Darker shades of red or green indicate 

greater amplitudes of displacement e.g. the darker red peak left of centre on mode 6 

vs. the lighter red C-shaped peak on the right of the disc – see side profile of mode 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 First 6 eigenmodes of ideal circular disc shown in plan view and side profile with 
mode numbers (number of nodal diameters, number of nodal circles). 
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Two concepts are used to describe such vibration patterns: the nodes, which 

are areas of constant zero displacement (yellow above); the antinodes which are 

areas of maximal deflection (darkest green and red). Nodes can be either a nodal 

circle e.g. around the perimeter of mode 1 or between the two antinodes in mode 4, 

or a nodal diameter e.g. the yellow line through the centre of mode 2. Every mode is 

designated a mode number (d, c) where d is the number of nodal diameters and c the 

number of nodal circles. The mode numbers for the first 6 modes are in Fig. 1.4. 

Leissa (1969) studied the vibration of plates for various shapes with a 

selection of boundary conditions and concluded that the eigenfrequencies, 𝜔e, of a 

solid circular plate with circumferential clamping could be calculated using the 

formula  

𝜔e =
λe

2

𝑟2 �
𝐸ℎ2

12𝜌(1 − 𝜈2)
 

[1.14] 

where λe is the eigenvalue, 𝑟 the disc radius, 𝐸 the Young’s modulus of the plate 

material, ℎ the thickness of the plate, 𝜌 the density of the plate, and 𝜈 the Poisson’s 

ratio. Part of the expression under the square root sign is defined as the flexural 

rigidity, 𝐷, where 

𝐷 =
𝐸ℎ2

12(1 − 𝜈2)
 

[1.15] 

Leissa tabulated λe
2 for a number of modes using Airey (1910), Carrington (1925) 

and Blanch (1952) as sources. Gorman et al. (2001) then used this data to calculate 

theoretical values for the first six eigenfrequencies of a clamped circular plate of 

radius 0.038 m, thickness 0.00038 m, Young’s modulus 2.1 × 1011 Pa, density of 

7800 kgm-3 and Poisson’s ratio of 0.3, shown in Table 1.2. 
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Eigenmode Eigenfrequency (Hz) 
1st 671.8 
2nd 1398 
3rd 2293 
4th 2615 
5th 3356 
6th 4000 

Table 1.2 Theoretical eigenfrequencies of first 6 modes of a uniform circular plate with defined radius, thickness 
and material properties (Gorman et al. 2001). 

 

These values can then be used to predict the natural frequencies of any isotropic 

linear circular plate, fixed circumferentially, assuming no damping or external loads. 
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1.4 Auditory Systems 

1.4.1 Mammalian Hearing 

1.4.1.1 The Human Ear 

Corti’s inaugural study documented the discovery of a “hearing organ”, now known 

to be the core sensory component of the cochlea, a major part of the inner ear. This 

finding lead to other anatomists such as Reissner (1854), Deiters (1860) and Hensen 

(1863), among others, discovering components of the inner ear which they eventually 

gave their name to. The inner ear plus two other main sections, the outer (or external) 

ear and the middle ear constitute the mammalian hearing system, see Fig. 1.5. These 

are now examined briefly in the following Subchapter. 
 

 

 

 

 

 

 

 

 

 

Figure 1.5 Schematic of human ear. From http://personal.cityu.edu.hk/~bsapplec/thehuman.htm. 

 

Two substructures, the pinna (or auricle in humans) and the external auditory 

canal (meatus), make up the outer ear in the majority of mammals. The outer ear, as a 

whole, acts as a signal conditioner (Evans, 1992), emphasising frequencies of 

relevance to the species. 

First, the pinna, the fleshy visible ‘ear’, is designed to funnel incident sound 

through the auditory canal. Both the ear canal and the physical structures of the head 

and external ears transform the spectrum of sound (Mehrgardt & Mellert, 1977; 

Musicant et al., 1989; Middlebrooks, 1999). With the auditory meatus acting as a 

resonator, a range of frequencies can be significantly amplified (Wiener & Ross, 
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1946). The bandwidth for a particular species (frequency range of sounds which an 

animal can hear) corresponds to sounds which are of biological relevance, i.e. may 

be used in interspecific communication or in some cases by potential predators. 

Pinnae shape and size can vary considerably, e.g. among species of bats there 

is a belief that the unique structure of the pinna is a reflection of different 

echolocation behaviours (Vater & Kössl, 2004). Some bats (and other vertebrates) 

have incredibly mobile pinnae, capable of behaving as mobile directional acoustic 

antennae (Guppy & Coles, 1988; Obrist et al., 1993). Conversely some animals 

including echolocating cetaceans (whales, dolphins etc.) and some insectivorous 

mammals actually have no identifiable pinnae (Ketten, 1994). 

The air-filled middle ear contains three tiny bones, the malleus (or hammer), 

the incus (or anvil) and the stapes (stirrup), collectively called the ossicles. These are 

bounded by the eardrum or tympanic membrane, located between the malleus and the 

internal end of the auditory canal, and the oval window on the inner side. “The 

function of the middle ear is to resolve the acoustic impedance mismatch between the 

air in the ear canal and the fluid of the inner ear.” (Fay et al., 2005). The process of 

transduction begins at the drum where sound pressure in the ear canal is converted 

into vibrations of the ossicles. 

A number of factors contribute to the tympanic membrane’s efficiency as a 

transducer. Having developed a computer simulation of the meatus, eardrum and 

ossicles, Fay et al. (2006) concluded that at high frequencies, a cone-shaped eardrum 

transfers more force to the ossicles than a flat eardrum. In addition, the tilt of the 

eardrum within the canal allows a much larger area for the same canal size, 

increasing sound transmission to the cochlea. They also found that at high 

frequencies, optimal transmission is achieved by the creation of many intentionally 

mistuned resonances. Theoretically, at frequencies at and close to resonance the 

sensitivity of the eardrum will be at a maximum however because of the number and 

close proximity of the natural frequencies, the sum of these resonances at the malleus 

attachment results in a smooth transfer of pressure across all relevant frequencies. 

The inner ear lies beyond the oval window and consists of a complex multi-

chambered cavity containing the semicircular canals (important for balance but not 

involved in hearing) and the transduction centre of hearing, the cochlea. Shaped like 
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a snail shell, the cochlea has three membranous coiled tubes and is surrounded by a 

bony shell. The tubes are called the scala vestibuli, scala tympani and scala media 

respectively. The scala vestibuli and tympani contain a liquid called perilymph, 

whose ionic composition resembles that of other extracellular fluids. These two 

scalae have membrane-covered windows which open into the middle ear. In the scala 

vestibuli, the oval window is where the footplate of the stapes (one of the ossicles of 

the middle ear) lies. The scala tympani begin at a membrane covered window known 

as the round window. The scala media, lying between both vestibuli and tympani, is 

where the organ of Corti lies. This organ contains endolymph, a fluid with high 

potassium concentration, sustaining a large positive electrical potential. It also 

contains the basilar membrane on which Von Békésy (1960) observed the generation 

of different travelling waves which have propagation distances and shapes displaying 

a dependence on frequency. Three response characteristics are outlined below for a 

travelling wave on the basilar membrane of the mammalian cochlea (Robles & 

Ruggero, 2001). 

Criterion 1: an increasing displacement phase lag is observed whereby the 

motion of the medium is increasingly lagging the motion of the point of origin, as the 

wave propagates across the membrane. This phase lag is also proportional to the 

stimulus frequency, i.e. increased stimulus frequency results in an increase in the 

phase lag. 

Criterion 2: the envelope of the magnitude of the tympanum displacement is 

asymmetric around the area of maximal deflection, with the leading edge of the 

envelope steeper than the trailing edge. This point of maximal deflection coincides 

with where the wave compresses at its point of termination. 

Criterion 3: the cochlear travelling waves are passive in that they are 

governed by the mechanical properties of the medium through which they propagate, 

i.e. mass, stiffness and damping. 

Below the basilar membrane lie two types of hair cells, inner and outer, 

which are capable of transducing mechanical vibrations into receptor potentials. 

These receptor potentials lead to the “generation of action potentials in type I 

auditory nerve fibers” (Robles & Ruggero, 2001), resulting in the transmission of 

processed information from the cochlea to the brain. The outer hair cells have also 
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been shown to be capable of producing mechanical energy or self-oscillating and are 

therefore termed active, rather than passive, oscillators. 

Two mechanisms have been proposed for frequency discrimination in 

vertebrate ears: 

• The place principle where anatomical groups of receptor cells have different 

characteristic frequencies and therefore provide the central nervous system 

(CNS) with frequency information;  

• Telephone principle at low frequencies when phase information may be 

encoded in nerve impulse trains. 

Research into the workings of the inner ear is still very much on-going. In 

reality, due to the complexity of the active processes, mechanotransduction and 

neurology involved in hearing, constructing a model which fully and accurately 

describes the ear, has proven to be an arduous task. As a result, the development of 

our understanding of the auditory system is not nearly as advanced as that of the 

visual system. 
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1.4.1.2 Bat Echolocation 

As mentioned previously, several species of bats have a complex, highly skilled 

method of spatial orientation, known as echolocation. This involves the emission of 

brief ultrasonic calls, or clicks, through either the nostrils or mouth. A 

spectrotemporal analysis of the reflections of these clicks from objects surrounding 

the bat, allows the animal to effectively navigate in complete darkness. Certain 

species can even accurately locate and successfully hunt their prey – small nocturnal 

insects such as moths.  

A bat’s gaze is defined as “the region of the environment a subject explores 

with the senses” (Ghose & Moss, 2006) and since this varies between species, the 

specific sonar call design including upper and lower frequencies (usually in the range 

of 20 kHz – 110 kHz), call duration and duty cycle also varies accordingly. 

Additionally, it follows that a particular bat’s hearing system is tuned to the 

particular frequency range it uses to echolocate. If the echolocating calls are used for 

prey detection, the call design will match the physical characteristics of the prey, thus 

maximising the chance of successful capture. A higher frequency call (and therefore 

smaller wavelength) improves resolution however this is contrasted by a decrease in 

detection distance, due to greater attenuation. 

From differences in perceived echo arrival time, intensity and spectrum, to 

both ears, the horizontal and vertical position of objects can be computed, sometimes 

even with sub-millimetre accuracy. Ulanovsky and Moss (2008) categorise 

echolocating bats into one of three types, based on their call or pulse design. FM 

(frequency modulated) bats use FM calls with durations 0.5 – 20 ms and this type is 

most common among all species. Constant frequency (CF) bats include several 

Microchiropteran bat species. With pulse durations of tens of milliseconds, the bats 

estimate target motion by analysing the Doppler shifts of the echoes. The final 

echolocation call design type belongs to bats of the genus Rousettus and they use 

very brief ultrasonic clicks, similar in nature to the biological sonar used by whales 

and dolphins and typically lasting 40 – 50 μs. 
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Due to the degree in which echolocating bats have honed their spatial 

orientating and prey detecting skills, a number of insects have developed hearing 

systems capable of detecting bat calls and use evasive manoeuvres to avoid capture. 
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1.4.2 Insect Hearing 

1.4.2.1 General Insect Hearing Organs 

The trend for auditory research rapidly extended into the invertebrate world in the 

beginning of the twentieth century with Schwabe (1906) being one of the earliest to 

study the morphology of the ear of Orthopteran insects (the order to which the 

locusts, grasshoppers and crickets belong). Insects are the most abundant and diverse 

class of animal in the world, with over one million species known and many more 

yet to be discovered and classified. Having existed on earth for approximately four 

hundred million years, it is reasonable to assume that a particular insect species has 

evolved to not only survive, but thrive in their varied and ever-changing environment 

(Grimaldi & Engel, 2005). Influenced by such selective pressures as changes to 

natural habitat or the requirement for new systems of predator detection and evasion, 

it is widely believed that several insect orders’ sensory organs have developed to suit 

the needs of the species. Therefore it is logical that researchers of auditory systems 

would desire to investigate the links between the morphology, neurophysiological 

response and mechanical response of insect ears along with any associated 

behavioural responses.  

An insect’s well-evolved sensory organs are called mechanoreceptor organs, 

to which various types of auditory organs belong. Mechanoreception is broadly 

defined as the perception of any mechanical distortion of the body (Chapman, 1998) 

and specifically in the case of hearing, the detection of mechanical vibrations caused 

by sound propagating through the surrounding medium (usually air or water) which 

is incident on the insect. 

Insect auditory systems may be used for intra-specific communication i.e. 

finding a mate or assisting with swarming behaviour, for predator detection and 

evasion and for localisation of prey. Due to the numerous different environments 

inhabited by different species, the auditory organs for a particular species are located 

in different positions of the body. Fig. 1.6 is a schematic diagram of a generalised 

insect showing 10 body locations for receptors believed to be organs of hearing. 
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Figure 1.6 Generalised insect diagram showing 10 possible positions of auditory organs in different insect 
species (from Yack & Fullard, 1993). 1. – Lepidoptera: Sphingoidea, Choerocampinae, 2. – Diptera: Tachinidae, 

Ormiini, 3. – Orthoptera: Ensifera, 4. – Hemiptera: Corixidae, 5. – Mantodea: Mantidae, 6. – Lepidoptera: 
Geometroidea, Pyraloidea, 7. – Hemiptera: Cicadidae, 8. – Orthoptera: Acrididae, 9. – Lepidoptera: Noctuoidea, 

10. – Neuroptera: Chrysopidae. 

 

Yack (2004) reviewed the four main types of hearing organs which have been 

observed in insects: trichoid sensilla (TS), Johnston’s organs, subgenual organs (SO), 

and tympanal organs (TM). These four hearing organ types are illustrated in Fig. 1.7 

and further explained in this review.  
 

 

 

 

 

 

Figure 1.7 Four types of insect auditory mechanoreceptor organs (adapted from Yack, 2004). (a) Trichoid 
sensilla, (b) Johnston’s organ, (c) subgenual organ and (d) tympanal organ. 

 

Some species of caterpillar (including the caterpillar of lepidopteran moths in 

Fig. 1.7(a)) have trichoid sensilla located on their thorax. These are projections of 

cuticle, hair-like in shape, which usually have one or more bipolar nerve cells at their 

(a) (b) (c) (d) 
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base. Designed to vibrate in response to the air currents associated with sounds 

propagating through the surrounding medium, these usually act as simple near-field 

auditory mechanoreceptors.  

Most insects have a non-connective chordotonal organ called Johnston’s 

organ (Fig. 1.7(b)), located at the base of their antenna. The function and size of this 

organ varies significantly between species. Capable of detecting near-field sounds 

produced by the wing beats of conspecifics, the Johnston’s organ is very complex in 

certain Dipteran flies including mosquitoes, midges and fruit flies. With up to 16,000 

sensory cells in a mosquito’s Johnston’s organ, the antennae are extremely sensitive. 

The organ can even exhibit frequency selectivity as well as active sensory 

phenomena such as input amplification and self-generated oscillations (Göpfert & 

Robert, 2001; Göpfert & Robert, 2003; Jackson & Robert, 2006). Even the less 

sensitive female mosquito’s Johnston’s organ responds to antennal deflections of just 

±0.0005° which are induced by ±11 nm air particle displacements in the sound field 

(Göpfert & Robert, 2000). 

In the proximal tibia of each leg of most insects lies a subgenual organ (Fig. 

1.7(c)) used primarily to detect substrate vibrations. This organ appears to be of 

importance to lacewings for mate-searching purposes (Devetak, 1998). Several 

species of insects are very sensitive to solid-borne vibrations including ants, 

cockroaches, crickets and wasps. Very little is still known about the function or 

structure of such mechanoreceptor organs across the insect species. 

The last of the four known insect mechanosensory organ types is the 

tympanal organ (Fig. 1.7(d)). Insect tympanal ears consist of three main parts: the 

internal tracheal air sac, the tympanal membrane (TM) covering the sac and a 

mechanosensory organ with groups of sensilla, coupled to the membrane in some 

way. Pressure changes associated with a sound wave cause the tympanum to vibrate. 

The tympanal sensory organ is responsible for transducing this mechanical signal 

into neural signals. Specially shaped sensory cells, called chordotonal sensilla or 

scolopidia, are contained within the sensory organ.  

Some species of moths and butterflies (Lepidoptera) have tympanal hearing 

organs that display a relatively simple morphology in comparison with other TM 

containing insect orders, e.g. they have fewer auditory receptor cells. However the 
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response of the organ is comparable to those insects with more complex organs with 

higher numbers of sensilla (Coro & Kössl, 1998). Röder (1966) concluded that the 

position of the two auditory organs of moths may allow directionality to be 

computed. Many moth ears are sensitive to the ultrasonic echolocating calls of 

insectivorous bats and moths have been observed making evasive manoeuvres when 

simulated bat calls are played. 

Windmill et al. (2007) studied three species of noctuid moths and their 

corresponding tympanum vibrations in response to a variety of frequencies. When 

stimulated at high frequency (greater than 20 kHz), an area of the membrane called 

the opaque zone, where the scolopidia attach, vibrated with a greater displacement 

than the rest of the membrane. It was also found that a moth’s auditory organs can 

tune up by mechanically changing sensitivity to higher frequencies, when they detect 

a hunting bat’s calls. In fact they can remain tuned for a short period of time after, 

believed to be in case of an immediate return by a predatory bat (Windmill et al., 

2006). 

Compared with many other species which possess tympanal organs such as 

the noctuid moths and scarab beetles (Forrest et al., 1997), the locust auditory system 

has a slightly higher number of sensilla. However, locust tympanal systems appear 

relatively simple morphologically and overcome the common engineering problem 

of impedance mismatch whereby they are externally located i.e. in contact with 

surrounding air, and yet backed by air too. Additionally many interesting phenomena 

are displayed by the locust hearing system. The following subsection is a detailed 

review of the anatomy, morphology and response of the locust tympanal hearing 

system. 
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1.4.2.2 The Locust Tympanal Organ 

The morphology of the ear of two different locust species (the desert locust, 

Schistocerca gregaria (Forskål), and the migratory locust, Locusta migratoria 

(Linnaeus)) has been well studied since the beginning of the 20th century (Schwabe, 

1906; Pumphrey & Rawdon-Smith, 1936; Autrum, 1941; Gray, 1960; Horridge, 

1960; Popov, 1965; Michelsen, 1966 & 1971a, b & c; Stephen & Bennet-Clark, 

1982; Robert, 1989; Meyer & Hedwig, 1995; Jacobs et al., 1999). There follows an 

introduction to the desert locust and an overview of the ear structure and 

corresponding operation in response to incident sounds. 

The desert locust, Schistocerca gregaria (Orthoptera: Acridoidea: Acrididae 

– Fig. 1.8) displays polyphenism, existing in two phases: solitarious and gregarious 

which depend on population density.  

 

 

 

 

 

 

 

 

Desert locusts exist in the solitarious phase when the population density is 

low, however local changes in the distribution of vegetation can be enough to induce 

a spike in the locust population density. This can lead to prolonged physical contact 

between locusts which in turn drives the switch to the gregarious phase. 

Characteristics of the phase change include behavioural changes such as a move 

from slow short distance travel (and any long-distance flights done nocturnally) to 

increased diurnal activity. Morphological, physiological and appearance changes also 

take place. Mature adult solitary locusts are pale yellow (also displaying pale green 

and beige, depending on sex) whereas mature adult locusts in gregarious phase are 

bright yellow and dark brown when sexually mature and are also slightly smaller in 

body size (Ott & Rogers, 2010; Gordon et al., 2014). The dark patches on desert 

Figure 1.8 Adult desert locust in gregarious phase. Scale bar = 1 cm. 
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locusts in the gregarious phase are believed to be a product of increased melanin 

production (Uvarov, 1966). Male desert locusts exhibit a bi-lobed subgenital plate, 

hence the Latin name Schistocerca meaning split-tail.  

Adult desert locusts of each gender have a pair of tympana located laterally 

on their first abdominal segment (Fig. 1.9). Except when in flight, the tympana on 

either side are usually covered by their adjacent forewing. 

The tympanal membrane has been described as both pear-shaped (Gray 1960) 

or bean-shaped (Fig. 1.10) and approximately 2.5 × 1.5 mm in size at its widest. 

Conversely Pumphrey and Rawdon-Smith (1936) described the ear of Locusta 

migratoria as a thin oval disk about 1.5 mm × 1 mm in size. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10 shows that the membrane is reniform and has a rim of sclerotised 

cuticle which projects laterally, forming a shell-like structure around the posterior 

edge of the membrane. This shell, and the corresponding recess formed because of 

the slightly angled tympanum, have drawn comparison with both the fleshy pinna 

and auditory meatus of the ears of many mammalian species. No previously 

published studies have used numerical modelling techniques to investigate the 

function of this shell until the study in 4.5.2 of this thesis.   

Externally in Locusta migratoria the sclerotised exocuticle surrounding the 

tympanum forms a flap which is similar in shape to the human tragus, projecting 

backwards covering about one third of the whole tympanum. The Schistocerca 

tympanal hearing system does not have this flap present.  

Figure 1.9 External right side first abdominal segment of Schistocerca 
gregaria with wings clipped, showing tympanum. Scale bar = 1 mm. 
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Located anteriorly and in close proximity to the tympanum there is a 

respiratory spiracle with a connection to the system of tracheal air sacs behind the 

membrane. Gray (1960) suggests that this spiracle is perhaps analogous to the 

Eustachian tube present in the mammalian hearing system (see Pumphrey, 1940). 

 

 

 

 

 

 

 

 

 

 

 

 

Two distinct areas of cuticle form the entirety of the membrane – the 

transparent thin region and the more opaque thicker region, with the latter located 

ventro-anteriorly from the former. These two areas are sometimes regarded as two 

different membranes and thus given the name thin membrane and thick membrane.  

The tympanal membrane cuticle consists of three distinct layers usually given 

the names endocuticle (innermost layer), mesocuticle (middle layer) and exocuticle 

which is often described as sclerotised or tanned. The mesocuticle is reported to be 

impregnated with proteins or lipids leading to smaller interstitial spaces and a stiffer 

cuticle. The exocuticle is described as stiff and brittle (Stephen & Bennet-Clark, 

1982). Spanning the interior face of the tympanum there is an epithelial layer of 

cuticle which is epicuticle of the air sac directly behind the membrane (also called a 

hypodermal layer). This layer is believed to be around one cell thick. Pumphrey and 

Rawdon-Smith (1936) quoted the thickness of the whole TM as varying from 0.5 μm 

at the posterior margin to 11 μm anteriorly. Gray (1960) described the tympanal 

membrane of Locusta as being approximately 2 to 3 µm thick apart from one thicker 

ventro-anterior area which is four times as thick. Spines about 1 to 2 µm long are 

Figure 1.10 (a) External and (b) internal view of right side desert locust tympanal 
system. Scale bars = 0.5 mm. Pyriform vesicle, PV, is the darker spot visible 
externally and internally. FB is the dark folded body with the opening of the 
elevated process, EP. MO is the body of Müller’s organ visible internally.  

TM 

TM 

FB 

PV EP 

MO 

(a) (b) 

PV 
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also visible on the TM cuticle. Stephen and Bennet-Clark (1982) used histology to 

construct a contour map of the systemic variation in thickness seen in the locust TM. 

The authors found the thickness to vary from a 0.5 – 0.6 µm thin arc-shaped region 

near the attachment to the shell to a maximum of 20 µm at the most ventro-anterior 

edge. More recently, Malkin et al. (2013) used focussed ion beam milling to etch slits 

into the TM after mounting and coating with gold using plasma-enhanced chemical 

vapour deposition. Measuring the thickness from the images captured at five of these 

slits they reported a value of 100 nm in the thin region of the membrane. This value 

increased to a range between 0.3 µm to 5 µm when moving ventro-anteriorly towards 

the PV. Etching a slit through the apex of the PV, the authors found the thickness 

there to be 15 µm. 

Four specialised regions of sclerotised cuticle are visible on the membrane, 

providing the attachment sites for the internal mechanosensory organ. Michelsen 

(1971b) described three of these areas as “not just simple thickenings of cuticle”. The 

first of these, commonly called the folded body (FB), is a complex rigid plate of 

thicker sclerotised cuticle. Along the lateral edge where this cuticle body attaches to 

the thicker membrane, there is a fold and then the body becomes thinner eventually 

forming a ridge and a rod-shape continuation in the ventral direction. This ridge 

creates a boundary between the thick and thin regions of the whole tympanum. The 

shape and size of the folded body are shown on Fig. 4 of Stephen and Bennet-Clark 

(1982) and estimating using the scale bar it is approximately 800 µm long and 300 

µm at its widest. Interiorly the FB protrudes approximately 70 µm from the 

membrane surface. 

The second specialised region is called the elevated process (EP) and is an 

invagination protruding internally perpendicular to the TM to a depth of 100 µm. The 

EP is hollow and has been described as having a stretched cup shape or tubular, and 

lined with tuberculate cuticle, much thicker than any TM cuticle. The orifice of the 

EP is at the TM surface and at the bottom of the recess of the EP some non-spinous 

convex projections have been observed. The sclerotised cuticle of the EP and FB 

merge ventrally. Internally the EP appears to provide a strong connection between 

the external tympanal membrane and internal sensory organ.  
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The third sclerotised region of cuticle providing attachment between the 

membrane and the sensory organ is the styliform body (SB). Gray (1960) observed 

the SB as having a flattened concave surface. One end of the body widens to 

envelope part of the EP. Again the SB stands perpendicularly to the TM and 

Michelsen (1971b) described its form as an hour-glass as it has a wider neck near the 

EP which then narrows ventrally like a leg before widening again into an egg-shaped 

foot – a sclerotised plate of TM cuticle. Estimating from Stephen and Bennet-Clark 

(1982) the egg-shaped foot is approximately 300 x 200 µm in size. The cuticle is 

slightly thicker around the area of the styliform foot at the connection of the SB to 

membrane. 

The fourth and final region of specialised cuticle is the pyriform vesicle (PV) 

and is the smallest of the four sclerites. Of Latin origin, pyriform means pear-shaped, 

and the PV is the one sclerotised region of the tympanal system that is a fairly simple 

thickening of the eardrum cuticle. Located about 250 µm from the orifice of the EP, 

the PV is connected to the body of the main internal sensory organ via the fusiform 

body which is a stretched ellipsoid in shape. Stephen & Bennet-Clark (1982) found a 

thinner region of cuticle, oval in shape, around the location of the PV. 

These four specialised regions culminate in the main cell body called 

Müller’s organ (MO) seen in Fig. 1.10, named after Johannes Peter Müller, the 19th 

century German anatomist. This end-organ (Schwabe, 1906) or ganglion (Gray, 

1960) has been reported to contain anything between 60 and 120 sensory units or 

scolopidia, with 80 being the most widely reported figure. Michelsen (1971b) 

described the Schistocerca gregaria MO as being of irregular shape but if the main 

cell body is approximated as a prolate spheroid, Stephen and Bennet-Clark (1982) 

estimated it as being 400 × 200 μm at its maximum. Contrastingly Gray (1960) 

estimated the ganglion of the tympanal ear of Locusta migratoria as being 250 µm 

long and 150 µm at its widest. Internally, as well as the MO, there is also a series of 

three tracheal air sacs acting as protection for the auditory system, with one air sac in 

direct contact with the internal side of the membrane. It has been estimated that about 

10 of the MO’s sensory units attach to the FB (the so-called ‘c’ cells), 35 to the EP 

(the ‘a’ cells), 12 to the SB (‘b’ cells) and about 8 to the PV (‘d’ cells). Each 

scolopidium consists of three cells, one of which is called the scolopale cell. The 
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scolopales of the ‘a’, ‘c’ and ‘d’ cells have been observed to be arranged in mutually 

perpendicular planes with the ‘b’ cells in the same plane as the ‘a’ cells. Often, due 

to the close proximity of the ‘a’ cells in the EP to the ‘c’ cells in the FB, they are 

treated as just one group making a total of three groups of sensory units. 

In 1.4.1.1 the two principles behind frequency discrimination in the 

mammalian ear were introduced. The place principle (cochlear hair cells are arranged 

tonotopically) is believed to be the main phenomenon underpinning frequency 

discrimination across the whole sensitive frequency range of the human ear with the 

telephone principle (CNS is sensitive to phase information of a sound wave) being 

significant only for low frequencies, less than 2 kHz. Early research into invertebrate 

hearing systems found no evidence of the use of place principle or in fact any 

frequency discrimination. Many neurophysiological studies have since been 

implemented on the frequency sensitivity of the sensory cells attached to the locust 

tympanal membrane. For pure tone stimuli from 500 Hz to 11 kHz, Pumphrey & 

Rawdon-Smith (1936) tested threshold sensitivities using electrophysiology. At 3 

kHz the whole system was observed to display a maximum in sensitivity with the 

authors recording a threshold just 20 dB SPL above that of human hearing which is 

remarkable for an insect ear of such simple appearance. One major finding of this 

study was the lack of synchronisation between neural response and the frequency of 

the stimulus. This led to the conclusion, in line with the understanding of insects at 

the time, that the locust tympanal hearing system was incapable of frequency 

discrimination. 

It was not until over twenty years later when Horridge (1960) measured 

electrophysiological activity from the auditory nerve of the locust tympanum and 

found evidence that the locust may in fact possess the ability to discriminate between 

frequencies. This led to work by both Popov (1965) and Michelsen (1966) leading to 

the publication of a three part study by Michelsen (1971a, b & c) on the physiology 

of the locust ear covering tympanal sensory cell frequency sensitivity in an excised 

ear, drum resonance-based pitch discrimination of the TM and the application of 

these findings to the ear in situ along with the acoustic influence of the whole body. 

As mentioned previously the sensory cells in the locust tympanal system are 

allocated into three or four distinct groups. Michelsen opted for the four group, ‘a’ – 
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‘d’ notation mentioned previously. Pure tone stimuli with frequencies ranging from 

0.5 – 30 kHz and sound pressure levels from 96 – 112 dB SPL were used throughout 

the three studies. In the first study electrophysiological recordings were made from 

each cell location, measuring the threshold sensitivity and calculating the average 

characteristic frequencies (ChF) of each cell type. It should be noted that the ears 

were isolated from the locust body by a fairly substantial surgical procedure. 

The author found the ‘a’ cells, located in the region of the EP, to have an 

average first ChF of approximately 3.7 kHz, lying between 3.5 – 4 kHz for all ‘a’ 

cells measured. Another maximum was observed in the sensitivity response of many 

‘a’ cells near 8 kHz with others displaying this maximum at 6 – 7 kHz or not at all.  

Attached to the SB, the ‘b’ cells were recorded as having a ChF of around 3.4 

kHz and displayed another maximum at 8 kHz as was the case for the ‘a’ cells. For 

around half of the ‘b’ cells tested another smaller maximum in sensitivity was 

observed at approximately 5 kHz.  

Located in close proximity to the FB, most ‘c’ cells displayed high sensitivity 

to 1.5 kHz as well as a uniformly high sensitivity in the range of 2 – 3.5 kHz. A 

small number of units also displayed sensitivity to pure tone sounds of frequency in 

the region of 8 kHz, as was the case for the aforementioned sensory cells. 

The last of the four sensory cell groups, the ‘d’ cells, with attachment to the 

PV, were found to be most sensitive across the range of frequencies from 10 to 14 

kHz, with a ChF of 12 kHz. A second maximum appeared around 19 kHz in most ‘d’ 

cells and the sensitivity here was observed to be as high as at the 12 kHz peak. The 

observation was made that the sensitivity of ‘d’ cells showed significant drop-off at 

frequencies lower than 10 kHz and greater than 30 kHz, therefore the cell sensitivity 

is analogous to the function of a band-pass filter. Finally, ChF’s of all of the cells 

were observed to move significantly upwards as a function of the dryness of 

preparation. 

The position and sensitivity of the mechanosensory cell units of the locust ear 

were revisited nearly thirty years later and the cell groups were reclassified slightly 

along with some changes in frequency ranges of sensitivity (Jacobs et al., 1999). 

Locusts were stimulated using single frequency pure tones between 100 Hz and 40 

kHz at sound pressure levels of 35 to 90 dB SPL. Neurobiotin was used to mark 
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sensory cells and intracellular electrophysiological recordings were made of each cell 

type. The authors reported that, across the whole auditory range of the locust, 

maximum sensitivity is in the region of 2 to 5 kHz. Additionally a slight response 

was even observed for frequencies as low as 200 Hz for some sensory cells. The first 

cell unit type, named "Group I", was attached to the FB and consisted of around 20 

cells in total. These low frequency detectors were found to be relatively insensitive 

having a ChF of 1.5 kHz and displaying a second maximum in the range of 400 to 

700 Hz. All group I cells remained sensitive to frequencies up to 4 kHz and a few 

remained sensitive beyond this up to an upper limit of 10 kHz. Type II cells of which 

the authors counted 12 to 14, connect to the PV via the aforementioned fusiform 

body. These cells had ChF’s in the region of 12 to 25 kHz and displayed broadband 

sensitivity tuned to frequencies between an upper limit of 40 kHz and lower limit of 

4 to 7 kHz. The final sensory cell type, group III, linked to either the region of the EP 

or the SB, has a ChF of around 3 – 4 kHz. Electrophysiological recordings by Jacobs 

et al. found most examples of the third cell type to be narrowband low frequency 

receptors sensitive to sounds between a minimum of 2 kHz and a maximum of 10 

kHz. No observation of the subdivision of this third cell type into two distinct groups 

(as previously reported) was made, leading the authors to classify locust ear 

mechanoreceptor cells into just three groups. 

Michelsen (1971b) and Stephen & Bennet-Clark (1982) have both published 

data on either the estimated and/or measured masses of many features of the locust 

tympanal system including the TM itself along with the mass of cell bodies in the 

MO and FB. This data is collated in Table 1.3, with reference 1 being Stephen (1982) 

and 2 being Michelsen (1971b). ‘Thin’ corresponds to the mass of the thin region of 

the membrane plus the cells attached to this area. ‘Thick’ refers to the mass of the 

thick section of the membrane plus the cells. TM is the sum total of thin and thick 

(including cells). System mass is the sum of the whole TM (plus attached sensory 

cells) and Müller’s organ. 
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Type Estimated and Measured Masses / µg Ref Thin Thick TM MO System 
Est 10.1 10.7 20.8 8.5 - 12.5 29.3 - 33.3 1 
Est 10.8    40 - 45 2 

Meas 7.7 aver.    30 aver., 50 max. 2 
Table 1.3 Published data on masses of components of the locust hearing system. Reference 1 is Stephen & 

Bennet-Clark (1982) and reference 2 is Michelsen (1971b). 

 

Michelsen (1971b) used the data in rows 2 and 3 above to estimate some of 

the resonance frequencies of the TM. These estimates were based on the existence of 

a thin membrane vibrating independently of the entire TM, therefore two sets of 

resonance frequencies were calculated, one for the thin membrane and another for 

the whole tympanum. A circular uniform thickness homogeneous membrane of 

effective radius 0.9 mm was assumed to be the thin membrane and only the circularly 

symmetric modes were considered. This yielded a fundamental mode of frequency 

3.4 kHz for the thin membrane and frequencies of 8.1 kHz, 12.9 kHz and 17.9 kHz 

for the second, third and fourth circularly symmetric modes respectively. 1 mm was 

taken as the effective radius for the entire TM resulting in frequencies of 1.8 kHz, 4.2 

kHz, 6.6 kHz, 9 kHz, 11.4 kHz, 13.8 kHz, 16.2 kHz and 18.6 kHz for the first eight 

circularly symmetric modes. The author reported close correlation between the 

observed frequencies of sensitivity of the receptor cells and the expected resonance 

frequencies however the observation was made that in the audible range of the locust 

there exists a large number of expected resonances therefore sensory cell selectivity 

could be an issue due to competing modes in the frequency range of sensitivity. 

Laser holography has been used to observe the vibration shapes of the 

isolated locust TM in response to the same pure tone stimuli with frequencies 

ranging from 0.5 – 30 kHz and sound pressure levels from 96 – 112 dB SPL as 

previously (Michelsen, 1971b). Although capable of measuring the amplitude of 

vibration of the locust TM, the limited sensitivity of this method imposed the 

requirement for fairly high sound pressure levels, with the resulting measured 

displacements of the order of micrometres. These sound pressure levels are quite 

extreme, perhaps beyond the limit of the biologically relevant range for the locust. 

Considering the reported TM thicknesses, the measured amplitude of displacement is 

also alarmingly high. Additionally, laser holography provides no method of 
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quantifying temporal information therefore the phase of the vibration pattern is 

incalculable. Therefore, in conjunction with the holography, a dual platinum wire 

capacitance electrode was also used to measure the vibration of the isolated TM. 

Although measuring the absolute value of the displacement was impossible with this 

method, when used along with a reference microphone, the phase of the 

displacement relative to the source could be extracted. Similarly to laser holography, 

this method had limited sensitivity along with a total uncertainty rising from ±10° at 

low frequencies to ±20° at frequencies of about 15 kHz upwards. The author 

observed fairly close correlation between the measured resonant frequencies and the 

estimated frequencies mentioned previously, for both the thin membrane vibrations 

and the modes of the entire tympanum. However, a number of observations were 

made which appear to differ from the author’s hypothetical idea that the TM 

response is due purely to the circularly symmetric modes of two separate 

membranes. Firstly, the antinode or centre of vibration was not always located at the 

geometrical centre of the membrane, as is the case for a theoretically ideal 

membrane. Great variation was found in the spatial location of the centre of vibration 

for changing frequency, both for the thin membrane and the entire tympanum 

vibrations. Secondly, Michelsen found the areas covered by maximal vibrations to be 

smaller than expected, with some vibration patterns localised only to small regions of 

the TM. Finally, some mode shapes were measured which appeared irregular and 

these did not fit theoretical predictions. However, the presence and frequencies of 

these modes appear to suggest an influence by asymmetric modes of the TM system 

on the overall vibrational response. Nonetheless, the author concluded that the locust 

tympanal hearing system is both a true resonance system and that frequency 

discrimination by the locust depends solely on the physical attributes of the ear. Also 

concluded was that the overall response is determined by interactions between the 

thin membrane vibrations and the vibrations of the entire membrane, with the thin 

membrane dominating across the whole frequency range. 

 Locust TM vibration patterns were also examined using stroboscopic 

illumination which was capable of recording both amplitude and phase data of the 

response of excised tympana. The same technique was also applied to analyse the 

motion of MO attached to the interior of the TM (Stephen, 1982). Maxima were 
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observed on the TM at frequencies of 3.25 kHz and 5.5 kHz with a relative minimum 

between the two and the former being the absolute maximum of sensitivity for the 

system, observed on locations on the TM, FB and SB. Rapid changes in phase were 

observed at both 5.5 kHz and beyond 6.5 kHz, believed to indicate potential 

resonances in the proximity of these frequencies. The TM vibrations corroborated 

previous findings using laser holography (Michelsen, 1971b). The authors calculated 

0.58 kHz as an estimate of the resonant frequency of MO (based on rough 

dimensions and mass mentioned above) and using stroboscopy, they observed 

several complex vibrations and rotations of MO and the cuticular attachments to the 

TM. Simulations on the estimated natural frequency and the motion of MO have 

never been published prior to this research work. For frequencies from 2 to 5 kHz, 

the magnitude of the motion of MO relative to the motion of the TM clearly 

decreased as the frequency increased. However one limitation of this study was the 

narrowband response of the loudspeaker, practical only for the range from 1.75 kHz 

to 8 kHz. Additionally the sensitivity of stroboscopy was such that sound pressure 

levels were required to range from 102 dB SPL to 132 dB SPL, again perhaps 

extending beyond the range of biological relevance for the desert locust. 

 A more relevant sound stimulus of 60 dB SPL (equivalent to a sound pressure 

of 20 mPa) was later used in two studies of the mechanical response of the locust 

using micro-scanning laser Doppler vibrometry (LDV) (Windmill et al., 2005; 

Windmill et al., 2008). This sound pressure level was pre-conditioned to remain 

relatively flat across a wideband frequency sweep (or chirp) from a lower frequency 

limit of 1 kHz to an upper limit of 30 kHz. The earlier study concentrated on the 

frequency response of the locust, i.e. measuring the amplitude of vibration in the 

frequency domain. Acoustic impulses were then used as a new stimulus in the more 

recent research paper, which addressed the transient response of locust tympanum 

vibrations. Capable of measuring vibration amplitudes in the range of picometres, 

LDV is described further in 2.1. Crucially the experimental setup for both papers 

ensured tympanal deflections remained within the linear regime. Additionally, the 

aforementioned studies were performed on fully intact locust ears, with excision of 

the wings being the only procedure implemented on all locust subjects, which 

remained alive throughout the main experimental procedure.  



44 
 

 The first highlighted finding was increasing amplitude of vibration in the 

location of the PV as a function of frequency. Diffractive acoustics were postulated 

to be a cause of fluctuations in the response amplitude in the range of frequencies 

from 10 – 30 kHz, which corresponds to a wavelength range of approximately 3.4 – 

1.1 cm respectively. Since this wavelength range is of the order of locust body 

dimensions one would expect the body to act as a partial barrier causing a complex 

mix of reflections, scattering and diffraction as the sound waves impinge on the 

body. 

Four frequencies of interest (FOI’s) were highlighted by the authors of the 

first paper: 3.3 kHz, 6.1 kHz, 12.21 kHz and 22.76 kHz. Rather than the standing 

wave patterns seen previously on the locust TM, travelling waves were observed to 

form at each frequency. With origin on the thin membrane, the waves propagated 

from left to right across the tympana when viewed externally as the ear is in Fig. 

1.10. Dissipation of the waves was seen to occur at different locations dependent on 

frequency. At the lower FOI, 3.3 kHz, the wave extended beyond the PV to the FB. 

At the next FOI, 6.1 kHz, the approximate propagation direction was the same as at 

the lower frequency only the wave spreads a little more dorsally and ventrally 

forming a dual-peaked ridge with maxima dissipating at the EP and SF. 12.21 kHz 

and 22.76 kHz were the final two higher FOI’s with the authors reporting a semi-

concentric deflection shape at the location of origin in the thin membrane before 

travelling across the TM, converging to a much sharper peak spread across a smaller 

surface area which diminished at the location of the PV. This semi-concentric shape 

was not seen at the lower frequency range between 3 kHz and 7 kHz. At the two 

higher frequencies the TM deflection of the areas beyond the PV towards the FB was 

significantly smaller than at locations across the remainder of the membrane (and at 

the lower frequencies). 

Notably, the authors reported no correlation between the angle of incident 

sound and the propagation path of the travelling waves i.e. the path direction at each 

frequency remained constant for all sample locusts throughout the study. Using the 

three travelling wave characterisation criteria, outlined in 1.4.1.1, the locust TM 

travelling waves were compared to the cochlear travelling wave. In reference to 

criterion 1, an increase in stimulus frequency was reported to result in an increase in 
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the observed phase lag between the initiation point of the wave and the terminal 

point. The leading and trailing edge of a travelling peak were not always observed to 

be symmetrical particularly around the vibration maxima i.e. the envelope of the 

wave was asymmetrically shaped. To investigate the third and final criterion, the 

authors measured the tympanal deflection of dead desert locusts and compared the 

frequency response to that observed in live locusts. No difference in response was 

recorded between either of the sample groups across multiple stimulus frequencies 

indicating that no underlying physiological mechanisms are responsible for the locust 

TM travelling wave formation and propagation. Observing the deflection of the 

locust tympanum at one cycle phase angle, e.g. 0°, and comparing it to the deflection 

shape of the travelling wave after 180° in wave cycle phase shows that the second 

half of a travelling wave cycle is an inverted mirror image of the first with TM areas 

displaying positive displacement becoming equal but opposite negative displacement 

and vice versa. 

 In the more recent of the two papers, Windmill et al. (2008) used LDV to 

measure the vibration across 380 points on the whole TM with high spatial resolution 

and plotted the average gain response vs. frequency. The stimulus for this experiment 

was the same wideband chirp as before. A maximal peak was observed at around 24 

kHz. Large peaks were also found at approximately 7 kHz, 10.8 kHz, and 12.5 kHz. 

Two smaller peaks were seen at 4.4 kHz and 19.9 kHz. The authors then allocated 

five points, A to E on the external surface of the TM, where the amplitude gain (in 

µmPa-1) vs. frequency was found to display variable responses. Point A was located 

dorsally on the thin transparent area of the membrane, i.e. bottom left when looking 

at Fig. 1.10, point B at the PV and C was dorsal to the foot of the SB, i.e. in the top 

right region of the TM. Points D and E were on or near the FB with D at the ventral 

tip and E very near the EP. Points C, D and E showed no relative response beyond 10 

kHz. The amplitude of the gain response at E was significantly smaller than at the 

other points and just two peaks were observed, the first at around 2 kHz and second 

slightly larger peak at 7 kHz. At point D, a double peak was observed with equal 

magnitudes at about 2 kHz and 4.4 kHz along with a relatively small peak at 5 kHz. 

Just one peak was observed at C, at 4.4 kHz, with a noticeable response between 5 

kHz and 10 kHz. Several response maxima were found at point B including a high at 
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4.4 kHz and two peaks of almost equal sensitivity at approximately 7.5 kHz and 

10.76 kHz. Smaller response spikes appeared at around 2 kHz, 12.5 kHz, 19.85 kHz 

and 24 kHz. Finally, point A displayed a maximum sharp double peak at 5 – 6 kHz 

as well as responses to frequencies in the range of 4.4 kHz and 10.76 kHz. A small 

response, matching the higher frequencies seen at point B, was also observed at this 

location on the TM. With different locations across the tympanum displaying all of 

these maxima in the frequency response, the authors concluded that TM vibrations 

appear more complex than simple drum mode resonances.  

An acoustic impulse was also used as a stimulus to measure the locust 

tympanum’s transient response. For a pulse of duration 15 µs, the TM continued to 

vibrate beyond the end of the impulse as the travelling wave propagated along a 

transect line formed between the thin membrane region, passing through the PV to 

the FB. The recordable response lasted around ten times the duration of the impulse. 

In 2013, Malkin et al. modelled the locust tympanum as a membrane in 

tension with negligible stiffness. The authors modelled the TM as circular disc 

geometry with thick and thin geometric sections extruded from or cut into the disc. 

Modelling in the time domain i.e. as a transient analysis, their focus was on the 

travelling wave velocity and its evolution with respect to their membrane thickness 

measurements. Because of the dependence of a theoretical travelling wave velocity’s 

on thickness, the tension-dominated system was chosen. For the thin membrane 

region they used a thickness of 3 µm and a cylinder of height 15 µm for the PV. A 

Young’s modulus of 20 MPa, density of 1300 kgm-3 and Poisson’s ratio of 0.3 were 

used for the cuticle material properties. Through time domain modelling using 

mechanical forces as simplified acoustic loads, at frequencies away from the modes 

of the system, Malkin et al. were able to show a travelling wave form at 15 kHz 

across their simulated locust tympanum. 

 Some researchers have studied the mechanism behind the perceived 

directional response of the locust hearing system with varying levels of success. 

Early research papers believed the TM to operate strictly as a pressure gradient 

receiver across all frequencies of sensitivity (Pumphrey, 1940; Autrum, 1941), that 

is, each tympanum is acted upon by both an external and internal component of 

pressure and therefore the tympanal vibratory response is the resultant of these two 
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contributions. Michelsen (1971c) and Miller (1977) then further elaborated that the 

locust TM likely operates as a pressure gradient receiver for frequencies below 10 

kHz. This means each TM is acted upon by both an external and internal component 

of the sound pressure wave, and consequentially the overall vibration of the 

membrane would be a response to the relative magnitude and phase of both 

components. At frequencies beyond 10 kHz the authors concluded that the ears may 

operate as a pair of pressure difference receivers (or pressure receptors) i.e. most of 

the sound is incident externally and a slight difference in the external sound pressure 

at each ear is enough for the locust to discern source direction. Many findings 

alluded to this conclusion including first of all, the discovery of the relationship 

between the frequency of incident sound and the internal sound pressure level in dB 

(relative to the sound pressure level outside the body). At low frequencies, in the 

region of 1 – 5 kHz, when measured relative to the external sound level of the 

stimulus the internal sound was found to range from -2 dB SPL to -8 dB SPL 

indicating a fairly large percentage of sound is transmitted through the internal 

chamber between ears. Subchapter 4.6 attempts, for the first time, to model the 

influence of tympanal vibrations on the internal transmission of sound within the 

desert locust interaural cavity. Additionally, no significant difference in the sound 

pressure levels at each ear was measured for frequencies of 2 and 3.5 kHz and 

therefore no dependence on angle of incident sound either (Miller, 1977). Conversely 

a difference of 2 – 3 dB SPL was observed at 5 kHz, with this value increasing to 6 – 

8 dB SPL at 15 kHz. With the wavelength of sound in air at the higher of these 

frequencies being of the order of magnitude of the locust body dimensions, one 

would expect the locust body to act more as a barrier to sound with more reflection at 

the ipsilateral side and less sound diffracting to the contralateral side, explaining this 

observation. Another finding from these directionality studies was the influence of 

the body mass, particularly of the tissue, tracheal air sacs and haemolymph, between 

both tympana on the measured sensitivity of the locust at the lower frequencies 

below 10 kHz. Abnormally meagre locusts displayed the highest hearing sensitivity 

to this range. No change in sensitivity was observed at frequencies beyond 10 kHz, 

with the tissue within the internal cavity of the locust hearing system compared to a 

low-pass filter. 



48 
 

 Much can be learned from the sensitive, directional, impedance-matched 

(often air-to-air) and microscale hearing systems of insect species. One goal of this 

thesis is to further progress the understanding of the frequency-dependent formation 

of the travelling waves that propagate across the locust tympanum. For this, LDV 

will be used for a new characterisation of the waves at different frequency bands. 

Finally, approximating models are constructed and computed in the frequency 

domain using finite element analysis to investigate the characteristics which 

influence the formation and the frequency-specific shapes of the travelling waves. 

Particular interests are the shape of the locust TM, the mechanical properties of the 

cuticle, and the effect of both on the vibrational pattern of the membrane in response 

to incident sound. Many of the features of the locust hearing system mentioned in 

this review subchapter are simulated using novel finite element modelling methods.   
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1.4.2.3 The Tympanal Hearing System of Ormia ochracea 

An example of a highly sensitive microscale directional acoustic sensor in the natural 

world is the ear of the parasitoid fly, Ormia ochracea. The gravid female Ormia 

larviposits on and around a host cricket, usually of the Gryllus genus and her 

predaceous larvae survive by feeding on their cricket host. In order for Ormia to be 

successful, the female must find a host cricket via phonotaxis to the mating call of 

the Gryllus spp. (Cade, 1975). Since the body size of the cricket enforces an 

evolutionary constraint on the maximum body size of the fly, there is a consequential 

impact on the size of the Ormia ear. The whole ormiine ear consists of two small 

tympanal membranes (less than 1 mm in diameter), both located within the same 

prosternal chamber between the fly’s head and thorax and spanning a total edge-to-

edge distance of around 1.68 mm (Edgecomb et al., 1995; Robert et al., 1998). Each 

tympanum has a tympanal pit, behind which the two mechanoreceptor organs or 

bulbae acusticae reside. With approximately 70 – 75 auditory receptor cells or 

neurons in each bulba acustica, vibration of the tympanal pit corresponds to 

deformation of the connected receptor organ. The separation distance between the 

tympanal pits of each ear, or interaural distance, is less than 0.5 mm, making them 

one of the smallest known ears in the insect world (Mason et al., 2001; Robert et al., 

1996). One tympanal pit is coupled to the other via a unique structure of cuticle 

called the intertympanal bridge (Miles et al., 1995), described as being stiffer 

perhaps, than the surrounding cuticle of each tympanum. Behind the whole ear is 

only one undivided air chamber which connects externally via two tracheae and 

spiracles. 

The mating call of a male Gryllus is narrow-band with a characteristic 

frequency between 4.5 kHz and 5.2 kHz corresponding to a wavelength in air of 

about 70 mm (Eq. [1.3]) (Ramsauer and Robert, 2000). As the whole body size of the 

fly is only ~ 7 × 3 mm one would expect the majority of the sound from the cricket 

call to easily diffract around the fly’s body (see 1.2.2) (Rosen et al., 2009). 

Moreover, when the dimensions of the ormiine ears mentioned above are considered 

the hearing ability of this parasitoid fly becomes even more remarkable.  
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Most animals which possess directionally sensitive hearing use one or both of 

an interaural time difference (ITD) and interaural intensity difference (IID) to 

localise the origin of a biologically relevant sound source. For the Ormia the 

theoretical maximum ITD would be for sound travelling parallel to the plane of the 

ear with azimuthal angle of 90°, i.e. directly in line with the two tympanal pits. 

Robert et al. (1998) found that this corresponds to an ITD at this theoretical 

maximum of 1.45 μs (see 1.2.1). As mentioned previously most of the sound wave 

from the cricket mating call will easily diffract around the body of the fly leading to 

only a 1 dB SPL theoretical maximum IID. The combination of this undetectable IID 

and very small ITD should theoretically render impossible, the fly’s ability to 

localise the cricket song.  

However studies have shown that Ormia ochracea is capable of not only 

localising the cricket mating calls but with remarkable accuracy – a reported 

resolution of less than 2° in the azimuthal plane (Mason et al., 2001). The directional 

sensitivity of human hearing benefits from the fact that a human head is large enough 

to cause a significant IID at frequencies corresponding to human speech, as well as a 

much larger ITD compared to very small animals such as Ormia ochracea. Therefore 

for Ormia to achieve a directional sensitivity comparable to that of the human system 

is quite extraordinary. For sounds of frequency around 5 kHz, the parasitoid fly 

appears to amplify both the IID and ITD, by means of the intertympanal bridge 

mentioned above. The bridge, although stiff, is also flexible, resulting in a two 

degree of freedom system which consequently has two modes of vibration within the 

range of hearing of the fly. The first mode, termed the rocking mode, where the 

tympana are in antiphase i.e. 180° out of phase of each other, is excited by a sound 

pressure gradient between the tympanal membranes. The other mode, called the 

translational or bending mode where both tympana vibrate in-phase, is excited by the 

average pressure on both tympanal membranes (Miles & Hoy, 2006). The natural 

frequencies of these modes (and their proximity to one another and the cricket call), 

the strength of each mode and the coupling between them, all a result of the two 

degree of freedom system and unique morphology and mechanical properties of the 

ear, are the determining factors in ensuring the Ormia can successfully localise a 

cricket host on which to larviposit. 



51 
 

The combination of Ormia ochracea’s phenomenal capability in sound 

localisation and superb sensitivity on a naturally miniaturised scale has inspired 

many engineers in the field of directional microphone design (Miles et al., 1995; Yoo 

et al., 2002; Miles & Hoy, 2006; Liu et al., 2008; Touse et al., 2010; Lisiewski et al., 

2011; Chen & Cheng, 2012). 

Arguably, however, no single researcher has managed to fully explain and 

therefore harness the ability of this remarkable fly with its own evolution-driven 

highly sensitive microscale directional acoustic sensor. 
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1.5 Microphone Technology 

1.5.1 Microphone Types and Operation 

A microphone, by design, must convert acoustical energy in a surrounding medium 

into an electrical signal. Incident sound waves cause a structure (often known as a 

diaphragm) to vibrate and this response is coupled to a system capable of transducing 

the mechanical energy into a measurable electrical output signal. Defined as devices 

which are capable of converting one form of energy into another, transducers are 

commonplace throughout the field of electronic and electrical engineering, with an 

electrical signal often being the outcome of the transduction process. Therefore the 

transducer and vibrating structure are the two main components of the majority of 

microphone systems and microphones are often categorised by their corresponding 

method of transduction. 

 Of these methods, dynamic microphones and condenser (otherwise known as 

capacitive) microphones are the types used in the majority of applications. Dynamic 

microphones operate using the principle of electromagnetic induction whereas 

condenser microphones operate by the detection of changes in capacitance. 

Microphones which use the concept of piezoelectricity (a piezoelectric material 

responds to stresses by generating an electric charge) also exist and are often known 

as crystal microphones. 

 Dynamic microphones are constructed with two major components: an 

annular magnet and a thin diaphragm which is attached to a wire coil. The response 

of the diaphragm to an incident sound pressure wave results in the vibration of the 

attached coil within a magnetic field, inducing an output voltage according to 

Faraday’s Law.  

 Capacitive microphones consist of an electrically conductive backplate (often 

rigid and stationary) and a conductive diaphragm which is flexible enough to vibrate 

in response to impinging sound pressure waves. An initial bias voltage is applied to 

the plates setting them a specific distance apart. The diaphragm displacement results 

in a changing distance between the plates, which in turn is directly proportional to 

the capacitance (charge stored in the capacitor per unit volt).  
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 Optical sensing methods are often used in some acoustics systems e.g. fibre 

optic microphones and laser microphones. Often the intensity or angle of reflected 

light is affected by the deflection of the vibrating surface or diaphragm. 

Interferometry can also be used to detect the diaphragm vibration. 

 Micro-electro-mechanical systems or MEMS microphones have made use of 

several of the aforementioned acoustic transduction methods although primarily they 

utilise some form of electrostatic capacitive sensing. This particular field of 

microphone design is increasingly finding applications in hearing aids and in 

portable devices such as tablets and smartphones, among many others, leading to an 

increase in research output in the field of MEMS microphones (Wang et al., 2004; 

Miles & Hoy, 2006). Single-crystal silicon (S-C Si) is often the chosen material used 

to fabricate such microphones as many benefits are associated with its unique 

properties. The use of S-C Si brings relative ease of incorporation of electronic 

functionality such as filtering and amplification, compatibility with semiconductor 

processing equipment and a consistent monolithic microstructure with no potential 

for grain boundary defects. Silicon’s mechanical properties enable MEMS 

microphones to withstand harsh operating conditions and since microscale 

fabrication is possible, the results can be miniaturised, highly sensitive acoustic 

sensors.  
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1.5.2 MEMS Microphones 

One feature of MEMS microphones includes the opportunity for small form factor 

designs making them highly suited to specialised applications in portable devices and 

hearing aids. Other features include superior sensitivity matching and a high 

tolerance for mechanical vibrations. Many MEMS microphone systems have an 

element of directionality about their mechanical response as a solution to reduce 

noise and therefore improvement of signal intelligibility. This attribute becomes 

particularly important in applications involving the recording of speech, pinpointing 

of sound source origin, and environmental monitoring (Ricketts, 2000; Gnewikow et 

al., 2009; Blumstein et al., 2011). While MEMS technology has already been applied 

in commercial microphones, achieving directionality within such devices is currently 

a subject of the research domain. Incorporating directionality into microphone 

systems often comes with great difficulties including an enforcement of size 

constraint. Some key sensor parameters when designing a commercially viable 

MEMS microphone include a predictable frequency response (often desired to be 

flat), a favourable SNR and a highly sensitive directional response. 

Conventionally, directionality (which in three dimensions extends to 

localisation) is incorporated into microphone systems through an array of two or 

more pressure receivers (or elements), separated by a known distance preferably 

greater than the wavelength of the incoming sound. One or more of the time 

difference of arrival (TDOA), relative phase difference or pressure intensity 

difference at the receivers is measured and fed into sound source localisation 

algorithms. In applications requiring both directionality and miniaturisation, there 

exists an obvious conflict. As the microphone system decreases in size, there is the 

likelihood that the wavelength of incident sound will become greater than the inter-

element spacing. At this point the phenomenon of diffraction, introduced in 1.2.2, 

becomes a significant issue. Diffraction adversely impacts the ability to measure the 

pressure difference or TDOA to the required degree of accuracy since the sound 

pressure reaching each pressure receiver will be almost equal. Applying this to a 

human’s range of audio frequencies, where the wavelength of incident sound is of 

the order of centimetres, results in a significant physical constraint to the structure of 
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directional receiver arrays. Within this already space-limited system a means of 

transduction (1.5.1) must also be encompassed. 

The parasitoid fly, Ormia ochracea, introduced in 1.4.2.3, is one member of 

the animal kingdom which has cleverly overcome this size restriction imposed on 

directional acoustic sensor systems. Many bioinspired silicon MEMS microphone 

designs have appeared as a result of this evolution-driven solution to an engineering 

problem (Miles et al., 1995; Yoo et al., 2002; Miles & Hoy, 2006; Liu et al., 2008; 

Touse et al., 2010; Lisiewski et al., 2011; Chen & Cheng, 2012). 

 Biomimetically designed microphones are characterised either by their 

method of transduction or by the type of diaphragm or vibrating structure. The most 

common examples of the former are optical and electrostatic methods. Optical 

methods include reflecting a laser from diffraction gratings built into the MEMS 

structure using arrangements of gold sputter-coated fingers. The resultant pattern of 

interference fringes captured by photodiodes corresponds to the device displacement 

(similar to laser Doppler vibrometry as described in 2.1). However increased 

fabrication costs and space limitations often eliminate the feasibility of utilising 

optics for transducing mechanical signals into electrical signals in directional MEMS 

microphones. On the other hand, electrostatic sensing, usually either through a two-

plate capacitor style like the conventional condenser microphone (described in 1.5.1) 

or via the use of electrostatic combs, can be intrinsically integrated into the 

microphone structure in a far more space-efficient manner (Cui et al., 2010).  

 The second directional MEMS microphone characteristic, structure type, can 

be further divided into three main types: the see-saw, the clamped-diaphragms (two 

or more) and the centre-supported or gimbal type.  

 Consisting of a diaphragm fixed centrally to a suspension beam, the 

unclamped nature of the see-saw microphone gives rise to both the name and 

characteristic two degrees-of-freedom mechanical response, similar to that of the fly 

Ormia ochracea. Gibbons and Miles (2000) designed and constructed a two degrees-

of-freedom see-saw MEMS microphone consisting of a polysilicon rectangular 

diaphragm and perforated backplate. In a bid to counteract atmospheric pressure 

fluctuations behind the diaphragm, perforations were made in the backplate along 

with the inclusion of a fairly substantial air cavity behind the vibrating diaphragm. A 
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restraint on the maximum sound pressure level of this MEMS microphone is the 

potential for the diaphragm to implode onto the backplate as a result of the voltage 

between the two and excessive diaphragm deflections causing an accompanying 

decrease in the plate-to-plate air gap below a critical distance. The authors of this 

particular study fabricated a MEMS microphone capable of withstanding a maximum 

of 130 dB SPL with a corresponding 3 µm interspatial distance. Two mode shapes 

were predicted by finite element modelling, a rocking out of phase mode at 1272 Hz 

and a translational in-phase mode at 9349 Hz. Coupling and subsequent interactions 

between these modes were found to result in the system displaying mechanical 

directionality. On the diaphragm the authors also incorporated trenches or 

corrugations with a view to both increasing the mechanical sensitivity and decreasing 

any potential for residual in-plane stresses caused during fabrication. 

This technique of strategically positioning trenches on microphones was one 

already used by Jerman (1990), Spiering et al. (1993) and Scheeper et al. (1994) 

among others. Yoo et al. (2001, 2002) also made use of corrugated diaphragms to 

construct biomimetic directional MEMS microphones taking inspiration from the 

ormiine ear, designing two microphones: one fabricated using polysilicon and the 

other using parylene. Not only did these devices feature corrugated trenches but they 

also incorporated silicon proof masses, tuning the resonant frequencies to specific 

values with frequency ratios significant to the desired response. By combining 

corrugations, proof masses and stiffening beams, many of the higher frequency 

modes were beneficially shifted beyond the audio frequency range. Modal responses 

of both of the devices were computed using finite element modelling and then 

measured experimentally using laser Doppler vibrometry. 

Stiffening beams designed to drive a particular resonant frequency of a 

MEMS microphone upwards beyond the audible range of human hearing is a 

commonly used design technique (Miles et al., 2006 & 2009). In theory however, 

this can decrease the sensitivity of a particular microphone. Therefore extra design 

features, often influencing the damping properties of the device’s mechanical 

response, are incorporated to address such losses of sensitivity. Thin-film or squeeze-

film damping, a major potential source of damping in these highly sensitive, 

microscale devices, occurs in the presence of two parallel structures with a small 
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interspatial air cavity. When one or both plates move towards the other, a squeezing 

effect on the air film results in the exertion of a counteracting force on the structure. 

Many efforts are often made to release such damping from directional MEMS 

devices such as fabricating perforated backplates or etching slits into the diaphragm. 

It should be noted that such methods can sometimes be counterproductive as 

perforating holes in diaphragms is often mechanically inefficient since with 

decreased diaphragmatic surface area can come a loss of mechanical sensitivity. 

Other directional MEMS microphones design types include structures 

consisting of two or three clamped discs (Lisiewski et al., 2011; Liu et al., 2013), 

more closely mimicking the ormiine auditory system, and gimbal-type devices with 

an extra central support (Ono et al., 2003). 

Many studies in the field of directional MEMS microphones have centred on 

taking bioinspiration from the parasitoid fly, Ormia ochracea. While the degree of 

reported success varies from study to study, principally, any MEMS device with the 

correct degrees of freedom should display some element of mechanical directional 

acoustic sensitivity. The second goal of this thesis was to explore the modal and 

directional response of two such MEMS structures, see-saw type in form, which are 

similar in geometry and magnitude to the ear of Ormia. Physical and computational 

experiments were utilised to gauge the devices’ performance with a view to their 

potential in applications such as directional microphones. 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 2 : Methodology 
 

“…great difficulties are felt at first and these cannot be overcome except by starting 
from experiments…and then be conceiving certain hypotheses…But even so, very 

much hard work remains to be done” – Christiaan Huygens 
 
 

 
This chapter outlines the main methods used throughout this thesis to explore, 

analyse, predict and measure both insect auditory systems and micro-electro-

mechanical systems microphone structures. An introduction to micro-scanning laser 

Doppler vibrometry is provided, followed by an overview of modelling using the 

finite element method, concluded with a step-by-step breakdown of some of the 

computer-aided design tools used for 3-D geometry creation. Laser vibrometry is the 

main physical experimentation technique utilised in this thesis research since it has 

become the class-leading technique for the accurate measurement of sub-nanometre 

vibrations. Finite element analysis, in conjunction with 3-D computer-aided design 

(CAD), has found applications throughout the field of computational modelling and 

it is vital when studying both structural mechanics and pressure acoustics. There 

follows an explanation of micro-scanning vibrometry, including the theory and 

application of this optical measurement system. 
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2.1 Micro-scanning Laser Doppler Vibrometry 

One technique now widely used to investigate the mechanical response of a vibrating 

surface or body is micro-scanning laser Doppler vibrometry (LDV). Such is the 

significance of LDV, during the past thirty years it has rapidly increased in 

prevalence, becoming the norm in live insect dynamic vibration measurement 

techniques (Michelsen & Larsen, 1978; Yager, 1999; Windmill et al., 2005; Sueur et 

al., 2010; Moir et al., 2011). Making use of the Doppler Effect, explained in 1.2.2, a 

schematic diagram of the components of a typical LDV system is shown in Fig. 2.1. 

Firstly the output of one helium neon laser is split into two coherent laser beams, the 

reference beam and measurement beam, by passing it through beam-splitter 1 (BS1). 

After the measurement beam propagates through a second beam-splitter (BS2), 

refractive optics is used to focus it onto the sample surface via a manually adjustable 

lens. A detachable close-up attachment unit can also be used when scanning small 

samples, which acts like a microscope in magnifying the live video image of the 

sample as well as reducing the optimal stand-off distance for the laser light i.e. 

effectively reducing the working distance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Internal components of a Laser Doppler Vibrometer. Illustration constructed using 
information from http://www.polytec.com/us/company/technologies/. 
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The sample reflects the laser light and the measurement beam re-enters the 

vibrometer where it is deflected by BS2 before being merged with the reference 

beam via a third beam-splitter (BS3). Finally, both beams then feed into a 

photodetector, often a photodiode. Laser interferometry is used to analyse the 

measurement beam with respect to the reference beam. Two coherent laser beams of 

light intensities 𝐼1 and 𝐼2 which overlap will constructively and/or destructively 

interfere creating an interference fringe pattern according to the formula 

𝐼𝑡𝑡𝑡 = 𝐼1 + 𝐼2 + 2�(𝐼1𝐼2 cos[2𝜋(𝑟1 − 𝑟2)𝑓]) 

[2.1] 

where 𝑟1 − 𝑟2 is the path length difference between measurement beam and reference 

beam and 𝑓 the wavelength of the laser light. Assuming negligible thermal effects, 

the reference beam path length, 𝑟2, remains constant with time while the path length 

of the measurement beam, 𝑟1, varies transiently depending on the motion of the 

sample. There is direct proportionality between the magnitude of the sample 

vibrational velocity and the modulation frequency of the interferometer fringe 

pattern. Since the interference pattern would be identical for both motion towards 

and away the vibrometer, i.e. the direction of the velocity would be theoretically 

indiscernible, a Bragg cell is included to act as an acousto-optic modulator, shifting 

the frequency of the reference laser beam by 40 MHz. This integrated modulation of 

the fringe pattern frequency means that motion towards the detector decreases this 40 

MHz frequency and conversely motion away from the interferometer shifts this 

modulation frequency upwards. Thus, the magnitude and direction of vibrational 

velocity of a sample can be measured.  

1-D micro-scanning laser Doppler vibrometers are capable only of measuring 

movement in the plane of the measurement laser beam, i.e. optimally the beam 

should be positioned perpendicularly to the sample surface, meaning therefore that 

the technique is capable of measuring only the transverse (out of the surface plane) 

velocity. The LDV system has two acquisition modes available, time domain mode 

and Fast Fourier transform (FFT) mode. The acquisition and data presentation 

software used in conjunction with the vibrometer allowed for integration of the 

transverse velocity resulting in the computation of the transverse displacement of the 
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sample. Alternatively the velocity can be differentiated resulting in the computation 

of the sample’s transverse acceleration. 

The Polytec PSV-300-F system utilised for this research uses a He-Ne laser 

which, when focussed onto a sample 5 cm away, has a spot diameter of 

approximately 3-5 μm and can be consistently positioned with an accuracy of 1 μm 

in the XY-plane. Two laser acquisition modes are utilised – single point data capture 

and scanning mode. Scanning mode requires the user to create a grid of connected 

points and the vibrometer acquires multiple, consecutive single point measurements 

at each grid point. In the FFT acquisition mode some form of averaging is usually 

used at each scan point/single data point to reduce unwanted noise and increase the 

signal-to-noise ratio. The averaging algorithm types include magnitude, complex and 

peak-hold. Complex averaging is selected when an experiment has a known stimulus 

whereas magnitude averaging is reserved for stochastic vibrations and with this 

setting no phase information is captured. More info on these (and many other LDV 

concepts and settings) is available from the Polytec software and theory manuals or 

their website (http://www.polytec.com/us/company/technologies/).  

LDV is usually used to measure the vibration of a sample in response to some 

known applied stimulus, in this case through the use of acoustic pressure wave loads. 

These sound stimuli can either be generated internally using the arbitrary waveform 

generator (National Instruments PCI-6111; Austin, TX) embedded within the 

vibrometer workstation or by the use of an external function generator (e.g. Agilent 

33220A; Santa Clara, USA). The sound stimulus is usually then recorded using a 

reference microphone (Brüel & Kjær 4138; Nærum, Denmark) which feeds into the 

vibrometer. This allows the velocity gain of a sample to be computed as the transfer 

function of the transverse velocity to the reference sound level, using the formula 

𝐻1 =
𝐺𝑎𝑎(𝑓)
𝐺𝑎𝑎(𝑓) 

[2.2] 

where 𝐻1 is the transfer function, 𝐺𝑎𝑎(𝑓) is the cross-spectrum of the reference and 

velocity signals and 𝐺𝑎𝑎(𝑓) the auto-spectrum of the reference signal.  

In summary, micro-scanning laser Doppler vibrometry can be used on 

biological samples to provide an in vivo analysis of the sub-nanometre scale 
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vibration of an insect tympanum in a non-contact and non-invasive way. Since phase 

and amplitude data is acquired simultaneously, animations can be reconstructed from 

a scan, allowing for the visualisation of complex-shaped vibrations of a sample of 

arbitrary shape. The same techniques can also be applied to the analysis of the 

mechanical deflections of silicon MEMS structures such as those analysed in this 

thesis. 
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2.2 The Finite Element Method 

2.2.1 Introduction to FEM 

Often, an engineering problem can be evaluated through a theoretical and 

mathematical approach, whereby the system is described using the underlying 

differential equations governing such principles as Newton’s laws of motion, the 

conservation of energy and mass, equilibrium, the laws of thermodynamics and 

Maxwell’s equations, among others. However when this approach is used for a 3-

dimensional system, exhibiting complex arbitrary geometry, with varying length 

scales, multiple materials both isotropic and anisotropic, and perhaps encapsulating 

many aspects of physics such as structural mechanics, fluid dynamics and heat 

transfer, the method can rapidly become very cumbersome and any potential solution 

can even end up redundant of any real meaning. The theoretical approach is better 

suited to well-studied geometries of regular shape such as rectangles or circles, in 

combination with fairly simple boundary conditions. A numerical analysis technique 

called the finite element method or finite element analysis (FEA) is often the next 

best alternative. To this end, the ability of FEA to simulate structures exhibiting 

complex arbitrary geometry was one of the modelling technique’s greatest driving 

forces. FEA is therefore a valuable tool particularly when modelling the complex 

geometry observed in nature such as that seen in the locust tympanal system. 

A finite element model (FEM) is constructed with one or more domains, 

usually allocated depending on the state of matter of the material contained within 

the region i.e. a solid domain and/or fluid domain (liquid or gas). The system is then 

discretised by subdividing the domains using meshes of relatively simple-geometry 

elements of finite shape and size, hence the name finite element method. For 2-D 

models the form of these elements is often triangular or quadrilateral and for 3-D 

models tetrahedral or hexahedral elements are used. Between each element, often at 

the vertices or along intersecting mesh lines, there are a number of points or nodes. 

Depending on the particular application of FEA, a number of unknown parameters 

are then assigned to every node, known as the degrees of freedom (DOF). For a 

continuum, in reality there exists an infinite number of DOF whereas in an FEM the 

total number of DOF is finite and, for a given study type, is dependent solely on the 
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parameters of the model’s meshing structure. Equations encapsulating these DOF, 

based around the aforementioned governing differential equations, are then formed. 

However instead of solving these on a complex system-wide scale they are applied 

only in simplified approximated form to each node. Since the position and behaviour 

of the nodes also indirectly controls that of the elements and inevitably nodes are 

shared between elements, the response of the system as a whole can then be 

approximated through the formulation and solving of a matrix containing a system of 

equations. These systemic equations incorporate the nodal DOF and the relative 

spatial positions of each node and element in addition to all model inputs such as 

material properties or specific boundary conditions which can often simplify the 

model slightly by reducing the DOF or eliminating some elements or nodes. 

Computationally solving this matrix formulation for all DOF is commonly known as 

using an implicit solver in FEA. Due to the nature of FEA, it should be noted that an 

FEM only approximates a solution and in general the accuracy is directly 

proportional to the mesh resolution.  

FEA has found applications in structural mechanics, thermodynamics, fluid 

dynamics, acoustics and electrostatics among other fields. These physical concepts 

then branch out into many specific problem types. Stress analysis, for example, 

involves the computation of components of displacement, force, moment, strain and 

also failure criteria. Within fluid dynamics, Navier-Stokes equation problems consist 

of the computation of velocity components and pressures. Finally, eigenproblem 

formulation is very commonly used throughout FEA. This is the computation of a 

model’s eigenvectors and corresponding eigenvalues which, in the context of 

structural mechanics, are usually the undamped unloaded natural shapes of vibration, 

the eigenmodes, and their associated eigenfrequencies. Most commercially available 

finite element modelling packages are reasonably similar in that they can simulate 

many of the different physics applications mentioned here, provide comparable 

capabilities in data input, post-processing and data output, and offer multiple solver 

types with some even incorporating effortless coupling of multiple applications from 

a wide variety of study applications. COMSOL Multiphysics® (version 5.0, 

COMSOL, Inc. Burlington, MA, USA), used extensively throughout this research, is 

one such FEM code with the versatility to model ‘multiphysics’ applications. Several 
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COMSOL application modules are available which, when combined, provide the 

user with a suite of available study types, some utilising coupled solvers and some 

not. Additionally, partial differential equations can be input in their raw form 

allowing the creation of a fully customised finite element model. In this thesis 

research the finite element models made extensive use of the structural mechanics, 

acoustics, MEMS and CAD geometry importation modules within COMSOL. 
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2.2.2 FEM Workstation Specifications 

As mentioned previously, in simple terms the accuracy of any finite element model 

solution is a function of the mesh resolution. However the number of mesh elements 

(and therefore nodes and nodal DOF) is constrained by the physical specifications of 

the computer system on which the model is being executed. When modelling using 

the COMSOL FEA package, the defining factor for model size, and therefore 

estimation accuracy, is the physical random-access memory (RAM) installed in the 

system. On the other hand, total computational time can be influenced by three main 

factors. Since most of the default solvers make use of shared-memory parallel 

processing, multi-core processing is the first factor, and the memory architecture, 

through its influence on parallelisation efficiency, is the second factor. The third 

factor is when the model size is so large that the physical RAM becomes unable to fit 

the whole matrix formulation for the entire system. In this situation, COMSOL 

recruits part of the hard drive (virtual RAM) to complete the matrix computation, a 

process which is greatly affected by the hard drive’s read/write speeds (COMSOL 

support base – http://www.comsol.com/community/). 

 To this end, three different computer systems were utilised when creating and 

executing the finite element models contained herein, the use of each being 

dependent primarily on model size. Two customised workstations were used, one 

with dual quad-core processors and 24 GB physical RAM and the other with dual 

octo-core processors and 64 GB physical RAM. The final system used was a ‘Tier-2’ 

supercomputer called ARCHIE-WeSt (Academic and Research Computer Hosting 

Industry and Enterprise in the West of Scotland – http://www.archie-west.ac.uk/) 

which is a 3400+ core high performance computer hosted by the University of 

Strathclyde, regarded at launch date as one of the top ten most powerful high 

performance computers in the UK. Importantly ARCHIE-WeSt has eight specialised 

large memory 512 GB RAM or ‘fat nodes’, each with four octo-core Intel Xeon E7-

430 CPUs. The largest models were computed on one of these nodes using anything 

from 16 to the full 32 cores and 512 GB physical RAM. In addition a new parallel 

environment was introduced specifically for the finite element modelling in this 

thesis which allowed the coupling of between two and four of these high-memory 
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nodes, leading to potentially 1 – 2 TB total physical RAM availability. ARCHIE-

WeSt utilises the Linux operating system therefore to run COMSOL the user must 

create a job script which requests ‘x’ amount of cores of the fat node and points to a 

previously created COMSOL model file. 
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2.2.3 FEM Procedure 

2.2.3.1 Fundamental Steps 

The steps required in constructing most finite element models, particularly in the 

fields of acoustics and mechanics, usually follow the same underlying pattern. Before 

beginning to construct a model, parameters are stored as Global Definitions near the 

top of the COMSOL model tree (see left side of Fig. 2.2). These include (but are not 

limited to) geometrical dimensions and material properties, and parameterising the 

model in this fashion allows rapid future alterations as well as the execution of 

multiple iterations with one or more changing parameters through the use of 

COMSOL’s built-in parametric sweeps – effectively providing the potential to create 

nested loops.  

Often, the initial main step in formulating a finite element model is the 

creation or importation of the model geometry, which is then partitioned into one or 

more model domains. Where the model geometry used in this thesis was fairly 

simple and could be easily divided into primitive shapes then COMSOL’s integrated 

geometry construction tools were used. In cases when more powerful geometry tools 

were required then the professional level 3-D CAD software SOLIDWORKS® 

(Dassault Systèmes SolidWorks Corp., Waltham, MA, USA) was used. 

SOLIDWORKS provides a number of exportable formats, many of which are 

compatible with COMSOL’s CAD geometry import module, one of these being the 

native SOLIDWORKS .sldprt part file so for consistency, reliability and accuracy 

this format was used for importation. Occasionally the geometry was then re-scaled 

within the modelling environment for technical reasons explained in 2.3. Fig. 2.2 

shows the construction of a simple cylindrical disc within COMSOL with the radius 

and height fields visible and Fig. 2.3 is an example of CAD-created complex model 

geometry. The fact that no biological system consists purely of primitive geometry, 

coupled with FEM’s ability to handle arbitrary geometry, means the easy importation 

of externally created geometries with advanced CAD features has become a powerful 

tool. 

The next step is material specification within the model domain settings. 

Multiple material types (isotropic, anisotropic and orthotropic) and states (solid, 
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liquid and gas) can be combined along with the possible input of many custom 

properties. COMSOL comes with an in-built material library in which fields can also 

be edited accordingly to include additional experimental data. Fig. 2.4 displays the 

typical minimum material properties required for solid mechanics modelling of a 

linear isotropic material, the Young’s modulus, Poisson’s ratio and density (all 

defined in 1.3).  
 

 

 

 

 

 

 

 

 

 

 

The third main step in creating a FEM is the application of any boundary 

conditions which usually constrain the problem in some fashion, i.e. remove DOF 

from specific nodes or elements. Many options are provided here including external 

loads (forces, harmonic sinusoidal pressure loads) and initial conditions such as fixed 

constraints. Assuming applicability, these can be assigned to any point, line, 2-D 

boundary face or 3-D domain throughout the geometry. Fig. 2.5 illustrates the  

 

 

 

 

 

 

 

 

Figure 2.2 Cylindrical disc model geometry created in the COMSOL working environment. 

Figure 2.3 Complex CAD-built geometry in SOLIDWORKS. 
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application of a fixed constraint boundary condition on the four boundary faces at a 

disc’s edge i.e. enforcing the displacement of all nodes (and therefore elements) on 

this 2-D boundary to be zero throughout computation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The penultimate major step in FEM formulation and computation is 

generation of the mesh. In COMSOL this vitally important step can either be 

controlled by the software known as physics-based meshing, or fully customised, in 

user-defined meshing. Meshing options range from single 1-D point or line insertion, 

2-D boundary mesh creation, usually as triangular or quadrilateral elements, or full 

3-D domain meshing using tetrahedral elements (among others). Most of the 

Figure 2.4 Setting material properties. 

Figure 2.5 Applying fixed constraint boundary condition. 
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meshing algorithms use adaptive meshing in that the element size increases and 

decreases throughout the mesh dependent upon the proximity to boundaries or 

specific features in the geometry structure such as areas of curvature, sharp corners 

and thin regions. Specific settings exist to improve the mesh resolution in all such 

areas. Integrated mesh sizes are included from ‘extremely coarse’ through ‘normal’ 

to ‘extremely fine’ and with each of these come specific element maximum and 

minimum sizes, growth rate and other parameters to control resolution. These can all 

be customised and a plethora of other meshing options exist including swept meshes 

for geometries of uniform cross-section. A particular problem can be the successful 

and efficient coupling of one domain’s mesh to the mesh of a surrounding domain 

and statistics are also available to assess the quality of a particular mesh. Fig. 2.6 

shows a typical tetrahedral mesh with ‘normal’ element size setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 The final step is solver selection and settings and often the default solver type 

provided by COMSOL is the best option, providing accurate solution estimation and 

optimisation of computational costs both for simple one module applications or 

complex coupled multiphysics problems. Only occasionally are some settings 

tweaked to produce newly available output data.  

Almost every numerical input to a COMSOL model can be parameterised 

and/or calculated using other model inputs, allowing the rapid automatic execution of 

multiple model iterations through nested loop parametric sweeps. 

Figure 2.6 Tetrahedral normal sized mesh. 
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2.2.3.2 Eigenproblem Simulations 

In theory, solid bodies have an infinite set of vibrational patterns which are known as 

the undamped or unforced normal modes of vibration or eigenmodes. The natural 

frequencies at which these vibrational patterns occur are called the eigenfrequencies 

(see 1.3.3 for theoretical modes of a circular plate). Each of these eigenfrequencies 

will depend on both the dimensions of the vibrating body and some material 

properties. In FEA of solid 3-D structures these properties are often the stiffness, 

density and Poisson’s ratio. For isotropic linear Hookean materials the Young’s 

modulus, E, is the measure of stiffness used most commonly. 

COMSOL’s solid mechanics eigenvalue solver, designed for rapid and 

accurate computation of eigenmodes and eigenfrequencies, was used extensively to 

predict the mode shapes and approximate natural frequencies of the model systems 

throughout this research. The COMSOL 5.0 Reference Manual and Structural 

Mechanics Module Users Guide along with Chapter 22 of the Springer Handbook of 

Acoustics (Rossing, 2007) provide the theory behind modal analysis of solid bodies 

including eigenvalue problem formulation and the particular solver used in FEA. 

Implementation of such a modal analysis involved completion of each of the 

steps outlined in the previous section along with defining the study size by inputting 

a desired number of eigenfrequencies in the relevant solver settings field. Default 

output creation was of the mode shapes with their deformation exaggerated purely 

for visualisation purposes by an enlargement of the displacement using an automatic 

scale factor (which could be customised). The default solver setting for the output of 

eigenvectors (and therefore the one used here) is for normalisation via scaling against 

the RMS values. Consequently it should be noted that the colour scale for 

eigenmodes throughout this thesis indicates an arbitrary normalised out-of-plane 

displacement field, red indicating transverse displacement out of the page and green 

for displacements into the page. As mentioned previously, one cannot compare the 

amplitude of deflection of each mode in a simple eigenmode analyses, however the 

amplitudes of the characteristic nodes of a particular mode can be accurately 

compared. 
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In the modal analysis of any structure one further step can be implemented. 

Firstly the advanced solver setting of normalisation of outputs against the RMS 

values was changed to normalisation by the model mass matrix. Rerunning the 

eigenmode analysis solver resulted in the computation of the modal participation 

factors (MPF), of which there are 3 translational MPFs for each mode, one for each 

Cartesian axis direction. Squaring the MPF (in a particular direction) for each mode 

of the disc resulted in the effective modal mass (EMM) of that mode (kg).  

𝐸𝐸𝐸𝑖 𝑖 = 𝐸𝑀𝐹𝑖 𝑖
2 

[2.3] 

where 𝐸𝐸𝐸𝑖 𝑖 is the effective modal mass of mode 𝑖 where 𝑖 = 1,2, … , 𝑛 in direction 

𝑗 where 𝑗 = 𝑋, 𝑌 or 𝑍 and 𝐸𝑀𝐹𝑖 𝑖 is the modal participation factor of that same mode 

in the same direction.  

𝑚𝑡𝑡𝑡 =
𝜌

𝑉𝑡𝑡𝑡
 

[2.4] 

where 𝑚𝑡𝑡𝑡 is the total mass of the system, 𝜌 is the density of the model material and 

𝑉𝑡𝑡𝑡 is the total volume of the system. 

For geometries with one uniform dimension and a constant cross-section,  

𝑉𝑡𝑡𝑡 = 𝐴𝑐−𝑠 × 𝑡ℎ 

[2.5] 

where 𝐴𝑐−𝑠 is the cross-sectional area and 𝑡ℎ the uniform thickness.  

For a cylindrical volume with circular cross-section of radius 𝑟, 

𝐴𝑐−𝑠 = 𝜋 × 𝑟2. 

[2.6] 

For more complex geometries 𝑉𝑡𝑡𝑡 was calculated using a measure command in the 

geometry subnode. Alternatively 𝑚𝑡𝑡𝑡 can be defined and calculated in the software 

for complex multiple material model geometries by integrating the density of each 

material across the domain where that material is located, then summing all of these 

integrals.  

Finally, dividing the EMM of each computed mode of the device in the same 

direction by the total mass of the system, resulted in the effective modal mass 

fractions for each calculated mode in that direction.  
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𝐸𝐸𝐸𝐹𝑖 𝑖 =
𝐸𝐸𝐸𝑖 𝑖

𝑚𝑡𝑡𝑡
 

[2.7] 

where 𝐸𝐸𝐸𝐹𝑖 𝑖 is the effective modal mass fraction (%) of mode 𝑖 in direction 𝑗 

where 𝑗 = 𝑋, 𝑌 or 𝑍.  

The effective modal mass fraction is an indication of the ease with which that 

mode would be excited by base excitation. Therefore the EMMF can be thought of as 

an estimate of the amount of energy which is found in a particular mode of the 

system. 
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2.2.3.3 Acoustic-structure Interaction with a Frequency Response Analysis 

To simulate the frequency response of both model locust tympana and micro-electro-

mechanical systems devices, COMSOL’s acoustic-structure interaction application 

type, with an integrated frequency domain study, was used. This differs from the 

single domain, harmonic mechanical load, time domain analyses used by Malkin et 

al. in 2013. An acoustic-structure interaction analyses the two-way coupling between 

a structure’s mechanical response and some load stimulus, in this case an incident 

pressure wave in the surrounding fluid. The propagation of this acoustic wave in the 

fluid domain, and any associated pressure fluctuations, are computed by the pressure 

acoustics frequency domain solver which revolves around resolving the Helmholtz 

equation 

∇  ∙  �−
1
𝜌𝑐

∇𝑝� −
𝜔2𝑝
𝜌𝑐𝑐2 = 0 

[2.8] 

where 𝜌𝑐 is the fluid density (in kgm-3, 𝑐 subscript denotes could be complex), 𝑝 is 

the harmonic acoustic pressure of the form 𝑝 = 𝑝𝑎𝑒𝑖𝑖𝑡 (Nm-2 or Pa), 𝜔 is the angular 

frequency (rads-1) and 𝑐 the speed of sound (ms-1). 

This model application is designed specifically for external loads with 

harmonic pressure field variations. The simulated vibration of any solid body within 

the fluid is controlled by a corresponding frequency response analysis provided by 

the structural mechanics module. In response to a harmonic load, this FEA solver 

estimates the steady-state solution, by splitting the problem into the following 

components. A harmonic load of amplitude, 𝐹 (N), and phase, 𝐹phase (rad), is 

dependent on the excitation angular frequency, 𝜔, where 𝜔 = 2𝜋𝑓 and 𝑓 is the 

excitation frequency (Hz), according to the equation 

𝐹freq = 𝐹(𝜔) ∙ cos �𝜔𝑡 + 𝐹phase(𝜔) ∙
𝜋

180
� 

[2.9] 

A complex time-dependent displacement field is computed by this solid mechanics 

application with amplitude, 𝑢amp (m), and phase angle 𝑢phase (rad). Resultantly the 

instantaneous displacement is the real part of 
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𝑢 = 𝑢amp cos�2𝜋𝑓 ∙ 𝑡 + 𝑢phase� 

[2.10] 

Two domains were usually created within the model and allocated a specific domain 

type, solid (the vibrating body) and fluid (air). Aside from any fixed boundary 

constraints similar to those seen in the eigenmode analysis and preceding 

fundamental FEA steps, most of the new required boundary conditions are controlled 

by the acoustic-structure boundary coupling. This unique two-way multiphysics 

interaction can be expressed mathematically by the two equations 

−n ∙ �−
1
𝜌𝑐

(∇𝑝t − 𝑞𝑑)� = −n ∙ u𝑡𝑡 

[2.11] 

FA = 𝑝tn 
[2.12] 

for exterior boundaries, where n is the surface unit normal vector, 𝑝t is the total 

acoustic pressure (Pa), 𝑞𝑑 is an optional dipole source, u𝑡𝑡 is the structural 

acceleration (ms-2) and FA is the load exerted on the solid (Nm-2). 

For interior boundaries this coupling is represented by 

−n ∙ �−
1
𝜌𝑐

(∇𝑝t − 𝑞𝑑)�
1

= n ∙ u𝑡𝑡 

[2.13] 

−n ∙ �−
1
𝜌𝑐

(∇𝑝t − 𝑞𝑑)�
2

= −n ∙ u𝑡𝑡 

[2.14] 

FA = �𝑝t,1 − 𝑝t,2�n 

[2.15] 

i.e. a pressure drop across the solid structure is related to the acoustic load. 

The stimuli were simulated plane wave pressure fields of user-specified 

amplitude (𝑝𝑎 in Eq. [2.17], in Pa) at several frequencies in the vicinity of the 
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computed eigenfrequencies, applied to the external boundaries of the air domain. 

These same boundaries were allocated a radiation condition which eliminated any 

internal reflections within the domain, other than those of the sound wave impinging 

on the centrally positioned 3-D solid domain, i.e. at the extreme model boundaries 

the air domain behaves as if extended to infinity. Spherical wave radiation boundary 

conditions in COMSOL are formed by an expansion (in spherical coordinates) from 

Bayliss et al. (1982), which is 

−n ∙ �−
1
𝜌𝑐

(∇𝑝t − q𝑑)� + �𝑖𝑘eq +
1
𝑅

�
𝑝
𝜌𝑐

−
𝑅∆T𝑝

2𝜌𝑐�𝑖𝑘eq𝑅 + 1�

= −
𝑅∆T𝑝𝑖

2𝜌0𝑐�𝑖𝑘eq𝑅 + 1�
+ �𝑖𝑘eq +

1
𝑅

�
𝑝𝑖

𝜌𝑐
+ n ∙

1
𝜌𝑐

∇𝑝i  

[2.16] 

where 𝑘eq is the wave number (radm-1), 𝑅 is the radius of the fluid domain (m), ∆T is 

the Laplace operator in the tangent plane at a specific point, 𝜌0𝑐 the static density 

(kgm-3) and 𝑝𝑖 the incident pressure field added as a subnode to the spherical wave 

radiation boundary. This pressure field is of the form 

𝑝𝑖 = 𝑝𝑎𝑒−𝑖(k ∙ r) = 𝑝𝑎𝑒
−𝑖𝑘eq�r ∙ e𝑘

‖e𝑘‖�
 

[2.17] 

where 𝑝𝑎 is the pressure amplitude (Pa), k the wave vector with direction vector e𝑘 

and amplitude |k| = 𝑘eq, and r the location on the boundary. 

Two angles were created as parameters in the Global Definitions subnode, 𝜑 

and 𝜗 (both in radians, bounded by the limits 0 ≤ 𝜑 ≤ 2𝜋 and 0 ≤ 𝜗 ≤ 𝜋), and 

defined as the anti-clockwise angle in the XY-plane starting from the X-axis and 

moving towards the Y-axis (sometimes known as angle of azimuth) and the angle 

between the Z-axis and the XY-plane (angle of elevation), respectively. Defined by 

these angles, three incident wave direction vector components k1, k2 and k3 were 

then calculated, and input in the component fields defining e𝑘 from [2.17] above. 

These were calculated using the trigonometric formulations below 

k1 = sin (𝜗) × cos (𝜑) 

[2.18] 
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k2 = sin (𝜗) × sin (𝜑) 

[2.19] 

k3 = cos (𝜗). 

[2.20] 

The formula in 1.2.1 was adapted and used in the incident pressure field value 

for the pressure amplitude 𝑝𝑎 (usually in Pa) so that the simulated sound stimulus 

could be input with an amplitude value in dB SPL using the formula 

𝑝𝑎 = 2 × 10−5 × 10�𝑑𝑑 𝑆𝑆𝑆
20 � 

[2.21] 

Before executing acoustic-structure interactions, establishing the solver settings 

was the final important step with two main components – frequency selection and 

activation of the geometric nonlinearity solver option. The former of these settings is 

fairly self-explanatory and the chosen frequency controls that of the excitation 

frequency in tandem with the frequency content of the response output. Range input 

is available which involves choosing a minimum, step and maximum frequency. 

Enabling the ‘Include geometric nonlinearity’ option is advised for all finite element 

models displaying a number of common features: 

• thin or high aspect ratio 3-D solid geometries (or regions) where the 

magnitude of deflection may approach the thickness values;  

• situations where large rotational vibrations may be present – even just a few 

degrees for rigid bodies; 

• all fluid-structure interaction problems.  

With this option enabled pressure loads then act as true follower loads, i.e. the 

direction of their exerted forces reacts according to local deformations in material 

geometry. 

Formulating every acoustic-structure interaction model in this thesis with full 

parameterisation of the geometry dimensions, all material properties, pressure load 

magnitudes, angles and their corresponding vector components as well as the 

solution frequencies, allowed multiple large-scale parametric sweeps (nested loops) 
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to be implemented, meaning automated and efficient computation of the simulated 

frequency response of model solid bodies for a range of incident sound waves.  

 Default output creation for 3-D acoustic-structure interactions is two 3-D 

plots: the first displaying the total displacement (in all axis directions) of the solid 

domain (m) and visualisation of an exaggerated deflection, as mentioned previously 

in the output for eigenfrequency analyses; the second being the total acoustic 

pressure throughout the fluid domain. The evolution of either of these variables can 

be visualised either by changing the solution phase angle and replotting or using the 

animation player to dynamically extend the data through a full harmonic cycle. Many 

other physical quantities from the fields of solid mechanics and pressure acoustics 

can be computed at a variety of model locations and visualised in a multitude of 

forms. 3-D cut points were used to extract any quantity at a particular point, specified 

by the point’s coordinates in three dimensions or by selecting a point of existence 

already formed in the construction of the model geometry. Several mathematical 

functions and operators are also available as extra post-processing options. 
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2.3 Geometry Construction - Computer Aided Design 

Several forms of geometry are used as inputs to the model tympana studied in this 

research and the first of these types is that of simple uniform thickness and constant 

cross-section. These structures are either constructed from primitive 3-D shapes such 

as cylinders and cuboids or for the slightly more complex geometry, a cross-section 

is drawn on a work plane and extruded, usually in the thickness direction, denoted Z 

(see 3.2 and 4.1 for examples). SOLIDWORKS 3-D CAD software was used to form 

model locust TMs with step changes in thickness using simple extruded sketch or 

extruded cut tools of particular features.  

 The final locust tympanal membrane model geometry was constructed using 

methods which allowed the completed geometry to be as close to the natural 

tympanum shape as possible. Fig. 2.7 below shows the first step in the process – 

importing the contour map from Stephen and Bennet-Clark (1982) which shows the 

thickness distribution and shape of the left tympanum of a desert locust, Schistocerca 

gregaria (see 1.4.2 for more detail).  

 

 

 

 

 

 

 

 

 

 

 

Although the values on the image are in µm, SOLIDWORKS can have some 

difficulty with dimensions in the region of 0.5 µm therefore isotropic scaling of the 

whole geometry by a scale factor of 1000 was implemented. COMSOL FEA 

software could then be used to reduce the geometry back to the desired size at the 

Figure 2.7 Inserted contour map (Stephen & Bennet-Clark, 1982) in SOLIDWORKS. 
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geometry importation step. The scale bar on the Figure was used when resizing the 

whole image in order to correlate SOLIDWORKS’ dimensions with those of the 

image. Secondly reference planes were inserted vertically across the contour map, 

equally spaced for the most part but packed more tightly at regions of importance 

and areas displaying steeper thickness changes. Notice in Fig. 2.8 that the planes 

continue beyond the extents of the membrane edge and two horizontal planes are 

inserted, one above the top edge and one below the bottom edge of the TM. The 

intersection of these planes forms a rectangular shape around the TM, with the 

geometry deliberately over-built to avoid any possibility of an instance of zero 

geometry at the membrane edges which could adversely affect meshing and matrix 

calculations within the modelling environment later. 

 

 

 

 

 

 

 

 

 

 

Next the whole sketch was flipped horizontally so that a right sided model ear 

was created, when visualising it from an external view, to match the majority of the 

literature on the ear of the desert locust. On each of the vertical planes a non-uniform 

rational B-spline was inserted, and a number of spline control points placed 

methodically along each spline, to roughly coincide with different contour lines. 

Each of these control points is then fixed at an exact height in the Z-axis direction 

(out of the page towards the reader), dependent on the closest contour thickness 

value. All of those points outside the edges of the TM were set at some constant 

height matching the nearest membrane edge thickness. Fig. 2.9 shows the 

culmination of these steps. 

Figure 2.8 Reference planes inserted. 
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All of the vertical profile splines were then carefully knitted together using 

the boundary surface tool, creating a shell with a contoured shape but no actual third 

dimension of thickness. Extruding from a plane exactly 0.6 mm below the surface i.e. 

1000 times the smallest thickness on the contour map, resulted in a thin 3-D sheet 

which when viewed from the top has a rectangular profile but from the side has a 

profile with varying height depending on the tympanal membrane thickness at that 

point. The view in Fig. 2.10 is angled in a manner which clearly displays the 

thickness variations across the membrane surface and recognisable features such as 

the thin section around the PV area and also the thick region are clearly visible. 

The final step was simply to trace the membrane outline using a spline and 

then use that sketch to extrude a cut through the whole 3-D solid leaving the 

geometry shown in plan elevation view in Fig. 2.11 and a slightly rotated and angled 

view in Fig. 2.12. 

 

 

 

 

 

 

 

 

Figure 2.9 Splines (with multiple control points) drawn on planes. 
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Figure 2.10 Boundary surface knit and thin extrusion edited screenshot from 
SOLIDWORKS. 

Figure 2.11 Extruded cut using spline which traces the TM outline. 

Figure 2.12 Final TM geometry angled to show varying thickness on surface. 
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In the following chapters, laser vibrometry, the finite element method and 

analytical modelling are all used to study the tympanal hearing system of a locust 

and to investigate the mechanical response of silicon MEMS structures. More in-

depth, subject-specific methods are included in these subsequent chapters which fully 

explain the hardware, software and all settings and parameters utilised throughout the 

thesis.  
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Chapter 3 : Locust Hearing System – Laser Doppler 
Vibrometry and Introductory Finite Element 

Analysis 
 

“Look deep into nature, and then you will understand everything better” – Albert 

Einstein 

 
 

 
This chapter begins by characterising the vibrational response of the tympanal 

membrane of the desert locust using micro-scanning Laser Doppler Vibrometry. 

Finite Element Modelling is then used to analyse the response of simple 3-D circular 

disc models, in particular, using large sweeps on the defining characteristics and also 

simulating the acoustic-response of the discs. 
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3.1 Characterising the Response of the Locust Ear 

The tympanal hearing system of the desert locust, Schistocerca gregaria, consists of 

a stretched tympanal membrane backed by a tracheal air sac. The mechanosensory 

Müller’s organ is attached to the interior surface via a number of cuticle adaptations. 

Subchapter 1.3 covers the morphology as well as the neurophysiological and 

mechanical response of the hearing system in an extensive review. Fig. 1.10(a) 

shows an external view of the right side locust tympanum.  

In 1971 (1971b), Michelsen concluded that the locust ear appeared to be a 

true resonance system and also that the origin of the ability to perform frequency 

discrimination was purely physical. Windmill et al. (2005 and 2008) found that 

travelling waves are generated on the tympanum as a response to sound with a 

variety of frequencies. Laser vibrometry showed two main travelling wave types, one 

at lower frequencies which channelled the energy to the folded body (and associated 

low frequency receptor cells), and the other at high frequencies which appeared to 

transfer energy to the pyriform vesicle (and attached high frequency tuned receptor 

cells). 

This section is dedicated to the characterisation of the travelling waves seen 

on locust tympanal membranes for a variety of different stimulus frequencies, using 

micro-scanning laser Doppler vibrometry. The purpose of this investigation was to 

highlight any potential previously unreported features and categorise the locust TM 

vibration response into travelling wave pattern types. 

 The first step was the experimental frequency response analysis of 23 desert 

locusts (12 male – 7 in their gregarious phase and 5 solitary, and 11 female – 6 

gregarious and 5 solitary) followed by an in-depth observation of the variety of 

travelling waves formed on the locust tympanum, each of which is dependent upon 

the frequency of the incident sound.  

For this a micro-scanning laser Doppler vibrometer (Polytec PSV-300-F; 

Waldbronn, Germany) was used with a close-up scanning head unit (OFV-056) 

attached (see Subchapter 2.1). Capable of measuring picometre vibrational 

displacements, this setup provides a non-invasive, non-contact method of studying 

the complex vibrational pattern of the locust tympanal membrane in vivo.  
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The environmental conditions in the laser vibrometer room were a 

temperature of 23°C and relative humidity of 50%. Both the vibrometer itself, 

including laser head, and any sample were mounted on a floor panel isolated from 

the rest of the room to reduce unwanted structural vibrations.  

Each locust had its right forewing and hind wing removed allowing exposure 

of the majority of the tympanum to the laser which had a spot diameter, when 

sharply focussed on the membrane, of approximately 3 – 5 µm. The locust was 

positioned ventral side down, restrained with Blu-tack (Bostik-Findley; Stafford, 

UK) and rotated slightly until at an angle which facilitated a large area of the 

tympanum surface to be scanned, keeping the incident laser beam as close to 

perpendicular to the TM surface as possible. The sound stimulus consisted of a 

periodic chirp and was generated internally by the arbitrary waveform generator 

(National Instruments PCI-6111; Austin, TX) within the vibrometer workstation. The 

loudspeaker (ESS Heil Air Motion Transformer; South El Monte, USA) was 

connected to the generator output from the workstation via an amplifier (Sony TA-

FE370; Tokyo, Japan). As a reference, a precision pressure microphone (Brüel & 

Kjær 4138; Nærum, Denmark), connected to a preamplifier (Brüel & Kjær Nexus 

2690; Nærum, Denmark), was placed in close proximity to the TM of the locust and 

measured the incident sound spectrum as a signal voltage across the range of 

frequencies included in the broadband chirp. This sound spectrum was then inverted 

with respect to magnitude and the reciprocal values were used to create an amplitude 

correction data file. By importing this amplitude correction file into the vibrometer’s 

software control panel the sound stimulus was then transformed to ensure a fairly 

constant RMS sound pressure of 35 mPa (≈ 65 dB SPL re 20 µPa) across the 

frequency spectrum. This process was repeated for each scan, i.e. whenever a new 

locust was used. Since frequency domain data was required, the Fast Fourier 

Transform acquisition mode of the LDV was utilised, with complex averaging 

selected and 15 averages acquired at each scan point. With this averaging technique 

enabled, the measurement noise floor was 3 pm, and was consistent for the 

vibrometry experiments throughout this thesis. Each scan consisted of approximately 

330 – 350 scan points. The frequency content and duration of the sound stimulus 

were governed by the vibrometer bandwidth selection and Fast Fourier Transform 
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sampling characteristics. A bandwidth of 40 kHz was chosen with a lower cut-off 

frequency of 1 kHz and an upper cut-off of 30 kHz. Measurements for both laser and 

microphone signals were recorded at a sampling rate of 102.4 kHz. Conversion to the 

frequency domain via the FFT using a rectangular window and 3200 FFT lines 

resulted in a frequency resolution of 12.5 Hz and a sample time of 80 ms (optimised 

by the software based on the bandwidth and FFT settings). Using the method shown 

in Subchapter 2.1 the amplitude of the transverse velocity gain (in ms-1Pa-1) and the 

phase response of the locust hearing system was obtained for the chosen range of 

frequencies. Integrating this gives us the amplitude of the displacement gain (mPa-1) 

across all frequencies. For each locust the amplitude of the displacement gain is 

displayed as well as the displacement phase averaged at each point across the TM for 

selected FOI’s. The amplitude of the displacement gain and the phase is then 

combined to show the instantaneous transverse displacement gain at different cycle 

phase angles. 

The first locust in the sample was male and in the solitary phase (approx. TM 

size 2.8 × 1.7 mm). Fig. 3.1 below shows the full amplitude-frequency response 

curve for the average spectrum with displacement gain on the Y-axis. Vertical cursor 

lines indicate FOI’s where snapshots of the travelling waves were taken for later 

images. Areas of higher and lower sensitivity of auditory response (peaks and 

troughs respectively) are apparent. The frequency response curve in Fig. 3.2 

illustrates the displacement gain of the membrane between 1 and 5 kHz.  

1812.5 Hz was the first FOI (red line on Figs. 3.1 and 3.2) and for this locust 

tympanum the magnitude of the average displacement gain was 37 nmPa-1. At this 

particular frequency the whole membrane appeared to deflect with uniform 

displacement phase, including parts in the thin region and also beyond the FB into 

the opaque thicker region. 

 

 

 

 

 

 



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

Near the lower (ventral) end of the folded body the amplitude of 

displacement reached an instantaneous maximum of approximately 104 nmPa-1, 

close to the ridged interface between thin membrane and thick membrane. Snapshots 

of the vibration pattern at wave cycle phases of 0°, 45°, 90°,……, 360° (Fig. 3.3) 

show the whole membrane moving coherently, almost like the standing wave seen at 

the fundamental drum mode of a circular membrane. Red depicts displacement 

towards the reader and green for deflection into the page. The maximal deflection 

(see vibrational pattern at 45°) covers an area which ranges from near the PV 

position, ventro-anteriorly across most of the folded body and includes an area on the 

opaque thick membrane. 

3.5 kHz (orange line on Figs. 3.1 and 3.2) was the next FOI and the average 

magnitude of the displacement gain was approximately 122 nmPa-1 at this frequency. 

The displacement phase was fairly constant across the entire TM apart from a small 

region of the thick opaque membrane at the membrane’s most extreme anterior edge. 

Fig. 3.4 shows the full dynamic cycle at this frequency from 0° to 360° with a 45° 

step.  

 

 

 

 

Figure 3.1 Frequency response curve for locust from 1 to 30 kHz. 
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The vibration now displays a travelling wave, with origin towards the top left 

of the TM on the thin membrane and travelling diagonally, both downwards and 

right, towards the FB where it reaches a maximum displacement gain of nearly 400 

nmPa-1 in the region of the FB. The majority of the maximum deflection was 

concentrated on an area close to that seen for 1.813 kHz, but perhaps a little higher 

Figure 3.2 Locust’s frequency response for 1 to 5 kHz. 

Figure 3.3 Dynamic cycle of locust tympanum vibration at 1.8 kHz. 

0° 45° 90° 

135° 180° 225° 

270° 315° 360° 

0 

100 nmPa-1 

-100 nmPa-1 
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and further left, with the maximum spread much further along the length of the FB 

(see cycle phase angles 135° and 180°). There is still some propagation of the wave 

beyond the FB region into the opaque thick region. Interestingly when the frequency 

was manually switched up in small steps from 1.813 kHz to 3.5 kHz the motion of 

the tympanum moved gradually away from the initial standing wave (with fully 

coherent nature) towards a gradual development of the diagonal travelling wave with 

the observed travel clearly strengthening as the frequency increased towards the 

slight peak seen in response between 4 and 5 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.5 displays the frequency response curve for the displacement gain of 

the membrane between 4 kHz and 11 kHz, as measured by LDV. Green and blue 

vertical markers indicate the next two FOI’s of 5 kHz and 10 kHz respectively. At 5 

kHz the average magnitude displacement gain was ~ 105 nmPa-1 and the 

displacement phase showed a central divide in the membrane with one half clearly 

out of phase with the other. 

 

Figure 3.4 Dynamic cycle of locust tympanum vibration at 3.5 kHz. 

0° 45° 90° 

135° 180° 225° 

270° 315° 360° 

0 

400 nmPa-1 

-400 nmPa-1 



92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Displacement gain maximum was approximately 250 nmPa-1 and Fig. 3.6 

shows the full cycle TM deflection pattern for this frequency. The travelling wave at 

this frequency took a more noticeably horizontal path than at 3.5 kHz, with no visible 

downward component to the wave progression. The change from the diagonal 

motion towards the horizontal motion was observed as gradual as the frequency was 

increased towards 5 kHz and then beyond up to 6 and 7 where the same horizontal 

travelling became even more apparent. The maximum outwards deflection appears at 

a cycle phase equal to 180° – 225° where the strongest motion of the tympanum is 

now far more widespread than previously covering a large region around and over 

the whole FB. The displacement still appears strong immediately beyond the FB, 

even more so perhaps than at lower frequencies.  

 

 

 

 

 

 

 

 

Figure 3.5 Frequency response curve for locust from 4 to 11 kHz. 



93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indicated by the blue line on Fig. 3.5, the next FOI was 10 kHz where the 

average displacement gain was ~ 35 nmPa-1 and the displacement phase pattern 

showed a semi-concentric (‘C-shaped’) region out of phase with the region around 

and including the FB. Fig. 3.7 shows the full dynamic cycle of the vibration of the 

TM at 10 kHz at each phase angle. The travelling wave has clearly switched from the 

earlier horizontal motion to a more complex pattern, beginning with a semi-

concentric C-shaped outwards displacement at the thin region while the central area 

of the TM is deflected inwards. The FB appears to be in phase with the movement of 

the thin region. This C-shape then converges into a smaller surface area and becomes 

a greater outward deflection, forming a maximum in the region immediately 

surrounding the PV (180° – 225°). The total area of the main deflection immediately 

surrounding this maximum is far smaller than that seen previously at 5 kHz at 225° 

in Fig. 3.6. The switch from the travelling wave at 5 kHz to that seen below was 

observed to occur quite abruptly in the region of 7 – 8 kHz. 

 

 

Figure 3.6 Dynamic response of TM at 5 kHz. 
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 The penultimate FOI was 15 kHz, as indicated by the indigo coloured marker 

on Fig. 3.8. At this frequency, the TM displayed an average displacement magnitude 

of ~ 33 nmPa-1. Fig. 3.9 shows the progression of this travelling wave pattern for a 

full cycle. Although quite similar to that observed at 10 kHz closer inspection 

revealed that the C-shaped outward displacement seen at 270° – 315° was spread 

over a far greater area of the tympanum surface. There was also a concentration of 

the wave into a much smaller area while travelling to the PV than that seen at 10 

kHz.  

 

 

 

 

 

 

 

 

Figure 3.7 Vibration of TM at 10 kHz. 
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The final difference is that while the PV area still had a noticeably red 

outwards displacement, the characteristic C-shape of the travelling wave had already 

Figure 3.8 Frequency response of locust TM from 11 to 30 kHz. 

Figure 3.9 Travelling wave pattern on tympanum at 15 kHz. 
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begun forming on the far left of the TM whereas previously at 10 kHz the wave had 

almost completely faded out at the PV before the C-shape began to form. With the 

addition of a new antinode as the frequency increased, this change in response is 

characteristic of a modal system. In the region of 13.5 kHz is where the change in 

vibration pattern was observed to occur. 

 Below in Fig. 3.10 the full dynamic cycle at the final FOI of 20 kHz is 

displayed. An average displacement of 31 nmPa-1 was observed for this frequency 

and the travelling wave propagation across the tympanum appeared very similar to 

that seen at 15 kHz. This trend continued from 20 kHz right up to the 30 kHz 

maximum frequency of the chirp sound stimulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second locust in the sample was female and in the gregarious phase 

(approx. TM size 3.0 × 1.6 mm). Fig. 3.11 below shows the full amplitude-frequency 

response curve for the average spectrum with displacement gain on the Y-axis. 

Vertical lines, with the same colour scheme as in Figs. 3.1, 3.2, 3.5 and 3.8, mark the 

identical frequencies of interest at 1812.5 Hz, 3.5 kHz, 5 kHz, 10 kHz, 15 kHz and 

Figure 3.10 Dynamic response of TM at 20 kHz. 
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20 kHz. Similarly to Fig. 3.1 there were visible peaks and troughs in the auditory 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vibrational response of this locust tympanum at 1.8 kHz is shown by the 

instantaneous displacement gain snapshots below and again the transverse 

displacement displayed uniform phase across the whole membrane. Thinking of the 

vibration at this frequency as a standing wave, the position of the antinode, as shown 

Figure 3.11 Full frequency response of locust TM from 1 to 30 kHz. 

Figure 3.12 Snapshot of response from 1 to 5 kHz. 
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in Fig. 3.13 at 45° phase, was shifted slightly both dorsally and posteriorly when 

compared to the male locust’s response, although it remained maximal around the 

lower edge of the FB. The total surface area of the maximal deflection was 

approximately the same size as previously and the instantaneous maximum 

amplitude of displacement gain was approximately 140 nmPa-1, again in the location 

where the FB stops and the ridged boundary between the two membrane zones 

begins. An average magnitude displacement gain across the points of ~ 53 nmPa-1 

was recorded at this frequency for this insect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 At 3.5 kHz the response of this locust had an average magnitude of 60 nmPa-1 

and a full dynamic cycle of the travelling wave is shown in Fig. 3.14. The same 

diagonal travelling wave as in Fig. 3.4 was observed, from the thin region across to 

(and beyond) the FB. 

 

 

 

 

Figure 3.13 Mechanical vibration of TM at 1.8 kHz. 
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Wave phase cycle snapshots of the response at 5 kHz are in Fig. 3.16 and the 

average magnitude for this frequency was 15.7 nmPa-1. The same travelling pattern 

can be seen as that observed in Fig. 3.7, with slightly more horizontal motion than 

the diagonal motion at lower frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Vibration of TM at 3.5 kHz. 
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Fig. 3.16 shows the blue line for 10 kHz where the average displacement gain 

was ~ 35 nmPa-1. The full dynamic cycle of the vibration of the TM at this frequency 

is in Fig. 3.17. The same complex pattern, beginning with a semi-concentric C-

shaped displacement in the thin region out of phase with the central area of the TM, 

(as in Fig. 3.7) was observed. Again, the switch from the wave seen at 5 kHz to that 

seen at 10 kHz occurred in the region of 7 – 8 kHz. 

 

 

 

 

 

 

 

 

 

Figure 3.15 Dynamic response of membrane at 5 kHz. 
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The indigo marker on Fig. 3.18 is at 15 kHz where the TM displayed an 

average displacement magnitude of ~ 48 nmPa-1. Fig. 3.19 shows the progression of 

Figure 3.16 Frequency response of TM from 4 to 11 kHz. 

Figure 3.17 Travelling wave pattern on tympanum at 10 kHz. 
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this travelling wave pattern for a full cycle. This is almost identical to that seen on 

the tympanum of the male locust (Fig. 3.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 20 kHz is the final FOI and the full dynamic cycle is below. An average 

displacement of about 9 nmPa-1 was observed for this frequency and the travelling 

wave propagation across the tympana is exactly the same shape as seen in Fig. 3.10.  

Figure 3.18 Response of TM for frequencies from 11 to 30 kHz. 

Figure 3.19 Travelling wave pattern at 15 kHz. 
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Visual inspection of the frequency and phase response of every other locust 

in the sample showed a similar vibration pattern on the tympana at each of the 

frequencies highlighted above, regardless of locust sex or phase. Some specimens 

were more sensitive than others, but the displacement gain across all frequencies was 

usually of roughly the same order of magnitude for all specimens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second half of a travelling wave cycle is a direct opposite mirror image 

of the first half, with TM areas displaying positive displacement becoming equal but 

opposite negative displacement and vice versa. 

Two features became apparent in this study of the formation of the locust 

tympanum travelling waves. Firstly, there existed characteristic frequencies, 

consistent across all locusts in the sample, at which there were abrupt switches from 

one travelling wave type to alternative patterns, depending on whether the stimulus 

frequency was decreased or increased. Secondly, components of the travelling wave 

deflection patterns such as the 180° phase switch through the centre of the TM seen 

at 3.5 kHz (and 5 kHz), the sharp peak travelling near the centre of the TM and the 

C-shaped maximum seen at higher frequencies were all reminiscent of elements of 

Figure 3.20 Dynamic cycle of deflection of TM at 20 kHz. 
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the 2nd, 4th and 6th mode, respectively, of the circular disc modes displayed in Fig. 

1.4. Combined with the observations made by Windmill et al. (2008) of large peaks 

in the average frequency response curve and in the response curves measured at 

strategically located points across the tympanum, this could indicate the presence of 

a complex system of coupled modes, with not only the equivalent circularly 

symmetric modes but also the asymmetric modes (such as numbers 2 and 6 of the 

uniform disc) having a strong influence on the overall response. The lack of observed 

nodal lines in the vibrational response of the locust TM could perhaps be attributed 

to a unique system of damping and the complicated superposition of both external 

and internal components of incident sound. In the following subsections these ideas 

are investigated further through the use of computational modelling of simplified 

components of the locust tympanal system. 
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3.2 Circular Disc Models 

3.2.1 Eigenmode Analysis of Uniform Circular Discs 

For a better understanding of membrane mechanics, the first step was a 

computational study of the modal response of circumferentially clamped circular 

discs which were reasonably similar in size to the locust tympanum. COMSOL 

Multiphysics was used to perform initial eigenmode analyses of these 3-D models 

(see 2.2.3.2).  

Theoretically, for a uniform thickness circular disc such as this there are 

infinite eigenmodes with each mode increasing in complexity through the addition of 

one or more nodal diameters or circles. In practice, due to the nature of FEA, the 

total number of modes solvable using this numerical analysis method is actually 

limited by the requirement for a finite number of elements and hence corresponding 

number of degrees of freedom. 

Geometrical construction of the model membrane was the first step and for 

uniform discs this was implemented using the tools within the COMSOL modelling 

environment. The cylinder 3-D drawing tool was used specifying both the radius and 

thickness to create circular discs with their uniform thickness aligned with the Z-axis 

and the centre of the bottom face of the disc located at the origin (0,0,0) of the 

modelling workspace. 

Material model type selection is the next step and a new isotropic material 

was created and defined by one physical property – the density, and two mechanical 

properties – the Young’s modulus and Poisson’s ratio. The effect of each of these 

properties on the model output was investigated. 

The main boundary condition was setting a permanent zero displacement on 

the edges of the disc, i.e. a fixed constraint boundary condition. The remainder of the 

disc was left free to vibrate. 

Initially COMSOL’s physics-defined meshing was utilised with a mesh size 

setting of “normal” but a number of coarser and finer options were explored along 

with custom user-defined meshes. This setting uses 2-D triangular mesh elements to 

mesh boundaries and these connect to 3-D tetrahedral elements expanding across 

domains. Tetrahedral elements in COMSOL support adaptive mesh refinement, 
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meaning regions in close proximity to edges, points, boundaries and any unique 

geometry or area of particular importance, are meshed at a higher density than the 

rest of the domain.  

The final input before running the default eigenvalue solver was the total 

number of eigenmodes to compute and therefore corresponding eigenfrequencies to 

calculate. 

Initial dimensions for the uniform thickness circular disc were a radius of 

0.75 mm and thickness of 50 µm. The effect on the eigenfrequencies, and therefore 

the disc’s vibrational response, of changing these dimensions is included in this 

analysis. For these dimensions and mesh settings outlined above, the initial total 

tetrahedral mesh element count was 1434. 

1.3.1 includes a thorough explanation and discussion about cuticle 

mechanical properties. As an initial value for locust TM cuticle density, the quoted 

value of 1200 kgm-3 was used (Jensen & Weis-Fogh, 1962; Wainwright, 1976). For 

Young’s modulus an initial value of 1 GPa was used which is of the same order of 

magnitude as reported in a number of previous studies. A Poisson’s ratio of 0.49 is 

used initially based on Liu et al.’s (2006) statement that “the Poisson ratio of most 

soft biological tissues is very close to 0.5”. 𝜈 has no profound effect for values less 

than 0.4, however values greater than 0.4 have a significant effect on membrane 

mechanics (Aernouts et al., 2010; Malkin et al., 2013). The chosen values here 

contrasted the values of 1300 kgm-3 for the density, 20 MPa as 𝐸 and 𝜈 of 0.3 used in 

a previous study on the finite element modelling of the locust tympanal ear by 

Malkin et al. (2013) (with 𝐸 in MPa being of the order of published mammalian skin 

data). Ranges of each of these properties are tested using parametric sweeps to 

investigate their effect on the vibrational response. Modelling insect cuticle, 

understood to be a complex, viscoelastic and anisotropic laminar material, as an 

isotropic elastic material is obviously a simplification of the true model material type 

but combined with the published literature on insect cuticle properties, it provides a 

good baseline from which to investigate and simulate the response of insect systems. 

Using the parameters above and running the simulation for the first six 

eigenmodes of this structure results in the mode shapes shown in Fig. 3.21 (seen in 

1.3.2). As explained in 2.2.3.2 the colour scale for modes 1 – 6 represents the 



107 
 

normalised out-of-plane displacement field, red indicating transverse displacement 

towards the reader and green for displacements away from the reader with darker 

shades of red or green indicating greater amplitudes of displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the method outlined in 2.2.3.2, i.e. switching the normalisation type in 

the solver setting and re-computing the model, resulted in the calculation of effective 

modal mass fractions for each of these modes in each axis direction. Table 3.1 shows 

the corresponding eigenfrequencies and EMMF in the Z-axis direction of each of the 

6 modes shown in Fig. 3.21.  

 

 

 

 

 

 

Figure 3.21 First 6 FEM-computed eigenmodes of uniform circular disc. 

1st 2nd 3rd 

4th 5th 6th 
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Eigenmode Eigenfrequency / kHz 𝐄𝐄𝐄𝐄𝐳 / % 
1st 48.85 49.36 

2nd(1) 100.11 6.02×10-5 
2nd(2) 100.24 5.11×10-5 
3rd (1) 162.13 3.66×10-4 
3rd (2) 162.39 7.73×10-6 

4th 185.10 17.83 
5th(1) 234.70 1.93×10-5 
5th(2) 234.92 6.82×10-5 
6th(1) 277.75 1.23×10-6 
6th(2) 278.78 5.44×10-5 

Table 3.1 Eigenfrequencies of first 6 eigenmodes of circular disc and EMMFz. 

 

 

The fundamental mode (Fig. 3.21 and row 1 in Table 3.1), distinguishable by 

a centrally located antinode, has no nodal diameters and one nodal circle around the 

outside of the disc and is therefore denoted as the (0,1) mode. FEA computed the 

eigenfrequency of this mode as approximately 49 kHz with an EMMFz of almost 

50%, by far the largest EMMF for any of these modes. With a constant displacement 

phase across the disc and the deflection spread across the majority of the top surface, 

this high EMMFz is to be expected.  

The 2nd mode (Fig. 3.21 and row 2 in Table 3.1) has one nodal diameter and 

one nodal circle, therefore it is the (1,1) mode, with an antinode on each half of the 

disc, moving 180° out of phase of each other. COMSOL finds the eigenfrequency of 

this mode at around 100 kHz, approximately two times the fundamental frequency. 

For modes 2, 3, 5 and 6 (known as the asymmetric modes), if a plane is constructed 

dissecting 3 points – point one on the disc edge which is geometrically closest to an 

antinode (for the case of mode 6 it must be one of the outer two antinodes), point two 

being the centre of the disc, and the third point on the other edge of the disc (a 

diameter across from the first point) – then this plane will be a plane of symmetry for 

this mode. Each of these planes of symmetry will dissect at least two antinodes and 

in the case of mode 6, all four antinodes are coincident to the plane. The antinodes 

which constitute these mode shapes can be rotated infinitely many times yet the 

mode shape will remain the same, defined by these planes of symmetry. Due to this 

cyclic symmetry and the numerical analysis techniques involved in FEA, these 

eigenmodes are found twice, each being orthogonal to the other, with very similar 
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computed eigenfrequencies (compare rows 2 and 3, rows 4 and 5, rows 7 and 8, and 

rows 9 and 10). Increasing the mesh density improves the convergence of these 

computed frequencies. Mode 2 (in both arrangements) has EMMFs ranging from 

about 5 to 6×10-5 %. 

The 3rd mode (Fig. 3.21 and row 4 in Table 3.1) has two orthogonal nodal 

diameters and one circumferential nodal circle. This (2,1) mode is characterised by a 

quartering of the disc into four antinodes, with one pair of in-phase diagonally 

adjacent antinodes deflecting 180° out of phase from the other pair. Again, this 

eigenmode was found twice with a 90° rotation between the two and a frequency of 

approximately 162 kHz. EMMFs for this mode range from a minimum of about 

7.7×10-6 % to a maximum of 3.7×10-4 %. 

Similar to the fundamental mode, the 4th mode also has a centrally located 

antinode, this time confined to a far smaller area, and no nodal diameters but two 

nodal circles. These two nodal circles mean that this (0,2) mode has a second 

antinode, an annular deflection, concentric but 180° out of phase from the central 

antinode. COMSOL computes the eigenfrequency for this mode at around 185 kHz 

and the EMMF in the Z direction was nearly 18%.  

The 5th mode has three nodal diameters and one circumferential nodal circle 

such that this (3,1) mode has the disc split into six equal parts (antinodes) with each 

rotationally consecutive antinode vibrating in antiphase with that adjacent to it. Due 

to the symmetry of this mode, COMSOL again computes it twice, at a frequency of 

approximately 235 kHz. EMMFs for this mode range from approximately 2×10-5 % 

to 7×10-5 %. 

The 6th and final mode in this eigenmode analysis displays features of modes 

2 and 4. One nodal diameter divides the disc in half and two nodal circles, one 

circumferential and one between the outer edge and centre, split the disc into a pair 

of larger area out of phase semi-annular deflections located peripherally and a pair of 

smaller area semi-circular deflections in antiphase located centrally. The antinode of 

one peripheral semi-annular deflection is 180° out of phase from the adjacent 

antinode of the central semi-circular deflection. The eigenfrequency of this mode is 

calculated as about 278 kHz and EMMF range from approximately 1.2×10-6 % to 

5.4×10-5 %. 
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Clearly modes 1 and 4 are the strongest i.e. most likely to be excited through 

base excitation, with a combined EMMFz of about 68%. Due to the shape of these 

modes (and their distinct lack of nodal diameters) they are part of a subset called the 

circularly symmetric modes. Drawing any diameter and extruding it infinitely in the 

positive and negative thickness directions results in a plane of symmetry. This can 

then be rotated (keeping the centre point in common) infinitely many times resulting 

in an infinite number of planes of symmetry. The rest of the modes appear to share 

the effective modal mass fairly evenly, albeit in relatively small amounts. 
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3.2.2 FEA Result Verification – Theoretical Circular Discs 

When using FEM, good practice is to verify the accuracy of any solution using 

known analytical solutions as theoretical benchmarks. As discussed previously in 

1.3.2, the eigenfrequencies of a circumferentially clamped circular plate have been 

calculated theoretically for a disc with the parameters listed in Table 3.2 below. The 

dimensions and parameters of the disc modelled in the previous section are included 

in the 2nd row of the table. 

 𝑟 / m 𝐸 / Pa ℎ / m 𝜌 / kgm-3 𝜈 
Gorman (2001) 0.038 2.1×1011 0.00038 7800 0.3 
1st Circular 
Disc 0.00075 1×109 0.00005 1200 0.49 

Table 3.2 Dimensions and material properties of theoretical circular disc (Gorman et al., 2001) and FEM disc. 

From Chapter 1, equation [1.12] states 

𝜔e =
λe

2

𝑟2 �
𝐸ℎ2

12𝜌(1 − 𝜈2)
 

[3.1] 

Two circular discs, both fixed at the edge, have radii 𝑟1 and 𝑟2, Young’s 

moduli 𝐸1 and 𝐸2, thicknesses ℎ1 and ℎ2, densities 𝜌1 and 𝜌2 and Poisson’s ratios 𝜈1 

and 𝜈2, respectively, where each of the properties of the second disc are some 

constant multiplied by the corresponding property of the first disc. From equation 

[3.1], the theoretical eigenfrequencies of disc 1, 𝜔e1, are proportional to the 

dimensions and properties according to this relationship 

𝜔e1 ∝
ℎ1�𝐸1

𝑟1
2�𝜌1�(1 − 𝜈1

2)
 

[3.2] 

It then follows that the theoretical eigenfrequencies of the new disc 2, 𝜔e2, 

are proportional to the properties of both the new and old disc by the statement 

𝜔e2 ∝
ℎ2

ℎ1

𝑟1
2

𝑟2
2

�𝐸2

�𝐸1

�𝜌1

�𝜌2

�(1 − 𝜈1
2)

�(1 − 𝜈2
2)

× 𝜔e1 

[3.3] 
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The above proportionality statement can be used to calculate the multipliers shown in 

Table 3.3. Using these multipliers to calculate one overall coefficient of 

proportionality and then re-evaluating the theoretical eigenfrequencies in Table 1.2 

resulted in the values in Table 3.4 for the theoretical eigenfrequencies (rounded to the 

nearest Hz) of the same circular disc studied using FEA in this Subchapter. 

 𝑟 / m 𝐸 / Pa ℎ / m 𝜌 / kgm-3 𝜈 
Gorman 
(2001) 0.038 2.1 × 1011 0.00038 7800 0.3 

1st Circ 
Disc 0.00075 1 × 109 0.00005 1200 0.49 

Multiplier 0.0382

0.000752 
√1 × 109

√2.1 × 1011
 

0.00005
0.00038

 
√7800
√1200

 
�(1 − 0.32)

�(1 − 0.492)
 

Table 3.3 Multipliers for scaling factor from theoretical disc’s parameters to FEM disc’s parameters. 

Eigenmode Theoretical 
Eigenfrequency (Hz) 

Computational 
Eigenfrequency (Hz) 

1st 43688 48850 
2nd 90913 100175 
3rd 149116 162260 
4th 170056 185100 
5th 218244 234810 
6th 260124 278265 

Table 3.4 Scaled theoretical eigenfrequencies vs. FEM computed eigenfrequencies for first 6 modes 

The third column above is a repeat of the 2nd column of Table 3.1 displaying 

the eigenfrequencies estimated using FEA (where 2 values occurred i.e. for the 

asymmetrical modes, the average of the 2 was used). Plotting these two columns with 

the theoretical eigenfrequencies on the X-axis (kHz) vs. the computationally 

estimated eigenfrequencies on the Z-axis (kHz) resulted in the triangular data points 

seen in Fig. 3.22. The Pearson product-moment correlation coefficient, 𝑟P, is defined 

as 

𝑟P =
∑(𝑥 − �̅�)(𝑦 − 𝑦�)

�∑(𝑥 − �̅�)2 ∑(𝑦 − 𝑦�)2
 

 
[3.4] 

where �̅�, the mean x-data value, = ∑ 𝑥𝑛
1
𝑛

 , and 𝑛 is the total number of data points. 

Using this formula 𝑟P was 0.99994. 
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With the origin as a common point, fitting a linear trend line to the data, the 

rate of change along the line, 𝑏, was then calculated by 

𝑏 =
∆𝑦tre

∆𝑥tre
 

[3.5] 

 

 

 

 

 

 

 

 

 

 

 

 

The goodness-of-fit R-squared value, which assesses the representation of the data 

by the linear trend line, is defined as  

𝑅2 = 1 −
SSres

SSt
 

[3.6] 

where the sum of the squares of the residuals, 

SSres = �(𝑦 − 𝑦tre)2
𝑛

0

 

[3.7] 

and 

SSt = (∑ 𝑦2𝑛
0 ) − (∑ 𝑦𝑛

0 )2

𝑛
. 

[3.8] 

Figure 3.22 Relationship between theoretical and computed eigenfrequency of fundamental mode. 
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For this dataset 𝑏 = 1.0788 and 𝑅2 = 0.9995 (𝑅2 = 1 indicates a perfect fit 

between the X-Y data and the linear trend line). Therefore with a Pearson coefficient, 

rate of change of the trend line, and R-squared value for the trend line, all very close 

to 1, there clearly exists a direct linear relationship between the theoretical and 

computational eigenfrequencies with one-to-one correspondence and very close 

correlation. 
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3.2.3 Analysing the Finite Element Model Mesh 

FEM solution accuracy is highly dependent on the quality of the mesh used to 

discretise a model into finite elements with spurious results often computed as a 

consequence of inadequate mesh densities. As mentioned in 3.2.1.1, COMSOL’s 

physics-based meshing with a mesh size setting of “Normal” was used when carrying 

out an initial FEM eigenmode analysis of a solid circular disc. This resulted in a net 

mesh element count of 1434. In total, nine mesh size pre-sets were available, ranging 

from the lowest net number of elements (and therefore low mesh density quality), 

called “Extremely coarse” (Ext C), to the setting for the highest number of elements 

known as “Extremely fine” (Ext F). Between these selections there are “Extra 

coarse” (E C), “Coarser” (Cr), “Coarse” (C), “Normal” (N), “Fine” (F), “Finer” (Fr) 

and “Extra fine” (E F), each with a gradual increase in number of elements along 

with improvements in the resolution of areas of curvature and thin regions. The 

eigenmode analysis described in 3.2.1.1 was iteratively computed using all nine 

mesh settings and then displayed in Table 3.5 below. 

 Eigenfrequencies / kHz 

EM Ext C E C Cr C N F Fr E F Ext F 

1st 79.28 59.80 52.79 50.30 48.85 47.50 46.61 45.18 43.93 
2nd(1) 164.00 124.36 108.55 103.74 100.11 97.19 95.43 92.55 90.11 
2nd(2) 169.25 127.37 109.92 104.01 100.24 97.31 95.62 92.77 90.13 
3rd(1) 268.84 209.94 177.13 168.96 162.13 156.90 154.28 149.52 145.42 
3rd(2) 275.69 213.80 180.09 169.40 162.39 157.39 154.56 149.73 145.47 

4th 329.14 245.55 204.97 194.12 185.10 179.02 175.87 170.00 165.23 
5th(1) 392.26 313.99 262.49 246.60 234.70 226.21 222.22 215.25 209.02 
5th(2) 408.89 314.70 262.78 247.21 234.92 226.55 222.57 215.45 209.08 
6th(1) 432.04 381.73 309.49 292.32 277.75 268.66 263.58 254.74 247.27 
6th(2) 451.77 391.87 316.80 293.02 278.78 268.81 264.21 255.15 247.32 

Table 3.5 Eigenfrequencies of first 6 modes for the range of mesh density size settings. 

The total mesh size for this model at each of these settings was 131, 280, 578, 

849, 1434, 2243, 3132, 9183 and 38708 elements respectively. To compare the 

performance of each of these meshes, firstly the computed eigenfrequency for a 

particular mesh density setting was divided by the corresponding analytical value 

from the middle column of Table 3.4, and these quotients are displayed in Table 3.6. 

As the mesh density increases these values tend towards the ideal value of 1. There is 

a marked improvement between a mesh density setting of extremely coarse (average 
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quotient value of 1.81) and the normal mesh density setting (average value of 1.09). 

Extra fine mesh density and extremely fine mesh density had average quotient values 

of 1.00 and 0.97 respectively. 

  Computed / Theoretical 

EM Ext C E C Cr C N F Fr E F Ext F 

1st 1.81 1.37 1.21 1.15 1.12 1.09 1.07 1.03 1.01 
2nd(1) 1.80 1.37 1.19 1.14 1.10 1.07 1.05 1.02 0.99 
2nd(2) 1.86 1.40 1.21 1.14 1.10 1.07 1.05 1.02 0.99 
3rd(1) 1.80 1.41 1.19 1.13 1.09 1.05 1.03 1.00 0.98 
3rd(2) 1.85 1.43 1.21 1.14 1.09 1.06 1.04 1.00 0.98 

4th 1.94 1.44 1.21 1.14 1.09 1.05 1.03 1.00 0.97 
5th(1) 1.80 1.44 1.20 1.13 1.08 1.04 1.02 0.99 0.96 
5th(2) 1.87 1.44 1.20 1.13 1.08 1.04 1.02 0.99 0.96 
6th(1) 1.66 1.47 1.19 1.12 1.07 1.03 1.01 0.98 0.95 
6th(2) 1.74 1.51 1.22 1.13 1.07 1.03 1.02 0.98 0.95 

Table 3.6 Ratio of computed to theoretical eigenfrequency for 6 eigenmodes at each mesh density. 

Another simple way to analyse the mesh suitability was to compare the 

frequencies of the ‘dual-computed’ asymmetric eigenmode 2nd(2) vs 2nd(1), 3rd(2) vs 

3rd(1), 5th(2) vs 5th(1) and finally 6th(2) vs 6th(1). Each of these mode pairs, in reality, 

is just one mode but the nature of FEA and meshing means they are found twice 

rotated orthogonally. The percentage difference in magnitude between the second and 

first computed values was calculated according to the formula 

%𝐸𝐹(2) = �
𝐸𝐹(2) − 𝐸𝐹(1)

𝐸𝐹(1) � × 100% 

[3.9] 

Table 3.7 shows these percentage differences for each of these asymmetric 

modes. Clearly as the mesh density increases modes 2nd(2) and 2nd(1), 3rd(2) and 

3rd(1), 5th(2) and 5th(1) and 6th(2) and 6th(1) all begin to noticeably converge (i.e. the 

percentage change tends to zero). 

Additionally there is a noticeable difference again between the performance 

of the extremely coarse mesh (average percentage change of 3.64%) and the normal 

mesh (average percentage difference of 0.19%) and then even more so for the 

extremely fine mesh with an average of 0.03%. 
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 %EF(2) 

EM Ext C E C Cr C N F Fr E F Ext F 

2nd 3.20 2.42 1.26 0.26 0.13 0.12 0.20 0.24 0.02 
3rd 2.55 1.84 1.67 0.26 0.16 0.31 0.18 0.14 0.03 
5th 4.24 0.23 0.11 0.25 0.09 0.15 0.16 0.09 0.03 
6th 4.57 2.66 2.36 0.24 0.37 0.06 0.24 0.16 0.02 

Table 3.7 Percentage difference between the 2 computed eigenfrequency values for the same mode, for the first 4 
asymmetric eigenmodes. 

Increasing the number of elements and therefore number of degrees of 

freedom in the system was found to decrease each of the computed eigenfrequencies. 

Plotting the frequency of the 1st eigenmode against the total number of elements 

resulted in Fig. 3.23. There is a clear levelling off of the computed eigenfrequency 

beyond about 2500 elements, indicating that this number of mesh elements is 

approaching the optimal mesh size for convergence on reasonably accurate values for 

eigenfrequency. This, however, is not the deciding factor to consider during mesh 

optimisation, as COMSOL also calculates mesh statistics for qualitative assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 For total element numbers greater than 1434 elements (i.e. normal mesh size 

settings or finer) the effective modal mass fractions (EMMF), particularly those in 

the Z-axis direction and for the circularly symmetric modes ((0,1) and (0,2)), were 

observed to remain relatively constant across all mesh densities. 

Figure 3.23 Relationship between total element number and eigenfrequency of 1st mode. 
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3.2.4 Changing the Parameters 

3.2.4.1 Disc Radius 

Several defining factors influence the predicted eigenfrequencies of a given uniform 

circular plate, according to Eq. [3.2] in 3.2.2. By confirming that each of these 

factors affected the eigenfrequencies in the expected manner, predictions or 

adjustments could be made to FEM results aligning them more closely with the 

known characteristics of the real locust tympanal system. Of these factors, disc 

radius was chosen as the first model parameter to be tested for impact on both the 

frequency and the EMMF of the eigenmodes. A parametric sweep was utilised to 

vary the radius from 0.2 mm to 2 mm with a step size of 50 µm. All other 

dimensions, mechanical properties and mesh settings were unchanged from the 

model in 3.2.1.  

Plotting the eigenfrequency of the fundamental mode on the Y-axis versus 

disc radius on the X-axis resulted in the triangular data points in Fig. 3.24. Fitting a 

power trend line (of the form 𝑦 = 𝑏𝑥𝑐 where 𝑏 and 𝑐 are constants) to this data using 

the method of least squares polynomial regression analysis yielded a value for 𝑏 of 

26.346 and 𝑐 of -1.993. The solid line in Fig. 3.24 shows this trend line which had a 

goodness-of-fit R² value of 0.9989, indicating strong correlation with the data. The 𝑐 

value of approximately -2 was expected since theoretically for an isotropic Hookean 

circular plate the eigenfrequency, 𝜔e ∝ 1
𝑟2  (Eq. [3.2] in 3.2.2) where 𝑟 is the disc 

radius. 

 This same relationship was observed across all eigenmodes with the power 

constant, 𝑐, always equal to approximately -2. Effective modal mass fractions, 

recalculated for each new radius due to increasing total model mass, were observed 

not to vary with radius in any logical fashion. 
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Figure 3.24 Relationship between radius of disc and eigenfrequency of fundamental mode. 
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3.2.4.2 Changing Parameters – Thickness 

The effect on the eigenmodes of altering disc thickness was tested next. A lower 

limit of 10 µm, step size of 5 µm and upper limit of 200 µm were the defining 

features in this parametric sweep. All other dimensions, mechanical properties and 

mesh settings were unchanged from the model in 3.2.1.  

Fundamental mode eigenfrequency on the Y-axis versus disc thickness on the 

X-axis is displayed by the triangular data points in Fig. 3.25. Using linear regression 

analysis to fit a linear trend line, passing through the origin (of the form 𝑦 = 𝑚𝑥 

where 𝑚 is the constant gradient) to this data resulted in a gradient of 0.9708 and a 

goodness-of-fit R² value of 0.9984. Fig. 3.25 displays this linear relationship as a 

solid black line, closely correlated with the data points. 𝑚 was expected to be 1 since 

theoretically the eigenfrequency, 𝜔e ∝ ℎ (see 3.2.1.2) where ℎ is the disc thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

All eigenmodes displayed this same linear relationship between thickness and modal 

frequency with the gradient always equal to approximately 1. Effective modal mass 

fractions, recalculated for each new thickness due to increasing total model mass, 

were observed not to vary with thickness in any logical pattern. 

 

 

Figure 3.25 Relationship between thickness of disc and frequency of 1st mode. 
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3.2.4.3 Changing Parameters – Young’s Modulus 

In theory, an isotropic, linear elastic circular plate, has eigenfrequencies, 𝜔e ∝ √𝐸, 

where 𝐸 is the Young’s modulus of the disc material (3.2.2). Varying the modulus of 

elasticity from 1 MPa to 961 MPa with a step of 40 MPa, and then plotting the 

eigenfrequency of the first eigenmode on the Y-axis against Young’s modulus on the 

X-axis resulted in the data points on Fig. 3.26 below.  

Using polynomial regression again to fit a power trend line (of the form 

𝑦 = 𝑏𝑥𝑐) to this data produced the solid black line in the Figure. For this power 

relationship the coefficient, 𝑏 was 1.5448 and the power, 𝑐 was 0.5 (correct to 6 

decimal places). The R-squared goodness-of-fit value was 1 (correct to 9 decimal 

places). This computed relationship between eigenfrequency and Young’s modulus 

matched the aforementioned theory perfectly and the 0.5 power value and close 

correlation occurred across all of the modes. EMMF were constant for all of the 

eigenmodes across all the Young’s moduli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Relationship between Young’s modulus and fundamental mode eigenfrequency. 
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3.2.4.4 Changing Parameters – Density 

The penultimate parameter to be tested was the density and an upper value of 2000 

kgm-3, lower value of 100 kgm-3 and step size of 100 kgm-3 were the chosen sweep 

values. Fig. 3.27 shows the triangular data points for the fundamental mode’s 

eigenfrequency on the Y-axis against the density on the X-axis. Theoretically, the 

eigenfrequencies, 𝜔e ∝ 1
�𝜌

, where 𝜌 is the density of the disc material (3.2.2).  

Fitting a power trend line (of the form 𝑦 = 𝑏𝑥𝑐) to this data using the least 

squares method of polynomial regression produced the solid black line in the Figure. 

With a coefficient, 𝑏 of approximately 1.69 × 106 and power, 𝑐 of -0.5 (correct to 5 

d. p.) the relationship was exactly as expected. The R-squared goodness-of-fit value 

was 1 (correct to 9 d. p.). Close correlation occurred across all of the modes as did 

the power value of -0.5. Once the total modelled mass was adjusted for the new 

densities, EMMF were observed to be constant for all of the eigenmodes across all 

densities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Relationship between density of disc material and eigenfrequency of 1st mode. 
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3.2.4.5 Changing Parameters – Poisson’s Ratio 

Poisson’s ratio was the final parameter to be tested and the parametric sweep was 

executed across a range from 0.1 to 0.49 with a step size of 0.01. From 3.2.2, the 

eigenfrequency of a particular eigenmode of a circular plate, 

𝜔e ∝
1

√1 − 𝜈2
 

[3.10] 

where 𝜈 is the Poisson’s ratio and all other parameters remain constant. This can be 

rewritten as 

𝜔e =
𝑘

√1 − 𝜈2
 

[3.11] 

where 𝑘 is some arbitrary constant. Taking the natural logarithm of each side, 

becomes 

ln 𝜔e = ln �
𝑘

√1 − 𝜈2
� 

[3.12] 

which can be rewritten as  

ln 𝜔e = ln 𝑘 − ln(1 − 𝜈2)
1
2 

[3.13] 

Rearranging gives 

ln 𝜔e = −
1
2

ln(1 − 𝜈2) + 𝑘2 

[3.14] 

since ln 𝑘 is a constant, 𝑘2. This equation is of the form 

𝑌 = −
1
2

𝑋 + 𝑘2 

[3.15] 

where 𝑌 = ln 𝜔e and 𝑋 = ln(1 − 𝜈2). This theoretical expression is a linear 

relationship with gradient -0.5 and Y-axis intercept of 𝑘2. 

 Calculating ln 𝜔e for the eigenfrequency of the fundamental mode of the 

circular disc and ln(1 − 𝜈2) for the Poisson’s ratios in the sweep, then plotting this 

data on the Y-axis and X-axis respectively, resulted in Fig. 3.28. Normal mesh size 
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(total of 1434 elements) and the same parameter values as previous model 

computations were used. 

 
 

 

 

 

 

 

 

 

 

 

 

Again, using linear regression analysis to fit a linear trend line (of the form 𝑦 =

𝑚𝑥 + 𝑐) to this data resulted in a gradient of -0.7991, a Y-axis intercept of 10.529 

and a goodness-of-fit R² value of 0.9662. This gradient was not the predicted -0.5 

and the data points above visibly deviate from an obvious linear relationship. 

Additionally the R² value was far from the values computed for the previously tested 

parameters.  

 Mesh quality was suspected to be influencing this solution and mesh statistics 

can be computed for any mesh which has been successfully constructed in 

COMSOL. One of these statistics is the minimum element quality, which provides a 

good overall estimate of a particular mesh’s quality. It is recommended that the 

minimum element quality remains above 0.1 for accurate discretisation of finite 

element models in COMSOL. Since the value was below 0.1 for this model mesh, 

the model was recomputed at four finer meshing size settings: fine, finer, extra fine 

and extremely fine, respectively (total element numbers are in Table 3.8). 

Fig. 3.29 displays the data for all five mesh density settings, normal through 

to extremely fine. The red data and linear trend line are for normal mesh size, orange 

for fine, green for finer, blue for extra fine and finally purple for the largest mesh 

Figure 3.28 Linear relationship between logarithmic expressions of Poisson’s ratio and the 
eigenfrequency of the 1st mode for normal mesh size. 
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size of extremely fine. Clearly the linear fit is improving as the total number of mesh 

elements increases and the gradient of the line is also decreasing. Table 3.8 displays 

the gradient and R2 for each of these refinements. The gradient was observed to be 

approaching the expected -0.5 and there is a marked improvement in the R2 values as 

the mesh becomes more dense. As a final step, customising the mesh density to 

create a 407335 element mesh resulted in the computation of a gradient of -0.5112 

with a goodness-of-fit R2 value of 0.9998. Evidently the accurate modelling of high 

aspect ratio thin plates depends greatly on the mesh density and in particular the 

number of elements used to discretise a particular thin section due to the influence of 

Poisson’s ratio on the elements in such a region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 These results for a varying Poisson’s ratio are a clear warning that, although a 

model’s mesh density may be sufficiently fine to accurately predict the shape of 

Mesh Density Total Element 
Number 

Gradient of 
Linear Fit R2 value 

Normal 1434 -0.7991 0.9662 
Fine 2243 -0.7362 0.9776 
Finer 3132 -0.6961 0.9848 

Extra Fine 9183 -0.6068 0.9933 
Extremely Fine 38708 -0.5390 0.9986 

Table 3.8 Gradients and R2 values for the linear relationship between logarithmic expressions of ν and 
eigenfrequency, for different mesh densities. 

Figure 3.29 Linear relationship between natural logarithmic expression of Poisson’s ratio and the 
eigenfrequency of the 1st mode for various mesh densities. 
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eigenmodes and the value of their eigenfrequencies, the mesh density may need to be 

increased in other modelling contexts.  

 Investigating the influence of changing the Poisson’s ratio on the effective 

modal mass fractions of the disc’s modes was the next step. For all previous 

parameters, both mechanical properties and physical, no significant effect was 

observed on the EMMF of each mode by a change in the parameter value. For 

Poisson’s ratio, however, this was not observed to be the case. Using the custom high 

density mesh with 400000+ elements, the EMMF1Z in the transverse Z-axis direction, 

of the fundamental mode, was calculated for each value of 𝜈 from 0.1 to 0.49, by the 

method outlined in 2.2.3.2. Looking at Fig. 3.30, clearly the EMMF1Z decreases as 

the Poisson’s ratio increases, with the diminution becoming more severe as 𝜈 > 0.3. 

Next, EMMF2Z was analysed, i.e. for the second eigenmode, as a function of the 

Poisson’s ratio. This result is displayed in Fig. 3.31 and shows substantial increase in 

the effective modal mass fraction of the second mode as the Poisson’s ratio 

increases, with a steep increase observed beyond 𝜈 = 0.45. Interestingly, this 

increasing EMMF pattern was observed for all of the asymmetric modes. 

Conversely, the decreasing EMMF shown in Fig. 3.30 was observed to occur for 

both modes 1 and 4, i.e. all of the circularly symmetric modes in the first 6 

eigenmodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Poisson’s ratio against Z-axis EMMF of the 1st mode. 
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Figure 3.31 Poisson’s ratio against Z-axis EMMF of the 2nd mode. 
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3.2.5 Acoustic-Structure Interaction with Frequency Response – Circular Discs 

In 3.1 it was observed that locust ear travelling wave shapes switch at specific 

frequencies and also show components of the natural modes of vibrating membranes. 

Therefore, equipped with a better understanding of both the frequencies and relative 

strength of the modes of thin circular disc membranes, the natural next step was to 

explore the possibility of the coupling of these modes as a mechanism for the 

formation of frequency specific travelling waves. 2.2.3.3 describes the acoustic-

structure interaction application study used to investigate the response of the model 

tympanal membranes to harmonic acoustic pressure loads in a surrounding fluid of 

air. This differs from Malkin et al.’s approach (2013) where harmonic loads were 

applied as a mechanical load to a model membrane surface, treating the model TM as 

a tensed membrane with frequency dependent damping, stimulated at frequencies not 

in the region of the natural modes. 

 This study type requires the addition of a fluid domain to the model and a 

hemisphere of radius 40 mm was chosen as the main component of the fluid domain. 

The centre point of the hemisphere was coincident with the centre of the bottom face 

of the circular disc such that the entire disc, excluding the bottom face, was 

surrounded by the hemispherical fluid domain. Defined as a circular disc of radius 

0.75 mm and thickness 50 µm, the solid domain remained as in 3.2.1 with the same 

material properties as the initial eigenmode analysis. Directly beneath the solid 

domain, a cylinder, of radius equal to the disc and a height of 0.5 mm, was 

constructed as a second fluid domain separate from the hemispherical part. Air, 

included in COMSOL’s in-built material library, was then assigned to both fluid 

domains i.e. the hemisphere dome and larger cylinder. The material properties of air 

used in the computation were a fluid density, 𝜌𝑐, of 1.1839 kgm-3 and speed of 

sound, 𝑐, of 346.13 ms-1. Several boundary conditions were then set including 

applying a fixed constraint boundary to the entire disc edges in the solid mechanics 

boundary options.  
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Fig. 3.32 shows an isometric view of the 3-D model geometry with image 

transparency switched on and the fixed boundaries highlighted in darker blue. The 

sound stimuli for the computational experiment were simulated plane wave pressure 

fields with sound pressure level of 65 dB SPL re 20 µPa (≈ 35 mPa) at several 

frequencies in the range of the computed eigenfrequencies and incident from a 

variety of angles.  

The incident acoustic pressure field was applied to the external boundaries of 

the hemisphere of air and radiation boundary conditions were also applied to the 

bottom face of the dome and all boundaries of the air domain cylinder. The top and 

bottom face of the thinner circular disc i.e. the solid domain, were the only acoustic-

structure boundaries in the model formulation. 

Constructing the problem in this fashion benefitted the model in three major 

ways: 

• the fluid air domain extended infinitely in all directions eliminating any 

unwanted reflections and ensuring the model tympanum was effectively in 

the far-field of the source of the incident sound;  

• the bottom surface of the dome acted as a baffle to the circular disc-shaped 

model tympanum by isolating the external from the internal surface, as is the 

case in the locust since the surrounding body parts of the locust create a 

natural baffle to incoming sound; 

• use of a hemispherical air domain instead of the traditional full spherical 

domain efficiently kept the total element number to a minimum without 

compromising model accuracy. 

Figure 3.32 3-D geometry used to simulate acoustic response of the model tympana. 

Hemispherical Air Domain 

Disc Solid Domain 

Cylindrical Air Domain 
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Initially, the wave vector defining angles, 𝜑 and 𝜗 (as defined in 2.2.3.3), 

were set to π radians and 3𝜋
4

 radians respectively, corresponding to an incident sound 

pressure wave with equal magnitude components in the negative X- and Z-axis 

directions and negligible Y component, i.e. downwards at 45° to the plane of the 

circular disc. Physics-defined meshing was selected with the ‘extra fine’ mesh size 

settings yielding a total element count of 135449. An overview of the theory behind 

the acoustic-structure interaction and all of the required boundary conditions along 

with the remaining solver settings is provided in 2.2.3.3. To define the parametric 

sweep of frequencies, the lower and upper bounding frequencies were 20 kHz and 

300 kHz respectively, with a step of 5 kHz i.e. 57 model iterations. A snapshot of an 

incident sound wave of frequency 150 kHz is shown in Fig. 3.33. Clearly there are 

no unwanted reflections at any of the model boundaries and sound can be seen 

transmitting through to the internal part of the air domain due to the vibration of the 

centrally located disc, similar to transmitted sound from the deflection of one TM of 

the locust (see later subsections 4.6.1 and 4.6.2). 

Fig. 3.34 shows the frequency response across this frequency range, with the 

total displacement in picometres on the Y-axis. Five peaks are visible on the 

response curve, 45 kHz, 95 kHz, 175 kHz, 220 kHz and 260 kHz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sound pressure 
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- 
Figure 3.33 Snapshot of simulated acoustic-structure interaction at 150 kHz showing 

distribution of acoustic pressure. 
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To further increase the resolution in the vicinity of these peaks, five new 

frequency sweeps were executed, each with a 1 kHz step. These were 41 – 49 kHz, 

91 – 99 kHz, 171 – 179 kHz, 211 – 219 kHz and finally, 256 – 264 kHz. Fig. 3.35 

displays the new frequency response curve with five vertical lines marking specific 

frequencies of interest chosen to illustrate the various vibrational responses which 

were observed. 

 

 

 

 

 

 

 

 

 

 

 

 These frequencies of interest were red - 30 kHz, orange - 80 kHz, green - 140 

kHz, light blue - 200 kHz and dark blue - 240 kHz. At each frequency, the 

Figure 3.34 Computed frequency response from 20 kHz to 300 kHz. 

Figure 3.35 Refined computational frequency response from 20 kHz to 300 kHz. 
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instantaneous Z-axis component of displacement was computed and displayed as 

snapshots of the dynamic cycle of the vibration of the model tympanum. 

As in previous sections, red indicates transverse displacement towards the 

reader and green represents deflection into the page. The vibration cycle at 30 kHz is 

shown in Fig. 3.36 and at this frequency the model membrane vibrates like the 

fundamental drum mode with an antinode, of maximum displacement around 7.1 pm 

at 90°, remaining centrally positioned and one circumferential nodal line. 

Fig. 3.37 illustrates the dynamic cycle at 80 kHz (the yellow line in Fig. 3.35) 

from 0° through to 360°. Instantaneous maximum and minimum displacements at 

each wave cycle phase are marked by black dots on the Figure and a maximum of 6.7 

pm was predicted at 270°. 

Following the black dot at phase angles 45°, 90° and 135°, the point of maximum 

deflection can clearly be seen travelling from left to right i.e. in the positive X-axis 

direction, peaking in the very centre of the disc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36 Dynamic cycle of vibration of basic model tympanum at 30 kHz. 
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The shift from the vibration seen in Fig. 3.36 to this travelling wave became 

just observable at 65 kHz, becoming more noticeable at 70 kHz and the travelling 

motion strengthening as the frequency was increased towards 95 kHz. 

 At 140 kHz (the green line in Fig. 3.35), the vibrational pattern of the simple 

model tympanum, shown in Fig. 3.38, displayed a different travelling wave from that 

at lower frequencies. At this frequency the point of maximum deflection is clearly 

travelling from right to left i.e. in the negative X-axis direction, and the shape of the 

maximum area of deflection is now more elongated than at 80 kHz, particularly at 

270° and 315°, where the displacement was predicted at a maximum of 5.4 pm. 

Additionally, the maximum deflection clearly occurred off-centre, in stark contrast to 

at the lower frequencies. This switching of the travelling wave pattern was observed 

to take place at frequencies greater than the second peak in Fig. 3.35 (94 kHz) with 

the travelling motion continuing to strengthening towards the next peak at 173 kHz. 

 

 

 

Figure 3.37 Dynamic cycle of vibration of basic model tympanum at 80 kHz. Black spots 
indicate points of maximum inward/outward displacement at that cycle phase angle. 
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 The next FOI was 200 kHz (the light blue line in Fig. 3.35) and the dynamic 

cycle at this frequency is displayed in Fig. 3.39. At this frequency an almost C-

shaped maximum forms on the left of the disc before shrinking into a maximum 

covering a smaller area which travels across the disc in the positive X-axis direction. 

This more condensed maximum travels beyond the disc’s centre before dissipating 

and appears out of phase from the initial C-shaped deflection. The maximum 

displacement at this frequency was 3.9 pm at 45°. Beyond the third peak of the 

frequency response, at 173 kHz, was where this change in travelling wave deflection 

pattern was observed to occur.  

240 kHz was the final FOI and the dynamic cycle at this frequency is shown 

in Fig. 3.40. Again a C-shaped deflection occurs near the edge of the model 

tympanum but this time it begins to form on the disc while the smaller area of 

maximum deflection is still apparent. At 45° the maximum displacement was 

predicted as approximately 3.9 pm. 

 

 

 

 

Figure 3.38 Dynamic cycle of vibration of basic model tympanum at 140 kHz. Black spots 
indicate points of maximum inward/outward displacement at that cycle phase angle. 
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Figure 3.40 Dynamic cycle of vibration of basic model tympanum at 240 kHz. Black spots 
indicate points of maximum inward/outward displacement at that cycle phase angle. 

Figure 3.39 Dynamic cycle of vibration of basic model tympanum at 200 kHz. Black 
spots indicate points of maximum inward/outward displacement at that cycle phase angle. 
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3.3 Discussion 

Using micro-scanning laser Doppler vibrometry the vibrational response of the 

tympanal ear of the desert locust, Schistocerca gregaria, was measured using a 

periodic chirp from 1 kHz to 30 kHz as a stimulus. Six frequencies of interest were 

identified, 1.8 kHz, 3.5 kHz, 5 kHz, 10 kHz, 15 kHz and 20 kHz and analysed further 

resulting in the observation of five possibly distinct frequency-dependent travelling 

wave patterns, each with more maxima (anti-nodes) added as the frequency 

increased. 

 At 1.8 kHz nearly the whole tympanal membrane, thick and thin regions, 

displaced coherently with the maximal point of deflection in the region of the 

attachments of Müller’s organ.  

 Conversely, at 3.5 kHz there was a noticeable phase change in the 

displacement across the TM, particularly noticeable at 45° in Fig. 3.4. The travelling 

wave motion appeared to follow a diagonal path, from a dorsal-posterior area of 

origin to the ventral-anterior edge of the tympanum.  

 5 kHz was the next frequency of interest and at this frequency the phase 

switch across the membrane was even more prominent. The motion appeared to be 

slightly less diagonal and more horizontal from posterior to anterior, again 

dissipating on the far edge of the membrane within the thick region. 

 At 10 kHz the travelling wave began as a long thin maximum aligned dorso-

ventrally which converged to more of a peak as it traversed across the TM towards 

the PV where the motion dissipated significantly, with the relative deflection 

amplitude far weaker in the thick membrane region. 

 15 kHz and 20 kHz were the last two FOI’s and at these frequencies a C-

shaped maximum propagated anteriorly across the tympanum, quickly converging 

into a very sharp peak in the region of the PV. At 20 kHz the formation of the C-

shape began while the sharp peak was still present at the PV. 

Every locust in the sample displayed the same travelling wave patterns and 

four frequencies were identified where the travelling wave was seen to switch shape, 

2.7 kHz, 4.5 kHz, 7.5 kHz and 13.5 kHz. With this consistent observation, in 

conjunction with the familiarity of many of the features of the travelling wave 
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patterns, the chosen next step was an in-depth FEM study of a uniform circular disc 

with dimensions of the order of magnitude of the locust tympanum and material 

properties aligned with values reported for insect cuticle. Six eigenmodes were 

predicted, two high EMMF circularly symmetric modes and four much lower EMMF 

asymmetric modes. The accuracy and validity of the eigenfrequencies were assessed 

using numerical methods and the predicted values were found to be supported by 

theory. Computationally predicted values were found to converge strongly on the 

theoretical values as the mesh density was increased to an extremely fine setting. 

Five parameters defined the circular disc model geometry, two dimensions 

and three material properties. Looping eigenmode analyses using a linearly 

increasing radius resulted in confirmation of the inverse square law between 

eigenfrequency and disc radius. Implementing the same technique, this time varying 

the disc thickness, lead to the theoretically expected direct linear relationship 

between eigenfrequency and thickness. Young’s modulus was next to be varied 

linearly and circular plate theory predicted a square root relationship between the 

eigenfrequency and 𝐸 which was consequently validated by the FEA predictions. An 

inverse square root relationship should exist between the density of the material and 

the eigenfrequencies of a circular disc and this was confirmed when plotting the 

density on the X-axis versus the FEM computed eigenfrequency of the fundamental 

mode of a circular disc. Theoretically, the effect of Poisson’s ratio on the 

eigenfrequency was shown to follow a logarithmic expression, Eq. [3.14]. Using 

FEA this relationship was confirmed although the accuracy of these predicted values 

was found to depend very strongly on mesh quality with a high density mesh 

required for observation of the full effect of a Poisson’s ratio approaching 0.5. In 

addition, while the other parameters were predicted to have no profound effect on 

EMMF, 𝜈 approaching 0.5 greatly enhanced the relative strength of otherwise weak 

asymmetric modes. 

As a last step, acoustic-structure interactions with frequency response 

analyses were implemented on the circular disc model and the response at five 

frequencies was highlighted. The resulting response at each of these frequencies was 

found to contain elements of the eigenmodes in close proximity to the stimulus 

frequency. Travelling waves were observed to form on the model membranes at 
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frequencies of 80 kHz, 140 kHz, 200 kHz and 240 kHz, all as a result of the coupling 

of vibrational modes of the membrane. Although these frequencies are higher than 

the frequencies of interest where real locust tympanal travelling waves were 

measured (3.1), the following Chapter is dedicated to addressing this point and 

introducing some more features of model locust hearing systems. 
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Chapter 4 : Application of the Finite Element 
Method to the Locust Hearing System 

 

“In all things of nature there is something of the marvellous” – Aristotle 

 
 

 
In this chapter finite element modelling is used to computationally investigate the 
components of the locust hearing system and their influence on phenomena observed 
on the locust tympanal ear as well as the locust’s overall hearing ability. 
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4.1 Application of Initial FEM Results to Real Locust Frequency Response 

Clearly some differences were observed between the results in the previous Chapter 

and those published historically and reported in this thesis on the frequency response 

of the real locust TM, with this Chapter dedicated to highlighting and addressing 

these differences. The very basic uniform thickness circular disc model tympanum 

introduced in the previous section displayed five different frequency-dependent 

responses including four travelling wave patterns. Frequency discrimination at the 

most basic level was therefore displayed by this model but it must be noted that the 

range of frequencies selected for simulation (20 kHz to 300 kHz) was not of 

biological relevance to the real desert locust since the locust’s hearing is known to 

function over a range of around 1 kHz (or less) to 30 kHz. However, the modelled 

circular disc had a thickness of 50 µm which is significantly thicker than quoted 

thicknesses of 2-3 µm for the most part (Gray, 1960) and ranging from 0.6 µm to 4 

µm for the thin part and 6 µm to 20 µm for the thick (Stephen & Bennet-Clark, 

1982).  

In 3.2.1.5 it was shown that the eigenfrequency of a particular circular plate 

mode scales linearly with the thickness of the plate i.e. a simple linear adjustment of 

the frequencies can be applied to the results of the 50 µm model tympanum 

effectively scaling the disc to thicknesses much closer to the actual thickness of the 

real locust TM. Using the example of a 3 µm uniform circular disc this would equate 

to a scale factor of 0.06 (3/50) applied to the FOI’s in 3.2.2. Incidentally, a quick 

calculation of the mass of a 0.75 mm radius, 3 µm thick circular disc using the 

density of 1200 kgm-3 and the formula for the volume, 𝑉 = 𝜋𝑟2ℎ gives a mass of 

about 6.4 µg, which is of the order of magnitude of the mass reported in Table 1.3.  

For the real locust, five vibration shape types were allocated to the observed 

TM response displayed in 3.1.1. Response type 1 is the standing wave fundamental 

mode-like response seen in Figs. 3.3 and 3.13. The travelling wave pattern illustrated 

in Figs. 3.4 and 3.14 is assigned as response type 2. Response type 3 is the deflection 

pattern seen in Figs. 3.6 and 3.15. The penultimate response type, 4, is allocated to 

the travelling wave displayed in Figs. 3.9 and 3.17 with the final response type being 

that of Figs. 3.10 and 3.19. 
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Five vibration shapes were then used to categorise the different patterns of 

vibration seen during the acoustic-structure interaction of the finite element model. 

Response types 1 to 5 were allocated to the vibrations seen in Figs. 3.36 to 3.40 

respectively.  

Finally, the frequency cut-off values were recorded at which each of the 5 

responses was observed to begin and end for both real locust and the basic model 

tympanum. All of this data was collated in Table 4.1, with the frequency range of the 

real locust truncated to 1.2 – 18 kHz with a step size of 0.6 kHz and the model 

frequencies ranged from 20 – 300 kHz with a 10 kHz step as this allowed correlation 

in the number of rows between locust and model. The fifth and sixth columns of the 

table are with the linear scale adjustment of the simulated frequencies applied, 

assuming a 0.75 mm radius circular disc of 3 µm thickness with the same material 

properties as previously. 

Real Locust Circular Disc Model 50 µm Scaled Model 3 µm 
Freq. / kHz Vib. Shape Freq. / kHz Vib. Shape Freq. / kHz Vib. Shape 

1.2 
1 

20 

1 

1.2 

1 
1.8 30 1.8 
2.4 40 2.4 
3 

2 
50 3 

3.6 60 3.6 
4.2 70 

2 
4.2 

2 4.8 

3 

80 4.8 
5.4 90 5.4 
6 100 

3 

6 

3 

6.6 110 6.6 
7.2 120 7.2 
7.8 

4 

130 7.8 
8.4 140 8.4 
9 150 9 

9.6 160 9.6 
10.2 170 

4 

10.2 

4 
10.8 180 10.8 
11.4 190 11.4 
12 200 12 

12.6 210 12.6 
13.2 220 

5 

13.2 

5 

13.8 

5 

230 13.8 
14.4 240 14.4 
15 250 15 

15.6 260 15.6 
16.2 270 16.2 
16.8 280 16.8 
17.4 290 17.4 
18 300 18 

Table 4.1 Vibration shape types for real locusts vs. FEM model vs. thickness/frequency scaled model results. 
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 Looking at the spread of the vibration shapes there are some similarities 

between the scaled model results and those of the real locust. In addition, both real 

locust and model displayed the same standing wave, fundamental mode-like first 

vibration shape. They also both display similar low frequency travelling waves with 

the maximum of the deflection moving across the membrane along with a similar 

higher frequency travelling wave with the characteristic semi-concentric C-shape 

which transforms into a more concentrated maximum as it travels across the 

membrane. However, the model displayed one travelling wave, called vibration 

shape 3 and shown in Fig. 3.38, where the motion moved in the opposite direction 

from the travelling waves seen at other frequencies. This is not analogous to the real 

locust where the travelling wave motion follows the same general direction with 

origin in the thin region and movement towards the thick region for all frequencies. 

Non-uniformity in the thickness distribution of the real locust TM could be 

responsible for this lack of travelling waves moving across the centre of the 

membrane in the opposite direction; this initial model was a perfectly uniform disc. 

Finally, picometre scale displacements were computed for the 50 µm disc model in 

FEA acoustic-structure interactions. Running single frequency acoustic-structure 

interaction models (keeping the model size and computation time reasonable) of 

much thinner circular disc models, closer to the real locust TM cuticle thickness, 

yielded displacements in the nanometre per Pascal range, as expected due to the 

experimentally measured displacements from LDV. 
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4.2 The Effect of a Non-Uniform Thickness – Circular Disc with a 
Step Thickness Change 

An obvious difference between the model in Chapter 3 and the real locust TM is the 

stark contrast in the distribution of cuticle thickness. Therefore the subsequent step 

was to investigate the effect of having a slight variation in thickness of the 

membrane. For this the majority of a 0.75 mm radius circle was extruded a Z-axis 

distance of 25 µm excluding a segment on the far right edge of the disc (positive X-

axis direction) where the extrusion distance was 50 µm, with the step, running in the 

direction of the Y-axis, located exactly half a radius from the disc edge. Fig. 4.1 

shows the 3-D geometry for this model which was meshed at a fine density beyond 

that of the extremely fine setting using custom mesh size parameters which yielded a 

196803 element mesh. 

 

 

 

 

 

 

 

 Using the same material properties as previous models and applying a fixed 

constraint to the disc edges then computing the first ten eigenmodes of this 3-D 

model resulted in the mode shapes seen in Fig. 4.2. Using COMSOL to output the 

total solid domain volume then calculating the new total mass (63.3 µg), the EMMF 

of each mode was computed via the method described in 2.2.3.2 and collated in 

Table 4.2. Worth noting is the change to the fundamental mode with the antinode 

now no longer central on the disc but instead shifting to the relative centre of the 

thinner section of the model tympanum. In actual fact all of the antinodes of each 

eigenmode display this same shift in the negative X direction favouring the thinner 

part of the disc. The 2nd mode, as seen on the uniform disc in Fig. 3.21, has now 

become two separate modes with slightly different eigenfrequencies. With a nodal 

line perpendicular to the step, the lower of these two eigenmodes had an 

Figure 4.1 Two-step thickness circular model TM. 
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eigenfrequency of 49.9 kHz and the higher, mode 3, characterised by a nodal line 

parallel to the step, had a frequency of 55.9 kHz. Comparing the third row of Table 

4.2 to the second and third rows of Table 3.1, there has been a substantial shift in the 

EMMF of mode 3 where the nodal line is parallel to the step, with a 104 order of 

magnitude increase from this mode on the uniform disc to the same mode on a step 

thickness change disc. Meanwhile the other two-antinode asymmetric mode, number 

2 in Fig. 4.2, with antinodes aligned on the Y-axis, still appears to be somewhat 

suppressed by the system. 

Furthermore there was an appearance of two new modes, the moderately 

strong 4th mode and much weaker 8th mode, characterised by three and four antinodes 

arranged in antiphase along the Y-axis. These mode shapes have arisen due to the 

unusual cross-sectional shape of the thin region of the membrane and analogous 

modes shapes are observed on uniform rectangular plates where the three or four 

antinodes usually split the plate into thirds or quarters respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar if slightly lesser shift can be seen in eigenmode 10 when compared 

to the analogous mode 6 of the uniform disc. Mode 4 also has a reasonably high 

EMMF, indicating it is the 3rd strongest mode of the first 10 however in general the 

Figure 4.2 FEM computed mode shapes of two-step thickness membrane. 
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5th 6th 7th 8th 

9th 10th 
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system seems to favour mode shapes with the antinodes arranged in a perpendicular 

fashion with respect to the step thickness change i.e. along the X-axis. 

 

Eigenmode Eigenfrequency / kHz 𝐄𝐄𝐄𝐄𝐳 / % 
1st 26.90 42.38 
2nd 49.90 1.60×10-06 
3rd 55.90 1.71 
4th 80.85 0.49 
5th 86.35 5.67×10-05 
6th 93.70 18.43 
7th 120.78 0.06 
8th 121.15 1.06×10-04 
9th 136.96 2.32×10-06 
10th 143.86 0.35 

Table 4.2 FEM computed eigenfrequencies and EMMFz of first 10 eigenmodes of  two-step thickness circular 
model. 

Acoustic-structure interaction with a frequency response, using the model 

settings outlined in 3.2.5, was the obvious next step. Meshing was increased to the 

extremely fine setting yielding more than 1.6 million elements. Several frequency-

dependent travelling waves formed on this model membrane with three examples 

highlighted in Figs. 4.3, 4.4 and 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 All three of the travelling waves show the area of maximum deflection travel 

from left to right across the membrane. In Fig. 4.3, the frequency response at 55 kHz 

is shown and many features are worth noting. Firstly, a large area of the model 

Figure 4.3 Dynamic cycle of vibration of basic model 
tympanum at 55 kHz. 
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membrane is strongly displaced throughout the cycle. Secondly, there is just one 

region of maximal deflection which is spread widely in the plane of the membrane 

and travels to the thicker part of the membrane and partially beyond the ridge 

between thick and thin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, the travelling peak forms on the far left of the disc (180°), initially 

gaining amplitude as it travels (270°) before diminishing in amplitude near the thin 

Figure 4.4 Dynamic cycle of vibration of basic model 
tympanum at 110 kHz. 

Figure 4.5 Dynamic cycle of vibration of basic model 
tympanum at 140 kHz. 
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region centre (315°) and then finally increasing again near the maximum’s terminal 

location (45°). The final positive displacement amplitude observed at 45° is clearly 

slightly stronger than at 315° yet weaker than at 180°. Eigenmode 3 on Fig. 4.2, with 

its eigenfrequency around 55.9 kHz, seems to dominate the shape of this travelling 

wave, as predicted at this frequency. 

Fig. 4.4 displays the response of this model to 110 kHz initiating with the 

now familiar semi-concentric shape of the travelling wave (0°) which then evolves 

into a very condensed area or sharp peak of maximal deflection (90°). Fairly circular 

in shape when viewed from above with a slight flattening towards the thickness 

transition, this peak travels across the geometrical centre of the thin section. 

Enlarging in displacement amplitude just once as it progresses across the mode TM, 

the peak dissipates well short of the boundary between thick and thin membrane 

regions (180°). Eigenmode 6 from Fig. 4.2, with its corresponding eigenfrequency of 

93.7 kHz, appears to dominate the motion at this frequency. 

140 kHz is the last of the three highlighted frequencies and Fig. 4.5 shows the 

dynamic cycle at this frequency. Similar in appearance to the initial semi-concentric 

shape seen at the lower 110 kHz, the main differences at this frequency are that the 

concentrated peak which travels across the disc is stretched in the Y-axis direction 

(or constricted in the X direction) and the semi-concentric almost C-shaped 

maximum clearly begins to form while this sharp maximum is still present on the 

membrane. Additionally, the converged peak has fairly large amplitude at 45° before 

dissipating slightly at 90° then increasing again to a higher maximum value at 180°. 

The 10th mode of the system, with a frequency of approximately 143.9 kHz 

dominated the motion of the vibration. 

The ever-evolving nature of the amplitude of these deflection maxima and 

minima, seen throughout each travelling wave cycle, was not observed on the 

uniform membrane implying that this phenomenon is due to the thickness 

distribution’s influence on the mode shapes. Unsurprisingly the eigenmodes which 

dominated the motion at each of these frequencies were among the strongest modes 

as indicated by the 3rd column of Table 4.2. Worth noting is that the frequencies of 

the travelling waves observed above were exceptionally high in comparison to the 

observed response of the real locust TM however this dual step thickness model was 
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significantly thicker and therefore had a mass of 5 to 6 times more than that reported 

for the real TM. An eigenfrequency FEA was utilised to study the effect of reducing 

the thickness of the whole disc by one fifth, resulting in a change from a 25 µm to 50 

µm, 63.3 µg model membrane to a more realistic 5 µm to 10 µm, 12.7 µg model TM. 

With the same ultra-fine mesh parameters, this 4 million DOF model yielded the 

same eigenmode shapes as previously but the eigenfrequencies were approximately 

one fifth of those listed in Table 4.2 bringing them closer to the experimentally 

determined transitional frequencies where changes in real locust TM travelling 

waves occur. 
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4.3 Elliptical Disc Model Locust Tympana 

Model tympana with circular cross-sections are evidently a large approximation of 

the reniform real locust TM. Consequently, elliptically shaped discs were 

investigated as a possible closer approximation to the shape of the locust TM since 

the length of the real tympanum is significantly greater than the width. Defined by a 

semi-major axis of 1.25 mm, a semi-minor axis of 0.75 mm and a thickness of 5 µm, 

a uniform elliptical disc was the next model geometry. The material properties 

remained as for earlier models and the disc edges were again held stationary. 

Computing the first ten eigenmodes of this 3-D model resulted in the mode shapes 

seen in Fig. 4.6. With a total mass of 17.68 µg, this ellipse was in the range of the 

masses quoted in Table 1.3 and this yielded the eigenfrequencies and transverse 

EMMF values shown in Table 4.3. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

As was the case for the varying thickness circular disc models, the first 

asymmetric mode has again separated with one asymmetric mode defined by a nodal 

line across the minor axis (the 2nd mode in Fig. 4.6) and another asymmetric mode 

with the nodal line along the major axis (mode 4 in the Figure). However, some 

Figure 4.6 FEM computed mode shapes of elliptical membrane. 
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differences exist between these particular eigenmodes and their analogous modes 

observed on the step thickness circular disc. Firstly, the relative difference in 

eigenfrequency between the two is now much larger than previously, owing to the 

fact the frequency of the elliptical disc mode with nodal line across the minor axis 

has shifted substantially upwards due to the fact that the minor axis of the ellipse is 

60% of the major axis. Looking at rows 2 and 4 in Table 4.3, both of these 

asymmetric modes, numbers 2 and 4, are very weak compared to some other modes 

of the system.  

Secondly, the apparent elliptical equivalent of the 2nd circularly symmetric 

mode (6th mode in Fig. 3.21) has shifted position considerably, from mode 6 of the 

circular two thickness model to mode 9 of the uniform elliptical membrane. Again it 

is the second strongest eigenmode according to EMMF in the Z direction, after the 

dominating fundamental mode.  

Finally, more asymmetric modes are predicted for this model distinguished 

by their antinodes aligned along the Y-axis. Looking at the third column of Table 

4.3, two of these asymmetric modes have relatively high EMMF, namely 

eigenmodes number 3 and 8. In their current form on an elliptical disc, these modes 

bear no apparent resemblance to any elements of the travelling wave patterns seen on 

the real locust TM. 

Eigenmode Eigenfrequency / kHz 𝐄𝐄𝐄𝐄𝐳 / % 

1st 3.12 51.22 
2nd 4.90 3.36E-11 
3rd 7.39 8.53 
4th 7.73 2.45E-08 
5th 10.26 4.99E-09 
6th 10.58 7.01E-12 
7th 13.38 2.29E-08 
8th 14.48 2.14 
9th 14.51 9.16 
10th 17.11 1.64E-10 

Table 4.3 FEM computed eigenfrequencies and EMMFz of first 10 eigenmodes of uniform elliptical model. 

Acoustic-structure interaction simulations of elliptical disc shaped model 

tympana in the frequency domain using the methods outlined previously resulted in 

the formation of frequency specific travelling waves. However, no significantly new 

results were observed beyond those seen for the circular disc models and certainly 

nothing which more closely resembled the frequency response of the real locust ear. 
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4.4 Reniform Model Locust Tympana 

4.4.1 Uniform Thickness Model Tympanum – Eigenmode Analysis 

The final geometry used to create 3-D finite element models of the locust TM was 

kidney-shaped discs, more closely resembling the actual eardrum of a desert locust. 

Initially a reniform disc of uniform thickness 50 µm was created in SOLIDWORKS 

using an extrusion of the TM outline shape in the contour map in Fig. 5 of Stephen 

and Bennet-Clark (1982). An eigenvector analysis of the first 20 modes of this model 

TM was computed, resulting in the output of the predicted mode shapes along with 

their corresponding eigenfrequencies and EMMFz. Sorting these modes in 

descending order by their EMMFz, the strongest 10 modes are displayed in an 

ordered fashion in Fig. 4.7 below. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st – 31.0 kHz 
49.0% 

3rd  – 64.7 kHz 
8.2% 

10th – 147.1 kHz 
8.0% 

7th – 114.5 kHz 
2.4% 

15th – 210.0 kHz 
1.5% 

13th – 176.2 kHz 
1.3% 

4th – 78.6 kHz 
1.2% 

19th – 248.2 kHz 
0.6% 

18th – 235.3 kHz 
0.6% 

9th – 143.4 kHz 
0.5% 

Figure 4.7 Strongest ten lower frequency eigenmodes of reniform 50 µm uniform model TM 
with mode position number, eigenfrequency and EMMFz. 
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 Similarly to the elliptical disc, the fundamental mode of the kidney-shaped 

uniform thickness model TM encapsulated approximately 50% of the EMMFz, and 

the antinode was located centrally. Another common feature between the two models 

is the relative strength of both the third mode and the tenth mode above (analogous to 

the ninth mode of the elliptical model in Fig. 4.6), again having the second and third 

greatest EMMF of all predicted modes. This appears to be where the similarities end 

however, as there are several clear differences between the eigenmodes of the 

elliptical disc model and that of the reniform model. 

Firstly, although modes 3 and 10 in Fig. 4.7 correspond to modes 3 and 9 of 

the elliptical model in Fig. 4.6, switching the disc cross-section from an ellipse to a 

kidney shape altered the mode shapes somewhat. In the case of mode 3, rather than 

the three antinodes being stacked along the Y-axis as they are in Fig. 4.6, they now 

have an element of both horizontal and vertical spacing i.e. they are diagonally 

aligned. The result of this is a single maximum on the left side of the membrane and 

almost a dual-peaked minimum on the right side. Mode 10 (9 for the ellipse) has 

switched from consisting of three equally sized antinodes each in antiphase with its 

neighbour and all aligned perfectly across the minor axis of the ellipse (see Fig. 4.6 

9th mode) to three distinctively shaped antinodes occupying very diverse regions of 

the model tympanum. Starting at the left, the first antinode is C-shaped and covers a 

large area of the membrane surface, closely following the form of the left edge from 

the top of the membrane to the bottom. Contrastingly, on the far right, the third 

antinode is very convergent with a large amplitude (greatest of the three) confined to 

a much smaller region. The central antinode of the three sits both within the first C-

shaped antinode and around the small peaked antinode to its right, almost replicating 

the C-shape to a degree, but spanning a smaller area. Comparing the relative 

magnitudes of the antinodes, the antinode on the right, concentrated into a smaller 

area, appears to have a much greater displacement than the antinode on the left of the 

model tympanum, illustrated by the much darker shade of green of this maximum. 

The final highlighted difference between the modes of the elliptical disc models and 

those of the kidney-shaped membrane model here is the relative strength of the 4th 

mode in Fig. 4.7. Analogies of this mode appear in Fig. 3.21 mode 2, Fig. 4.2 mode 3 

and Fig. 4.6 mode 4 however within these systems this mode is relatively weak, 
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particularly in uniform circular and elliptical models, strengthening a little with the 

introduction of the thickness change in 4.2. Modelling the locust TM with the more 

realistic reniform shape presented here resulted in a significant strengthening of the 

influence of this mode on the system. A final observation of this mode is that the 

antinodes again display unequal maximum amplitudes with the antinode on the right 

clearly greater in amplitude than the antinode on the left. 

It appears that one impact of a reniform shaped tympanal membrane is an 

alteration of the conventional circularly symmetric modes into asymmetric style 

modes, stronger than those seen on a simple circular plate. Consequently, modes 3, 4 

and 10 more closely resemble potential components of the locust TM travelling 

waves seen in 3.1.1. These subtle differences in model predictions may be missed in 

oversimplified circular or elliptical membrane models. 
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4.4.2 Uniform Thickness Model Tympanum – Frequency Response Analysis 

Frequency response analysis of this model tympanum using the acoustic-structure 

interaction multi-physics application of the COMSOL FEM package was the obvious 

next step. As in previous acoustic-structure interactions, the stimulus consisted of 

simulated plane wave pressure fields with a sound pressure level of 65 dB SPL re 20 

µPa and single frequencies guided by the previous eigenfrequency results. 

 60 kHz was the first chosen stimulus frequency and the response at this 

frequency is shown in Fig. 4.8. Travelling diagonally from the top left to the bottom 

right, the deflection looked to be heavily influenced by both the strong fundamental 

mode at 31 kHz and a weak second mode found near 45 kHz, analogous to mode 2 of 

the elliptical disc in Fig. 4.6 but too weak to be included in Fig. 4.7. A maximum 

displacement of about 18.5 pm was predicted for this model at this frequency. This 

travelling wave is similar to the diagonally downwards travelling waves observed on 

the real locust tympanum at lower frequencies in the range of 3 kHz e.g. at 3.5 kHz 

in Figs. 3.4 and 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Frequency response at 60 kHz with maximum 
displacement of approximately 18.5 pm. 
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 80 kHz was the next chosen frequency which lies near modes 3 and 4 in Fig. 

4.7 and the response is displayed in Fig. 4.9. Coupling of these modes resulted in a 

travelling wave where the maximum of deflection propagates horizontally from left 

to right across the membrane. Although the direction of travel is very similar to that 

seen on the real locust TM at 5 kHz (Figs. 3.6 and 3.15), the shape of the maxima, 

particularly at its terminal location towards the right side of the model membrane, is 

somewhat different. The maximum amplitude of deflection at this frequency was 

approximately 14 pm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The final highlighted frequency of interest was 157 kHz, slightly higher than 

the eigenfrequency of the 10th mode (Fig. 4.7), and the response at this frequency is 

shown in Fig. 4.10. At this frequency, modes 9 and 10 in Fig. 4.7 appear to combine, 

resulting in a C-shaped maximum (seen at 0° in the wave cycle) travelling from left 

to right across the membrane and eventually becoming a sharper peak at the right 

side (see 135° or 180° in the cycle). Approximately 4.5 pm was the maximum 

amplitude in this simulated frequency response. 

Figure 4.9 Travelling wave at 80 kHz with maximum 
transverse displacement of 14 pm. 
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Figure 4.10 Travelling wave at 157 kHz with maximum 
transverse displacement of about 5 pm. 
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4.4.3 Contoured Complex Thickness Distribution Model Tympanum 

SOLIDWORKS’ advanced 3-D CAD complex shape modelling and surfacing tools 

were utilised to construct the final kidney-shaped model locust tympanum. Outlined 

in its entirety in Subchapter 2.3, this method involved building a surface with 

realistic smooth thickness variations, closely following the aforementioned contour 

map of the locust TM (Stephen and Bennet-Clark, 1982). Fig. 4.11(a) below shows 

the next geometry which was imported into COMSOL Multiphysics, tilted to show 

the contouring on the top surface. In 4.11(b) a plan view of the model TM is 

displayed along with five slots which were cut into the geometry, rotated and then 

enlarged in the small dotted rectangles to show an example of the sweeping contours 

of the TM. A measured volume of 8.6 × 10-12 m3 for the model geometry yielded a 

model tympanum mass of approximately 10.3 µg, around the same order of 

magnitude as reported locust tympanum masses (1.4.2.2). 

 

 

 

 

 

 

 

 

 

 

 

The geometry was meshed with an adaptive growth mesh algorithm resulting 

in areas of thinner (denser meshing with smaller element size) and thicker (sparser 

meshing with larger element size) cuticle, visible in Fig. 4.12.  

With other model parameters set as previously, an eigenmode analysis was 

implemented using a total mesh size of 207107 elements initially. The motivation of 

this eigenmode computation was a search for mode shapes, with frequencies relevant 

to the real locust system, and which closely resemble components of the travelling 

Figure 4.11 (a) Complex locust tympanum model geometry, angled to highlight 
contouring. (b) Plan view with 5 slices and their cross-section enhanced with 
exaggerated thickness. Scale bar for (b) represents 0.5 mm on plan view only. 

2 µm thick 

3 – 5 µm thick 

15 – 9 µm thick 

3 µm thick 

2.5 – 0.6 µm thick 

(b) (a) 
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wave patterns seen on real locust eardrums. To fully encapsulate the perceived 

sensitivity range of the locust hearing, a large number of eigenmodes were simulated, 

from the fundamental mode with an estimated eigenfrequency of 2.1 kHz to an 

eigenmode at 43.6 kHz. Ten of these eigenmodes are displayed in Fig. 4.13, arranged 

in descending order by EMMF. An extra fine mesh in excess of 1.2 million elements 

(considerably large for a pure solid mechanics eigenfrequency analysis) was used as 

a final verification of the first ten eigenmodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An apparent similarity between the eigenmodes of this model tympanum and 

those of the uniform membrane in the previous subsection is the shape and relative 

strength of modes 3 and 4 of the systems. However some major differences arise 

between the computationally predicted responses of each model system. Firstly, and 

particularly clear for modes 1 and 3, there is an obvious shift of the majority of the 

membrane deflection away from the centre and into the thin region of the model TM. 

Modes 1, 3 and 4 have changed from the horizontal arrangements of antinodes of the 

uniform model TM to a slight diagonal arrangement which also matches the direction 

of travelling wave propagation, through the PV area, seen on a real locust TM (see 

transect line in Windmill et al., 2008). Higher order modes display far fewer large 

amplitude antinodes in the thicker section of the model TM and the higher the 

Figure 4.12 COMSOL FE mesh of model TM with three regions enlarged showing thickness-
dependent adaptive mesh density. 
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eigenfrequency, the less displacement observed in the thick section, with mode 35 

showing this point well. Many of the higher order modes were very similar to mode 

number 35 in shape with their patterns of antinodes rotated slightly and their 

eigenfrequencies in very close proximity to each other, with strong coupling 

potentially giving rise to the characteristic narrow rotating peaks of the high 

frequency travelling waves on the real locust TM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, the fundamental mode has dropped significantly in EMMFz, 

from 50% to 25%, indicating that more of the energy of the system has been 

transferred into higher order modes. The shape of the first mode does not quite 

predict the vibrational response seen at the lowest frequencies on the real locust 

however the attachment of the mass of MO could perhaps have a large influence on 

the response at this range. Importantly, the frequencies are now aligned with the real 

1st – 2.1 kHz 
25.0% 

3rd – 4.2 kHz 
4.7% 

9th  – 9.5 kHz 
3.9% 

4th – 5.5 kHz 
2.6% 

7th – 7.7 kHz 
2.7% 

35th – 25.7 kHz 
2.0% 

12th – 11.5 kHz 
1.8% 

15th – 13.5 kHz 
1.8% 

14th – 13.2 kHz 
1.5% 

11th – 11.2 kHz 
1.5% 

Figure 4.13 Strongest ten lower frequency eigenmodes of contoured thickness model TM with 
mode position number, eigenfrequency and EMMFz. 
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locust hearing range and the close proximity, mode shape and high EMMFz i.e. 

modal strengths of modes 1 and 3 could lead to the coupled response seen at 

frequencies around 3.5 kHz on the real locust. For frequencies slightly higher near 

the value of 5 kHz, the effect of mode 4, also with a high EMMF and close 

frequency, could be the horizontal motion observed previously. Modes 7, 9, and 

higher, particularly 11 may combine to result in the characteristic C-shape (see left 

side antinode of the 11th mode) converging to peaks which meet at the PV. 

Overlapping an image of the real TM with modes 4 and 11 above (among others) 

showed the antinodes on the right to be aligned perfectly for the position of the PV. 

Additionally, all of these complex modes in close proximity, with antinodes arranged 

in patterns on the model membrane, could explain the peaks measured by Windmill 

et al. (2008) when studying the frequency spectra of five points of interest on the 

locust tympanum. 
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4.5 Additional Features of the Locust Hearing System 

4.5.1 Model Müller’s Organ 

In reality, the locust hearing system has several components which contribute to the 

overall response of the system, with one of the major components being Müller's 

organ. To test for the first time, the effect of the addition of MO as an off-centre 

mass on a model TM, a model was constructed using a simple circular disc of radius 

1.125 mm and thickness of just over 3 µm i.e. a thin cylinder of volume 1.24 × 10-11 

m3. Using the same material properties as with previous models yielded a mass of 

approximately 14.9 µg for the disc. A prolate spheroid of dimensions 200 µm × 600 

µm × 200 µm was constructed and connected to the disc via three long hollow 

cylindrical bodies, a simulated SB, EP and fusiform body. Of the three, the EP was 

widest and its interior hole was extruded from inside the model MO right through the 

entire membrane thickness to the external surface, leaving a hollow invagination as 

described in 1.4.2.2 for the EP. This model cell body and attachments had an overall 

volume of 1.20 × 10-11 m3, and therefore a mass of 14.4 µg. As a result both masses 

were therefore consistent with the published data on the estimated and measured 

masses of both of the major locust tympanal system components. Multiple views of 

the geometry are shown in Fig. 4.14 with a transparent plan view making the 

modelled MO visible behind the disc. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Model tympanum disc and Müller’s organ. Simplified 
body of Müller’s organ, styliform body, elevated process and fusiform 

body all labelled. 
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 Initially, an eigenmode analysis was computed using this model geometry 

and a high mesh density leading to a 13 million DOF model. The fundamental mode 

was predicted to have an eigenfrequency of 0.58 kHz, an EMMFz of 64% and a 

mode shape as shown in Fig. 4.15. This value is the same as the 0.58 kHz natural 

frequency of Müller’s organ predicted by Stephen and Bennet-Clark (1982 – see 

p.42) of this thesis. The motion seen at this eigenmode was dominated by a rocking 

motion of the simulated Müller’s organ behind the model tympanum causing the 

membrane to displace. Visible in the Figure are parts of the simulated MO at its zero 

position, closer to the reader than the inwardly deflected tympanum. 

 

 

 

 

 

 

 

 

 When the MO was removed from the model and an eigenmode analysis of the 

fundamental mode of a circular disc with the same radius and thickness was executed 

the resulting image was that seen of the 1st mode in Fig. 3.21, as expected, with an 

eigenfrequency of approximately 1.22 kHz. Doubling the thickness to approximately 

6 µm and therefore increasing the mass of the system to that of the previous disc plus 

MO model, resulted in the predictable value of 2.46 kHz for the eigenfrequency of 

the fundamental mode. Therefore the addition of the simulated MO had a significant 

effect on both the shape and eigenfrequency of the first eigenmode. 

 Two acoustic-structure interaction frequency response analyses were then 

performed using the same stimulus of a plane wave of sound pressure level 65 dB 

SPL and frequency of 1 kHz. The first was executed with the stimulus acting 

externally on the surface of the model tympanum and the second with the sound 

incident internally onto MO and the internal surface of the membrane. For the 

external stimulus, a maximum Z direction displacement of 115 nm was observed 

whereas for the internal stimulus this maximum more than doubled to 272 nm. 

Figure 4.15 Fundamental mode of an approximately 3 µm 
thick circular membrane with a model MO attached. 



163 
 

Relative to the circular face of the model membrane, the simulated Müller’s organ 

had a surface area five to six times greater, and this, along with the addition of the 

strong mode in close proximity to the 1 kHz stimulus, could perhaps explain this 

observation of increased sensitivity to internal stimuli. 
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4.5.2 Cuticular Shell 

Another major component of locust hearing is the external cuticular shell which 

covers a large part of the tympanum (see the left image of Fig. 1.10), previously 

unstudied computationally until this subchapter. To investigate the effect of this shell 

the same circular disc as in 4.5.1, minus the model MO, was used along with a 

quarter of a hollowed-out sphere. With an external radius of 1.25 mm and an internal 

radius of 1.125 mm, the quarter sphere resulted in the shell of thickness 125 µm 

shown in Fig. 4.16 below. 
 

 

 

 

 

 
 Acoustic-structure interactions were computed with two different stimuli, the 

first at a frequency of 5 kHz and the second at 10 kHz. The maximum transverse 

displacement of the model membrane was extracted at each frequency and then 

compared to the maximum displacement for frequency response analyses at the same 

frequencies for the same modelled disc minus the shell structure. At 5 kHz the 

maximum displacement in the out-of-plane Z direction for the disc without the shell 

was approximately 15 nm and at the same frequency the model with shell yielded a 

maximum transverse displacement of 14 nm. 10 kHz was the next frequency of 

interest and at this frequency the maximum displacement increased from 46 nm 

without the shell to 65 nm with the shell. Incident sound at a higher frequency 

appeared to have been amplified by the presence of the shell around the membrane. 

   
  

  

 

 

Figure 4.16 Geometry showing circular disc model 
tympanum and quarter sphere shell. 
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4.6 Directionality  

4.6.1 Internal Sound Transmission 

Another phenomenon observed in real locusts is that of the sound propagating 

internally through the body i.e. sound waves transmitted by (or through) the ear. 

Hypothesising that the vibrational shapes of the tympanum influence the frequency 

dependency of the sound pressure level of internally propagating sound, a new 

method was devised using the simulation results from the acoustic-structure 

interaction of a 50 µm circular disc in 3.2.5. As seen in Figs. 3.32 and 3.33, the finite 

element model has a small cylindrical air domain located behind the model 

tympanum in which the pressure is disturbed by vibrations of the disc. The average 

sound pressure (Pa) was computed in this domain for every frequency of the 

parametric sweeps used in 3.2.5. Complex number representations of the pressure 

behind the membrane were obtained as a result of this post-processing computation 

(see 2.2.3.3). The absolute values of these complex expressions are the pressure 

amplitudes (Pa) which were converted into sound pressure levels (dB SPL) using Eq. 

[1.1] and then the external value of 65 dB SPL was subtracted yielding computation 

of the relative internal sound pressure level. 

Plotting this sound pressure level on the Y-axis against simulation stimulus 

frequency on the X-axis resulted in Fig. 4.17. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.17 Frequency vs. relative internal sound pressure level for simple 

model TM. 
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To scale the frequencies on the X-axis of Fig. 4.17, which were relevant for a 

50 µm circular disc, to the equivalent for a 3 µm disc (of mass much closer to the 

real locust TM mass) the same linear scale factor of 0.06 was used as previously, 

resulting in the following new version of the Figure. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Considering this computation was for only one very basic model TM of 

uniform thickness and perfectly circular shape and therefore a somewhat simplified 

version of the real system which has two tympana separated by a specific distance, 

interconnected by a series of air sacs and positioned laterally on a locust body, the 

above relationship bears a striking resemblance to historical experimental data (Fig. 

9 of Michelsen, 1971c and also Fig. 2 of Miller, 1977). This indicates that the 

varying shape of tympanum deflection and moreover the distribution of maximum 

displacement across the membrane surface could indeed have a strong influence on 

the transfer of sound energy into the internal part of the locust’s acoustic system.  

 

 

 

 

 

 

Figure 4.18 Linearly-adjusted frequency vs. relative internal sound pressure level. 
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4.6.2 Full Body Effects 

Over a specific range of frequencies, locust body dimensions are thought to cause 

disturbances in an incident sound field, potentially allowing for a method of 

perception of the direction of a sound source. Therefore as a final step, a model was 

constructed to investigate the combination of the influence of the locust body on the 

sound field and the extent of internal sound transmission from an ear contralateral to 

a sound source, to the interior of the ipsilateral ear. For this a simplified locust head 

and thorax were constructed as a cylinder of length 1.9 cm and radius 0.5 cm based 

on simple observational measurements. Next, the abdomen was simulated as a 

cylinder of length 3.6 cm and radius 0.35 cm. Two model ears were constructed as 

0.77 mm radius, 3 µm thick circular membranes tilted diagonally inwards at their 

posterior edge at an angle of 30° to the external body surface (again based on 

personal observations). A chamber of elliptical cross-section was extracted from 

between the two ears with semi-major axis equal to the model ear radius and semi-

minor axis calculated using the exact ear diameter and angle of tilt to calculate the 

required width. The result was the geometry shown with transparency activated in 

Fig. 4.19 below. 

 

 

 

 

 

 

 

 

 
 After adding a surrounding sphere as an additional air domain (to the cylinder 

between the ears) and constructing a high density mesh, the model had a total 

element count in excess of 1.6 million elements. Two acoustic-structure interactions 

Figure 4.19 (a) Simplified model locust body with two ears and internal air chamber. (b) Zoom 
on region containing tilted model ears with annotated dimensions. 
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TMs of radius 
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with a frequency analysis were computed, using a stimulus of an acoustic load 

incident on the left side of the body at 90° to the anterior-posterior axis of the body 

i.e. perpendicularly towards the space containing the left ear. Before executing the 

analyses a fixed boundary condition was applied to the external and internal surfaces 

of this ipsilateral ear to prevent the movement of the ear impacting on the internal 

sound since the intention was to investigate the impact purely of the movement of an 

ear contralateral to a sound source. The chosen frequencies for the analyses were 1 

kHz and 20 kHz and a sound pressure level of 65 dB SPL. Four surfaces were 

defined namely the left exterior, left interior, right interior and right exterior and the 

pressure field as a complex number expression was extracted at each of these 

surfaces. The absolute value of this expression was the pressure amplitude in Pascals 

at the surface and the argument was the phase of the pressure wave at each surface in 

radians. Using Eq. [1.1], the pressure amplitude was converted into dB SPL. Fig. 

4.20 below shows a snapshot in the cycle of the incident sound of frequency 1 kHz 

where red indicates a localised region of high pressure. Clearly the pressure 

amplitude external to the left ear is very close to the pressure amplitude external to 

the right ear in fact the computed difference in dB SPL between the sound pressure 

level at the external surface of the left ear and the external sound pressure level at the 

right ear was just -0.01 dB SPL. Bearing in mind the left ear is stationary, i.e. no 

sound is transmitting internally from the left side, clearly a huge majority of the 

incident sound wave has diffracted easily around the locust body at this frequency. 

 

 

 

 

 

 

 

 
Figure 4.20 Snapshot of acoustic-structure interaction of simplified locust 

body, at stimulus frequency of 1 kHz. 
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The same analysis was performed at 20 kHz with the results shown in Fig. 

4.21. At this frequency the locust body has a visible effect on the incident sound 

pressure wave and the sound pressure at each ear is clearly very different both in 

amplitude and phase at this snapshot in the cycle. Externally to the left ear the 

amplitude of the sound pressure level was 70.8 dB SPL, an increase of 5.78 dB on 

the incident pressure field value of 65 dB SPL, owing to a focussing of the sound due 

to reflections at the simulated body features. Conversely, exterior to the right ear, the 

amplitude of the sound pressure field was 61.7 dB SPL, 3.27 dB less than the 

amplitude of the stimulus. Resultantly there was a predicted difference of greater 

than 9 dB SPL between sound external to the ipsilateral ear and sound reaching the 

external surface of the contralateral ear i.e. a partial acoustic shadow created due to 

the complex interference pattern occurring as a result of reflection and diffraction at 

the boundaries between the fluid and solid domains. 

 

 

 

 

 

 

By hiding the surrounding sphere of air, Fig. 4.22 was created showing a 

magnification of the internal propagation of sound purely within the interaural 

chamber as a result of the vibrating contralateral right ear. The displacement of this 

model tympanal membrane is overlapped and the response to the 1 kHz stimulus is at 

the top with the response at 20 kHz underneath. Consistent pressure field colour 

scales and deflection scale factors were used to produce a clear and fair comparison 

between the impact of the vibrating right ear on the sound reaching the internal 

surface of the left ear at each frequency. Darker shades of red indicate localised areas 

of high positive sound pressure and likewise darker shades of blue would indicate 

Figure 4.21 Snapshot of acoustic-structure interaction of simplified 
locust body, at stimulus frequency of 20 kHz. 
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areas of high negative sound pressure. Clearly the interaural sound pressure is far 

higher at 1 kHz than at 20 kHz due to the fact that the displacement magnitude of the 

contralateral ear is also far greater at 1 kHz. This fact is to be expected given the 

difference in the sound pressure level external to the contralateral ear at each of the 

two frequencies. Again the complex pressure fields were extracted and sound 

pressure levels calculated only this time at the internal surface of the ipsilateral left 

ear. For the 1 kHz stimulus this was found to be 64.5 dB SPL and at the 20 kHz 

stimulus the predicted value was just 56.7 dB SPL. In conclusion, the internal sound 

pressure level due to the contralateral ear vibrating at 1 kHz was just 0.5 dB below 

the stimulus amplitude value whereas when the ear responded to sound of frequency 

20 kHz the internal sound pressure level was 5 dB less than that predicted externally 

at the right ear and a full 8.3 dB less than the 65 dB SPL stimulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Close-up view of the simulated air chamber between the two tympana 
showing the exaggerated displacement of the right TM and consequential sound 
pressure distribution within the chamber, at 1 kHz (top) and 20 kHz (bottom). 

Scale bar is 0.7 cm. 
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4.7 Discussion 

Simulating the locust TM as a reniform disc of uniform 50 µm thickness resulted in 

the prediction of several strong eigenmodes with shape reminiscent of components of 

the travelling waves measured on a real locust eardrum using LDV. Using FEM to 

simulate the frequency response of such a model tympanum resulted in the formation 

of many different travelling waves, with frequencies of 60 kHz, 80 kHz and 157 kHz 

being highlighted in subsection 4.4.2. Termination of each of the travelling waves on 

the uniform model TM occurred at the far right of the disc at each frequency, 

different from that observed on the real locust TM where higher frequencies are seen 

to terminate nearer the PV and low and medium frequencies travel beyond this point 

into the thicker region of the membrane. The absence of this phenomenon from this 

model is assumed to be due to the lack of the thickness changes across the real 

membrane and the location of sensory cell attachment areas. Corroborating this point 

is the contour thickness model in 4.4.3 where there was variability shown in the 

antinode positions when a non-uniform thickness is present. The modes of this 

changing thickness model show the PV to be located in a position relevant to areas of 

maximal deflection. 

Initially, the observed frequencies where travelling waves formed on the 

uniform TM model appear far greater than the relevant frequencies of auditory 

sensitivity of a real locust however one must remember that this model TM was 50 

µm thick, more than sixteen times thicker than the roughly 2-3 µm thick cuticle of 

the tympanum. Eigenmode analyses, using the analysis in 3.2.1, but parametrically 

sweeping an anisotropic Z direction scale factor from 0.5 to 1.2 with a 0.1 step i.e. 

creating model membranes from 25 µm to 60 µm thick, confirmed that the 

eigenfrequencies at all modes were directly proportional to the membrane thickness. 

Therefore assuming a model TM of thickness 3 µm, the corresponding scale factor is 

0.06 and consequentially the travelling waves seen in Figs. 4.8, 4.9 and 4.10 are 

predicted at frequencies of 3.6 kHz, 4.8 kHz and 9.4 kHz respectively on a 3 µm 

reniform membrane, perfectly in line with frequencies where different travelling 

wave responses are observed on the real locust eardrum (see Table 4.1 column 1).  
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A circular disc model with a simulated Müller’s organ resulted in a low 

frequency mode with the displacement confined to an area around the attachment 

points of the MO. Real locust tympana at low frequencies show deflection patterns 

confined to this same region. 

 A simulated cuticular shell was constructed and found to influence higher 

frequency sounds, incident on the model tympanum. Previously unstudied 

computationally, this phenomenon can perhaps be explained by calculating the 

wavelength of sound in air at each of the stimulus frequencies used in 4.5.2. At 5 

kHz the wavelength of sound in air is approximately 69 mm (Eq. [1.3]), far greater 

than the dimensions of the modelled shell or membrane therefore a large fraction of 

the sound is expected to diffract around the structure. Sound waves of frequency 10 

kHz have a wavelength of half this value in air i.e. 34.5 mm, and at this wavelength 

the incoming sound wave appears to be quite strongly influenced by the shell 

structure which would be expected to focus more sound towards the membrane, 

similarly to a curved reflector.  
The combined influence of frequency-dependent TM vibration patterns and 

the dimensions of the external locust body on the internal sound between two 

tympanal ears was investigated using novel one-ear and two-ear models. At higher 

frequencies, less sound reached the outside of the contralateral ear due to partial 

acoustic shadowing which, in conjunction with the vibration shapes of the membrane 

at higher frequencies (less membrane surface area displaced maximally and with 

constant phase), results in a diminution of the sound reaching the internal surface of 

the ipsilateral tympanum. However it should be noted that computational models 

predicted the internal surface of the tympanum and the attached MO to be highly 

sensitive to sounds propagating within the interaural chamber, due in part to the 

increased surface area of the MO. 

Some anomalies were observed in the FEM modelled tympanal membranes, 

where the modelled response differed greatly from that seen of the real locust ear. 

Firstly, to observe the travelling waves seen in previous Subchapters, the angle of 

incident sound required an off Z-axis component. In reality, the travelling wave 

response of the real locust has been found to be consistently independent of the angle 

of the respective sound source. However, testing of the finite element models 
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concluded that an angle of just 5° to the normal of the model membrane surface was 

enough to induce the travelling wave motion. Bearing in mind that the real locust 

membrane is not completely flat and is not angled parallel to the external surface of 

the body (but inwards with respect to the locust body), this combination along with 

the contribution of internal sounds with a fairly fixed stimulus angle could be enough 

to explain this phenomenon. Also worth noting is that the tympanum is partially 

obscured by the cuticular exoskeleton of the locust body which forms a shell-like 

cover, also adding to a pre-conditioning of any incident sound. 

 Secondly, at certain frequencies the travelling wave formed travelled in the 

opposite direction from expected, i.e. right to left when looking externally at a right 

locust ear. This phenomenon has never been observed on a locust TM and this 

travelling wave pattern could be supressed by the complex combination of the off-

centred position of the mass of the MO and its attachment sites including the FB, the 

off-centred thin region and the phase relationship between external and internal 

sound pressure contributions. In addition, the damping effect of the internally located 

air sacs and abdominal fat etc. will also be influencing the response in a complex and 

hard to replicate manner. 

 The last anomaly is that when the model tympana were excited at the peaks in 

the modelled frequency response, standing waves often form on the modelled disc 

membranes. In reality standing waves are not observed on the locust TM except at 

the lowest frequencies where the overall response is a standing fundamental mode 

type pattern. One possible explanation is that the real TM is inhomogeneously 

damped, with off-centre thin and thick regions, an off-centre mass of MO, all 

contributing to the lack of standing waves. Movement of MO due to potentially 

phase-shifted internal sound coupled through the strong attachment of the EP to the 

membrane could also be a factor. At low to medium frequencies, where the ear is 

acting as a pressure gradient receiver, the phase relationship between the two 

components could result in the observed response. In addition, at higher frequencies 

many similar strength modes are predicted in very close proximity, therefore strong 

modal coupling interactions would be expected. 
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Chapter 5 : MEMS Microphone Structure 
 

“Nature is written in the language of mathematics” – Galileo Galilei 

 
 

 
This chapter introduces two silicon micro-electro-mechanical-systems micro-mirrors 

and assesses their potential as a directional microphone structure, through a 

combination of their operating modes. FEM and LDV methods introduced in 

previous Chapters are used to predict the eigenmodes of these structures and their 

corresponding eigenfrequencies. A modal investigation is then implemented using 

LDV with a view to experimentally testing the aforementioned computational 

predictions. Finally frequency response analyses are carried out both experimentally 

and computationally using LDV and FEM, to study a multi-degree-of-freedom 

MEMS structure’s mechanical performance as a directional microphone. Part of the 

results presented in the following Chapter has formed a journal publication (see 

Appendix A). 
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5.1 Introduction 

As discussed in Chapter 1, silicon MEMS based directional microphones have often 

taken inspiration from the unique directional hearing system observed in the 

parasitoid fly, Ormia ochracea (Miles et al., 1995; Yoo et al., 2002; Miles & Hoy, 

2006; Liu et al., 2008; Touse et al., 2010; Lisiewski et al., 2011; Chen & Cheng, 

2012). This fly localises a host cricket’s acoustic signal (song) with reported 

accuracy better than 2°. The Ormia’s ears are a tympanal hearing system, and the 

tympanal pits of each ear (location of the neural attachment) are separated by just 0.5 

mm, yet the wavelength of the cricket song in air is an order of magnitude higher. 

The two tympana are mechanically coupled via an intertympanal bridge, which 

results in the combination of two major modes of vibration. Favourably for the fly, 

the consequence is that the perceived pressure intensity difference is significantly 

amplified. 

These bio-inspired microphone designs have reported varying success 

however, in principle, any micromechanical device with sufficient degrees of 

freedom of movement may be capable of displaying some directional acoustic 

sensitivity. The purpose of this Chapter was to build on the protocol outlined in 

previous Chapters, using similar computational and experimental methods to analyse 

the potential mechanical directional performance of two single-crystal silicon (S-C 

Si) MEMS structures that were originally designed as twin-axis optical scanners. 

Although not designed as microphones or optimised for such applications, the 

MEMS structures displayed similar dimensions to those of the Ormia hearing 

system. 

Single-crystal silicon is used throughout MEMS technology as the atomic 

structure and chemical properties result in MEMS devices displaying unique 

properties. The structure of S-C Si is such that there are no grain boundary associated 

defects meaning, theoretically, that the response of any fabricated device should be 

more consistent, predictable and accurate. 

The structures analysed in this thesis were fabricated in the MEMSCAP Inc. 

(Durham, NC, USA [14]) commercial foundry using a multi-user silicon-on-insulator 

process (SOIMUMPs). Foundries such as MEMSCAP provide a cost-effective 
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solution for MEMS fabrication and development work because the processes are 

offered on a multi-user basis therefore several parties share fabrication and mask 

costs. An additional advantage of using a commercial foundry is that there already 

exists an established route to fabricating in large quantities by the same foundry. 

A 10 μm layer of single-crystal silicon is attached, via a 1 μm oxide layer, to 

a 400 μm thick handle wafer, thus forming the starting substrate. The fabrication of 

the MEMS structure is completed using one or both of the following methods – top-

down patterning involving etching of the silicon wafer from the surface to the oxide 

layer, and bottom-up patterning with etching through the posterior surface of the 

handle wafer to the oxide layer. 

The first MEMS structure consisted of two circumferentially unclamped 

circular plates, 1 mm in diameter and 10 μm in thickness, directly attached to a 

suspension beam 3 mm long, 40 μm wide and 10 μm thick. The ends of the 

suspension beam are fixed to the substrate wafer at both ends. Fig. 5.1(a) displays a 

Scanning Electron Micrograph (SEM) of the structure. The defining dimensions can 

be seen clearly in Fig. 5.1(b), constructed in SOLIDWORKS 3-D CAD software.  
 

 
 
 
 
 

 
 
 
 
 
 

 

 

The second structure had two coupling bars which attach each disc to the 

central suspension beam. Each bar is 100 μm wide and 80 μm long. Again the 

thickness of the whole device is 10 μm. All other dimensions match those of device 

1. Fig. 5.2 on the following page shows the SEM image and corresponding 3-D CAD 

geometry for device 2. 

(b) (a) 

Figure 5.1(a) SEM image of device 1 on the left (Gordon Brown of the Centre for Microsystems and 
Photonics), scale bar represents 1 mm. (b) Dimensioned 3-D CAD model of device using SOLIDWORKS on 

the right complete with axes. 
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The optical scanning micro-mirrors were designed to oscillate at the 

mechanical resonance frequencies about two axes of rotation, with the motion 

initiated by means of the comb-drive actuators, visible in both SEM images. The 

comb drive fingers curl upwards from the plane of the device due to stress gradients 

arising from the processing. Owing to the vertical offset of the comb drive fingers, 

when a potential is applied across opposing sets of fingers in the comb drive there is 

a vertical component to the electrostatic force developed that can drive motion in 

either of the two mechanically resonant modes, according to the frequency of the 

drive signal. 

 

 

 

 

 

 

 

 

 

 

 

To validate methods introduced in the previous Chapters and to assess the 

MEMS devices’ potential as directional acoustic sensors, modal analysis of both 

structures was implemented and the mechanical directional sensitivity of device 1 

further examined, both computationally by finite element analysis and physically 

using laser Doppler vibrometry. 

 

 

 

 
 

(a) (b) 

Figure 5.2(a) SEM image of device 2 on the left (Gordon Brown of the Centre for Microsystems and 
Photonics), scale bar = 1 mm. (b) SOLIDWORKS 3-D CAD model with dimensions and Cartesian 

axes on right. 
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5.2 Laser Doppler Vibrometry and Finite Element Modelling of the 
MEMS devices 

5.2.1 Device Preparation 

Both devices were situated on the same silicon die of 11 mm square cross-section 

and a thickness of 400 µm, along with two other devices which are not included in 

this study. Using double-sided adhesive tape, the die is fixed to an FR4 laminate 

printed circuit board (PCB) of dimensions 70 mm × 28 mm × 2.5 mm. Fig. 5.3 shows 

DSLR camera images (Canon EOS 550D, Tokyo, Japan) of the anterior and posterior 

of the die and PCB respectively. On the reverse of the PCB, a hole of approximate 

diameter 8 mm was drilled, allowing full exposure of the back surfaces of the 

structures to the laser spot of the micro-scanning vibrometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Photographs of the PCB, silicon die and devices, 1 left of centre and 
2 right of centre on the top image. Scale bar = 1 cm. 
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5.2.2 Initial Finite Element Modelling of the MEMS Devices 

Using finite element analysis, the frequency response of each device was explored 

computationally. For an initial modal analysis of each MEMS structure, the 

commercially available FEA software, COMSOL Multiphysics, was used. The first 

step was to construct 3-D finite element models of each structure and execute 

eigenfrequency studies. The eigenfrequencies of a device are the set of undamped, 

unforced, natural frequencies of vibration. A structure’s eigenmodes are defined as 

the vibrational patterns or deflection shapes at each of these frequencies (see 2.2.3.2 

for the theory behind eigenmode analysis). 

Building the geometry of device 1 was the first requirement and due to the 

geometrical simplicity of the structure this was done within COMSOL’s modelling 

environment. The device was constructed by first building the 2-D cross-section on 

the XY- work-plane, consisting of two circles and a rectangle, positioned 

accordingly, and these were merged using the union command, with the 

corresponding “keep interior boundaries” command unselected. The extrude work-

plane command with an extrusion distance of 10 µm was used to complete the 

geometry. 

The model materials were then specified and allocated to the appropriate 

domain, in this case, device 1. Initially COMSOL’s embedded library of materials 

was used to provide the necessary material properties. This meant using the 

database’s quoted properties for basic isotropic silicon of 2330 kgm-3 for the density, 

131 GPa for Young’s modulus and a Poisson’s ratio of 0.27. 

The next step was selecting the model domain settings including specifying 

any required boundary conditions. In the linear elastic material model subnode, 

isotropic was selected as material type. Both ends of the suspension beam were given 

a fixed constraint, issuing these boundaries with a prescribed permanent 

displacement of 0 in all directions. All other boundaries were left free. 

Physics-defined meshing was used with a size setting of “finer” (two levels 

higher density meshing than the normal setting) due to the fact that the device is 

relatively thin and therefore contains some small boundary areas. This resulted in a 

mesh consisting of 71737 tetrahedral elements, corresponding to 430998 degrees of 
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freedom. All solver settings remained as default and the number of eigenmodes 

solved for was seven.  

Fig. 5.4 shows the first 7 modes of device 1 and their corresponding 

eigenfrequencies. 

Rocking 1st mode – 1.39 kHz 

Translational 2nd mode – 1.61 kHz 

Rolling 3rd mode – 5.77 kHz 

In-plane bending 4th mode – 6.60 kHz 

In-plane twisting 5th mode – 9.82 kHz 

Flapping 6th mode – 18.18 kHz 

Twisting discs 7th mode – 22.68 kHz 

 

 

Normalised 
Displacement 

0 

+ 

- 

Figure 5.4 First 7 eigenmodes and the eigenfrequencies of device 1. 
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Device 2 was modelled using the same technique, with the only difference 

being the addition of 2 rectangles to the 2-D geometry cross-section to construct the 

coupling bars and then the position of the circular discs adjusted accordingly. The 

first 7 modes of device 2 and corresponding eigenfrequencies are below. 

 

Rocking 1st mode – 1.14 kHz 

Translational 2nd mode – 1.42 kHz 

Rolling 3rd mode – 4.94 kHz 

In-plane bending 4th mode – 5.96 kHz 

In-plane twisting 5th mode – 7.54 kHz 

Flapping 6th mode – 10.88 kHz 

Twisting discs 7th mode – 13.35 kHz 

 

 

Normalised 
Displacement 

0 

+ 

- 

Figure 5.5 First 7 eigenmodes and the eigenfrequencies of device 2. 
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As in 3.2.1 the deformation is again exaggerated for visualisation purposes by 

displaying an enlarged displacement in each direction X, Y and Z. Initially the 

default solver setting was used for the output of eigenvectors i.e. normalisation via 

scaling against the RMS values. Therefore the colour scale for modes 1-3, 6 and 7 

indicates an arbitrary normalised out-of-plane displacement field whereas for modes 

4 and 5 only the in-plane displacement field is displayed (as the out-of-plane 

component is 0 for both of these modes). As mentioned previously, a comparative 

investigation of the amplitude of deflection at each mode cannot be made using 

simple eigenmode analysis alone. 

Both devices display very similar mode shapes, as expected, due to their 

comparably alike structures. Consistently the eigenfrequencies of device 2, with the 

coupling bars, are all lower than those of device 1, with device 2’s natural 

frequencies ranging from around 60 – 90% of the eigenfrequency of the equivalent 

mode of device 1. This indicates that the addition of coupling bars causes a decrease 

in stiffness of the structure, as well as an obvious slight increase in mass, as both 

contribute to a reduction of resonant frequencies. The first mode of both devices is of 

a rotational nature with the axis of rotation being the central suspension beam. Both 

discs are in antiphase of each other at this ‘rocking’ mode. Akin to the 

aforementioned rocking mode of the Ormia ochracea tympanal system (1.4.2.3), the 

mode shape is characterised by the fact that when one disc is at a maximum positive 

displacement, the opposite disc is at a maximum negative displacement. It is 

important to remember that the suspension beam also undergoes a torsional motion at 

this mode. As their second eigenmode, both structures have a translational mode 

characterised by an out-of-plane (or transverse) deflection of the whole device, with 

the phase of the displacement constant across the whole surface. The third natural 

mode of vibration of each device is another rotational mode, this time with the axis 

of rotation passing through the centre of each disc and crossing the beam 

perpendicularly, therefore the discs deflect in a rolling fashion. Computational 

modelling shows the next two eigenmodes, modes 4 and 5, both consist purely of 

motion in the plane of the device, i.e. when looking at both devices’ fourth and fifth 

mode shapes above there is no displacement component in the plane perpendicular to 

the page. These two modes are described as an in-plane bending mode and in-plane 
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twisting mode respectively. For the first five modes of each device, device 2 has an 

eigenfrequency between approximately 77 – 90% of the eigenfrequency of the 

corresponding mode of device 1. Modes 2 to 6 of each device have not been reported 

to be present in the Ormia ear or microphone systems inspired by such. Eigenmode 

number 6 of both structures is a higher frequency translational mode where the discs 

are moving coherently in a flapping style and this mode is more akin to the 

translational mode observed in Ormia, believed to combine with the so-called 

rocking mode to contribute to Ormia’s directional hearing capability. Finally, the 7th 

mode of the devices is another torsional vibration, with the axis of rotation again 

through the centre of each disc and perpendicular to the suspension beam only this 

time each disc is rotating 180° out of phase of the other, resulting in a twisting effect. 

For device 2, with the small coupling beams attaching the discs to the main 

suspension beam, these two higher frequency eigenmodes are approximately 60% 

lower in frequency than for device 1. Naturally the deflection shapes at these modes 

are heavily reliant upon the coupling between disc and central beam and clearly the 

addition of the small coupling bar significantly decreases the natural frequencies 

through reducing the strength of this coupling, effectively giving the discs more 

flexibility. 
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5.2.3 Modal Analysis of the MEMS Devices using Laser Doppler Vibrometry 

Micro-scanning laser Doppler vibrometry (LDV) was used to observe the vibration 

of the devices in response to various acoustic stimuli, allowing the implementation of 

modal analysis. As described previously (2.1 and 3.1) LDV provides a non-contact, 

optical method for measuring the out-of-plane vibration velocities of structures, 

allowing the investigation of complex vibrational responses.  

The Polytec PSV-300-F (Polytec: Waldbronn, Germany) with scanning head 

(OFV-056) was fitted with a specialised close-up attachment unit with integrated 

optics adapting the vibrometer for use with smaller sized samples such as the devices 

investigated here. When focussed onto the surface of a device, the diameter of the 

laser spot was just 3 – 5 µm and could be positioned with micrometre accuracy. 

The PCB, as described in 5.2.1, was used to mount the devices in a position 

which provided an unobstructed path for sound to propagate between the loudspeaker 

and the devices, which were held in place by two metal blocks, one bolted above and 

one bolted below the PCB, and additionally Blu-tack (Bostik-Findley, Stafford, UK) 

was placed on the reverse of the PCB to further improve the fixing of the devices. 

Laser access was facilitated through the drilled hole in the PCB, clearly exposing the 

entire underside of each device. The structures were orientated with their central 

suspension beams vertically, perpendicular to the floor, and therefore the devices’ 

vibrating surfaces were perpendicular to the incident laser beam of the LDV. 

 

 

 

 

 

 

 

 

 

Fig. 5.6 above and Figs. 5.1 and 5.2 all show the orientation of the devices 

more clearly, and 5.1 and 5.2 also show the chosen Cartesian axes used to define 

Loudspeaker LDV 

Figure 5.6 Schematic diagram of arrangement of loudspeaker, device and LDV. 
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device geometry throughout the thesis. This arrangement of sample and apparatus 

allowed the scanning of the surfaces of both devices with high spatial accuracy and 

the measurement of the transverse (out-of-plane) velocity of the device in the 

positive and negative Z directions.  

The environmental conditions in the laser vibrometer room were a 

temperature of 23°C and relative humidity of 50%. Both the vibrometer itself and the 

sample devices were mounted on a floor panel isolated from the rest of the room to 

reduce unwanted structural vibrations. 

Initially wideband periodic chirps were generated by an arbitrary waveform 

generator (Agilent 33220A; Santa Clara, USA), passed through an amplifier (Sony 

TA-FE570; Tokyo, Japan) and on to a loudspeaker (ESS Heil Air Motion 

Transformer; South El Monte, USA), located 500 mm from the devices. The low and 

high frequencies of the chirp were 1 kHz and 25 kHz respectively. Therefore the 

distance between the sound source and device was sufficiently far to ensure that the 

devices were in the far field of the source and therefore no significant near-field 

effects were present. Reference sound pressure was measured via a precision 

pressure microphone (Brüel & Kjær 4138; Nærum, Denmark), positioned 

approximately 10 mm from the device die, and connected to a preamplifier (Brüel & 

Kjær Nexus 2690; Nærum, Denmark). The same amplitude correction technique as 

mentioned in 3.1 was utilised to condition the sound stimulus. Fast Fourier 

Transform acquisition mode was also used and therefore the transverse velocity gain 

(in ms-1Pa-1) of the devices was measured in addition to a simultaneous investigation 

of the phase response, across the frequency spectrum contained within the chirp. 

Both devices were scanned with 100 – 200 scanning points, each averaged 15 times 

using the vibrometer software’s complex averaging algorithm. Post-processing of 

this chirp response data allowed the identification of mode shapes and their 

corresponding frequencies. The next step was further investigation of any of these 

identified modes by a change in the acoustic stimulus to single frequency pure tones 

at these specific frequencies and the resulting modal shapes were measured 

accurately. Integrating the velocity gain at each of these identified modes resulted in 

values for the displacement gain of the devices when vibrating in a particular mode. 
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Figs. 5.7 and 5.8 show the devices’ first 5 modes detected using LDV, and the 

corresponding frequency of these deflection shapes. 

Rocking mode – 1.40 kHz 

Translational mode – 2.20 kHz 

Rolling mode – 7.39 kHz 

Flapping mode – 20.51 kHz 

Twisting discs mode – 23.30 kHz 

 

 

 

 

 

Figure 5.7 First 5 out-of-plane modes of device 1 observed by LDV. 
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Rocking mode – 1.13 kHz 

Translational mode – 2.00 kHz 

Rolling mode – 6.03 kHz 

Flapping mode – 12.40 kHz 

Twisting discs mode – 13.70 kHz 

 

 

Modal analysis of the vibration of the MEMS devices in response to pressure 

loads in the form of acoustic stimuli resulted in the same mode shapes being 

observed through laser vibrometry as those simulated using finite element analysis. 

Figure 5.8 First 5 out-of-plane modes of device 2 observed by LDV. 
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The characteristic rocking, translational, rolling, flapping and twisting modes were 

all observed. However, modes 4 (in-plane bending) and 5 (in-plane twisting) were 

not observed using laser vibrometry. This result was expected because the micro-

scanning laser vibrometer used is capable of measuring vibrations in one dimension 

only, i.e. measuring transverse deflections, parallel to the laser beam itself. The 

incremental position in the frequency domain of each mode observed, relative to 

previous or subsequent modes, matched perfectly between the models and modal 

analysis experiments. Tables 5.1 and 5.2 below show the frequency comparison more 

clearly. 

  Device 1 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.40 2.20 7.39 - - 20.51 23.30 
FEA – Iso Si 1.39 1.61 5.77 6.60 9.82 18.18 22.68 

Table 5.1 Comparison of device 1’s modal frequencies measured using LDV and computed using FEA. 

        

 
  Device 2 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.13 2.00 6.03 - - 12.40 13.70 
FEA – Iso Si 1.14 1.42 4.94 5.96 7.54 10.88 13.35 

Table 5.2 Comparison of device 2’s modal frequencies measured using LDV and computed using FEA. 

       

The rocking mode (1st mode), when observed using LDV, was found to be at 

1.40 kHz and 1.13 kHz for devices 1 and 2, respectively. An eigenmode analysis of 

finite element models of devices 1 and 2 computed these same rocking modes at 1.39 

kHz and 1.14 kHz for each structure, a very close match between model and 

experiment. However, for the majority of the modes (2, 3, 6 and 7) the correlation is 

not as close between the frequencies of the modes measured with LDV and the 

modelled eigenfrequencies. 

Yet again all of the modes of device 2, when stimulated acoustically and 

observed using vibrometry, are lower in frequency than the corresponding modes of 

device 1. Closer inspection of the maximum displacement gain of the devices at each 

of their modes, indicated by the Figure legends on Figs. 5.7 and 5.8, shows some 

significant differences between modes. Specifically both devices were extremely 
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sensitive when stimulated at the frequency of their translational 2nd mode, 2.2 kHz 

and 2 kHz for devices 1 and 2 respectively. The maximum magnitude of the gain at 

this mode was 8 µmPa-1 for device 1 and 4 µmPa-1 for device 2 whereas all of the 

other modes showed maximum displacement gain amplitudes of anything between 

about 0.1 and 0.001 of this. It was noted that some modes were sometimes more 

difficult to excite than others, particularly the rocking and rolling modes (numbers 1 

and 3) of both devices. By moving the direction of the loudspeaker from near the 

normal of the devices’ centre to some angle in the X-axis direction (according to the 

axes on Figs. 5.1 and 5.2) the rocking mode was more readily excited as would be 

expected. Likewise decreasing or increasing the elevation of the loudspeaker from 

the norm of the same height as the devices was beneficial in strengthening the 

excitation of the rolling mode.  

Further investigation into the poor correlation between some of the 

experimentally measured frequencies and computationally predicted 

eigenfrequencies of the modes of vibration was the next step. It must be noted that 

the S-C Si material properties used in the model made the assumption of isotropy of 

stiffness throughout the silicon structure. For S-C Si, used in the microfabrication of 

MEMS, this is known to be untrue therefore the next step is to allow for anisotropic 

properties of the material. 
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5.2.4 Finite Element Modelling of the Devices Incorporating Anisotropy 

In the previous finite element modelling experiments, single crystal silicon was 

assumed to be isotropic and the value used for Young’s modulus, E, in the material 

model settings was 131 GPa. The choice of E can significantly influence 

computational results and material property testing has shown a range from 130 to 

188 GPa for E of silicon (Hopcroft et al., 2010). In reality the crystalline structure of 

S-C silicon means that the elastic response can differ depending on the orientation of 

a particular structure. Anisotropic material properties are explained more thoroughly 

in 1.3.  

Single-crystal silicon naturally forms a ‘diamond’ cubic structure and the 

lattice symmetry therein means the stiffness matrix of elastic constants which 

governs the stress-strain relationship for linear deformation of S-C Si can be 

simplified from a 4th rank tensor with 81 terms (general case for anisotropic 3-D 

problems) to a 6×6 matrix, with only 3 independent values. 

COMSOL has the following elasticity matrix with 3 values, from literature 

(Hopcroft et al., 2010), built into the material library under the entry for anisotropic 

single-crystal silicon.  

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎡

 

165.6
63.9
63.9

0
0
0

 63.9
165.6
63.9

0
0
0

63.9
63.9

165.6 
0
0
0

0
0
0

79.5
0
0

 

0
0
0
0

79.5 
0

0
0
0
0
0

79.5

 

⎦
⎥
⎥
⎥
⎥
⎤

 

[5.1] 
Changing the material settings subnode to incorporate the above as the moduli of 

elasticity resulted in the new eigenfrequencies shown in Tables 5.3 and 5.4. 

 

  Device 1 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.40 2.20 7.39 - - 20.51 23.30 
FEA – Aniso Si 1.61* 1.71* 5.81 6.59 9.82 18.51 26.71 

*highlights switching of location of rocking and translational modes 

Table 5.3 Comparison of device 1’s modal frequencies measured using LDV and computed using an anisotropic 
material model in FEA. 
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  Device 2 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.13 2.00 6.03 - - 12.40 13.70 
FEA – Aniso Si 1.40 1.42 5.01 5.95 7.55 11.05 15.83 

Table 5.4 Comparison of device 2’s modal frequencies measured using LDV and computed using an anisotropic 
material model in FEA. 

 

 

For all but the 6th mode of both devices, changing from the isotropic material 

model for silicon to the anisotropic model silicon had a negative (or none in the case 

of the translational mode) impact on the correlation between computationally 

calculated eigenmodes and their LDV observed counterparts. Furthermore device 1 

showed a complete switching of position between rocking mode and translational 

mode, something never observed in the vibrometry.  

The stiffness matrix constants in [5.1] are determined with respect to specific 

Cartesian axes X, Y and Z. Conventionally, the matrix transform for [5.1] uses the 

principal crystallographic axes, i.e. the <100> directions in the case of cubic crystals. 

Taking a closer look at the structural arrangement of standard (100) silicon wafer 

used here (and commonly in MEMS devices), the X-Y axes (the <110> directions) 

should be aligned with the X-Y axes of the elasticity matrix (the <100> directions). 

Therefore, because of the orientation of the modelling workspace and that of the 

anisotropic stiffness matrix in COMSOL, there is a mismatch between the X-Y axes 

of the wafer and those of the elasticity matrix. Incorporating a 45° anti-clockwise 

rotation of the geometry of the devices within the simulation workspace, with the Z-

axis as the axis of rotation and the device centres as rotation points, before applying 

the material model type, should overcome this mismatch (Hopcroft et al., 2010, 

Sections VIII & XI). 

Tables 5.5 and 5.6 show a comparison of the LDV observed modal 

frequencies and the frequencies of the eigenmodes extracted from these new models, 

incorporating both the anisotropic stiffness matrix and rotation, for both device 1 and 

2. 
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  Device 1 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.40 2.20 7.39 - - 20.51 23.30 
FEA – Aniso Si + rotate 1.41 1.83 6.53 7.47 11.11 20.45 23.54 

Table 5.5 Comparison of device 1’s modal frequencies measured using LDV and computed using an anisotropic 
plus rotation material model in FEA. 

 
 

  Device 2 Modal Frequencies / kHz 
  1st 2nd 3rd 4th 5th 6th 7th 

LDV 1.13 2.00 6.03 - - 12.40 13.70 
FEA – Aniso Si + rotate 1.17 1.63 5.56 6.75 8.51 12.27 13.84 

Table 5.6 Comparison of device 2’s modal frequencies measured using LDV and computed using an anisotropic 
plus rotation material model in FEA. 

 

Closer inspection of the modal frequencies for both devices, as measured 

using LDV and predicted through FEA, shows that there is now a much closer 

correlation for modes 2 (translational), 3 (rolling), 6 (flapping) and 7 (twisting) as 

well as a remaining very close correlation for the rocking mode 1. These results 

suggest that these finite element models, which account for the anisotropy of S-C Si 

in the material model settings, and their accompanying eigenmode analyses, provide 

a fairly accurate prediction of the frequencies of 5 modes (the remaining 2 modes of 

each device were unable to be physically measured). 

As mentioned in 5.2.2 the default solver setting for the scaling of the output 

of eigenvectors (and therefore the one used here) is RMS normalisation. Changing 

this to scaling against the model mass matrix in the advanced solver settings and 

rerunning the eigenmode analysis solver results in the computation of the modal 

mass participation factors (MPFs, defined in 1.3), of which there are 3 translational 

MPFs for each mode, one for each Cartesian axis direction. The effective modal 

mass fractions in each axis direction are then calculated as in 3.2.1. These EMMFs 

are an estimate of the amount of energy which is in a particular mode of the system. 

Tables 5.7 and 5.8 below show the calculated EMMFs for each mode of both 

devices, in the X, Y and Z directions. 
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 Effective Modal Mass Fractions of Device 1 / % 
 1st 2nd 3rd 4th 5th 6th 7th 

X 1.59×10-8 2.41×10-8 1.43×10-5 48.94 2.99×10-8 5.14×10-7 7.51×10-7 
Y 1.77×10-8 2.21×10-8 1.36×10-5 48.94 3.52×10-8 6.85×10-8 6.74×10-7 
Z 4.28×10-8 97.81 4.99×10-9 4.50×10-8 2.67×10-8 0.11 7.42×10-8 

Table 5.7 Effective modal mass fractions for modes 1 – 7 in X, Y and Z directions, of device 1. 

 Effective Modal Mass Fractions of Device 2 / % 
 1st 2nd 3rd 4th 5th 6th 7th 

X 1.27×10-8 6.59×10-12 1.27×10-5 48.87 4.99×10-8 1.20×10-8 1.63×10-8 
Y 2.97×10-9 8.20×10-11 1.14×10-5 48.87 4.56×10-8 1.79×10-8 4.09×10-8 
Z 2.89×10-8 97.51 1.30×10-11 7.29×10-13 6.29×10-8 0.26 2.99×10-10 

Table 5.8 Effective modal mass fractions for modes 1 – 7 in X, Y and Z directions, of device 2. 

 

Clearly the most dominant mode, when considering displacement in the Z-

axis direction, is the translational mode number 2 of each device with EMMFs of 

nearly 98% for each device. Flapping mode number 6 is the second strongest mode 

when considering sound incident in the Z-axis direction. The 1st mode (rocking) and 

the 3rd mode (rolling) are very weak in comparison with Z direction EMMFs for both 

devices ranging from just 1.30×10-11 % to 4.28×10-8 %, and their proximity to the 

values for Z-axis stimulation of the in-plane modes a definite indication of the sheer 

domination of the translational mode. As expected, the strongest mode of both 

devices in the X- and Y- axis directions is the in-plane bending mode 4, with nearly 

50% EMMF. It is worth noting that, due to the rotation of the geometry through 45° 

to properly account for the S-C Si crystal structure, the in-plane translational mode 4 

is a deflection not directly in the X- or Y- axis directions but at 45° between the two 

axes, hence the approximate 49% : 49% split between 𝐸𝐸𝐸𝐹4 𝑥 and 𝐸𝐸𝐸𝐹4 𝑦. 

Recalling the LDV measurement technique used to analyse these 2 devices, 

the vibrometer is capable of measuring only transverse vibrational deflections, i.e. 

those in the Z-axis direction, with the phase of displacement at each scanning point 

then used to determine the deflection shape. In combination with the above tables of 

EMMFs of the modes of each device, there is clear reasoning for the observation that 

both the rocking and rolling modes (1 and 3) were often difficult to excite and 

therefore measure. These values also begin to explain the greatly contrasting 

maximum displacement gain of both devices while vibrating in their translational 

modes compared to the other modes observed through LDV. 
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5.2.5 Finite Element Analysis of the Mechanical Directionality of Device 1 

For a MEMS device to display mechanical directionality there is usually a 

requirement for a coupling of two or more modes of vibration of the device. This, 

combined with the results in the preceding subsection, guided the choice of the 

operating frequency with which to study the directionality of device 1. The choice of 

1.2 kHz was made based on the fact it was in close proximity to the rocking mode of 

the device (1.4 kHz), but not exactly on the modal frequency as well as being far 

enough from the very strong translational mode at nearer 2 kHz. This explains the 

reasoning behind using an operating frequency below the rocking mode as an 

alternative to one between the two modes, because too close to the translational 

mode and any influence of the rocking mode would be diluted to the point of being 

negligible. 

Mechanical directionality analysis using finite element modelling required 

the use of COMSOL’s acoustic-structure interaction model with a frequency domain 

study type. As outlined in 2.2.3.3, two domains were created within the model and 

allocated a specific domain type – solid (the device) and fluid (air). Coupling the 

fields of acoustics and structural mechanics required a sphere of air (of radius 80 

mm) to be created around the device and the setting of several boundary conditions. 
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Figure 5.9 Definition of the sound source position angle 𝜃. 
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Fig. 5.9 shows the position angle, 𝜃, which was defined as the angle between 

the incident sound and the Z-axis normal to the device, measured through the XZ-

plane. The stimulus was a simulated plane wave pressure field of amplitude 0.06 Pa 

(~70 dB SPL re 20 μPa) of frequency 1.2 kHz, applied to the external boundaries of 

the air domain. The incident sound wave was simulated using the method outlined in 

2.2.3.3 with the azimuthal angle 𝜑 and elevation angle 𝜗 being used to define the 

angle of incidence via wave vector component calculations. 

Formulating the model through the parameterisation of the angles and vector 

components in this way allowed double parametric sweeps (one nested inside the 

other) to be implemented, meaning automated and efficient computation of the 

response of the device at a range of incident sound position angles from -90° (closest 

to the right disc) through 0° (the device normal) to +90° closest to the left disc, with 

an angle step size of 5°. The same anisotropic material model as the second part of 

5.2.3 was used for the S-C Si (i.e. stiffness matrix entered and geometry rotated 

through 45°). Because of the geometry rotation the parametric sweeps became 

𝜑 = 𝜋
4

, 5𝜋
4

 for the outer and 𝜗 = 𝜋
2

 , … , 𝜋 with a step of 𝜋
36

 for the inner. Additionally, 

the ends of the suspension beam were again given the fixed constraint boundary 

condition. The “Include geometric nonlinearity” feature was enabled as a study 

setting due to the nature of the suspension beam in the structure and the fact a fluid-

structure interaction was involved. 

 

 

 

 

 

 

 

 

Fig. 5.10 above is a snapshot of the incident sound wave at 𝜃 = 0° showing the 

whole air domain and the device in the centre. 

Sound pressure 
+ 

0 

- 

Figure 5.10 Snapshot showing incident sound wave in the air domain. 



196 
 

Fig. 5.11 shows two views of the dynamic cycle of the response of the device 

at 𝜃 = 0°, with snapshots taken at phases of 0°, 90°, 180°, 270° and 360° of the 

cycle. Clearly the displacement across the device, specifically of the discs, is a 

constant at this stimulus angle throughout the cycle, with the whole device moving 

coherently. Worth noting is that the displacement scale legends at a cycle phase of 

180° is the same as at 0° only inverted. The same is observed for cycle phases of 90° 

and 270°. 

Fig. 5.12 displays the same only for an incident sound at 𝜃 = +45°, i.e. from 

the direction of the top left corner of the first image. At this angle the rocking mode 

can be seen to interact with the translational mode and have some influence on the 

vibration pattern of the device. However it should be noted that at phases of 0° and 

180° in the cycle the difference between the edge of the left disc and right disc is 

only 20 pm. Additionally the plan view images at these phase points are mirror 

images of each other and the displacement scales are almost the exact same, i.e. in 

any one whole cycle the maximum displacement of the edge of the left disc is very 

close to the maximum displacement of the edge of the right disc. 

To investigate the directionality, the device directional intensity gain at each 

incident sound angle 𝜃 was defined as the ratio between the maximum transverse 

displacement of the edge of the right disc and the displacement of the edge of the left 

disc.  

Intensity gain𝜃 =
𝑧𝑟

𝑧𝑙
 

[5.2] 

where 𝑧𝑟 and 𝑧𝑙 are the magnitudes of displacement of the edge of the right and left 

disc respectively. 
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Phase of cycle = 0° 

Sound pressure 
+ 

0 

- 

44 fm 
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Figure 5.11 Two views of the instantaneous displacement at phases of 0°, 90°, 180°, 
270° and 360° for sound incident at 0°. 
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Figure 5.12 Two views of the instantaneous displacement at phases of 0°, 90°, 180°, 
270° and 360° for sound incident at 45°. 
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COMSOL provides many post-processing options and the extraction of 

displacements and velocities at any user-defined points on the structure was a simple 

task. The intensity gain at each sound source angle 𝜃 from -90° to +90° with an angle 

step size of 5° was calculated and then plotted on Fig. 5.13. The symmetry of the 

device resulted in a symmetrical response across the range of angles of incident 

sound, characterised by the horizontal line through 1 shown for the directional 

intensity gain. At the two extremes, 𝜃 = −90°, +90° the device moves only very 

slightly (0.3 pm total displacement in all directions) and the z-displacement 

component is only 13 – 16 fm with the right hand disc very slightly favouring sound 

from -90°, i.e. an ipsilateral source, rather than a contralateral source at +90°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Simulated directional intensity gain versus angle of sound source at 1.2 kHz for device 1. 
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5.2.6 LDV analysis of the Mechanical Directionality of Device 1 

All of the same equipment as used in 5.2.3 was utilised for experimentally measuring 

the mechanical directionality of the device. The device, LDV and loudspeaker were 

setup as shown in Fig. 5.14 and the sound source position angle 𝜃 was defined as 

previously, and measured using a custom-built goniometer. The distance between 

loudspeaker and device remained at 500 mm. 

 

 

 

 

 

 

 

 

 

 

 

A 1.2 kHz pure tone sound stimulus was used and, as in 5.2.3, both the 

velocity of the device and the microphone reference signal were recorded. For every 

position angle, 𝜃, from -90° (nearest right disc) through 0° (normal to the structure) 

to +90° (nearest left disc) with a step angle of 5°, single point measurements were 

made of the outer edge of the left disc and the outer edge of the right disc, each 

averaged 15 times with complex averaging. Computation of the transfer function of 

the device’s velocity (ms-1) to sound pressure (Pa) was implemented using FFTs with 

a rectangular window. The amplitude gain in ms-1Pa-1 is calculated from this and 

used to calculate the directional intensity gain, which is the ratio between the gain of 

the right disc and that of the left disc.   

Fig. 5.15 shows snapshot scans at phases of 0°, 90°, 180°, 270° and 360° for 

a sound source position angle of 0°. The same disc on one side of the device clearly 

shows a greater displacement at both the positive and negative maxima, i.e. an 

asymmetric response unlike that seen in the finite element model in Fig. 5.12.  

𝜃 

LDV 

Loudspeaker 

-90 

+90 

Figure 5.14 Schematic diagram of arrangement of LDV, loudspeaker and device. 
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Plotting the LDV measured directional intensity gain against the angle of 

sound source 𝜃 resulted in the grey line on Fig. 5.16. The intensity ratio of the right 

to the left disc is at a maximum for 𝜃 = −75° where the gain is between 2 and 2.5. 

For a sound source angle of 0° i.e. at the device’s normal, the gain is approximately 

0.6. At 𝜃 = 60° the gain converges to a minimum of about 0.1. These results and the 

snapshots above are in sharp contrast to those seen in Figs. 5.12 and 5.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4 nm 

Displacement 
4 nm 

0 Phase of cycle = 0° Phase of cycle = 90° 

Phase of cycle = 180° Phase of cycle = 270° 

Phase of cycle = 360° 
Figure 5.15 Measured instantaneous displacment snapshots at phases of 

0°, 90°, 180°, 270° and 360° for sound source angle 0°. 

Figure 5.16 Measured directional intensity gain versus angle of sound 
source at 1.2 kHz for device 1. 
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5.2.7 FEA of the Mechanical Directionality of Device 1 with Die 

The next step was to build the silicon die into the model and position the device as it 

was in reality, to investigate the effects of the die and device placement on the 

mechanical directionality response of the device. Fig. 5.17 shows a 3-D view of the 

new device plus die geometry and also a reverse plan view showing the incorporation 

of the hole behind the die as seen in Fig. 5.3. 

 

 

 

 

 

 

 

 

 

 

The same analysis as 5.2.4 was implemented using the exact same parameters 

with the only difference being the fixed boundary condition applied to the reverse of 

the silicon die, only outside the circle, i.e. the area shown in green on Fig. 5.17 right. 

Fig. 5.18 shows plan views of the dynamic cycle of the response of the device 

on the die at 𝜃 = 0°, with snapshots taken at phases of 0°, 90°, 180°, 270° and 360° 

of the cycle. There is now a visible difference between left and right disc, at all 

phases in the cycle with one disc always displaced more than the other, in an 

asymmetric fashion, throughout the whole cycle.  

Snapshots from the same view for 𝜃 = 45° make up Fig. 5.19. The same 

asymmetry is visible here with one disc consistently having a greater displacement 

than the other throughout the cycle. 

Recalculating the directional intensity gain using the same method outlined in 

5.2.4 and plotting gain against the sound source angle 𝜃 results in the black dotted 

line on Fig. 5.20. The grey line is the LDV measured mechanical directionality 

intensity gain as seen in 5.2.6.  

Figure 5.17 New geometry of device 1 and silicon die surround. 
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The relationship between the directional intensity gain and sound source 

angle, as computed using FEA, follows the same pattern as that measured using 

LDV. Both reach a maximum at a large negative source angle, -85° in the case of 

FEA, where the gain is 4. At 𝜃 = 0° the gain, calculated from the finite element 

model of device plus die, is 0.5. This means that the left hand disc has a maximum 

displacement twice as large as the right hand disc at this incident sound angle. The 

modelled intensity gain converges to a minimum of 0.1 at +80°. 
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Figure 5.18 Device and die plan views of the instantaneous displacement at phases of 0°, 90°, 180°, 
270° and 360° for sound incident at 0°. 
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Figure 5.19 Device and die plan views of the instantaneous displacement at phases of 0°, 90°, 180°, 
270° and 360° for sound incident at 45°. 

Figure 5.20 Simulated and measured directional intensity gain versus angle of sound source at 1.2 
kHz for device 1. 
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5.3 Discussion 

Using commercially available SOIMUMPS, two single-crystal Si MEMS devices 

were fabricated and investigated both computationally using FEM and 

experimentally using LDV. The first structure consisted of two equiradial circular 

discs fixed directly to a suspension beam. Short coupling beams attached the discs to 

the supporting beam in the second structure. 

 The same first five out-of-plane mode shapes were observed when using 

FEM as when using LDV. Reasonable correlation was observed between the 

estimated and measured resonant frequencies using both an isotropic and an 

anisotropic material model for silicon (as outlined in Hopcroft 2010). Measuring the 

correlation between the models and LDV experiments by calculating the average 

absolute value of the percentage difference between model eigenfrequency and 

observed frequency of the first five transverse modes showed an improvement from 

about 13% difference for the isotropic models to just 6% between model and 

experimental modal frequencies for the anisotropic material model. However, it 

should be noted that FEM mechanical eigenmode analyses consider only the 

undamped, unloaded vibrational modes of a solid structure. One main source of 

damping of devices with the structures seen here is squeeze-film damping 

(mentioned in 1.5.2) however since a hole was drilled through the mounting PCB 

then no other surface was in close proximity to either side of the devices, negating 

the influence of this effect. 

 Attached to the central suspension beams of the devices were comb 

structures, originally designed for actuation purposes (see Fig. 5.1(a)). Any effect of 

these small structures and their associated masses on the damping or stiffening of the 

structures was assumed negligible and therefore excluded from the modelling in this 

thesis. When using FEM to simulate the devices, any potential oxidation or 

humidity-related effects, as well as impurities in the S-C Si, were considered 

insignificant to the overall modelling results and out with the scope of the research. 

Great care was taken in ensuring that the FEM meshing density was sufficiently fine 

for both device models as well as the surrounding air domain for the second 

modelling application. 
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When the first device was stimulated at a specific working frequency, some 

interaction occurs between two close modes, called the rocking and translational 

modes. These combine in differing amounts depending on the angle of the sound 

stimulus. A predictable and repeatable relationship for the mechanical directionality 

was the outcome under investigation using LDV. Initially FEA of a model structure 

failed to display this same relationship due to oversimplification of the model device 

and the die on which it was mounted. Once the device’s position on a surrounding 

silicon die was incorporated, both FEM simulations and LDV experimentation 

corroborated this relationship between angle of sound source and directional 

intensity gain. In reality, four devices were located on one die along with a centrally 

located comb structure (see Fig. 5.3). Nonetheless these extra features were not 

observed to significantly affect the accuracy of the modelling results and therefore 

were not included in the final acoustic-structure interaction model. For laser 

vibrometry, the die was also attached to a PCB which was then held top and bottom 

by two small metal blocks. Given the already multi-length-scale, high aspect ratio 

geometry involved in the finite element model, these additional objects were not 

incorporated into the final model, nor were they found to substantially affect the 

devices’ modal analysis results or the mechanical directionality study. In the 

modelling, the attachment between die and PCB was also assumed to be a 100% 

perfectly fixed boundary. 

Although the 1st device in this thesis displayed some form of mechanical 

directionality the extent of its performance appears limited by the relative sensitivity 

of the structure at the rocking mode compared to the translational mode. A 

suboptimal directional performance is achieved since the translational mode dilutes 

the rocking mode. However, the devices investigated here were not originally 

optimised as bio-inspired microphones yet they still exhibit strong sensitivity and 

some directional response. Therefore these findings and the methods used therein can 

help to guide future research on purposely designed biologically-inspired directional 

MEMS microphones. 
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Chapter 6 : Conclusions and Future Work 

 

“Science should make us the masters and possessors of nature” – René Descartes 

 
 

 
In this section, conclusions are formulated based on the results presented in Chapters 

3, 4 and 5 with a view to consolidating the findings. Any anomalies or shortfalls in 

experimental and computational procedure are addressed along with the 

identification of potential future work in the field of insect ear inspired acoustic 

systems. 
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6.1 Conclusions 

Mankind has long taken inspiration from the animal kingdom and today there are 

many everyday examples of bioinspired technology. Recently much work has been 

done in the field of bioinspired acoustic systems including the development of both 

microphones and loudspeakers. The first objective of this PhD thesis was to 

investigate an invertebrate hearing system, specifically that of the locust, for the 

purpose of improving the link between this highly evolved, environmentally 

conditioned, miniaturised, bioacoustic sensor and the design and fabrication of novel 

sensors and transducers.  

 After a comprehensive review of published literature on the locust tympanal 

hearing system, micro-scanning laser Doppler vibrometry was used to measure the 

mechanical response of the tympanal membrane to stimuli of various frequencies. 

Travelling waves with unique frequency-dependent form were measured on the 

membrane, with consistent frequency ranges and transition frequencies of each wave 

type, believed to be the underlying method with which the locust accomplishes 

frequency discrimination. These results corroborated previously published findings 

on the laser vibrometry of the locust tympanum. With the existence of consistent 

frequencies where the vibration shape changed rapidly from one travelling wave 

shape to another along with the identification of distinguishable features of each 

travelling wave pattern, an investigation of the eigenmodes of simulated locust 

tympana was the subsequent step. 

 Six eigenmodes of a circumferentially clamped uniform circular disc were 

computed using finite element modelling, along with the extraction of their 

corresponding eigenfrequencies and effective modal mass fractions. Analytical 

methods were used to verify these eigenfrequencies using the theory for the 

transverse modes of ideal circular plates. In-depth analysis of the FEM mesh 

performance resulted in very close correlation between the results computed using 

the finest mesh density and theory. Parametric sweeps were used to analyse the 

influence of disc radius and thickness as well as the Young’s modulus, density and 

Poisson’s ratio of the material, on the shape of the eigenmodes, their 

eigenfrequencies and the EMMF. All of these computed results matched the 
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theoretical relationship between the defining characteristics of a plate and its 

transverse modes. 

 Acoustic-structure interactions with a frequency response analysis were then 

employed to explore the possibility of travelling wave formation under the correct 

conditions, guided by the results of the eigenmode analyses. A mechanism was 

discovered for the formation of frequency-dependent travelling waves on the circular 

disc model locust tympana, and hence for the possibility of frequency discrimination 

in the locust ear. Using this novel method, such formation of travelling waves on 

model locust tympana are explained in a new fashion. Through a coupled-mode 

response, the locust ear models showed the formation of complex vibrations and the 

propagation of frequency-specific travelling waves. There is an apparent strong 

influence of the asymmetric modes on the response of the locust eardrum as a result 

of specialised material properties and system characteristics. In this way, analogies 

can be drawn between the locust tympanum and the tympani drum percussion 

instrument, studied by Edmund Bowles (1997). The author observed that pre-

eighteenth century the drum was struck at or very near the centre which resulted in a 

dull thud, suitable only for outdoor ceremonial music. However when playing 

indoors, this method became obsolete as the desire grew for a clear, precise, and 

ringing tone. In consideration of the locust hearing system, off-centre thin and thick 

membrane regions with gradual interstitial thickness changes plus an off-centre mass 

in the form of the MO all contribute to a similar effect as that seen by the tympani 

drum when struck off-centre (now the most common method of playing) since the 

asymmetric modes are preferred due to the more musical sound as a result of 

harmonic interactions among other phenomena. These musical sounds also take 

significantly longer to diminish than those made using a central strike which excites 

only circularly symmetric modes. This provides a possible explanation for the 

observation of Windmill et al. (2008) that, when measured using LDV in the time 

domain, the locust tympanum vibrational response outlasts the stimulus by up to a 

factor of ten, owing to frictional forces and the lower damping of asymmetric modes.  

 Many aspects of the locust tympanal system were investigated 

computationally for the first time, including a smooth variable cuticle thickness 
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across the TM, a change of the outline shape of the model tympanum, the PV 

position, the presence of the MO and the effect of the overhanging cuticular shell.  

 For non-uniform model tympana, the vibration was found to favour the 

thinner section of a membrane, at least initially. The maximal displacement peak at 

some frequencies was found to rise and fall several times as a result of asymmetrical 

transitions in membrane thickness. In addition lower frequency travelling waves 

were found to travel further into thicker regions whereas the peaks in higher 

frequency travelling waves dissipated before reaching the thicker membrane regions.  

 Assuming an elliptical disc shape as a model locust tympanum did not 

provide any improvement over circular models. However, the real locust TM is 

reniform in shape and this feature appears to affect the vibration patterns in a 

complex spatial way. Firstly, the asymmetrical nature of a kidney-shaped membrane 

seems to alter the mode shapes by realigning the antinodes, slightly increasing the 

strength of the analogous modes of more primitively shaped membranes. In doing so 

the membrane shape facilitates the transfer of energy from incoming sound waves to 

mechanical vibrations which reach specific areas of the reniform model tympana. 

Constructing a complex 3-D CAD modelled geometry with smooth contoured 

thickness distribution also confirmed that the location of the PV coincided with the 

position of antinodes of multiple mode shapes of this model tympanum. Moreover 

this indicates that travelling waves, forming in such models, would reach maximal 

displacements and rapidly dissipate at such a location. Both of these are novel in  

 Incorporating a simplified Müller’s organ as an interior attachment to a model 

tympanum resulted in the decrease of all eigenfrequencies and the appearance of a 

fundamental mode in the region of 0.5 kHz where the MO rocked in a motion 

coupled with the vibration of the membrane which deflected maximally in close 

proximity to the model MO. Due to the increased surface area and complex 

deflection shapes of the MO, the interior surface of the model TM plus MO also 

displayed a more than twofold increase in sensitivity to sound than the exterior 

surface. An analysis of the cuticular shell that partially covers the TM points towards 

the shell’s purpose being to both protect the TM from any external damage and also 

pre-condition higher frequency sounds, hence increasing the sensitivity of part of the 

audible range of the locust.   
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 The final study of the locust system was on the impact of membrane vibration 

shape on internal sound transmission along with the effect of a simplified locust body 

on an impinging sound field and specifically, the sound transmitted internally from a 

contralateral ear to the back of the opposite ipsilateral ear. Internal sound pressure 

level, relative to the level of the stimulus, displayed a decreasing relationship with 

increasing frequency across a specific range of frequencies, reaching a trough before 

increasing slightly again and appearing to level off (Figs. 3.57 and 3.58). Previously 

published data on sound source directionality experiments in real locusts (Michelsen, 

1971c and Miller, 1977) reported this very same relationship shape. A possible 

explanation is a dependence of the internal sound pressure on the total area of 

maximal coherent deflection of the membrane as it transmits the sound. With regards 

to the impact of a locust body on an incident plane pressure wave, at 1 kHz no 

significant difference was observed between the sound pressure level externally at 

the contralateral ear and that externally at the ipsilateral ear, due to the locust body 

dimensions being insufficiently small in comparison with the wavelength of the 

sound stimulus. Furthermore, at this frequency a huge majority of the sound 

impinging on the contralateral ear was transmitted efficiently by the ear’s vibrations, 

reaching the internal surface of the opposite eardrum. These results were in stark 

contrast to the results at 20 kHz where a decrease of more than 9 dB SPL was 

predicted externally between the contra- and ipsilateral ears respectively. Partial 

acoustic shadowing as the wavelength of the sound approaches the locust’s 

dimensions is the most likely explanation for this observation. Coupled to this was 

the fact that this sound pressure level diminished significantly when transmitted 

internally by the contralateral ear due to a lack of a large amplitude coherent 

transverse deflection of this membrane. 

 Key to using finite element modelling to further the understanding of any 

biological system is to simplify the model within reason, while remaining as true to 

the system’s natural characteristics as possible, including the use of accurate 

parameters to yield realistic results. Some assumptions were made when creating 

model locust tympana and studying them via finite element analysis. Firstly a stiff 

plate material model type was chosen over a tensed membrane model type, primarily 

because the stiff plate requires three mechanical properties, namely the Young’s 
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modulus, Poisson’s ratio and density, all of which can be extracted from published 

literature for many different arthropod cuticles including the class of Insecta and 

specifically the locust. As an initial trial this method minimised model unknowns and 

whenever possible the model results were compared to both real locust data and 

theoretical predictions. In addition to this assumption, the cuticle was assumed to be 

a linear elastic, isotropic material i.e. with constant properties in all directions. 

Although this provided a good initial estimate, the reality is that insect cuticle is 

known to be a complex, viscoelastic and anisotropic laminar material, taking on 

many different forms and compositions depending on the primary function of the 

structures where the cuticle is located. For example, super stiff sclerotised chitinous 

cuticle has been reported, capable of displaying complex characteristics. Moreover 

some of the sources of published data on the physical and mechanical properties of 

insect cuticle may now be dated due to more recent advances in a wide variety of 

experimental techniques in the field of materials science. Another simplification 

made throughout this chapter was the fact that the model tympana had no FB or ridge 

between thin and thick region. In addition to this, the damping effects of internal air-

sacs and abdominal tissue were out with the scope of this study and these would be 

expected to affect all of the simulations, particularly those in 4.6.1-4.6.2. 

 The second objective of this thesis was to apply similar computational 

modelling and experimental measurement techniques to the suitability of see-saw 

style MEMS devices as directional microphone diaphragm structures. These dual-

circular disc devices were not originally designed as biologically inspired 

microphones but they had similar dimensions to the ear of the parasitoid fly, Ormia 

ochracea. 

 Initial FEM eigenmode analyses of the first seven modes of these devices 

predicted five transverse out-of-plane modes, a first rocking mode where the discs 

rotate about the central suspension beam, a second translational piston mode, a third 

rolling mode, a sixth flapping mode and a final twisting disc mode. For both devices 

the remaining modes, four and five, were described as in-plane bending and twisting 

respectively. Initially an isotropic material type was used for modelling the MEMS 

devices’ single-crystal silicon. 
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 LDV was then used with the goal of experimentally measuring these same 

mode shapes and verifying their frequencies. All five of the out-of-plane modes of 

both devices were observed with laser vibrometry and the measured frequencies were 

compared with those predicted in the isotropic material models. Good correlation 

existed between the LDV observed and FEM predicted frequencies of the five out-

of-plane modes with calculated Pearson correlation coefficients of 0.997 and 0.995 

for devices 1 and 2 respectively.  

In an attempt to improve this correlation further, particularly for the 2nd and 

3rd modes which showed slightly poorer correlation than the others, the anisotropy of 

single-crystal silicon was incorporated into the modelling. Rather than the input of a 

single value for the Young’s modulus of silicon, an elasticity matrix was utilised 

meaning the mechanical properties now vary in different axis directions. Initially the 

outcome of this switch was actually a deterioration of this correlation with new 

Pearson coefficients of 0.984 and 0.978 and the device 1 model even predicting a 

switch of the position of the 1st and 2nd modes. However, with the realisation that 

there was a misalignment of the principal crystallographic axes of the silicon with the 

model material axes, a 45° rotation of the 3-D geometry of both devices resulted in 

the prediction of greatly improved eigenfrequency values and consequently both new 

Pearson coefficients are 0.999. 

Hypothesising that the coupling of two or more of the aforementioned modes 

would lead to some directional aspect of the vibrational response, FEA was then used 

to investigate this mechanical directionality of the first device, using acoustic-

structure interactions with frequency responses. Nested parametric sweeps of the two 

angles defining sound source direction were used to rotate the sound position angle, 

𝜃, from -90° through the normal to +90° with a step of 5°, at a working frequency of 

1.2 kHz and sound pressure field of amplitude 0.06 Pa. Extracting the predicted 

magnitude of the out-of-plane displacement of the right edge of the right disc and 

dividing it by the same value of the left, then plotting this intensity gain ratio on the 

Y-axis against the sound source angle on the X-axis, resulted in an almost a perfect 

horizontal straight line through 1 i.e. no significant directionality. Repeating this 

experiment using vibrometry resulted in a very different result, with the intensity 

gain peaking at a value of 2.25 near -75°, falling to intersect the Y-axis just above 
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0.5, then slowly dropping as the sound source position rotated anti-clockwise to a 

low of 0.1 at 60°, all in stark contrast to the computationally predicted relationship.  

In an attempt to improve the realistic accuracy of the FEM, the surrounding 

die, a thin cuboid of square cross-section, was added to the model, greatly increasing 

the complexity by adding another length-scale into the geometry. Nonetheless the 

result was rewarding in that the model-predicted relationship between intensity gain 

and sound source angle changed dramatically, with features very closely matching 

the LDV measured relationship, in particular the presence of a prominent peak, a 

decreasing gain with anti-clockwise angle rotation and a Y-axis intercept of 0.5.  

Clearly, two important points from this Chapter are that both material model 

type i.e. isotropic, anisotropic etc., and the complexity of the included geometry in a 

particular finite element model, have a big impact on the predictions made by the 

model and their correlation with experimentally measured data. 
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6.2 Future Work 

While it is hoped that the studies in Chapters 3, 4 and 5 may serve as a basis for 

future research on both insect hearing systems and MEMS microphones, particularly 

those with a bioinspired influence, care must be taken when interpreting these 

results. First and foremost, as mentioned in 6.1, arthropod cuticle is known to be a 

complex matrix of materials, with a wide range of possible properties and functional 

capabilities. Clearly there is much still to learn both about the fascinating mechanical 

properties of insect cuticles and also the methods required in modelling such 

materials. Rapid improvements have been made in measurement techniques and the 

modelling of complex materials and new techniques can be applied to the analysis of 

the tympanal cuticle of many insects to further enhance the understanding of this 

wonder material and its importance in the field of bioinspired acoustics. 

 With the goal of establishing a better understanding of the systemic function 

of each component of the locust tympanal ear, Chapter 4 encapsulated simulations of 

many features of the ear, all with a view to assisting in the design and testing of 

novel microphones. At least seven orders of Insecta are known to possess tympanal 

hearing systems and the nature of this study of the locust ear is such that application 

of these same modelling techniques to other insects including moths, cicadas and 

crickets would be fairly seamless. Therefore there exists huge potential for learning 

from these masters of materials science and acoustics engineering. 

Obvious new iterations of the FEM of insect tympana include full frequency 

response analysis of the complex 3-D reconstructions of morphologically accurate 

geometries as well as the simulation of transient response models with multi-stimuli 

i.e. internal and external sound contributions. The cuticular shell of the locust was 

studied in Chapter 4, with an interesting finding about its dual-purpose nature. 

However caution should be applied when interpreting these results as the true impact 

of the shell may deviate slightly from this result as the shell dimensions are currently 

unstudied, in addition to the angle of the paired tympana and their embedding within 

the first abdominal segment. In combination with the internal air-sacs and other 

internal tissue, there is the opportunity for further investigations using new and 
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improving imaging techniques such as micro computed tomography X-ray scanners 

and scanning electron microscopes. 

New high-precision position systems and sophisticated transducers could be 

used in conjunction with vibrometry to further study the locust’s mechanism of 

directional hearing, feeding into the model results seen in 4.6.1 and 4.6.2. 

Laser Doppler vibrometry was used extensively throughout this PhD research 

to measure the highly sensitive response of a real locust eardrum and the equally 

sensitive response of MEMS structures to similar stimuli. During the laser 

vibrometry experiments there were some known sources of error. Low frequency 

background noise was a problem in the vibrometry room, particularly for such highly 

sensitive S-C Si structures as those in this thesis. This noise source was somewhat 

negated using the complex averaging algorithm available in Polytec’s acquisition 

software. This source of error as well as any unwanted potential reflections of sound 

could have been further eliminated through the use of a sound proof booth. The 

chamber would majorly reduce unwanted echoes through internal sound absorption 

along with greatly reducing the influence of exterior noise sources, in effect lowering 

the noise floor and therefore increasing the signal to noise ratio. One limitation of 

LDV was the fact that measurement can be made only in 1-D i.e. only transverse 

displacements in the plane of the incident laser beam can be measured. Modern 3-D 

LDV systems are now becoming widely available, potentially allowing for the 

accurate measurement of in-plane motion such as the FEM predicted but unobserved 

mode shapes four and five of the MEMS devices presented here, as well as the 

investigation of the complex multi-dimensional vibrations of insect tympana. 

Chapter 5 was a study of two MEMS devices with a view to assessing their 

practicality as microscale directional acoustic sensors. One motive was to learn more 

about microfabricated microphone design features and provide an initial protocol for 

finite element modelling and experimental testing of such devices. Finding the 

important influence of the surrounding die on the deflection of these devices can 

benefit future studies of directional acoustic sensors made using MEMS 

microfabrication techniques by helping to create a guide of layout rules for MEMS 

dies. Although the final computational modelling results accurately predicted the 

modal response of these structures, this accuracy could have been further improved 
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by some in-depth material testing of the properties of the single-crystal silicon used 

to fabricate the devices. 

All of the findings in this thesis can feed into the design, fabrication and 

testing of novel bioinspired MEMS microphones capable of displaying supreme 

directional sensitivity, tuning to specific frequencies and still able to withstand 

environmental conditions in the very same way as evolution has done for animals. 

One big difference between the devices investigated in this PhD research and 

the ear of the parasitoid fly, Ormia ochracea, is the lack of circumferential clamping 

of the edges of the characteristic discs. Due to this fact, the vibrational response of 

each device was found to be dominated by the displacement of the characteristic long 

thin central suspension beams. This has proven to be a suboptimal design for 

acoustic sensors due to the dilution of the response directionality by a strong and 

super sensitive translational mode. 

 Finite element modelling was used to predict the response of simulated locust 

tympana in a bid to identify the important features leading to the observations made 

on the locust hearing system. This same technique was used to predict the 

mechanical response of silicon MEMS structures and assess their practicality as 

directional acoustic sensors. Both of these subjects are defined by their high aspect 

ratio geometries which lead to the necessary computation of very large mesh models. 

Recent major improvements in computational power and the efficiency of FEA 

software codes allow for the execution of parallelised, high memory utilising multi-

length scale, multi-physics finite element models which manage to somewhat explain 

the phenomena observed in nature. High performance computing brings a completely 

new level of capabilities to the world of computational modelling but regardless 

there is always a limit to model size and therefore the achievement of realistic 

responses and observable phenomena when constructing finite element models of 

any real systems. As computing technology advances rapidly the ability to simulate 

more complex systems including large data input of variables, complex materials, 

more physical phenomena and the solving of both linear and non-linear physics and 

engineering problems. The result of this can only be an increased understanding of 

the mechanisms underlying physiological processes in the natural world, leading to 

even more advancements in the field of bioinspired technological solutions. 
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A microelectromechanical systems (MEMS)-based structure capable of operating mechanically as a directional acoustical sensor is presented.
The structure, fabricated through the commercially available SOIMUMPS foundry process, consists of two circular discs attached to a central
suspension beam, fixed at both ends. The design of the structure resembles other directional MEMS microphones that mimic the directional
hearing organ of the parasitoid fly, Ormia ochracea. Modal analysis and mechanical acoustic directionality analysis using both laser Doppler
vibrometry and finite element modelling have been implemented. It is demonstrated that this coupled MEMS structure exhibits an acoustic
directional response, with a one-to-one relationship between the relative vibration amplitudes of the two coupled discs and the angle of
sound, from−75° to +60°.
1. Introduction: Microelectromechanical systems (MEMS)
microphones are becoming increasingly common in portable
devices such as hearing aids, smartphones and tablet computers,
among other applications [1, 2]. Several advantages lie in using a
MEMS device, notably size and the integration of electronic
functionality such as filtering and amplification. In addition, the
robust mechanical properties of silicon make it ideal for the
demanding conditions experienced in the above applications [3].
Although MEMS technology has been applied in commercial
microphones, achieving directionality within such devices is
currently a subject of the research domain. The inclusion of
directionality in a microphone system can provide an approach to
reducing noise and thus promoting signal intelligibility, for
example, in speech, or the ability to accurately locate sound
sources, such as in environmental monitoring [4–6]. However, there
are physical constraints to designing a directional microphone.

Traditional directionality (extending to localisation in three dimen-
sions) in conventional microphone systems usually involves an array
of two or more pressure receivers, whose separation is greater than
the wavelength of the incident sound. Such systems use an estimate
of the time difference of arrival (TDOA), or a relative phase differ-
ence, and sometimes the difference in sound intensity at each receiver
as inputs to algorithms which compute the location of the sound
source. When miniaturising such directional microphone systems, a
problem arises as the separation between receivers becomes
smaller than the wavelength of incident sound, such that the
TDOA and pressure difference measurements become less accurate,
leading to greater errors in source localisation. For example, the
typical acoustic wavelength for audio applications is of the order of
centimetres, therefore imposing a size constraint on the miniaturisa-
tion of traditional directional receiver arrays.

Inspiration for silicon MEMS-based directional microphones has
often been taken from the unique directional hearing system observed
in the parasitoid fly, Ormia ochracea [1, 7–12]. The Ormia deposits
its eggs on and around a singing male cricket, which is then used as a
food source by the larvae. The fly locates the cricket by localising the
cricket’s acoustic signal (song) with accuracy better than 2°. The
pressure receivers, specifically the tympanal membranes, within
the Ormia ear are separated by just 0.5 mm, yet the cricket host’s
276
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
calling song has a wavelength of the order of centimetres. A mechan-
ical coupling arrangement between the pair of tympanal membranes,
namely the intertympanal bridge, causes the combination of two
major modes of vibration which, favourably for the fly, results in a
significant amplification of the perceived pressure intensity differ-
ence. The two modes are usually described as a ‘rocking’ mode,
where the two membranes deflect 180° out of phase, and a ‘transla-
tional’ in-phase mode [12, 13].

Several previous studies have applied MEMS technology to
mimic the dynamics of the ear of Ormia [1, 7–12]. While various
degrees of success have been reported, directional acoustic sensitiv-
ity should, in principle, be present in any micromechanical device
with sufficient degrees of freedom of movement. In this Letter,
we present findings on the directional response of a simple, single-
crystal silicon MEMS structure that is similar in size and geometry
to the fly ear, and the several bio-inspired directional MEMS micro-
phones which have been previously reported. The modal analysis of
the structure and its performance, mechanically, as a directional
acoustic sensor are investigated both experimentally and computa-
tionally. The structure exhibits acoustic directionality, demonstrat-
ing the potential for such micromechanical devices to be utilised
as directional microphones.
2. Methods: The MEMS structure consists of two circumferentially
unclamped circular plates, each 1000 μm in diameter and 10 μm in
thickness, which are directly attached to a suspension beam 3000 μm
long, 40 μm wide and 10 μm thick, anchored at both ends. Fig. 1a
shows a scanning electron micrograph (SEM) of the structure. The
defining dimensions are shown clearly in Fig. 1b, created using
SolidWorks three-dimensional (3D) CAD software (Dassault
Systèmes SolidWorks Corp., Waltham, MA, USA). This structure
was fabricated using a commercial multi-user silicon-on-insulator
process (SOIMUMPs) offered by MEMSCAP Inc., Durham, NC,
USA [14]. The starting substrate consists of a 10 μm layer of
single-crystal silicon, attached to a 400 μm-thick handle wafer by
an oxide layer of thickness 1 μm. Two methods are then used
during the fabrication of the MEMS structure – patterning and
etching of the silicon wafer from the top surface down to the
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Figure 1 Silicon MEMS structure
a Scanning electron micrograph of the MEMS device (scale bar represents 1
mm)
b Dimensioned 3D CAD model of the device using SolidWorks

Table 1 Modal frequencies of the structure calculated using vibrometry
and finite element modelling

Mode Modal frequency, kHz

First Second Third Fourth Fifth Sixth

LDV experiment 1.40 2.20 7.39 NA NA 20.51
FEM Iso Si model 1.44 1.62 5.82 6.64 9.91 18.41

Aniso Si
model

1.45 1.83 6.56 7.50 11.16 20.64
oxide layer, and patterning and etching through the bottom surface
of the handle wafer substrate to the oxide layer.

2.1. Laser Doppler vibrometry (LDV): Modal analysis was carried
out by observing the vibration of the structure with micro-scanning
LDV, in response to various acoustic stimuli. LDV measures the
structure’s out-of-plane vibration velocity. The structure was located
off-centre on a 11 mm× 11 mm die of thickness 400 µm fixed onto
a 70 mm× 28 mm× 2.5 mm printed circuit board (PCB), with a
centrally cut hole in the PCB exposing the bottom face of the
structure. This enabled access to both sides of the mounted structure.
The orientation of the structure was with the xz plane parallel to the
floor and the y-axis perpendicular to the floor, according to Fig. 1b.
The scanning laser vibrometer (Polytec PSV-300-F; Waldbronn,

Germany) has an OFV-056 scanning head and close-up attachment
fitted yielding a positioning accuracy of 1 µm and spot diameter
5 µm. The vibrating surface of the structure was measured in steps
of 50 µm. Acoustic frequency signals were generated [Agilent
33220A; Santa Clara, USA)], amplified (Sony TA-FE570; Tokyo,
Japan) and passed to a loudspeaker (ESS Heil Air Motion
Transformer; South El Monte, USA), positioned 500 mm from the
structure. A precision pressure microphone (Brüel & Kjær 4138;
Nærum, Denmark) connected to a pre-amplifier (Brüel & Kjær
Nexus 2690; Nærum, Denmark) measured the sound pressure ap-
proximately 10 mm from the structure and was used to provide a ref-
erence signal for the vibrometer. Initially the acoustic signal generated
consisted of wideband chirps of frequency range 1–25 kHz, to deter-
mine the frequency response of the structure. Modes identified during
this process were subsequently investigated with single frequency
pure tones to excite the mode and record an accurate mode shape.
Directional analysis involved the measurement of the velocity of

the outer edge of each disc in response to a 1.2 kHz pure tone sound
stimulus. The frequency was selected based on the modal analysis
results, such that while it is relatively close to mode resonance fre-
quencies, it is not a frequency corresponding to a specific mode (see
Section 3). The position angle, θ, defined in the xz plane, is the
angle between the loudspeaker and the z-axis. This angle was
varied from−90° (closest to the right disc) through 0° (normal to
the structure) to +90°, in 5° steps. Post-processing of this data
using the fast Fourier transform with a rectangular window
allowed computation of the transfer function of the structure velo-
city to sound pressure level (Pa). From this the amplitude gain in
m/s/Pa was calculated (ratio of structure velocity to sound pressure).
At each θ, the amplitude gain of the edge of the right-hand and left-
hand discs was measured. The directional intensity gain was then
defined as the ratio of these two amplitude gains.

2.2. Finite element modelling: COMSOL multiphysics was used to
simulate the response of the MEMS structure. Modal analysis was
implemented through eigenfrequency studies of a 3D finite element
model (FEM) of the structure. This computes the undamped,
unforced modes of vibration of the MEMS structure. The
Micro Nano Lett., 2014, Vol. 9, Iss. 4, pp. 276–279
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geometry was built within COMSOL’s environment and two
executions were run using different material model types. The
first assumes purely isotropic silicon of density 2330 kg/m3,
Young’s modulus 131 GPa and a Poisson’s ratio of 0.27. In the
second execution anisotropic single-crystal silicon was used
allowing for the directional variation in the Young’s modulus.
The first six eigenmodes of each of these models were computed.

For computational directionality analysis, the structure, including
the surrounding die, was modelled, with the hole behind the struc-
ture and a surrounding air domain incorporated. The material model
type was the anisotropic silicon complete with crystal rotation, that
is, the second setup mentioned previously. By coupling both the
fields of acoustics and structural mechanics, an acoustic–structure
interaction computes the two-way interaction between the mechan-
ical response of a structure and an incident pressure wave in the sur-
rounding fluid domain. An incident plane wave pressure field of
amplitude 0.06 Pa (∼70 dB sound pressure level re 20 μPa) was
used in the model and, to match the experimental studies, an oper-
ating frequency of 1.2 kHz was chosen. By parameterising the de-
fining angles of the load pressure wave, a double parametric sweep
was executed allowing efficient calculation of the response of the
structure at each angle, θ, required. Importantly, the geometric non-
linearity feature was enabled as a study setting because of the nature
of the suspension beam in the structure.

Post-processing within COMSOL allowed the extraction of dis-
placements and velocities (and other characteristics) at user-defined
points on the structure such that the directional intensity gain, as
defined in the laser vibrometry section 2.1 above, could be calcu-
lated for each angle of sound source, θ.
3. Results
3.1. Modal frequency analysis – measured against simulated: Fig. 2
shows the shape of the four out-of-plane modes of vibration found
between 1 and 21 kHz using both finite element modelling (left)
and laser vibrometry (right). Complementing this Figure is
Table 1, collating the detected modes of vibration in both the
experiment and the simulation. Analysis of the laser vibrometry
data shows that the first mode of vibration is found at around 1.40
kHz. This mode can be described as a rotational mode with the
suspension beam as the axis of rotation, that is, both discs
moving 180° out of phase of each other, resulting in a so-called
rocking mode. Executing an eigenfrequency study of the FEM of
the structure, treating the silicon simply as an isotropic material,
yields the rocking mode at 1.44 kHz (Table 1).

Eigenmode analysis of a FEM with a material model that
includes the anisotropy of silicon yielded the first mode as the
rocking mode at a frequency of 1.45 kHz.

Experimentally, the structure had a translational mode at 2.20 kHz
and at this mode of vibration the structure appears to be more sens-
itive than at the lower frequency rocking mode (see the difference in
the range of gain in Figs. 2b and d ). This piston mode is found to
have a frequency of 1.62 and 1.83 kHz for the isotropic model and
the anisotropic model, respectively.

The correlation between the vibrometry results and the FEM
results appears to be extremely strong for the model with anisotropic
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Figure 2 First four out-of-plane mode shapes of the device
a FEM simulated first (rocking) mode
b LDV measured first mode
c Second (translational) mode through FEM simulation
d Second mode as observed using LDV
e FEM computed third mode
f LDV measured third mode
g Fourth (flapping) mode as computed by FEM
h Fourth mode captured using LDV

Figure 4 Directional intensity gain (solid grey line) against sound source
angle, θ, calculated from LDV data
Broken black line is directional intensity gain against sound source angle, θ,
computed using COMSOL Multiphysics
From approximately−75° to +60°, there is a one-to-one relationship
between the relative vibration amplitudes of each disc and the angle of
incidence
Si combined with a rotation of the geometry within the workspace.
Table 1 shows that this correlation continues across all four
out-of-plane modes found during modal analysis using LDV, that
is, rows 1 and 3 correlate well.

The third mode of vibration of the structure, described as a rota-
tional mode with the axis of rotation through the centre of the two
circular discs, is found to have a frequency of 7.39 kHz (LDV) and
6.56 kHz (FEM). Likewise, for the sixth mode, described as a
flapping mode (see Figs. 2g and h), vibrometry shows it to have
a frequency of 20.51 kHz and the model predicts a frequency of
20.64 kHz.

Modes four and five are in-plane twisting and in-plane bending
modes which are undetectable using LDV in this way, since
Figure 3 Finite element analysis of the device using COMSOL’s acoustic–
structure interaction
Incident sound is a plane wave of frequency 1.2 kHz, sound level of 0.06 Pa
at an angle 20° to the normal from left to right
Instantaneous displacement of the device ranges from 5 to 10 nm at this
moment in the cycle, whereas the die remains stationary in comparison
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when vibrating in these modes the structure has no out-of-plane
velocity component.

3.2. Directionality analysis: Laser vibrometry was also used to
analyse the directionality of the structure as described in Section
2. Plotting the intensity gain calculated from vibrometer data
against the angle of sound source, θ, results in the solid grey line
shown in Fig. 4.

This experiment is repeated computationally as an acoustic–
structure interaction in the frequency domain with COMSOL, as
outlined in Section 2, using nested parametric sweeps to simulate
all the same sound source angles (θ) used in the vibrometry meas-
urements. Fig. 3, in which the vertical scale is multiplied by a factor
of 1.5 × 105, shows a snapshot of the dynamic cycle of the simu-
lated structure and die in response to a pure tone sound stimulus
of 1.2 kHz, at a sound level of 0.06 Pa, at θ = +20°. The deflection
of the structure clearly displays a combination of both the rocking
and translational modes, with a maximum displacement of 10 nm
at the instant the snapshot was taken.

The broken black line in Fig. 4 represents the data from this FEM
simulation, and displays a similar relationship to that observed from
the LDV results. Both results display similar distinctive character-
istics in that the intensity gain, or intensity ratio of the right disc
to left disc, reaches a maximum at a large negative sound source
angle θ,−85° for the model where the gain is 4, and−70° in
LDV where the gain is between 2 and 2.5. Similarly the gain con-
verges to a minimum of 0.1 at a high positive stimulus angle θ, 80°
and 60° from FEM and LDV, respectively. Both the vibrometry and
the modelling results display a gain of about 0.5 when the sound
source is at θ = 0°, or normal to the structure. A possible explan-
ation for the relative difference in the position of maxima and
minima between the experimental and simulated results is that
while the simulation assumes a free-field, in the experiment
various apparatus surrounds the device, for example, the laser vib-
rometer and fixtures for mounting the device.

4. Conclusion: A single-crystal silicon MEMS structure, consisting
of two circular discs connected to a centrally supporting beam, has
been fabricated using commercially available SOIMUMPs. Using
both LDV and FEM to investigate the natural modes of vibration of
the structure has resulted in observation of the same first four out-of-
plane mode shapes. There is also close correlation between measured
frequencies through both methods, particularly when correctly
allowing for the anisotropy of single-crystal silicon. This is without
consideration of damping characteristics. However, because the
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removal of a section of the PCB fully exposed the posterior surface of
the structure, then a major contribution to damping in many MEMS
structures of this style – squeeze-film damping – is eliminated.
When stimulated at an appropriate frequency, the structure appears

to exhibit an interaction between two, spectrally close, modes called
rocking and translational, which combine in differing proportions de-
pendent on the angle of the sound source. The outcome of this effect
is a predictable and repeatable relationship between the directional in-
tensity gain and the angle of source. Both FEM simulations and LDV
experimentation confirm this relationship. Therefore the structure is
capable of performing as a directional microphone because of the
coupling of two natural modes of vibration whose resonance frequen-
cies are close.
The extent of how successfully this structure performs in terms of

mechanical directionality may well be limited by the relative sens-
itivity of the structure to both the translational mode and rocking
mode, that is, the translational mode somewhat dilutes the influence
of the rocking mode, resulting in a sub-optimal mechanical direc-
tionality performance.
The simple MEMS structure presented here, while resembling

biologically inspired microphones, was not optimised. However,
it exhibits acoustic directionality, indicating that a variety of
simple MEMS devices could have acoustic directionality not
apparent during design or experimental characterisation, thus dem-
onstrating the potential for such micromechanical devices to be util-
ised as directional microphones.
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Abstract

To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to
achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and
terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in
freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water
boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters,
but not in their frequency content. Sound is produced at 78.9 (63.6–82.2) SPL rms re 2.1025 Pa with a peak at 99.2 (85.7–
104.6) SPL re 2.1025 Pa estimated at a distance of one metre. This energy output is significant considering the small size of
the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M.
scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display
may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation
pressure.
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Introduction

Animal communication is driven by competition between

individuals and species [1–3]. The signal produced by an emitter

should reach as many receivers as possible, whilst transmitting as

much information as possible. To increase the range of their

broadcast, animals can optimize the ratio of their signal to the

background noise. One of the simplest strategies to achieve this is

to produce a signal with a high amplitude that can override

congener or other species songs, travelling the greatest distance

across the habitat [4]. When considering acoustic communication,

the production of a loud, and intelligible, signal is not an easy task

even for human-built sound systems [5]. The system can be over-

driven, distorting time and frequency parameters, and conse-

quently impairing information transfer. In addition, animals are

severely constrained by their morphological characteristics. Body

size is one of the main mechanical constraints as a small sound

source cannot produce a high level sound output [6,7]. This

phenomenon explains why large mammals, such as whales or

elephants, are known to be the loudest animals [8,9]. However,

when these animals are scaled to their body size they may not

produce the most efficient acoustic signals in terms of energy.

Acoustic communication is intensively studied in terrestrial and

marine animals, but is neglected in freshwater species even when

low visibility should favour acoustics as a way to exchange

information. There are potentially an important number of

aquatic insects that can sing underwater, but very few descriptions

of their behaviour have been reported [10–16]. Water-boatman

species belonging to the genus Micronecta (Corixidae, Micronecti-

nae) are known to use sound for pair formation [14,15]. Only

males produce species-specific sounds that attract females for

mating [16–18]. Males can synchronize their calls generating a

chorus [19]. This suggests a possible second role of male-male

competition as observed in several other insects using sound to

court females [2]. Here we report for the first time the acoustic

behaviour of Micronecta scholtzi (Fieber, 1860), a common aquatic

bug that produces an extremely loud courtship song. This insect is

a few millimetres in length yet can produce sound audible from the

riverside. This suggests the emission of intense signals departing

from the body size to amplitude rule.

Materials and Methods

Specimens of M. scholtzi were collected in a river in Paris

(France, 48u49.429N–02u25.939E) and in a pond in Morsang-sur-

Orge (France, 48u40.039N–02u20.599E) from August to Septem-

ber 2009 and 2010. According to the national guidelines, no

permission was required from authorities to collect specimens.

Specimens were maintained in plastic water tanks (22*11*17 cm).

Sex determination was not possible without manipulating

individuals. As M. scholtzi is active only in groups, samples of five

unsexed individuals were transferred to a fish net breeder

(16.5*12.2*13 cm) which was positioned at the centre of a large

plastic water tank (46*30*17 cm) with a water depth of 8 cm. The

bottom of the tank was covered with gravel without any plants.

This recording area provided a short distance between the insects

and the hydrophone, and a relatively large distance between the

hydrophone and the tank walls. This minimized sound wave
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reflections that could have impaired recording quality. A Reson

TC4033 passive hydrophone was placed at the bottom of the net

breeder, in the centre. The hydrophone was connected to an

Avisoft charge amplifier with an input capacitance of 1 nF and a

250 Hz high-pass input filter. Recordings were taken with a

Marantz PMD 671 digital recorder at 48 kHz sampling frequency

and 16 bit level digitization. All recordings were made at a water

temperature of 23–24uC controlled with a Tetratex HT50 heater.

As Micronecta females do not produce sound [15], all sound

recorded was considered as being produced by males. The calling

songs of 13 males were recorded and 60 seconds of signal without

background were selected for each male. Even if M. scholtzi call in

chorus there is no fine synchronization of their signals. It was then

possible to select a signal produced by a single animal excluding

the risk of analysing several males together. Calling song

parameters were analysed using Avisoft SAS Lab Pro [20] and

seewave [21]. Temporal parameters were measured on the

amplitude envelope. Frequency parameters were measured on

the mean spectrum of a short-term Fourier transform with a

frequency resolution of 43 Hz.

In order to produce an accurate measure of the sound-pressure-

level (SPL), the recording equipment (hydrophone+charge ampli-

fier+digital recorder) was calibrated in reference to a sound source

emitting a signal at a known SPL. This was achieved by using one

passive hydrophone (Reson TC4013) as an emitter and a second

passive hydrophone as a receiver (Reson TC4033). This receiver

hydrophone was connected to an Avisoft charge amplifier with an

input capacitance set to 1 nF and a 250 Hz high-pass input filter,

which in turn was connected to a Marantz PMD 671 digital

recorder. The recording chain was therefore exactly the same as

the one used to record the animals. The emitter output was a

10 kHz sine wave that was repeated for different acoustic

amplitudes and for different Marantz PMD 671 manual recording

input levels. Peak and root-mean-square (rms) of the digital values

of the amplitude envelope were then calculated for each M. scholtzi

recording selection. Average values were computed on this raw

data before being converted to dB SPL in reference to 2.1025 Pa

to allow comparison with terrestrial animals (see below). As the

distance between the animal and the hydrophone was not known,

three estimations were assessed assuming the distance was minimal

(0.05 cm), median (6.5 cm) or maximal (13 cm). Male body length

was measured after recordings using the graticule of a binocular

microscope Leica M205C with a precision of 60.05 mm.

SPL values of M. scholtzi were compared with the values

reported for 227 other species (2 reptiles, 3 fishes, 24 mammals, 29

birds, 46 amphibians and 123 arthropods) collected from the

literature (Table S1). This includes 17 species (7.5% of 227) for

which SPL values were estimated underwater. Two of this latter

group were arthropods, namely the Crustaceans Panulirus interruptus

and Synalpheus parneomeris (0.9% of 227). Only communication

signals were considered, echolocation or debilitating sound was

excluded. Different SPL values could be found for a single species.

These values may come from different references or from

variability across populations, sexes and signal types within a

repertoire. The highest dB SPL value was selected in all cases.

Peak measurements were converted into rms measurements by

dividing them by !2 [22]. The SPL values found in the literature

are all given in dB. However, they refer to measurements done at a

different distance d and/or in reference to a different reference

pressure P0. To allow comparison across taxa, all data were first

converted to sound pressure (Pa). Sound pressure data were then

converted back to dB SPL with a reference pressure

P0 = 2.1025 Pa. Data were eventually converted to SPL data at

a distance of 1 m by applying the attenuation inverse square law

following the equation [23]:

dBSPL@1m~Y{20|log10 1=dð Þ, where Y is the initial dB SPL

value measured at a distance d:

Body length estimation was also documented for all species. As

dB is a logarithmic scale, and as sound pressure scales with body

mass rather than body length [5], the link between dB SPL and

animal size was estimated between dB and the logarithm of body

length cubed (i.e. 36log10(body length)). This was achieved for two

sub-samples corresponding to the main characteristics of M. scholtzi

acoustic communication system. The first sub-sample included all

stridulating animals (57 arthropods and one fish). The second sub-

sample included all underwater animals (three arthropods, three

fish and 11 mammals). Because of the presence of outliers in the

sample, both ordinary least squared (OLS) and robust regressions

were computed [24,25]. All statistics were run using R with the

additional package robust [26].

Results

The size of the M. scholtzi male was 2.360.1 mm (mean 6 s.d.,

n = 21) (Fig. 1). The song consisted of a typical sequence repeated

at a rate of 0.74660.129 Hz (n = 582). Each sequence was

composed of three parts differing in their temporal and amplitude

parameters (Fig. 1). The first part was a repetition of 5.161.4

(n = 582) quiet echemes that lasted 84619 ms (n = 2994) and were

followed by a silence of 1926 c cvv48 ms (n = 2994). The second

part was a succession of 1.660.7 (n = 582) short and quiet echemes

that lasted 1663 ms (n = 820) followed by a silence of 101621 ms

(n = 820). The third part was a single loud echeme of a duration of

6068 ms (n = 582). The frequency spectrum extended from 5 to

22 kHz with 50% of the signal energy between 9 to 11 kHz with

a dominant frequency at around 10 kHz (1st part: 10.0636

1.122 kHz (n = 2994); 2nd part: 10.34860.872 kHz (n = 820); 3rd

part: 10.10960.886 kHz (n = 582)). There was no frequency

modulation along the signal, the frequency content of the different

parts being similar.

The minimal, median and maximal amplitude level of the song

were respectively estimated to be 36.7 (21.5–39.9) (mean (min –

max)), 78.9 (63.6–82.2) and 85.0 (69.6–88.2) dB SPL rms re

2.1025 Pa at 1 meter. Peak values were estimated to be 57.1

(43.6–88.2), 99.2 (85.7–104.6) and 105.2 (91.7–110.6) dB SPL rms

re 2.1025 Pa at 1 metre.

The average of the ratio dB/(36log10(body length)) for all

animals documented was 6.963.0 (n = 228). A maximum value of

31.5 was estimated for M. scholtzi. Within the group of 58

stridulating animals, the OLS regression against dB and 36log10

(body length) indicated the following three species as outliers: (i) M.

scholtzi, (ii) the miniature cricket Cycloptiloides canariensis, and (iii) the

praying mantis Mantis religiosa (Fig. 2, F1,56 = 7.44, R2 = 0.10,

p = 0.009). M. scholtzi was isolated due to its high SPL and small

size, while C. canariensis was isolated by its small size and low SPL,

and M. religiosa by a particularly low SPL compared to its large

size. Cook’s distance associated with species leverage on the OLS

model clearly identified M. scholtzi as the most extreme outlier

(Figs. S1, S2). A robust regression, which is less sensitive to outliers,

returns a regression line with a higher regression coefficient (Fig. 2,

F1,56 = 6.23, R2 = 0.33, p = 0.011).

Within the group of animals using sound underwater, the OLS

regression had a p-value just above a 5% a risk (Fig. 3,

F1,15 = 3.60, R2 = 0.14, p = 0.077). The OLS regression indicated

the following four species as outliers: (i) the snapping shrimp

Synalpheus parneomeris, (ii) the weakfish Cynoscion regalis, (iii) the
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common bottlenose dolphin Tursiops truncatus, and (iv) M. scholtzi. S.

parneomeris was isolated by its small size and high SPL, C. regalis by

its medium size and low SPL, T. truncatus by its high SPL, and M.

scholtzi by its very small size (Figs. S3, S4). A robust regression was

significant and returned a regression line with a higher regression

coefficient (Fig. 3, F1,15 = 5.52, R2 = 0.33, p = 0.017).

Discussion

The water boatman M. scholtzi produces a complex calling song

comprising three distinct parts with deep amplitude modulations,

but no frequency modulation. However, the most striking feature

of the song is its intensity. The song can be heard by a human ear

from the side of a pond or river, propagating across the water-air

interface. Estimating the sound intensity at a distance of one metre

reveals a value of ,79 dB SPL rms. When considering peak

values, i.e. the loudest part of signal, the intensity can reach 100 dB

SPL. Whilst these values are far below those estimated for large

mammals such as dolphins, whales, elephants, hippos, or bison,

when scaled to body size, M. scholtzi has the highest ratio dB/body

size. Even if such comparison might need to be adjusted with

corrections taking into account different recording methods and

conditions, M. scholtzi is clearly an extreme outlier with a dB/body

size ratio of 31.5 while the mean is at 6.9 and the second highest

value is estimated at 19.63 for the snapping shrimp S. parneomeris.

This water bug might be the exception that proves the rule that

stipulates that the size and the intensity of a source are positively

related. This departure from the rule is apparent within the group

Figure 1. Habitus and calling song of M. scholtzi. (a) dorsal view of an adult (scale bar = 0.5 mm), (b) calling song consisting of three main parts
differing in their temporal and amplitude parameters (oscillogram), but having a similar frequency structure (spectrogram and amplitude scale with
an estimated maximum value of 101 dB SPL rms re 2.1025 Pa at 1 meter).
doi:10.1371/journal.pone.0021089.g001
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of stridulating animals. In this sub-sample, M. scholtzi is identified

as an extreme outlier. No other recorded animals rival M. scholtzi.

Two other arthropods were also identified as outliers; the

Australian miniature cricket C. canariensis [27] and the Praying

Mantis M. religiosa [28]. In both cases these are outliers for different

reasons, as the Praying Mantis emits a much quieter song

(,43 dB) than suggested by its size (,60 mm), and the miniature

cricket is particularly small (,3 mm) and quiet (,30 dB). When

considering aquatic animals, whatever the mode of sound

production they use (i.e. drumming, friction, stridulation or

vocalisation), M. scholtzi appears as an outlier mainly due to its

very small size compared to fish, mammals or even crustacean

species communicating underwater. Producing loud sound under-

water is easier than in the air due to impedance-matching between

the source, here the body part of the animal that generates

vibrations, and the transmission media (water) [23]. This might

explain why M. scholtzi appears as the most extreme outlier when

compared to stridulating species that are terrestrial (except one

fish), and is identified as only the fourth outlier when considering

underwater species. Oxygen uptake of Micronecta has not been

studied in detail but air is stored around their body by hydrofuge

hairs. The ventral side is indeed covered with an air layer [29].

This suggests that the stridulating mechanism might be in contact

with air but not water. This could induce a complex micro

acoustic environment with reflections and refraction due to

impedance differences between air and water.

The mechanism behind the intense sound production of M. scholtzi

is not clearly identified. The sound is produced by rubbing a pars

stridens on the right paramere (genitalia appendage) against a ridge on

the left lobe of the eighth abdominal segment [15]. This sound

emission system does not measure more than 50 mm in length, and

there are no obvious body or external resonating systems that could

amplify the sound, as observed in insects, amphibians, mammals and

birds [30–35]. The high sound output (,124 dB) observed in

Panulirus spiny lobsters has been explained by the use of stick-slip

friction instead of a classical stridulation [36,37]. This mechanism

might occur in M. scholtzi, but to observe the micro-mechanics of such

a small system remains a significant challenge.

Could we try to interpret why M. scholtzi, and presumably other

Micronecta species [17], produce such loud sounds? An increase of

signal amplitude in reaction to a rise of the background noise,

known as the Lombard effect, has been documented for various

birds and mammals, including man [4]. However, this amplitude

rise is only observed over the short-term. Here the high amplitude

level is a long-term process that might result from intra-specific

competition. Micronecta male stridulation has been proven to be a

Figure 2. Regression between body size and SPL for stridulating animals. Terrestrial species are indicated with a circle and underwater
species with a square. The species labelled with a plain symbol are identified as outliers following Cook’s distance and leverage (electronic
supplementary material, figures S1, S2). Regression lines: ordinary least squared regression (plain) and robust regression (dashed). Sample size: 57
arthropods and one fish.
doi:10.1371/journal.pone.0021089.g002
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sexual signal addressed to the female, which can use the signal to

select a conspecific male (species identification) [17] and to select a

male among other conspecific males (sexual selection) [15]. The

extreme SPL level of this signal could be compared to the

extremely high complexity of some bird songs, particularly long

mammal antlers, complex insect horns, or the brightly coloured

integumentary system found in almost all animal groups. All of

these exaggerated secondary sexual ornaments are thought to be a

by-product of a runaway or Fisherian sexual selection [38,39],

especially in the case of insect acoustic signals [40,41]. A signal

produced at high amplitude can potentially override the signals

emitted by competitors during chorusing bouts and hence facilitate

male localisation by the choosing female [1–3,42]. Acoustic

competition can then lead to loud signal levels. However, such a

runaway process can be counterbalanced by natural selection if

the extreme signal tends to have adverse effects. The extreme

signal might be too costly in terms of energy or too risky in terms

of predation. An obvious acoustic display could attract predators

that localise their prey through audition [43,44]. Predators and

parasitoids can strongly constrain song evolution and can even

lead to a disappearance of the acoustic sexual signal [45]. Nothing

is known about predation on M. scholtzi, but the extreme SPL value

suggests the absence of such an evolutionary limiting factor. Male

of M. scholtzi may have no auditory predator, or escape such a

predator more efficiently than other acoustic species. The

hypothesis of a runway selection being at the origin of M. scholtzi

loudness still needs to be tested with observations on competition

behaviour between males and with an estimation of the predator

guild associated with males. Eventually, playback experiments

based on the broadcast of pairs of similar signals with similar time

and frequency pattern, but different SPL values, could test female

preference for loud over soft calls.

Supporting Information

Figure S1 Cook’s distance of each of the 58 stridulating
animals (57 arthropods and one fish) included in an OLS
model. Three species were identified by the model: the praying

mantis Mantis religiosa, the miniature cricket Cycloptiloides canariensis

and the water-boatman Micronecta scholtzi.

(TIFF)

Figure S2 Scatterplot of leverage and standardized
residuals of the model. As in Fig. S1, the following three

species are identified as outliers: the praying mantis Mantis religiosa,

the miniature cricket Cycloptiloides canariensis and the water-

boatman Micronecta scholtzi. M. scholtzi has the highest leverage.

(TIFF)

Figure S3 Cook’s distance of each of the 17 animals
calling underwater (freshwater or marine habitats)

Figure 3. Regression between body size and SPL for underwater animals. The species labelled with a plain symbol are identified as outliers
following Cook’s distance and leverage (electronic supplementary material, figures S3, S4). Regression lines: ordinary least squared regression (plain)
and robust regression (dashed). Sample size: three arthropods, three fish, 11 mammals.
doi:10.1371/journal.pone.0021089.g003
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included in an OLS model. Four species were identified by the

model: the snapping shrimp Synalpheus parneomeris, the weakfish

Cynoscion regalis, the common bottlenose dolphin Tursiops truncatus

and the water-boatman Micronecta scholtzi.

(TIFF)

Figure S4 Scatterplot of leverage and standardized
residuals of the model. As in Fig. S3, the following four

species are identified as outliers: the snapping shrimp Synalpheus

parneomeris, the weakfish Cynoscion regalis, the common bottlenose

dolphin Tursiops truncatus and the water-boatman Micronecta scholtzi.

(TIFF)

Table S1 Species list and references used to assess sound
pressure level (dB L) and body size relationship. Under-

water recordings are denoted with an asterisk (*) before species name.

(PDF)
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