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Abstract

Demand for wireless connectivity has never been higher and continues to grow rapidly.

Connecting more devices requires mindfulness in managing the limited resources of en-

ergy and radio spectrum. The advent of Software Defined Radio (SDR) has enabled

breathroughs in radio configurability, enabling dynamic spectrum access and physical

layer optimizations at runtime. In recent years Machine Learning (ML) has been a

key enabling technology of various innovations in the wireless communications domain,

taking advantage of the newfound flexibility in SDR. The new ML-based signal process-

ing models are no longer based entirely on Digital Signal Processing (DSP) expertise,

but are developed in a data-driven approach. This paradigm shift in receiver design is

recent, and appropriate architectures and best model training practices have yet to be

established.

This thesis explores multiple wireless communications tasks addressed with the

toolbox of Deep Learning (DL), which is a subset of ML. Many existing DL solutions are

hampered by the limitations of the chosen architectures, which limits their adoptability

as drag-and-drop solutions by wireless system designers. Recurrent Neural Network

(RNN) and Fully Convolutional Neural Network (FCN) architecture types are explored

that enable the adaptability one would expect of classic DSP functions (like the filter).

The field of wireless communications boasts a wealth of data, due to the mature

and feature-rich simulation software ecosystem. In Radio Frequency Machine Learning

(RFML) this is regularly leveraged to produce datasets for the new data-driven models.

Techniques like Multitask Learning (MTL) can exploit this simulated data even further

by allowing models to be trained on their primary task, like signal classification or

demodulation, while simultaneously estimating the channel quality.
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Chapter 0. Abstract

The findings presented in this work show that fully convolutional architectures

can be more appropriate for tasks like frame synchronization compared to commonly

applied classification models. RNN-based autoencoders achieve good results as an end-

to-end trainable receiver solution, however they can be challenging to apply to longer

sequences. MTL is identified as an excellent technique not only for training unique

models, capable of performing multiple tasks, but as a regularization technique in

RFML.

iii



Contents

Abstract ii

List of Figures viii

List of Tables xiv

Acronyms xvi

Acknowledgements xx

1 Introduction 1

1.1 Deep Learning in Wireless Communications Physical Layer . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Adaptable DNN Architectures and the Importance of Variable

Input Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Unique Training Techniques in Wireless Communications . . . . 5

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Signal Processing Background 13

2.1 Communications Link Overview . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Digital Modulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Amplitude Shift Keying . . . . . . . . . . . . . . . . . . . . . . . 16

iv



Contents

2.2.2 Phase Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Frequency Shift Keying . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Quadrature Amplitude Modulation . . . . . . . . . . . . . . . . . 19

2.3 Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Sinc Pulse Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Raised Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Channel Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Carrier Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Multipath Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Automatic Modulation Classification . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Higher Order Statistics . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Deep Learning in Wireless Communications . . . . . . . . . . . . . . . . 36

2.7 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Deep Learning Background 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 The Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 The Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 47

3.3.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 50

3.4 Training and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



Contents

3.4.3 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 57

3.4.4 Regularization Techniques . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Sequence to Sequence Learning for Demodulation 62

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Seq2Seq Model for QPSK Demodulation . . . . . . . . . . . . . . . . . . 66

4.3.1 Baseband Demodulation Task . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Data Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Simultaneous AMC and Demodulation . . . . . . . . . . . . . . . . . . . 76

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 AMC and Demodulation Results . . . . . . . . . . . . . . . . . . 82

4.4.4 Scaling Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Reducing Complexity Burden with CNNs . . . . . . . . . . . . . . . . . 84

4.5.1 Convolutional Encoder . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.3 Runtime Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Fully Convolutional Neural Networks for Frame Synchronization 91

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Training DL models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



Contents

5.4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.1 AWGN and Phase Offset . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Carrier Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.3 Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 FCN Architecture Introspection . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.1 Learned Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6.2 Multi-Packet Inference . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 125

5.7.2 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Multitask Learning with Channel Impairment Estimation 130

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Automatic Modulation Classification with SNR Estimation . . . . . . . 134

6.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.3 SNR estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.4 AMC and SNR Estimation Loss Tradeoff . . . . . . . . . . . . . 143

6.3.5 Results on AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Frame Synchronization with CFO Estimation . . . . . . . . . . . . . . . 147

6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.3 CFO Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.4 Frame Synchronization and CFO Estimation Loss Tradeoff . . . 153

6.4.5 Frame Synchronization Results Over Varying CFOs . . . . . . . 156

6.4.6 Deployment Discussion . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Fully Convolutional MTL . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

vii



Contents

6.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5.4 Continuous Inference . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusions 170

7.1 Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Key Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.1 Seq2Seq Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2.2 FCNs for Frame Synchronization . . . . . . . . . . . . . . . . . . 173

7.2.3 Training with MTL . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3 Limitations and Further Work . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A Training Runs 177

A.1 Seq2Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.1.1 QPSK Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.1.2 Simultaneous AMC and Demodulation . . . . . . . . . . . . . . . 181

A.2 FCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3 MTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3.1 AMC+SNR MTL Models . . . . . . . . . . . . . . . . . . . . . . 188

A.3.2 FS+CFO MTL Models . . . . . . . . . . . . . . . . . . . . . . . 189

A.3.3 FS+SNR MTL Models . . . . . . . . . . . . . . . . . . . . . . . . 190

B Methodology for Training on Simulated Wireless Data 193

C Jupyter Notebooks 195

Bibliography 196

viii



List of Figures

1.1 New Signal Processing with Deep Learning. . . . . . . . . . . . . . . . . 4

2.1 Communications link overview . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Amplitude Shift Keying (2-ASK/OOK) . . . . . . . . . . . . . . . . . . 16

2.3 Binary Phase Shift Keying (BPSK) . . . . . . . . . . . . . . . . . . . . . 17

2.4 Quadrature Phase Shift Keying (QPSK) . . . . . . . . . . . . . . . . . . 17

2.5 PSK Constellation Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Frequency Shift Keying (2-FSK) in time . . . . . . . . . . . . . . . . . . 19

2.7 Frequency Shift Keying (2-FSK) in spectrum . . . . . . . . . . . . . . . 19

2.8 QAM-16 constellation diagram . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Sinc function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Raised Cosine filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Square and sinc pulse shaped-symbols in time and frequency domains . 23

2.12 RRC matched filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Effects of AWGN on constellation diagrams . . . . . . . . . . . . . . . . 26

2.14 QPSK affected by carrier offsets . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Illustration of CFO effects on BPSK-modulated symbols in the time

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.16 Illustration of a multipath channel . . . . . . . . . . . . . . . . . . . . . 29

2.17 Delay taps of a multipath channel model . . . . . . . . . . . . . . . . . . 30

2.18 Difference between frequency-selective and flat channel responses . . . . 30

2.19 QPSK affected by fading channels . . . . . . . . . . . . . . . . . . . . . 31

2.20 QPSK and QAM-16 distribution comparison . . . . . . . . . . . . . . . 33

ix



List of Figures

2.21 Decision tree used for AMC . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.22 Comparison of image and wireless comms data for ML. . . . . . . . . . . 37

3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Popular activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Fully Connected Neural Network . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Softmax Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Arrangement of a typical MLP network . . . . . . . . . . . . . . . . . . 47

3.7 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Maxpooling operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Flattening operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Typical arrangement of a CNN model . . . . . . . . . . . . . . . . . . . 49

3.11 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Typical RNN configurations . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Training Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Backpropagation on a single logit and MSE loss . . . . . . . . . . . . . . 56

3.16 Illustration of SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.17 Learning rate impact on convergence . . . . . . . . . . . . . . . . . . . . 58

3.18 Training and validation split . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.19 Loss over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Dropout on a small ANN . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Wireless receiver as a Seq2Seq model . . . . . . . . . . . . . . . . . . . . 63

4.2 QPSK Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 QPSK training waveform snippet . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Sequence to Sequence model . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Two layer encoder structure . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Two layer decoder structure . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Baseline accuracy of a QPSK receiver over an SNR range . . . . . . . . 71

x



List of Figures

4.8 Training losses and accuracies of resulting models at varying number of

layers and cell hidden sizes (dashed lines are validation losses) . . . . . . 74

4.9 QPSK Demodulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . 75

4.10 Overview of traditional flow vs Seq2Seq . . . . . . . . . . . . . . . . . . 76

4.11 Mean test accuracy based on varying training dataset size . . . . . . . . 78

4.12 Decoder training modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.13 Training losses with and without teacher forcing (dashed lines are re-

spective validation losses) . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.14 Training losses with and without dropout (dashed lines are respective

validation losses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.15 Combined classification and demodulation model performance . . . . . . 82

4.16 Training loss at different input sequence lengths . . . . . . . . . . . . . . 84

4.17 Using a CNN to simplify the encoding task. . . . . . . . . . . . . . . . . 85

4.18 Training losses of the new Conv+RNN encoder . . . . . . . . . . . . . . 87

4.19 Accuracy comparison of purely LSTM and LSTM+Conv encoders . . . 88

4.20 Estimated complexity of the Seq2Seq encoder implementations . . . . . 88

5.1 Comparison of classical and DL-based frame synchronization methods. . 93

5.2 Packet data sizes in bursty communication . . . . . . . . . . . . . . . . . 94

5.3 Barker sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Barker autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Transmitted waveform containing preamble and payload . . . . . . . . . 96

5.6 Correlation Receiver Output . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Training data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 SNR selection based on baseline performance . . . . . . . . . . . . . . . 100

5.9 Mean accuracy of each model trained at a different SNR . . . . . . . . . 101

5.10 Accuracies achieved with different FCN model parameters. Legend key

should be read as (number of layers, number of filters, individual filter

widths). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.11 Training results on an 8-bit preamble dataset using three different types

of activation functions (dashed lines show validation losses) . . . . . . . 104

xi



List of Figures

5.12 FCN training results with and without bias in all convolutional layers . 105

5.13 FCN training results with and without bias in the first layer . . . . . . . 105

5.14 CNN and FCN architectures overview . . . . . . . . . . . . . . . . . . . 106

5.15 Accuracies achieved using different regularization techniques (left-hand

side shows weight decay results, and dropout on the right). . . . . . . . 108

5.16 CNN training and validation losses over batch iterations . . . . . . . . . 110

5.17 Confusion matrices of Correlation, CNN and FCN approaches to frame

sync. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.18 DER results with AWGN and random phase offsets . . . . . . . . . . . . 113

5.19 Single phase overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.20 DER with CFO of 10KHz . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.21 CFO Sensitivty Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.22 Detection Error Rate under Flat Fading Channel . . . . . . . . . . . . . 117

5.23 Detection Error Rate under Multipath Fading Channel . . . . . . . . . . 118

5.24 FCN introspection – looking at the outputs of individual layers . . . . . 120

5.25 Individual learned filter weights . . . . . . . . . . . . . . . . . . . . . . . 121

5.26 First layer filter similarity to preamble in training set . . . . . . . . . . . 122

5.27 Second layer filter outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.28 Multi-packet inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.29 Calculated computational complexity for 200 and 600 samples of evalu-

ated FS methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.30 Estimated computation complexity in CPU runtime . . . . . . . . . . . 126

5.31 Required number of parameters for each detection method . . . . . . . . 127

5.32 Parameters required with increasing input size . . . . . . . . . . . . . . 128

6.1 Typical data generation process for AMC, highlighting potential un-

tapped data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 High level overview of MTL . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 MTL Architecture with AMC and SNR estimation heads . . . . . . . . 135

6.4 Overview of modulation classes in the time domain . . . . . . . . . . . . 136

6.5 Different SNR representations used to train an estimator . . . . . . . . . 139

xii



List of Figures

6.6 SNR estimator training losses (dashed lines are validation losses) . . . . 141

6.7 SNR estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.8 SNR estimation results, closer look at MSE . . . . . . . . . . . . . . . . 142

6.9 SNR estimator configurations and loss weighting results . . . . . . . . . 145

6.10 AMC mean accuracy results post MTL training. The MTL (red) curves

showing better performance across entire SNR range. . . . . . . . . . . . 147

6.11 Illustration of FS+CFO dataset example generation . . . . . . . . . . . 148

6.12 MTL Architecture with FS and CFO estimation heads . . . . . . . . . . 149

6.13 CFO estimator training losses (dashed lines are validation losses) . . . . 151

6.14 CFO estimator results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.15 CFO estimator MSE evaluation over an SNR range . . . . . . . . . . . . 152

6.16 FS-CFO MTL detection accuracy results at decreasing CFO loss weight-

ing wCFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.17 FS-CFO MTL detection accuracy results with a parameter sweep of both

wFS and wCFO loss weightings . . . . . . . . . . . . . . . . . . . . . . . 155

6.18 Comparison of FCN performance at a range of frequency offsets trained

with and without MTL (legend includes mean accuracies for entire CFO

sweep) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.19 MTL training and deployment . . . . . . . . . . . . . . . . . . . . . . . 158

6.20 Single training waveform in continuous transmission mode . . . . . . . . 159

6.21 FCN FS+SNR Estimation MTL Architecture . . . . . . . . . . . . . . . 161

6.22 Training losses of FS-SNR MTL models . . . . . . . . . . . . . . . . . . 162

6.23 Comparison of mean accuracies achieved at different MTL loss weight-

ings. Dashed lines indicate accuracies of baseline non-MTL FCN models. 163

6.24 Periodic preamble detection . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.25 Sparse preamble detection . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.26 Closer look at FCN SNR estimation . . . . . . . . . . . . . . . . . . . . 166

6.27 SNR estimator performance comparison . . . . . . . . . . . . . . . . . . 167

A.1 No regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.2 Weight decay 0.0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xiii



List of Figures

A.3 Weight decay 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.4 Weight decay 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.5 Training with teacher forcing on 10 symbol inputs . . . . . . . . . . . . 181

A.6 Training with teacher forcing on 15 symbol inputs . . . . . . . . . . . . 181

A.7 Training with teacher forcing on 20 symbol inputs . . . . . . . . . . . . 181

A.8 Training with dropout on 10 symbol inputs . . . . . . . . . . . . . . . . 183

A.9 Training with dropout on 15 symbol inputs . . . . . . . . . . . . . . . . 183

A.10 Training with dropout on 20 symbol inputs . . . . . . . . . . . . . . . . 183

B.1 Training DNNs on simulated wireless data . . . . . . . . . . . . . . . . . 195

xiv



List of Tables

3.1 Selection of hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Dataset parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Training and dataset parameters of AMC + demodulation model . . . . 78

4.4 CNN parameters (ref input length 100 samples) . . . . . . . . . . . . . . 86

5.1 Architecture sweep parameters . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 FCN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 CNN Parameters for input length 200 . . . . . . . . . . . . . . . . . . . 107

5.4 Training hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 AMC-VGGNet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Noise Estimator Head Parameters . . . . . . . . . . . . . . . . . . . . . 137

6.3 SNR estimator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Noise estimator training details . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 AMC-SNR MTL model training details . . . . . . . . . . . . . . . . . . 144

6.6 CFO Estimator Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 CFO estimator training details . . . . . . . . . . . . . . . . . . . . . . . 150

6.8 FS-CFO MTL training details . . . . . . . . . . . . . . . . . . . . . . . . 154

6.9 FS-SNR MTL training details . . . . . . . . . . . . . . . . . . . . . . . . 160

6.10 Double headed FCN parameters . . . . . . . . . . . . . . . . . . . . . . 161

6.11 FS-SNR MTL training details . . . . . . . . . . . . . . . . . . . . . . . . 162

xv



List of Tables

A.1 Seq2Seq for QPSK demodulation architecture sweep, 5 input symbols . 177

A.2 Seq2Seq for BPSK/QPSK with teacher forcing . . . . . . . . . . . . . . 182

A.3 Seq2Seq for BPSK/QPSK with dropout . . . . . . . . . . . . . . . . . . 184

A.4 Initial architecture sweep training results: preamble length 8 . . . . . . 185

A.5 Initial architecture sweep training results: preamble length 16 . . . . . . 186

A.6 Initial architecture sweep training results: preamble length 32 . . . . . . 187

A.7 AMC-MTL model training results, case 0: linear SNR estimator head . 188

A.8 AMC-MTL model training results, case 1: dB SNR estimator head . . . 188

A.9 AMC-MTL model training results: classifcation SNR estimator head . . 189

A.10 FS-MTL model training results with CFO estimator: using fixed FS loss

weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.11 FS-MTL model training results with CFO estimator: using mixed loss

weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.12 FS-MTL model training results with SNR estimator: using fixed loss

weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.13 FS-MTL model training results with SNR estimator: using fixed loss

weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xvi



Acronyms

AI Artificial Intelligence

AMC Automatic Modulation Classification

ANN Artificial Neural Network

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CC Computational Complexity

CFO Carrier Frequency Offset

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DER Detection Error Rate

DL Deep Learning

DT Decision Tree

DNN Deep Neural Network

xvii



List of Tables

DSP Digital Signal Processing

EOS End Of Sequence

FC Fully Connected

FCN Fully Convolutional Neural Network

FFT Fast Fourier Transform

FIR Finite Impulse Response

FS Frame Synchronization

FSK Frequency Shift Keying

GMSK Gaussian Minimum Shift Keying

GRU Gated Recurrent Unit

IF Intermediate Frequency

LOS Line-of-Sight

LSTM Long Short-Term Memory

LTE Long Term Evolution

ML Machine Learning

MLP Multilayer Perceptron

MPSoC Multiprocessor System on a Chip

MSE Mean Squared Error

MTL Multitask Learning

NLOS Non-line-of-sight

NLP Natural Language Processing

xviii



List of Tables

NR New Radio

OFDM Orthogonal Frequency Division Multiplexing

PLL Phase Locked Loop

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RC Raised Cosine

RF Radio Frequency

RGB Red Green Blue

ReLU Rectified Linear Unit

RGB Red Green Blue

RNN Recurrent Neural Network

RRC Root Raised Cosine

SDR Software Defined Radio

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

SOS Start of Sequence

TDL Tapped Delay Line

TPU Tensor Processing Unit

xix



Acknowledgements

I would like to thank my supervisors, Prof Bob Stewart and Dr Louise Crockett, for

introducing me to the magical world of DSP and wireless communications, their un-

wavering positivity, continued support, and giving me so many amazing professional

opportunities. None of this would have been possible without them.

The Strathclyde SDR lab is truly one of a kind and it has been a joy and privilege to

work alongside so many remarkable colleagues. Thank you to my fellow PhD students

for the support and all the tea time chats, it was a blast going through this journey

together. I will miss our “CRC fridays” dearly.

Thanks to Neil MacEwen and Daniel Garcia-Alis for the internship opportunities at

the Glasgow MathWorks office. I would not have been able to reason about combined

communications and ML applications in this work without the help and expertise of

the Glasgow MathWorks team. Thank you all so much.

Thanks to Graham Schelle and Patrick Lysaght for the internship opportunity at

Xilinx (now AMD). It has been an incredible experience professionally and personally.

The year I got to spend in Boulder was one of the best years of my life. I would like

to thank Graham for the flexibility in managing my professional commitments while I

completed this thesis. And a big thank you to Shane Fleming (AMD) for all the advice

and moral support in completing this work.

I would like to thank my friends, family and colleagues for their support and endless

encouragement I have received over the years. It has been a long journey and I am

incredibly grateful for having been surrounded by such tremendous people.

xx



Chapter 1

Introduction

Advancements in wireless communications and signal processing play a crucial part in

keeping the world connected. Both individuals and large corporate enterprises require

reliable connectivity in order to thrive in the modern world. The need for connectiv-

ity is growing exponentially, as even autonomous devices are being plugged into the

world wide web. Modern communication systems are not magic however – they re-

quire resources, such as radio spectrum, which is finite. This necessitates engineering

increasingly efficient radio transmitters and receivers, capable of better utilizing the

limited resources we have to meet the growing demand for connectivity.

Wireless receivers are complex systems composed of multiple Digital Signal Pro-

cessing (DSP) blocks. Wireless transmissions emitted by a transmitter can travel vast

distances, are transformed by a variety of physical obstructions and electromagnetic

interference. Typically the signal captured by the receiver will be a much weaker, dis-

torted version of the original transmission. In order to mitigate these challenges, specific

signal processing blocks of a receiver perform functions designed to overcome particu-

lar hinderences. For example, low-pass filters are designed to remove high-frequency,

interfering signals.

It is likely that future communication systems will have many of their functions

replaced by neural network equivalents, perhaps the entire system itself [1]. Deep Neural

Networks (DNNs) are frequently outperforming select algorithms in radio receivers in

metrics such as BERs (Bit Error Rates) and detection accuracies [2], [3], [4], however
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often times they can be inflexible to their input sizes [5]. Training DNNs for wireless

communications tasks also brings challenges and opportunities unique to the field [6].

The focus of this thesis is the development of DNN architectures that can be used in

lieu of traditional DSP algorithms within a radio receiver as drag-and-drop solutions.

This chapter will outline the main motivations for the work carried out in this thesis

– mainly why flexible DNNs, capable of operating on variable sized inputs, are desirable

in the field of RFML (Radio Frequency Machine Learning) and how this idea fits into

the larger vision of the future radio receiver.

1.1 Deep Learning in Wireless Communications Physical

Layer

Classic radio receivers are typically designed by human experts using a systematic

approach, where each signal processing block is designed and evaluated individually,

before being integrated into the full system. Since the popularization of mobile devices

and increasing bandwidth requirements throughout the generations of wireless technol-

ogy, these receivers have also become more complex [7], [8]. Entire books have been

written for understanding just a single aspect of a wireless receiver, e.g. synchroniza-

tion [9], or channel equalization [10]. The resulting complexity of the full system in

latest generation wireless communications standards creates a very large optimization

surface with an immense amount of design choices and parameters.

On the other hand, the unprecedented number of wireless devices has caused a

surge of data, and thanks to the research efforts made by the Machine Learning (ML)

and data science research communities, there is a growing number of tools that can

harness this information for a variety of useful endeavors [11]. One of these is to create

powerful RFML models capable of learning to approximate very complex functionality

that typically takes expert knowledge and time to design.

There are a few key reasons why ML is seen as an attractive option for signal

processing tasks in wireless communications:

1. It is difficult to programmatically solve complex tasks, such as network traffic pre-

2
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diction [12] or channel occupancy prediction [13]. Sometimes Deep Learning (DL)

methods prove to be much better at the task than a human-defined algorithm (as

is the case in Automatic Modulation Classification (AMC) [14]).

2. Counter-intuitively, DL techniques can sometimes be successfully deployed in a

communications scenario to reduce complexity and save resources, as demon-

strated for polar decoding [15]. Reduction in complexity is usually seen when the

original algorithm has a highly iterative nature, requiring many loops of compu-

tation, which does not translate well to hardware. Most neural networks, on the

other hand, are easy to parallelize and generally provide a prediction in a single

processing forward pass.

3. According to the global optimality theorem [16], a globally optimized system

typically outperforms one built with separately designed and evaluated parts.

Similar trends in fields such as Computer Vision (CV), where the best algorithms

were initially designed with individually tested blocks, such as edge detection and

color thresholding, but eventually moved on to an end-to-end trainable approach

with deep CNNs (Convolutional Neural Networks) [17].

As shown in Figure 1.1 (a), a transitional period is required where only parts of the

system are being replaced by proven ML solutions. There are still many concerns and

issues associated with DNNs – difficulty of training and explainability [18], [19], [20]

being major ones. Having unexplainable “black box” components within a mission-

critical system will warrant extra validation as well [21],, for example, this is an actively

researched topic in the area of driverless vehicles [22]. Due to these concerns, adoption

can be slow and it is very likely that the field will remain in the transitional stage

illustrated in Figure 1.1 (b) for decades to come.

The work in this thesis addresses the challenges of the transitional stage in wireless

communications. The core aim of the work is to develop training and deployment

techniques for DNNs as drag-and-drop replacements for DSP blocks in wireless receiver

implementations.
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(a) Classic receiver processing chain – entirely based on human-engineered algorithms and DSP

(b) Transitional period of functions being replaced by DNNs, key functionality being replaced
by DNNs that outperform expert designed systems

(c) Future receiver – the whole processing chain substituted with an end-to-end trainable DNN

Figure 1.1: New Signal Processing with Deep Learning.

1.2 Research Objectives

The aim of this research work is to develop DNNs that integrate well into existing

system design tools and address key issues hindering broader adoption, such as the

need for RF data-appropriate architectures, field-specific training and explainability.

To accomplish this, the main objectives are laid out as follows:

• Develop adaptable DNN architectures capable of handling variable input sizes.

This will enable their use as drag-and-drop solutions in wireless receivers.

• Establish wireless communications-specific training techniques and methodologies

that leverage existing simulation tools and available channel models.
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The following subsections expand on the importance of achieving these objectives

in the context of the wider field of wireless communications and RFML.

1.2.1 Adaptable DNN Architectures and the Importance of Variable

Input Sizes

A typical radio signal processing flowgraph is composed of DSP blocks, such as FIR

(Finite Impulse Response) filters, PLLs (Phase Locked Loops), etc. Using industry

standard design tools like MathWorks Simulink [23], these can be drag-and-dropped

from a library into a receiver design and operate on streams of samples.

Many wireless communications problems are addressed with ML in a uniform way –

a classification approach. However, this is not necessarily the most appropriate solution

to every problem. In order to perform classification, the DNN will be trained on a fixed

number of class outputs, using Fully Connected (FC) layers, limiting the deployment

of these models to a specific number of classes. In some instances the number of classes

can be very large – for example, if the DNN is mimicking a filter and the number of

outputs equals the number of inputs. In these instances the model can be difficult to

scale to larger inputs. Even worse, in order to apply the DNN to a larger (or smaller)

input the model architecture will have to be re-tuned for the new input shape and a

new model re-trained.

Re-training DNNs can be time-consuming and require DL expertise. In order to

avoid this scenario, more appropriate DNN architectures can be trained and deployed

on variable input sizes. Ideally these data-driven solutions should be available to non-

ML experts as importable modules in a software package, with minimum effort required

to integrate into a new receiver. The types of architectures capable of this versatility

are explored in this thesis.

1.2.2 Unique Training Techniques in Wireless Communications

In addition to exploring novel architectures that could act as stand-ins for tried and

tested DSP blocks, there is massive scope for exploiting rich simulated wireless commu-

nications datasets. Training DNNs for problems being addressed by wireless receivers
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has unique challenges not present in other major areas where DL techniques are most

prominent – such as CV and Natural Language Processing (NLP). Wireless receivers

must deal with a variety of channel impairments such as multipath fading, frequency

offsets due to oscillator mismatches, thermal noise, and non-linearities from minor

component imperfections. Each environment differs, and designing a model that can

generalize to various channel conditions is a significant challenge.

However, with these challenges come unique opportunities – transmitted signals are

engineered and known beforehand at the transmitter, meaning that in a simulation

there exists perfect knowledge of the transmitted and received versions of the signal.

The channel models to evaluate these algorithms are now fairly mature and most im-

pairments, that are encountered in practice, can be effectively simulated. All of these

simulation parameters can be used as additional training data to create robust RFML

solutions with techniques like Multitask Learning (MTL). Few fields have accumulated

such extensive simulation libraries, so as to allow effectively generating data – perfect

for ML algorithm consumption.

This research seeks to contribute to the advancement of DNN adoption in wireless

receiver implementations by creating adaptable architectures and training methodolo-

gies that leverage the rich wireless datasets in ways unique to the field.

1.3 Related Work

Previous work with RNNs (Recurrent Neural Networks) in wireless communications has

shown their effectiveness for demodulation of speech signals as an end-to-end training

solution [24]. They have also been shown to work well for AMC tasks – the automatic

identification of the modulation type of a received signal [25]. AMC is a crucial process

for cognitive radio applications, where accurate sensing of the radio spectrum is essential

[26].

Seq2Seq (Sequence-to-Sequence) models are an advanced arrangement of two RNNs.

Initially, these models have been widely applied for language translation tasks, where

input and output sequences can vary [27]. In the wireless communications domain,

Seq2Seq models have been used for channel prediction [28], where the flexibility of the
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encoder-decoder structure allows prediction of channels of various time spans. Seq2Seq

models have been shown to work well on problems like MIMO (Multiple-Input Multiple-

Output) channel state information compression [29] and RF fingerprinting [30], to de-

termine a device’s location based on signal strength measurements. A Seq2Seq model

was used to predict sensor measurements in order to avoid unnecessary transmissions,

showing to reducuction transmitter energy consumption by up to 90% in Wireless Sen-

sor Networks (WSNs) [31]. Despite these varied applications, to the best of the author’s

knowledge, simultaneous AMC and demodulation tasks using Seq2Seq models have not

been demonstrated in previous literature.

Frame synchronization is an important part of a wireless receiver, responsible for

detecting transmitted packets. DL-based solutions to frame synchronization have pre-

viously been proposed by utilizing a regression CNN, where the final layer is a single

neuron estimator of the packet start index [32], [33]. Another popular CNN-based ap-

proach in the literature is to treat frame synchronization as a classification problem,

where the output of the CNN is equal in size to the input, and the assumption is made

that there will be a single packet in an input signal [34], [35], [36]. An RNN-based

approach has also been proposed, showing promising results on periodically repeat-

ing synchronization patters, however this method has not been explored on bursty

communications [37]. All of the reviewed CNN-based frame synchronization models

contain fully connected layers in the detector architecture, preventing the models from

being deployed on inputs of any other shape than the one they were trained on. The

work in this thesis addresses the fixed-size limitations of previous research with a fully

convolutional architecture applied to bursty wireless communications transmissions.

To take advantage of the rich datasets available in wireless communications, training

techniques like Multitask Learning (MTL) show potential to improve the performance

of DNN models in the RFML domain. MTL is a popular topic of study in the fields

of CV and NLP [38], where multiple related tasks can be learned while sharing the

feature extraction layers of a DNN. MTL can improve the performance of individual

tasks by having the network learn them at the same time – what is learned for one task

can help other tasks learn better [39]. A strong case for SNR (Signal to Noise Ratio)
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estimation as an MTL implementation has been made in the NLP domain for speech

recognition [40], where SNR estimation is used as a secondary task, imbuing a CNN

model with SNR-awareness. Using this approach, instead of training multiple models

for different SNR conditions and pairing them with an SNR estimator, a single DNN

can be deployed performing both tasks simultaneously.

AMC models can be sensitive to specific SNR conditions, and previous research

has been conducted to address this by training multiple AMC models for different SNR

ranges, then classifying the incoming signal based on an SNR estimation [41], [42]. Later

works have explored a single model solution using MTL and training AMC and SNR

estimation tasks simultaneously to create an SNR-aware model [43], [44]. A slightly

different variation of MTL has been proposed in [45], where a denoising autoencoder

is used as the secondary task to AMC – this makes the model SNR-aware, without

explicitly training it to estimate SNR. AMC has been the most popular application for

targeting with MTL, however more recent works are emerging on Channel Estimation

(CE) and Carrier Frequency Offset (CFO) estimation for OFDM systems [46], [47].

The reviewed works on AMC treat SNR estimation as a binary or tertiary classi-

fication problem, demonstrating that even a coarse prediction of ‘low’, ‘medium’ and

‘high’ SNR is enough to improve AMC performance. An aspect that has not been

addressed is the comparison of different SNR estimation methods and how they affect

MTL-trained model performance. In this work SNR estimation, as part of an MTL

investigation, is evaluated with different regression and classification estimators.

Outside of MTL, DNN-based SNR estimation has been explored in previous research

[48] [49] [50] [51]. However, to the best of the author’s knowledge, continuous SNR

estimation using a Fully Convolutional Neural Network (FCN) and an MTL training

scheme has not been explored in previous work.

1.4 Contributions

The contributions resulting from this research work are considered to be the following:

• Introduction of a Seq2Seq autoencoder model to address the problems
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of AMC and digital baseband symbol recovery simultaneously. To the

best of the author’s knowledge a Seq2Seq model that combines these tasks has not

been proposed in existing literature. To expedite the training process and alleviate

some of the difficulty of training RNNs, a hybrid-model with a convolutional

encoder was proposed. The combined Conv-Seq2Seq showed improved training

convergence properties, compared with a purely RNN-based Seq2Seq model.

• Development and evaluation a novel FCN architecture or “deep filter”

for physical layer frame synchronization. A fully convolutional architec-

ture allows inference on input sequences of any length, which was not addressed

in existing DNN-based works addressing the same problem. Historically DL so-

lutions to frame synchronization have treated the problem using classification,

rather than regression. The trained models were evaluated on different preamble

lengths, showing that DL-based frame synchronization works well for very short

preambles compared to correlation-based methods, especially when considering

channel impairments like CFO.

• Introduction of novel uses of MTL to train DNNs using wireless chan-

nel simulation parameters as additional training labels. The proposed

MTL methodology uses channel simulation parameters as additional labels to

train additional estimator heads, which can be removed post-training for infer-

ence. The technique acts as additional regularization, guiding the model to gen-

eralize for a wider range of interferences. This method was used to train two

models: AMC with SNR estimation, and frame synchronization with CFO es-

timation. A consistent improvement was shown over baseline models, achieved

without increasing computational, time, energy, or other costs at inference time.

• Development of a novel double-headed fully convolutional MTL im-

plementation for frame synchronization and continuous SNR estima-

tion. To the best of the author’s knowledge this is the first implementation of

a DL-based method for continuous SNR estimation. The FCN SNR estimator

outperformed the baseline model at low SNR.
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• An investigation of the tradeoffs and best criteria for MTL-related pa-

rameters are presented in this work. Best practices for MTL in wireless

communications have yet been defined and MTL-specific parameters, like indi-

vidual task loss weightings have not been discussed in detail in existing literature.

Additionally, a series of wireless communications dataset insights and best prac-

tices have been collected from training a variety of models for multiple different

applications. As such, a methodology has been developed that is hoped to be

useful for future researchers in the field of RFML.

1.5 Publications

Several works have been published as part of this research project. These are:

[a] S. Kalade, L.H. Crockett and R.W. Stewart, “Using Sequence to Sequence learn-

ing for digital BPSK and QPSK demodulation,” (conference paper), in 2018 IEEE

5G World Forum (5GWF), pp. 317-320, IEEE, 2018.

Available: https://doi.org/10.1109/5GWF.2018.8517049

[b] S. Kalade, L.H. Crockett and R.W. Stewart, “Using Deep Learning for Simul-

taneous Classification and Demodulation of Wireless Communications Signals”

(poster), Presented at New England Workshop on Software Defined Radio, Worces-

ter, USA, 2018.

Abstract Available: https://newsdr.org/workshops/newsdr2018/

[c] S.Kalade, “Introduction to Deep Learning” in Exploring Zynq MPSoC: With

PYNQ and machine learning applications (book chapter), Strathclyde Academic

Media, 2019.

Available: https://www.zynq-mpsoc-book.com/

[d] S. Kalade, “Quirks and Opportunities of Training Deep Learning Systems for Fu-

ture Wireless Networks” (presentation), Presented at 6G: Software Defined Radio

and RF Sampling, TechUK, UK, 2021.
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Available: https://www.techuk.org/resource/slides-software-defined-radio-

and-rf-sampling.html

[e] S. Kalade, L.H. Crockett and R.W. Stewart, “Training Deep Filters for Physical-

Layer Frame Synchronization,” (journal), in IEEE Open Journal of the Commu-

nications Society, vol. 3, pp. 1063-1075, IEEE, 2022.

Available: https://doi.org/10.1109/OJCOMS.2022.3185973

1.6 Thesis Organization

The remainder of this thesis is structured as follows:

• Chapter 2 is the wireless communications background chapter that reviews

the main modulation types and common channel impairments in the context

of dataset generation for RFML. This chapter also summarizes the fundamen-

tals of AMC and explains the reasoning behind the transition from ML to DL

algorithms in this space.

• Chapter 3 covers the basic theory of DL, main architecture types, common

design patterns and explains the process of training a DNN.

• Chapter 4 introduces Seq2Seq models and presents a methodology for training

them for AMC and PSK demodulation. The challenges of training these networks

are discussed and architectural changes proposed to alleviate these issues. This

work has been published in [a],[b].

• Chapter 5 presents the novel work done on fully convolutional architectures ap-

plied for physical layer frame synchronization, in this thesis referred to as “deep

filters”. An extensive architecture design study is performed, including an intro-

spection into the individual layers and a complexity analysis. The majority of

this work was published in [e].

• Chapter 6 reviews MTL and how it can be used for wireless communications data

to improve model performance or train novel models that can perform multiple
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tasks simultanously. Initial results were presented in [d].

• Chapter 7 summarizes the thesis, presents key conclusions and future work.

• Appendix A contains training summaries for the models trained in chapters 4-6.

• Appendix B describes a general methodology developed over the course of this

research for training DNNs for wireless communications data.

• Appendix C describes the reproducibility efforts of this work and points the

reader to the GitHub repository containing the jupyter notebooks used to generate

the results presented in this thesis.

The next chapter will introduce the fundamentals of signal processing for wireless

communications.
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Signal Processing Background

This chapter introduces the fundamental concepts and problems in wireless communi-

cations that are explored in this thesis.

2.1 Communications Link Overview

A basic communications system is composed of a transmitter, channel and receiver.

The transmitter will typically encode the raw bits of data for redundancy purposes –

this could be simple bit repetition or more advanced error-correcting codes like ham-

ming [52]. Encoded bits are then mapped into digital symbols, where each symbol

can represent a number of bits, according to the modulation scheme – this is typically

referred to as baseband modulation. RF transmissions are quite stringently regulated

and in order to comply with established wireless standards, for example the 5G New

Radio the spectral emission mask parameters are listed in detail in the standard doc-

uments [53]. Extra processing is required to perform the band-limiting the signals –

this is typically done by pulse shaping filters. Additionally, in order to actually trans-

mit data via RF frequencies, the modulated symbols have to be upconverted to an

RF frequency and then converted to an analog signal with a Digital-to-Analog Con-

verter (DAC). Multicarrier systems will perform additional steps, such as de-serializing

the bitstream and multiplexing the modulated bits onto different carriers in parallel,

however single carrier configurations are mainly discussed in this thesis.

13
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Receivers, on the other hand, must perform the inverse operation of the transmit-

ter, which would be straightforward – if not for the channel. In addition to converting

the signal back into the digital domain with an Analog-to-Digital Converter (ADC),

executing the decimation, demodulation and decoding, the receiver also has to over-

come various impairments introduced by the wireless channel, such as noise, frequency

and phase offsets, gain imbalances, etc. Some of these impairments have little to no

recourse, for example there are few practical solutions for thermal noise introduced by

the physical characteristics of the components making up the receiver. Others, such as

frequency offset or time delay, can be corrected by employing synchronization.

A basic overview of a communications link can be observed in Figure 2.1. Illustrated

is one of the possible single carrier communications link arrangements at a high level.

Note that the receiver is much more complex than the transmitter.

2.2 Digital Modulation Schemes

Wireless devices, like phones or routers, work by converting data bits into signals carried

by radio waves. However radio transmissions have a cost – radio spectrum, and it is in

our best interest to maximize the number of bits per Hz. The simplest example is the

On-Off keying modulation scheme, where a signal being ‘on’ means a 1 is transmitted,

‘off’ means a 0. If bits are transmitted this way at a rate of B then a spectral efficiency

B bits/Hz is achieved.

In a simple scenario like this, increasing the throughput is trivial – just speed

up the rate at which bits are transmitted. However this incurs the cost of additional

bandwidth, which is undesirable since spectrum is a finite resource. In order to transmit

more bits using the same bandwidth, the bits would have to be packed into different

symbols, for instance, instead of having 2 levels to represent ‘on’ and ‘off’, 4 voltage

levels could be used instead to represent pairs of bits (-1V is ‘00’, -13V is ‘01’, +1
3 is

‘10’ and +1V is ‘11’). Now the transmitter can emit 2B bits/Hz. Of course there are

tradeoffs, e.g. the number of voltage levels used will depend on how noisy the channel

is. Some modulation schemes will be better suited for some channels than others, but

this is the key idea behind modulation.

14
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Figure 2.1: Communications link overview

Baseband modulation takes place before Intermediate Frequency (IF) and/or Radio

Frequency (RF) modulation. It involves mapping data bits to symbols according to

the modulation scheme. Popular schemes are Amplitude Shift Keying (ASK), Phase

Shift Keying (PSK), Frequency Shift Keying (FSK) and QAM (Quadrature Amplitude

Modulation), which is a combination of both ASK and PSK. This section will cover

the foundations necessary to recognize and understand these modulation types.
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2.2.1 Amplitude Shift Keying

The most intuitively understandable digital modulation scheme is ASK. ASK-2, ASK-

4, ASK-8, etc. are examples of ASK, where the increasing number dictates how many

symbols or amplitude levels are used in a modulation scheme. The advantage of ASK

is that it is very simple to implement, for example ASK-2, sometimes known as OOK

(On-Off keying) simply has 2 states where the transmission is in an ON state or an

OFF state. The disadvantage is that, since the modulation scheme is entirely based

on amplitude, it is sensitive to noise and path gain/loss effects. Since real world trans-

missions are generally noisy these modulation schemes are rarely seen in widely used

communications standards.

Figure 2.2: Amplitude Shift Keying (2-ASK/OOK)

Figure 2.2 shows the 2-ASK symbols and what the resulting modulation would look

like once the symbols have been modulated onto a carrier. The modulated carrier signal

is transmitted by an RF front end interfacing with the physical world.

2.2.2 Phase Shift Keying

BPSK, 4-PSK, 8-PSK, 16-PSK are examples of Phase Shift Keying (PSK). When data

is modulated using PSK schemes the output modulated signal amplitude is constant,

however phase transitions between symbols, as seen in Figure 2.3, occur at the symbol

edges. The way different symbols are extracted in this scheme is by evaluating the phase

differences between each symbol period. Since phase is not affected by variations in

amplitude, it is more robust compared to modulation schemes that rely on amplitude.
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Figure 2.3: Binary Phase Shift Keying (BPSK)

Once modulated onto a carrier, subtle symbol transitions can be seen where the

sine wave seemingly restarts at different points. Abrupt phase differences, producing

sharp changes in the time domain, are generally undesirable. In practice the modulated

symbols go through more processing steps such as pulse shaping, covered in the next

section, which act to soften these transitions.

In wireless communications modulation is often performed by transmitting a Real

(In-phase) and Imaginary (Quadrature) components, by modulating the signal using 2

oscillators that are 90 degrees out of phase (orthogonal to each other). The motivation

for doing so is to double the spectral efficiency compared to a modulation using only

a single carrier. The simplest such example is QPSK (equivalent to 4-PSK), which

combines 2 orthogonal BPSK streams at the same carrier frequency, as shown in Figure

2.4. Nearly all of the communications signals in this thesis will take this form.

Figure 2.4: Quadrature Phase Shift Keying (QPSK)

Inspecting the symbols in time domain graphs can be difficult, especially when
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modulation order increases – expanding the number of possible phase shifts. In order

to better visualize and evaluate PSK modulated data, constellation diagrams are often

used. The baseband symbols of BPSK, QPSK and 8-PSK modulated data can be

observed in Figure 2.5. Note how BPSK sits only on the real plane, while the other

modulation schemes use both I and Q channels to represent the symbols.

(a) BPSK (b) QPSK (c) 8-PSK

Figure 2.5: PSK Constellation Diagrams

PSK is still limited in efficiency – note that, in all of the subplots of Figure 2.5 the

symbols occupy only the outer perimeter of the circle – no amplitude information is

transmitted.

2.2.3 Frequency Shift Keying

Having covered amplitude and phase, the third key property of a carrier that can be used

to convey different symbol values is frequency. An example of frequency-based digital

modulation is Frequency Shift Keying (FSK). FSK is very commonly used in widely

deployed standards such as Bluetooth [54]. This scheme is implemented by having

each symbol be represented by a particular carrier frequency. Detecting a signal at a

particular pre-defined frequency counts as receiving a symbol. Transmitted symbols,

modulated by the 2-FSK modulation scheme, where two different carrier frequencies

are used, can be seen in Figure 2.6.

FSK cannot be easily examined using constallation diagrams, however performing

an FFT on a FSK-modulated signal results in 2 distinct spikes (for 2-FSK), showing

where the symbols are located in the frequency domain (Figure 2.7). The challenge with
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Figure 2.6: Frequency Shift Keying (2-FSK) in time

FSK is to successfully transmit and recover multiple frequencies at a limited bandwidth

– spectrum leakage, noise and quantization errors can make this rather difficult, as these

interference sources can ‘flatten’ the frequency peaks and make them less discernable.

Figure 2.7: Frequency Shift Keying (2-FSK) in spectrum

2.2.4 Quadrature Amplitude Modulation

The final modulation scheme class that will be covered in this chapter is Quadrature

Amplitude Modulation (QAM), a widely used modulation scheme that is a combination

of both amplitude and phase shift keying. This is a very common modulation scheme,

often used as part of multicarrier modulation such as OFDM (Orthogonal Frequency-

Division Multiplexing) seen in WiFi and mobile standards like LTE [52, Chapter 15].

QAM can be configured with different numbers of modulation levels (in some applica-
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tions up to 4096-QAM [55]). Typically, when a channel has very favorable conditions,

such as low noise, a high order QAM scheme can be used to maximize the number

of bits conveyed per symbol. However, when SNR drops and bit error rates reach an

unaccaptable threshold, the communications link can switch to a lower order QAM

modulation.

Technically the previous example of QPSK has already shown a QAM constellation,

because 4-PSK, QPSK and 4-QAM are equivalent. Going to a higher modulation level,

an example of 16-QAM modulated constellation is shown in Figure 2.8.

Figure 2.8: QAM-16 constellation diagram

As mentioned earlier, the modulated signals presented here exhibit discontinuities

and sharp transitions between symbols. Representing such rapid transitions in the

frequency domain requires frequency components that are often outside of the desired

bandwidth that the signal should occupy. In order to prevent spectral leakage to adja-

cent communications channels results from these effects, techniques like pulse shaping

are often used.

2.3 Pulse Shaping

In order to band-limit the transmitted pulses (baseband symbols), some additional

filtering should be applied to the samples that are being transmitted. This pulse shaping
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stage takes place after baseband modulation. Pulse shaping is required in order to

prevent spectrum leakage and ensure adherence to spectral mask requirements specified

in different standards [56, Chapter 21].

2.3.1 Sinc Pulse Shape

The simplest pulse shaping method is to repeat the symbol samples – this is called

square pulse shaping, and has been applied implicitly in the previous examples of this

chapter when modulating symbols onto a carrier. The downside of this approach is

that changes at the edges of the square pulses are still sharp in the time domain, which

means that pronounced side lobes will be present in the frequency domain, causing

interference to nearby transmissions. A solution to these sharp transitions is the sinc-

shaped filter. The sinc function is simply given by

sinc(x) =
sin(πx)

πx
. (2.1)

An infinite sinc shaped filter can achieve ideal frequency limiting properties, however

implementing this filter is not practically feasible since hardware resources are not

infinite. Instead, an approximation is often deployed by using the sinc function and

implementing a truncated version of an ideal sinc filter, as shown in Figure 2.9.

Figure 2.9: Sinc function
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2.3.2 Raised Cosine

The truncated sinc filter is not ideal and can still result in sizeable side lobes in the

frequency domain due to its long tapering tails. Other variants of sinc-shaped filters,

such as Raised Cosine (RC) are very commonly used in wireless communcations, and

allow for higher parameterization and tradeoffs in filter complexity and spectral leakage

[52, Chapter 3]. The RC filter is achieved with an additional design parameter α, which

governs the excess bandwidth (also referred to as roll-off factor), or how wide the main

lobe of the signal will be in the frequency domain, the new equation is defined as

rc(x) = (
sin(πx)

πx
)(

cos(απx)

1 − (2αx)2
). (2.2)

Note that when α = 0, the RC filter is equivalent to the previously defined Sinc

filter. Effects of the design parameter α has on the filter weights and frequency response

is shown in Figure 2.10.

(a) Parameter α effect on filter weights (b) Filter frequency response

Figure 2.10: Raised Cosine filter

As a concrete example, the effects of pulse shaping on spectral leakage are illustrated

in Figure 2.11. Note that the square pulse shape results in many side lobes leaking

energy into adjacent frequency bins – this is the reason why square pulse-shaped data

is usually not transmitted over the air, as it would cause a great deal of interference to

adjacent frequency channels.

Applying a pulse shaping filter to these repeated pulses results in a slightly per-

turbed time domain graph, however this has a very clear effect of minizing the side
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(a) Time domain (b) Frequency domain

Figure 2.11: Square and sinc pulse shaped-symbols in time and frequency domains

lobes in the frequency domain.

2.3.3 Matched Filtering

The RC filter has the desirable property of not introducing Inter Symbol Interference

(ISI) to the pulse shaped data. This means that the maximum effect points (the sam-

ples that are used to determine the symbol in baseband demodulation) are unaffected

by their neighbours. The raised cosine filter can be split into 2 linear filters at the trans-

mitter and receiver, and the resulting filter is called the Raised Root Cosine (RRC)

filter. Using two identical RRC filters at the transmitter and receiver is referred to as

matched filtering, which reproduces the original RC transfer function, ensuring that

the property of zero ISI is maintained.

An example of matched filtering with two RRC filters is demonstrated in Figure

2.12. A single RRC filter distorts the signal and introduces ISI, as seen on the left

plot – the individual symbols do not perfectly overlap at the zero crossings, interfering

with each other. However, once the RRC filter is applied again on the receiver side,

the original RC response is achieved and the symbols at the receiver do not experience

any ISI.

RRC filters are the most common pulse shaping filters and will be seen in many

datasets for RFML.
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Figure 2.12: RRC matched filtering

2.4 Channel Effects

Transmitted signals travel across wide distances, get partially absorbed, transformed,

bounced off various surfaces, and can arrive at irregular intervals to their destination.

There are man-made obstacles, such as buildings, and cars, as well as natural foliage

like trees that can act as filters. Nearby wireless devices like routers, phones or other

radio-capable equipment add noise in the form of interference. All of these effects and

more have to be overcome and compensated to some degree by the receiver.

Ignoring the forces of nature and cityscapes that influence the wireless world, even

a clear Line of Sight (LOS) channel between transmitter and receiver will pose a great

deal of issues. For example, if the receiver local oscillator does not match the carrier

frequency exactly – the received signal will suffer from frequency offset errors. Addi-

tionally, it is unlikely that the phase of the received carrier signal and receiver local

oscillator will match, necessitating the receiver to compensate for the phase offset. It is

also important to remember that the components that make up a radio receiver will ex-

hibit thermal noise and contribute to some loss of SNR. Local interfering transmissions

will also negatively impact SNR and generally are difficult to avoid.

Understanding these channel effects is not only necessary to develop good receivers,

but it is also imperative to produce comprehensive datasets for ML.
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2.4.1 Signal to Noise Ratio

The concept of Signal to SNR is important in various aspects of wireless communi-

cations. Linear SNR is simply defined as the ratio of the signal power Ps and noise

power Pn. Much more commonly, however, SNR is expressed in decibels (dB), and is

calculated as follows:

SNRdB = 10 log10 (
Ps(W )

Pn(W )
). (2.3)

When describing power in wireless communications the ranges can vary drastically

from one millionth of a watt in handheld mobile devices to hundreds of watts in oper-

ating FM stations [57]. Expressing these measurements as dB values is much simpler

and more readily understood.

In wireless communications, many sources of noise are present that result in loss

of SNR, such a thermal properties of the electronics, and interference from nearby

transmitters. Using modern simulation software, these noise effects can be readily sim-

ulated. The most popular noise model used in wireless channel simulations is Additive

White Gaussian Noise (AWGN). The noise samples are drawn from a zero-mean normal

distribution N , parameterized by the variance σ2 as shown in Eq 2.4.

n ∼ N (0, σ2). (2.4)

The amount of noise is determined by the variance of the normal distribution. In

order to use this generated noise, it can simply be added to the signal s, producing the

received, noisy signal r, as demonstrated in Eq 2.5.

r = s + n. (2.5)

The simple addition in order to apply the noise is where AWGN gets the “Additive”

portion of the name.

Effects of AWGN on a baseband QPSK-modulated signal at different SNR levels

are illustrated in Figure 2.13. Note that a certain degree of noise in the system can be
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tolerated, however as we approach 0dB, where the signal and noise power is equal, it

becomes much harder to discern whether the symbol has been received in the correct

quadrant.

(a) QPSK at 30dB SNR (b) QPSK at 15dB SNR (c) QPSK at 5dB SNR

Figure 2.13: Effects of AWGN on constellation diagrams

In most channels noise is an unavoidable truth and bit errors will occur – this is

why source and channel coding schemes are important.

2.4.2 Carrier Offsets

To demodulate and recover the symbols being transmitted over the air, the local oscil-

lator of the receiver must match the frequency and phase of the carrier being emitted

by the transmitter. In a real-world system there will inevitably be physical differences

between the transmitter and receiver, which can cause a mismatch of frequencies or

Carrier Frequency Offset (CFO). Frequency offsets can also result from movement of

one (or both) of the transmitting or receiving devices (such as a phone) – this is known

to be caused by the Doppler effect [52, Chapter 14]. Due to the distance the carrier

wave must travel, the phase of the received waveform is unpredictable and is very un-

likely to initially match the local oscillator phase. Without correction, these effects can

significantly impact the receiver’s ability to recover the data bits of the transmitted

signal.

The received signal r(t) with carrier offsets can be described as

r(t) = s(t)ej(2πfot+ϕ), (2.6)
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where s(t) is the transmitted signal, fo is the carrier offset frequency, and ϕ is the phase

offset.

Recall that, in the case of PSK in Section 2.2, phase offsets of a carrier wave result

in a rotation along the unit circle of the complex plane – phase offset manifests the same

way and the amount of rotation is defined by ϕ. A constant phase shift is easy enough

to correct, however CFO as defined by the offset frequency fo results in a constantly

changing phase shift.

These effects can be easily visualized in constellation diagrams for QPSK, as shown

in Figure 2.14. Figure 2.14(b) shows a constant phase offset of 15◦ – in this case the

symbols still fall in the correct quadrants and this would not cause erroneous bits due to

phase shift alone. CFO, as shown in Figure 2.14(c), results in a spinning constellation

over time, meaning that eventually the symbols will cross over into a quadrant where

the receiver will misclassify the received bits. A useful, more practical reference covering

these types of impairments can be found in M. Lichtman’s book on practical SDR [57].

(a) No offsets (b) Phase offset (c) Frequency offset

Figure 2.14: QPSK affected by carrier offsets

ML models commonly operate on the time domain samples of a signal, and therefore

it is important to understand what the samples of a signal affected by CFO will look

like with respect to time. Figure 2.15(a) shows a series of BPSK symbols, without any

impairment, in this case only the in-phase channel is used to transmit the modulated

symbols. In Figure 2.15(b), a modest phase offset is introduced, effectively causing

some noise on the quadrature channel. However, with just the phase offset, the in-

phase channel symbols are still prominently visible and it is possible to tell by eye that
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it is still BPSK.

The spinning of the constellation caused by CFO represents itself as a sinusoidal

pattern where the in-phase and quadrature channels “bleed” into each other over time,

as shown in Figure 2.15(c). From an ML perspective, the drastic effects of this type

of impairment (e.g. for a classification system) can be observed by viewing the signal

at sample points between 100 and 150, where the real and imaginary samples have

roughly the same amplitudes – by looking at just this segment, it would be impossible

to differentiate the transmitted BPSK signal from a QPSK capture.

(a) BPSK symbols with no impairment

(b) BPSK symbols with phase offset

(c) BPSK symbols with CFO

Figure 2.15: Illustration of CFO effects on BPSK-modulated symbols in the time do-
main

Carrier frequency and phase offsets are common in wireless channels, and should

be considered when creating any dataset for training an ML model.
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2.4.3 Multipath Fading

Many physical phenomena can affect the signals that are transmitted – signals can

be reflected by trees and buildings, be partially absorbed by walls, or experience at-

tenuation due to propagation loss. The received signal is the summation of several

components that arrive at the receiver at different gains and times, as a result of mul-

tiple paths taken between the transmitter and receiver. Such a multipath scenario is

illustrated in Figure 2.16.

Figure 2.16: Illustration of a multipath channel

If a direct path exists, as shown in Figure 2.16, the channel is called a LOS channel.

There can also be cases where the is no direct path from transmitter to receiver, and

the strongest received signal may have bounced off a building, a hill or any number of

other obstructions – in this case the channel is defined as non-LOS.

A common way to represent multipath channels is with the Tapped Delay Line

(TDL) model [58]. Figure 2.17 shows the power delay profile of a multipath channel

– where the tap at delay τ0 is the LOS path, and each subsequent tap is a multipath

component. The received signal r as a result of a signal s passing a TDL model is

defined as

r(t) =

K∑
k=1

Hk(t)s(t− τk), (2.7)

where K is the number of multipath components (or taps), and Hk and τk are the
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gains and delays of individual multipath components, respectively. It is common for

LOS channel path gains to be derived from a Rician distribution, and non-LOS gains

to be modelled after a Rayleigh distribution [52, Chapter 14].

Figure 2.17: Delay taps of a multipath channel model

Channels can be classified as flat and frequency-selective. If a signal of interest

occupies the entire bandwidth f as shown as shown in Figure 2.18, it experiences a

frequency-selective channel – this is undesirable because deep fades like the one shown

in Figure 2.18 result in the signal being distorted to the point where no data can be

recovered without channel equalization. On the other hand, if the signal experiences

only a flat channel response, then it suffers from a simple complex gain H(t) being

applied to the transmitted signal s(t) as defined in Eq. 2.8.

Figure 2.18: Difference between frequency-selective and flat channel responses
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r(t) = H(t)s(t). (2.8)

From a more practical perspective, fading channel effects are illustrated in Figure

2.19. In the case of a flat channel, because the gain is a complex number and multipli-

cation of complex numbers causes a change in both magnitude and phase, the resulting

QPSK symbols have a gain and phase shift applied to them – in some cases this may

not even result in error, and is quite easy to compensate for. In the case of a multipath

channel, Figure 2.19(c), the additional multipath components cause more fundamental

changes to the constellation, making it quite difficult to parse by the human eye.

(a) No fading (b) Flat channel response (c) 2 tap multipath channel

Figure 2.19: QPSK affected by fading channels

Multipath fading channels are some of the most difficult impairments to overcome,

and therefore there is much interest in techniques like channel estimation and equal-

ization, or multicarrier approaches to mitigate frequency selectivity [52, Chapter 15].

2.5 Automatic Modulation Classification

Automatic Modulation Classification (AMC) is an essential function of an intelligent

radio capable of reacting to its environment. The number of signals of various wire-

less standards is increasing every year, and being able to capture that information is

valuable [59] [4].

AMC is an important part of many cognitive radio systems in both user and military

applications [60]. As the name implies, its main functionality is to imbue the receiver
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with the ability to automatically classify incoming signals. At the time of writing, this

task is dominated by DL models, however a brief understanding of how AMC works

using classic statistical methods is useful to appreciate the DL solutions.

2.5.1 Higher Order Statistics

As covered in Section 2.2, digital modulation schemes carry data by varying the different

carrier properties, of amplitude, phase or frequency. Various statistical features can be

extracted by monitoring these properties of an incoming signal. Historically, higher

order statistical moments and cumulants have been used to achieve this [61] [62].

Moments

A moment is a statistical measure used to describe the distributions of a given dataset.

First order moments, such as the mean and variance are ubiquitous in statistics –

these describe the expected value and the average squared distance from the mean of

a distribution respectively.

The central moment of a random variable is defined as the moment around the mean

(expected value) of the distribution. An nth central moment µn can be calculated as

follows:

µn = E[(X − µ)n], (2.9)

where E[] is the expected value, X is the random variable, and µ is its mean value.

The second central moment is the variance of a distribution σ2 = µ2 = E[(X −µ)2], in

other words the mean of the squared difference between the samples of the distribution

and its expected value.

Because moments describe the shapes of distributions, rather than magnitudes, it is

useful to standardize these values. A standardized nth central moment µ̂n, is calculated

using

µ̂n =
µn

σn
=

E[(X − µ)n]

(E[(X − µ)2])
n
2

. (2.10)
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The first central and standardized moments are always equal to 0, because the mean

around the mean is zero. And since the mean is 0, the resulting variance is 1 – this is

usually the case for Gaussian processes.

Some more interesting, named standardized moments are skewness (Eq 2.11) and

kurtosis (Eq 2.12). Since skewness is an order of 3, it can be negative or positive.

skew(X) = µ̂3 =
µ3

σ3
=

E[(X − µ)3]

(E[(X − µ)2])
3
2

. (2.11)

Kurtosis is a measure that can only be positive and it indicates how the variance is

affected by extreme and rare deviations at the tails of the distribution.

kurt(X) = µ̂4 =
µ4

σ4
=

E[(X − µ)4]

(E[(X − µ)2])
4
2

. (2.12)

A good example of kurtosis in wireless communications signals can be observed

when comparing QPSK and QAM-16 modulation histograms of the absolute values of

their instantaenous amplitudes, as demonstrated in Figure 2.18.

(a) Histogram of instantaneous amplitude of a
pulse shaped QPSK signal.

(b) Histogram of instantaneous amplitude of a
pulse shaped 16-QAM signal.

Figure 2.20: QPSK and QAM-16 distribution comparison

In Figure 2.20(a), the tail of the distribution of the QPSK signal is much more

prominent than for the QAM-16 signal in Figure 2.20(b). 16-QAM looks closer to a

normal distribution, which would result in µ̂4qpsk > µ̂4qam. Kurtosis of the instanta-

neous amplitude is just one feature that can be used to differentiate different modulation

schemes. A collection of these features can be used to create flowcharts or decision trees,

where an incoming signal can be algorithmically identified.
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Cumulants

Just like moments, cumulants are used to describe the shape of the signal distribution.

There are two main advantages to using cumulants – for Gaussian processes all higher

order (over 2) cumulants tend to 0, which is helpful in discerning non-Gaussian pro-

cesses. The other advantage over moments is that the joint cumulant of 2 independent

random variables is the same as the sum of the two individual cumulants, this property

simplifies statistical feature calculations [63].

Conveniently, cumulants can be calculated directly from the central moments using

the recursive cumulant formula

Kn = µn −
n−1∑
m=1

(
n− 1

m− 1

)
kmµn−m. (2.13)

where Kn is the nth cumulant,
(
n−1
m−1

)
is a binomial coefficient, km is the mth cumulant,

µn is the nth central moment. This equations allows calculating a new higher order

cumulant, based on previously calculated moments and cumulants. For example, the

4th order cumulant can be derived from Eq 2.13 as follows:

k4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1. (2.14)

If the distribution was standardized to µ1 = 0 mean, then all of the equations would

be simplified, since all the terms with µ1 would be dropped. For example, the fourth

order cumulant from Eq 2.14, can be simplified as:

k4 = µ4 − 3. (2.15)

The 4th order cumulant is an interesting one, sometimes interchangeably referred to

as excess kurtosis. In a Gaussian distribution kurtosis is always 3. The excess kurtosis

in a gaussian distribution will always converge to 0.
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2.5.2 Decision Trees

Decisions Trees (DTs) are some of the oldest and simplest classifiers. This method is

one of the earliest predecessor to AMC systems before ML [64]. A DT works by simply

applying a series of condition checks, each one creating two or more branches until a

final node is reached indicating the class prediction of the DT model.

Different modulated waveforms have different distributions, as was shown in Figure

2.20. This means that unique modulation schemes will have typical statistical feature

values, determined by mathematical theory or simulations – in short, expert knowledge.

One branch of a DT can be determined by kurtosis to differentiate QPSK from 16-QAM.

Given enough expert knowledge, a more intricate DT can be built that is capable of

recognizing a great proportion of modulation schemes.

Figure 2.21: Decision tree used for AMC

A high level overview of how an AMC DT might function is illustrated in Fig-

ure 2.21. It is common to separate modulation schemes into classes first, then make

decisions with finer granularity by evaluating more specific statistical features. For
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example, one branch can split the decision of a received signal into broad QAM and

not-QAM classes, then further decisions can be made to separate BPSK, QPSK, 16-

QAM, 32-QAM, etc.

The downside of DTs is that they rely heavily on expert knowledge and require

immense human engineering effort to develop the statistical features and DT design.

Additional circumstances, such as SNR and other channel impairments, can affect the

statistical distributions of the captured waveform and need to be accounted for as well.

Fortunately, this task is somewhat easier with ML and off-the-shelf libraries like scikit-

learn [65] can be used to automatically produce a DT for a given dataset, simplifying

the required human efforts.

2.6 Deep Learning in Wireless Communications

Using ML simplifies the DT approach discussed in the previous section – instead of

relying on expert knowledge and carefully selecting the correct thresholds to decide

modulation schemes, the features of the signal can be fed directly into a learning algo-

rithm, which can then decide the best thresholds to use in a data-driven way. Taking it

a step further, using a DL approach we can forego calculation of the statistical features

alltogether, and simply feed a DNN the raw I/Q samples. A big enough DNN would

implicitly learn to extract the most relevant features for its given task during training.

As seen in earlier sections, most wireless communications data exists in the form of

sequences of complex numbers (I/Q samples). The most common approach of mapping

this data for the consumption of ML algorithms is by interpreting it as an image. This

can be done by treating the individual I and Q channels as two separate real numbers,

much like pixels in pictures – this is illustrated in Figure 2.22. Once converted to

matrices of the right shape, the data can be processed by CNNs or any other neural

networks that are commonly used architectures in the CV or NLP fields.

Classifying wireless signals involves recognizing cliques or patterns in spatial adja-

cency within these matrices, much like in CV, where the focus is on detecting patterns

and structures in visual data. Borrowing models from NLP and audio domains is also

beneficial because concepts like SNR and sample rates are shared with wireless com-
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(a) Applying a convolutional layer to an image.

(b) Applying a convolutional layer to a waveform.

Figure 2.22: Comparison of image and wireless comms data for ML.

munications. However, communications signals are not just fixed sized images, they

are constantly incoming as a stream of data; phase locked loops need to lock on, frames

need to be synchronized, etc. Additional channel impairments as discussed in the ear-

lier sections make dealing with wireless communications signals distinctly unique, and

the developed DL solutions should take that into account.

Unique ML Challenges in Communications

Models trained to solve problems in the wireless communications domain will often run

into challenges not faced in other fields like CV or NLP. For example, wireless channel

impairments are a very unique and interesting problem unique to this field. Training

datasets and architectures must account for these effects to ensure performance and

reliability.
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A particular advantage when in the field of wireless communications when it comes

to data – that can be considered a privilege by many ML scientists – is the ability to

effectively generate infinite data by using rich simulation software libraries in tools like

MATLAB [66] and GNU Radio [67]. With the advantages that come with mature sim-

ulation environments in the wireless communications field there come unique challenges

and research opportunities in the realm of DL. For instance:

1. Multirate processing – many DSP systems found in wireless receivers operate

in multirate modes, where the input and output dimensionality can vary. For in-

stance, when demodulating a sequence of pulse shaped symbols, a downsampling

operation is required to retrieve the individual bits of the captured waveform.

This necessitates development of more flexible model architectures that can ac-

commodate multirate processing.

2. Robustness – ML models in wireless communications must be robust against

a wide range of variations, including signal distortion, interference, and other

channel effects. The robustness of these models is crucial for reliable performance

under diverse and often adverse operational conditions.

3. Latency – in real-time signal processing, the delay introduced by ML models

can be critical. Models must be optimized not only for accuracy but also for

low-latency predictions, especially in applications requiring immediate responses,

such as making spectrum allocation decisions or signal demodulation.

4. Cost – embedded devices, such as wireless receivers often have very strict resource

budgets, which necessitates smaller neural network models to be deployed. This

means that the trained DNNs must not only meet the performance demand, they

must also fit onto an embedded device, which means that optimizing the model

architecture for efficiency is paramount.

5. Dataset tuning – since effectively an infinite amount of quality synthetic data

for training and evaluating the neural networks can be generated using simulation

software, this presents the challenges of dataset optimization – what are the best
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channel impairments, how many examples should be generated, and so on. The

dataset becomes another dial that can be turned to improve model performance,

without changing the architecture or the hyperparameters.

Thus, while the dataset is a significant factor in improving model performance,

other elements such as model latency, cost and robustness also play crucial roles in the

successful application of ML in wireless communications.

2.7 Chapter Conclusion

This chapter introduced the fundamentals of digital baseband modulation and the

most common modulation types. Pulse shaping was explained and it was shown how

pulse shaping is used to mitigate spectral leakage. Different channel impairments like

AWGN, carrier offsets and multipath fading have been presented and their importance

highlighted for ML dataset generation. Also covered were some more classic statisti-

cal approaches to problems like AMC, for which modern solutions are typically ML

dominated.

The main motivation of this chapter is to introduce the essential wireless communi-

cations concepts needed to understand how ML fits into solving problems in this area.

The next chapter will cover the fundamentals of ML.

39



Chapter 3

Deep Learning Background

This chapter will review the main terminology and essentials of Deep Learning (DL)

required to understand how it can be applied for signal processing and wireless com-

munications problems tackled in the subsequent chapters of this thesis.

3.1 Introduction

DL is a subfield of Machine Learning (ML), which in turn is a subfield of Artificial

Intelligence (AI) and consists of methodologies of solving problems in a data-driven

approach. This means that, rather than tackling a problem by designing an algorithm

based on domain knowledge, a solution can be produced by training a model with a

dataset containing a set of inputs and desired outputs. In DL these inputs can be as

granular as the raw input pixels of an image or samples taken straight from a radio

front-end. By applying a large model and sufficient computing resources, the necessary

abstractions required to make the input-output mapping can be learned.

There are multiple ML paradigms in which a problem can be approached, the

primary three being: supervised learning, unsupervised learning and reinforcement

learning. In this thesis the main focus is on algorithms applied in the supervised

learning approach, which is covered in the following sections.
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3.2 Supervised Learning

A supervised learning approach deals with labelled data. This means that we have a

dataset of inputs x, corresponding desired outputs (or labels) y, and we wish to produce

a model that gives the best estimate of ŷ by implementing the function ŷ = f(x,w),

where w corresponds to our model parameters.

When designing a wireless communication system, in simulations, we generally have

perfect knowledge of channel conditions and bits that have to be decoded – the trick is

to produce a model capable of looking at noisy distorted waveforms and transform them

in such a way that the original data can be re-interpreted. Feed the model labelled

data, and if enough was provided it will learn to label new entries.

3.2.1 Linear Regression

Linear regression is used to find out some quantity, or estimate a parameter. Regression

methods work well for single variable predictions, for example, regression can be used to

estimate the SNR of an intercepted waveform. It can also be used to estimate matrices

in tasks like channel estimation, where an input could be the received modulated data

bits that were perturbed by traveling through a noisy channel and the regression model

outputs the channel estimate for that input. Generally linear regression is employed

for tasks where the output is not discrete or binary, and there is a certain acceptable

range to operate in.

Figure 3.1: Linear Regression
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3.2.2 Classification

As the name implies, classification is used to discern between classes. A binary classi-

fication task could be used to detect whether a communications channel is occupied or

free to transmit on. Classifying inputs into categories is one of the most popular ap-

plications in supervised learning. It is also one of the first problems tackled in wireless

communications when applied to Automatic Modulation Classification (AMC), which

is by far the most popular application of DL in this field.

Classification tasks like AMC are very well suited for supervised learning, because

significant amounts of data can usually be generated by using simulation software or

collected with Software Defined Radio (SDR) equipment.

Figure 3.2: Classification

3.3 Neural Network Architectures

When talking about neural networks one should be aware that there exist different

architectures, which can be more useful to some tasks than others. This section will

cover the basic Artificial Neural Network (ANN) archetypes.

3.3.1 The Artificial Neuron

Before reviewing neural networks, the most basic building block should be covered – the

neuron. The artificial neuron takes the entire input vector as an input, then multiplies
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every element within the vector by a learnable weight. A single neuron passthrough for

output y can be defined as

y =

N∑
i

xiwi + b, (3.1)

where x is the input vector, w are the corresponding weights, and b is an added bias

weight. The bias term is useful as it acts as a threshold for activation. A small bias value

requires a strong correlation with the neuron weights to pass the threshold, resulting

in higher selectivity. Conversely, a large bias lowers the requirement for the inputs and

weights to be perfectly aligned, which increases sensitivity – ensuring the neuron ‘fires’

more frequently.

3.3.2 Activation Functions

In order to model complex non-linear functions that DL is known for solving, it is

necessary for the neurons to be paired with an activation function to introduce some

non-linearity to the model. Three of the more popular activation functions are illus-

trated in Figure 3.3.

Figure 3.3: Popular activation functions

The Rectified Linear Unit (ReLU) activation function [68] is the de facto standard

in many DL libraries, and unless manually specified will likely be the implemented

choice for ANN layers. There are a few reasons for its popularity, one of which is the

simplicity of implementation, as shown in Eq. 3.2.

ReLU(x) = Max(0, x). (3.2)
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Sigmoid is another popular choice that is used to squeeze any input x to an output

value between 0 and 1, which can also be interpreted as a probability output – very

useful for binary classification.

σ(x) =
1

1 + e−x
. (3.3)

More concretely, if we add a sigmoid activation σ to the previous equation, the

outputs of our neuron will be squashed between the values of 0 and 1. And the new

output equation will look like the following:

y = σ(
N∑
i

xiwi + b). (3.4)

At this point a decision boundary can be defined, say 0.5, and if the neuron output

exceeds that value it is considered an ‘activation’ and can be treated as a positive class.

This is essentially how logistic regression works for classification.

There are no hard rules on which activation function is best to use in which ar-

chitecture or problem type. Like most things in DL, these are determined empirically.

While ReLU is one of the most popular options, new variants, such as Leaky ReLU or

Parametric ReLU are constantly emerging from research [69].

3.3.3 The Multilayer Perceptron

The Multilayer Perceptron (MLP) network, otherwise referred to as a fully connected

network or just a DNN, is one of the simplest neural network architectures in DL. It is

not the most common choice for feature extraction, but it will often operate on already

extracted features to learn to classify them better than an analytical model would.

Very often this type of network is also incorporated into other neural networks, such

as convolutional or recurrent networks, to enable classification at the output.

This type of ANN contains an input layer, at least one hidden layer and an output

layer. Once you start adding more than a single hidden layer is when the network

becomes “deep”. The main building blocks required to understand an MLP network

are fully connected layers, activation functions and the softmax output.
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Fully Connected Layers

As the name implies, in a fully connected network each neuron of a layer is connected

to each neuron of the subsequent layer, as shown in Figure 3.4.

Figure 3.4: Fully Connected Neural Network

Typically, each neuron output is followed by a non-linear activation function, which

is crucial for introducing non-linearity into the model. This non-linearity allows the

network to learn complex patterns in data, enabling it to solve tasks that linear mod-

els cannot. Without activation functions, a neural network, regardless of its depth,

essentially remains a linear model. These non-linearities are what enable the network

to approximate complex functions and solve interesting problems that go beyond the

capacity of linear models.

a(l) = σ(w(l)a(l−1) + b(l)), (3.5)

where wl and bl are the weights and biases of layer l, and a(l−1) are the outputs of the

previous layer, with σ being the activation function. This type of layer is the integral

building block of most neural network architectures.
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The Softmax Function

For classification tasks, the output of most neural networks are commonly followed by a

softmax activation function. This function takes the outputs of the final hidden layer of

a network, and squashes it into a probability distribution, as shown in Figure 3.5. This

is useful for human-interpretability, but it also has computational advantages when

combined with the logarithmic loss function (this will be covered in Section 3.4.2).

Figure 3.5: Softmax Function

The output of the softmax activation function is calculated as follows:

σ(Y )j =
eyj∑K
k=1 e

yk
, (3.6)

where σ is the normalized output over all possible symbols for that time step. The j

index denotes the output neuron number, while K is the number of outputs, and Y

refers to the activation values coming from the fully connected layer neurons.

Typical MLP Network Arrangement

A common way this type of network can be arranged is by chaining fully connected

layers together, each one followed up by a non-linear activation function, with the final

layer followed by a softmax normalization, as shown in Figure 3.6. This is one of the

most popular patterns seen in DNN architectures, as it is often added to the final

output of the network. MLPs are excellent classifiers when provided with extracted

features representing the data, however other layer types are more suited for feature

extraction.
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Figure 3.6: Arrangement of a typical MLP network

3.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are in some regards an improvement over stan-

dard MLP type networks and are very popular not only in computer vision applications,

but signal processing as well. CNNs are employed in a great array of applications as

they have multiple advantages, including a smaller memory footprint due to weight

sharing and a local memory map of operation, which makes them adaptable to various

shapes and sizes of input [70, Chapter 9].

Convolutional Layers

A convolutional layer is composed of multiple convolutional filters, or kernels, each

containing a number of weights that are correlated with the input array, which usually

represents an image. A single convolutional layer kernel producing a feature map is

shown in Figure 3.7.

As a side note on implementation, while the name ‘convolutional’ layer implies

convolution, most deep learning libraries implement these layers as the cross-correlation

function.
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Figure 3.7: Convolution

Max Pooling

Once CNNs become fairly deep it can become costly to implement them in terms of

memory required to store the network. Max pooling techniques are a form of down-

sampling that reduces the memory footprint and computational cost of the resulting

network.

An example of a 2x2 maxpooling operation can be seen in Figure 3.8, where the

maximum values of each patch of the feature map on the left is calculated and a new

downsampled feature map is created with only the maximum values.

Figure 3.8: Maxpooling operation

Flatten layer

Once the features are extracted from the input data using the convolutional filters, it

is common to flatten them into a single vector so that they can be fed into a fully

connected layer, which is more suited for classification tasks. The flatten operation can

be seen in Fig 3.9.

While most commonly this layer is seen as part of the pattern where a convolutional
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Figure 3.9: Flattening operation

layer output has to be passed to a fully connected layer, it can be applied to any data

where an N -dimensional to 1-dimensional transformation is required – e.g. an RGB

image can be flattened before being passed directly into a fully connected layer.

Typical CNN Arrangement

Since convolutional layers are very powerful feature extractors they are often used as the

first layers of DNN architectures. The most typical arrangement will have convolutional

feature extraction layers, followed by pooling layers and then non-linear activations, as

shown in Figure 3.10.

Figure 3.10: Typical arrangement of a CNN model
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This arrangement is repeated multiple times and the final feature maps are squashed

down into a one dimensional vector using a flatten layer so that the features can be

input to further fully connected layers for classification, as was previously shown in

Section 3.3.3 for the MLP example.

3.3.5 Recurrent Neural Networks

The Recurrent Neural Network (RNN) type of deep learning is often associated with

sequential data, such as audio signals like speech or music, or text in the case of

language translation. What differentiates RNNs from CNNs and MLPs is the presence

of a hidden state, which is updated after each time step, therefore acting as additional

memory for storing context about the input sequence.

RNN cells generally follow a basic update rule for hidden state, h, and output y at

time step t, as given in (3.7) and (3.8) respectively, where the W terms represent input

and output weight matrices respectively, and b are the biases.

ht = tanh(Whht−1 + Wxxt + bh) (3.7)

yt = Wyht + by (3.8)

Figure 3.11: Recurrent Neural Network

RNNs have a hidden state which acts as memory, and consequently the outputs

produced at time step t do not depend solely on the current input, but on all the

past inputs as well. This feature of the architecture makes it a compelling choice for

sequence modelling, where the context of past inputs is a useful predictor of the entire

signal. An unrolled RNN representation is shown in Figure 3.11.
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While RNNs are a very powerful neural network architecture, they do come with

some shortcomings. One of these is the difficulty in training long sequences, due to

what is known as vanishing gradient – when training, the error signals travelling back

through the network become incredibly tiny due to constant multiplication by numbers

less than 1. This phenomena prevents the network from effectively updating its weights

– halting the training process.

Long Short Term Memory

The introduction of the LSTM cell [71] addresses the problem of vanishing gradients by

adding gate functions to the original RNN cell and introducing an additional memory

cell called the cell state. LSTMs support very long sequences, and allow even more

advanced models to be developed. The update rules commonly implemented for LSTM

cells [72] are defined as

it = σi(Wxixt + Whiht−1 + Wcict−1 + bi) (3.9)

ft = σf (Wxfxt + Whfht−1 + Wcfct−1 + bf ) (3.10)

yt = σy(Wxyxt + Whyht−1 + Wcyct + by) (3.11)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (3.12)

ht = yttanh(ct) (3.13)

Here σ is the sigmoid function, i and f are the input and forget gates respectively,

c is the cell state, and all the W terms are the corresponding weight matrices, as seen

in Figure 3.12.

Figure 3.12: LSTM Cell
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While the extra equations can make it seem like implementing LSTMs is difficult,

DL libraries will typically abstract the complexity of an LSTM, and it will be made

available to use as a building block just like a regular RNN cell. In practice, for

example in PyTorch, one just needs to be aware that the LSTM hidden state will likely

be composed of a tuple of (hidden state, cell state), whereas a regular RNN cell will

have a single hidden state.

Typical RNN Arrangements

There are many ways of using RNNs and they can be arranged to work on a vari-

ety of data formats and lengths [73]. RNNs can be trained to perform many-to-one

mappings (Fig 3.13b), which was previously shown for the MLP and CNN examples.

When configured in a many-to-one mapping, it can be treated as a feature extractor

like a CNN and the hidden state of the RNN can be passed to a classification MLP.

However RNNs have other common arrangements, such as many-to-many (Fig 3.13a),

where each input produces an output, or one-to-many (Fig 3.13c), where a single input

produces a sequence of outputs. The latter two arrangements can be used in tandem for

language translation, for example, where one RNN does a many-to-one transformation

of a sentence in one language and a second RNN decodes the resulting intermediary

representation into another language.

(a) Many-to-many: each
time step of the RNN pro-
duces an output. This
type of configuration can be
used in streaming applica-
tions, such as video.

(b) Many-to-one: the en-
tirety of the input sequence
is processed and mapped to
the latent vector space of the
hidden state, which can then
be passed to other layers.

(c) One-to-many: this ar-
rangement can be used as
part of a generative model
[72] for creating synthetic
data, or predicting next in-
puts in a sequence.

Figure 3.13: Typical RNN configurations
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3.4 Training and Optimization

Regardless of architecture selection, neural networks are trained in much the same

fashion. We have data, desired outputs (in the case of supervised learning), and we

want our model to learn a meaningful relationship between the two. The training of

neural networks is built on two pillars – backpropagation and gradient descent, which

will be covered in this section. In the context of ANNs, ‘learning’ simply means given

a training example (e.g. a labelled spectrogram), the neural network will adjust its

weights in such a way so that next time it sees the same or a similar data sample it

will be able to predict the correct class or label with more confidence.

Machine learning models, such as neural networks, are composed of a number of

weights – these are parameters that are learned during training. However, associated

with the trained models are a plethora of parameters that need to be set in order to

facilitate this training and produce the output model – these are the hyperparameters.

Everything that is not a learned weight, or part of the neural network architecture

can be considered a hyperparameter. Some of the more common ones are listed in

Table 3.1. The rest of this section will expand on and focus on concepts relating to

these hyperparameters.

3.4.1 Loss Functions

Training a neural network requires some evaluation metric to determine how well the

DNN is doing at the task in hand. This metric can be used to determine the error,

or how close the prediction of the model is to the desired outcome. Selecting an ap-

propriate loss function for the problem is essential – an unsuitable loss function can

prevent consistent weight updates of the DNN due to instability or halt the training

altogether. There are a few loss functions that will perform well for most tasks, while

some will work best for a specific application. Generally, the better a loss function fits

the problem, the less tuning of other parameters (such as learning rate or batch size)

will be required.

For regression tasks the Mean Squared Error (MSE), defined in Eq. 3.14 is a good
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Table 3.1: Selection of hyperparameters

Hyperparameter Description

Loss function One of the main model performance metrics – the value that
has to be minimized when training. Good selection is impor-
tant to enable, or speed up training.

Optimizer Optimization is performed using SGD, however in DL many
new derivatives of SGD exist, providing advantages in con-
vergence or training speed. Examples are ADAM [74] and
RMSProp [75].

Learning rate The size of the learning steps of the optimizer. Large values
result in quicker training, but less stability. Small values can
guarantee convergence to a minimum, but can take a very
long time to converge.

Regularization Regularization is achieved using various techniques. Associ-
ated hyperparameters can include, for example, regulariza-
tion factor of weight decay or dropout rate [76].

Number of epochs A single epoch corresponds to the model being trained on the
entire dataset one time. This can be tens, hundreds or even
thousands epochs.

Batch size Number of training examples in a batch. It is inefficient to
train on single examples at a time, so training data is usually
divided into batches of training data and label pairs.

choice of loss function.

L(y, ŷ) =
1

N

N∑
n=0

(y(n) − ŷ(n))2. (3.14)

One of the downsides of MSE is that because the input terms are squared, it can

give a heavy weighing to outliers in the training data, which reduces the generalization

of the model trained with this loss. Another common option for these cases is the Mean

Absolute Error (MAE) loss, defined in Eq 3.15.

L(y, ŷ) =
1

N

N∑
n=0

|y(n) − ŷ(n)|. (3.15)

By far the most popular function for classification problems is the categorical cross-

entropy (Eq 3.16). It works best when two distributions need to be compared in

similarity, and, coincidentally, the softmax layer at the output of most classification

models provides the exact form the cross-entropy loss function expects. Doing this
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without softmax could make the training significantly harder, as the unnormalized

output values from the fully connected layers will result in a bigger loss.

Ls(y, ŷ) = −
∑
i

yi log ŷi. (3.16)

The above defined functions are some of the most popular in a variety of fields and

DL applications. There are many more, and oftentimes it can be worth optimizing a

custom loss metric [77]. However, for exploratory work, choosing MSE for regression

and log loss for classification are very sane starting options.

Regardless of the selection, the value given by the loss function will determine how

drastically the network should adjust itself to make predictions more closely aligned

with the training data. If it made a prediction very far from the ground truth, it will

have to nudge its weights more drastically than if it had made the right decision. How

does it determine which weights need nudging to make the correct decision? This is

where backpropagation comes in.

3.4.2 Backpropagation

Backpropagation is the main enabler of deep neural network training and is the reason

why this field has risen to prominence over the last couple of decades. It is the beating

heart behind the training of all DNNs. While the loss function provides a metric of how

a model of interest is performing, backpropagation is used to update all the weights of

the model based on the error resulting from the distance between the estimated model

output and desired output, or training label [78]. An overview of the entire training

process can be observed in Figure 3.14.

Although its influence is vast, at its core the backpropagation algorithm is quite

simple – it is simply the chain rule from calculus, applied to neural networks. This

can be exemplified by applying backpropagation to a single logit, a basic classification

model consisting of a weight and bias, as shown in Figure 3.15. In an ML context the

logit is a broad term, but typically refers to the unprocessed output of a neuron or

logistic classifier (from logistic regression).
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Figure 3.14: Training Overview

Figure 3.15: Backpropagation on a single logit and MSE loss

This logit has a single input x, weight w, bias b and activation function f , which

outputs a value y, with the ground truth label being ŷ. The forward pass simply involves

multiplying the inputs and passing them through the activation function y = f(wx+b).

The loss is then computed as L = (y − ŷ)2, which is the error signal that is then

propagated backwards during backpropagation to adjust the weight and bias.

The main goal of the backward pass is to compute the partial derivatives of the

tunable parameters, in this case ∂L
∂w and ∂L

∂b . This can be done by computing the local

gradients of the forward pass and applying the chain rule with the backpropagated

gradients, as shown in Eqs 3.17, 3.18.

∂L

∂w
=

∂L

∂y

∂y

∂w
(3.17)

∂L

∂b
=

∂L

∂y

∂y

∂b
(3.18)

56



Chapter 3. Deep Learning Background

By computing the partial derivatives with respect to every single weight, it can be

determined which weight has contributed the most to the error signal given by the loss

function output at the end of the computational graph.

Once the gradients are known, stochastic optimization methods, such as SGD, can

be used to determine how much the weights should be nudged in the direction of the

gradients.

3.4.3 Stochastic Gradient Descent

While backpropagation allows the computation of gradients that tell us how much

each weight has contributed to the loss, SGD drives the training by allowing iterative

updating of the weights to better fit the training set. This is also where one of the

main hyperparameters – the learning rate α – is applied, which helps control exactly

how much the weights should be changed.

Figure 3.16: Illustration of SGD

Assuming the computed gradients from backpropagation can be represented as ∇w,

the new weights can be computed by subtracting these gradients scaled by the learning

rate α from the old weights, as seen in Eq 3.19. Subtraction is used so the change is in

the opposite direction of the error gradient.

w(new) = w(old) − α∇w. (3.19)
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(a) Learning rate too low (b) Learning rate too high

Figure 3.17: Learning rate impact on convergence

Ideally the loss function, given some ANN parameters, will result in a convex plane,

where the goal is to find the ideal parameters w, that will minimize the loss function

L(w), reaching a global optimum, like shown in Figure 3.16. The initial model will start

somewhere random – technically it is possible to get extremely lucky and initialize a

network at the optimum location, however this is very unlikely. As the network is fed

training data, and its error gradients are computed using backpropagation, we use SGD

to update the weights in the opposite direction of the error gradient, which makes it

move toward the desired minimum.

Success assumes that a good learning rate α has been chosen. Too small of a value

may move it towards the desired minimum, but it may take a very long time to actually

converge, or converge at a non-ideal local minima (Fig 3.17a). Choosing a value that is

too large can make it move towards the minima faster, but it is also likely to overshoot

and never actually converge to a good solution (Fig 3.17b).

3.4.4 Regularization Techniques

Regularization is an important part of the training process introduced to combat overfit-

ting. In order to create a robust model for deployment in the real world, just monitoring

the training loss may not be enough, because DNNs, especially large ones, are suscep-

tible to overfitting. Overfitting can be thought of as the model memorizing the entire

training set, rather than learning the features required to identify the classes in the

training set. This leads to the newly trained model not being able to generalize to new
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problems, because it learned, for example, the specific pixels of a spectrogram image,

rather than how to recognize a signal in the image. There are multiple regularization

techniques available, of which a few will be introduced in this section.

Validation

To understand regularization, we should first understand the metrics often used to

evaluate it during training. The first step of making sure the model is robust is to im-

plement validation loss monitoring. This is typically achieved by splitting the training

dataset into two portions, say a 80/20 split, where 80% of the data is used for training,

and the remainder is used to evaluate the performance, but does not backpropagate

those evaluations. This is not the only validation strategy, methods like cross-validation

are also regularly used in ML, but a validation split is very common in DL.

Figure 3.18: Training and validation split

Early Stopping

The easiest way to make sure the model is not overfitting is to monitor the validation

loss, and, once it stops improving, halt the training. A typical training/validation loss

graph is illustrated in Figure 3.19. It can be seen that the training loss in this case

keeps decreasing over time to near 0, which generally would be great – the network

is learning to perfectly predict everything it sees in the training set. However, if this

model were to be deployed in the real world on data that has not appeared in the

training dataset exactly, it would fail miserably. If we looked at the validation loss it

would be evident that, past a certain point, the network started losing its ability to

generalize to new data points. This is because in order to minimize the loss, sufficiently

large DNNs can start learning their training data samples, including the noise present
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in the dataset, which is undesirable.

Figure 3.19: Loss over time

Ideally the DNN would learn the core statistics required to make the desired pre-

dictions and generalize to different noise distributions. This is why it is important to

not just monitor the training loss, but have a separate validation set to make sure that

the network is not overfitting.

Weight Decay

Weight decay, or L2 penalization, is a simple form of regularization that can be imple-

mented by modifying the loss function. This is done adding the sum of all weights of

the model, scaled by a regularization factor λ, to the loss, as seen in Eq. 3.20. In this

case the loss is the previously defined MSE, but with an additional regularization term.

Lreg(y, ŷ) =
1

N

N∑
n=0

|y(n) − ŷ(n)|2 +
1

2
λ

Nw∑
i=0

w2
i . (3.20)

This regularization term penalizes the network for using weights that are large. The

reason large weights are undesirable is because they might give a heavy weighing to

a single feature for which that one weight is responsible, rather than using all of the
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features available. Generally we want to keep the weights uniformally distributed.

Dropout

Dropout is a very popular technique, often used for large DNNs [76]. During training it

drops random neurons from the computational graph and forces the DNN to adapt and

use other neurons for the prediction, as shown in Figure 3.20. This, again, decreases the

reliance on a single neuron responsible for one strong feature dominating the decision

making of the entire model and forces the DNN to use all available weights.

(a) DNN before dropout (b) DNN after dropout

Figure 3.20: Dropout on a small ANN

3.5 Chapter Conclusion

This chapter covered the basic concepts of supervised learning and DL techniques for

training DNNs. Some of the most commonly used layer types have been covered and it

has been shown how they can be combined for regression and classification tasks. Train-

ing techniques with regularization were also covered and are a key part of engineering

robust neural network models. These patterns will keep appearing in the following

chapters when new architectures and training methods for wireless communications

applications are discussed.

The next chapter will address the problems of baseband demodulation and AMC

using RNNs.
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Sequence to Sequence Learning

for Demodulation

RNNs are extremely powerful models capable of learning complex non-linear functions

while operating on time series data. The unique property of RNNs, compared to other

DNN architectures, is the presence of a hidden state – the ability to maintain memory

for storing context on the input sequence being processed. This type of neural network

has impressive malleability and can function as a building block for various models that

are useful in DSP.

Additionally, RNNs can be deployed on sequences of variable length, because they

process inputs on a sample-by-sample basis as opposed to operating on fixed-size frame

inputs like fully connected layers. This flexibility is very useful in cognitive radio

(intelligent radio systems), where a single smart receiver may need to recognize and

process different wireless standards necessitating adaptability to various packet lengths.

This chapter covers the usage of RNNs as building blocks for a Sequence-to-Sequence

(Seq2Seq) autoencoder model that can learn various wireless communications tasks by

processing raw baseband I/Q samples. By learning to transform baseband samples into

a stream of bits at the output, the model is shown to implicitly learn modulation clas-

sification, matched filtering and digital baseband demodulation. The resulting trained

models also show robustness to noise, performing well at a variety of SNR levels.

The difficulty in training these models is discussed, and some alleviating techniques
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proposed – such as reducing the burden on the RNN encoder by adding convolutional

layers for feature extraction.

4.1 Motivation

For decades, radio receivers have been developed on an individual module basis – that

is, each function of a receiver, be it a matched filter, timing synchronizer, or channel

estimator, is designed and tested as an individual unit. This is fundamentally a local

minimum problem within a larger system. An intelligent wireless receiver should have

the capacity to learn the multiple signal processing functions required to identify and

extract the information from an incoming signal as a single module, making it a global

optimization problem.

RNNs have shown a lot of promise in their versatility and expressive power when

modelling a variety of problems. When arranged in a many-to-many configuration

it can be considered an autoencoder (Seq2Seq) architecture. This type of architecture

has seen significant usage in sequence data, such as translation tasks from one language

to another [27]. Taking an input vector representing a sentence in one language, an

encoder processes each word and compresses its meaning in its hidden state. A separate

decoder is then used to interpret this hidden state and decodes the meaning as a vector

representing the words of an entirely different language.

Figure 4.1: Wireless receiver as a Seq2Seq model

The same encoder-decoder principle can be applied to designing a receiver for wire-

less transmissions, as shown in Figure 4.1. After all, incoming I/Q samples are an

example of sequential time series data, just like words in a sentence. The sequence

lengths are also variable in both cases – wireless transmissions can contain short and

long packets, and different standards will use different modulation schemes, upsampling
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rates and synchronization sequences. For this reason, an ideal receiver would be able

to cope with a variety of input sizes and conditions. RNNs are capable of operating

on inputs of arbitrary length, which makes them a compelling candidate for such a

receiver.

4.2 Related Work

There exists a significant body of existing research on using DL for digital demodulation.

MLP-based demodulators for ASK, QAM and CPM have been suggested as early as

the 90s, and shown to work well in an AWGN channel with robustness to phase offsets

[79], [80], [81]. The use of MLP structures was also explored for BPSK, QPSK, and

8-PSK in [82], where each MLP worked on fixed 16 sample inputs. An MLP-based

design for Frequency Shift Keying (FSK) demodulation was explored in [83], [84], both

works operating on 21 sample inputs. Later, the same authors added a complex-valued

hidden layer in their MLP structure, which allowed more expressibility [85]. BPSK

demodulators based on an MLP have also been shown to work on over-the-air data [86],

with the MLP consuming 10 fixed samples per inference.

Moving towards more complex architectures, Deep Belief Networks (DBNs) have

been utilized to handle BPSK and QPSK modulation schemes in underwater acoustic

communication on 30 sample inputs [87]. For the purposes of this discussion, DBNs are

similar to MLPs in that they contain fully connected layers constraining the input size

of the model. DBNs were also used to demodulate BPSK for short-range multipath

channels [88]. A joint DBN-SVM approach was employed for QAM demodulators,

on over-the-air transmissions at various modulation levels from BPSK to 256-QAM,

where the DBN was used for feature extraction and an SVM model for classification,

combining DL and a more traditional ML approach [89].

CNNs have been successfully applied to extract symbols from transmissions con-

taining mixed signals, where simultaneous transmissions of BPSK, 2-ASK and 2-FSK

were interfering with each other, showing that a DNN approach can effectively sup-

press interference noise [90]. The input size of this model was 32 samples. CNNs were

also utilized to demodulate Binary Frequency Shift Keying (BFSK) in multipath chan-
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nels [91]. A CNN-based demodulator was demonstrated for BPSK, QPSK and 8-PSK,

processing a fixed-size 4096 sample frames using an autoencoder for feature extraction,

then using individual 1024 individual small scale classifiers to recover the symbols [92].

Another CNN-based model was developed to demodulate 4096 sample sequences of

64-FSK signals for the JT65A standard [93].

On the RNN front, an LSTM-based RNN was shown to demodulate continuous

FM speech signals, achieving superior performance to conventional methods [24]. A

combination of CNN and RNN methods was proposed for demodulating BFSK, QPSK,

and 16-QAM signals [94]. The CNN and RNN were both operating on the 100 sample

input, then their outputs combined into a single vector and fed into a classification

MLP. An LSTM demodulator capable of classifying and demodulating BPSK, 2-FSK,

and 2-ASK was demonstrated by the authors of [95]. Their LSTM architecture used a

regression output, meaning that the implementation should be capable of operating on

variable length sequences, however only the single 800 sample input length was explored.

Most recently an RNN-based demodulator for QPSK and 16-QAM was investigated

in [96], operating on 10 sample input sequences. It showed improved performance

in fading channels, however only using the RNN for feature extraction and leaving

classification to a final fully connected layer.

A variety of DNN architectures have been proposed over the years for digital demod-

ulation. They are typically optimized to specific modulation types, and often require

fixed-size inputs. A common trend across the reviewed works, with the exception the

few RNN-based implementations [24], [95] is that most of the reviewed DNNs emitted

a single symbol prediction as a classification output.

The LSTM-based Seq2Seq architecture developed in this work was first demon-

strated for BPSK and QPSK classification and demodulation in [97]. To the best of

the author’s knowledge, this was the first instance of a Seq2Seq model being applied

for radio physical layer problem like demodulation. The work presented in this chapter

aims to address the input dimensionality limitations of the reviewed architectures and

further enhance DL-based demodulation efforts by including AMC into the model.
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4.3 Seq2Seq Model for QPSK Demodulation

This section introduces how the Seq2Seq architecture is implemented for processing

the raw I/Q samples of digital baseband signals. The first task that the Seq2Seq

autoencoder is trained on is QPSK demodulation. The model trained in this section

will be used as the base for more complex additional tasks, like AMC, in the rest of

this chapter.

4.3.1 Baseband Demodulation Task

The first proof-of-concept task for the Seq2Seq architecture is processing a sequence of

pulse shaped QPSK symbols and demapping (or classifying) the symbols. Baseband

digital modulation is the mapping of data bits to symbols according to the specified

baseband modulation scheme. In order to avoid spectral leakage, the symbols must be

band-limited by a pulse shaping filter. As covered in Chapter 3 (page 47), RRC filters

are commonly used for matched filtering in practical systems, allowing less complex

implementations than if an RC filter had been implemented at the receiver instead.

Due to the ubiquity of RRC filters in wireless systems, the following experiments use a

Root Raised Cosine (RRC) filter to generate the baseband modulation datasets. The

goal of the Seq2Seq model is illustrated in Figure 4.2.

Figure 4.2: QPSK Baseline Model
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The next sections will explore the architecture of the Seq2Seq model and data

formatting requirements to train the model and perform predictions.

4.3.2 Data Formatting

In terms of ML, the act of symbol extraction can be considered a classification problem

with M classes, where M is the number of possible received symbols. For QPSK, M

= 4, where each symbol M ∈ {S0, S1, S2, S3} can be represented as one-hot encoded

vectors such as: 
S0

S1

S2

S3

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (4.1)

For example, in Figure 4.3, a pulse shaped QPSK waveform with an upsampling

factor of 4 is shown. Each symbol label corresponds to 4 samples of the waveform,

meaning that 6 symbols can be represented by a sequence of 24 I/Q samples or a 2×24

matrix (where in Figure 4.3 the blue dots are real and red dots imaginary channel

samples respectively). An example sequence of 6 one-hot encoded labels to go along

with the waveform shown in Figure 4.3 would be represented by a 6 × 4 label matrix.

Figure 4.3: QPSK training waveform snippet
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4.3.3 Architecture

An overview of the full encoder-decoder configuration is shown in Figure 4.4. The

encoder and decoder must share the same cell sizes, however the number of iterations

they compute is independent to one another. Each input sample x represents a complex

sample (a vector containing 2 real numbers representing the I/Q channels) in a baseband

QPSK modulated signal. Note that an RNN may contain an N number of layers

(LSTM/GRU/basic RNN cells) stacked on top of each other, increasing the complexity

and expressibility of the model.

Figure 4.4: Sequence to Sequence model

Encoder

The encoder is an RNN made up of N layers of stacked LSTM cells – the cell size and

network depth in terms of number of stacked layers determines the network memory

capacity. The example encoder in Figure 4.5 demonstrates an RNN composed of 2

LSTM cells. The job of the encoder is to process each incoming sample to a latent

space representation inside its hidden state. The values inside the hidden state will

contain the context and information necessary to determine how many symbols have

been received and how they should be demodulated.

At each time step the encoder network is fed a sample input x, composed of the

real and imaginary components of the received baseband radio signal. The hidden

state of each stacked LSTM cell is updated after every step, and once the last sample is
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Figure 4.5: Two layer encoder structure

processed, the final hidden states are concatenated to be passed off to the decoder. The

outputs of the last encoder layer are disregarded, as the only purpose of the encoder

network is to accumulate information about the incoming waveform in its hidden state.

This information, compressed in the encoder hidden state, is then passed to the decoder.

Decoder

The decoder has to unravel the hidden state of the encoder by outputting the best

next symbol label predictions based on all the information accumulated in the hidden

states of the encoder cells. The decoder cells must be of the same size as the encoder

cells (to allow hidden state sharing), however the number of output steps need not

correspond to the number of iterations required to encode the input waveform. Each

predicted output is fed back into the decoder as the input of the next time step to assist

in predicting the next symbol, as shown in Figure 4.6.

The Start of Sequence (SOS) or GO token can technically be represented by any

values in a vector of the same dimensionality of the cell input. In this case it is simply

represented as just a vector of 4 zeros to differentiate it from the other one-hot encoded

symbols it will be generating – the network needs some initial input. Once the GO token

has been passed, the network can continue outputting symbols indefinitely. Typically

it is trained to output an End of Sequence (EOS) token once the sequence end has been

reached. It can also run for a predetermined number of outputs without the use of an

EOS token, which is how the decoder is implemented in this work.

Since demodulation is treated as a classification task, during training, each output y
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Figure 4.6: Two layer decoder structure

goes through a softmax layer where a probability distribution over all possible symbols

is generated for each decoder time step, which can then be fed into a crossentropy loss

function for optimization.

4.3.4 Training

Determining the model architecture that will be used to tackle the problem is only the

first step – and even then, the model will have to go through multiple iterations of the

model architecture parameters to reach a satisfactory final network. A DL workflow

consists of many iterations and tuning of parameters empirically based on metrics like

accuracy and training/validation loss. There are 3 major configurations that require

tuning:

• Dataset – finding a representative training set size, and determining a good SNR

level for training.

• Model parameters – determining an appropriate number of layers, and how large

should cell sizes should be.

• Optimization parameters – deciding on a good loss function, learning rate, number

of epochs, regularization and whether teacher forcing should be used.
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Iterating over model and optimization parameters over a given dataset is a very

common workflow in DL. A unique addition in RFML is the addition of dataset pa-

rameter tuning: here the dataset also needs to be generated and there exists endless

possibilities in simulating various dataset configurations.

Dataset Parameters

Before embarking on training any DNNs, it is generally a good idea to take time

to understand the dataset and look at any available baseline models. The problem

in this case is rather simple and a baseline model consists of a pulse shaping filter

and a QPSK demodulator. The baseline system accuracies are plotted in Figure 4.7.

Accuracy, instead of BER plots on a logarithmic scale, are used here out of convenience

– classification tasks are usually evaluated by measuring the classifier accuracy (which

is just the inverse of error rate).

Figure 4.7: Baseline accuracy of a QPSK receiver over an SNR range

A good starting SNR for a dataset should not be too low, because then the model

would just learn noise unnecessarily. It should also not be too high, because it will

never learn to be robust to unseen channel effects [98]. The sweet spot can usually be

found where the baseline model begins to saturate at the maximum accuracy value –

in the case of the baseline QPSK receiver in Figure 4.7, an approximation of 0dB SNR

can be made.

The training dataset parameters are summarized in Table 4.1. Any number of
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training sequences could technically be generated, however eventually this reaches a

point of diminishing returns if the model architecture remains constant [99]. While it

depends on the problem, for small scale architecture exploration and understanding the

model, a few thousand examples are enough, and in this case 8192 training examples

are used to train each model – this was found to be a satisfactory number of examples

on for training a variety of models investigated in this thesis.

Table 4.1: Dataset parameters

Parameter Value

Number of sequences 8192
Samples per symbol 4
Symbols per sequence 5
RRC filter weights 65
SNR 0dB

Each QPSK modulated sample sequence consists of 5 modulated symbols, pulse

shaped using an RRC filter with an oversampling factor of 4. The entire dataset is

kept at a single, relatively low SNR of 0dB, which as the baseline model has shown,

should be enough for the Seq2Seq model to achieve at least 90% accuracy at that SNR.

The entire dataset was generated from scratch using Python, the one-hot encodings for

the labels were produced using a simple dictionary conversion by mapping symbols to

vectors.

Model Parameters

After generating a reasonable training dataset, the different model parameters can be

explored. For RNNs the main parameters to consider are the cell sizes (hidden state)

and number of layers in the encoder/decoder. Obviously larger and deeper models

are preferable as they can learn to solve more interesting problems and have longer

memories. The tradeoff is that large models become more difficult to train and costly

to implement, which can be a significant constraint in an embedded system.

The training parameters used to investigate an optimal Seq2Seq configuration for

QPSK demodulation are summarized in Table 4.2. Standard training parameters are

used, such as the ADAM optimizer [74] with the default learning rate of 1e − 3. The
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chosen batch size was the default Pytorch size of 32, which has been proven to be

an optimal choice for many problems [100]. A sweep of architecture parameters is

performed by training 5 models for each combination of cell size and number of layers.

Models are trained for 100 epochs each, then their accuracies evaluated over a test SNR

range from -30 to 30dB.

Table 4.2: Training parameters

Parameter Value

Optimizer Adam
Loss function Cross-Entropy
Batch size 32
Learning rate 1e-3
Number of epochs 100
Weight decay 1e-4
Hidden sizes 16, 32, 64, 128
Number of layers 1, 2, 3

Figure 4.8 shows the averaged training (left-hand side) and testing (right-hand side)

results for each model parameter configuration. Subplots (a), (b), (c) correspond to

models trained with 1, 2 and 3 layers respectively.

As indicated by the training losses in Figure 4.8, there is a clear preference for large

cell sizes when it comes to convergence speed, regardless of the number of layers. Large

cell sizes, like 64 and 128, quickly fit the data and start overfitting at 20 epochs for a

single layer configuration, or as early as 10 epochs when training deeper 3-layer RNNs.

Looking at the accuracy results, on the right-hand side of Figure 4.8, the perfor-

mance is surprisingly comparable, even at a cell size of 16 with just 1 layer achieving

over 95% accuracy. At 2 and 3 layers deep, the smallest cell size also outperformed

larger models – this makes sense for a simple problem like demodulating a very short

QPSK sequence, as the smaller models are not as susceptible to overfitting because

they have less capacity for memorizing the dataset. For more challenging problems

and longer sequences, bigger cells will be preferable, as will be shown in the following

sections.
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(a) Training 1 layer

(b) Training 2 layers

(c) Training 3 layers

Figure 4.8: Training losses and accuracies of resulting models at varying number of
layers and cell hidden sizes (dashed lines are validation losses)

4.3.5 Results

Multiple Seq2Seq models have been trained with varying numbers of layers and cell

sizes. A summary of all model mean and best accuracies, can be observed in Table

A.1 (in the appendix) and Figures A.1 to A.4. Weight decay regularization was also

explored and summarized in Table A.1. It was found that too little (zero) and too much
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(0.001) weight decay negatively impacts the accuracy of the achieved models, however

a modest amount between 0.0001-0.0003 works well for improving generalization and

achieving the best accuracies.

The best performing model for QPSK demodulation ended up being a 3 layer LSTM

network with a cell size of 16. One of these models was evaluated over an SNR range

from -30 to 30dB, and compared against a matched filter implementation (representing

the ideal practical baseline) in Figure 4.9.

Figure 4.9: QPSK Demodulation Accuracy

While the results do not perfectly fit the baseline, it is clear from the accuracy

curves of Figure 4.9 that the Seq2Seq model was capable of learning the matched filter

and all of the functionality required to perform the symbol demapping, otherwise it

would not have been able to so closely match the baseline result.

This section introduced how a Seq2Seq model can be trained to act as a baseband

QPSK demodulator, and provided some intuition on the appropriate training set sizes

and parameters. Building on the foundations of QPSK demodulation, in the next

section the same architecture is used for more advanced signal processing tasks like

AMC.
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4.4 Simultaneous AMC and Demodulation

The beauty of an autoencoder structure, or deep networks in general, is that it can

learn multiple communications tasks implicitly, without having to explicitly be told

about individual necessary subtasks like matched filtering. Building on the previous

task of QPSK demodulation, a new task for the Seq2Seq model to learn is added in

this section – modulation classification.

Figure 4.10: Overview of traditional flow vs Seq2Seq

A baseline system in this case, as demonstrated in Figure 4.10, is a Decision Tree

(DT) trained on higher order statistics such as moments and cumulants of the modu-

lated waveform. This would typically be a 2-step approach – the incoming I/Q sample

stream would be independently consumed by the AMC pipeline and the demodulation

processing chain, once the modulation scheme is determined the correct demodulator

function is chosen and symbol demapping can be performed to recover the bits.

Using the proposed Seq2Seq DL approach, all of the above steps are learned by the

Seq2Seq model implicitly; only one stream of I/Q samples is input to the model and it
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directly outputs the detected symbols.

4.4.1 Dataset

The best performing architecture from Section 4.3 (3 layers and an LSTM cell size of 16)

is used here for the combined classification and demodulation training. One difference

to the architecture will be the decoder output dimensionality – the new labels will have

6 possible outputs to accommodate the additional 2 BPSK symbol possibilities. The

new mapping is displayed in the following:

S0(BPSK)

S1(BPSK)

S2(QPSK)

S3(QPSK)

S4(QPSK)

S5(QPSK)


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.2)

The dataset will also need to be modified with additional BPSK modulated wave-

forms. The approach is to incorporate and train on the same number of BPSK and

QPSK examples – this is to ensure that both modulation classes are equally represented.

Determining the Best Training Set Size

Generally speaking, more data equals better performance. However, eventually increas-

ing the amount of data fed to a fixed DNN can reach diminishing returns. Even though,

by using simulations, an infinite amount of training data can be produced, it is desir-

able to find an optimum quantity that would allow the trained model to perform well

enough without spending too many computational resources on generating datasets,

and then spending even more resources training for an unnecessarily long period.

To determine a guideline of effective dataset sizes for training the Seq2Seq model

for combined AMC and demodulation, the model is trained on a range of training

sizes. Every dataset is generated with a range of SNRs. In the following experiments

these include generating 128, 256, 512, 1024, 2048, 4096, 8192 and 16384 per SNR per

modulation.
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Table 4.3: Training and dataset parameters of AMC + demodulation model

Parameter Value

Optimizer Adam
Loss function Cross-Entropy
Batch size 32
Learning rate 3e-4
Number of epochs 100
Weight decay 0.0001
Hidden size 16
Number of layers 3
Training SNR (dB) -5, 0, 5, 10, 15, 20
Dataset sizes 1.5k, 3.1k, 6.2k, 12k, 24k, 49k, 98k, 196k

For example, 128 sequences × 2 modulation schemes × 6 SNR levels, results in

≈ 1.5K training examples in the dataset, as displayed in Table 4.3. Once a network

is trained, it is evaluated over an SNR range of -30 to 30dB and the mean accuracy

calculated. The mean accuracies of models trained on every dataset size are summarized

in Figure 4.11. Calculating the mean accuracies provides an approximate trend line,

however in future work to get a more accurate value, using percentiles would be more

appropriate.

Figure 4.11: Mean test accuracy based on varying training dataset size

The results in Figure 4.11 show a clear correlation of model performance with

increasing training dataset size. However, once the training data includes more than

24k examples, there are no significant average accuracy improvements. For contrast,
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the authors of [95] used 1.3k examples to train an LSTM for ASK demodulation without

AMC.

It is certainly possible to squeeze out more performance by amending the architec-

ture of the model or tweaking hyperparameters, however these results are sufficient to

gain the necessary intuition of the magnitudes of data required for training competent

Seq2Seq models for short sequences in this domain.

4.4.2 Training

Based on the results in Section 4.3.5, we know that a higher number of layers is prefer-

able. In this section the 24k example dataset will be used to train a Seq2Seq model

for simultaneous AMC and demodulation with small (16) and large (128) cell sizes.

Teacher forcing is explored as an option to speed up model training convergence and

dropout is explored for regularization.

Teacher Forcing

Teacher forcing is a commonly applied technique in RNNs, especially in Seq2Seq models

where the optimization landscape is vast. Introduced in [101], it works by feeding the

running RNN desired outputs from the previous states (i.e. labels), rather than letting

it generate the next values itself. Using teacher forcing in the decoder structure is

illustrated in Figure 4.12.

The advantage of using the teacher forcing method is a reduction of computation

required during training, as it simplifies the learning task of the model. However, the

end goal is still for the network to self-generate the next step inputs in a closed-loop

operation. Teacher forcing is not a guaranteed method of improving training speed or

performance however. As mentioned in [70], once deployed in closed loop mode, the

network can run into issues as the generated inputs may not match exactly what was

presented during training.

In practice, teacher forcing is implemented by closing the RNN loop at random

during training based on a teacher forcing ratio [102]. For example, if the ratio is set to

0.25, then there is a 25% chance that the next RNN input will be fed from the ground
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(a) Closed loop: the network is trained in
the same configuration as it will be de-
ployed, with the downside being that, dur-
ing the beginning of training, randomly ini-
tialized weights will not produce very good
decoder inputs for training, causing insta-
bilities. This can make it more difficult to
escape a local minimum in the optimiza-
tion plane and halt training.

(b) Teacher forcing: instead of letting the
network generate the next inputs, desired
values are provided directly from the la-
bel data, which oftentimes will speed up
the training process of RNNs. The down-
side is potential instability during testing
as the the generated inputs in closed loop
mode now might not exactly match what
was seen in training.

Figure 4.12: Decoder training modes

truth (labels), instead of the previous output of the RNN. A teacher forcing ratio of 0

means the network will always run in closed-loop mode, whereas a ratio of 1 will never

loop the RNN predicted outputs into its inputs.

Figure 4.13 shows training loss comparisons for a small cell size of 16 and a larger

cell of size 128, both being there-layer models, for an input sequence of 10 symbols.

Two teacher forcing ratios were used for these experiments: 0.25 and 0.5. The full

overview of the results can be found in Appendix A.1.2, which includes training losses

for more symbol lengths.

(a) Hidden size 16 (b) Hidden size 128

Figure 4.13: Training losses with and without teacher forcing (dashed lines are respec-
tive validation losses)
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Observing the results in Figure 4.13 it is clear that teacher forcing does not help

the model converge faster. In fact, a high forcing rate of 0.5, results in an overall higher

validation loss for the small cell size, shown in Figure 4.13(a).

Unfortunately, teacher forcing does not seem to speed up training for either smaller

or larger networks. Running both training and inference in closed loop mode for these

models is a better approach. Of course, with more exploration, and some additional

input processing and hyperparameter tuning, it could be possible to speed up training

with or without teacher forcing.

Dropout

The effects of weight decay have been explored for QPSK demodulation and a sum-

mary is a available in Appendix A.1.1, showing that it generally helps Seq2Seq models

generalize better. Another popular method used to regularize LSTM-based models is

dropout. In the following experiment the same architectures (with a small and large

hidden size), are explored with dropout rates of 0.25 and 0.5. The training results are

summarized in Figure 4.14.

(a) Hidden size 16 (b) Hidden size 128

Figure 4.14: Training losses with and without dropout (dashed lines are respective
validation losses)

For the model with smaller cell sizes, Figure 4.14(a), which already struggles to

converge to a 10 symbol input sequence, dropout appears to exacerbate the issue,

making it even harder for the model to fit the training set. Results with the larger-

sized model are more promising, since it was already overfitting the training set and

81



Chapter 4. Sequence to Sequence Learning for Demodulation

could benefit from additional regularization. The dropout rate of 0.25 for the large

model, Figure 4.14 (b), had little effect on training, however a dropout rate of 0.5

visibly lowered the validation loss.

4.4.3 AMC and Demodulation Results

The Seq2Seq model with a hidden size of 128, was trained and evaluated on input

sequences of 10, 15 and 20 symbols (with 4 samples per symbol, corresponding to 40,

60 and 80 complex samples). Performance is compared with a Decision Tree (DT)

baseline (in combination with standard baseband demodulators) as well as the ideal

demodulation accuracy (using a matched filter with perfect knowledge of the incoming

modulation type). The results are summarized in Figure 4.15, noting that the dashed

black lines represented the ideal case where perfect information of the modulation

scheme is known and only demodulation performed, and the dashed red lines are the

DT baseline.

(a) BPSK symbol prediction accuracies with
hidden size 128

(b) QPSK symbol prediction accuracies with
hidden size 128

Figure 4.15: Combined classification and demodulation model performance

The DT model is trained using scikit-learn [65], using the same dataset as the

Seq2Seq model. The selected features include 5 higher order moments (µ2, µ3, µ4,

µ5, µ6) calculated from the instantaneous amplitude, phase and frequency (15 total

moments) and the first 5 complex cumulants described in [103] – totalling 20 input

features. The DT prediction then directs which demodulator should be used for the

received symbols – BPSK or QPSK.
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The Seq2Seq results are plotted with and without dropout, which has had minimal

impact on the overall model accuracy. The trained Seq2Seq model generally outper-

forms the DT baseline from -10dB onwards for BPSK and from around -5dB for QPSK.

Interestingly the DT model wins at very low SNR values, even though neither model

has been trained in those ranges. One reason for the discrepancy is due to the statistical

features selected for the DT being more tolerant to low SNR, whereas the end-to-end

trained Seq2Seq model needs more exposure to such channel conditions.

Both DT and Seq2Seq models could be tuned to further improve these inference

results. This experiment has demonstrated, however, that a Seq2Seq model can be

treated as a single unit for AMC, matched filtering and baseband modulated symbol

detection. Not only that, but without much tuning it is competetive with classical ML

models like the DT working jointly with classic DSP algorithms such as the matched

RRC filter.

4.4.4 Scaling Discussion

One of the key advantages of RNNs is that they can be trained and operate on input

sequences of arbitrary length. RNN research and the inception of cells like LSTMs [71]

has made training on long sequences easier, however it still remains a difficult problem

when scaling to very long inputs [104]. In signal processing it is common to deal with

100’s or 1000’s of samples per input frame, which models must be able to cope with for

training and inference.

Looking at just the training losses (excluding validation for now), the explored

Seq2Seq models have been trained on 5,10,15, and 20 symbols (represented by 20,40,60,80

I/Q samples respectively), as shown in Figure 4.16.

The smaller model in Figure 4.16 (a) can easily overfit 5 symbol sequences, however

as the length increases the model increasingly struggles to fit the dataset. Increasing

the cell size, and thus the complexity of the model, it can converge much faster, as

shown in Figure 4.16 (b), however at 20 symbol inputs we can observe difficulties of

convergence once more.

One of the reasons why it is difficult for RNNs to learn longer sequences is that,
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(a) 3 layers, 16 cell size (b) 3 layers, 128 cell size

Figure 4.16: Training loss at different input sequence lengths

as the number of input samples increases so do the number of steps required in each

backpropagation pass. Recall that an RNN has to step through and compute the hidden

state for each input step – that is a lot of multiplications, prone to vanishing gradients.

Additionally, long input sequences will add a general computational complexity penalty,

demanding more hardware resources to properly train the model.

4.5 Reducing Complexity Burden with CNNs

While the Seq2Seq model has a high capacity and can learn interesting problems, it is

also very complex and difficult to train. In this case the bulk of the training overhead

comes from the encoder side, because it needs to compute a new hidden state for

every input sample, resulting in a backpropagation signal that has to travel through

potentially hundreds of nodes once unrolled. It is manageable for tiny inputs, however

this does not scale well computationally to longer input sequences.

In application scenarios where the receiver is implemented as an embedded system

with strict power constraints it is desirable to minimize the computational load as much

as possible. For example, if the receiver is part of a battery-powered node in sensor

network or an IoT application. Additionally, training DNNs can be a costly endeavour

and focusing on more efficient model architectures is important to reduce data center

loads as well.

One way to solve, or at least alleviate, the RNN scalability problem is to alter
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the encoder architecture by adding a CNN for feature extraction, as demonstrated in

Figure 4.17.

(a) RNN encoder: entire input is processed sample by sample by the RNN. Disadvantage here
is that on very long sequences this can lead to vanishing gradients and make it very difficult to
train the model.

(b) Conv+RNN encoder: the entire input is first pre-processed by a CNN, reducing the number
of steps the RNN encoder has take in order to fully encode the input.

Figure 4.17: Using a CNN to simplify the encoding task.

The CNN can process the entire input first, and output a vector of features propor-

tional to the input size. The RNN encoder then processes the features instead of raw

I/Q samples – this eases the task of the RNN learning the features itself and drastically

reduces the number of steps it needs to perform to encode the input. A lower number

of steps simplifies backpropagation because the unrolled graph becomes shorter and
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less susceptible to vanishing gradients.

4.5.1 Convolutional Encoder

The additional CNN is composed entirely of convolutional and pooling layers, which

downsample the full input and convert it into a much smaller representation, alleviating

some of the computational burden from the encoder. The encoder CNN parameters

are summarized in Table 4.4, with a reference input sequence length of 100 samples –

the dimensionality will scale appropriately for different sequence lengths.

Table 4.4: CNN parameters (ref input length 100 samples)

Layer Parameters Out Shape

Input - 2 × 100
Conv1D + ReLU 9 × 1, 16 filters, padding=4 16 × 100
Maxpool1D 2 16 × 50
Conv1D + ReLU 9 × 1, 8 filters, padding=0 8 × 42

The simple pre-processing CNN consists of 2 convolutional layers and a single max-

pooling layer and is used to feed the RNN encoder processed feature vectors of the

input sequence. The first layer consists of 16 1-dimensional filters, each with a width

of 9 samples. The inputs to this filter are padded to maintain the dimensionality, and

prevent the first and last symbol information from getting lost due to transient re-

sponses of the filters. The maxpool layer downsamples the input tensor by a factor of

2, reducing a 100 sample input to an intermediary representation that is 50 samples

long. The second convolutional layer has 8 filters with the same width of 9 samples,

without padding, further decreasing the length of the input signal to a sequence of 42

steps of feature vectors containing 8 values – this is less than half of the steps the RNN

encoder would have had to process otherwise.

Convolutional layers are excellent feature extractors and, in this case, input data

compressors. Now the encoder RNN can step through feature vectors that are output

by a convolutional layer, rather than raw I/Q samples, adding an additional abstraction

layer and reducing the computation required by the RNN. From the perspective of the

decoder, nothing changes because the dimensionality of the hidden state that is being

output by the encoder RNN remains the same.
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4.5.2 Training Results

The new Conv Seq2Seq model is trained using the same parameters as the models in

Section 4.4. The only difference is that the first LSTM layer is replaced with the CNN

described in Table 4.4, meaning that the new encoder consists of 2 convolutional layers

and 2 LSTM layers. The training losses produced by the original RNN encoder and

the new Conv+RNN encoder configuration are shown in Figure 4.18.

Figure 4.18: Training losses of the new Conv+RNN encoder

The differences are very minor for shorter sequences – the RNN does not struggle to

backpropagate through the 5 pulse-shaped symbols, and in fact the RNN only config-

uration converges faster than the Conv+RNN variant. However, beyond the sequence

length of 10 symbols the Conv+RNN configuration always converges faster than the

RNN-only encoder.

The trained models are evaluated over an SNR range from -30 to 30dB, and com-

pared with previously trained purely RNN-based Seq2Seq models at each input se-

quence length. The results are summarized in Figure 4.19.

In summary, while the convolutional encoder improves training speed, it does not

have a significant impact on accuracy when compared to previously trained models.
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(a) BPSK symbol prediction accuracies (b) QPSK symbol prediction accuracies

Figure 4.19: Accuracy comparison of purely LSTM and LSTM+Conv encoders

4.5.3 Runtime Complexity

The runtime complexity of the different encoder methods can be estimated by mea-

suring the time it takes to process a single input. In this section the computational

complexity of three encoders is compared: a 2-layer and 3-layer purely RNN-based

encoders and the new Conv+RNN encoder proposed in this work. Each method was

evaluated on a desktop AMD Ryzen 5 CPU, and individual runtimes averaged over 100

iterations illustrated in Figure 4.20.

Figure 4.20: Estimated complexity of the Seq2Seq encoder implementations

The estimated Conv+RNN encoder complexity is lower than both RNN-only meth-

ods. This might seem surprising, given that the convolutional encoder consits of 2

LSTM cells as well. The reason it still beats it in inference time is due to the RNN
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having to step through roughly 2 times fewer input steps (reducing the RNN compu-

tation required by a factor two).

4.6 Chapter Conclusion

A Seq2Seq autoencoder approach was demonstrated for baseband digital signal demod-

ulation. This model was also shown to be capable of learning AMC and demodulation

of multiple modulation schemes (BPSK and QPSK) simultaneously. The network was

able to learn multiple subtasks implicitly in the process of learning to classify incoming

modulated symbols, such as the features required to classify modulation types, matched

filtering and downsampling. An important property that an RNN-based Seq2Seq model

possesses is the ability to process inputs at variable sequence lengths, which is desirable

for intelligent radio receivers. As was shown, it can be used as a building block and

add significant malleability to a deep learning model.

The research presented in this chapter contrasts with previous works on DNN-based

demodulation by allowing a single trained DNN module to operate on multiple symbols

in one inference execution. This enables training of a single architecture on arbitrar-

ily long waveforms, albeit with computational limitations. Other LSTM-based models

demonstrated in [24], [95] also offer this capability, however since their implementa-

tions use a single RNN, they are only capable of a one-to-one input-output mapping.

A Seq2Seq model is composed of 2 RNNs, allowing many-to-few or few-to-many con-

figurations. This flexibility makes the Seq2Seq model compatible with a wider range

of problems, and enables nice features like downsampling (e.g. a symbol that is rep-

resented by 4 samples will result in the decoder producing a single output for that 1

symbol, as opposed to 4 if a single RNN was used).

Some of the downsides to the Seq2Seq autoencoder, however, are a difficulty in

training and implementation. Transfering these models to hardware is a non-trivial

problem as explored by previously published works due to the inherently recurrent na-

ture of RNNs, making them difficult to parallelize [105], [106]. Even though LSTMs

were introduced as a way to mitigate vanishing gradients and allow models to be trained
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on longer sequences, it is still a non-trivial task. For digitally modulated baseband sig-

nals, one method identified in this chapter to alleviate the problem was the addition of

convolutional layers to the encoder, which decreased the number of iterations required

by the RNN, easing the training of longer sequences, and reducing complexity. Con-

volutional layers are very good at feature extraction, providing a more dense output,

but with fewer time steps for the RNN to iterate over. The fortunate thing about

convolutional layers is that, like RNNs, they can work on arbitrarily long sequences of

data as well, maintaining the original input size flexibility of the Seq2Seq model.

There are a number of techniques not explored in this work that could further im-

prove the results and potentially help with training convergence, such as attention,

which has been shown allow the RNN to focus on parts of the input while mak-

ing the output prediction, which improves training convergence [107]. Bidirectional

RNNs [108], where the input sequence is processed simultanously in the positive and

negative time dimension, resulting in richer context vectors. Additionally more ad-

vanced data configurations using padding and End-Of-Sequence (EOS) tokens were

not explored to showcase the full malleability of the Seq2Seq architecture. A large

scope for optimization is available for future studies of the Seq2Seq architecture.

In this chapter convolutional layers were introduced as a method to reduce the com-

plexity of an RNN-based autoencoder. The next chapter focuses on fully convolutional

architectures to improve the flexibility and lower complexity of existing DNN solutions

to problems like frame synchronization.
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Chapter 5

Fully Convolutional Neural

Networks for Frame

Synchronization

This chapter introduces a Fully Convolutional Network (FCNs) architecture for the

problem of phyiscal layer Frame Synchronization (FS). By increasing the probability of

successfully detecting a transmitted packet, the overall throughput of the system can be

enhanced. Additionally, by reducing the required preamble length for successful packet

recovery, due to improved receiver performance, the transmitter can save power by

having to emit fewer redundant bits - this can have significant implications in wireless

sensor networks, where conserving power can be really important.

A key advantage of adopting the proposed FCN architecture is that it can be de-

ployed on arbitrary input lengths, whereas more common CNN architectures used for

FS will require the input dimensionality during inference to match exactly the dimen-

sionality of the data used during training.

The trained FCN models are evaluated on a variety of synchronizing sequences of

different lengths and channel conditions. Best practices for training these models and

a deeper introspection of how they work will be discussed, and complexity tradeoffs

evaluated and compared with more typical CNN approaches.
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5.1 Motivation

Modulation and coding schemes are nearing the theoretical limit of what is achievable

in terms of Bit Error Rate (BER). However in modern communication systems there

still exist significant overheads due to the additional signalling required for various

synchronization stages in order to successfuly retrieve over-the-air transmitted data.

This overhead, caused by sending additional redundant bits and preambles, introduces

inefficiencies in overall throughput, power and RF spectrum usage. Reducing or elimi-

nating these overheads by implementing smarter transceivers will have a big impact on

power and utilization of available radio spectrum [109].

DL is a promising technology in addressing the issue of commmunications overhead

and has been shown to work well for problems like FS. Existing DL solutions treat FS as

a classification problem, and apply CNNs to solve it – review of existing CNN solutions

is presented in Section 5.2. While standard CNNs (composed of convolutional and fully

connected layers) are shown to produce very good results across many applications, for

some communications problems it can be appropriate to investigate architectures more

suitable to the field – such as FCNs. FCNs can be trained and configured to work much

like digital filters, and could slot into existing systems with minimal pain caused to the

system architect.

The inference differences of a standard matched filter, CNN and FCN are captured

in Figure 5.1. Figure 5.1(a) shows standard correlation, where a sliding matched filter

produces the output peaks at the packet frame locations. Figure 5.1(b) demonstrates

the typical DL approach using a CNN – classification CNNs will usually have fully

connected layers, which means that the input has to be separated into windows of a

pre-determined length. Finally, in Figure 5.1(c) the proposed FCN model is illustrated

– because there are no fully connected layers it can be deployed as a standard filter,

much like 5.1(a), however it also benefits from data-driven DL techniques for enhanced

performance – combining the best of both worlds.
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(a) Correlation: the standard matched fil-
ter approach, where the correlation peaks
are correctly indicating the packet start in-
dices. The resulting output is fairly noisy
compared to DL methods.

(b) CNN: a typical CNN configuration is
shown for FS as a classification task. The
output will generally be very clean and per-
formance good, however not as flexible as
correlation.

(c) FCN: demonstrates the proposed FCN
approach, combining the sliding window of
correlation and data-driven driven meth-
ods of DL to create an accurate and flexi-
ble solution.

Figure 5.1: Comparison of classical and DL-based frame synchronization methods.
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One of the main advantages of using an FCN model for wireless communications,

such as FS, is that once this model is trained it can effectively be treated as any other

filter encountered in DSP. While a CNN needs to be trained and deployed on exactly

the same input sequence length, FCNs can be trained on small or large inputs, and

then deployed as a sliding window on inputs of any length.

5.2 Frame Synchronization

FS is an important step performed by the receiver when recovering transmitted data

packets. Conventionally it is estimated by taking the cross-correlation of a known

preamble sequence and the captured waveform. In a bursty (meaning data can arrive

in non-periodic intervals of time) communications scenario the packet, containing a

known preamble and the data samples, will be received together with “dead air” samples

containing no information, as shown in Figure 5.2.

Figure 5.2: Packet data sizes in bursty communication

Finding the time offset index, τ , of the received waveform r = [r1, r2, ..., rM ] ∈ CM

is the main goal of the frame synchronizer in a wireless receiver. The most common

way of performing this detection is to use a noncoherent correlation detector (1) and

estimate the peak τ̂ from the absolute cross correlation response,

τ̂ = argmax

(∣∣∣∣∣
M−1∑
i=0

rip
∗
i

∣∣∣∣∣
)
, (5.1)

where p = [p1, p2, ..., pNp ] ∈ CNp is the preamble symbol sequence of length Np, M is

the number of samples in the received signal and ∗ the complex conjugate. Of course

correlation methods can be improved further by adding correction terms to (5.1), for

example as shown in [110].
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Common preamble sequences used for this task are Barker codes, PN (Pseudoran-

dom Noise) and Zadoff-Chu sequences as seen in LTE and the New Radio 5G stan-

dard [111] [112]. Ideally a preamble sequence will have good autocorrelation proper-

ties, where the cross-correlation with itself is very strong, but not when correlating with

random data, which the payload is assumed to consist of. As an example, the Barker

sequence, illustrated in Figure 5.3, exhibits such properties.

Figure 5.3: Barker sequence

When correlated with itself the barker sequence produces an output shown in Figure

5.4. It has a strong response once the sequence overlaps exactly, and at every other

sample interval it produces small outputs between 0 and 1.

Figure 5.4: Barker autocorrelation

An example waveform containing a packet with a 64-bit payload of random bits

and a 13-bit barker sequence preamble is shown in Figure 5.5.

Running the waveform from Figure 5.5 through the correlator receiver, the output

generates a clear peak, indicating the start of the data packet, as can be observed

in Figure 5.6. Because the sequence is short relative to the payload size, the output

does not manifest in the ideal response shown in Figure 5.4. Instead the correlation

outputs non-negligible values due to partial matches with the preamble. If the Barker
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Figure 5.5: Transmitted waveform containing preamble and payload

sequence (or something close to it) appeared within the payload symbols, it could result

in a false positive detection and the entire packet would be lost, which is why frame

synchronization is such an important step in the receiver chain.

Figure 5.6: Correlation Receiver Output

The preamble detection peak as observed in Figure 5.6 is not always as prominent

and detection can be susceptible to noise, carrier offsets and other channel effects. The

negative effects can be mitigated by increasing the length of the preamble, however the

tradeoff is reduced efficiency of the overall communications system (more power, less

throughput, etc.). Another way of counteracting these effects is by introducing more

complex receivers, as will be demonstrated with DL-based receivers in the following

sections.

5.3 Related Work

Early research on improving FS using ML was investigated for a Radio Frequency

Identification (RFID) system in [113], where Multi-Instance Learning (MIL) was used

in combination with a Support Vector Machine (SVM) to predict whether an input

frame contained a preamble sequence. The MIL approach showed an improvement in
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accuracy over correlation methods at small carrier frequency offsets on input sequences

of 62 samples.

An RNN-based architecture for blind frame location estimation, where the preamble

sequence was not known beforehand by the receiver, was developed for an eavesdrop-

ping system on BPSK modulated sequences [37]. Interestingly, in the cited work the

RNN is not pretrained with a known preamble sequence; the model relies on the repeti-

tiveness of the synchronizing sequence of the continuous transmission. The RNN-based

synchronizer showed promising results in AWGN channels, however such deployment

is not suited for bursty traffic.

Previous work using CNNs for synchronization was undertaken for carrier offset

estimation as well as timing offset estimation in [32]. The authors proposed a CNN

architecture with a single output regression, however it did not outperform the baseline

correlation approach in the tested AWGN and fading channels. A CNN with a single

regression output was later also developed for IEEE 802.11ah standard packet detec-

tion [33]. Their approach outperformed baseline correlation approaches, and showed

improved performance in low SNR scenarios. The authors stated that the full flexi-

bility of the CNN architecture was not explored in order to simplify the complexity

evaluations, which is why the CNN used fixed-length filters and inputs.

FS has also been researched as a classification problem. A minimal CNN model was

built with a softmax classifier to predict the location of the preamble sequence, as part

of an autoencoder design [34]. Previous work on MLP and CNN architectures, both

configured as classifiers, was conducted with an AWGN channel in [35]. Their results

showed that the CNN easily outperformed a simple MLP, however the study was limited

as none of the results were compared with a more traditional method, like correlation as

a baseline. Another CNN implementation was used to enhance a traditional correlator

output by operating on standard correlation output samples [36]. While the proposed

CNN-enhanced approach showed an average improvement of 2dB over the baseline

on an impressive input size of 10k samples, the implementation requires reshaping the

correlation output into a 100×100 matrix to be compatible with their CNN architecture,

which is impractical to repurpose for different input lengths.
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In review, the problem of frame synchronization has been approached from an

ML perspective to enhance existing algorithms. It has also been researched as both

a regression and classification problem for fixed-size input sequences – these works

operate as illustrated in Figure 5.1 (b), where the assumption is that only 1 preamble

sequence can exist in a received frame. To re-apply these implementations to a different

deployment scenario, for example, requiring even a slight change in input shape would

require reproducing a new dataset and training an entire new model.

While RNNs seem like an appropriate solution to the fixed-size problem, existing

works are very specialized towards continuous transmissions and have not been shown

to work in bursty communications [37]. Additionally, RNNs can be difficult to train, as

was demonstrated in Chapter 4 of this thesis. The work presented in this chapter aims

to address the fixed-size problem present in existing DNN solutions, while providing

the improved detection performance that comes with data-driven approaches.

Preliminary results of the work presented in this chapter were published in [114],

highlighting the flexibility of the FCN architecture and demonstrating improved per-

formance over traditional methods. Additional contributions in the following sections

include a more comprehensive model parameter search and introspection of the archi-

tecture. The lessons learned on training FCN models for FS can be generally applied

to many DL applications in the wireless communications domain.

5.4 Training DL models

This section will review the FS data preparation, FCN architecture and parameter

search, as well as the training setup, including discussion on hyperparameter selection.

5.4.1 Dataset

Packet detection by utilizing FCNs is treated as a regression problem, where the deep

filter has to output peaks at locations where a preamble is located within a captured

frame of samples. The training process will attempt to create a model that suppresses

all of the noisy samples that are not the true preamble index, while maximizing the
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desired output.

Just like Chapter 4, all of the data in the following sections has been generated from

scratch with Python and NumPy. The labels are generated from random distributions

in the range of possible packet offsets. Each training example consists of the I/Q

samples of a simulated bursty transmission of a single BPSK modulated packet that

includes a preamble and random data payload, as shown in Figure 5.7.

Figure 5.7: Training data example

Even though the FCN performs a regression during inference, the dataset is perfectly

suited for tackling as a classification problem with softmax – as shown in Figure 5.7,

the label is an ideal response with a single peak at the time delay index, corresponding

to the actual start of the packet, and the value of 0 elsewhere. While the FCN does

not treat it as a classification, during training a cross-entropy loss function can be

appropriate. Loss function selection will be explored in more detail in Section 5.4.3.

Selecting the best initial training SNR

When generating training data there are many variables to consider. Does it have

multipath channel effects, non-linearities, what is the SNR and, if not a single SNR,

then what range of SNR values should be included? Ideally the training data will be
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representative of the types of perturbations the received signal will have experienced.

Practically, it is very likely the model may overfit to the training set if there is not

enough data, or if the range of channel conditions is insufficiently represented. One

way of approaching this (and producing a model that is at least as good as a baseline

model) is to train it on relatively clean data (high SNR) and apply regularization, such

as weight decay.

Figure 5.8: SNR selection based on baseline performance

A heuristically derived rule of thumb (from the work carried out in this thesis) for

selecting the starting training SNR level is to inspect the baseline accuracy curve and

choose the SNR where performance is beginning to saturate to the maximum value.

In the context of frame synchronization, one would be looking at the accuracy of the

noncoherent correlation of the synchronizing sequence – the SNR at which it reaches

roughly 90% accuracy is generally a good starting point for generating training data.

To reinforce this claim, a 32-bit PN sequence detector was trained on a dataset

generated for SNRs ranging from -30 to 30dB in steps of 5dB. For each SNR level,

5 models were trained with different random seeds, and each of those models was

evaluated under an SNR range of -10dB to 10dB. The plot in Figure 5.9 shows the

results of this experiment – each blue bubble is the mean accuracy achieved by the

5 models trained at that SNR. Similarly to Figure 5.8, it is clear that a ‘sweet spot’

SNR range exists where the trained model shows ideal performance. When there is too
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much noise (up to -15dB SNR) the model fails to fit the training set and the test set

accuracy drops to nearly 0%, and when the data is too clean (from 10dB upwards) the

model most likely starts overfitting to the clean dataset, failing to generalize to unseen

data.

Figure 5.9: Mean accuracy of each model trained at a different SNR

An important takeaway from this result is that higher SNR datasets, at least ini-

tially, should be preferred. Too low an SNR can easily result in “garbage in garbage

out” learning, where there is very little signal in the data from which the model can

learn meaningful patterns. That said, some noise is still necessary to produce a robust

solution.

5.4.2 Architecture

FCNs are most prominently used for dense pixel-wise classification in image segmen-

tation tasks [115]. This type of network is constructed only from convolutional and

pooling layers. Since they have no fully connected layers, they are not constrained to a

fixed sized input, as is the case with the feedforward networks, that work by performing

matrix multiplication of their learned weights by the entire input at once. This section

covers an initial exploration of some key architecture parameters to uncover insights as

to what type of FCN configurations perform favourably on FS.
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Architecture Sweep

There are many architectural decisions that can be made when building a DNN – num-

ber of layers and filters, individual kernel dimensions, activation functions, additional

layers like pooling, or regularization layers like batchnorm. The appropriate architec-

ture might also change depending on the training dataset (some architectures could

work better with certain impairments than others). The approach in this section is to

approximate a “good enough” architecture for a single dataset by generating a number

of different models with varying numbers of layers, filters and filter widths. Seeing how

different models perform on the FS problem will give some insight on which parameters

work best, and give a clearer guidance of how to structure DNNs for this task going

forward.

An initial FCN architecture sweep was performed by training and evaluating a num-

ber of models for 3 different PN sequence preamble lengths, for a set of configurations

with varying numbers of layers, number of filters per layer, and widths of filters. For

each configuration, 5 models were trained and evaluated at an SNR range from -10

to 10dB. Every model was trained on a dataset containing 1024 examples with a con-

sistent SNR of 5dB, the datasets are discussed in more detail in the next subsection.

Architecture sweep parameters are summarized in Table 5.1.

Table 5.1: Architecture sweep parameters

Parameter Values

Preamble length 8, 16, 32
Number of layers 3, 4, 5
Number of filters 16, 32
Filter width 3, 9, 15, 35
Number of models 5

Resulting accuracies for each of the 5 trained models per configuration are averaged

and displayed in Figure 5.10. For clarity, results for filter widths of 3 having been

excluded from these figures, but can be accessed in Appendix A.2 – short filter widths

have proven to work very poorly on this problem.

A few concrete conclusions can be drawn from the architecture sweep. Firstly, long

filter widths are preferred to shorter ones. In the case where 32 filters are applied
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(a) 8-bit preamble detection

(b) 16-bit preamble detection

(c) 32-bit preamble detection

Figure 5.10: Accuracies achieved with different FCN model parameters. Legend key
should be read as (number of layers, number of filters, individual filter widths).

per layer, the architectures with 35 sample wide filters worked best for each preamble

length. More layers can make it more difficult for the FCN to converge to a solution;

based on results in Figure 5.10, 3 layers has been shown to be sufficient in all cases. It

is worth noting that these results have been achieved using a modest dataset of 1024

examples, in order to obtain some intuition on what works. The dataset, architecture

and optimization strategy can always be iterated on to improve performance.
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Activation Functions

One of the major buildings blocks for DNNs are the various activation functions in-

troduced to the individual layers to add nonlinearity to the system. In the following

experiment 5 models are trained per activation functions for the three functions being

explored: ReLU, Sigmoid and Tanh. The same 1024 example dataset is used from the

architecture sweep. The results are captured in Figure 5.11.

(a) Training losses (b) Training accuracies

Figure 5.11: Training results on an 8-bit preamble dataset using three different types
of activation functions (dashed lines show validation losses)

From the results in Figure 5.11 it is clear that ReLU demonstrates the fastest

convergence times and reaches the maximum training and validation accuracies in the

least number of epochs. Sigmoid and Tanh functions tend to limit the output to a

maximum value of 1, weakening some of the stronger error signals being backpropagated

during training. The transformation required to convert input samples to a vector

containing sparse peaks (or in this case a single peak) is quite simple and the complexity

added by these activation functions (Sigmoid and Tanh) may be unnecessary.

Bias

What differs between typical convolutional layers in a DNN, and receivers based on

correlation, is the addition of the bias term. Since standard correlation does not have

an extra bias added to the equation, the question arises whether learning correlation

would be easier for the DNN without this addition.

Figure 5.12 shows the average results of 5 trained models with the FCN bias enabled
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(a) Training losses (b) Training accuracies

Figure 5.12: FCN training results with and without bias in all convolutional layers

and disabled. It is evident that removing bias from all the layers reduces the predictive

power of the DNN and degrades the training process. This makes sense – the number

of parameters has been reduced, which reduces the expressivity of the model.

What about just the first layers? As will be shown near the end of this chapter,

the first layers of the FCN tend to learn approximations of the preamble sequence,

mimicking individual matched filters. In order to mimic correlation, one does not need

the bias term. Another experiment is run where 5 additional models are trained with

only the first layer having the bias parameter disabled. The results of this experiment

are shown in Figure 5.13.

(a) Training losses (b) Training accuracies

Figure 5.13: FCN training results with and without bias in the first layer

From the results in Figure 5.13, it is clear that with the bias of the first layer

omitted, the training process will be slower than the default alternative, albeit the

FCN will still be able to converge to a solution. If trying to optimize the DNN size
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in the parameter space, some biases could be thrown away to make minimal memory

savings, however compared to the number of parameters in convolutional and fully

connected layers, number of terms representing biases are negligible.

Selected FCN and CNN architectures

This chapter mainly focuses on FCNs, but for comparison a CNN baseline model was

also produced for performance comparisons. A high level overview of the two architec-

tures can be observed in Figure 5.14.

Figure 5.14: CNN and FCN architectures overview

The FCN is composed entirely of convolutional layers, where each layer has enough

zero-padding to ensure that the outputs are of the same length as the input. In total,

the model contains 3 layers, where the first two are followed up with ReLU activation

functions in order to add non-linearity to the model. 2D convolutions are used so

the first layer can take advantage of the phase information of the signal by processing

in-phase and quadrature samples simultaneously. Kernels of sample width of 35 have

shown best response to multiple preamble lengths (from results in Figure 5.10) and will

be used for all convolutional layers. The final layer outputs a single channel response

from which the frame offset can be inferred.

The reference CNN model shares the exact same first feature extraction layers as

the FCN model, however these are then flattened into a single vector representation

to be consumed by an additional 2 FC layers for further processing. The output of
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the final FC layer is followed by a softmax activation, as is typical of a classification

architecture. The CNN is of comparable size to those presented in [33], [35].

Table 5.2: FCN Parameters

Layer Parameters Output Shape

Input 2 × N
Conv2D + ReLU 35 × 2, 32 filters 32 × 1 × N
Conv2D + ReLU 35 × 1, 32 filters 32 × 1 × N
Conv2D 35 × 1, 1 filter 1 × 1 × N

Table 5.3: CNN Parameters for input length 200

Layer Parameters Output Shape

Input 2 × 200
Conv2D + ReLU 35 × 2, 32 filters 32 × 1 × 200
Conv2D + ReLU 35 × 1, 32 filters 32 × 1 × 200
Flatten 1 × 6400
FC + ReLU Size = 128 1 × 128
FC + Softmax Size = 200 1 × 200

A summary of the FCN model parameters is presented in Table 5.2 and, for com-

parison, a CNN model is summarized in Table 5.3. The dimensionality and the number

of neurons in each FC layer of the CNN will change based on input size, hence the

parameters are specified for a reference input of 200 samples.

5.4.3 Training

This section will consider some of the remaining key hyperparameter choices for training

the FCNs. Regularization is an important part of training a robust model and there

are many techniques, but in this section some of the most popular choices for weight

decay and dropout will be explored.

Loss Functions and Regularization

The way the training data is formatted lends itself perfectly to categorical cross-entropy,

since the desired labels are one-hot encoded due to the nature of the dataset. While

not addressed in this chapter, one caveat of training with cross-entropy is that it may

not perform as well if the training data consists of more than a single packet, making
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the data no longer one-hot encoded. In this case, MSE might be more appropriate.

Nonetheless, both loss functions have been evaluated and compared with two regular-

ization techniques – weight decay and dropout. In the following experiments regulariza-

tion factors λ ∈ [0, 0.001, 0.1] are used for weight decay and probabilities p ∈ [0.25, 0.5]

for dropout.

(a) 8-bit preamble detection

(b) 16-bit preamble detection

(c) 32-bit preamble detection

Figure 5.15: Accuracies achieved using different regularization techniques (left-hand
side shows weight decay results, and dropout on the right).

In order to evaluate the effects weight decay has on the FCN models, for each

regularization factor 5 models have been trained and evaluated over an SNR range of -
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10dB to 10dB for each of the 6 regularization/loss combinations. The mean accuracy of

all 5 models per regularization/loss function configuration is displayed in the left-hand

side graphs of Figure 5.15.

Interestingly, MSE tends to work better for shorter preambles (Figure 5.15 (a)),

then as the preamble length increases cross-entropy becomes a clear winner, as seen

in Figure 5.15 (c). It is evident that MSE is much more sensitive than cross-entropy

to weight decay: once λ is set to 0.01, none of the FCN models are able to converge

to a solution for any preamble length. MSE with moderate (λ = 0.001) weight decay

performs better than cross-entropy, on average, however for the longest 32-bit preamble

it cannot provide a satisfactory solution, since the accuracy result falls below baseline

correlation.

Similarly to weight decay, dropout has also been evaluated for dropout probabilities

of p ∈ [0.25, 0.5]. The average accuracy of 5 trained models per dropout configuration

and loss function are displayed in the graphs on the right-hand side of Figure 5.15. The

results of using dropout are firmly worse than weight decay, this might be due to the fact

that the FCN models are fairly small and the missing connections caused by dropout

may hinder the training too much by not having enough neurons to successfully learn

the task. Since the FCN models are small, compared to other common DL architectures,

weight decay appears like a more appropriate solution.

In general terms, it seems that using cross-entropy and having a modest amount of

weight decay will provide best overall results.

Early Stopping

A simple form of regularization that can often be overlooked is early stopping or check-

pointing. Early stopping is implemented by constantly monitoring the validation loss

and saving the weights of the network only when a lower loss has been computed than

the previous best result – an example of early stopping based on validation monitoring

for the CNN model is illustrated in Figure 5.16.

Without early stopping, it can be easy to overfit the model to the training set,

making it incapable of generalizing to new inputs. The produced model for inference
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Figure 5.16: CNN training and validation losses over batch iterations

is the one that has resulted in the lowest validation loss.

Training Parameter Summary

The training details for both FCN and CNN models are summarized in the Table

5.4. The models were trained for 3 different preamble sequence lengths of 8, 16 and

32 bits. Each model was trained for 30 epochs on datasets of decreasing SNR level

based on preamble length – detecting longer preambles is an easier problem, hence

it is more tolerant of noise. The training model sizes in terms of parameters were

kept as close as possible for both FCN and CNN architectures for a fair comparison.

Some hyperparameters, such as optimizer choice, learning rate and batch size have not

been explored, however the defaults proved to be good enough for training performant

models. Of course many further optimizations are possible to the architectures, dataset

quality and training hyperparameters.

A key difference between the two sets of architecture training parameters is the

number of training examples – using the outlined training parameters, it was difficult

to achieve the same average accuracy on a CNN compared to an FCN without increasing

the dataset size. For this reason the dataset size for CNN is 4x the amount used for

the FCN training. In these experiments the dataset has been synthetically generated,

however this is not always the case. Additionally, achieving the same or better result

with less data is a desirable architectural property.
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Table 5.4: Training hyperparameters

Parameter FCN CNN

Optimizer ADAM ADAM
Loss function Cross entropy Cross entropy
Number of training examples 8192 32768
Batch size 32 32
Number of epochs 30 30
Learning rate (α) 0.001 0.001
Regularization Factor (λ) 0.01 0.01
Training SNRs (dB) for
8, 16, 32 bit preambles 10, 5, 0 10, 5, 0

Class Imbalance Constraints on CNNs

In many ML applications, the class imbalance problem manifests itself when there is

an unequal distribution of all classes in a training dataset. Meaning that the trained

DNN will not be as good at predicting the under-represented classes [116]. While deep

CNN models can show excellent performance on frame synchronization tasks, they are

very sensitive to class imbalance – if a single time offset is not present in the training

dataset, the network will not be able to generalize and make that prediction – all classes

(time offsets) have to be present in the training set to make sure the final layer weights

going into softmax are not ‘dead’ (0 weights). For this reason, the CNN requires more

training data to match the FCN performance, as summarized in Table 5.4.

To illustrate the point, an FCN and CNN have been trained on a dataset containing

waveforms that are 200 samples long, with maximum reprsented offset τ of 100, with a

32-bit PN sequence preamble. Then both networks, together with standard correlation

for reference, are tested for each time offset from 0 to 168 at 0dB SNR. The results of

this experiment are summarized in Figure 5.17.

Figures 5.17 (a) and (c) show an ideal diagonal where the model predictions (y-axis)

match the expected offset value (x-axis). Correlation has a “snowy” pattern above the

diagonal – the reason the misclassifications exist only above the diagonal is that there

are payload symbols following the preamble, and the random bits may almost match

the preamble sequence, causing some false positives. The noise is not high enough to

cause false positive below the diagonal, where no data bits are being transmitted.
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(a) Correlation (b) CNN

(c) FCN

Figure 5.17: Confusion matrices of Correlation, CNN and FCN approaches to frame
sync.

More striking is the result in Figure 5.11 (b), where the CNN is unable to generalize

to any offset past τ = 100. This is an expected result – the training data did not have a

single example (class) above a time offset of 100 samples, so the weights connected those

100 neurons never needed to be updated. Since the dataset is synthetic, this could be

solved by adding more training examples – however it incurs more training-time costs.

In cases where it is not as trivial to acquire more data (because it was collected off the

air or from a third party), methods like SMOTE (Synthetic Minority Over-sampling

Technique), used for balancing a dataset where each class is not equally represented,

could provide a solution [117]. In the meantime, the FCN model does not have this

limitation, and processes the input like a filter would.
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5.5 Empirical Evaluation

In the following sections, the FCN architecture is tested under various impairments

and the DERs (Detection Error Rates) compared with baseline results from correlation

methods and implementations of the improved noncoherent correlation method from

[110] – this baseline reference will be denoted as ‘expert’ in the legends of result graphs.

The impairments that the FCN will be tested on include AWGN, carrier phase and

frequency offsets, and fading channels. In total 3 preambles based on PN sequences are

investigated, and for each preamble 5 FCN models trained, with the best model chosen

for evaluation. Data packet simulated transmissions are assumed to be 200 samples

long, with the payload containing 128 BPSK-modulated symbols.

5.5.1 AWGN and Phase Offset

One of the most fundamental impairments for evaluating models is an AWGN channel,

which allows an analysis of the model at various SNR levels and an initial assessment

of model robustness. This basic test provides some insight into how FCNs could be

used quite effectively for short preambles. FCNs trained for 8,16 and 32-bit preamble

sequences are evaluated at an SNR range from -10 to 15dB, and random phase off-

sets. They are also compared with standard noncoherent correlation and an improved

method from [110], with the results summarized in Figure 5.18.

Figure 5.18: DER results with AWGN and random phase offsets
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It is clear that the FCNs work very well for smaller preambles – in these situations

a lot of false positives can degrade performance because of the non-zero likelihood of

the preamble sequences appearing in the 128-bit payload data. This becomes less of

a problem for longer preamble sequences and the advantage of using a DNN becomes

less apparent.

Careful not to Overfit Phase!

Phase offsets do not affect existing methods in terms of DER. A neural network, on

the other hand, suffers greatly if it is not trained on a variety of phase offsets, as it can

easily overfit to a single phase. This is demonstrated in Figure 5.19, where an FCN

trained exclusively on data with ϕ = 0 is compared against the standard correlation

method. The DER achieved by correlation does not change, regardless of the phase

offset applied. However the FCN performance at an unseen phase is drastically affected.

Figure 5.19: Single phase overfitting

Concretely, one can think of bursty BPSK transmissions in a high SNR channel

– if there is no phase offset, the network will only have seen actual data in the in-

phase channel, whereas anything on the quadrature line will be noise. Once there

is a phase offset, some of the in-phase channel data will “leak” into the quadrature

channel, a situation which the DNN has never seen before. To the neural network

this situation is merely the reduction of power on the in-phase channel, degrading the

receiver performance. This is why it is important to train and test any data-driven
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receiver solution on various phase offsets.

5.5.2 Carrier Frequency Offset

While phase offsets do not affect standard correlation implementations, CFO certainly

does. In any realistic scenario there will be some CFO effects to compensate for. De-

pending on the communications link setup, the first step in order to compensate for the

CFO effects might be frame synchronization. For example, in 5G NR communications,

the PSS (Primary Synchronization Signal) is detected first, which enables coarse carrier

frequency synchronization [112, Chapter 16]. This makes it all the more important that

the method of reception is robust to carrier offsets.

Much like AWGN channel experiments previously, in Figure 5.20 the same methods

are compared for multiple PN sequence lengths and a 128-bit payload, all BPSK mod-

ulated. Except in addition to the random phase offsets, the waveforms are suffering

from a 10kHz CFO, sampled at a rate of 1MHz sampling rate.

Figure 5.20: DER with CFO of 10KHz

Now the advantages of the DNN approach are a little more apparent, even at the

longer 32-bit preamble, a ∼3dB gain in performance is achieved. As before, the shorter

preambles are detected with a much greater accuracy than the classical methods. It is

clear that the DNN approach works well for CFO. To further evaluate how well, it is

pertinent to evaluate the sensitivity to CFO for the FCN and reference methods.

In order to determine the CFO sensitivity of the proposed method, the same ex-
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periment was run for a 32-bit preamble sequence, with the SNR fixed to 5dB and an

increasing CFO value. In this instance the FCN is compared against another DNN

model - the CNN, as well as the previous noncoherent correlation methods. The results

are summarized in Figure 5.21.

Figure 5.21: CFO Sensitivty Comparison

Clearly there is a performance gap between the traditional approaches and both

DNN models, with the DNN models performing better. While both traditional ap-

proaches perform similarly in this test, the improved reference method actually showed

more sensitivity to CFO and had a quicker drop off in accuracy as the frequency offset

was increased. The DNN models show an almost 10kHz greater tolerance to frequency

offset than the classical approaches.

5.5.3 Fading Channels

Some of the most challenging channels encountered in a deployment will have some

form of fading. In this subsection, the FCN model and reference methods are evaluated

under a non-line-of-sight (NLOS) and line-of-sight (LOS) channels modelled by flat

fading and multipath fading channels, respectively.

Flat Fading

The same preamble and payload configuration is used in this experiment as previously.

However, instead of carrier offsets the signal is transformed by a single tap complex
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gain that follows a Rayleigh distribution. Since a single tap channel simply applies a

gain and a phase offset, the results with flat fading (Figure 5.22) are similar to the ones

seen with just AWGN and phase offsets in Section 5.5.1.

Figure 5.22: Detection Error Rate under Flat Fading Channel

In this instance the expert correlation-based method outperforms the FCN for the

longer preamble sequence of 32 bits. The FCN approach consistently outperforms

baseline methods for shorter preamble lengths, matching 16 bit correlation performance

with just an 8 bit preamble at higher SNR.

Multipath Fading

Multipath fading is more complex than a single tap flat fading channel, and can be

very detrimental to single carrier transmissions. Because there are multiple paths,

the expected performance will be even worse than flat fading. Nonetheless it is still

important to confirm that the FCN model is capable of generalizing to this unseen

impairment in the dataset (training data only included CFO and phase offsets).

The multipath channel that the frame synchronization methods are being tested

with follows a Rician distribution, and consists of 3 channel gains at time offsets of [0,

5e-6, 10e-6] seconds and average channel gains of [0dB, -3dB, -6dB], with a sampling

rate of 1MHz. The evaluation results under this channel are summarized in Figure

5.23.

Again, the most marked improvement can be seen from the 8-bit preamble detec-
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Figure 5.23: Detection Error Rate under Multipath Fading Channel

tions by the FCN. As the preamble length increases, the FCN results exhibit progres-

sively less improvement over the traditional approaches. One important point to note

is that the FCN model has never seen flat or multipath fading in its training dataset.

Given this fact, it is still capable of not only matching but showing improvements over

traditional methods for shorter preamble lengths.

5.6 FCN Architecture Introspection

Most DNNs fall in the category of “black box” models, meaning that even though they

can achieve very good results, their interpretability is low [20]. The opaqueness of

DNNs complicates fault diagnosis and regulatory compliance, crucial in environments

where precise control and explanation of algorithmic decisions are essential. There are

ongoing research efforts in explainable AI that show potential to solving these issues,

such as LIME (Local Interpretable Model-Agnostic Explanations), which determines

the positive and negative impact individual features have on a classifier’s decision, by

approximating a local interpretable model [18]. Another example is SHAP (SHapley

Additive exPlanations) in which an importance value is added to each feature for a

specific prediction, revealing how each contributes to the outcome [19]. Explainability

is fundamental to the transparency and trustworthiness of complex models, and should

be necessary for faster adoption of DNNs in production.
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In this section we will take a closer look at the individual learned filters of the

FCN layers to see how it is abstracting the incoming complex signals in order to make

decisions. A multi-packet inference analysis is also carried out to visualize the FCN

model transients, which are similar to regular DSP filters, albeit different.

5.6.1 Learned Filters

Passing a 200 sample frame with a single preamble located at an offset of 40 samples,

and a payload of 128 bits, the intermediatery outputs of the FCN are inspected in Figure

5.24. Interestingly, looking at the filter outputs of the first convolutional layer, layer

1, the output seems very noisy and there are many peaks, however not a single filter

actually outputs a strong correlation at the expected offset of 40. This is a different

from the second layer outputs, where it seems like many filter outputs are stacked at

the expected offset location.

Figure 5.25 provides a closer look at what the learned filters actually look like. The

first layer filters in Figure 2.25 (a) are almost recognizable as the expected preamble

sequence. To make this a bit clearer, one of the filters has been overlaid with the 32-bit

PN sequence in Figure 5.26. Clearly the pattern is there, however not matching in its

entirety.

Recall that the FCN has never seen a clean preamble sequence, and in this particular

instance it has been trained on 0dB SNR data. Given that other first layer filters exhibit

similar patterns and offset peaks at various locations, it is safe to assume that the first

layer network learns multiple representations of the preamble sequence at different

positions.

The second layer filters, shown in Figure 5.26 (b) are much more difficult to inter-

pret, as they are multi-dimensional, now with 32-channels (however only 16 are dis-

played for clarity) rather than just the two for in-phase/quadrature samples. Nonethe-

less, some patterns can be observed by taking a closer look at individual filter outputs,

as opposed to the learned weights, in Figure 5.27. Looking at the upper row, Filter 2

and 3, the outputs are what one would anticipate, with a clean peak at the expected

sample offset of 40; the next filter over does not give as clean a prediction, but the
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Figure 5.24: FCN introspection – looking at the outputs of individual layers

argmax value is still the correct offset.

More interestingly, the bottom two subplots in Figure 5.27, for Filters 5 and 12, show

some unexpected peculiarities. Filter 5 produces absolutely no output, rather a vector

of zeros – this could be the equivalent of a dead neuron, and with further optimization

could be pruned from the network to save resources. An alternative interpretation is

that whatever stimulus it is responsible for reacting to simply was not present in the
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(a) First FCN layer

(b) Second FCN layer

Figure 5.25: Individual learned filter weights

input signal (perhaps this particular filter is only sensitive to certain phase offsets).

The other peculiar observed output comes from the last filter in Figure 5.27, Fil-

ter 12, which initially was dismissed as just producing noise. However upon further

inspection, it was seen to produce an inverse peak at the expected output. This was

confirmed by performing an argmin function on the filter output.

One reason as to why this particular kernel decided to learn to produce an inverse

detection is that a DNN in the early layers does not particularly care whether a cor-

relation is positive or negative; after weight initialization by random chance it could

121



Chapter 5. Fully Convolutional Neural Networks for Frame Synchronization

Figure 5.26: First layer filter similarity to preamble in training set

Figure 5.27: Second layer filter outputs

have started out with weights that resulted in a strong negative correlation. If a kernel

is already leaning towards a negative correlation, during training it might be easier to

reinforce this response and have one of the higher level layers invert the output of this

filter, rather than retrain the whole kernel.

Being able to dissect DL models can give valuable information and insights into

how they are learning. The FCN presented in this work is only a 3-layer convolutional
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network, where each layer contains no more than 32 filters. The small size of the

network makes introspection and visualization easier than some other DNNs. In future

work a deeper dive with a tool like the DALEX toolkit [118] could prove to be even

more useful into gaining more insight of how the model operates.

5.6.2 Multi-Packet Inference

One of the biggest advantages of using an FCN over a fully connected network is that

it is actually possible to run inference on a frame containing more than 1 packet. As

an additional benefit of using a non-linear model to achieve this, it can be observed

that the FCN performs additional denoising functions when compared to the baseline

correlation output. Inference of a trained FCN (on a 32-bit preamble sequence) is

demonstrated in Figure 5.28 (a).

The FCN was trained on 200 sample sequences with one preamble in each one of

them. In this case it is presented with a sequence spanning 600 samples, containing 3

packets. The output, by comparison to the correlation approach, is a lot cleaner with

3 distinct peaks corresponding to the correct predictions of packet locations.

(a) Inference on a waveform containing
multiple packets

(b) Averaged predictions to visualize the
noise floor

Figure 5.28: Multi-packet inference

To quantify the denoising capabilities that the FCN models are demonstrating,

the same experiment was run on 1000 different frames at an SNR of 0dB, then the

correlation and FCN outputs were collectively normalized and averaged over all runs.

The result is presented in Figure 5.28 (b). Given that the FCN has such a low prediction
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noise floor, compared to the standard correlation method, allows a practical advantage

of threshold setting. Usually to avoid false positives a reasonable threshold value is

selected which, when exceeded, signals the receiver that a packet has been detected.

From the graphs in Figure 5.28 it seems like this threshold could be set much lower for

the FCN.

One more observation from the FCN outputs is that, interestingly, the transients

of the FCN and correlation are inverted; this could be a byproduct of the FCN im-

plementation – in order to produce an output of equal length to the input length, the

input signal is padded with zeros. The sharp transition from the padded zeros to the

noisy samples might be triggering an edge detection-like response.

5.7 Complexity Analysis

When building a wireless communications system, performance is not the only met-

ric to consider – implemented algorithm complexity is part of the tradeoff. The word

complexity can mean multiple things, and there are a number of ways of evaluating

it, depending on the hardware the algorithm is being implemented on. In this sec-

tion, Computational Complexity (CC) is defined as the number of flops (floating point

operations) required to perform a single inference on one waveform. Computational

complexity can also be approximated by running the model on a CPU and measuring

the time it takes to run.

For DL models it is also very important to evaluate the required memory capacity

– DNNs typically require many weights to be stored on-device or even in on-chip mem-

ory. Additional memory requirements will incur a higher cost and potentially energy

expenditure due to more memory accesses being required.

It should also be acknowledged that performing a fair comparison between 2 DNN

models is challenging, because there are so many deployment modes and ways of im-

plementing the architectures. In this work, a best effort was made to keep the number

of parameters (for 200 sample inputs) as even as possible between the FCN and CNN.

Due to the huge optimization space involved it cannot be guaranteed that either model

is optimal.
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5.7.1 Computational Complexity

For basic network layers it is fairly straightforward to calculate the CC in flops. For

example, as defined in [119], a 2D convolutional layer can be determined by

CCconv = (2 ∗ (c ∗ l ∗ h)) ∗ k ∗W ∗H, (5.2)

where CCconv is the computational complexity of a 2D convolutional layer, c, l and

h, are the convolutional layer kernel parameters for input channels, filter length and

height respectively, k represents the number of filters, and W and H are the width

and height of the input signal, or feature map. Similarly, the complexity of a fully

connected layer CCfc is calculated using

CCfc = 2 ∗ win ∗ wout, (5.3)

where CC of a fully connected layer is the product of input vector length win and

number of output neurons wout. Note that equations (5.2) and (5.3) do not take into

account other building blocks of the architecture, such as activation functions. Using

these equations does help estimate the complexity impact the DNN will have on the

overall system.

For baseline reference, the CC associated with correlation is simply calculated as

CCcorr = 2 ∗ c ∗ l ∗W ∗H, (5.4)

where c and l are the number of channels and length of the matched filter respectively,

and W and H are the width and height of the input signal. The matched filter only

needs to be evaluated once, since there are no layers, as would be typical of a DNN.

Using the FCN and CNN parameters from Table 5.1 and calculating the CC of

each layer using the above equations, the number of flops per model is calculated

and summarized in Figure 5.29. While this does not perfectly reflect the realities of

hardware [120], it provides an approximation of the expected computational costs for

these types of architectures.

Computational complexity can also be estimated by measuring the computation

time on a target device, such as a CPU. In this instance, each method was evaluated on
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Figure 5.29: Calculated computational complexity for 200 and 600 samples of evaluated
FS methods

a desktop AMD Ryzen 5 CPU, with results as summarized in Figure 5.30. This by no

means reflects the realities of other typical hardware platforms that a DNN might be

implemented on, such as TPU (Tensor Processing Units), GPUs or FPGAs. However,

it is useful to compare this with the expected trends of the analyzed detection methods.

Figure 5.30: Estimated computation complexity in CPU runtime

Looking at Figure 5.30 the trends are quite similar to those of the calculated results

displayed in Figure 5.29. Clearly both DNN models are more costly than standard

correlation, however the FCN seems to require much less computation as the input size

scales to 600 samples. The higher cost of the CNN when scaling the input size can

be explained by additional activation functions, such as softmax, and the increasing
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number of neurons in the final layer required to represent the many potential outputs.

5.7.2 Memory Requirements

When comparing DL models, a very important metric to consider is the model size, or

number of weights that are required to store the DNN layers in memory. For convolu-

tional and fully connected layers, this is very straightforward to calculate – simply sum

up all of the weights in the model. While the computational complexity is comparable

between the FCN and CNN models, looking at Figure 5.31 it is clear that the CNN is

much more costly in terms of memory.

Figure 5.31: Required number of parameters for each detection method

It should also be noted that, since the correlation method uses a matched filter

equal to the size of the preamble (32 samples), it is neglibible and does not even show

up on the graph. Since the FCN employs only convolutional layers, its number of

parameters does not scale as with the CNN. The fully connected layers of the CNN

scale linearly with the input size and do not exhibit the weight sharing property, which

is an important aspect of convolutional layers when considering implementation [121].

The scaling effect can be demonstrated by plotting the the number of parameters

over an increasing input length, as shown in Figure 5.32. This compares the FCN, and

the discussed CNN architecture with a softmax output layer, in Figure 5.32 denoted

as “CNN + classification”, as well as a CNN with a single output neuron regression

denoted as “CNN + regression”, scaling accordingly as the input size increases.
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Figure 5.32: Parameters required with increasing input size

Based on these experiments, a case can be made for using FCNs when compared

to CNNs. Power and memory constraints should be taken into account – while more

compact than a CNN, FCNs are still an order of magnitude more demanding in both

computational power and storage than traditional approaches like the matched filter.

DNN deployment is an active research area and techinques like pruning and quantiza-

tion [122] have been shown to be effective at minimizing the cost. As the field progresses

more specialized hardware will also be made available, again, making DNN deployment

more practical in many scenarios.

5.8 Chapter Conclusion

FCNs are relatively easy to train compared to similar DNN models, and work very well

when detecting packets in bursty single carrier communications, such as those found

in IoT transmissions. In the experiments of this chapter, it was shown that the FCN

models excel when detecting shorter preambles, which is highly beneficial when trying

to eliminate signalling overhead for a more efficient communications link. The DER

improvements were most significant in channels containing CFO. While the training

dataset never contained any fading channel data, the FCN models were still able to

match the performance of baseline correlation methods and outperform these methods

for shorter preamble lengths.
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Previous research done on frame synchronization using models like CNNs and MLPs

have also demonstrated performance improvements in various channel conditions, mak-

ing a strong argument for the use of data-driven models for frame synchronization in

future wireless receiver implementations. The work presented in this chapter showed

how to harness the performance gains that have been displayed in previous DL imple-

mentations, while contributing novel flexibility to these DL models. A trained FCN

can be treated like a deep filter and deployed on inputs of any size – this is a distinct

advantage over other DNN methods, that contain fully connected layers. Importantly,

this work demonstrates that the FCN is less likely to overfit to the training set than

a CNN of a similar size, making this architecture easier to train and further reducing

adoption costs.

While FCNs look promising compared to other DNN models, when compared to

traditional approaches such as the noncoherent correlation detector, they are signifi-

cantly more costly to implement. As the ML field progresses, more accelerators and

techniques will become available for quantizing and deploying the DNNs efficiently.

Eventually DL-based receiver designs should become a cost efficient alternative to tra-

ditional methods that can be deployed on ubiquitous hardware.

Next chapter will focus on training techniques that can improve DNN model per-

formance with zero added implementation costs post-training.
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Chapter 6

Multitask Learning with Channel

Impairment Estimation

This chapter introduces the concept of Multitask Learning (MTL) for wireless commu-

nications tasks. Generally the data generation process for RFML will involve signal

movement through multiple transmitter signal processing blocks, as well as multiple

channel impairments – the transmitter functions and impairments will have parame-

ters associated with them and can be treated as additional training data.

Usage of MTL in this chapter has a twofold motivation: improving model perfor-

mance by introducing expert driven regularization resulting from additive losses; and

saving resources by sharing common feature extraction layers between tasks, eliminat-

ing the need of training multiple models for different tasks.

The previous chapter introduced the FCN architecture for frame synchronization,

this chapter explores how the FCN architecture can be enhanced even further with

MTL. Examples of improving AMC and frame synchronization accuracies using MTL

with additional impairment estimation are explored. MTL expands on some of the FCN

functionality from the previous chapter by enabling continuous SNR estimation. Using

MTL adds additional complexity to the training process, requiring to tune additional

hyperparameters, however it is a promising new vector of optimization for wireless

communications tasks like AMC.
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6.1 Motivation

The term “multitask learning” was introduced in 1997 by R. Caruana [39]. Beforehand,

the concept of MTL existed in the early 90’s and has been referred to as “training hints”,

the idea being to give the model hints in the form of complementary tasks to learn,

making the process of learning helpful features more explicit. The key principle behind

MTL is that one can train multiple tasks (of the same domain) using a single DNN with

a set of shared feature extraction layers. Which tasks are appropriate to group together

is an actively researched ML topic [123]. Training related tasks simultaneously forces

the shared layers to learn features that can be beneficial to other tasks, yet may not

have been learned otherwise. It can be viewed as an expert-driven transfer of knowledge

that occurs during training time.

MTL is an actively pursued area of research in many applications where machine

learning is used. It is especially prominent in the field of CV [38]; most CNNs that work

with images always have to learn basic features like edge detection or color thresholding

– for tasks like image segmentation and contour detection, the shared layers will have

many functions in common. MTL can also be challenging to implement, as it can

be difficult to determine whether the tasks are complimentary and the gradients will

align [124]. Additionally, a very important topic in MTL is the question of loss weighting

– one task can be weighted higher than another, and balancing these weightings is

necessary to achieve good results [125].

One of the reasons why MTL can be a good fit for wireless communications is the

built-in capability of generating many additional labels, based on simulation parame-

ters. Take the most typical scenario of AMC – by far the most popular approach to

this problem is to use supervised learning, and generate data samples and labels, as

shown in Figure 6.1. Normally some noise is added to the dataset, perhaps multiple

different levels of SNR. The simulated channel used when generating the data could also

introduce a carrier phase offset. While generating the dataset there could be a plethora

of parameters used to generate specific waveforms, however the only parameters saved

would be the labels (‘BPSK’, ‘QPSK’, ‘GMSK’, etc.) and the actual I/Q samples.
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Figure 6.1: Typical data generation process for AMC, highlighting potential untapped
data

What if, instead of throwing away the parameters that were used to generate the

dataset (like SNR levels, or carrier offset values), these were used as additional training

data for the DNNs? These parameters are not used in operation and will be discarded

anyway after the dataset has been generated and the DNN has been trained. This

is essentially free data, that is a byproduct of generating a conventional ML dataset.

With MTL this does not need to be the case; the parameters used to generate the

training data can be stored and re-used as additional labels for supplementary tasks

within the same DNN. It should be mentioned that there are recent efforts in the open

source community to create richer data format standards like SigMF [126] that can be

used to store all of these parameters in new RFML datasets. Doing so would enable

new interesting MTL research in signal processing, however, at the time of writing,

these standards are yet to be widely adopted by the research community.

A high level overview of MTL is shown in Figure 6.2. The trunk of the DNN,

closest to the input, has a set of feature extraction layers that are shared between

each of the prediction heads that are responsible for learning their particular task.

Each head can have its own unique architecture (different layer and activation function

types), independent of the other heads. Importantly, but not necessarily, they can also

have separate loss functions – for example, a classification head might use categorical

cross-entropy, whereas a regression head with a single output would use MSE or similar.

The DNN will try to optimize all of its weights to reduce the sum of the losses, and

so backpropagation will update the shared weights in such a way that, ideally, reaches
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Figure 6.2: High level overview of MTL

a compromise between the prediction heads. The different prediction head tasks should

be closely related, and learning one will benefit the other. Some tasks may be more

important than others, which is where interesting tradeoffs in loss weighting can be

evaluated. This will be discussed in more detail in the following sections.

6.2 Related Work

Applying the MTL technique to tasks like AMC with a secondary SNR estimation

task has been shown to improve the quality of the resulting classifiers. A multi-headed

DNN for AMC was explored in [43], with one head being used to perform a binary

SNR classification – SNR is high or low. This work showed that even a coarse level of

SNR estimation can be beneficial to the system as a whole, achieving better accuracies

than baseline models. Similarly, the trained AMCs that rely on 3 SNR approximation

buckets – low/mid/high SNR – have been explored in previous studies [42], [44]. A

slightly different variation of MTL was proposed in [45], where a denoising autoencoder

is used as the secondary task to AMC, which in itself does not estimate SNR, but the
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training effect of making the model SNR-aware is similar.

Some MTL specific concerns are not addressed in the cited works – such as an

analysis of different task loss function weightings. Training multiple tasks typically

involves tuning their loss function weightings to find a compromise achieving the best

results for both tasks. The work in this thesis aims to expand on this missing knowledge,

and conduct a more thorough exploration of loss weighting tradeoffs for multiple SNR

estimator types.

CFO should be considered in practical scenarios, because small deltas between the

transmitter and receiver in the individual analogue components, or even movement of

one, or both of the devices can cause a non-negligible carrier offset. Previous work

on CFO estimation using MTL has shown good results when comparing coarse and

fine estimators as different trainable regression tasks for an OFDM system, where the

individual losses were summed up without any loss weightings [47]. Very recent work on

CFO estimation in an MTL configuration has been conducted by combining a Channel

Estimation (CE) task with a CFO estimation task [46]. The ideal loss weightings for

the CE/CFO tasks were found to be 0.9/0.1, biasing the learning strongly towards the

CE task, which was shown to be harder to learn.

None of the cited works discussed improving frame synchronization with MTL,

specifically with CFO as a secondary task. Additionally, to the best of the author’s

knowledge, a combined frame synchronization and SNR estimation model trained in

an MTL scheme has not been proposed in past literature. The work described in

this chapter aims to expand the collective knowledge of training fully convolutional

architectures with MTL.

6.3 Automatic Modulation Classification with SNR Esti-

mation

AMC models commonly employ convolutional layers as the first feature extraction

layers of the network, promptly followed with a flatten and subsequent FC layers, ending

with a softmax. Feature extractor networks are common in a variety of disciplines, and
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often learn the same first layers, regardless of the task (e.g. in computer vision it is

very common to see the first CNN layers learn edge detection, which is a useful feature

for most vision applications [127]). This fact can be exploited by sharing the resources

of the feature extractors and re-using them for multiple tasks under the same model.

Since training is often performed on datasets with varying SNR levels, the labels

for SNR estimation are already available. Many higher order statistical features are

affected by noise, which is why SNR estimation is often employed before AMC, with

each AMC model being trained for a particular SNR [41] [42]. MTL has been used for

AMC and SNR estimation in an effort to improve performance in [43], [44], however the

SNR estimation head predictions were fairly coarse, containing 2-3 SNR level classes.

The MTL-assisted AMC approach in this section treats the SNR estimation as a

fine-grained regression task, that can estimate the SNR more precisely, alongside the

AMC task. The network is summarized in Figure 6.3. The AMC DNN architecture is

taken from [128], with the only modification being the attachment of the SNR estima-

tion head.

Figure 6.3: MTL Architecture with AMC and SNR estimation heads

A multitask learning model will have some shared layers near the input, and these

usually work as feature extractors which can be useful for many tasks. Training neural

networks for AMC, for example, we can use this method to make them more robust to
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noise by adding a noise estimation task.

6.3.1 Dataset

In this section, an example AMC application is examined with 5 modulation schemes

based on phase and amplitude modulation: BPSK, QPSK, 8-PSK, 16-QAM and 4-ASK.

One training example contains 1024 samples of pulse shaped and baseband-modulated

symbols. To demonstrate the efficacy of MTL, in this case the only channel impairment

considered is AWGN at SNR levels between 0 and 20dB. Examples of each modulation

scheme are presented in Figure 6.4.

Figure 6.4: Overview of modulation classes in the time domain

6.3.2 Architecture

The base DNN in this chapter is a VGG-type [129] model modified for AMC in [128]

by changing the filter sizes to be compatible with a 1024 × 2 input shape, summarized

in Table 6.1. It consists of 7 Convolutional layers along with a Maxpool operation after

each convolution. The classification head consists of 3 FC layers with the output of the

last layer being fed into a Softmax activation function.

For the MTL implementation, the main DNN (Table 6.1) is modified by attaching

a new head, composed of a set of new layers, strictly for SNR estimation, as illustrated

in Figure 6.3. The goal of this sub-network is to perform a regression estimation of the

noise present in the input waveform. The SNR estimator consists of four FC layers,
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Table 6.1: AMC-VGGNet Parameters

Layer Parameters Output Shape

Input - 1024 × 2
Conv1D + ReLU 3 × 1, 64 filters 1024 × 2
Maxpool1D 2 512 × 64
Conv1D + ReLU 3 × 1, 64 filters 512 × 64
Maxpool1D 2 256 × 64
Conv1D + ReLU 3 × 1, 64 filters 256 × 64
Maxpool1D 2 128 × 64
Conv1D + ReLU 3 × 1, 64 filters 128 × 64
Maxpool1D 2 64 × 64
Conv1D + ReLU 3 × 1, 64 filters 64 × 64
Maxpool1D 2 32 × 64
Conv1D + ReLU 3 × 1, 64 filters 32 × 64
Maxpool1D 2 16 × 64
Conv1D + ReLU 3 × 1, 64 filters 16 × 64
Maxpool1D 2 8 × 64
Flatten – 512 × 1
FC + SeLU 128 128 × 1
FC + SeLU 128 128 × 1
FC + Softmax 5 5 × 1

the first three followed up with ReLU activation functions with the last one remaining

linear, which allows representation of both negative and positive values. The parameters

of the SNR estimation head are summarized in Table 6.2.

Table 6.2: Noise Estimator Head Parameters

Layer Parameters Output Shape

Input (from flatten) – 512 × 1
FC + ReLU 512 512 × 1
FC + ReLU 128 128 × 1
FC + ReLU 64 64 × 1
FC 1 1 × 1

6.3.3 SNR estimation

Noise is fundamental and appears in all fields of signal processing. Some examples

are grainy pictures, recordings with background noise, and perturbed communications

signals due to channel effects. In ML, mislabelled data is often referred to as noise within
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a training dataset [130]. Due to noise being such a pervasive phenomena, a plethora

of techniques have been developed to estimate SNR and enable many signal processing

applications to work correctly, for example, practical (Minimum Mean Squared Error)

MMSE receivers require a noise variance estimate for channel equalization [131]. Noise

estimation is also utilized in error correcting alogirhtms to set soft decision probabilities

[132].

SNR estimation is broadly divided into two main categories: data-aided and non-

data-aided [133], [134]. Recent DL approaches to SNR estimation have focused on

tackling the problem using a non-data-aided methodology [50], [48], [49].

There are multiple ways to approach SNR estimation with a DNN, purely in terms

of data formatting. For instance, the labels can simply be the linear SNR value to be

predicted as a regression [48], [50], [51], or the dB values can be estimated directly in

the logarithmic domain by placing them into buckets/classes and then performing a

classification [43], [49], [40]. To gain some intuition on how best to represent the SNR

labels, some of the formatting methods have been evaluated using a smaller version of

the DNN architecture described in Table 6.3, which is simply a minimized version of

the architecture in Table 6.1. Regression methods seem most natural, allowing better

scaling and inference precision, however placing each SNR level into its own bucket and

performing classification with categorical crossentropy for learning will also be explored.

For this experiment a total of three variations of SNR labelling will be examined:

two regressions and one variation of classification. The architecture and optimization

hyperparameters have not been thoroughly investigated here, as the primary objective

from this exercise is to gain some insight of the best way of formatting the training

data for the SNR estimation task, as opposed to creating an optimal SNR estimator.

The conclusions from this experiment will help develop an SNR estimation head for an

MTL-aided AMC model.

The three different SNR representations that are explored in this section as illus-

trated in Figure 6.5, and are summarized as follows:

1. Linear SNR. This value is calculated simply by dividing the signal power by

the noise power – the definition of SNR. Intuitively, it could make sense to teach

138



Chapter 6. Multitask Learning with Channel Impairment Estimation

(a) Linear SNR (b) SNR in dBs (c) Each SNR as a class

Figure 6.5: Different SNR representations used to train an estimator

the network a linear relationship to noise, as opposed to having it do additional

internal transformations to represent the amount of noise on a log scale.

2. SNR in dBs, arguably the simplest approach – passthrough of SNR dB integer

values, i.e. -4, -2, 0, 2, etc. The task will be treated as a regression and the DNN

will have to output the estimated SNR in decibels. This is simple to implement

because most DSP software packages prompt the user to specify SNR on a loga-

rithmic scale, or display it by default, requiring little to no preprocessing in the

training loop implementation.

3. Each SNR as a class, i.e. each dB value is predicted by a different neuron –

a classification approach with categorical crossentropy as the loss function. In

this case the SNR estimator will have an output of 16 neurons, each predicting

an SNR value in the range from -15 to 15dB, with a step size of 2dB (a total

of 16 classes). The disadvantage of this approach is that the classes are quite

rigid, and do not allow fractions (e.g. 3.5dB would fall into the closest bucket of

3dB), unlike the regression-focused formats. Of course the range and precision

can be improved by increasing the number of classes, which adds complexity to

the architecture.

Training of a Minimal Estimator

The SNR estimator network is smaller version of the AMC DNN, and is summarized in

Table 6.3. The core of the network is the same for all cases, with the exception of the

final layer, which needs to be modified based on the label format and loss function. In
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the logarithmic domain, where SNR is represented in dBs, the output is a single linear

neuron with no activations, free to output negative and positive values. For the linear

SNR representation, the output is a single neuron with a ReLU activation – the ReLU

activation prevents it from outputting negative values, as linear SNR is only a ratio.

For the classification approach, the only change is that the output must be 16 neurons

for each SNR bucket, and of course the loss function in this case will be categorical

cross-entropy as opposed to MSE in the first two cases.

Table 6.3: SNR estimator parameters

Layer Parameters Output Shape

Input - 1024 × 2
Conv1D + ReLU 3 × 1, 64 filters 1024 × 2
Maxpool1D 2 512 × 64
Conv1D + ReLU 3 × 1, 64 filters 512 × 64
Maxpool1D 2 256 × 64
Conv1D + ReLU 3 × 1, 64 filters 256 × 64
Maxpool1D 2 128 × 64
Flatten – 8192 × 1
FC + ReLU 512 512 × 1
FC + ReLU 64 64 × 1

FC 1 1 × 1
(SNR in dBs)

FC + ReLU 1 1 × 1
(Linear SNR)

FC 16 16 × 1
(SNR as classes)

The network was trained on an AMC dataset with the modulation labels replaced

with SNR labels instead. This includes 40k example waveforms of SNRs from -15dB to

15dB. The single neuron versions were trained using MSE and the 16-neuron revision

of the network was evaluated using cross-entropy. Each method was used to train

three models to ensure that the results were consistent, and, barring the final layer,

the random seeds for weight initialization were identical when switching methods. The

training parameters are summarized in Table 6.4.

Training and validation losses were averaged for each of the three models and are

shown in Figure 6.6. It is clear that estimating linear SNR, with no normalization,

resulted in the poorest fit to the training set, with the initial MSE loss being extremely
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Table 6.4: Noise estimator training details

Parameter Value

Optimizer ADAM
Loss function MSE & Cross entropy
Number of training examples 40k
Batch size 32
Number of epochs 30
Learning rate (α) 0.0005
Regularization Factor (λ) 0.001
Modulation schemes BPSK, QPSK, 4-ASK, 8-PSK, 16-QAM
Training SNRs (dB) -15dB to 15dB (in steps of 2dB)

large. Estimating the SNR dB values directly achieved a better fit, however looking

at the validation loss, it is clearly overfitting. The most consistent results, with the

training and validation cross-entropy losses nearly coinciding, came from the third

method of treating the SNR levels as classes.

Figure 6.6: SNR estimator training losses (dashed lines are validation losses)

Inference Results

For each method the trained models were individually evaluated and their average

results plotted in Figure 6.7 and Figure 6.8. Each model was evaluated by processing

64 frames of 1024 I/Q samples per modulation (64×5 = 320), for each SNR level. Linear

predictions are reverted to dB with SNRdB = 10× log ẑ, where ẑ is the predicted linear

SNR. The dB predictions are plotted as is, with no additional processing. In the case

of classification the dB values are retrieved with a dictionary/lookup table.

At very low SNR all methods were suboptimal, however, all estimators perform
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relatively well at SNRs above -10dB.

Figure 6.7: SNR estimation results

Each trained model was further evaluated by sweeping through the SNRs and cal-

culating individual SNR dB prediction closeness to the expected value using MSE,

shown in Figure 6.8. As expected the linear SNR estimation does very poorly at low

SNRs. By comparison the dB SNR estimator performs best at extremely low SNRs.

Interestingly, the classification approach resulted in near perfect estimation results in

the range between -5dB and 10dB, much like the other methods it is poorest at lower

SNRs (below -10dB).

Figure 6.8: SNR estimation results, closer look at MSE
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Observations

A quick conclusion to draw is that, even with poorly formatted training data (e.g. un-

normalized linear SNR), a DL approach can still provide a “good enough” estimator

that will work well for a large range of SNRs, even when it is not the optimum estima-

tor training strategy. Estimating SNRs directly as dB values proved to be easiest to

implement (no pre/post processing) and produced a competetive model.

Classification was the most consistent, and resulted in the lowest loss, which, aside

from performance, is an important consideration for MTL – it is undesirable to have

very large losses, which could overshadow other tasks and prevent learning.

6.3.4 AMC and SNR Estimation Loss Tradeoff

It is imperative that the network learns both tasks adequately – if no learning occurs

on the secondary task there is no point in MTL because the shared layers will not be

influenced by the additional labels. With this, however, comes the need to balance the

priority of the individual learning tasks. Since the tasks have individual loss functions

which are added before backpropagation, it would be undesirable for one loss to send a

significantly stronger signal than the others, which could result in learning being halted

on other tasks.

Necessarily, additional hyperparameters need to be introduced to resolve this issue,

namely the individual loss function weightings. The weighting for secondary tasks can

be as high as 0.8 in some CV tasks [124] or as low as 0.006 in speech signals [40]. For the

AMC and SNR estimation tasks, the new parameters wAMC and wSNR are introduced,

respectively, which are the weightings for the two loss functions LAMC and LSNR in

order to calculate the overall loss L for the DNN as defined in Eq. 6.1.

L = wAMCLAMC + wSNRLSNR. (6.1)

As shown in [124], the primary task loss weighting can be set to 1, and the secondary

weighting is determined empirically by continuously training and evaluating the same

model using different secondary task loss weightings. Setting wAMC = 1, Eq. 6.1 is
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simplified to:

L = LAMC + wSNRLSNR. (6.2)

where now only wSNR needs to be determined. A hyperparameter exploration on

this weight parameter is conducted by training and evaluating the same DNN while

progressively reducing wSNR from 0.9 to 0.1. First of all, five baseline models are

trained (Table 6.1) with set weight initializations. Then, for each wSNR, five more

models are trained using exactly the same weight initializations for the shared layers

as the baseline models, but with the additional SNR estimation head.

Training Results

In total, to evaluate each SNR estimator head, 45 MTL models were trained (5 models

× 9 wSNR values). The five baseline models were the same for all subfigures, and each

and every MTL model was trained on an equivalent dataset as the baseline models.

The details of training the DNNs are summarized in Table 6.5. These are similar to

Table 6.4 for the noise estimator models, but with a lower regularization factor λ to

make it easier for models to converge to a solution.

Table 6.5: AMC-SNR MTL model training details

Parameter Value

Number models 5
Optimizer ADAM
Loss function MSE & Cross entropy
Batch size 32
Number epochs 30
Learning rate (α) 0.0005
Regularization Factor (λ) 0.0001
Number training examples 40k
Number validation examples 5k
Modulation schemes BPSK, QPSK, 4-ASK, 8-PSK, 16-QAM
Training SNRs (dB) -15dB to 15dB (in steps of 2)

The results for every MTL AMC model for each SNR estimation head are shown in

Figure 6.9. The mean accuracy of each trained model was evaluated in the SNR range
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(a) Linear SNR estimation.

(b) Direct dB SNR estimation.

(c) SNR as classification.

Figure 6.9: SNR estimator configurations and loss weighting results

of -15dB to 15dB, for the modulation schemes listed in Table 6.5. To obtain greater

insight into the performance and variance of these MTL models, the best, worst and

mean accuracies of the five models per wSNR are plotted together.
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Figure 6.9 (a), due to high initial loss the model often fails to converge. This

is mitigated as the SNR loss weighting trends down, but never outperforms the best

baseline models (this might explain why the authors of [40] had an SNR loss weighting

of 0.006 with their linear SNR estimator head). As shown in Figure 6.9 (b), at a loss

weighting of 0.4, a consistent improvement is demonstrated, where even the worst model

performs better than baseline. As shown in Figure 6.9 (c), the best model consistently

beats the baseline, likely due to the classification-based estimator head outperforming

other estimators, and cross-entropy being the most similar to the AMC training loss.

Observations

Surprisingly there does not seem to be a trend in performance as the wSNR parame-

ter is reduced, emphasizing AMC loss and de-emphasizing SNR estimation loss. The

hypothesis was that, as the SNR loss weighting is decreased, higher priority is given

to the AMC task, with enough SNR awareness to boost performance at lower SNRs.

Looking at the most successful experiment in Figure 6.9 (c), the performance seems to

have been boosted across the board at all SNR weightings, although the best possible

model was achieved at wSNR = 0.6.

6.3.5 Results on AMC

Instead of looking at the averages, the accuracy over the tested SNR range for the con-

figuration that produced the best possible model (classification-based SNR estimator

with wSNR = 0.6) is shown in Figure 6.10. Interestingly, making the model SNR-aware

did not only improve performance in the lower SNR bracket, but shifted the whole

accuracy curve to the left across all SNRs. This suggests that using MTL acts as an

additional source of regularization.

The average performance of the classifier, by using MTL, improved by a little over

0.9%, and the best MTL model achieved an overall accuracy improvement of 1.4%.

While these gains do not appear to be groundbreaking, as shown in Figure 6.9 (c), they

are consistent. These results were achieved by keeping the training hyperparameters,

dataset, and weight initializations identical to the baseline non-MTL models, with the
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Figure 6.10: AMC mean accuracy results post MTL training. The MTL (red) curves
showing better performance across entire SNR range.

only change during training being the addition of an SNR estimation head, which is not

used during AMC inference. Post-training, the SNR estimation head can be removed,

and the remaining AMC network will maintain the performance boost without costing

any additional resources at inference time.

6.4 Frame Synchronization with CFO Estimation

Chapter 5 presented how DL and specifically the FCN architecture can be used for

frame synchronization, to improve the performance of the FS task. The DL methods

were especially effective in scenarios where CFO was prevalent. Even though the FCNs

have shown improved performance under such impairments, the capabilities of this

receiver can be improved even further by implementing MTL in the training loop.

6.4.1 Dataset

The parameters of the dataset for the FCN MTL models explored here are similar to

Section 5.3.1, key differences being that the CFO parameter is saved as an additional

training label, and only a single preamble length of 32-bits is explored. Additionally,

the DNNs are now trained on a wider range of CFOs – for the simple reason that the

FCN presented in the earlier chapter is capable of performing better at even larger

CFOs – and MTL is used here to push that boundary a bit further.
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(a) Clean data frame and label

(b) Added 2kHz CFO

(c) Added 2kHz CFO + 0dB AWGN

Figure 6.11: Illustration of FS+CFO dataset example generation

To gain a more intuitive understanding of what the dataset looks like, the generation

steps for a single example are summarized in Figure 6.11. In (a) the 32-bit preamble

and payload are combined into a packet and inserted at a random offset of an empty

tensor (all values of the array set to 0). Subplot (b) shows the effects of perturbing this

frame with a CFO offset of 2kHz (multiplying by a 2kHz sinusoid). Finally, (c) shows

this waveform being passed through an AWGN channel of 0dB (the training SNR). At

this point it is very difficult for the human eye to make out the structure of the initial

waveform from (a), but luckily we have neural networks to do this for us.

6.4.2 Architecture

The architecture of the base FS DNN is exactly the same as described previously in

Table 5.1. The key difference is an additional CFO estimation head attached to the

output of the second convolutional layer of the original FCN model, as shown in Figure
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6.12. The final output of the CFO estimation head is a single scalar value representing

the normalized frequency offset.

Figure 6.12: MTL Architecture with FS and CFO estimation heads

The CFO estimation head parameters are summarized in Table 6.6, similar to the

single SNR estimation heads. The second shared convolutional layer output is flattened

so that it can be used by the FC layers of the CFO estimator. Each FC layer is followed

by a ReLU activation function, barring the final layer which is linear.

Table 6.6: CFO Estimator Parameters

Layer Parameters Output Shape

Input (from flatten) – 512 × 1
FC + ReLU 512 512 × 1
FC + ReLU 128 128 × 1
FC + ReLU 64 64 × 1
FC 1 1 × 1

6.4.3 CFO Estimation

In realistic systems some level of CFO is unavoidable, and tasks like FS are very sensitive

to CFO. Conventionally once a preamble is detected, the known sequence containing

pilot symbols can be used to estimate and correct for CFO. After estimation and

correction, the payload containing data bits can be demodulated and decoded. For this

to happen, it is essential that a receiver is capable of functioning at various frequency

offsets (how tolerant it has to be will depend on the wireless transmission standard).
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As with other estimation tasks, DL has been successfully applied in the past for

CFO estimation. Both CNNs and RNNs have been explored in [33], where the CFO

estimation task was treated as a single output regression and showed very good results

at frequency offsets up to 15kHz. Similarly, simple feedforward DNNs, CNNs and RNNs

have been explored in [135], where the output was treated as a single value regression.

Very good results using an RNN were also achieved in [136], again, using a single output

regression and scalar CFO values as labels.

Training CFO Estimators

Existing literature on DL-based CFO estimation suggests that there is not as high a

variance of possible labeling variations as there are with SNR estimation. With that

in mind, in this section various CFO label formats will not be explored, but a single

architecture for an estimator head will be chosen and trained as a sanity check – the

estimator does not need to be ideal, just “good enough” to assist the main FS task by

providing CFO-awareness.

Table 6.7: CFO estimator training details

Parameter Value

Optimizer ADAM
Loss function MSE CFO
Number of training examples 8192
Batch size 32
Number of epochs 30
Learning rate (α) 0.001
Regularization Factor (λ) 0.001
Training SNR 0dB, 5dB, 10dB
Maximum CFO 35kHz

The 32-bit preamble-detecting FCNs in the previous chapter were trained on simu-

lated captures of 0dB SNR, which is roughly where the detector reaches the acceptable

DER of 1e-3. Ideally the CFO estimator should work well enough at this SNR, but to

gain more insight into the model’s ability to cope with different SNR levels, five models

will be trained at SNR levels of 0, 5 and 10dB. All of the other parameters are still the

same as in Table 6.6 for the purposes of integrating this CFO detector head into the
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previously defined FCN model. The averaged training results at each training SNR are

summarized in Figure 6.13.

Figure 6.13: CFO estimator training losses (dashed lines are validation losses)

The training results do not stray too far away from expectations – the higher the

SNR the easier it is to fit a model, resulting in lower MSE loss (with the 10dB dataset

being easiest to fit). Of note is the fact that the 0dB iterations show overfitting, with

the validation loss quickly running away past the 5th epoch (meaning that with early

stopping implemented, this will be the quickest to train). The reason this is happening

is possibly due to the low SNR dataset being too difficult; the DNN might memorize

some noisy examples, but will not be able to generalize to unseen high CFO instances.

Looking at the 5 and 10dB curves, the higher SNR datasets result in closer training

and validation losses, indicating less over or underfitting.

Inference Results

Training and validation losses showing downward trends are a great indication that

learning is happening, and that there are no severe failures in the training configuration.

In order to better gauge performance, each of the trained estimators are evaluated at

a range of CFOs at low and high SNRs, as shown in Figure 6.14.

None of the estimators work perfectly at low SNR, as indicated in Figure 6.14

(a), with the biggest drop-offs past 25kHz, and surprisingly, at the lower CFOs (up
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(a) Estimator results at low SNR (0dB) (b) Estimator results at high SNR (10dB)

Figure 6.14: CFO estimator results

to 10kHz). Evaluation at a high SNR shows near perfect performance by the esti-

mator that was trained at that 10dB SNR, with the other higher SNR (5dB) trained

estimator still doing fairly well, however the 0dB trained estimator showing an intrigu-

ing, almost sinusoidal pattern of underestimating lower CFOs and overshooting on the

higher CFOs. The undershoting and overshooting of the 0dB trained model could be

explained by the fact that training at low SNR the CFO the model learns a rough “low”

or “high” estimation, since there is too much noise for predicting at a finer scale.

Figure 6.15: CFO estimator MSE evaluation over an SNR range

To gauge how sensitive each model is to SNR, an additional series of tests are carried

out where each model is evaluated on 256 frames, each representing a random CFO

from 0 to 35kHz, for an SNR sweep in the range of -10dB to 10dB. The results are

152



Chapter 6. Multitask Learning with Channel Impairment Estimation

summarized in Figure 6.15.

While the models were trained on higher SNRs (5dB and 10dB), the best overall

MSE was achieved the by the DNN trained on 0dB data. Fortunately this is the same

SNR as the original FCNs were trained on in Chapter 5 for 32-bit preamble lengths,

which empirically proved to be the best SNR for training FCN preamble detectors for

that preamble length. Poor CFO estimation performance at high SNR is not as much

of an issue since 32-bit preambles at high SNR have very low detection error rates.

Observations

Clearly the trained CFO estimators are not ideal: previously referenced work [33],

has shown much better results using RNNs. The fact that all estimators show poor

performance at the very low CFO values (Figure 6.14) is unexpected and might warrant

some future investigation. There is certainly scope for tuning hyperparameters and the

dataset. The goal is to produce a “good enough” CFO estimator to attach as an

additional head on an FCN to make it CFO-aware, and as such this estimator should

be sufficient to prove out the concept.

6.4.4 Frame Synchronization and CFO Estimation Loss Tradeoff

Similar to the AMC and SNR losses in Section 6.3.4, loss weightings are introduced for

FS loss (LFS) and CFO estimation loss (LCFO) as wFS and wCFO, respectively. This

relationship is captured in Eq. 6.3.

L = wFSLFS + wCFOLCFO. (6.3)

Generally wFS and wCFO are constrained to wFS , wCFO ∈ {0, 1}. The experiment

of obtaining the most effective loss weighting wCFO is done here in exactly the same

fashion as for wSNR in the Section 6.3.4. The FS loss weighting is kept at a constant

value of wFS = 1, while sets of five MTL models are trained for each wCFO in steps of

0.1. The same dataset, summarized in Table 6.8, is used for every MTL and non-MTL

model, and is not re-shuffled for new models, i.e. each model is fed the training data

in the same order. Since five models are trained for each weightings configuration, five
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unique random seeds are used for weight initialization, meaning that the only differences

between models will be the actual loss values influenced by the CFO estimator head

(or lack thereof for the baseline models).

Table 6.8: FS-CFO MTL training details

Parameter Value

Optimizer ADAM
Loss function Cross-entropy (FS) & MSE (CFO)
Number of training examples 8192
Batch size 32
Number of epochs 30
Learning rate (α) 0.001
Regularization Factor (λ) 0.001
Training SNR 0dB
Maximum CFO 35kHz

Preamble length 32
Payload size 128
Capture size 200
Modulation BPSK

Training Results

For each weightings configuration, every model is evaluated by finding the average

detection accuracy rate (the reverse of DER) over an SNR range from -10dB to 10dB.

The best, mean and worst overall accuracies are captured in Figure 6.16. This is

done at two fixed CFOs of 10kHz and 30kHz being used as impairments during these

experiments – the models trained at wCFO will be evaluated across the whole SNR

range, but only on the single CFO value. Two distinct CFOs are used to make sure

the models have not overfit to a single CFO range. The dashed baseline guidelines in

Figure 6.16 are based on five FCN models, without MTL, trained on the same dataset,

and using the same weight initializations as the MTL models.

Unlike the MTL with SNR results for the AMC task, there is a clear upward trend

as wCFO decreases, for both fixed CFO cases. However, for a 10kHz CFO there is no

wCFO where even one MTL model outperforms the baselines.

Expanding the search space by sweeping through both wFS and wCFO, a further

experiment was run, where another set of 45 MTL models were trained, this time with
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(a) Detection accuracies at CFO of 10kHz (b) Detection accuracies at CFO of 30kHz

Figure 6.16: FS-CFO MTL detection accuracy results at decreasing CFO loss weighting
wCFO

wFS being increased from 0.1 → 0.9, and wCFO reduced from 0.9 → 0.1. With the

same training parameters and evaluation criteria, the new results are summarized in

Figure 6.17.

(a) Detection accuracies at CFO of 10kHz (b) Detection accuracies at CFO of 30kHz

Figure 6.17: FS-CFO MTL detection accuracy results with a parameter sweep of both
wFS and wCFO loss weightings

It is quite clear from the new results, that as the main task weighting wFS is in-

creased, the overall results generally trend upwards (since FS accuracy is the main test

metric). Interestingly, even at a very low weighting of wFS = 0.1, none of MTL FCN

models failed to converge completely and still produced better-than-guessing results.

The most consistently good configuration proved to be wFS/wCFO = 0.8/0.2 (interest-

ingly, very similar to the reported split of 0.9/0.1 in [46]) – these parameters will be

used for further analysis over a wider CFO sweep.
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6.4.5 Frame Synchronization Results Over Varying CFOs

In order to evaluate how well the trained models are able to generalize to unseen CFOs

at different SNR levels, the next experiments consist of evaluating the models over a

large CFO sweep at a few fixed SNR values. The CFOs tested range from 0 to 70kHz

in steps of 1kHz. The SNRs of interest here are -5, 0, 5 and 10 dB. The same baseline

models as earlier are used for these tests, denoted in the legends of Figure 6.18 as

“FCN”, whereas the models denoted as “FCN+MTL” are the models trained with loss

weightings of wFS/wCFO = 0.8/0.2.

As seen in Chapter 5, it is expected that a 32-bit preamble in a bursty communica-

tions scenario starts performing well above an SNR of 0dB. The results in Figure 6.18

indicate that these new MTL models exhibit a similar trend with all results over 0dB

converging to 100% inference accuracy below 35kHz.

(a) SNR = -5dB (b) SNR = 0dB

(c) SNR = 5dB (d) SNR = 10dB

Figure 6.18: Comparison of FCN performance at a range of frequency offsets trained
with and without MTL (legend includes mean accuracies for entire CFO sweep)
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In most instances, both FCN+MTL mean and best accuracies outperformed the

baselines of just using FCN models. At a high SNR of 10dB, the mean performance of

all models was 3% better over the tested CFO range. At a lower SNR of 0dB, the gain

was around 2%, whereas at the lowest SNR of -5dB, the two methods are comparable.

Similar to the CFO estimator results in Section 6.4.3, at -5dB the detection accuracy

is actually worse at the lower offset values, gradually improving up to a CFO of 20kHz,

before starting to degrade again. It is worth noting that both baseline and MTL models

suffer from this, indicating that it may be more of a dataset problem. This might be

an overfitting effect of training on a single SNR value of 0dB, and perhaps tuning

the datasets by including more noisy examples could alleviate this issue – these are

explorations ripe for future work on DL CFO estimators.

Again, while the MTL results in the past few sections have not been groundbreaking,

the gains achieved are consistent and, in environments where CFO is a real issue, this

technique can benefit a variety of DL models by adding more CFO-awareness without

any additional inference-time cost (assuming that the CFO estimator head is omitted

post-training).

6.4.6 Deployment Discussion

The major disandvantage of using MTL and attaching FC-based estimator heads to an

FCN architecture is that the wonderful ability of the FCN to adapt to an input of any

size is now lost. The question becomes, is CFO estimation important? Perhaps the

communication protocol uses a data-aided CFO estimation method, rather than blind

estimation with a DNN, in which case, after detecting the packet the pilot symbols can

be used to determine the CFO and compensate for it.

If it is important to retain the sliding window property of the FCN is important to

keep, then the simplest thing to do is as illustrated in Figure 6.19. Training can occur

on fixed-size frames, and then post-training the estimator can be removed, with only

the FCN implemented for inference, which now works on inputs of any size again.

A good DL-based CFO estimator for blind estimation may still be useful as a

byproduct, which could be implemented by copying the trunk of the MTL DNN, and
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(a) During training: guided training forces
shared layers to learn features necessary to
recognize CFO

(b) Post-training: the additional CFO es-
timation head is cut off, but the learning
outcomes remain

Figure 6.19: MTL training and deployment

deploying the CFO estimator as a standalone model. This is another useful property

of MTL – if two separate models are required, one can achieve training efficiencies,

by training both of them simultaneously on a single dataset. A caveat to this state-

ment is that the weightings of the individual loss functions should be well understood

beforehand, otherwise one risks a massive hyperparameter optimization effort.

6.5 Fully Convolutional MTL

MTL enables a unique quality that can be achieved by using FCNs – continuous clas-

sification and monitoring of signal features. Additionally, the combination of MTL

with the FCN architecture enables additional interesting applications, such as contin-

uous per-sample SNR estimation. By having the learning task heads completely con-

volutional, the deployment discussion becomes much simpler because now the entire

multi-headed FCN can be deployed for continuous, sliding-window-like inference.
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6.5.1 Dataset

To ease the task of SNR estimation, a continuous transmission scheme, rather than

bursty communication as seen in the previous FCN experiments, is used for data gen-

eration – this ensures that the signal power throughout the simulated frame is uniform.

In this configuration data is continuously transmitted and, intermittently, a preamble

will appear at a random sample offset within the data symbols. A single training data

example with two labels is illustrated in Figure 6.20.

Figure 6.20: Single training waveform in continuous transmission mode

Note the two labels – one for the FS task, and one for SNR estimation. The FS

label is the peak corresponding to the ideal receiver response denoting the beginning

of the packet. The SNR label is new for this architecture, and different to previous

SNR estimator labels, spanning the length of the entire input sequence. Rather than

estimating a single SNR value for the entire frame, the FCN estimator head will attempt
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to estimate it on a per-sample basis, based on the receptive field of the convolutional

layer filters.

Training dataset details are summarized in Table 6.9. The preamble lengths are

now 16, 32 and 64, to make it easier to detect the frames in the noise of data via both

baseline and FCN methods. The training set size is the same as previous FCN models,

but the individual capture frames are twice as long at 400 samples per frame. Since the

SNR estimator requires a range of SNRs to be effective, each of the 8k examples is set

to a randomly chosen SNR value from a range of -10dB to 10dB. In these experiments,

no phase or frequency offsets are applied to the training samples.

Table 6.9: FS-SNR MTL training details

Parameter Value

Number of training examples 8192
Training SNRs -10dB to 10dB
Preamble lengths 16, 32, 64 bits
Payload size 128
Capture size 400
Modulation BPSK
Phase offset 0
Carrier offset 0

6.5.2 Architecture

Both frame synchronization and SNR estimation tasks are now being treated as sliding

window regressions. This means that the SNR estimator head can be represented

as a convolutional layer, in this case with exactly the same parameters as the frame

synchronization head. To accommodate the longer preambles, the convolutional layer

filters are set to a width of 55 samples, otherwise maintaining the same number of

channels and using the same activation functions as previous FCN experiments in earlier

sections.

The double-headed FCN MTL architecture details are summarized in Table 6.10.

Both FS and SNR estimation heads share the weights of the initial two convolutional

layers, producing linear outputs (which are free to emit negative and positive values)

– this is important for the SNR estimator where the dB estimation of SNR can be
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Figure 6.21: FCN FS+SNR Estimation MTL Architecture

positive and negative.

Table 6.10: Double headed FCN parameters

Layer Parameters Output Shape

Input 2 × N
Conv2D + ReLU 55 × 2, 32 filters 32 × 1 × N
Conv2D + ReLU 55 × 1, 32 filters 32 × 1 × N

Conv2D 55 × 1, 1 filter 1 × 1 × N
(FS head)

Conv2D 55 × 1, 1 filter 1 × 1 × N
(SNR head)

6.5.3 Training

Similar to the previous MTL implementations, the double-headed FCN architecture is

trained with a variety of loss weightings. Keeping the weighting wFS of the main task

as 1, and gradually decreasing wSNR, a sweep of five trained models per configuration

is performed and evaluated over a test SNR range of -10 to 10dB.

Training details for the MTL models are summarized in Table 6.11. The baseline

FCN models with a single FS head are trained using exactly the same parameters, and

random seeds for weight initialization, as the MTL models, the only difference being

that they do not have an SNR estimation head attached. Both heads are evaluated
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Table 6.11: FS-SNR MTL training details

Parameter Value

Num. models 5
Loss weightings wFS 1
Loss weightings wSNR 0.1 to 0.9
Optimizer ADAM
Loss function MSE (both heads)
Batch size 32
Num. epochs 30
Learning rate (α) 0.001
Regularization Factor (λ) 0.001

using MSE loss.

Figure 6.22 shows the combined training losses for all weighting configurations for

each of the 16-bit and 64-bit preamble detectors. It is evident that reducing wSNR

allows the FCN to converge more quickly to a solution. Interestingly, this becomes

much slower when the preamble being detected is shorter, because the task is already

significantly more difficult.

(a) 16-bit preamble losses (b) 64-bit preamble losses

Figure 6.22: Training losses of FS-SNR MTL models

Frame Synchronization Results

In addition to the five baseline models, with five models per configuration, a total of 45

models per preamble length are evaluated over an SNR range of -10dB to 10dB. A high

level overview of the performance of all models is shown in the left column subfigures

(a), (c), (e) in Figure 6.23. The right column (subplots (b),(d),(f)) then show the
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performance of the best models of all configurations compared with the baseline FCN

models that were trained with no MTL.

(a) 16-bit preamble loss tradeoffs (b) FCN+MTL wFS = 1, wSNR = 0.2

(c) 32-bit preamble loss tradeoffs (d) FCN+MTL wFS = 1, wSNR = 0.2

(e) 64-bit preamble loss tradeoffs (f) FCN+MTL wFS = 1, wSNR = 0.8

Figure 6.23: Comparison of mean accuracies achieved at different MTL loss weightings.
Dashed lines indicate accuracies of baseline non-MTL FCN models.

As is evident from the results shown in Figure 6.23, adding SNR-awareness with
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MTL has not provided any significant gains, and for the most part it has actually

been detrimental on performance. The double-headed FCN architecture is a relatively

shallow network, not containing a great deal of shared weights – perhaps to take full

advantage of the induced features learned with the additional SNR estimation task, a

deeper DNN is required, as in Section 6.3 with AMC.

6.5.4 Continuous Inference

As mentioned earlier in the chapter, MTL is used not only for improving performance,

but also for saving resources by allowing two tasks to share feature extraction layers (i.e.

the same DNN trunk). To explore simultaneous inference of the MTL FCN architecture,

both heads are evaluated at the same time, on various frame lengths and SNR levels.

For better visualization, all evaluations are performed with the FCN trained on 64-bit

preambles.

Simultaneous FS and SNR Estimation

In this section two scenarios are investigated where FS and SNR estimation are per-

formed simultaneously. First of all, a typical transmission with periodic packet trans-

missions is illustrated in the top subplot of Figure 6.24. The FCN and correlation

methods are shown to detect the packets in this channel successfully. However, the

FCN performs the additional job of an SNR monitoring network. As seen in the bot-

tom subplot of Figure 6.24, the second FCN estimator head performs a per-sample

estimation of the SNR. This is significant because it demonstrates that the FCN can

easily function in a time-varying channel.

Furthermore, a sparser transmission is simulated in Figure 6.25. In this case there

are only three packets, instead of five, and they only show up in the noisy portions

of the time series signal. Even though there are no preambles in some portions of the

waveform (e.g. in the ranges of 200-400 and 600-800 samples), the SNR estimator is still

able to successfully predict SNRs close to the expected values – this gives confidence

that the preamble does not need to exist for the SNR estimator head to be functional.

Ideally the two tasks should not become co-dependent, and SNR estimation should
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Figure 6.24: Periodic preamble detection

work exactly as expected without relying on preambles – the aim was to train a non-

data-aided estimator.

This result shows an amazing level of generalization by the FCN, because the train-

ing set included only examples containing a single preamble in a transmission, it was

not fed data without preambles during training. Figure 6.25 shows that it can not

only be extended past the training example input length, but it can also estimate SNR

without activating at least some of the neurons that are responsible for FS.

It should be noted that more conventional methods using statistical measures of

the received signal can also achieve per-sample SNR estimations [132]. However, mod-

ern DNN-based methods are not capable of continuous estimation [50], [48], [49] and

typically treat it as a classification problem on the entire input sequence, this is similar

to how modern DL solutions for FS operate in reviewed works in Chapter 5.

A Closer Look at SNR Estimation

Examining the SNR estimation results in Figure 6.26, which shows the FCN estimation

output over 400 samples, we can see that the outputs are quite irregular. This is likely

due to the small receptive field of the FCN, which is 55 samples wide, being unable
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Figure 6.25: Sparse preamble detection

to calculate the statistics of the entire window of data. In an AWGN channel, by

definition, the amount of noise per sample will vary, meaning that the short window

the FCN has access to is only an estimation of SNR in that subset of samples, and not

the entire frame.

The expected SNR is the average AWGN channel SNR in dB. When the FCN output

is averaged, the dashed orange line in the figure shows that the FCN-estimated SNR is

≈ 5.4dB, very close to the expected SNR of 5dB.

Figure 6.26: Closer look at FCN SNR estimation
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The SNR estimator head was further evaluated quantitatively over the range of

SNRs it was trained under, and compared to a baseline estimator based on the M2M4

algorithm [134], commonly used as a benchmark for blind SNR estimation of PSK

modulated data.

The SNR estimator performance is summarized in Figure 6.27, where the FCN SNR

estimator performance is shown in both linear and log scales. The estimated SNR was

calculated by taking the mean of all 400 predictions of a single frame. This was done

500 times for each SNR level.

(a) Estimator performance in log scale (b) Estimator performance in linear scale

Figure 6.27: SNR estimator performance comparison

By inspection of the predictions in Figure 6.27 (a), the FCN predictor is actually

very performant and competently predicts SNR in high noise cases (under -5dB), es-

pecially compared to the M2M4 algorithm. As seen from DNN-based SNR estimators

in Section 6.3.3, it does not perform as well at high SNR scenarios, which is clearer

on a linear scale in Figure 6.27 (b). This can likely be alleviated by training on more

higher SNR data. That said, accuracy at low SNR scenarios can be more important,

as those are the channels where noise estimation is most beneficial to determine how

reliable other estimators in the system are [132].

6.5.5 Observations

While training was primarily biased towards learning the FS task, the SNR estimation

task still performed surprisingly well compared to baseline methods. It is worth noting

that the FCN was never trained on configurations as shown in Figures 6.24 and 6.25,
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training was performed on singular SNR captures per frame.

The numerical DER results of applying MTL and making the FCN SNR-aware did

not seem to have any consistent performance increases, as seen in with SNR MTL in

Section 6.3 or CFO MTL in Section 6.4. The advantage that this MTL architecture

motivates is the resource savings of implementation due to the shared trunk of the DNN

– gaining the ability of SNR estimation only required attaching a single convolutional

layer to an FS FCN. An alternative would be training a whole new separate model like

in Section 6.3.3, and running them in parallel, which may not be desirable, for example,

in a resource-constrained embedded system.

6.6 Chapter Conclusion

When exploring DL architectures and techniques for wireless communications applica-

tions, the data driving these algorithms is mostly generated in simulation. Production

of datasets requires setting various parameters for transmitter configurations and chan-

nel conditions, however this information is generally discarded. In this chapter it was

demonstrated that, instead of discarding the channel impairment information to pro-

duce the dataset, it can be used as additional training data in the form of extra labels

for MTL.

To prove out the concept, MTL was used for simultaneous AMC and SNR estima-

tion, as well as FS with CFO estimation. Both showed an average of 1-3% consistent

boost in evaluation metrics, such as average detection accuracy, over baseline DNN

models. One big advantage is that, if the secondary task is not necessary for actual

inference, it can be discarded and the trained DNN can be used for inference at no

additional cost at runtime. The additional computational cost is paid entirely during

training time.

Additionally, the combination of an FCN architecture and MTL training was shown

for continuous per-sample inference on FS and SNR estimation tasks. MTL can be used

effectively to reduce the number of resources required when deploying multiple DNN-

based models in a communications system by having the individual task heads share

the resources of the common feature extraction layers.
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While good, consistent results were achieved for AMC and FS tasks, this comes

with a large additional computation cost at training time. Secondary task architecture

exploration, and loss weighting selection require training multiple additional models to

determine what will improve performance. As the field matures, it is hoped that these

searches will become narrower and the contributions presented in this work will drive

research in this direction.

MTL with channel impairment estimation as a side-task could prove itself to be

an effective general regularization technique in the wireless communications domain,

especially when training models on simulated data.
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Conclusions

This thesis has presented multiple deep learning models for addressing wireless com-

munications problems in the radio physical layer. A Seq2Seq autoencoder model was

presented to address AMC and digital baseband demodulation. An FCN architecture

was demonstrated for frame synchronization. Novel uses of MTL for wireless communi-

cations data were introduced to further improve data-driven model performance using

channel simulation parameter as additional labels to improve regularization. The ar-

chitectures and techniques produced in this work are intended to be easily re-purposed

for a variety of new wireless communications tasks with little friction.

7.1 Resume

The main focus of the work described in this thesis was to investigate architectures and

training methodologies that would be a good fit for the problems encountered in wireless

communications. Many existing works have shown that replacing a standard DSP

method with a DNN can improve the performance of the system. However, the majority

of proposed DNNs in the wireless communications field are classification models, with

very constrained deployment parameters, such as a fixed input size and specific channel

conditions. In their seminal paper introducing DL for a variety of radio applications,

T. O’Shea and J. Hoydis identified scalability of DNNs to larger input block sizes to be

one of the biggest issues in the new DL-enabled communications paradigm [6]. While

they were specifically talking about autoencoders, this has held true for other problems
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– like synchronization and demodulation tasks.

Many existing DNNs applied in the wireless communications field cannot be de-

ployed on arbitrary length inputs. While this may not be necessary for every problem,

for tasks like frame synchronization a flexible architecture is a much more appropriate

option [114]. If the DNN does not support variable input sizes, one option would be to

treat it as an FFT block and allow designers to choose from a number of pre-trained

models for various inputs, which can be an appropriate solution, albeit more costly to

implement and maintain a larger number of DNNs. In order to lessen the friction of the

adoption of DL methods for wireless receiver design, more flexible architectures need

to be researched for appropriate problems.

One such architecture was introduced in Chapter 4 – a Seq2Seq model based on two

RNNs arranged as an encoder-decoder structure. Using this approach an end-to-end

system was developed, capable of tasks like AMC, matched filtering and baseband de-

modulation encapsulated in a single DNN. A convenient feature of the encoder-decoder

arrangement is that the input and output sizes can be of arbitrary length, allowing the

Seq2Seq model to perform matched filtering as well as downsampling in a single train-

able module. Though the RNN-based autoencoder model is a powerful predictor, it is

still difficult to train, even when applying LSTM cells, which were designed specifically

to help train RNNs on longer sequences [71]. One solution to alleviate this training

problem was identified in Section 4.5 – this included adding convolutional layers to the

encoder of the Seq2Seq model, which reduced the computational burden on the RNN

encoder by offloading the feature extraction job to a series of convolutional layers.

In wireless sensor networks transmission accounts for the majority of energy expen-

diture [109]. The authors of [137] have shown that reducing an IEEE 802.15.4 standard

preamble transmission by as little as 2 bytes allow significant power savings on the

battery-limited sensor node. In Chapter 5, the developed FCN model was shown to

consistently outperform correlation-based methods for very short preamble lengths (8

and 16 bits), and, at high SNR, even matching 16-bit baseline performance with an

8-bit preamble. In contrast with existing DNN architectures used for frame synchro-

nization, this approach allowed treating the FCN as a deep filter and deploying it on
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inputs of arbitrary lengths.

In the wireless communications domain, simulation software for modeling complex

channels with various impairments is quite mature and feature-rich. This means that,

effectively, an infinite amount of data can be generated for training DL models. However

it was shown in Chapter 4 that for a given model, providing more data will reach the

point of diminishing returns. Many simulation parameters can be re-used as additional

labels, enabling techniques like MTL. Chapter 6 presented a way of harnessing SNR

and CFO estimation to improve AMC and frame synchronization performance of CNN

and FCN models. The research presented in Chapters 5 and 6 has enabled the develop-

ment of a continuous SNR estimator and frame synchronizer as a single DNN module.

The trained double-headed FCN model showed comparable performance with standard

SNR estimation methods like the M2M4 algorithm, while maintaining a similar frame

detection accuracy to that achieved by the FCNs in Chapter 5.

Since every contribution has addressed a different problem, they can be treated as

modular building blocks in future works. Seq2Seq models can be used for demodula-

tion, while FCNs in Chapter 4 and 5 have shown to work well for feature extraction as

well as frame synchronization. Since MTL has been proven to work for FCNs with other

estimators in Chapter 6, it would be feasible to train a new autoencoder model with de-

modulation and synchronization as subtasks in an MTL-enabled training scheme. The

demonstrated architectures and techniques enable various interesting new approaches

to RFML problems.

7.2 Key Conclusions

The primary goals of this research were to identify and develop DL architectures that

are more appropriate to wireless communications tasks than commonly deployed clas-

sification CNNs, and to investigate training techniques that are particularly well suited

to this field.

Two architectures were identified showing the desired flexibility – the Seq2Seq au-

toencoder and the FCN. Additionally, MTL proved to be an effective training technique,

which can add significant training overhead, yet using it as proposed in this work does
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not impact implementation costs at inference time.

7.2.1 Seq2Seq Models

Seq2Seq models proved to be very capable of learning multiple tasks implicitly and

Chapter 4 showed that it can outperform traditional ML-based AMC models to achieve

an overall more accurate receiver that performs AMC and demodulation as a single

DNN. It was also demonstrated how this architecture can be applied to different in-

put/output lengths – with the input being a pulse shaped I/Q signal in the time domain,

and the resulting output being the downsampled and demapped PSK symbols.

Nonetheless, RNNs can be more difficult to train than MLP or CNN-type models.

The work in this thesis addresses the training difficulty to a degree by combining RNNs

with CNNs for AMC and demodulation tasks. However, scaling to larger inputs and

complex receivers remains a challenge.

7.2.2 FCNs for Frame Synchronization

In the context of IoT, wireless sensor networks and the rising need to preserve radio

spectrum, there is an ever growing need to reduce the redundant symbols emitted by

transmitters – one way to address this is with more complex receivers. The FCN archi-

tecture introduced in Chapter 5 proved to work surprisingly well for very short preamble

lengths, outperforming correlation-based methods. The FCNs presented in this work

showed robustness to various channel impairments, like phase offsets and CFO, as well

as showing comparable performance to correlation in unseen fading channels.

Since the FCN architecture contains no fully connected layers, it can also be trained

on a variety of input sizes, then deployed on arbitrary inputs, much like a DSP filter.

Additionally, since these FCN models are not very large (only 3 convolutional layers),

they should be straighforward to port to many hardware accelerators for practical

deployment.
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7.2.3 Training with MTL

With so many simulation tools there are countless possibilities for generating a dataset

for training interesting DNN models. The work in Chapter 6 demonstrated how chan-

nel simulation parameters, namely SNR and CFO, can be used to improve the model

performance. Without changing the architecture or dataset (other than saving the sim-

ulation parameters as additional labels) the tested CNN and FCN models consistently

achieved 1-3% better accuracy in tasks like AMC and frame synchronization.

Of course, the tradeoff of achieving these gains is a much more complex training

loop. The process involves determining a secondary task head architecture and tuning

the additional loss weighting parameters. The hope is that, as the field matures, these

hyperparameters will be understood better, and have the same level of documentation

and guidelines as learning rate or weight decay. In future wireless systems, MTL could

be considered as an important regularization technique, and appear as a standard

feature in many communications-focused DL libraries. Hopefully the learnings gained

from the MTL experiments in this thesis will contribute to the understanding of these

techniques and help move the field towards that direction.

7.3 Limitations and Further Work

In any DL-based study it is difficult to evaluate every possible permutation of an

architecture, hyperparameter, and in the case of wireless communications, every channel

condition. The focus of this thesis was to present novel architectures and training

techniques in problem domains, where commonly used DL solutions produce good

results, but might not be the best fit for the task. As such, less emphasis was put on

standard hyperparameter tuning, such as optimizer choice, learning rate, batch size,

etc.

The accuracy improvements shown by applying MTL could potentially be repli-

cated or even exceeded, by a different optimizer choice or putting more effort into

regularization selection and tuning. The point of the study in Chapter 6, however, was

to show that MTL is another valid ‘knob’ to dial, just like weight decay or learning
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rate. A future study should include comparing MTL-derived gains to that of various

regularization methods, with the most likely outcome being that a combination of these

would produce the best models.

There is plenty of scope to further improve the explored architectures. The Seq2Seq

model in this work has not been pushed to its limit and can benefit from further

architectural modifications in future studies. For example, bidirectional RNNs [108]

have been shown to outperform the unidirectional LSTM as was chosen for the Seq2Seq

autoencoder in Chapter 4. These models also benefit greatly from adding an attention

mechanism [107]. It is likely that even better accuracies would have been achieved with

these enhancements. While the presented work showed good results for the considered

problems, these architectural improvements would be worthwhile to pursue in future

research.

That said, over the last several years RNNs have been falling out of favor, since

the seminal “Attention is all you need” publication [138]. Given the prominence of

LLMs (Large Language Models) and recent NLP trends, it is possible that transformer

models will be the next go-to architectures for implementing wireless communications

autoencoders. Early work on digital demodulation using transformers is already emerg-

ing [139]. It is unclear, at the time of writing, if transformers would be an appropriate

replacement for RNN and CNN-based autoencoder networks in wireless communica-

tions. Nonetheless, given the success in the field of NLP, the new transformer models

merit exploration.

The frame synchronization work in this thesis focused primarily on very short

preambles meant for IoT and wireless sensor network applications. In these appli-

cations it is important reduce the overhead incurred by sending redundant bits, like

preamble symbols, because transmissions cost the most energy and in battery-powered

nodes this is a limited resource [109]. While the presented FCNs excel in applications

for shorter preamble lengths (8 and 16 bits), the results for longer preambles showed

none to minimal improvement in AWGN channels. In future work, bigger FCN models

could be explored and their performance evaluated for more challenging scenarios like

detecting the PSS signals of the 5G NR standard.
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Besides architectural and training improvements, the next logical step to progress

the implementation of these works into practical systems is the exploration of hardware

deployment. From the explored architectures FCNs, in particular, would be easiest

to adapt to real world applications due to their flexibility to various input sizes and

robustness to channel effects, as shown in Chapter 5. From the introspection results in

Section 5.6 it was determined that the FCNs have some ‘dead’ neurons, which indicates

that techniques like pruning could be effective in further reducing the size of these

models [122]. An analysis of the FCN models at various quantized bit-precision levels

would be necessary to evaluate the readiness for hardware deployment.

7.4 Final Remarks

The need for connectivity is ever growing and radio spectrum is a precious limited

resource. Advancements in receiver technology are essential in order to fully utilize the

spectrum we have. Deep Learning is a key enabling technology that fuels many of the

recent innovations in this area. In the author’s opinion, the future wireless receiver will

be built, in its entirety, using data-driven models. However, in the meantime, we still

live in the transitionary period, and a lot of work remains to be completed in order to

achieve the final receiver.

This thesis has presented a series of novel architectures and training methodologies

to solve set of wireless communications problems. While the Seq2Seq architecture may

soon be succeeded by transformers, FCNs seem like a very promising ‘intermediary’

model to replace existing receiver functions for frame synchronization, SNR estimation,

and more. Given the breadth of available data in this field, MTL was shown to be a

viable method of improving model performance, in a similar way to regularization.

It is hoped that this work will inspire future investigations into more flexible DNN

architectures and more ways of utilizing untapped dataset generation parameters using

MTL to further drive the field forward.
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Training Runs

A.1 Seq2Seq

This section summarizes some of the training results from Chapter 4.

A.1.1 QPSK Demodulation

Tables A.1 and A.2 contain the QPSK demodulation model training results without

and with teacher forcing respectively. The model with the best overall test accuracy is

highlighted.

Table A.1: Seq2Seq for QPSK demodulation architecture sweep, 5 input symbols

Num. Hidden Weight Best Mean Best

layers size decay loss acc acc

1 16 0 0.203 72.88 72.88

1 32 0 0.201 72.96 72.96

1 64 0 0.214 72.24 72.24

1 128 0 0.218 71.61 71.61

1 16 0.0001 0.203 72.95 73.01

1 32 0.0001 0.201 72.91 72.96

1 64 0.0001 0.214 72.24 72.35

1 128 0.0001 0.218 71.61 71.66
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1 16 0.0003 0.203 72.9 72.95

1 32 0.0003 0.201 72.99 73.01

1 64 0.0003 0.214 72.29 72.34

1 128 0.0003 0.218 71.87 71.91

1 16 0.001 0.203 72.87 72.96

1 32 0.001 0.201 72.96 72.98

1 64 0.001 0.214 72.56 72.64

1 128 0.001 0.218 72.2 72.26

1 16 0.003 0.203 56.53 72.82

1 32 0.003 0.201 41.06 72.96

1 64 0.003 0.214 25.03 25.09

1 128 0.003 0.218 24.92 24.95

2 16 0 0.191 72.99 72.99

2 32 0 0.199 72.4 72.4

2 64 0 0.212 71.86 71.86

2 128 0 0.214 72.18 72.18

2 16 0.0001 0.191 72.99 73.03

2 32 0.0001 0.199 72.37 72.45

2 64 0.0001 0.212 71.95 72.14

2 128 0.0001 0.214 72.15 72.22

2 16 0.0003 0.191 73.03 73.07

2 32 0.0003 0.199 72.53 72.61

2 64 0.0003 0.212 72.13 72.25

2 128 0.0003 0.214 72.3 72.31

2 16 0.001 0.191 73.0 73.03

2 32 0.001 0.199 72.78 72.83

2 64 0.001 0.212 72.63 72.79

2 128 0.001 0.214 72.56 72.66

2 16 0.003 0.191 25.08 25.11

2 32 0.003 0.199 25.01 25.02
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2 64 0.003 0.212 24.95 25.03

2 128 0.003 0.214 24.98 24.99

3 16 0 0.19 72.86 72.86

3 32 0 0.194 72.3 72.3

3 64 0 0.209 72.27 72.27

3 128 0 0.217 72.23 72.23

3 16 0.0001 0.19 73.0 73.06

3 32 0.0001 0.194 72.45 72.6

3 64 0.0001 0.209 72.08 72.13

3 128 0.0001 0.217 72.23 72.35

3 16 0.0003 0.19 73.05 73.07

3 32 0.0003 0.194 72.59 72.69

3 64 0.0003 0.209 72.14 72.19

3 128 0.0003 0.217 72.26 72.29

3 16 0.001 0.19 24.9 24.92

3 32 0.001 0.194 56.94 72.96

3 64 0.001 0.209 24.95 25.02

3 128 0.001 0.217 25.01 25.07

3 16 0.003 0.19 25.03 25.1

3 32 0.003 0.194 25.03 25.05

3 64 0.003 0.209 25.0 25.05

3 128 0.003 0.217 25.06 25.12
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Seq2Seq QPSK Demodulation Architecture Sweep Training Graphs

Figure A.1: No regularization

Figure A.2: Weight decay 0.0001

Figure A.3: Weight decay 0.0003

Figure A.4: Weight decay 0.001
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A.1.2 Simultaneous AMC and Demodulation

Teacher Forcing

Figures A.5-A7 summarize the training results for different input lengths and cell sizes.

(a) Hidden size 16 (b) Hidden size 128

Figure A.5: Training with teacher forcing on 10 symbol inputs

(a) Hidden size 16 (b) Hidden size 128

Figure A.6: Training with teacher forcing on 15 symbol inputs

(a) Hidden size 16 (b) Hidden size 128

Figure A.7: Training with teacher forcing on 20 symbol inputs
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Table A.2: Seq2Seq for BPSK/QPSK with teacher forcing

Sequence Hidden Forcing Best Best Mean

length size rate loss val. loss acc

10 16 0.00 0.18 0.191 0.762

10 16 0.25 0.205 0.259 0.748

10 16 0.50 0.213 0.303 0.703

10 128 0.00 0.001 0.191 0.69

10 128 0.25 0.001 0.181 0.687

10 128 0.50 0.004 0.175 0.672

15 16 0.00 0.596 0.616 0.633

15 16 0.25 0.57 0.634 0.652

15 16 0.50 0.524 0.643 0.693

15 128 0.00 0.001 0.159 0.676

15 128 0.25 0.013 0.14 0.686

15 128 0.50 0.002 0.171 0.674

20 16 0.00 0.719 0.711 0.648

20 16 0.25 0.771 0.798 0.554

20 16 0.50 0.832 0.882 0.54

20 128 0.00 0.094 0.165 0.68

20 128 0.25 0.05 0.123 0.68

20 128 0.50 0.016 0.145 0.687
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Training With Dropout

Figures A.8-A10 summarize the training results for all input lengths and cell sizes with

with dropout for regularization.

(a) Hidden size 16 (b) Hidden size 128

Figure A.8: Training with dropout on 10 symbol inputs

(a) Hidden size 16 (b) Hidden size 128

Figure A.9: Training with dropout on 15 symbol inputs

(a) Hidden size 16 (b) Hidden size 128

Figure A.10: Training with dropout on 20 symbol inputs
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Table A.3: Seq2Seq for BPSK/QPSK with dropout

Sequence Hidden Dropout Best Best Mean

length size loss val. loss acc

10 16 0.00 0.18 0.191 0.762

10 16 0.25 0.382 0.31 0.743

10 16 0.50 0.687 0.598 0.662

10 128 0.00 0.001 0.191 0.69

10 128 0.25 0.007 0.183 0.701

10 128 0.50 0.031 0.171 0.691

15 16 0.00 0.596 0.616 0.633

15 16 0.25 0.623 0.584 0.676

15 16 0.50 0.848 0.813 0.461

15 128 0.00 0.001 0.159 0.676

15 128 0.25 0.027 0.154 0.689

15 128 0.50 0.082 0.138 0.701

20 16 0.00 0.719 0.711 0.648

20 16 0.25 0.864 0.817 0.536

20 16 0.50 1.01 0.986 0.511

20 128 0.00 0.094 0.165 0.68

20 128 0.25 0.152 0.142 0.653

20 128 0.50 0.147 0.165 0.683
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A.2 FCN

Table A.4: Initial architecture sweep training results: preamble length 8

Preamble Num. Num. Filter Best Mean Best

length layers filters width loss acc acc

8 3 16 3 3.5e-03 0.235 0.289

8 3 16 9 3.6e-04 0.557 0.566

8 3 16 15 9.1e-04 0.540 0.575

8 3 16 35 1.1e-04 0.545 0.553

8 3 32 3 2.7e-03 0.277 0.281

8 3 32 9 1.7e-04 0.574 0.580

8 3 32 15 1.1e-04 0.580 0.586

8 3 32 35 8.9e-05 0.561 0.575

8 4 16 3 1.6e-03 0.154 0.174

8 4 16 9 8.7e-05 0.471 0.538

8 4 16 15 4.7e-04 0.429 0.499

8 4 16 35 8.3e-05 0.471 0.553

8 4 32 3 1.0e-03 0.100 0.117

8 4 32 9 2.3e-05 0.411 0.562

8 4 32 15 7.0e-06 0.415 0.531

8 4 32 35 2.9e-04 0.464 0.551

8 5 16 3 1.3e-03 0.163 0.187

8 5 16 9 1.8e-05 0.388 0.484

8 5 16 15 1.4e-05 0.397 0.481

8 5 16 35 9.9e-04 0.422 0.518

8 5 32 3 5.7e-04 0.113 0.138

8 5 32 9 7.8e-06 0.393 0.517

8 5 32 15 4.2e-06 0.428 0.471

8 5 32 35 1.6e-03 0.344 0.543
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Table A.5: Initial architecture sweep training results: preamble length 16

Preamble Num. Num. Filter Best Mean Best

length layers filters width loss acc acc

16 3 16 3 3.6e-03 0.219 0.279

16 3 16 9 3.6e-04 0.571 0.583

16 3 16 15 7.0e-04 0.663 0.680

16 3 16 35 4.2e-05 0.689 0.705

16 3 32 3 2.9e-03 0.275 0.281

16 3 32 9 1.8e-04 0.580 0.588

16 3 32 15 5.3e-05 0.695 0.716

16 3 32 35 5.2e-05 0.716 0.722

16 4 16 3 1.8e-03 0.144 0.161

16 4 16 9 3.9e-05 0.531 0.565

16 4 16 15 3.5e-04 0.608 0.717

16 4 16 35 2.1e-05 0.610 0.680

16 4 32 3 1.2e-03 0.122 0.135

16 4 32 9 1.6e-05 0.561 0.618

16 4 32 15 4.8e-06 0.570 0.655

16 4 32 35 2.5e-04 0.632 0.706

16 5 16 3 1.5e-03 0.132 0.153

16 5 16 9 1.8e-04 0.600 0.653

16 5 16 15 6.1e-06 0.566 0.627

16 5 16 35 5.8e-04 0.544 0.708

16 5 32 3 6.3e-04 0.115 0.131

16 5 32 9 8.1e-06 0.570 0.630

16 5 32 15 4.1e-06 0.648 0.691

16 5 32 35 6.5e-04 0.527 0.658
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Table A.6: Initial architecture sweep training results: preamble length 32

Preamble Num. Num. Filter Best Mean Best

length layers filters width loss acc acc

32 3 16 3 3.9e-03 0.187 0.256

32 3 16 9 4.1e-04 0.552 0.567

32 3 16 15 7.4e-04 0.652 0.683

32 3 16 35 2.2e-05 0.761 0.794

32 3 32 3 3.2e-03 0.251 0.257

32 3 32 9 2.2e-04 0.558 0.565

32 3 32 15 5.5e-05 0.674 0.693

32 3 32 35 3.0e-05 0.810 0.827

32 4 16 3 1.9e-03 0.164 0.185

32 4 16 9 6.3e-05 0.537 0.574

32 4 16 15 3.3e-04 0.630 0.725

32 4 16 35 2.8e-05 0.724 0.809

32 4 32 3 1.3e-03 0.115 0.128

32 4 32 9 1.3e-05 0.541 0.625

32 4 32 15 9.9e-06 0.611 0.678

32 4 32 35 3.0e-04 0.758 0.826

32 5 16 3 1.5e-03 0.155 0.182

32 5 16 9 2.1e-04 0.582 0.610

32 5 16 15 9.2e-06 0.599 0.701

32 5 16 35 7.8e-04 0.662 0.782

32 5 32 3 6.1e-04 0.126 0.154

32 5 32 9 9.4e-06 0.556 0.648

32 5 32 15 5.5e-06 0.580 0.678

32 5 32 35 4.9e-04 0.636 0.754
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A.3 MTL

A.3.1 AMC+SNR MTL Models

Table A.7: AMC-MTL model training results, case 0: linear SNR estimator head

wFS wSNR Best Best val. Mean Best

loss loss acc acc

1 0.9 0.589 0.484 60.8 75.54

1 0.8 0.612 0.492 59.14 74.44

1 0.7 0.583 0.495 61.83 73.7

1 0.6 0.573 0.497 62.59 73.88

1 0.5 0.577 0.461 74.38 76.57

1 0.4 0.528 0.474 63.54 76.25

1 0.3 0.526 0.453 76.05 76.66

1 0.2 0.481 0.439 76.26 77.48

1 0.1 0.43 0.429 77.2 78.13

Table A.8: AMC-MTL model training results, case 1: dB SNR estimator head

wAMC wSNR Best Best val. Mean Best

loss loss acc acc

1 0.9 0.697 0.427 77.0 77.71

1 0.8 0.657 0.428 76.98 77.72

1 0.7 0.621 0.421 77.52 78.27

1 0.6 0.615 0.427 77.08 78.06

1 0.5 0.588 0.428 77.43 78.0

1 0.4 0.512 0.425 77.61 78.09

1 0.3 0.456 0.419 76.58 77.9

1 0.2 0.405 0.422 77.62 78.28

1 0.1 0.32 0.418 77.4 77.75
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Table A.9: AMC-MTL model training results: classifcation SNR estimator head

wAMC wSNR Best Best val. Mean Best

loss loss acc acc

1 0.9 0.624 0.429 77.46 77.93

1 0.8 0.578 0.426 77.97 78.59

1 0.7 0.562 0.428 77.65 78.44

1 0.6 0.537 0.427 77.74 78.68

1 0.5 0.486 0.424 77.89 78.54

1 0.4 0.443 0.422 77.87 78.15

1 0.3 0.406 0.426 78.14 78.4

1 0.2 0.351 0.426 77.5 78.57

1 0.1 0.285 0.417 77.59 78.12

A.3.2 FS+CFO MTL Models

Table A.10: FS-MTL model training results with CFO estimator: using fixed FS loss
weighting

wFS wCFO Best Best val. Mean acc Mean acc

loss loss (10kHz) (30kHz)

1 0.9 0.00476 6.03e-05 79.71 78.39

1 0.8 0.00459 6.46e-05 79.85 78.37

1 0.7 0.00418 6.63e-05 79.81 78.36

1 0.6 0.0038 6.2e-05 80.25 78.98

1 0.5 0.0034 6.08e-05 80.2 79.46

1 0.4 0.00294 6.68e-05 80.15 78.51

1 0.3 0.00242 6.11e-05 80.09 79.06

1 0.2 0.00211 5.87e-05 80.95 79.74

1 0.1 0.00158 5.54e-06 81.18 79.76

189



Appendix A. Training Runs

Table A.11: FS-MTL model training results with CFO estimator: using mixed loss
weighting

wFS wCFO Best Best val. Mean acc Mean acc

loss loss (10kHz) (30kHz)

0.1 0.9 0.00438 0.000895 78.65 76.97

0.2 0.8 0.00418 0.000367 78.88 77.71

0.3 0.7 0.00377 0.000271 79.9 78.1

0.4 0.6 0.00358 0.000192 79.36 79.09

0.5 0.5 0.00321 0.000149 80.0 78.21

0.6 0.4 0.00274 0.000119 80.4 78.77

0.7 0.3 0.00236 0.000101 80.58 79.03

0.8 0.2 0.00208 7.04e-05 80.78 79.48

0.9 0.1 0.00897 5.66e-05 80.77 79.46

A.3.3 FS+SNR MTL Models

Table A.12: FS-MTL model training results with SNR estimator: using fixed loss
weighting

Preamble wFS wCFO Best Best val. Mean acc Best acc

length loss loss

16 1 0.9 0.00594 0.000409 50.9 54.09

16 1 0.8 0.00527 0.000407 52.68 53.75

16 1 0.7 0.00482 0.000397 52.02 53.92

16 1 0.6 0.00445 0.000406 53.29 54.12

16 1 0.5 0.00407 0.000403 53.5 54.21

16 1 0.4 0.00351 0.000405 53.69 54.28

16 1 0.3 0.00314 0.000397 54.24 54.48

16 1 0.2 0.00274 0.000395 54.29 54.6

16 1 0.1 0.00234 0.000397 54.19 54.51

32 1 0.9 0.00481 0.000111 71.12 71.48
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32 1 0.8 0.00431 0.000109 71.19 71.38

32 1 0.7 0.0039 0.000109 71.42 71.51

32 1 0.6 0.00349 0.00011 71.22 71.44

32 1 0.5 0.00307 0.000108 71.36 71.62

32 1 0.4 0.0027 0.000111 71.18 71.42

32 1 0.3 0.00228 0.000108 71.32 71.64

32 1 0.2 0.00189 0.000108 71.46 71.73

32 1 0.1 0.00152 0.000106 71.32 71.66

64 1 0.9 0.00421 0.000139 81.4 81.78

64 1 0.8 0.00389 0.000136 81.3 81.97

64 1 0.7 0.0035 0.000137 81.49 81.66

64 1 0.6 0.00308 0.000136 81.47 81.68

64 1 0.5 0.00267 0.000138 81.56 81.74

64 1 0.4 0.00232 0.000141 81.51 81.71

64 1 0.3 0.00189 0.000139 81.34 81.54

64 1 0.2 0.00152 0.000136 81.27 81.36

64 1 0.1 0.00116 0.000136 81.25 81.7

Table A.13: FS-MTL model training results with SNR estimator: using fixed loss
weighting

Preamble wFS wCFO Best Best val. Mean acc Best acc

length loss loss

16 0.1 0.9 0.00432 0.00062 0.2723 0.3615

16 0.2 0.8 0.00423 0.000613 12.46 41.82

16 0.3 0.7 0.00391 0.000612 33.07 45.96

16 0.4 0.6 0.00368 0.000601 37.71 48.75

16 0.5 0.5 0.00355 0.000546 41.39 52.21

16 0.6 0.4 0.00315 0.000493 51.88 52.82

16 0.7 0.3 0.00289 0.000465 52.8 53.42
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16 0.8 0.2 0.00255 0.000434 53.53 53.99

16 0.9 0.1 0.00223 0.000408 54.15 54.66

32 0.1 0.9 0.004 0.000609 1.682 5.992

32 0.2 0.8 0.00393 0.000595 52.01 67.03

32 0.3 0.7 0.00353 0.000307 70.3 70.77

32 0.4 0.6 0.00313 0.000204 70.75 71.17

32 0.5 0.5 0.00285 0.000168 71.0 71.32

32 0.6 0.4 0.00248 0.000143 71.13 71.45

32 0.7 0.3 0.00211 0.000128 71.37 71.57

32 0.8 0.2 0.00177 0.000119 71.4 71.71

32 0.9 0.1 0.00144 0.000112 71.15 71.57

64 0.1 0.9 0.00418 0.000602 13.36 57.63

64 0.2 0.8 0.00369 0.000299 60.77 81.13

64 0.3 0.7 0.00325 0.000208 64.24 81.13

64 0.4 0.6 0.00294 0.000178 77.49 81.39

64 0.5 0.5 0.00255 0.000161 81.14 81.53

64 0.6 0.4 0.00217 0.00015 81.32 81.7

64 0.7 0.3 0.00185 0.000142 81.53 82.03

64 0.8 0.2 0.00144 0.00014 81.52 81.77

64 0.9 0.1 0.00112 0.000138 81.6 81.85
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Methodology for Training on

Simulated Wireless Data

Throughout the work presented in this thesis, a great deal of models have been trained

and evaluated. After much experimentation, a collection of high level advice has been

constructed as a guide for anyone attempting to delve into DL in this area. This ‘recipe’

is heavily influenced by Andrej Karpathy’s “A Recipe for Training Neural Networks”

[140] and adapted for wireless communications, the original is a highly recommended

read before proceeding. The methodology for training DNNs on (simulated) wireless

communications datasets can be summarized as follows:

1. Data is the most important – use known solutions to reproduce baselines, these

will be a temporary goal to aim for, an accuracy ‘ceiling’. Spend time understand-

ing the dataset, visualize it in multiple domains: time, frequency, spectrograms,

etc. Visually inspecting the dataset can give valuable intuition and insights how

to preprocess the data, or what layer types might work better.

2. Start with simple, minimal training dataset generated with high SNR. Establish

a basic training and testing pipeline. The goal is to overfit a simple shallow DNN.

Use a simple default optimizer like ADAM, with default learning rate and batch

size (most DL libraries will have reasonable initial values that work for most easy

problems). At this stage the model test accuracy will likely be very low – this
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establishes the accuracy ‘floor’.

3. Once the groundwork is set (training loop, evaluation functions), it is time to

reduce SNR, make the dataset slightly more challenging, and push the initial

model to the point where it is no longer overfitting. If a baseline exists, that can

be an excellent reference for setting the training SNR – refer to Figure 5.8 (page

97).

4. At this stage the model prediction accuracies on the test set will hopefully be

higher than previously established ‘floor’, but still lower than the ‘ceiling’. Begin

model architecture exploration, change the number of layers, neurons, experiment

with layer and activation function types. The goal of this model is to outperform,

or at least match, the baseline accuracy at the training SNR.

5. Add regularization. Weight decay or dropout are common choices, experiment

with different parameters for these. Make sure your training loop has validation

loss monitoring and saves the best model.

6. If the performance still does not match the baseline, you might want to generate

more data (if training loss is high), add more regularization (if validation loss

is high relative to training loss). If generating more data returns diminishing

returns (refer to result in Figure 4.13 on page 79), revisit the model architecture.

A flowchart for helping decide which stage to pay attention to based on the

performance metrics is provided in Figure B.1.

7. Once the limit of iterating over architectures, optimization and dataset parame-

ters is reached, try more advanced methods, like MTL.

A similar methodology would apply for non-simulated data, i.e. real data collected

from over-the-air transmissions using an SDR. Of course it would be much more difficult

to apply MTL in such a case, and, when it comes to real data, the best way to improve

performance is to collect more of it.
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Figure B.1: Training DNNs on simulated wireless data
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Appendix C

Jupyter Notebooks

The result for individual chapters can be accessed in the form of Python scripts and

Jupyter Notebooks on this github repository https://github.com/skalade/thesis.

The intention of publishing this code is to make the thesis as reproducible as possible

and allow adoption of the findings to be prompt.
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