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ABSTRACT 

 This thesis investigates and develops computational procedures for the 

assessment of the structural integrity and lifetime of mechanical structures subjected 

to cyclic variable loads. 

 The Linear Matching Method (LMM), which has been used in design and life 

assessment calculations for a number of years, is adopted for investigating the above 

problems. In order to produce sequences of linear solutions with spatially varying 

linear moduli, LMM matches the behaviours of a non-linear material to that of a 

linear material. The developed iterative programming algorithms, when implemented 

within the finite element scheme, ABAQUS, generate a monotonically reducing 

sequence of upper bounds that ultimately converges to the least upper bounds. 

 There are three main objectives of the present study. The first is to investigate 

the overall response of mechanical structures under the combined actions of 

mechanical and thermal loads without the presence of creep. Shakedown and ratchet 

limit interaction diagrams of different types of mechanical structures identifying the 

regions of shakedown, reverse plasticity, ratchetting and plastic collapse mechanism 

are presented and parametric studies of different types of defective component are 

investigated. The results for different types of mechanical structures shown in the 

parametric studies, confirm the applicability of LMM on complex structures under 

cyclic loadings without the effect of creep. 

 The second objective is to bridge the gap between Continuum Mechanics and  

Fracture Mechanics through the LMM by calculating the cyclic J-integral (ΔJ). The 

derivation of ΔJ based on the potential energy expression for a single edge cracked 

plate subjected to cyclic uniaxial loading and cyclic bending moment conditions 

using LMM is formulated in this study. The results of the proposed model have been 

compared to the cases obtained from the Reference Stress Method for a single edge 

cracked plate. They indicate that the estimates provide a relatively easy method for 

estimating ΔJ considering the complete accumulated cycle effects. 
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 The last objective is to further develop the current LMM for the evaluation of 

the cyclic behaviour for mechanical structures when the effect of creep is taken into 

consideration. The creep strain and plastic strain range are obtained to be used in 

creep damage and fatigue assessments, respectively. A benchmark example of a Bree 

cylinder subjected to cyclic thermal load and constant mechanical load is analysed to 

verify the applicability of the LMM in creep fatigue damage case. The cyclic 

responses for different loading conditions and dwell time periods within the Bree 

boundary are obtained. In order to show the efficiency and effectiveness of LMM 

method for defective structures, a three dimensional plate with a hole and a welded 

pipe subjected to cyclic thermal loads and constant mechanical loads are analysed. 

The results of both examples show that the presence of creep changes significantly 

the cyclic responses. The LMM procedure provides a general purpose technique for 

the evaluation of cyclic behaviour and the determination of  the plastic strain range 

and creep strain for the creep fatigue damage assessment with creep fatigue 

interaction. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Introductory Remarks 

 Imperfections in structures can arise in the initial production process, or 

during the heat-treatment of the component, particularly during welding processes. 

These defects or flaws are unavoidable within structure components, and they do not 

generally lead to an immediate failure. Imperfections also occur during the operating 

cycle of a component or structure. One example of these imperfections or local 

defects is a part-through slot in a pipeline which may appear due to existing surface 

cracks or from corrosion during operating times.  Failure modes occurring from these 

part-through slots are different from industry to industry, but mostly such failures 

result from the application of cyclic loading with high temperature often aided by 

environmental degradation.  

 The power generation industry can also be given as an example here since it 

is trying to meet the criteria for clean and sustainable energy production by 

increasing efficiency and simultaneously decreasing levels of pollutants. Improving 

the efficiency of a conventional steam and gas turbine power plant by increasing the 

operating temperature, may reduce the fuel consumption and the levels of harmful 

emissions. Advanced numerical modelling together with analytical and experimental 

methods are needed to ensure operational safety and efficiency of current and future 

conventional or nuclear plants. The trend of higher operating temperatures and the 

necessity to extend the life of existing power plant components, is leading to research 

to develop more accurate and reliable numerical approaches. In the power generation 

industry these numerical approaches are used to primarily estimate the creep-fatigue 

damage as a structure‘s response to operate at high temperatures, under cyclic loads 

for a specific operational period.  

 In general, the lifetimes of these components, operating at elevated 

temperatures, depend on the nature of plastic deformation and fracture failures they 

experience. The first failure mode is mainly concerned with the excessive plastic 

deformations associated with the phenomenon of plastic collapse, shakedown and 
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ratchetting, while the second is concerned with the crack growth/crack propagation 

behaviour. The ability to accurately model these phenomenon, in components 

subjected to steady, cyclic and variable loading conditions, would provide a means of 

assessing the remaining life of the structural components. Thus, the elastic-plastic 

response of a structure needs to be well understood when using it as a design 

condition. The elastic-plastic response is load path dependent and usually simulated 

by an incremental Finite Element Analysis (FEA). This allows the investigation of 

any type of loading cycle but also requires a detailed load history and  involves 

significant computational effort.  

 To avoid such difficulties, one of the failure criteria of structures operating at 

elevated temperatures is based upon design codes and rule based methods, such as 

R5 [1], the design life and assessment procedure used by British Energy in the UK. 

The main objective of R5 is to provide a comprehensive assessment procedure that 

can easily be used by both designers and practitioners.  

 In recent years, another alternative approach has been developed. It involves 

the application of numerical methods [2][3][4][5][6][7] for addressing the structural 

response in structures subjected to both severe mechanical and thermal loads. The 

assessments, provided from these new methods, have the potential of providing 

results that combine the accuracy of non-linear FEA simulation methods [8][9] with 

the efficiency of rules-based methods [10][11]. These are direct methods based upon 

a programming technique. Direct methods were incorporated into finite element 

analysis in order to evaluate the shakedown limit. The material model is considered 

to be elastic perfectly plastic, and the load domain including all the possible load 

paths eliminates the necessity to know the detailed load history. Such direct methods 

include; the mathematical programming methods [12][13][14], the Generalized Local 

Stress Strain (GLOSS) r-node method [15], the Elastic Compensation Method 

(ECM) [16][17], and the Linear Matching Method (LMM) [5][6][18][19]. 

 Among these direct methods, the Linear Matching Method (LMM) is 

recognized as one of the most powerful methods. The LMM is distinguished from 

other simplified methods by ensuring that equilibrium and compatibility are satisfied 

at each stage [3][5][20][21]. In addition to the shakedown analysis method [20], the 
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LMM has been extended beyond the range of most other direct methods by including 

the evaluation of ratchet limit and plastic strain range [4][5][21][22]. Moreover, the 

extensions of LMM have resulted in the application of the method to high 

temperature creep behaviour including the effect of elastic follow-up [19], i.e. the 

evaluation of local creep damage due to the relaxation of stress during creep dwell 

times. In all these cases, the methods rely upon the standard set of material data used 

in rules-based methods, i.e. elastic moduli, yield stress, steady state creep 

deformation and simple descriptions of creep strains during relaxation, fatigue and 

creep-fatigue data. Since the LMM ABAQUS user subroutines [23] have also been 

consolidated by the R5 [24] research programme of EDF energy to the commercial 

standard, LMM could be regarded as the most amenable direct method in practical 

engineering applications involving complicated thermo-mechanical load histories. 

 This thesis is concerned with the investigation and development of the LMM 

in context of its application in mechanical structures with or without defects. In the 

field of plastic deformation failure without the presence of creep, the focus is on the 

identification of limits loads, shakedown and ratchet limits in mechanical structures 

subjected to cyclic histories of thermal and mechanical loads. In the presence of 

creep, the interest focuses on the investigation of understanding the stable cyclic 

response of a mechanical structure under creep and creep-fatigue conditions. In 

fracture failures, a cyclic J-integral model is introduced to be correlated with the 

crack growth rate using LMM.  

 This thesis also aims to generate standard solutions to typical problems, 

where the interaction diagrams developed would provide assistance in making an 

intelligent assessment of the operational safety of the structure under consideration. 

 In the following sections, the structure‘s response to cyclic loading with or 

without the effect of creep is discussed in more detail. An overview of the thesis is 

also included, at the end, stating the investigations conducted in each chapter. 
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1.2 Structural Response to Cyclic Loading without the Effect 

of Creep 

 The limit load is one of the most critical areas of interest in deformation 

failures, which has been the focus of research for many years in industry. The limit 

load is the maximum load that a structure assuming a perfectly plastic material can 

sustain. The implication of this phenomenon in a structure lies in the fact that the 

application of a proportional load beyond the limit load, would lead to plastic 

collapse. The accurate identification of the limit load is essential to the design and 

life assessment of mechanical structures. 

 In circumstances where structures are subjected to cyclic loading histories, 

the relative variations of the induced mechanical and thermal stresses have serious 

implications on the life span of the structural components. In the analysis of 

structures subjected to cyclic loading histories with elastic–plastic materials, the 

component will experience either elastic/plastic shakedown or ratchetting depending 

upon the applied load level. The elastic shakedown limit is the highest cyclic load 

under which a material shakes down to an elastic response after the first few load 

cycles. When the elastic shakedown limit is exceeded, the structure may experience 

either alternating plasticity (plastic shakedown) or ratchetting. Ratchetting should be 

avoided at all costs since it leads to intolerable deformation and eventual collapse of 

the structure. Reverse-plasticity can be endured provided low cycle fatigue is taken 

into consideration. Hence, in the design of structures, it must be ensured that any 

inelastic strain accumulation is avoided or restricted to the number of cycles within a 

designed limit so that they will not damage the structure. 

 

1.3 Structural Response to Cyclic Loading with the Effect of 

Creep 

 In the presence of creep, the response of the structure to cyclic loading 

changes significantly. Interaction of plasticity and creep is the key feature of creep-

fatigue mechanism under cyclic loading condition with creep. Assessments must be 
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carried out to ensure avoidance of creep-fatigue failure by, creep rupture and 

cyclically enhanced creep. The term cyclically enhance creep refers to the threat of 

gross section creep failure due to the accumulation of creep strains arising from the 

cyclic loading.  

 

Figure 1.1 Stress strain cyclic histories with the effect of creep (In steady state the failure mode for 

this case is creep rupture) [1][24] 

 Briefly, a structure subjected to cyclic loading with creep can present 

different asymptotic behaviours, such as: 

 1) No stress relaxation is taking place, the accumulation of creep strain is due 

to primary loads only during each load cycle. Because the creep strains are driven by 

the primary loads alone, the situation is similar to that of a monotonic loading. This 

phenomenon can be explained in Figure 1.1. It is observed from Figure 1.1 that the 

dwell stress on each successive cycle just as if the load cycles did not occur. 

However, the stress cannot relax below the primary stress level 
primary in steady state 

case. Thus, the accumulation of creep strain is due to primary loads only during each 

load cycle and the failure mode for this case will be creep rupture.  

 2) The stress relaxation process introduces a residual stresses field so that 

there is a tendency for regions of the component material to yield during unloading. 

y  

  

y  

primary  

  
  
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Thus, a hysteresis loop is generated. On re-loading for the next cycle, the effect of 

creep and cyclic plasticity on the residual stress field causes the cyclic stress to reset 

on each load cycle, and the start of the dwell stress exceeds the primary stress, 

primary . And a non-closed hysteresis loop due to creep strain is appeared. This 

phenomenon can be explained in Figure 1.2, and the failure behaviour for this case is 

called Cyclically Enhance Creep [24].  

 Therefore in an integrity assessment of components subjected to the cyclic 

load and under creep conditions, the above mechanisms need to be addressed. 

 

Figure 1.2 Stress strain cyclic histories with the effect of creep (In steady state the deformation failure 

will be due to cyclically enhanced creep) [1][24] 

 

1.4 Overview of the Thesis 

 This thesis is divided into eleven main chapters, with each chapter focusing 

on the particular aspect of the problems identified in Section 1.2 and 1.3. In Chapter 

1 the subjects of interest were introduced and the main objectives of the thesis are 

given. This was then followed by describing the possible structural response of 

  

y  

y  

primary  

  

  
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components subjected to cyclic histories of loads with and without the effect of creep 

in a defective or defect-free structure.  

 In Chapter 2, a general literature survey on limit, shakedown, ratchet and 

creep-fatigue interaction analysis by various experimental and numerical methods is 

discussed. From this literature survey, the methodology with the best prospect for 

investigating the behaviour of mechanical structures under the prescribed loading 

histories was then identified as the Linear Matching Method (LMM). 

 In Chapter 3, the application of the LMM in elastic shakedown analysis is 

discussed. It begins with brief statements on the lower and upper bound elastic 

shakedown theorems. This is then followed by the description and discussion of the 

foundation of the LMM, as an iterative upper and lower bound elastic shakedown 

analysis method. Its implementation within ABAQUS is then described, and a 

benchmark numerical example of a plate with a central hole subjected to cyclic 

loading is provided. 

 In Chapter 4, a parametric study is carried out to obtain upper and lower 

bound elastic shakedown boundaries for a composite cylinder with a cross-hole 

subjected to constant internal pressure and a cyclic thermal gradient. The effects of 

temperature-dependent yield stress, material discontinuities, composite cylinder 

thickness and the existence of the cross-hole on the shakedown limits are discussed 

for different geometry parameters. Finally, a safety shakedown envelope is created 

by formulating the shakedown limit results of different composite materials and 

cylinder thickness ratios with different cross-hole sizes. 

 In Chapter 5, the theory behind the LMM for plastic shakedown (reverse 

plasticity) analysis is discussed in depth. For structures loaded in excess of elastic 

and plastic shakedown, extended theorems for the identification of ratchet limits are 

also explained. These numerical methods are then applied to the plate with a central 

hole problem, under constant mechanical load and cyclic thermal load, enabling 

distinctions between the regions of elastic shakedown, reverse-plasticity and 

ratchetting to be identified. 
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 In Chapter 6, a parametric study for a defective pipeline subjected to constant 

internal pressure and a cyclic thermal gradient is carried out. Shakedown and ratchet 

limit interaction diagrams of the defective pipeline identifying the regions of 

shakedown, reverse plasticity, ratchetting and plastic collapse mechanism are 

presented and parametric studies involving different types and dimensions of part-

through slot in the defective pipeline are investigated.  

 In Chapter 7, another parametric study for a centre cracked plate subjected to 

cyclic tensile loading and cyclic bending moment is undertaken. The effect of 

circular holes drilled in the region of the crack tip on the ratchet limit and crack tip 

plastic strain range is studied. Parametric studies involving hole diameter and 

location are investigated. The optimum hole location for reducing the crack tip 

plastic strain range with the least reduction in ratchet limit is identified. 

 In Chapter 8, a cyclic J-integral model used to correlate with the crack growth 

rate using LMM is proposed. The derivation of the cyclic J-integral based on the 

potential energy expression for a single edge cracked plate subjected to cyclic 

uniaxial loading and cyclic bending moment condition using LMM is presented. To 

extend the analysis, so that it can be incorporated into other plasticity models, 

material Ramberg-Osgood hardening constants are also adopted. The results of the 

proposed model have been compared to results obtained from the Reference Stress 

Method (RSM) for a single edge cracked plate. These indicate that the estimates 

provide a relatively straight forward method for estimating cyclic J-integral which 

describes the crack growth rate behaviour by considering the complete accumulated 

cycle effects.  

 In Chapter 9, a new approach for the direct evaluation of cyclic behaviour 

with creep effects of structures subjected to a general load condition in the steady 

cyclic state using LMM technique is presented. The creep strain and plastic strain 

range to be used in creep damage and fatigue assessments, respectively, are obtained. 

A benchmark example of a Bree cylinder subjected to cyclic thermal load and 

constant mechanical load is analysed to verify the applicability of this new LMM to 

deal with the creep fatigue damage. The cyclic responses for different loading 

conditions and dwell time periods within the Bree boundary are obtained. To 
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demonstrate the efficiency and effectiveness of the method for more complex 

structures, a 3D plate with a central hole model subjected to cyclic thermal loads and 

constant axial tension is analysed. The results of both examples show that with the 

presence of creep, the cyclic responses change significantly. 

 In Chapter 10, a parametric study on the geometric effect of a heterogeneous 

welded pipe is carried out, to demonstrate the accuracy of the numerical procedure 

mentioned in Chapter 9. The steady state, creep, creep-fatigue behaviour of the 

heterogeneous weld-related material zones, investigating the importance of the weld 

and its effect on the design life are discussed in this chapter. 

 Finally, in Chapter 11, conclusions to the objectives outlined in this thesis are 

presented, including a summary of the results generated. Suggestions on the possible 

future research areas to be conducted are also enclosed. 
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CHAPTER 2. LITERATURE SURVEY 

Equation Chapter 2 Section 1 

 

2.1 Introduction 

 Cyclic loading at high temperatures is what many structural components or 

elements of modern engines and power plants are subjected to, during their 

operations. This would mean that at high temperatures numerous failures must be 

considered in the design or integrity assessment process. This thesis is concerned 

with the development of the numerical method in the context of its application in 

mechanical structures subjected to cyclic histories of loads and temperatures with 

and without the effect of creep. In cases where creep is not effective, the focus is on 

the identification of limit loads, shakedown limits and ratchet limits. With the 

presence of cyclic loading histories operating at elevated temperatures with dwell 

period, structural failure causes are dominated by creep, fatigue and creep-fatigue 

interaction. 

 

Figure 2.1 Typical creep curves for different constant load, L, and temperature 

(this curve is taken from Boyle & Spence [25] directly). 
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 At elevated temperatures, in metallic structures continuous significant 

viscoplastic strains will appear due to creep, and this eventually causes failure. Under 

such operating conditions, the creep level and the time when the structure will fail 

depend on the material, the operating temperature, the applied stress history and the 

geometry of the component. Although creep for materials such as lead, copper and 

mild steel occurs even at room temperatures, for most metallic structures it is usually 

experienced at high temperatures greater than 40% of the absolute melting 

temperature of a metal [26]. 

 Creep for a metallic structure starts with time with the accumulation of creep 

strain at a given stress and temperature. There are three distinct stages of creep and 

they are shown in Figure 2.1 [25]. Initial elastic strain occurs as an instant effect of 

the applied load and after this, a region of increasing creep strain with decreasing 

creep strain rate will be formed. This is the primary creep stage and it is followed, by 

a secondary creep region where the creep strain rate is constant. The secondary creep 

region alternatively is also named as the steady-state creep stage. The first two stages 

are followed by the third and the final stage where strain rate increases progressively. 

This is the tertiary creep stage and in this region the creep strain rate increases 

rapidly causing after some time, the material failure due to creep fracture or rupture 

[25][27]. These three stages are described below in some detail: 

- Primary creep is a period of work-hardening in which the creep rate decreases 

with time resulting to the material becoming harder to deform as the internal 

stress increases with the dislocation density. 

- Secondary creep, or the steady-state creep, is a period of balance between 

work-hardening and thermal softening which is a recovery process activated 

by the energy from the dislocation structure. This process results in a constant 

creep rate zone, where the material becomes neither harder nor softer. For 

structures at elevated temperatures with cyclic loading applications, where 

creep is effective, this stage is normally used as a base of the engineering 

design and life assessment, since it usually dominates the region over the 

design life of the components. 
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- Tertiary creep results from necking, cracking and metallurgical instability. 

This region usually is characterised by an increasing creep strain rate peaking 

in fracture.  

 The creep response of a material changes with the stage that dominates for a 

particular stress or temperature combination [28]. However the basic shape of the 

creep curve does not change. As an example for this can be given the CrMoV alloys 

which are used in steam piping systems for fossil-fuelled power plants. These alloys 

are generally under stresses lower than l00MPa and they experience temperatures 

around 550°C. In such examples the secondary creep stage is longer than the primary 

and tertiary creep stages. In Figure 2.2 [29] the creep behaviour for 1/2Cr1/2Mo1/4V 

alloy is shown at a temperature of 640 °C. From Figure 2.2 one can see that the 

secondary creep rate is decreasing with the decreasing stress resulting in an increase 

of the structure life before failure. Observing each curve, it can be concluded that the 

primary creep stage can be neglected. While the secondary creep stage dominates 

among the other stages, the creep curve and the tertiary creep stage are substantial for 

all the three stress levels, but their importance reduces for lower stresses. However, 

the secondary creep stage dominates in each of the creep curves in the graphic, and 

since the secondary creep stage (or steady state creep stage) is almost 70% of the 

material‘s creep life, for simplicity the numerical examples presented in this thesis 

are mostly focused on this stage when the creep is presented. 

 In this study, the author will summarize the most updated methods for the 

structural analysis under cyclic loading conditions with and without the presents of 

creep. This work might also be beneficial for other researchers who are interested on 

related research projects. In this Chapter, a brief literature review on structural 

response of mechanical components under cyclic loading conditions by various 

methods will be carried out. 

2.2 Structural Response of an Elastic-Plastic Structure under 

Cyclic Loading 

 There are various ways an elastic-plastic structure responds to the cyclic 

loading, as shown in Figure 2.3 It can be seen from the figure that the response of 
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such structures to sufficiently small load levels is purely elastic with no permanent 

strains, and after each load application the structure will go back to its original state. 

However, as observed from Figure 2.3, this situation changes when the load level is 

higher than the elastic limit load. This time the structure will have permanent plastic 

strains and the response of it for the subsequent loading cycles is not the same with 

the first cycle. This is occurring since such load cycles will induce residual stress in 

the structure and the geometry with the material properties will also change when 

such loads are applied. According to the load levels there are three long term 

responses for a structure when the applied load is greater than its elastic limit. A 

structure ‗shakes down‘ to elastic action if after a few load applications the residual 

stresses and changing material properties lead to a purely elastic structural response 

and the permanent plastic strain does not increase any further. Shakedown to elastic 

response may not necessarily occur at higher load levels. At this point the permanent 

strains may settle into a closed cycle, a state this named as ―cyclic‖ or ―alternating 

plasticity‖, or they may increase indefinitely, a condition known as ―ratchetting‖.  

 

Figure 2.2 Creep curves for three different stress levels for a Y2Cr1/lMovV 

alloy at 640°C (this curve is taken from Hyde & Sun [29] directly). 
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 One well-known illustration defining the boundaries of the elastic/plastic 

shakedown and ratchetting phenomenon under cyclic load history is Bree interaction 

diagram [30][31]. Bree [30][31] developed theoretical solutions for a simplified 2-

dimensional model of a nuclear reactor fuel can. In his model, constant pressure 

stress and cyclic temperature gradient was applied across the can wall during start-up 

and shutdown. These theoretical solutions were illustrated on Bree interaction 

diagram in order to provide different modes of material behaviour for different cyclic 

loading conditions. These diagrams with various cyclic loading combinations are 

helping the designers especially in their early stages of design. 

 

Figure 2.3 Possible responses of an elastic-plastic structure to cyclical load history 

 Figure 2.4 is the Bree diagram [30][31], illustrating the responses for the case 

of a fuel can subject to cyclic through-wall thermal stress and a constant internal 

pressure. The ordinate and abscissa give normalised values of pressure and thermal 

stress respectively, where the stresses have been normalised against the yield stress 

of the material. 

 The distinct feature on the interaction diagram is the separation of the 

different modes of material behaviour. In this particular analysis, the diagram is 

divided into four main regions, namely; 
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 Pure Elastic Region: In this region, it was found that the load is lower than 

the first yield load of the structure, the response is wholly elastic but the structure 

may ultimately fail after a number of load cycles due to high-cycle fatigue. 

 

Figure 2.4 Bree diagram for pressurized tube and thermal loading [30][31] 

(this curve is taken from [32] directly). 

 Elastic Shakedown Region: In this region, the stresses are exceeding the 

yield stress at the first few load cycles, which give rise to constant residual stress in 

the structure such that in subsequent load cycles only elastic deformation occurs. The 

constant residual stress field has caused the redistribution of the stresses within the 
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structure. This effectively has the effect of pulling the stress fields, the sum of the 

elastic and residual stresses in to the yield surface. 

 Reverse Plasticity/Plastic Shakedown Region: The transition to this region 

occurs when the effective elastic stresses exceed twice the yield stress. This was 

made possible with the accommodation of the time-varying residual stress field, 

causing the stress distribution at the outer fibre of the plate, to exceed twice the yield 

stress. When the structure exhibits reverse plasticity over each cycle, the positive 

plastic strain in the first half of the load cycle followed by equal magnitude negative 

strain in the second half, such that there is no accumulation of  plastic strain during 

load cycle. And the failure mechanism for plastic shakedown is low-cycle fatigue. 

 Ratchetting Region: This region is best characterized by the breakdown of 

the elastic, shakedown and reverse-plasticity conditions. In each cycle, plastic strains 

accumulate over a significant volume of the plate, leading to immediate structural 

failure from the accumulation of plastic deformation during each load cycle and 

eventually incremental plastic collapse. 

2.3 The Shakedown Theorems 

 Shakedown and ratchetting are two phenomena that have caught the interest 

of scientists and engineers and there is a broad research and modelling work on them. 

Although being a complex problem, in cyclic plasticity, significant advances has 

been achieved in recently in order to characterise the different responses. However, 

the designing process for a shakedown analysis is a difficult task. The advanced 

analysis methods require specific programs which may not be available or which 

often are impractical due to the time required to compute in 3-D structures design. 

Due to this, in order to ensure a safety margin to prevent ratchetting, during the 

design of shakedown sufficient design factors are incorporated on simple solid 

mechanics‘ models. This approach gives a safe shakedown design if used 

appropriately but, it often leads to excessive conservative designs, difficult to tackle 

technically and economically. That is why shakedown load is calculated during the 

design procedure and the safety conditions are specified accordingly during the 

operation.  
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 The term shakedown was pointed out for the first time by Gruning [33] who 

proved the static shakedown theorem for a system of "I" beams. In 1936, Melan [34] 

presented a more general theorem and later [35] extended it to the general case of a 

continuum, providing the necessary criteria for which the structure will shakedown 

as follows: "For a given load set P, if any distribution of self-equilibrium residual 

stresses can be found such that superposition with elastically calculated stresses, 

constitute a system of stresses within the yield limit, then P is a lower bound 

shakedown load set and the structure will shakedown". This theorem is referred to as 

the static and lower bound shakedown theorem. The lower bound shakedown 

theorem therefore requires specification or calculation of a constant residual stress 

field where the yield condition is not violated for any combination of cyclic elastic 

and residual stresses in order to define a lower bound shakedown limit. Then Koiter 

[36] presented a kinematic or upper bound shakedown theorem. The form of Koiter's 

upper bound shakedown theorem states: "For a prescribed load set P(t) with cyclic 

period T, if any kinematically admissible strain rate  , can be found during a time 

interval (0,T) such that the strain field is compatible with a displacement field u (that 

satisfies the applied displacement boundary conditions) and  

 
0 0

T T

v

Pu Ddvdt     (2.1) 

where D is the rate of plastic dissipation per unit volume (corresponding to the 

admissible strain rate  ), then shakedown has not occurred.". Thus, the upper bound 

shakedown theorem requires the definition of a kinematically determinate mode of 

deformation for the component (that is, compatible sets of displacement and strain 

increments). 

 These lower and upper bound theorem provided sufficient criteria for 

shakedown of elastic-perfectly plastic structures. Both criteria presume the existence 

of a convex yield surface and the validity of the normality rule for the plastic strain 

rates.  

 Closed form solutions of shakedown problems are very limited due to the 

complexity of the analysis [37]. More complex problems may be solved by applying 
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plasticity bounding theorems to determine lower and upper bound shakedown loads. 

Thus, in analysing the behaviour of structures, such as Bree‘s interaction diagram, 

subjected to cyclic histories of loads and temperatures, there are a number of 

different computer based and experimental methods available at the present time. A 

summary of these methods is presented below.  

 

2.4 Experimental Methods 

 A typical shakedown experiment can be described as follows. A model of a 

structure is subjected to cyclic loading usually consisting of concentrated forces. 

Meaningful displacements are measured after each cycle, so that their divergence in 

time (i.e. gradual increase of residual displacements, whose increments are 

differences between the values measured at two subsequent unloaded situations) or 

their stabilization reveal in-adaptation or shakedown, respectively. By performing 

tests at various level of amplifications of the same loading program (sometimes 

including straining effects such as temperature changes, simulated by imposed 

displacements at constraints), the safety factor with respect to incremental collapse is 

estimated experimentally. Experiments of this type have been performed and 

discussed for continuous beams in steel, e.g. [38][39] steel beam grids [40][41], 

reinforced concrete portal frames [42] and two-bay frames [43], two-story steel 

frames, steel plates [44], a pressure vessel consisting of an axisymmetric shell [45]. 

 The CEA/DEMT employees [46] have suggested a procedure for 

accumulating the experimental results, a method which searches the response of a 

real scale structure subjected to mechanical and thermal loadings. The test can also 

be performed by taking into consideration a scaled model and its scaled loadings. 

According to this method when subsequent results are obtained they are organized 

and analysed, in plots of non-dimensionalised graphs. These graphics are named as 

Efficiency Diagrams, and the boundaries of the critical limits in creep and plasticity 

are identified to make comparisons with solutions obtained from numerical methods. 

This method is used for problems experienced in the Liquid Metal Cooled Fast 

Breeder Reactors (LMFBR) [47]. From the results it was observed that in specific 
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conditions, the shakedown and ratchetting limits of CEA/DEMT solutions give 

favourable results. However in other circumstances they do not, and this leads to the 

need in conducting experiments for different structural problems, under various load 

history and structural geometries. 

 There are several experimental results that have been presented on fatigue 

and creep-fatigue situations. Marie and Delaval [48] presented a creep-fatigue 

experiment for 316-stainless steel for a wide cracked plate subjected to cyclic 

bending loads at 650 degree. Kim, Chang and Ryu [49] conducted a creep-fatigue 

test with 10 minutes hold times at tensile maximum strain at 600 degree for type 316 

L and type 316 LN stainless steels containing nitrogen contents 0.04% and 0.10%. 

They discovered that the creep-fatigue life was less than the fatigue life for both 

alloys. The fatigue and creep-fatigue life and saturation stress were increased with 

the addition of nitrogen. Shi Duoqi et.al [50] conducted a creep-fatigue test on 

nickel-based super alloy DZ125 at 850 and 980 degree to study the creep-fatigue 

interaction behaviour of alloy with different dwell time. They concluded that the life 

of creep-fatigue decreases as dwell time increases, but the life of this alloy was 

almost unchanged when dwell time exceeds a critical value at 850 degree. During the 

experiments mentioned above, the forces, the inclination of the levers and the 

deflection were recorded. And the experimental results were compared with known 

numerical results. Here, the practicality of performing different arrays of experiments 

is debatable as these incur excessive cost, which also need to be justified by being 

compared to other inexpensive available methods. Besides, the ability in conducting 

these experiments is also dependent upon the technological advances made in the 

field in question. 

 Due to the drawbacks of the experimental methods many numerical methods 

have been presented for estimating the structural responses under cyclic loading 

conditions with and without the presents of creep. R5, and Computer Based Methods 

are the most commonly used approach in conjunction with the Finite Element 

Modelling for estimating cyclic structural responses. 
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2.5 R5 Method 

 One method for assessing structural integrity of mechanical components with 

and without the effect of creep is R5 [24], the design life and assessment procedure 

used by British Energy. The main objective of R5 is to provide an assessment 

procedure for structural integrity that can be easily used by both designers and 

practitioners. In addressing the effect of shakedown, the current R5 procedures 

adopted Melan's [34] classical shakedown theorem. As mentioned before, this 

theorem requires the identification of a constant residual stress field, such that the 

sum of the applied linear elastic stress and the time independent residual stresses, are 

brought under yield. In assessing the creep-fatigue effect for defect free and defective 

structures, the volumes 2/3 and 4/5 from R5 are used, respectively. 

 Although the collaboration concluded that the R5 current shakedown and 

creep-fatigue assessment procedures are safe, the over conservatism of the solutions 

produced is a concern. Besides, there are no existing procedures within R5 for the 

identification of boundary between the reverse plasticity and ratchetting regions. 

 

2.6  Computer Based Methods 

 Modern computers used in structural analyses have made it possible to 

analyse many complex structure problems. By taking into account stress, strain, 

deformation and material property changes, precise descriptions of structures‘ 

behaviours operating at elevated temperatures and cyclic loadings can be done using 

the modern computers. Due to the achievements in Finite Element Analysis (FEA) 

codes, computer based methods are being on the focus of interest recently. Finite 

Element Analysis is considered to be the foundation of computer solution methods 

for structural analyses. The reliability of numerical analyses, when used with 

contemporary high performance computers, has enabled a complete inelastic analysis 

to be performed together with the comprehensive deformation and material data 

obtained from the classical constitutive plasticity/creep equations. This is achieved 

even for very complex design shapes. 
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 Today, there is a wide range of commercial software, which is using the 

numerical method of Finite Elements. One of them is ANSYS [8], a simulation 

program that can do simple linear elastic analyses but also challenging non-linear 

simulations. Another general-purpose software package is ABAQUS [9], used for 

numerical solutions of mechanical or thermal problems in structures. There are also 

other computer software, however they are used within specific industries. CASTEM 

2000, developed by the Mechanical Department and Technology (DMT) of the 

French police, is one of such examples. 

 To sum up, computer solution methods have the advantageous capability to 

solve the structural problems, regardless of their geometries or loading conditions. 

FEA can solve many types of failure problems, whether the structures in question are 

defect free or defective. With this recent advances in the finite element technique, 

Incremental elastic-plastic FEA Methods and Direct Methods have been developed 

for calculating the cyclic structural responses (the phenomenon of shakedown and 

ratchetting). These two computer based methods are summarized as below. 

2.6.1 Incremental Elastic-Plastic FEA Methods 

Incremental elastic-plastic FEA recently is a widely used method for pressure 

vessel designs since software FEA programs provide a wide spectrum of analysis 

options. Structures plastically deformed respond in a non-linear form. In elastic-

plastic FEA, the loading is applied in a number of discrete load steps or increments. 

This allows the program to simulate the initiation and growth of plastic zones and 

modify the structural stiffness and hence response accordingly. When a structure 

experiences large deformations, its global stiffness might be depending on the 

geometry. This, can also be simulated using non-linear FEA. Generally Cyclic 

Incremental FEA and Direct Cycle Analysis are two methods used to calculate 

structures‘ cyclic response in the context of incremental elastic-plastic FEA. 

2.6.1.1 Cyclic Incremental FEA 

The application of a number of recurrent loading cycles on an elastic-plastic 

structure may result in stable state of shakedown. In such a stabilized condition the 
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hysteresis relationship of stress and strain remains unchanged for every successive 

cycle. The traditional way to get the response of an elastic-plastic structure is by 

cyclically applying the periodic loading until the structure reaches the stable state. In 

cyclic incremental FEA, the critical condition for a structure can be located by 

following the entire deformation history. This method can be also used for complex 

models of structures with elastic-plastic materials. On the other hand, step-by-step 

inelastic numerical calculations have their disadvantages. One of these disadvantages 

is that until the structure gives a stable state response a great number of loading 

cycles must be applied, making the approach expensive to use. If the problem in 

question has a greater size, solving the nonlinear equations becomes very time 

consuming, especially for visco-plasticity problems and structures under very 

complex loadings. Another disadvantage is that in order to obtain the desired 

material, in a detailed cyclic-inelastic FEA basic material models which often are not 

on hand are needed. Despite the fact that most of the finite element software 

packages include basic plasticity and inelastic creep models, the access to their 

required material parameters is not easy. The material parameters are not easy to 

generate for a specific basic model and they depend on the accessibility of suitable 

test data. Finally, in inelastic step-by-step calculations correct boundary conditions 

and appropriate time step are necessary to obtain the convergent result. In certain 

cases the solution might fail as a result of a sensitive mesh, nonlinearities in the 

structure‘s material or due to the incrementation scheme. As a result, it can be said 

that cyclic incremental finite element calculations can be very time consuming for 

routine assessments in structural design, especially for producing diagrams similar to 

Bree‘s Diagram. These problems have caused the interest to shift toward methods 

from which the convergence information is obtained without the need of a complete 

stress and strain history. Direct Cyclic Analyses enter to such methods categories 

since they can directly calculate the stabilized state without the need to compute the 

transient cycles [51][52][53]. 

2.6.1.2 Direct Cyclic Analysis 

 Lately, Direct Cyclic Analysis (DCA) [23] is implemented into ABAQUS to 

calculate the stabilized cyclic behaviour. A modified Newton‘s method combined 
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with the solution and the residual vector represented in Fourier, is used in direct 

cyclic algorithm to get the stabilized cyclic response directly. The displacement 

coefficients are updated and employed in the following iteration step in order to get 

the displacements at each time increment, this process continued until convergence is 

reached. Going through each complete load cycle can be considered as a separate 

iteration of the solution for a nonlinear problem. Being a quasi-static analysis, the 

DCA uses the Fourier series in conjunction with time integration of the nonlinear 

material behaviour to get, in an iterative way, the stabilized cyclic response of the 

structure. This method avoids a significant numerical calculation time spent in 

transient analysis, thus it can be suitable for problems in which many load cycles 

must be applied to get the stabilized response. The DCA is also used for the 

assessment of the local plastic deformation in low cycle fatigue calculation and it can 

calculate the plastic ratchetting as well. In this method the assumptions made are; 

that the structure is showing linear geometrical behaviour, there is elastic stiffness 

and the contact conditions are fixed. In the direct cyclic algorithm, modified 

Newton‘s method is used. According to this method, a constant elastic stiffness is 

used as the Jacobian during the analysis. Due to the modified Newton‘s method, 

interface nonlinearities, such as contact or friction are not considered. Interface 

nonlinearities are severe and may lead to divergence. This is why they are not 

included in the direct cyclic algorithm. The elastic shakedown is identified in a 

straight forward way by DCA due to the absent iterations; plastic strains or zero 

incremental displacements. Ratchetting behaviour can be seen easily from the non-

converging residual force related to the constant term in Fourier series representing 

the time-dependent cyclic displacements in DCA. However the certain identification 

of reverse plasticity is a harder task [54] because heavy cyclic loading above 

shakedown is characterized by very slowly converging solutions which also do not 

demonstrate clearly the divergence of the constant residual force term. In DCA, if 

plastic cyclic solution cannot be calculated directly then reverse plasticity is difficult 

to distinguish from ratchetting in most structures accept for some very simple 

examples. This tool can still be used for the assessment of the cyclic behaviour. The 

DCA method, same as the incremental FEA, cannot directly foresee the shakedown 

or ratchetting boundary but it can only show whether elastic shakedown, plastic 
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shakedown or ratchetting will take place. In order to calculate the concrete 

shakedown or ratchet limit, several simulations at various load levels are needed to 

determine the limit between the shakedown behaviour from the non-shakedown one.  

 As a conclusion, it can be said that DCA are not suitable for ratchetting cases. 

This is more obvious when ratchetting remains as a high part of deformation [55]. 

There are also other methods used to determine the convergence; such as the Direct 

Methods. Direct Methods basically are founded on static and kinematic shakedown 

theorems. Their aim as described in the following sections is to define the boundary 

between the elastic or plastic shakedown and ratchetting. 

2.6.2 Direct Methods 

 Direct Methods do not follow the change of a structural system for a given 

history of external loading but directly evaluate the critical, final states and provide 

only essential information, without following the step-by-step inelastic structural 

responses. The interest on them arises from their ability to implement in standard 

finite element codes, and to give the potential for generally applicable methods 

available for design use. The main drive for developing Direct Methods has been to 

provide facilities for industries involved in the design of complex metallic structures 

subjected to severe cyclic loading, and sometimes operating at high temperatures. 

Another significant reason of using direct methods is that they save computational 

time, compared to other computer solution methods. With recent advances in the 

finite element technique and mathematical optimization theory, the simplified 

shakedown and limit analysis methods have been developed rapidly. Such methods 

include Mathematical Programming Method, Elastic Compensation Method (ECM) 

and Linear Matching Method (LMM) etc. 

 Current direct solution methods available are focused on ultimate limit 

conditions that lead to plastic collapse. Linear elastic analysis was modified to be 

used for the development of simple lower bound limit load methods by Jones [56] 

and Marriot [57]. Their methods were called the Reduced Modulus Methods and it 

was Mackenzie and Boyle [58] who extended them in their Elastic Compensation 

Method [16][17] for including in the analysis both upper and lower bounds. On the 
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other hand, Seshandri has developed the R-node method and the GLOSS method 

[15], both of them giving a great grasp for the structural behaviour. All these 

methods are practical but they lack a firm theoretical basis. There is no guarantee of 

convergence and even upper and lower bounds are obtained according to the rules of 

limit analysis and shakedown, they may not be optimal. Moreover, according to the 

kinematic finite element methods the lower bounds cannot be reached, and they 

sometimes are only the lower bounds of the optimal upper bound corresponding to 

the finite element mesh.  

 Following this work has been the attempts by the Ponter et al [3][5][59] to 

derive strictly convergent direct methods using linear solutions with spatially varying 

linear moduli. This has resulted in a class of methods referred to as Linear Matching 

Methods which arose originally from an attempt to prove the convergence of the 

Elastic Compensation Method [17].  

 The literature survey for the Mathematical Programming Method , Elastic 

Compensation Method and Linear Matching Method are summarized in the 

following sections. From this literature survey, Linear Matching Method (LMM) was 

selected as a numerical procedure in this thesis to address cyclic problems of 

mechanical components subjected to cyclic histories of mechanical and thermal loads 

with or without the presents of creep. 

2.6.2.1 Mathematical Programming Method 

 Mathematic programming is applied to the shakedown load bound theorems 

as an optimization problem. Recently, this method was recognized as the most 

common method for shakedown analysis of complex structures. Both lower and 

upper bound shakedown limits can be used by mathematical programming processes 

based on the static and kinematic theorems of shakedown analysis [60] [61]. The 

FEM of the upper bound shakedown analysis may be formulated as a nonlinear 

mathematical programming problem subjected to a number of constraints. The 

objective function is to minimize plastic dissipation energy. According to this 

optimizing function an upper bound shakedown load is obtained. The lower bound 

shakedown analysis is alike as the upper bound for solving the nonlinear objective 
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function with the inequality constraint controlled by the yield condition and the 

equality constraint induced by the equilibrium equation. With such a formation a 

number of self-equilibrating residual stress fields is produced. 

 There are many existing solution techniques for mathematical programming 

problems which cannot be used [62], because of the nonlinearity and non-

smoothness of the objective function in the upper bound procedure and the strong 

physical nonlinearity and unidirectionality of the constraints in lower bound analysis. 

Zhang et al.[63] and Liu et al.[12] have overcome the numerical difficulties caused 

by the nonlinearity and non-smoothness of the objective function for the upper bound 

procedure, however their methods are mainly presented for simple 2D structures. The 

shakedown analysis methods for more complex structures, such as 3D structures, 

need further studies and development. Some methods for loosening the nonlinear 

constraints have been proposed to overcome the numerical difficulties in the lower 

bound procedure, , such as the linearization of the yield condition [64]. However, 

most of these methods are very time-consuming. This time consumption is because 

of the huge number of constraint equations and degrees of freedom induced to 

construct a statically admissible stress field of the structure  while conducting the 

lower bound analysis. This is one of the main reasons why classical lower bound 

analysis is so difficult to use in engineering analysis for complex 3-D structures. 

Hence, the complexity of this method has restricted its application in many fields of 

practical engineering, including pressure vessel designs. 

2.6.2.2 Elastic Compensation Method 

  In recent years, repeated elastic techniques have been proposed and 

implemented using the finite element method in order to evaluate lower and upper 

bound shakedown loads rapidly [15] [57][65]. These approaches begin with an initial 

homogeneous elastic solution which is adapted in an iterative manner, through a 

series of linear elastic finite element solutions, to redistribute stresses within the 

component by varying the elastic modulus of elements. The iteration process stops 

when a meaningful equilibrium solution is reached. Both the ECM and the LMM are 

utilized for the repeated elastic techniques to calculate the cyclic structural responses. 
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 The Elastic Compensation Method [16][17] [66] generalized and developed 

Marriot‘s method through application of plasticity bounding theorems in order to 

calculate upper and lower bounds for the limit and shakedown loads of complex 

structures modelled in either solid, shell or beam elements. In the theory of plasticity 

it is well known that if a technique is available for the estimation of limit loads, then 

this same method can be used with little modification to calculate shakedown loads 

[67] [68]. This fact has been used to adapt the ECM to the estimation of shakedown 

loads. 

 The ECM is able to operate to the issue of shakedown and ratchetting by 

using the theorems of lower and upper bound shakedown [16] [17] [66]. These 

methods were applied in ANSYS for 2D and 3D solid element models. The 

publications related to the ECM were mostly focused on the benchmark of plane 

stress and axisymmetric configurations for which another shakedown solution 

existed. The lower and upper bounds obtained by the ECM are compared to the 

solution given by Leckie and Penny [69] and the ASME 3Sm curve. To extend the 

ECM for a complex 3D structure, the same user routines are used. 

 Despite practical applications ECM lacks a firm theoretical basis. There is no 

guarantee of convergence for the upper and lower bounds. Besides, according to the 

rules of shakedown analysis, the obtained lower and upper bounds may not be 

optimal [59]. This may be due to the nature of the FEM, specifically in the 

displacement method, where the stress fields are not in equilibrium either within 

elements or across element boundaries (e.g. mixed FE formulations), so there is no 

guarantee that the lower bound ECM will produce monotonic convergence. Then 

Ponter & Carter address the convergence problem correctly by matching the state of 

incompressibility with the plastic state. Their studies showed that this could have a 

considerable effect on the rate of ‗convergence‘ of the upper bound. 

 From their study of shakedown analysis [59], a more accurate version and 

theoretical justification of modified elastic modulus scheme has been proposed by 

Ponter and Carter [59][70].  
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This justification is theoretical, since an approximate FE analysis is used. For the 

finite element displacement method, the upper bound solutions reduce monotonically 

to a least upper bound, corresponding to the specific finite element formulation used.  

 The ECM procedure was implemented as a non-linear programming 

technique into the commercial FE code ABAQUS by Ponter, Fuschi and Engelhardt 

[71]. On the basis of this research, a new simplified and generalized analysis method, 

the LMM has subsequently been developed by Ponter and Chen[4][5] 

[6][19][22][72][73][74]. 

 So far, the reviews in the solution methods, described in the previous 

sections, showed a wide variety of available procedures, capable of analysing the 

behaviour of mechanical structures subjected to cyclic histories of loads and 

temperatures. Each of these methods approaches the problems differently, with some 

more capable in implementation, while others having the advantage of being cost and 

time effective. Upon careful consideration into each of the method's features, the 

methodology with the best potential, for further exploration, was identified as the 

LMM. 

2.6.2.3 Linear Matching Method 

 The LMM forms the foundation of the analyses conducted in this thesis. It is 

a nonlinear programming technique, developed from the Elastic Compensation 

Method. The LMM combines the convenience and efficiency of rule based methods 

and the accuracy of simulation techniques. It involves the matching of the non-linear 

material behaviour to a linear material and forms a basis for a powerful upper bound 

programming method that may be applied to a significant class of direct methods. 

The basis of the LMM is through the simple idea of representing histories of stress 

and inelastic strain as the solution of a linear problem where the linear moduli are 

allowed to vary both spatially and in time. Hence, effective elastic-plastic stiffness is 

matched with the stiffness of a fictitious elastic material at each point in the structure. 

A sequence of linear problems is defined that give strain rate histories that give rise 

to equilibrium residual stress fields. Sequentially, the correct non-linear constitutive 

assumptions are imposed. This is achieved by posing the problem as a minimum 
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problem where the desired solution is the minimum of a functional of the strain rate 

history. Expressed in this way the method has the character of a non-linear 

programming method, with each step involving the solution of a linear problem that 

has most of the characteristics of problem to be solved. When implemented in a finite 

element code the method seeks out the solution that provides the minimum amongst 

the class of displacement fields described by the finite element mesh. In this way, 

methods of great efficiency and flexibility can be devised where convergence proofs 

exist. 

 The LMM, distinguishes among other direct methods by ensuring that 

equilibrium and compatibility are satisfied at each stage [75][76]. In addition to the 

shakedown analysis method [20], the LMM has been extended beyond the range of 

most other direct methods by including the evaluation of ratchet limit and plastic 

strain range [76] and high temperature material behaviour [22]. Besides, LMM has 

the capability to combine the flexibility of the computer solution methods as well as 

the simplicity associated with the direct methods. This means that it can perform 

structural analysis, accurately for less time and cost of the full step-by-step inelastic 

analysis calculations. Lytwyn et.al [77] provided a direct comparison study between 

the LMM and the Direct Cyclic Analysis to calculate the ratchet boundary. The study 

showed that the computational efficiency of the LMM over the DCA was that in 

LMM it was not necessary to consider the entire cyclic load history of the component 

in question, avoiding the need to search for the ratchet boundary, as this is obtained 

directly. All these advantages became the choice of using the LMM in addressing the 

structural response for mechanical structures subjected to cyclic histories of loads 

and temperatures with and without the effect of creep. 

2.7 Conclusions 

 The Linear Matching Method and ABAQUS Direct Cyclic Analysis appear to 

be the two methods most amenable to practical engineering applications involving 

complex cyclic thermo-mechanical load conditions. Both are computationally 

efficient in comparison with traditional cycle to cycle elastic plastic FE analysis for 

the prediction of stabilised cyclic behaviour, in which either elastic shakedown, 
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alternating plasticity or ratchetting may occur. However, as the DCA only shows 

whether elastic shakedown, alternating plasticity or ratchetting occurs in the 

stabilised cyclic response, the LMM may be the best method to generate Bree-like 

diagrams in engineering practice. 

 The LMM can presently be used for a range of different types of analysis and 

has the potential to be developed into a general tool for limit, shakedown, ratchetting 

and creep design and assessment. 

 In order to further justify the selection of this method the application of the 

LMM, to complex structures (defective and defect free structures) subjected to cyclic 

loading histories with and without the effect of creep will be posed in the coming 

chapters. 
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CHAPTER 3. LINEAR MATCHING METHOD ON 

ELASTIC SHAKEDOWN ANALYSIS 

  Equation Chapter 3 Section 1 

3.1 Introduction 

 Several types of structures and structural elements, such as the design of 

nuclear reactor components [78], are exposed to complex cyclic mechanical and 

thermal loads. The elastic plastic response to cyclic loading may imply structural 

failure either by low cycle fatigue or by incremental plastic collapse. The low cycle 

fatigue phenomenon corresponds to the existing alternating plastic strains which 

eventually induce local material failure. The incremental collapse phenomenon 

which has a rather global nature consists of a gradual divergence of the deformed 

configuration and eventually results in local failure or in excessive displacements 

causing in-serviceability. 

 Elastic shakedown represents the safe occurrence, alternative to the above 

undesirable events. The elastic shakedown limit is the highest cyclical load that 

allows a structure to shake down to an elastic response in the first few cycles of load. 

When the elastic shakedown limit is exceeded, the structure may experience either 

plastic shakedown or ratchetting. In many applications for conservative reason, it is 

allowable for a structure to be within the elastic shakedown limit, but plastic 

shakedown (alternating plasticity), under which a local low cycle fatigue failure 

mode occurs, and ratchetting that ultimately leads to incremental plastic collapse, are 

not permitted. 

 The elastic-plastic behaviour of the structure needs to be well understood 

when the elastic shakedown design condition is used since the elastic-plastic reaction 

is load path dependent and is typically simulated by nonlinear incremental Finite 

Element Analysis (FEA). This allows the investigation of any type of load cycle but 

also requires a detailed load history and can involve significant computational effort 

Research interest in elastic shakedown analysis methods is mainly due to their 

apparent advantage over step-by-step inelastic analysis methods [8][9]. Thus, 

uncomplicated, cost effective and efficient methods capable to predict whether a 
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structural system will elastic shakedown or not, are attracting more and more 

attention in structural engineering. 

 Direct methods are incorporated into finite element analysis in order to 

evaluate the elastic shakedown limit. The model‘s material is considered to be elastic 

perfectly plastic, and the load domain including all the possible load paths eliminates 

the necessity to know the load history particularities in detail. Such methods include; 

the mathematical programming methods [12][13][14], the Generalized Local Stress 

Strain (GLOSS) r-node method [15], the Elastic Compensation Method (ECM) 

[16][17], and the Linear Matching Method (LMM) [18][19]. As discussed in Chapter 

2, among these direct methods, the Linear Matching Method (LMM) is recognized as 

one of the most powerful methods. In addressing the effect of elastic shakedown, the 

LMM approach involves the employment of elastic shakedown analysis methods, 

developed using the classical lower and upper bound elastic shakedown theorems of 

Melan [34] and Koiter [36]. The utilization of such procedures [6] has enabled elastic 

shakedown limit to be accurately and efficiently evaluated in many structural 

components. 

 In this chapter, the foundation behind the Linear Matching Method (LMM), 

employed in the identification of the elastic shakedown limit is discussed. A 

summary of its implementation for the upper and lower bound elastic shakedown 

theorems is presented. The application of the LMM is then investigated on a 3D plate 

with a central hole problem. 

 

3.2 Elastic Shakedown Analysis 

 Figure 3.1 shows the general problem considered in the analysis. It consists 

of a body of volume, V, having a surface area, S. The surface is divided into two 

parts Su and ST, where Su is the part with constraints and ST is the part on which loads 

are applied. Let this body be subjected to a cyclic history of varying temperature 

( , )ix t   within the volume of the structure and surface loads ( , )p iP x t acting over 

part of the structure‘s surface ST be considered. The variation is considered to be over 
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a typical cycle tt 0 . Here p  and   denotes a load parameter, allowing a 

whole class of loading histories to be taken into account. Xi is the integration point in 

the body. On the remainder of the surface Su, the displacement is 0iu  . The body 

is made up of an elastic-perfectly plastic material with a uniaxial yield stress, ζy , 

satisfying the von-Mises yield condition, 

     0ij ij yf        (3.1) 

where  
3 ' '

2
ij ij ij    is the von-Mises effective stress and 

1'

3
ij ij ij ij    

 
are 

the deviatoric stresses.  

 

Figure 3.1 Schematic of the problem 

Under conditions of small strains, the total strain is the sum of a elastic and plastic 

component, 

 
e p

ij ij ij     (3.2)  

where the plastic strains are associated with a strictly convex yield condition which 

satisfies the condition of (3.1). The plastic strain rate, p

ij , at yield are given by the 

associated flow rule, 
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where  is the constant of proportionality. This can be expressed as the Prandtl-

Reuss equation, given by, 

 
 

3

2

p

ij ij

ij


 

 



  (3.4) 

where   is the associated effective strain rate. In stress space, p

ij  
forms a normal 

vector to the yield surface and for the von-Mises yield condition, it implies that the 

plastic strain rates, p

ij , and the associates deviatoric stress at yield, 
ij  , are 

proportional to each other. Corresponding to the loading histories described in Figure 

3.1, a linear elastic solution history is obtained: 

 p

ij ij p ij


     

  
 (3.5) 

where p

ij


 
and 

ij




 are the linear elastic stress solutions corresponding to mechanical 

load  ,iP x t  and thermal load  ,ix t , respectively. In the following, the linear 

elastic stress solutions are chosen such that the load parameter 0  . In addition, the 

elastic moduli are assumed to be independent of temperature. 

 Defining E and S as the elastic limit multiplier and elastic shakedown limit 

multiplier respectively, then purely elastic or elastic shakedown behaviour can be 

described as: 

Elastic region--- 0 E   , where   0ijf  


 
though out the volume V. 

Elastic Shakedown region--- E S    , where   0ij ijf   


, 
ij is a constant 

residual stress field and plastic strain rate history 0p

ij  . However, in the analysis of 

structures having complex geometries and loading conditions, the exact shakedown 

limits are hard to achieved. Therefore, an upper bound or lower bound shakedown 

limit theorems [67] [79] is often employed to simulate the exact elastic shakedown 

limit.  

3.2.1  Upper Bound Shakedown Theorem 

 Koiter's [36] theorem states: "a structure under cyclic loadings would 

shakedown if the external work done by the loads is less than or equal to the internal 
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work dissipated for all admissible strain rate cycles, c

ij  ". Koiter's theorem is also 

referred to as the upper bound shakedown theorem. 

 In Koiter's theorem, the concept of an incompressible and kinematically 

admissible strain rate history is introduced. This admissible strain rate history, c

ij , 

does not need to be compatible but is associated with a compatible strain increment, 

c

ij , such that, 

 
0

t

c c

ij ij 


    (3.6) 

This satisfies the strain-displacement relations, 
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 (3.7) 

Then the upper bound shakedown theorem is given by, 
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    (3.8) 

where UB
 
is the upper bound shakedown limit and c

ij denotes a state associated with 

c

ij at yield. Then UB S  , with the equality achieved, if and only if, the exact 

deformation mechanism is chosen. Equation (3.8) could be rewritten as, 
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 (3.9) 

Considering the von-Mises yield condition, 

   ' '3

2

c c

ij ij ij y       (3.10) 

where 'c

ij
 
can be expressed as, 
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 (3.11) 

Equation (3.9) is obtained such as, 
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 (3.12) 

where c c

ij ij y     and 
2

3
ij ij     . 

3.2.2 Lower Bound Shakedown Theorem 

 Melan [34] developed the shakedown theorem using the static approach to 

determine whether shakedown would occur or not, in an elastic-perfectly plastic 

structure subjected to a combination of loads. Melan's theorem [34] states: "If a time 

constant residual stress field  ij x exists such that superposition with induced 

elastic stresses ),(ˆ txijLB forms a safe state of stress everywhere in the structure, 

i.e.  

     , 0LB ij i ij if x t x   


 (3.13) 

then LB S  ." where LB is the lower bound load parameter. 

 Melan's theorem can also be referred to as lower bound shakedown theorem 

or static shakedown theorem. On the basis of Melan's lower bound shakedown 

theorem, a lower bound of shakedown limit can be constructed by maximizing the 

lower bound load parameter
LB under the condition where for any potentially active 

load/temperature path, the stresses resulting from the superposition of this constant 

residual stress field ij  with the thermal-mechanical elastic stress 
ijLB ˆ  nowhere 

will violate the yield condition.  

3.3 Elastic Shakedown Analysis Using Linear Matching 

Method  

 As mentioned before, elastic shakedown refers to the behaviour of a structure 

subjected to a history of cyclic loading when it shakes down to an elastic response 



 

39 

 

after a few load cycles. Associated with this phenomenon is a constant residual stress 

field and the associated deformation strain field. 

 The elastic shakedown analysis using LMM was first developed by Ponter et 

al [59]. In order to identify the elastic shakedown limit, LMM is capable of 

determining the constant residual stress field,  ij ix , which causes the redistribution 

of stresses within the body, and the associated strain field  . The sections below 

show the numerical procedures how LMM identifies the elastic shakedown limit 

using upper and lower bound shakedown theorem and how it incorporate into 

ABAQUS. 

3.3.1 Upper Bound Shakedown Analysis using Linear Matching 

Method  

 In general, the LMM involves the definition of a sequence of linear problems 

ˆ
ij , where the linear coefficients,   are identified so that they match the yield 

condition, 
y . Thus, corresponding to an initial kinematically admissible strain rate 

history, this linear coefficient-shear modulus   is found by matching the linear 

material to that of a perfectly plastic material so that they both give the same 

effective stress, 

 
3

2

i

y   (3.14) 

The iterative procedure for defining the sequence of shear modulus,  , can be best 

understood from the construction shown in Figure 3.2. The iterative method begins 

with a linear elastic stress solution, having an initial effective stress,
 

 k

ij   (Figure 

3.2) and an associated strain rate field, 0  , with an initial uniform shear modulus k

. A new distribution of shear moduli, 1k   , is then evaluated, so that, for fixed 0 , 

the stress point would be brought to the yield surface. Thus, the new linear stress 

solution constructed would be an improvement to the previous iterative solution, 

provided they are related by the following relationship,  
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 where k is the iterative number in an iterative process. This process is then continued 

until convergence occurs. At each iterative step, the upper bound elastic shakedown 

limit is then evaluated. 

 For subsequent linear problems, a new kinematically admissible strain rate 

history, f

ij , is now defined, such that, 

  1
, 0f i f f

ij UB ij ij kk    


    
   (3.16) 

where f

ij is a time independent constant residual stress field. It is important to note 

that the superscripts, i and f, corresponds to the initial and final states respectively. 

Integrating the loading history, (3.16) becomes, 

 

Figure 3.2 The linear matching process  
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A new upper bound, f

UB , is generated when f

ij is substituted into (3.12). The 

existence of the convergence proofs [3] [59] shows that f i

UB UB  , with equality 

occurring, if and only if, f i

ij ij   . This procedure, when repeated, would generate a 

monotonically reducing sequence of upper bounds, converging to the least upper 

bound shakedown limit. 

 The above mentioned equations ((3.16)-(3.19)) give rise to a programming 

method. The application of this programming method-the LMM, as an iterative upper 

bound elastic shakedown limit analysis method, combines the convenience of using 

linear elastic stress solutions with the capability of non-linear programming method 

and is implemented within the FEA code, ABAQUS. 

3.3.1.1 Implementation the LMM into ABAQUS 

 ABAQUS [9], is a product of HKS, and being a powerful engineering 

simulation program based on FEA methods, it is applied in this study. This general-

purpose software is commonly used to analyse engineering problems in various areas 

of stress/strain analysis, heat transfer, or thermal-electrical analyses. ABAQUS has 

an wide library of elements, with a very large list of material models. It has the 

ability to incorporate new customised material behaviour by using user subroutines 

and option blocks, which makes it ideal choice for using it together with LMM. 

 There are three distinct stages in a standard ABAQUS analysis. The first one 

is the pre-processing stage. In this stage a model of the physical problem is defined 

and an input file is created. In ABAQUS analyses generally it is sufficient for the 

user to implement the engineering data such as the geometry of the structural, 

material behaviour, loading, and boundary conditions, but in the proposed 

procedures, based on the LMM the material's behaviour is user-defined, thus user 

subroutines such as UMAT need to be incorporated at this stage. The first stage is 

then followed by simulation. This stage involves solving the numerical problem 

defined in the input file and the results obtained are evaluated in the post-process 

stage by using the output files generated. When the LMM is used for the shakedown 

analysis, in ABAQUS some characteristics must be re-defined and re-interpreted, 
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according to the requirements related to this method. These modifications are done 

according to the user subroutines (UMAT, URDFIL) provided by ABAQUS in the 

analysis. In order to show how LMM works with ABAQUS, the functions of these 

subroutines are discussed as follows: 

Subroutine UMAT: 

 UMAT subroutine is used to specify complex material properties, which 

cannot be defined by simple constitutive models using the Young's modulus, E , and 

Poisson's ratio,  . It is accessed at each material gauss point, where the USER 

MATERIAL option is prescribed. The user must then define the Jacobian matrix, [J], 

which is the relationship between the incremental stresses and incremental strains,  

  ij ijJ     (3.20) 

Once this matrix is defined, it allows the computation of the incremental stresses 

from equation (3.20), using the incremental strains calculated by ABAQUS. These 

incremental stresses would then be updated and added after each increment, 

ultimately providing the total stress solution. 

Subroutine URDFIL:  

 This subroutine is where the results files can be found during the analysis. At 

the end of each increment, the user requested results are sent to the result files where 

they would be stored, extracted and updated as the analysis goes on. This subroutine 

is also used as a terminating mechanism for the analysis process according to the 

satisfaction of certain convergence criteria or the specified number of iterations. 

 While implementing the LMM into ABAQUS UMAT subroutine, it was 

observed that the procedure changes according to the way ABAQUS solves non-

linear problems by diving them into linear increments and solving linearly each 

increment. Thus the solution from ABAQUS UMAT is the sum of stress and strain 

increments at the end of the analysis. 
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 In LMM, the incremental values are viewed differently. Each of these 

increments is seen as a part of a separate linear solution. This implies that the 

material definition in UMAT, normally used to define the relationship between the 

incremental stresses and strains (  ij ijJ    ), now in LMM defines the 

relationship between the iterative stress and strain of a linear solution (  ij ijJ  ). 

3.3.1.2  Iterative and Numerical Procedure for Upper Bound 

Shakedown Analysis 

 For the problem in Figure 3.1 two load types are solved at an arbitrary 

integration point Xi, then the varying surface loads and temperature loads at this point 

can be represented as,  nP t and  nt
 
respectively, where n represents the time load 

instance and range from 1 n N  , in a load space, where N represents the total 

number of time instants. For a strictly convex yield condition, which includes the 

von-Mises yield condition in deviatoric stress space, the loading histories describe 

sequences of straight line paths between sets of extreme points in a load space. 

Similarly, the linear elastic stress histories,  P

ij nt


and  ij nt



, would also describe 

sequences of linear paths in the stress space. This implies that the only instants when 

plastic strains can occur are at the vertices of the stress history,  ij nt


. The strain 

rate history then becomes the sum of increments of plastic strain: 

  
1

N
c

ij ij n

n

t 


    (3.21) 

Then equation (3.18) and (3.19) are modified as 
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The iteration procedure which is given in Chen and Ponte [6] in ABAQUS thought 

the user subroutine UMAT and URDFIL would be summarized as: 
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 The first iteration (k=1) in the analysis procedure is the initialisation of the 

material model within UMAT. The shear moduli,  nt , at n vertices of the loading 

history, is assigned to a constant value arbitrarily (normally with the value of the 

material Young's Modulus). The loads are applied though external linear elastic 

stress solution,  ij n ext
t


, associated with n vertices of the load history. These 

solutions are solved separately beforehand and written to a formatted direct access 

file, in terms of the stress components for each element at each gauss integration 

point ix . The load files are extracted and incorporated into UMAT for constructing 

extreme elastic stresses with    1 1

ij UBn ij n ext
t t  

  , where 
1 1UB   for the first 

iteration. Therefore, the applied loads in UMAT are set to zero, so that the stress 

fields generated from this computation is now the residual stress field. These 

initialisation values are then written to files accessible via URDFIL, which allow the 

Jacobian to be updated via shared data blocks. 

 The following iteration (k=k+1), let 1
UB

k k

UB   , and the shear moduli, at 

each integration point will then be updated by, 
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and  
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Then the Jacobian matrix,  
1k

J


, which relates increments of stress and strain in 

UMAT, is obtained from the calculated values of 1k  as, 

 
 

  

1

1

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 11

[ ]
1 21 1 2 0 0 0 0 0
2(1 )

1 2
0 0 0 0 0

2(1 )

1 2
0 0 0 0 0

2(1 )

k

kJ

 

 

 

 

 

  
 














 
  
 
 
  
 
 
  

     
 

 
 

 
 
 

  

 (3.26) 



 

45 

 

where  is the Poisson's ratio. For the case of incompressibility, 0.5   and the 

volume strain rate, 0kk  . 

 This Jacobian enabling,  
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1
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

 
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 
 



 (3.27) 

to be evaluated. Then, the constant residual stress can be calculated by, 

  
11 1 1kk k ink

ij ij ijJ  
      (3.28) 

which provides information for the strain rate associated with n vertices of the load 

history to be computed, 

       
11 1 1kk k k

ij n ij ij nn
t C t  

    


 (3.29) 

where  
1k

n
C


is the stiffness matrix derived from 1k

n
 . Before the calculation of 

coming iteration, ABAQUS will call upon subroutine URDFIL, and the terms of 
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
for each Gauss integration point 

in the structure are then calculated. The iterative upper bound shakedown limit, 

derived from equation (3.12), is determined as, 
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 (3.30) 

This is then returned to subroutine UMAT as a scaling factor on the linear elastic 

solutions in the next iteration. The iteration procedure ends when the stopping 

criteria is satisfied. The overall organization of this method could be further 

understood by examining the block diagram in Figure 3.3.  
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Figure 3.3 Flow chart for the upper bound shakedown limit using LMM 
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3.3.2 Numerical Procedure for the Lower Bound Shakedown Analysis 

 According to Melan's theorem mentioned in section 3.2.2, a lower bound of 

shakedown limit can be constructed using a similar procedure as upper bound by 

maximizing the lower bound load parameter 
LB  under the condition where for any 

potentially active load/temperature path, the stresses resulting from the superposition 

of this constant residual stress field ij  with the thermal-mechanical elastic stress 

ijLB ˆ  nowhere will violate the temperature-dependent yield condition. Hence, as 

the above upper bound iterative process provides a sequence of residual stress fields 

in (3.28), it is possible to evaluate an analogous lower bound at each step of the 

iteration by scaling the elastic solution so that 
ijijLB  ˆ  satisfies the yield 

condition everywhere. The lower bound of shakedown limit multiplier can be written 

as: LB

s

LB  max  . 

 The utilization of this shakedown method to limit analysis problems is made 

possible due to the similarities existing between the iterative processes associated 

with limit analysis and shakedown. This is easily demonstrated by assuming that the 

load and temperature remains constant with time at any loading histories n. With this 

change, the above procedure becomes the limit analysis. This shows that limit 

analysis is a special case of shakedown analysis, with the only exception which is the 

need to consider load cycles in shakedown calculations rather than a static load. 

3.4 Benchmark Example 

 

3.4.1 Geometry and Loading Condition  

 To demonstrate the numerical procedures, discussed in Sections 3.3, upper 

and lower bound shakedown limit calculations are reproduced [20] for a 3-D square 

plate with a hole subjected to a cyclic thermal load and constant mechanical load. 

The geometry of the structure and its finite element mesh are shown in Figure 3.4a 

and Figure 3.4b, respectively. The ABAQUS 20-node solid isoparametric element 

with reduced integration is adopted [80]. The ratio between the diameter D of the 

hole and the length L of the plate is 0.2 and the ratio of the depth of the plate to the 
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length L of the plate is 0.05. The plate is subjected to a temperature difference Δθ 

between the edge of the hole and the edge of the plate and the uniaxial tension P acts 

along one side (Figure 3.4a). The model of the 3D plate is assumed elastic perfectly 

plastic with the following material properties: Yield Stress ζy=360MPa, Poisson‘s 

Ratio, ѵ=0.3, Young‘s Modulus, E= 200 GPa, Coefficient of Thermal Expansion, 

α=1.0x10
-5

. 

                             a                                                         b 

Figure 3.4 (a) Geometry of the square plate with a hole subjected to varying thermal load and constant 

tensile load (D/L=0.2) (b) Finite Element Mesh 

 The detailed temperature history at the inner bore of the hole is given in 

Figure 3.5, where θ(t) varies between θ0 and θ0+Δθ. When the ambient temperature 

θ0 remains at 0

C, the magnitudes of the maximum thermo elastic stresses for the 

above thermal loading extremes can be determined by the maximum temperature 

difference Δθ between the bore of the hole and the edge of the plate. Hence the cyclic 

thermal load and constant mechanical load can be characterized by the maximum 

temperature difference Δθ and the uniaxial tension ζp, respectively. The reference 

constant elastic mechanical stress can be calculated by the axial tension 

ζp=ζp0=100MPa while the reference temperature difference Δθ=Δθ0=100

C 

determines the reference cyclic elastic thermal stress. When the temperature-

dependent yield stress ( )y T  is adopted, the actual load factor is updated in an 

iterative way during the calculation using equation (3.31).  

    0 00.4 /y yT MPa C T     (3.31) 

Where ζ
0

y=360 MPa, and T is the temperature in Degree Celsius. 
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Two thermal stress extremes with two load instances are adopted for this cyclic load 

history: 

 

Figure 3.5 Load history for plate with hole under cyclic temperature variation and constant 

mechanical load 

---Load instance (1): The temperature distribution and axial tension are applied (at 

time t1 in Figure 3.5). 

---Load instance (2): The temperature load is removed and the constant axial tension 

remains applied (at time t2 in Figure 3.5). 

 

Figure 3.6 Upper and lower bounds shakedown limit interaction curves of the plate with a hole 
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3.4.2 Upper and Lower Bound Elastic Shakedown Boundary with 

Temperature Dependent and Independent Yield Stresses 

 Based upon the kinematic theorem of Koiter [36], the LMM procedure gives 

highly accurate upper bound [6] and lower bound shakedown limits [20]. The 

converged values of both upper and lower bounds elastic shakedown limits for the 

plate with hole are shown in Figure 3.6. Using various load combinations of cyclic 

∆θ and steady load P, the elastic shakedown load was calculated using the LMM 

method. A total of lower and upper bound results for non-temperature dependent and 

temperature dependent are tabulated in Table 3.1 and 3.2, respectively. From these 

tabulated results, an interaction diagram of shakedown limit for different ratios of 

varying thermal load and constant mechanical load is also presented in Figure 3.6. 

The applied pressure in X-axis is normalized with respect to the yield stress, σy, 

while the thermal load in Y-axis is normalized by using the reference temperature 

difference Δθ=Δθ0=100

C.  

 

Figure 3.7 The convergence condition of iterative processes for shakedown analysis (point A and A*, 

subjected to cyclic thermal loads only) 
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Figure 3.8 ABAQUS verification using step by step non-linear analysis for (a) the reverse plasticity 

limit (b) the ratchet limit 

 This diagram is divided into two regions separated by lines, which signify the 

transition from elastic shakedown behaviour to reverse plasticity (AB or A*B*) and 

the transition from elastic shakedown behaviour to ratchetting (BC or B*C). These 

lines on the interaction diagram are usually called the reverse plasticity limit (AB or 

A*B*), and ratchet limit (BC or B*C). Elastic shakedown will not occur if the load 

applied surpasses the reverse plasticity limit AB/A*B*. In this case the permanent 

strains settle into a closed cycle, a condition also known as ―cyclic‖ or ―alternating 
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plasticity‖. These permanent plastic strains will increase indefinitely if the applied 

cyclic load level is beyond the ratchet limit BC/B*C. This is known as ―ratchetting‖ 

or ―incremental plastic collapse‖. The point C corresponds to the limit load for the 

applied mechanical load acting alone with no cyclic temperature load. There are 

significant differences between the reverse plasticity limit A*B* assuming a 

temperature-dependent yield stress and the reverse plasticity limit AB considering a 

temperature-independent yield stress. Hence it is important to adopt temperature-

dependent yield stress for a structure assessment under high temperature variations. 

However, in order to simplify the calculations, the temperature-independent yield 

stress can be adopted when the variation of operating temperature approaches to zero 

or the temperature varies within a limited range. The temperature effects on the yield 

stress may be ignored in such conditions. 

 The results of typical lower and upper bound sequences converging after 70 

iterations for load point A (Figure 3.6) considering temperature-independent yield 

stress, and for load point A*(Figure 3.6) considering temperature-dependent yield 

stress are tabulated in Appendix I, respectively. These tabulate results are presented 

in Figure 3.7. It can be observed from Figure 3.7 that both the upper bound and lower 

bound converge to the exact shakedown limit proving that LMM produces highly 

accurate upper bound and lower bound shakedown limit results.  

 In order to verify the accuracy of the LMM, four load cases (labelled D, E, F 

and G in Figure 3.6) with cyclic and constant loads of D(
0
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respectively, have been performed using ABAQUS step-by-step analyses to verify 

the elastic shakedown limit "ABC" (Figure 3.6). The signed equivalent plastic strain 

histories for the cyclic loading cases D, E, F and G are shown in Figure 3.8. The term 

signed equivalent plastic strain refers to the usual formulation of effective plastic 

strain, but with a sign equal to that of the principal plastic strain of greatest 

magnitude [1]. Load cases D (Figure 3.8a) and F (Figure 3.8b) exhibit elastic 

shakedown behaviour as the calculated equivalent plastic strain stop changing after 3 
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load cycles. The calculated sign equivalent plastic strain for the load case E (Figure 

3.8) converges to a closed cycle after about 4 load cycles giving  reverse plasticity 

behaviour, and the load case G (Figure 3.8b) shows strong ratchetting behaviour, 

with the sign equivalent plastic strain increasing at every cycle. Thus, the results in 

Figure 3.8 obtained using ABAQUS step-by-step analysis confirm the accuracy of 

the predicted elastic shakedown limit by the LMM. Further benefits of the LMM can 

be found considering the computing time necessary to generate the elastic 

shakedown interactive diagram. The time that the LMM needed to generate the 

points on the elastic shakedown and ratchetting boundary was less than 10% of that 

needed for the above four load cases to complete using the ABAQUS step-by-step 

analysis. 

3.5 Conclusions 

 The capability of the identification of the elastic shakedown boundary using 

Linear Matching Method (LMM) is discussed in this chapter. The introduction of the 

fundamental shakedown theorems for a general problem, the numerical procedure, 

and the implementation for the upper and lower bound shakedown theorem [2], was 

then described for a problem of a plate with a central hole. The solutions showed that 

the LMM-based methodologies were capable of generating accurate elastic 

shakedown limit, within a finite number of iterations.  

 In Chapter 4, in order to demonstrate the efficiency and effectiveness of the 

LMM for more complex structures, a parametric study of a composite cylinder made 

of steel and aluminium with a cross hole subjected to cyclic thermal loads and 

constant pressure is analysed. 
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Table 3.1 Elastic shakedown loads for temperature independent 
y  
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0
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
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
 

(Upper bound) 

0








 

(Lower bound) 

            0 4.897 4.848 

0.245 4.897 4.848 

0.979 4.897 4.848 

1.224 4.897 4.848 

1.469 4.897 4.848 

1.959 4.897 4.848 

2.203 4.896 4.848 

2.399 4.896 4.848 

2.524 4.207 4.165 

2.768 2.768 2.737 

2.952 1.476 1.461 

3.099 0 0 
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Table 3.2 Elastic shakedown loads for temperature dependent 
y  
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(Lower bound) 

           0 3.857 3.819 

0.771 3.857 3.819 

1.543 3.857 3.819 

1.929 3.857 3.819 

2.314 3.857 3.819 

2.554 3.193 3.138 

2.616 2.907 2.878 

2.642 2.781 2.753 

2.666 2.666 2.639 

2.879 1.440 1.425 

2.952 0.984 0.976 

3.025 0.504 0.501 

3.099 0 0 
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CHAPTER 4.  ELASTIC SHAKEDOWN ANALYSIS OF A 

COMPOSITE CYLINDER WITH A CROSS-

HOLE  

 Equation Chapter 4 Section 1 

4.1 Introduction 

 Chapter Three described the numerical procedure for the Linear Matching 

Method to identify the upper and lower bound elastic shakedown limits. This method 

was then applied to the problem of a square plate with a hole. In this chapter, a 

further examination on a real industrial problem will be conducted; in this case a 

composite cylinder manufactured from steel and aluminium. 

 Innovations in materials have largely been responsible for the performance 

improvements in many areas of structures technology. The continuous development 

of computational structures technology and the advanced composite materials have 

improved structural performance, reduced operational risk, and shortened production 

time [81]. On the other hand, one of the most important reasons for using composite 

materials is the reduction of weight [82]. 

 With the achievements in aerospace industry, the strength-to-weight ratio of 

engineering components has become a very important design criterion since a high 

strength-to-weight ratio results in a better performance and greater shear strength. 

The lower weight results in lower fuel consumption and emissions. 

 Strength-to-weight ratio is able to increase when the elastic limit of materials 

is surpassed and the allowable accumulated plastic strain constraints are assigned. In 

this way the design of composite pressure cylinder subjected to cyclic mechanical 

and thermal loads can be achieved. The investigations of the elastic and elastic-

plastic behaviour of a uniform cylinder with a cross-hole under constant internal 

pressure and cyclic thermal loads are presented by the well-known Bree-like diagram 

in [83] and [84]. 
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 The local stress concentration is redistributed around the material boundaries 

for composite cylinders under cyclic thermal loads. This changes the fatigue life and 

elastic shakedown limits of the cylinder. As mentioned in Chapter 3, the elastic 

shakedown limit is the highest cyclical load at which a structure shakes down to an 

elastic response in the first few cycles of load. When the elastic shakedown limit is 

exceeded, the cylinder may experience either plastic shakedown or ratcheting. In 

many applications, it is allowable for a structure to be within the elastic shakedown 

limit, but plastic shakedown and alternating plasticity, under which a local low cycle 

fatigue failure mode occurs, and ratcheting that ultimately leads to incremental 

plastic collapse, are not permitted. Consequently the elastic shakedown limit is a 

particularly important design condition to the pressure cylinder.  

 In this chapter, in order to demonstrate the efficiency and effectiveness of 

LMM in the calculation of the elastic shakedown loads for more complex structures, 

the numerical procedure described in Chapter Three is applied to the problem of a 

composite cylinder. Specifically a cylinder, manufactured from steel and aluminium 

with a cross-hole subjected to a constant internal pressure and cyclic thermal loads. 

The Bree-like shakedown limit diagrams of the composite cylinders are plotted for 

different composite materials and thickness ratios with and without cross-holes. 

Three cross-hole sizes are considered, all relatively small in comparison with the 

other cylinder dimensions. The objective of the investigation is to formulate a safety 

shakedown limit region for industrial design purposes using the calculated 

shakedown limit results with different geometry parameters. This work has been 

published in the International Journal of Pressure Vessel Technology in 2010. 

 

4.2 Composite Cylinder Geometry 

 The geometrical shape and the material properties of the composite cylinder 

with a cross-hole are as shown in Figure 4.1 and Table 4.1, respectively. The 

composite thick cylinder has an inner layer of steel and an outer layer of aluminum. 

𝑅𝑖 , 𝑅𝑚 , 𝑅𝑜  are the inner radius, middle radius, and outer radius of the composite 

cylinder, respectively.  
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Figure 4.1Geometrical shape of the composite cylinder 

 The area surrounding the hole, which can be an instrumentation tapping or a 

port for the fluid entry or exit, is expected to be the most critical region since this is a 

structure discontinuity causing the rise of the local stress concentration. To improve 

the mechanical performance of this critical region, the material surrounding the hole 

is selected to be the same high performance steel as the inner portion of the 

composite cylinder. The thickness of the cylindrical shape steel insert is equal to the 

half thickness of the composite cylinder
2

io RR 
. 

Table 4.1 Material property parameters for the steel and aluminum 

Type 

Young‘s 

modulus 

E (GPa) 

Poisson‘s 

ratio   

Coefficient 

of thermal 

expansion 

  (
1C ) 

Yield 

stress  

y  

(MPa) 

Thermal 

Conductivity 

k  (W/mK) 

Density 

(Kg/mm
3
) 

Steel 200 0.3 5104.1   360 20 61085.7   

Aluminium 72 0.33 51036.2   100 250 6107.2   

 

 The shakedown results are obtained for three different radius ratios:

0.2,75.1,5.1io RR . Three cross-hole radius ratios are also modelled: 

3.0,2.0,1.0ii Rr . The maximum radius ratios 0.3i

i

r

R
 defined in this study meets 

R i R m R o L 

ri 

CMPa o
p 0,0 0  

 

   ttMPap   0,100

 

Steel insert area 
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the requirement of ASME B&PV Code Section VIII Division 2, in which the 

limitation of 
i

i

R

r
should be less or equal to 1/2 for perforated cylindrical shells [10]. 

The analysis is performed for three composite material ratios: 3,1,
3

1
As VV , where 

sV and AV  stand for the volume of steel and aluminum, respectively. For better 

comparison of results, in all the cases the inner radius is chosen to be mmRi 300  

while length is mmL 900 . 
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V

V
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V
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A

s
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Figure 4.2 Quarter finite element models for different material ratios 

 

4.3 Finite Element Modelling 

Table 4.2 Temperature-dependent yield stress for aluminum 

Temperature 

(ºC) 
0 100 200 300 400 500 525 550 600 

 Ty

(MPa) 
100 90 72.7 43.9 31.8 27.3 23.2 19.3 15.1 

 

 The composite cylinders were analysed using ABAQUS type C3D20R 20 

node quadratic brick elements with a reduced integration scheme. The composite 

cylinders with cross-holes have three planes of symmetry. Hence, to minimize the 

size of the model, these symmetry boundary conditions are applied to a quarter 

section of the model. A 3D view of a composite cylinder with cross-hole is shown in 
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Figure 4.2. The main cylinder bore and the hole bore are under constant internal 

pressure. The cut end of the cylinder is constrained (by using ABAQUS constrained 

equation) in order to keep the plane section plane during loading. The closed-end 

boundary condition is achieved by applying uniform axial thrust 

(  2 2 2

N p i o iT R R R  ) to the end of the cylinder, where ζp is the internal pressure. 

The holes are assumed to have open-ended boundary condition. The applied cyclic 

thermal loading is produced by assuming that the outside surface of the cylinder is at 

ambient temperature while the internal surface temperature is fluctuating from 

ambient to higher values. Three thermal stress extremes are adopted for this cyclic 

load history: 

Firstly, according to different thermal conductivities of the steel and aluminum, a 

thermal stress is produced by the most significant nonlinear thermal gradient 

along the thickness. This most significant thermal load is calculated by a steady-

state thermal analysis; 

Secondly, a thermal stress occurring at the highest uniform temperature is applied 

due to the material mismatch. This thermal stress is produced because thermal 

expansions between the steel and aluminum are significantly different; 

Finally, a zero thermal stress field is selected to simulate a uniform ambient 

temperature for the whole cylinder. 

When the ambient temperature 0  remains at Co0 , the magnitudes of the maximum 

von-Mises effective thermo elastic stresses for the above thermal loading extremes 

can be determined by the maximum temperature difference   between the inner 

surface and outer surface of the composite cylinder. Hence these thermal and 

mechanical load path extremes can be characterized by the maximum temperature 

difference   and the internal pressure p . The reference constant elastic 

mechanical stress can be calculated by the internal pressure 

MPaypp 100aluminum
0    while the reference temperature difference 

Co1000   determines the reference cyclic thermal elastic stresses. When the 

temperature-dependent yield stress )(TY  is adopted, the actual load factor is 

updated in an iterative way during the calculation. The adopted temperature-
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dependent yield stress is given in equation (4.1) for steel and presented in Table 4.2 

for aluminum: 

    0 00.4 /y yT MPa C T     (4.1) 

 

4.4 Results and Discussions 

4.4.1 Upper and Lower Bound Results with Temperature Dependent 

and Independent Yield Stresses 

 Based upon the kinematic theorem of Koiter [36], the LMM procedure has 

proved to produce highly accurate upper bound [6] and lower bound shakedown 

limits [20]. The converged values of both upper and lower bounds shakedown limits 

for the composite cylinder are shown in Figure 4.3 where material ratios, cylinder 

and cross-hole radius ratios are 1
A

s

V

V
, 75.1

i

o

R

R
, 1.0

i

i

R

r
, respectively. In Figure 

3.7 it is observed that the converged solution is reached after 20 iterations while in 

Figure 4.3 the convergence is obtained after 60 iterations. This is due to the initial 

value of the chosen shear modulus, since the speed of the convergence depends on 

how close the chosen shear modulus is to the convergent solution during the linear 

matching process. An interaction diagram consisting of shakedown limit for different 

ratios of varying thermal load and constant mechanical load is also presented. This 

limit is divided into two regions; the reverse plasticity limit AB or A*B*, and the 

ratchet limit BC or B*C. Elastic shakedown will not occur if the load applied 

surpasses the reverse plasticity limit AB/ A*B*. In this case the permanent strains 

settle into a closed cycle, a condition also known as ―cyclic‖ or ―alternating 

plasticity‖. These permanent plastic strains will increase indefinitely if the applied 

cyclic load level is beyond the ratchet limit BC/ B*C. This is known as ―ratchetting‖ 

or ―incremental plastic collapse‖. The point C corresponds to the limit load for the 

applied mechanical load. There are significant differences between the reverse 

plasticity limit A*B* adopting temperature-dependent yield stress and the reverse 

plasticity limit AB considering temperature-independent yield stress. Hence it is 

important to adopt temperature-dependent yield stress for a structure assessment 

under high temperature variations. However, in order to simplify the calculations, the 
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temperature-independent yield stress can be adopted when the variation of operating 

temperature approaches to zero or the temperature varies within a limited range. The 

temperature effects on the yield stress may be ignored in such conditions. 

 

 

Figure 4.3 a) Upper and lower bounds shakedown limit interaction curves of the composite cylinder b) 

the convergence condition of iterative processes for shakedown analysis (point A and A*, subjected to 

cyclic thermal loads only) ( 1
A

s

V

V
, 75.1

i

o

R

R
, 1.0

i
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r
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Figure 4.4 ABAQUS verification using step by step analysis for (a) the reverse plasticity limit (b) the 

ratchet limit 

 Figure 4.3b shows typical upper and lower bound sequences converging after 

70 iterations for load point A (Figure 4.3a) considering temperature-independent 

yield stress, and for load point A*(Figure 4.3a) considering temperature-dependent 

yield stress. It can be observed that both the upper bound and lower bound converge 
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to an exact shakedown limit proving that LMM produces highly accurate upper 

bound and lower bound shakedown limit results. For the simplification of discussion, 

the results in the next section only show the upper bound shakedown limit for the 

temperature-independent yield stress. 

 

Figure 4.5 Shakedown limit interaction curves of the composite cylinder for different composite 

material ratios without cross-hole 

 In order to verify the accuracy of the LMM, four load cases (labelled D, E, F 

and G in Figure 4.3a) with cyclic thermal loads of 25.1
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 respectively, have been performed using ABAQUS step-by-step analyses. 

The plastic strain histories representing the maximum plastic strain range for the 

cyclic loading cases D, E, F and G are shown in Figure 4.4. Load cases D (Figure 

4.4a) and F (Figure 4.4b) exhibit elastic shakedown mechanism as the calculated 

maximum signed equivalent plastic strain stop changing after two load cycles. The 

calculated maximum signed equivalent plastic strain for the load case E (Figure 4.4a) 

converges to a closed cycle after about nine load cycles showing a reverse plasticity 

mechanism, and the load case G (Figure 4.4b) shows a strong ratchetting mechanism, 

with the maximum signed equivalent plastic strain increasing at every cycle. Thus, 

the results in Figure 4.4 obtained using ABAQUS step-by-step analysis confirm the 

accuracy of the predicted shakedown limits by the LMM. Further benefits of the 

LMM can be found considering the computing time necessary to generate the 
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shakedown curves. The total time that the LMM needed to generate the points on the 

ratcheting boundary was less than 10% of that needed for the above four load cases 

to complete using the ABAQUS step-by-step analyse methodology. 

4.4.2 Effect of the Composite Material Ratio 

 The upper bound temperature independent shakedown limit interaction 

curves of a composite cylinder with varying material ratio configurations (Figure 

4.2) are presented in Figure 4.5. The applied pressure ζp, in X-axis is normalized 

with respect to the reference internal pressure ζp0 while the thermal load ∆θ, in Y-

axis is normalized by using the reference temperature difference 0 100oC  . 

 Figure 4.5 shows that the limit load of the composite cylinder reduces when 

the volume of steel material is decreasing, whereas the reverse plasticity limit is 

increased with smaller 
A

s

V

V
. The reduction in the limit load is approximately in 

proportion to the loss of steel material. The increasing reverse plasticity limit is due 

to the difference in thermal conductivities of the steel and aluminum. As the volume 

of aluminum increases, a larger proportion of the cylinder will have larger thermal 

conductivity, which leads to a lower thermal elastic stress range. Hence, when the 

volume of aluminum increases the reverse plasticity limit increases. Shakedown limit 

interaction curves of the composite cylinder ( 5.1
i

o

R

R
) with cross-hole for different 

composite material ratios and different cross-hole ratios are presented in Figure 4.6 

which shows that with the addition of a cross-hole, the general trend of the 

shakedown curves is similar to Figure 4.5. Both figures show a decreasing limit load 

and increasing reverse plasticity limit for decreasing volume of steel. It is worth 

noting that for the pure material cases, the reverse plastic limit is determined by the 

maximum thermal stress due to the temperature gradient while the reverse plastic 

limit for the composite material is defined by the maximum thermal stress due to the 

material mismatch. The addition of a hole gives rise to a local stress concentration. 

This is shown to have little effect on the limit load for any material configuration 

when the hole diameter is small. A detailed discussion of the effects of the hole 

diameter is given in section 4.4.3. 
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Figure 4.6 Shakedown limit interaction curves of the composite cylinder ( 1.5o

i

R

R
 ) for different 

composite material ratio with different cross-hole ratio: a) 0.3i

i

r

R
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Figure 4.7 Shakedown limit interaction curves of the composite cylinder ( 5.1
i

o

R

R
) with different 

hole radius ratios and different composite material ratios: a) 
3

1


A

s

V

V
 b) 1

A

s

V

V
c)
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Figure 4.8 Shakedown limit interaction curves for the composite cylinder ( 1
A

s

V

V
) with different 

thickness radius ratios and different hole radius ratios:  a) without hole b) 1.0
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Figure 4.9 Elastic shakedown design regions for composite cylinders 

 

4.4.3 Effect of the Hole Diameter 

 Cross-holes in composite cylinders are structural discontinuities which 

increase elastic stress due to local stress concentration. The influence of cross-hole 

size, 3.0,2.0,1.0ii Rr on the shakedown limit interaction curve is shown in Figure 

4.7 for different material ratio configurations.  

 Figure 4.7a shows that for a material ratio of 
3

1
, the addition of a hole has a 

large impact on the reverse plasticity limit, which demonstrates the dominance of this 
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comparable with the stress concentration due to the material mismatch. When the 

size of hole increases, both the limit load and reverse plasticity limit decreases. 

 

Figure 4.10 Influence functions for reverse plasticity limits against: a) cross-hole ratio b) steel to 

aluminum ratio c) thickness ratio 
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Figure 4.11 Influence functions for limit pressures against: a) cross-hole ratio b) steel to aluminum 

ratio c) thickness ratio 
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 Figure 4.7c shows that for a material ratio of 3, the addition of a hole has 

little effect on the value of reverse plasticity limit, but causes a reduction in the limit 

load. The reduction in material by an increasing hole diameter is the cause of the 

reduction in limit load. There is little effect of the hole size on the reverse plasticity 

limit due to the dominance of the material boundary stress raiser, which has little 

interaction with the stress concentration caused by the hole.  

4.4.4 Effect of the Composite Cylinder Thickness 

 Figure 4.8 presents the effects of the radius ratio 
i

o

R

R
on the shakedown limit 

interaction curve. Three different relative thicknesses 0.2,75.1,5.1io RR
 

of the 

composite cylinder with a fixed material ratio of 1 were analyzed.  

 Increasing this radius ratio greatly increases the limit load and reduces the 

reverse plasticity limit. The increase in limit load is an obvious result, as effectively 

the thickness of the pipe is increased for the same inner radius. The reduction in the 

reverse plasticity limit is caused by the increased thickness of steel. This increase in 

thickness (which causes greater conductive temperatures in the steel) results in 

higher thermal stresses at the material boundary.  

4.4.5 Formulated Shakedown Limit Design Region 

 In this section an elastic shakedown limit formulation for the composite 

cylinder is made for the purposes of safety in engineering design. A "theoretical" 

diagram of the elastic shakedown design regions for composite cylinders are shown 

in Figure 4.9, where RL  is the design temperature range corresponding to the 

reverse plasticity limit, RLP  is the design internal pressure representing the limit load 

and RLS is the design slope of the ratchet limit curve. Figure 4.9 is the elastic 

shakedown region of a typical Bree interaction diagram [30]. In order to simplify the 

formulation, RL , RLP and RLS are assumed to be the product of three independent 
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



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R

R
h3  respectively. In Figure 4.9 the X axis is the applied pressure RLP  and the Y 

axis is the applied temperature difference RL . Therefore, the design shakedown 

limits are formulated as 
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













i

o

R

R
g3  are the influence functions for the design internal pressure representing the 

limit load, and 













i

i

R

r
h1 , 














A

S

V

V
h2 , 














i

o

R

R
h3 are the influence functions for the design 

slope of the ratchet limit curve. 
i

i

R

r
, 

A

S

V

V
 and

i

o

R

R
stand for the cross-hole ratio, steel 

to aluminum ratio and thickness ratio, respectively. L , LP and LS  are constants 

standing for the calculated reverse plasticity limit, the limit internal pressure and the 

slope of the ratchet limit curve in case of 5.1
i

o

R

R
, 1

A

S

V

V
 without a cross-hole, 

where, 

 0153L C    (4.5) 

 113.8LP MPa  (4.6) 

 03.873 /LS C MPa  (4.7) 
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In order to find these influence functions, the obtained reverse plasticity limits, limit 

internal pressure and the slope of the ratchet limit curve are replotted in graphs of 

functions f, g and h against 
i

i

R

r
, 

A

S

V

V
and

i

o

R

R
 respectively as shown in Figure 4.10, 

Figure 4.11 and Figure 4.12. Trend lines are fitted to the data obtained from the 

shakedown limit results of different composite material ratio and cylinder thickness 

ratio with different cross-hole sizes to show the influence function. Equations (4.8)-

(4.10), (4.11)-(4.13) and (4.14)-(4.16) are the obtained influence functions for the 

design temperature range corresponding to the reverse plasticity limit, the design 

internal pressure representing the limit load, and the design slope of the ratchet limit 

curve, respectively. Once RL , RLP  and RLS , are defined, a safety shakedown 

envelope is created as shown in Figure 4.9. 
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4.5 Conclusions 

 The Linear Matching Method has been verified by the step-by-step analysis, 

showing that it gives very accurate elastic shakedown limits for the composite 

cylinder with a cross hole. The result obtained using the LMM for the composite 

cylinder without a cross-hole shows that the limit load decreases with the reduction 

of the steel material, whereas the reverse plasticity limit increases with the 

decreasing volume of steel. With the cross-hole addition, the general trend of the 

shakedown curves is similar to the one without a cross-hole - a decreasing limit load 

and increasing reverse plasticity limit for decreasing volume of steel. For steel to 

aluminium ratio 3
A

s

V

V
 , the existence of a hole has little effect on the value of 

reverse plasticity limit, but it causes a reduction in the limit load. For material ratio 

of 1, the existence of a hole has a sizable effect on the reverse plasticity limit, but 

impacts the limit load less significantly than for a material ratio of 3. For a material 

ratio
3

1


A

s

V

V
, the hole is shown to have negligible effect on the limit load. This 

implies that the size of the cross-hole raised the local stress concentration which will 

influence the fatigue life but will not greatly affect the global response when the limit 

load is determined by the low yield stress of the dominant aluminium material. 

Increasing the cylinder radius ratio 
i

o

R

R
 highly increases the limit load and reduces 

the reverse plasticity limit. A safety shakedown envelope is created by formulating 

the elastic shakedown limit results of different composite material and cylinder 

thickness ratios with different cross-hole sizes.  

 In some applications, it is too conservative for a structure to be within the 

elastic shakedown limit. The industry is calling out for a direct method capable of 

predicting the boundaries between elastic shakedown, plastic shakedown (or reverse 

plasticity) and ratchetting. Therefore, in the coming chapter the identification of the 

corresponding plastic shakedown and ratchet limit using LMM will be discussed. 
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Figure 4.12 Influence functions for the design slope of the ratchet limit curve against: a) cross-hole 

ratio b) steel to aluminum ratio c) thickness ratio 
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CHAPTER 5. LINEAR MATCHING METHOD ON 

RATCHET ANALYSIS  

Equation Chapter 5 Section 1 

5.1  Introduction 

 The iterative upper and lower bound elastic shakedown method mentioned in 

Chapter3 identifies a limit generally corresponding to structural deformation in either 

alternating plasticity or ratchetting. As mentioned in Chapter 3, elastic shakedown 

refers to one of the possible behavioural modes experienced by an elastic plastic 

body subjected to cyclic loading histories. If, during the loading process, plastic 

strains ceased to develop further and purely elastically behaviour is observed 

thereafter, then the structure is said to have elastic shaken down and is safe [34][36]. 

Basically, designing within this boundary is ideal, as long as small accumulations of 

plastic strains are accommodated during the initial loading cycles. The use of the 

elastic shakedown solutions is often realized in low temperature loading situations. 

 In applications with severe thermal mechanical loads, such as the operation of 

power plants, nuclear reactors, it is too conservative for the structure to be within the 

elastic shakedown limit [34]. The structural components usually ended up being 

designed beyond the elastic shakedown region. When the elastic shakedown limit is 

exceeded, an unlimited accumulation of plastic strains will lead to the structure 

failing by either low cycle fatigue due to alternating plasticity or incremental plastic 

collapse due to ratchetting [37]. In the alternating plasticity region, the amplitude of 

the variation of the elastic effective stress is higher than twice the yield stress. Thus, 

the cyclic plastic strain is developed, which alternates equally in tension and 

compression during the cyclic process. These developed plastic strains, without 

inducing any substantial plastic strain growth during the cyclic loading histories, 

forms a reverse plasticity mechanism in a structural component. This causes the sum 

of the elastic stresses,  ,ij x t


, the time-independent constant residual stress field,

 ij x  and the time-dependent varying residual stress field,  ,ij x t , to be kept 

within yield over the volume of the body. 
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 Plastic shakedown or alternating plasticity, under which a local low cycle 

fatigue failure mode occurs, may be permitted, provided that during its design life the 

effect of low cycle fatigue is taken into consideration. Ratchetting, which ultimately 

leads to incremental plastic collapse, should be avoided, since it may lead to 

intolerable deformations. For this reason it is desirable to calculate the ratchet limit 

of a structure under cyclic load conditions. In addition, the evaluation of the ratchet 

limit is particularly useful for structures with stress raisers, such as cracks. In such 

structures, due to the presence of the elastic stress singularity at the crack tip the 

shakedown condition becomes invalid. Hence a finite shakedown limit does not exist 

anymore. However, the procedures for identifying the ratchet limit are still valid. 

This is due to the closed cycles of plastic strains occurring at the crack tip, enabling 

the evaluation of the finite ratchet limits. As a result, a method on the determination 

of the ratchet limit for cracked bodies is particularly desirable. 

 In the identification of the corresponding ratchet limits, not much work has 

been done. In filling this gap, Ponter et al [4][5] developed minimum theorems for an 

arbitrary cyclic state to calculate the ratchet limit for load history with two load 

instants. This minimum theorem is reduced to the classical elastic shakedown 

theorem when the loading histories lie within the shakedown limit. The minimisation 

theorem is further enhanced by Chen [21] with the recently developed finite element 

analysis codes, which are capable to evaluate the ratchet limits with multi-load 

instants case. 

 In the minimization theorem [4], for the component subjected to a predefined 

cyclic load history, the evaluation of an additional constant load that the component 

can withstand before ratchetting takes place, includes two sequential minimisation 

processes. The first stage involves the evaluation of a varying residual stress field 

and the corresponding closed cycles of plastic strains for the applied cyclic load 

condition. The second stage for the ratchet limit due to the additional constant load 

then becomes a conventional elastic shakedown calculation, with the cyclic elastic 

stress history augmented by the varying residual stress field. 

 In this chapter, the derivation of the minimization theorem using LMM-basic 

computational procedure [5] for the identification of the ratchet limit is discussed. A 
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summary of this numerical procedure is presented. The application of the 

minimization theorem is then investigated through a 3D plate with a central hole. To 

extend the theorem so that it can be incorporated to other plasticity models, the 

Ramberg-Osgood material model is also adopted. 

 

5.2 General Cyclic Problem 

 

Figure 5.1 Schematic of the problem 

 Considering the cyclic problem in Figure 5.1, an elastic plastic body is 

subjected to a general cyclic load condition, where the material is isotropic, elastic-

plastic and satisfies the von-Mises yield condition. The body is subjected to a cyclic 

history of varying temperatures  ,p ix t 
 
within the volume V and varying surface 

loads  ,iP x t acting over part of the body‘s surface ST, where p and   are 

reference load parameter, allowing a whole class of loading histories to be taken into 

account. On the remainder of the surface S, denoted by Su, the displacement satisfies 

0iu  . The variation is considered to be over a typical cycle 0 t t    in a cyclic 

state. For the problem defined above the stresses and strain rates will asymptote to a 

cyclic state where  

        ,ij ij ij ijt t t t t t         (5.1) 

The corresponding linear elastic stress history is denoted by  ˆ ,ij ix t  as, 

V 

Su Su 

ST ST 

 
( , )ix t   

( , )p iP x t  
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    ˆ ˆ, ,ij i ij ix t x t    (5.2) 

where 

      ˆ ˆ ˆ, , ,P

ij i p ij i ij ix t x t x t

        (5.3) 

ˆ p

ij and ˆ
ij

  represent the linear elastic stress history corresponding to varying surface 

loads and temperature, respectively. The total strain is the sum of a linear elastic and 

perfectly plastic component, 

 
e p

ij ij ij     (5.4) 

where the elastic strains are 
e

ij ijmn mnC  , and the tensor is 
ijmnC , satisfying the usual 

symmetrical properties. The plastic strains are associated with a strictly convex yield 

condition satisfying the condition of (3.1) and the associated flow law of (3.3) and 

(3.4). Then the maximum work principle is, 

  * 0c c

ij ij ij     (5.5) 

where
c

ij denotes the stress at yield,   0c

ijf   , associated though (3.1) with the 

plastic strain rate 
p c

ij ij   . 
*

ij
 

denotes any state of stress, which satisfies the 

condition of (3.1),  * 0ijf   . For this general problem, the existence of the 

minimum theorems [75] allows the possibility of defining load histories lying within 

or beyond the elastic shakedown limit. Consider the function where  is regarded as 

prescribed (here  denotes a scalar load parameter), 

     
0

ˆ, ,

t

c c c

ij ij ij i ij

V

I x t dtdV    


     (5.6) 

where 
c

ij  
is a kinematically admissible strain rate history such that the accumulated 

strain over the cycle, 

 
0

t

c c

ij ij 


    (5.7) 
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is compatible with a displacement field 
c

iju , which satisfies the displacement 

boundary conditions. According to [4][5], two additional conditions are now applied 

on the magnitude of 
c

ij . 

Condition (i): Corresponding to 
c

ij , a cyclic history of residual stress,  ,c

ij ix t , is 

defined such that it satisfies the relationship, 

 
cT c c

ij ijmn ij ijC      (5.8) 

where
cT

ij is also a kinematically admissible strain rate history and it is compatible. 

And, 

    ,0 ,c c

ij i ij ix x t    (5.9) 

Condition (ii): Corresponding to  ,c

ij ix t , there exists a constant residual stress field 

in equilibrium with zero traction on ST,  ij ix , on the absolute magnitude of 
c

ij . 

Thus, the general form of the stress solution for the cyclic problems involving cyclic 

(or changing) and constant residual fields is given by, 

        ˆ, , ,c

ij i ij i ij i ij ix t x t x x t       (5.10) 

and (5.10) satisfies the yield condition, 

       ˆ , , 0, 0c

ij i ij i ij if x t x x t for t t         (5.11) 

And (5.6) can be rewritten as, 

         
0

ˆ, , ,
ij

t

c c c c c

ij ij ij ij i i ij i ij

V

I x t x t x dtdV       


    
      (5.12) 

It was proven from [76] that for a prescribed load history ( ), 

  , 0c

ijI     (5.13) 

with the equality achieved, when,  

 
c cr

ij ij    (5.14) 

where
cr

ij is the exact cyclic solution. 
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Figure 5.2 Flow chart for identifying changing residual stress and plastic strain range(LMM) 

 

Input 

Construct  extreme elastic stresses from cyclic loading : ˆ ( )ij nt 
(where tn represents 

loading instance 1≤𝑛≤N and N is number of total loading instance), cycle number m=1 

For first load instance n=1 

 

Initialization (at k=1): accumulate residual stress, R1=0 The shear modulus 
1( )nt E   where E is the Young's Modulus 

Extreme cyclic stress ˆ( ) ( ) (1 )m

ij n ij n kt t R n N       

 

Yes 

1. Calculate shear modulus, 1 ( )m nt  from yield stress 0 ( )m nt by 

linear matching (Eqn5.20) 

2. Calculate Jacobian Matrix [J]m+1
n(Eqn5.30) 

3. Calculate changing residual stress,
1

n

ijm  (Eqn.5.29) 

4. Calculate plastic strain range,
1( )pm

ij nt  (Eqn5.21) 

 

 

 

Updated accumulated residual stress  

1 1

n

k k ijmR R    , k=k+1

 

 

 No 

Subroutine UMAT 

Yes 

Second process for defining the ratchet limit 

 

Calculate the strain energy for all load extremes 

1

( )
N

m m

n

nv

t dv 


   

 

 

 

Subroutine 

URDFIL 
 

Convergent: 

1m m

m
e

 



 
 ? 

 

No 

 
n=N? 

n=n+1 

m=m+1 



 

84 

 

 

Figure 5.3 Flow chart for identifying the ratchet limit using LMM 
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5.3 Dual Minimization Process for Ratchet Analysis 

 As mentioned in the introduction, in the case of loading in excess of 

shakedown, the definition of the ratchet limits is required. This ratchet limits 

satisfied the requirement that plastic deformation takes place in the cycle, but there is 

no net accumulation of plastic strain. Associated with such loading histories, a 

changing residual stress field exists. If the changing residual stress field is calculated, 

then the analysis is reduced to a conventional elastic shakedown calculation where 

the loading history is augmented by the constant load. 

 Considering the same problem as Figure 5.1, a structure subjected to a 

general cyclic load condition, which can be decomposed into cyclic and constant 

components, and the corresponding linear elastic stress history is denoted by 

 ˆ ,ij ix t  as, 

      ˆ ˆ ˆ, ,F

ij i ij i ij ix t x x t      (5.15) 

where  ˆ ,ij ix t 
is described as (5.3), ˆ F

ij  represents the linear elastic stress history 

corresponding to a constant load distribution  iF x .  

 Now, the entire numerical procedures for defining the ratchet boundary are 

performed in two minimization processes [21]. In the first minimization process, the 

varying residual stress field, associated with the applied varying loads,  ˆ ,ij ix t 
, is 

evaluated. The corresponding plastic strain ranges for the low cycle fatigue 

assessment is also calculated. The second minimization process is to define the 

location of the ratchet boundary due to the extra constant load,  ˆ F

ij ix as a 

conventional shakedown analysis (as mentioned in Chapter 3) where a time 

independent residual stress field is evaluated and the elastic stress history is 

augmented by the changing residual stress field calculated in the first minimization 

process. The implementations of these two numerical minimization processes [21], 

are summarized below. 
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5.3.1 Incremental Minimization Process for the Varying Residual Stress 

Field and Plastic Strain 

 Applying the same assumption as in section 3.3.5, for a strictly convex yield 

condition, which includes the von-Mises yield condition in a deviatoric stress space 

and for histories of elastic stress, which describe a sequence of straight line paths in 

stress space, the only instants when plastic strains can occur are at the vertices of the 

stress history  ˆ
ij nt 

, where n represents the loading histories and n=1 to N, in a 

load space. 

 It is assumed that plastic strains only occur at load extremes corresponding to 

N time instants, 1 2, , ......, Nt t t ,where nt corresponds to a sequence of time points in 

the cyclic history, which leads to 
1

N
c n

ij ij

n

 


   , where 
n

ij  
is the increment of 

plastic strain that occurs at time nt . Hence, the minimization function I in (5.12) is 

written as, 

  
1

,
N

c n

ij

n

I I 


  (5.16) 

where 

       ˆ, , ,n n n n n

ij ij ij ij i n ij i n ij

V

I x t x t dV               (5.17) 

and 

      
1

, ,
n

ij i n ij i ij i l

l

x t x x t  


    (5.18) 

where in (5.12) the term 
c

ij  
is replaced by a sequence of increments of strain 

n

ij

occurring at a sequence of N times nt . The incremental minimization of  ,n n

ijI  

assumes that the prior history of the residual stress is known and compatibility of the 

total elastic and plastic strain in the increment is used. ( )ij ix
 
is the constant element 

of the changing residual stress  ij nt
 
and represents as, 

 1 2 1

1 1 1
ij

N N N
M n n n

ij ij ij M

n n n

    

  

          (5.19) 



 

87 

 

where M represents the total number of cycles. The LMM methodology [5] requires 

the solution of a sequence of linear problems. For an initial estimate of the strain 

increment, 
n n

ij ijm    , at mth cycle of iterations, a class of linear problems for a 

new estimate, 1

n n

ij ijm     , can be defined at the (m+1)th cycle of iterations. 

 In an iterative process, at an arbitrary point ix , the repeated application of the 

algorithm produces a sequence of solutions for 
n

ij , which converges to the absolute 

minimum of the minimization function. The entire iterative procedure requires a total 

number of cycles, M, where each cycle, m, contains N iterations associated with N 

load instances, where n=1,2,...N and m=1,2,...M. If two consecutive cycles, m and 

m+1, are now considered, then the linear coefficient 
1( )m nt 

 is given by the linear 

matching as, 

 
 

0
1

( )
( ) ( )

ˆ ( ) ( )

m n
m n m n m

ij n ij n

t
t t

t t


 

  
 




 (5.20) 

where 0 ( )m nt  is the iterative von-Mises yield stress for Ramberg-Osgood material 

model or yield stress for the elastic perfectly plastic material model, ( )m nt
 is the 

iterative shear modulus. The new distribution of the strain increment, 1

n

ijm  , is then 

characterized as the solution to the following problem, 

 1 1 1 1 1

1 1
,

2 3

T n n n T n n

ij m ijm ijm kk m kk m
K

    


    
          (5.21) 

     1

1 1 1

1
ˆ

2 ( )m

n m n

ijm ij n ij n ijm

n

t t
t

   


 

  

     (5.22) 

where the prior history of the residual stress is known as, 

   1 2 1

1 ......
ij

m m n

n ij ijm ijm ijmt     

       (5.23) 

Where 
n

ijm
 
is the evaluated changing residual stress for nth load instance at mth 

cycle of iterations, where n=1,2,...N and m=1,2,...M. The entire iterative procedure 

for the changing residual stress field and the plastic strain range with numbers of 

cycles is shown in Appendix II. 
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 In equation (5.21) and (5.22)   is the iterative shear modulus. K and   are 

the bulk modulus and the shear modulus, respectively, the values of which are 

obtained from materials data. And the term, ˆ
ij 

, is the cyclic solution from (5.3). 

Due to (5.22), equation (5.21) is rewritten as, 

     1

1 1 1

1 1 1
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2 2 ( ) 2 ( ) ij

m m

T n n m
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t t
t t

   
  

 

  

         
 
 

 (5.24) 

Defining eff and effK as: 

 
1 1 1

( ) ( )m

eff

m n nt t  
   (5.25) 

 
1 1

( ) ( )eff

n nK t K t
  (5.26) 

Then (5.24) and (5.21) can be rearranged as, 

     
'

1
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m
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
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  
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 1 13 ( )
kk

n eff T n

kk m n mK t      (5.28) 

The solution of equation (5.27) and (5.28) is implemented in ABAQUS via 

subroutines UMAT and URDFIL. Solving the following equation in the standard 

ABAQUS form: 

 1 1 1 1[ ]m m

n n T n inn

m mJ          (5.29) 

the Jacob matrix, for a 3-D solid is given by: 
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where 

     1

1

1

1 1

( ) 1
ˆ

( ) 2

m

ij

m

eff

ninnn m

m ij n n

n

t
t t

t


  







 

 


    (5.31) 

 
1 1

1 1

9 ( ) ( ) 3 ( ) 2 ( )

3 ( ) ( ) 2(3 ( ) ( ))

m m

m m

eff eff eff eff

n n n n

eff eff eff eff

n n n n

K t t K t t
E and

K t t K t t

 


 

 

 


 

 
 (5.32) 

5.3.2 Global Minimization Process  

 The numerical procedure, used in the identification of the ratchet limit, is 

similar to the existing methods of upper bound elastic shakedown analysis which is 

described in (Chapter 3.3.5). The main difference is the need to take into account the 

changing residual stress field calculated from the previous procedure (chapter 5.3.1). 

Thus the linear elastic solution becomes, 

    ˆ ˆ ˆ( , ) ( ) , ,F

ij i ij i ij i ij ix t x x t x t       (5.33) 

For the von-Mises yield condition and the associated flow rule, an upper bound 

ratchet limit multiplier can be obtained by, 
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 (5.34) 

 

The upper bound ratchet limit multiplier gives the capacity of the body subjected to a 

predefined cyclic load history  ˆ
ij nt 

to withstand an additional constant load ˆ F

ij

before ratchetting takes place. 

 Since the numerical formulation of the upper bound ratchet limit multiplier is 

similar to the one in upper bound elastic shakedown theorem, for the chosen class of 

displacement fields, the same iterative monotonically reducing sequence of upper 

bounds, converging to the least upper bound ratchet limit behaviour, is to be 

expected. 
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 To this point, the usage of the numerical technique is based upon the 

assumption of a perfectly plastic material. It is a well-known fact that the cyclic 

strain amplitude in a reverse plasticity mechanism is sensitive to cyclic hardening. 

And the inclusion of hardening effect requires the development of a method based 

upon a constitutive equation, which predicts the required material's behaviour in the 

steady state. The numerical example in the coming section describes the inclusion of 

cyclic hardening effect for Ramberg-Osgood material model. 

 The overall organization of the dual minimization process (first and second 

processes) could be further understood by examining the block diagram in Figure 5.2 

and Figure 5.3, respectively.  

 

5.4 Benchmark Example 

 

5.4.1 Geometry and Loading Condition  

 To demonstrate the numerical procedures, discussed in Sections 5.2 and 5.3, 

an upper bound ratchet limit calculations are performed for a 3-D plate with a central 

hole subjected to a cyclic thermal load and constant mechanical load. The same 

loading condition and geometry are adopted as the example in Figure 3.4 and Figure 

3.5 (Chapter 3.4.1).  

 Two thermal stress extremes with two load instances are adopted for this 

cyclic load history: 

---Load instance (1): The temperature distribution and axial tension are applied (at 

time t1 in Figure 3.5). 

---Load instance (2): The temperature load is removed and the constant axial tension 

remains applied  (at time t2 in Figure 3.5).. 

For non-linear analysis, both the elastic perfectly plastic material model and 

Ramberg-Osgood material model are adopted in this study. The following Ramberg-

Osgood type is adopted for the cyclic stress and strain range relationship [80]: 
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 



 
    (5.35) 

where Δζ is the true stress range, Δε is the true strain range, E is the elastic modulus, 

ζ0 is reference stress usually taken as 0.2% yield stress (ζy), and α and n* are the 

Ramberg-Osgood plastic hardening constants. At the lower limit, n=1, the above 

equation represents a linear-elastic behaviour. At the upper limit, n=∞, it may be 

represent an elastic-perfectly plastic behaviour. The first term on the right-hand side 

of the above equation represents the elastic strain range and the second term 

corresponds to the plastic strain range. 

 

Figure 5.4 The curve of the constitutive relation for elastic perfectly plastic and Ramberg-Osgood 

material model with different hardening n 

 Then the plastic strain range from Equation (5.35) can be written as: 
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and 
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In this study the reference stress (ζ0) is taken as 0.2% of yield stress (ζy), where ζy is 

defined as half stress range that results from a strain range of 0.2% in the steady state 

as: 

 0.2% 0.2%
2

y p


 


    (5.39) 

and α could be evaluated with the given yield stress (ζy) as: 

 
0

0.2%

2

E



  (5.40) 

The same elastic perfectly plastic material properties as the one in Chapter 3 (Yield 

Stress ζy=360MPa, Poisson‘s Ratio, ѵ=0.3, Young‘s Modulus, E= 200 GPa) are used 

also in this chapter. The Ramberg-Osgood material model with the power hardening 

exponents in equation (5.36) n*=5, 8, 20, and in order to compare the solution from 

elastic perfectly plastic material, a reference yield stress ζ0=360 are adopted for this 

study. Figure 5.4 shows the curves of the above mentioned material constitutive 

relations. 

 In LMM the iterative von-Mises stress ζy from Ramberg-Osgood material 

model is obtained from equations (5.39), (5.37) and (5.22) as, 
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* 1 *
0

( )
( ) ( )

2

n

ij n n
y n
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


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  (5.41) 

 

5.4.2 Ratchet Limit Boundary 

 The upper bound shakedown and ratchet limit interaction curve for a 3D plate 

with a central hole subjected to constant tensile load and a cyclic thermal gradient is 

shown in Figure 5.5. The applied tensile force in X-axis is normalized with respect to 

the material yield stress, while the thermal load in Y-axis is normalized by using the 

reference temperature difference Δθ=Δθ0=100

C. This interaction diagram consists 

of limit load, shakedown limit (Chapter Three) and ratchet limit for different ratios of 

varying thermal loads and constant mechanical loads. The diagram is divided into 

four zones; elastic shakedown, reverse plasticity or global shakedown, ratchetting 

and plastic collapse zone. Elastic shakedown will not occur if the load applied 
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surpasses the reverse plasticity limit ―AB‖. In this case the permanent strains settle 

into a closed cycle, a condition also known as ―alternating plasticity‖ and associated 

with a low cycle fatigue mechanism. The plastic strains will increase indefinitely if 

the applied cyclic load level is beyond the ratchet limit ―CD‖. This is known as 

―ratchetting‖ or ―incremental plastic collapse‖. The point ―D‖ corresponds to the 

limit load for the applied mechanical load. Any applied cyclic load which exceeds 

the limit load line DI will cause plastic collapse.  

 

 

Figure 5.5 The ratchet limit boundary for 3D plate with a central hole 

 

 The solution of the elastic shakedown zone (curve "ABD") calculated by the 

LMM has been verified by the ABAQUS step-by-step inelastic analysis in Chapter 3. 

And for the verification of the ratchet limit boundary (curve "CB") calculated by the 

LMM, the cyclic load points E(Δθ=6.0Δθ0, σp=0.58 σy), F(Δθ=9.0 Δθ0, σp=0.42 σy), 

and G(Δθ=6.0Δθ0, σp=0.69 σy), H(Δθ=9.0Δθ0, σp=0.55 σy), which are just below and 

above the calculated ratchet limit boundary (Figure 5.5), respectively, are chosen for 
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the step-by-step inelastic analysis by ABAQUS. The maximum signed equivalent 

plastic strain histories for the cyclic loadings E,G and F,H are shown in Figure 5.6a 

and Figure 5.6b, respectively. The term signed equivalent plastic strain refers to the 

usual formulation of effective plastic strain, but with a sign equal to that of the 

principal plastic strain of greatest magnitude [24]. From Figure 5.6a it is observed 

that the calculated maximum signed equivalent plastic strain for the load case E 

exhibits plastic shakedown (reverse plasticity) as the calculated signed equivalent 

plastic strain becomes stable after 18 load cycles, and the load case G shows a strong 

ratchetting mechanism, with the maximum signed equivalent plastic strain increasing 

at every cycle. A similar result is also obtained from Figure 5.6b, where the 

calculated maximum signed equivalent plastic strain for the load case F settles into a 

stable cycle after about 15 load cycles showing a reverse plasticity mechanism, and 

the load case H shows a strong ratchetting mechanism, with the maximum signed 

equivalent plastic strain increasing at every cycle. Thus, the results in Figure 5.6 

obtained by ABAQUS step-by-step inelastic analysis confirm the accuracy of the 

predicted ratchet limits by the LMM.  

5.4.3 The Effect of Different Material Models on the Plastic Strain 

Range 

 The plastic strain range concerning a fatigue crack initiation is a key factor in 

a low cycle fatigue assessment. The maximum equivalent plastic strain range against 

cyclic temperature history with Δθ=800
0
C and varying constant internal pressure for 

different types of material model is plotted in Figure 5.7. It is observed from Figure 

5.7 that the value of the maximum equivalent plastic strain range increases as the 

Ramberg-Osgood material data n is increased. This can be explained by Figure 5.4 

which shows the elastic perfectly plastic material model causing larger plastic strain 

than Ramberg-Osgood model in the reverse plasticity zone, since the elastic perfectly 

plastic model does not suffer any cyclic hardening. 

 The results of Figure 5.7 also show that the cyclic loading history, with 

increasing constant internal pressure, has slight influence on the maximum 

equivalent plastic strain range for both perfectly plastic and Ramberg-Osgood type 

material models.  
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Figure 5.6 ABAQUS verification using step by step inelastic analysis for load cases (a) G and E (b) H 

and F 
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5.4.4 The Effect of Different Material Models on the Ratchet Boundary 

 

 

Figure 5.7 Maximum equivalent plastic strain range against the combination of cyclic thermal load 

and constant mechanical load for different material models 

 

 The ratchetting boundary for different types of inelastic material models is 

shown in Figure 5.8. It is observed from Figure 5.8 that the Ramberg-Osgood type 

material model considered in this chapter produced larger reverse plasticity 

boundary, when the cyclic loading is above the reverse plasticity limit AB, compared 

to the elastic perfectly plastic material model. And the size of the reverse plasticity 

region is increasing with decreasing Ramberg-Osgood material data n. This can be 

explained by Figure 5.4, which shows that the Ramberg-Osgood type material model 

has larger stress range than the elastic perfectly plastic material model above the 

reference yield stress. 

 The above phenomenon could be further explained by Figure 5.9 and Figure 
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Ramberg-Osgood material with different parameter n. Figure 5.10 shows the failure 

pattern at the limit state with the additional constant tensile load (the second stage in 

minimization process) for both Ramberg-Osgood and perfectly plastic material 

model, where the lighter colour represents the failure pattern area. 

 

 

Figure 5.8 The ratchet limit boundary for different material models 

 

 It is observed from Figure 5.9 that the cyclic hardening von-Mises stress 

increases with decreasing parameter n and that hardening stress areas are surrounding 

the hole. Because the hardening stress distribution around the hole (Figure 5.9) is 

effecting a small portion of the failure area at the ratchet limit state (Figure 5.10), the 

ratchet boundary is slightly effected for the Ramberg-Osgood type material model 

(Figure 5.8) when the cyclic loading condition exceeds the reverse plasticity limit. 
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(a) n=5 

 
(b) n=8 

 
 (c) n=20 

Figure 5.9 Hardening von-Mises stress distribution (stress distribution that is greater than the 

reference yield stress   0ij   ) with different Ramberg-Osgood material parameter n due to the 

cyclic thermal load ( first stage of the minimization process) with 
01000 C   
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Figure 5.10 Failure pattern at the ratchet limit state due to the additional tensile force ( second stage of 

the minimization process) with 
01000 C  for Ramberg-Osgood type material and elastic 

perfectly plastic material model 

 

5.5 Conclusions 

 The capability of the identification of the ratchetting boundary using Linear 

Matching Method (LMM) is discussed in this chapter. The associated numerical 

procedures [4], for the identification of ratchet limits in both elastic perfectly plastic 

and Ramberg-Osgood type hardening conditions, are presented. 

 The application of this numerical method was then examined on a 3D plate 

with a central hole problem. The solutions showed that the LMM-based 

methodologies were capable of generating accurate ratchet limits. The sensitivity of 

the solutions to cyclic hardening was also observed, as Ramberg-Osgood type 

material model increases the plastic strain range with increasing parameter n, and 

enlarges slightly the size of the reverse plasticity region with decreasing parameter n.  

 In the coming two chapters, a further examination on two complex defective 

structures will be conducted by using the numerical procedure mentioned in Chapters 

3 and 5. In Chapter 6, the regions of shakedown, reverse plasticity, ratchetting and 

plastic collapse mechanism are identified for the defective pipeline under cyclic 
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thermal load and a constant mechanical load. In Chapter 7, the effect of circular 

holes on the ratchet limit and crack tip plastic strain range are investigated for a 

centre cracked plate. 
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CHAPTER 6. ON SHAKEDOWN, RATCHET AND LIMIT 

ANALYSES OF A DEFECTIVE PIPELINE 

Equation Chapter 6 Section 1 

6.1 Introduction 

 Pipelines are widely used in various fields such as the petrochemical industry, 

energy and electric power engineering. During their operation, many local defects 

such as part-through slots can be produced by corrosion, mechanical damage or 

abrading surface cracks. These defects may jeopardize the integrity (i.e. reduce load-

carrying capacity and low cycle fatigue life) of the pipelines and sometimes even 

lead to severe industrial accidents. The integrity assessment of defective pipelines is 

very important in the pipeline industry. The current testing codes and standards for 

the pipelines in service provide severe limitations to the allowable dimensions of 

part-through slots. Unnecessary welding treatments of part-through slots required by 

the codes are not only resource-consuming processes but can also produce more 

severe welding defects. Therefore, some serious and systematic attempts should be 

made to investigate the effects of part-through slots on the load-carrying capacity and 

fatigue life of pipelines under cyclic loading conditions. These attempts are expected 

to provide some more scientific and reasonable approaches for the defect assessment 

and treatment. Studies of the effects of part-through slots on the load-carrying 

capacity of pipelines under cyclic mechanical load have been carried out [85] [86] 

However, due to the lack of systematic theoretical analyses as well as enough 

experimental results, the effects of part-through slots on the shakedown and ratchet 

limit of pipelines under cyclic thermal load and a constant mechanical load are still 

unclear at present. 

 In the analysis of structures subjected to cyclic loading histories for an 

elastic–perfectly plastic material, the component will either shakedown or 

ratchetting. In many applications, it is too conservative for a structure to be within 

the elastic shakedown limit. Plastic shakedown or alternating plasticity, under which 

a local low cycle fatigue failure mode occurs, may be permitted, provided that during 

its design life the effect of low cycle fatigue is taken into consideration. Ratchetting, 
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which ultimately leads to incremental plastic collapse, should be avoided, since it 

may lead to intolerable deformations. And for this reason it is desirable to calculate 

the ratchet limit of a structure under cyclic load condition. In addition, the evaluation 

of the ratchet limit is particularly useful for structures with stress raisers, such as 

cracks. In such structures, due to the presence of the elastic stress singularity at the 

crack tip the shakedown condition becomes invalid, since a finite shakedown limit 

does not exist anymore. 

 In this chapter, a numerical procedure of LMM mentioned in Chapter 3 and 5 

is used in the analysis of the defective pipeline subjected to constant internal pressure 

and a cyclic thermal gradient. The effect of part-through slots on the load carrying 

capacity, shakedown and ratchet limit is presented. Parametric studies involving 

different types and dimensions of part through slots are carried out. ABAQUS [80] 

step-by-step inelastic analyses are also carried out to verify the obtained shakedown 

and ratchet limits by the proposed method. 

 This work has been published in the International Journal of Pressure Vessel 

Technology in 2011. 

 

6.2 3-D Defective Pipeline 

 

Figure 6.1 The geometry of a pipeline with part-through slot subjected to internal pressure and cyclic 

thermal load 
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6.2.1 Geometry 

 The geometry [85] and the material properties of a defective pipeline 

subjected to constant internal pressure and a cyclic thermal gradient are shown in 

Figure 6.1 and Table 6.1, respectively. Ri and R0 are the inner radius and outer radius 

of the defective pipeline, respectively. The analysis is performed for different 

geometric parameters of a pipeline with different types of slots (Table 6.2). In all 

cases the inner radius and outer radius are chosen to be Ri=17mm and R0=21mm, 

respectively, while the length is L=250mm. 

Table 6.1 Material properties of the steel 

Type 
Young‘s modulus 

 E (GPa) 
Poisson‘s ratio ν 

Coefficient of 

thermal expansion α 

(C
-1

) 

Yield stress σy 

(MPa) 

Steel 

(S235H) 
200 0.3 5104.1   360 

 

Table 6.2 The pipeline shape parameters and dimensions with different defect types (shallow slot/deep 

slot) (mm/mm) 

Defect type   

A1 (mm) 

Shallow/deep 

slot 

A(mm) 

Shallow/deep 

slot
 

B(mm) 

Shallow/deep 

 slot
 

C(mm) 

Shallow/deep 

 slot
 

Small slot 0 2mm/3mm 2mm/3mm 2mm/3mm 2mm/3mm 

Circumferential 

slot 
45 2mm/3mm 2mm/3mm 2mm/3mm 2mm/3mm 

Axial slot 0 2mm/3mm 20mm 2mm/3mm 2mm/3mm 

Large area slot 45 2mm/3mm 20mm 2mm/3mm 2mm/3mm 

 

6.2.2 Finite Element Model 

 The defective pipeline is analyzed using ABAQUS type C3D20R 20 node 

quadratic brick elements with reduced integration scheme. The defective pipeline has 

two planes of symmetry. Hence, to minimize the size of the model, these symmetry 

boundary conditions are applied to the half section of the model. A finite element 

model of a defective pipeline with four different types of slot is shown in Figure 6.2. 

The pipeline bore is under constant internal pressure. The free end of the pipeline is 
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constrained in order to keep the plane section plane during loading. The closed-end 

boundary condition is achieved by applying uniform axial thrust to the end of the 

pipe. The uniform axial thrust TN induced by the internal pressure P is given by 

 222

ioiN RRPRT  . The applied cyclic thermal loading is produced by assuming 

that the outside surface of the pipeline is at ambient temperature while the internal 

surface temperature θ(t) is fluctuating from ambient to higher values. Two thermal 

stress extremes are adopted for this cyclic load history: 

 1. A thermal stress is produced by the linear thermal gradient along the 

thickness. This thermal load is calculated by a steady-state thermal analysis; 

 2. Then a zero thermal stress field is selected to simulate a uniform ambient 

temperature for the whole defective pipeline. 

 

Figure 6.2 The finite element mesh for a pipeline with part-through slot: (a) small slot; (b) 

circumferential slot; (c) axial slot and (d) large area slot 

 

 The detailed temperature history at the inner surface of the defective pipeline 

is given in Figure 6.3, where θ(t) varies between θ0 and θ0+Δθ. When the ambient 

(a) Small slot (b) Circumferential slot 

(c) Axial slot (d) Large area slot 
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temperature θ0 remains at 0

C, the magnitudes of the maximum thermo elastic 

stresses for the above thermal loading extremes can be determined by the maximum 

temperature difference Δθ between the inner surface and outer surface of the 

defective pipeline. Hence the cyclic thermal load and constant mechanical load can 

be characterized by the maximum temperature difference Δθ and the internal 

pressure P, respectively. The reference constant elastic mechanical stress can be 

calculated by the internal pressure P=P0=100MPa while the reference temperature 

difference Δθ=Δθ0=100

C determines the reference cyclic elastic thermal stress. 

 

 

Figure 6.3 The cyclic thermal loading history for the defective pipeline 

 

6.3 The Limit Load, Shakedown and Ratchet Limit Interaction 

Curve 

 The shakedown and ratchet limit interaction curve for a pipeline with small 

slot (shallow dimension) subjected to constant internal pressure and a cyclic thermal 

gradient is shown in Figure 6.4. The applied pressure in X-axis is normalized with 

respect to the reference internal pressure P0, while the thermal load in Y-axis is 

normalized by using the reference temperature difference Δθ=Δθ0=100

C. This 

interaction diagram consists of shakedown limit, ratchet limit and limit load for 

different ratios of varying thermal load and constant mechanical load. The diagram is 

divided into four zones; shakedown, reverse plasticity, ratchetting and plastic 

collapse zone. Elastic shakedown will not occur if the load applied surpasses the 

reverse plasticity limit ―AB‖. In this case the permanent strains settle into a closed 

cycle, a condition also known as ―alternating plasticity‖ and associated with a low 

 0

0

)(t

1t 2t t
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cycle fatigue mechanism. The plastic strains will increase indefinitely if the applied 

cyclic load level is beyond the ratchet limit ―CD‖. This is known as ―ratchetting‖ or 

―incremental plastic collapse‖. The point ―D‖ corresponds to the limit load for the 

applied mechanical load. Any applied cyclic load which exceeds the limit load line 

DI will cause plastic collapse. 

 

 

Figure 6.4 The ratchet limit boundary for small slot case 

 

 For the verification of the ratchet limit boundary calculated by the LMM, the 

cyclic load points E(Δθ=1.5Δθ0, P=0.68 P0), F(Δθ=3.5Δθ0, P=0.45P0), and 

G(Δθ=1.5Δθ0, P=0.75P0), H(Δθ=3.5Δθ0, P=0.55P0 ), which are just below and above 

the calculated ratchet limit boundary (Figure 6.4), respectively, are chosen for the 

step-by-step analysis by ABAQUS. The plastic strain histories for the cyclic loadings 

E, G and F, H are shown in Figure 6.5a and Figure 6.5b, respectively. From Figure 

6.5a it is observed that the calculated maximum signed equivalent plastic strain for 

the load case E exhibits shakedown as the calculated maximum signed equivalent 

plastic strain stops changing after 3 load cycles, and the load case G shows a strong 

ratchetting mechanism, with the maximum signed equivalent plastic strain increasing 

at every cycle. A similar result is also obtained from Figure 6.5b, where the 
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calculated maximum signed equivalent plastic strain for the load case F settles into a 

stable cycle after about 10 load cycles showing a reverse plasticity mechanism, and 

the load case H shows a strong ratchetting mechanism, with the maximum signed 

equivalent plastic strain increasing at every cycle. For verifying the accuracy of the 

reverse plasticity limit ―AB‖, the cyclic load points K(Δθ=2.3Δθ0, P=0.1P0) and 

L(Δθ=2.7Δθ0, P=0.1P0), which are just below and above the calculated reverse 

plasticity limit (Figure 6.4), respectively, are chosen for the step-by-step analysis by 

ABAQUS. Load point K (Figure 6.5c) exhibit shakedown mechanism as the 

calculated max signed equivalent plastic strain stops changing after 3 load cycles. 

The calculated maximum signed equivalent plastic strain for the load point L (Figure 

6.5c) converges to a closed cycle after 3 load cycles showing a reverse plasticity 

mechanism. Thus, the results in Figure 6.5 obtained by ABAQUS step-by-step 

analysis confirm the accuracy of the predicted ratchet and shakedown limits by the 

LMM. 

 

6.4 Results and Discussions 

 

6.4.1 The Effect of the Part-through Slot on Limit Load 

 The loads causing plastic collapse on a defective pipeline with part-through 

slots and on defect-free pipeline under a constant internal pressure are shown in 

Table 6.3. From Table 6.3 it is observed that the calculated limit load for the 

defective pipeline with a small slot is identical to that for the defect-free pipeline. 

This reveals that the small slot does not affect the global failure mechanism of the 

defect-free pipeline. It can be seen from Table 6.3 that other types of slot cause a 

reduction in the limit load according to the volume of material removed. Despite 

removing the same volume of material, an axial slot will reduce the limit load more 

significantly than a circumferential slot. A thin walled pipe with closed ends 

subjected to internal pressure will have a hoop stress which is twice the axial stress, 

which makes an axial slot more dangerous than a circumferential slot. The calculated 

limit load for the defective pipeline with a large area slot has the least value, since 

the material loss for this type of slot is maximum. 
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Figure 6.5 ABAQUS verification using step by step analysis for: (a) the shakedown and ratchet limit 

and (b) reverse plasticity and ratchet limit (c) reverse plasticity limit ―AB‖ 
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Table 6.3 The limit loads for a pipeline with different defect types of slot under internal pressure P0 

Defect type 
Limit Load for shallow type 

slot (MPa) 

Limit Load for deep type slot 

(MPa) 

Defect-free 87.8 87.8 

Small slot 87.8 87.7 

Circumferential slot 87.4 72.3 

Axial slot 62.6 46.2 

Large area slot 49.1 24.4 

 

 

Figure 6.6 Shakedown and ratchet limit interaction curve for defective pipeline with shallow type slot 

 

6.4.2 The Effect of the Part-through Slot on Shakedown Limit 

 The shakedown and ratchet limit interaction curve for a defective pipeline 

with different defect types of shallow slots is shown in Figure 6.6. The same 

interaction curve with shallow and deep type slot is shown in Figure 6.7. In both 

figures the applied pressure in the X-axis is normalized with respect to the reference 

internal pressure while the thermal load in the Y-axis is normalized by using the 
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reference temperature difference Δθ=Δθ0=100

C. Form Figure 6.6 it is observed that 

any part-through slot significantly reduces the reverse plasticity limit of the pipeline 

due to the stress concentration caused by the existence of the slot. 

 

 

Figure 6.7 Shakedown and ratchet limit interaction curve of part-through slot with different 

dimensions: (a)small slot; (b) circumferential slot; (c) axial slot and (d) large area slot 
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plasticity limit due to the most significant stress concentration. In the same way as 

with the limit load, the axial slot has a larger impact on the hoop stress than a 

circumferential slot, and therefore has a larger reduction in the reverse plasticity 

limit. The stress concentration factor of a large area slot is less than that of an axial 

or circumferential slot and therefore has a larger reverse plasticity limit. 

 

Figure 6.8 Failure pattern at the limit state for defective pipeline: (a) small slot; (b) circumferential  

slot; (c)axial slot and (d)large area slot 

 Figure 6.7 shows that the reverse plasticity limit decreases when the slot gets 

deeper. The decreasing reverse plasticity limit is due to the increasing local stress 

concentration in the case of a deeper slot. 

6.4.3 The Effect of the Part-through Slot on Ratchet Limit 

 From Figure 6.6 it is observed that at different levels of cyclic thermal 

loading the ratchet limit boundary decreases sharply for a defective pipeline with 

axial and large area slot and it remains almost constant for small and circumferential 

slot, compared to a defect-free pipeline. This phenomenon could be explained by 

Figure 6.8, which shows the failure pattern at the ratchet limit state for a defective 

(a) Small slot (b) Circumferential slot  

(c) Axial slot  (d) Large area slot  
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pipeline with a shallow slot subjected to constant internal pressure and a cyclic 

thermal gradient. Figure 6.8a and Figure 6.8b show that for a defective pipeline with 

small and circumferential slots the failure pattern appears almost in the whole body 

of the pipe, where the lighter colour represents the failure area. These failure pattern 

are a global response, which are similar to that of a defect-free pipeline. Hence the 

ratchet limit boundary for the pipeline with small and circumferential slots has 

almost the same magnitude as the defect-free pipeline. In the case of a defective 

pipeline with axial and large area slots (Figure 6.8c and Figure 6.8d), both failure 

areas appear locally around the slot, while the other parts of the pipe are unaffected. 

This explains why the ratchet limit boundary for the defective pipeline with axial and 

large area slot decreases significantly comparing to that of defect-free pipeline. 

 Figure 6.6 also shows that for the cases of axial and large area slots, the 

ratchet limit ends at cyclic thermal loading points Δθ=4.1Δθ0 and Δθ=5.5Δθ0, 

respectively, which indicates that when the cyclic thermal loading Δθ is beyond these 

cyclic thermal loading limits (4.1Δθ0 for axial slot and 5.5Δθ0 for large area slot), 

then any amount of constant internal pressure will result in ratchetting. This 

phenomena can be explained by Figure 6.8c-d, which indicates that at these cyclic 

thermal loading limits (4.1Δθ0 for axial slot and 5.5Δθ0 for large area slot)  the failure 

regions (in light blue colour) all fell into reverse plasticity mechanism, therefore, any 

further mechanical load would cause the ratchetting of the component. 

 Similar to the limit load behaviour, the results in Figure 6.7a show that the 

deeper slot has no effect on the ratchet limit boundary for the small slot type. For the 

circumferential slot (Figure 6.7b), a deeper slot reduces the ratchet limit boundary 

slightly. When considering the axial and large area slots (Figure 6.7c-Figure 6.7d), a 

deeper slot causes greater reduction in the ratchet limit boundary. 

6.4.4 The Effect of the Part-through Slot on Plastic Strain Range 

 The plastic strain range concerning a fatigue crack initiation is a key factor in 

a low cycle fatigue assessment. The maximum plastic strain range against 

temperature range for different types of shallow slot subjected to cyclic thermal 

loading only is plotted in Figure 6.9a. It is observed from Figure 6.9a that the 
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presence of part-through slot leads to an increase in the maximum plastic strain 

range. The axial slot causes a sharp increase in plastic strain range with increasing 

temperature compared to a defect free pipe. All other slot types cause only a small 

increase in comparison. 

 In order to investigate the effect of the constant mechanical load on the 

plastic strain range, three types of cyclic load histories are chosen as follows: 

1) Cyclic temperature history (Δθ) only,  

2) Cyclic temperature history and constant internal pressure (Δθ+0.1 P0),  

3) And cyclic temperature history and constant internal pressure (Δθ+0.2 P0 ). 

 The diagrams of maximum plastic strain range versus temperature range for a 

defect-free pipeline and a defective pipeline with different slot types are shown in 

Figure 6.9b-Figure 6.9f. It can be seen that the plastic strain range occurs when the 

applied temperature range exceeds the reverse plasticity limit. The results show that 

the cyclic loading history with additional constant internal pressure (Δθ+0.1P0) 

causes an increase in the maximum plastic strain range. The extra increase of the 

constant internal pressure from (0.1P0) to (0.2P0) does not result in further increase 

in the plastic strain range. For the axial and large area slots (Figure 6.9e-Figure 6.9f), 

when the maximum temperature range exceeds the level Δθ=400C, the component 

will exhibit ratchetting under this cyclic temperature load and the extra constant 

internal pressure (Δθ+0.2P0) (Figure 6.6). Thus, for these two slot cases, the 

maximum plastic range is plotted for the temperature ranges up to level Δθ=400C. 

 The location of the initiation of a fatigue crack, in different types of defective 

pipes occurring due to fatigue of the structure under cyclic loadings, is shown in 

Figure 6.10. From Figure 6.10b-Figure 6.10d it is observed that the location of the 

initiation of a fatigue crack in a defective pipe with circumferential, axial or large 

area slots, respectively, will occur along the slot surface direction. Whereas for the 

defective pipe with a small slot (Figure 6.10a) the initiation of a fatigue crack occurs 

in the inner bore of the pipe. Further investigation on this study shows that the 

location of the initiation of a fatigue crack for a defective pipeline is independent of 

the cyclic loading types considered in this chapter. 
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Figure 6.9 Maximum equivalent plastic strain range against temperature range for  (a) Cyclic thermal load only ( 

all defective pipeline); (b) Cyclic thermal and mechanical load (defect-free); (c) Cyclic thermal and mechanical 

load (small slot); (d) Cyclic thermal and mechanical load (circumferential slot); (e) Cyclic thermal and 

mechanical load (axial slot); (f) Cyclic thermal and mechanical load (large area slot) 
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             (a) Small slot                       (b) Circumferential slot 

 

(c) Axial slot                   (d) Large area slot 

Figure 6.10 The location of the initiation of a fatigue crack under cyclic thermal load and constant 

internal pressure (a)small slot; (b) circumferential slot; (c) axial slot  

 

6.5 Conclusions 

 In the present study, the effect of part-through slots on limit loading, 

shakedown limit, ratchet limit and maximum plastic strain range has been 

investigated using the proposed LMM mention in Chapter 3,5 and the following 

observations have arisen: 

 1. The LMM has been verified by the step-by-step analysis, showing that it 

gives very accurate shakedown and ratchet limits for the defective pipelines with 

part-through slots. 

 2. A defective pipeline with a small slot and circumferential shallow slot 

greatly reduces the thermal load at which plastic shakedown occurs but does not 

affect the ratchet boundary and limit load. This implies that a small slot and 

circumferential shallow slot of the size studied in this chapter gives essentially a 

local stress concentration, which will affect the fatigue life of the pipeline but will 
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not influence the gross plastic deformation or the incremental plastic collapse 

behaviour. 

 3. The presence of a part-through slot leads to an increase in the maximum 

plastic strain range. The maximum plastic strain ranges obtained in this study give 

key information for the low cycle fatigue assessment. 

 4. The location of the initiation of a fatigue crack for a defective pipeline is 

independent of the cyclic loading types considered in this chapter. 

 As mentioned in the introduction, the evaluation of the ratchet limit is 

particularly useful for structures with stress raisers, such as cracks. In such structures, 

due to the presence of the elastic stress singularity at the crack tip, the shakedown 

condition becomes invalid, since a finite shakedown limit does not exist anymore. 

Therefore, in the coming chapter the effect of circular holes on the ratchet limit and 

crack tip plastic strain range in a centre cracked plate will be discussed. 
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CHAPTER 7. EFFECT OF CIRCULAR HOLES ON THE 

RATCHET LIMIT AND CRACK TIP 

PLASTIC STRAIN RANGE IN A CENTRE 

CRACKED PLATE 

Equation Chapter 7 Section 1 

7.1 Introduction 

 In Chapter 5, the numerical procedure of the LMM was described to identify 

the ratchet limit. This method was then applied for the investigation of the defective 

pipeline under cyclic thermal load and a constant mechanical load. As mentioned 

previously in these chapters, the evaluation of the ratchet limit is particularly useful 

for structures with stress raisers, such as cracks. In such structures, the presence of 

the elastic stress singularity at the crack tip makes the shakedown condition invalid, 

since a finite shakedown limit does not exist anymore. For this reason, in this chapter 

the effect of the ratchet limit for a cracked structure under cyclic mechanical load 

will be investigated numerically. 

 Cracks, which develop during manufacturing or the service period of 

structures, affect the load capacity, residual strength, life and integrity of the 

structure. These cracks may grow and cause material, economical and human 

damages. Therefore, it is necessary to increase the residual strength and service life 

of the cracked structures by arresting crack growth. Several methods have been 

employed to arrest crack growth, such as external adhesive patching across the crack 

used in aircraft industry [87] [88], the method of pressing steel balls and drilling 

holes in front of the crack tip so that when the crack approaches the hole it will 

become blunted and be arrested. The method of drilling stop holes is well known to 

reduce the stress intensity factor and studies have been carried out in this area [89]. 

However, the effects of the location and diameter of circular holes on the ratchet 

limit and crack tip plastic strain range, which provides information concerning 

fatigue crack growth in a low cycle fatigue assessment, have not been undertaken. 
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 In the analysis of structures subjected to cyclic loading histories for an 

elastic–perfectly plastic material, the component will either shakedown or ratchet. As 

mentioned in Chapters 5 and 6, for many applications, it is too conservative for a 

structure to be within the elastic shakedown limit. For this reason it is desirable to 

calculate the ratchet limit of a structure under cyclic load conditions. In addition, the 

evaluation of the ratchet limit is particularly useful for structures with stress raisers, 

such as cracks. In such structures, due to the presence of the elastic stress singularity 

at the crack tip the shakedown condition becomes invalid. Hence a finite shakedown 

limit does not exist anymore. However, the procedures for identifying the ratchet 

limit are still valid. This is due to the closed cycles of plastic strains occurring at the 

crack tip, enabling the evaluation of the finite ratchet limits. As a result, a method on 

the determination of the ratchet limit for cracked bodies is particularly desirable. 

 The aim of this chapter is to examine the evaluation of ratchet limit and 

plastic strain range for cracked bodies subjected to cyclic load conditions, and to 

analyse the effect of the circular hole on the ratchet limit and crack tip plastic strain 

range in a centre cracked plate using the LMM numerical procedure mentioned in 

Chapter 5. In this chapter, a centre cracked plate with symmetric holes subjected to 

two load conditions, cyclic uniaxial loading and cyclic bending moment with 

constant tensile loading, is considered by assuming plane strain condition. The effect 

of circular holes on the ratchet limit and crack tip plastic strain range, which is 

considered to be a better similitude parameter than the stress intensity range for the 

fatigue crack growth behaviour [90] in a stable cycle, is presented. Parametric studies 

involving the hole diameter and locations are carried out. The optimum location for 

reducing the crack tip plastic strain range with the least reduction in ratchet limit is 

identified considering the fact that reducing the plastic strain range will increase the 

component‘s fatigue life while an unchanged ratchet limit will keep the cyclic 

loading capacity of the cracked plate. An ABAQUS [80] step-by-step inelastic 

analysis is also carried out to verify the obtained ratchet limit by the LMM. 

 This work has been published in the International Journal of Fracture 

Mechanics in 2011. 
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7.2 Centre Cracked Plate with Circular Holes 

 

Figure 7.1 Centre cracked plate with symmetric holes subjected to cyclic tensile loading and cyclic 

bending moment 

 

Table 7.1 Material properties of the steel 

Young‘s modulus 

E (GPa) 
Poisson‘s ratio   

Coefficient of thermal 

expansion   (
1C ) 

Yield stress 
y  (MPa) 

200 0.32 51011.1   360 

 

7.2.1 Geometry 

 The geometrical shape and the material properties of the centre cracked plate 

with symmetric drilled holes are as shown in Figure 7.1 and Table 7.1, respectively. 

The half-crack length a  is 500 mm and the ratios 
a

W
 and 

a

L
 are both 2. The hole 

locations are referred to a co-ordinate system X , Y , the origin of which is located at 

the crack tip. 0X  and 0Y  are the coordinates of the hole's centre according to the 

coordinate system placed at the crack tip as shown in Figure 7.1. Calculations are 
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made for hole diameters D 40, 50, 100, 125, 150 mm with various symmetric 

drilled hole locations. The hole locations are defined by first drilling symmetric holes 

at various horizontal locations and keeping the vertical distance constant at 3.00 
a

Y
. 

Once the optimum horizontal location has been found, this is then held constant and 

holes are drilled for various vertical locations. 

 

Figure 7.2 (a) The cyclic tensile loading history with mean tension p  and tension range p (b) The 

cyclic bending moment history with reversed bending moment range M and constant tension p  

 

7.2.2 Loading 

 The centre cracked plate is subjected to two different cyclic loading cases 

under plane strain condition. In the first case the plate is under cyclic tension loading 

with mean tension p , and in the second case a cyclic bending moment with 

reversed bending moment range M and constant uniaxial tension p is applied to 

the plate. The detailed cyclic loading histories are given in Figure 7.2, which show a 

cyclic loading history with two load extremes during each load cycle. For the cyclic 

tension case (Figure 7.2a), the two extremes of loading history can be formulated as

2/)( 1 ppp t    and 2/)( 2 ppp t   , respectively, where p  
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represents the mean tensile loading and p  represents the tension range. A similar 

loading history has also been modelled for the cyclic bending moment case (Figure 

7.2b), by combining M , the reversed bending moment range, and p , the constant 

tensile loading. The reference mean tensile loading and the reference constant 

uniaxial tension, po , with loading magnitude equal to 100MPa are used in both 

cases. A reference reversed bending moment range, mmNM .1000  , is used for the 

cyclic bending moment case. 

 

                                    (a)                                                              (b) 

Figure 7.3 (a) Quarter symmetry model for cyclic tensile loading case  (b) Finite element model 

 

7.2.3 Finite Element Model 

 In the Finite Element Modelling (FEM) the sizes of the models are minimized 

by applying symmetry boundary conditions to quarter- and half-models, accordingly. 

The cyclic tensile loading case has two planes of symmetry, and for the cyclic 

bending moment case one plane of symmetry is used. Thus, only quarter- and half-

model is required for the cyclic tension and cyclic bending moment cases, as shown 

in Figure 7.3 and Figure 7.4, respectively. In both cases, along the symmetric axis, 

symmetric boundary conditions are imposed in the FEM. The analysis is performed 
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using ABAQUS type CPE8R 8 node quadratic quadrilateral elements with reduced 

integration scheme. 

 

                                  (a)                                                                 (b) 

Figure 7.4 (a) Half symmetry model for cyclic bending moment case (b) Finite element model 

 

 

Figure 7.5 Ratchet limit interaction curve for the cyclic tensile loading case with hole location at 

1.0
a

X
, 3.0

a

Y
 (D=100mm) 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

Ratchet limit boundary 

Limit load boundary 

ABAQUS RIKS analysis 

Reverse plasticity zone 

Plastic collapse zone 

C  

A  

po

p




2



 

po

p





 
B  

 tM

 

)(tp  

2a 

2w 
L Y 

X 

0X

 
0Y

 

2a 



 

123 

 

 

Figure 7.6 ABAQUS verification of the ratchet limit for the cyclic tensile loading case  using detailed 

step by step analysis 

 

7.3 Comparison of the Ratchet Limit with Limit Load 

Boundary 

 In order to illustrate the effectiveness of the ratchet limit method in cracked 

bodies, a centre cracked plate subjected to two different cyclic loading cases with a 

symmetrically located hole of diameter D 100mm is considered. The horizontal 

location, 0X , and the vertical location, 0Y , of the hole are kept at locations 10 
a

X
,

3.00 
a

Y
, respectively. 

7.3.1 Cyclic Tensile Case 

 In the case of the cyclic tensile loading, the converged values of upper bound 

ratchet limits obtained from the LMM are shown in Figure 7.5 as an interaction 

diagram, composed of the limit for different ratios of varying tensile loading 
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amplitude and the mean tension. The applied mean tension, P , in X-axis and the 

tension amplitude 
2

P
 in Y-axis are normalized with respect to the reference 

tension po . Figure 7.5 shows that the ratchet limit boundary coincides with limit 

load boundary, which is also calculated by the LMM. This means that any cyclic 

tensile load which exceeds the ratchet limit will also exceed the limit load and cause 

plastic collapse in the first cycle (i.e. there will be no ratchetting or incremental 

plastic collapse which normally occurs due to the excessive cyclic loads). The 

coincidence of the ratchet limit and limit load boundaries is due to the fact that for 

both the ratchet limit analysis with the cyclic tensile load history, and the limit load 

analysis with static tensile load, the maximum tensile load during the cycle is 

dominant and leads to the same plastic collapse in both cases. The accuracy of the 

limit load boundary by the LMM has been verified by ABAQUS RIKS analysis, 

which provides the same limit load boundary as that calculated by the LMM. For the 

verification of ratchet limit boundary calculated by the LMM the cyclic load point C 

( 02 pp   , 0pp   ), which is just below the calculated ratchet limit boundary 

(Figure 7.5), is chosen for the step-by-step analysis in ABAQUS. The plastic strain 

history at the crack tip for the cyclic loading C is shown in Figure 7.6, where the Y-

axis represents the normalized maximum equivalent plastic strain for the cyclic load 

point C (Figure 7.5) with respect to maximum equivalent plastic strain at the crack 

tip for a centre cracked plate without holes under the action of the reversed tension 

( 02 pp   , 0p ). As expected, Figure 7.6 shows a reverse plasticity mechanism 

under the cyclic load case C, where the maximum equivalent plastic strain calculated 

by the step-by-step analysis ceases to increase at about 3 load cycles and settles into 

a closed loop for the remaining cycles. This observation confirms the predicted 

ratchet limit curve. 

7.3.2 Cyclic Bending Moment Case 

 The same procedure is also applied to the cyclic bending moment case, and 

the interaction diagram is shown in Figure 7.7, where the applied constant pressure in 

X-axis is normalized with respect to the reference uniaxial tension po , while the 
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cyclic bending moment in Y-axis is normalized using the reference cyclic bending 

moment 0M . Unlike in the cyclic tensile loading case, the ratchet limit and the limit 

load curves do not coincide, which means that an increase in the loads beyond the 

ratchet limit will not automatically cause plastic collapse. Any combination of loads 

which lies between these two boundaries will result in ratchetting. The accuracy of 

the limit load boundary obtained by the LMM has been verified by ABAQUS RIKS 

analysis, which provides the same limit load boundary as that calculated by the 

LMM. For the verification of ratchet limit boundary calculated by the LMM the 

cyclic load points D( 06.1 MM  , 0pp   ), and E ( 06.1 MM  , 01.1 pp   ), 

which are just below and above the calculated ratchet limit boundary (Figure 7.7), 

respectively, are chosen for the step-by-step analysis in ABAQUS. The plastic strain 

history at the crack tip for the cyclic loading D and E are shown in Figure 7.8, where 

the Y-axis represents the normalized maximum equivalent plastic strain for the cyclic 

load points D and E (Figure 7.7) with respect to maximum equivalent plastic strain at 

the crack tip for a centre cracked plate without holes under the action of the reversed 

bending moment ( 06.1 MM  , 0p ). The calculated maximum equivalent plastic 

strain for the load case D  settles to a stable cycle after about 5 load cycles showing a 

reverse plasticity mechanism, and the load case E  shows a strong ratchetting 

mechanism, with the maximum equivalent plastic strain increasing at every cycle. 

Thus, the results in Figure 7.8 obtained by ABAQUS step-by-step analysis confirm 

the accuracy of the predicted ratchet limits by the LMM for the cyclic bending 

moment case. 

 

7.4 Results  

 The effect of the hole location and the hole size on ratchet limit and 

maximum plastic strain range for the centre cracked plate are analyzed in this study. 

Firstly, symmetric holes are drilled at various horizontal locations keeping the 

vertical distance constant at 3.00 
a

Y
. Once the optimum point is reached subsequent 

analyses are performed with varying vertical coordinates and fixed horizontal 

location. 
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Figure 7.7 Ratchet limit interaction curve for the cyclic bending moment case with hole location at 

1.0
a

X
,  3.0

a

Y
 (D=100mm) 

 

 

Figure 7.8 ABAQUS verification of the ratchet limit for the cyclic bending moment case using 

detailed step by step analysis 
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Figure 7.9 Ratchet limit interaction curve with varying horizontal hole location and fixed vertical 

location at 3.0/ aY  (D=100m): (a) cyclic tensile loading case and (b) cyclic bending moment case 
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Figure 7.10 Variation of normalized ratchet limit multiplier with varying horizontal hole location at 

the fixed vertical location( 3.0/ aY ): (a) for cyclic tensile loading case 1/)2/(  pop   (Figure 

7.9a) and (b) for cyclic bending moment case 1/)2/( 0  MM (Figure 7.9b) 
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Figure 7.11 Variation of normalized maximum plastic strain range with varying horizontal hole 

location at the fixed vertical location ( 3.0/ aY ): (a) for cyclic tensile loading case 

1/)2/(  pop   (Figure 7.9a) and (b) for cyclic bending moment case 1/)2/( 0  MM (Figure 

7.9b) 
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Figure 7.12 Variation of normalized ratchet limit multiplier with varying vertical hole location at fixed 

horizontal location ( 1.0/ aX ): (a) for cyclic tensile loading case 1/)2/(  pop   (Figure 

7.9a) and (b) for cyclic bending moment case 1/)2/( 0  MM (Figure 7.9b) 
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Figure 7.13 Variation of normalized maximum plastic strain range with varying vertical hole location 

at fixed horizontal location ( 1.0/ aX ): (a) for cyclic tensile loading case 1/)2/(  pop   

(Figure 7.9a) and (b) for cyclic bending moment case 1/)2/( 0  MM (Figure 7.9b) 
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7.4.1 The Effect of the Hole Location and Size on Ratchet Limit in 

Horizontal Direction 

 The ratchet limit interaction curve for a centre cracked plate with drilled 

holes of diameter D=100mm at different horizontal locations (keeping the vertical 

distance constant at 3.00 
a

Y
) is shown in Figure 7.9 for both cyclic loading cases. It 

is observed from Figure 7.9 that at different levels of cyclic tension and bending 

moment the ratchet limit boundary will always show the trend to sharply decrease as 

the holes move toward the ligament side (from 00 
a

X
 to 3.00 

a

X
 ) and it will 

remain almost constant when the holes move from the crack tip to the centre of the 

plate (from 00 
a

X
 to 10 

a

X
 ). 

 Since the above trend of results is valid for any cyclic loading point, in the 

coming discussions we only consider the results of the ratchet limit and maximum 

plastic strain range calculated at the cyclic loading point 1/)2/(  pop   for the 

cyclic tensile loading case and 1/)2/( 0  MM  for the cyclic bending moment case. 

The variation of the normalized ratchet limit multiplier 0/ RR  for various hole 

diameters and locations is shown in Figure 7.10a and Figure 7.10b, where the ratchet 

limit multiplier R , in the Y direction, is normalized with respect to that of a centre 

cracked plate without holes, 0R . 

 It is observed in Figure 7.10a that from point 10 
a

X
( 3.00 

a

Y
), to point 

2.00 
a

X  ( 3.00 
a

Y
), all the ratchet limit multipliers for various hole sizes are nearly 

having the same value as that in the case without holes, therefore the ratchet limit is 

unaffected by the presence of the hole within the range of diameters considered here. 

From location 2.00 
a

X  to location 1.00 
a

X
 the normalized ratchet limit 

multiplier decreases slightly. Beyond hole location 1.00 
a

X
 the normalized ratchet 

limit multiplier falls sharply. This decrease in the figure is shown up to point 
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3.00 
a

X
. Between hole location 2.00 

a

X
 and 1.00 

a

X
 in Figure 7.10a, it is 

shown that the ratchet limit multiplier is decreasing less than 0.1% for diameters 40-

50mm, and less than 2% for diameters 100-150mm compared to the case of a centre 

cracked plate without holes. From location 1.00 
a

X
 to location 3.00 

a

X
 the drop 

of the ratchet limit multiplier increases proportionally with the increasing hole 

diameter. 

 Figure 7.10b shows the variation of the normalized ratchet limit multiplier 

with moving holes in horizontal direction for the cyclic bending moment case. It is 

observed from Figure 7.10b that the holes start to show the effect on ratchet limit 

multiplier at location 1.00 
a

X  while for the cyclic tensile loading case this effect is 

observed to start at point 2.00 
a

X
. From location 1.00 

a

X
 to location 3.00 

a

X
, 

more significant decrease in normalized ratchet limit multiplier is identified at the 

same hole location when compared with the cyclic tensile loading case. 

7.4.2 Effect of Hole Location and Size on Plastic Strain Range in 

Horizontal Direction 

 The variation of calculated normalized maximum plastic strain range 

0/ pp    for various hole diameters is shown in Figure 7.11, where the maximum 

plastic strain range 
p  in the Y direction is normalized with respect to that of a 

centre cracked plate without holes, 
0p . 

 It is observed in Figure 7.11a that from point 10 
a

X
( 3.00 

a

Y ), to point 

3.00 
a

X  ( 3.00 
a

Y
), the maximum plastic strain range is unaffected by the presence 

of the holes regardless of the hole size. From location 3.00 
a

X  to location 1.00 
a

X  

the maximum plastic strain range falls sharply and reaches its minimum at location
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1.00 
a

X . Beyond hole location 1.00 
a

X  there is a drastic increase in the 

maximum plastic strain range and this increase reaches its maximum at point

1.00 
a

X
. Between hole location 3.00 

a

X
 and 1.00 

a

X  in Figure 7.11a it is 

observed that greater reductions in the maximum plastic strain range are given by 

larger hole diameters. It is also observed in the figure that at location 1.00 
a

X
 a 

hole diameter of 40 or 50mm has little effect on the maximum plastic strain range 

(causing differences of 1% and 3% respectively). Larger hole diameters at this 

location have a more significant effect, with differences between 30% and 50% in 

the maximum plastic strain range observed for diameters between 100mm and 

150mm. Beyond point 1.00 
a

X  (as the hole is moving from the crack tip toward the 

ligament side), the bigger the hole diameter is, the greater the increase of the 

maximum plastic strain range will be. 

 Figure 7.11b shows the trend of the maximum plastic strain range for a plate 

with a hole moving in horizontal direction while the vertical direction is kept 

constant for the cyclic bending moment case. Compared to the cyclic tensile loading 

case, the moving holes show a similar effect on the maximum plastic strain range 

however the hole size has a more profound effect. As for the cyclic tensile case, 

diameters of 40-50mm show little effect on the maximum plastic strain range (1% 

and 2%, respectively). Larger hole diameters, however, show a greater effect, with 

reductions of 40-72% in the maximum plastic strain range resulting from hole 

diameters of 100-150mm. 

 It can be seen from Figure 7.10 and Figure 7.11 that the largest decrease in 

maximum plastic strain range is given by a hole at a distance of 1.00 
a

X
 from the 

crack tip. This hole location of 1.00 
a

X
 is considered to be the horizontal optimum 

location. 
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Figure 7.14 Fracture pattern at the limit state for cyclic tensile loading case with different horizontal 

hole location (fixed vertical location  3.0/ aY ) at: (a) without hole; (b) 2.0/ aX ;(c) 1.0/ aX

;(d) 0/ aX ;(e) 1.0/ aX and (f) 2.0/ aX  

 

7.4.3 Effect of Hole Location and Size on Ratchet Limit in Vertical 

Direction 

 Keeping the horizontal optimum location ( 1.00 
a

X
) constant, holes are 

drilled at various vertical locations. The variation of ratchet limit multiplier in 

different vertical positions for both cyclic loading cases is shown in Figure 7.12a-

Figure 7.12b, where the ratchet limit multiplier R  in the Y direction is normalized 

with respect to that of a centre cracked plate without holes, 0R . It can be seen from 

these figures that at 1.00 
a

X
, the vertical height of the holes have no effect on the 

ratchet limit multiplier. 

 

(a) (c) (b) 

(d) (f) (e) 
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7.4.4 The Effect of the Hole Location and Size on Plastic Strain Range 

in Vertical Direction 

 The variation of maximum plastic strain range in different vertical positions 

for both cyclic loading cases is shown in Figure 7.13a-Figure 7.13b, where the 

maximum plastic strain range 
p  in the Y direction is normalized with respect to 

the one in the case of a centre cracked plate without holes, 
0p . It is seen in Figure 

7.13a that as the holes move in the positive Y direction (Figure 7.1), the maximum 

plastic strain range increases for the cyclic tensile loading case. From hole location 

3.00 
a

Y
 to 8.00 

a

Y
 it can be observed that larger hole sizes will give smaller 

maximum plastic strain range. The normalized value of maximum plastic strain 

range asymptotically approaches to unity irrespective of the hole size when the holes 

move away from the crack and after location 7.00 
a

Y

 
the difference between hole 

sizes becomes negligible. At location 3.00 
a

Y
( 1.00 

a

X
), the decrease in 

maximum plastic strain range is maximum, 1% and 3% for diameters 40-50 mm and 

30% to 50% for diameters 100 mm to 150 mm. The similar but more significant 

behavior is observed in the cyclic bending moment case. At location 3.00 
a

Y

( 1.00 
a

X ), the decrease in maximum plastic strain range is maximum, 1% and 2% 

for diameters 40-50 mm and 40% to 72% for diameters 100 mm to 150 mm. 

7.4.5 The Optimum Hole Location and Size 

 It can be concluded from above discussions that the optimum location, where 

the decrease in maximum plastic range is maximum and the reduction in ratchet limit 

is minimum, is located at point 1.00 
a

X , 3.00 
a

Y
. It is also observed that from the 

hole diameters considered here, a 150mm diameter hole is shown to be the most 

beneficial. At this optimum hole location and size, the maximum decrease in plastic 

strain range is 50% and the corresponding ratchet limit is 2%, for the cyclic tensile 
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case. For cyclic bending, this hole diameter and location gives a 72% reduction in the 

maximum plastic strain range and does not reduce the ratchet limit. 

 

 

Figure 7.15 Fracture pattern at the limit state for cyclic bending moment case with different horizontal 

hole location (fixed vertical location  3.0/ aY ) at: (a) without hole; (b) 2.0/ aX ;(c) 1.0/ aX

;(d) 0/ aX ;(e) 1.0/ aX and (f) 2.0/ aX  

 

7.5 Discussions 

 The above results could be explained by Figure 7.14 and Figure 7.15, which 

show the failure pattern at the limit state for both cyclic loading cases with various 

horizontal locations by keeping vertical distance constant at 3.00 
a

Y
. Both cyclic 

loading cases have similar failure patterns at the ratchet limit state for the same 

horizontal location. Figure 7.14a and Figure 7.15a show that without the holes, the 

failure pattern appears with a 45 degree angle linking from the crack tip to the edge 

of the plate. When the hole is drilled at the horizontal locations 2.00 
a

X
, 1.00 

a

X
 and 

00 
a

X
 (Figure 7.14b-Figure 7.14d and Figure 7.15b-Figure 7.15d) which are within 

the failure area, the failure pattern at the ratchet limit state becomes discontinuous 

due to the presence of the holes, which weakens the plate‘s strength. These are the 

reasons why the ratchet limit boundary and normalized ratchet limit multiplier are 

(a) (c) (b) 

(d) (f) (e) 
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decreasing in these locations (Figure 7.9 and Figure 7.10). At hole location 1.00 
a

X
 

(Figure 7.14e and Figure 7.15e), which is just outside the failure area, the stress 

concentration and stress field produced by the holes interact with that of the crack 

which reduces the maximum strain range, and also causes a slight reduction on the 

ratchet limit. When the holes are placed far from the failure area (beyond 2.00 
a

X
 

in Figure 7.14f and Figure 7.15f), they cause no effect on the failure pattern. That is 

why the ratchet limit multiplier has the same value as that in the case of a plate 

without holes and so does the maximum plastic strain range. 

 

7.6 Conclusions 

 In the present chapter, the effect of circular holes on maximum plastic strain 

range and the ratchet limit has been studied using the Linear Matching Method which 

was mentioned in Chapter 5. The LMM has been verified by step-by-step analysis 

and RIKS analysis in ABAQUS, showing that it gives very accurate ratchet limits for 

a plate with a centre cracked and symmetrically drilled holes under complex cyclic 

loading histories. Parametric studies involve holes with different diameters drilled at 

different locations. The optimum location where the maximum plastic strain range 

decreases the most with minimum effect on the ratchet limit is located at a distance 

10% of the semi-cracked length from crack tip opposite the ligament for both the 

cyclic tensile loading and cyclic bending moment cases. And it is also observed that 

the location is independent of hole sizes. The most significant decrease in maximum 

plastic strain range is observed as 50% with 2% reduction in the ratchet limit, for the 

hole size D=150mm at the optimum location 1.00 
a

X
, 3.00 

a

Y
 in the cyclic 

tension case. For cyclic bending, this hole diameter and location gives a 72% 

reduction in the plastic strain range and does not reduce the ratchet limit.  
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 The results of this chapter has shown that the LMM numerical procedure is 

capable to deal with the stress singularities at the crack tip and generate the ratchet 

limit solutions for a crack component subjected to cyclic loading condition. 
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CHAPTER 8. EXTENSION OF THE LINEAR 

MATCHING METHOD TO EVALUATE 

THE CYCLIC J-INTEGRAL (∆J) FOR 

CRACK COMPONENTS 

Equation Chapter 8 Section 1 

8.1 Introduction 

 The results achieved in Chapter 7 has shown that the LMM numerical 

procedure can address to the stress singularity at the crack tip and can generate 

ratchet limit solutions for a cracked component subjected to cyclic loading condition. 

This leads to a one step further research on calculating the crack growth/propagation 

rate from Fracture Mechanics approach using the LMM numerical procedure, and 

this research work will be presented in this chapter. 

8.1.1 Background 

 The existence of initial flaws arises during manufacture or heat-treatment of 

equipment, particularly during welding processes. These flaws cannot be avoided 

within structure component, since initiated cracks do not lead to instantaneous 

failure. Failure modes of crack-like flaws differ from industry to industry but a 

significant proportion of failures results from cyclic loading with high temperature 

often aided by environmental degradation. One of the examples is the power 

generation industry which is striving to meet the criteria for clean and sustainable 

energy production by increasing efficiency while simultaneously decreasing levels of 

chemical emissions and pollutants. The efficiency of conventional steam and gas 

turbine power plant can be significantly improved by increasing the operating 

temperature, leading to reduced fuel consumption and lower levels of harmful 

emissions. Life assessment approach needs to incorporate innovative and advanced 

numerical modelling in conjunction with analytical and experimental techniques to 

ensure operational safety and efficiency of current and future conventional or nuclear 

plants. With the trend towards higher operating temperatures and the competing need 

to extend the life of existing power plant, more accurate and reliable numerical 
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approaches for estimating crack propagation behaviour during a specified operation 

period due to creep-fatigue damage under high temperature are needed. 

 Continuum Damage Mechanics (CDM), developed in the last few decades, 

provides a framework for incorporating the effects of damage induced stiffness 

softening, anisotropy etc. in constitutive equations. Many CDM models can predict 

crack initiation and crack growth path direction for complex structures [91] 

However, there are drawbacks for applying these CDM models. The drawbacks 

include; (1) the lack of a standardised implementation meaning that careful and 

lengthy implementation is required; (2) the enormous computational expense 

required; (3) the model may require implementation of contact elements to simulate 

the crack closure, thus further increasing complexity; and (4) the models require a 

large number of material parameters and experimental determination of those 

parameters [92]. 

 Another method for calculating the crack propagation rates is the Fracture 

Mechanics approach. Fracture mechanics is a well known approach for predicting the 

crack propagation and the analysis can be based on linear-elastic or more complex 

elastic-plastic (nonlinear) models. In 1960, Paris [93] first proposed the Linear 

Elastic Fracture Mechanics (LEFM) concepts to fatigue crack growth. However, 

LEFM becomes invalid when the plastic zone at the crack tip is significant in size 

compared to either the crack length or the remaining ligament of uncracked material. 

Elastic Plastic Fracture Mechanics (EPFM) can be used to analyze the toughness of 

materials with large post-yield deformation and it has been shown to better describe 

the fracture behaviour of ductile materials than LEFM does [71] [94]. In EPFM, the 

J-integral is a parameter that can be used to quantify both the energies consumed in 

the elastic and plastic deformations of a strained object [95] [96]. J-integral 

calculations have been extensively applied to creep-fatigue crack propagation at high 

temperatures under cyclic loading for metallic materials. The cyclic J-integral was 

first proposed and implemented by Dowling and Begley [97] as a parameter which 

correlates with the crack growth rate, da/dN. values of ΔJ plotted vs corresponding 

crack growth rates da/dN, on a double logarithmic scale, exhibited power law 

behaviour similar to the Paris equation [93] so that it is possible to write  
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 ( )mda
A J

dN
   (8.1) 

Where A and m are constants found from the least-square regression of data.  

 The first objective of this chapter is to review the current state of J-integral 

method under cyclic loading conditions. The methods include (a) contour J-integral 

method (b) simplified ΔJ method and (c) the load-displacement curve & ASTM 

standard method. Following this review, a different ΔJ estimate scheme based on a 

potential energy approach using LMM is presented. This method is capable of 

describing the crack growth rate behaviour by considering the complete cycle 

accumulated effects. 

 This work has been published in the 13th International Conference on 

Pressure Vessel Technology, London, UK, 2012 [98]. 

8.2 Review of ΔJ Method 

 

8.2.1 Contour J integral 

 The J-integral describes the non-linear behaviour of the material ahead of a 

crack, and was first developed by Rice [95]. He generalized the energy release rate 

concept for non-linear materials and calculated it as a path independent line integral, 

identified as the J-integral, computed along an arbitrary contour around the crack. In 

[95], the path independent J-integral was defined as  

 1

1

( )m
m

u
J Wn T ds

x






   (8.2) 

where Γ is a path surrounding the crack tip which begins at the lower crack and ends 

at the upper face, W is the strain energy density, n1 is the x1 component of the 

outward unit normal to Γ, Tm=ζmjnj is the traction and um is the displacement vector, 

ds is the differential arc length along Γ, and α is a partial derivative of the function um 

with respect to the x1 coordinate direction. The value of J, obtained under elastic–

plastic conditions, was shown to be numerically equal to the strain– energy release 

rate G (which is analogous to the stress intensity factor K) under fully elastic 
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conditions [94]. However, the applicability of J-integral to cyclic loading ΔJ was 

being questioned because the deformation theory of plasticity does not account for 

plasticity effects upon unloading. Due to the fact that the cyclic stress-strain 

responses related with load processes are nonlinear during Low Cycle Fatigue (LCF), 

in which Jmin and Jmax denote the J-integral for the minimum and maximum loading 

of fatigue are both related to history of loading, so the value of cyclic J-integral 

cannot be simply evaluated by the difference between Jmax and Jmin. Since main 

conceptions of Rice's J-integral are not applied directly to fatigue, i.e., cyclic J-

integral parameter, which is impossibly simple extension of J-integral conception, 

needs to be newly defined. Tanaka et al [99] [100] have defined a ΔJ based on the 

definition of J-integral for monotonic loading and proved that it is independent of 

integral path through theory of deformation work when deformation energy may be 

denoted by a single-value function of strain during cyclic loading. The formulation of 

ΔJ from Tanaka for a standing crack subjected to a remote loading change is defined 

as: 

 1

1

( )m
m

u
J Wn T ds

x







     (8.3) 

where Γ is the path on which ΔJ is calculated, ΔW, ΔTm, and Δum, are the changes in 

strain energy density, traction, and displacement, respectively. However, it is unclear 

how to choose constitutive relation when Tanaka‘s ΔJ path is evaluated, and Chow 

and LU [101] think ΔJ path is a semi-empirical parameter with ambiguous physical 

reasoning. And, the analysis obtained from a path independent cyclic J-integral is 

rather laborious  

8.2.2 GE/EPRI and Reference Stress Method 

 To obviate the complicated analysis of ΔJ for the fracture analysis of ductile 

material, the simple ΔJ estimation scheme (popularly known as GE/EPRI and 

Reference Stress Method-RSM) emerged. It was assumed that the ΔJ is the 

summation of elastic and fully plastic solutions. The ΔJ based on these two methods 

required the Ramberg-Osgood coefficient and strain hardening index as basic input 

to represent material tensile data. The disadvantage here is that Ramberg-Osgood 
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fitting of the stress-strain curve can be seriously inaccurate, leading to inaccuracy in 

the estimated J [102] [103]. Additionally, while applying the GE/EPRI schemes for 

wide variety of test data of different crack geometry with a wide range of material 

properties, it has been observed that GE/EPRI schemes highly over predict plastic ΔJ 

in the elastic to fully plastic transition region with respect to the incremental 

plasticity finite element solutions. Zahoor [104] first pointed out that the over-

prediction of J might be as high as 3–7 times depending on the type of material. 

Similar observations were subsequently made by other researchers [105] [106] [107] 

as well. In this study, the proposed ΔJ results will be compared with the one 

produced by the Reference Stress Method (RSM). ΔJ estimated by the RSM for a 2-

D cracked plate case in [108] is given by: 

 
ref refJ R      (8.4) 

 
2( / )refR K     (8.5) 

 /ref y LP P     (8.6) 

Here PL is the limit load for the cracked geometry, and Δεref is the strain range 

corresponding to Δσref on the material cyclic stress-strain curve, which is given by 

the description of Ramberg-Osgood equation. 

8.2.3 Load-Displacement Curve & ASTM Standard Method 

 Another simplified ΔJ method was introduced by Dowling and Begley [97] 

on A533B steels, using an approximation of the J-integral based on the area under 

load–displacement curves—a simplified model proposed by Rice et al. [109]. 

Dowling and Begley assumed that ΔJ defines the stress and strain fields near the 

crack tip only during the loading half of the cycle, which successfully modelled the 

low cycle fatigue behaviour. This simplified method was further improved by Merkle 

and Corten [110] and Landes et al. [111]. ΔJ values calculated from load-

displacement data were used [112] [113] to correlate fatigue crack growth data in 

steels. ΔJ was shown to be identical to an energy rate definition similar to the 

original integral definition of J which can be expressed by the potential energy 

change with crack growth as, 
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dU

J
Bda

   (8.7) 

Equation (8.7) converted to ΔJ is given by [112] as 

 
1 ( )

( )
d U

J
B da


    (8.8) 

Where ΔU is the potential energy, B is the specimen thickness, and a is the crack 

length. ΔU is given by,  

 U Pd    (8.9) 

where ΔP is the loading amplitude and δ is the displacement. Thus, ΔU is an 

important factor in controlling fatigue crack propagation [115] [116] [117].  

 Sumpter and Turner [118] expanded Equation (8.7) and rewrote it in the 

following form: 

 
e pJ J J   (8.10) 

Je and Jp are the elastic and plastic components, respectively, of the total J value 

from monotonic case, and can be expressed by the following equations: 

 
( )

e e
e

U
J

B W a





 (8.11) 

 
( )

p p

p

U
J

B W a





 (8.12) 

where Ue, and Up are the elastic and plastic components, respectively, of the total 

energy, ŋe, and ŋp are their corresponding elastic and plastic work factors, (W-a) is 

the ligament length and W is the specimen width. This unconventional approach to 

the J-integral, based on the potential energy approach was called ASTM standard 

method. Equation (8.11) and (8.12) shows that Je and Jp are a linear function of Ue
 

and Up. 

 [119] [120] [121] [122] [123] are the studies that investigated the behaviour 

of ΔJ with fatigue crack propagation for steels using load-displacement curves 

methods. It is important to notice that in all the studies mentioned above, ΔJ was 

calculated for each individual cycle. By adding the plastic contributions to the elastic 

terms the plastic contributions are calculated using the areas under load–
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displacement curves. The accumulated effects over the entire cycle have not been 

considered numerically. One of the purposes of this chapter is to use the LMM to 

include these effects for calculating ΔJ. 

 The load–displacement curves approach (8.8) and ASTM standard methods 

(8.10)-(8.12) are selected in this study for the cyclic loading case, since the 

theoretical basis appears to be the best and permits easier processing of empirical 

data. Thus, the elastic–plastic cyclic J-integral is expressed as the summation of 

elastic and fully plastic solutions for various crack geometry and loading conditions 

which yields the following formula for estimating the total ΔJ value [102]: 

 
e pJ J J     (8.13) 

Equation (8.8) and the form of ASTM show that ΔJe and ΔJp are functions of ΔUe
 

and ΔUp, respectively. ie. 

 ( ) ( )e e p pJ f U J f U       (8.14) 

Where ΔJe and ΔJp are the elastic and plastic portion of ΔJ, and ΔUe
 
and ΔUp are 

elastic and plastic strain energy respectively, as shown in the hysteresis loop of 

Figure 8.1. Their values will be calculated from LMM by accounting for the 

cumulative cycle effect. 

 

Figure 8.1 Hysteresis loop under cyclic loading case 

ΔUe 

ΔUp 

Δζ 

Δε
p 

Δε
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8.2.4 Linear Matching Method (LMM) 

 As mentioned in pervious chapters, the LMM is distinguished from the other 

simplified methods by ensuring that equilibrium and compatibility are satisfied at 

each stage[5][20][21] [75]. In addition to the shakedown analysis method [20], the 

LMM has been extended beyond the range of most other direct methods by including 

the evaluation of ratchet limit [21]. The contribution of this chapter is to link Fracture 

Mechanics and Continuum Mechanics approaches to each other in order to calculate 

the ΔJ through the LMM numerical procedure mentioned in Chapter 3 and 5, since it 

has a capability to evaluate the stable cyclic response: the cyclic stresses, residual 

stresses, elastic & plastic strain energy and plastic strain ranges for the low cycle 

fatigue assessment with cyclic load history. By the use of this link, the cumulative 

cyclic effect of ΔJ can be solved. 

 In order to provide the energy form of ΔJ predictions, this chapter has been 

carried out on a single edge crack plate subjected to cyclic tensile and bending 

loading. This chapter has resulted in the formulation of a ΔJ estimation scheme using 

LMM which is the subject of coming sections of this chapter. The scope of this 

chapter was: 

 (a) to obtain ΔJe vs ΔUe and ΔJp vs ΔUp relationships, using finite element 

computations, for single edge crack plate under cyclic tensile and bending loading. 

The crack depth to plate depth ratios (a/W) used are 0.05, 0.075 and 0.1; the material 

models used are elastic perfectly plastic and Ramberg-Osgood model with the 

material work hardening exponent, n, with 5, 8 and 20; 

 (b) to formulate a ΔJ estimation scheme in energy form, based on the finite 

element results obtained in (a); 

 (c) to compare and validate the ΔJ estimation with the Reference Stress 

Method results. 



 

148 

 

8.3 Numerical Procedures for Defining Elastic and Plastic 

Energy (ΔUE
 and ΔUP) Through LMM 

 

Figure 8.2 Single edge cracked plate subjected to cyclic tensile loading and cyclic bending moment 

 

 The numerical procedure in the first stage of minimization process in Chapter 

5 is adopted for defining the varying residual stress field and plastic strain range. 

 The total internal energy range under cyclic loading is given as: 

 
e pU U U     (8.15) 

where ΔUe represents the linear elastic energy range as: 

 
2

e

V

U dV
E


    (8.16) 

Where V corresponding to the total volume of the plate, and ΔUp represent the plastic 

energy range as: 
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p

p

p

V

U dV      (8.17) 

Here Vp corresponding to the plastic volume of the plate and the value of Δε
p 

are 

obtained from Appendix II. 

 

8.4 Numerical Example 

 

8.4.1 Geometry and Material Model 

Table 8.1 Material properties of the steel 

Young‘s modulus 

E (GPa) 
Poisson‘s ratio   

Coefficient of thermal 

expansion   (
1C ) 

Yield stress 

y  (MPa) 

200 0.3 
51011.1   700 

 

 The geometrical shape and the material properties of the single edge cracked 

plate are shown in Figure 8.2 and Table8.1 [124], respectively. For a non-linear 

analysis, the elastic perfectly plastic and Ramberg-Osgood types of material model 

are adopted in this chapter. The following Ramberg-Osgood type stress-strain 

relationship for the form of monotonic loading is [80]:  

 
1

0

1
( )n n

E E

 
 



   (8.18) 

where ε is the total strain, ζ is the applied stress, E is the elastic modulus, ζ0 is 

reference stress usually taken as 0.2% yield stress (ζy), and α and n are the Ramberg-

Osgood plastic hardening constants. This can be converted to cyclic behaviour using 

stress and strain ranges as: 

 0

0

( )
2 2 2

n

E E

   




  
   (8.19) 

Equation (8.19) could be written as: 

 0

0

2 ( )
2

n

E E

  
 



 
    (8.20) 

where Δζ is the true stress range, and Δε is the true strain range. At the lower limit, 

n=1, the above equation represents linear-elastic behaviour, and at the upper limit, 
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n=∞, it may be representing the elastic-perfectly plastic behaviour. The first term on 

the right-hand side of the above equation represents the elastic part and the second 

term represents the plastic part. 

 Then the plastic strain amplitude from equation (8.20) can be written as: 

 0

0

2 ( )
2

n

p
E

 
 




   (8.21) 

and 

 0
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2

p n
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



 (8.22) 

In this study the reference stress (ζ0) is taken as 0.2% yield stress (ζy), where ζy is 

defined as half the stress range that results from a strain range of 0.2% in the steady 

state as: 

 0.2% 0.2%
2

y p


 


    (8.23) 

From equations (8.20)-(8.22), α could be evaluated with given yield stress (ζy) as: 

 
0

0.2%

2

E



  (8.24) 

From equation (8.23)-(8.24) it is important to note that when ζ0=ζy, α is independent 

of the Ramberg-osgood plastic hardening constant n. 

 

 

Figure 8.3 The curve of constitutive relation for elastic perfectly plastic and Ramberg-Osgood 

material model for different hardening n 
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 The elastic perfectly plastic and the Ramberg-Osgood material model with 

power hardening exponents in equation (8.21) n=5, 8, 20, and the crack length ratio 

a/W=0.05, 0.075, 0.1 are used to develop the ΔJ estimation scheme and to illustrate 

the features of the ΔJ vs potential energy curves. All the model has an aspect ratio 

L/W=4. Figure 8.3 shows the curves of the above mentioned material constitutive 

relations. 

 

Figure 8.4 (a) The cyclic tensile loading history with tension range Δζp (b) The cyclic bending 

moment history with reversed bending moment range ΔM 

 

8.4.2 Loading 

 The single edge cracked plate is subjected to two different cyclic loading 

cases under plane strain condition. In the first case the plate is under cyclic tension 

loading and in the second case a cyclic bending moment with reversed bending 

moment range ΔM is applied to the plate. The detailed cyclic loading histories are 

given in Figure 8.4, which show a cyclic loading history with two load extremes 

during each load cycle. For the cyclic tension case (Figure 8.4a), the two extremes of 

loading history can be formulated as ζp(t1)=Δζp/2 and ζp(t2)=-Δζp/2 , respectively, 

where Δζp 
 represents the tension range. A similar loading history has also been 

modelled for the cyclic bending moment case (Figure 8.4b), by replacing Δζp with 

ΔM (the reversed bending moment range). The reference tensile loading range with 

loading magnitude equal to 100MPa is used in cyclic tension cases. A reference 

reversed bending moment range, ΔM=10000N.m, is used for the cyclic bending 

moment case. 
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8.4.3 The Global Finite Element Model 

 Half-model is required for both cyclic tensile loading and cyclic bending 

moment cases, as shown in Figure 8.5. In both cases boundary conditions are 

imposed in the FEM and rigid body motion for the cracked plate is prevented by 

restraining the two degrees of freedom of the corner node opposite the cracked face. 

Because the ΔJ consists of energy type terms within a relatively remote boundary 

encompassing the crack tip, it is not necessary to use special elements to account for 

the stress singularity at the crack tip. Thus, the analysis is performed using ABAQUS 

type CPE8R 8 node quadratic quadrilateral elements with reduced integration 

scheme. 

 

Figure 8.5 Global FEM and relative sub model 

 

Table 8.2 Submodel Sizes 
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Figure 8.6 Maximum principal plastic strain for a single edge cracked plate subjected to cyclic tensile 

loading with a/W = 0.075 a)ABAQUS result from monotonic case b)ABAQUS result from step-by-

step cyclic loading case c)LMM result for cyclic loading case 
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Figure 8.7 Maximum principal plastic strain for a single edge cracked plate subjected to cyclic 

bending moment with a/W = 0.075 a)ABAQUS result from monotonic case b)ABAQUS result from 

step-by-step cyclic loading case c)LMM result for cyclic loading case 
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Figure 8.8 The relationship between elastic cyclic J and elastic energy rate with different types of 

material model and submodeling size ratio (a) Cyclic tensile loading case (b) Cyclic bending moment 

case 
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Figure 8.9 The relationship between elastic energy rate and applied loading for different types of 

material model and submodeling size ratios (a) Cyclic tensile loading case (b) Cyclic bending moment 

case 
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Figure 8.10 The relationship between elastic energy rate and submodelling size ratio for different 

types of material model with all loads up to limit load (a) Cyclic tensile loading case (b) Cyclic 

bending moment case 
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8.4.4 The Submodelling 

 Recently, the submodelling technique has often been used in the FE 

numerical analysis to study in detail an area of interest in a model. Herein, the area of 

interest is the region of high stress caused by the individual crack as shown in Figure 

8.5. The main idea of the submodelling technique is to perform a global-local 

transition. This approach gives an opportunity to make a local mesh refinement. As 

the submodel region has a finer mesh, a submodel can provide an accurate, detailed 

solution. Besides better accuracy, another advantage is that one can avoid the other 

high stress fields caused by other stress riser, i.e. boundary conditions. In order to 

investigate the dependence of the cyclic J-integral results on the submodel size, five 

different submodel size ratios are considered for both cyclic loading cases (Table 

8.2). 

 

Figure 8.11 The equivalent plastic strain range with different submodelling sizes for elastic perfectly 

plastic material model (a) Cyclic tensile loading case at P=1100 Mpa (b) Cyclic bending moment case 

M=1300N.m 

 

8.5 An Analysis of Energy Form Expression for ΔJ 
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case from ABAQUS. A reasonable approximation to obtain the values of ΔJ can be 

achieved by performing a monotonic loading calculation, but with ζy replaced by 2ζy 

[96] [99] [125]. This conclusion was also examined by Chen at al. [76] discovering 

that in an un-cracked body subjected to variable loading conditions, the variations 

between such monotonic loading solution with an equivalent cyclic solution, 

measured after a reasonable number of loading cycles, is relatively small. The above 

assumption could be explained by Figure 8.6-Figure 8.7, which show the maximum 

principle strain range for cyclic tensile loading and cyclic bending moment cases 

with a/W=0.075 and submodel size Asub4, respectively. 

 It is observed from Figure 8.6 and Figure 8.7 that both monotonic and cyclic 

loading cases have similar maximum principal plastic strain range at the crack tip 

when cyclic tensile loading and cyclic bending moment cases are considered. Then 

using such an assumption, ΔJ value for two-dimensional elastic-plastic finite element 

analyses under fatigue loading were then identified or replaced by the J-integral 

value for the monotonic loading by employing the finite element package ABAQUS. 

 From Figure 8.6b-Figure 8.6c and Figure 8.7b-Figure 8.7c, it is observed that 

when considering the monotonic loading case the LMM solutions are better results 

than the step-by-step cases provided from ABAQUS. The reason for the poorer result 

from the step-by-step inelastic analysis may be since while conducting the analysis 

the cyclic response values do not reach the steady cyclic state. Past investigations 

have revealed that the conduction of such solutions requires relatively long analysis 

times. From these figures, it is also observed that the LMM gives a smoother contour 

plot result compared to the step-by-step one. Such contor plot in Abaqus/CAE may 

be due to the type of element used on the crack tip. In the following sections, the 

relationship between ΔJe, ΔUe and ΔJp, ΔUp will be introduced. 

8.5.1 Formulation of ΔJe using Submodelling 

 The elastic portion, ΔJe, can be calculated from the relationship between ΔJ
*
 

and ΔU
*
/Asub, where ΔJ

*
 and ΔU

*
/Asub, represent the cyclic J-integral and potential 

energy rate from linear elastic material model, respectively. 
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Figure 8.12 The relationship between plastic cyclic J and plastic energy for different types of material 

models (a) Cyclic tensile loading case (b) Cyclic bending moment case 

8.5.1.1 The relationship between ΔJ* and ΔU*/Asub 

 It is observed from Figure 8.8 that ΔJ
*
 is a linear function of ΔU

*
/Asub for the 
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*
*

sub

U
J C

A


   (8.25) 

where C is the rate at which ΔJ
*
 increases with the elastic energy rate ΔU

*
/Asub. 

8.5.1.2 The Relationship of ΔU*/Asub and ΔUe /Asub using Submodelling 

 Before calculating ΔJe for the inelastic material model by applying the same 

formulation as the one used for ΔJ
*
, the values of ΔU

*
/Asub and ΔUe/Asub are being 

compared with elastic perfectly plastic and Ramberg-Osgood material models, where 

ΔUe/Asub is the elastic potential energy rate as in the inelastic material model. The 

influence of applied loads on the elastic potential energy rate for both cyclic loading 

cases is shown in Figure 8.9 for different material models and submodel size ratios. 

It is observed from Figure 8.9 that the values of ΔU
*
/Asub and  ΔUe/Asub are the same 

and are not affected by the types of material models and loadings for the same 

submodel size and with all load levels up to the limit load. As it may be observed 

from Figure 8.8-Figure 8.9 the results of the elastic portion of cyclic J and potential 

energy rate obtained by the submodel size equal to Asub1 deviate significantly when 

compared to other submodel sizes. This phenomenon could be explained by Figure 

8.10 and Figure 8.11. 

 Figure 8.10 shows the values of ΔU
*
/Asub and ΔUe/Asub with the increasing 

submodel size from Asub1 to Asub5 and with different applied loading. Figure 8.11 

shows the equivalent plastic strain range with different submodel sizes and with the 

applied loading P=1000Mpa and M=1000N.m for cyclic tensile loading and cyclic 

bending moment cases, respectively. 

 It is observed from Figure 8.10 that the results of elastic strain energy rate 

from the submodel sizes Asub1 and Asub2 have different values than the other submodel 

sizes' results. These differences become larger with the increasing applied loading 

when compared to the other submodel sizes. As observed from Figure 8.11, for the 

load levels equal to 85% of limit load, the submodel sizes equal to Asub1 and Asub2 is 

not sufficiently large to cover the plastic strains zone occuring on the global model 

for both cyclic loading cases. The values of ΔU
*
/Asub and ΔUe/Asub are stabilized for 
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the submodel size equal to Asub3-Asub5 (Figure 8.10) for the load levels up to the limit 

load, since these sizes cover the plastic strains zone caused by the individual crack 

(Figure 8.11). 

 

 

Figure 8.13 The relationship between plastic cyclic J and plastic energy for different types of material 

model with β=3/4 (a) Cyclic tensile loading case (b) Cyclic bending moment case 
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 Figure 8.10a-Figure 8.11a also shows that for the cyclic tensile loading case, 

the elastic potential rate is stabilized for the range of submodel size ratio (Asub 

/AGlobal ) from 0.13 to 1. However, for the cyclic bending moment case, there is no 

stabilization solution of the elastic potential rate for the submodel size ratio close to 

1, because, as mentioned in section 8.5.4, the advantage of the submodelling is that 

other high stress fields caused by other stress risers can be avoided. There is a high 

stress concentration caused by the boundary conditions (Figure 8.11b). For more 

accurate solutions, a submodel size boundary should not be chosen close to 1, for the 

cyclic bending moment case. 

8.5.1.3 The Submodelling Boundary 

 It can be concluded from the above results that for the single edge cracked 

plate under cyclic tensile loading and cyclic bending moment cases, submodel's 

boundaries should be taken far from the crack tip, so that the stress field in the 

boundary is completely unaffected by the crack. This means that selected boundary 

should be able to surround the plastic zone completely, ie, including the total plastic 

energy ΔUp caused by the individual crack only. 

8.5.1.4 The relationship between ΔJe and ΔUe /Asub 

 From the relationship between ΔU
*
/Asub and ΔUe/Asub, the elastic portion, ΔJe 

from the inelastic material model can be calculated using the linear solution C and 

the elastic energy ΔUe from elastic-plastic solution as: 

 
e

e

sub

U
J C

A


   (8.26) 

Equation (8.26) is established on the assumptions that ΔJe is a linear function of ΔUe 

/Asub (Figure 8.8), and C is the slope of the lines calculated from the linear elastic 

material. This equation is independent of the material model and loading type that is 

considered in this study. 

8.5.2 Formulation of ΔJp  

 The plastic portion, ΔJp, can be expressed in terms of ΔJ and ΔJe as: 
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p eJ J J     (8.27) 

As described in the previous section, the submodelling boundary should include the 

plastic zone induced by the crack. Therefore, the value of ΔUp for the individual 

crack is independent of these submodelling sizes. The variation of ΔJp with ΔUp for 

elastic perfectly plastic and Ramberg-Osgood material model with the applied 

loading up to limit load is shown in Figure 8.12. It can be seen from Figure 8.12b 

that the curves for Ramberg-Osgood model with n=8 and n=20 are nearly coincident. 

Figure 8.12 also shows that, the increase in ΔJp values for Ramberg-Osgood and 

elastic perfectly plastic material models seems to have a linear variation with 

increasing ΔUp. By plotting ΔJp against the power formulation of ΔUp
β
 for 

a/W=0.075 (Figure 8.13) an approximate linear relationship is established which can 

be expressed as: 

 ( )p pJ D U     (8.28) 

where D, represents the slope of the lines in Figure 8.13. The power index β is 

included to form the linear relationship of ΔJp, and is a function of loading and 

material model. In Figure 8.13 β is chosen as 3/4 for all inelastic material model that 

are considered in this study for both cyclic loading cases. As well known, if the 

plastic zone size is less than about 10% of the crack length, small-scale yielding 

conditions exist around the crack tip. Figure 8.14 shows variation of ΔJp with ΔUp
β
 

(with β=1) for different inelastic material models with the plastic zone size up to 

50% of the crack length for both cyclic loading cases. It is observed from Figure 8.14 

that ΔJp is a linear function of ΔUp
β
 (with β=1) for both cyclic loading cases for 

different inelastic material models. Therefore, within the region of the plastic zone 

with size up to 50% of the crack length equation (8.28) can be rewritten as, 

 
1( )p pJ D U    (8.29) 

Equation (8.29) has the same form as equation (8.12), which is established on the 

assumptions that ΔJp is a linear function of ΔUp. 
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8.5.3 Formulation of ΔJ 

 It can be concluded from the above discussion that for the single edge 

cracked plate under cyclic tensile loading and cyclic bending moment cases, the 

cyclic J integral, ΔJ, can be expressed as, 

 ( )e
p

sub

U
J C D U

A


     (8.30) 

where β=1 for plastic zone size up to 50% of the crack length  

 Equation (8.30) is independent of the material model, type of loading, and the 

submodelling sizes which boundary is cover the plastic zone induced by the crack 

only, that considered in this study for single edge crack plate. 

 The form of the general functions C, D and β will be discussed in the coming 

sections and their formulations are determined for a single edge crack plate subjected 

to cyclic tensile loading and cyclic bending moment cases. 

8.6 The General Functions of C, D and β 

 The proposed ΔJ equation in section 8.6 sums the elastic and plastic 

contributions in terms of energy. Equation (8.7)-(8.12) are the basic idea for the 

proposed ΔJ equation. The investigation indicates the fact that there is a linear 

relationship between ΔJe and ΔUe, and ΔJp and ΔUp for the plastic zone size up to 

50% of the crack length for 2D case. Further work is needed to see whether this 

relationship is applicable for the 3D case. Several form investigations were required 

to find the form which describes the dependence of C and D. 

8.6.1 The General Form of Variables C and D 

 According to the ASTM standard ΔJ should have the unit of Joules/area. 

Therefore, C is a dimensionless function, and D is a per unit area function which 

depends on the material model hardening, types of loading, and crack length ratio. 



 

166 

 

 

 

 

Figure 8.14 The relationship between plastic cyclic J and plastic energy for different types of material 

model with β=1 (a) Cyclic tensile loading case (b) Cyclic bending moment case 
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Figure 8.15 The relationship between ΔJe and ΔUe/Asub for elastic perfectly plastic material model with 

different crack size ratio (a) Cyclic tensile loading case (b) Cyclic bending moment case 
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Figure 8.16 The relationship between ΔJe and ΔUe/Asub for different material constitutive models with 

a/W=0.075 (a) Cyclic tensile loading case (b) Cyclic bending moment case 
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condition when the plastic zone size is up to 50% of the crack length, under cyclic 

tensile loading and cyclic bending moment. β may be a function of the type of the 

material model when the plastic zone size is greater than 50% of crack length.  

 For other material types, the constants presented are not generally applicable. 

The procedure described in the study must be repeated to obtain values of the 

constants, namely C, D and β. 

 

8.7 Proposed ΔJ Estimation for Single Edge Cracked Plate 

 

8.7.1 Determination of C 

 In order to determine the formulation of function C from the ΔJe values, the 

variation of ΔJe with ΔUe/Asub for three a/W ratios with elastic perfectly plastic 

material model and for different inelastic material model with a/W=0.075 are 

examined by plotting ΔJe against ΔUe/Asub respectively as shown in Figure 8.15 and 

Figure 8.16. In Figure 8.15 and Figure 8.16 the size of the submodel is equal to Asub4 

for both cyclic loading cases. It is observed from Figure 8.15 and Figure 8.16 that the 

dimensionless parameter C is independent of the inelastic material model, and is a 

function of a/W ratio and loading type only. Therefore, slope C is a function of 

f(a/W) and is formulated as, 

 ( )
a

C f
W

  (8.31) 

where f(a/W) is the influence function for the crack ratio range. 

 In order to find this influence function, the slope of ΔJe is replotted in graphs 

of function f(a/W) against a/W, for both cyclic loadings as shown in Figure 8.17. 

Trend lines are fitted to the data obtained from the ΔJe results for different crack 

ratios to show the influence function. Equation (8.32) is the obtained influence 

function for the slope C. 
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Figure 8.17 Influence function f(a/W) for slope C against crack length ratio: a) cyclic tensile loading 

b) cyclic bending moment 
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Figure 8.18 The relationship between plastic cyclic J and plastic energy for different crack length ratio 

with β=3/4 (a) Cyclic tensile loading case (b) Cyclic bending moment case 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 200 400 600 800 1000 

pJ  



pU  

(b) 

a/W=0.05 

a/W=0.075 

a/W=0.10 

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 100 200 300 400 500 600 700 

a/W=0.05 

a/W=0.075 

a/W=0.10 

pJ  



pU  

(a) 



 

172 

 

 

 

Figure 8.19 The relationship between plastic cyclic J and plastic energy for different crack length 

ratios with β=1 (a) Cyclic tensile loading case (b) Cyclic bending moment case 
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Figure 8.20 Influence function g(a/W) for slope D against crack length ratio for β=3/4: a) cyclic 

tensile loading b) cyclic bending moment 
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Figure 8.21 Influence function g(a/W) for slope D against crack length ratio for β=1: a) cyclic tensile 

loading b) cyclic bending moment 
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Figure 8.22 Influence function h(n) for slope D against Ramberg-Osgood material hardening n with 

β=3/4: a) cyclic tensile loading b) cyclic bending moment
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Figure 8.23 Influence function h(n) for slope D against Ramberg-Osgood model material hardening n 

with β=1: a) cyclic tensile loading b) cyclic bending moment 
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8.7.2 Determination of D 

 In order to determine the formulation of function D from the ΔJp values, the 

variation of ΔJp with ΔUp
β

 for three a/W ratios for elastic perfectly plastic material 

models is examined by plotting ΔJp against ΔUp
β

  for β=3/4 and β=1 as shown 

respectively in Figure 8.18 and Figure 8.19. It is observed from Figure 8.13-Figure 

8.14 and Figure 8.18-Figure 8.19 that the slope D is a function of a/W ratio, loading 

type, and inelastic material model for different β values. In order to simplify the 

formulation, slope D is assumed to be the product of two independent functions 

g(a/W) and h(n). Therefore, parameter D is assumed as, 

 

( ) ( )
a

g h n
WD

aB
  (8.33) 

Where a is the crack length and B is the thickness of the plate, and g(a/W), h(n) are 

the influence functions for the crack length ratio range and the inelastic material 

model. 

 In order to find these influence functions, the results of ΔJp are replotted in 

graphs of functions g and h against a/W and n respectively as shown in Figure 8.20-

Figure 8.23 for β=3/4 and β=1. Trend lines are fitted to the data obtained from the 

results of ΔJp vs ΔUp
β

 for different crack length ratios and inelastic material model 

with β=3/4 and β=1 to show the influence function. 

 Equations (8.34) and (8.35) are the obtained influence functions for the crack 

length ratio range for β=3/4 and β=1, respectively. Equations (8.36)-(8.37) and (8.38)

-(8.39) are the obtained influence functions for the inelastic material model range for 

β=3/4 and β=1, respectively. 

 Once C and D are defined, the cyclic J integral value is calculated for the 

single edge crack plate under both cyclic loadings that are mentioned in this study. 

For β=3/4 
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For β=3/4  

For Ramberg Osgood parameter material n range from 5-20 
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For elastic perfectly plastic material model 
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For β=1  

For Ramberg Osgood parameter material n ranging from 5-20 
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Figure 8.24 Comparison of the RSM and proposed ΔJ for different types of material models: a) cyclic 

tensile loading b) cyclic bending moment 
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Figure 8.25 Comparison of the RSM and proposed ΔJ with different crack length ratios: a) cyclic 

tensile loading b) cyclic bending moment 
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8.8 Validation and Discussion for the Estimation Scheme 

 In this section we will consider first the cracked plate for different Ramberg-

Osgood material constitutive relation. The ΔJ equation is obtained in section 8.7 for 

single edge cracked plate loaded in cyclic tension and cyclic bending moment. The 

results obtained from the ΔJ equation are compared graphically with Reference 

Stress Method for both cyclic loading cases with different Ramberg-Osgood 

parameter n. Figure 8.24 shows that the variation of ΔJ with Ramberg-Osgood 

material against load ratio ΔP/ΔPL and ΔM/ΔML, where ΔPL, ΔML are the limit load 

range for cyclic tensile loading and cyclic bending moment respectively, with 

a/W=0.075. Good agreement is obtained between the proposed ΔJ equation and RSM 

results when the load ratio is smaller than 1.0 for both cyclic loading case. For the 

cyclic tensile loading case, when the load ratio is greater or equal to 1.0 the 

difference of ΔJ between the proposed method and RSM becomes very significant, 

and this difference gets larger with the increasing number of Ramberg-Osgood 

parameter n. However, for the bending moment case, when the load ratio is greater or 

equal to 1.0 the difference of ΔJ between the proposed method and RSM is not very 

obvious. Figure 8.24 also shows that for the load ratios smaller than 1.0, the values of 

ΔJ drops with increasing number of n, and for the load ratios greater or equal to 1.0, 

the values of ΔJ  rises with increasing number of n for both proposed ΔJ method and 

RSM. This phenomenon can be explained by the curves of material constitutive 

relations shown in Figure 8.3. For the stress range less than twice of yield stress, the 

product of total stress-strain range is decreasing with increasing of n. And, for the 

stress range greater than twice of yield stress, the product of total stress-strain range 

is increasing with the increasing of n. 

 Figure 8.25 shows the variation of ΔJ against load ratio ΔP/ΔPL and ΔM/ΔML 

for different crack depth with Ramberg-Osgood material n=8. Good agreement of the 

proposed ΔJ equation and RSM solutions is exhibited when the load ratio is smaller 

than 1.0 for both cyclic loading case. For load ratios greater or equal to 1.0, the 

results deviate significantly, for the cyclic tensile loading case. 
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8.9 Conclusions 

 In this study, a general ΔJ calculation method based on the LMM is 

proposed. The estimation scheme for a single edge cracked plate under cyclic tensile 

loading and cyclic bending moment is developed. The following conclusions can be 

drawn from this study: 

 1. The proposed ΔJ estimation, primarily derived from Fracture Mechanics 

concepts, is now considered from a Continuum Mechanics approach through LMM, 

which includes the cumulative effects over the cycle. The calculated values of ΔJ 

with the applied loading up to limit load are shown to correlate well with RSM under 

cyclic tensile loading and cyclic bending moment. 

 2. ΔJe is a linear function of ΔUe /Asub , and this relation is independent of the 

material models and loading types that are considered in this study. 

 3. ΔJp is a linear function of ΔUp
β
. When β=1 this relation reduces to small 

scale yielding condition for the region of the plastic zone size up to 50% of the crack 

length. 

 4. The hardening constant n for the Ramberg-Osgood model has little effect 

on the values of ΔJ when the cyclic loading ratio (ΔP/ΔPL) is less than 1.0. 

 5. A rapid procedure for predicting the values of ΔJ is provided for single 

edge cracked plate under cyclic tensile loading and cyclic bending moment cases. 



 

183 

 

CHAPTER 9. LINEAR MATCHING METHOD ON THE 

EVALUATION OF CYCLIC BEHAVIOUR 

WITH CREEP EFFECT 

Equation Chapter 9 Section 1 

9.1 Introduction 

 The overall responses of mechanical structures under the combined 

mechanical and thermal loads without the presence of creep were discussed in 

previous chapters. In the coming chapters, the objective is to further unfold the 

current LMM for the evaluation of cyclic behaviours of mechanical structures when 

the effect of creep is taken into consideration. 

 The increasing requirements in improving the efficiency of the operation in 

current power plants, gas turbines, or chemical reactors, have resulted in engineering 

components operating at elevated temperatures. These structures often experience 

complex cyclic loading histories, and the main factors of structural failures for these 

components are creep and creep-fatigue interaction. At elevated temperatures, creep 

can cause within metallic components significant continuous viscoplastic strains that 

finally will lead to failure. The level of the creep and the time the structure will fail 

depend on the material, the operating temperature, the dwell period, the applied 

stress history and the geometry of the component. Although creep for some metals 

such as lead, copper and mild steel can occur at room temperatures, it is normally 

associated with high temperatures, typically greater than 40% of the absolute melting 

temperature of a metal [27]. 

9.1.1 Time Hardening and Steady-state Creep Law 

 A power law in time can be used to define the creep rate as: 

 
* *c n mB t   (9.1) 

where 
c is the uniaxial equivalent creep strain rate,  is the von-Mises or equivalent 

stress, B, n* and m* are material creep properties, determined from creep test data. 

n* is generally called the creep exponent or creep index value. One of the simplest 
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and most commonly used creep law relating creep strain rate to applied stress is 

Norton's Power Law [126], 

 *c nB   (9.2) 

This relationship describes the variation of minimum creep strain rate with applied 

constant stress for the secondary (steady-state) creep stage for uniaxial stress 

behaviour. Temperature dependence is not explicitly defined in this law and the 

equation is used for constant temperature conditions. However, the effect of different 

temperatures can be captured through the material constants B and n*. For power 

plant applications, temperature and load remain practically constant for prolonged 

periods of time and the steady-state creep stage dominates the creep curve of the 

material, so that the use of Norton's law is valid for such analyses [25] [28]. 

9.1.2 Structural Response to Cyclic Loading with Creep 

 In the analysis of structures subjected to cyclic loading histories for an elastic 

plastic material without the effect of creep, the component will experience either 

elastic/plastic shakedown or ratchetting depending on the applied load level. The 

detailed explanations of the above structure's response has already been discussed in 

the previous chapters. 

 In the presence of creep, the response of the structure to cyclic loading 

changes significantly. The key feature of cyclic loading with creep is the synergistic 

interaction of plasticity and creep. One of the notable analytical treatments 

concerning the creep ratchetting phenomenon (or cyclically enhance creep) was 

given by Bree [30], which presented an analysis in which the inelastic strains 

developed by thermal cycling were caused by both yielding and creep. In his paper, 

Bree defined the phenomenon of creep ratchetting, whereby the structure may 

experience additional creep strain due to relaxation of the creep stresses. This 

definition was applied to a cylindrical tube under the action of a sustained internal 

pressure and cyclic temperature gradients across its wall. Bree‘s analysis assumes 

that the full stress relaxation occurs during the creep dwell. From this analysis it was 

found that any combination of applied steady state and cyclic loading which was 

above the pure elastic limit (Figure2.3) would cause creep ratchetting. To sum up, a 
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structure subjected to cyclic loading with creep can present different asymptotic 

behaviours regarding to the phenomenon of creep ratchetting [30], 

 1) Without creep ratchetting, no stress relaxation is taking place, therefore the 

accumulation of creep strain is due to primary loads only during each load cycle. 

Because the creep strains are driven by the primary loads alone, the situation is 

similar to that of monotonic loading. 

 2) With creep ratchetting and limited dwell time, the stress relaxation process 

introduces a residual stresses field so that there is a tendency for regions of the 

component material to yield during unloading. Thus, a closed hysteresis loop is 

generated even when the applied loading levels would have resulted in elastic 

shakedown region if creep were not present. If the applied loading level were in 

plastic shakedown region, additional plastic strain is formed due to the interaction of 

plasticity and creep which enlarges the closed hysteresis loop. 

 3) With creep ratchetting and large dwell time, although the effect of creep 

and cyclic plasticity on the residual stress field causes the cyclic stress to reset on 

each load cycle, the large dwell time produces increasingly large creep strain 

compared with plastic strain (which is limited in magnitude by the residual stress 

field). In other words, the appearance of the non-closed hysteresis loop would be due 

to creep strains, not plastic strains. 

 4) With creep ratchetting, where a large stress relaxation occurs despite a low 

level of overall creep stress, which leads to an insignificant creep strain. However, 

larger plastic strain occurs upon unloading due to the significant stress relaxation, 

thus the non-closed hysteresis loop appears due to the dominant plastic strain. 

 Therefore in an integrity assessment of components subjected to the cyclic 

load and under creep conditions, the above mechanisms need to be addressed. 

 Bree [46] considers the same geometry and loading condition as [30] but with 

only partial relaxation of stress during creep dwell. In [46] in addition to plot the 

stress contours through the tube wall, Bree also showed that the increase in plastic 
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strains caused by increasing dwell time (and thus greater stress relaxation) would 

reach a limit (corresponding to the complete relaxation of the creep stresses). 

 Situations such as the Bree cylinder which can be solved analytically are rare, 

and so modern analyses of more complex engineering structures use Finite Element 

Analysis to obtain solutions. Calculating the steady state response of structures 

subject to cyclic loading can require a large number of increments in full step-by-step 

analysis which becomes computationally expensive. As a result, the LMM has been 

developed to assess the stabilised response of structures subjected to cyclic loading 

with the effect of creep. Thus, the employed numerical procedure is the LMM, 

previously applied to cyclic problems without the effect of creep (Chapter 3-8), now 

used to generate the cyclic creep solutions. 

 The purpose of this chapter is to present an analysis of creep ratchetting (or 

cyclically enhanced creep) and creep-fatigue damage of structures through an 

extension of previous LMM [22]. The new method has been improved both 

theoretically and numerically compared to the numerical procedure mentioned in 

[22] by including the cyclic hardening material model, time hardening creep model, 

and is able to address all stable cyclic responses that are mentioned in section 9.1.2 

for a structure under creep conditions by the new creep strain formulation. Cyclic 

stresses, residual stresses, creep strain, plastic strain range, ratchet strain and the 

elastic follow-up factor are calculated more efficiently and accurately by this new 

LMM. Firstly, the mathematical and numerical implementation of this method will 

be described. Secondly, in order to confirm and validate the applicability of the 

developed method, a benchmark example of a Bree cylinder is reanalysed in the 

present study through the LMM, and the results are compared with existing analytic 

solutions in [30]. Finally, the structural response of a plate with a central hole 

subjected to cyclic thermal loads and a constant uniaxial tension under high 

temperature is also analysed, to verify the applicability of the LMM to more general 

practical problems with different material and creep models.  

 This work has been published in the international conference of Pressure 

Vessels and Piping Division in Toronto, 2012.  
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9.2 Numerical Procedures 

 Considering the same problem as in Figure5.1 a structure is subjected to a 

general cyclic load condition. The body is subjected to a cyclic history of varying 

temperatures  ,ix t  within the volume V and varying surface loads  ,p iP x t

acting over part of the body‘s surface ST , where  and 
p  are a reference load 

parameter. On the remainder of the surface S, denoted by Su, the displacement 

satisfies 0u  . The variation is considered over a typical cycle 0 t t    in a cyclic 

state. The corresponding linear elastic stress history is denoted by  ˆ ,ij ix t  as, 

 ˆ ˆ ˆ( , ) ( , ) ( , )p

ij i ij i p ij ix t x t x t

       (9.3) 

ˆ p

ij and ˆ
ij

  represent the linear elastic stress history corresponding to varying surface 

loads  ,iP x t and temperature  ,ix t , respectively. 

Adopting the formulation in (5.8)-(5.10), the general form of the stress solution for 

the cyclic problems involving changing and constant residual stress fields is given 

by, 

 ˆ( , ) ( , ) ( ) ( , )
ij

c

ij i ij i i ij ix t x t x x t       (9.4) 

where 
ij  denotes a constant residual stress field in equilibrium with zero surface 

traction on ST and corresponds to the residual state of stress at the beginning and end 

of the cycle. Here  denotes a scalar load parameter. The history c

ij  is the change in 

the residual stress during the cycle and satisfies, 

    ,0 ,c c

ij i ij ix x t    (9.5) 

For the cyclic problem defined above, the stresses and strain rates will become 

asymptotic to a cyclic state where;  

        ,ij ij ij ijt t t t t t         (9.6) 

9.2.1 Numerical Procedure for the Varying Residual Stress Field  

 The numerical procedures for defining varying creep strain and residual stress 

is similar to the first stage in the Dual Minimization process that is described in 

Chapter 5.3.1 by including the load instance with creep in the cyclic histories. 
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The strategy of evaluating the structural responses consists of defining an 

appropriate class of kinematically admissible strain rate histories, 
c

ij  
and a 

corresponding minimizing process is written as, 

  
1

,
N

c n

ij

n

I I 


  (9.7) 

It is assumed that plastic strains only occur at load extremes corresponding to N 

time instants, 1 2, , ......, Nt t t ,where nt  
corresponds to a sequence of time points in 

the cyclic history, which leads to 
1

N
c n

ij ij

n

 


   , where 
n

ij  
is the increment of 

plastic or creep strain that occurs at time nt . Thus the minimization function in an 

incremental form is written as, 

       ˆ, , ,n n n n n

ij ij ij ij i n ij i n ij

V

I x t x t dV               (9.8) 

and  

    
1

, ( ) ,
n

ij i n ij i ij i l

l

x t x x t  


    (9.9) 

where in (9.7) the term 
c

ij  
is replaced by a sequence of increments of strain 

n

ij  

occurring at a sequence of N times nt . The incremental minimization of  n n

ijI 
 

assumes that the prior history of the residual stress is known and compatibility of the 

total elastic and plastic strain in the increment is used. ( )ij ix
 
is the constant element 

of the changing residual stress  ij nt
 
and represents as, 

 1 2 1

1 1 1
ij

N N N
M n n n

ij ij ij M

n n n

    

  

          (9.10) 

where M represents the total number of cycles. The LMM methodology requires the 

solution of a sequence of linear problems. From an initial estimate of the strain 

increment, 
n n

ij ijm    , at mth cycle of iterations, a class of linear problems for a 

new estimate, 1

n n

ij ijm     , can be defined at the (m+1)th cycle of iterations. 

In an iterative process, at an arbitrary integration point ix , the repeated application 

of the algorithm produces a sequence of solutions for 
n

ij , which converges to the 
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absolute minimum of the minimization function. The entire iterative procedure 

requires a total number of cycles, M, where each cycle, m, contains N iterations 

associated with N load instances, where n=1,2,...N and m=1,2,...M. If two 

consecutive cycles, m and m+1, are now considered, then the iterative linear 

coefficient 
1( )m nt 

 for time instance tn is given by the linear matching as, 

 
 

0
1

( )
( ) ( )

ˆ ( ) ( )

m n
m n m n m

ij n ij n

t
t t

t t


 

  
 


 (9.11) 

where 0 ( )m nt  is the iterative von-Mises yield stress for Ramberg-Osgood material 

model or yield stress for the elastic perfectly plastic material model at load instance 

tn, ( )m nt
 is the iterative shear modulus. The von-Mises yield stress 0 ( )m nt  will be 

replaced by creep flow stress c  if only creep relaxation occurs at the load instance. 

The new distribution of the strain increment, 1

n

ijm  , is then characterized as the 

solution to the following problem, 

 
1 1 1 1 1

1 1
,

2 3

T n n n T n n

ij m ijm ijm kk m kk m
K

    


    
          (9.12) 
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ˆ
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t t
t

   




  
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where the prior history of the residual stress is known as, 

   1 2 1

1 ......
ij

m m n

n ij ijm ijm ijmt     

       (9.14) 

The constant element of the residual stress, M

ij for the cyclic loading history is 

determined by (Appendix II), 

9.2.2 Numerical Procedure for the Creep Strain and Flow Stress 

 Calculating the accumulated creep strain during the dwell period,
 0( )nt

 
in 

equation (9.11) equals to creep flow stress 0( )n ct  , which is an implicit function 

of creep strain 
c  and residual stress c during the creep dwell period.  

We assume a time hardening creep constitutive relation as: 

 
* *c n mB t   (9.15) 

Where 
c is the effective creep strain rate,   is the effective von-Mises stress, t is 

the dwell time, and B, m* and n* are the creep constants of the material. When 
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m*=0, the time hardening constitutive equation becomes the Norton‘s law (steady-

state creep stage) (9.2). During the relaxation process we assume, at each point in 

space that an elastic follow up factor Z exists: 

 
c Z

E
     (9.16) 

where , E is the Young's modulus and ( )ij    .  

Combining (9.15) and (9.16) and integrating over the dwell time, we obtain 

 

* 1

* 1 * 1

1 1 1

( * 1) * 1 ( ) ( )

m

n n

c s

BE t

Z m n  



 

 
  

   
 (9.17) 

Where s
 
is the effective value of the start of dwell stress, c  is the effective value 

of the creep flow stress, and ( )c sij Cij     . Integrating (9.16) gives the 

effective creep strain during the dwell period t  as, 

 ( )c s

Z

E
       (9.18) 

Combining (9.17) and (9.18) and eliminating  gives 
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 (9.19) 

For the pure creep where s c  , the creep strain becomes: 

 

* * 1

* 1

n m
c sB t

m





 


 (9.20) 

The creep strain rate 
F at the end of dwell time t is calculated by (9.17) and (9.19)

: 

 

*
* *

* 1 * 1

( * 1) 1 1
( )

( * 1) ( )
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s c c s
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B t
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    


 (9.21) 

For the pure creep where s c  , the creep strain rate 
F becomes:  

  
* *nF m

sB t    (9.22) 

Hence in the iterative process, we begin with current estimated i

c , i

s  and use 

equations (9.19), (9.21) or (9.22) to compute a new value of the creep stress f

c c   

from (9.23) to replace 0( )nt
 
in the linear matching condition (9.11). 

)1(2/3  EE

EZ /
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1

*

*

F n

c mB t




 
  

 


 (9.23) 

The above discussed numerical process could be further understood by examining 

the block diagram in Figure 9.1. 

9.2.3 New Developments 

 There are three significant developments regarding the numerical procedure 

for the calculation of creep strain and creep stress compared to [22]. These are: 

 1. The numerical procedure described in [22] is based on the assumption that 

structural response of the steady-state hysteresis loop remain closed. This assumption 

means that the inelastic strain (creep strain or combination of creep and plastic strain) 

produced during loading is fully recovered by the reverse inelastic strain (creep strain 

or combination of creep and plastic strain) during unloading. In other words, the 

creep strain defined in [22] is bounded by the residual stress which is produced 

during the dwell period. However, as stated in section 9.1.2, there are more structural 

responses which need to be addressed. For example, as the dwell period increase, 

larger permanent creep strain is induced, and this permanent creep strain will become 

unbounded from the residual stress produced during the dwell period. Due to the 

limited magnitude of this residual stress, the reverse plastic strain cannot increase 

unlimitedly and it is not able to recover the inelastic strain (creep strain or the 

combination of creep and plastic strain) during loading. Thus, the assumption in [22] 

is not valid for larger creep strain case and should be modified. With the new 

numerical procedure, the calculated time dependent creep strain, defined using 

elastic follow up combination idea (9.19) or (9.20), is able to capture all the 

structural responses related to the phenomenon of creep that is described in section 

9.1.2. 

 2. For more practical cases, the Time Hardening creep constitutive model 

(9.15) is considered in this study, and this model is able to reduce to Norton‘s law by 

considering m=0. In the previous study [22] the creep constitutive equation was only 

valid for the steady-state creep stage (Norton‘s law)(9.2). 
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Figure 9.1Flow chart for evaluating the creep and plastic behaviour using LMM 

 

Input 

Construct extreme elastic stresses: )(ˆ
nij t (where tn represents loading instance 1≤𝑛≤N 

and N is number of total loading instance), cycle starts at m=1 

Start from first load instance n=1 

 
Initialization (at i=1): accumulate residual stress, R1=0 

Extreme cyclic stress ˆ( ) ( ) (1 )ijm n ij n it t R n N      

 

Yes 

1.Calculate shear modulus, 

1 ( )m nt  from flow stress,

0 ( )m nt by linear matching (9.11)  

2.Calculate Jacobian Matrix[J]m+1 

3.Calculate changing residual 

stress,
1

n

ijm  (9.9) 

4.Calculate creep strain 

1 ( )m

c

nt  (9.19) 

5.Update creep strain rate,

1 ( )m

F

nt 
(9.21) 

6.Update flow stress, 
1 ( )m

c

nt 

(9.23), to replace 1

0 ( )m nt   

 

 

1.Calculate shear modulus,

1 ( )m nt  from yield 

stress ( )ym nt or 

iterative yield stress 

0 ( )m nt by linear 

matching (9.11) 

2.Calculate Jacobian 
Matrix [J]m+1 

3.Calculate changing 

residual stress,
1

n

ijm 

(9.9) 

4.Calculate plastic strain 

range,
1( )p

ij m nt 

(9.13) 
 

 

 

Updated accumulated residual stress 
1 1

n

i i ijmR R    , i=i+1

 
 

 

 

True False 

No 

Subroutine 

UMAT 

Yes 

Output 

 

Calculate the strain energy for convergent propose 

1

( )
N

m m

n

nv

t dv 


   

 

 

 

Subroutine 

URDFIL 

 Check n=N ? 

 

 
Convergent: 

1m m

m
e

 



 
 ? 

 

No 

 
Loading instance (tn) 

with creep behaviour? 

 

m=m+1 

n=n+1 



 

193 

 

 3. For more general cases, the cyclic hardening material model (Ramberg-

Osgood) is developed in this study, whereas in [22] the material model considered 

was only limit to elastic perfectly plastic. 

 The capability of these differences is shown in the numerical example of a 

plate with a hole. 

 

9.3 Bree Problem 

 The Bree problem [30] [46] has been re-established in this section and is used 

to verify the results of the iterative process described above.  

9.3.1 Problem Description  

 

(a) 

 

(b) 

Figure 9.2 (a) Load history for constant internal pressure and cyclic temperature gradient 

(b) Cross section in direction of the applied stress 

ζt 

ζp 

ζp 

h 

θ0+∆θ 

θ0 

θ(t) 

t1 t2 t 

∆t ∆t 

ζp 

t1 t2 t 



 

194 

 

 The problem to be considered here is that of a cylindrical tube of mean radius 

R and wall thickness h that is closed at the ends [30]. The tube is subjected to an 

internal pressure ζp (Figure 9.2a) and a cyclic temperature gradient across its wall. 

The detailed temperature history of a cylindrical tube is given in Figure 9.2a, where 

θ(t) varies between θ0 and θ0+Δθ. The ambient temperature θ0 remains at 0

C. The 

temperature distribution across the wall is assumed to be linear, during the first half 

of each cycle (the so-called start-up) and zero during the second half of each cycle 

(the so-called shut down). Bree [30] made the additional assumption that, since the 

hoop stress is the greater of the two stresses acting, the axial stress would be ignored. 

Thus the problem is reduced to that of a slab with a overall stress ζp+ ζt acting in 

hoop direction only (Figure 9.2b), where the constant ζp and cyclic ζt is the hoop 

stress produced by the internal pressure and cyclic temperature distribution across the 

thickness, respectively. 

 

Figure 9.3 Bree diagram, showing regions of different cyclic behaviour. The axes show stress 

normalized by yield stress. 
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9.3.2 Results and Discussions 

 

 

(a) 

 

(b) 

Figure 9.4 Response of the stress-strain path corresponding to the cyclic loading cases (a) 2 

(b) 3 

 The cylindrical tube is made of 304 stainless steel with the following material 

properties: yield stress ζy=205 MPa, Poisson‘s ratio, ѵ=0.3, Young‘s modulus, E= 

200 GPa, coefficient of thermal expansion, α=1.0x10
-5

. For the creep material data in 

equation (9.15) we adopt B= 5.86e-15, n*=5 and m*=0. 
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 Figure 9.3 is the Bree [30] diagram, which illustrates the responses for the 

case of a pressurised cylinder subjected to cyclic through-wall thermal stress. The 

ordinate and abscissa give normalised values of pressure and thermal stress 

respectively, where the stresses have been normalised against the yield stress of the 

material. There are four main regions of interest. Region E is elastic, where pressure 

plus thermal stress is always less than the yield stress. Bree stated that creep 

ratchetting occurs if any combination of applied loading exceeds region E, with the 

assumption that the stress is fully relaxed [30]. Region S is the elastic shakedown. 

Region P is the reversed plasticity, where yielding occurs on every cycle, but no 

incremental or ratchetting strain occurs. Region R indicates ratchetting, where finite 

strain growth occurs on every cycle. 

 For the verification of the Bree boundary, the cyclic load cases 1, 2, and 3, 4, 

which are just below and above the calculated elastic limit boundary (Figure 9.3), are 

chosen respectively. The calculated steady state stress strain path for the cyclic 

loadings 2 and 3, are shown in Figure 9.4a and Figure 9.4b, respectively, where the 

dwell time is long enough to produce a full relaxation of creep stress. From Figure 

9.4 it is observed that the calculated steady-state of stress and strain follows the path 

A1B1C1A2B2C2A3B3C3, etc. and reaches the point An at the end of the nth start-up, 

the point Bn at the end of the nth dwell time and the point Cn at the end of the nth 

shutdown. Load case 2 (Figure 9.4a) exhibits a non creep ratchetting mechanism as 

the creep strain accumulation occurs only due to the primary stress, with no stress 

relaxation taking place. Load case 3 (Figure 9.4b), however, exhibits a creep 

ratchetting mechanism as an additional creep strain is accumulated due to stress 

relaxation in every cycle. Similar results are obtained from the analyses at load 

points 1 and 4 which confirm that the LMM can reproduce the analytical solutions of 

Bree [30]. 

 For a further verification of the Bree problem with the effect of creep [46], 

the cyclic load case 5, which is located in the S2 region is chosen. The calculated 

stress distribution obtained from Bree and LMM across the tube wall during the 

shutdown, start-up and dwell period processes are showed in Figure 9.5, with only 

partial relaxation of stress during creep dwell. It is observed From Figure 9.5 that the 
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calculated stress distribution from LMM correlate well with the Bree solution, which 

further confirm that the LMM can reproduce the analytical solution of Bree [46]. 

 

Bree solution                                LMM 

(a) 

 

Bree solution                                LMM 

(b) 

 

Bree solution                                LMM 

(c) 

Figure 9.5 Stress distribution across the tube wall with partial stress relaxation for the cyclic loading 

case 5 during (a) Shutdown (b) Start-up (c) Creep dwell, processes 

-210

-150

-90

-30

30

90

150

210

0 0.2 0.4 0.6 0.8 1

ζ

x

 - 210 

- 150 

- 90 

- 30 

30 

90 

150 

210 

0 0.2 0.4 0.6 0.8 1 

ζ 

x 

 - 210 

- 150 

- 90 

- 30 

30 

90 

150 

210 

0 0.2 0.4 0.6 0.8 1 

ζ 

x 

y  

y  

O  

p  

1/ 2x d   1/ 2x d  

y  

y  

O  

p  

1/ 2x d   1/ 2x d  

y  

y  

p  

O  

1/ 2x d  1/ 2x d   



 

198 

 

 

 

(a) 

 

(b) 

 

Figure 9.6 Response of the stress-strain path corresponding to the cyclic loading cases with 1 hour 

dwell time (a) case 5 (b) case 6 
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(a) 

 

(b) 

 

Figure 9.7 Response of the stress-strain path corresponding to the cyclic loading cases with 50 hour 

dwell time (a) case 5 (b) case 6 

 Two cyclic load points 5 and 6 (Figure 9.3), which are located in region S2 
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effect beyond the creep ratchetting boundary. The steady state stress strain path for 

the cyclic loading points 5 and 6 with one hour and 50 hour dwell time period are 

shown in Figure 9.6 and Figure 9.7 respectively. 

 It is observed from Figure 9.6 that the steady-state stress and strain curve 

repeats the hysteresis loop ABC in every subsequent cycle, reaching the point A at 

the end of each start-up, the point B at the end of each dwell time and the point C at 

the end of each shut down. Due to the relaxation process the component material 

yields during unloading. Thus, the phenomenon of a closed hysteresis loop is 

generated at the cyclic load point 5 (Figure 9.6a) and at the cyclic load point 6 

(Figure 9.6b) with one hour dwell time. It is observed form Figure 9.6b that there is 

plasticity during both the loading and unloading process for cyclic load point 6. 

Additional reverse plastic strains, which recover the inelastic strain due to start-up 

and creep dwell processes, develop due to the interaction of plasticity and creep, thus 

enlarging the closed hysteresis loop. 

 Figure 9.7 shows that the steady state responses of the structure at load points 

5 and 6 no longer form a closed cycle when the creep dwell time is increased from 1 

hour to 50 hours. The non-closed cycle follows the path A1B1C1A2B2C2A3B3C3 

showing a net accumulation of inelastic strain per cycle. 

 This phenomenon can be explained by the increase in dwell time causing a 

continuous increase in permanent creep strain. However, the reverse plastic strain, 

which cannot increase unlimitedly due to the limited magnitude of residual stress, is 

not able to recover the creep strain (Figure 9.7a) or the combination of creep strain 

and plastic strain during start-up (Figure 9.7b). Therefore, an open hysteresis loop is 

formed when the dwell time is increased. 

 An important parameter that is used to assess the significance of creep 

behaviour is the elastic follow up factor, defined as  

 
c

c

E
Z






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
 (9.24) 
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Where EE   and )]1(2/[3  EE  denotes the effective elastic modulus with 

uniaxial and multiaxial case, respectively. c  
is the change in effective creep 

stress, and c is the effective creep strain during the dwell period. Z=1 corresponds 

to relaxation with zero change in total strain, and Z=∞ corresponds to steady state 

creep with no stress relaxation. With the estimated elastic follow-up factor, the creep 

strain can be evaluated approximately using (9.24) if a stress change during the dwell 

period can be measured [24]. Table 9.1 shows the values of elastic follow up factor 

obtained from the loading cases of 5, 6 and 7 (Figure 9.3) at the location with the 

highest creep strain. It can be seen that the values are sensitive to loading type. For 

cyclic loading case 6, which has low levels of primary loading, the increase in dwell 

time causes small changes in Z because the majority of the creep strain comes from 

stress relaxation. An increase in dwell time at load point 7 however, with larger 

levels of primary loading, results in a dramatic increase in Z. Although stress 

relaxation occurs in this situation, the primary loading results in creep strains with 

little relaxation, which becomes dominant at large dwell times. 

 

Table 9.1 Values of the elastic follow-up factor Z at the location with the maximum creep strain 

(Figure9.3) 

Load Loading 

Type (Figure 9.3) 
Z dwell time 1h Z dwell time 50h Z dwell time 100h 

Case 5 1.59 2.73 3.19 

Case 6 1.24 1.84 1.94 

Case 7 3.32 11.55 20.96 

 

9.4 Plate with a Hole 

 

9.4.1 Problem Description 

 A more practical example, a plate with a central hole and subjected to varying 

thermal loads and constant mechanical load is analysed using the proposed new 

LMM. 
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 (a)                                                   (b) 

 

Figure 9.8 (a) Geometry of the plate with a hole subjected to varying thermal loads and its finite 

element mesh (D/L=0.2) (b) FEM 

 

 

Figure 9.9 Load history with two distinct extremes (three load instances) to the elastic solution. 

 

 The geometry of the structure and its finite element mesh are shown in Figure 

9.8. The 20-node solid isoparametric element with reduced integration is adopted. 

The ratio between the diameter D of the hole and the length L of the plate is 0.2 and 

the ratio of the depth of the plate to the length L of the plate is 0.05. The plate is 

subjected to a temperature difference Δθ between the edge of the hole and the edge 

of the plate and uniaxial tension ζp acts along one side (Figure 9.8). The 3D plate 

with a hole is made of 304 stainless steel with the following material properties: 

yield stress ζy=205MPa, Poisson‘s ratio, ѵ=0.3, Young‘s modulus, E=200 GPa, 

coefficient of thermal expansion, α=1.0x10
-5
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Figure 9.10 Elastic shakedown, reverse plasticity and ratchet region for the plate with a hole with 

constant mechanical and varying thermal load 

 

 The detailed temperature history at the inner bore of the hole is given in 

Figure 9.9, where θ(t) varies between θ0 and θ0+Δθ. When the ambient temperature 

θ0 remains at 0

C, the magnitudes of the maximum thermo elastic stresses for the 

above thermal loading extremes can be determined by the maximum temperature 

difference Δθ between the bore of the hole and the edge of the plate. Hence the cyclic 

thermal load and constant mechanical load can be characterized by the maximum 

temperature difference Δθ and the uniaxial tension ζp, respectively. The reference 

constant elastic mechanical stress can be calculated by the axial tension 

ζp=ζp0=100MPa while the reference temperature difference Δθ=Δθ0=500

C 

determines the reference cyclic elastic thermal stress. Two thermal stress extremes 

with three load instances are adopted for this cyclic load history: 

---Load instance (1): The temperature distribution and axial tension are applied. 
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---Load instance (2): Both loads are sustained during a creep dwell.   

---Load instance (3): The temperature load is removed (thus indicating the end of 

creep dwell), and the constant axial tension remains applied. 

9.4.2 Results and Discussions 

 Figure 9.10 shows the shakedown and ratchet boundaries for the problem 

without the effects of creep, using the numerical procedures described in Chapters 3 

and 5. In Figure 9.10 the applied uniaxial tension in the X-axis is normalized with 

respect to the reference uniaxial tension while the thermal load in the Y-axis is 

normalized by using the reference temperature difference Δθ=Δθ0=500

C. Three 

cyclic load cases 1 (Δθ=0.4Δθ0, ζp=0.5ζp0 ), 2 (Δθ=0.7Δθ0) and 3 (Δθ=0.7Δθ0, 

ζp=0.5ζp0), which are located in the elastic shakedown and reverse plasticity region 

of the calculated boundary (Figure 9.10), are chosen to demonstrate the influence of 

different cyclic loading and dwell times on the cyclic response of a plate with a hole. 

9.4.2.1 Verification   

 As mentioned in the previous section, this improved LMM has the new 

capability to calculate the structural response for different material and creep model. 

The verification of the numerical results produced by LMM and ABAQUS step-by-

step analysis for elastic-perfectly plastic material model in accordance with Norton's 

law ("Combination Model One") and Ramberg-Osgood material model in 

accordance with Time Hardening law ("Combination Model Two") are shown in 

Figure 9.11-Figure 9.14. 

 For the creep material data in equation (9.15) we adopt Norton‘s law (steady-

state creep stage) with B= 5.86e-15, n*=5 and m*=0, and the time hardening law for 

B= 1.01e-11, n*=2.727 and m*=-0.118 [126] 

For the Ramberg-Osgood material model, 

 

1

2 2 2E B

     
   

 
 (9.25) 
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we adopt E=200 GPa, B=423 and β=0.116854 [127]. All the material data are for 

304 stainless steel.  

 The distribution of equivalent creep strain produced from LMM and step-by-

step analysis for material model with Combination Model One and Two under 

loading case 2 (Figure 9.10) for a dwell period 10 hours are shown in Figure 9.11 

and Figure 9.12, respectively. It is observed from Figure 9.11 and Figure 9.12 that 

the results from LMM are showing to be in a good agreement with the ABAQUS 

step-by-step inelastic analysis results. Similar agreement is also observed from 

Figure 9.13 and Figure 9.14, which show the results of equivalent creep strain 

distribution produced from LMM and step-by-step analysis for material model with 

Combination Model One and Two under loading case 3 (Figure 9.10) for dwell 

period of 10 hours. 

 

Figure 9.11 Equivalent creep strain distribution for elastic-perfectly plastic material model with 

Norton's law (Combination Model One) under loading case 2 after 10 hours dwell time (Figure9.10) 

(a) LMM (b) ABAQUS step-by-step analysis 

 Table 9.2 presents the values of equivalent creep and reverse plastic strain at 

the location with maximum creep strain produced from LMM and step-by-step 

analysis for different material models under loading cases 2&3 with 10 hours dwell 

time. It is observed form Table 9.2 that the difference for the values of maximum 

equivalent creep strain between LMM and step-by-step analysis is 2% and 5% for 

Combination Model One and Combination Model Two, respectively. Thus, the 

results (Figure 9.11-Figure 9.14 and Table 9.2) obtained using ABAQUS step-by-
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step analysis confirm the accuracy and the capability of the results produced by the 

LMM. 

  

Figure 9.12 Equivalent creep strain distribution for Ramberg-Osgood material model with Time 

Hardening law  (Combination Model Two)  under loading case 2 after 10 hours dwell time 

(Figure9.10) (a) LMM (b) ABAQUS step-by-step analysis 

 

 

Figure 9.13 Equivalent creep strain distribution for elastic-perfectly plastic material model with 

Norton's law (Combination Model One)  under loading case 3 after 10 hours dwell time (Figure9.10) 

(a) LMM (b) ABAQUS step-by-step analysis 

 As mentioned in Chapter 2, creep generally consists of three distinct stages, 

which are the primary, secondary (steady-state) and tertiary creep stage. Among 

these three stages, the secondary creep stage dominates each creep curve (Chapter 2) 

by constituting around 70% of the materials creep life. For simplification, the 

material model adopted in the coming sections is an elastic-perfectly plastic material 

model in accordance with Norton's law (Combination Model One). 
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Figure 9.14 Equivalent creep strain distribution for Ramberg-Osgood material model with Time 

Hardening law (Combination Model Two) under loading case 3 after 10 hours dwell time (Figure9.10) 

(a) LMM (b) ABAQUS step-by-step analysis 

 

Table 9.2 Values of equivalent creep and reverse plastic strain at the location with maximum creep 

strain for different material model under loading cases 2&3 (Figure9.10) with 10 hours dwell period 

produced from LMM and step-by-step analysis 

 Loading case 2 Loading case 3 

Combination 

Model One 

Combination 

Model Two 

Combination 

Model One 

Combination 

Model One 

LMM (Creep Strain %) 0.0902 9.56e-3 0.086 9.132e-3 

LMM (Reverser Plastic Strain %) 0.114 0.096 0.112 0.099 

Step-by-step (Creep Strain %) 0.0882 9.05e-3 0.085 8.731e-3 

Step-by-step (Reverser Plastic Strain 

%) 
0.113 0.096 0.111 0.097 

 

9.4.2.2 Locations of Maximum Creep Strain and Plastic Strain Range  

 The locations of maximum creep strain corresponding to different dwell 

period and cyclic load cases are shown in Figure 9.15 and Figure 9.16, respectively. 

It is observed from Figure 9.15 and Figure 9.16 that the location of maximum creep 

stain changes with changing dwell period and types of cyclic load cases. 

Loading condition 

Numerical methods 
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(a)                                           

 

(b)                                           

 

 (c) 

Figure 9.15 Location of maximum creep strain corresponding to the cyclic load case 1 with dwell 

period (a) 1 hour (b) 10 hours (c)100 hours 

 

 The locations of maximum plastic strain range corresponding to different 

dwell period and cyclic load cases are shown in Figure 9.17 and Figure 9.18, 

respectively. It is observed from Figure 9.17 and Figure 9.18 that the location of 

maximum plastic strain range changes with different types of cyclic load cases only, 

but it does not change with different dwell period. 
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(a)                                            

 

(b)                                            

 

 (c)                                            

 

Figure 9.16 Location of maximum creep strain with 1 hour dwell period corresponding to the cyclic 

load (a) case 1 (b) case 2 (c) case 3 
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(a)                                             

 

(b)                                             

 

 (c)                                             

 

Figure 9.17 Location of maximum plastic strain range corresponding to the cyclic load case 1 with 

dwell period (a) 1 hour (b) 10 hours (c)100 hours 
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(a)                                            

 

(b)                                            

 

(c)                                            

 

Figure 9.18 Location of maximum plastic strain range with 1 hour dwell period corresponding to the 

cyclic load (a) case 1 (b) case 2  (c) case 3 

9.4.2.3 Cyclic Responses within Elastic Shakedown Region 

 The stress strain response for load case 1 at the location of maximum reverse 

plastic strain (Figure 9.17b) and maximum creep stain (Figure 9.15b) with dwell 

period of 10 hours is shown in Figure 9.19. 
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(a) 

 

(b) 

 

Figure 9.19 Response of the steady state stress-strain path corresponding to the cyclic load point 

1(dwell period 10 hours) at the region with maximum (a) reverses plastic strain  (b) creep strain 
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(a) 

 

 

(b) 

 

Figure 9.20 Response of the steady state stress-strain path corresponding to the cyclic load point 3 at 

the location with maximum reverse plastic strain with dwell period (a) 1 hour (b) 10 hours 
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 From Figure 9.19 it is observed that the calculated steady-state of stress and 

strain follows the path A1B1C1A2B2C2A3B3C3, etc. and reaches the point An at the 

end of the nth loading, the point Bn at the end of the nth dwell time and the point Cn 

at the end of the nth unloading. Both locations exhibit creep ratchetting as additional 

creep strain forms due to stress relaxation in every cycle. 

 It is observed form Figure 9.19a that the material yields during unloading due 

to the stress relaxation process in the structure. In Figure 9.19b the material is elastic 

during unloading. During loading the stress is reset to a higher value due to the 

formation of residual stresses in neighbouring regions. When considering possible 

failure mechanisms of the structure, both of these critical locations would need to be 

checked against different failure criteria (e.g. location at Figure 9.17b for the 

incremental plastic collapse and the location at Figure 9.15b for creep rupture). 

9.4.2.4 The Behaviour of Cyclic Response with Changing Dwell Period 

 The steady state stress strain paths for the cyclic loading case 3 (Figure 9.10) 

at the locations of maximum reverse plastic strain with 1 and 10 hours dwell period 

are shown in Figure 9.20a and Figure 9.20b respectively. Figure 9.20a shows that the 

temperature gradient causes material to yield in compression on loading since the 

applied load is dominated by the compressive thermal stress. Then the creep causes 

the inelastic strain to increase in compression as the stresses relax. Removal of the 

temperature gradient causes the material to yield in tension during unloading and the 

reverse plastic strain recovers all the inelastic strain induced during loading and 

dwell time process. Therefore, the steady-state stress and strain curve (Figure 9.20a) 

repeats the hysteresis loop ABC with every subsequent cycle, reaching the point A at 

the end of each loading, the point B at the end of each dwell time and the point C at 

the end of each unloading. As the dwell period increases to 10 hours (Figure 9.20b), 

the stress relaxes further, causing the creep strain increase in compression. However, 

the small magnitude of creep stress causes a limited increase in creep strain. A larger 

reverse plastic strain is formed in tension during unloading due to the larger stress 

relaxation level. Thus, an opened hysteresis loop is generated and it follows the stress 

strain path of A1B1C1A2B2C2A3B3C3. 
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(a) 

 

 

(b) 

 

Figure 9.21 Response of the steady state stress-strain path with dwell period 10 hours at the location 

with maximum reverse plastic strain corresponding to the cyclic load points (a) 2 (b) 3 
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(a) 

 

 

(b) 

 

Figure 9.22 Response of the steady state stress-strain path with dwell period 10 hours at the location 

with maximum reverse plastic strain corresponding to the cyclic load points (a) 1 (b) 3 
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9.4.2.5 The Cyclic Response with Different Applied Loading 

 The steady state stress strain path for the cyclic loading points 2 and 3 (Figure 

9.10) at the location of maximum reverse plastic strain with 10 hours dwell period 

are shown in Figure 9.21a and Figure 9.21b respectively. It is observed from Figure 

9.21a that the steady-state stress and strain curve forms a closed hysteresis loop 

(ABC) when only cyclic thermal loading is applied. With an additional constant 

mechanical load (Figure 9.21b) applied in the tensile direction the value of stress 

drop becomes larger, and thus enlarges the reverse plastic strain upon unloading. 

Therefore, an opened hysteresis loop is created and follows the stress strain path of 

A1B1C1A2B2C2A3B3C3. 

 The steady state stress strain paths for the cyclic loading points 1 and 3 

(Figure 9.10) at the location of maximum reverse plastic strain with 10 hours dwell 

period are also compared in Figure 9.22. It shows that with the increasing cyclic 

thermal loads (Figure 9.22b), the higher temperature gradient causes material to yield 

in compression on loading. Larger creep strain is induced during stress relaxation 

process than that at load point 1 (Figure 9.22a). Removal of this higher temperature 

gradient causes a larger reverse plastic strain compared with Figure 9.22a. 

Table 9.3 Values of the elastic follow-up factor Z at the location with the maximum creep strain 

Load Loading 

Type (Figure 9.10) 
Z dwell time 1h Z dwell time 50h Z dwell time 100h 

Case 1 3.39 2.04 8.56 

Case 2 1.52 1.81 1.91 

Case 3 1.48 1.77 4.23 

 

 Table 9.3 shows the values of elastic follow up factor obtained from the 

loading cases of 1, 2 and 3 at the location with the highest creep strain. It can be seen 

from Table 9.3 that for cyclic loading cases 1 and 3, which has primary loading 

involved, the increase in dwell time causes larger changes in Z comparing to the load 

case without primary load (load case 2). The reason is that with the increased dwell 

time for the case with primary load higher creep strain occurs due to the higher stress 

level than the load case which has no primary load. For cyclic loading case 1, smaller 
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elastic follow-up factor with 10 hours dwell period is obtained comparing to the 

same case with 1 hour dwell period. This phenomenon can be explained by the 

change of the location of maximum creep strain due to the significant stress 

redistribution. 

 

9.4.2.6 The Cyclic Response for a creep model occurring only at high 

temperature regions 

 In this study the main purpose is to demonstrate the capability of the extended 

LMM in calculating the creep-fatigue behaviour. Therefore, the above results are 

based on the same creep model where creep occurs at both, high and low temperature 

regions applied to the whole component.  In reality, creep for steel occurs at 

temperatures which are greater than 40% of the absolute melting temperature. Thus, 

in the below calculation, by using LMM, the structural response for a creep model in 

which creep only occurs at high temperature regions will demonstrated.  

The creep model [22] adopted from Norton's Power Law, is as follows: 
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  (9.26) 

where 0  
is the uniaxial steady state creep rate corresponding to temperature θ and 

uniaxial stress ζ0. Here we adopt 
0
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where the creep properties depend on temperature, typically for stainless steel. The 

steady state stress strain path for the cyclic loading point 2 (Figure 9.10) at the 

location of maximum reverse plastic strain with 10 and 1000 hours dwell periods are 

shown in Figure 9.23a and Figure 9.23b, respectively. It is observed from both 

figures that the steady-state stress and strain curves form a closed hysteresis loop 

(ABC) with dwell periods 10 and 1000 hours for minor stress relaxation, indicating 

that creep effect is insignificant under cyclic loading point 2. 

 Under loading case 2, the small regions where the temperature is high and the 

creep effect is large, are surrounded by low temperature regions (regions with 

insignificant creep effect). In order to maintain the self-equilibrium condition when 
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the structure is under the relaxation process, the stress at the high temperature 

regions drops slightly, and that is the reason why insignificant stress relaxation is 

observed in Figure 9.23.  

 

 

Figure 9.23 The response of the steady state stress-strain path for the creep model (mentioned in 

9.4.2.6) at the location with maximum reverse plastic strain corresponding to the cyclic load point 2 

with dwell periods (a) 10 hours  (b) 1000 hours 

- 210 

- 150 

- 90 

- 30 

30 

90 

150 

210 

- 0.002 - 0.001 0 0.001 0.002 0.003 

  

  

A 
B 

C 
Δεp=0.0758% 

Δεp=0.0758% 

Δεc=2.48e-5% 
stress after creep=203.5  

(a) 

- 210 

- 150 

- 90 

- 30 

30 

90 

150 

210 

- 0.002 - 0.001 0 0.001 0.002 0.003 

  

  

A 
B 

C 
Δεp=0.0786% 

Δεp=0.0760% 

Δεc=0.0026% 
stress after creep=201.3 

(b) 



 

220 

 

9.5 Conclusions  

 In the present study, the structural response under cyclic loading including 

the effect of creep has been investigated using the LMM and the following 

observations have arisen: 

 1. The LMM has been derived and verified by the Bree problem, by being 

able to replicate the analytical creep ratchet limit. This method is able to evaluate the 

stable cyclic response (including creep and plastic strains) and elastic follow up 

factor. The LMM method has also been applied to a holed plate, and demonstrated its 

ability to determine the cyclic response and elastic follow up factor of more complex 

3D structures. 

 2. Various cyclic responses for different loading conditions and dwell time 

periods have been investigated by the proposed method, which is able to address 

creep-fatigue damage and creep ratchetting issues. 

 3. It is possible for a closed cycle to form when a creep dwell occurs during 

the cycle where the reverse plastic strains completely recover the inelastic strain 

created during loading and creep dwell. However, the cycle may become non-closed 

if the creep strains become too large for the reverse plastic strains to recover. 

 4. The open hysteresis loops are either caused by the accumulation of plastic 

strain (ratchetting) during each load cycle (Figure 9.19a and Figure 9.20b), or 

determined by the accumulation of creep strain due to the cyclically enhanced creep 

(Figure 9.4b) or steady state creep (Figure 9.4a). 

 In Chapter 10, a further examination on a complex defective structure (a 

welded pipe) subjected to cyclic thermal load and constant internal pressure with the 

effect of creep will be conducted by using the numerical procedure mentioned in this 

chapter. 
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CHAPTER 10. ON THE EVALUATION OF A WELDED 

PIPE SUBJECTED TO CYCLIC 

THERMAL LOAD WITH CREEP 

FATIGUE INTERACTION 

Equation Chapter 10 Section 1 
10.1  Introduction 

 Welds have critical importance in power plants and other installations. The 

components used in power plants operating at high temperatures are mainly complex 

and large in nature. Because of this, the connection of smaller components by 

welding is a much more common practise since forging or casting is generally much 

more expensive. Hence it can be said that welded joints are frequently encountered in 

every stage of plant operation. 

10.1.1 Metallurgical and Mechanical Behaviour of Weldments 

 In a welding process a very hot weld metal (WM) called a weld bead is 

deposed, onto the cooler parent material (PM) of the components to be connected 

together. For large welded regions, to complete the weldment many weld beads will 

be laid. The PM adjacent to the weld bead, as each weld bead is laid down, is 

subjected to numerous heating and cooling cycles. This is producing a different 

structured material region compared to the PM away from the weld. This region is 

known as the heat-affected zone (HAZ) and its microstructure depends on the 

welding temperature magnitude and time it remains at this temperature, the number 

of heating cycles, the cooling rate, the material and the metallurgical state. Each of 

these different micro structural regions has its own stress, strain and rupture 

behaviour, which is dependent on the particular parent material, weld metal and 

welding conditions used for the component. 

 These zones generally have significantly different creep properties. For 

example, for low carbon steels generally the intercritical HAZ region is the weakest 

in terms of creep and rupture strength and has a higher ductility compared to the PM. 
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The WM strength and ductility can vary compared to the PM depending on material 

choice. e.g. [128] [129] [130]. Additionally, creep crack growth rates within different 

regions of the weldment can vary significantly; it may be very high in the WM 

region, producing a brittle mode of failure, while in regions such as the PM, crack 

growth is generally slow and controlled by a ductile failure mode. To effectively 

study creep/fatigue failure of welds it is important that all of these metallurgical and 

mechanical characteristics of weld behaviour are considered. 

10.1.2 Numerical Analysis of A Welded Structure 

 The performance of power-generation components at high temperatures is 

generally limited by the fatigue, creep and creep-fatigue life of the weldments. For 

this reason, safe and reliable performance of all welded components is necessary for 

plants to operate effectively. However, due to the effects of material inhomogeneity 

of the weld, component geometry and loading, the creep, creep-fatigue interaction 

behaviour of welded plant structures gets complicated. As a result, since exact 

analytical creep solutions are not commonly available, numerical methods are 

usually used for specific material, geometry and loading combinations. 

 Conventional fusion weld geometries [131] are typically as shown in Figure 

10.1, where the weld preparation angle, measured normal to the pipe or plate wall, is 

typically 15-30 degree. There are alternative designs [132] which specifically 

intended to reduce the volume of the metal present in the weldment. Such a design is 

referred to as Narrow Gap design, and it has a weld interface angle of around zero 

degree. The changes in the weld interface angle can result in major changes in the 

weld metal volume and may subsequently affect the stress distributions. This would 

mean that the failure life of the weld is also affected. Thus, an examination of the 

geometric effects of the pipe thickness and weld angle on the failure behaviour of a 

thick walled pipe weld is needed to be performed for creep and creep-fatigue 

conditions. 

 This chapter is concerned with the steady-state, creep, creep-fatigue 

behaviour of the heterogeneous weld-related material zones, investigating the 

importance of the weld and its effect on the design life. The numerical procedure of 
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the Linear Matching Method, as described in Chapter 9, was used to obtain the flow 

stress and creep strain distributions. The parametric study for the effect of failure 

behaviour for different size of WM and HAZ is investigated. The locations and 

values of the maximum creep and total strain range in the welded toe are identified 

and the creep fatigue lives are predicted using these maximum creep and total strain 

values, for a wide range of weld angles and pipe thicknesses. 

 

10.2  Numerical Problem 

 

Figure 10.1 Dimensions and loading of the X20 CrMoV12-1  welded pipe 

 

10.2.1 Geometry and Material Properties 

 The geometry [131] in a through thickness cross-section of a girth pipe weld 

subjected to varying thermal load and internal pressure is shown in Figure 10.1. The 
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three different material zones modelled are, the Parent Material (PM), the Weld 

Metal (WM), and the Heat-Affected Zone (HAZ), each of which is isotropic, elastic 

perfectly plastic and satisfies the von-Mises yield criterion for plastic behaviour. 

These regions are defined by a number of geometrical parameters. The heat-affected 

zone width is defined by the parameter h. The angle β defines the inclination of HAZ 

to the horizontal, the parameter d defines the width of weld toe. The inner radius Ri 

employed is 107.5mm [131], and the radius ratio Ro/Ri is 1.2. The parameter d and h 

employed are 6mm and 2.5mm, respectively, while the parameter, β , is varied from 

0
0 

to 30
0 

degrees. 

Table 10.1 Mechanical properties for the X20 CrMoV12-1 material at 550
0
C [133] 

Material 
Yield stress 

ζy(MPa) 

Young's 

modulus 

E (GPa)
 

Poisson's ratio 

ν 

Coefficient of 

thermal expansion α 

(C
-1

) 

Conductivity 

coefficient 

k (Wm
-1
C

-1
) 

PM 418 175253 0.3 1.246 x 10
-5

 26.269 

WM 520 175253 0.3 1.246 x 10
-5

 26.269 

HAZ 374 175253 0.3 1.246 x 10
-5

 26.269 

 

Table 10.2 Creep properties of Norton's model for the X20 CrMoV12-1 material at 550
0
C [131] 

Material B N*
 

PM 2.8 x 10
-17

 4.866 

WM 5.266 x 10
-16

 4.0 

HAZ 5.6 x 10
-17 4.866 

 

 The initial residual stress in the pipe due to the welding process is considered 

to be zero due to post weld heat treatment [134]. And in this chapter, the Norton‘s 

law (steady-state creep stage) creep constitutive relation is adopted: 

 
*c nB   (10.1) 

where 
c is the effective creep strain rate,  is the effective von Mises stress, and B, 

m and n* are the creep constants of the material. Table 10.1 and 10.2 show the 

mechanical and creep properties obtained from creep tests on X20 CrMoV12-1 

material at 550
0
C [131] [133], respectively. 



 

225 

 

 

Figure 10.2 Finite element model of the X20 CrMoV12-1 welded pipe 

 

Figure 10.3 Load history with three distinct extremes (four load instances) to the elastic solution. 

 

 

Figure 10.4 Shakedown and ratchet limit interaction curve for the welded pipe 
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10.2.2 Finite Element Model 

 Figure 10.2 shows the two dimensional axisymmetric model used in this 

analysis, with a symmetry condition applied in the axial direction. The free end of 

the pipeline is constrained in order to keep the plane section plane during loading, to 

simulate the expansion of a long pipe. The closed-end boundary condition is 

achieved by applying uniform axial thrust to the end of the pipe. The uniform axial 

thrust TN induced by the internal pressure P is given by  222

ioiN RRPRT  . In this 

study, the ABAQUS type CAX8R 8-node biquadratic axisymmetric quadrilateral 

elements with reduced integration are used for structural analysis and DCAX8 8-

node quadratic axisymmetric heat transfer quadrilateral elements with reduced 

integration scheme are used for the heat transfer analysis.  

 The detailed temperature and internal pressure history on the welded pipe is 

given in Figure 10.3, where θ(t) varies between θ0 and θ0+Δθ. When the ambient 

temperature θ0 remains at 0
0
C, the magnitudes of the maximum thermo-elastic 

stresses for the above thermal loading extremes can be determined by the maximum 

temperature difference Δθ between the inner surface and outer surface of the welded 

pipe. Hence the cyclic thermal load and the internal pressure can be characterized by 

the maximum temperature difference Δθ and the internal pressure P, respectively. 

The reference elastic stress induced by the internal pressure can be calculated as 

P=P0=10MPa while the reference temperature difference Δθ=Δθ0=550
0
C determines 

the reference cyclic elastic thermal stress. Three thermal stress extremes with four 

load instances are adopted for this cyclic load history: 

---Load instance (1): The temperature distribution and internal pressure are applied. 

---Load instance (2): An internal pressure and a thermal stress occurring at the 

highest uniform temperature are applied due to the material 

mismatch. 

---Load instance (3): Both thermal load and internal pressure are sustained during a 

creep dwell at 550
0
C.   

---Load instance (4): Both temperature load and internal pressure are removed (thus 

indicating the end of creep dwell) 
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(a) 5 hours dwell period 

 

(b) 10 hours dwell period 

 

(c) 100 hours dwell period 

Figure 10.5 Maximum principal creep strain for load case 1 with Ro/ Ri =1.2 and β=13 after 100 load 

cycles from step-by-step analysis. 
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(a) 5 hours dwell period 

 

(b) 10 hours dwell period 

 

(c) 100 hours dwell period 

Figure 10.6 Maximum principal creep strain for load case 1 with Ro/ Ri =1.2 and β=13 by LMM 
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Figure 10.7 The effective creep strain distribution of the welded pipe with Ro/ Ri =1.2 and β=13 for 

different dwell periods along the path AB in Figure 10.3. 

 

10.3  Parametric Study  

 Figure 10.4 shows the shakedown and ratchet boundaries obtained from the 

numerical procedures described in Chapters 3&5, for the welded pipe subjected to 

the cyclic loading history as depicted in Figure 10.3, without the effects of creep. In 

Figure 10.4 the applied internal pressure in the X-axis is normalized with respect to 

the reference pressure (P0=10MPa) while the thermal load in the Y-axis is 

normalized by using the reference temperature difference Δθ=Δθ0=550
0
C. Two 

cyclic load cases 1 (Δθ=Δθ0, P=1.5P0) and 2 (Δθ=Δθ0, P=3.5P0), which are located in 

the reverse plasticity region of the calculated boundary (Figure 10.4), are chosen to 

demonstrate the influence of dwell period and geometry effect on the distribution of 

creep and total strain of a welded pipe. 
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Figure 10.8 The total strain range distribution of the welded pipe with Ro/ Ri =1.2 and β=13 for 

different dwell periods along the path AB in Figure 10.3. 

 

 In order to verify the numerical results produced by LMM, Figure 10.5 and 

Figure 10.6 present the accumulated creep strain after dwell period 5, 10, 100 hours 

for the welded pipe subjected to load cases 1 by both the ABAQUS step-by-step 

inelastic analyses and the LMM. The results from LMM show a good agreement 

with the ABAQUS step-by-step inelastic analysis results, although the values of the 

maximum principal creep strain produced by the LMM are slightly higher than those 

by ABAQUS step-by-step inelastic analyses. The reason for the smaller values of 

step-by-step inelastic analysis may be attributed to the cyclic response values failing 

to reach the steady cyclic state.  In order to evaluate the structure at the steady cyclic 

state by step-by-step inelastic analysis, more load cycles need to be performed, 

which leads to slightly higher values of maximum principal creep strains. 
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Figure 10.9 The initial stress distribution of the welded pipe with Ro/ Ri =1.2 and β=13 for different 

dwell periods along the path AB in Figure 10.3. 

 

10.3.1 Creep and Total Strain Distribution with Changing Dwell Time 

 For the loading cases 1&2, the variation of effective creep strain c , and 

effective total strain range t , with different dwell period along the path A to B 

(Figure 10.2) are shown in Figure 10.7 and Figure 10.8, respectively. It is observed 

that in these two figures the maximum creep strain and total strain range occur at the 

WM/HAZ interface within the HAZ for all the loading and dwell period cases. At 

this location, if we compare the loading cases 1&2, the peak creep and total strain 

range increase slightly when the dwell period is at 10 hours, and become increasingly 

significant as the dwell period rise. A similar phenomena is also observed in the PM 

and WM. The variation of the start of dwell stress and the flow stress (or stress state 

after creep) along AB are shown in Figure 10.9 and Figure 10.10, respectively. 

Figure 10.9 shows that within the HAZ, the variation of the start of dwell stress is 
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equal to the value of yield for both loading cases. After dwell period, it is observed 

from Figure 10.10 that within the HAZ, the larger the dwell period, the greater value 

of stress reduction (the greater stress relaxation).  

 

 

Figure 10.10 The flow stress distribution of the welded pipe with Ro/ Ri =1.2 and β=13 for different 

dwell periods along the path AB in Figure 10.3. 

 

10.3.2 Creep and Total Strain Distribution with Changing Welded Angle 

 The variations of the effective creep strain and total strain range with 100 

hours dwell period and load case 1 for seven β-values, are shown in Figure 10.11 and 

Figure 10.12, respectively. It is observed from Figure 10.11 and Figure 10.12 that the 

maximum creep stain and total strain range increases with the increase of β at the 

location of WM/HAZ interface within the HAZ. The effective creep strain is almost 

independent of β in PM and WM. Similar behaviour is also observed for the 

distribution of the total strain range, in Figure 10.12, which shows that the total strain 

range is nearly independent of β within PM and WM. 
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Figure 10.11 The effective creep strain distribution of the welded pipe with Ro/ Ri =1.2 and dwell 

period=100hours for different welded angles β along the path AB in Figure 10.3. 

10.3.3 Creep and Total Strain Distribution with Changing Radius Ratio 

Ro/ Ri 

 Figure 10.13 and Figure 10.14 present the effects of the radius ratio Ro/ Ri on 

the distribution of the effective creep strain and total strain range, respectively. Four 

different thickness ratios Ro/Ri=1.1, 1.2, 1.3, 1.4 of the welded pipe for 100 hours of 

dwell period with β=13 and under load case 1, were analyzed. 

 It is observed from Figure 10.13 that the creep strain is almost independent of 

the radius ratio for the location with maximum creep strain at WM/HAZ interface 

within the HAZ. At the same location, Figure 10.14 shows that increasing the radius 

ratio increases the total strain range. The increase in total strain range is caused by 

the increasing of the welded pipe thickness which causes higher thermal stress 

distribution. 

 Figure 10.13-Figure 10.14 also shows that the distribution of the creep strain 

and total strain range are changed slightly with different radius ratio Ro/ Ri within PM 

and WM. 
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Figure 10.12 The total strain range distribution of the welded pipe with Ro/ Ri =1.2 and dwell 

period=100hours for different welded angles β along the path AB in Figure 10.3. 

 

Figure 10.13 The effective creep strain distribution of the welded pipe with β =13 and dwell 

period=100hours for different thickness ratios Ro/ Ri along the path AB in Figure 10.3. 
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Figure 10.14 The total strain range of the welded pipe with β =13 and dwell period=100 hours for 

different thickness ratios Ro/ Ri along the path AB in Figure 10.3. 

 

 

Figure 10.15 Configurations of weld cracking in the WM (a) an inner crack (b) an outer crack 
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(a) Without crack 

 

(b) Inner crack 

 

(c) Outer crack 

Figure 10.16 Location of maximum creep strain with β =13, ratio Ro/ Ri=1.2 and dwell 

period=100hours under load case 1 
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(a) Without crack 

 

(b) Inner crack 

 

(c) Outer crack 

Figure 10.17 Location of the maximum total strain range with β =13, ratio Ro/ Ri=1.2 and dwell 

period=100hours under load case 1 
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Figure 10.18 Best fit curve of the experimental results provided by [133] 

 

10.3.4 Location of the Maximum Creep Strain and Total Strain Range in 

Relation to Crack Appearing within the WM 

 The formation of weld cracks is the primary failure mode for power plant 

piping under normal operating conditions. Crack initiation can be attributed to 

numerous cases, including poor welding practices, inadequate post weld heat 

treatment (PWHT), ill-designed levels of material mismatch and the accumulation of 

creep damage. The locations and orientations of weld cracking are normally found to 

initiate in the WM from the interaction of residual stresses produced from welding 

with the low-ductility of WM regions, thus producing circumferential 'reheat' and 

transverse WM cracks in the WM regions [135]. 

 An inner crack and outer crack (with crack size a/(Ro-Ri)=0.1) configurations 

of weld cracking in the WM are shown in Figure 10.15a-b, respectively. Figure 10.16 

and Figure 10.17 show the location of maximum creep strain and total strain range 

for β=13, Ro/Ri=1.2 under load case1 and for different welded pipe configurations, 

respectively. It can be seen from Figure 10.16a and Figure 10.17a, that for the case of 

a welded pipe without crack, the position of maximum creep strain and total strain 
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range occur at the inner pipe of WM/HAZ interface within the HAZ. While the outer 

crack appears (Figure 10.16c) in the WM, the maximum creep strain occurs in the 

same location as in the case without a crack. However, when the inner crack appears 

in the WM, the position of the maximum creep strain moves to the outer section of 

the pipe at the HAZ (Figure 10.16b). This is mainly due to the fact that there is a 

stress interaction between the stress concentration in the inner crack and the material 

mismatch area (HAZ). 

 Both outer crack (Figure 10.17c) and inner crack (Figure 10.17b) 

configurations show that the location of the maximum total strain range move to the 

crack tip of WM where the maximum stress occurs. 

 

10.4  Life Estimates 

 

10.4.1 Adopted Lifetimes Model 

 This section describes the mathematic model [136] used to predict the welded 

pipe lifetime in terms of the number of cycles to failure under creep-fatigue 

conditions. The number of cycles to Low Cycle Fatigue failure N
f 

 was expressed  in 

terms of the total strain range Δε
total

  in percentage [137], 

      
2

1 2 3log log logtotal f fm m N m N     (10.2) 

and the reverse relation for (10.2) is obtained as the root of square equation as [136],  

  
 2

2 2 3 1

3

4 log
log

2

total

f
m m m m

N
m

     
 

  (10.3) 

and the fatigue damage factor per cycle, 

 
1 1f f

cyc N   (10.4) 

where, the parameters m1, m2 and m3 for the PM, HAZ and WM are adopted as [133], 

m1=2.1349, m2=-1.0225, m3=0.1067 

The creep endurance 1

c

cycw , the proportion of the creep ductility exhausted in each 

cycle, and cN , the number of cycles to failure due to creep alone, are given by, 
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 1 *

1

1
,

c
c c

cyc c

cyc

w N
w






   (10.5) 

where, c is the accumulated creep strain during relaxation. And the creep strain 

exhaustion ductility, 
* , at 550

0
C for these different material zones is considered as a 

function of creep stress level as [133] (this is the best-fit curve of the exhaustion 

model with experimental results provided by [133]. Figure 10.18 is a plot of the best 

fit curve from the experimental results provided by [133]. From this curve, the best 

fit function is provided as, 

 * 2( ) 0.000199 0.031466 8.401515ave ave ave       (10.6) 

where ave  is the average stress during the stress relaxation process over dwell 

period ∆t , and the estimation of the average stress could be described as follows: 

Considering the relaxation problem with elastic follow-up as, 

 0cd Z d

dt E dt

 
   (10.7) 

and the analytical solution for stress function in the form of (10.1) becomes, 

  
 

1/(1 *)

1 *

0 0

1 *
, ,

n

n
t EB n

t Z
Z

  




 

  
 

 (10.8) 

where Z is the elastic follow-up factor described in Chapter 9 (9.21), and 0 is the 

effective value of the start of dwell stress. B and n* are the creep constants of the 

material described in table 10.2. 

 Then ave  is defined as a mean value of the integral function of  0, ,t Z 

during the dwell period as, 

  0
0

1
, ,

t

ave t Z dt
t

  



 

 (10.9) 

The estimate of total lifetime, corresponding to crack initiation, is given by a linear 

summation of fatigue and creep damage i.e. the total number of cycles to failure *N

is given by; 

 
*

1 1 1
f cN N N

   (10.10) 
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As the creep strain is small, its inclusion in the total strain range Δε
total

 has a 

negligible effect on fatigue damage. 

 

Table 10.3 Life predictions evaluated at the position of maximum creep strain and total strain range 

with β=13
0
C, Ro/ Ri=1.2 for different dwell time 

Dwell 

period 

 

Load case 1 

 

Load case 2 

Cycle to  

Fatigue  

failure  

N
f 

(H) 

Cycle to  

creep  

failure 

N
c 

(H) 

Estimate  

of  

life time 

N
* 

(H) 

Cycle to  

Fatigue 

failure 

N
f 

(H) 

Cycle to  

creep  

failure 

N
c 

(H) 

Estimate  

Of 

 life time 

N
* 

(H) 

1 hour 7348 140598 6983 7267 139814 6908 

10 hours 5066 19175 4007 4806 18582 3818 

100 hours 2697 4340 1663 1851 3646 1227 

1000 hours 1836 1868 926 720 1123 438 

(H)---the welded pipe failure at the WM/HAZ interface within the HAZ 

 

Table 10.4 Life predictions evaluated at the position of maximum creep strain and total strain range 

with load case1, Ro/ Ri=1.2, dwell period=100 hour, for different welded angles 

β 

Cycle to 

 Fatigue failure N
f 

(H) 

Cycle to 

 creep failure N
c 

(H) 

Estimate of  

life time N
* 

(H) 

0
0
 4238 4734 2236 

5
0
 4308 4756 2260 

10
0
 3015 4509 1807 

13
0
 2697 4340 1663 

20
0
 2136 4012 1394 

25
0
 1871 3849 1259 

30
0
 1726 3771 1184 

(H)---the welded pipe failure at the WM/HAZ interface within the HAZ 

 

10.4.2 Predicted Lifetimes 

 The variations of the failure lives, predicted by the peak effective creep strain 

and total strain range with β=13
0
, Ro/Ri=1.2 for different dwell periods are shown in 
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Table 10.3. The positions where the maximum creep strain and total strain range 

occur are located in the HAZ. It can be seen from Table 10.3 that the failure life 

reduces with increasing dwell period for both loading cases. For a dwell period of 

1000 hours with load case 1, the creep damage is almost equal to the fatigue damage. 

For dwell period less than 1000 hours the failure response is dominated by a fatigue 

mechanism for both loading cases. 

 

Table 10.5 Life predictions evaluated at the position of maximum creep strain and total strain range 

with load case1, β =1.2, dwell period=100 hours, for different pipe thickness ratios 

Ro/ Ri 

Cycle to 

 Fatigue failure N
f 

(H) 

Cycle to 

 creep failure N
c 

(H) 

Estimate  

of life time N
* 

(H) 

1.1 3218 4282 1837 

1.2 2697 4340 1663 

1.3 2187 4270 1446 

1.4 1859 4198 1288 

(H)---the welded pipe failure at the WM/HAZ interface within the HAZ 

 

 The variations of the failure lives, predicted by the peak effective creep strain 

and total strain range with dwell period 100 hours, Ro/ Ri=1.2 for different weld angle 

β under load case 1, are shown in Table 10.4. The position, where the maximum 

creep strain and total strain range occurs, is located in HAZ. It can be seen from 

Table 10.4 that the failure life reduces with increasing β. 

 The variations of the failure lives, predicted by the peak effective creep strain 

and total strain range with dwell period 100 hours, β=13
0 

, for different thickness 

ratios Ro/Ri under load case 1 are shown in Table 10.5. The position, where the 

maximum creep strain and total strain range occurs, is located in the HAZ. It can be 

seen from Table 10.5 that the failure life reduces with increasing Ro/Ri, and fatigue 

failure is the dominant mechanism. The reason for the fatigue domination is mainly 

due to the increase of the maximum plastic strain range with increasing Ro/Ri, 

whereas the maximum creep strain increases slightly with increasing Ro/Ri. 
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 The variations of the failure lives, predicted by the peak effective creep strain 

and total strain range with dwell period 100 hours, β=13
0 

, Ro/ Ri=1.2, under load 

case 1 for different welded pipe configurations are shown in Table 10.6. For a 

welded pipe with inner and outer crack configuration, the position where the 

maximum creep strain and maximum total strain range occurs is located in the HAZ 

and in the WM, respectively. It can be seen from Table 10.6 that the failure life 

reduces sharply when the crack appears. The failure mechanism is dominated by the 

fatigue and the failure location in the WM, where the crack is located. 

 

Table 10.6 Life predictions evaluated at the position of maximum creep strain and total strain range 

with load case1, β =1.2, dwell period=100 hours, Ro/Ri=1.2, for different pipe configurations 

Pipe 

configuration 

 

Location with maximum 

creep strain 

 

 

Location with maximum 

total  strain range 

 

Cycle to 

Fatigue 

failure 

N
f
 

Cycle to 

Creep 

failure 

N
c
 

Estimate 

of 

life time 

N
*
 

Cycle to 

Fatigue 

failure 

N
f
 

Cycle to 

Creep 

failure 

N
c
 

Estimate 

Of 

life time 

N
*
 

Without crack 2697(H) 4340(H) 1663(H) 2697(H) 4340(H) 1663(H) 

Inner crack 11868(H) 5726(H) 3862(H) 6(W) 19275(W) 6(W) 

Outer crack 2177(H) 4141(H) 1426(H) 8(W) 14192(W) 8(W) 

(H)---the welded pipe failure at the WM/HAZ interface within the HAZ 

(W)---the welded pipe failure at the crack tip in the WM 

 

 Life comparison between the pure pipe made with material PM only and the 

welded pipe with β=13
0 

, Ro/ Ri=1.2, under load case 1 for different dwell periods is 

shown in Table 10.7. The life of welded pipe, compared to the life of the pure pipe 

decreases sharply. However, this difference decreases as the dwell period increases 

due to the significant creep effect. 
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Table 10.7 Life comparision between the pure pipe made with material PM and the welded pipe with  

β=13
0
C, Ro/ Ri=1.2 for different dwell times under load case 1 

Dwell 

period 

 

Pure Pipe 

 

Welded Pipe 

Cycle to  

Fatigue  

failure  

N
f 

(I) 

Cycle to  

creep  

failure 

N
c 

(I) 

Estimate  

of  

life time 

N
* 

(I) 

Cycle to  

Fatigue 

failure 

N
f 

(H) 

Cycle to  

creep  

failure 

N
c 

(H) 

Estimate  

Of 

 life time 

N
* 

(H) 

%of life 

reduction 

from 

pure pipe 

1 hour 35206 194207 29803 7348 140598 6983 76% 

10 

hours 
16072 28211 10239 5066 19175 4007 61% 

100 

hours 
10217 6855 4102 2697 4340 1663 59% 

1000 

hours 
6640 2883 2010 1836 1868 926 53% 

(H)---the welded pipe failure occurs at the WM/HAZ interface within the HAZ 

(I)---the failure area occurs at the inner fiber of the pure pipe 

 

 

10.5  Discussions  

 Creep-fatigue analyses, using simplified three material axisymmetric models 

and Linear Matching Method, were performed for a thick walled welded pipe, with 

different weld angles β and thickness ratios Ro/Ri, subjected to a cyclic thermal load 

and internal pressure. The geometry and loading conditions are typical of the main 

stream pipelines observed in Denmark power plants [131]. Material data used are 

related to a service-aged X20 CrMoV121 weldment at 550
0
C [133]. The elastic 

perfectly plastic relation from plastic behaviour and Norton-Bailey for stress creep 

relaxation is the main model assumed in this study. Failure, understood as crack 

initiation, is modelled as a simple linear summation of fatigue and creep damage, 

creep damage being included as ductility exhaustion. The distribution of effective 

creep strain and total strain range within the weldment and the corresponding failure 

lives and failure locations predicted by the maximum creep strain and total strain 
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range are presented to show the effects of geometry change on the creep-fatigue 

behaviour of the welded pipe. 

 For a range of weld angles between 0 00 10   and 0 010 30   the failure 

life decreases by 20% and 35%, respectively, with the increasing weld angle. It was 

also found that the failure life decreases up to 30% by increasing the thickness ratio 

Ro/Ri from 1.1 to 1.4. The failure positions for all the geometry cases (without crack) 

considered in this study are the same and located in the HAZ. The reason for this 

weak dependency change, in this particular case, is related to the fact that the HAZ 

creep and mechanical ductility are much lower than the WM and PM. 

 With the presence of the crack in the WM, the failure life decreases sharply 

and the failure position moves from the WM/HAZ interface to the WM. The reason 

for this subtle change is the high stress concentration in the crack tip. 

 These results are useful and provide an improved understanding of the 

geometry effect on the creep-fatigue interaction for the welded pipe considered in 

this study. 

 

10.6  Conclusions 

 For the investigation of a particular X20 CrMoV121 welded pipe at 550
0
C 

subjected to cyclic thermal and mechanical load, the following conclusions can be 

obtained from the current results; 

 1. The failure life decreases by almost 30% with the increasing welded angle 

β and thickness ratio Ro/Ri. 

 2. The failure locations of the weldment are unaffected by the geometry 

changes considered in this study (without crack case). 

 3. With the crack appearing in the WM, the failure position moves from the 

WM/HAZ interface to the WM. 
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 4. It is observed from this study that although the failure mechanism is 

dominant mainly due to fatigue failure, 30-50% (without crack case) of life reduction 

is due to creep damage occurring from creep-fatigue interaction. 
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CHAPTER 11. CONCLUSIONS 

Equation Chapter 11 Section 1 

 

11.1  General Conclusions 

 In this thesis the objective was the assessment of structural integrity and life 

time of mechanical components with and without the effect of creep. The numerical 

procedures developed in this thesis basically stem due to the requirement for more 

accurate and reliable numerical methods for the direct evaluation of structural 

response under complex cyclic loading. These procedures become even more 

important for structures operating at elevated temperatures with the presence of 

creep, especially when the economically driven environment is included as a factor. 

 Linear Matching Method (LMM) was used as a numerical procedure in 

addressing to cyclic problems of mechanical components subjected to cyclic histories 

of mechanical and thermal loads with or without the effect of creep. LMM is a 

procedure which sequentially matches the behaviours of non-linear material to that of 

a linear material, with the linear coefficients matching to the yield condition in 

plasticity or the flow equation in creep. When used within the finite element scheme, 

ABAQUS, the developed iterative programming algorithms, generate a 

monotonically reducing sequence of upper bounds that finally converges to the least 

upper bound shakedown loads. In addition to the implementation of the LMM to the 

shakedown analysis method [20], it has  been extended beyond the range of most 

other direct methods by including the assessment of the ratchet limit and plastic 

strain range [21] [75][76] and steady state cyclic behaviour with creep-fatigue 

interaction [22]. These were the reasons that made LMM an ideal choice for this 

study. Following there is a summary of the results generated by the LMM in each 

chapter: 

 In Chapter 3 the application of the LMM methodology, as an iterative upper 

and lower bound elastic shakedown analysis method, were discussed. This numerical 

method was then applied to a 3D holed plate problem. The good agreement between 

the numerical and ABAQUS step-by-step elastic shakedown limit results, justifies 

 



 

248 

 

the accuracy of the methodology used. Further advantages of LMM can be observed 

considering the computing time necessary to generate the shakedown interactive 

diagram. 

 In Chapter 4, in order to demonstrate the efficiency and the effectiveness of 

the LMM for the upper and lower bound elastic shakedown limit in more complex 

structures, a parametric study of a composite cylinder (made of steel and aluminium) 

with a cross hole subjected to cyclic thermal loads and constant internal pressure is 

analysed. The results obtained from LMM have been verified using the step-by-step 

analyses, and they further proved that this method gives very accurate elastic 

shakedown limit results for complex structures. There are some valuable parametric 

results obtained in this Chapter, such as; 

1. The reverse plasticity limit increases with the decreasing volume of steel with or 

without the presence of the cross-hole. 

2. And increasing the cylinder radius ratio 
i

o

R

R
 reduces the reverse plasticity limit 

and highly increases the limit load, 

3. A safety shakedown envelope is created by formulating the elastic shakedown 

limit results of different composite material and cylinder thickness ratios with 

different cross-hole sizes. 

 The numerical procedure was further extended for the identification of the 

boundary between reverse plasticity and ratchetting regions, presented in Chapter 5. 

The LMM was then applied on the 3D square plate with a centre hole. The good 

correlation between the LMM and ABAQUS step-by-step ratchet limit results, 

justifies the accuracy of the adopted methodology. Another observation made in this 

chapter is that the sensitivity of the solutions to cyclic hardening, the Ramberg-

Osgood type material model considered produced larger ratchet limit, when the 

cyclic loading is above the reverse plasticity limit compared to the elastic perfectly 

plastic material model. And the ratchet boundary is increasing with decreasing 

Ramberg-Osgood material data n. 



 

249 

 

 In Chapter 6, LMM was implemented in a parametric study for a defective 

pipeline subjected to constant internal pressure and cyclic thermal gradient in order 

to demonstrate its efficiency and effectiveness on the ratchet limit for more complex 

structures. In this chapter, the effect of part-through slots on limit loading, 

shakedown limit, ratchet limit and maximum plastic strain range has been 

investigated using the proposed LMM mention in Chapters 3&5, and the numerical 

results has been verified by the ABAQUS step-by-step inelastic analysis, showing 

that it gives very accurate shakedown and ratchet limits. In this parametric study, the 

results showed that the axial slot configuration greatly reduces the ratchet boundary, 

while the small slot and circumferential slot configurations do not have any effect on 

the ratchet boundary. The maximum plastic strain range over the steady cycle with 

different cyclic loading combinations is also evaluated for a low cycle fatigue 

assessment in Chapter 6. It is observed from the results that the maximum plastic 

strain range will increase with the presence of a part-through slot. Finally, the 

location of the initiation of a fatigue crack for the defective pipeline with different 

slot configurations is determined, and it can be concluded that this location is 

independent of the cyclic loading types considered in this chapter. 

 In Chapter 7, another numerical study is conducted for a centre-cracked plate 

subjected to cyclic tensile loading and cyclic bending moment in order to 

demonstrate the effectiveness of the ratchet limit on the cracked component. The 

effect of circular holes on the maximum plastic strain range and the ratchet limit has 

been studied using the Linear Matching Method. The LMM has been verified by the 

step-by-step and RIKS analyses in ABAQUS. The results showed that LMM gives 

very accurate ratchet limit for a plate with a crack at the centre and symmetrically 

drilled holes under complex cyclic loading histories. The optimum hole location for 

reducing the crack tip plastic strain range with the least reduction in ratchet limit is 

identified to be located at a distance of 10% of the semi-crack length from the crack 

tip on the opposite the ligament. This identification was valid for both cyclic tensile 

loading and cyclic bending moment cases. It is also observed that the optimum 

location is independent of the hole size for both cyclic loading cases considered in 

this chapter. 
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 Using the LMM numerical procedure in a research on calculating crack 

growth/propagation rate from the Fracture Mechanics approach is presented in 

Chapter 8. In this Chapter, a cyclic J-integral (∆J) model used to correlate with the 

crack growth rate obtained from LMM was proposed. Based on the potential energy 

expression for a single edge cracked plate subjected to cyclic uniaxial loading and 

cyclic bending moment conditions, a derivation of the cyclic J-integral (∆J) using 

LMM was presented. The study showed that the calculated value from proposed (∆J) 

model correlate well with the Reference Stress Method under cyclic tensile loading 

and cyclic bending moment with the applied loading up to the limit load. The 

proposed cyclic J-integral model indicated that ΔJe is a linear function of ΔUe /Asub 

and ΔJp is a linear function of ΔUp
β
 for a small scale yielding condition and this 

relation is independent of the material models and loading types that are considered 

in this chapter. 

 In Chapter 9, a new approach for the direct evaluation of cyclic behaviour 

with the effect of creep of structures subjected to a general load condition in the 

steady cyclic state using LMM technique is presented. Time Hardening and Norton's 

law are adopted for the creep constitutive equation. The proposed method is capable 

to predict the stable cyclic response of a structure under creep conditions and 

calculate the resulting cyclic stresses, residual stresses, creep strain, plastic strain 

range, ratchet strain and the elastic follow-up factor. The solutions obtained from 

LMM have been verified by a bench mark example (Bree problem). Further 

investigations into the creep/fatigue behaviour for more a complex structure, a 3D 

plate with hole model, under variations in loading conditions and dwell periods, 

provided the confidence on the capability of numerical procedures. 

 In Chapter 10, the numerical procedure described in the previous chapter is 

applied on a real industrial problem in order to verify the appropriateness of LMM. A 

parametric study for a welded pipe subjected to cyclic thermal and mechanical load 

with the effect of creep is presented in this study. Good correlations were observed 

between the LMM and ABAQUS step-by-step inelastic analysis for the distribution 

of creep strain and total strain range with varying dwell period. For the investigation 

of a specific X20 CrMoV121 welded pipe at 550
0
C subjected to cyclic thermal and 
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mechanical load, many valuable parametric results are obtained, such as: The 

creep/fatigue failure life decreases with the increasing welded angle β and thickness 

ratio Ro/Ri , and the failure locations of the weldment are unaffected by the geometry 

changes considered in this study. 

 This thesis has shown the capabilities of utilizing the LMM in solving cyclic 

structural responses associated with plasticity and creep. The simplicity in its 

implementation as well as its accuracy in analyzing complex structures with and 

without the effect of creep, makes the LMM the appropriate choice as an alternative 

to current solution procedures (R5). In author's opinion, the methodology adopted in 

this thesis is a valuable tool in assessing the structural integrity of components with 

or without the effect of creep. 

 

11.2  Future Work 

 This thesis has shown the LMM is able to address problems (it has the 

capability to define the cyclic structural response with or without the effect of creep) 

as mentioned in Chapter 1. However, there are still some areas, which need to be 

addressed in the future.  

 One particular area is the numerical developments for the LMM. For 

instance, one of the numerical development is for the cyclic J-integral model 

mentioned in Chapter 8. Since the cyclic J-integral relation is only derived for the 2D 

edge cracked problem, the development of the LMM needs to be extended for 3D 

structures to reach an overall conclusion for more practical and general examples. 

Another numerical development in this context is that LMM should include various 

cyclic hardening and creep models. In this study, the Ramberg-Osgood and elastic 

perfectly plastic material model with time hardening creep model are considered. For 

more general problems, various cyclic hardening material models and creep models 

(e.g. Strain Hardening creep model) should be taken under consideration. 

 Another area to be considered in the future work is the application of more 

practical parametric studies. In the parametric study mentioned in Chapter 10, for the 
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welded pipe under the effect of creep, only the geometric effect on the creep/fatigue 

behaviour of heterogeneous welded pipe under cyclic thermal and mechanical loads 

was investigated. However, the material effect of the heterogeneous welded pipe and 

the cyclic hardening model on creep/fatigue behaviour is not taken into 

consideration. These parametric studies may be considered as a future work. It is 

important to carry out the applications of the numerical procedures discussed in this 

thesis for other structural geometries and loading conditions since the additional 

investigations would further prove the efficiency and effectiveness of the LMM in 

addressing to cyclic structural response with or without the effect of creep.  
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APPENDIX  

Appendix I  

Elastic shakedown loads for temperature independent 
y  

Iteration Numbers Upper Bound Multiplier Lower Bound Multiplier 

1 10.59089827 2.747297761 

2 9.613061271 2.747297761 

3 9.017467298 3.653815503 

4 8.518937245 3.94125432 

5 8.030861305 4.259800777 

6 7.527247651 4.491835807 

7 7.019241565 4.663099904 

8 6.541224169 4.765882912 

9 6.12997204 4.835154417 

10 5.805713495 4.840631631 

11 5.567101785 4.844538904 

12 5.399389783 4.845106372 

13 5.284165723 4.846798595 

14 5.205540702 4.84693201 

15 5.1512955 4.847574518 

16 5.113097376 4.84761923 

17 5.085724035 4.847825397 

18 5.065361563 4.847840945 

19 5.049389183 4.847903251 

20 5.036470632 4.847913862 

21 5.025474247 4.847919205 

22 5.01581913 4.847924099 

23 5.00727248 4.847924242 

24 4.999669994 4.847924287 

25 4.992889371 4.847924341 

26 4.986821053 4.847924409 

27 4.981383031 4.847924496 

28 4.976497031 4.847924496 

29 4.972100103 4.847924496 

30 4.968126413 4.847924496 

31 4.964525592 4.847925031 

32 4.961254152 4.847925062 

33 4.958276767 4.847925101 

34 4.955561427 4.847925101 

35 4.953080935 4.847925101 

36 4.950808923 4.847925231 
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37 4.948724219 4.847925231 

38 4.946806037 4.847925231 

39 4.945035048 4.84792533 

40 4.943394782 4.84792533 

41 4.941871666 4.84792533 

42 4.940453716 4.84792533 

43 4.939130409 4.84792533 

44 4.937892251 4.84792533 

45 4.936730865 4.847925391 

46 4.935638436 4.847925391 

47 4.934608587 4.847925538 

48 4.933635343 4.847925538 

49 4.932713201 4.847925579 

50 4.93183734 4.847925579 

51 4.931003324 4.847925599 

52 4.930207631 4.847925607 

53 4.929447162 4.847925607 

54 4.928718516 4.847925607 

55 4.928019339 4.847925607 

56 4.92734663 4.847925645 

57 4.926698072 4.847925649 

58 4.926071466 4.847925655 

59 4.925465371 4.847925657 

60 4.924877911 4.847925657 

61 4.924307631 4.847925657 

62 4.923752926 4.847925657 

63 4.92321263 4.847925657 

64 4.922685359 4.847925657 

65 4.922169966 4.847925657 

66 4.921665499 4.847925657 

67 4.921171204 4.847925657 

68 4.920686383 4.847925657 

69 4.920210428 4.847925657 

70 4.919742775 4.847925657 
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Elastic shakedown loads for temperature dependent 
y  

Iteration Numbers Upper Bound Multiplier Lower Bound Multiplier 

1 10.45949136 2.747297761 

2 8.374582652 2.747297761 

3 8.090565028 2.747297761 

4 7.364677689 2.747297761 

5 6.537138227 2.747297761 

6 5.683784591 2.858751263 

7 5.015694961 3.274784688 

8 4.584575833 3.490206883 

9 4.330830205 3.618757317 

10 4.185877359 3.688189936 

11 4.102045127 3.730268252 

12 4.051574415 3.752815667 

13 4.019513324 3.767018403 

14 3.99793851 3.775605465 

15 3.982157819 3.781499512 

16 3.969778788 3.785726667 

17 3.959163027 3.789037995 

18 3.950114452 3.79187327 

19 3.942257086 3.794288215 

20 3.93541429 3.796382887 

21 3.929435621 3.798209267 

22 3.924176004 3.799804201 

23 3.919522228 3.801207131 

24 3.915390747 3.802448532 

25 3.911714727 3.803550315 

26 3.908434696 3.804529882 

27 3.905504957 3.805406179 

28 3.902880529 3.806187655 

29 3.900522283 3.806887678 

30 3.898395512 3.807516732 

31 3.896473482 3.808083778 

32 3.894731082 3.808596757 

33 3.893149122 3.809061546 

34 3.891708407 3.809483536 

35 3.890394267 3.809866415 

36 3.889192202 3.810218412 

37 3.888089397 3.810539001 

38 3.887073451 3.810832828 

39 3.886134841 3.811104224 

40 3.885265037 3.811354599 
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41 3.884456681 3.811586621 

42 3.883703168 3.811802251 

43 3.882998746 3.812003251 

44 3.882338228 3.812191158 

45 3.88171709 3.812367353 

46 3.881131125 3.812533045 

47 3.880576972 3.812689353 

48 3.880051329 3.812837176 

49 3.879551263 3.812977357 

50 3.879074101 3.813110727 

51 3.878618105 3.813238063 

52 3.878181137 3.813359715 

53 3.877761401 3.813476063 

54 3.877357415 3.813587867 

55 3.876967619 3.813695874 

56 3.876590633 3.813799673 

57 3.87622572 3.813900129 

58 3.875871712 3.813997517 

59 3.875527623 3.814092197 

60 3.875192504 3.814183902 

61 3.874865599 3.81427312 

62 3.874546045 3.814360713 

63 3.874233207 3.814445949 

64 3.873926553 3.814529312 

65 3.873625632 3.814611087 

66 3.87333003 3.814691351 

67 3.873039387 3.814770203 

68 3.872753372 3.814847718 

69 3.872471692 3.814923997 

70 3.872194075 3.814999117 
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Appendix II  

 

Iteration procedures for changing residual stress field 

 The entire iterative procedure requires a number of cycles, where each cycle 

contains N iterations associated with N load instances. The first iteration is to 

evaluate the changing residual stress 
1

ij associated with the elastic solution  1
ˆ

ij t 

at the first load instance. Defined 
n

ijm as the evaluated changing residual stress for 

nth load instance at mth cycle of iterations, where n=1,2,...N and m=1,2,...M. At each 

iteration, the above changing residual stress 
n

ijm is calculated. The entire iterative 

procedure is shown as follows: 

 

At cycle m=1 of iterations: 

Iteration 1: Solved 
1

1ij form the elastic solution  1
ˆ

ij t 
at the first load instance. 

Iteration 2: Solved 
2

1ij from 
1

1

2( )ij ijt  


 

Iteration N: Solved  1

N

ij from 
1 1 1

1 2 1( ) . . . N

ij N ij ij ijt       


 

 

At cycle m=2 of iterations: 

Iteration N+1: Solved 
1

2ij  from 
1 1 1

1 2

1( ) . . . N

ij ij ij ijt       


 

Iteration N+1: Solved 
2

2ij  from 
1 1 1 2

1 2 1

2( ) . . . N

ij ij ij ij ijt         


 

Iteration 2N: Solved 2

N

ij  from

1 1 1 2 2 2

1 2 1 2 1( ) . . . . . .N N

ij N ij ij ij ij ij ijt              


 

At cycle m=M of iterations: 

Iteration MN-N+1: Solved
1

ij M from 
1 11

1 1

( ) . . .
M

N N
n n

ij ij ij

n n

t  




 

    


 

Iteration MN-N+2: Solved 
2

ij M from
1 1

1

2

1 1

( ) . . .
M M

N N
n n

ij ij ij ij

n n

t   




 

     


 

Iteration MN: Solved 
N

ij M from  
1 1

1

1 1 1

( ) . . .
M M

N N N
n n n

ij N ij ij ij

n n n

t   





  

       

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When the convergence occurs at the Mth cycle of iterations, the summation of 

changing residual stress at N time points must approach to zero due to the stable 

cyclic response. 

1

0
N

n

ij M

n




   

Hence the constant residual stress 
M

ij over the cycle can also be determined by  

1 2 1

1 1 1
ij

N N N
M n n n

ij ij ij M

n n n

    

  

          

And the converged accumulated residual stress at the time instant nt , is given by, 

1

( )
n

M k

ij n ij ij M

k

t  


    

The corresponding plastic strain range occurring at time instant nt is calculated by, 

' '1
ˆ( ) ( ) ( )

2

p

ij n ij n ij n

n

t t t  


    
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