
Grouping of Semistructured Data for
Efficient Query Processing

Mathias Neumüller

A thesis presented for the degree of
Doctor of Philosophy

2004

Department of Computer and Information Sciences,
University of Strathclyde in Glasgow

DECLARATION OF AUTHOR'S RIGHTS

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation
3.51. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

ABSTRACT

With the emergence of large-scale distributed computing applications semistruc-
tured data models have gained significant importance. Current practical semi-
structured data management systems can often not provide the performance re-
quired by practical applications.

This work describes a model for the optimisation of semistructured data
processing based on data groupings. Such groupings are of fundamental im-
portance for efficient querying of semistructured data. The semistructured model
does not imply the natural organisation of data that characterises rigidly struc-
tured representations. Instead, data groupings in the semistructured case must
be derived from the data itself or its applications.

This thesis presents a number of such possible data groupings and formalises
them into a concept of domains. Different classes of domains are identified and
the impact on different data sources is evaluated. A particular definition is then
used to implement an efficient physical representation using an approach based

on dictionary compression adapted from relational data management. Finally
this approach is combined with a data grouping aimed at the efficient resolution
of structural constraints.

ACKNOWLEDGEMENTS

Dedication
To my late father

Firstly, I would like to acknowledge the continuous support and trust I have
received from my supervisor Mr John N. Wilson. He has encouraged me to take up
research in the field of databases and made this PhD possible. His never-ending
enthusiasm for this work has secured its successful conclusion. I am also grateful
for the generous departmental stipend and the numerous financial contributions
to conference, workshop and summer school visits.

I am indebted to many colleagues for their advise and support. The SNAQue
team and I shared a lot of interest in the area of semistructured data processing
and their comments on my work were often helpful. I particularly enjoyed the
cooperation with George Russell on TypEx. Thanks to the EFoCS Software
Engineering group I was able to get to know many and use a few aspects of
modern software development.

The departmental Ultimate Frisbee team helped me to find a balance be-
tween theoretical work and physical exercise. Most of the team members have
become good friends. I was also driven into the arms of both the Strathclyde
Mountaineering and Canoe Club, for which I am very thankful. Apart from tak-
ing my out into the Scottish wilderness I have found many friends there. Their
continuous lust for adventure has helped me through many hard phases of this
journey.

Most importantly I need to recognise the role of my friends, both here in
Glasgow and beyond. Matt Munro has accompanied me for the entirety of my
time in the department, as fellow student, Frisbee player and mountaineer. He
was a true friend throughout this time and I hope our friendship will last much
longer. Nahoum and Stephanie are also exceptionally good friends, whose support
has often helped me through hard times and who could offer me a continental
haven in Glasgow. Oliver has maintained contact with me during my five year
absence from Germany and welcomed me whenever I went there. I also appreciate
the three winters I spent with friends from the University of Hannover, two times
in Norway and once in Slovenia, and the people that came to visit me in Scotland.
Thank you all!

Last but not least I would like to thank my mother for her support during my
long stay abroad. I am aware of the hardship she had to endure with both her

children so far away in difficult times.

CONTENTS

1. Introduction 1
1.1 The Environment for Semistructured Data Processing 1
1.2 Structure and Contribution of the Thesis 2

2. Semistructured Data
4

2.1 Historical Motivation for Semistructured Data 4
2.1.1 From Unstructured Data to Semistructured Data 5
2.1.2 From Structured Data to Semistructured Data 6

2.2 Semistructured Data Model 10
2.2.1 Graph Theoretical Background 10
2.2.2 Data Graphs, Views and XML Documents 15
2.2.3 Order and Identifier Based Models for Semistructured Data 21

2.3 Querying Semistructured Data 23
2.3.1 Path Expressions as a Selective Query Languages 24
2.3.2 Query Languages for XML 30
2.3.3 Query Evaluation Strategies 31

2.4 Indexing Semistructured Data 34
2.4.1 Linear Index Structures 34
2.4.2 Nonlinear Index Structures 36

2.5 Literature on Semistructured Data Processing 37
2.5.1 Semistructured Data Management Systems 38
2.5.2 Summary Structures or Indices of Semistructured Data .. 41

2.6 Summary
... 43

3. An Optimisation Model for Query Processing 44
3.1 Introduction and Model Overview

............ 44
3.2 The Optimisation Process

. 46
3.2.1 Index Design 46
3.2.2 Data Classification 48
3.2.3 Data Reorganisation 49
3.2.4 Query Planning 49

3.3 Query Systems in Terms of the Model 50
3.4 Summary 55

Contents vi

4. Domains in Semistructured Data 58
4.1 Introduction to Domains in Databases 58

4.1.1 An Information Theoretical Approach
. 58

4.1.2 A Graph Theoretical Approach 59
4.1.3 Motivation for the Identification of Domains

... 60
4.2 Definitions of Domains for Semistructured Data 61

4.2.1 Application independent domains 62
4.2.2 Application dependent domains 76

4.3 Experimental Evaluation of Domain Statistics
...... 78

4.3.1 Evaluating Fixed Domain Definitions 78
4.3.2 Evaluating Parameterised Domain Definitions

.. 81
4.4 Summary

.......................... 84

5. Compressing Semistructured Data 85
5.1 Introduction to Querying Compressed Data 86
5.2 Compression Systems for XML Data 86

5.2.1 XML Compressors for Storage and Transmission
.. 87

5.2.2 XML Compressors for Querying and Management 88
5.3 Dictionary Compression in Databases 88

5.3.1 Fundamentals and Assumptions 89
5.3.2 Compressing Relational Data 89
5.3.3 Compressing Semistructured Data 92
5.3.4 Querying Compressed Data 93

5.4 Experimental System Design 93
5.4.1 Storage 93
5.4.2 Querying 95
5.4.3 Indexing 96

5.5 Performance Analysis
..................... 96

5.5.1 Memory Consumption 96
5.5.2 Query Performance 97
5.5.3 Limitations of the Experiment

............ 104
5.5.4 Experimental conclusions 104

5.6 Summary
........................... 105

6. Combining Structural and Atomic Data Groupings 106
6.1 Introduction to Hybrid Querying

.................. 106
6.1.1 Motivating Example

........ 107
6.2 Bridging the Gap: Signatures Based on Numbering Schemes ... 113

6.2.1 Numbering Schemes for Tree Nodes 113
6.2.2 Signatures for Data Trees 114
6.2.3 A Motivation for a Hybrid Design 116

6.3 Related Work on Combining Structure and Value Querying
.... 118

6.3.1 Numbering Schemes and Signatures 118
6.3.2 Hybrid Querying Systems 120

Contents vii

6.4 Experimental System 121
6.4.1 Tree Pattern Expressions

................... 121
6.4.2 The Components of the Data Structure 122
6.4.3 Querying System 123

6.5 Query Execution Performance Analysis 125
6.5.1 The Benchmark Queries and Data Source 126
6.5.2 Query Execution Performance of Data and NSGraphs ... 129
6.5.3 Varying the Coarseness of the NSGraph Structure

..... 136
6.5.4 Limitations of the Experiments Performed 150

6.6 Summary
............................... 151

7. Conclusions
...................... 152

7.1 Results
.......... 152

7.1.1 Data Groupings as Explanatory Tool for Optimisations .. 152
7.1.2 Domains for Graph-Structured Data 153
7.1.3 Compression of Semistructured Data 154
7.1.4 Hybrid Querying 154

7.2 Limitations and Future Work 155
7.2.1 Choice of Data Sources 155
7.2.2 Extension of Query Language 156
7.2.3 Domain Statistics as Metrics for Semistructured Data ... 157
7.2.4 Query Planning Based on Data Statistics 157
7.2.5 Comparison with Information Retrieval Systems 157

References 158

Appendix 168

A. Type Projection over Streams 169

B. Structural Indices Based on Bisimilarity
................ 176

B. 1 Exploiting Local Similarity for Indexing Paths in Graphs
..... 176

B. 2 Covering Indexes for Branching Path Queries 178

C. Description of Data Sources 182
C. I. The Domain Name Server Database

. 182
C. 2 Shakespeare's Macbeth Encoded in XML 184
C. 3 The XM'Iark Benchmark Dataset

................... 184
C. 4 The Nasa Astronomical Dataset 186
C. 5 The DBLP Bibliographic Database 186

D. NSGraph Performance Measurements Results 187
D. 1 Linear Path Patterns 188
D. 2 Branching Path Patterns 192

LIST OF FIGURES

1.1 The structure of the main argument of the thesis 3

2.1 The realms of unstructured, semistructured and structured data
.5 2.2 The DBLP page with the author's bibliographic information

... 7
2.3 The author's bibliographic information in a relational schema .. 9
2.4 Illustration of different types of graphs 12
2.5 An example of a data graph 18
2.6 The graph- and tree-view of the example data graph 19
2.7 Example graphs of branching path expressions 26
2.8 The tag index for the example source 35
2.9 The atomic value index for the example source 36
2.10 An index graph for people details

........ 37

3.1 The four phases of the query optimisation process 45
3.2 The bibliographic database used for the example systems 51
3.3 The index structure used to resolve label-value predicates 52
3.4 The index structure used to resolve branching path expressions .. 53
3.5 The index structure used to resolve tree depth queries 56

4.1 The data graph representation of the example source 61
4.2 A taxonomy of domains for semistructured data 62
4.3 The containers of the example source as identified by XMill 65
4.4 The strong DataGuide of the example database

.......... 67
4.5 The depth domains superimposed on the tree-view of the data graph 68
4.6 The (extended) skeleton of the example database 69
4.7 The A(1)-index graph of the example source 70
4.8 The (1,1)-F+B-Index graph of the example source 72
4.9 The Person type projected over the example graph 77
4.10 Size of the domain of the XMark data based on local bisimilarity. 83

5.1 The uncompressed example relations 89
5.2 The compressed example relations 90
5.3 Dictionaries of the compressed example relations 90
5.4 The sports club example data represented as XML document ... 91
5.5 The structure of the compressed XML document

.... 91
5.6 Memory consumption of different representations of the DNS data 98
5.7 Query execution performance for the different query systems ... 100

List of Figures ix

5.8 Query execution performance for the native query engine 103

6.1 The data graph of the example source 107
6.2 The graph representation of the example query 108
6.3 The (2,0)-F+B-index graph of the example source 109
6.4 The structure array and indexed domain dictionaries of DDOM . 111
6.5 The tree-view of the example source together with its signature . 115
6.6 The plane of pre- and postorder codes 117
6.7 The combination of signature information with a structural index 118
6.8 The graph representations of the branching tree patterns 128
6.9 The minimum number of vertex visits over the NSGraph bisimilarity138
6.10 The response of the four different queries to different NSGraphs . 140
6.11 The response of four different query algorithms to Query K2 . .. 141
6.12 The minimum number of vertex visits over the NSGraph bisimilarity144
6.13 The response of the nine different queries to different NSGraphs . 145
6.14 The response of four different query algorithms to Query Qla .. 147
6.15 The response of four different query algorithms to Query Q4b .. 149

B. 1 A(k)-index computation 178
B. 2 Algorithm for the computation of the F&B-index

......... 179
B. 3 Example for tree-depth 180
B. 4 Vertex-set partition computation 181

C. 1 References within the XMark data source 185

LIST OF TABLES

4.1 Overview of domains for the example source -1....... ... 74
4.2 Overview of domains for the example source -2.... 75
4.3 The number of domains discovered using different domain definitions 79
4.4 Size of the domain of the XMark data based on local bisimilarity. 82

5.1 Memory consumption of different representations of the DNS data 97
5.2 Query execution performance for the different query systems ... 99
5.3 The query operations available to the custom-built query engine . 102
5.4 The example queries and their execution strategies 102
5.5 Query execution performance for the native query engine 103

6.1 The benchmark tree pattern queries in BPE syntax 126
6.2 Execution performance of the linear tree pattern queries 132
6.3 Execution performance of branching tree patterns on the data graph 134
6.4 Execution performance of branching tree patterns on the NSGraph 135

C. 1 Overview over the data sources used throughout the thesis 182
C. 2 Important metrics of the example sources 183

1. INTRODUCTION

Code and Data

"Show me your [code] and conceal your [data structures],
and I shall continue to be mystified.

Show me your [data structures],
and I won't usually need your [code]; it'll be obvious. "'

Fred Brooks, The Mythical Man Month, 1975

This thesis analyses the problem of efficient processing of semistructured data.

In order to allow this a fundamental concept is introduced and detailed through-

out this work. The concept discussed is that of data grouping or, more techni-

cally, that of graph clustering. The focus of this work lies on finding suitable data

organisations that support efficient data management. Both theoretical and prac-
tical aspects of data groupings are developed in order to show that this concept
is indeed fundamental to understanding and improving semistructured querying
processes.

Querying semistructured data, i. e. embedding sub-graphs potentially encod-
ing regular expressions into larger data graphs, is a well known problem. Algo-

rithms for this task were developed in the early stages of computer science by

the graph theory community. This thesis explores how such algorithms can be

adapted to the requirements of today's environment.

1.1 The Environment for Semistructured Data Processing

Over the last few years the environment in which semistructured data models
are used has changed significantly. It took decades to evolve from a theoretical

problem to its widespread application in science and industry, primarily driven
by the emergence of web technologies. Data sets are growing with exponential

1 Actually, he said "flowcharts" and "tables". But allowing for almost thirty years of termi-
nological and cultural shift, it is almost the same point.

1. Introduction 2

speed and cannot be dealt with using conventional approaches. Globally valid
schemata are often impossible to impose in situations where semantically similar
but syntactically different data sources need to be integrated and processed across
the boundaries of single organisations. In order to allow the automated processing
of such heterogeneous sources, the XML standard was developed as a concrete
syntax for the representation of semistructured data sources.

Now mechanisms that can deal with the amounts of data occurring in practice
are needed. Many of the algorithms discussed in the past by graph theoreticians
do not scale to the sizes of today's practical problems. Simpler approaches are
needed that can deal with a useful subset of this wide area with an acceptable
performance. The focus of this work rests on efficient querying of such large

sets of semistructured data. This is motivated by a new type of application,

especially significant in the area of data-centric sciences, such as bioinformatics

or particle research, where data is gathered automatically. In such environments,
the queries or computations do not have the properties that are generally assumed
for unrestricted, ad hoc online processes. In addition, the data does not change
significantly in a period of time which is comparable to the time needed for its

processing, i. e. it can be considered to be (semi-)static.

1.2 Structure and Contribution of the Thesis

The main contribution of this work is an investigation of the importance of data

groupings to the semistructured querying process. On a theoretical level a novel

model is proposed in Chapter 3 that conceptualises the general query optimisa-
tion process for semistructured data. Data groupings are central to the presented

model. As a consequence it motivates a re-evaluation of the concept of domains for

the semistructured data model, which is discussed in Chapter 4. On a more prac-
tical level Chapter 5 analyses how the concept of data grouping influences data

management using the example of dictionary compression. This approach, which

was previously applied in relational database compression, can be re-established
for data-centric semistructured databases if a suitable grouping of the data is

effected first, i. e. if domains can be established in semistructured data. The final

chapter of this thesis investigates how the restructuring of semistructured data

influences query execution performance. For this purpose a combination of exist-
ing indexing methods is proposed to allow the efficient querying of semistructured
data using both structural and value constraints (Chapter 6). So far research has

1. Introduction 3

I Chapter 2
Semistructured Data

L (Data Model)

I1
Chapter 3

Optimisation Model

L (Data Grouping)

_NX
Chapter 4 Chapter 5 Chapter 6

Domains of SSD Compression of SSD Hybrid Query System

L (SSD Clustering) (SSD Management) (SSD Querying)

Fig. 1.1: The structure of the main argument of the thesis

concentrated on one or the other of these constraints, which typically leads to

performance problems on the part ignored.
Taken as a whole, Chapters 4-6 validate the optimisation model presented

in Chapter 3 and thus also support the importance of data groupings in general.
Individually they clearly show that there exists a compromise between complexity
of query languages together with the mechanisms required to support them and
the performance of such systems. Figure 1.1 visualises the structure of the core
chapters of this thesis. The initial step in this process is to explain the concept
of semistructured data and define the terminology used in the rest of the thesis.

2. SEMISTRUCTURED DATA

Semistructured Data

"... data that is neither raw data nor strictly typed. "

Serge Abiteboul, ICDT 1997, Delphi, Greece

This chapter introduces fundamental concepts and terminology of semistruc-
tured data models and management systems, which are essential for the under-
standing of the following work. It starts by giving a historical motivation for

the current interest in semistructured data, then develops a data model based

on elements from graph theory. Query languages, query mechanisms and associ-
ated indexing techniques are discussed before finally other research in the area of

semistructured data processing is reviewed.

2.1 Historical Motivation for Semistructured Data

The term semistructured data (SSD) describes a number of data models with
varying definitions. One approach is to identify SSD with originally unstructured
information, such as textual documents, which are annotated with describing

metadata in order to ease automatic processing. It is thus a subset of unstructured
data. However, the term is more frequently used to distinguish SSD models from

structured ones, particularly the relational model. However, from a theoretical

point of view, SSD is a superset of structured data, i. e. all structured data sources
can be managed by a semistructured DBMS but not vice versa. Figure 2.1 depicts

these relationships. For the purpose of this thesis SSD will be defined as follows:

Definition 2.1 (Semistructured Data): Semistructured data comprises those docu-

ments that combine some atomic pieces of data with some meaningful structural
relationships between these atoms. The atomic data and its structure (or meta-
data) are combined in a single document and thus inseparable from a processing
point of view.

2. Semistructured Data

Lorem ipsum dolor sit
amet, consecleluer
adipiscinp ehl, sod diem
nonummy nibh euismod
lincidunt.

(Unstructurcd) Data

Semistructurcd Data

Structured Data

Fig. 2.1: The realms of unstructured, seinistructured and structured data

5

The semantics of seniistructured data depend on both the atomic data and
their structural relationships. Seinistructured data does not require an a prio7z
schema, but can rather present its own schema as part of the data. The reasons
for the current interest in SSD are introduced in the following sections before in
Section 2.2 a sound theoretical definitions of a model for SSD is presented.

2.1.1 From Unstructured Data to Semistructured Data

Though SSD models have existed for some time they began to attract widespread

attention in the wake of the more recent globalisation of coiiiputing achieved by

web technologies [ABSOOJ. The Internet's most successful service, the World Wide

Web (WWW) [BLCG92], is based on the hypertext inarkup language HTML

[HTM99]. Documents in this format are essentially unstructured in teures of this

thesis. Although they follow certain encoding rules, which imply a structure sim-

ilar to that of SSD, this structure is unrelated to the information they present.
This is due to the fact that they are meant for human consumption, with their

associated nietadata solely used to describe their presentation. A human reader

inust derive the semantics of the data from contextual information and back-

ground knowledge. A scientist looking at the author's DBLP (Digital Bibliogra-

phy & Library Project) page shown in Figure 2.2 can derive that the information

2. Semistructured Data G

displayed are bibliographic references consisting of paper titles, co-author names,
conferences titles and so on. However, looking at the simplified HTML code in
Listing 2.1 that is used to describe this page, no such semantics can be attached.
The only information that can be derived from this representation is that it de-

scribes the content of some cells of a table. If an automated procedure like a
web service is to be used to combine this information with that of other biblio-

graphic data sources, the semantics of each individual piece of data presented in

each source need to be provided. This need was recognised [BB99, BLHL01] and
addressed by the extensible markup language (XML) proposal [XMLOO]. Rather
than combining data content with its format as in the case of HTML, the aim here
is to combine the data with its semantics, given through the use of application
specific tag names. Consequently it is often called self-describing data and due to
their origin such sources are referred to as document-centric, as are applications
working on them.

This complies with Definition 2.1 for SSD, of which XML documents are an
example. Listing 2.2 shows an example of a single entry from the page shown in
Figure 2.2 in this format. The set of data sources provided in such a format and
made available over the Internet is commonly referred to as the semantic web
[BLHLO1J.

2.1.2 From Structured Data to Semistructured Data

Equally contributing to the interest in SSD models is the move to expose to
the web information previously managed in a closed DBMS. Such data usually
adheres to a strict schema, e. g. information stored in relational databases. Al-

though the process of publication does not change the structured nature of the
data itself, the open environment in which it is exchanged requires some com-

promise as far as its encoding is concerned. The drift from closed, centralised,

client/server environments, in which schema constraints are known and can be

enforced, to open, distributed, peer-to-peer systems favours the laxer constraints
imposed by SSD models. Data sources and their applications that originate from

such a scenario are referred to as data-centric.

Even within the domain of strictly controlled database management systems
there exist reasons to drop some of the constraints imposed by the rigorously

structured relational data model. The decomposition of data into functional de-

pendencies, also known as normalisation [Cod70], aids efficient processing. How-

2. Semistructured Data 1

{l,. uni-trier. de

Mathias Neumüller
List of publications from the DBLP Bibliography Server - FAQ

lautlior Indc\ - Ask others: ACM DL - ACM Guide - CiteSeer - CSB - Google

2003
2 -71 EE George Russell, Mathias Neumüller, Richard C. H. Connor: TypEx: A Type Based Approach

to XML Stream Querying. WebDB 2003: 55-60

2002
E 7 Mathias Neumüller: Compact Data Structures for Querying XML. EDBT PhD Workshop 12002:

127-

1 EE Mathias Neumüller, John N. Wilson: Improving XML Processing Using Adapted Data
Structures. Web, Web-Services, and Database Systems 2002: 206-220

Coauthor Index

I Richard C. H. Connor ["j
George Russell [; J
John N. Wilson [IJ

DBLP: [Home I Search: Author, Title I Conferences I Journals]
Michael Ley (lev ýduni-trier. de) Mon May /0 /6.57. "27 2004

Fig. 2.2: The DBLP page with the author's bibliographic information

hhý

2. Semistructured Data g

<table border=I>

<tr>
<th colspan=3>2003</th>
</tr>

<tr>
<td><a narrte"p3">3</td>
<td>EE</td>
<td>Ceorge Russell , Mathias Neumü Her , Richard C. 11. Connor:
TypEx: A Type Based Approach to XML Stream Querying.
WebDB 2003: 55-60</td>
</tr>

<tr>
<th colspan=. 2002</th>
</tr>

<tr>
<td>2</td>
<td> </td>
<td>Mathias Neum&cuuml; ller :
Compact Data Structures for Querying X? 1L.
EDBT PhD Workshop 2002: 127-130</td>
</tr>

</table>

Listing 2.1: An excerpt of the HTML code describing the page shown in Fig-
ure 2.2, stripped of colour and alignment information

<inproceedings mdate="2003-06-23" key=" conf/webdb/Russel INC03">
<author>George Russell</author>
<author>Mathias Neumü Iler</author>
<author>Richard C. H. Connor</author>
<title>TypEx: A Type Based Approach to XML Stream Querying. </title>
<pages>55-60</ pages>
<year>2003</year>
<crossref>conf/webdb/2003</crossref>
<booktitle>WebDB</booktitle>
<ee>http: //www. cse. ogi. edu/webdb03/papers/10. pdf</ee>
<url>db/conf/webdb/webdb2003. html#RusselINC03</url>
</inproceedings>

Listing 2.2: The semistructured XML encoding of the first publication entry
shown in Figure 2.2

2. Semistructured Data 9

PAPER
ID TITLE YEAH WORKSHOP PAGES
p1 Improving XML 2002 Wei) Web-Scrvic"cs, and 206 220

Processing Using Database Systetiis

Adapted Data Structures
p2 Compact Data 2002 EDBT PhD Workshop 127 130

Structures for Querying
XML

p3 TypEx: A Type Based 2003 WcbDB 55 60
Approach to XNIL
Stream Querying

COAUTHOR
PAPER AUTHOR
pl a2
pl a4
p2 a2
p3 al
p3 a2
p3 a3

AUTHOR
ID NAME
a1 Richard C. 11. Connor

a2 Mathias Nemmiller
a3 George Russell

a4 Jolni N. Wilson

Fig. 2.3: The author's bibliographic information in a relational scheina

ever it also breaks up data into small syntactically homogeneous pieces, a process
that hinders comprehension of the information as a whole. Figure 2.3 shows a

possible relational presentation of the information shown in Figure 2.2. It, shows
how the first normal forrn, which forbids set-valued attributes, often detracts from

representational simplicity. In the DBLP example provided, it seems to be un-

natural to factor out the Haines of the authors into a separate relation as done in

Figure 2.3, rather than keeping them with the paper information. Consequently

research has been performed to overcome this limitation resulting in non first

normal form (NFNF) systems [AB84]. SSD models aim to overcome the same
limitation by keeping together semantically related data. Structured data, by

contrast, is focused on grouping syntactically homogeneous data.

Finally schema evolution provides a further reason why an SSD format might
be used to represent data that obeys a regular structure. Even if the structure

of a given dataset is known at any given point in time, the source's properties

might change as its applications develop. Technical progress in the life sciences
has produced automated measurement equipment that captures more and iriore

experimental data. In addition, manual annotations on automatically captured

2. Semistructured Data 10

data can complicate its structure. At the same time, previously captured data

remains of interest and is used in combination with more recent, potentially dif-
ferently structured data from the same domain. Applications preceding a revised
schema only have partial knowledge of it, but may still be executed successfully
if they only depend on parts of the data that remained unchanged. Schema evo-
lution is one of the remaining interesting research areas in the world of relational
databases [RB01], for which it presents a sizable problem. SSD however adapts
gracefully to such changing requirements.

2.2 Semistructured Data Model

This section introduces the terminology that will be used throughout the rest of
the thesis. It follows standard definitions from graph theory but extends them to

define a more specific form of a graph, called data graph that will be used as the

formal data model in the remaining chapters.

2.2.1 Graph Theoretical Background

The following section, which is based on general graph theory [Wil75], defines

terms in the context of simple graphs and directed graphs. Although data graphs,
introduced in Section 2.2.2 are strictly speaking different entities from the graphs

presented here, they are similar enough to apply the same terminology.

2.2.1.1 Graphs and Digraphs

Conceptually SSD is typically represented as a graph, where vertices are used

to represent pieces of information and arcs are used to represent their structural

relationships. In fact Buneman states that graph models are "the unifying idea

in semistructured data. "'.

Definition 2.2 (Simple Graph): A simple graph G is a pair (V(G), A(G)), where
V (G) is a finite, non empty set of elements called vertices and A(G) is a finite set

of unordered pairs of distinct elements of V (G) called arcs. An arc {u, v} E A(G)

is said to join the vertices u and v.

Definition 2.3 (Simple Digraph): A simple directed graph or simple digraph D is

a pair (V(D), A(D)), where V(D) is a finite, non empty set of elements called
1 Peter Buneman, PODS 1997, Tucson, Arizona, USA

2. Semistructured Data 11

vertices and A(D) is a finite set of ordered pairs of distinct elements of V called
arcs. An arc (u, v) E A(D) is called an arc from u to v.

Figure 2.4(a) and 2.4(b) show examples of a simple graph and a simple digraph
over the set of vertices V (G) =V (D) = {u, v, w, x, y, z}. The undirected graph G

contains the arcs A(G) = {{u, v}, {u, x}, {v, x}, {w, z}, {x, y}} and the directed

graph D contains the arcs A(D) = {(u, v), (u, x), (v, x), (w, z), (x, y)}. G is called
the underlying graph of D, i. e. the graph that is created by removing the direction

of the arcs. A subgraph S of a graph G is a graph, whose set of vertices V(S) is

a subset of V(G) and whose set of arcs A(S) is a subset of A(G).
These definitions are based on sets rather than families of arcs and thus ex-

clude multiple (equally directed in the case of the digraph) arcs between two

vertices. Equally the condition that the two vertices of an arc need to be dis-
tinct prevents the existence of loops, i. e. arcs connecting vertices to themselves.
For convenience the V (G) or V (D) will be referred to as V and A(G) or A(D)

as A whenever the graph G or digraph D is implied by the context and called
vertex-set and arc-set respectively.

Note on terminology: The term "arc" is deliberately favoured here over the
term "edge" more commonly encountered in other literature on graph theory.
This will be used to aid the distinction between general graph arcs and the more
specific edges of a tree defined later in this section.

Definition 2.4 (Connected Graph): A graph G is connected if it cannot be ex-
pressed as the union of two disjoint graphs, i. e. the union of their vertex- and

arc-sets respectively. This means that there exist no two non-empty subgraphs

of a connected graph G that have no vertex in common.

The graph shown in Figure 2.4(a) is not connected as it can be generated by

the union of the disjoint graphs Gl = ({u, v, x, y}, {{u, v}, {u, x}, {v, x}, {x, y}})
and G2 = ({w, z}, {{w, z}}). However, the graph shown in Figure 2.4(c) is con-
nected. For the remainder of this thesis all graphs considered will be connected.
For disconnected graphs, i. e. graphs with more than one connected components,
any statement derived for connected graphs is true for the disjoint subgraphs
given by the connected components.

For some applications it will be beneficial to identify a vertex of a given graph
uniquely. To this end a bijective, i. e. one-to-one, mapping from vertices to a set
of unique identifiers is defined here.

2. Semistructured Data 12

U

x

U

x

U

x

x

x

vw

4y
(h) A simple digraph

17 IAl

(e) A directed tree (f) A rooted, directed tree

U ROOT V,.,, paper W title U- ROOT V,.., paper W ""title

x

vwu

zx

(a) A simple graph

v.. w_ u

DATA X

aoc

(g) A tag labelled tree (h) A data graph

Fig. 2.4: Illustration of different types of graphs

DATA

11 xyz .

k-

(c) A connected graph (d) A labelled graph

u. r v. w

2. Semistructured Data 13

Definition 2.5 (Graph Labelling): A graph labelling cp of a graph G is a bijective

mapping from the vertex-set V to a set of identifiers 1. The mapping function

cp :V -º 4) maps vertices to identifiers, its inverse cp-1 :4 -º V maps identifiers
to vertices. A labelled graph is a pair (G, cp) of a graph G and a labelling of G.

Figure 2.4(d) shows a labelled graph. This thesis follows the convention in-

troduced by OEM (see Section 2.5.1.1) of identifying vertices using the set of
natural numbers written with a preceding &-sign. This will be helpful in order to
distinguish them from other kinds of vertex labels that will be introduced later.

The symbolic names u, v, ... z shown in Figure 2.4 are only used in order to

refer to these vertices for the purpose of this description. Unlike the labelling cp
however they are not part of the graph itself.

2.2.1.2 Path, Chains and Circuits

A finite sequence of arcs of A in the form

1v0, vl }, {vl, v2}, ... I ivm-1, Vm f
also writtenvo -ºvl Vm

or (vo, vi), (vl, v2), ... I
(Vm-1, vm)

is called an arc-sequence from the initial vertex vo to the final vertex v,.,, in G.

The number m of arcs in an arc-sequence is called its length. A path is an arc-

sequence in which all arcs are distinct. If in addition all vertices are distinct,

except possibly vo = v,,,, it is called a chain. A path or chain with vo = v,,, is

closed, and a closed chain is called a circuit.
The arc-sequence x -+ y -º x in Figure 2.4(a) has length 2 but does not form

a path, because the arcs {x, y} and {y, x} are identical in an undirected graph.

y -º x -ý u -º v -º x is a path, but neither a chain nor closed. The sequence

x --> u -+ v -º x is a chain, and since its initial and final vertex is x, it is closed

and thus a circuit.
The definitions and terms used for subgraphs, connectedness, graph labellings,

arc-sequences, paths, chains and circuits can equally be applied to digraphs.

2.2.1.3 Trees and Rooted Graphs

Given any connected graph G containing circuits, one can choose one circuit
from G and remove one of its arcs. The remaining graph is still connected. This

process is repeated until there are no circuits left. The resulting graph is a tree

2. Semistructured Data 14

and will be called a spanning tree of G. Notice that due to the arbitrary choice of
the vertex to be removed from a circuit, a general graph can have many spanning
trees.

Definition 2.6 (Tree): A connected graph T with no circuits is called a tree.

If this definition is applied unchanged to directed graphs, the connected com-

ponent over the vertices u, v, x and y on the left side of Figure 2.4(b) forms a
tree, because it is free of (directed) circles. This does not coincide with intuition,

which requires that every vertex of a tree has at most a single incoming arc. For

this reason the definition of directed trees will be based on the circuit-freeness

of both the digraph and its underlying undirected graph. The digraph shown
in Figure 2.4(e) forms a tree whereas by contrast the left-hand component of
Figure 2.4(b) is not a tree according to Definition 2.6.

Note on terminology: Because trees will be of high importance throughout
the remainder of the thesis, they will be distinguished from general graphs by

means of the terminology and symbols used. The vertices of a tree T will be

called nodes from here on and its vertex-set will be denoted by N(T) and called
node-set. Equally, the arcs of a tree T will be called edges and its arc-set will be

called the edge-set, denoted by E(T).

Definition 2.7 (Root, Rooted Graph): A vertex r of a graph G is called the root of
G if there exists a chain from r to every vertex in V (G). The triple (V (G), A(G), r)
is called a rooted graph.

For undirected graphs, Definition 2.7 is equivalent to Definition 2.4 on con-

nectedness and every vertex of a connected graph is a root. General digraphs

however do not need to have a root. In fact a directed tree has at most one root

node. This will be proved by contradiction. Assume a directed tree T has two

root nodes rl and r2. By Definition 2.7 there exists a directed chain from rl to

r2. For the same reason there also exists a directed chain from r2 to rl. Thus

there exists a directed cycle rl -º r2 --º rl which violates the definition of directed

trees.
Figure 2.4(f) shows a rooted, directed tree. This tree is rooted by the node

u, as there exists a unique, directed chain from u to all other nodes. The tree in

Figure 2.4(e) is not rooted. Because there exists no chain from any node to u,

2. Semistructured Data 15

only u itself is a possible root node. However there does not exist a chain from u
to all other nodes, e. g. the node v can not be reached following a directed chain
from u. Thus u is not a root node and the graph is not rooted.

If there exists a chain nj -º n2 between two nodes nl and n2 of a rooted tree,

nj is called the ancestor of n2 and n2 is called the descendant of n1. There can be

at most one such chain according to Definition 2.6. If such a chain is non-empty,
nj and n2 are called true ancestor and true descendant respectively. If the length

of the chain between nj and n2 is one, nj is called the parent of n2, which is called
the child of n1. The level of a node in a rooted tree is the length of the directed

chain from the root node to the node in question, e. g. the root node has level

zero, its direct children level one and so on. The height of a tree is the maximum
level of any of its nodes.

The root node u of the tree shown in Figure 2.4(f) has level zero. It is the

ancestor of all nodes in this tree. Node z has level three and is the child of node

w. It is also a true descendant of the nodes u, v and w.

2.2.2 Data Graphs, Views and XML Documents
All SSD can be described as being isomorphic to a directed graph. Every vertex
in the graph represents a piece of data and every arc represents a structural

relationship. Note that this leads back to the network [DBT71] and hierarchical

data models [BL82] used before the advent of the relational model.
The structure of the data is encoded in the shape or topology of the graph.

Arcs in the graph represent relationships between the individual data items. Thus

the occurrence of two pieces of atomic data, i. e. the two character strings "Abite-

boul" and "Bunemann", below a common vertex imply that these entities are

somehow related. However the shape alone does not suffice to indicate the mean-

ing of different items connected to a common vertex. All SSD models thus label

either arcs or vertices using tags drawn from an alphabet that carries some ap-

plication specific semantics. For the above stated example the meaning would
be clearer if the arcs connecting the two atomic items with the third vertex were
labelled with the tag author. This would allow the conclusion that these two

strings are actually the names of two co-authors.
For tree data models, the equivalent distinction between edge labelling and

node labelling becomes irrelevant [ABSOO], as edge labels can be generated from

a node labelling by taking the label of every node and attaching it to its single

2. Semistructured Data 16

incoming edge and vice versa. For general graphs however, this mechanism can
not be applied as there might be multiple incoming arcs for every vertex. In this
case a single distinguished arc must be chosen for the transformation from vertex
labelling to arc labelling.

2.2.2.1 Data Graphs

Before the final construct of a data graph is addressed, a last additional definition
will be introduced, associating each vertex of a graph with such a tag label as
shown in Figure 2.4(g). Unlike the vertex labels introduced in Definition 2.5,
these tag labels do not need to be unique, i. e. a tag labelling is surjective but not
injective in general, i. e. a many-to-one function.

Definition 2.8 (Tag Labelling): A tag labelling A: V -º E is a surjective mapping
function from the set of vertices V of a digraph D to a given finite alphabet E of
tag names. A tag labelled or tagged graph is a pair (D, A).

The last construct defined in this section pulls together all the definitions

provided above into a single definition of a semistructured data graph. This is
done in order to bring the general theoretical construct of digraphs closer to the

requirements of SSD processing in general and XML in particular. One more
preliminary is needed, which partitions a vertex set into two disjoint subsets
called atomic and complex. The semantics associated with these sets will be
deferred until after the definition. Until then the only difference between them

will be that members of the atomic vertex subset represent atomic information,

which can be represented by a character string for the purposes of this thesis. By

contrast complex vertices combine the information of other vertices by the means
of a set of outgoing arcs.

Definition 2.9 (Data Graph): A data graph DG is an octuple

DG = (V, A, E, r, cp, A, atom, value)

of a vertex-set V and an arc-set A such that (V, A) is a connected digraph, an
edge-set ECA such that (V, E, r) forms a spanning, rooted tree of (V, A) with
root r, a graph labelling cp :V -º and a tag labelling A: V -º E, a function

atom :V -+ boolean distinguishing vertices from the atomic and complex subset
of V and a partial function value :V -º string giving the string representation
for a given vertex from the atomic subset.

2. Semistructured Data 17

The tag alphabet E consists of the fixed entry ROOT, the fixed entry DATA
for all data graphs containing at least a single atomic vertex and a finite set of
application specific tag labels, which are distinct from these. The vertex labelling
function A: V -º E returns . (v) = ROOT if and only if v=r, i. e. v is the
root of (N, E, v) and A(v) = DATA if and only if atom(v) = true. Equally
the partial value function is defined for all vEV with atom(v) = true and
undefined otherwise. The atomic and complex vertex-subsets will be called VA =
{v E Vf atom(v)} and Vc = {v E Vf -'atom(v)} respectively. These subsets are
disjunct, i. e. VA f1 Vc = {}, and their union is a cover of the vertex-set, i. e.
VA U Vc = V. Thus {VA, V°} is a partition of the vertex-set V.

This definition provides the data model used for this thesis. It has the advan-
tage of being a superset of many of the data models assumed by researchers in
this area. This is important, as the thesis will frequently discuss such works in
the concepts that are developed as part of it.

Figure 2.4(h) shows an example of a data graph. Its vertex set is V=
{u, v, w, x, y, z}, its arc-set is A= {(u, v), (u, x), (v, w), (v, x), (w, z), (x, y) }, its

edge-set E= {(u, v), (u, x), (v, w), (w, z), (x, y)} and its root is u. The values
for the functions A and c can be derived from the figure, the tag alphabet is
E= {ROOT, DATA, paper, author, title}. The function atom is true for the ver-
tices y and z and false otherwise. The values of the function value is the string
"abc" and "xyz" for the vertices y and z and undefined for all other vertices.
Arcs that are present in the arc-set A and the edge-set E are shown solid, while
arcs that are not part of the edge-set E are shown dashed. Vertices that are part
of the complex subset are shown as solid circles and atomic vertices are shown as
dashed circles. Their fixed tag label DATA is shown in Figure 2.4(h), but will be

omitted in all further data graphs for reasons of simplicity.

2.2.2.2 Tree-View versus Graph-View of a Data Graph

As stated above, SSD models are based on digraphs, hence generally instances

of SSD sources will contain cycles, e. g. a paper written by an author, who has

written a paper that was written by this author and so on. Such a situation could
be created by adding another arc from vertex &3 to vertex &1 of Figure 2.4(h).
However, this assumption often increases the complexity of the algorithms used
to process SSD and can lead to non-determinism for algorithms traversing the
infinite path paper -º author -º paper -º ... As many practical data sources

2. Semistructured Data 18

&0 ROOT

&1 cis

tcuhing &3 people

IRIN assistant

rescarch

&S class &6 class staff &B student &9 staff 1 project

pIC(CgU1SIt0 I lecturer
`"""ý""`

`ý' --- researcher

name name 1 name 19 name 2I name 2 name

Pilo 2 phon 'JJJf 2 phone

"Databases" r /, "' (ý4c331 "Domains"
c2ý S. A. D. " t "Sotirios" 29) "Mathias" X311 "lohn"

"3839" ; 3ä "3590" 3iß "3584"
1 lecturer

zlf

Fig. 2.5: An example of a data graph

are often of hierarchical nature, i. e. free of cycles, this generality is often dropped
in favour of a simpler tree based data model [XML01].

Formally this important issue is addressed by the definition of two distinct

views of the data graph, its graph-view and its tree-view.

Definition 2.10 (Graph-view): The directed graph-view D(DG) of a data graph
DG with DG = (V, A, E, r, W, A, atom, value) is the tagged digraph given by the

triple (V, A, A).

Definition 2.11 (Tree-view, Distinguished Spanning Tree): The tree-view of a data

graph DG = (V, A, E, r, cp, A, atom, value) is given by the quadruple (V, E, r, A)

and denoted T(DG). Following Definition 2.9, T(DG) is a spanning, rooted tree

of D(DG) and will be called the distinguished spanning tree of the data graph
DG in the context of this thesis.

Figure 2.5 shows a more complex data graph than that of Figure 2.4(h).

Two different views of the graph of Figure 2.5 are shown in Figure 2.6. In the

graph-view shown in part (a), spanning tree edges and additional graph arcs are
indistinguishable, whereas the tree-view of part (b) only shows the edges of the
distinguished spanning tree. Notice that the referencing nodes of the tree-view

2. Semistructured Data 19

&0 ROOT

&I cis

tcaching &3 people dc4 rcecarch

I assistant

&S class &6 class &7 staff &8 student &9 staff I project

1 prerequisite I lecturer 2 researcher

name 1 name 1 name I name 2 name 2

1 phon 2 phon 2 phone

"Databases" . - (t426ý "S. A. D. " 42t "Sotirius" lt291 "Mathias" X311 "John"

i21j1 "3839" 3' "3590" Ifc37J "3584"
1 lecturer

(a) The graph-view of the data graph shown in Figure 2.5

&0 ROOT

&1 cis

&2 teaching &3 people &4 research

name

"Domains"

class (&6) class (&7) staff (&8) studcnt (&9) staff (tII, project

name .Q 31 prerequisite (ý. I lecturer T name f name (&21 name 2 researcher

11 lecturer I name

(I

assistant 1 phone phone 2 phone 2 name

"Databases" X27! "Sotirios" 291 "Mathias" 1311 "John

26t "S. A. D. " Qtl28I "3839" itI3Ö0 "3590" ctl37J "3584" &331 "Domains"

(b) The tree-view of the data graph shown in Figure 2.5

Fig. 2.6: The graph- and tree-view of the example data graph shown in Figure 2.5

2. Semistructured Data 20

&12, &13, &15, &16 and &24 are still part of the complex subset, although
they have no outgoing edges in this view.

These definitions allow the arbitrary, potentially cyclic, digraph D(DG) to be

replaced by the guaranteed cycle-free tree representation T(DG) over the identical

vertex-set V for operations that do not depend on the additional graph arcs. It
is possible to define an auxiliary function tree :A --' bootean with

tree(a) .
true for aEE
false for aýE

on DG, which can be used to decide whether a given are a is part of the distin-

guished spanning tree T(DG).

2.2.2.3 XML Documents and Data Graphs

The distinction between tree edges and graph arcs will be beneficial in order to

match the data model presented here against that made explicit by the XML In-
foset [XML01]. XML, like every other flat file format, can only encode non-cyclic
data sources directly, but offers several mechanism to encode arbitrary graphs in-
directly, e. g. through the use of special ID: IDREF attribute pairs or application
specific extensions such as XPointer [XLi01]. The element-subelement relation-
ships encoded in an XML document define the distinct, spanning tree of the data

graph presented, i. e. the edges of the tree T(DG). These edges lead from an
element to its subelements in terms of the XML document structure, or from

parent to child node in terms of the tree. Any additional relationships, such as
those encoded using ID: IDREF-references, are additional graph arcs only present
in the arc-set A. They start at the referencing vertex, e. g. the element containing
an IDREF-attribute, and lead to the referenced vertex, e. g. the element contain-
ing the respective ID-attribute. Following query standards such as XPath, which

restrict the operations possible on such implied arcs, several researchers have also

used data models that reflect this distinction [GMW99, KB+02].
Another peculiarity of the XML format is the choice between two distinct

ways of representing values associated with a given element. One can either use
a subelement with the desired tag name containing atomic information or make
use of a CDATA-attribute encoding a key-value pair [Bra03]. For the purpose
of this thesis such a distinction is deemed irrelevant and not directly supported
by the data model. However, for applications depending on this distinction, one

2. Semistructured Data 21

variant can be identified by annotating resulting vertex-labels with a reserved
prefix code, e. g. by labelling a name entity encoded using a CDATA-attribute
mname, whilst labelling a subelement with name. A discussion of the importance
of document order is postponed until Section 2.2.3.1. Other specialties of the
XML standard such as comments and processing instructions, which it inherited
from its SGML origin [SGM86], will be ignored within this thesis.

The data graph presented in Figure 2.5 is the one generated from the XML
document shown in Listing 2.3.

2.2.3 Order and Identifier Based Models for Semistructured
Data

The following sections discuss the significant differentiation between SSD mod-

els based on vertex order versus those models based on vertex identity. These

concepts are essentially complementary. The data model represented by the data

graphs of Definition 2.9 use a concept of explicit identity as detailed in Sec-

tion 2.2.3.2. Other models, usually based on a document-centric viewpoint, prefer
to incorporate a concept of order. Such models are described in Section 2.2.3.1.
Whether order or identity should be reflected in the logical model is arguable.
Which approach is favoured depends largely on the point of view from which the

model was developed.

2.2.3.1 Sibling Order Based Models

For researchers working on document-centric SSD, i. e. looking at semistruc-
tured data as a refinement of unstructured data, the question of order among
the individual data atoms is important. Such data is primarily meant for human

consumption, often encoding natural language, which crucially depends on order.
Since XML arose as an interchange or serialisation format, its physical implemen-

tation also implies an order. Query languages such as XPath [XPa99, XPa03],

which are defined specifically for use with XML, consequently support order-

related query operations. In terms of a graph model this corresponds to the

question whether the outgoing arcs of a vertex are ordered or not.
SSD models based on the assumption of a sequential access, like compressors

[LSOO, SM01] or aimed at supporting order-dependent query languages like XPath
[BGK03] thus consider as ordered the edges starting from a common vertex. In

2. Semistructured Data 22

<? xml version=" 1.0" ?>
<! DOCIYFEcisj
<2IITA NT cis (teaching, people, research)>
<! II M teaching (class.)>
<lEIRllN1. ' class (name)>
<I ATILW class id ID #jI2DQUIRID

lecturer IDREF MIED
assistant IDREFS #/1VIPLIID
prerequisite IDREFS AUVIPLIED >

<MIMIC people ((student Istaff).)>
<! IIIIVIITTT student (name, phone?)>
<IATITISI' student id ID #TtDQUIRIID
<IIIIIVIINr staff (name, phone)>
<IA'I LIST ataffId ID M UIRIII>
<! EFJMMI 1' research (projects)>
<IELENI Tr project (name)>
<I ATTLIST project id ID #tXQUIFM

researchers IDREFS OVvH41ED>
<MIIENEM name (BATA) >
<IE[EhM II` phone (# ATA) >
1>
<cis>

<teaching>
<class id="CIS. 234" lecturer="s199524875" assistant="s200155317">

<name>SAD</name>
</class>
<class id="CIS. 356" lecturer="x]198568459" prerequisite="CIS. 234">

<name>D1C/name>
</class>

</teaching>
<people>

<student id="x200155317">
<name>Mathias</name>
<phone>3590</phone>

</student>
<staff id="s198568459">

<name>John</name>
<phone>3584</phone>

</staff>
<staff id="s199524875">

<name>Sotirios</name>
<phone>3839</phone>

</staff>
</people>
<research>

<project id="SSD" researchers="s200155317-s198568459">
<name>Do mai ns</ name>

</project>
</research>

</cis>

Listing 2.3: The XML encoding of the data graph shown in Figure 2.5

2. Semistructured Data 23

these models, individual vertices can be addressed by specifying the order of the
sibling edges of its unique path from the root in the distinguished spanning tree.

2.2.3.2 Vertex or Node Identity Based Models

Instead of storing the order of siblings, one can provide each vertex with an
explicit address or identifier. The relational model defined by Codd [Cod70] is
based entirely on set theory and thus does not use the concept of either identity

or order. It is rather founded on tuple equality, which is based on the equality
of the attribute values of a tuple. Thus changing the value of an attribute of a
tuple is indistinguishable from deleting the old tuple and creating a new tuple
containing the new attribute value. No relation can contain two tuples with iden-
tical attribute values. Its successor, the object-oriented database model however,
introduces the concept of object identity. Here two distinguishable objects with
equal attributes can co-exist in the same relation.

Researchers from the database community usually see the semistructured
model as a further development of the object-orientated approach and thus assign
identifiers to each vertex of the data graph. These are, for example, part of the
OEM data model (Section 2.5.1.1) and correspond to the graph labelling cp which
is part of Definition 2.9 of data graphs, which will serve as data model for this
thesis.

For data models that do not make use of this feature, the labelling can be
dropped from the definition. The XML standard represents a compromise, which
does not enforce identities for every vertex but does provide the means of sup-

plying them by the use of special attributes of type ID.

2.3 Querying Semistructured Data

Query languages fulfil three different functions in a database management sys-
tem [ABSOO]. Firstly they allow the selection of the subset of a potentially large

database, which is relevant to the computation to be performed. Secondly they

allow the joining of partial results from multiple sources in order to derive new
facts by combination. The third function is the restructuring of data according
to a desired output format, potentially creating new data in the database. These
functional areas exist equally in query languages designed for structured and
semistructured data. Bergholz and Freytag [BF00] proposed a similar decompo-

2. Semistructured Data 24

sition of queries over SSD into a selective "what" and a constructive "how" part
used for their work on schema based querying.

This thesis is only concerned with the first function, i. e. the selection of
relevant data. Section 2.3.1 thus derives a syntax and associated semantics for

a purely selective query language. Following this Section 2.3.2 looks at how this
is incorporated in query languages designed particularly for use with XML. The

concluding Section 2.3.3 describes a range of general evaluation strategies for

queries on SSD. The issues of joins and result construction are addressed for

example by Abiteboul et al. [ABS00] and not further discussed here.

2.3.1 Path Expressions as a Selective Query Languages

This thesis is only concerned with the selective functionality of a query language,
i. e. the process by which different groupings of SSD can be used to efficiently
select relevant subsets of a database for a given computation. This is based on the

assumption of very low query selectivity, which is reasonable for the environment
depicted in Chapter 1. In such circumstances subsequent steps like joins and
transformation algorithms can benefit from the reduced data volume, improving
their performance. The following sections define a syntax and semantics for path
expressions that can be used to perform the task of vertex selection.

2.3.1.1 Linear Path Expressions

Virtually all query languages for SSD are based around the concept of path

expressions, i. e. a way of specifying structural relationships between vertices

using paths in the data graph. This section discusses linear path expressions, i. e.

expressions matching a single, non-branching path in the data graph.
The basic form of path expressions are simple path expressions, which are

absolute (their matching process starts at the root of the data graph), complete
(they specify every label along the matched path) and exclude regular expressions

on the tag labels. Such path expressions have the form /ll /
...

/l,,, where li stands
for any label from the label alphabet E. A simple path expression matches a

vertex vn of DG, if there exists an arc-sequence vo --º vl -º ... -º vn in DG

with vo = root and A(vs) = li for all iE [1, n]. For example the arc-sequence
&0 -º &1 -+ &3 -* &8 of the data graph shown in Figure 2.5 matches the

simple path expression /cis/people/student.

2. Semistructured Data 25

Simple path expressions require a good knowledge of the structure of the data

graph, as a complete path from the root to the vertex of interest needs to be

specified. In order to make full use of the flexibility offered by the semistruc-
tured model, partial and relative path expressions are supported by all query
languages. Here parts of the path that are irrelevant to the computation can
be left out. Partial query expressions leave out label constraints matched by
intermediate sections of an arc-sequence and replace them by the descendant op-
erator `//'. Relative path expressions start at an arbitrary vertex rather than the

root, indicated by a leading descendant operator. Notice that the latter is just

a syntactical convenience for a partial expression involving the root label pred-
icate and the first label predicate specified in the relative path expression, i. e.
//ll is just a shorthand notation for / //ll. Instead of an arc-sequence, a path-
sequence in the data graph is being matched to a path expression of the form
//ll//

...
//1,,. For example the partial, relative path expression //people//name

selects the names of staff and students alike and is matched by the set of paths
{&3--º&7-º&17, &3-º&8-º&19, &3--+&9-+&21} of the data graph
presented in Figure 2.5.

Regular path expressions are path expressions in which the tag label constants
l; are replaced with label expressions Ai. Label expressions follow standard con-
ventions for regular languages. A minimal grammar used for these expressions
throughout this thesis is A :: = lI A1JA2 I *, where 1 denotes a label constant
from the alphabet E, A1jA2 defines a choice between two label expressions, i. e. a
disjunctive query, and '*' denotes the wildcard matching every label from E.

All path expressions presented so far are forward facing, i. e. they follow the

natural direction of the arcs in the data graph or more specifically, lead from

ancestor nodes to descendants in its tree-view. For the linear path expressions

presented here this is sufficient as every backward facing path expression can be

transformed into a forward facing path expression [OM+02] by inverting the order

of the label constraints and replacing backward with forward path separators. 2

For example the query for a name vertex, which can be reached from a people
vertex, can be replaced by a query for people which have an outgoing arc to

a name vertex. However, this will be different in the case of branching path
expressions, which are described in the next section.

2 Whether or not such a query is semantically identical depends on the expected output, i. e.
whether the complete path in the data graph matching the query is returned or solely its final
vertex, matching the rightmost predicate. This question will be deferred until Section 2.3.1.4.

2. Semistructured Data 26

assistant

(a) //class [/assi stant]/name

prerequisite name

"John"

(c) //class[=prerequisite]/name (d) //staff[/name/DATA = "John"]/phone

Fig. 2.7: Example graphs of branching path expressions

2.3.1.2 Branching Path Expressions

Linear path expressions alone cannot be used to encode some of the more com-
plex structural constraints which could usefully be imposed on the vertices being

selected, e. g. one cannot specify the selection of the names of all classes that have

an associated teaching assistant, i. e. express conjunctive structural constraints.
Such queries can easily be represented as graphs, as has been done for the speci-
fied example in Figure 2.7(a). In order to distinguish the vertices of a query graph
from those of a data graph, its vertices will be called predicates. For reasons of
simplicity all query graphs considered in this thesis are non-cyclic and connected,
i. e. they can be represented by a tree. In addition, a query graph will always

prerequisite

(b) //class[\prerequisite]/name

2. Semistructured Data 27

contain a predicate matching the root vertex of the data graph, even if this is

suppressed in the linear syntax by the use of an initial '//' operator.
The class predicate of Figure 2.7(a) is matched by the vertex &6 of the

data graph shown in Figure 2.5. Notice that this predicate is shown in bold.

It is called the output predicate, i. e. the set of vertices of the data graph that

match this predicate will form the result set. Following the terminology used by

Kaushik et al. [KB+02], the path leading from the root of the query graph to the

output predicate will be called the primary path of the query. All other paths
form structural constraints on this path. This helps to define a flat representation

of a query graph by writing the primary path in the form introduced for linear

path expressions above and annotating the tag predicates relating to branching

points in the query graph with structural predicates, which are enclosed in square
brackets. If multiple such structural constraints are attached to a branching point,
the individual expressions are separated by the V-sign and need to be matched
by the same vertex of a data graph to return a match. Thus the example presented
in Figure 2.7(a) can be written as //class[/assistant]/name.

The notation used so far is sufficient to express all possible queries for tree

patterns in the tree-view of the data graph. However, for general queries on the

graph-view of a data graph one might be interested in incoming as well as outgoing

paths. Thus backward facing path expressions are introduced in the same way as
forward facing path expressions. A single backward arc matches the query oper-

ator `\' in the path expression and a backward path of arbitrary length matches
the operator `\\'. Thus the query asking for all class names that are the pre-

requisite for something else can be expressed as //class[\prerequisite] /name

and is shown in Figure 2.7(b). The result of this query for the graph-view of
Figure 2.6(a) is the set containing solely vertex &6.

Notice that supporting such general query graphs with multiple incoming

paths to a predicate is only required for the graph-view, in which all arcs are
indistinguishable. Working on the data graph itself with its two different types

of arcs, one might want to specify that the arc incident from the prerequisite

vertex is actually an additional arc rather than an edge of the spanning tree. This

reflects the expressive power of XPath, in which IDREF references also need to

be specified. To supplement the forward and backward path operators, reference

path operators are introduced, which are only matched by the additional arcs not

contained in the spanning tree. These are denoted by `=' and and match
these additional arcs in or against their natural direction respectively. Notice

2. Semistructured Data 28

that these operators are always matched by arcs and never by paths in the data

graph. Thus the query for names of classes that are prerequisites is actually
written //class=prerequisite)/name in the data model provided by the data

graph. Graphically such arcs will be displayed as dashed arrows as shown in
Figure 2.7(c) following the convention used for the data graph itself.

2.3.1.3 Atomic value predicates

The previous section was concerned with placing structural constraints on vertices
that match predicates of the query graph, thus those predicates will be called

structural predicates. Similarly atomic value predicates can be used in order to

restrict the returned vertex-set based on the data attached to atomic vertices
of the data graph. This is equivalent to the selection operation in the relational

algebra. The selective functionality of a query language can be further subdivided
into a binding process, here represented by structural predicates, and a filtering

process, here represented by atomic value predicates [ABSUD]. The initial step

requires that vertices of the query graph representing tag expressions are bound

to vertices of the data graph according to structural constraints. The subsequent
filtering process removes such bindings that do not comply with the given atomic
value constraints. Because techniques for data selection based on atomic values
are known from relational database research, most research on querying SSD

concentrates on structural predicates, e. g. the work on type projection presented
in Appendix A or that of Buneman et al. [BGK03] and Kaushik et al. [KS+02,

KB+02] on structural summaries for SSD. However, the integration of atomic

value predicates into the first stage of the query process is often beneficial as

such predicates can have considerably lower selectivity than structural predicates.
This is especially true if the data has originated from a regular source, in which

case the structure of the resulting data graph is fairly regular and consequently

structural predicates select a significant part of the data.

Only leaf nodes of the distinguished spanning tree can possibly match atomic

value predicates. Thus syntactically, atomic value predicates are separated by an
`='-sign from the last label expression of a path expression, with their associated

matching expression enclosed in double quotes in the flattened query syntax. In

the graph representation they will be shown as dashed vertices in imitation of
the notation used for atomic vertices of the data graph. As an example one could

ask for the telephone number for a member of staff named "John" as depicted in

2. Semistructured Data 29

Figure 2.7(d). This example query would be matched by vertex &22 of the data
graph shown in Figure 2.5.

2.3.1.4 Semantic Variations on Query Results

There is agreement between different query languages on how to match vertices
of data graphs to the predicates of given query expressions. However there exist
variations on the semantics of the expression as a whole, i. e. of what result they

return. Here three different possible variations on the semantics attached to the

path expressions introduced above will be discussed. The relative linear path
expression Query 2.1 will be used to discuss these variations in semantics.

Query 2.1: //people//name

The first possible option is to return the set of complete embeddings of vertices
of the data graph in the query graph. Thus Query 2.1 containing two predicates
will return the set of pairs {(&3, &17), (&3, &19), (&3, &21)}. This is very
useful if the example query forms a part of a more complex query, especially if
joins on several of the returned vertices are to be performed. Due to the fact that
the complete embeddings are returned, this option will be referred to as query
embedding.

If however the query stands on its own and one is only interested in the

vertices addressed by the query expression, i. e. the final predicate on its primary
path, this complete embedding may be wasteful. In this case an interpretation

which only returns the set of vertices mapping this distinguished predicate is

more appropriate. Applying this semantic option to Query 2.1 returns the set

of vertices (&17, &19, &21}. This is the variant being adapted by this thesis

unless specified otherwise. It will be called a path expression as indicated in the

previous sections. In its flattened representation, the last predicate of the primary

path is the predicate whose embeddings are returned. If a query is presented as

graph the output predicate will be shown in bold.

Another option is to return the embeddings of vertices into the first specified

predicate of a query expression, i. e. the predicate that is adjacent to the implied

predicate matching the root of the data graph. The data graph shown in Fig-

ure 2.5 can be embedded into Query 2.1 in three different ways, however in all
cases it is vertex &3 being embedded into the people predicate. Thus the result

set contains only this single entry using these semantics. This semantic option

2. Semistructured Data 30

will be called tree pattern query as it decides at which vertices a given query
graph can be embedded into a data graph. This behaviour can be expressed
using the path expressions introduced above by specifying all other predicates as
structural predicates of the first one, i. e. by rewritting Query 2.1 in the the form
//people [//name].

In some situations a complete embedding of any vertices can be wasteful. If the

only question to be answered is whether a certain pattern exists, the matching
does not need to be completed, but can be terminated as soon as it becomes

evident that this is the case. Thus the result of a query with this semantic is the
boolean value true or false. Such semantics are used for structural predicates
of branching path expressions, i. e. all path expressions apart from the primary
path are resolved using these semantics.

2.3.2 Query Languages for XML

XML is a practical embodiment of SSD that has attracted widespread attention.
Consequently many languages have been designed to achieve the task of querying
XML documents. Most notably among them is XQuery [XQu03], a declarative

query language for XML, which has been defined by the W3C Architecture Do-

main3. XQuery can be broken down into a selective part, which is addressed
by the XPath [XPa99, XPa03] language, and join and construction mechanisms,
which are addressed by the XQuery language definition itself [XQu03]. As stated
in the introduction to this section, the focus of this thesis will rest on the se-
lective part represented by XPath. It should be noted here that, due to its
historical development, XPath is a self-contained query language. It contains a

number of expressions, usually implemented through some core functions of the
language, that extend beyond the expressive capabilities of its purely selective
location paths. XPath Version 2.0 [XPa03] is in fact a Turing-complete language.

Both XPath and XQuery can be used in data-centric and document-centric envi-

ronments. XPath's location paths form the most important kind of expressions
in XPath. Their result is always a list of nodes as defined in the XML Infoset

data model [XML01]. This is very similar to the branching path expressions dis-

cussed in the previous section and thus well-suited for a data-centric environment.
However, the following example shows how to use XQuery in document-centric

environment, returning the entire document fragment rooted at the vertex being

3 http: //www. w3. org/Architecture

2. Semistructured Data 31

selected by a location path by binding the selected node and returning its content.
Notice that this differs from the semantics introduced in Section 2.3.1.4.

Query2.2: for $s in /cis/staff/people/student return $s

Query 2.2 would return the following result containing all information about
students if applied to the XML document shown in Figure 2.3.

<student id="s200155317">

<name>Mathias</name>
<phone>3590</phone>

</student>

Another important standard of the W3C is XSLT [XSL99], a rule based lan-

guage for XML document transformation, which is also based on XPath as a
selection language. Unlike XQuery it is pattern based and more often used in
data-centric environments.

The importance of other XML query languages such as XML-QL [DF+98] and
XQL [RLS98], which filled the gap created by the lengthy standardisation process
leading to the XQuery standard, will probably diminish in the near future. A

comparative study of XML-QL, XQL and three other languages was performed
by Bonifati and Ceri [BC00]. All of these query languages represent functional

subsets of the XQuery standard.

2.3.3 Query Evaluation Strategies

As noted in Section 2.3.1.3, the selectivity of individual predicates of a query ex-
pression influence its execution performance. Thus different strategies for query
execution can be employed in order to improve the efficiency if statistical infor-

mation about the selectivity of query predicates is available.
Three such strategies, a top-down, a bottom-up and a hybrid variant, will be

described using simple example queries over the data graph shown in Figure 2.5.
For reasons of simplicity, all queries presented here can be encoded in a single lin-

ear path, i. e. no predicate has more than one child predicate, and only arcs which
are part of the spanning tree are followed. Despite this Query 2.4 and Query 2.5
do not represent simple path expressions, because they return the embeddings for

predicates different from the leaves and contain regular expressions. In general
the concepts described in the following section can be extended to more complex
query graphs, i. e. arbitrary branching path expressions.

2. Semistructured Data 32

2.3.3.1 Top-down Querying

The top-down query evaluation strategy is the most natural in that it follows
the vertices of the source in their specified direction until all requirements are
fulfilled. This behaviour will be demonstrated using Query 2.3.

Query 2.3: //project/name/DATA

In this example at first all project vertices will be identified. A search for

name vertices will be performed by following outgoing arcs from the identified

pro j ect vertices. From there, again only following outgoing arcs, a further search
for atomic vertices concludes the query. This can be compared to finding infor-

mation in a well-structured book starting from the table of contents. Using the
data graph of Figure 2.5 only a small number of vertices would be visited if one
assumes access to a label map. This allows the matching process to start at the

single project vertex within the graph, which only has two outgoing arcs, one to
the requested name vertex and one leading to an irrelevant researcher vertex.
The former vertex only has a single outgoing arc, leading to an atomic value
vertex as required. Thus this strategy has visited only four vertices of the data

graph in order to embed them into three predicates, making this a good strategy.

2.3.3.2 Bottom-up Querying

The bottom-up query evaluation strategy represents the inverse to the top-down

strategy. Here occurrences of leaf vertices in general and the target atomic data

vertices in particular are identified and their structural constraints are validated
by traversing the arcs of the source in their inverse direction. This strategy will
be described using the following example query on our example data graph.

Query 2.4: //staff[/ * /DATA = "John"]

In this example at first all occurrences of the string "John" are sought and
then validated for an incoming arc from an arbitrarily tagged vertex. This vertex
in turn is validated to have an incoming arc from a vertex with the tag label

staff, whose vertex identifier will form the result set. This can be compared to
finding information using the index of a book. Since there is only a single atomic
vertex with value "John", such a strategy would lead to a very limited search on
the data graph of Figure 2.5, making this a good query strategy. In fact, since

2. Semistructured Data 33

the query is only considering those arcs of the data graph, which are also edges in
its tree-view, every vertex has at most one such arc. Thus, starting from a fitting
leaf predicate, either a valid vertex is found or a mismatch detected after at most
two steps for this query despite the wildcard. If a top-down approach was used,
not only would the subtree rooted at the non-matching staff vertex &7 have
been searched, but the algorithms would have also visited the phone vertices &18
and &22 together with their attached atomic value vertices, although they are
irrelevant for the query result.

2.3.3.3 Hybrid Querying

The decision about whether a top-down or bottom-up strategy is more appro-
priate is usually based on statistical knowledge about the selectivity of top- or
bottom-level predicates in the query tree. If this knowledge is not available or the
selectivities are of comparable order, a mixture of both, called a hybrid querying
strategy, might be the most successful solution. This will be illustrated using
Query 2.5. The syntax used for Query 2.5 was slightly extended to allow for

regular expressions on the atomic value predicate. Its meaning is to select all
atomic values starting with the character sequence "35".

Query 2.5: //staff/* [/DATA = 1135*11]

In this case, part of the query is evaluated in a top-down fashion and part of
the query is evaluated bottom-up. This gives two supersets of the query answer.
At the point where the top-down and bottom-up parts of the query meet, the
intersection of these sets is formed, giving the query result. For the example query
neither a top-down nor a bottom-up strategy would prove particular successful.
The top-down approach would visit all vertices below the two staff nodes as in the

previous example. Due to the higher selectivity of the atomic value predicate,
the bottom-up strategy would also travel along the unnecessary path leading

upwards from the atomic value vertex &30. This can be avoided if a top-down

approach is used to match all staff vertices and their four children &17, &18,
&21 and &22, while a bottom-up query selects the two matching atomic value
nodes &30 and &32. Their parents &20 and &22 can now be intersected with
the previously computed set to provide the queries proper result of {&22}. This

strategy does not improve the efficiency of the particular query on the given
example. However this is mainly due to its limited size and complexity.

2. Semistructured Data 34

The different query strategies presented in this section are aimed at achieving
optimal efficiency on a given data graph. However, as has been noted before,

many SSD sources contain a significant regular core [DFS99]. In Query 2.3 from

above it is unnecessary to validate the occurrence of an atomic value vertex
below a name vertex as all such vertices fulfill this requirement. Such structural
similarities should be validated once only and not once per instance. In some
environments this could be achieved by looking at the document schema, but in

general such a schema might be too inaccurate or even absent. Thus automatically
built summaries, describing important features of the source are required.

2.4 Indexing Semistructured Data

Access speed to large, semistructured data sources can be significantly improved
by the means of indexing, i. e. by providing direct access to particularly impor-

tant aspects of the source using a secondary data structure. In contrast to the

relational case however, the structure of the source is not necessarily flat, thus
SSD in general requires more complex index structures.

2.4.1 Linear Index Structures

If one is to limit the indexing to a flattened view of a particular source, e. g.
the atomic values occurring in a given context, indexing techniques known from

relational database research can be applied with little or no change. Two very
simple, yet fundamental indices of this kind are presented here, the tag or label

index and the atomic value index.

Example 2.1 (Tag Index): A tag index is a mapping providing the list of vertex
identifiers V for every tag label lEE with V= {oid(v)lv EV with A(v) = l} of

a data graph.

Figure 2.8 presents a tag index for the example data source presented in

Figure 2.5. It allows the quick location of all vertices bearing a certain label tag.
Tag indices are useful, for example, in order to resolve relative path expressions,
i. e. path expressions that can start from an arbitrary vertex and not necessarily
the root vertex.

Notice that a tag index implies a partition on the data graph as every vertex

carries exactly one label from E. This will be used in Example 4.1 of Section 4.2.1,

2. Semistructured Data 35

I u
DATA &25, &26, &27, &28, &29, &30, &31, &32, &33
ROOT &0
assistant &16
cis &1
class &5, &6
lecturer &12, &15
name &11, &14, &17, &19, &21, &23
people &3
phone &18, &20, &22
prerequisite &13
project &10

research &4
researcher &24
staff &7, &9
student &8
teaching &2

Fig. 2.8: The tag index for the example source

where different equivalence relationships on vertices will be exploited in order to
define domains.

Example 2.2 (Atomic Value Index): An atomic value index is a mapping that pro-
vides a list of vertex identifiers V. for every character strings with V, = {oid(v) Iv E
VA with value(v) = s} of a data graph.

Figure 2.9 presents an atomic value index for the example data source pre-
sented in Figure 2.5. An atomic value index is useful to resolve value based

queries, regardless of the context in which the corresponding atomic vertex ap-
pears.

Notice that an atomic value index does not imply a partition as defined above,
as complex vertices are not mapped by any index entry. It does however define

a partition on the subset VA of atomic vertices. In document-centric situations,
where keyword searches or regular expressions on atomic values are to be per-
formed, other linear indexing techniques such as inverted lists can be appropriate.
Lore's text index (Tindex) [MW+98] is an example of such an approach. This
however lies outside the scope of this thesis.

Notice that although these indices were presented as tables in this section,
they will usually be implemented using advanced data structures such as B-Trees
known from relational database research.

2. Semistructured Data 36

S V,
3584 &32
3590 &30
3839 &28
Databases &25
Domains &33
John &31
Mathias &29
S. A. D. &26
Sotirios &27

Fig. 2.9: The atomic value index for the example source

2.4.2 Nonlinear Index Structures

Value based indices presented above have the advantage that they can exploit
indexing techniques originally developed for relational systems. However, they

only work over limited views of the data graph and require different query algo-
rithms to be used for indexed and non-indexed data. The indices described in
this section relate vertices of data graphs to vertices of index graphs. Since both
data and index graphs can be expressed as digraphs, the generated indices can
be managed using the same system used for the data graph itself.

Definition 2.12 (Index Graph, Extent): It is possible to construct an associated di-

graph I(DC, S) = (V(I), A(I), ext) for a data graph DG and a given set of
subsets of its vertex-set S= {s; li E IN with si C V(DG)}, whose vertex-set V(I)

contains one vertex ui per subset s; in S. The set of vertices contained in Si
are associated with ui by means of the relation ext : V(I) -+ {V(DG)} and is

called the extent of the vertex u; or ext(ui). If there exist at least one vertex vi
of V(DG) in ext(ui) which has an arc to a vertex v3 of V(DG) in ext(uj), A(I)

will contain an arc from us to u3. The triple I(DG, S) = (V(I), A(I), ext) will
then be called the index graph of DG with respect to S.

Notice that this definition works on arbitrary sets of subsets of the vertices

of the data graph. Thus the relation between vertices of the data graph and
the vertices of the index graph must be neither injective nor surjective. This
definition allows the creation of both redundant and incomplete index graphs
based on arbitrary clusterings of the vertex-set. Chapter 3 will make use of this
fact and present a general model of how to use this abstraction in a general

optimisation approach.

2. Semistructured Data 37

staff I student (&7, &8, &9)

name {&17, &19, &21 } Ts, ý phone {&I8, &20, &22}

DATA (&27, &29, &3 I) (a,) DATA 1 &28, &30, &32)

Fig. 2.10: The index graph of the data shown in Figure 2.5 for a set S of sub-
sets with S= {{&7, &8, &9}, {&17, &19, &21}, {&18, &20, &22},
{&27, &29, &31}, {&28, &30, &32}}

Figure 2.10 shows the index graph of the data graph shown in Figure 2.5
with respect to a set S of subsets, which were designed to include all information
stored about people. In this case it was manually designed to abstract away from
the differences in tag names used for staff and student entries.

However, as Chapter 4 will show, such indices can be automatically derived
based on mathematical properties of the data graph. An important special case of
this general definition is based on equivalence relationships between the vertices
of a data graph. If the members of every equivalence class are used as the subsets
of S, the set of subsets becomes a partition of the vertex-set V(DG). Consequently
the relation between vertices of the data graph and vertices of the index graph
becomes a surjective mapping, which defines an endomorphism of DG on I (DG).
Because every vertex of the data graph can only belong to a single equivalence
class, the size of I (DG) is limited by the size of DG in this case.

2.5 Literature on Semistructured Data Processing

This section reviews literature that is concerned with SSD management and
querying in general and in particular the associated summarisation techniques
that motivate the proposed concept of data groupings. More specific literature

on individual topics of SSD processing will be discussed in the individual chap-
ters of this thesis as it becomes relevant. In particular Chapter 5 will look at

compact representation of SSD and Chapter 6 will look at indexing and querying
mechanisms.

2. Semistructured Data 38

2.5.1 Semistructured Data Management Systems
In this part, systems and approaches for SSD management are reviewed. The
focus is based on the range of problems associated with SSD processing addressed
by an approach rather than on individual features of a specific implementation.

2.5.1.1 Lore, OEM and Lorel

Lore (for lightweight object repository) of Stanford University is the most com-

prehensive and exhaustive academic experimental data management system de-

signed for SSD. Its main components are the object exchange model (OEM) that

acts as data model, storage management, the query language Lorel (for Lore
language), a number of indexing mechanisms including structural summaries in
form of DataGuides that describe the source schema, query optimisation and

evaluation engine and user interfaces. The Lore system has been described both

in terms of its general architecture [MA+97] and details regarding its individual

components. Only those parts that are of outstanding importance for the pre-

sented work are reviewed here. These components include the data model OEM,

which was taken from the related Tsimmis project [PGMW95] and parts of its

query language [AQ+97] and evaluation engine [MW99]. Its indexing mechanisms
[GW97] will be reviewed in Section 2.5.2.1.

The OEM [PGMW95] is an SSD model that can be viewed as an arc-labelled,
directed graph. The vertices in the graph are called objects, which have an unique

object identifier (OID) and are either complex or atomic. Atomic objects have

no outgoing arcs and contain values from one of a list of predefined atomic types.
Complex objects can have outgoing arcs, their value is a set of (label, subobject)

pairs. The label describes the relationship of the object with its subobject. Fi-

nally the OEM data model defines names, which represent entry points to the

graph and serve as aliases for particular objects.
The original data model was slightly modified with the advent of XML as

a generally accepted representation of SSD [GMW99]. Essentially this meant
that the original arc-labelled graph was replaced with a vertex-labelled graph.
This difference, however, is irrelevant for most scientific issues surrounding the

management of SSD. Another more important mismatch between OEM and XML

is the fact that subelements in XML are ordered whereas subobjects in OEM are

not. Inversely OEM contains a concept of object identity whereas there is no such

2. Semistructured Data 39

concept in XML. These complementary concepts were discussed in Section 2.2.3
already.

Lorel [AQ+97] is essentially an extension of the object query language (OQL)
[Cat94], following the SELECT-FROM-WHERE syntax of the relational SQL
language. It extends relational query languages in two directions. Firstly it

allows path expressions in the FROM part. These expressions can contain reg-
ular expressions in order to deal with irregularities and lack of knowledge of the

structure of the data. Secondly it incorporates a multitude of type coercion mech-
anisms since type information in SSD is often incomplete or absent. Thus typing
issues must be addressed at the time of querying rather than at the time of data
definition.

2.5.1.2 STORED

Deutsch, Fernandez and Suciu [DFS99] describe an approach to SSD manage-
ment that is entirely based on re-use of existing technology and algorithms. The

core of their system is a purpose designed query language called STORED (for

semistructured to relational data), which allows the specification of bidirectional

mapping rules between a semistructured data graph and a relational represen-
tation. A core hypothesis of this paper is that most semistructured databases

contain a regular core that can easily be managed in a relational system. Data

that is not contained in this regular core must be maintained by an SSD man-
agement system, i. e. some persistent graph repository. However such data is

expected to be of much smaller quantity and thus less critical in terms of per-
formance. This hypothesis is supported by their experiments and justifies their

approach of re-use rather than re-engineering.
The actual query language is surrounded by a number of algorithms that

perform the translation between the SSD model and the relational core plus
overflow graph. These algorithms generate appropriate mappings based on ei-
ther an instance of data or a selection of representative queries. They also allow
reconstruction of the original SSD on demand and provide facilities for the trans-
lation of queries over the semistructured instance into equivalent queries over the

generated storage format.

2. Semistructured Data 40

2.5.1.3 SilkRoute

A similar approach based on mappings between semistructured and structured
representation through the use of a purpose designed query language is employed
by the SilkRoute project [FTS00]. The important difference here is the different

perspective of the scenario. Whereas STORED was designed to allow the man-
agement of SSD in a relational store, SilkRoute aims to allow access to a relational
store by means of a semistructured query language. Fernandez, Tan and Suciu
describe a mapping language called RXL (for Relational to XML Transforma-

tion Language) that is general enough to allow the transformation of relational
data into an arbitrary semistructured format as governed by an external schema
in form of a DTD. This semistructured view of the data is never materialised
but used to translate application XML-QL queries into equivalent RXL and SQL

queries, which can be executed over the relational store.

2.5.1.4 Production-state XML Databases

A number of so called native XML databases (NXD) have been developed in order
to satisfy the demands of XML based applications. The systems described here

are prototypical for a number of different approaches.

Tamino [SWOO, Sch0l] developed by Software AG combines a conventional re-
lational database with a purpose-built semistructured database engine. Modules

are provided for the seamless integration of both parts. This is the only commer-
cially available database that is solely aimed at SSD. Other commercial database

vendors are providing extensions to their (object) relational databases, which
typically map the SSD model to that used by the database.

Xindice [Sta0la] is an open source database that is essentially a management

system for small XML documents. XPath and other querying mechanisms are

provided. However, given its target application of content management, its focus

lies on fast delivery of entire, typically document-centric XML documents, rather
than the answering of arbitrary data-centric queries.

eXist [Mei02] on the other hand is based on a labelling scheme (cf. Section 6.3.1)
that allows decisions to be made about ancestor/descendant-relationships be-

tween vertices without the complete traversal of the connecting path. Among

2. Semistructured Data 41

other interfaces it provides a XQuery engine. It is thus well suited to answer
both data-centric and document-centric queries.

2.5.2 Summary Structures or Indices of Semistructured Data

Index structures allow direct access to individual vertices of a data graph. This is

crucial for efficient processing of SSD, as tree and graph traversal algorithms are
expensive in terms of I/O performance since every vertex visited could require a
disk access. The aim of indexing is to find summaries of the data that can be

held in main memory to avoid disk access costs.

2.5.2.1 Representative Objects and DataGuides

Nestorov et al. [NU+97) were first to identify the need for partial schema in-

formation as a means of data summarisation for SSD. Their work is based on
the OEM data models and aims to discover a schema for a given instance of
hierarchical data. The full representative object (FRO) essentially comprises all

possible paths in the instance data. Degree-k representative objects (k-RO) only

contain paths up to a certain length k. They are consequently less expensive to

compute and store but are only correct for path queries up to this length. FROs

can be seen as nondeterministic finite automata (NFA), thus standard algorithms
for determination and minimisation can be applied to gain a minimal FRO.

DataGuides [GW97] are used in Lore as a path index structure. They are

essentially an FRO, i. e. they contain every path starting from the root of a data

graph in the data instance. Duplicate paths are only represented once, making the

DataGuide considerably smaller than the data instance if that instance contains

a regular core. The vertices of the DataGuide contain references to the vertices

accessible by the equivalent path in the data instance and serve as a structural
index. They are utilised to guide query-by-example operations. Additional meta-
data, e. g. statistics about value distributions, can also be stored in these vertices
in order to aid query processing. These techniques only consider linear path

expressions, that is forward path expression from the root or a given context to

the vertex sought.

2. Semistructured Data 42

2.5.2.2 1-Index, 2-Index and t-Index

In order to address more complicated, branching path expressions, the more gen-
eral approach developed by Milo and Suciu [MS99] can index more complicated
relationships between vertices of a data graph than a single, linear incoming path.
Index coverage is decided by user-provided templates and may be derived from a
typical query load. Consequently indices are dependent on at least partial knowl-

edge of the data source and its applications. However, due to this use of a priori
knowledge, the index generation is more efficient and linearly bounded in space
by the document size. Apart from the general template based indices (t-Index),
two special instances are investigated. The first, so-called 1-Index is identical to
the DataGuide described above for tree data, i. e. it aggregates all vertices with
an identical incoming path. The 2-Index catalogues all relationships, i. e. path
expressions, between any two vertices of the data graph.

2.5.2.3 Identifying Structure by Sharing Common Subtrees

Whereas DataGuides summarise vertices with common ancestry, thus allowing
linear queries to be executed against the index graph, Buneman et al. [BGK03]
follow the opposite intuition. Their structural summary is based on sharing
common subtrees, that is they identify nodes that have common paths from the
context node to (but excluding) the data leaves and thus support branching path
expressions. Their approach is based on the concept of bisimilarity, which is
taken from an approach adopted from symbolic model checking. The generated
summary structure can be used to resolve all XPath location steps in linear time,

resulting in query times exponential in the the size of the query but only linear in

respect of the size of the compressed data. Note that due to the strong adaption
toward XPath, the system is heavily dependent on document order and only deals

with trees.

2.5.2.4 Covering indices for branching path expressions

Kaushik et al. generalise the problem, first for linear paths on graph structured
data [KS+02] and then for generally branching path expressions with forward

and backward axes [KB+02]. As Buneman et al. they base their approach on
bisimilarity but, coming from the graph theoretical side rather than having XPath

processing in mind, they do not base their similarity relationship on document

2. Semistructured Data 43

order. One of their central observations is that a covering index graph for this

problem class is often only little smaller than the data instance it is describing and
thus does not improve the efficiency of the query evaluation. They parameterise
their algorithm in order to allow more compact but non-covering indices to be

generated. Their algorithm allows the specification of the maximal length of
incoming and outgoing path expressions and tag labels to be included in its

computation. It also allows the specification of the query depth, which is a
measure of the inherent complexity of the query, essentially the number of "twists"
between incoming and outgoing paths in the query graph. Their specific definition

of bisimilarity and their algorithms used to compute it are used in several parts

of this thesis and described in Appendix B, which is essential for understanding

some of the advanced issues addressed by this thesis.

2.6 Summary

This chapter has presented a review of the motivation behind SSD models, its

properties and query languages and processing systems. This thesis will make

particular use of the data model developed throughout Section 2.2 that describes

a semistructured data source as a vertex labelled, digraph (Definition 2.9). One

important property of this graph is that it exposes two possible views, a tree-

view (Definition 2.11), defining a rooted distinct spanning tree, and a graph-view
(Definition 2.10), allowing the representation of arbitrary data sources. Most of
the techniques and work on SSD processing detailed in Sections 2.3 to 2.5 were
described in terms of this data model.

3. AN OPTIMISATION MODEL FOR
QUERY PROCESSING

Problem Decomposition

Divide et impera.
Divide and rule.

Niccolo Machiavelli, 1469 - 1527

Appropriate models are fundamental for understanding, comparing and con-
trasting the different approaches to query optimisation. Such a high-level model
is described in this chapter, which explains how the concept of data grouping

affects multiple aspects of semistructured query processing. The model will act

as a high-level guide to this thesis, but can also be used in its own rights. To

demonstrate this, Example 3.2 describes work performed by other researchers in

terms of the model presented. Since its initial design [NW04] the model has been

revised to better support this degree of generality.

3.1 Introduction and Model Overview

The wealth of research into SSD processing in general and XML in particular,
has resulted in a large number of approaches for storage, indexing and querying.
A selection of these representing different approaches has been reviewed in Sec-

tion 2.5. Here a unifying model is presented as a framework for understanding
the common core of these algorithms. The key idea behind this model is the

assumption that most practical queries are based on a particular pattern of data,

which can be deduced from the query and then captured using an optimised data

structure amendable to efficient processing techniques.
To aid understanding, the problem of query optimisation is divided into four

distinct steps, which are presented in Figure 3.1 and briefly described below:

3. An Optimisation Model for Query Processing 45

Index Design Classification

Query Class
Regular Data

Execution Plan Grouping Clustering

Query Optimised Data Structure '"

Fig. 3.1: The four pliases of the query optilllisatioii process

Index design: Given a particular query pattern or class, an index that supports its

easy evaluation is designed. This step consists of the analysis of the expres-

sive power of the query language, which is heeded as an input p»iraineter
for this step.

Graph clustering: The vertices of the database instance are clustered according to

the expressive power of the index. This exposes patterns in the data specific
to the given instance, which is required as input parameter.

Data reorganisation: The discovered structure is used to optimise the storage of
the graph structure including the data containing the atomic vertices. This

transforms the graph into a physical representation suitable for the partic-

ular combination of query class and data instance.

Query planning: Based on the generated data structure and captured instance

properties, a plan for the efficient execution of a particular query can be

generated.

The representation of the process shown in Figure 3.1 is not closed, but conn-

tains a gap between the first and last step. The model thus describes a sequential

Index Data

sign Classification

Iss
Regular Data

Plan Grouping Clustering

Reorganisation

ký

3. An Optimisation Model for Query Processing 46

rather than iterative process. However, all phases of this model are influenced by
the common concept of data grouping, which forms the centre of Figure 3.1. The

two inputs to the first two phases and the resulting third phase are considered
to be essentially fixed. The assumption used here is that of automatic processes
over large amounts of semi-static data, rather than that of an ad hoc querying
process over an unknown source. If such a process were to be modelled, a feed-
back path from the query execution stage back to the index design would be

appropriate. Chen et al. [CLO03) discusses a dynamic index structure for SSD,

which can adapt to a given workload. However, such an approach is considered
to be outwith the scope of this thesis.

3.2 The Optimisation Process

The decomposition of the problem into four distinct parts means that they can be

addressed individually. In general not all steps need to be present in a particular

approach and many research papers address only some steps of the specified

model. This thesis will present research on the three later phases of this model,

which are concerned with the application of data groupings. The conceptually
important logical classification of data is discussed in detail in Chapter 4 in terms

of domains. The exploitation of this concept for physical organisation of the
data is described in Chapter 5. Finally Chapter 6 analyses the impact that data

groupings have on the performance of several query algorithms, thus aiding query

planning. The initial process of designing indices from a given query language is

addressed in this chapter only. The experimental system described in Chapter 6

will make use of the covering index for path expressions designed by Kaushik et

al. [KB+02], which is described in Appendix B. The focal point of this thesis is

how to derive and utilise data groupings gained from such an language theoretical

analysis. The following sections describe the individual steps of the model in more
detail.

3.2.1 Index Design

Given a particular query pattern or class, indices can be devised that support

easy evaluation. Depending on the complexity of the query language, a combina-
tion of more than one index might be used. For example, a query such as finding

an author named "Miller" can be resolved using a combination of a tag index

3. An Optimisation Model for Query Processing 47

(Example 2.1), used to find all author vertices, and an atomic value index (Ex-

ample 2.2), used to find all atomic vertices with a value of "Miller". The output
of both index requests can then be combined, e. g. using an ancestor-descendant
merge join algorithm as presented by Li and Moon [LM01]. Lore's link index
(Linder) or value index (Vindex) are examples of such conventional, linear index

structures [MW+98]. Their text index (Tinder) is similar to a full text index

or inverted list typically used in information retrieval systems. By contrast their

path index (Pindex or Data Guide) belongs to the class of non-linear index graphs
described in Section 2.4.2.

In the case of SSD, index graphs are an important example of structural
indices. In general an index graph is generated using some transformation of the
data graph. This kind of approach to constructing a covering index graph based

on bisimilarity between nodes of the data graph is described by Kaushik et al.
[KB+02]. Since the purpose of indexing is to reduce the amount of data that

needs to be processed, such transformations usually result in a simplification

of the original graph. However, for very expressive query languages such as
XQuery or its constituent part XPath, it is infeasible to devise a covering index,

i. e. an index that allows the resolution of all queries using the index alone.
Even for simpler languages, such as the branching path expressions, introduced in
Section 2.3.1, experimental results show that covering index graphs are often as

complex as the data they are trying to index [KB+02]. Since such index graphs

are endomorphic to the data they index, with the same query algorithms being

applied to both, the original aim of simplifying the query execution is subverted.
Ramanan [Ram03] analyses the relationships between different semistructured

query languages and relates their expressiveness to the complexity of a minimal

covering index structure. This helps to design indices for relatively small but

important fractions of a given query language. In this case user queries need to

be broken down to their constituent parts. These can then be addressed efficiently
by such partial indices and the results produced by combining the partial results

computed from them. An alternative approach is to use approximate indices,

i. e. indices which are not covering for the given query, but are safe. In this

case a query can still be executed against an index, but the results returned

are a superset of the true result and thus require an additional verification step.
Kaushik et al. [KS+02] proposes such an approach based on local similarity.

3. An Optimisation Model for Query Processing 48

3.2.2 Data Classification

In this step the data instance, seen as a graph, is clustered by classifying the
individual vertices with respect to the designed index. The early use of the data

instance itself is a fundamental divergence from the approach taken in relational
database systems, where statistical information on the cardinality of relations are

estimated based on the physical database schema and used for query optimisation
[Ioa96]. The model presented here requires the use of information contained in

the data graph at an early stage in the optimisation process in order to discover

patterns that occur in it. This is necessary due to the fact that even if schema
information is available it often does not describe the relevant properties of the
data source sufficiently. This is primarily caused by the fact that semistructured

schema languages are based on regular expressions, allowing an unbounded num-
ber of concrete data structures for a given schema. A study in this field [Cho021

that divided a number of schemata into three categories, one for data-centric

applications, one for document-centric applications and one for data exchange

applications found instances of recursive DTDs, i. e. schemata that allowed ele-

ments as subelements of itself, in all these categories. It is also not uncommon
to find XML documents, which do not comply with their associated schema, i. e.

which are invalid with respect to it. 1

The clustering itself exposes existing structures in the data instance, i. e. from

all possible structures governed by the query pattern, only those occurring in

the specific data instance are included in the further optimisation process. This

forms an instance specific schema, which can be used for data exploration and

query formulation [GW97], e. g. for querying by example [Zlo75].

An important example of such a classification is based on an equivalence

relationship on the vertex-set of the data graph. If clusters are defined based

on equivalence classes, the clustering is a partition of the vertex-set in this case,
because every vertex belongs to exactly one equivalence class. Consequently the

size of the clustering, i. e. the number of blocks of the partition, is limited by

the number of vertices in the data graph. However, if an arbitrary classification

process is used, i. e. if vertices from the data graph can occur in more than one

cluster, the size of the clustering can be larger than the size of the data graph

and is unbounded in general.
1 One example of such an invalid document is the XML version of the Mondial data-

base, which can be found at http: //www. cs. washington. edu/research/xmldatasets/www/
repository. html

3. An Optimisation Model for Query Processing 49

3.2.3 Data Reorganisation

The patterns discovered by the classification process described in Section 3.2.2

can also be used to physically regroup the data, both the graph structure encoded

using complex vertices and the atomic data represented by its leaves. This results
in the creation of syntactically or semantically homogeneous domains. Note that

the semantics of these domains are indirectly dependent on the initial choice of

a class of queries, but not on the possible applications or computations to be

performed over the result of such queries. This issue will be addressed further in

Section 4.2, where the distinction between application dependent and independent

domains will be discussed.

Based on the properties of the actual data management system, this results
in a physical data representation that is appropriate with respect to the class

of queries and the specific data instance. If the encoded source contained a
highly regular core, it may often be useful to map this regular core to a relational

system in order to make use of its functionality and performance. This is an

approach that has been investigated thoroughly, e. g. by Deutsch et al. [DFS99],

Florescu and Kossman [FK99], Shanmugasundaram et al. [ST+99] and Kudrass

and Conrad [KC02].

If a significant proportion of the source is irregular in its structure, an approach
based on graphs might be better suited than a flat representation. The clusters

resulting from the classification can be used as the vertex set of a new graph,
forming an index graph as detailed in Section 2.4.2. Such index graphs can be

used as secondary access structures to a data graph [GW97, KB+02, BGK03]

or extended to replace the data graph they index altogether. In this case they

also represent a physical reorganisation of the initial data structure. If vertex

references stored in the extent of an index graph as described in Definition 2.12 are

replaced with a representation of the vertex itself, the index, i. e. a secondary data

structure, mutates to a primary data structure. Such an approach is presented
in Chapter 6.

3.2.4 Query Planning

Based on the generated data structure, specific queries of the general class can be

evaluated efficiently if appropriate strategies are employed. This last step consists

of finding algorithms that make use of the partial pre-computation, which has

been effected by the previous data classification and reorganisation. The previous

3. An Optimisation Model for Query Processing 50

steps can also generate valuable metadata about the source, especially a statistical
source description, which can be used here by a query optimiser in order to choose
an appropriate query strategy. Two important strategies for query evaluation are
the top-down and bottom-up approaches, which were presented in Section 2.3.3.
They can be effectively employed if the cardinality of subsets of vertices matching
individual predicates of a query are known [FH+02] by starting the embedding
and matching process at predicates with low selectivity.

Such query planning and optimisation processes have been studied in detail
in the relational case [JK84, Ioa9G]. Approaches that make use of conventional
DBMS by mapping semistructured data into relations can make use of their query
optimisers. Florescu and Kossman [FK99] followed such an approach and showed
the influence different mapping strategies have on the query performance. In the

semistructured case, research on query plan optimisation is still limited. McHugh

and Widom described its concepts based on the example of Lore's DataGuides
[MW99]. Kaushik et al. [KS+02] compares the influence of three different index

graphs, their A(k)-index, the 1-index and the DataGuides, on the evaluation of
linear path queries using a fixed query algorithm. The specific effects a particular
class of data clustering has on a number of evaluation strategies will be discussed
in Chapter 6 of this thesis.

3.3 Exemplary Query Processing Systems in Terms of the
Model

In order to justify the approach chosen, three example systems are presented in

terms of the model described in Section 3.2. Firstly, the relatively simple approach

chosen for the initial research on compressing SSD [NW02] will be described in

Example 3.1. This will be further detailed in Chapter 5. Secondly, the research
by Kaushik et al. [KB+02] will be described in Example 3.2. Their work defines

a covering index for branching path expressions based on bisimilarity. The last

example emphasises the generality of the model (Example 3.3).

All example systems will be presented using the same data source, whose data

graph is shown in Figure 3.2. It represents a bibliographic database containing
information about publications and people associated with them.

Example 3.1 (Label-Value Predicates): To aid comprehension of the model a simple

class of queries is assumed first. The query class covered can be used to ask for

3. An Optimisation Model for Query Processing 51

ROOT

bibliography

publications (i7) people

book k&6) book (&7) person (&B) person (i9) person

author

title (&12) title (&14) title (cis) nano (c17) name Nis) name

"Databases" (&201 "Pmgnunming" (&21) "Databases" (&22) "Miller" (&23) "Smith" (&24) "SIewan"

Fig. 3.2: The bibliographic database used for the example systems

vertices connected to an atomic vertex representing a particular value through an

outgoing arc, i. e. the path pattern

Query 3.1: //$label[/DATA = $value]

where $label and $value are variables.
To resolve such queries efficiently, a two-dimensional index I ($label, $value)

is needed in order to locate all complex vertices that have outgoing arcs to atomic

vertices.
Note that the resulting clustering is partial in general, as it indexes complex

vertices only, and can be overlapping if several atomic vertices are adjacent to a
single complex vertex, i. e. several index entries can refer to a single vertex of the
data graph.

However, the resulting structure will only index existing vertex labels. Within

these entries storage will be allocated only to data atoms that can be adjacent
to such a vertex in the source. This results in a maximal size of the index of
JEl X IVAI. The physical data storage can be realised as, for example a two-

dimensional sorted list shown in Figure 3.3.

Querying then only requires executing two binary searches over the dimen-

sions of these lists, in which a number of the identities of vertices in the original
data graph can be stored and returned. The resulting data structure and-query

3. An Optimisation Model for Query Processing 52

algorithiiis are reminiscent of those described in Chapter 5, which is primarily

concerned with compression of SSD. However, sceing this work aS it query prob-
lein for the anticipated class of label-value predicate queries, one (U transfer the

techniques used there to the optitilisation Illo(lel l)rctietutc(l here.

$label I Values

ti amr $'alue \1i1Ii1 ills ýIi ýý. lll

OID . ßi6, &17 Mx

title
; iiahascs Programming

\10. &i4 &12

Fig. 3.3: The index structure used to resolve labol-VallI(' incdlicate

Example 3.2 (Branching Path Expressions): The optimisatioii iiiodel will now be

used to describe a more complex class of queries, in this case structural braiicliing

path expressions as described in Section 2.3.1 and analysed by Kautiliik et, at
[KB+02].

Figure 3.4 shows the covering index graph and an example query of this class.
Due to the higher expressiveness of the language the reader is referred to the

original paper for the derivation of the covering index. Appendix B sutnniarises
its mathematical background and the algorithms used for its computation, which

are essential for understanding this example.
The classification of the data is based on bisimilarity between the vertices of

the graph, i. e. if they carry the same tag label and are reachable by an identical

set of incoming and outgoing paths. Details about this form of graph classification

is givers in Example 4.7 in the context of domains of SSD.

The data reorganisation follows immediately from this classification. Each

equivalence class forms a vertex in the index graph created, with references to

the vertices of the original data graph being stored in the extend of the index

vertices. This is shown in Figure 3.4(a).

Because the index is covering for all branching path expressions, this index

graph acts as a primary data structure for answering queries of this class. An

example query from this class is Query 3.2, which is shown in Figure 3.4(b).

Query 3.2: //person[/name & 4-=author]

3. An Optimisation Model for Query Processing 53

ROOT (&0)

bibliography (&i)

publications {&2} people {&3}

author {&13, &iS

proceedings {&4} book {&5, &6} " person {&7, &8} person {&9}

editor {641}

title {&lO} () title (&12, &14) () name (&16, &17) () name {419}

DATA {&19} ' DATA (&20, &21) ý_) DATA (&22, &23) ;1 DATA (&24)

(a) The F&B-index graph of the example source

ROOT

'I

person

(b) The query graph of the path expression //person(/name & author)

Fig. 3.4: Branching Path Expressions: The covering index for the example source
and a query from this class

3. An Optimisation Model for Query Processing 54

Because the index graph is an endomorphism and bisimilar to the data graph, one

can embed the index graph directly into the query graph shown in Figure 3.4(b) in

order to resolve this query. This works in the same way as in the case of embedding
the original data graph into the query graph, with only a reinterpretation of
the results required to obtain the required outcome. Rather than returning the

vertices of the index graph, which fulfill the query predicates, in this case the

single vertex marked with an `*' in Figure 3.4(a), now the union of their extents
forms the answer to the query, which is the set containing the two vertex references
&7 and &8. Notice that the original research focuses on structural queries over

graphs, a completely different class than that presented in the last example.
Nevertheless all steps of the optimisation model can be successfully identified in

this work.

Example 3.3 (Tree Depth Queries): The last example is presented to show the gen-

erality of the approach. It shows what happens if the optimisation process is

started based on an arbitrary class of queries. The designed query system should

efficiently support a request for nodes at a particular level of the tree-view of

a given data graph irrespective of the vertex type or its tag label. A query for

nodes at level two of the tree hierarchy looks like the following as a branching

path expression:

Query 3.3: /*/*

A covering index for this query class can be constructed from a data classifi-

cation based on the level of the nodes in the distinguished spanning tree. Notice

that this partitions the entire node-set into equivalence classes based on their tree

level.

Physically this can be represented using either a conventional value based

index or as an index graph similar to the one described in Example 3.2. Fig-

ure 3.5 shows the example graph with the associated blocks of the partition
(Figure 3.5(a)) and the resulting index graph (Figure 3.5(b)). Note that the

computed index graph always has the same shape, a tree consisting of vertices of
degree one, i. e. a linked list, which has the same depth as the original tree-view

of the data graph.
For the conventional index structure, the length of the query needs to be

computed, with the result being used as the key for an index look-up. For the

index graph shown in Figure 3.5(b) the query can be executed by embedding the

3. An Optimisation Model for Query Processing 55

index graph into the query graph shown in Figure 3.5(c) starting at the root of
the index. In both cases a list of vertex identifiers stored as value of the index

entry or in the extend of the index graph respectively forms the result of the

query, in this case the vertex identifier &2 and &3.
The index designed could also be used for other types of queries, e. g. to

find all vertices within a set distance of a given context vertex. Note that the
index is no longer covering for this problem class, as not every vertex in a block

corresponding to a particular depth in the tree-view is guaranteed to have children
in the following equivalence class. The editor node, for example, has level four

in the tree-view, but is not adjacent to a node at level five. However, the index

graph shown in Figure 3.5(b) is still useful to produce a reduced candidate set,

whose entries need to be validated at a later processing stage. Clearly this is not

a particularly useful class of queries and thus processing mechanism. However it

serves to underline the generality of the approach, i. e. that an arbitrary query

class can be used to derive an index implying a data classification, which can be

used to physically reorganise the data in a way amendable to efficient processing

strategies.

3.4 Summary

An abstract four step model for the general query optimisation process for SSD

management systems was presented in this chapter. To the best of the author's
knowledge, no such model exists for the semistructured case yet. At the same
time it differs significantly from models known for the relational case, as its

optimisation is based on data instances rather than schema information.

The core concept utilised by all phases of this model is that of data grouping

or, with respect to the data graph model used in this thesis, that of graph clusters.
This is the central aspect of the optimisation model depicted in Figure 3.1. At

first an index is designed to suit a particular class of queries. Then the atoms of

the data source, i. e. the vertex-set of the data graph, are classified with respect

to this index. The generated data clustering can be used to reorganise the data

physically in order to match optimised query algorithms.
The model described in this chapter was illustrated using three very different

examples. Example 3.1 presents the author's work on data compression in the

context of the model and Example 3.2 describes research on covering indices

for structural queries by Kaushik et al [KB+02]. Finally, Example 3.3 describes

3. An Optimisation Model for Query Processing 56

(a) The tree-view of the data graph and overlaid blocks based on node level

{&0} ROOT

{&1} "

{&2, &3} "

{&4, &S, M. &7, &8, &9}

J&10. &I I. 12, &13. &14. &15. &16. &17. &18}

{&19, &20,21, &22. ßc23, &24}

(b) The index graph (c) The query graph

Fig. 3.5: Tree Depth Queries: A data source, its covering index graph and an
example query from this class

3. An Optimisation Model for Query Processing 57

an entirely hypothetical query problem. All these examples can be successfully
explained in terms of this model, emphasising its generality.

The next chapter examines the theoretical foundations of data classification
in general, whereas the successive chapters will make use of particular classifi-
cations. Chapter 5 shows the impact a particular data grouping has on efficient
data storage using the example of compression. Finally, Chapter 6 establishes a
framework in which the effects of different data groupings on the query execution

phase become obvious.

4. DOMAINS IN SEMISTRUCTURED
DATA

Domains and Databases

"Domains effectively give us a vocabulary -
the things we can talk about in our database. "

Chris Date, DBMS Interview, October 1994

The model presented in the previous chapter has emphasised the need to

cluster data carrying similar semantics in order to aid processing. Similarity was
defined in terms of the expressive power of a class of queries. In this chapter the
idea of data clusters will be formalised into one of domains and it will be shown
how some exemplary definitions affect a number of data sources.

4.1 Introduction to Domains in Databases

Domains are a concept of the relational model. By contrast to the rigorously
structured case however, the concept of domains in SSD is much harder to cap-
ture. The chapter starts by looking back at the origins of data grouping for the

purpose of compression before a new concept of domains based on graph the-

ory is developed. It will be shown that this concept naturally arises from the
interpretation of research on indexing SSD.

4.1.1 An Information Theoretical Approach

Although the resulting data clusters are presented in the context of database

research and called domains, the foundation of this work really originates in

information theory. Information theory describes an information source as a

sequence of symbols from a fixed, finite alphabet L. The probability of the

occurrence of a specific symbol can be derived from the statistical properties

4. Domains in Semistructured Data 59

of the source. A simple case is that of an order-0 Markov sources where each
symbol has a fixed probability, which is independent from the context in which
it appears. However, neither the assumption of a single source nor that of the
independence of the context holds in case of structured data. Different columns
in a database table are populated with values from different sources or domains

as they are called in database theory. However, the values from different rows or
tuples, which occur in the same column, are drawn from a single domain. As a
consequence, structured data must be modelled as the output of a collection of

several, potentially interdependent sources. As SSD contains by definition at least

some structure, the same applies. Formally the SSD model does not bound the

occurring values, i. e. they cannot be modelled as originating from a finite source.
However, this limitation has no relevance for the work presented in this thesis as
the presented definitions are only concerned with instances of SSD documents,

which are finite.

XMi11, an early XML compression system [LSOO], uses the homogeneity of
data atoms occurring in the same context in order to improve compression. It

models an XML document as the output of 1+k sources A, Bl,... ,
Bk, with

alternating symbols from A and one of the Bi, where i is defined by the preceding
symbol from A. A is the set of tag labels of the document and the B; emit the

atomic values occurring immediately after the associated tag label indexed by

i. Liefke and Suciu [LSOO] use this model to reorganise their document into
homogeneous containers according to these sources. Their observation is that

a document transformed in this way compresses better than the original using

standard compressors such as gzip. No further discussion of their compression
mechanism will be presented here beyond the observation that in performing it

they found a first possible definition of domains in SSD. Their mechanism detects

domains given by the direct parent of an atomic vertex and uses a single global
domain for all structural information. This is in fact a derivation of domains by

parent vertex, which is introduced in Example 4.2 in Section 4.2.1.

4.1.2 A Graph Theoretical Approach

A similar concept can be developed in terms of graph theory, as shown in the

query optimisation model of Chapter 3. Interpreting a semistructured database

as a graph as detailed in Section 2.2 allows mathematical concepts developed for

graph theory to be directly applied. The objects of interest in this interpretation

4. Domains in Semistructured Data 60

are sets of the vertices of a data graph and, more specifically, partitions of its

vertex-set. For the discussion here, a one-to-one relationship between subsets
and domains will be assumed, that is every subset implies exactly one domain

and vice versa. In this case, graph clustering algorithms based on the properties
of the graph's vertices can be used to define the domains in which the vertices
reside.

In general, these subsets or domains will neither be disjoint nor cover the

vertex-set, thus a vertex of the data graph can belong to zero, one or several
domains. This is an important difference to the structured case, in which every
value belongs to exactly one domain that is fixed at the schema definition stage.
However, special cases will be derived in Section 4.2.1 for situations in which
every vertex belongs to at least one domain and cases where each vertex belongs

to exactly one domain. In the latter case the set of subsets is actually a partition
and its subsets are the blocks of this partition. This is an important case that can
be based upon an arbitrary equivalence relationship on the vertex-set, with the

members of each equivalence class being assigned to one block of the partition.
Examples of domains based on properties of a graph will be detailed in Sec-

tion 4.2. That section will also provide a mathematical definition (Definition 4.2)

of the special case of domains based on a equivalence relationship, which can be

used to define index graphs (Definition 2.12).

4.1.3 Motivation for the Identification of Domains

The reason for identifying data domains in SSD is threefold. Firstly, domains

conceptually bridge the gap between application semantics and data syntax. Do-

mains, once established, attach semantics to pieces of data, thus transforming raw
data to useful information. The actual semantics in this context might be defined
by an application, a query language or some intermediate storage model, which
implies certain assumptions about the data. Secondly, domains can be used as a

valuable tool for data optimisation. They can capture regular aspects of the con-

crete source of a given application, which are hidden by the generally unrestricted
SSD model. These regular fragments can then be handled using existing regular

mechanisms, which are well-studied and optimised in terms of efficiency. Thirdly,

domains can also be seen as the output of a pre-computation. As data items are

clustered in accordance with some common properties, the knowledge of these

properties is available at no cost for future operations on this data and does not

4. Domains in Semistructured Data 61

name

"Domains"

Fig. 4.1: The data graph representation of the example source (reproduction of
Figure 2.5)

need to be computed again. In a write-once, read-multiple times scenario this in

itself might result in improved efficiency.

4.2 Definitions of Domains for Semistructured Data

The dependence of domains on application specific semantics implies that there

exists a multitude of definitions for the concept of domains in SSD. In general
domains for SSD can only be determined with respect to a specific application,
but not from the data itself. Note that in the case of a particular query language,

the application is that of a query processor, replacing the application semantics

with those of the query language itself. In structured data management, domain

semantics are fixed during the schema design stage. For SSD the schema design

process often occurs at a later stage and can be omitted altogether. This seems
to contrast with the term "semantic web" [BLHLO1J often used for self-describing
data formats such as XML. However, this term is usually used in the context of

a fixed application that implies the required semantics.

4. Domains in Semistructured Data 62

Semistructured Domain Structure

A set of clusters, each containing similar
vertices of a data graph.

Semantic Domain Structure

An relation associating subgraphs of a data
graph with the input parameters of a given

Application Independent Domain Structure

A covering set of the clusters, each containing
similar vertices of a data graph.

Equivalence Domain Structure

A partition of the vertex-set of a data graph
based on an equivalence relationship on the
vertex-set. Each block of the partition
represents one equivalence class.

Fig. 4.2: The taxonomy of domains presented in this chapter

This section will introduce eight different definitions of domains for SSD. Using

a common example the impact that different definitions have on the domains

identified will be shown. The data graph representation of the example source is

shown in Figure 4.1, which is identical to the data graph of Figure 2.5. It shows

some information about the Department of Computer and Information Sciences of
the University of Strathclyde. Some of the example definitions presented below

result in a different domain structure depending whether only the set of tree-

edges (solid) or all arcs of the data graph will be used. This corresponds to the
duality represented by the graph- and tree-views introduced in Definitions 2.10

and 2.11 respectively. As in previous chapters the terminology will shift from

vertices to nodes and from arcs to edges in case of the tree view. Notice that the

chosen example graph is acyclic, which bounds the number of occurring domains

specified by the following examples to a finite number.

4.2.1 Application independent domains

Despite the dependence of domains on semantics, a concept of domains which
is independent of any specific application or query language is developed here.

Instead of application semantics the concept presented in this section will be

4. Domains in Semistructured Data 63

based solely on the graph representation of a given source. Thus the semantics
of the domains are based on graph properties. Note that such domains can only
be approximate for applications that are not based on the graph's property used
for its definition and require subsequent reinterpretation through the specific
application in order to bridge this semantic mismatch. If for example the data

about classes presented in Figure 4.1 was classified into such classes having an
incoming arc from a prerequisite vertex and classes that do not have such an
arc, an application merely printing the name of all existing classes would have
to join these two distinct domains. Conversely, if the vertices of the graph were
grouped by their tag label alone, but the application was to display only classes
without prerequisites, the domain of classes would have to be restricted, e. g. by
individually validating its members before the output can be produced.

Because the data requirements of the application are unknown at the time

the domain structure is computed in this scenario, it is important that all data

present in a given source is mapped to at least one domain. Thus the set of subsets

of the vertex-set corresponding to the domains will define a cover of the vertex-

set in general. Before the set of example definitions is presented, a few more
terms required to explain them are introduced here. The relationships between

the different kinds of domains introduced throughout this chapter are also shown
in Figure 4.2.

Definition 4.1 (Application independent domain structure): A covering set C of sub-
sets c; of the vertex-set V of a data graph defines the structure of application
independent domains di, i. e. U; c; = V. The members of d; are identical to the

members of Cj.

As indicated before the case where the set of subsets is not only covering but

also non-overlapping, i. e. where each vertex of a given data graph belongs to

exactly one domain, will be of particular importance and is formalised below.

Definition 4.2 (Equivalence domain structure): An equivalence domain structure D

is formed by the set of all subsets bi of the vertex-set V of a data graph that belong

to the same equivalent class according to some specified equivalence relationship
R on its vertex-set V. The resulting subsets bi of vertices define the blocks of a

partition P= {b; } of V.

This effectively bases the definition of equivalence domains on the definition of

equivalence between vertices of the data graph. Multiple equivalence relationships

4. Domains in Semistructured Data 64

can be applied, resulting in different domains for the same source. This approach
is further illustrated using the Examples 4.1 - 4.7. Because only domains actually

occurring in a particular data source will be considered in accordance with the

model developed in Chapter 3 and because data graphs and thus their vertex-sets

are finite, the number of domains of a particular source governed by a specific
definition is also finite. More specifically it is bounded by the size of the vertex-

set, as in the worst case every vertex belongs to a different equivalence class and
thus forms its own domain.

However, for application independent domains in general, which are not nec-
essarily based on a partition but a cover of its vertex-set, this does not hold. A

variant of Example 4.3 will highlight this situation by describing a potentially
unbounded domain space.

In addition an application independent domain can be classified based on the

set of members it comprises, i. e. the type of its vertices:

Definition 4.3 (Atomic domain): An application independent domain, whose set of

members contains only atomic vertices, forms an atomic domain.

Definition 4.4 (Complex domain): An application independent domain, whose set

of members contains only complex vertices, forms a complex domain.

Definition 4.5 (Mixed domain): An application independent domain, whose set of

members contains at least one atomic and one complex vertex, forms a mixed
domain.

Such domains will be denoted by a;, c; and m; respectively, with the symbol
d; being used if the distinction is irrelevant in the current context.

Most of the following definitions are motivated by other research on SSD

processing. The data clusters will be depicted in the way they arise in the context

of the original work with the derived domain structure, i. e. the set of all discovered

domains, superimposed. Tables 4.1 and 4.2 ignore the origins of the definitions

and solely present the relations between the vertices of the example source and
the various domains implied by the examples below. They can be found on page
74 and 75 respectively and visualise the domains using a common colour for the

vertices belonging to a common domain.

Example 4.1 (Label domains): This is the simplest possible definition of domains

presented here. All vertices carrying an identical label are grouped together.

4. Domains in Semistructured Data 65

Fig. 4.3: The containers of the example source <Ls i(Iciltiticcl f)V X\Iill

According to the data niodel of Section 2.2.2, all atomic values are contained in

vertices labelled with the distinct tag "DATA". Thus there exist only it single

atomic domain here, which contains all atomic data. Beyond this there exists

one complex domain per occurring, source-specific tag mine including one for

the root vertex. The number of domains is thus bounded by the size of the

label alphabet E. The domain structure specified by this approach is equivalent

to a label map, as used by inane SSD management svsteiiis and discussed in

Example 2.1 of Section 2.4.1.

Example 4.2 (Parent domains): This definition, which is based on the equality of

the label of a parent node of the context vertex in the distinct spanning tree is

similar to the the transformation used for the XMi11 compression system by Liefke

and Suciu [LSOO]. Their work is based on a tree clata model coinciding %vith tile

tree view defined in 2.11, in which the concept of a parent node naturally arises.

For the general graph view of Definition 2.10, a vertex might have multiple parent

vertices, one per incoming arc. Thus vertices with inore than one incoming arc

inight belong to inore than one cloinaiii. Therefore it cover of the vertex-set is

defined here rather than a partition, i. e. this definition only defines equivalence

domains on the tree-view but not oil time graph-view of it data graph. Time total

4. Domains in Semistructured Data 66

number of domains is bounded by the size of the label alphabet as in Example 4.1
in either case. Notice that the ROOT vertex has no incoming arc by definition.
It thus does not belong to any domain. Thus strictly speaking parent domains
do not specify application independent domains. However, for practical reasons
one can complement the discovered domain structure by a special NULL domain,

whose only member is the ROOT vertex of the data graph. Inversely there exists no
domain corresponding to the tag label DATA, as atomic vertices have no outgoing
arcs by definition.

The mapping from graph vertices to domains using the tree, general graph

and XMi11 data model is given in Table 4.1 in the columns labelled T, G and X

respectively. The distinction between the definition used here and the one used
by Liefke et al. is that they are only concerned with atomic domains, and thus

all complex domains collapse to a single domain2. Figure 4.3 shows the transfor-

mation of the example source into containers as used by XMill. Notice how in

this approach the names of people, research projects and classes end up forming

one atomic domain name (Data Container 1 in Figure 4.3). This does not form a

semantically homogeneous domain. This effect of accidental combination of unre-
lated information will be called domain mixing. XMill provides a language called
"container expressions", which can be used to manually avoid such unwanted
mixing.

Example 4.3 (Path domains): This domain definition tries to avoid domain mixing
by taking the entire path from the root into account. Equivalence is based on the

equality of the path from the root to the vertex in question. As in the previous

example, this might result in a vertex being part of more than one domain, i. e. in

general path domains do not define equivalence domains. In fact cyclic graphs will

result in an unbounded number of domains. However, the equivalent definition

based on the distinguished spanning tree is bounded by the size of the node-set

as every node of a tree can be reached by exactly one path from the root and
thus defines an equivalence domain structure.

In Table 4.1 the variants for tree and general graph data model are indicated

by the columns headed by T and G. Figure 4.4 shows the strong DataGuide as
defined by Goldman and Widom [GW97] of the example document. It represents

a path index of the spanning tree. For the purpose of this definition, the vertices

1 called "data containers" in the context of their work
2 called "structural container"

4. Domains in Semistructured Data 67

Cf

fewamher

Fig. 4.4: The strong DataGuide of the example database implies path domains

of the DataGuide define domains. Under this model the atomic domains of phone

numbers seen in the last example is split into two, one for student phone numbers

and one for staff phone numbers. For most applications, e. g. for compression

purposes, such a separation will be counterproductive. This effect of accidental

separation of semantically related information will be called domain splitting.

Example 4.4 (Depth domains):

Definition 4.2 allows for the characterisation of domains on the basis of node
level, i. e. the length of the incoming path from the root in the distinguished

spanning tree. Here all nodes occurring at the same depth in the tree-view are

grouped together. This clearly fulfills Definition 4.2 from above, although it is
harder to see the possible use of the implied data grouping. However, as Example

3.3 has shown, the linear path expression

Query 4.1: /*/*/*

for example, which selects all nodes with an incoming, arbitrarily labelled path

of length three from the ROOT node, can be resolved effectively using a partition

generated by this definition of an equivalence domain structure. It selects all

members of domain c3 in Figure 4.5, which shows the depth domains for the

4. Domains in Semistructured Data 68

_&

cis

¢ý
_.,.

-- ------------- ---------------------- ------ &2 torching --- &3 people &4 rescanh `ý

-- ------------
------------------------------- ------ ------ ------------------------------

------ ------------

&5 class &6 class &7 staff < student &9 staff &IU prujoct ta,,

----------- --- --- --------------- --

-- ---------- ---

I

&17 name &1 name &23 name
c

&12 lecturer &14 name
&I assistant

------------ -- - --

phone

- ------ --------&20

phone

&2 ph one

{&2K; "3839" (&31), ý "3590" "3581" 4

`(p25;
1. Databases' 1&2 , "S. A. D. " &33; "Donuini"at,

&27; "Sotinos- .. Mathias" &31; John-

--------------------------- --'

Fig. 4.5: The depth domains superimposed on the tree-view of the data graph

example source. Though in our example source all resulting domains are either

atomic or complex, in general this will not be the case. As the labels of the

nodes are not taken into account by the equivalence relationship, the occurrence

of mixed domains is possible. Particularly it will occur in the equivalent definition

for the graph-view of the exaniple docunient. This variant suffers frone the same
drawbacks as the path based domain definition for graphs in Example 4.3, i. e.
it is not an example of an equivalence domain and will result in an unbounded

number of domains for cyclic sources. Once again the inappiuigs for either variant

are included in Table 4.2 and indicated by the columns T and G respectively.

Example 4.5 (Skeleton domains): 't'his definition is based on the work performed
by Buneman et al. [BGK03] on compressing the structural component of a docu-

ment tree, referred to as document skeleton in the original work. Their approach
is based on the concept of forward bisünilarity of a node, i. e. the equality of the

collection of outgoing paths. According to their definition, two nodes in the tree

are considered bishnilar, if they have the same tag label and the same ordered se-

quence of bisin ilar child nodes. This definition identifies common substructures
in a document, e. g. a staff node with one name and one phone child nodes.

Notice how the definition splits the two class vertices into different domains, be-

4. Domains in Semistructured Data 69

pmjecl

Fig. 4.6: The (extended) skeleton of the example database. Note that the or-
der of arcs is important for this approach. Outgoing arcs are ordered
counterclockwise starting from the top of the source vertex.

cause they are the root of differently structured subtrees, while it keeps the two

staff vertices together. As Figure 4.6 shows, the same definition can be applied
to graphs, if the outgoing arcs of a vertex are considered to form an ordered se-

quence. In the particular example used, the domain structure remains unchanged
in this case. In general, however, it might lead to a refined domain structure, for

example if the two staff vertices of the example source were not equivalent be-

cause the order of their outgoing arcs differed, domain cll in Figure 4.6 would

also split as it has an outgoing edge to the staff domains. Nevertheless, this

would still form an equivalence domain, as vertex bisimilarity generally defines an

equivalence relationship and thus every vertex of the graph belongs to exactly one

equivalence class. Note that the original work by Buneman was only concerned

with the structural part of the document and thus consists of only the vertices
defining complex domains in Figure 4.6.

Due to the fact that only outgoing arcs are taken into account for the com-

putation of the bisimilarity, all atomic data belongs to the same atomic domain

because, by definition, atomic vertices have no outgoing arcs. This is identical to

the behaviour of the label domain defined in Example 4.1. The skeleton domains

4. Domains in Semistructured Data 70

:h

project

name

Fig. 4.7: The A(1)-index graph of the example source

approach is the only one presented here that takes sibling order into account. A

staff node with a name and phone child node (in this order) for example is not

considered to be equivalent to a staff node with a phone and a name child node
(in that order) and thus according to Definition 4.2 each belongs to a different

domain. This is a consequence of the target query language of XPath chosen in

the original work, which contains several order-dependent query operations. It

also explains the restriction to trees of their research.

Example 4.6 (Local backward bisimilarity domains): An alternative application of
the concept of bisimilarity to obtain a partition of the vertex-set of general data

graphs is studied by Kaushik et al. (KS+02). Sibling order and multiplicity are
dropped due to the less expressive target language of forward facing, linear path

expressions. Instead of basing node equivalence on outgoing arcs, it is based on
incoming arcs, i. e. they define their equivalence classes based on backward bisim-

ilarity. This is similar to the path index described in Example 4.3. However, in

this definition the entire set of incoming paths is used to determine the domain of

a vertex rather than defining one domain per incoming path. Thus this definition

implies a partition of the vertex-set and hence a set of equivalence domains unlike
the path index, which only defines a set cover.

An index graph as defined in Definition 2.12 based on this partition is covering

4. Domains in Semistructured Data 71

for all forward facing, linear path expressions. Since path expressions in practice
are often of limited length, the length of the paths taken into consideration to

compute the bisimulation can also be limited, thus exploiting local bisimilarity.

The definition of bisimilarity changes to a recursive definition, where a vertex is
k-bisimilar if it has the same tag label and has the same set of incoming arcs
from vertices that are (k -1)-bisimilar. The length parameter k used to compute
the graph's bisimulation can be used as an optimisation parameter to trade the
balance between index size and index coverage.

Figure 4.7 shows the index graph of the example source based on 1-bisimilarity,

i. e. vertices are considered equivalent if they have the same tag label and the are

connected through incoming arcs to sets of vertices, which have identical tag
labels. Again every vertex of the index graph implies a domain. Notice how the

two staff vertices that were contained in a single domain in Example 4.5 are

now separated into two different domains here due to their different incoming

paths. One staff vertex is reachable by a researcher vertex while the other

one is not. As in the case of the parent domain there exist two atomic domains,

one for names and one for phone numbers. Again class names, person names

and project names are mixed in one domain, although this could be prevented
by increasing the bisimilarity length parameter k to 2. The original research
by Kaushik et al. focused solely on structural querying and thus only considers

vertices representing complex domains in Figure 4.7.

Example 4.7 (Forward and backward bisimilarity domains): Kaushik et al. [KB+02]

finally considered the case where both incoming and outgoing paths are taken
into consideration for the computation of the bisimulation. This means that this

approach combines structural properties like those exposed by skeleton domains

with contextual properties such as those identified by local backward bisimilar-

ity domains. The resulting index graph is covering for general branching path

expressions without value predicates. These onerous conditions on vertex equiv-

alence lead to very complex domain structures in the context of this chapter and

prohibitively large index graphs by comparison with earlier research on index

graphs, such as the DataGuides of Example 4.3 and the compressed skeletons

of Example 4.5. As in the previous example the size can be reduced by using
two optimisation parameters kb and k -f that restrict the length for both incoming

and outgoing paths to be taken into consideration. Additionally the number of

allowed "twists" in the query graph can be restricted to further reduce the com-

4. Domains in Semistructured Data 72

name

Fig. 4.8: The (1,1)-F+B-Index graph of the example source

plexity of the resulting domain structure. This intrinsic complexity measure of
a query was called the "tree depth" td by Kaushik et al. Details of this optimi-
sation parameter are given in Appendix B and should be consulted in order to
become familiar with their notations used here. In the most general case, i. e. for
kb =kf= td = oo, the tree depth is unrestricted and the resulting index is called
the F&B-index. The special case of the index that results from a single iteration

of the algorithm presented in Figure B. 2 and is covering for queries with td = 1,
i. e. query graphs with at most one predicate where incoming and outgoing paths
meet, is called the F+B-index.

Figure 4.8 shows the index graph based on (1,1)-F+B-bisimilarity, i. e. an
index that is covering for queries whose arcs are matched by paths of the data

graph of length one and have at least one vertex where incoming and outgoing

paths meet. Notice that the name and lecturer vertices occurring below class

vertices have been split, although their incoming path of length one are identical.
This is due to the fact that they can be distinguished based on their siblings by

using a branching path expressions whose length does not exceed one. For ex-

ample the branching path expression class [/prerequisite] /name selects vertex
&11 but not vertex &14, which were combined in domain cll in Figure 4.7 but

are split into the domains cll and c14 in Figure 4.8. Again the original research
focused solely on structural querying and thus would ignore all atomic domains

4. Domains in Semistructured Data 73

in the presented example.

The examples above show that different implementations of domains result in
different data groupings. The complete mappings between the various variants
of the provided definitions and the example dataset is given in Table 4.1 and
4.2. As was explained in Chapter 3, the suitability of a definition is highly
dependent on the class of queries to be answered. Performance aspects of the

various indices resulting from these data groupings were studied by Goldman et al.
[GW97], Kaushik et al. [KB+02], Buneman et al. [BGK03] and others. Beyond

performance the number of the identified domains can also be used as metrics to

characterise a particular source. This will be demonstrated in Section 4.3, where
the impact that competing definitions have on real data sources will be evaluated.

4.2.1.1 Relationships between application independent domain definitions

The definitions provided above have been presented in the order of increasing

complexity of the resulting domain structures, which primarily coincides with
the order in which they were addressed by research in related areas. Having

established these definitions it is possible to identify a number of relationships
between them.

In general domains by label are identical to those defined by local bisimilar-

ity with length 0, i. e. those corresponding to the vertices of the A(0)- and the
(0,0)-F+B-index graph. If the document order is ignored, skeleton domains are
identical to (oo, 0)-bisimilarity domains, i. e. those based on a partition which is

refined in terms of forward bisimilarity until a fix-point is reached and not refined
in terms of backward bisimilarity at all. If one drops the additional graph arcs

and restricts oneself to the spanning tree there are even more relationships to

discover. Now, path domains become identical to domains based on unbounded
backward bisimilarity, i. e. those based on the A(oo)- or (0, oo)-F+B-index. In

general the A(k)- and (0, k)-F+B-index are identical and so are the domains on

which they are based. The domains by parent however are not equal to those

based on the A(1)-index as one could expect, as their definition does not depend

on the label of the context vertex itself. However if one restricts oneself to atomic
data nodes, as done for the XMill variant of this approach, the assumption is

true for this restricted subset because the label of atomic data nodes is fixed by

the data model. In this selection of definitions only those based on depth are

not closely related to any others, which follows from the nature of their defini-

4. Domains in Semistructured Data 7.1

Example definition 4.2 4.3

Vertex Parent Path
oid label/value T G X T G
0 ROOT co co co co CO
1 cis cl cl Co cl c1
2 teaching c2 c2 co c2 c2
3 people c2 c2 co c3 c3
4 research c2 c2 co c4 c4
5 class C3 C3 CO C5 C5

6 class C3 C3 C12 CO C5 C5 C25
7 staff C4 C4 C14 CO C6 C6 C26
8 student C4 C4 C13 C15 CO C7 C7 C27 c28 c29

9 staff C4 C4 C14 C15 CO Co C6 C26 C30
10 project C5 C5 CO C8 C8

11 name C6 C6 Co C9 C9
12 lecturer c6 c6 co c10 c10
13 prerequisite c6 c6 co c11 c11
14 name C6 C6 CO C9 C9 C31

15 lecturer c6 C6 Co C10 C10 C32
16 assistant C8 C8 CO C12 C12 C33

17 narre C7 C7 CO C13 C13 C34 C35

18 phone C7 C7 CO C14 C14 C36 C37

19 name C8 C8 CO C15 C15 C38 C39 C40

20 pllolle C8 C8 CO C16 C16 C41 C42 C43

21 nahe C7 C7 CO C13 C13 C34 C44

22 phone C7 C7 CO C14 C14 C36 C45

23 nahe c9 c9 co c17 c17
24 researcher c9 c9 co c18 c18
25 Databases alo a10 a1 a19 a19
26 S. A. D. alo a10 a1 a19 a19 a46
27 Sotirios alo alo a1 a20 a20 a47 a48
28 3839 all all a2 a21 a21 a49 a50

29 Mathias alo alo a1 a22 a22 a51 a52 a53
30 3590 all all a2 a23 a23 a54 a55 a56

31 John alo alo a1 a20 a20 a47 a57

32 3584 all all a2 a21 a21 a49 a58

33 Domains a10 a10 a1 a24 a24

34 total 12 16 3 25 59

Tab. 4.1: Overview of the relation between the vertices of the example source and
the domains defined in Example 4.2 - 4.3.
1 the special NULL domain is described in Example 4.2

4. Domains in Semistructured Data

Example definition 4.1 4.4 4.5 4.6 4.7
Vertex Label Depth Bisinlilarit y
oid label/value T G (0, oo) (1,0) (1,1)
0 ROOT CO CO CO CO CO CO
1 cis Cl Cl Cl Cl Cl Cl
2 teaching C2 C2 C2 C2 C2 C2

3 people C3 C2 C2 C3 C3 C3

4 research C4 C2 C2 C4 C4 C4

5 class C5 C3 C3 C5 C5 C5

6 class Cs C3 C3 M5 Ce C6 Ce

7 staff c6 C3 C3 m5 m7 C7 C7 C7

8 student C7 c3 c3 m5 m7 C8 C8 c8
9 staff C8 C3 C3 M5 C7 Cg C9

10 project C8 C3 C3 C9 C10 C10

11 name C9 C4 C4 C10 C11 C11

12 lecturer C10 C4 C4 CI1 C12 C12

13 prerequisite Cu C4 C4 C13 C13 C13

14 name c9 C4 C4 c6 C10 c11 C14
15 lecturer c10 c4 c4 cs c11 c12 c15
16 assistant c12 c4 c4 c6 c13 c14 c16
17 name C9 C4 C4 C6 C8 C10 C15 C17
18 phone C13 C4 C4 C6 C8 C14 C16 C18

19 name C9 C4 C4 C6 C6 C10 C17 C19

20 phone C13 C4 C4 C6 C8 C14 C18 C20
21 name C9 C4 C4 C6 C10 C17 C19

22 phone C13 C4 C4 Ce C14 C18 c30

23 name Cg C4 C4 C10 c19 C21

24 researcher C14 C4 C4 C15 C20 C22

25 Databases a15 a5 mb a16 a31 a23
26 S. A. D. a15 a5 m5 m7 ale all a23

27 Sotirios a15 a5 ms m7 a9 als a21 a23
28 3839 a15 a5 m5 m7 a9 als a22 a24
29 Mathias a15 a5 m5 m7 a9 ale a21 a23
30 3590 a15 a5 m5 m7 a9 ale a22 a24
31 John als a5 ms m7 als all a23
32 3584 a15 a5 ms m7 a16 a22 a24

33 Domains a15 a5 m5 a16 a21 a23
34 total 16 6 1 ll 17 23 25

Tab. 4.2: Overview of the relations between the vertices of the example source
and the domains defined in Example 4.1 and 4.4 - 4.7

4. Domains in Semistructured Data 76

tion. Particularly, all other definitions can be reduced to a special form of those
defined by bisimilarity, though this general definition does not take order into

account. Similar considerations from the perspective of indexing were developed

by Nestorov et al [NU+97]. This observation will be used again in chapter 6,

which will be partly based on the concept of bisimilarity..

4.2.2 Application dependent domains

If the semantics of the particular application are known, one does not need to

maintain the degree of generality provided by the application independent do-

mains. Instead an arbitrary subgraph classification can be used, which matches
exactly the requirements of the application and thus does not require subsequent
analysis of the classified data.

Definition 4.6 (Semantic domain): Two subgraphs of a data graph belong to the

same semantic domain with respect to a given application, if they can be processed
by the application in the same way.

Note that this does not mean that values from the same domain are indistin-

guishable, but solely that they will serve as valid input to some given algorithm.
They can still be distinguished by the computation based on their actual value

or the order in which they occurr in the document if this is taken into account
by the application's data model. Again, this approach will be illustrated using a

practical example.

Example 4.8 (Type domains): It is possible to capture the data requirements of a

specific application by means of the types used. Types carry associated semantics,

and thus do not need to be interpreted by the application. However, they require
the provision of a mapping between the generic data model of the data graph

and the type system of the application. A possible approach is to map tag labels

to field names, complex vertices to structured types such as objects, and atomic

vertices to atomic types of the targeted type system. Siblings in the tree-view

carrying identical tag labels can be thought of as implying collection-like types

such as arrays. An implementation based on type projection [CL+01] applying

these assumptions over streams of SSD is described in Appendix A. Figure 4.9

shows the result of projecting the type Person, whose definition is shown in

Listing 4.1, over the example source.

4. Domains in Semistructured Data 77

&0 ROOT

RI cis

tcaching &3 pcoplc &4 rc. cmh

assisUnl /1\

&5 class &6 'Liss V sUft. !B stuckfit &v sw &I propo

&IJ p quisitc I, Aectu r

&II namc &14 name &17 name &14 name &21 'name (&2) name

&I phbý R20 P11- &2 phj

&25' "Uatabascs" "' "" "}/.
/""

"--
t&26; "S. A. I). " (&27; 'Soren ; &29; Mathiu '&31; "lohn" ', &}1; "Ikýmami'

l&28: ;; ý, 3O , i0" ; &32; ,. ý4..
& 12 Icclurcr "^

Fig. 4.9: The Person type projected over the example graph defines w iiixuitic
domains

class Person {
String name;
int phone;

}

Listing 4.1: The Person type

Notice that the mapping between the data graph and the application depein-

dent domains is riot complete and does not need to be non-overlapping as in the

example provided. This means that one deals with a non-covering set of vertex

subsets here as opposed to the vertex-set cover required in the case of application
independent domains. In fact the initial clustering problem based on the prop-

erties of the data source itself has been transformed into a classification problem

according to some externally provided classes. In general this approach will be

too specific to be of use in a database management system. It is mentioned for

completeness with respect to the definition of domains for SSD presented above.
However, the remainder of this thesis is restricted to the more tractable problem

of application independent domain definitions.

4. Domains in Semistructured Data 78

4.3 Experimental Evaluation of Domain Statistics

As stated in the introduction to this chapter, domains are specific to a particular
data source. In order to highlight the impact that different domain definitions
have on a given source, the definitions for application independent domain struc-
tures provided in Section 4.2.1 are applied to a number of data sources here.
Analysing the numbers of domains implied by the various definitions helps to

understand the intrinsic complexity of the various sources.

4.3.1 Evaluating Fixed Domain Definitions

At first the simpler definitions of Examples 4.1 - 4.5 are applied to a number

of real and one synthetic data sources. The structure and content of these data

sources is described in Appendix C. Table 4.3 shows the numbers of resulting
domains from this evaluation. The column "Label", "Parent", "Path", "Depth"

and "Skeleton" give the number of distinct domains for the definitions given in

the Examples 4.1 - 4.5 respectively based on the tree-view of the source. Notice

that none but the XMark source make use of explicit cross references, i. e. their
data graphs coincide with their tree- and graph-views. The behaviour of the
XMark dataset is analysed in more detail in Section 4.3.2. Vertically the number
of domains are broken down by their content, i. e. how many of the identified
domains contain atomic data, complex content, or a mixture of both. Wherever

a schema in form of a DTD was available it was used during parsing to avoid the

creation of unwanted domains for whitespace characters occurring between the

mark-up of the XML representation. However, for one of the sources, the Nasa
data set, no DTD was available and as a consequence such unwanted domains

could not be excluded.

4.3.1.1 Data sources with a regular structure

The results in Table 4.3 clearly show that by applying competing domain defini-

tions one can easily identify inherently regular sources, which were encoded in a

semistructured format. Such a source from the collection of example documents

is the domain name server database (DNS). For this source the number of atomic
domains defined by the tag name of the parent node and by the complete path
from the root node are identical, indicating a fixed, regular schema. In fact not

only the number but also the contents of these domains are identical. Thus no

4. Domains in Semistructured Data 79

Source I Schema I Size IVI I Label I Parent Path Denth Skeleton
number of

Macbeth DTD 7.3k 18 17 38 8 104
XMark (tiny) DTD 322k 78 77 933 14 13GG2
Nasa - 1.5M 72 70 221 10 8840
DNS 100k DTD 1.8M 15 14 25 5 19
DBLP DTD 7.1M 42 41 282 8 5538

Number of atomic domains
Macbeth DTD 7.3k 1 8 15 1 1
XMark (tiny) DTD 322k 1 34 405 1 1
Nasa - 1.5M 1 29 109 1 1
DNS 100k DTD 1.8M 1 11 11 1 1
DBLP DTD 7.1M 1 24 136 1 1

Number of complex domains
Macbeth DTD 7.3k 17 8 23 3 103
XMark (tiny) DTD 322k 77 39 528 5 13661
Nasa - 1.5M 71 2 112 2 8839
DNS 100k DTD 1.8M 14 3 14 4 18
DBLP DTD 7.1M 41 10 146 4 5537

Number of mixed domains
Macbeth DTD 7.3k 0 1 0 4 0
XMark (tiny) DTD 322k 0 4 0 8 0
Nasa - 1.5M 0 39 0 7 0
DNS 100k DTD 1.8M 0 0 0 0 0
DBLP DTD 7.1M 0 7 0 3 0

Tab. 4.3: The number of domains discovered using different domain definitions

4. Domains in Semistructured Data 80

linear path expression can distinguish any of the atomic vertices of this source
that could not be distinguished by the name of its parent vertex alone. Equally

the number of complex domains defined by tag labels is identical to those defined

by complete paths. This shows that every vertex with a specific tag label only

occurs in a fixed context of the tree-view. However, if the structure of entries
in this source is considered using the skeleton domain structure, the domains for

server entries is broken into three distinct domains, those with three, four and
five parts to their domain name. Another strong indication for a regular source is

the fact that only one of the five discovered depths domains contains atomic val-

ues. All other sources result in mixed domains for this definition, but in the DNS

database all atomic values sit at a fixed depth of the tree. In general the number

of domains is very low in comparison to the number of nodes in the document

tree and varies only slightly for different domain structures.

4.3.1.2 Data sources with fixed context and varying content

To a lesser extent, the Shakespeare and the Nasa datasets show a similar be-

haviour. The number of complex domains identified using complete paths is

only slightly bigger than the number of domains identified by tag label names

alone. This indicates that a particular element can only occur in very few con-
texts throughout the document, i. e. that it complies to a fairly strict schema.
In the Shakespeare play for example, line vertices, can only appear as chil-
dren of speech vertices, but nowhere else in the data tree, e. g. not attached to

a stagedir vertex. However, the excessive increase of the number of domains

identified by the skeleton approach indicates that the order and cardinality of
individual child nodes varies greatly. In the example there is a multitude of dif-

ferent speech subtrees, with and without stage directions and varying numbers

of line vertices attached to it. This justifies the semistructured encoding chosen

as it would be tedious work to normalise it in order to store it in a relational

system. The Shakespearean play thus emphasises the importance of order for

sources containing information encoding natural languages.

4.3.1.3 Data sources with varying context and content

Finally there are a number of documents, in which neither the context or the

content of a particular vertex is restricted. They typically make extensive use of

regular expressions in their schema definition, allowing a great deal of flexibility,

4. Domains in Semistructured Data 81

or have no schema at all. Here similar elements can occur in many different

contexts, detectable through a significant increase between the number of domains

identified using tag labels alone versus the number of domains implied by complete
paths. Examples of such sources are the XM'Iark benchmark dataset and, to

a lesser extend, the DBLP database. If the complete structure of the entries is
incorporated in the definition using the skeleton approach, the number of domains

increases even further, here by more than an order of magnitude each.

4.3.2 Evaluating Parameterised Domain Definitions

Unlike the domain structures defined in Examples 4.1 - 4.5, Examples 4.6 and
4.7 define a family of domain structures. Thus it is interesting to measure the
influence of their input parameters on the number of domains created. In partic-
ular one might be interested to find the points in the parameter space at which
the resulting domain structure changes most rapidly and conversely where it is

stable with respect to variations. If such points can be identified algorithmically
the task of finding parameters that represent useful indices might be automated.

In comparison to the domain analysis performed in Section 4.3.1, computing
the parameterised bisimilarity domain structure of data source is a computation-
ally expensive task. Thus the analysis is restricted to a single source here, a

scaled-down version of the XNIark dataset. It represents the most challenging

source of those introduced in the previous section, as it contains many additional
graph arcs beyond the distinct spanning tree. The other sources, though they all

expose some degree of semistructuredness, do not contain such arcs. The analysis
of bisimilarity domains on such sources would thus produce similar results as pro-

vided by path and skeleton domains as they coincide with backward and forward

bisimilarity domains for hierarchical data sources.
Table 4.4 shows the number of domains computed for the 1 NIB XNIark dataset,

whose data graph contains 32,864 vertices. Notice that this presentation includes

the results based on local backward bisimilarity of Example 4.6 in the the part
of column with kf=0 and d=1 (cyan). Particularly the number of domains

shown for the case kb =0 of this subset coincides with the number of domains
by label (Example 4.1, blue). The measurement results are also presented as a

surface diagram in Figure 4.10 in order to visualise the complexity of the domain

structure over the parameter space. The shape of the surface almost follows the

normal distribution, only the rate with which it approaches the maximal number

4. Domains in Semistructured Data 82

Tree Backward Forward hisiuºilarit, v /ßk1
depth d bisimilarity k,, 11 1 2 3 1 5
1 0 192 482 1119 2118 2624
1 1 156 888 2291 . 1020 80-17 9650
1 2 266 2.1,10 5288 867.1 111-19 19591
1 3 X 181 . 1200 802.1 12824 23512 25567
1 4 877 5939 9965 153,11 25733 27370
1 5 14261 8464 12545 17683 26892 28029
2 0 482 2118 30.12 3321 3348
2 1 266 4276 12284 15680 19310 20354
2 2 877 9539 22161 26537 27873 28138
2 3 2025 15053 26884 2861".
2 4 4384 18159 28232 28857, 28873 28873
2 5 7336 18769 28401 2880: 28873 28873
3 0 78 1119 3012 3339 3353 3353
3 1 481 10381 221,16 24890 26330 26552
3 2 2025 18947 28,162 '- ")1 ''101")1;
3 3 5648 21541) 2S, ý30 28873 28873 28873
3 4 11573 2247 28873 28873 28873 28873
3 5 13403 2257.5 28873 28873 28873 28873

Tab. 4.4: The number of domains for the XM1ark dataset containing 32,864 ver-
tices based on local bisimilarity

of domains increases with the tree depth parameter.
The analysis of the domain cardinality does not point to any distinguished

points in the parameter space. Thus only limited conclusions can be drawls here.

Firstly, for the source used for this experiment the domain structure becomes

unpractically large even for moderate parameters for tree depth, forward and
backward bisirnilarity. Finely-grained indices based on such data groupings will

approach the size of the data graph itself, thus undermining their initial purpose

of summarisation. This conclusion is in line with the observation performed by

Kaushik et al. [KB+02]. In this particular example, there exist 28,873 different

non-empty classes of vertices which can be distinguished by structural path ex-

pression, out of the total number of 32,864 vertices in the data graph. Time area of

the parameter space in which this finest possible classification is reached is shown

in red in Table 4.4. If one is to make practical use of data groupings based on

bisirnilarity, one either has to limit the aspects of the data source being classified

or limit the length of the local bisimulation to very short paths. Both approaches

were detailed in Kaushik's work. The first depends on detailed knowledge of the

4. Domains in Semistructured Data

30000

25000

20000

15000

10000

5000 `

0s
fw=0 fw=1 {w=2 fw=3 f=4 fw=5

. OF bw=4

bw=2

bw=0

(a) Tree Depth td =1

30000

25000

10000

5000

25000-30ooo
 20000QSOOo
nt 50OD-20000
110000-

-- --- . 5000-10000
 0-5000

n,. <z

fw=4 M-5

(b) Tree Depth td =2

20000

, 5008

 25000-30000
 20000-25000
0 15000-20000
Q 10000-15000
 5000-10000
 0-5000

 2SOOa]000a
" 20000-25000
E3 15000-zoopo
o 1oooal5ooo
: 5000-10°°°
" 0-5000

nw=ý

1 ý`ý'-d Av. S

(c) Tree Depth td =3

83

Fig. 4.10: The number of domains for the XMark dataset containing 32,864 ver-
tices based on local bisitiiilarity

4. Domains in Semistructured Data 84

application of the data. In the absence of such information only the second al-
ternative is practical, which will serve as a foundation for the work presented in
Chapter 6.

Another conclusion one can draw from the normal distribution of Figure 4.10,
is that its source is synthetic, i. e. randomly generated. As the synthetic XNIark
document is the only truly graph shaped example source available for this exper-
iment, the proof that real-life, graph-shaped sources will behave differently can
not be provided here. It remains as a task for the future, to prove or disprove

this assumption once more suitable data sources become available.

4.4 Summary

This chapter has re-evaluated several works on efficient processing of SSD, in

particular research on indexing, in terms of the data classifications they imply.

It is important to note that practically all research in this area implies a form of
data grouping in one way or another, thus supporting the central statement of
this thesis. This chapter in particular contrasts and compares the set theoreti-

cal foundations behind these varied clusters and builds up a concept of domains

and domain structures. Though strictly speaking domains for SSD can only be

inferred in the presence of an application, it has been shown that vertex clas-

sifications based on the data graph alone can serve as valuable approximations
thereof. Equivalence domain structures present a special case of these applica-
tion independent domains and are based on an equivalence relationship defining

a partition over the vertex-set of a data graph. From these the group based on

vertex bisimilarity is most flexible in its application. By limiting the bisimilar-

ity relationship to paths of a fixed length, one gains an optimisation parameter
that allows trading the coarseness of the resulting domain structure against its

complexity. For a data structure like an index graph based on such a domain

structure this means one can trade index precision for index size.

5. IMPROVING QUERY PROCESSING
USING DATA COMPRESSION

Occam's Razor

Pluralitas non est ponenda sine neccesitate.
Entities should not be multiplied without necessity.

William of Occam, ca. 1285 - 1349

The previous chapters introduced a model for efficient processing of SSD based

on data grouping and developed the theory behind various such groupings. This

chapter will show how a specific grouping can help to improve the physical data

representation without restricting query performance in the desired application

area.
Data compression can be used in order to improve query performance in the

relational field. Research [CMW98, CB03] in this area has shown that it is bene-

ficial to represent a table as a set of columns and compress each of these columns
separately, thus exposing its homogeneity. The approach is particularly useful
for queries with very low selectivity over large datasets. Such settings commonly

occur in areas of science that are now being investigated in the context of SSD

management.
It is thus useful to investigate how compression can be adapted towards

SSD management systems in general and XML in particular. Here the results
from the implementation of a prototype compressed Document Object Model

[Neu02, NW02] are presented in the wider context of the efficient processing of
SSD. The approach chosen requires the translation of concepts such as domains

taken from the area of relational data management systems to the semistruc-
tured model. A relatively simple method was developed that is sufficient for the

requirements of the anticipated query class. The research indicates that it is pos-

sible to optimise some query operations over compact XML structures using the

developed approach.

5. Compressing Semistructured Data 86

5.1 Introduction to Querying Compressed Data

Emerging standards such as XPath and XQuery are founded on the vision of
XML as both a standard for document and data interchange between applica-
tions and also as a structure that may need to be queried directly in much the

same way as a database system. Whilst the principles of querying hierarchical
data structures were developed early in the history of computer science [TL7G],

further development of direct querying capability for XML data sources requires
close attention to be paid to issues of acceptable performance. Whereas in hier-

archical databases the designer had full control over the physical representation
and database schema, XML documents are only defined in terms of a loosely

defined data model and a textual representation. Physical storage varies widely

and schema design is often an ad hoc process carried out by designers with skills
in a specific application domain rather than database design skills. Emerging

native XML databases (NXDs [Sta0lb]) such as those reviewed in Section 2.5.1.4

are designed to make XML applications independent from the physical storage
in much the some way as relational databases do. They offer tailor-made storage

solutions for XML documents and allow access to the data using a standardised
interface such as the Document Object Model (DOM).

The consequences of applying compression directly to appropriate XML data

is explored in order to maximise the use of main memory storage in query process-
ing. Due to the inherent performance limitation of external XML representations

such as database mappings and textual XML files the research is focused on

native, memory internal representations.

5.2 Compression Systems for XML Data

The verbosity and resulting size of XML documents has motivated research in

the field of data compression and management. The requirements of compression

algorithm in data management systems differ from those in general compressors

mainly due to the fact that it is important to preserve random access to the com-

pressed data instance. General purpose compressors usually aim at maximising

compression ratios. An overview of general purpose compressors is provided in

[LH87]. Some more recent approaches are reviewed here, which are specific to

XML processing.

5. Compressing Semistructured Data 87

5.2.1 XML Compressors for Storage and Transmission

One of the earliest works on XML compression is XMill by Liefke and Suciu
[LS00] and was already introduced in Section 4.1.1. Their concern lies in the area
of conventional compressors, i. e. achieving maximum compression for the purpose
of efficient transmission and storage. It is based on a transformation, splitting the
input document in a number of parallel streams. The main stream, containing the
document structure is encoded by using tokens for element and attribute names.
The document data is stored in separate containers, by default according to the

tag labels of their containing element, though this can be manually specified.
These streams are finally compressed using a standard compressor, such as gzip
[A1a96]. Optionally the user can specify semantic encoders for specific data types,

e. g. differential, run-length or dictionary encoders. Since this is a sequential

algorithm it is unsuitable for direct querying. However, this is the first work that

explicitly recognises that SSD cannot be modelled as a homogeneous source, but

should be treated as a structured data source.
Millau [GSOO, SM01] is a sequential compressor that is based on the WAP

binary XML (WBXML) content format [WBX01]. Millau is specifically aimed
at data transmission, enabling stream based access via SAX and DOM interfaces

and consequently avoiding a second parsing at the receiving system. The ex-
tended version [SM01] introduces some interesting concepts like differential DTD

encoding and DTD patterns. However, the impact of those concepts on the com-
pression performance is found to be limited.

Cheney [Che0l] systematically analyses the effects of diverse compression al-
gorithms on XML data. In addition to the models defined by XMill Cheney

introduces a new data model based on SAX parsing events. This model results
in some new pre-compression transformations, corresponding to data groupings
in terms of this thesis, whose effect on a multitude of standard compressors is

measured. The main result shows that the choice of a compression algorithm
has a significant impact on the success of pre-compression transformations and

vice versa. It is shown that compressors with a large compression context or

grammar-based compressors perform equally well without such prior transfor-

mation as performed by XMill. A large compression context in this sense is a

window of a sliding window compressor that is significantly larger than the size of
the regular building blocks of the source, or a similar block size of a block-sorting

algorithm.

5. Compressing Semistructured Data 88

5.2.2 XML Compressors for Querying and Management

Tolani and Haritsa [TH02] describe a semi-static, query friendly compression

scheme for XML, which allows direct querying of the compressed representation

on the element level. Metadata and enumerated attributes are dictionary en-

coded, all remaining data is individually Huffman encoded. Statistics for the
Huffman encoding are collected for atomic data contained within nodes carry-
ing equal tag labels corresponding to the domain structure used by XMill. This

allows good compression ratios even for small atomic data sections, at the cost

of a second pass for compression. This approach defines a homomorphism on
the document encoding. Consequently the compressed structures arc queried in

the some way as an uncompressed source, i. e. by scanning the entire source for

the compressed query terms and path names. The same statistics used during

source compression are used during the query process and only the result set is

uncompressed.
Buneman et al. [BGK03] describe a structural compression strategy based on

sharing of subtrees of a hierarchical data source. It is applicable to the structure

of SSD documents only, i. e. all atomic data is removed or ignored for the process.
The paper describes how to resolve all XPath location steps against this repre-

sentation in time that is exponential in the size of the query. The mechanism for

detecting the shared subtrees is briefly described in Section 2.5.2.3 and serves in

Example 4.5 to define skeleton domains.

5.3 Dictionary Compression in Databases

The relational database model is founded on the concept that data can be nor-

malised into regular table structures. This is a useful simplification but many
applications, especially Internet-based information systems, require the storage
and processing of at least partially irregular data structures. A data model that

supports the representation of SSD has the potential to overcome the limitations

of relational structures. However, data centric XNIL applications tend to suf-
fer from poor performance of the underlying technology since this is based on

assumptions of document-centricity rather than data-centricity.

5. Compressing Semistructured Data 89

MEMBERSHIPS
MEMBER ACTIVITY
Miller Volleyball
Miller Golf
Smith Volleyball
Wood Golf

ACTIVITIES
ACTIVITY LOCATION
Rugby Activities room
Volleyball Gyin
Golf Gym

Fig. 5.1: The uncompressed example relations

5.3.1 Fundamentals and Assumptions

Compression is a potential route to achieve better performance in SSD processing.
The work by Cockshott et al. [CMW98] on relational database systems shows
that compression can result in significant performance benefits by moving more

of the workload from secondary into primary storage, i. e. from relatively slow
disk storage into fast RAM. However, this approach can only be successful if

individual data atoms remain accessible. Consequently serial, variable length

compression algorithms such as LZW [NVel84] are not appropriate. The dictionary

compression method used by Cockshott et al. enabled them to compress the data

off-line and resolve queries by decompressing only the output data. Dictionary

encoding shows good compression ratios for relational data as well as for verbose
XML documents, especially if they are machine generated using typically a rather
small vocabulary as assumed in the context of this work.

5.3.2 Compressing Relational Data

The benefit of dictionary-based storage methods is that data can be represented

using only minimal bit patterns. At the same time direct addressability is pre-

served. This is a fundamental requirement for efficient database compression.
Figure 5.1 shows simple example relations about sports clubs that will serve as

examples throughout this chapter. The data is already in third normal form, i. e.
it exposes the functional dependencies of the dataset and is thus fairly compact.
However, by using minimal bit strings to represent values, the data elements can
be stored in an even more compact form. There is, of course, still the overhead of
dictionaries needed to convert the tokens, although these can also be compressed

using a second order compression mechanism like the one suggested by Hoque et

al. [HMW02, Hog03].

The relational data would typically be stored in tables with fixed length at-

5. Compressing Semistructured Data 90

MEMBERSHIPS
MEMBER ACTIVITY
00 01
00 10
01 01
10 10

ACTIVITIES
ACTIVITY LOCATION
00 0
01 1
10 1

Fig. 5.2: The compressed example relations

ACTIVITY
Token Lexeme
00 Rugby
01 Volleyball
10 Golf

ME MBER
Token Lexeme
00 Miller
01 Smith
10 Wood

LOCATION
Token Lexeme
0
1

Activities Room
Gym

Fig. 5.3: Dictionaries of the compressed example relations

tributes. Thus the table ACTIVITIES would have a size of (10+ 15) characters

x3 tuples x8 bits/character = 600 bits. Inspection of the tables suggests that it

would be possible to represent the information content in a more compact form

by using codes to represent the attribute values rather than using the domain

values themselves in the relation. The attribute ACTIVITY contains three differ-

ent values. Therefore, in its most compact form, it could be represented as a two
bit integer. Since there are only two different values in the LOCATION column, it

could be represented as a one bit integer, i. e. as a boolean value. The compressed
integer representation of the relations is shown in Figure 5.2.

The effect of representing data in this encoded format is to reduce the space

occupied by ACTIVITIES to 9 bits and MEMBERSHIPS to 16 bits. It is

necessary to add the size of the dictionaries to this, which allow the conversion
between codes and attribute domain values and vice versa (Figure 5.3). Dictio-

naries can be represented as lists of domain values. In the case of all non-unique

attributes the number of entries in the dictionary will be less than the number

of tuples in the relation. Typically only the key field will be unique, whereas

most other attributes will range over a fairly restricted domain in the context of

machine generated data sources.

5. Compressing Semistructured Data 91

<? xml version=" 1.0" ?>
<club>

<activities>
<activity>

Volleyball
</activity>
<location>

Gym
</location>

</activities>

<memberships>
<member>

Miller
</member>
<activity>

Volleyball
</activity>
<activity>

Golf
</activity>

</memberships>

</club>

Type
Document -
Element 1

Element 2
Element 3
Text 2
/Element 3
Element 4
Text 2
/Element 4
/Element 2

Element 5
Element 6
Text 1
/Element 6
Element 3
Text 2
/Element 3
Element 3
Text 3
/Element 3
/Element 5

/Element 1
/Document -

Element
1 club
2 activities
3 activity
4 location
5 memberships
6 member

Text: activity
1 Rugby
2 Volleyball
3 Golf

Text: location
1
2

Activities room
Gym

Text: member
1 Miller
2 Smith
3 Wood

Fig. 5.4: The sports club exam- Fig. 5.5: The structure (l.) of the com-
ple data represented as pressed XML document together
XML document with the associated dictionaries (r.)

5. Compressing Semistructured Data 91

<? xml version=" 1.0" ?>
<club>

<activities>
<activity>

Volleyball
</activity>
<location>

Gym
</location>

</activities>

<memberships>
<member>

Miller
</member>
<activity>

Volleyball
</activity>
<activity>

Golf
</activity>

</memberships>

</club>

Type
Document -
Element 1

Element 2
Element 3
Text 2
/Element 3
Element 4
Text 2
/Element 4
/Element 2

Element 5
Element 6
Text 1
/Element 6
Element 3
Text 2
/Element 3
Element 3
Text 3
/Element 3
/Element 5

/Element 1
/Document -

\ Element
1 club
2 activities
3 activity
4 location
5 memberships

16 member

Text: activity
1 Rugby
2 Volleyball
3 Golf

Text: location
1
2

Activities room
Gym

Text: member
1 Miller
2 Smith
3 Wood

Fig. 5.4: The sports club exam- Fig. 5.5: The structure (1.) of the com-
ple data represented as pressed XML document together
XML document with the associated dictionaries (r.)

5. Compressing Semistructured Data 92

5.3.3 Compressing Semistructured Data

One possible representation of the example data as an XML document is shown in

part in Figure 5.4. It can be seen that the complete representation would contain
almost the same redundancy that is exploited in the approach shown above for

relations. The only reduction in redundancy is achieved by allowing set valued
attributes, here two activities are stored below one member entry. But there

also exists further redundancy caused by repetitions in the document structure.
Depending on the degree of flexibility of an associated document schema, provided
either in the form of a DTD or XML Schema document, the structure may be
known in advance. Even if only well-formedness is assumed, the name of any
closing tag is guaranteed by the XML syntax and thus redundant.

The structure of the compressed representation is shown in Figure 5.5. The

implementation of the compression strategy results in the structure being sep-
arated from the content. The tokenized structure representation is very closely

related to the textual representation, allowing mixed content, comments and

other XML specific data items to be included, which lie out with the data model

provided in Section 2.2.2. They were included in the original research [Neu01] for

reasons of standard compliance and will be ignored as part of this re-evaluation.
As in the original XML document, the order of individual entries is important

as it encodes sibling order. In combination with special start and end tags it

also encodes ancestor/descendant relationships. References from the structure
point to different dictionaries that store the document data. Note that the meta-
data, e. g. element tag labels and attribute names, are stored in a global context
or domain, whereas the data content is stored in context dependent dictionar-

ies corresponding to atomic domains as defined by their parent tag labels. This

allows related information to be kept together as proposed by the model intro-
duced in Chapter 3. The concept of compression by column of the relational

approach is replaced with that of compression by containing element node in case

of semistructured data. Multiple entries of the same string within one dictionary

domain are avoided, thus reducing the redundancy. The compression algorithm

used for the prototype's data structure is applied equally to data and metadata.
This approach results in a significant reduction in the volume of the data stored.

5. Compressing Semistructured Data 93

5.3.4 Querying Compressed Data

There are two fundamentally different ways to query compressed data sources.
The entire data can be decompressed and then queried in its uncompressed form.
Alternatively, one can compress the query and then resolve it on the compressed
data, decompressing only the result set.

Using the first approach, it is possible to benefit from compression only if
the retrieval of the compressed file followed by its decompression takes less time
than the retrieval of the larger, uncompressed version. However, the smaller the

selectivity of a query, the less efficient this approach will be. Many queries in
data-centric applications will return only a small subset of the actual data. Thus
it is more desirable to translate the query itself into the compressed domain and
only to return and decompress the actual result set in such an environment.

In the case of dictionary compression this is very easy. The lexemes occurring
in the query are sought in the document dictionaries. If no matching dictionary

entry exists, the query will yield no result. If matching tokens for the lexemes ex-
ist, these in turn are sought in the compressed document structure. Comparisons

of these short binary tokens are typically faster than string comparisons using
the uncompressed representation.

5.4 Experimental System Design

The Dictionary compression based Document Object Model (DDOM) is based on
the architecture described in the previous sections and is implemented in Java.
It supports read-only access on a document once it is parsed or generated. A

structure such as this is appropriate for the targeted application areas, such as
mining of large, practically static, scientific data sets.

5.4.1 Storage

One of the major differences between dictionary compression in relational systems
and SSD is the definition of the dictionary domains corresponding to atomic value
domains introduced in Chapter 4. In the relational case this is relatively simple.
Every attribute of a given relation is associated with its own domain. All values
of a given attribute belong to the associated domain. More than one attribute

may share one domain, although this can be hard to detect automatically. In the

case of XML data, the concept of domains is ambiguous as Chapter 4 has shown.

5. Compressing Semistructured Data 94

For the work presented here we chose the following approach that is based on
domains by parent (Example 4.2). As a first criterion the node type according to

the DOM standard is used to distinguish different domains. Element and Text

nodes for example, exist in different domains. Additionally, atomic vertices of the
data graph, i. e. text nodes and attribute values of the DOM tree, are stored in

subdomains defined by their immediate parent node. In the example document,

the values of the Text nodes for "Miller", "Smith" and "Wood" are stored in the
domain Text : member as shown in the right part of Figure 5.5. Note that this is

a technical simplification due to the fact that no application semantic is attached
to the data. Consequently domains remain arguable as Chapter 4 has shown. In

the XML version of Shakespeare's plays described in Appendix C. 2 for example,
TITLE elements occur in many contexts, for example inside the PERSONAE, ACT

and PLAY elements. These form semantically different domains (e. g. play titles

opposed to act titles). However, syntactically there is just one definition of the

TITLE content model in the corresponding document schema. In the approach

presented here all titles would be stored in one common dictionary, following the

syntactical or application independent definition. This also helps to avoid the

creation of too many sparsely populated dictionaries. The problem of identifying

which elements belong to which domain cannot be resolved automatically in the

absence of the application semantics and is further discussed in Chapter 4. The

approach being used here is based on the simple approach of Example 4.2. The

experimental results of Section 5.5.1 shows that it works well for data-centric

documents that usually do not contain highly nested data structures.
The difficulty of separating individual domains also influences the represen-

tation of the structure. The structure of a document is stored in the form of an
array as shown in the left part of Figure 5.5 with both columns represented by

integer number types of appropriate length. The DOM node type of an entry
is stored in a 8-bit integer for reasons of technical simplicity arising from the

chosen implementation platform of Java. This could be easily reduced to five

bits, four bits to indicate one of the twelve possible DOM node types [DOM00]

and one bit to distinguish opening and closing tags. More importantly is the fact

that references to all possible domains occur in the structure array. This is the

result of domain mixing caused by the chosen characterisation of domains. It is

impossible to use minimal bit patterns to store the references in such a design.

The experimental system uses 32-bit integers, which represent a significant waste,

especially for domains with very low cardinality.

5. Compressing Semistructured Data 95

The structure array together with the associated dictionaries contain the en-
tire data of an XML document. No tree of DOM nodes is stored to reduce memory
consumption. Only the Document node that contains the compressed structure
and the dictionaries exists at any given time. However, the methods supplied by
the DOM interface are required to return Node objects. These are generated
dynamically and contain only a reference into the structure array. As soon as
no further external reference to such a Node object exists, it can be garbage
collected. Internally the DDOM uses methods that work directly on the struc-
ture array to avoid the overhead of frequent object generation and destruction.
Externally however this mechanism is necessary to achieve DOM conformance.

5.4.2 Querying

The DOM interface does not support querying directly beyond providing a method

getElementsByTagName for the DOM node types Document and Element,

which allows the selection of descendant nodes by name. The implementation of
this method in the prototype system follows the idea of doing as much work in

the compressed domain as possible. Hence the tag label that is passed in as an

argument is sought in the dictionary containing the tag label alphabet and its

compressed representation is then sought in the corresponding part of the struc-
ture array. In the basic implementation, this is done by linear scanning, resulting
in a 0(n) runtime behaviour. For a scan over parts of the structure array cor-
responding to the entire document or element nodes with many descendants, n
is of significant size. Consequently it is desirable to improve upon this by using
indices. This will be described in Section 5.4.3. However, even in the absence

of indices the prototype implementation avoids costly string comparisons and is

able to detect empty results for queries for non-existing tag labels at an early

stage in query processing.
Complex queries need to be resolved using additional query support. Two

different engines were used in order to perform the experiments described in Sec-

tion 5.5.2. The first is an external XQL query engine, which accesses the structure

using the provided DOM interface. The other is a purpose built query system
that makes use of the advanced representation of DDOM. These are described in

the experimental Sections 5.5.2.1 and 5.5.2.2 respectively.

5. Compressing Semistructured Data go

5.4.3 Indexing

To avoid linear scans for tokens in the structure array, one can search for them in

the domain dictionaries instead and amend each entry with a list of positions in

the structure array, where the corresponding token occurs. Due to the table-like

structure the dictionaries and the linear address-space of the structure array this

can be implemented using techniques known from the relational world, i. e. by

implementing the dictionaries in form of B-Trees or inverted lists. Because both

the tag label alphabet and the individual atomic value dictionaries are compressed

and managed using the same dictionary approach, the same mechanism can be

used for indexing. The created index structures act as a value index in case of the

atomic domain dictionaries and as as tag label index in the case of the metadata
dictionaries, i. e. element labels and attribute names.

If not only the positions of the start of a node in the structure arrays is

stored in the index, but also the corresponding end position, one can quickly

verify whether a given data atom is a descendant of a particular element node

or not. This will be described further as part of the hybrid design presented in

Chapter 6. For the remainder of this chapter indices will only be used in order to

allow a true bottom-up search based on atomic values, i. e. to identify positions
in the structure array where a particular data atom actually occurs. Following

this initial step linear scans will be used as described in the previous section in

order to resolve the remaining parts of a given query.

5.5 Performance Analysis

Test documents of various sizes were generated from a database used by a domain

name server (DNS). This sources is described in Appendix C. 1. It is a fairly

regular source, whose entries describe properties of servers known to the domain

name server. A few of the properties of each server are optional. These are

represented by null values in the relation presentation but are omitted in its

semistructured representation.

5.5.1 Memory Consumption

Figure 5.6 and Table 5.1 shows the memory consumption of several representa-
tions of the same XML data as a function of the database cardinality. Compressed

and uncompressed textual XML documents are compared with different DOM

5. Compressing Semistructured Data 97

Imlementation 100 Entries lk Entries 10k Entries 100k Entries
XML/gzip 1.4 KB 9.7 KB 83 KB 890 KB
XML 21 KB 213 KB 2100 KB 20700 ICB
DDOM 622 KB 989 KB 3550 KB 23761 KB
DDOM+Index 649 KB 1197 KB 5869 KB 41690 KB
Xerces 210 KB 1659 KB 14297 KB 140231 KB
Crimson 195 KB 1916 KB 19300 KB 191000 KB

Tab. 5.1: Memory consumption of different representations of the DNS data

implementations, all of which using Java as common platform. The DDOM im-

plementation requires less memory than the widely available Xerces and Crimson

implementations' for all but the smallest document size. The developed system
incurs an overhead with small documents. Both, Xerces and Crimson require the
heap to be enlarged from 64 MB to 256 MB in order to process the largest docu-

ment in this experiment. Note that the index structure described in Section 5.4.3

adds very little overhead to the DDOM representation in terms of space. Even the

relatively small document with only 1000 entries is still smaller in the compressed

and fully indexed version than in its conventional, non-indexed representation.
However, even the basic DDOM representation required still more memory than

the textual representation. This is partly caused by the Java implementation,

which always uses 16 bit representations for individual characters whereas the
textual XML file is using 8 bit encoding. Both conventional DOM implementa-

tions show a linear growth with database cardinality. By contrast, the DDOM

shows sub-linear growth. The gzip compressed file size is used as a practical mea-

sure of the document entropy. The graph clearly shows that there is still a large

potential for further memory savings.

5.5.2 Query Performance

Measuring the performance of a storage/query system for XML in itself is some-
what complicated. The requirements of different applications vary widely. This is

reflected in the large number of XML query languages [B000]. Standard bench-

marks for XML databases are just emerging [SW+01]. Since XML is based on
the idea of documents, document-centric storage systems are further developed

than data-centric approaches. Queries in the document-centric domain are typ-
ically limited to locating entire documents that match certain requirements or

1 Both available at http: //xml. apache. org.

5. Compressing Semistructured Data 98

Comparison of different DOM implementations

100000

10000

Y 1000
N

05

100

10

1

DDOM
DDOM/Index

Xerces "ý Crimson
YMAI tayf ---f--

XML gzip Q 0"-.
_.

"ý

C

U.

r'

100 1000 10000 100000
Cardinality (DNS Entries)

Fig. 5.6: Memory consumption of different representations of the DNS data

to the execution of relatively simple transformations. Therefore, storage is often
based on information retrieval systems using full-text indices. In contrast, data-

centric applications frequently use relational databases as a back end. Queries in

such systems are typically aimed at retrieving only a small fraction of a set of
documents. Since this work concentrates on data-centric applications, only the

performance of queries with low selectivity is analysed.

5.5.2.1 Querying using an external query engine

At first the performance achievable by the prototype implementation was com-

pared with other approaches using standard interfaces and query languages. In

this case the query engine is external to the implementation and unaware of the

underlying compression approach. This is problematic as the only comparison

possible is the measurement of wall-clock time. Thus, the quality of the actual
implementation could mask fundamental technical differences. It is however, the

only method possible which is based on standards alone and thus reproducible.

5. Compressing Semistructured Data 99

Query Q as BPE
Selectivity vx 10-3

//LEVEL3
34.8

//LEVEL4
0.4

//LEVELS
0.0

Xerces/DOM 2 4 2
DDOM/DOM 152 114 2
Xerces/XQL 2787 2297 2231
DDOM/XQL 7325 6017 3731
Xindice simple 13999 6944 6720
Xindice complete 15825 9347 9514

Tab. 5.2: Query execution times in ms for different selectivities and query systems

The implementations chosen for the comparison are publicly available and widely
used and thus considered to be reasonably well designed and implemented.

Figure 5.7 and Table 5.2 show the results of a simple node selection query
based on tag labels. The query chosen can be resolved in a single step by all sys-
tems tested. Furthermore, the cardinality of the result can be controlled easily
by the tag predicate used. The results indicate some of the problems and possi-
bilities in terms of the performance of queries posed on XML data. Querying for

the same results using different queries mechanisms, storage strategies and im-

plementations shows a wide range of performance variations. The measurements

were performed using a single XML document containing 10,000 entries from the
DNS database, i. e. a source representing information about 10,000 individual

servers. This corresponds to a data graph with 182,896 vertices that does not

contain any additional graph edges, i. e. is tree shaped. The query selects nodes

with a certain tag label, in this case the nodes containing the fourth, fifth and

sixth component of the domain names of each individual server. The selectivity

of this query is decreasing as almost all domain names contained in the example
document have four parts, but none has six parts. The chosen query provides the

chance of comparing the DOM interface directly to any higher level query sys-
tem. It is the most commonly used selection operator in XML query processing,
forming a part of practically all more complex queries, and can be used to show
the variance in performance achievable.

The DDOM implementation was compared to the Xerces DOM implementa-

tion and also to the native, disk-based XML database Xindice2 [Sta0la). Firstly

the DOM method getElementsByTagName("LEVELn") was used to resolve the

query. It was called on the document element and directly returns the required
results in form of a NodeList. Due to the DOM interface restrictions this will

Z Available at http : //xm1. apache. org/xindice

5. Compressing Semistructured Data IU()

10000

E 1000
0)
E

100
0

10

Xerces/DOM

DDOM/DOM

Xerces/XQL

DDOM/XQL

Xindice simple
Xindice complete

Fig. 5.7: Query execution times in rrts for different selectivities and query Systems

include the instantiation of one Element object per result for the DDOM imple-

rnentatiori.
To allow a comparison with a more realistic system, that would be capable of

handling more complicated queries, the query was repeated with all XQL query

engine on top of the two DOM implementations. XQL is a predecessor of the

current XQuery proposal and similar in syntax and semantics to the branching

path expressions introduced in Section 2.3.1. The corresponding query in XQL

is identical to its branching path expression and is shown below:

Query 5.1: //LEVELn

The query engine used was taken from the GMD-IPSI XQL Engine' irnplemeu-

tation and is not optimised for use with either of the implementations and thus

restricted to the standard DOM interface. DOM representation, query engine and
the proprietary query application run in a single Java virtual machine (JVM) with

a default rnaxirnurn heap memory space of 64 MB.

Finally the measurements were repeated using the native XML database. No

indexes were generated to allow a comparison with the DOM implementations

that also do not use indices. For Xindice, measurements were performed on a

3 Available at http : //xml. darmstadt. gmd. de/xql.

//LEVEL3 //LEVEL4 //LEVEL5

Query

5. Compressing Semistructured Data 101

warm cache. Database engine and query application run on a single computer
but in different JVMs. The server runs in a JVM with a maximum of 168 NIB

of heap memory, the client uses the JVM default setting of 64 MB. Xindice is

accessed using its XML: DB interface which supports XPath as query language.

The query can be stated in two different ways for this system. The simple version
("LEVELn") just locates elements with the given name, whereas the more complex

version ("//LEVELn") searches for these as descendants of the document root.
Interestingly, although these two queries are semantically equivalent and produce
the identical result set, a difference in query times can be observed.

Four orders of magnitude lie between the limited but direct access to main-
memory based DOM representations and the flexible but slow disk-based Xindice
database. However, using a separate query engine on top of the DOM imple-

mentations consumes most of this performance advantage, despite the fact that
the entire querying process is performed in the computer's main memory. It also
becomes apparent that the DDOM implementation suffers from the dynamic ob-
ject creation as its performance diminishes with higher query selectivity. This
limitation is exaggerated by the fact that the external XQL engine performs four

complete traversals of the DOM tree using only methods supplied by the Node
interface, rather than using the more specialised methods of the Element or
Document nodes that are able to perform the required task much faster.

5.5.2.2 Querying using a custom-built query engine

In order to separate the influence of the interface and external query engine from

those of the data representations on the query performance, a simple query engine

was implemented, which works directly on the developed data structure. Unlike

the XQL engine used for the previous experiments, this query engine does not

provide a query parser, planner and optimizer. Instead it provides direct access

to very basic query operators, such as finding the parent or child of a given node.

These micro-operations make best possible use of the available data structures,

i. e. they make use of indices when these are available and do not instantiate

intermediate results. Table 5.3 shows the operations available to this custom-

built query engine.
Six user queries were manually encoded using these micro-operations and

executed against the different representations of the DNS database with 10,000

entries. These queries are shown in Table 5.4. Figure 5.8 and Table 5.5 show the

5. Compressing Semistructured Data 102

Operation Semantics

QT(t tag) -º node-set Selects the set of nodes whose tag label
equals t.

av(v : value) -º node-set Selects the set of atomic nodes whose
content equals v.

crTv(t : tag, v: value) -º node-set Selects the set of nodes with tag label t
containing a direct atomic child node
whose content equals v.

aAV(a : key, v: value) -º node-set Selects the set of attributes with key a
and value v.

<(n : node-set) --º node-set Selects the set of nodes which are
children of the nodes in n.

c>(n : node-set) -º node-set Selects the set of nodes which are parents
of at least one of the nodes in n.

node-set fl node-set -º node-set Selects the intersection of the two sets of
nodes.

node-set U node-set -º node-set Selects the union of the two sets of nodes.

Tab. 5.3: The query operations available to the custom-built query engine and
their associated semantics

results off this experiment.
The DDOM representation benefits from the decreasing selectivity of queries

Sla to Slc. As expected the query times approach zero for empty result sets,

as this can be detected early in the dictionary representation. The fact that the
Xerces implementation shows a similar behaviour indicates that this implemen-

tation probably also makes use of an internal label map.
The results also emphasize the effect the index has on the DDOM structure.

The fully indexed version compares quite favourably with the standard Xerces

Q Query as BPE Execution plan in µ-operations
Sla
Slb
Slc

//LEVEL3
//LEVEL4
//LEVEL5

aT(LEVEL3)
aT(LEVEL4)
aT(LEVEL5)

S2 //SERVER[/LEVEL? 8/DATA="strath"I UT(SERVER)fl
t>(uTv(LEVEL? a, "strath"))

S3 //SERVER[/IP1/DATA="63"] QT(SERVER)flt. (a1y(IP, "63"))
P4 //HOSTNAME/* a(QT(HOSTNAME))

LEVEL1 U ... U LEVEL6

Tab. 5.4: The example queries as BPE and their execution strategies in it-
operations of the native query engine

5. Compressing Semistructured Data

1000000

100000

10000

1000

100

aý 10

1

0.1

0.01

11)3

Na

DDOM
DDOWIndex
Xerces

Fig. 5.8: Query execution times in rns off the example queries using thin native
query engine

Query Q Sla Slb Slc S2 S3 P4
Selectivity Or x 10-3 34.8 0. -1 0.0 0.1 1.3 54.7
DDOM 164 152 1.2 102000 1059 615
DDOM/Index 0.4 0.1 < 0.1 5.2 29.6 406
Xerces 0.2 < 0.1 < 0.1 1915 130 153

Tab. 5.5: Query execution times in tits off the example queries using the native
query engine

S1a Sib Sic s se
Query

5. Compressing Semistructured Data 104

implementation, despite its lower memory footprint. This is particularly inter-

esting for queries S2 and S3 as these queries contain structural predicates, which
cannot easily be executed against the structure array. However, due to the re-
duced data quantity of the initial value predicate, the overall performance of the
fully indexed DDOM implementation is more than two orders of magnitude better

than Xerces'.

5.5.3 Limitations of the Experiment

The aim of the experiments presented in this section is to analyse the impact
that dictionary compression has on the storage and processing of a data-centric
XML document. To allow comparisons and integration with other systems, the

experimental implementation has to comply with the DOM standard interface.
Consequently the data model used for the implementation differs from the model
presented in Section 2.2. The DOM is a tree model and consequently does not
allow for the representation of proper graphs. In addition, it requires the addition
of support for document order and the DOM-specific node types, which, for

example, provide a distinction of attributes values and character data.
The experiments with external query engines based on the DOM interface

demonstrate that this interface severely limits the performance of data-centric

applications as shown in Figure 5.7. More importantly the suggested approach
only addresses the efficient processing of atomic value based predicate queries,
but not the resolution of complex structural queries, which form an interesting

aspect of SSD processing. For this reason the method presented here, which is
helpful for the resolution of atomic value based queries, will be combined with
a technique which is more appropriate for structural predicates. This will be

discussed in the following chapter.

5.5.4 Experimental conclusions

The DDOM prototype implementation demonstrates a significant space saving

compared with standard DOM implementations. The evidence suggests that the

entropy of typical data-centric XML documents is such that considerable savings
beyond those achieved by the prototype implementation should be possible. Be-

cause of the wide variety of XML-based applications, the influence of the data

semantic needs to be analysed more closely to push these boundaries forward.

5. Compressing Semistructured Data 105

Adaptive techniques may be possible that compress domain specific data more
effectively. At the lowest level, tokens have been presented as integers rather
than minimal bit-strings. Further savings in space may be achievable by using
optimised data structures.

In the relational domain, Cockshott et al. [CMW98) have previously demon-
strated that the dictionary compression in database systems provides significant
benefits in terms of enhanced query performance. The results reported here sug-
gest that similar benefits can be achieved for querying XML data structures if
the queries can be resolved in the compressed domain.

5.6 Summary

This chapter has detailed the importance of appropriate physical representation
of data for a particular task. Efficient querying of data-centric sources was en-
abled using a dictionary compression technique adapted from the relational world.
Dictionary compression requires the identification and separation of homogeneous
domains, which was achieved using a grouping of data based on the tag label of
their parent node in the distinct spanning tree. It is an example of a physical data

reorganisation based on a specific domain definition (Example 4.2) as described
in Section 3.2.3 of the chapter on optimising queries over SSD. The experimental
results confirm the observation gained from the relational case that storage space
can be saved and at the same time queries can be answered efficiently.

The more fundamental results of these experiments is that optimisation tech-

niques designed for the relational world can be adapted and used in the semi-
structured case if the fundamental concept they are based on exists in both en-
vironments. In the example presented these preliminaries are the existence of
syntactically homogeneous value domains, which allow the creation of compact
dictionaries and aid the execution of atomic value based query predicates. The

concept is integral to RDBMS and was addressed in Chapter 4 for the semistruc-
tured case.

6. COMBINING STRUCTURAL AND
ATOMIC DATA GROUPINGS

Good Design

"Smart data structures and dumb code
works a lot better than the other way around. "

Eric S. Raymond, The Cathedral and the Bazaar, 1999

This concluding investigation of data groupings shows how different groupings

can be combined to allow the resolution of queries combining value and structure

predicates. The model introduced in Chapter 3 has shown that different query

classes or aspects of queries require different data groupings and thus imply dif-
ferent definitions of domains over the data as explained in Chapter 4. Domain

structures based on bisimilarity are useful to resolve structural aspects of a query
as explained in Example 4.7. A special case of the parent domain described in Ex-

ample 4.2 was used in Chapter 5 to address querying of atomic value predicates.
Here a hybrid' system combining these two approaches is presented.

6.1 Introduction to Hybrid Querying

The analysis of dictionary compression based systems on the one hand and struc-
tural indices based on bisimilarity on the other makes clear that although efficient
in their own domain, they both fall short of being a solution to the general semi-

structured querying problem. Dictionary compression, like all other flattened

representations of SSD, can deal with value based predicates efficiently but be-

comes obstructive for structural queries. Inversely, approaches based on vertex
bisimilarity can be used to evaluate structural predicates efficiently but can only

1 Hybrid in the context of this chapter refers to the combination of structure and value
predicates and not to the combination of top-down and bottom-up query execution strategies
as detailed in Section 2.3.3.3.

6. Combining Structural and Atomic Data Groupings 107

person

name

'Stewart"

Fig. 6.1: The data graph of the example source

deal with value predicates in a second validation stage, leading to unnecessarily
large intermediate results. An integration of the two approaches is presented
here. This approach maintains the key strength of its individual components at
the cost of adding overheads in terms of redundant data being stored.

6.1.1 Motivating Example

This section describes the evaluation of an example query using the two different

approaches mentioned above. However, the query being used contains both struc-
tural and value predicates, thus neither approach can provide a covering index
for it. The problems encountered due to this fact will be highlighted. Figure 6.1

shows the data graph of the example source. Query 6.1 used on the graph is

illustrated in Figure 6.2(a).

Query 6.1 (Books on Databases): //book[/author & /title/DATA="Databases"]

Since Query 6.1 contains only forward facing query axes, it can always be

answered by a single traversal of the tree [Ob1+02]. One common technique is

to transform the query into an automaton that is driven by the events created

6. Combining Structural and Atomic Data Groupings 108

author author

(a) The complete query graph (b) The structural component of (a)

Fig. 6.2: The graph representation of the example query

by an in-order traversal of the data graph, an approach similar to that presented
in Appendix A. However, this technique becomes impractical for very large data
instances. For that reason index structures are employed by most DBMS.

6.1.1.1 Query Evaluation Using a Structural Index Graph

An index from the family of index graphs defined by the work of Kaushik et al.
[KB+02] is selected as a structure index. The condition posed by the incoming
descendant arc from the ROOT vertex to the book vertex is trivially true for all

vertices in any data graph and thus not considered throughout the querying
process. Thus the longest forward facing path in the query graph has length

two (book/title/DATA). There are no backward directed paths and the query
has depth one as explained in Appendix B. Thus the (2,0)-F+B-index shown in

Figure 6.3 is the smallest covering index for the structural part of the example

query, i. e. the query graph in which all value predicates have been replaced by

a structural leaf predicate that selects vertices with the special tag label DATA.

The set of vertex identifiers presented next to each vertex of this index graph

represents its extend as defined in Definition 2.12. The family of indices does

not index atomic data, i. e. no member of this index family is covering for the

complete query of Figure 6.2(a).

Embedding the structural part of the query graph shown in Figure 6.2(b) into

6. Combining Structural and Atomic Data Groupings 109

ROOT (&0)

bibliography (&I)

publications {&2} author {&13, &1S} people {&3}

proceedings {&4} book {&S, &6} person {&7, M. &9}

title {&10, &12, &14} () editor {&I1} () name (&16, &17, &I8)

DATA (&19, &20, &21, &22. &23, &24)

Fig. 6.3: The (2,0)-F+B-index graph used as structural index to the data graph
shown in Figure 6.1. The sets of vertex identifiers represent the extent
of the index vertices.

6. Combining Structural and Atomic Data Groupings 110

the index graph of Figure 6.3 can be done using the same algorithm that could be

used to embed it into the data graph since the graphs are bisimilar. This means
that the vertices of the index graph have the same properties as the vertices of
the data graph with respect to the structural query. Because the index is covering
[KB+02] such a computation will result in the same answer. Thus the complexity
of the embedding process remains unchanged, but the size of the graph has been

reduced from 25 vertices in Figure 6.1 to twelve vertices in Figure 6.3. Such a
reduction in size can be expected for most SSD sources, as most practical data

graphs contain only very few structural building blocks [BGK03].

Using a top-down strategy one would first look for book vertices in the index

graph in which the book predicate is embedded and then progressively embed its

adjacent vertices into adjacent predicates of the query graph. In the example pro-
vided there is only one book index vertex. It happens to comply with the required
structural requirements, thus its extend forms the result of the structural part of
the query, which is the set of the two vertex identities &5 and &6. However, only

vertex &6 is a result for the complete query including the atomic value predicate.
Since atomic values are excluded from the bisimulation, a validation process for

every embedding of a path of the query graph containing a value predicate needs
to be performed on the data graph. Here, the path starting at the book vertices
&5 and &6 in the data graph of Figure 6.1 needs to be followed via a title

vertex to check whether it contains an atomic vertex with the value "Databases".
As a consequence, the original data graph needs to be maintained in addition to
the index.

6.1.1.2 Query Evaluation Using Data Dictionaries

Approaching the task from the other end, i. e. starting the query evaluation at
the atomic value predicate will be presented in terms of the DDONI approach
discussed in Chapter 5. Figure 6.4 shows the fully indexed dictionaries and the

structure array of a part of the example source. The format of the index entries
differs slightly from the one described in Chapter 5. For the initial description

this will be of no relevance and only the parts of the entries presented in bold are
used to refer back to the entries of the structure array.

Using this approach on Query 6.1, one can quickly verify that there exist
title vertices containing the atomic value "Databases", namely the entries at
the addresses 8 and 24 in the structure array, corresponding to the vertices

6. Combining Structural and Atomic Data Groupings 111

Type
0 Document -
1 Element 1
2 Element 2
3 Element 3
4 Attribute 1
5 Text 1
6 /Attribute 1
7 Element 5
8 Text 1
9 /Element 5

10 /Element 3
11 Element 4
12 Attribute 2
13 Text 1
14 /Attribute 2
15 Element 5
16 Text 2
17 /Element 5
18 /Element 4
19 Element 4
20 Attribute 2
21 Text 2
22 /Attribute 2
23 Element 5
24 Text 1
25 /Element 5
26 /Element 4
27 /Element 2

Element Index Entries
1 bibliography (1: 54)
2 publications (2: 27)
3 proceedings (3: 10)
4 book (11: 18), (19: 26)
5 title (7: 9), (15: 17), (23: 25)
6 people ... 7 person ...
8 name

Attribute Index Entries
1 editor (4: 6)
2 author (12: 14), (20: 22)
3 id ...

Text: title Index Entries
1
2

Databases
Programming

8,24
16

Text: name Index Entries
1 Miller ... 2 Smith ... 3 Stewart ...

Text: author Index Entries
1
2

p2
p1

13
21

Text: editor Index Entries
1 p3 5

Fig. 6.4: The structure array and indexed domain dictionaries as used by DDOM.
The bold numbers in the index entries refer to the corresponding start
positions of the entries in the structure array.

6. Combining Structural and Atomic Data Groupings 112

&19 and &21 of Figure 6.1. Equally one can use the index on the tag name
dictionary to verify that there exist book and author vertices in the data graph.
The book vertices are represented by entries starting at addresses 11 and 19 in

the structure array, the entries for the author vertices start at the addresses 12

and 20. However in order to verify ancestor-descendant relationships between

entries, one needs to scan linearly through the structure array. Starting at the

start entry of the potential ancestor vertex the array is scanned until either the

corresponding closing entry or the potential descendant entry has been found.

Only the latter case represents a valid result. Finding parent or child entries
follows a similar approach although here the nesting depth needs to be computed
for every entry. In the example given, a scan for the first book entry starting at

position 11 leads to a title entry at address 15, but none of the identified atomic

value entries is encountered before the closing tags of the title and book entries

are found at positions 17 and 18 respectively. Thus this entry, corresponding to

vertex &5 of the data graph, does not represent a valid result. The similar scan

starting at the book entry at position 19 matches all the required entries from

the list of potential descendants, thus the result is valid.
The DDOM approach works on trees only rather than general data graphs.

Because of this, entries are nested according to the hierarchy represented by the

tree-view of the graph. In the original DDOM prototype, only the starting ad-
dresses of entries are contained in the index, corresponding to the aforementioned
bold numbers in Figure 6.4. However, if one stores the complete range using the

start and end addresses of the subtree rooted by a node as done in Figure 6.4, one

can derive the ancestor-descendant relationship using this information alone. In

the provided example one can determine that only the second "Database" value

node can be part of a valid result, because its address 24 in the structure entry,
falls within the range of a book entry, which is (16: 26). The other "Databases"

node with address 8 however is not contained by the range of any book index

entry. This information is clearly useful, especially if the query is restricted to

the use of such ancestor-descendant relationships between partial results. Here

however a complete path is specified, i. e. parent-child relationships are used.
Thus it is still necessary to verify that the title node containing the atomic

value "Database" is a child of the book node. The same validation step must be

performed for the author predicate.

The fact that identifiers can be used to indirectly encode structural relation-

ships between nodes of a tree will be used by the hybrid representation discussed

6. Combining Structural and Atomic Data Groupings 113

next. Although this allows the validation of the structural constraints between
individual nodes, it still does not allow the selection of a set of nodes based on
their structural properties as can be achieved using the index graphs described
in Section 6.1.1.1.

6.2 Bridging the Gap: Signatures Based on Numbering
Schemes

The approaches described in Section 6.1.1.1 and 6.1.1.2 originate from different

perspectives and lack a common element that could be used for their combination.
Index graphs allow set-at-a-time operation and maintain structural relationships
between vertex-sets but abstract away from the individual vertices of the data

graph. Dictionary compression organises data into homogeneous domains and

maintains the identity of individual vertices of the data graph but their structural

relationships are not exposed directly.

The approach proposed in Section 6.2.3 is based on signatures as an exchange

mechanism between both of these approaches. A signature is a compact repre-
sentation of an important property of a given source. The signatures used here
describe structural relationships between tree nodes. Before these are introduced
in Section 6.2.2, numbering schemes for trees that serve as the individual entries
of the signatures will be introduced in Section 6.2.1.

6.2.1 Numbering Schemes for Tree Nodes

Graph labellings were introduced in Definition 2.5 of Chapter 2 as a one-to-one

mapping between the vertex-set of a graph and a set of identifiers. Here two

particular schemes used to label the node-set of an ordered tree will be described.

The definitions can be equally applied to unordered trees, in this case an arbitrary

ordering of the child nodes of every node will suffice. The target domain of these

labellings will be the set of natural numbers, thus they will be called numbering

schemes in order to distinguish them from arbitrary labelling schemes. Note that

this always implies an order on the node-set given by the order of the natural

numbers identifying them, even if the data model is considered to be that of an

unordered tree.

Example 6.1 (Preorder numbering scheme): One example of a numbering scheme
for ordered trees is the preorder numbering scheme [AHU74). The tree nodes are

6. Combining Structural and Atomic Data Groupings 114

traversed in preorder, i. e. the root is visited first followed by a recursive traversal

of the subtrees rooted at its children in their given order. The order in which
nodes are visited is used as their label. Thus the root node carries the label `0',

its leftmost2 child `1' and so on, as shown in the left hand number of the nodes
shown in Figure 6.5(a).

Example 6.2 (Postorder numbering scheme): Another example of a simple number-
ing scheme for an ordered tree is the postorder numbering scheme [AIIU74]. This

is the opposite of the previous scheme, as tree nodes are visited in postorder,
i. e. parent nodes are visited after all subtrees rooted by their children have been

traversed recursively. Again the order in which nodes are visited is used as their
label. Thus the root node carries the highest label, the leftmost leaf in the tree

carries the label `0' and so on, as shown in the right hand number of the nodes

shown in Figure 6.5(a).

Using the two numbering schemes together as shown in Figure 6.5(a), one
can determine the ancestor-descendant relationship between any two nodes in

constant time just by looking at their pre- and postorder codes. This fact was
described by Dietz [Die82], from whose work the following proposition is taken:

Proposition 6.1: A node x is an ancestor of y if x occurs before y in the preorder
traversal of T and after y in the postorder traversal. 3

Several researchers [Gru02, ZA+03] use the combined (pre, post)-pairs as iden-

tifiers in labelling schemes specifically useful for XML processing. Such works and
their extensions for enhanced XML query processing are described in 6.3.1. In

order to keep the presentation of the following approach simple, such extensions,

usually aimed at particular features of the XML standard like the distinction

of attributes and elements, will be ignored for the scope of this thesis, though

similar extensions could be applied.

6.2.2 Signatures for Data Trees

A signature of the tree-view of a data graph is a compact representation of the

structural relationships of its nodes. Figure 6.5(b) shows a signature of the data

2 assuming an ordering of child nodes from left to right
3 This differs minutely from the definition provided in Section 2.2.1.3 in so far as that con-

siders a node to be its own ancestor or descendant, whereas the proposition provided here only
considers true descendants.

6. Combining Structural and Atomic Data Groupings 115

ROOT

bibliography

publications (Is/22 paopl"

proceedings(7/7) book (1/19 book twig person tIwi person i2/2) person

author

title (8/S) title (17/9) title (17/It) name (2WI1) name (211i name

"Databascs" f 9/4) "Programming" "I3/8; "Databasca" Q8/13,1 "Mille" y2I/1q "Smith" i24uI "Slcwut"

(a) An ordered data tree with preorder (left) and postorder (right) labels

SIGNATUR E
pre post value pre post value

0 24 ROOT 13 8 "Databases"
1 23 bibliography 14 10 author
2 12 publications 15 22 people
3 3 proceedings 16 15 person
4 1 title 17 14 name
5 0 "Databases" 18 13 "Miller"
6 2 editor 19 18 person
7 7 book 20 17 name
8 5 title 21 16 "Smith"
9 4 "Programming" 22 21 person

10 6 author 23 20 name
11 11 book 24 19 "Stewart"
12 9 title

kb) 'l ne signature or the aata tree snown in kau

Fig. 6.5: The tree-view of the example source together with its signature

6. Combining Structural and Atomic Data Groupings 116

tree presented in Figure 6.5(a) based on Dietz' labelling scheme. It is formed
by the set of pre- and postorder codes for each node together with either its
tag name or atomic value. The order of the individual nodes is encoded in the

numbering scheme, thus the order of the representation in Figure 6.5(b) is irrel-

evant. However, the convention of ordering the tuples by their preorder number
allows the removal of this attribute from the physical representation and aids the

reconstruction of the original document.

The structure presented in Figure 6.5(b) can easily be stored and processed by

a relational database. Grust [Gru02] describes how to translate the XPath axis
first into the space of the signature and then into SQL queries. For example if one
was to select all descendants of the people node in Figure 6.5(a), the equivalent
query over the signature relation shown in Figure 6.5(b) would be

SELDar V2 .* PENT SIGNATURE vi , SIGNATURE v2
NVHERE (v1. value = "people")
AND (v2

. pre > vi . pre) AND (v2
. post < vi. post)

In general the pre- and postorder codes divide the address space of the signa-
ture into four quadrants, one for descendants, one for ancestors, one for previous

and one for following nodes. This is shown in Figure 6.6 for the people node of
the example data from Figure 6.5. The bottom-right quadrant of this diagram
forms the result to the previous query. This type of diagram was first used by

Grust [Gru02].

6.2.3 A Motivation for a Hybrid Design

The numbering schemes provided above and thus the signatures based on them

are restricted to trees. Such simple numbering schemes do not extend to general
graphs. The approach described here will apply numbering schemes to the distinct

spanning tree of a data graph in order to validate individual entries gained from

set-based operations.
Section 6.1.1.2 has shown how the index entries of value and tag dictionaries

can be used to validate structural queries more efficiently. In fact, the set of all
index entries of that example shown in Figure 6.4 forms a signature that is equiv-

alent to the one described by Zhang et al. [ZN+01]. However, rather than storing
the complete signature in an array structure or relation, its individual entries can
be grouped according to some data clustering as shown in the motivating example

of Section 6.1.1.

6. Combining Structural and Atomic Data Groupings 117

22

N
0
a

ancestors following

ROOT
f bibliography

f publications

f book

------------------ people
f person

f name
f "Stew art"

f person
f name

f "Snith"
f person

f name
f "Hiner"

f book
f a)ithor

f title
f "Dat$bases"

f author
f title

f "Programming"
f proceedings

f editor
previous f title descendants

"Databases"
0 pre"

Fig. 6.6: The plane of pre- and postorder codes is divided into four quadrants

The domains implied by the DDOM approach are a special type of a parent
domain, i. e. based on local backward-bisimilarity with k=1. Thus a structural
index graph based on vertex bisimilarity with kb =1 can be combined with
the indexed dictionaries presented in Figure 6.4. At the same time, the vertex
identifiers used in both the dictionaries and the extend of the index graph can
be replaced with the entries based on Dietz'numbering scheme, creating a unique

address space for validation purposes. The approach suggested here can be seen

as the cross-product of an index graph with a signature with its leaf nodes being

replaced by domain dictionaries. Figure 6.7 illustrates this using the (1,1)-F+B-

index graph of the example data graph shown in Figure 6.1. In this illustration,

the incorporated atomic value dictionaries are suppressed in order to simplify the

diagram.

6. Combining Structural and Atomic Data Groupings 118

ROOT

0 24

bibliography

1 t1

publications author p

l2
pwPl"

10 6
1!

II 10

proceedings

33

editor

6

title

book person pýrýon

title

8s

name

DATA I DATA

S0 "Databases" 11
"

17 MIU«
--

" " P 21 16 "S h" 1 9 rognmmmg mit '
i

_. _ ... ý I ý....
. ý.....

13 "Doabuet" 24 19 SorwnP

Fig. 6.7: The combination of signature information with a structural index. The

atomic value dictionaries at the leaves are not shown for reasons of sim-
plicity.

6.3 Related Work on Combining Structure and Value
Querying

The use of numbering schemes and signatures for enhancing SSD processing has

been investigated by several researchers. A brief review of the numbering schemes
developed, their extensions and query strategies is presented in Section 6.3.1.

More recently the shortcomings created by the lack of integration of structural
indices on the one hand and atomic value based indexing on the other have been

identified. First approaches to the solution of these limitations are described in

Section 6.3.2.

6.3.1 Numbering Schemes and Signatures

Several researchers have investigated the benefits of using numbering schemes to

answer queries on SSD. Most of these approaches are based on Dietz' numbering

scheme using pre- and postorder codes. Extensions to this scheme and similar

6. Combining Structural and Atomic Data Groupings 119

schemes exist that are particularly adapted to the XML data model. Their main

motivation lies in their extensibility.

6.3.1.1 Preorder and Postorder numbering Schemes

Dietz [Die82] describes a data structure for efficient presentation of linked lists

based on trees. An application of this structure is the determination of the

ancestor-descendant relationship based on the pre- and postorder numbering

schemes described in Example 6.1 and 6.2.

Grust [Gru02] analysed the properties of Dietz's numbering scheme further

and identified that the original pre- and postorder numbering scheme can also be

used to answer queries along the previous/following axis of XPatli. Furthermore

he extended the scheme to include direct references to parent nodes and type

information (tag name and element or attribute node type), which allows for the

storage of the complete XML document in a single relation. All XPath axes

operations can easily be performed on the resulting relation with the help of only

relational indices. Algorithms exploiting the possibilities of B- and R-trees for

XML processing are given.
Zezula et al. [ZA+03] also describes an XML document signature based on

Dietz's numbering scheme. However, their querying mechanism is based on string

matching over this signature rather than the relational query translation described

by Grust. In addition to the ancestor-descendant and preceding-following sibling

relationships directly encoded in Dietz' numbering scheme, they describe an ex-
tension to accelerate the determination of parent and child nodes using additional

references to the first following and first ancestor element in the signature.

6.3.1.2 Range and Extensible Numbering Schemes

Zhang et al. [ZN+011 investigate the performance of relational database and in-

formation retrieval technology for the purpose of answering containment queries.
In order to compute this class of queries efficiently, they use inverted list entries
based on the start and end position of each node in the document tree as described

in Section 6.1.1.2. Bruno et al [BKSO2] makes use of this numbering scheme to

develop stack based join algorithms for tree pattern matching that keep the size

of intermediate results to a minimum.

Li and Moon [LM01] recognise the benefits of Dietz' scheme for the eval-

uation of regular path expressions but identify its weaknesses with respect to

6. Combining Structural and Atomic Data Groupings 120

updates. To allow for easier insertions into the tree, they replace the (preorder,

postorder)-tuples with (order, size)-tuples, which allow the allocation of extra
space for future insertions but maintain the property of constant-time ancestor
determination. They decompose an XML source into relations and develop algo-
rithms that perform joins based on this numbering scheme.

Chien et al. [CV+02] present a similar investigation to the one performed by
Grust using a durable numbering scheme, but ignore a number of XML-specific
features such as the distinction of attributes and elements. Their focus lies on the

efficient implementation of ancestor-descendant-joins based on skipping irrelevant

partial results.
Kha et al. [KYU02b] describe a numbering scheme based on unique identifiers

[LY+96] that provides deterministic addresses for k-ary trees. The fixed fan-out

degree assumed in the original work severely limits the possibility of updates and

makes poor use of the address space. The extension devises a two level scheme,

which allows different k values for different regions of the tree [KYU02a]. Kha et

al. also show how this numbering scheme can be utilised for processing structure

and keyword queries.

6.3.2 Hybrid Querying Systems

Work on integrating different kinds of index structures for SSD is a recent devel-

opment. The only early contribution in this field is McHugh and Widom's work
[MW99] on query optimisation for the Lore project. However this is mainly re-

stricted to heuristics that determine when to use the four specific forms of indices
(value, text, link and path index, cf. [MW{'98]), provided by their experimental
base. In particular it does not allow for complex structural indices as provided
by index graphs based on bisimilarity.

Halverson et al. [HB+03] identify the need to combine pattern matching
techniques based on inverted lists with the navigational approach typical for XML

tree traversal algorithms and criticise the lack of integration between these two

lines of research. They provide a cost model for query answering in each of these

domains, identifying query classes that are better suited to either approach or to

a combination of both. Based on this model they devise a query optimiser and

evaluated its influence on the Niagara database systeril [ND+01].

Choi and Buneman [CB03] combine the XMill [LS00] approach for compact

representation of atomic data with the approach for skeleton compression by

6. Combining Structural and Atomic Data Groupings 121

sharing subtrees [BGK03] to address XML join queries. Their fundamental as-
sumption is that the skeleton of typical XML documents is small and thus can
be kept in memory. The actual data is only used in the last stage of their join
algorithm, avoiding unnecessary I/O operations. However for subqueries with
low value predicate selectivity the inflexible approach requiring four sequential
scans over the document structure is wasteful.

Kaushik et al. [KK+04a, KK+04b] extend their original work [KS+02, KB+02]

on structural indices for path expressions to include keyword constraints on the

contained atomic data. They propose a general strategy to combine structural
indices with inverted lists in order to address this class of queries efficiently and
test their approach using the Niagara system [ND+01]. As their value indices are
based on techniques developed in the context of information retrieval systems,
their resulting query system includes support for finding the k most relevant
results. Such techniques however are beyond the scope of this thesis. The fun-
damental difference between their work and the work presented here lies in the
integration of the different index structures. Within their inverted list they use
signature entries based on the same numbering scheme proposed here, extended
by an identifying label of the corresponding index node in the structural index.
The approach presented here breaks the atomic data dictionaries, which replace
their use of inverted lists, according to the structural domains. Consequently the

part of the dictionary corresponding to a structural domain can be incorporated
into the node of the index graph representing it. By doing this the secondary
data structure of the index graph becomes a primary data structure that replaces
the original data graph rather than summarises it.

6.4 Experimental System

An experimental system was designed and implemented based on the ideas out-
lined in Section 6.2.3. The decision about components to be used as structural

and value indices and numbering scheme depends largely on the chosen query
language and its associated expressive power.

6.4.1 Tree Pattern Expressions

Branching path expressions are used as a basic query language since they repre-

sent an important subset of the expressive power of selective query languages for

6. Combining Structural and Atomic Data Groupings 122

SSD. However, two constraints are placed upon this language in order to keep the

prototype design simple. Firstly, only the edges in the tree view of the data graph
are considered, i. e. additional graph arcs are not supported. As a consequence
of this restriction to trees, the query language can also be restricted to allow tree

patterns only, thus eliminating the need for backward directed axes. Secondly the

semantics of query expressions are restricted to return the matches of the root
predicate of the query tree rather than the matches of an arbitrary predicate.
The resulting language allows the encoding of tree patterns, thus its expressions
are called tree or twig pattern expressions [ZA+03, IIKS021. Query 6.1 shown in
Figure 6.2(a) and used in the motivating example is a member of this query class.

Intuitively the result of a tree pattern expression e on a data graph DG is

the set of nodes Ne C N(T(DG)) at which the query tree can be embedded

successfully into the data graph, such that the query predicates are embedded
into vertices with a corresponding tag label and the structural constraints between

query predicates are satisfied by the corresponding paths in the data graph. A

minor extension to the atomic value predicates specified in Section 2.3.1.3 was
included, which represents the keyword matching functionality used by Kaushik et

al. [KK+04a]. This solely allows the choice between exact and substring matching

at the leaf nodes and does not affect the complexity of the query language as a

whole. Keyword predicates are represented by the syntax DATA= "keyword",

where keyword represent the substring sought.

6.4.2 The Components of the Data Structure

The developed prototype is based on index graphs utilising the concept of local

bisimilarity [KB+02] introduced in Example 4.7, a variant of Dietz' numbering

scheme additionally annotated by node level information [Die82, BKSO2] and a
dictionary structure as used in the HIBASE [CMW98] and DDOM'I (Chapter 5)

approach. The reason for this choice and further details about these components

are explained below.

The choice of the family of index graphs developed by Kaushik et al. is based

on their clearly described and mathematically sound model. The complete F&B-

index is the minimal covering index graph for all branching path expressions.
For the restricted class introduced in Section 6.4.1, indexing can be restricted to

outgoing arcs in the data graph and thus to a tree depth of one (cf. Appendix B. 2).

In addition only the arcs of the distinguished spanning tree need to be considered.

6. Combining Structural and Atomic Data Groupings 123

Thus the (k, 0)-F+B-index graph is covering for structural tree patterns with

matching path lengths of up to k.

However, the prototype allows for the complete family of indices based on
local bisimilarity so that the influence of different data groupings on the query
performance can be investigated. In order to apply the approach of dictionary

compression successfully, the data needs to be pre organised in a way that com-
bines values drawn from a homogeneous domain. In the original work on the
DDOM model, data was grouped by the label of its parent node. The concept
of bisimilarity generalises this approach by grouping vertices by their label first

and then refining this organisation based on incoming or outgoing paths. The

possibility for parameterising the bisimulation results in different refinements of
the dictionary structure to be tested. An important special case will be the (k, 1)-
F+B-index (Example 4.7), which combines the properties of the F(k)-index for

structural constraints with the previously used atomic value dictionaries grouped
by parent nodes.

The numbering scheme used to form the entries within the indices is a straight-
forward extension of Dietz' original scheme. In addition to the pre- and postorder

codes of each node, it also stores their level information, i. e. their distance from

the root node in the tree-view of the data graph. This is beneficial in order to re-

solve queries for parent or child nodes or other queries over restricted path length,

as shown by the works of Zhang et al. [ZN+01] and Bruno et al. [BKSO2]. For the
linear path query //bibliography/ * /author one only needs to validate that the
difference of the tree level of all possible ancestor/descendant pairs equals two,

without looking at possible intermediate nodes.

6.4.3 Querying System

Different classes of querying algorithm were developed to work on top of data

structures like the one shown in Figure 6.7 and described in Section 6.4.2. These

will be called NSGraph (for Numbering Scheme Graph) in the following descrip-

tion. As far as the query algorithms are concerned, these behave equally over
data graphs and NSGraphs, with the vertices of data graphs only containing a

single entry per node whereas NSGraphs can contain any number. The different

querying algorithms are described in the following subsections. Fundamentally

there exist two groups of query strategies, the merge-join algorithms and graph

embedding algorithms. Each of these major strategies can either operate in a

6. Combining Structural and Atomic Data Groupings 124

top-down or bottom-up fashion as described in Section 2.3.3. Minor additional
variations of the individual algorithms are described below. All algorithms can
make use of a general tag index and an atomic value index. The former allows
the location of a set of vertices based on a given tag name and the latter locates

vertices whose value dictionary contains at least one matching atomic value. In

addition, all algorithms may make use of a variant of the merge-join algorithm
described by Chien et al. [CV+02] that computes the join of ancestor-descendant
tuples with a specified path length between them in time linear in the sum of the

size of its argument sets.

6.4.3.1 Pessimistically Validating Tree Embedding Algorithm

The top-down variant (PE-TD) of this algorithm uses the tag index to find all

vertices of the NSGraph whose tag name matches the constraint of the query root

predicate. Starting from these candidates all adjacent vertices of the NSGraph

are matched against the set of adjacent predicates of the query graph. This is

performed recursively in the case of the descendant-axis. On reaching a leaf in the

query pattern tree, the remaining valid embeddings of this leaf are passed back to

its parent node and validated at each predicate as correct embedding points for

it using the merge-join algorithm. Twig predicates in the query pattern combine
the results from their children before passing their own embedding upwards. On

reaching the root predicate, all embeddings for this tree pattern are computed

and can be output.
Conversely the bottom-up algorithm (PE-BU) starts by identifying matches of

the leaf predicates and then embeds the structure represented by the query graph
following its arcs in reverse direction. Entries from the corresponding NSGraph

vertices are only added if they are ancestors of the already discovered possible

result set. In both cases the embedding stops when either the query graph is

completely embedded or an intermediate result set is empty.

6.4.3.2 Optimistically Validating Tree Embedding Algorithm

The algorithm described above works even if the query length exceeds the for-

ward bisimilarity of the used NSGraph, because all entries are validated for every

edge of the tree pattern. However, if the underlying bisimulation is covering
this is wasteful and can be avoided. The optimised, lazy variants of the above

algorithms only validate the entries of vertices in the NSGraph if the matched

6. Combining Structural and Atomic Data Groupings 125

path exceeds their bisimilarity length, at branching points of the query pattern
and at vertices that have multiple incoming edges, i. e. at merging points of the
NSGraph. Otherwise these algorithms behave identically to the one described

above, i. e. they start at the root or leaf predicates respectively and iteratively

embed predicates connected to them in either a top-down (OE-TD) or bottom-up
(OE-BU) fashion.

6.4.3.3 Ancestor/ Descendant Merge-Join Algorithm

This last group of algorithms does not make use of the structural information of
the NSGraph directly, but simply uses a merge-join approach on candidate sets
solely selected using the flat tag label and atomic data indices. The top-down

variant (MJ-TD) uses the root predicate to select the first group of potential
ancestor nodes and joins it with the group of entries complying with the tag

constraint given by the first child predicate of the root. In the case of a linear

query the result of this operation is used as set of ancestors for the next join,

this time with nodes complying with the tag constraint of the root's grandchild.
On reaching a twig predicate, the evaluation is performed following one outgoing

path at a time, each time further restricting the initial candidate set used for

matching the remaining paths. As in the top-down embedding strategies, the

remaining leaf results are passed back up and collated at twig nodes before being

passed on upwards. Again this strategy can be employed in a top-down (MJ-TD)

or bottom-up (MJ-BU) fashion. The latter variant uses either the atomic data or
tag label index to determine the initial set of candidates for each leaf predicate,
depending on its type. In any case these algorithms perform one join per edge
in the query graph, unless one intermediate result is empty in which case the

query can terminate early. In practice this means very few joins, however the

sets of potential ancestors and descendants taking part in the join are usually

quite large, making the individual joins computationally more expensive.

6.5 Query Execution Performance Analysis

The foci of this analysis are the effects that variations in the data grouping
have on the performance and complexity of the three querying algorithms and
two strategies. External comparisons of the overall performance are of restricted
validity because of the limitations and simplification of the prototype discussed

6. Combining Structural and Atomic Data Groupings 126

Query Tree Pattern
K1 //item /description//keyword/DATA="*attires*"
K2 //open-auction[/bidder/date/DATA="*1OO9*"]
K3 //person[/prof ile/education/DATA="*Graduate*"]
K4 //closed-auction[/annotation//happiness/DATA="*10*"
Qla //person[/name/DATA="Klemens Pelz" & /watches

& /emailaddress & /creditcard]
Qlb //person [/name/DATA= "Klernens Pelz" & /watches

& /emailaddress & /phone]
Q2a //profile /income & /education & /gender
Q2b //profile [/income & /education & /gender/DATA="male"]
Q2c //profile [/income & /education & /gender/DATA="female"
Q3a //item[/location/DATA= "United States"

& /payment /DATA="*Creditcard*" & /quantity/DATA="1"]
Q3b //item[/payment [/DATA= "*Creditcard*I & /DATA="*Cash*"]
Q4a //description[//text [//keyword & //bold
Q4b //description[//text/*[/keyword & /bold

Tab. 6.1: The benchmark tree pattern queries in BPE syntax

in Section 6.4. However the following results will identify whether or not the

choice of a particular data grouping has a significant impact on particular query

algorithms.

6.5.1 The Benchmark Queries and Data Source

The tree pattern queries collected for this experiment are designed to highlight

the response of the implemented query algorithms to a number of distinct chal-
lenges within the designated query class. These are characterised in the following

sections. Table 6.1 presents all queries in BPE syntax.

6.5.1.1 Linear Tree Patterns with Value Predicates

The first set of queries contains only linear path expressions, i. e. no predicate

of the query tree pattern has more than one child. Such queries can be resolved

using simpler data structures, e. g. path indices such as the DataGuide [GW97].

The performance of the hybrid system will be tested against this class of queries
because it represents an important subclass of the general query class. The queries

used are taken from Kaushik et al. [KK+04a] and are aimed at the 1 MB XMark

dataset [SW+02] described in Appendix C. 3 that models the data for an online

auctioning system. Query K1 is a modification of the version of the original

6. Combining Structural and Atomic Data Groupings 127

work that returns all item entries containing the keyword "attires" rather than

atomic "attires" vertices which occur below an item in order to comply with the

restrictions of tree pattern expressions. Queries K2 - K4 are exactly as described
in the original research.

6.5.1.2 Branching Tree Patterns with Value Predicates

The next group of queries represents proper branching tree expressions, i. e. queries
for which at least one structural predicate is connected to more than one child
predicate. The queries are purpose-designed to evaluate different aspects of query
processing and are resolved against the same XMark dataset used for the linear

queries described above. Figure 6.8 shows the graph representations of these tree

patterns.

Point Queries Queries Qla and Qlb are typical examples of the targeted query

class, i. e. they combine both structural and atomic value predicates. In particular
they represent point queries, i. e. they essentially ask whether the given pattern

exists in the data or not. This is achieved by including an atomic value predicate

on the node representing the name attribute attached to each person node of
the source. Both queries search for a person named "Klemens Pelz". Only one
such person exists in the database. However, the specific entry in the database

only conforms with the structure of Query Qla, but not with the structure of
Query Qlb.

Queries with Varying Cardinality The Queries Q2a - Q2c all locate parts of
the data graph with the same structure, a profile that contains at least income,

education and gender information about the person it is describing. Query Q2a

represents solely this structural constraint, whereas Query Q2b and Q2c restrict
the results to the male and female subsets respectively by means of an atomic

value predicate. In the XMark dataset, there are about twice as many male

entries as there are female. Thus these patterns give an insight into the effect
that the cardinality of value predicates has on the query evaluation.

Conjunctive Value Queries Queries Q3a and Q3b both contain more than one

atomic value predicate that needs to be true in combination with the structural

predicates. Query Q3a looks for an item whose child nodes match three differ-

ent, single valued atomic value predicates for its location, payment type and

6. Combining Structural and Atomic Data Groupings 128

person

(a) Query Qla

profile

income education gander

(c) Query Q2a

ereditcird () name () watches () emuiladdr. u() phone

(d) Query Q2b

'Klans,. Ptli'

(b) Query Qlb

profile

gender !,. come education gender

'ý. k"

(e) Query Q2c

description

li

item item description to=t

location payment quantity payment tut

I/ /%

'Unood ý
r

() n: dacant
s

K; C". d" (K) "Ca'b' kariord bold ksybrd bold
,. tee

(f) Query Q3a (g) Query Q3b (h) Query Q4a (i) Query Q4b

Fig. 6.8: The graph representations of the branching tree patterns

6. Combining Structural and Atomic Data Groupings 129

quantity. The item of Query Q3b has only one child predicate, but this pred-
icate needs to comply with two atomic value predicates at the same time, here
implemented by looking for the two distinct keywords "Creditcard" and "Cash"
below a common payment node. The semantics of keyword queries represent a
substring matching on the atomic value. Thus the two constraints can actually
be matched by a single atomic value node, e. g. an atomic node with value "Cash,
Creditcard".

Queries Containing Regular Expressions over Nested Parts of the Source

The textual descriptions of items and categories of the XMark dataset can contain
highly nested mark-up language and mixed content elements. Queries Q4a and
Q4b query this part of the database for structural constraints with variable path
lengths and tag label wildcards. Query Q4a simply asks for a descriptions

node containing some text that contains at least one keyword and one bold

descendant node, whereas Query Q4b requires the nodes matching the same leaf

predicates to be the children of a common node with an unknown tag label.

6.5.1.3 Result Verification

The results computed by all of the query algorithms presented in Section 6.4.3

were verified using the eXist4 open source native XNIL database. It provides a

partial XQuery implementation that can resolve all the queries shown in Table 6.1.

The results returned by the experimental system are identical to those returned
by eXist.

6.5.2 Query Execution Performance of Data and NSGraphs

The first set of experiments keeps the used bisimilarity structure constant allowing
the comparison of its influence on the different query strategies and contrasting
it with the behaviour found on data graphs. The bisimulation is designed to

be covering for the structural part of the most complex query of a query set

not containing descendant operators, i. e. its forward bisimilarity k -f is set to the

depth of the query tree pattern. Its backward bisimilarity kb is set to one, in

order to organise the atomic data by its parent's tag label. This represents the

most common atomic data organisation, which was already used in Chapter 5.

4http: //www"exist-db. org

6. Combining Structural and Atomic Data Groupings 130

Consequently the NSGraph used for the linear tree patterns described in Sec-

tion 6.5.1.1 is based on (3,1)-bisimilarity and the NSGraph used for the branching

query patterns of Section 6.5.1.2 is based on (2,1)-bisirnilarity. The former re-
duces the size of the vertex set from 32,864 for the data graph to 3,170 vertices
in case of the NSGraph. In the latter case the resulting NSGraph contains only
2,068 vertices, equivalent to approximately 6.3% of the original vertex-set.

6.5.2.1 Performance Metrics Used

Tables 6.2 - 6.4 show the measurements obtained by executing all the described

query strategies for the set of benchmark tree patterns on the data and NSGraphs.
Each table lists four different metrics for each run, the numbers of vertices of the

graph visited, the number of joins performed using an ancestor-descendant join-

merge algorithm based on the numbering scheme, the total number of all entry
references taking part in such joins and the average query time. They are designed

to highlight different aspects of the overall performance of a particular algorithm.
The number of vertices visited is an indication of the expected I/O costs.

Although the prototype system works entirely in memory, a practical implemen-

tation working on larger datasets would need to load data from external storage.
Assuming one I/O operation per vertex accessed is a reasonable base often used
for performance modeling in database systems. It reflects the fact that external
storage is usually block-based and thus the costs of loading a large but localised

structure like a vertex of a NSGraph containing many entry references is usually
cheaper than loading many small structures that might be spread across many
different blocks.

The number of joins indicates how often each of the algorithms validates
that the candidate set it is working on belongs to the proper intermediate result

set. This becomes necessary since, although the NSGraph is designed to be

covering for the structural part of a query, it is no longer covering for tree patterns

containing data predicates. This metric indicates how appropriate the given

strategy is for a particular query.
In addition the total number of entries joined in such a way is measured be-

cause the join algorithm used has a complexity that is linear in the size of its

arguments. Consequently this gives an indication of the computational costs of a

query. Particularly an algorithm employing three joins over very restricted candi-
date sets will be cheaper than an algorithm just using one join over a substantial

6. Combining Structural and Atomic Data Groupings 131

part of the total number of entries.
Lastly, the query time gives an estimate how these costs influence the overall

query execution. Because an in-memory prototype is used, the computation costs
here dominate over the I/O costs.

6.5.2.2 Results for the Linear Tree Patterns

As one can see from Table 6.2 there exists a strategy for queries K2 - K4 on
the summarised data, which outperforms the best strategy on the data graph in
terms of the overall performance. This does not hold true for Query K1 that
contains a descendant operator, because the NSGraph is not covering for even
the structural part of this query. For this query the algorithms performed on the
potentially cyclic NSGraph need to check more potential embedding paths than
in the restricted data tree.

More important though is the observation that for almost all algorithms and
queries the NSGraph requires fewer vertex visits than the data graph. The only

exception to this pattern is the application of the bottom-up embeddings over
Query K1. This is due to two reasons. Firstly, the atomic value predicate of this

query has a very low selectivity, returning only five hits on its own, of which only
one appears in the right context. Thus only a very limited fraction of the data

graph is actually searched and the NSGraph cannot offer a substantial saving on
this account. The second reason has already been discussed above and results
from the use of the descendant operator in this query.

In terms of the query algorithms' complexity and their computational costs
the results are the inverse of what was said in the previous paragraph. Here clearly
the data graph shows its strength due to its simpler structure. The number of
joins is zero for all embedding based algorithms, as one never needs to validate
that the vertices at which the individual predicates are embedded belong to the

same subtree of the data graph. This is enforced by the embedding mechanism.
For the merge-join algorithms, which use the tag label and value indices to find

candidates rather than traversing the arcs of the data graph, a constant number

of joins needs to be performed. These algorithm perform one join per edge in the

query pattern, regardless whether the data graph or NSGraph is used.
In terms of overall performance top-down and bottom-up perform about

equally well on the data graph, whereas the top-down embeddings have a small
advantage on the NSGraphs. This appears to be surprising, given the fact that

6. Combining Structural and Atomic Data Groupings 132

Source Data graph (3.1)-NSGranlº
Query K1 K2 K3 K4 K1 iC2 K3 K4
Results 1 75 19 11 1 75 19 11

N umber of vertices visited
PE-BU 16 784 57 365 296 34 25 39
OE-BU 16 784 57 365 3223 48 27 41
PE-TD 6680 5930 3739 1261 4712 208 1620 74
OE-TD 6680 5930 3739 1261 4712 208 1620 74
MJ-BU 1559 2645 1728 852 295 63 305 75
MJ-TD 1559 2645 1728 852 295 63 305 75

Number of joins performed
PE-BU 0 0 0 0 100 53 85 54
OE-BU 0 0 0 0 452 16 88 55
PE-TD 0 0 0 0 113 17 85 22
OE-TD 0 0 0 0 113 25 104 24
MJ-BU 3 3 3 3 3 3 3 3
MJ-TD 3 3 3 3 3 3 3 3

PE-BU 0 0 0 0 1566 13709 575 1097
OE-BU 0 0 0 0 6530 3204 1431 1651
PE-TD 0 0 0 0 2433 3507 575 876
OE-TD 0 0 0 0 2433 3803 618 984
MJ-BU 1561 3110 1766 896 1561 3110 1766 896
MJ-TD 1561 3110 1766 896 1561 3110 1766 89G

Average processing time in ms
PE-BU 17.0 25.1 13.0 16.0 21.0 18.0 13.0 16.1
OE-BU 15.0 22.0 13.0 16.0 32.1 16.0 14.0 16.0
PE-TD 37.1 28.1 20.1 5.0 26.0 8.1 8.0 2.0
OE-TD 38.0 32.0 18.0 6.1 26.1 11.0 10.1 2.0
MJ-BU 23.0 27.1 23.1 18.0 21.1 26.0 21.0 17.0
MJ-TD 23.0 31.0 25.0 18.0 22.0 30.1 24.0 18.0

Tab. 6.2: Execution performance of the linear tree pattern queries on the data
and NSGraph

6. Combining Structural and Atomic Data Groupings 133

the bottom-up algorithms visit fewer vertices and both types of algorithm exhibit
the same complexity on linear tree patterns. It will become obvious, once the
results of the branching patterns have been discussed that this is actually an
artifact caused by the regular expression matching being performed against the
atomic data nodes. All linear path queries of the benchmark suite use keyword

predicates, i. e. they locate substring matches rather than exact hits. This is a
consequence of using the queries presented by Kaushik et al. [K1C+0.1a], which
were based on a hybrid system using inverted lists rather than dictionaries. The

cost for this substring matching dominates the overall cost of the atomic data

matching procedure, but is not accounted for by the individual performance inet-
rics.

Due to the restriction to non-branching query patterns, the performance met-
rics of top-down and bottom-up strategies of the same algorithms differ little or
not at all in the case of merge-join strategies. This is mainly due to the fact that
the same path must be followed during the matching process and that it does not
matter in which direction this occurs. Things become more interesting for the

general branching tree patterns, the performance metrics for which are shown in
Table 6.3 and 6.4

6.5.2.3 Results for the Branching Tree Patterns

As in the linear case the most important observation is that there exists a strategy
for every query that visits considerably fewer vertices of the hybrid NSGraph

than the best strategy over the data graph. Only taking the best strategy for

each query and data structure into account, this difference lies between a factor

of just under two and up to 30. In fact every strategy visits fewer vertices on

every query over the NSGraph with the exception of the bottom-up embedding

algorithms for Query Q4a. This query contains three descendant operators, each

of which result in a lengthy traversal of the hybrid structure.
There exists a query strategy for the hybrid data structure that outperform

the best strategy on the data graph for all queries except the queries Qla - Qlb

and Q2b - Q2c. These queries have a very low selectivity based on their atomic

value predicates and can thus be evaluated quickly on the data graph using the

atomic value index used by the bottom-up embedding algorithms. In general
the queries containing regular expressions over the nested description part of the

source exhibit the slowest performance, both on the data graph and the hybrid

6. Combining Structural and Atomic Data Groupings 134

Query Qla Qlb Q2a Q2b Q2c Q3a Q3b Q4a Q4b
Results 10 40 27 13 78 55 159 G

Number of vertices visited
PE-BU 513 500 286 305 267 1458 273 16816 1748
OE-BU 513 500 286 305 267 1458 273 16816 1748
PE-TD 3031 3027 2433 2473 2473 5753 3091 17529 13525
OE-TD 3031 3027 2433 2473 2473 5753 3091 17529 13525
MJ-BU 6970 6957 700 745 726 2961 1520 4301 70029
MJ-TD 2488 2475 424 469 450 2093 869 2832 35696

Number of joins performed
PE-BU 0 0 0 0 0 0 0 0 0
OE-BU 0 0 0 0 0 0 0 0 0
PE-TD 0 0 0 0 0 0 0 0 0
OE-TD 0 0 0 0 0 0 0 0 0
MJ-BU 5 5 3 4 4 6 4 4 6
MJ-TD 5 4 3 4 4 6 3 3 4

Number of entries joined
PE-BU 0 0 0 0 0 0 0 0 u
OE-BU 0 0 0 0 0 0 0 0 0
PE-TD 0 0 0 0 0 0 0 0 0
OE-TD 0 0 0 0 0 0 0 0 0
MJ-BU 6971 6958 700 790 752 3628 1677 4987 70800
MJ-TD 2492 2359 639 729 691 2999 1040 3518 36382

Average processing time in ms
PE-BU 12.0 4.0 4.0 2.0 2.0 26.1 28.0 45.0 14.6-
OE-BU 7.1 4.0 3.0 2.0 1.0 22.0 27.0 44.1 15.0
PE-TD 22.0 14.1 7.0 7.1 6.0 18.0 10.1 92.1 60.1
OE-TD 16.0 13.0 9.0 9.0 8.0 23.1 12.0 84.2 63.1
MJ-BU 44.1 48.1 3.0 3.0 3.0 30.0 33.0 25.1 727.0
MJ-TD 15.0 13.0 3.0 3.0 3.0 27.1 31.1 69.1 385"G

Tab. 6.3: Execution performance of branching tree patterns on the data graph

6. Combining Structural and Atomic Data Groupings 135

Query Qla Qlb Q2a Q2b Q2c Q3a Q3b Q1a Q-1b
Results 10 40 27 13 78 55 159 G

Number of vertices visited
PE-BU 341 343 30 31 30 58 9 24356 506
OE-BU 530 532 30 31 31 63 9 24356 506
PE-TD 1247 1243 1553 1557 1557 1222 530 13003 12056
OE-TD 1247 1243 1553 1557 1557 1222 530 13003 12056
MJ-BU 1226 884 399 400 400 218 138 556 4692
MJ-TD 704 706 153 154 154 118 70 352 2420

Number of joins performed
PE-BU 530 532 256 264 262 191 58 1386 349
OE-BU 509 511 256 256 256 139 58 1386 343
PE-TD 174 172 228 232 232 143 56 1235 140
OE-TD 178 174 456 449 437 242 9.1 1235 140
MJ-BU 5 4 3 4 4 6 4 4 6
MJ-TD 5 4 3 4 4 6 3 3 4

Number of entries joined
PE-BU 1705 1679 3679 3821 3465 18940 3739 28815 7281
OE-BU 1447 1421 3679 5779 4563 32393 3739 28815 7269
PE-TD 496 456 3316 3393 3155 10724 3532 48227 6132
OE-TD 540 478 3826 3879 3613 11594 4287 48227 6132
MJ-BU 6971 5209 700 790 752 3628 1691 4987 70800
MJ-TD 2492 2359 639 729 691 2999 10.10 3518 36382

Average processing time in ms
PE-BU 11.1 8.0 2.0 3.0 3.0 20.0 27.1 78.1 10.0
OE-BU 8.0 9.0 3.0 3.0 4.0 17.1 26.0 80.2 10.0
PE-TD 10.0 9.0 7.0 7.0 6.1 10.0 5.0 111.1 63.1
OE-TD 10.0 9.0 13.1 13.0 13.0 28.0 10.0 111.2 63.1
MJ-BU 40.1 28.0 3.0 4.0 4.0 27.1 31.1 21.1 515.8
MJ-TD 13.0 12.0 3.0 3.0 2.0 25.0 29.0 17.0 292.4

Tab. 6.4: Execution performance of branching tree patterns on the (2,1)-NSGraph

6. Combining Structural and Atomic Data Groupings 136

structure. The later contains cycles for this part of the source, which complicates
the evaluation of regular expressions and requires all embedding algorithms to
make use of arc- or vertex markers to avoid endless loops.

The embedding algorithms require to verify the entries representing vertex
instances of the data graph at every branching point of the query and when the

matched path exceeds the bisimilarity length of the NSGraph, whereas the merge-
join algorithms have a fixed complexity of one join per edge in the query tree.
However due to the fact that the candidate selection is solely based on tag labels,
but not structure, the cardinality of the argument sets can be larger than those
for the embeddings algorithms on the hybrid structure. This is the case for the
Queries Qla and b, which have a very low selectivity, and for Query 4b, whose
tag label wildcard forces the merge-join algorithm to consider all vertices of the

graph.
The data graph clearly favours the optimistically validating bottom-up (OE-

BU) algorithm, which produces the best or near best performance for all but the

very complicated Queries Q3a - Q4a. For the multi-valued predicate Queries Q3,

the individual predicates do not restrict the nodes being visited sufficiently for

the bottom-up algorithms as this is only achieved once the two predicate branches

join. They thus favour the pessimistically validating top-down embedding (PE-
TD) algorithm, which enables the predicate matching procedure on one branch

to restrict the candidate set before it is used for matching the next branch. Query
4a contains three descendant operators and is thus best resolved using a merge-
join algorithm that does not incur extra cost for this operator. Query 4b forbids

this strategy due to the use of the tag label wildcard and favours a bottom-up

approach that quickly narrows down the candidate set, before the descendant

operator is reached. On the NSGraph the situation is similar. However here the

optimistically validating top-down algorithms that does not filter out candidates

entries before all structural constraints have been met, is outperformed on queries
Q3a and Q3b by the pessimistic top-down embedding algorithm that continually

reduces the set of candidate entries through validation.

6.5.3 Varying the Coarseness of the NSGraph Structure

In order to analyse the influence a particular data grouping has on the execution
performance of the different query strategies, the parameters used to define the

underlying bisimulation of the hybrid representation are varied. Both forward

6. Combining Structural and Atomic Data Groupings 137

and backward bisimilarity length are varied independently from zero to three.
This defines a four-dimensional, discrete parameter space for every single metric
measured, given by the forward and backward bisirnilarity, the query algorithm
used and the query executed. The measurements obtained in this experiment
are too numerous to be presented here entirely but are listed in Appendix D for

completeness. Here only a few interesting aspects can be highlighted, which were
established using pivot tables and diagrams over the collected data.

6.5.3.1 Results for the Linear Tree Patterns

Figure 6.9 shows the minimal number of vertex visits taken to answer an individ-

ual linear query by any of the algorithms over the complete set of query strategies.
This is presented as values over the bisimilarity parameter kb and k -f, determining

the backward and forward bisimilarity respectively. The number of visits for all

queries are stacked up to give an estimate of the overall usefulness of a particular
NSGraph.

Two observations can be made using this data. Firstly it becomes obvious
that the number of vertices visited increases with the complexity of the bisimu-

lation and the NSGraph based upon it. This trend is visible both for increasing
backward and forward bisimilarity. The increase is monotonic for increasing for-

ward bisimilarity. For increasing backward bisimilarity the results are less clear

cut. There is a significant difference, about one order of magnitude for most

queries, between those structures based on zero backward bisimilarity and NS-
Graphs based on bisimilarity greater than zero. However, the increase is not
monotonic for the cases k -f =2 and k -f = 3. In the first case there is a reduction
in the number of required vertex visits for kb =2 and in the second case for

kb = 3. Closer inspection of the raw data shows that the discontinuity between

kb =0 and kb =1 arises from the different set of query strategies used for optimal

computation. Whereas for the case with no backward bisimilarity a combination

of merge-join algorithms (for Query K1) and bottom-up embedding algorithms
(for all other queries) requires least visits, NSGraphs based on backward bisim-

ilarity with kb >1 are better addressed using a combination of top-down (for

Query K4) and bottom-up (for all other Queries) embedding algorithms.
The second observation is that Query K1 dominates the processing costs for

this set of queries. This is at least partly expected as its descendant operator

means that no graph based on local bisimilarity is covering even for the structural

6. Combining Structural and Atomic Data Groupings I; ih

p
L
r
O
C1

io

C1
7
Q

w O
U)

w N

w O

d

7
C

E

.ý

^IýIýIý

am aa
C')

N
fý

orn n cu 8

NN V

NNI-

V

r N

NqN

7 f7 Y1 N
rýr pf

'!
'NI, Q

,

T'. j

rý'i

ýMýIN

ýf
MMIMV

cn CN
85ý8 5ý °YaYý13,

Fig. 6.9: The number of vertex visits used by the best query strategy for each of
the linear query patterns over the bisiinilarity of the NSGrapli

6. Combining Structural and Atomic Data Groupings 139

aspect of this query.
Figure 6.10 makes the different response of the individual queries to variations

in the bisimulations more obvious. It shows the same information as Figure 6.9,

but presents the data over a two-dimensional space representing the different

bisimilarity lengths. In addition, the data is grouped by queries.
The minimal number of vertex visits required (Figure 6.10(a)) for Query I(4

are dominated by its forward bisimilarity, with the backward bisirnilarity only
having a significant impact for kf=3. Query K3 shows the opposite behaviour.

For this query the number of vertex visits grows predominantly with the back-

ward bisimilarity length, but is independent of k-f with the exception of k1 = 0.

Query K2 combines both aspects. Here an increase in either the forward or back-

ward bisimilarity results in an observable increase of vertices being visited by the

best suited query algorithms. Apart from obviously being the most complicated

query to resolve, Query K1 responds in a rather chaotic way to the different

forward and backward bisimilarities. Query algorithms require access to more

vertices with increasing forward bisimilarity. However, the number of nodes ac-

cessed in dependence of backward bisimilarity reaches a peak for lib =1 and

decreases both for lower and higher values.
Inversely the total cardinality of joins required to compute the results increase

with shorter bisimilarity length. Thus the kb-axis of Figure 6.10(b) is reversed.
Here the backward bisimilarity is the dominant factor for all queries. Only for

Query K1 there exists a significant influence of the forward bisimilarity.

Overall it becomes clear from the two parts of Figure 6.10, that one is trading

the precision of the NSGraph and consequently low join cardinality and com-

putational expense for the number of vertices being visited and thus I/O costs.

However, there exists also a significant influence of the specific query and not

only the general query class. As Table 6.1 shows, the queries K1 and K4 are

isomorphic as are the queries K2 and K3. Thus the observable different response

to the different data groupings must be a consequence of the different selectivity

of its constituent predicates, favouring different query strategies and leading to

different execution performance.

Figure 6.11 shows the response of four different query strategies to the linear

Query K2, which is a typical query from the target class with moderate predicate

selectivity. The query algorithms not shown respond in a very similar way to

the ones presented, i. e. top-down and bottom-up merge-join algorithm behave

almost identically for this particular query, as do the pessimistic and optimistic

6. Combining Structural and Atomic Data Groupings

300

250

200

15(
i

is

5

k
KQ

(a) Number of vertices visited

35

3(

2

a2

1
k,

0
kp

IH

k, K4 3

(b) Total cardinality of joins

Fig. 6.10: The response of the four different queries to different NSGraphs

Minimum number of vertex visits of all query algorithms

Minimal join cardinaiityof all query algorithms

6. Combining Structural and Atomic Data Grou

Number of vertex visits of different algorithms for Query K2

350

300

250

4 200
N

1x

is

5

140

12(

1D

y8

W

k,

lý

kb

A 13 "1
14 1110

(h) Total cardiiiality of joins

Fig. 6.11: The response of four different query algorithms to Query 1i2

1.11

w TO

(a) Number of vertices visited

Join cardinality of different algorithms for Query K2

6. Combining Structural and Atomic Data Groupings 142

top-down embedding algorithms.
The bottom-up merge-join (MJ-BU) algorithm cannot make use of the ad-

vantages of the NSGraph, i. e. it solely relies on the provided tag label and
data indices. Consequently it suffers from the refined data grouping provided
by greater bisimilarity length in terms of vertices being accessed. However its

join cardinality remains constant as all join candidates are identified using the
flat indices alone and the structural relationships represented by the shape of the

various NSGraphs are disregarded. This conventional algorithm exposes the best

performance over the simplest data structure.
Since the bisimulation becomes more refined as kb and k1 grow, the embedding

algorithms also have to visit more nodes of the resulting, more complex NSGraph.

However, these algorithms can make use of the structural properties provided by it

and thus need to consider less entries for their joins. For both bottom-up variants
(OE-BU and PE-BU), forward and backward bisimilarity length contribute to

the number of vertices being visited in about equal terms. For the top-down

algorithm (PE-TD) the influence of forward bisimilarity is more significant than

the influence of backward bisimilarity.

Again the kb-axis was inverted for the graph shown in Figure 6.11(b). Here

the difference between optimistic and pessimistic bottom-up embedding becomes

obvious. For the case of kb = 3, i. e. once the backward bisimilarity is covering
the entire path from the leaf embeddings back to the rooting open-auction ver-
tices, the optimistic algorithm does not require to validate intermediate results

and the resulting join cardinality is very low. With decreasing backward bisim-

ilarity lengths however its join cardinality approaches the one of the pessimistic

variant of the same algorithm, which validates entry references at every step of
the matching process in order to get rid of invalid candidates early. Because

such a case does not occur for this particular query this approach is sub-optimal

and results in a almost constant join cardinality, independent from the level of
detail of the NSGraph. The pessimistic bottom-up algorithm also demonstrates

another interesting effect. For kb =1 and kf=3, i. e. for a relatively fine-grained

but not structurally covering NSGraph, the join cardinality increases sharply.
Obviously the algorithm requires to verify a large number of candidates here,

which do not contribute towards the final result. However for both greater and

smaller backward bisimilarity this metric decreases. It shows that depending on

the cardinality of individual candidate sets for parts of a query graph, the join

cardinality does not need to increase monotonically with decreasing precision of

6. Combining Structural and Atomic Data Groupings 143

the data structure. The example chosen proves that there are cases where a
coarser NSGraph will be more appropriate to a given query and require fewer

candidates to be joined.

The pessimistic top-down embedding strategy also shows a strong correlation
between decreased precision of the backward bisimilarity length and the cardinal-
ity of required joins. The forward bisimilarity length however has no noticeable

effect on the join cardinality. Apparently many bids from 1999 belong to open

auctions, but not necessarily vice versa.

6.5.3.2 Results for the Branching Tree Patterns

The results obtained using the set of branching queries are similar to those ob-
tained for linear queries, which supports the claim that the provided design is

equally suitable for each class of queries. In terms of absolute values, the results

exceed those of the linear queries, which is expected given their higher complexity

and expressive power. Figure 6.12 shows the minimum number of vertices being

visited by any query algorithm for the set of benchmark queries over different

NSGraphs. The data confirm the results from the linear case. Here the increase

of vertices being visited is monotonic both for increasing backward and forward

bisimilarity. Queries Q4a - b, which include regular expression over the recursive
description part of the source dominate the number of visits required.

Figure 6.13 makes this more obvious and shows that not only the amount of
data being considered grows for these queries, but also the computational power

required to perform the required joins. There exist significant differences between

the responses of the optimal number of query visits and total join cardinality for

the different queries. For queries Qla - Qlb the forward bisimilarity length dom-

inates the number of vertices being visited (Figure 6.13(a)), whereas for queries
Q2a - Q2c the backward bisimilarity dominates. For the remaining Queries Q3a

- Q4b both factors notably influence the number of vertices being visited. Given

that with increased precision of the bisimulation the total number of vertices also

grows, this is actually the expected behaviour. However, queries Qla - Q2c prove

that even a continually growing NSGraph does not imply a continually growing

number of vertices being visited.

The minimal total number of entries being joined during query execution (Fig-

ure 6.13(b)) only reveals two different classes of queries in this set. Queries Qla

- Qlb and Q4b can be resolved with fewest joins for the most precise NSGraph,

6. Combining Structural and Atomic Data Groupings 111

j; 10 ry
^

t. 4 (D
1A

Oý 10 N N

M
N
UY

N

O
Yý
O

N
Of
e'ý

u7
N
NO

N
7
N

t0
N
N

M

I a0
Ö

N
N O

t7 t+I
O
f7

ýy
y

M y t7 I+f

CD

a fý1 10 < < f'7 t0 10

ch Mp N Na

+
tD t0 taý

'
N N y j Of c ý Vl 7 N (fýf

9

ýII

N

fD

n

t0
O aD NVN

My

NNN th l'7

(1)
CD
C

u3
u

O CO
f07 f7

M ; ý

H ý ^ O N ý
II)

" I f'1 N a
N N0 N

VY

ý
i

M

w
M

t, 2 CD
O

N
N

t7
N

Co ,
N 0 M

e'f

E
9 1 1.

Of f', f0 R m 10 0

ON co NVRM
LA N

N
O

-IT cli
CO -

"' ý! v 't m0

000 (D 0000000 f0 10 NO a
Cpl 'CýJ0,0 0ý 0Ö

Cl)

Fig. 6.12: The number of vertex visits used by the best query strategy for each
of the branching query patterns over the bisiniilarity of the NSGraph

6. Combining Structural and Atomic Data Groupings Hr)

Minimum number of vertex visits of all query algorithms

p

i

k,

(a) Number of vertices visited

Minimal join cardinlity of all query algorithms

1 u,

9

8

W

i
k,

(b) Total cardinalitY of joins

Fig. 6.13: The response of the nine different queries to different NSGraplis

kr b
-la

ý-.
ý'6

gý -o ýý ý`w' ý
0

6. Combining Structural and Atomic Data Groupings 146

i. e. the graph based on the (3,3)-bisimulation. With decreasing precision, both

in terms of forward and backward bisimilarity, there is an increase in the number

of candidate entries being considered. For Queries Qla -b the absolute join

cardinality remains small down to (1,1)-bisimilarity and then increases sharply
for either kb or kf reaching zero. For Query Q4b this increase is more gradual

without the presence of obvious steps. All other queries, i. e. Q2a - Q4a expose

a constant number of minimal joins. As will become obvious from Figure 6.14

and 6.15, this is a clear indication that the strategy producing this result is one

of the merge-join algorithms, i. e. an algorithm that does not make use of the

structural properties of the NSGraph. The only significant exception to this be-

haviour can be seen for the case of kb =3 of Query Q3a. For this query one of
the embedding algorithms requires to join fewer candidate entries for very precise
NSGraphs than the merge-join algorithm. Thus there exists a step in this query's

response in Figure 6.13(b).

Two queries are analysed further. Query Qla is a point query, i. e. a query

with a value predicate that is matched by a single vertex of the data graph. The

response of four of the different query strategies to this query is presented in

Figure 6.14. Due to its structure every predicate of the query pattern is either a
leaf or a branching point, thus optimistic and pessimistic embedding algorithms

respond very similarly. For reasons of clarity only the results taken for the opti-

mistic variants are included in Figure 6.14. For all but the bottom-up embedding

algorithm (OE-BU), the number of vertices being visited increases with increas-

ing NSGraph precision (Figure 6.14(a)). For the bottom-up embedding, however,

the number of vertices being visited is slightly reduced for NSGraphs with kb > 1.

In general there is a steep increase of vertex visits if either backward or forward

bisimilarity lengths is increased from zero to one, but these increases become

smaller for higher bisimilarity lengths.

Figure 6.14(b) shows the join cardinality of the algorithms used for Query

Qla. Both bottom-up (MJ-BU) and top-down (IM-TD) variants of the merge
join algorithm are unaffected by the data structure used and have a constant join

cardinality. However the total number of entries considers differs for top-down

and bottom-up approach, with the top-down approach looking at only a third of

the entries the bottom-up variant considers. For the two embedding algorithms

the number of candidate entries decreases with increased NSGraph precision. The

bottom-up (OE-BU) variant becomes almost unusable for the case of kb =0 and

kf>1 because it requires more than an order of magnitude more candidates

6. Combining Structural and Atomic Data Group

Number of vertex visits of different algorithms for Query 0 1a

1600

1400

1 200

1000

aoc

60C

40(

2

4b

(a) Number of vertices visited

25(

20

S

W

1

0
kb

ý9G "pý
J

(b) Total cardinality of joins

Fig. 6.14: The response of four different query algorithms to Query Qla

G OF, ý
TO

Join cardinality of different algorithms for Query Q1a

.
pý 'ßp1

30000 (Ii...

6. Combining Structural and Atomic Data Groupings 148

to be joined. However this is drastically reduced to a number of joins smaller
than the top-down merge-join (MJ-TD) algorithms for kb > 1. In this case
the forward bisimilarity lengths or further increases in the backward bisimilarity

play only insignificant roles. Finally the optimistic top-down embedding exposes

a similar behaviour, but has an overall lower join cardinality. Again the only

significant drop in its size is between zero backward or forward bisimilarity and
the group of more precise data structures. Unlike for the bottom-up variant, here

the (0,0)-NSGraph represents the worst scenario.
Taken as a whole, Figure 6.14 shows that this particular query can not ben-

efit significantly from very precise NSGraphs, i. e. cases with k -f >1 and kb > 1.

Beyond this degree of bisimilarity the NSGraph grows in complexity and conse-

quently query algorithm need to visit more vertices of it, without being rewarded
by an equivalent reduction in the join cardinality.

Query Q4b combines a descendant operator with the use of a tag label wild-

card, which requires all algorithms to repeatedly visit the same vertex of the

NSGraph in different contexts. Because the part of the source being matched is

recursive in nature, its corresponding NSGraphs contain cycles. Thus the total

number of vertices being visited exceeds the size of the vertex set in many cases.
Unlike the previous graphs Figure 6.15(a) uses a logarithmic scale on the z-axis

showing the number of vertices being visited by any of the four algorithms in

order to resolve this query. Both merge-join algorithms show a near-exponential

growth in the number of visited vertices with increasing precision of the under-
lying bisimulation. As for Query Qla, the total number of visits is smaller for

the top-down variant (MJ-TD). The embedding algorithms also show an increase

in the number of vertices being visited for more precise NSGraphs, however this

growth is sub-exponential and flattens out for the bottom-up variant (OE-BU)

and is even negative for the top-down variant for the transition from k -f =2 to

kf=3 for kb > 0. However in terms of overall magnitude the bottom-up vari-

ant (OE-BU) lies always below all other query algorithms, whereas the top-down

version (OE-TD) lies between the two merge-join algorithms for most cases but

significantly above for the cases with kb = 0.

As for Query Qla, answering Query Q4b requires a constant number of can-
didate entries to be merged by the bottom-up (MJ-BU) and top-down (MJ-TD)

merge-join algorithms. Again the top-down strategy is the better choice, here by

a about a factor of two. The two embedding algorithms produce a less regular

result. Though the general trend confirms that more precise NSGraphs require

6. Combining Structural and Atomic Data Groupings I l! º

Number of vertex visits of different algorithms for Query Q4b

100000

10000

1000

1o(

10

ký

(a) Number of vertices visited

Join cardinality of different algorithms for Query Q4b

t$UU

70(

60(

50

2
b 40
C w

3(

21

1

0
ks

dG V01.1

k,

(b) Total cardinality of joins

Fig. 6.15: The response of four different query algorithms to Query Q41)

6L ý

k,
ýrý .

6. Combining Structural and Atomic Data Groupings 150

fewer entries to be validated, the relationship between the forward and back-

ward bisimilarity length and the resulting join cardinality is more complicated.
For the bottom-up variant (OE-BU), all data structures based on zero backward

bisimilarity are particularly expensive and their join cardinality even increases

with growing k1, though they still require fewer candidates to be joined than the
bottom-up merge-join (MJ-BU) strategy. For the remaining cases the decrease in

join cardinality with increased precision becomes obvious. For the top-down vari-

ant (OE-TD) too, the most precise structure analysed, i. e. the (3,3)-NSGraph,

requires the least entries to be joined. However, here the maximum lies in the

middle of the parameter-space, with kf =1 and kb = 2. This indicates a reduction
in the join cardinality for both coarser and more refined NSGraphs.

Combining the observations of both parts, Query Q4b is best addressed using

a bottom-up algorithm over a fairly precise NSGraph, e. g kf= kb =2 or kf=

kb = 3. This results in a query execution phase that only needs to verify relatively
few candidates from a comparable low number of vertices. In addition, the size

of the individual vertices in such a fine-grained data structure will be lower than

those of a very coarse one such as the (0,0)-NSGraph. This, however, is not taken

into account by the performance metrics used.

6.5.4 Limitations of the Experiments Performed

The conclusions that can be drawn from this analysis are limited by the developed

prototype and the benchmark used on it. Firstly the concrete implementation of
the experimental system covers only a subset of the total functionality suggested
in the motivating example. Only tree patterns can be answered using the current

system, not generally unrestricted branching path expressions. For reasons of
technical simplicity the prototype system is not built on top of a data manage-

ment system, i. e. it does not support data persistence. Instead an in-memory

implementation of the data structure is used. This limits the maximal size of the

data being queried but also affects the relative influence of processing and I/O

costs to the total query time. For the experimental system the costs of string

matching and merge-joins dominate the overall costs, whereas for a disk-based

system the I/O performance would play a bigger role.

Secondly both the data source and the queries used on it are restricted. As

the area of semistructured data processing is still immature in comparison with

relational technology, there exists only few benchmarks. In addition, published

6. Combining Structural and Atomic Data Groupings 151

benchmarks are often biased to analyse very particular but limited aspects of
SSD processing.

Thirdly the analysis of the execution metrics of the benchmark queries used
in the experiments presented here produce complex data over a four-dimensional

parameter space. A complete analysis of the data generated remains a task for a
future investigation.

6.6 Summary

This chapter motivates and describes a design for a hybrid query system that
is able to deal with queries containing both structural and atomic value predi-
cates. It shows how to combine two different data groupings, each of which was
previously shown to provide an efficient solution for one of these two aspects.
A numbering scheme for the nodes of the distinct spanning tree serves as the

glue combining the two partial solutions and allows for a easy transition between

them.
The experimental system based on this design is able to resolve branching tree

patterns with arbitrary value predicates using different query algorithms adapted
to work on top of this data structure. Its evaluation has shown that both the type

of the query and the cardinality of its constituting predicates have a significant
influence on its execution performance.

Moreover the design and its implementation allow variation in the coarseness

of the bisimulation on which it is based. This is crucial in order to show the
impact that a particular grouping has on the evaluation of a query. It also makes

obvious the trade-off between the precision of a used data structure with respect
to a class of queries and the computational expense required to resolve them. The

experiments performed clearly indicate that although the bisimulation grows uni-
formly with increased bisimilarity length (Section 4.3.2), important performance

metrics do not closely follow this increase.

7. CONCLUSIONS

Scientific Results

"Science is always wrong.
It never solves a problem without creating ten more. "

George Bernard Shaw, The Doctor's Dilemma, 1911

7.1 Results

This chapter combines the observations gained from looking at the issue of data

groupings from various angles. The concept was originally introduced and used
by the optimisation model presented in Chapter 3. Chapter 4 has formalised the

abstract concept of data groupings into the more tractable problem of domains

for graph structured data. Different definitions provided there were used through
the following experimental chapters. Chapter 5 demonstrated the beneficial ef-
fects data groupings have on efficient SSD representation, and finally Chapter 6

analysed the influence of such groupings on a number of query algorithms.

7.1.1 Data Groupings as Explanatory Tool for Query
Optimisation Techniques

As in the relational case, the success or failure of semistructured data manage-
ment will be decided by its performance rather than its theoretical properties.
Consequently much research has been devoted to optimising SSD management

systems and was referred to throughout this thesis. There are, however, no widely

accepted models that describe this process in general. It is the hypothesis of this

thesis that a significant element of optimisation techniques is based on data group-
ings. To support this hypothesis, an abstract model of the general optimisation

process has been designed and was detailed in Chapter 3.

The model developed was used to describe three different optimisation prob-
lems (Section 3.3). One of these was based on the author's work on SSD com-

7. Conclusions 153

pression, one on work performed by Kaushik et al. [KS+02, KB+02] on structural
indices based on local bisimilarity and the last one addressed a purely hypothet-

ical class of queries. The solutions to all of these problems could be described in

terms of the model proposed and thus support its utility.

7.1.2 Domains for Graph-Structured Data

Domains, a concept fundamental to the relational paradigm, are noticeable absent
from the definition of SSD models. Yet many optimisation methods employed by

relational technology depend on this concept. If one is to transfer such optimisa-
tions to the semistructured case, the concept of domains needs to be re-established
there first. This thesis presents a definition of the concept of a domain structure
in general, which depends on the individual application semantics. This concept
is refined into a more practical definition for application independent domain

structures, which are based on graph properties alone. A subclass of these are
the equivalence domain structures, which are based on some given equivalence

relationship between vertices of a data graph.
Because multiple equivalence relationships can be attached to a single source,

there exists a multitude of possible definitions of domain structures. Each such

structure implies a different set of actual domains for a given source. Seven exam-

ples of application independent domain structures and one application dependent

domain structure were introduced Section 4.2. They were taken from other re-

search in the area of SSD processing, in particular from work on semistructured
indexing. The seven application independent definitions were applied to a col-
lection of example sources and the resulting domains were statistically analysed.
For the first five examples that are fixed by definition, a rough classification of
three different types of sources could be established (Section 4.3.1). Sources that

are essentially a semistructured encoding of regular data result in simple domain

structures, exposing their inherent regularity. A second group of sources still

exposes structural coherence of the established domains, but members of these

domains can be found in different contexts. A last group does not expose either

structural or contextual homogeneity and thus results in very complicated domain

structures. The last two application independent domain structures (Example 4.6

and 4.7) can be parameterised to reflect the desired degree of coherence between

members of a discovered domain. This approach was applied to a single graph-

structured source in order to find pathological points in the parameter space. The

7. Conclusions 154

normal distribution of the experimental results shows that pathological points do

not exist for the specific source used (Section 4.3.2).

The even less restricted case of semantic domains is investigated further by
the investigation of type projection of semistructured data. This work extends
beyond the scope of this thesis and is included in Appendix A.

7.1.3 Compression of Semistructured Data

Compression algorithms for SSD can be improved by applying them to semanti-

cally homogeneous domains. Using Example 4.2 of Chapter 4, this work shows
how dictionary compression previously used in the relational case can be trans-
ferred successfully to SSD.

The implemented DDOM prototype saves up to 80% of memory in comparison
in other implementations of the DOM model for data-centric documents. If value
indices are created on the resulting dictionaries, their total size in combination

with the original data structure is still significantly smaller than the conventional,

non-indexed implementations.
Access through the DOM interface prohibits an external query engine from

making use of the developed data structure in general and the value indices in

particular. Thus external query engines accessing the data structure through this

interface perform poorly for many queries. However, accessing the DDOM data

directly in a way that makes best use of the dictionaries allows more efficient

querying. The experimental analysis suggests that the provided solution is bene-

ficial for a subset of queries that are based on selective value predicates and can

outperform conventional implementations on this type of query.

7.1.4 Hybrid Querying

While most previous research addresses either the structural or the atomic value

part of a query, Chapter 6 provides an approach for integrating the two. This

is important, as reducing the volume of data being considered is an important

aspect of every query optimiser. Depending on the specific query, this might be

achieved by either strutural or atomic value predicates and an integration at an

early stage in the query process can thus help to filter out irrelevant information

earlier in the process.
A hybrid data structure was developed, in which numbering schemes were

7. Conclusions 155

used as a bridging element between data groupings based on structural properties
identified using local bisimilarity and atomic value dictionaries. The experimental
implementation allows analysis of the influence that different data groupings have

on a particular query algorithm. The performance metrics of several variants of

subgraph embeddings vary greatly in response to the different data groupings

parameterised by the bisimilarity length of the underlying bisimulation, whereas
two variants of a merge-join algorithm, which do not make use of the hybrid data

structure, are unaffected of different data groupings.
An important observation drawn from the experimental results is that the

actual response is more specific to the actual instance of a query than the general

query class as suggested in the general optimisation model. This issue is further

discussed in Section 7.2.4. But even if one considers a single query the response to

varying levels of precision of the data grouping is not uniform. This is in contrast
to the findings of Section 4.3.2. Local minima in the parameter space suggest

particularly useful data groupings, which capture the aspects of a source relevant

to the query without increasing the complexity of the domain structure too far.

7.2 Limitations and Future Work

The abstract model proposed in this thesis is amenable to experimental inves-

tigation. Two such experiments were provided in chapters 5 and 6. Further

support can be gained from other related work reviewed by this thesis in general

and by the investigation included in Appendix A in particular. However, there

exist particular aspects, whose relationship to data groupings deserve a further

investigation.

7.2.1 Choice of Data Sources

The example data sources used to test the hypotheses presented are deficient in

a number of ways. First and foremost, many of them originate from structured
data sources and only exhibit a limited degree of irregularity.

Many of the used sources represent hierarchical structures rather than true

graphs. Though many sources describe data that is intrinsically graph structured,

e. g. the DBLP bibliographic database, the limited treatment of graphs by the

XML standard prevents application developers from exposing this information in

the physical representation. Instead it is encoded implicitly in their application

7. Conclusions 150

semantics. This is problematic for an automatic analysis of such data as required
for this thesis. The two cross-referencing mechanisms, which are provided by

the W3C, ID: IDREF-attributes and XPointer, are both too limiting for many

applications. In addition, ID: IDREF references require the presence of a docu-

ment schema and only work within one document, which is too limiting for many
data-centric applications. XPointer is not part of the XML standard itself and
has only received little attention.

Such shortcomings will be resolved as the technology matures. It would be

of interest to repeat similar experiments to the ones described here, once large,

truly graph structured, real world data sources are available. Such data is be-

coming available now. Examples are the IMDB movie databases or Amazon's

book catalogue2. Because of their size and their economic value, the informa-

tion contained in these sources is only available through querying for individual

entries rather than as a complete database. Reconstructing, storing and query-

ing a large proportion of such sources opens experiments to legal, technical and

practical questions.

7.2.2 Extension of Query Language

The query language used throughout this thesis is that of branching path ex-

pression extended by atomic value predicates (Section 2.3.1). Like the original
branching path expressions, it ignores the order of outgoing edges from a common

vertex. Core XPath on the other hand supports queries depending on this prop-

erty and thus extends beyond the expressive capacity investigated by this thesis.

The numbering scheme used in Chapter 6 also encodes order. It would be worth-

while to investigate how this information can be exposed to and utilised by the

query process. The origins of this situation were highlighted in Section 4.2. An

investigation into how important the issue of order is for data centric-applications

is still outstanding.
The experimental systems described in chapters 5 and 6 only cover tree pat-

terns but not general graphs. The numbering scheme used as part of the data

structure developed in Chapter 6 is also restricted to trees rather than graphs

and prevents a straightforward extension to this general case. Finding number-

ing schemes for general graphs that at least encode local relationships between

1http: //www. imdb. com
2 http: //wwW " amazon. com

7. Conclusions 157

vertices would support such an investigation.

7.2.3 Domain Statistics as Metrics for Semistructured Data

The classifications of data sources established in Section 4.3.1 using competing
domain structure definitions does not closely follow what is known as the clas-

sification into data- and document-centric and hybrid documents [KI`102]. Both

the set of domain definitions used and the set of sources analysed was necessarily

restricted for the scope of this thesis. It would be of interest to extend such an
investigation to see whether the results could be used as an additional set of mnet-

rics to classify instances of SSD. Up to now such analysis was based directly on
the particular instance [KSHO2] or a provided document schema [AL02, SahOO].

7.2.4 Query Planning Based on Data Statistics

The response of different data groupings on the two sets of benchmark queries

used in Section 6.5 have shown interesting results. Even for isomorphic queries,
i. e. queries belonging to the same complexity class, the response could vary sig-

nificantly. Whereas for some queries the forward bisimilarity length determined

the query costs, others were more affected by the backward bisimilarity, a com-
bination of both or neither. This different behaviour for similar queries can only
be explained with the different selectivity of the individual predicates constitut-
ing an individual query. Such issues provide an interesting approach to query
optimisation based on the statistical data gathered during data classification.

7.2.5 Comparison with Information Retrieval Systems

All work presented here was concerned with the processing of or querying for

exact answers to given problems. This strict discipline might incur a severe

performance penalty in comparison with laxer IR systems, which try to give

reasonably approximate answers. Even if exact answers are sought, computing

approximate answers first and verifying them in a later process might yield per-
formance benefits. An extensive practical comparison, based on the analysis of

application requirements, between such approximate and accurate systems would
be of interest.

REFERENCES

[AB84] Serge Abiteboul and Nicole Bidoit. Non first normal form relations
to represent hierarchically organized data. In PODS 1984, pages
191-200,1984.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:
From Relations to Semistructured Data and XML. Morgan Kauf-

mann, San Francisco, CA, USA, 2000.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Design

and Analysis of Computer algorithms. Addison-Wesley, 1974.

[AL02] Marcelo Arenas and Leonid Libkin. A normal form for XML docu-

ments. In Lucian Popa, editor, PODS 2002, pages 85-96, Madison,

Wisconsin, USA, 2002. ACM.

[A1a96] Aladdin Enterprises. GZIP file format specification version 4.3. RFC

1952, May 1996. http: //www. ietf. org/rfc/rfc1952. txt.

[AO+99] Malcolm Atkinson, Maria E. Orlowska, et al., editors. Proceedings of
the 25th International Conference on Very Large Data Bases, Sep-

tember 7-10,1999, Edinburgh, Scotland, UK. Morgan Kaufmann,
1999.

[AQ+97] Serge Abiteboul, Dallan Quass, et al. The lorel query language for

semistructured data. Int. J. on Digital Libraries, 1(1): 68-88, Apr

1997.

[BB99] John Bosak and Tim Bray. XML and the second-generation web.
Scientific American, May 1999.

[BCOO] Angela Bonifati and Stefano Ceri. Comparative analysis of five XML

query languages. SIGMOD Record, 29(1): 68-79,2000.

References 159

[BF00] Andre Bergholz and Johann Cristoph Freytag. Querying semistruc-
tured data based on schema matching. In Richard Connor and Al-
berto Mendelzon, editors, DBPL'99, volume 1949 of LNCS, pages
168-183. Springer, 2000.

[BGK03] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries
on compressed XML. In VLDB 2003,2003.

[BI+02] Philip A. Bernstein, Yannis E. Ioannidis, et al., editors. Procccdings

of the 28th International Conference on Very Large Databases, Hong
Kong, China, 2002. Morgan Kaufmann.

[BKS021 Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig
joins: Optimal XML pattern matching. In SIGMOD2002 [SIG02],

pages 310-321.

[BL82] Dines Bjorner and Hans Henrik Lovengreen. Formalization of data-
base systems - and a formal definition of IMS. In VLDB 1982, pages
334-347. Morgan Kaufmann, 1982.

[BLCG92] Tim Berners-Lee, Robert Cailliau, and Jean-Francois Groff. The

world-wide web. Computer Networks and ISDN Systems, 25(4-
5): 454-459,1992.

[BLHLO1] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scientific American, May 2001.

[Bra03] Chris Brandin. Xml data management: Native XML and XML-

enabled database systems. In Akmal B. Chaudhri, Awais Rashid,

and Roberto Zicari, editors, XML Data Management, chapter Infor-

mation Modeling with XML, pages 3-17. Addison Wesley, 2003.

[Cat94] R. G. G. Cattell. The Object Database Standard: ODAIG-93 (Release

1.1). Morgan Kaufmann, 1994.

[CB03] Byron Choi and Peter Buneman. XML vectorization: A column-
based XML storage model. Technical Report MS-CIS-03-17, Univer-

sity of Pennsylvania, 2003.

References 1G0

[Che01] James Cheney. Compressing XML with multiplexed hierarchical
PPM models. In DCC 2001, pages 163-172. IEEE Computer So-

ciety, 2001.

[Cho02] Byron Choi. What are real DTDs like? In Mary F. Fernandez

and Yannis Papakonstantinou, editors, WebD13 '02, pages 43-48,
Madison, WI, USA, Jun 2002. ACM PODS/SIGMOD. Informal

proceedings.

[CL+01] Richard Connor, David Lievens, et al. Extracting typed values from
XML data. In OOPSLA Workshop on Objects, XML and Databases,
2001.

[CLO03] Qun Chen, Andrew Lim, and Kian Win Ong. D(K)-index: An adap-
tive structural summary for graph-structured data. In Alon Haley,
Zachary Ives, and AnHai Doan, editors, SIGMOD 2003, pages 134-
144,2003.

[CMW98] W. Paul Cockshott, Douglas McGregor, and John Wilson. High-

performance operations using a compressed database architecture.
Computer J., 41(5): 283-296,1998.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
CACM, 13(6): 377-387,1970.

[CRU021 Akmal Chaudri, Erhard Rahm, and Rainer Unland, editors. Web

Databases 2002 (NODe '02 Workshop), Erfurt, Thuringia, Germany,
Oct 2002. http: //dbs. uni-leipzig. de/webdb/webdb02/index.

htm1.

[CU02J Akmal Chaudri and Rainer Unland, editors. XML-Based Data Man-

agement (EDBT 2001 Workshop), Prague, Czech Republic, Mar

2002.

[CV+02] Shu-Yao Chien, Zografoula Vagena, et al. Efficient structural joins

on indexed XML documents. In Bernstein et al. [BI+02].

[DBT71] Report of the CODASYL data base task group, Apr 1971.

[DF+98] Alin Deutsch, Mary F. Fernandez, et al. XML-QL. In QL '98

[W3C98]. http: //www. w3. org/TandS/QL/QL98/.

References 161

[DFS99] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing scmistruc-
tured data with STORED. In Alex Delis, Christos Faloutsos, and
Shahram Ghandeharizadeh, editors, SIGMOD 1999, volume 28 of
SIGMOD Record, pages 431-442. ACM Press, 1999.

[Die82] Paul F. Dietz. Maintaining order in a linked list. In STOCS'82,

pages 122-127. ACM Press, 1982.

[DOMOO] World Wide Web Consortium. Appendix C. Java Language
Binding, 2000. http: //www. w3. org/TR/2000/WD-DOM-Level-l-
20000929/java-language-binding. html.

[FH+02] J. Freire, J. Haritsa, et al. StatiX: Making XML count. In SIG-
MOD2002 [SIG02], pages 181-192.

[FK99] Daniela Florescu and Donald Kossmann. Storing and querying XML
data using an RDBMS. Data Engineering Bulletin, 22(3): 27-34, Sep

1999.

[FL+03] Johann-Christoph Freytag, Peter C. Lockemann, et al., editors. Pro-

ceedings of the 29th International Conference on Very Large Data-

bases, Berlin, Germany, 2003. Morgan Kaufmann.

[FTSOO] Mary F. Fernandez, Wang-Chiew Tan, and Dan Suciu. SilkRoute:

Trading between relations and XML. Computer Networks, 33(1-

6): 723-745,2000.

[GMW99] It. Goldman, J. McHugh, and J. Widom. From semistructured data

to XML: Migrating the Lore data model and query language. In So-

phie Cluet and Tova Milo, editors, WebDB'99, Philadelphia, Penn-

sylvannia, USA, Jun 1999. INRIA. Informal Proceedings.

[Gru02] Torsten Grust. Accelerating XPath location steps. In SIGMOD2002
[SIG02], pages 109-120.

[GS00] Marc Girardot and Neel Sundaresun. Millau: An encoding format for

efficient representation and exchange of XML over the web. In W IV IV

1999, volume 33 of Computer Networks, pages 747-765. Elsevier, Jun

2000.

References 162

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling query for-

mulation and optimization in semistructured databases. In Matthias
Jarke, Michael J. Carey, et al., editors, VLD13 1997, pages 436-445.
Morgan Kaufmann, 1997.

[HB+03] Alan Halverson, Josef Burger, et al. Mixed mode XML query process-
ing. In Freytag et al. [FL+03], pages 225-236.

[HMW02] Abu Sayed M. L. Hoque, Douglas It. McGregor, and John N. Wilson.
Database compression using of-line dictionary methods. Technical re-
port, Department of Computer and Information Science, University

of Strathclyde, Glasgow, Scotland, UK, 2002.

[Hog03] Abu Sayed M. L. Hoque. Compression of Structured and Semi-
Structured Information. PhD thesis, University of Strathclyde, Glas-

gow, UK, 2003.

[HTM99] World Wide Web Consortium. HTML 4.01 Specification, W3C rec-

ommendation 24 December 1999 edition, 1999. http : //www . w3 .
org/TR/html401.

[ICD02] Proceedings of the 18th IEEE International Conference on Data En-

gineering (ICDE), San Jose, USA, February 2002,2002.

[Ioa96] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv.,

28(1): 121-123,1996.

[JK84] Matthias Jarke and Jürgen Koch. Query optimization in database

systems. ACM Comput. Surv., 16(2): 111-152,1984.

[KB+02] Raghav Kaushik, Philip Bohannon, et al. Covering indexes for
branching path queries. In SIGMOD2002 [SIG02], pages 133-144.

[KC02] Thomas Kudrass and Matthias Conrad. Management of XML docu-

ments in object-relational databases. In Chaudri and Unland [CU02],

pages 69-82.

[KK+04a] Raghav Kaushik, Rajasekar Krishnamurthy, et al. On the integra-

tion of structure indexes and inverted lists. In Gerhard `Veikum,
Arnd Christian König, and Stefan Deßloch, editors, SIG1i10D 2004,

pages 779-790. ACM, 2004.

References 163

[KK+04b] Raghav Kaushik, Rajasekar Krishnamurthy, et al. On the integration

of structure indexes and inverted lists. In ICDE 2004, page 829. IEEE
Computer Society, 2004.

[KM02] Meike Klettke and Holger Meyer. XML f4 Datenbanken - Konzepte,
Sprachen und Systeme. xml. bibliothek. dpunkt. verlag, Dee 2002.

[KS+02] Raghav Kaushik, Pradeep Shenoy, et al. Exploiting local similarities
for indexing paths in graph-structured data. In ICDE2002 [ICD02].

[KSH02] Meike Klettke, Lars Schneider, and Andreas Heuer. Metrics for XML

document collections. In Chaudri and Unland (CU02], pages 162-

176.

[KYU02a] Dao Dinh Kha, Masatoshi Yoshikawa, and Shunsuke Uemura. Appli-

cation of rUID in processing XML queries on structure and keywords.
In DEXA 2002, volume 2453 of LNCS, pages 279-289,2002.

[KYU02b] Dao Dinh Kha, Masatoshi Yoshikawa, and Shunsuke Uemura. A

structural numbering scheme for XML data. In Chaudri and Unland
[CU02], pages 91-108.

[LH87] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACAI
Computing Surveys, 19: 261-296,1987.

[LM01] Quanzhong Li and Bongki Moon. Indexing and querying XML data
for regular path expressions. In Peter M. G. Apers, Paolo Atzeni,

et al., editors, VLDB 2001, pages 361-370. Morgan Kaufmann, 2001.

[LSOO] Hartmut Liefke and Dan Suciu. XMi11: An efficient compressor for
XML data. In Weidong Chen, Jeffrey F. Naughton, and Philip A.
Bernstein, editors, SIGMOD 2000, volume 29 of SIGMOD Record,

pages 153-164,2000.

[LY+96] Yong Kyu Lee, Seong-Joon Yoo, et al. Index structures for structured
documents. In Proceedings of the first ACAI international conference

on Digital libraries, pages 91-99. ACNI Press, 1996.

[MA+97] J. McHugh, S. Abiteboul, et al. Lore: A database management
system for semistructured data. SIGMOD Record, 26(3): 54-66, Sep

1997.

References 164

[Mei02] Wolfgang Meier. eXist: An open source native XML database. In
Chaudri et al. [CRU02], pages 169-183. http: //dbs. uni-leipzig.
de/webdb/webdb02/index. htm1.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In
Catriel Beeri and Peter Buneman, editors, ICDT 1999, volume 1540

of LNCS, pages 277-295,1999.

[MW+98] Jason McHugh, Jennifer Widom, et al. Indexing semistructured data.
Technical report, Computer Science Department, Stanford Univer-

sity, 1998.

[MW99] Jason McHugh and Jennifer Widom. Query optimization for XM'IL.
In Atkinson et al. [AO+99], pages 315-326.

[ND+01] Jeffrey F. Naughton, David J. DeWitt, et al. The Niagara internet

query system. IEEE Data Eng. Bull., 24(2): 27-33,2001.

[Neu01] Mathias Neumüller. Compression of XML data. Master's thesis,
University of Strathclyde, Glasgow, Scotland, UK, Sep 2001.

[Neu02] Mathias Neumüller. Compact data structures for querying XML.

In Wolfgang Lindner and Julius Stuller, editors, ED13T 2002 PhD
Workshop, pages 127-130, Prague, Czech Republic, Mar 2002. MAT-
FYZPRESS.

[NU+97] Svetlozar Nestorov, Jeffrey Ullman, et al. Representative objects:
Concise representations of semistructured, hierarchical data. In
ICDE 1997, pages 79-90,1997.

[NW02] Mathias Neumüller and John N. Wilson. Improving XML processing

using adapted data structures. In Chaudri et al. [CRU02], pages 63-

77. http: //dbs-uni-leipzig. de/webdb/webdbO2/index. html.

[NW04] Mathias Neumüller and John N. Wilson. A model for querying semi-
structured data through the exploitation of regular sub-structures.
In PREP 2004, pages 117-118, University of Hertfordshire, Hatfield,
Apr 2004.

[OM+02] Dan Olteanu, Holger Meuss, et al. XPath: Looking forward. In
Chaudri and Unland [CU02], pages 249-263.

References 165

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer
Widom. Object exchange across heterogeneous information sources.
In Philip S. Yu and Arbee L. P. Chen, editors, ICDE 1995, pages
251-260. IEEE Computer Society, 1995.

[PT87] Robert Paige and Robert E. Tarjan. Three partitioning refinement
algorithms. SIAM J. Comput., 16(6): 973-989,1987.

[Ram03] Prakesh Ramanan. Covering indices for XML queries: Bisimulation

- simulation = negation. In Freytag et al. [FLi'03], pages 165-176.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to

automatic schema matching. The VLDB Journal, 10(4): 331-350,

2001.

[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML query language
(XQL). In QL '98 [W3C98]. http: //www. w3c. org/TandS/QL/QL98/
pp/xql. html.

[SahOO] Arnaud Sahuguet. Everything you ever wanted to know about DTDs,
but were afraid to ask (extended abstract). In LVebDB (Selected
Papers), pages 171-183,2000.

[Sch01] Harald Schöning. Tamino -a DBMS designed for XML. In ICDE
2001, pages 149-154, Heidelberg, Germany, 2001. IEEE Computer
Society.

[SGM86] International Organization for Standardization, Geneva. Standard
Generalized Markup Language (SGML), first edition, Oct 1986. In-
formation Processing - Text and Office Systems.

[SIG02] Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, Madison, Wisconsin, USA, June 2002,2002.

[SM01] Neel Sundaresan and Reshad Moussa. Algorithms and programming
models for efficient representation of xml for internet applications.
In WWW 2001, pages 366-375. ACM Press, 2001.

[ST+99] Jayavel Shanmugasundaram, Kristin Tafte, et al. Relational data-

bases for querying XML documents: Limitations and opportunities.
In Atkinson et al. [A0+99], pages 302-314.

References 166

[Sta0la] Kimbro Staken. Introduction to dbXML. XML. com, Nov 2001.

http: //www. xml. com/pub/a/2001/11/28/dbxml. html.

[Sta0lb] Kimbro Staken. Introduction to native XML databases. XML. corn,
Oct 2001. http: //www. xml. com/pub/a/2001/10/31/nativexml.
html.

[SWOO] Harald Schöning and Jürgen Misch. Tamino - an Internet database

system. In Carlo Zaniolo, Peter C. Lockemann, et al., editors, ED13T

2000, volume 1777 of LNCS, pages 383-387. Springer, 2000.

[SW+01] Albrecht Schmidt, Florian Waas, et al. Why and how to benchmark
XML databases. SIGMOD Record, 30(3): 27-32,2001.

[SW+02] A. R. Schmidt, F. Waas, et al. XMark: A benchmark for XM'IL data

management. In Bernstein et al. [BI+02], pages 974 - 985.

[TH02] Pankaj Tolani and Jayant R. Haritsa. XGIUND: A query-friendly
XML compressor. In ICDE2002 [ICD02], pages 225-234.

[TL76] D. Tsichritzis and F. H. Lochovsky. Hierarchical data-base manage-

ment: A survey. ACM Computing Surveys, 8(1): 105-123,1976.

[W3C98] W3C. The Query Languages Workshop, Boston, MA, USA, Dec

1998. http: //www. w3. org/TandS/QL/QL98/.

[WBX01] WAP Forum, Ltd. Binary XML Content Format Specification, ver-

sion 1.3 edition, Jul 2001. http: //www. wapforum. org.

[We184] T. A. Welch. A technique for high performance data compression.
IEEE Computer, 17(6): 8-20, Jun 1984.

[Wi175] Robin J. Wilson. Introduction to Graph Theory. Longman, 1975.
First published by Oliver & Boyd, 1972.

[XLi01] World Wide Web Consortium. XML Linking Language (XLink)

Version 1.0, W3C recommendation 27 June 2001 edition, 2001.

http: //www. w3. org/TR/2001/REC-xlink-20010627/.

[XMLOO] World Wide Web Consortium. Extensible Markup Language (XML)

1.0 (Second Edition), W3C recommendation 06 October 2000 edi-
tion, 2000. http: //www. w3. org/TR/2000/REC-=1-20001006.

References 167

[XML01] World Wide Web Consortium. XML Information Set, W3C recom-
mendation 24 October 2001 edition, 2001. http: //Www-w3. org/TR/
2001/REC-xml-infoset-20011024.

[XPa99] World Wide Web Consortium. XML Path Language (XPath) Version
1.0, W3C recommendation 16 November 1999 edition, 1999. http:
//www. w3. org/TR/1999/REC-xpath-19991116.

[XPa03] World Wide Web Consortium. XML Path Language (XPath) Version
2.0, W3C working draft 12 November 2003 edition, 2003. http:
//www. w3. org/TR/2003/WD-xpath20-20031112/.

[XQu03] World Wide Web Consortium. XQuery 1.0: An XML Query Lan-

guage, W3C working draft 12 November 2003 edition, 2003. http:
//www. w3. org/TR/2003/WD-xquery-20031112/.

[XSL99] World Wide Web Consortium. XSL Transformations (XSLT) Ver-

sion 1.0, W3C recommendation 16 November 1999 edition, 1999.

http: //www. w3. org/TR/1999/REC-xslt-19991116.

[ZA'03] Pavel Zezula, Giuseppe Amato, et al. Tree signatures for XML query-
ing and navigation. In XSym 2003, number 2824 in LNCS, pages
149-163, Berlin, Germany, Sep 2003.

[Z1o75] Moshe M. Zloof. Query by example. In AFIPS NCC, volume 44,

pages 431-438, Anaheim, CA, USA, May 1975. AFIPS.

[ZN+01] Chun Zhang, Jeffrey F. Naughton, et al. On supporting containment

queries in relational database management systems. In SIGAfOD

2001,2001.

APPENDIX

A. TYPEX: A TYPE BASED APPROACH
TO XML STREAM QUERYING

The following paper was-published in the proceedings of the Sixth YVebDI3 Work-

shop held in conjunction with the 2003 ACM SIGMOD Conference in San Diego.
It describes a query method based on application semantics, in this case pro-
vided by the type declaration. The paper is printed in its original format on the
following pages.

A. Type Projection over Streams 170

TypEx: A Type Based Approach to XML Stream Querying

George Russell
Department of Computer and

Information Science
University of Strathclyde

Glasgow, U. K.

george@cis. strath. ac. uk

Mathias Neumüller
Department of Computer and

Information Science
University of Strathclyde

Glasgow, U. K.

mathias@cis. strath. ac. uk

Richard Connor
Department of Computer and Information Science

University of Strathclyde
Glasgow, U. K.

richard@cis. strath. ac. uk

ABSTRACT
We consider the topic of query evaluation over semistruc-
tured information streams, and XML data streams in par-
ticular. Streaming evaluation methods are necessarily event-
driven, which is in tension with high-level query models; in
general, the more expressive the query language, the harder
it is to translate queries into an event-based implementation
with finite resource bounds.

We consider an alternative model by introducing a two-

phase evaluation strategy. A query Q is decomposed into

an event driven primary filter query Q', which incrementally

gathers relevant data from the input stream, and another
query Q" which consumes this data as it becomes avail-
able. Evaluation of Q(s) is then equivalent to Q"(Q'(s)).
The importance of the separation is that it allows the first

phase Q' to be expressed in a non-Turing complete algebra
which may therefore be generally amenable to event-based
interpretation. The second phase Q" may be expressed in

an arbitrary higher-order language, so long as its execution
takes no longer than the extraction of the next input in-

stance from the input stream.

In this paper a type algebra is used to express the first-

phase query. This builds on previous work, which shows
how traditional programming language types may be given
a semantics within XML, therefore allowing their projection
onto XML resources. A side-effect of this definition of pro-
jection is that instances of a type may be extracted in a
form available for computation within a traditional domain.
The use of type projection in this context also allows Q"
to be statically typed according to the type filter used for
Q', which itself may be deduced by inference over Q". A

mechanism for translating a type into a network of event
driven automata, which has the effect of gathering all data

captured by that type from a semistructured input stream,
is described. Although at an early stage of investigation, ini-
tial results suggest this approach provides a credible alter-

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WcbDB).
June 12-13,2003, San Diego, California

native to stream-based querying In at least some application
domains.

Categories and Subject Descriptors
11.2.4 (Database Management): Languages-Query Lan-
guages; D. 3.3 (Programming Languages): Language Con.
structs and Features-Data 7]rpes and Structures

Keywords
Type projection, stream processing, query typing, language
Integration, semistructured data

1. INTRODUCTION
The requirement for efficient, stream-based XML querying is
by now established. There are several applications of such
systems, notably in selective dissemination of information
(SDI) and publish/ subscribe systems [1] and for very large
data environments and data integration [8]. Another mo-
tivation is the efficient transformation of streaming Xh1L
data, in applications such as XSLT processing and contin-
uous data streams (9]. Such applications require processing
to occur in real time as data becomes available, rather than
after the end of the input stream is reached as in most XML
query models.

SAX' provides a fully general XML stream-processing ab-
straction, giving the programmer an event-based interface
based on callbacks. This interface provides full real-time
streaming functionality; however the nature of the interface
makes programming challenging for many applications, as
conversion from the event stream to the logical structure of
the underlying data is entirely the burden of the program-
mer.

Given this difficulty, a number of authors have investigated
translation from a higher-level expressive form into an event-
based model, expressed most commonly as a deterministic
finite state automata (DFA) network (2,7,9,11,121. Par-
tial translations from both XPath and XQuery have been
discussed, and while there are still open issues, significant
progress has been made. One of the major outstanding is-
sues however is the identification of the level of expression
which can be sensibly handled in this model. Both XPath
and XQuery contain expressions which can not usefully be
translated into a DFA model without compromising com-
putational thresholds underlying the purpose of the transla-
lhttp: //vvw. saxproj4ict. org

A. Type Projection over Streams 171

tions; the same of course is true for any single query language

with sufficient expressive power to handle any reasonable
range of queries.

statically assessed, and furthermore user. lcvcl tools for gen-
erating it from the XML Schema stream description could
be envisaged.

We propose a significant departure from this methodology
which we show works well for certain classes of application.
The query is coded as a function in a Turing-complete pro-
gramming language, with the assumption that the execution
of this function will occur within acceptable bounds if its in-

put can be isolated and passed to it as a process separated
from the parsing of the input stream. This function could
represent the query in its entirety, but in this domain the

whole query is more likely to be represented by the repeated
application of the function to instances of its input as they

are extracted from the XML stream.

The function is typed according to its input, and this type
is used to generate a deterministic state automata based
input filter which extracts corresponding values from the
XML input stream. These values are then passed, as they

occur, to the query. In this way fully general queries can
proceed in parallel with the parsing of the input. This builds

on our previous work [5,14,15,6,10], in which we show
how traditional programming language types may be given
a semantics within XML, therefore allowing their extraction
from XML resources.

The method will only work well if the query function is short-
lived, and its type represents a significantly small subset
of the XML stream; however we believe there exist many
instances of this pattern. The main properties of the method
are as follows:

" only the type-based extraction requires to be trans-
lated into the event-based paradigm

" only the second part of the query requires to be ex-
pressed, as the filter can be automatically generated
from it

" the two phases of the execution can proceed in parallel

Compared with single-phase deterministic automata trans-
lations from XPath or XQuery, the method seems likely to

work relatively well for complex queries over core regular
data within a loosely structured stream, while it is likely

to work relatively badly for simple queries over data that
is inherently unstructured. The tradeoffs with respect to

simplicity of expression and efficiency are complex and re-

quire further investigation, but in this paper we have at
least shown credibility in these domains with respect to some

classes of application.

In more generality, not considered further in this paper, the

same basic two-part query framework may be used entirely
within the XML standards domain, by expressing the fil-

ter by a projection defined over XML Schema. Instances of
XML would then be generated by the first phase, allowing
the secondary part to be expressed in any XML query lan-

guage. One particularly interesting aspect of this is that,
if the entire data stream is known to be valid with respect
to a given schema, then the soundness of the filter may be

2. A MOTIVATING EXAMPLE
For motivation, an example streamed application Is coded
in Java using various alternative implementation techniques,
namely SAX, XPath, and TypEx, the system based on the
approach described. SAX only creates temporary data struc-
tures to report parsing events which need to be transferred
manually into the application specific data model for pro-
cessing. The XPath code uses an X11 ath expression to define
a superset of the required data, in conjunction with DOM
code to perform the required query; the TypEx code uses
a Java class definition to define a superset of the required
data, in conjunction with a method of that class to query it.
In the cases of XPath and TypEx the initial extraction may
be performed Incrementally and processed in parallel with
the code that uses the extracted values, whereas in the SAX
application the entire processing must be performed within
the parsing callbacks.

The example is a news ticker application, which extracts
news items from an arbitrary XML stream. Schema infor-
mation of the expected stream is incomplete and restricted
to the relevant data. The application programmer knows
that there are item elements which contain at least two di-
rect child elements named title and description. Both these
items contain only textual content and can occur only once
within any item. This data may be embedded at any point
in the source and additional content may appear beneath
item elements. The application is to display the content of
these two fields as they are detected within an unbounded
stream of XML.

2.1 Parsing Event Based Model
An example of an approach in which the query is directly
contained in the application code is the event-based abstrac-
tion model used by SAX. Mappings between parsing events
and the data model used are spread over various callback
methods, making it hard to understand and thus maintain.
The mixture of selection and computation also increases the
coupling between user-specified computation and parsing
process and is thus undesirable.

Listing 1: The SAX handler for the news ticker

public class Newsliandler extends Defaultllandler {
private StringBuffer _title , -description ;
private Stack elements = new Stack();
public void characters(cliar0 ch,

int start , lnt length) {
If (elements. search ("item") == 2)

if (elements. search(" title") == 1)

_title . append(ch, start, length);
if (elements. search("description") _= 1)

10 -description. append(ch, start, length);

}
public void startElement(String namespaceUR[,

String localName, String qName, Attributes acts) {

is elements. push(gName);
if (gName. equals("item")) {

A. Type Projection over Streams 172

_description = new StringBuffer(;

_title = new StringBuffer(;

20 }
public void endElement(String namespaceURl,

String localName, String qName) {

elements. pop();
if (gName. equals("item")

System. out. println(_title +" \n"+.. description);

public static void main(Stringo args) {
SAXParser parser =

SA X Parse rFactory. new l nstance () . newSAX Parser ();
parser. parse(new URL(args[O]). openStream(),

new NewsHandler());

25

30

"//item(description and child. -- text()]"
+"f title and child:: texto]"
+" (count(title)-1j"

is +" (count(descriptlon)s I]");
for (Int 1=0; I<results. getLengthO; I++)

Node result - results. ltem(i);
Element altem = (Element) result;
NodeList titles = altem

20 . getElementsByThgName("title");
String title _

((Element) titles . item(0))

" getF'irstChild O. getNodeValueO;
NodeList descriptions = altem

2e . getElementaByTngName("description");
String desc =

((Element) descriptions. Item(0))

. getFirstChild (). getNodeValueO;
System. out. printin(title + "\n" + desc);

30
1

Listing 1 shows that the required state information is main-
tained by using a stack containing all opened tags (line 15).
String buffers are created once an opening item tag is found.
Upon occurrence of character data the top two elements of
the stack are checked. If they fit the structural constraints,
the content is appended to the relevant buffers. The con-
tent of these buffers is printed when the end of a news item
is detected. Note that this implementation does not verify
order, multiplicity or even existence of required fields, but
just checks that identified fields suffice the structural con-
straints. Other constraints would need to be checked using
either a more complicated handler or a partial schema val-
idation process, which is currently not part of any of the
relevant standards.

2.2 XPath/DOM Based Model
The combination of XPath [161 and DOM allows a different

approach. Programs specify the desired set of nodes using
a path expression, and operate over the results using tree
traversal code. XPath expressions are navigation expres-
sions over tree structured data which are sent to an exe-
cution engine in a similar fashion as embedded SQL state.
ments. Selection is mechanically performed by the system
and returns a collection of trees, requiring tree traversal code
in the user specified computation. Typically a superset of
the data required is returned because XPath returns the en-
tire subtrees rooted at the selected nodes, regardless of the
data requirements of the subsequent computation. However,

as there is no strong coupling between the two phases, it can-
not be guaranteed that the returned data actually satisfies
the computational needs.

Listing 2: The same application using XPath

public class BBCNewsXPath {

public static void main(String[args){
DocumentBuilderFactory factory =

DocumentBuilderFactory. newInstance();
IS DocumentBuilder builder =

factory. newDocumentBuilder();
Node doc = builder. parse(

new InputSource(new URL
args [01). openStream()));

to NodeList results =
XPathAPI. selectNodeList(doc,

}

The program shown In Listing 2 uses the single XPath state.
ment stretching from lines 12-15 to declare the navigational
steps required to select the relevant data. The XPath ex-
ecution engine returns a NodeList containing the selected
nodes (line 10). The loop starting in line 16 iterates through
this list and extracts the data from the relevant text nodes
using the DOM API, and in particular the method getEle-
mentsByTagName which selects nodes based on their name.
Structural checks upon the Input format have been added to
the XPath query in Listing 2, which allows them to be omit-
ted from the result processing code which otherwise would
contain explicit structural checking. The XPath Implemen-
tation used is not streaming, but this does not affect the
purpose of the example.

2.3 Type Projection Based Model
The approach suggested by this paper has been implemented
in the TjpEx system. The extraction phase identifies data
that may be relevant for the query by means of a filter type
and binds this data to an instance of this type for use in the
second phase. Since the computation is specified in terms
of the filter type, the returned instances of this type will
always contain a superset of the information required.

Listing 3: The filter class item

public class item {
String title , description;
public String toString() {

return title+" \n" +description;
8

}

In our example application, the class used to store and print
news items is also used as the filter type (Listing 3). This
defines the data extraction in terms of the host program-
ming language and acts as a data model for the following
computation, ensuring a match between the two phases and
a seamless integration with the language. The actual com-

A. Type Projection over Streams 173

Listing 4: The TypEx Newsticker

public class BBCNews Implements Observer {
Extractor stories;
public BBCNews() {

stories = new Extractor(item. class);
stories . addObserver(this);

public void parse(InputStream in) {
stories parse(in);

public void update(Observable o, Object i) {
System. out. println((item) i);

public static void main(StringJ args){
BBCNews p= new BBCNews();

p. parse(new URL(args[O]). openStream());

10

16

produced by this example is shown In Figure 1. The size of
the automata network equals the size of the corresponding
type graph plus one for the additional sink machine.

The root and sink machines always occur as single In-
stances; the others are generated according to the Individual
type components. Each Internal connection Is a two-way
link, passing input events in one direction and results in
the other. Only one machine at a time actively processes
events; a machine become active when it receives an initO
event, and remains so until either a return() or jail() event
is passed back to its initiator. Non-active machines pass
events on to the currently active machine. Events are prop-
agated synchronously in that they are not paused to the
active machine until the previous event has been processed;
this avoids synchronicity problems with the return events
being passed back up the chain.

}

putation, i. e. the printing of the content is also defined by
this type. Listing 4 shows the usage of this filter. It creates
an Extractor parameterised by the type (line 4), which ex-
tracts item objects during parsing and passes them to the
observer for display.

3. TYPE BASED EXTRACTION
In this section we outline the translation of a core type
language into a network of co-operating, deterministic au-
tomata. The resulting network is capable of extracting val-

ues of those types.

The type language includes both record and list construc-
tors, but does not allow anonymous lists to occur as they
have no semantic projection in XML. In addition, lists can-
not occur at the top level, as this would be incongruous with
the purpose of the mechanism, which is to release typed data

as soon as possible. A grammar for the type language is

given below.

typedef :. = label: type

type .. = record I scalar
record {label l: field i, ... , label,,: field�}
field .. = scalar I record I list [type]

scalar :. = int string

A type expression is translated into a set of named compo-
nent types as shown by the following example:

p: {a: int, b: list j{ d: Intl], c: { d: int}}

is transformed into

Ti
Ti: {a T2, b: list[T3], c T3}
T2: int
T3: {d: T2}

Each type Ti in this representation is mapped to an automa-
ton, whose job is to extract an instance of that type from

the input stream and return it as a value. The topology

Events

of T1

t

nstances

Ti Sink

achin

Figure 1: The example automata network

The following messages are defined: open(!), close(t), texi(v),
init(l), return(v), and jail(). A parameter l stands for a la-
bel corresponding to an XAML tag label, and a parameter v
stands for a value. open(l), close(l) and text(e) are events
corresponding to a simplified input stream, and correspond
to the textual form of the XML being processed. init(l), as
described, causes a machine to become active; its parame-
ter is a label which, when subsequently received within a
close(t) message, will cause it to pass control back to Its
initiator. This is either by means of a return(v) message, in
the case it has been able to extract a value corresponding
to its type from the input stream, and by means of a jail()
message otherwise. There are four different classes of ma-
chines: entry, sink, scalar and record, as defined by the
following behaviours:

Entry: discard every event until an open(!) occurs,
where I is the label corresponding to the name of the
top-level typedef. At this point, init(1) is passed on
to the machine corresponding to the type of the top-
level typedef, which then becomes the active machine.
Further events are passed to this machine until either a
return(v) or failO is received from it. On a return(v),
the parameter v is passed on to the network's receiver;
on fail(), no further action occurs.

" Sink: the purpose of this machine is to discard an XML subtree, which cannot be of interest to the ex-
traction. On receipt of inita), It becomes the active
machine: its only required function is to discard events

A. Type Projection over Streams 174

until the corresponding close(t) event is received, en-
suring that any contained subtrees using the same la-
bel l are also discarded. No value is returned.
Scalar: on receipt of init(l), a scalar machine requires
the first event it receives to be a text(v) message, and
its second to be a close(t) message. Depending on
the particular scalar type, the string parameter v is
examined to ensure it is structurally compatible, and
if so is coerced and returned. Any other combination
of events causes the machine to pass a jail() event back
to its initiator.

Record: a record machine starts with internal state
variables corresponding to each of the field names oc-
curring in its progenitor type description. For each
one, the value is initialised to undefined if the field is
a scalar or record type, and to an empty list if it is
a list type. These variables are used to build up the
state corresponding to the record value it attempts to
extract. It may receive text(v), open(l) and close(I)
events from its initiator:

- text(v): the event is discarded

- open(!): the behaviour depends on whether there
is an internal state variable corresponding to 1,

and if so what its value is. If there is no internal

variable, an init(I) message is sent to the sink
machine. If there is a variable which is a list,

an init(I) message is passed to the machine cor-
responding to the field type; if this returns with
a value, it is appended to the list, otherwise no
action is taken. If there is a variable whose value
is defined, this results in termination with jail().
Finally, if there is a variable whose value is not
yet defined, an init(l) message is passed to the
machine corresponding to the field type; if this
returns with a result, it is assigned to the inter-

nal variable, otherwise no action is taken.
This behaviour corresponds to a structural sub-
typing approach to extracting the corresponding
data values in the XML whilst ignoring order fields
and any extra fields that are not pertinent to the
query.

- close(!): if all internal state fields are defined, a
record value based on them is constructed and re-
turned to the calling machine in a nturn(v) mes-
sage; otherwise, a jail() message is passed back.

4. IMPLEMENTATION
The automata networks within TjypEx form the middle layer
of the system architecture. Below this layer an event handler
translates parsing events generated by an underlying XML
parser into automata events. Above the automata layer is
the transformation layer, which generates networks from fil-
ter specifications and transforms extracted data graphs into
instances of the specified type. The top layer is the program-
mer visible API, which allows the specification of an input
source and associated filter types. It allows multiple listen-
ers per filter and multiple filters per data stream, affording
a degree of parallelism in the query process.

Each automaton is implemented as a Java class. Automata

networks are generated using reflection to examine the field

types and names of filter types. Itefection 1s also used dur-
ing data Instantiation process.

5. EXPERIMENTAL RESULTS
To determine the viability of our approach, we have pro-
cessed a more complex example query than the one discussed
in Section 2. The data set under consideration has been
generated using the Xhlark benchmark (13) scalable data
generation tool and describes auction site details containing
items for sale, persons (bidders and sellers) and some more
information not relevant for our purposes. In particular, we
have queried large XhIL files (up to 11013 in size) for people
(with attributes such as name, address, etc.). We compare
programs based on SAX, DOM XPath and TypEx both in
terms of the complexity of the code and their runtime per-
formance. The number of lines have been taken as a simple
measure of the complexity of the code (Table 1).

System Lines of Code Comment
Select Extract

757K 150 Selection and extraction
DOM 43 cannot be separated.
XPath 1 39 Uses DOM extraction code.
TypEx 6 17

Table 1: Length of Query

System 1MB 1OMB 15 NIB 30Mll 1(10 113
DOM 1.73 147.0 326.0 1296
XPath 0.38 4.6 7.7 45 N/A
SAX 0.19 1.1 1.5 3 13
TypEx 0.43 3.6 5.6 10 21

Table 2: Length of Query Execution (s)

Table 1 supports the observation gained from the news ticker
example and illustrates the conciseness possible using the
TypEx approach. The SAX program, contains a mix of
high-level application code and low-level parsing callbacks
and results in an order of magnitude increase of code. DOM
and XPath approaches lie between these two extremes and
are almost identical because of their common tree traversal
code.

The SAX query execution time scales linearly with the size
of the input data and its memory usage depends only the
level of element nesting. DOM is unsuitable for stream-
ing due to its inherent whole document approach. As the
input size increases, the time taken to complete the query
increases more than linearly, while the memory usage in-
creases linearly. With an 100 hIB source file, the query fails
to complete due to an Out 0/Memory error using a heap size
of 512 NIB. We were unable to obtain a complete implemen-
tation of XPath to operate upon streaming data. The imple"
mentation we used for this experiment, Xalan/J, is backed
by a incrementally built tree structure, and thus scales sim-
ilarly to a DOM implementation in space. It does not how-

ever, provide results in an Incremental fashion and thus does

not allow a direct comparison with either SAX or TypEx.
TypEx, while slower to execute than the equivalent SAX

program also scales linearly with the size of the input data.
The memory requirements are determined by the size of the
extracted type, i. e. are independent of the size of the docu-

ment. We have used it to successfully query inputs of up to
11 GB in size.

A. Type Projection over Streams 175

6. RELATED WORK
To the best of our knowledge, this is the first attempt of
using types as filters in a two stage stream query process.
The requirements for stream processing have been identified
in [3) and elsewhere.

Much of the effort concentrates on implementing the XPath
(16) language over streams. A number of independent ef-
forts are proceeding, such as XMLTK [2], SPEX [11], and
XSQ [12]. Green et at. [7] describe the implementation of
an XPath subset using a lazily generated network of DFA
and provide a comparison with other XPath implementa-
tions over streams. The work concentrates on the construc-
tion of a single automata network representing a large num-
ber of XPath queries which are executed simultaneously.
Olteanu et at. [11] describe the translation of a subset of
XPath expression into equivalent expression using only for-
ward axis, which can then be efficiently processed by their
SPEX XPath system using a network of event driven au-
tomata. Finally the XSQ system [12] is based upon push-
down transducers with associated buffers and aims at com-
plete XPath support.

A more recent approach by Ludiischer et al. (9) describes
the implementation of the computationally complete query
language XQuery over streaming data, using transducer net-
works derived from a query expression. Their XSM system
optimises the derived network based on static analysis and
available schema information. Optimisation strategies used
may prove useful for our approach.

9. REFERENCES
(1) M. Altinel and M. J. Franklin. Efficient filtering of

Xr1L documents for selective dissemination of
Information. In A. E. Abbadi, et al., editors, VLDB
2000, pages 5.. 3-64,2000. Morgan Kaufmann.

(2) 1. Avila-Campillo, T. J. Green, et at XAILTK: An
XML toolkit for scalable XA1L stream processing. In
PLAN-X: Prvgrumming Language Technologies for
XMIL, 2002.

[3] B. Babcock, S. Babu, and other. Models and issues In
data stream systems. In L. Popa, editor, ! TODS 2002,
pages 1-16, Madison, Wisconsin, USA, 2002. ACM.

[4) P. A. Bernstein, Y. C. loannidis, et al., editors.
Proceedings of the 28th International Conference on
Very Large Databases, Hong Kong, China, 2002.
Morgan Kaufmann.

151 IL Connor, D. Lievens, et al. Extracting typed values
from XAML data. In OOPSLA Workshop on Objects,
XIIIL and Databases, 2001.

161 R. Connor, D. Lievens, et al. Projector -a partially
typed language for querying XAML. In PLAN-X:
Programming Language Technologies for Xh1L, 2002.

[7) T. J. Green, G. Mikklau, et at. Processing XML
streams with deterministic automata. In D. Calvanese
et al., editors, 1CDT 2003, volume 2572 of LNCS,
pages 173-189. Springer, 2002.

Type projection is introduced in [51 and formalised in [15].
Language integration with Java is described in [141 in more
depth, while its use within query languages for XMML is also
outlined [10,6].

7. CONCLUSIONS
We have outlined a novel mechanism which allows XML
stream queries to be decomposed into an extraction and
a computation phase over the extracted data based on a
single type description. While the concept requires further
investigation, it has a number of advantages for some classes
of application. In particular, it may allow the programmer
to use a higher-level, and therefore more succinct, query
without gravely affecting properties of efficiency. Queries

are formulated within the domain of the host language and
can thus be statically typed.

The mechanisms have been implemented and first results
show some promise. However the investigation is at an early
stage and a great deal of work remains to be done.

8. ACKNOWLEDGEMENTS
We would like to thank Fabio Simeoni, David Lievens, Steve
Neely and the anonymous referees for making useful sug-
gestions on the presentation of this work. It has been fi-

nancially supported by EPSRC (GR/M72265) and BBSRC
(17/BI012052.) George Russell and Mathias Neumüller are
supported by PhD studentships funded by the University of
Strathclyde.

[8j T. Kiesling. Towards a streamed XPath evaluation.
Diplomarbeit, Universität München, 2002.

[9] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A transducer-based XML query
processor. In Bernstein et al. (4).

(10] P. rianghi, F. Simeoni, et al. Hybrid applications over
XNIL: Integrating the procedural and declarative

approaches. In Fourth International Workshop on
Web Information and Data Management (WIDA! '02),
Virginia, USA, Nov 2002.

[111 D. Olteanu, T. Kiesling, and F. Bry. An evaluation of
regular path expressions with qualifiers against XML
streams. In ICDE 2003, Mar 2003.

[12] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In SIGMOD 2003,2003.

[13] A. It. Schmidt, F. Wass, et al. XAiark: A benchmark
for XMML data management. In Bernstein et al. [4],

pages 974 - 985.

[14] F. Simeoni, D. Lievens, et al. Language bindings to
XNIL. IEEE Internet Computing, 7(1), Jan/Feb 2003.

[15] F. Simeoni, P. Manghi, et al. An approach to
high-level language bindings to XAML. Inforrnation 6
Software Technology, 44(4): 217-228,2002.

[16] World Wide Web Consortium. XAIL Path Language
(XPath) Version 1.0, W3C recommendation 16
November 1999 edition, 1999.
http: //vvw. w3. org/TR/1999/REC-xpath-19991116.

B. STRUCTURAL INDICES BASED ON
BISIMILARITY

This appendix reproduces important results and some of the algorithms used by
Kaushik et al. in their work on structural indices based on bisiznilarity. It provides
an overview of their definition of bisimilarity, the algorithms used to compute the

resulting partition of the graph's vertex set and to generate the corresponding
index graph, which is essential for understanding the design of the experimental
system described in Chapter 6 and some of the examples being based on their

notion of bisimilarity.
The work addressed in this appendix was developed over an extensive period

of time and spans several publications. Their key contributions are summarised
in the following sections. Details such as proofs or experimental results can be
found in the original articles.

B. 1 Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data

The initial work [KS+02] describes the fundamental concept of local similarity,
which is used to reduce the complexity of index structures employed for answering
regular, linear path expressions without value predicates over generally graph-
structured data instances. This represents a class of queries that is covered by

the 1-Index discussed by Milo and Suciu [MS99] and lead to the design of the
DataGuide [GW971. Such indices combine vertices of a data graph in a single

vertex of an index graph if they form the result to a given query. Such a data

grouping is provided by the simulation of the data graph, i. e. by finding vertex-
sets that are similar. However, the exact partition can become very complex

and is expensive to compute. The complexity is a result of the long and complex

paths occurring in graph-structured sources that contribute disproportionately to
the complexity of a covering index. Such paths are rarely the subjects of queries.

B. Structural Indices Based on Bisimilarity 177

To get rid off these unwanted long paths in the structural summary, one lins
to restrict the accuracy of the index. The way chosen by Kaushik et al. is to

reduce the index coverage to path expressions of limited lengths. The expense of
computing the grouping can be reduced by replacing the ideal grouping with a
refinement of it, i. e. by finding a grouping that is easier to compute, but never
mixes members of the ideal grouping though it can split individual blocks of it

even further. Bisimulation is such a refinement, which was already discussed by
Milo and Suciu [MS99). Kaushik et al. used it to define their A(k)-index, which
is based on local backward bisirnilarity of degree k. This means that each vertex
of a data graph that belongs to a common bisimilarity class, has the same set of
incoming paths up to length k. The following definition is taken directly from
[KS+02].

Definition B. 1 (9: i k [k-bisimilarity]): This is defined inductively.

1. For any two nodesl, u and v, u ý° v if u and v have the same label.

2. Node u ;::: ý kv if u ; Zý k-' v and for every parent u' of u, there is a parent v' of
v such that u' ; z-: k-1 v' and vice versa.

The bisimilarity relationship defines an equivalence relationship on the node-

set of a data graph, which is called k-bisimulation. From the definition the
following properties can be derived, which essentially show that the index based

on bisimilarity is covering for linear path expressions of length k. Again, the list

of properties is taken directly from the original work.

Property B. 1: (a) If node u and v are k-bisimilar, then the set of label-paths of
length <k into them is the same.

(b) The set of label-paths of length k into an A(k)-index node is the set of
label-paths of length k into any node of its extend.

(c) The A(k)-index is precise2 for any simple path expression of length less

than or equal to k.

(d) The A(k)-index is safe, i. e., its result on a path expression always contains
the graph result for that query.

1 Kaushik et al use the term "node" instead of "vertex" as used in this thesis
2 "Covering" in terms of this thesis.

B. Structural Indices Based on Bisimilarity 178

procedure compute-k-bisim(G, k)
begin
1. Q and X are each a list of node-sets
2. Q= partition VV by label
3. X= (a copy of) Q
4. fori-ltokdo
S. foreach X in X do //stabilize Q w. r. t X
6. compute Succ(X)
7. foreach Q in Q do // split
8. replace Q by Q fl Succ(X) and Q- Succ(X)
9. If there was no split then
10. break
11. X= (a copy of) Q
end

procedure compute. A(k). indcx(0, k)
begin
1. compute. Lbisim(O, k)
2. foreach equiv. class in k-bisimulation do
3. create an index node 1
4. ext(I) "" data nodes in the equiv. class
S. foreach edge from u to v in O do
6.1(u) index node containing u
7.1(v) index node containing v
8. If there is no edge from 1(u) to /(v) then
9. add an edge from 11ul to 1(v)
end

Fig. B. 1: A(k)-index computation (taken from (KS+02])

(e) The (k + 1)-bisimulation is either equal to or is a refinement of the k-
bisimulation.

The inductive definition of k-bisimilarity also gives rise to the algorithm that
is used to compute it. The algorithm starts by creating a partition of the vertex-
set of the graph according to their tag-labels. This partition is consecutively

refined by splitting blocks of the partition according to increasingly longer com-
mon incoming path sets. It is based on a partitioning algorithm by Paige and
Tarjan [PT87]. A node-set (or block of a partition) A is said to be stable with
respect to another node-set B, if A is a subset of Succ(B) or A and Succ(B)

are disjoint, where Succ(B) is the set of nodes with an incoming arc from B. A

partition Pl of V is stable with respect to a partition P2 of V if each block in
Pl is stable with respect to each block in P2. If there are two nodes-sets A and
B and one wished to make A stable with respect to B, one needs to split A into
Aft Succ(B) and A- Succ(B). Figure B. 1 shows the resulting algorithms used to

compute the k-bisimulation and the resulting A(k)"index graph. The algorithms
runs in O(kIAJ) time.

B. 2 Covering Indexes for Branching Path Queries

This subsequent publication by Kaushik et al. [KB+02] extends the concept of
local bisimilarity to outgoing paths in order to address a larger class of queries.
The new query class is described by branching path expressions without value

predicates and coincides with the definition of the query language presented in
Section 2.3.1.

B. Structural Indices Based on Bisimilarity 179

Definition B. 1 is extended to make explicit the distinction between the edges

of the spanning tree and other graph edges3.

Definition B. 2 (ptl' [k-bisimilarity]): This is defined inductively.

1. For any two nodes, u and v, u ,:: tý° v if u and v have the same label.

2. Node u ; z: ý kv if u ;: L-, k-1 v, pare ; z: ý k-1 par� where pare and par� are respec-
tively the parents of u and v, and for every v' that points to v through an
idref edge, there is a v' that points to v to an idref edge such that u' ßk' 1 v'

and vice versa.

The index graph based on this refined definition of bisimilarity for branch-

ing path expressions with unbounded path lengths can be computed using the

algorithm presented in Figure B. 1. However, it must be applied repeatedly to

the data graph G, with all edges reversed for every second run as explained in

[KB+02] and shown in Figure B. 2.

1. Reverse all edges in G.

2. Compute the bisimilarity partition (with the current partition as the ini-
tialization).

3. Set the current partition to what is output by the previous step.

4. Reverse edges in G again, obtaining the original G.

5. Compute the bisimilarity partition (again initializing the computation with
the current partition).

6. Set the current partition to what is output by the previous step.

7. Repeat the above steps till the current partition does not change.

Fig. B. 2: Algorithm for the computation of the F&B-index

The resulting index is called the F&B-index, which is the minimal covering
index for all structural branching path expressions. Experimental results [KB+02]

showed that the size of this index approaches the size of the original data graph
for sources like the XMark dataset described in Section C. 3 or the Open Directory

Project4. Apart from restricting the length of the bisimilarity relation to lengths

3 Called "idref edges" by Kaushik et al.
4 http: //www. dmoz. org

B. Structural Indices Based on Bisimilarity 180

//
0 Museums

art 0 history
9neIhbort*ood

museum 0 museum OQ cultural lO cultural
ý. ,

10 feature

Fig. B. 3: Example for tree-depth (taken from [10+02])

kfu, d and kback in forward and backward direction, it is also possible to restrict the

number of iterations performed on the sequence of operations presented above,
i. e. to replace step 7 by a fixed number of repetitions. This leads to the definition

of the tree-depth [KB+02] of a query predicate.

"The idea is that all nodes on the primary path have tree-depth 0.

All nodes that do not have tree-depth 0 and have a path from some

node in the primary path have tree-depth 1, nodes that do not have

tree-depth 1 and have a path to some node of tree-depth 1 have tree-
depth 2, nodes that do not have tree-depth 2 and have a path from

some node of tree-depth 2 have tree-depth 3, and so on. Intuitively,

odd tree-depths correspond to out-going path conditions, while even
tree-depths correspond to in-coming path conditions. "

The concept of tree-depth is illustrated using Figure B. 3, which was taken
from [KB+02] and illustrates Query B. 1.

Query B. 1: //museums/history/museum[/featured&Gcultural\neighborhood

[/cultural =museum[\art]]]

As becomes obvious from this query, whose tree-depth is only 2, tree-depth

in practice will be of very limited size. In fact only a single iteration of the above

procedure will suffice for most queries. The resulting index graph is called the

F+B-index by Kaushik and was already introduced in Example 4.7.

The algorithm used to compute the partition of the vertex-set parameterised
by the forward and backward bisimilarity kf d and ky,,, k and the tree-depth td

B. Structural Indices Based on Bisimilarity 181

procoduro compute-partition(C, S)
C -+ data graph, S -. index definition
begin
1. Convert all tags in O not in T Into special tag other
2. Remove any occurrence of a node labeled other if It is not

on some tree path from the root to any node with a label
that Is to be Indexed

3. Let P be a list of sets of nodes
//representing a partition of the nodes of C

4. P «- label-grouping of C
5. ford-1totddo

//forward direction
8. Retain idref edges in reflwd
7. Reverse all edges in O
8. Compute the kj,,, d. bisimulation on C Initializing

the computation with P
9. P «- partition of nodes of C corresponding to the

above k/Wa-bisimulation
//backward direction

10. Restore C
11. Retain idref edges in refe. ca 12. Compute the kyack-bisimulation on O initialising

the computation with P
13. P "- partition of nodes of O corresponding to the

above kb. ck-bisimulation
end

Fig. B. 4: Vertex-set partition computation (taken from [KB+02])

is shown in Figure B. 4 [KB+02]. The algorithm also restricts the computation
to a set of tag labels and idref edges. The algorithm for the computation of the

corresponding index graph is identical to the algorithms shown in Figure B. 1.

C. DESCRIPTION OF DATA SOURCES

This appendix describes and characterises the data sources that were used through-

out the thesis in order to obtain the experimental results presented. Table C. 1
lists the sources used, together with a short, informal description and Table C. 2

shows some fundamental metrics of their corresponding data graphs. More details

about the individual sources are given in the subsequent sections.

Cl . The Domain Name Server Database

This source is an XML encoding of the root DNS server routing table for the

academic part of the Internet in Great Britain. It contains the mapping between

IP addresses and all symbolic server names ending in ac. uk. The individual

entries contain attributes for the server name, the four parts of its numeric IP

address and up to six parts of its symbolic domain name. In the case of XML
(Listing C. 1) only those parts of the domain name that are present are stored,

whereas in the original database null values are used to represent missing entries.
Nevertheless it is a very regular source, being automatically generated from a
table-like data source. It exhibits the typical properties of a data-centric source,

a flat but wide tree with a comparatively small tag label alphabet.

Source File Size Description
DNS 100k 21 11B Domain Name Server Database for ac. uk in XML

format
DBLP 131 MB Computer Science Bibliography in XML format
Nasa 24 MB Astronomical Data converted from legacy flat-file

format into XML
Macbeth 160 KB Shakespeare's play "Macbeth" converted from SGML

into XML format
XMark-1 1.1 MB Synthetic dataset of the XMark benchmark project
XMark-10 11 MB Synthetic dataset of the XMark benchmark project

Tab. C. 1: Overview over the data sources used throughout the thesis

C. Description of Data Sources 183

Source IVAI IVcI IEI/IAI IEI h(T) Pin Pout DNS-100k 851,419 951,421 1,802,839 15 4 1 100,000
DBLP 3,410,133 3,736,407 7,146,539 42 7 1 328,858
Nasa 1,005,205 532,964 1,538,168 72 9 1 4,871
Macbeth 3,287 3,976 7,262 18 7 1 71
XMark-1 12,414 20,450 32,863 78 3 153 255

36,024
XMark-10 122,221 200,106 322,326 78 13 148 2,550

353,074

Tab. C. 2: Important metrics of the example sources: Number of atomic and com-
plex, number of edges and arcs', size of label alphabet, height of distin-
guished spanning tree, maximal fan-in and fan-out factor of any vertex.
1 identical for tree sources

<? xml version=" 1.0" ?>
<s e rv er -LIST>

<server>
, diQ6INANÜ>webO</1I()6' MNlE>
<LEVEL[Duk</LEVELC>
<LEVELl>ac</LEVELl>
<LEVELZ>strath</LEVEL2>
<LEVEL >ci s</LEVELa.
<LEVEL4wwww(/LEVELt.
<IPO>130</IPO>
<IP1>159</IP1>
<IP2>196</IP2>
<IP3>115</IP3>

</server>
</server-LIS75

Listing C. 1: Example entry of the DNS database in XML format

C. Description of Data Sources 184

<? xml version=" 1.0"? >
<UDOCIYPE PLAY SYSITh1 "play. dtd">

<PLAY>
<TITL©The Tragedy of Macbeth</TITLE

GScNDESCIDSGENE Scotland: England. </SCNDF Ci*
<PLAYSUBT>MAcUE fl iG /PLAYSUIT>
<ACD

<TITL©ACT I</TITLE
<SCEN©

<TITLE>SCENE I. A desert place. </TITLE
<STAGEDIIDThunder and lightning. Enter three Witches</STAGEDIID
. PEEGZb

. PEAKETb FirstWi tc h</SPEAKFID
<LINDWhen shall we three meet again</LINZ
<LIN©In thunder, lightning, or in rain? </LINE

</SPEECID

</SCENE

</ACD

</PLAY'

Listing C. 2: An excerpt from Shakespeare's Macbeth

C. 2 Shakespeare's Macbeth Encoded in XML

The source representing the play "Macbeth" by William Shakespeare was taken
from http: //www. ibiblio. org/xml/examples/shakespeare. It is an XML en-
coded version of the play's manuscript including all stage directions. John Bosak

took the text of the printed version and annotated it with semantic tags, such
as speaker, stagedir or title. Due to the fact that the original is meant for
human consumption, tags such as stagedir can occur in various contexts, e. g.
in the middle of an actors line, leading to various mixed content elements in the
XML encoding. It is an typical example of a document-centric data source. An

excerpt of this source is shown in Listing C. 2.

C. 3 The XMark Benchmark Dataset

These sources are synthetic databases generated by the scalable XMark bench-

mark source generation tool xmlgen. Two databases were generated, one has a
data volume of 1 MB, the other one is 10 MB large. Both sources model the data

content of an electronic auction site. They represent multi-faceted documents,

which contain both data- and document-centric components. Data-centric as-

pects of the source are used to define entities of the database that would be

C. Description of Data Sources 185

to, from

annotation 1 ". 41 category

interest
author

person bidder,

seller buyer,
watch seller

open auction closed auction

itemref
itemref

item ýcategoryref

Fig. C. 1: References within the XMark data source (after [SW+02])

stored in relational tables in a more traditional approach, i. e. the costs, locations

and quantities of individual items, telephone numbers and address information of
bidders and sellers and so on. However, the description of items or categories for

example, exposes document-centric properties. It contains mixed content mod-

els, such as highlighted keywords within a description, and these are contained

within a recursive structure, e. g. lists containing other lists as items. Another

interesting property of these sources is the fact that they make a lot of use of
XML's ID: IDREF-references, thus encoding proper graph rather than tree data

structures. The sources, their schemata in the form of a DTD or even their com-

plete set of entities are too large to be presented here. However, Figure C. 1 shows
the cross-references between the main entities of the source. It was taken from

[SW+02] that also contains a more detailed description of the dataset.

C. Description of Data Sources 186

C. 4 The Nasa Astronomical Dataset

This source contains datasets converted from a legacy flat-file format into XML
by the GSFC/NASA XML Project' and taken from the University of Washing-
ton's XML Data Repository'. The specific source used contains the Astronomical
Data Center's public XML collection arranged by catalog category. Each dataset

contains the article title, a source description, the lead author and the year of
publication. Additional XLink references provide references to other parts of the
project. However, these external references were not resolved by the work pre-
sented in this thesis, thus the source is parsed into a tree-shaped data structure.
Because the source does not contain a document schema, the parsed structure
contains a lot of unwanted atomic data vertices representing white-space within
the document structure. Again this source presents a mixture of document-centric

and data-centric elements.

C. 5 The DBLP Bibliographic Database

The DBLP computer science bibliography of the Universität Trier provides bibli-

ographic information on major computer science journals and proceedings. Their

server indexes several hundred thousand articles and contains links to several
thousand home pages of computer scientists. The snapshot of the XML version
of the database used throughout this thesis was taken in January 2003, at which
time it had a size of 131 MB. Since then its size has roughly doubled to 230 MB.
Though the metadata of the individual publications possesses data-centric prop-
erties, their exact structure differs significantly from entry to entry. The database

contains an increasing number of external links that connect the database entries

with electronic versions of the articles themselves. As for the previous source,
such external links were not resolved. Since the DBLP database does not make

use of internal links between the entries, this source also encodes a document tree
in terms of our model. An example entry of this source was already presented in
Listing 2.2 of Chapter 2 of this thesis.

lhttp: //xml. gsfc. nasa. gov/archive/index. html
2http: //www. cs. washington. edu/research/xmldatasets/www/repository. html

D. NSGRAPH PERFORMANCE
MEASUREMENTS RESULTS

This appendix lists the raw data obtained by running the different query al-
gorithms over NSGraphs generated from the 1 MB XMark dataset with varying
backward and forward bisimilarity lengths. This data is analysed in Section 6.5.3,
which also list the benchmark queries.

D. NSGraph Performance Measurements Results 188

D. 1 Linear Path Patterns
bw-0 bw"1

Query AI onthm Dets tw=0 Iw"1 rw"2 tw-3 tw-0 fw"1 fw"2 tw-3
KI MJ-BU Vertex visits 4 10 33 103 16 44 167 295

Mge joins 3 3 3 3 -----_3 _-_-3 3
-

.3
y Join cardinali 1581 1561 1561 1561 1561 15 61 -- 1561 - 1561

Query time ms 27.1 27.1 28.1 31 28.1 . 22 - 20.1 _ _ 19
MJ-TD Vertex visits 4 10 33 103 16 44 187 295

MerQo-Jolne 3 3 _ 3 3 3 _ 3
__

3 3
Join cardinali 1561 1561 1561 1381 1 581 1 1561 i56 1561
Query time ms 26 29 28 12.1 . 28T . _ 22 20 -- 20

OE-BU Vertex visits 69 100 356 848 170 882 6092 3223
MergeJoins S 14 66 296 - 54] _ 126 996 - 452
Join cardinelity
Due time ms

2441
29

3.2.93
27

2383
27.1

6845
34.1

4020
25

7106 12936
24 1F4 36 '-

6530
27

OE-TD Vertex visits 621 575 3060 45934 130 1076 8134 4712
Marg ins
Join cardinsli
Query time ms

140
97698

78.1

61
5052
20.1

288
7759

29

4507

_
169471

2884

17
3798

-i 7

29
3546

10.

98
3095

381

113

_2433 - 23
PE-BU Vertex visits 6 9 1 00 356 848 58 109 182 296

Merg8j9ins . 5 . 11 66 - 296 21 -- 20 77 ____ 100
Join-Cflrdinalitt_ 2441 3293 2383 6 845 2019 1245 1065 1 566
Query time ms 27.1 27.1 28 . 35.1 _ 231 19 16 1 . 19

PE-TD Vertex visits 621 575 3060 45934 130 1078 6434 4712
Meryejoins 140 61 288 4507 17 29,98 113
Join cardinaIi
Query time ms

97698
83.1

5052
21

7_759
30

169471
291 4

3798
i- 7l

3548 3095 2433
9ý 38.1 21

K2 MJ-BU Vertex visits
Meryoins

4
3

12
3

12
3

18 26}'-- 63
3ý~_ 333

Join cardmah 311 3110 3110 311 0 t 103110 3110 3110 3

. Query time ms 28.1 29 28 . 91 1 _ 20,23 23 23
MJ-TD Vertex visits 4 121 12 8

_
9,

,
261 63

t-- Merye-j0ins
Join cardinalitL_

3
3110

3
3110

3
3110

3
f3110

333 3
X110 3110 311 9110

t----
Query time ms 31 33.1 1 32.1 34 24' 25 20 1 27

OE-BU Vertex visits
Merge ins

3
3

3
6

3
6 _3 10

7 10 17 48
J

_2
88 18

Join cardinaii
Query time ms

3110
28

3178
27

3178
26

3938
29.1

1293 101 2104j--9204
15.11 141 14~ -14

OE-TD Vertex visits
Mergjoins

17
3

90
61

96
6

180
18

1_8 102,
_108,208 39 'i 25 --

Join cardinali
Query time ma

3110
22.1

3178
201

9178
20.1

1231
23

2191 717 2747_ 38.03
9- 10 99

PE-BU Vertex visits
Mereloins

3
3

3
6

3
it

3
10

7 10ý- 171 34
S 111 181 53

Join cardmeti
Query time ms

3110
28.1

3178
27.1

3178
27.1

3938
28

3043 35.99 552_ 13709
16ý 18' 11! 17.1

PE-TO Vertex visits
MeQ ins

17
3

90
6

96
6

160
10

181 102,1_08
_

208

_31
9ý 9. - 17

- '

K3 MJ-BU

Join cardinali
ou time ma
Vertex visits
Merge pin

3110
21

4
3

3178
20
82

3

3178
21

188
3

3938

,
22

188
3

191 2.747 2747j 3507 2191
8ý 8 71,8
81 190 305 3.05
3- 333

6
6

Joan cardm ah 1766 1766 1766 1766 176 1766 176 766
Query time ms 25, 30 30.1 31 18.1 19' 19! 18

MJ-TD Vertex visits
MerQe1oins

4
3

82
3

18.8
3

188
3

8
3

190 30.5 3.05
333 8

Join cardinali 1766 1766 1766 1766 1766 176 661_ 1768
i Query time ms 27.1 31.1 31 33 1 19 21.1 ! 21 22 1

OE-BU Vertex visits
Merge Lns

3
3

7
63

7
67

7
67

3
2

27 27,27
84 68 ! 88

Join cardinali
Querytime ms

1766
25

808
23

628
22

628
24

431
11

1423' 1431 1431 }-- }--
12 12 12

5E-TD Vertex visits 16 562 1123 1123 201 1016 16.20i_ 1620
Me e- ins 3 63 67 86 3 81 851104

Join cardinsli 1766 808 628 671 527 62515y 618
Query time ms 18 15 , 18 20.1 10

PE-BU Vertex visits 3 7 7 7 3ý
__

251 25ý_J- 25

Mä e ma 3 63 67 67 3 81 851 85
Join cardinali 1766 808 628 628

_527!
24 315

_575 ý Qu time ma 24.1 23 22 24.1 12 12,12 12
PE-TD Vertex visits 16 562 1123 1123 20 1018i

---- -1820
1620

M spins 3 63 67 67 3 81 85_85
Join cardinafi
Qu time ms

1766
17

808
15 1

628
16 1

628
17

527

,3
_6241

75 575
8? 6-- 8

D. NSGraph Performance Measurements Results 189

K4 MJ-BU Vertex visits 4 4 5 13 19 26 34 75
MeQ_ Ins 3 3 3

-
3 3 --------_. - 3 __. 3

Join cardinals
Qu time ms

896
241

896
25.1

896
23

896
_'__261

896
11

$96
16

898
15

898
161

MJ-TD Vertex visits 4 4 6 13 19 26 341 75
Meter gins 3 3 3 3 3 31 3

ý - Join cardinality_ 896 696 896 96 8961 896 896 896

.
Query time ma 25 26 25.1 27 J 16 lot _ _ __ _ 16 `"^ 17

OE-BU Vertex visits 3 3 1 9 181 231 261 41
Mir loins 3 3 S 17 3ý 10 181 55
Join cordmal 896 888 1015 1382 369 523 771 1651 ý"
Query time ms 25 24.1 21 _ 261 141t tb -11 4 14

OE-TD Vertex visits 13 14 24 61 13 14 25 74
ý

erye1oins M 3 3 S 19
__6_

24 33
Join cardinals
Query time ms

896
14

896
14,

1013
111

1190
17

X66 466_ 585 984
1ý- 1ý 2

PE-BU Vertex visits 3 3
_4

9 l8 23,28 39
M9 ms 3 3 S 17 4 11 20

__
54

Join cardin ali 896 896 1015 1382 6081 702 685 1091
_ Query firne ms 24 24 2S I ý26 IIt- 11 15

PE-TD Vertex visits 13 14 24 81 13 14
_

25.74 i -- Mer sjoins 3 3 5 17 3__ e 22 3
- Join cerdmeli 896 896 110111 1382 188 1881

665 876 ý

Que time ms 13 11 11 16 1I 1' 1 0

D. NSGraph Performance Measurements Results 190

bw-2 bw"3
Query Algorithm Data /w=0 1w"1 1w"2 hv3 1w"0 NO fw"2 Mr"
KI MJ-61J Vertex visits 27 112 371 485

--ý
33 142 429 879

Meter s-joins 3 3 3 3 3 3 73
Joincardinali 1561 1561 1561 1561 1581

--
1581 1561

-1581 - Query time final 25 19 18 16 25 191, 19 1 19

MJ-TD Vertex visits 27 112 374
-

485 33 142 429
-ý

679

Merv meint 9 3 3 3 3 3 3 3
Join cardinali
Query time me

1561
27.1

1561
20

15_61
20

1581
19

1561
26

561
- 20

1561
20,

t_S61
20

OE-6U Vertex visits 129 180 228 364 68
-ý-

122
4 __

193 444
Merge joins 20 28 53 60 10 19 37 48
Join cardinali
Query time ms

918
231

428
17

302
14

460
14

459
19.1

47
_ IS U

497
14 14

OE-TD Vertex visits 453 4111 12499 4530 4.31 3220

7481 i 3468
Merfl joint
Join cardlnelity
Oue time ma

39
10515

14

59
6702
24.1

80

_1831 591

43
717

24

27
1368

7

38
1453

15

28 T1
138 70

37 20
PE-BU Vertex visits 55 92 141 250 66 122 139 44

Msrpýoins 13 22 42
_49

--- 11 20 30 34
Lý-

Join cardinaII 1047 261 364 525 7.33 138 205 269
- u- Query time ms 23 15.1 17.1 14 -- 20 14 14 144

PE-TD Vertex visits 453 41 11 12499 4530 431 3220 7481
_____3466 -- Me 9 joint 39 . 59 80 43 ---27 - 38 28 21

Join ceMinalq 10515 6702 183

117

4368. 1453L 438i 70
- Due time ma 16 24 59.1 25.1 8ý 391,201 15

K2 MJ-BU Vertex visits 1 1 2 4 38 164 11: 67 149 326

Merýejoins . 3 . 3 3 3' 3T3
Join cardinali 3110 3110 3110 3110 31101 31101 3110L_

- _3110 - Query time ms 19 23 , 23 23 1 --j ý 21 23 231 T3
MJ-TD Vertex harts 11 2.4 38 164 11 67 i 149 326

MerQins 3 3 3 3 3 3ý 33
Jon card nali ty 3110 3110 3110

r-

3110

ý

J110 0 31101 3110 311 1
Query time ma 24 281 281 27 251 . 271' 28 271

OE-BU Vertex visits
Meter Joint
Join cardmatý

9
1

310

15
4

866j

29
4

888

134
8

1626

9 28 731,166
4 4' 6

3101 - 296ý 2981

296
- Query time ms 14 11 ý 13 11.1 ^_ 14 13-ý14i 111

OE-TD Vertex visits
Merysoins

16
3

105
12

111
12

215
32

18 135 178 282
3ý 12 12' 24

[
PE BU

Join cardinal.
Query time ms
Vertex vista
MerQe_jolns

2tos
8
9
S

2662 2682
-- 61 7.1

15 29
14 21

3716
9

81
117

------ t---- ` 4106 209T 209T#
-_, -1490 ---

{--"'"`
7,6 66

9 28 53,135
- 108 _b 1S 531- --

Jan caMxýali
Query time ms

2493
17

ý

3049 3049
18 7

42.38
IB

2493
-2535

--
----18 18

2739
_

2576
-- -17{- --161

PE-TD Vertex nuts 18 105 111 215 18 1351 178 282
M°r9e""ins 3 1T 1 21 3-' 12r 12 24
Join wrdinaN 2108 2662 2662 31 TT 108 2092 2092 2092
Query time 11 ms 8 8 6 -6 ---- 6j-71{-- ---- -- 7ý-- --- 9

K3 MJ-BU Vert! 5.
__ Mergins

Jain csrdina6

9
3

1766

2_60
3

1788

380
3

166

395
3

1766
_

1.0 285
_

411 456
31 31 J33

1768' 1788 1788 1768
Query time ms 18 19.1 19-1 19 19' 201 - 20 ^-- 19

MJ-TD Vertex visits
Mire e ins

9 260
3

3_80
_395

43
3

10 285 411
_

456
-3 333

Jan ardnali
Query time ms

1766
21.1

176 8
2

1768 17.88 1
- 21 22

r -- + --- 1768 1788,1788" 1788
-r- 20.1 i- - 20 22 23 1

OE-BU Vertex visits

ardim join JoincaMmati
Query firne ms

3
1

274
11

11S
SS

502
13;

L 123
S9 4322

12

123
59

322 ý
12

31 57 57: 57
19 19

-2i _ 4 111 43-- 43 IJ
------- 11' 12ý----ý12i 12

OE-TD Vertex visits
Merýaloms
Join cardinal.
Query time ms

21
3

527 1
3'

1084 18.91 1705 ý
93.

_
97 116

_108'
ISt 15; t

7ý 10' 11

22 10951 1706 1753
3ý S7 57 67

527 201 129 129
3' 6 101- 11

PE BU Vertex vlstis
Merye' ins
Join varIina6
Query time ms

3.43i 43}13
- 3t 9397{ 97

52759' 4081 408
121' 13ý-12' 12

3 57' 57' 57
--- 3 S7 57 57

5271
-

201" 129,
-

129
12' 12" 13' 11

PE-TD Vertex visits
Merg e

21
3

1081 1691,1706
93' 97 97 }

1095
-1706.1753

_3
57 571 57

1- -
Join cardinsli 527 408J 408 459 1- +-

$27 201 " 29 129
+ - Qu lime ms 2 101 10 7 10,101 2 7

D. NSGraph Performance Measurements Results 191

K4 MJ-BU Vertex visits 22 66 88 169 23 96 1 22 225
Mer 'oins 3 3 3 3 3 3 . _ 3
Join cardinah 898 896 896 896 896 896 _ 696 896
Query time ms 18 16 19 16 16.1 15 15 - 17

MJ-TD Vertex visits 22 66 88 169 23 96 122 225
Me e- ins 3 3 3 3 3 3 3 3
Join cardineb 896 896 896 896 896 698 - 896 - 898
Query time ms 161 17 18 17.1 17 17 iS 17.1

OE-BU Vertex visits 21 65 87 147 22 91 11 159
Mew pins 1 2 6
Join cardinali 119 119 216 429 1 08 108 205 356
Query time ms 14 14 14 15 __ 14 _ 15 _ 14 15

OE-TD Vertex visits 13 14 25 74 13 14 25 74
Me eins 3 3 8 21 3 3 14
Join cardineli 335 335 432 661 324 _ 24 3 1 21 _ 656
sue time ms 0 0 1 1 . 0 _ 0 0

PE-BU Vertex visits 21 81 77 103 22 91 111 159
Merge-oins__-_ 5 17 29 62 S 15 ---- 24

_

-_
40

Join cardinal 608 758 81B 845 586 78 5 633 682
Query time ms 14 15 15 18.1 15 _ ___ 15 ------ 151 J 1e

PE-TD Vertex visits 13 14 25 74 13 14 25 74
MerQeoins 3 3 8 19 3

r

7
__

6
_

1e
Join cerdineli 335 335 432 553 : 73 24 924 X21 540

.
Query time ms 1 1 1 -1 -4 -0 t

D. NSGraph Performance Measurements Results 192

D. 2 Branching Path Patterns
bw=0 bw"1

Que AI onthm Data tw=0 fw=1 fw=2 tw=3 1w"O tw"1 tw"2 fw. 3
Q1a MJ-BU Vertex visits 9 266 690 690 27 479 1226 1 257

Mer e- ins 5 5 S 5 _ ýS __ _ 5 . 5 5
Join cardinah 6971 6971 6971 6971 6971 6971 6971 6971
Que time ms 19 36.1 37 37.1 28.1 94.1 35 361

MJ-TD Vertex visits 6 71 177 177 12 27 5 704 735
Me e bins 5 5 5 5 S . 5 y 5
Join cardinali 2492 2492 2492 _ 2492 2492 2492 _ -'--2492 _ 2492
Due time ms 4 9 10 10 8 10 11.1 12

OE-BU Vertex visits 5 6 6 6 7 207 530
Merv -j ins 5 204 510 510 4 203 509 509
Join eardmalit 6971 25491 64147 64117 _ 1532 __ -1392 1447 -_-----1447
Query time ms 17 7 13.1 13 ` 3 4 9 ------- 0

OE-TD Vertex visits 34 514 1075 1075 38 580 1217 1247
Mer meins 5 68 178 178 5 68 - 176 17s
Join cardinali 6971 1329 1479 1479 1788 -390 _ __ _ 54 0 540
Query time ms 20 6 9 7 S 4 _ . 9 o

PE-BU Vertex visits 5 6 6 6 5 141 341 341
Merge-joins 5 204 510 510 7 _ 207 __-530 561
Join cardinali 6971 25491 64147 64147 2017 _ 1633 1705 1736
Query time ms 16.1 8 13 13 1 .6 ___ -8 10

PE-TD Vertex visits 34 514 1075 1075 38 580 247 1 1247
Merg16ins 5 68 174 174 5 68 . --- I 174
Join cardinals 6971 1329 1435 1435 1788 39 0 _ u 496 496
Query time ms 20 5 7 8 6 . 5 @1 9

01b MJ-BU Vertex visits 5 133 345 345 15 2 38 829 660
Mer o- ina 3 3 3 3 3 . 3 3 3
Join cardmali 3596 3596 3596 3596 3596 3596 _]598 X598
Query time ms 8 16 18 18.1 14 17 181 _ 19

MJ-TD Vertex visits 6 71 177 177 12 275 706 737
M" loins 4 4 1 4 1 4 ___

_4
4

Join cardinals 2359 2359 2359 23 59 2359 2359 2359 _ 2359
_

Query time ms 4 9 10 _ 10 8 11 ý 13 _ 12
OE-BU Vertex visits 5 6 6 6 7 532 563

Merge-joins 5 204 512 512 4 203 511 511

OE-TD

Join cardinali
Query time ms
Vertex visits
Me e-' ina
Join cardinals

6958
17.1

26
4

5345

2506.2
7

510
68

1067

63238
11

1071
174

1195

632.38
12

1071
174

1195

_ 1519
2

_30 4
1401

_ 136
1

5 78
66

350

__ 8 1121
-- E

1243

_174 4 78

1121
8

1243
-_174

478

r

Oue time ms 16 4 7 7.1 4 S . 9 61
PE-BU Vertex visits 5 6 6 8 5 141 343 343

Mer e-'oins 5 204 512 512 7 __ 207 532 563
9

Join cardinalit 6958 25062 63238 63238 2004 1607 267 1710
Que time ms 17 8 12.1 12 2 --3 7, 6

PE-TD Vertex visits 26 510 1071 1071 30 576 1243 1243
Mer eJoina 4 66 172 172 4 66 172 _ ---- 1

02a MJ-BU

Jan cardinals
Query time ms
Vertex visits
MerOe joins

5345
15
6
3

1067
5

46
3

1173
6

48
3

1173
8

48
3

1401
5
6
3

350

72
9

456
g

399
S

456
---- 9

_
399

3
Join cardinals 700 700 700 700 700 70 0 7p0 `700
Qua time ms 2 2 2 3 2 . 3 3 3

MJ-TD Vertex visits 4 1s 18 18 4 1 44 153 153
Me eins 3 3 3 3 3 . 3 3ý` 3
Join cardinals 639 639 639 639 839 639 639 839
Query time ms 2 2 2.1 2 3 -- 9 23

OE-BU Vertex visits 3 3 3 3 30 30' 30
Mere ins 3 30 30 30 3 239 258 - 256
Join cardinals

time ms Query
700
3.1

3463
1

3463
1

3463
1

700
2

3115
2

3679 3879
-3 -- 2

OE-TD Vertex visits
Merge-joins
Join cardinality
Query time ms

19
3

700
2

167
26

3148
2

167
52

3658
8

167
52

3658
7

19
3

700
2

1441
213

3076
6

_1553 456
3828

13

1553
456

3826
__ 121

PE-BU Vertex visits 3 3 3 3 3 30 30 30
Mare- ins 30 30 30 3 239 _ _ 256 256
Join cardinality
Query time ms

3463
2

3463
1

3463
1

700
1

3415
3

3679 ----3679
ý-ý 2

PE-TD Vertex visits

R

167 167 167 19 1441 1553 1553
Me e-'oins 26 26 26 3 __ _ 213 228 228
Join cardinals 700 3148 3148 3148 700 _ + 3078 3316 1316

ms Q 3 3 2 2 3 16 8

D. NSGraph Performance Measurements Results 193

Qua Algorithm Date
bw=0
tw"0 tw"1 tw"2 1w"3

bw"1
tw"0 Av1

373
tw"2_

400
Av-3

400
02b MJ-8U Vertex visits

_7
49 49 49

-- -
7

1 4

MJ-TD

te rn
Join cardineli
Query time ma
Vertex visits

4
790

2
-4 790
-- 2

19

_
-4 790

2
19

4
790

3
19

4
790

2
6

4
790

3
145

790
4

154

7.90
2

154
4

Mýa1oins
Join cerdinali

4
729

4
729

4
729

4
729

4
729

1
729

4
729 729

Que time ms 4 2 2 1 2 2 2 3
OE-BU Vertex vierte 4 4 4 4 4 31 31 31

MerQs p ns
Join cardinali

4
790

31
3371

31
3371 _

31
-3371

3
674 _

239
5369

256
57.79

256
5779

Query time ma 2 1.1 2 _ 2 1 3 4 2
OE-TD Vsrbx visits 20 168 168 168 20 1145 1557 1557

MerQo-pins
Join cardinalit

ry Query Ums ma

4
790

-2

27

__
3160

2
__-__

53
3657

6

53

_
3657

7

4
790

3

217
3163

5

119
3879
12.1

449
3879

13

PE-BU Vertex visits 4 4 4 4 4 31 31 31
Mer91oiný
Join eardinalit r_ _1 790

31
3371

- 31
ý_

-
3371

31
3371

4
790

- --

247
3579 _

264
3821

264
3821

Query time ms 2 1 2 2 1 3 3 3
PE-TD Vertex visits 20 168 168 168 20 1445 557 1 1557

MeryepMS,
Join cardinality
Que time ms

_4 790
-- 3

27
3180

--- 2

27
3160

2

27
3160

2

4
790

2

217
3163

-- - 61

. 232
3393

- -- --5

232
3393

-7
02c MJ-BU Vertex visits 7 49 49 49 7 373 400 400

Mero-pine
Join cardinality-
Query time ms

752
------1

752
2

-- -
752

-2

--4
752

2

---4
-- - 152

------2

-
-

-1
752

3

- -_ 4
752

-4

- 4
752

3
MJ-TO Vertex visit 5 19 19 19 S 145 154 154

Merps-joins 4 1 4 4 4 4 4 4
Join ee dinali 891 __ 691 891 891 691 691 691

--
691
- Que time ms 2 --- -2 2 2 3 2

OE-BU Vertex visits 4 4 4 4 4 31 31 31
Msryýoirn - 31 91 31 3 239 258 256
Join cardinahty 752 3200 3200 3200 655 4249 4563 4563 Qu firne ms p 1 -1 1 2 4 2

OE-TD Vertex visit
Meter eoine
Join cardmality

2p
4

75

168
- 27
9065

168
53

3548

168
---- 53

- 3548

20
4

7 2
___1_445 217

2935
_

1557
437

3613

1557
437
613

PE-BU

PE-TD

9m Query e ms
Vart x visits
Me s-
Join cardinshty-
Quo time ms
Vertex visits
Me iss

24

_752
2

20
4

2 2

- 31
--- 3200

168
-- - 27

-7
4

- 31
_3200

168
27

- 6.1
4

31
-32001

168
27

5
2
4
1

--- -752

2
20

4

6

-
30

245
- 3233

2
1415

12
30

28T
3465

2
1557

3
12
30

_
282

3165
2

1557

Join cardinality 752 3065 -3065 ----3665 -------752
217

- -- 2935
232 232

Qu time ms 2 2 2 3 ---- - -- S
3155

S
3155

- 61 53a MJ-BU vertex visits
- Me a

9
------ - 8

16
-- -- - 6

64
6

145
6

31
6

57
6

218
6

459
--

Qu
caMinali y Join

pus time ma
--

-
3628
30.1

3628
32

---- 3628
31 _ -362

8
33.1

----- 36 3628
25.1

----- -
- _3628 24 1 _

3626
24

6

_
3628
241

MJ-TD Vertex Visit
Me ins
Join cerdinelitL
Qu time ms

7
6

-----2999 30

10
6

_
2999

31

26
8

2999
31

-
S3
6

2999
30

7
6

2999
22

_
33
6

--
2999

22

116
6

2999
23.1

257

_6 2.999
22

OE-BU Vertex visit 8 6 8 6 10 20 63 145
Meter e1om6
Join ca inaldy
Quo time ms

6
3628

30
36311
28.1

52
13710
-28

_ 127
31023

29.1

18

-__
4653

1I

33

___ _
7_988

15

139
32393
- -17

287
65830

191
OE-TD Vertex visits 1 18 137 1182 169 357 1222 1 2302

M It ins
Join cardmali ty 362

69
3631 8

7l)
10288

178
31702

r
21

4601
36

5395
242

11594
492

_
22169

Qu time ms 2 2 -- 20 33.1 491 7 281 421
PE BU Vertex visits 66 6 6 10 20 68

_
128

Me ins 9 22
_

127 23 48 191 408
0

Join cardmali 362 8 3631 13710 31023 5806 9162 1894 384.21
Oue time ms 29. 12 7 271 30 17.1 17.1 lei 21

PE-TD Vertex weds 3 17 8,437
--

1182
--

169
- _

357 1222
--

2302
Me ins 6 -- 9 39 97 21 38 143

_
303

Join cardineli _ 362 8 363 1 9398

r

20633
- -

4801 5395 10724 2.1386
ouerly time ms 22. 12 0 21 22 T 7 r 6 10 13

D. NSGraph Performance Measurements Results 194

MJ-TD Vertex visits 1 8 29 2 74 4 81 41 1 30 3 76 1 861
Merpe-jolns 5 5 S 5 S S 55
Join cardinals 249 2 249 2 249 2 249 2 249 249 2 249 2 2492
Query time ma 1 01 21 21 11 01 11 2 13 6E-BU Vertex visits 5 14 1 34 1 34 1 5 14 1 34 1 341
Me a oin 4 14 0 34 0 34 0 4 14 0 34 _ 0 340
Join cardinah ty 1532 1084 1033 103 3 153 2 1081 103 3 1033
Query time ms 2 37 6 3 3 47

OE-TD Vertex visits 39 588 1256 1271 4 599 127 3 1318
nePlim 5 5 8 8 S 8 .B v

Join cardinali 1788 82 115 115 1788 82 113 _ _ 1 15
Query time ms 5 1 7.1 9.1 Si t7 .

PE-BU Vertex visits 5 141 341 341 141 311 341
Merge ms 5 141 341 341 5 111 341 341
Jan cardma6 1788 1095 1 1044 1044 1788 1095 1044 1044
Query time ms 3 5 4 8 3 g 7 e1

PE-TD Vertex visits 39 588 1256 1271 40 599 127 3 1318
Mere ins 5 5 5 5 S 5 5 5
Jan cardmah 1788 82 82 B2 1788 82 B 2 82
Que time ms S 5 B 7 7.1 6.1 _ ýý 8

Q1b MJ-BU Vertex visits 22 261 678 763 24 283 712 857
Merg ins 3 3 3 3 3 3 3 _ 3
Jan cardinals 3596 3596 3596 3596 3596 3596 3596 3596

, Query time ms 17 18 18 17 16 18 18
,

17.1
MJ-T0 Vertex visits 18 292 746 816 19 303 763 863

Merl ins 4 4 4 4 4 4 4
Join cardinali 2359 2359 2359 2359 2359 2359 2359 2359
Query time ms 9 11 11 11 10 11 11 12

OE-BU Vertex visits 5 U11 1 343 343 5 141 343 343
erge joins M 4 140 342 342 4 140 342 34 2

Join cardinah 1519 1058 1007 1007 1519 1058 1007 1007
Query time ms 2 3 4 5 2.1 31 5 6

OE-TD Vertex visits 31 584 1252 1267 32 595 1269 1314
Mere--join 4 3 4 4 4 3 4 1
Join cardinals 1401 42 53 53 1401 42 53 5 3
Query time ms 5.1 5 8 8 5 S 6 . 9

PE-BU Vertex visits 5 141 343 343 5 141 343 343
Merpeoins 5 141 343 343 S 141 3.13 343
Join cardinals 1775 1069 1018 1018 1775 1069 101 8 101 8
Qum time ms 3 3 4.1 4.1 2 . S . S

PE-TD Vertex visits 31 584 1252 1267 32 595 1269 1314
Merge-joins 4 3 3 3 4 3 3 3
Join cardinals 1401 42 12 42 1401 12 42 42
Query time ma S 5 7 a 4 S 8 9

We MJ-BU Vertex visits 8 581 625 625 581 625 62 5
Marge j Ls 3 3 3 3 3 3 3 _ 3
Join cardinals 700 700 700 700 700 700 700 700
Query time ms 1 3 3 3 2 1 3 3

MJ-TD Vertex visits 1 353 379 379 4 353 379 379
Merge-jo' s 3 3 3 3 3 3 3 -- j
Join cardinals 639 639 639 639 639 639

_
839 _ 039

Query time ms 1 2 3 3 2
OE-BU Vertex visits 3 239 256 256 3 239 256 256

Merge joins 3 239 256 256 3 239 256 258
J oin cardinals 700 572 572 572 700 572 72 572
, Query time ms 2 4 3.1 3 2 4 4 4

OE-TD Vertex visits 19 1441 1553 1553 1 1441 1553 1553
Merge1oms 3 213 458 456 9 213 158 456
J oin cardinals 700 510 1020 1020 700 510 1020 1020
Query time me 2 8 11 11 2 7.1 11-1 - '11

P E-BU V ertex visits 3 239 256 256 3 239 256 256
M er e oins 3 239 258 256 3 239 256 256
J oincardinalit 700 572 572 572 700 572 572 572
Q uery time ms 2 3 3 3 2 3 1 __ 4

P E-TD V ertex Visits 19 1441 1553 1553 19 1441 553 1553
M er e-oins 3 213 228 228 3 213 _ 228 228
J oineardinali 700 510 510 510 700 510 310 _ 10 5
Q u time ms 2 7 7 8 3 7 7 . 7

D. NSGraph Performance Measurements Results 195

bw=2 bw-3
Que AI onthm Data fw=0 fw=1 fw=2 tw"3 tw=0 tw"1 tw. 2 tw"3 02b MJ-8U Vertex visits

'
7 58 9 63 3 63 3 7 62 2 66 6767 M ins 4 4 4 4 4 1 4 ý- 4 Join cardmeh 79 0 79 0 79 0 79 0 79 0 79 0 79 0- 790 Qu time ms 1 4. 1 5 4 S 9 1 ----"'4

MJ-TD Vertex visits 5 36 1 38 7 38 7 5 39 4 42 1 421 karg-joins 1 4 4 4 4 4 j ý- -4
Join cardineli 72 9 72 9 72 9 72 9 72 9 72 9- 72 9 729 Query time ms 2.1 2 3 3 2 i_ 34 OE-BU Vertex visits 4 247 26 4 264 4 261 27 8 276
Merge-joins 3 239 2576 256 3 220 _ 231 234
Join cardineli 674 960 992 992 674 526 24 S 521
Query time ms 2 3 1 4 4 _ 3 4 OE-TD Vertex visits 20 1475 , 1589 1589 20 1475 1589 1589
Merge joins 1 238 470 470 4 229 131 -134
Jo n cardineli 790 81 1 1317 790

EE
546 72 9 972

Query time ms 2 8 10 12 2 7 . 10 11 PE-BU Vertex visits 4 22 242 24 4 261 276 276
Merge-[q ins 4 280 298 29

[
261

t
? 7E 276 Jon cardinali 790 1056 1086 108

EýA
622 618 _ 18 6 Query time ms 1 4 3 . 3 . 3 PE-TD Vertex visits 20 1475 1589 1589 20 1475 1 589 1589 Merge oins 4 23 253 253 229 . 242 __ 242

Join cardinah 790 613 831 831 790 518 Y 2 _ -542
Query time ms 2 7 7 8 2.1 7 --- 7

Q2c MJ-BU Vertex visits 7 586 632 632 7 fi06 651 76 51 Me loins 14 4 4 4 4 4 . 4
Join cardinality 752 752 752 752 752 752 752 752
Query time ms 4 S 3 4 14 4 _--""-4

MJ-TD Vertex visits 5 360 386 86 5 378 405 405
Merge-joins 4 4 1 4 4 4 4
Join cardinality 691 69 691 691 691

ýL
691 691 891

Qu time fmsl 2 4 3 3 4 2 3 3
OE-BU Vertex visits 4 244 261 261 4 229 244 244

Merge-joins 3 237 254 254 3 204 218 218
Join cardinali 655 766 788 788 655 488 1 86 486 Que time ms 1 4 4 3 1 3 . 4 3 OE. TD Vertex visits 20 1475 1589 1589 20 1475 1589 1589 Merge-joins 4 228 14 446 4 205 410 110 Join cardinali 752 633 1099 1099 752 490 918 910

P
Que time ma 2

4
7 11 11 2 8 12 E-BU Vertex visits 211 225 225 4 229 244 24 Mrojoine 4 262 280 280 4 229 244 _

4
244 Joncerdinelit 752 824 844 844 762 SIg -7612 -- $ 42 Query time ms 3 3 3 2 3 31 . 3 PE-TD Vertex visits 20 1475 1589 1589. 20 1475 9 1589 Msrys ins 1 226 241 241 4 205 8 218 Join cardinali 752 633 641 811 752 490 6 Query time ms 2 8 7 7 2 81
468

7

A

We MJ-BU Vertex visits 51 122 387 797 67 23 0 1012 Merge-joins 6 8 8 6 B g g 6 Join cardinals 3628 3628 3628 3628 626 3628 s 8 3826 Query time ma 25 25.1 26.1 26 26. 27 20 j 26 MJ-TD Vertex visits 35 82 271 565 51 163 121 780 Merge-joins 6 8 6 6 6 6 -g -6
Joincardmah 2999 2999 2999 2999 2999 2999 2999 -`2999
Query time ms 23 23 24 241 23 2S 1 2S -- 21 OE-BU Vertex visits 271 60 199 417 43 - 141 342 607 Mer e- ins 18 33 133 268 18 33 123 _ 243
J oin cardinals 3483 3447 3113 2523 1123 1123 1089 1055 Query time ms 15 14.1 16 17 15.1 10 16.1 16

OE-TD Vertex visits 185 391 1307 2446 185 391 1307 2446
Merge-joins 36 64 302 567 36 64 19a 378
J oin cardinals 4606 4518 4856 3841 2246 2203 1890 1702
Q uery time ms 8 8 17 20.1 8 7 13 18

P E-BU V ertex visits 27 60 189 392 43 141 342 607
M erge-joins 38 75 265 527 38 75 _255 502 J oin cardinals 5018 4969 4614 3990 2658 2615 2590 2 S 22
Q uery time ms 17 16 19.1 201 23 18 19, _ 22

P E-TD V ertex visits 185 391 1307 2446 185 391 1307 2448
M erge-joins 36 64 206 398 36 84 198 378 J oin Cardinals 4606 4518 3992 3078 2246 2203 2040 1798 Q uery time ms 6 9 11 15, 7 6.1 10 14 1

