Grouping of Semistructured Data for
Efficient Query Processing

Mathias Neumuller

A thesis presented for the degree of
Doctor of Philosophy

2004

Department of Computer and Information Sciences,
University of Strathclyde in Glasgow

DECLARATION OF AUTHOR’S RIGHTS

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation

3.51. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

ABSTRACT

With the emergence of large-scale distributed computing applications semistruc-
tured data models have gained significant importance. Current practical secmi-
structured data management systems can often not provide the performance re-
quired by practical applications.

This work describes a model for the optimisation of semistructured data
processing based on data groupings. Such groupings are of fundamental im-
portance for efficient querying of semistructured data. The semistructured model
does not imply the natural organisation of data that characterises rigidly struc-
tured representations. Instead, data groupings in the semistructured case must
be derived from the data itself or its applications.

This thesis presents a number of such possible data groupings and formalises

them into a concept of domains. Different classes of domains are identified and
the impact on different data sources is evaluated. A particular definition is then
used to implement an efficient physical representation using an approach based
on dictionary compression adapted from relational data management. Finally
this approach is combined with a data grouping aimed at the efficient resolution
of structural constraints.

ACKNOWLEDGEMENTS

Dedication
To my late father

Firstly, I would like to acknowledge the continuous support and trust I have
received from my supervisor Mr John N. Wilson. He has encouraged me to take up
research in the field of databases and made this PhD possible. His never-ending
enthusiasm for this work has secured its successful conclusion. I am also grateful
for the generous departmental stipend and the numerous financial contributions
to conference, workshop and summer school visits.

I am indebted to many colleagues for their advise and support. The SNAQue
team and I shared a lot of interest in the area of semistructured data processing
and their comments on my work were often helpful. I particularly enjoyed the
cooperation with George Russell on TypEx. Thanks to the EFoCS Software
Engineering group I was able to get to know many and use a few aspects of
modern software development.

The departmental Ultimate Frisbee team helped me to find a balance be-
tween theoretical work and physical exercise. Most of the team members have
become good friends. I was also driven into the arms of both the Strathclyde
Mountaineering and Canoe Club, for which I am very thankful. Apart from tak-
ing my out into the Scottish wilderness I have found many friends there. Their
continuous lust for adventure has helped me through many hard phases of this
journey.

Most importantly I need to recognise the role of my friends, both here in
Glasgow and beyond. Matt Munro has accompanied me for the entirety of my
time in the department, as fellow student, Frisbee player and mountaineer. He
was a true friend throughout this time and I hope our friendship will last much
longer. Nahoum and Stephanie are also exceptionally good friends, whose support
has often helped me through hard times and who could offer me a continental
haven in Glasgow. Oliver has maintained contact with me during my five year
absence from Germany and welcomed me whenever I went there. I also appreciate
the three winters I spent with friends from the University of Hannover, two times
in Norway and once in Slovenia, and the people that came to visit me in Scotland.

Thank you all!
Last but not least I would like to thank my mother for her support during my

long stay abroad. I am aware of the hardship she had to endure with both her
children so far away in difficult times.

CONTENTS

1. Introduction e e e e e e 1
1.1 The Environment for Semistructured Data Processing 1
1.2 Structure and Contribution of the Thesis 2

2. Semistructured Data e 4
2.1 Historical Motivation for Semistructured Data 4

2.1.1 From Unstructured Data to Semistructured Data 5
2.1.2 From Structured Data to Semistructured Data 6
2.2 Semistructured DataModel 10
2.2.1 Graph Theoretical Background 10
2.2.2 Data Graphs, Views and XML Documents 15
2.2.3 Order and Identifier Based Models for Semistructured Data 21
2.3 Querying Semistructured Data 23
2.3.1 Path Expressions as a Selective Query Languages 24
2.3.2 Query Languagesfor XML 30
2.3.3 Query Evaluation Strategies 31
2.4 Indexing SemistructuredData 34
2.4.1 Linear Index Structures 34
2.4.2 Nonlinear Index Structures. 36
2.5 Literature on Semistructured Data Processing 37
2.5.1 Semistructured Data Management Systems 38
2.0.2 Summary Structures or Indices of Semistructured Data . . 41
2.0 Summary e e e e e e e e e e 43

3. An Optimisation Model for Query Processing 44
3.1 Introduction and Model Overview 44
3.2 The Optimisation Process, 46

3.21 IndexDesign, 46
3.2.2 Data Classification 48
3.2.3 Data Reorganisation 49
324 QueryPlanning o oo, 419
3.3 Query Systems in Termsof the Model 50
3.4 SUMMATY . . . v v vt i e e e e e e e e e e e e e e e 59

Contents vi

4. Domains in Semistructured Data 08
4.1 Introduction to Domains in Databases o8
4.1.1 An Information Theoretical Approach. 58

4.1.2 A Graph Theoretical Approach 59

4.1.3 Motivation for the Identification of Domains 60

4.2 Definitions of Domains for Semistructured Data 61
4.2.1 Application independent domains 62

4.2.2 Application dependent domains 76

4.3 Experimental Evaluation of Domain Statistics 78
4.3.1 Evaluating Fixed Domain Definitions 78

4.3.2 Evaluating Parameterised Domain Definitions 81

4.4 Summary e e e e e e e e e e e e e e 84
9. Compressing Semistructured Data 85
9.1 Introduction to Querying Compressed Data 86
0.2 Compression Systems for XML Data 86
5.2.1 XML Compressors for Storage and Transmission 87

5.2.2 XML Compressors for Querying and Management 88

5.3 Dictionary Compression in Databases 88
5.3.1 Fundamentals and Assumptions 89

5.3.2 Compressing Relational Data 89
0.3.3 Compressing Semistructured Data 02
5.3.4 Querying Compressed Data 93

9.4 Experimental System Design 93
54.1 Storage e e e e 93
0.4.2 Querying. v i e e e e e e e e e e e 95
043 Indexing i e e 96

0.0 Performance Analysis, 96
9.0.1 Memory Consumption 96
9.0.2 Query Performance 97
9.9.3 Limitations of the Experiment 104
9.0.4 Experimentalconclusions. 104

0.6 Summary e e e 105
6. Combining Structural and Atomic Data Groupings 106
6.1 Introduction to Hybrid Querying 106
6.1.1 Motivating Example 107

6.2 Bridging the Gap: Signatures Based on Numbering Schemes . .. 113
6.2.1 Numbering Schemes for Tree Nodes 113
6.2.2 Signatures for Data Trees 114
6.2.3 A Motivation fora Hybrid Design 116

6.3 Related Work on Combining Structure and Value Querying 118
6.3.1 Numbering Schemes and Signatures 118

6.3.2 Hybrid Querying Systems 120

Contents vii

6.4 Experimental System, 121
6.4.1 TreePattern Expressions. 121

6.4.2 The Components of the Data Structure 122

643 QueryingSystem 123

6.5 Query Execution Performance Analysis 125
6.5.1 The Benchmark Queries and Data Source 126

6.5.2 Query Execution Performance of Data and NSGraphs . . . 129

6.5.3 Varying the Coarseness of the NSGraph Structure 136

6.5.4 Limitations of the Experiments Performed 150

6.6 Summary e e e e e e e e e e e e e e 151

7. Conclusions e 152
7.1 Results. i i e e e 152
7.1.1 Data Groupings as Explanatory Tool for Optimisations . . 152

7.1.2 Domains for Graph-Structured Data 153

7.1.3 Compression of Semistructured Data 154

714 Hybrid Querying 154

7.2 Limitations and Future Work 155
7.2.1 Choiceof DataSources v v v v v v v v v v v 155

7.2.2 Extension of Query Language 156

7.2.3 Domain Statistics as Metrics for Semistructured Data . . . 157

7.2.4 Query Planning Based on Data Statistics 157

7.2.5 Comparison with Information Retrieval Systems 157
References @ i i i i i i e e e e e e e e e 158
Appendix 168
A. Type Projection over Streams ¢« i v v v v v v v o u 169
B. Structural Indices Based on Bisimilarity 176
B.1 Exploiting Local Similarity for Indexing Paths in Graphs 176
B.2 Covering Indexes for Branching Path Queries. 178

C. Descriptionof DataSources 182
C.1 The Domain Name Server Database 182
C.2 Shakespeare’s Macbeth Encodedin XML 184
C.3 The XMark Benchmark Dataset 184
C.4 The Nasa Astronomical Dataset 186
C.5 The DBLP Bibliographic Database 186

D. NSGraph Performance Measurements Results. 187
D.1 LinearPathPatterns v, 188

D.2 Branching Path Patterns 192

LIST OF FIGURES

1.1 The structure of the main argument of the thesis 3
2.1 The realms of unstructured, semistructured and structured data . 5
2.2 'The DBLP page with the author’s bibliographic information ... 7
2.3 The author’s bibliographic information in a relational schema .. 0
2.4 llustration of different typesof graphs 12
2.5 Anexampleofadatagraph 18
2.6 The graph- and tree-view of the example data graph 19
2.7 Example graphs of branching path expressions 26
2.8 The tag index for the examplesource 35
2.9 The atomic value index for the example source 36
2.10 An index graph for peopledetails 37
3.1 The four phases of the query optimisation process 45
d.2 The bibliographic database used for the example systems 51
3.3 The index structure used to resolve label-value predicates 02
3.4 The index structure used to resolve branching path expressions. . 53
3.0 The index structure used to resolve tree depth queries 56
4.1 The data graph representation of the example source 61
4.2 A taxonomy of domains for semistructured data 62
4.3 The containers of the example source as identified by XMill. . . . 65

4.4
4.5

4.6
4.7
4.8
4.9

The strong DataGuide of the example database 67
The depth domains superimposed on the tree-view of the data graph 68

The (extended) skeleton of the example database 69
The A(l)-index graph of the example source 70
The (1,1)-F+B-Index graph of the example source 72
The Person type projected over the example graph 77

4.10 Size of the domain of the XMark data based on local bisimilarity . 83

2.1
5.2
0.3
9.4
0.0
0.0
9.7

The uncompressed example relations 89
The compressed example relations 00
Dictionaries of the compressed example relations 90
The sports club example data represented as XML document . . . 91
The structure of the compressed XML document 01
Memory consumption of different representations of the DNS data 98
Query execution performance for the different query systems . . . 100

List of Figures ix

0.8 Query execution performance for the native query engine 103
6.1 The data graph of the examplesource. 107
6.2 The graph representation of the examplequery 108
6.3 The (2,0)-F+B-index graph of the example source 109

6.4 The structure array and indexed domain dictionaries of DDOM . 111
6.5 The tree-view of the example source together with its signature . 115

6.6 The plane of pre- and postordercodes 117
6.7 The combination of signature information with a structural index 118
6.8 The graph representations of the branching tree patterns 128

6.9 The minimum number of vertex visits over the NSGraph bisimilarity 138
6.10 The response of the four different queries to different NSGraphs . 140
6.11 The response of four different query algorithms to Query K2 . . . 141
6.12 The minimum number of vertex visits over the NSGraph bisimilarity 144
6.13 The response of the nine different queries to different NSGraphs . 145
6.14 The response of four different query algorithms to Query Qla . . 147
6.15 The response of four different query algorithms to Query Q4b . . 149

B.1 A(k)-index computation, 178
B.2 Algorithm for the computation of the F&B-index 179
B.3 Examplefortree-depth o L, 180
B.4 Vertex-set partition computation 181

C.1 References within the XMark datasource. 185

LIST OF TABLES

4.1 Overview of domains for the example source-1 74
4.2 Overview of domains for the example source-2 , 75
4.3 'The number of domains discovered using different domain definitions 79
4.4 Size of the domain of the XMark data based on local bisimilarity . 82
0.1 Memory consumption of different representations of the DNS data 97
0.2 Query execution performance for the different query systems . .. 99
0.3 The query operations available to the custom-built query engine . 102
5.4 'The example queries and their execution strategies 102
5.5 Query execution performance for the native query engine 103
6.1 The benchmark tree pattern queries in BPE syntax 126
6.2 Execution performance of the linear tree pattern queries 132
0.3 Execution performance of branching tree patterns on the data graph134
6.4 Execution performance of branching tree patterns on the NSGraph 135
C.1 Overview over the data sources used throughout the thesis 182
C.2 Important metrics of the examplesources. 183

1. INTRODUCTION

Code and Data

“Show me your [code] and conceal your [data structures],
and I shall continue to be mystified.

Show me your [data structures|,

and I won’t usually need your [code]; it’ll be obvious.”

Fred Brooks, The Mythical Man Month, 1975

This thesis analyses the problem of efficient processing of semistructured data.
In order to allow this a fundamental concept is introduced and detailed through-
out this work. The concept discussed is that of data grouping or, more techni-
cally, that of graph clustering. The focus of this work lies on finding suitable data
organisations that support efficient data management. Both theoretical and prac-
tical aspects of data groupings are developed in order to show that this concept
1s indeed fundamental to understanding and improving semistructured querying
processes.

Querying semistructured data, i.e. embedding sub-graphs potentially encod-
ing regular expressions into larger data graphs, is a well known problem. Algo-
rithms for this task were developed in the early stages of computer science by
the graph theory community. This thesis explores how such algorithms can be
adapted to the requirements of today’s environment.

1.1 The Environment for Semistructured Data Processing

Over the last few years the environment in which semistructured data models
are used has changed significantly. It took decades to evolve from a theoretical
problem to its widespread application in science and industry, primarily driven
by the emergence of web technologies. Data sets are growing with exponential

1 Actually, he said “flowcharts” and “tables”. But allowing for almost thirty years of termi-
nological and cultural shift, it is almost the same point.

1. Introduction).

speed and cannot be dealt with using conventional approaches. Globally valid
schemata are often impossible to impose in situations where semantically similar
but syntactically different data sources need to be integrated and processed across
the boundaries of single organisations. In order to allow the automated processing
of such heterogeneous sources, the XML standard was developed as a concrete
syntax for the representation of semistructured data sources.

Now mechanisms that can deal with the amounts of data occurring in practice
are needed. Many of the algorithms discussed in the past by graph theoreticians
do not scale to the sizes of today’s practical problems. Simpler approaches are
needed that can deal with a useful subset of this wide area with an acceptable
performance. The focus of this work rests on efficient querying of such large
sets of semistructured data. This is motivated by a new type of application,
especially significant in the area of data-centric sciences, such as bioinformatics
or particle research, where data is gathered automatically. In such environments,
the queries or computations do not have the properties that are generally assumed
for unrestricted, ad hoc online processes. In addition, the data does not change
significantly in a period of time which is comparable to the time needed for its
processing, i.e. it can be considered to be (semi-)static.

1.2 Structure and Contribution of the Thesis

The main contribution of this work is an investigation of the importance of data
groupings to the semistructured querying process. On a theoretical level a novel
model is proposed in Chapter 3 that conceptualises the general query optimisa-
tion process for semistructured data. Data groupings are central to the presented
model. As a consequence it motivates a re-evaluation of the concept of domains for
the semistructured data model, which is discussed in Chapter 4. On a more prac-
tical level Chapter 5 analyses how the concept of data grouping influences data
management using the example of dictionary compression. This approach, which
was previously applied in relational database compression, can be re-established
for data-centric semistructured databases if a suitable grouping of the data is
effected first, i.e. if domains can be established in semistructured data. The final
chapter of this thesis investigates how the restructuring of semistructured data
influences query execution performance. For this purpose a combination of exist-
ing indexing methods is proposed to allow the efficient querying of semistructured
data using both structural and value constraints (Chapter 6). So far research has

1. Introduction 9

Chapter 2
Semistructured Data

(Data Modcl)

1

Chapter 3
Optimisation Model
(Data Grouping)

— T

Chapter 4 Chapter § Chapter 6
Domains of SSD Compression of SSD Hybrid Query System

(SSD Clustering) (SSD Management) (SSD Querying)

Fig. 1.1: The structure of the main argument of the thesis

concentrated on one or the other of these constraints, which typically leads to
performance problems on the part ignored.

Taken as a whole, Chapters 4 — 6 validate the optimisation model presented
in Chapter 3 and thus also support the importance of data groupings in general.
Individually they clearly show that there exists a compromise between complexity
of query languages together with the mechanisms required to support them and
the performance of such systems. Figure 1.1 visualises the structure of the core
chapters of this thesis. The initial step in this process is to explain the concept
of semistructured data and define the terminology used in the rest of the thesis.

2. SEMISTRUCTURED DATA

Semistructured Data

“ ..data that is neither raw data nor strictly typed.”

Serge Abiteboul, ICDT 1997, Delphi, Greece

This chapter introduces fundamental concepts and terminology of semistruc-
tured data models and management systems, which are essential for the under-
standing of the following work. It starts by giving a historical motivation for
the current interest in semistructured data, then develops a data model based
on elements from graph theory. Query languages, query mechanisms and associ-
ated indexing techniques are discussed before finally other research in the area of
semistructured data processing is reviewed.

2.1 Historical Motivation for Semistructured Data

The term semistructured data (SSD) describes a number of data models with
varying definitions. One approach is to identify SSD with originally unstructured
information, such as textual documents, which are annotated with describing
metadata in order to ease automatic processing. It is thus a subset of unstructured
data. However, the term is more frequently used to distinguish SSD models from
structured ones, particularly the relational model. However, from a theoretical
point of view, SSD is a superset of structured data, i.e. all structured data sources
can be managed by a semistructured DBMS but not vice versa. Figure 2.1 depicts
these relationships. For the purpose of this thesis SSD will be defined as follows:

Definition 2.1 (Semistructured Data): Semistructured data comprises those docu-
ments that combine some atomic pieces of data with some meaningful structural
relationships between these atoms. The atomic data and its structure (or meta-
data) are combined in a single document and thus inseparable from a processing

point of view.

cn

2. Semistructured Data

Fig. 2.1: The realms of unstructured, semistructured and structured data

The semantics of semistructured data depend on both the atomic data and
their structural relationships. Semistructured data does not require an a prior
schema, but can rather present its own schema as part of the data. The reasons
for the current interest in SSD are introduced in the following sections before in

Section 2.2 a sound theoretical definitions of a model for SSD is presented.

2.1.1 From Unstructured Data to Semistructured Data

Though SSD models have existed for some time they began to attract widespread
attention in the wake of the more recent globalisation of computing achieved by
web technologies [ABS00]. The Internet’s most successful service, the World Wide
Web (WWW) [BLCG92|, is based on the hypertext markup language HTML
HTM99]. Documents in this format are essentially unstructured in terms of this
thesis. Although they follow certain encoding rules, which imply a structure sim-
ilar to that of SSD, this structure is unrelated to the information they present.
This is due to the fact that they are meant for human consumption, with their
associated metadata solely used to describe their presentation. A human reader
must derive the semantics of the data from contextual information and back-
ground knowledge. A scientist looking at the author’s DBLP (Digital Bibliogra-
phy & Library Project) page shown in Figure 2.2 can derive that the information

E
F
;
!

2. Semistructured Data 6

displayed are bibliographic references consisting of paper titles, co-author names,
conferences titles and so on. However, looking at the simplified HTML code in
Listing 2.1 that is used to describe this page, no such semantics can be attached.
The only information that can be derived from this representation is that it de-
scribes the content of some cells of a table. If an automated procedure like a
web service is to be used to combine this information with that of other biblio-
graphic data sources, the semantics of each individual piece of data presented in
each source need to be provided. This need was recognised [BB99, BLHLO1] and
addressed by the extensible markup language (XML) proposal [XML00]. Rather
than combining data content with its format as in the case of HTML, the aim here
is to combine the data with its semantics, given through the use of application
specific tag names. Consequently it is often called self-describing data and due to
their origin such sources are referred to as document-centric, as are applications
working on them.

This complies with Definition 2.1 for SSD, of which XML documents are an
example. Listing 2.2 shows an example of a single entry from the page shown in
Figure 2.2 in this format. The set of data sources provided in such a format and

made available over the Internet is commonly referred to as the semantic web
(BLHLO1].

2.1.2 From Structured Data to Semistructured Data

Equally contributing to the interest in SSD models is the move to expose to
the web information previously managed in a closed DBMS. Such data usually
adheres to a strict schema, e.g. information stored in relational databases. Al-

though the process of publication does not change the structured nature of the
data itself, the open environment in which it is exchanged requires some com-
promise as far as its encoding is concerned. The drift from closed, centralised,
client /server environments, in which schema constraints are known and can be

enforced, to open, distributed, peer-to-peer systems favours the laxer constraints
imposed by SSD models. Data sources and their applications that originate from

such a scenario are referred to as data-centric.
Even within the domain of strictly controlled database management systems

there exist reasons to drop some of the constraints imposed by the rigorously
structured relational data model. The decomposition of data into functional de-

pendencies, also known as normalisation [Cod70|, aids efficient processing. How-

2. Semistructured Data

0, .uni-trier.de

a I

T
Mathias Neumuller

List of publications from the DBLP Bibliography Server - FAQ

Coauthor Index - Ask others: ACM DL - ACM Guide - CiteSeer - CSB - Google

— S

[3|[EE||George Russell, Mathias Neumiiller, Richard C. H. Connor: TypEx: A Type Based Approach
to XML Stream Querying. WebDB 2003: 55-60

2002
ﬂD Mathias Neumiiller: Compact Data Structures for Querying XML. EDBT PhD Workshop

2002: 127-130

l{|EE|Mathias Neumiiller, John N, Wilson: Improving XML Processing Using Adapted Data
Structures. Web, Web-Services, and Database Systems 2002: 206-220

Coauthor Index

Richard C. . Comod]

DBLP: [Home | Search: Author, Title | Conferences | Journals]
Michael Ley (ley@uni-trier.de) Mon May 10 16:57:27 2004

Fig. 2.2: The DBLP page with the author’s bibliographic information

2. Semistructured Data 8

<table border=1>

<tr>
<th colspan=3>2003</th>
</tr>

<tr>

<td>3</td>

<td>EE</td>
<td>George Russell, Mathias Neumfuuml;ller , Richard C. H. Connor:
TypEx: A Type Based Approach to XML Stream Querying.

WebDB 2003: 55-60</td>

</tr>

<tr>
<th colspan=3>2002</th>
</tr>

<tr>

<td>2</td>

<td> ;</td>

<td>Mathias Neumü: ller:

Compact Data Structures for Querying XML.

EDBT PhD Workshop 2002: 127-130</td>
</tr>

</table>

Listing 2.1: An excerpt of the HTML code describing the page shown in Fig-
ure 2.2, stripped of colour and alignment information

<inproceedings mdate="2003-06-23" key="conf/webdb/RussellNC03">
<author>George Russell</author>

<author>Mathias Neumfuuml; ller</author>

<author>Richard C. H. Connor</author>

<title>TypEx: A Type Based Approach to XML Stream Querying.</title>
<pages>H5~60</pages>

<year>2003</year>

<crossref>conf/webdb/2003</crossref>
<booktitle>WebDB</booktitle>
<ee>http://www.cse.ogi.edu/webdb03/papers/10.pdf</ee>
<url>db/conf/webdb/webdb2003. html#RusselINC03</url>

</inproceedings>

Listing 2.2: The semistructured XML encoding of the first publication entry
shown in Figure 2.2

2. Semistructured Data 9

m TITLE YEAR | WORKSHOP PAGES

Improving XML 2002 Web, Web-Services, and | 206-220
Processing Using Database Systems
Adapted Data Structures

Compact Data 127-130

Structures for Querying
XML

p3 | TypEx: A Type Based 2003 WebDB 55-60
| Approach to XML |
Stream Querying

EDBT PhD Workshop

AUTHOR ID [NAME '

PAPER

PAPER | AUTHOR
Richard C. H. Connor
Ml VREETS.| ggClions St Mathias Neumitiller
ad | George Russell
al ad | John N. Wilson

p3 a2

p3 ad

Fig. 2.3: The author’s bibliographic information in a relational schema

ever it also breaks up data into small syntactically homogeneous pieces, a process
that hinders comprehension of the information as a whole. Figure 2.3 shows a
possible relational presentation of the information shown in Figure 2.2. It shows
how the first normal form, which forbids set-valued attributes, often detracts from
representational simplicity. In the DBLP example provided, it seems to be un-
natural to factor out the names of the authors into a separate relation as done in
Figure 2.3, rather than keeping them with the paper information. Consequently
research has been performed to overcome this limitation resulting in non first
normal form (NFNF) systems [AB84]. SSD models aim to overcome the same
limitation by keeping together semantically related data. Structured data, by
contrast, is focused on grouping syntactically homogeneous data.

Finally schema evolution provides a further reason why an SSD format might
be used to represent data that obeys a regular structure. Even if the structure
of a given dataset 1s known at any given point in time, the source’s properties
might change as its applications develop. Technical progress in the life sciences
has produced automated measurement equipment that captures more and more
experimental data. In addition, manual annotations on automatically captured

2. Semistructured Data 10

data can complicate its structure. At the same time, previously captured data
remains of interest and is used in combination with more recent, potentially dif-
ferently structured data from the same domain. Applications preceding a revised
schema only have partial knowledge of it, but may still be executed successfully
if they only depend on parts of the data that remained unchanged. Schema evo-
lution is one of the remaining interesting research areas in the world of relational
databases [RB01}], for which it presents a sizable problem. SSD however adapts
gracefully to such changing requirements.

2.2 Semistructured Data Model

This section introduces the terminology that will be used throughout the rest of
the thesis. It follows standard definitions from graph theory but extends them to
define a more specific form of a graph, called data graph that will be used as the
formal data model in the remaining chapters.

2.2.1 Graph Theoretical Background

The following section, which is based on general graph theory [Wil75], defines
terms in the context of simple graphs and directed graphs. Although data graphs,
introduced in Section 2.2.2 are strictly speaking different entities from the graphs
presented here, they are similar enough to apply the same terminology.

2.2.1.1 Graphs and Digraphs

Conceptually SSD is typically represented as a graph, where vertices are used

to represent pieces of information and arcs are used to represent their structural
relationships. In fact Buneman states that graph models are “the unifying idea

in semistructured data.”!.

Definition 2.2 (Simple Graph): A simple graph G is a pair (V(G), A(G)), where
V(G) is a finite, non empty set of elements called vertices and A(G) is a finite set

of unordered pairs of distinct elements of V(G) called arcs. An arc {u,v} € A(G)
is said to join the vertices u and v.

Definition 2.3 (Simple Digraph): A simple directed graph or simple digraph D 1is
a pair (V(D), A(D)), where V(D) is a finite, non empty set of elements called

T Peter Duneman. PODS 1997, Tutson, Arizona, USA

2. Semistructured Data 11

vertices and A(D) is a finite set of ordered pairs of distinct elements of V called
arcs. An arc (u,v) € A(D) is called an arc from u to v.

Figure 2.4(a) and 2.4(b) show examples of a simple graph and a simple digraph
over the set of vertices V(G) = V(D) = {u,v,w, z,y, 2}. The undirected graph G
contains the arcs A(G) = {{u,v}, {u,z}, {v,z}, {w, 2}, {z,y}} and the directed
graph D contains the arcs A(D) = {(u,v), (y, z), (v, z), (w, 2), (z,7)}. G is called
the underlying graph of D, i.e. the graph that is created by removing the direction
of the arcs. A subgraph S of a graph G is a graph, whose set of vertices V(S) is
a subset of V(G) and whose set of arcs A(S) is a subset of A(G).

These definitions are based on sets rather than families of arcs and thus ex-
clude multiple (equally directed in the case of the digraph) arcs between two
vertices. Equally the condition that the two vertices of an arc need to be dis-
tinct prevents the existence of loops, i.e. arcs connecting vertices to themselves.
For convenience the V(G) or V(D) will be referred to as V' and A(G) or A(D)
as A whenever the graph G or digraph D is implied by the context and called
vertez-set and arc-set respectively.

Note on terminology: The term “arc” is deliberately favoured here over the

term “edge” more commonly encountered in other literature on graph theory.
This will be used to aid the distinction between general graph arcs and the more

specific edges of a tree defined later in this section.

Definition 2.4 (Connected Graph): A graph G is connected if it cannot be ex-
pressed as the union of two disjoint graphs, i.e. the union of their vertex- and
arc-sets respectively. This means that there exist no two non-empty subgraphs
of a connected graph G that have no vertex in common.

The graph shown in Figure 2.4(a) is not connected as it can be generated by
the union of the disjoint graphs G, = ({u, v, z,y}, {{u, v}, {v, z}, {v, 2}, {z,y}})
and G; = ({w, 2}, {{w, z}}). However, the graph shown in Figure 2.4(c) is con-
nected. For the remainder of this thesis all graphs considered will be connected.
For disconnected graphs, i.e. graphs with more than one connected components,
any statement derived for connected graphs is true for the disjoint subgraphs
given by the connected components.

For some applications it will be beneficial to identify a vertex of a given graph
uniquely. To this end a bijective, i.e. one-to-one, mapping from vertices to a set
of unique identifiers is defined here.

3._ S_emi_stLuctured Data

.Z,'
X -r.

) A simple graph

u. vi’
34. @

) A connected graph

) A directed tree (f) A rooted, directed tree

U ’ROOT V. paper

W..title U ROOT V. paper W .title

“author y. DATA Z ‘DATA
biabc'l'l ilxyz'!"

)C‘author y. DATA - 4 ‘DATA X

(g) A tag labelled tree (h) A data graph

Fig. 2.4: Illustration of different types of graphs

2. Semistructured Data 13

Definition 2.5 (Graph Labelling): A graph labelling ¢ of a graph G is a bijective
mapping from the vertex-set V' to a set of identifiers ®. The mapping function
@ : V — ® maps vertices to identifiers, its inverse ¢~ : ® — V maps identifiers
to vertices. A labelled graph is a pair (G,) of a graph G and a labelling of G.

Figure 2.4(d) shows a labelled graph. This thesis follows the convention in-
troduced by OEM (see Section 2.5.1.1) of identifying vertices using the set of
natural numbers written with a preceding &-sign. This will be helpful in order to
distinguish them from other kinds of vertex labels that will be introduced later.
The symbolic names u, v, ...z shown in Figure 2.4 are only used in order to
refer to these vertices for the purpose of this description. Unlike the labelling ¢
however they are not part of the graph itself.

2.2.1.2 Path, Chains and Circuits

A finite sequence of arcs of A in the form

{vo,m}, {v1,v2}, ..., {Vm-1,Vm}

also written vg = v — ... — Uy
or (v(h vl)s (Ula 'UQ), IR (vm-h 'Um) *

is called an arc-sequence from the initial vertex vy to the final vertez v, in G.
The number m of arcs in an arc-sequence is called its length. A path is an arc-
sequence in which all arcs are distinct. If in addition all vertices are distinct,
except possibly vg = v,,, it is called a chain. A path or chain with vy = v, 1s
closed, and a closed chain is called a circuit.

The arc-sequence £ — y — z in Figure 2.4(a) has length 2 but does not form
a path, because the arcs {z,y} and {y,z} are identical in an undirected graph.
y — T — u — v — z is a path, but neither a chain nor closed. The sequence
r — u — v — z is a chain, and since its initial and final vertex is z, it is closed
and thus a circuit.

The definitions and terms used for subgraphs, connectedness, graph labellings,

arc-sequences, paths, chains and circuits can equally be applied to digraphs.

2.2.1.3 Trees and Rooted Graphs

Given any connected graph G containing circuits, one can choose one circuit
from G and remove one of its arcs. The remaining graph is still connected. This
process is repeated until there are no circuits left. The resulting graph is a tree

2. Semistructured Data 14

and will be called a spanning tree of G. Notice that due to the arbitrary choice of
the vertex to be removed from a circuit, a general graph can have many spanning
trees.

Definition 2.6 (Tree): A connected graph T with no circuits is called a tree.

If this definition is applied unchanged to directed graphs, the connected com-
ponent over the vertices u, v, £ and y on the left side of Figure 2.4(b) forms a
tree, because it is free of (directed) circles. This does not coincide with intuition,
which requires that every vertex of a tree has at most a single incoming arc. For
this reason the definition of directed trees will be based on the circuit-freeness
of both the digraph and its underlying undirected graph. The digraph shown
in Figure 2.4(e) forms a tree whereas by contrast the left-hand component of
Figure 2.4(b) is not a tree according to Definition 2.6.

Note on terminology: Because trees will be of high importance throughout
the remainder of the thesis, they will be distinguished from general graphs by
means of the terminology and symbols used. The vertices of a tree T' will be
called nodes from here on and its vertex-set will be denoted by N(T') and called

node-set. Equally, the arcs of a tree T will be called edges and its arc-set will be
called the edge-set, denoted by E(T).

Definition 2.7 (Root, Rooted Graph): A vertex r of a graph G is called the root of
G if there exists a chain from r to every vertex in V(G). The triple (V(G), A(G), 1)
is called a rooted graph.

For undirected graphs, Definition 2.7 is equivalent to Definition 2.4 on con-
nectedness and every vertex of a connected graph is a root. General digraphs
however do not need to have a root. In fact a directed tree has at most one root
node. This will be proved by contradiction. Assume a directed tree T has two

root nodes r; and 7. By Definition 2.7 there exists a directed chain from r; to
ro. For the same reason there also exists a directed chain from 73 to r;. Thus

there exists a directed cycle r; — r3 — r; which violates the definition of directed
trees.

Figure 2.4(f) shows a rooted, directed tree. This tree is rooted by the node
u, as there exists a unique, directed chain from u to all other nodes. The tree 1n
Figure 2.4(e) is not rooted. Because there exists no chain from any node to ,

BT gl T ery - E P TR e T T L I

2. Semistructured Data 15

only u itself is a possible root node. However there does not exist a chain from u
to all other nodes, e.g. the node v can not be reached following a directed chain
from u. Thus u is not a root node and the graph is not rooted.

If there exists a chain n; — ny between two nodes n; and n; of a rooted tree,
n; is called the ancestor of ny and n, is called the descendant of n;. There can be
at most one such chain according to Definition 2.6. If such a chain is non-empty,
n; and ny are called true ancestor and true descendant respectively. If the length
of the chain between n; and n, is one, n; is called the parent of ny, which is called
the child of ny. The level of a node in a rooted tree is the length of the directed
chain from the root node to the node in question, e.g. the root node has level
zero, its direct children level one and so on. The height of a tree is the maximum
level of any of its nodes.

The root node u of the tree shown in Figure 2.4(f) has level zero. It is the
ancestor of all nodes in this tree. Node 2 has level three and is the child of node

w. It is also a true descendant of the nodes u, v and w.

2.2.2 Data Graphs, Views and XML Documents

All SSD can be described as being isomorphic to a directed graph. Every vertex
in the graph represents a piece of data and every arc represents a structural
relationship. Note that this leads back to the network [DBT71} and hierarchical
data models [BL82] used before the advent of the relational model.

The structure of the data is encoded in the shape or topology of the graph.
Arcs in the graph represent relationships between the individual data items. Thus
the occurrence of two pieces of atomic data, i.e. the two character strings “Abite-
boul” and “Bunemann”, below a common vertex imply that these entities are
somehow related. However the shape alone does not suffice to indicate the mean-
ing of different items connected to a common vertex. All SSD models thus label
either arcs or vertices using tags drawn from an alphabet that carries some ap-
plication specific semantics. For the above stated example the meaning would
be clearer if the arcs connecting the two atomic items with the third vertex were
labelled with the tag author. This would allow the conclusion that these two
strings are actually the names of two co-authors.

For tree data models, the equivalent distinction between edge labelling and
node labelling becomes irrelevant [ABS00], as edge labels can be generated from
a node labelling by taking the label of every node and attaching it to its single

2. Semistructured Data 16
——

incoming edge and vice versa. For general graphs however, this mechanism can
not be applied as there might be multiple incoming arcs for every vertex. In this

case a single distinguished arc must be chosen for the transformation from vertex
labelling to arc labelling.

2.2.2.1 Data Graphs

Before the final construct of a data graph is addressed, a last additional definition
will be introduced, associating each vertex of a graph with such a tag label as
shown in Figure 2.4(g). Unlike the vertex labels introduced in Definition 2.5,
these tag labels do not need to be unique, i.e. a tag labelling is surjective but not
Injective in general, i.e. a many-to-one function.

Definition 2.8 (Tag Labelling): A tag labelling A : V — ¥ is a surjective mapping
function from the set of vertices V' of a digraph D to a given finite alphabet T of
tag names. A tag labelled or tagged graph is a pair (D,)).

The last construct defined in this section pulls together all the definitions
provided above into a single definition of a semistructured data graph. This is
done in order to bring the general theoretical construct of digraphs closer to the
requirements of SSD processing in general and XML in particular. One more
preliminary is needed, which partitions a vertex set into two disjoint subsets
called atomic and compler. The semantics associated with these sets will be
deferred until after the definition. Until then the only difference between them
will be that members of the atomic vertex subset represent atomic information,
which can be represented by a character string for the purposes of this thesis. By
contrast complex vertices combine the information of other vertices by the means

of a set of outgoing arcs.

Definition 2.9 (Data Graph): A data graph DG is an octuple
DG = (V,A,E,r, ¢, A atom, value)

of a vertex-set V and an arc-set A such that (V, A) is a connected digraph, an
edge-set E' C A such that (V, E,r) forms a spanning, rooted tree of (V, A) with
root r, a graph labelling ¢ : V — & and a tag labelling A : V — X, a function
atom : V — boolean distinguishing vertices from the atomic and complex subset
of V' and a partial function value : V' — string giving the string representation
for a given vertex from the atomic subset.

2. Semistructured Data 17

The tag alphabet ¥ consists of the fixed entry ROOT, the fixed entry DATA
for all data graphs containing at least a single atomic vertex and a finite set of
application specific tag labels, which are distinct from these. The vertex labelling
function A : V' — X returns A(v) = ROOT if and only if v = r, i.e. v is the
root of (N, E,v) and A(v) = DATA if and only if atom(v) = true. Equally
the partial value function is defined for all v € V with atom(v) = true and
undefined otherwise. The atomic and complex vertex-subsets will be called V4 =
{v € V]atom(v)} and VC = {v € V|-atom(v)} respectively. These subsets are
disjunct, i.e. VANVC = {}, and their union is a cover of the vertex-set, i.e.
VAUVC =V. Thus {V4,VC} is a partition of the vertex-set V.

This definition provides the data model used for this thesis. It has the advan-
tage of being a superset of many of the data models assumed by researchers in
this area. This is important, as the thesis will frequently discuss such works in
the concepts that are developed as part of it.

Figure 2.4(h) shows an example of a data graph. Its vertex set is V =
{u,v,w,z,y, 2}, its arc-set is A = {(u,v), (u,z), (v,w), (v,), (w0, 2), (z,3)}, its
edge-set E = {(u,v), (y,z), (v,w),(w, 2),(z,y)} and its root is u. The values
for the functions A and ¢ can be derived from the figure, the tag alphabet is
3, = {ROOT,DATA, paper, author, title}. The function atom is true for the ver-
tices y and z and false otherwise. The values of the function value is the string
“abc” and “xyz” for the vertices y and 2 and undefined for all other vertices.
Arcs that are present in the arc-set A and the edge-set E are shown solid, while
arcs that are not part of the edge-set E are shown dashed. Vertices that are part

of the complex subset are shown as solid circles and atomic vertices are shown as
dashed circles. Their fixed tag label DATA is shown in Figure 2.4(h), but will be
omitted in all further data graphs for reasons of simplicity:.

2.2.2.2 Tree-View versus Graph-View of a Data Graph

As stated above, SSD models are based on digraphs, hence generally instances
of SSD sources will contain cycles, e.g. a paper written by an author, who has
written a paper that was written by this author and so on. Such a situation could
be created by adding another arc from vertex &3 to vertex &1 of Figure 2.4(h).
However, this assumption often increases the complexity of the algorithms used
to process SSD and can lead to non-determinism for algorithms traversing the
infinite path paper — author — paper — ... As many practical data sources

2. Semistructured Data 18

L
‘-‘
T ™
™

'l

name @ name /name @ name
@ phonc @ |:oh¢:.~::"‘"lr @ phone

l'-) m"'lﬂ.Ir s - r" * . l" B e »
@2_@ S.A.D."” ‘éf.'{?l “Sotirios” @22‘1 “Mathias” ,-r":e.J_y John
lecturer

'i" - “ " L
@29 “Databases &3 “Domains®

' 7

228 “3839" (&30 “3590" &3 3584
oy "" Ny g, b T
""

L]
-
bt L LT T p————

Fig. 2.5: An example of a data graph

are often of hierarchical nature, i.e. free of cycles, this generality is often dropped

in favour of a simpler tree based data model [XMLO1].
Formally this important issue is addressed by the definition of two distinct
views of the data graph, its graph-view and its tree-view.

Definition 2.10 (Graph-view): The directed graph-view D(DG) of a data graph
DG with DG = (V, A, E,r,p, A, atom, value) is the tagged digraph given by the
triple (V, A, A).

Definition 2.11 (Tree-view, Distinguished Spanning Tree): The tree-view of a data
graph DG = (V, A, E, r, p, A, atom, value) is given by the quadruple (V, E,r, A)
and denoted T(DG). Following Definition 2.9, T(DG) is a spanning, rooted tree
of D(DG) and will be called the distinguished spanning tree of the data graph
DG in the context of this thesis.

Figure 2.5 shows a more complex data graph than that of Figure 2.4(h).
Two different views of the graph of Figure 2.5 are shown in Figure 2.6. In the
graph-view shown in part (a), spanning tree edges and additional graph arcs are
indistinguishable, whereas the tree-view of part (b) only shows the edges of the
distinguished spanning tree. Notice that the referencing nodes of the tree-view

2. Semistructured Data 19

@ name %19 @ name
'B’ phonc @‘ phong @ phone

{;3?1 “John" {;?33} “Domains”

25: “Databascs™ -« o
‘ﬁ fm& “S.A.D” %2?} “Sotirios” @293 “Mathias”

‘-- “-‘ ‘-'

‘--

A o2
3 “3590" &3 3584

W ey

&29 “3839"

- W

(a) The graph-view of the data graph shown in Figure 2.5

(&0) ROOT

@ class @ class @ staff &8) student staff @ project

@ name @ prerequisite 3 lccturt:r @ name @ hame @ name @ rescarcher

é lecturcr name lss:s:tant é phonc é phone é phone %

‘1&25' “Databascs” 27: “Soum -@29: “Math:as Ju "John

&2 “S.AD" @23: “3839" @30: “3590" m:u “3584* {33 “Domains”

(b) The tree-view of the data graph shown in Figure 2.5

Fig. 2.6: The graph- and tree-view of the example data graph shown in Figure 2.5

2. Semistructured Data 20

&12, &13, &15, &16 and &24 are still part of the complex subset, although
they have no outgoing edges in this view.

These definitions allow the arbitrary, potentially cyclic, digraph D(DG) to be
replaced by the guaranteed cycle-free tree representation T'(DG) over the identical
vertex-set V' for operations that do not depend on the additional graph arcs. It
is possible to define an auxiliary function tree : A — boolean with

tree(a) = trueforac E
~ | falsefora ¢ E

on DG, which can be used to decide whether a given arc a is part of the distin-
guished spanning tree T(DG).

2.2.2.3 XML Documents and Data Graphs

The distinction between tree edges and graph arcs will be beneficial in order to
match the data model presented here against that made explicit by the XML In-
foset [XMLO1]. XML, like every other flat file format, can only encode non-cyclic

data sources directly, but offers several mechanism to encode arbitrary graphs in-
directly, e.g. through the use of special ID:IDREF attribute pairs or application
specific extensions such as XPointer [XLi01]. The element-subelement relation-
ships encoded in an XML document define the distinct, spanning tree of the data
graph presented, i.e. the edges of the tree T(DG). These edges lead from an

element to its subelements in terms of the XML document structure, or from
parent to child node in terms of the tree. Any additional relationships, such as

those encoded using ID:IDREF-references, are additional graph arcs only present
in the arc-set A. They start at the referencing vertex, e.g. the element containing
an IDREF-attribute, and lead to the referenced vertex, e.g. the element contain-
ing the respective ID-attribute. Following query standards such as XPath, which
restrict the operations possible on such implied arcs, several researchers have also
used data models that reflect this distinction [GMW99, KB*02].

Another peculiarity of the XML format is the choice between two distinct
ways of representing values associated with a given element. One can either use
a subelement with the desired tag name containing atomic information or make
use of a CDATA-attribute encoding a key-value pair (Bra03]. For the purpose
of this thesis such a distinction is deemed irrelevant and not directly supported
by the data model. However, for applications depending on this distinction, one

2. Semistructured Data 21

variant can be identified by annotating resulting vertex-labels with a reserved
prefix code, e.g. by labelling a name entity encoded using a CDATA-attribute
@name, whilst labelling a subelement with name. A discussion of the importance
of document order is postponed until Section 2.2.3.1. Other specialties of the
XML standard such as comments and processing instructions, which it inherited
from its SGML origin [SGM86], will be ignored within this thesis.

The data graph presented in Figure 2.5 is the one generated from the XML
document shown in Listing 2.3.

2.2.3 Order and ldentifier Based Models for Semistructured
Data

The following sections discuss the significant differentiation between SSD mod-
els based on vertex order versus those models based on vertex identity. These
concepts are essentially complementary. The data model represented by the data
graphs of Definition 2.9 use a concept of explicit identity as detailed in Sec-
tion 2.2.3.2. Other models, usually based on a document-centric viewpoint, prefer
to incorporate a concept of order. Such models are described in Section 2.2.3.1.

Whether order or identity should be reflected in the logical model is arguable.
Which approach is favoured depends largely on the point of view from which the
model was developed.

2.2.3.1 Sibling Order Based Models

For researchers working on document-centric SSD, i.e. looking at semistruc-
tured data as a refinement of unstructured data, the question of order among
the individual data atoms is important. Such data is primarily meant for human
consumption, often encoding natural language, which crucially depends on order.
Since XML arose as an interchange or serialisation format, its physical implemen-
tation also implies an order. Query languages such as XPath [XPa99, XPa03],
which are defined specifically for use with XML, consequently support order-
related query operations. In terms of a graph model this corresponds to the
question whether the outgoing arcs of a vertex are ordered or not.

SSD models based on the assumption of a sequential access, like compressors
(LS00, SMO01] or aimed at supporting order-dependent query languages like XPath
[BGKO03] thus consider as ordered the edges starting from a common vertex. In

2. Semistructured Data 22

<7xml version="1.0" 7>

<!DOCTYFE cis |

<EEMENT cis (teaching, people, research) >
<!HEMENT teaching (classs) >

<!HEMENT class (name) >

<IATTLIST class id ID #ARBDQUIRED

lecturer IDREF AMPLIED
assistant IDREFS ;:AMPLIED

prerequisite IDREFS #AMPLIED >
<!HEMENT people { (student|staff)e) >
<!HEMENT student (name, phone?) >
<!ATTLIST student id ID REQUIRED>
<!HEMENT staff (name, phone) >
<!ATTLIST staff id ID #REQUIRED>
<!HEMENT research (projects) >
<!HEMENT project (name) >
<|ATTLIST project id ID #AREQUIRED

researchers IDREFS AMPLIED>
<!EHLEMENT name (#CDATA) >
;:!EIEMENI‘ phone (#/CDATA) >
>
<cis>
<teaching>
<class id="CIS.234" lecturer="8199524875" assistant="8200155317">

<name>SAD< /name>
</class>
<class id="CIS.356" lecturer="8198568459" prerequisite="CIS.234">
<name>DB</name>
</class>
</teaching>
<people>
<student id="8200155317">
<name>Mathias</name>
<phone>3590</phone>
</student>
<staff 1d="8198568459">
<name>John</name>
<phone>3584</phone>
</staff>
<staff id="8199524875">
<name>Sotirios</name>
<phone>3839</phone>
</staff>
</people>
<research>
<project id="SSD"” researchers="8200155317.8198568459">
<name>Domains</name>
</project>
</research>
</cis>

Listing 2.3: The XML encoding of the data graph shown in Figure 2.5

2. Semistructured Data 23

these models, individual vertices can be addressed by specifying the order of the
sibling edges of its unique path from the root in the distinguished spanning tree.

2.2.3.2 Vertex or Node Identity Based Models

Instead of storing the order of siblings, one can provide each vertex with an
explicit address or identifier. The relational model defined by Codd [Cod70] is
based entirely on set theory and thus does not use the concept of either identity
or order. It is rather founded on tuple equality, which is based on the equality
of the attribute values of a tuple. Thus changing the value of an attribute of a
tuple is indistinguishable from deleting the old tuple and creating a new tuple
containing the new attribute value. No relation can contain two tuples with iden-
tical attribute values. Its successor, the object-oriented database model however,
introduces the concept of object identity. Here two distinguishable objects with
equal attributes can co-exist in the same relation.

Researchers from the database community usually see the semistructured
model as a further development of the object-orientated approach and thus assign
identifiers to each vertex of the data graph. These are, for example, part of the
OEM data model (Section 2.5.1.1) and correspond to the graph labelling ¢ which

is part of Definition 2.9 of data graphs, which will serve as data model for this
thesis.

For data models that do not make use of this feature, the labelling can be

dropped from the definition. The XML standard represents a compromise, which
does not enforce identities for every vertex but does provide the means of sup-
plying them by the use of special attributes of type ID.

2.3 Querying Semistructured Data

Query languages fulfil three different functions in a database management sys-
tem [ABS00]. Firstly they allow the selection of the subset of a potentially large
database, which is relevant to the computation to be performed. Secondly they
allow the joining of partial results from multiple sources in order to derive new
facts by combination. The third function is the restructuring of data according
to a desired output format, potentially creating new data in the database. These
functional areas exist equally in query languages designed for structured and
semistructured data. Bergholz and Freytag [BF00] proposed a similar decompo-

2. Semistructured Data 24

sition of queries over SSD into a selective “what” and a constructive “how” part
used for their work on schema based querying.

This thesis is only concerned with the first function, i.e. the selection of
relevant data. Section 2.3.1 thus derives a syntax and associated semantics for
a purely selective query language. Following this Section 2.3.2 looks at how this
1s incorporated in query languages designed particularly for use with XML. The
concluding Section 2.3.3 describes a range of general evaluation strategies for
queries on SSD. The issues of joins and result construction are addressed for
example by Abiteboul et al. [ABS00] and not further discussed here.

2.3.1 Path Expressions as a Selective Query Languages

This thesis is only concerned with the selective functionality of a query language,
i.e. the process by which different groupings of SSD can be used to efficiently
select relevant subsets of a database for a given computation. This is based on the
assumption of very low query selectivity, which is reasonable for the environment
depicted in Chapter 1. In such circumstances subsequent steps like joins and
transformation algorithms can benefit from the reduced data volume, improving
their performance. The following sections define a syntax and semantics for path
expressions that can be used to perform the task of vertex selection.

2.3.1.1 Linear Path Expressions

Virtually all query languages for SSD are based around the concept of path
expressions, i.e. a way of specifying structural relationships between vertices
using paths in the data graph. This section discusses linear path expressions, 1.e.
expressions matching a single, non-branching path in the data graph.

The basic form of path expressions are simple path erpressions, which are
absolute (their matching process starts at the root of the data graph), complete
(they specify every label along the matched path) and exclude regular expressions
on the tag labels. Such path expressions have the form /1, /... /l,, where [; stands
for any label from the label alphabet 3. A simple path expression matches a
vertex v, of DG, if there exists an arc-sequence v9 — v; — ... — v, in DG
with vy = root and A(v;) = [; for all ¢ € [1,n]. For example the arc-sequence
&0 — &1 — &3 — &8 of the data graph shown in Figure 2.5 matches the
simple path expression /cis/people/student.

2. Semistructured Data 25
— e — 4

Simple path expressions require a good knowledge of the structure of the data
graph, as a complete path from the root to the vertex of interest needs to be
specified. In order to make full use of the flexibility offered by the semistruc-
tured model, partial and relative path expressions are supported by all query
languages. Here parts of the path that are irrelevant to the computation can
be left out. Partial query expressions leave out label constraints matched by
intermediate sections of an arc-sequence and replace them by the descendant op-
erator ‘//’. Relative path expressions start at an arbitrary vertex rather than the
root, indicated by a leading descendant operator. Notice that the latter is just
a syntactical convenience for a partial expression involving the root label pred-
icate and the first label predicate specified in the relative path expression, i.e.
//l is just a shorthand notation for / //l;. Instead of an arc-sequence, a path-
sequence in the data graph is being matched to a path expression of the form
[/4//]...//l.. For example the partial, relative path expression //people//name
selects the names of staff and students alike and is matched by the set of paths
{&3 — &7 — &17,&3 — &8 — &19,&3 — &9 — &21} of the data graph
presented in Figure 2.5.

Regular path expressions are path expressions in which the tag label constants
l; are replaced with label expressions \;. Label expressions follow standard con-

ventions for regular languages. A minimal grammar used for these expressions
throughout this thesis is A 1= | A1]A2 ' ¥, where [denotes a label constant

from the alphabet X, A1|A; defines a choice between two label expressions, i.e. a
disjunctive query, and '*’ denotes the wildcard matching every label from .

All path expressions presented so far are forward facing, i.e. they follow the
natural direction of the arcs in the data graph or more specifically, lead from
ancestor nodes to descendants in its tree-view. For the linear path expressions
presented here this is sufficient as every backward facing path expression can be
transformed into a forward facing path expression [OM*02] by inverting the order
of the label constraints and replacing backward with forward path separators.?
For example the query for a name vertex, which can be reached from a people
vertex, can be replaced by a query for people which have an outgoing arc to
a name vertex. However, this will be different in the case of branching path
expressions, which are described in the next section.

2 Whether or not such a query is semantically identical depends on the expected output, i.e.

whether the complete path in the data graph matching the query is returned or solely its final
vertex, matching the rightmost predicate. This question will be deferred until Section 2.3.1.4.

2. Semistructured Data 20
——— e 4L

assistant prerequisite
(a) //class[/assistant]/name (b) //class[\prerequisite]/name
ROOT
//
class
O prerequisite name
":‘ :: “Ishn”
(c) //classi=prerequisite|/name (d) //staff[/name/DATA = “John")/phone

Fig. 2.7: Example graphs of branching path expressions

2.3.1.2 Branching Path Expressions

Linear path expressions alone cannot be used to encode some of the more com-

plex structural constraints which could usefully be imposed on the vertices being
selected, e.g. one cannot specify the selection of the names of all classes that have

an associated teaching assistant, i.e. express conjunctive structural constraints.
Such queries can easily be represented as graphs, as has been done for the speci-
fied example in Figure 2.7(a). In order to distinguish the vertices of a query graph
from those of a data graph, its vertices will be called predicates. For reasons of
simplicity all query graphs considered in this thesis are non-cyclic and connected,
l.e. they can be represented by a tree. In addition, a query graph will always

2. Semistructured Data 27

contain a predicate matching the root vertex of the data graph, even if this is
suppressed in the linear syntax by the use of an initial ’'//’ operator.

The class predicate of Figure 2.7(a) is matched by the vertex &G of the
data graph shown in Figure 2.5. Notice that this predicate is shown in bold.
It is called the output predicate, i.e. the set of vertices of the data graph that
match this predicate will form the result set. Following the terminology used by
Kaushik et al. [KB*02], the path leading from the root of the query graph to the
output predicate will be called the primary path of the query. All other paths
form structural constraints on this path. This helps to define a flat representation
of a query graph by writing the primary path in the form introduced for linear
path expressions above and annotating the tag predicates relating to branching
points in the query graph with structural predicates, which are enclosed in square
brackets. If multiple such structural constraints are attached to a branching point,
the individual expressions are separated by the ‘&’-sign and need to be matched
by the same vertex of a data graph to return a match. Thus the example presented
in Figure 2.7(a) can be written as //class|/assistant]/name.

The notation used so far is sufficient to express all possible queries for tree
patterns in the tree-view of the data graph. However, for general queries on the
graph-view of a data graph one might be interested in incoming as well as outgoing
paths. Thus backward facing path expressions are introduced in the same way as
forward facing path expressions. A single backward arc matches the query oper-
ator ‘\’ in the path expression and a backward path of arbitrary length matches
the operator ‘\\'. Thus the query asking for all class names that are the pre-

requisite for something else can be expressed as //class|[\prerequisite]/name
and is shown in Figure 2.7(b). The result of this query for the graph-view of
Figure 2.6(a) is the set containing solely vertex &6.

Notice that supporting such general query graphs with multiple incoming
paths to a predicate is only required for the graph-view, in which all arcs are
indistinguishable. Working on the data graph itself with its two different types
of arcs, one might want to specify that the arc incident from the prerequisite
vertex is actually an additional arc rather than an edge of the spanning tree. This
reflects the expressive power of XPath, in which IDREF references also need to
be specified. To supplement the forward and backward path operators, reterence
path operators are introduced, which are only matched by the additional arcs not
contained in the spanning tree. These are denoted by ‘="' and ‘<=’ and match
these additional arcs in or against their natural direction respectively. Notice

2. Semistructured Data 28

that these operators are always matched by arcs and never by paths in the data
graph. Thus the query for names of classes that are prerequisites is actually
written //classk=prerequisite|/name in the data model provided by the data
graph. Graphically such arcs will be displayed as dashed arrows as shown in
Figure 2.7(c) following the convention used for the data graph itself.

2.3.1.3 Atomic value predicates

The previous section was concerned with placing structural constraints on vertices
that match predicates of the query graph, thus those predicates will be called
structural predicates. Similarly atomic value predicates can be used in order to
restrict the returned vertex-set based on the data attached to atomic vertices
of the data graph. This is equivalent to the selection operation in the relational
algebra. The selective functionality of a query language can be further subdivided
into a binding process, here represented by structural predicates, and a filtering
process, here represented by atomic value predicates [ABS00]. The initial step
requires that vertices of the query graph representing tag expressions are bound
to vertices of the data graph according to structural constraints. The subsequent
filtering process removes such bindings that do not comply with the given atomic

value constraints. Because techniques for data selection based on atomic values
are known from relational database research, most research on querying SSD
concentrates on structural predicates, e.g. the work on type projection presented

in Appendix A or that of Buneman et al. [BGK03] and Kaushik et al. [K5702,
KB*02] on structural summaries for SSD. However, the integration of atomic
value predicates into the first stage of the query process is often beneficial as
such predicates can have considerably lower selectivity than structural predicates.
This is especially true if the data has originated from a regular source, in which
case the structure of the resulting data graph is fairly regular and consequently

structural predicates select a significant part of the data.
Only leaf nodes of the distinguished spanning tree can possibly match atomic

value predicates. Thus syntactically, atomic value predicates are separated by an
‘="-sign from the last label expression of a path expression, with their associated
matching expression enclosed in double quotes in the flattened query syntax. In
the graph representation they will be shown as dashed vertices in imitation of
the notation used for atomic vertices of the data graph. As an example one could
ask for the telephone number for a member of staff named “John” as depicted in

Ll il e el

2. Semistructured Data 29

Figure 2.7(d). This example query would be matched by vertex &22 of the data
graph shown in Figure 2.5.

2.3.1.4 Semantic Variations on Query Results

There is agreement between different query languages on how to match vertices
of data graphs to the predicates of given query expressions. However there exist
variations on the semantics of the expression as a whole, i.e. of what result they
return. Here three different possible variations on the semantics attached to the
path expressions introduced above will be discussed. The relative linear path
expression Query 2.1 will be used to discuss these variations in semantics.

Query 2.1: //people//name

The first possible option is to return the set of complete embeddings of vertices
of the data graph in the query graph. Thus Query 2.1 containing two predicates
will return the set of pairs {(&3, &17), (&3, &19), (&3, &21)}. This is very
useful if the example query forms a part of a more complex query, especially if
Joins on several of the returned vertices are to be performed. Due to the fact that
the complete embeddings are returned, this option will be referred to as query
embedding.

If however the query stands on its own and one is only interested in the
vertices addressed by the query expression, i.e. the final predicate on its primary
path, this complete embedding may be wasteful. In this case an interpretation
which only returns the set of vertices mapping this distinguished predicate is
more appropriate. Applying this semantic option to Query 2.1 returns the set
of vertices {&17,&19,&21}. This is the variant being adapted by this thesis
unless specified otherwise. It will be called a path expression as indicated in the
previous sections. In its flattened representation, the last predicate of the primary
path is the predicate whose embeddings are returned. If a query is presented as
graph the output predicate will be shown in bold.

Another option is to return the embeddings of vertices into the first specified
predicate of a query expression, i.e. the predicate that is adjacent to the implied
predicate matching the root of the data graph. The data graph shown in Fig-
ure 2.5 can be embedded into Query 2.1 in three different ways, however in all
cases it is vertex &3 being embedded into the people predicate. Thus the result
set contains only this single entry using these semantics. This semantic option

2. Semistructured Data 30

will be called tree pattern query as it decides at which vertices a given query
graph can be embedded into a data graph. This behaviour can be expressed
using the path expressions introduced above by specifying all other predicates as
structural predicates of the first one, i.e. by rewritting Query 2.1 in the the form
//pecple|//nane].

In some situations a complete embedding of any vertices can be wasteful. If the
only question to be answered is whether a certain pattern exists, the matching
does not need to be completed, but can be terminated as soon as it becomes
evident that this is the case. Thus the result of a query with this semantic is the
boolean value true or false. Such semantics are used for structural predicates
of branching path expressions, i.e. all path expressions apart from the primary
path are resolved using these semantics.

2.3.2 Query Languages for XML

XML is a practical embodiment of SSD that has attracted widespread attention.
Consequently many languages have been designed to achieve the task of querying
XML documents. Most notably among them is XQuery [XQu03], a declarative

query language for XML, which has been defined by the W3C Architecture Do-

main®. XQuery can be broken down into a selective part, which is addressed
by the XPath [XPa99, XPa03] language, and join and construction mechanisms,
which are addressed by the XQuery language definition itself [XQu03|. As stated
in the introduction to this section, the focus of this thesis will rest on the se-
lective part represented by XPath. It should be noted here that, due to its
historical development, XPath is a self-contained query language. It contains a
number of expressions, usually implemented through some core functions of the
language, that extend beyond the expressive capabilities of its purely selective
location paths. XPath Version 2.0 [XPa03] is in fact a Turing-complete language.
Both XPath and XQuery can be used in data-centric and document-centric envi-
ronments. XPath's location paths form the most important kind of expressions
in XPath. Their result is always a list of nodes as defined in the XML Infoset
data model [XMLO1]. This is very similar to the branching path expressions dis-
cussed in the previous section and thus well-suited for a data-centric environment.
However, the following example shows how to use XQuery in document-centric
environment, returning the entire document fragment rooted at the vertex being

3 http://www.w3.org/Architecture

2. Semistructured Data 31
— e el

selected by a location path by binding the selected node and returning its content.
Notice that this differs from the semantics introduced in Section 2.3.1.4.

Query 2.2: for $s in /cis/staff/people/student return $s

Query 2.2 would return the following result containing all information about
students if applied to the XML document shown in Figure 2.3.

<student id="s200155317">
<name>Mathias</name>

<phone>3590</phone>
</student>

Another important standard of the W3C is XSLT [XSL99}, a rule based lan-
guage for XML document transformation, which is also based on XPath as a
selection language. Unlike XQuery it is pattern based and more often used in
data-centric environments.

The importance of other XML query languages such as XML-QL [DF+98] and
XQL [RLS98), which filled the gap created by the lengthy standardisation process
leading to the XQuery standard, will probably diminish in the near future. A
comparative study of XML-QL, XQL and three other languages was performed

by Bonifati and Ceri [BC00]. All of these query languages represent functional
subsets of the XQuery standard.

2.3.3 Query Evaluation Strategies

As noted in Section 2.3.1.3, the selectivity of individual predicates of a query ex-
pression influence its execution performance. Thus different strategies for query
execution can be employed in order to improve the efficiency if statistical infor-
mation about the selectivity of query predicates is available.

‘Three such strategies, a top-down, a bottom-up and a hybrid variant, will be
described using simple example queries over the data graph shown in Figure 2.5.
For reasons of simplicity, all queries presented here can be encoded in a single lin-
ear path, i.e. no predicate has more than one child predicate, and only arcs which
are part of the spanning tree are followed. Despite this Query 2.4 and Query 2.5
do not represent simple path expressions, because they return the embeddings for
predicates different from the leaves and contain regular expressions. In general

the concepts described in the following section can be extended to more complex
query graphs, i.e. arbitrary branching path expressions.

2. Semistructured Data 32

2.3.3.1 Top-down Querying

The top-down query evaluation strategy is the most natural in that it follows
the vertices of the source in their specified direction until all requirements are
fulfilled. This behaviour will be demonstrated using Query 2.3.

Query 2.3: //project/name/DATA

In this example at first all project vertices will be identified. A search for
name vertices will be performed by following outgoing arcs from the identified
project vertices. From there, again only following outgoing arcs, a further search
for atomic vertices concludes the query. This can be compared to finding infor-
mation in a well-structured book starting from the table of contents. Using the
data graph of Figure 2.5 only a small number of vertices would be visited if one
assumes access to a label map. This allows the matching process to start at the
single project vertex within the graph, which only has two outgoing arcs, one to
the requested name vertex and one leading to an irrelevant researcher vertex.
The former vertex only has a single outgoing arc, leading to an atomic value
vertex as required. Thus this strategy has visited only four vertices of the data
graph in order to embed them into three predicates, making this a good strategy.

2.3.3.2 Bottom-up Querying

The bottom-up query evaluation strategy represents the inverse to the top-down
strategy. Here occurrences of leaf vertices in general and the target atomic data
vertices in particular are identified and their structural constraints are validated
by traversing the arcs of the source in their inverse direction. This strategy will
be described using the following example query on our example data graph.

Query 2.4: //staff[/ * /DATA = “John”]

In this example at first all occurrences of the string “John” are sought and
then validated for an incoming arc from an arbitrarily tagged vertex. This vertex
in turn is validated to have an incoming arc from a vertex with the tag label
staff, whose vertex identifier will form the result set. This can be compared to
finding information using the index of a book. Since there is only a single atomic
vertex with value “John”, such a strategy would lead to a very limited search on
the data graph of Figure 2.5, making this a good query strategy. In fact, since

2. Semistructured Data 33
—_— e Yo

the query is only considering those arcs of the data graph, which are also edges in
its tree-view, every vertex has at most one such arc. Thus, starting from a fitting
leaf predicate, either a valid vertex is found or a mismatch detected after at most
two steps for this query despite the wildcard. If a top-down approach was used,
not only would the subtree rooted at the non-matching staff vertex &7 have
been searched, but the algorithms would have also visited the phone vertices &18
and &22 together with their attached atomic value vertices, although they are
irrelevant for the query result.

2.3.3.3 Hybrid Querying

The decision about whether a top-down or bottom-up strategy is more appro-
priate is usually based on statistical knowledge about the selectivity of top- or
bottom-level predicates in the query tree. If this knowledge is not available or the
selectivities are of comparable order, a mixture of both, called a hybrid querying
strategy, might be the most successful solution. This will be illustrated using
Query 2.5. The syntax used for Query 2.5 was slightly extended to allow for
regular expressions on the atomic value predicate. Its meaning is to select all
atomic values starting with the character sequence “35”.

Query 2.5: //staff/ » [/DATA = “35*"]

In this case, part of the query is evaluated in a top-down fashion and part of
the query is evaluated bottom-up. This gives two supersets of the query answer.
At the point where the top-down and bottom-up parts of the query meet, the
intersection of these sets is formed, giving the query result. For the example query
neither a top-down nor a bottom-up strategy would prove particular successful.
The top-down approach would visit all vertices below the two staff nodes as in the
previous example. Due to the higher selectivity of the atomic value predicate,
the bottom-up strategy would also travel along the unnecessary path leading
upwards from the atomic value vertex &30. This can be avoided if a top-down
approach is used to match all staff vertices and their four children &17, &18,
&21 and &22, while a bottom-up query selects the two matching atomic value
nodes &30 and &32. Their parents &20 and &22 can now be intersected with
the previously computed set to provide the queries proper result of {&22}. This
strategy does not improve the efliciency of the particular query on the given
example. However this is mainly due to its limited size and complexity.

2. Semistructured Data 34

The different query strategies presented in this section are aimed at achieving
optimal efliciency on a given data graph. However, as has been noted before,
many SSD sources contain a significant regular core [DFS99]. In Query 2.3 from
above it is unnecessary to validate the occurrence of an atomic value vertex
below a name vertex as all such vertices fulfill this requirement. Such structural
similarities should be validated once only and not once per instance. In some
environments this could be achieved by looking at the document schema, but in
general such a schema might be too inaccurate or even absent. Thus automatically

built summaries, describing important features of the source are required.

2.4 Indexing Semistructured Data

Access speed to large, semistructured data sources can be significantly improved
by the means of indexing, i.e. by providing direct access to particularly impor-
tant aspects of the source using a secondary data structure. In contrast to the
relational case however, the structure of the source is not necessarily flat, thus

S5D in general requires more complex index structures.

2.4.1 Linear Index Structures

If one is to limit the indexing to a flattened view of a particular source, e.g.
the atomic values occurring in a given context, indexing techniques known from
relational database research can be applied with little or no change. Two very
simple, yet fundamental indices of this kind are presented here, the tag or label
index and the atomic value index.

Example 2.1 (Tag Index): A tag indez is a mapping providing the list of vertex
identifiers V} for every tag label [€ ¥ with V} = {oid(v)|v € V with A(v) =1} of
a data graph.

Figure 2.8 presents a tag index for the example data source presented in
Figure 2.5. It allows the quick location of all vertices bearing a certain label tag.
Tag indices are useful, for example, in order to resolve relative path expressions,
i.e. path expressions that can start from an arbitrary vertex and not necessarily
the root vertex.

Notice that a tag index implies a partition on the data graph as every vertex
carries exactly one label from Y. This will be used in Example 4.1 of Section 4.2.1,

2. Semistructured Data 39

DATA &25, 820, &27, &28, &29, &30, &31, &32, &33
ROOT &0

assistant &16

cis &1

class &5, &6

lecturer &12, &15

name &11, &14, &17, &19, &21, &23
people &3

phone &18, &20, &22

prerequisite { &13

project &10

research &4

researcher | &24

staft &7, &9

student &8

teaching &2

Fig. 2.8: The tag index for the example source

where different equivalence relationships on vertices will be exploited in order to
define domains.

Example 2.2 (Atomic Value Index): An atomic value indez is a mapping that pro-
vides a list of vertex identifiers V, for every character string s with V, = {oid(v)|v €
V4 with value(v) = s} of a data graph.

Figure 2.9 presents an atomic value index for the example data source pre-
sented in Figure 2.5. An atomic value index is useful to resolve value based
queries, regardless of the context in which the corresponding atomic vertex ap-
pears.

Notice that an atomic value index does not imply a partition as defined above,
as complex vertices are not mapped by any index entry. It does however define
a partition on the subset V4 of atomic vertices. In document-centric situations,

where keyword searches or regular expressions on atomic values are to be per-
formed, other linear indexing techniques such as inverted lists can be appropriate.
Lore’s text index (Tindex) [MW98] is an example of such an approach. This
however lies outside the scope of this thesis.

Notice that although these indices were presented as tables in this section,
they will usually be implemented using advanced data structures such as B-Trees
known from relational database research.

2. Semistructured Data 36

3584
3090
3839
Databases

Domains
John

Mathias

S.A.D.
Sotirios

Fig. 2.9: The atomic value index for the example source

2.4.2 Nonlinear Index Structures

Value based indices presented above have the advantage that they can exploit
indexing techniques originally developed for relational systems. However, they
only work over limited views of the data graph and require different query algo-
rithms to be used for indexed and non-indexed data. The indices described in
this section relate vertices of data graphs to vertices of index graphs. Since both
data and index graphs can be expressed as digraphs, the generated indices can
be managed using the same system used for the data graph itself.

Definition 2.12 (Index Graph, Extent): It is possible to construct an associated di-
graph I(DG,S) = (V(I), A(I),ext) for a data graph DG and a given set of
subsets of its vertex-set S = {s;|i € N with s; € V(DG)}, whose vertex-set V(I)
contains one vertex u; per subset s; in S. The set of vertices contained in s;
are associated with u; by means of the relation ext : V(I) — {V(DG)} and is
called the extent of the vertex u; or ext(u;). If there exist at least one vertex v;
of V(DG) in ext(u;) which has an arc to a vertex v; of V(DG) in ext(u;), A(I)
will contain an arc from u; to u;. The triple I(DG, S) = (V(I), A(I), ext) will
then be called the index graph of DG with respect to S.

Notice that this definition works on arbitrary sets of subsets of the vertices
of the data graph. Thus the relation between vertices of the data graph and
the vertices of the index graph must be neither injective nor surjective. This
definition allows the creation of both redundant and incomplete index graphs
based on arbitrary clusterings of the vertex-set. Chapter 3 will make use of this
fact and present a general model of how to use this abstraction in a general

optimisation approach.

2. Semistructured Data 37

staff |student {&7, &8, &9}

(8,) name {&17, &19, &21) (3,) phone {&18, &20, &22)

(5,) DATA {&27, &29, &31) (s,) DATA {&28, &30, &32)

Fig. 2.10: The index graph of the data shown in Figure 2.5 for a set S of sub-
sets with S = {{&7,&8, &9}, {&17, &19, &21}, {&18, &20, &22},
{&27,&29, &31}, {&28, &30, &32}}

Figure 2.10 shows the index graph of the data graph shown in Figure 2.5
with respect to a set S of subsets, which were designed to include all information
stored about people. In this case it was manually designed to abstract away from
the differences in tag names used for staff and student entries.

However, as Chapter 4 will show, such indices can be automatically derived
based on mathematical properties of the data graph. An important special case of
this general definition is based on equivalence relationships between the vertices
of a data graph. If the members of every equivalence class are used as the subsets
of 5, the set of subsets becomes a partition of the vertex-set V(DG). Consequently
the relation between vertices of the data graph and vertices of the index graph
becomes a surjective mapping, which defines an endomorphism of DG on I(DG).
Because every vertex of the data graph can only belong to a single equivalence
class, the size of I(DQ@) is limited by the size of DG in this case.

2.5 Literature on Semistructured Data Processing

This section reviews literature that is concerned with SSD management and
querying in general and in particular the associated summarisation techniques
that motivate the proposed concept of data groupings. More specific literature
on individual topics of SSD processing will be discussed in the individual chap-
ters of this thesis as it becomes relevant. In particular Chapter 5 will look at
compact representation of SSD and Chapter 6 will look at indexing and querying

mechanisms.

2. Semistructured Data 38

2.5.1 Semistructured Data Management Systems

In this part, systems and approaches for SSD management are reviewed. The
focus is based on the range of problems associated with SSD processing addressed
by an approach rather than on individual features of a specific implementation.

2.5.1.1 Lore, OEM and Lorel

Lore (for lightweight object repository) of Stanford University is the most com-
prehensive and exhaustive academic experimental data management system de-
signed for SSD. Its main components are the object ezchange model (OEM) that
acts as data model, storage management, the query language Lorel (for Lore
language), a number of indexing mechanisms including structural summaries in
form of DataGuides that describe the source schema, query optimisation and
evaluation engine and user interfaces. The Lore system has been described both
in terms of its general architecture [MA*97] and details regarding its individual
components. Only those parts that are of outstanding importance for the pre-
sented work are reviewed here. These components include the data model OEM,
which was taken from the related Tsimmis project [PGMW95] and parts of its

query language [AQ*97] and evaluation engine [MW99). Its indexing mechanisms
[GW97] will be reviewed in Section 2.5.2.1.

The OEM [PGMW95] is an SSD model that can be viewed as an arc-labelled,
directed graph. The vertices in the graph are called objects, which have an unique
object identifier (OID) and are either complex or atomic. Atomic objects have
no outgoing arcs and contain values from one of a list of predefined atomic types.

Complex objects can have outgoing arcs, their value is a set of (label, subobject)
pairs. The label describes the relationship of the object with its subobject. Fi-
nally the OEM data model defines names, which represent entry points to the
graph and serve as aliases for particular objects.

The original data model was slightly modified with the advent of XML as
a generally accepted representation of SSD [GMW99|. Essentially this meant
that the original arc-labelled graph was replaced with a vertex-labelled graph.
This difference, however, is irrelevant for most scientific issues surrounding the
management of SSD. Another more important mismatch between OEM and XML
is the fact that subelements in XML are ordered whereas subobjects in OEM are
not. Inversely OEM contains a concept of object identity whereas there is no such

2. Semistructured Data 39

concept in XML. These complementary concepts were discussed in Section 2.2.3
already.

Lorel [AQ™97] is essentially an extension of the object query language (OQL)
[Cat94], following the SELECT-FROM-WHERE syntax of the relational SQL
language. It extends relational query languages in two directions. Firstly it
allows path expressions in the FROM part. These expressions can contain reg-
ular expressions in order to deal with irregularities and lack of knowledge of the
structure of the data. Secondly it incorporates a multitude of type coercion mech-
anisms since type information in SSD is often incomplete or absent. Thus typing

issues must be addressed at the time of querying rather than at the time of data
definition.

2.5.1.2 STORED

Deutsch, Fernandez and Suciu [DFS99] describe an approach to SSD manage-
ment that is entirely based on re-use of existing technology and algorithms. The
core of their system is a purpose designed query language called STORED (for
semistructured to relational data), which allows the specification of bidirectional
mapping rules between a semistructured data graph and a relational represen-
tation. A core hypothesis of this paper is that most semistructured databases
contain a regular core that can easily be managed in a relational system. Data
that is not contained in this regular core must be maintained by an SSD man-
agement system, 1.e. some persistent graph repository. However such data is
expected to be of much smaller quantity and thus less critical in terms of per-
formance. This hypothesis is supported by their experiments and justifies their
approach of re-use rather than re-engineering.

The actual query language is surrounded by a number of algorithms that
perform the translation between the SSD model and the relational core plus
overflow graph. These algorithms generate appropriate mappings based on ei-
ther an instance of data or a selection of representative queries. They also allow
reconstruction of the original SSD on demand and provide facilities for the trans-
lation of queries over the semistructured instance into equivalent queries over the

generated storage format.

2. Semistructured Data 40

2.5.1.3 SilkRoute

A similar approach based on mappings between semistructured and structured
representation through the use of a purpose designed query language is employed
by the SilkRoute project [FTS00]. The important difference here is the different
perspective of the scenario. Whereas STORED was designed to allow the man-
agement of SSD in a relational store, SilkRoute aims to allow access to a relational
store by means of a semistructured query language. Ferndndez, Tan and Suciu
describe a mapping language called RXL (for Relational to XML Transforma-
tion Language) that is general enough to allow the transformation of relational
data into an arbitrary semistructured format as governed by an external schema
in form of a DTD. This semistructured view of the data is never materialised
but used to translate application XML-QL queries into equivalent RXL and SQL
queries, which can be executed over the relational store.

2.5.1.4 Production-state XML Databases

A number of so called native XML databases (NXD) have been developed in order
to satisfy the demands of XML based applications. The systems described here
are prototypical for a number of different approaches.

Tamino [SWO00, Sch01] developed by Software AG combines a conventional re-
lational database with a purpose-built semistructured database engine. Modules
are provided for the seamless integration of both parts. This is the only commer-
cially available database that is solely aimed at SSD. Other commercial database
vendors are providing extensions to their (object) relational databases, which

typically map the SSD model to that used by the database.

Xindice [Sta0la) is an open source database that is essentially a management
system for small XML documents. XPath and other querying mechanisms are
provided. However, given its target application of content management, its focus
lies on fast delivery of entire, typically document-centric XML documents, rather

than the answering of arbitrary data-centric queries.

eXist [Mei02] on the other hand is based on a labelling scheme (cf. Section 6.3.1)

that allows decisions to be made about ancestor/descendant-relationships be-
tween vertices without the complete traversal of the connecting path. Among

2. Semistructured Data 41

other interfaces it provides a XQuery engine. It is thus well suited to answer
both data-centric and document-centric queries.

2.5.2 Summary Structures or Indices of Semistructured Data

Index structures allow direct access to individual vertices of a data graph. This is
crucial for efficient processing of SSD, as tree and graph traversal algorithms are
expensive in terms of I/O performance since every vertex visited could require a
disk access. The aim of indexing is to find summaries of the data that can be
held in main memory to avoid disk access costs.

2.5.2.1 Representative Objects and D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>