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Abstract

This thesis is concerned both with investigating the effects an environment has on

quantum systems as well as with methods for the study of open quantum systems. In ex-

periments and applications it is impossible to separate a quantum system from its envi-

ronment. This often causes decoherence and loss of information, however, environments

can also be used to drive systems into novel states which cannot otherwise be realized

in Hamiltonian systems.

In the first part of the thesis the effects of environments are studied by constructing

a model which possess both an equilibrium-connected phase transition as well as a PT -

symmetry breaking phase transition. The latter depends on the fine balance of gain and

loss, and can thus only exists in the context of open quantum systems. Equilibrium-

connected phase transitions are ones which recover the equilibrium transition of a model

in the limit of vanishing dissipation. We consider a PT -symmetric Lipkin-Msekov-Glick

(LMG) dimer. Each part of the model is individually well understood and we can

gain insight by understanding how they are affected by each other. The presence of

the environment causes corrections to the critical threshold of the second-order phase

transition of the LMG model. We further find that presence of the second-order phase

transition delays the PT -phase transition as the system is first driven through various

intermediate phases.

Quantum systems in general, and open quantum systems in particular suffer expo-

nential scaling of the state space in system size. This makes approximative methods

a necessity for the study of strongly-correlated systems. In the second part of the

thesis we propose a novel Neural Quantum State (NQS) ansatz for the steady state

density matrix. NQS are ansatz functions for variational Monte Carlo whose structure
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Chapter 0. Abstract

is informed by the architecture of neural networks. A simple NQS is the Restricted

Boltzmann Machine (RBM). NQS and in particular RBMs have been shown to possess

a volume-law entanglement capacity which significantly expands the range of states

NQS can represent over comparable ansatze such as tensor networks. This makes them

prime candidates for the representation of highly-correlated states of spatially extended

systems. The proposed ansatz uses the Choi-Isomorphism to represent a local density

matrix as a state vector. This allows a simple extension of the basic RBM architecture

to represent the state without requiring a complex purification. The ansatz is compared

to other approach on two different dissipative transverse field Ising models. We find

that the proposed ansatz can more efficiently represent strongly correlated states than

competing approaches.
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Liouville-space neural network representation of density matrices

Phys. Rev. A 109, 062215 (2024)

Neural network quantum states such as ansatz wave functions have shown a great deal

of promise for finding the ground state of spin models. Recently, work has focused

on extending this idea to mixed states for simulating the dynamics of open systems.

Most approaches so far have used a purification ansatz where a copy of the system

Hilbert space is added, which when traced out gives the correct density matrix. Here

we instead present an extension of the restricted Boltzmann machine which directly

represents the density matrix in Liouville space. This allows the compact representation

of states which appear in mean-field theory. We benchmark our approach on two

different versions of the dissipative transverse-field Ising model, which show our ansatz

is able to compete with other state-of-the-art approaches.
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Chapter 1

Overview

For over a century quantum physics has been exceedingly important from the viewpoint

of fundamental physics and very well supported in experiments.

Due to the recent advent of quantum computers and related technologies it has

gained an increased importance in applied physics as well. An issue with both exper-

iments and applications, however, is the presence of an environment which affects the

system under consideration, i.e. all realistic quantum systems are open.

The effects an environment may have on systems have long been considered a bane

rather than a wellspring of interesting physics, as they tend to destroy coherences.

Furthermore, the state of an open quantum system is generally described by a density

matrix, which scales even worse in system size than the pure states of equilibrium

systems. Environments are however not just sources of noise and unwanted interference.

They can drive the system into novel states which are inaccessible to the usual Hamil-

tonian physics [1,3,4]. These novel states and phenomena are what we will focus on in

this thesis. In particular we will study how the environment affects the system. We will

do so by studying the competition of PT -symmetry breaking, a purely non-equilibrium

effect with ones that have direct analogues in closed systems, a second-order phase

transition. Furthermore, we will introduce a novel ansatz function for the efficient

representation of a non-equilibrium steady state density matrix in the context of vari-

ational Monte Carlo [5].
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Chapter 1. Overview

1.1 Dissipative Phase Transitions

One of the most fascinating aspects of all branches of physics are phase transitions.

They occur as the parameters of a system are varied and the relative strength of

competing terms changes. Such transitions occur all around us, from boiling water in

the kettle, over the snow in winter, to classic magnets which transition from a disordered

to an ordered phase where all spins align. Such classical transitions generally occur as

the temperature or density is varied. Classical phase transitions have been thoroughly

discussed by Landau and Lifshitz who categorised based on whether they are discontin-

uous (first-order) or continuous (second-order) [6]. Continuous and discontinuous refer

the behaviour of the order-parameter at the phase boundary. At a first-order phase

transition the order parameter will change discontinuously, whereas at a higher-order

phase transition the order parameter changes continuously.

In quantum physics something similar occurs at low temperatures where thermal

fluctuations are small. Here it is no longer the competition between energy and entropy

which drives the phase transition but the competition between non-commuting terms

of the Hamiltonian. Such transitions have been extensively studied in the transverse

field Ising model as well as the Quantum Rotor model [7]. Another important model

is the LMG model. It is a non-linear collective spin model, which can be derived from

a transverse field Ising model with all-to-all interactions. It possesses both a first- and

a second-order phase transition [8, 9] depending on the relative sign of the terms.

Recently, dissipative phase transitions, i.e. phase transitions in open quantum

systems, have garnered some attention. While in equilibrium systems the system states

must necessarily be eigenstates of the Hamiltonian, in open quantum systems the bath

can drive the system into exotic states which are unreachable in equilibrium systems.

These transitions occur not just due to a competition between non-commuting terms

of the Hamiltonian but also due to a competition between the Hamiltonian and the

dissipation [3, 4, 10]. Often such transitions are closely related to zero temperature

quantum phase transitions in the Hamiltonian. There are, however models where this

is not the case.
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Chapter 1. Overview

1.2 PT -Symmetry Breaking Phase Transitions

An altogether different type of transition is the PT -symmetry breaking phase transi-

tion. Systems possessing a Parity-Time symmetry are symmetric under the combined

exchange of a pair of degrees of freedom and the exchange of gain and loss. As this

transition requires finely balanced gain and loss, this type of transition cannot exist

in closed systems. Originally, PT -symmetry breaking was thought of in terms of non-

Hermitian Hamiltonian systems, where complex fields would take the role of coherent

dissipation or driving [11]. For a while this was the exclusive domain of mathematical

physicists, as implementing a non-Hermitian quantum system posed an experimental

challenge. This was solved in 1998 by the authors of [12] who proposed a family of

non-Hermitian Hamiltonians which could be realized in an experimental setting. Since

then the research into PT -symmetry breaking has produced some interesting experi-

ments [13,14] in the context of Hamiltonian systems.

More relevant to this thesis is the work of Huber et al. [1, 15], which extended

the concepts of PT -symmetry to microscopic Lindbladian systems, i.e. systems which

experience incoherent jumps in addition to the coherent Hamiltonian dynamics. They

identified a symmetry which the microscopic Lindblad master equation needed to

possess a PT -symmetry breaking phase transition. The system they consider consists

of two collective spins of size S which interact with a collective spin-flip Hamiltoni-

an. Each spin couples to the environment, however, one is driven, while the other is

dissipative.

The PT -symmetry breaking phase transition is driven by a competition between

the coherent and incoherent parts of the master equation. In the limit of small but finite

bath-coupling strength the drive and dissipation cancel precisely and the Hamiltonian

perfectly mixes the system. In the limit of large dissipation, on the other hand, the

system separates into to two parts, where one is dominated by gain and the other by

loss.

In this thesis PT -symmetry plays an important role in the model which we will

investigate in Part I. As it is an effect exclusive to open systems it will help as a contrast
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Chapter 1. Overview

to the equilibrium-connected second-order phase transition of the LMG model.

1.3 Neural Quantum States

An issue that plagues numerical simulations of quantum systems is the “curse of

dimensionality”, i.e. the exponential scaling of the state space with system size.

This severely limits the size of systems that can be exactly simulated with numerical

methods. As phase transitions are only possible in the thermodynamic limit, this is a

big problem.

To mitigate this problem physicists have come up with a wide variety of approx-

imative methods. These can help us simulate and better understand many-body

systems but are often limited by the entanglement of states. One that is of particular

interest to this thesis is Variational Monte Carlo (VMC) [16]. As all other numerical

methods, VMC uses, that most of the state space will never be seen by most relevant

Hamiltonians. One can thus define an ansatz function whose parameters only grow

polynomially in systems size and whose structure is hopefully as close as possible to

that of the true state.

Similar to the wavefunction, the ansatz defines a probability distribution over the

basis states, which can be sampled using Monte Carlo methods. With these one

can then estimate the gradient of the energy with respect to the parameters and

systematically approach the ground- or steady-state.

A class of ansatz functions which as been proven to be very capable of represent-

ing strongly-correlated states was recently proposed by Carleo and Troyer [17]. The

parameter structure of these ansatze is informed by neural networks and hence called

Neural Quantum States (NQS). They make use of neural networks’ uncanny ability to

efficiently represent extremely complex data. In physicists’ terms, Neural Quantum

States have a volume-law entanglement capacity [18].

In this thesis we propose a Neural Quantum State for the density matrix. It works

by applying the Choi-Isomorphism in a similar vein to Zwolak et al. [19] to transform

the density matrix into a density vector. By extending the the original ansatz of [17]

to a third order polynomial in a similar manner to [20] we are able to discriminate four
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Chapter 1. Overview

local states. This allows us to efficiently find the steady state of open quantum models

consisting of spins on a lattice. The ansatz forgoes the need for a global purification via

auxiliary degrees of freedom as done in [21] and retains the simplicity and expressibility

of the original NQS ansatz.

1.4 This Thesis

In this thesis we will examine a variety of models. In the first part we focus on the

dissipative LMG-dimer model with an additional PT -symmetry. As we will show, the

LMGmodel can be derived from a transverse field Ising model with all-to-all interaction.

In the second part we will describe how to use NQS for the study of open quantum

systems with a particular emphasis on the transverse field Ising model with different

kinds of dissipations.

This thesis is structured as follows. In Part I we propose and investigate a PT -

symmetric LMG dimer model, which in this form has not been investigated before.

This model possess both an equilibrium connected second-order phase transition as

well as a PT -symmetry breaking phase transition. This will help us understand how

each transition is influenced by the presence of the other. In Ch. 2 we introduce

and discuss open quantum systems. We introduce the Lindblad master equation and

discuss the necessary approximations to derive it. We further discuss the ideas of PT -

symmetry in both Hamiltonian and Lindbladian contexts. Finally, the LMG model

and its phase transitions are discussed. In Ch. 3 we discuss the methods we will use to

investigate the LMG dimer. Chief among them are mean-field and Holstein-Primakoff

approximations. We discuss linear stability analysis and how it can be used to get a first

idea of the phase diagram. We also give a brief introduction to Quantum Trajectories,

which are used to achieve results for large but finite spin sizes. Ch. 4 finally concludes

this part with a discussion of our results. We begin with a brief introduction to the

behaviour of the individual models. We then discuss the linear stability phase diagram

as well as what we assume to be the full phase diagram. We find that the environment

causes second-order corrections to the phase boundaries. Furthermore, the presence of

the second-order phase transitions causes the system to undergo a various other phase
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transitions before it is driven over the PT -symmetry breaking phase transition. Finally,

we end the chapter with a comparison of mean-field with spin-Wigner functions.

Part II is concerned with the development of a novel ansatz for non-equilibrium

steady state density matrices. Ch. 5 gives an overview over various methods for the

numerical simulation of quantum systems, with a focus on Tensor Networks and VMC.

In Ch. 6 we introduce and discuss the novel ansatz in more detail. We begin with

a review of Restricted Boltzmann Machines, the original neural quantum states. We

discuss how one can find the groundstate using stochastic gradient descent. We then

introduce our architecture and discuss our motivation as well as how we can use it to

find the steady-state. We end with a brief introduction to the Markov Chain Monte

Carlo algorithm. Finally, in Ch. 7 we benchmark our ansatz. Our ansatz is compared

with matrix product states as well as neural density machines. We use two different

versions of the dissipative transverse field Ising model as test beds for our comparisons.

We end the chapter with a discussion of our results and possible avenues of future

developments.
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PT -symmetric LMG Dimer
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Chapter 2

Introduction

Since the inception of quantum mechanics in the 1920s there has been a strong focus

in research on equilibrium systems. These are systems which are closed to the outside

in that no energy, no coherence and no information is ever lost over time. They are

described by a Hermitian operator with real eigenvalues.

An issue with this approach is that realistic quantum systems are never closed and

always interact with a larger environment, see Fig. 2.1 for a sketch. As we will discuss

in more detail later in this chapter, this changes the physics of the system significantly.

One of the most important changes is the existence of a steady state in Open Quantum

Systems (OQS) which is reached as the endpoint of time evolution. In a similar fashion

to ground states, the properties of these steady states can change dramatically as system

parameters are varied and the system undergoes a “dissipative phase transition”.

As we have mentioned in the introduction to this thesis, we are interested in gaining

a deeper understanding of the effects a bath has on the states of the system. The angle

of investigation we choose to pursue in our work is to contrast purely non-equilibrium

effects with equilibrium-connected effects, i.e. effects which remain if the system-bath

coupling is switched off. The systems we choose, i.e. the LMG model [22] as well

the PT -model [1] are individually well established and understood. This allows us to

compare our results with well established ones.

In this chapter we lay the groundwork for our investigation. We discuss the type

of OQS we are interested in, i.e. those with a Markovian bath. We further give a
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brief overview of purely non-equilibrium phenomena. This is followed by a qualitative

introduction to dissipative phase transitions and collective spin models, namely the

Dicke model and the LMG model. Ch. 3 then builds upon this by discussing the

numerical and analytical methods we use in more detail. Finally, Ch. 4 of this part

then discusses the results of our investigation.

2.1 Open Quantum Systems

The dynamics of an OQS cannot be described exactly. The bath alone is usually

assumed to be infinitely large. And to suppress finite size effects in the system itself

for any amount of time, we need very large systems as well. This makes it immediately

clear, that if we want to have any chance of efficiently describing the dynamics of the

OQS by itself, we need to at least trace out the bath degrees of freedom from the

equation. The starting point of the derivation of such an equation is the von Neumann

equation for the Hamiltonian H and density matrix ρ of the “universe”:

d

dt
ρ = −i[H, ρ]; (2.1)

where the total Hamiltonian is given by a sum of the system Hamiltonian HS, the bath

Hamiltonian HB and the interaction Hamiltonian HI:

H = HS +HB +HI. (2.2)

A consequence of tracing out the bath from the equation is that the state of the

open system will generally be a mixed state and described by a density matrix. Density

matrices describe both classical uncertainties, such as a probability distribution over an

ensemble of states, as well as quantum properties, such as entanglement. The matrices

fulfil three properties: Hermiticity (they are observable), unit trace, and positivity

(they define a probability distribution). A general density matrix ρ is defined as a
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weighted sum over all possible basis states, such that the weights sum to 1

ρ =
∑
i

pi |ϕi⟩ ⟨ϕi| , (2.3)

where pi are the classical probabilities of each basis state and {ϕi} are the basis states

which diagonalize the density matrix. Density matrices allow one to distinguish mixed

states and pure states. Pure states can be described by a state vector and are the

usual eigenstates of Hamiltonian systems. They are pure in the sense that there is

no classical probability distribution over a larger set of states and all uncertainty is

purely quantum. Mixed states are a mixture of several pure states as in Eq. 2.3. Pure

states have the additional property of being idempotent, i.e. ρ2 = ρ, which has the

consequence of Tr[ρ2] = 1. Mixed states on the other hand necessarily have Tr[ρ2] < 1.

The quantity Tr[ρ2] gives us a measure of how close a state is to being a pure state

and is therefore referred to as purity. Now we are equipped to understand why the

state of an open quantum system is necessarily mixed and must be described by a

density matrix. Generally, the total state of the system and the bath combined will

be entangled and pure. A simple example of such a state is the Bell-state, where we

assume one spin to be the system and the other the bath:

|Ψ⟩ = 1√
2
|0, 1⟩+ |1, 0⟩ . (2.4)

Its density matrix is then given by

ρ =
1

2
(|0, 1⟩+ |1, 0⟩) (⟨0, 1|+ ⟨1, 0|) (2.5)

=
1

2
(|0, 1⟩ ⟨0, 1|+ |1, 0⟩ ⟨0, 1|+ |0, 1⟩ ⟨1, 0|+ |1, 0⟩ ⟨1, 0|) . (2.6)

Since we only have one pure state which contributes to the density matrix, the purity

is 1. We can now trace out one of the subsystems and investigate if the state we are
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left with is pure or mixed:

ρA = TrB[ρ] =
1

2
TrB [|Ψ⟩ ⟨Ψ|] (2.7)

=
1

2
TrB [(|0, 1⟩+ |1, 0⟩) (⟨0, 1|+ ⟨1, 0|)] (2.8)

=
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) . (2.9)

This yields for the purity P of the reduced state of subsystem A:

ρ2A =
1

4
(|0⟩ ⟨0|+ |1⟩ ⟨1|) (2.10)

P = Tr
[
ρ2A
]
=

1

2
< 1. (2.11)

While this is an extremely simplified example compared to an infinite bath coupled

to a large and complex system, the idea nonetheless holds generally. Any state of

entangled subsystems will lead to a mixed state under a partial trace and one requires

a density matrix to describe the state of the remaining subsystem.

The equations which govern the dynamics of these density matrices are calledMaster

Equations. Master equations are a concept from the mathematical field of stochastic

mathematics and describe how probability distributions evolve over time, see Ch. 1 of

Ref. [23]. They introduce various approximations that can be utilized to derive different

master equations, as well as details when each of them fails. Another excellent but more

succinct introduction to the field is found in Ref. [24]. The most general master equation

which is fully trace preserving and completely positive is the Lindblad master equation

d

dt
ρ = Lρs = −i[H, ρs] +

∑
k

γk

(
AkρsA

†
k −

1

2
{A†

kAk, ρs}
)
, (2.12)

where L is the “Liouvillian” super-operator, that governs the dynamics of the density

matrix ρ. Here, H and ρs are the Hamiltonian and the partial density matrix of

the system. Ak are the jump operators, which govern the influence of the bath on

the system and γk is the strength of this coupling. The sum runs over the different

dissipation channels k. This equation is guaranteed to possess a so-called steady state,
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Environment

System

Figure 2.1: This is a simple schematic of an open quantum system. The system here
consists of three spins (red) each experiencing some interactions (blue) with a large
environment (turquoise). To be able to describe the dynamics of the system, one has
to trace out the the environmental degrees of freedom. This leads to a mixed state
whose dynamics are described by a master equation.

i.e. a state such that in the long time limit the state satisfies

lim
t→∞

Lρ(t) = 0. (2.13)

While there are other master equations, such as the Redfield equation, we will not be

concerned with systems that cannot be described by a Lindblad master equation in this

thesis.

The equation can be derived by tracing out the bath degrees of freedoms from the

state and the governing equation of motion. This is generally not a trivial task, and

requires one to make a number of approximations. Consequently the Lindblad master

equation describes the dynamics of quantum systems which are weakly coupled to a

memoryless environment as well as subject to a rotating wave approximation. These

three approximations are based on the observation that one can, in a wide array of

problems, separate three time or frequency scales: The frequency scale of the system

given by the typical energy eigenvalues of the Hamiltonian ωs, the frequency scale of the

bath-system interactions given by the dissipation strength γ, and the inverse time scale

at which correlations inside the bath decay ωb. These approximations are generally well

satisfied in cavity quantum electrodynamic systems with pumped and leaky cavities.

The first approximation is also called the Born approximation, see e.g. Refs. [23,25].
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It essentially means that relevant frequencies of the bath and the system are much faster

than that of their coupling, i.e. on the typical time scale on which bath and system

interact with each other, both have evolved appreciably by themselves γ ≪ ωs, ωb.

The second approximation is known as the Markov approximation. It means that any

correlations inside the bath induced by system-bath interaction decay much faster than

the characteristic time of the system-bath interaction, τb ≪ 1/γ. Essentially, each time

the system and bath interact, any knowledge of previous interactions has long been lost.

This means in particular, that the system cannot couple to a previous system state via

feedback from the bath. Such memory effects play an important role in the very active

field of non-Markovian open quantum systems [26]. The final approximation is the

rotating wave approximation. It is particularly well known in quantum optics [27]. In

essence it states that once we transform the problem into the interaction picture, some

terms will be constant in time while others will rotate with a large frequency over the

relaxation time and average to zero.

Now that we have a basic idea of how the dynamics of an OQS are described, we

will discuss a few phenomena exclusive to them. We will begin with a brief introduction

of dissipative systems described by non-Hermitian Hamiltonians and then move on to

fully open quantum systems described by a Lindblad master equation.

2.2 Non-Equilibrium Phenomena

For some time the effects of environments have been regarded as a nuisance. As an

example, see the lengths gone to, to shield quantum computers from outside noise.

And not without reason, as environments introduce noise, destroy coherences and

leak information and energy irretrievably into the environment. On top of these

physical consequences, environments make the problem much harder computationally

and analytically. However, for all the problems they may cause, environments introduce

a score of phenomena that do not exist in closed systems. Where in equilibrium systems

states are limited to those that can be written as e−βH, drive and dissipation allow us

to reach states outside of this class, see lasers for example. Here we will introduce a

handful of these phenomena, chief among them PT -symmetry breaking, exceptional
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points as well as quantum contact processes.

One important example of exclusively non-equilibrium physics is Parity-Time sym-

metry and its breaking, which will be a major part of our discussions in later chapters.

For a while, PT -symmetry was the exclusive domain of mathematicians as there was

no idea how to implement such systems in an experimental setting [11,28]. In 1998, the

authors of Ref. [12] described a large family of non-hermitian Hamiltonians that possess

a real spectrum due to their PT -symmetry. Non-hermitian Hamiltonians include gain

and loss terms, which generally leads to a complex spectrum. The consequence is

that the trace of the density matrix is no longer conserved. Such systems represent

the no-jump evolution of master equations. In the case of finely balanced gain and

loss, as well as weak dissipation strength, the non-hermitian Hamiltonian retains a

real spectrum [11,12]. In the beginning, PT -symmetry was thought of purely in semi-

classical terms and described by non-hermitian Hamiltonians (NHH). An example of a

PT -symmetric NHH can be found in [11]

HNH = ω1+ κσx − iγσz, (2.14)

where σz and σx are Pauli-matrices. This Hamiltonian describes a 2-level system with

an energy scale ω, balanced gain and loss γ, and a level-coupling κ. This Hamiltonian

can be readily diagonalized, which leads to the eigenvalues

ω± = ω ±
√
κ2 − γ2, (2.15)

and eigenvectors

vT± =

(
− iγ ±

√
κ2 − γ2

κ
, 1

)
(2.16)

For κ > γ these eigenvalues are clearly real and the eigenvectors are distinct. At

κ = γ, however, we can see that not only ω+ = ω−, but more importantly also

vT+ =

(
− iγ
κ
, 1

)
= vT−. (2.17)

At this exceptional point (EP) a number of eigenvectors coalesce, which renders the
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Hamiltonian non-diagonalizable. The number of coalescing eigenvectors determines the

order of an EP, e.g. at a second-order EP one sees two eigenvectors become equal. This

is a hallmark feature of PT -symmetry breaking. For κ < γ the eigenvalues develop

an imaginary part, while for both states the real part is equal. A consequence is that,

while the groundstate before the exceptional point is unique, it will be degenerate at

the EP and beyond.

In the few decades since, the theoretical and experimental research into the effects of

PT -symmetry has drastically picked up pace and resulted in many effects in optics such

as unidirectional light propagation [13,29] as well as in mechanics [14], acoustics [30,31],

electronics [32,33] and, most relevant to this thesis, spin systems [34–38]. The authors

of Ref. [34] proposed a way of transforming a non-hermitian Hamiltonian into a her-

mitian Hamiltonian, which allowed them to implement and investigate PT -symmetric

Hamiltonian in an experimental setup using a Nitrogen-Vacancy center in diamond. In

Ref. [38] the authors investigated a PT -symmetric Ising chain and found a rich phase

diagram containing second- and 3rd-order exceptional points.

Up until recently, research into exceptional points has been restricted to the semi-

classical case, in the sense that quantum noise and quantum jumps due to the en-

vironment have been neglected. The authors of [39] have developed a framework to

incorporate quantum jumps by using the Lindblad master equation as their starting

point. This leads to what they call Lindblad Exceptional Points (LEPs), as opposed

to Hamiltonian Exceptional Points (HEPs). They could show that the presence of

LEPs can have a significant effect on the dynamical behaviour of the Lindblad master

equation. Where the dynamics at non-exceptional points is generally given by a sum of

exponential decays of the non-steady state eigenmatrices of the Liouvillian of Eq. 2.12,

this exponential decay is multiplied by a polynomial [39]. In particular in [39–41] the

authors suggest that such modified dynamics could point towards the presence of a

second-order dissipative phase transition. In [28] the authors investigate the effect of

LEPs in the context of the Scully-Lamb laser theory. More recently, Pocklington et al.

used PT -symmetry to stabilize finite-density phases in photonic and bosonic models,

proposing a PT -laser, see Ref. [42].
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For all the work that has been done in Hamiltonian systems, a formal and robust

definition of PT -symmetry in dissipative systems has been the topic of some discussion.

The main contributions were made by Prosen et al. in [43,44] as well as more recently

by Huber et al. in [1, 15]. The latter studies focused on a driven-dissipative spin-flip

model which we will collective refer to as the PT -model:

L[ρ] = −i [HPT, ρ] +
γ

S

(
D[S−

a ] +D[S+
b ][ρ]

)
(2.18)

HPT =
λ

2S

(
S+
a S

−
b + S−

b S
+
a

)
(2.19)

D[S−
a ][ρ] = S−

a ρS
+
a − 1

2
{S+

a S
−
a , ρ} (2.20)

D[S+
b ][ρ] = S+

b ρS
−
b − 1

2
{S−

b S
+
b , ρ}. (2.21)

In recent works evidence was presented in support of the definition by Huber in the

form of similarities of the dynamical behaviour of dissipative systems to those of Hamil-

tonian systems [2,45]. In Ref. [2] the authors show in particular that at the point of the

PT phase transition as introduced in [1,15], the eigenvalue structure of the Liouvillian

changes. More specifically, they show that in the thermodynamic limit, before the tran-

sition some eigenvalues are purely imaginary, while after the transition, the eigenvalues

are purely real, i.e. the dynamical behaviour changes from oscillatory to purely damped.

This is in accordance with PT -symmetry breaking found in NHH systems.

The appearance of purely imaginary eigenvalues in the thermodynamic limit of the

PT -symmetric phase has the consequence that the long-time limit and the thermo-

dynamic limit do not commute [45]. More specifically, if the thermodynamic limit is

taken before the long-time limit, the system will have oscillatory dynamics. If the limits

are taken in different order, however, the system will be damped into some stationary

steady state before the thermodynamic limit. In their paper from 2023 as well as its

supplemental material Nakanishi et al. also show that the system investigated in [15]

in the thermodynamic limit of the PT -symmetric phase constitutes a Boundary Time

Crystal [45,46].

Another class of processes which cannot exist in closed systems are quantum contact

processes with absorbing states [47]. Classically, contact processes can be used to
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model for example the spread of disease. In the quantum case, neighbouring sites are

flipped coherently depending on the local spin-state (“infection”), while a Lindbladian

dissipation is used to incoherently flip spins (“healing”). Classically, these systems

possess an active state (“endemic”) as well as a dark state (“fully healed”) with a phase

transition of the direct percolation universality class. In the quantum case, evidence has

been put forward that the phase transition does not belong to the directed percolation

class Refs. [48, 49].

This is just a small and thoroughly incomplete list of phenomena which are exclusive

to dissipative and open quantum systems. It should, however limited, still give a good

idea of the general nature of things to expect in open quantum systems. In particular

PT -symmetry and its breaking will play an important role in later chapters of the

thesis. For all its unique features and phenomena, OQS share many properties with

equilibrium quantum systems and even classical, thermal systems. One such feature

are Phase Transitions.

2.3 Dissipative Phase Transitions

One of the most interesting phenomena in all of physics are phase transitions. They

occur due to a competition of system parameters. At the point of a phase transition

the system undergoes a radical shift in properties. In classical physics phase transitions

are driven by the competition of the energy and entropy terms in the free energy as

a function of temperature or density. They have been well and thoroughly described

by the Landau theory of phase transitions [6]. Generally, there are two types of phase

transitions: first order and continuous phase transitions. First order phase transitions

are characterised by a discontinuity in the first derivative of the free energy [6, 50].

They can further possess phase-coexistence. An example is the boiling of water. As all

classical phase transitions, it happens at finite temperature with temperature acting

as the control parameter. At the critical temperature, part of the water transitions to

vapour, while the rest remains at the critical temperature. The total transition of the

water to vapour takes a some time.

Continuous, or second-order phase transitions, on the other hand are generally
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accompanied by divergences in various properties in the vicinity of the critical point

and spontaneous symmetry breaking. The divergences are governed by so-called critical

exponents. Thorough experimental and analytical studies of these exponents for many

systems showed that they are dependent only on the dimensionality, the symmetry and

the range of the interactions. Continuous phase transitions also exhibit spontaneous

symmetry breaking. This occurs when the state suddenly loses a symmetry that the

governing equation possesses. An example is the phase transition of the classical Ising

Model (CIM).

HCIM = −J
∑
⟨i,j⟩

sisj . (2.22)

Here si = {±1}, J is the interaction strength and ⟨i, j⟩ denotes a sum over nearest

neighbours. This model has a Z2 symmetry in the sense that si → −si leaves the

model invariant. In 2D, this model possesses a phase transition from a disordered

to an ordered state. The ordered state will either be si = 1 or si = −1 ∀i. The

Z2-symmetry of the original model translates one of these states into the other and

does not leave them invariant. A plot of the magnetization can be found in Fig. 2.2.

It was produced using a simple Metropolis-Hastings Monte Carlo simulation. This

method is similar to the one discussed in Sec. 6.4. Given a spin-configuration one

flips a random spin and compares the energy of the new configuration with that of the

old one. If the new energy is favourable, one retains the new configuration, otherwise

one stays with the old configuration. Repeating this step a for Ns = 10000 steps

converges the system towards the ground-state configuration. One can see that above

the critical temperature, the absolute value of the magnetization is zero, while below it,

the magnetization is suddenly finite. Around the critical temperature we can observe

that the fluctuations in the data increase dramatically. This is a consequence of the

competition of two different groundstates. A vanishing magnetization suggests that the

state as well as Hamiltonian commutes with the Z2 symmetry.

In quantum mechanics there exists a similar phenomenon at low temperature. The

main difference to classical physics is that it is not the thermal fluctuations due to

the energy-entropy competition which drive the phase transition but the quantum
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Figure 2.2: This figure shows the absolute value of the magnetization for various inverse
temperatures β for the 2D classical Ising model from Eq. 2.22. Fluctuations in the
data become largest around β ≈ 0.44 where the system undergoes a continuous phase
transition.

fluctuations due to competitions of terms of the Hamiltonian which do not commute.

Archetypical models that possess a quantum phase transition are the Transverse Field

Ising Model (TFI) and the Quantum Rotor Model, both of which are extensively used

and discussed in Ref. [7]. The TFI in particular consists of a nearest-neighbour

interaction term as well as a field transverse to the interaction direction

HTFI = −J
N−1∑
i=1

σxi σ
x
i+1 + h

∑
i

σzi . (2.23)

Here, N is the number of sites, J is the interaction strength and h is the field strength.

Note that this model possess the Z2-symmetry as the classical case: It remains invariant

under σx → −σx, σy → −σy and σz → σz, i.e. a rotation around the z-axis.

Competition of these terms leads to a transition between an ordered phase for large

interaction and a disordered phase for large field. To be clearer, the interaction term

is minimized by parallelly aligned spins in x-direction. There are two such states

which are related via a Z2-symmetry. Hence, this phase spontaneously breaks the Z2-
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symmetry of the model. The field term, on the other hand, is minimized by a state

which points along the positive z-direction. This state is invariant under the above

symmetry transformation.

The more relevant model in the context of this thesis is the Lipkin-Meshkov-Glick

model (LMG), see Ref. [22]. Its Hamiltonian is

HLMG = −J
S
(Sx)2 − gSz, (2.24)

where Sx and Sz are collective spin operator and S is the total spin size. It describes

a single-site spin-S model within a transverse field and a self-interaction. As we will

discuss later in more detail, the LMG can be derived from an N -site spin-1/2-model

with all-to-all interaction, see Eq. 2.28 and the following paragraphs. It has a first and

second-order phase transition, depending on the sign of the self-interaction, which are

driven by a competition between the self-interaction term and the magnetic field, see

Refs. [8, 9].

In recent years quantum phase transitions in driven-dissipative systems have emer-

ged as a rich and unexplored field of study. Competition between Hamiltonian terms

and the bath interaction can drive the system across phase transitions which are

connected to their equilibrium counterparts as well as into novel phases that have

no equilibrium counterpart. Examples of the former include an open TFI discussed in

Ref. [10] as well as the first and second-order transitions of the LMG model discussed at

length throughout the first part of this thesis. The best example of novel phases are the

aforementioned PT -symmetry breaking transitions explored in Refs. [1, 15]. Another

example is the work of Lee et al. [51], in which they were able to stabilize spin-density

waves and staggered XY-states which do not exist in the equilibrium model. However,

even without explicitly non-equilibrium phenomena, driven dissipative systems offer

a host of research opportunities. Much work has been done in the early 2010s by

groups around Baumgartner, Buca and Albert on the symmetries of the Lindblad

master equation, see Refs. [52–54]. An important result of their work is that there

is a difference beteween (i) symmetries that commute with the Hamiltonian and all

individual jump operators or (ii) with the entire Liouvillian itself. The latter is called
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a symmetry in Ref. [54], a weak symmetry in Ref. [53] and a dynamical symmetry in

Ref. [52]. An important consequence, in stark contrast to equilibrium systems, is that

a mere symmetry of the Liouvillian does not imply a conservation of the symmetry

generator, while a strong symmetry, (i), implies both a symmetry of the Liouvillian as

well as a conservation of the symmetry generator.

There are, however, not just differences between the transitions of open and equi-

librium systems. While, there is no Noether Theorem for conserved quantities in

open systems and no exceptional points in equilibrium systems, the general idea and

framework are quite similar, see Ref. [55]. Whereas in equilibrium systems the relevant

quantity is the energy eigenvalue of the Hamiltonian, in dissipative systems it is the

complex eigenvalues of the Liouvillian. An equilibrium phase transition between two

groundstates occurs as the energy gap between those states closes. Similarly, a dissipative

phase transition occurs, as the real part of the Liouvillian gap closes.

More recently, Minganti et al. worked out various properties of the spectrum of the

Liouvillian in Ref. [40] by decomposing a generic density matrix into eigenmatrices of

the Liouvillian

ρ =
ρ0

Tr[ρ0]
+
∑
i=1

ciρi, (2.25)

where

Lρi = λiρi (2.26)

Lρ0 = 0. (2.27)

They then used that decomposition to investigate how the steady state is approached

and which eigenmatrices contribute in first and second-order phase transitions. In

particular for second-order phase transitions, they find that two eigenmatrices coalesce

at the critical point, rendering the Liouvillian non-diagonalizable.

While most groups mentioned in this thesis, ourselves included, focus on the steady

state and its properties, one should not neglect the dynamics that lead to it. In 2016

the authors of Ref. [56] investigated the transient phase in the presence of metastable

states and the dynamics in the manifold spanned by these metastable states. These
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are just a few of the myriad of studies that have been published on spectral properties

of Liouvillians and the general structure of steady states, their symmetries [57], as well

as their dynamics and metastability [58–62].

Numerical studies and experiments are vitally important to any scientific research.

Experiments are ultimately what decides whether a model is accurate, needs to be

amended or even discarded. To be able to compare experimental results with a model,

one requires predictions which are derived from that model. There are generally two

major ways to achieve this: Analytic investigations or numerical studies. Analytical

investigations are the traditional “pen-and-paper” studies. One often tries to derive

equations of motion for the model’s degrees of freedom or closed expressions for some

observables, such as the magnetization or the purity. One can then compare these

quantities or trajectories with those from the experiment. The analytic methods which

are most relevant to this thesis are mean-field approximations as well as Hosltein-

Primakoff transformations, both of which will be further introduced and applied in

Ch. 3. Quite often, however, models aren’t accessible by analytic studies. In these

cases one attempts to numerically simulate the model wholesale via some appropriately

chosen method. This results in numerical trajectories in case of semi-classical equations

of motion, or expectation values in case of full quantum simulations.

Numerical simulations are no silver bullet which render analytics completely su-

perfluous, however. In fact, they come with an entire host of their own issues. The

main problem is the infamous curse of dimensionality, i.e. the exponential scaling of

the state and system-operator with system size. This strictly limits exact numerical

simulations of quantum systems to small system sizes. One can mitigate this problem

by approximating the state in various way, see Fig. 2.3. The trade-off of these approx-

imations is some kind of approximation error, which is usually only minimisable by

approaching the exact state. Robust numerical methods are thus those which find the

optimum between accuracy and memory usage.

One of the most successful numerical methods of the last few decades are matrix

product states (MPS) [63]. MPS use the singular value decomposition to break the

state of the total system into a product of smaller matrices and find lower rank approx-
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Figure 2.3: Sketch of the Liouville Space. The total number of possible configurations
is generally much larger than the number configurations that actually contribute with
non-vanishing weight to any physical state. This is the primary reason why most
numerical methods work at all: Monte Carlo methods only need to generate a small
number of samples form a very restricted set, which allows for fast convergence, while
compression algorithms only need to optimize a relatively small number of parameters.

imations for each individual. Each matrix then describes the state of a single site and

the correlations with its neighbours. MPS were found to be the theoretical foundation

for an even older, very successful numerical method called the Density Matrix Renor-

malization Group introduced in [64]. Ref. [65] introduces the Time Evolving Block

Decimation (TEBD) algorithm to evolve MPS in time. Due to the way MPS break up

the system-state they work best for one dimensional systems, however extensions for

two dimensional systems have been introduced [66,67]. For a more in-depth discussion

of MPS and related methods see Ch. 5.

Another method which has proven robust are Quantum Trajectories (QT). While

MPS work both in equilibrium and open systems, QT target specifically open quantum

systems [27]. QT do away with the need for a full density matrix by stochastically

simulating an ensemble of single quantum trajectories. A quantum trajectory in this

case refers to the time evolution of a single, pure quantum state. This state is evolved

either under a non-hermitian effective Hamiltonian or experiences a sudden jump

due to the interaction with the environment. If sufficiently many such trajectories

are averaged, one approaches the full dynamics of the density matrix. Due to their

stochastic nature, QT were originally introduced as Monte Carlo methods for master

equations [68,69]. For a more detailed explanation of the algorithm, see Ch. 3.
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A method introduced in [17] as recently as 2017 are Neural Quantum States (NQS).

NQS take inspiration from the parameter structure of neural networks to define an

ansatz wave-function. This function is then used in a variational Monte Carlo framework

to generate samples and estimate the energy as well as its gradient. This can be used

to iteratively update the parameters. Once converged to the energy minimum, the

ansatz wavefunction is an approximate representation of the ground-state probability

distribution. This can be used to calculate expectation values and even do time

evolution. In equilibrium settings, NQS have proven exceptionally powerful and have

spawned an entire field of research. In an open system setting, efficient NQS ansatze are

still being developed and tested. Part II of this thesis will be primarily concerned with

the development and benchmarking of the Liouville Density Machine (LDM) ansatz,

introduced in [5].

A different method to investigate driven-dissipative two-dimensional systems was

employed by the group around Ciuti, see Refs. [70–72]. They developed the Corner-

Space Renormalization method for two-dimensional, dissipative systems. In Ref. [70]

the group used the dissipative Bose-Hubbard model to illustrate the convergence of their

method. In a later study the group applied the method to a dissipative, anisotropic

Heisenberg lattice [71]. They investigated the properties of its dissipative phase transi-

tion and found that von Neumann entropy increases sharply at the critical point, which

is usually characteristic for thermal phase transitions, while the quantum Fisher infor-

mation, an entanglement witness, also increases across the transition. The dissipative

phase transition of the Heisenberg model thus shows behaviour characteristic for both

thermal and quantum phase transitions. A further study applying the method was

published by the group in 2019 [72]. Here they used a quadratically driven dissipative

Bose-Hubbard model to implement a lattice of coupled optical resonators. A main

finding is that for small loss rates, the quantum critical point falls into the same

universality class of the TFI.

One of the earlier numerical studies of dissipative phase transitions was conducted

in Ref. [55]. In their work, the group investigated a central spin system. They do so

by deriving semi-classical equations of motion via a Holstein-Primakoff description of

25



Chapter 2. Introduction

the model. This allowed for an efficient simulation and exploration of the entire phase

diagram. It is also noteworthy for detailing the exact differences between thermal,

quantum and dissipative phase transitions, how each system is described, what the

relevant quantities are and how to recognize a phase transition.

Joshi et al. investigated the dissipative phase transition in a 1-dimensional, Z2-

symmetric, dissipative Transverse Field Ising model using MPS and approximate time

integration via TEBD, see Ref. [10]. Each spin of the chain experiences a dissipation

given by the σ−-operator. Given such a dissipation a σxσx-interaction is necessary to

preserve the Z2-symmetry of the equilibrium model, whereas a σzσz-interaction breaks

that symmetry. This is a central point of the second part of this thesis, where we use

both models to benchmark our Liouville Density Machines ansatz and find that the

Z2-symmetric is much more difficult to efficiently represent.

Experimental studies into dissipative phase transitions have focused mainly on

various types of waveguides and cavities, see for example Refs. [3, 4]. In such experi-

ments spin states are modelled by the photon number in each cavity. Inherent cavity loss

accounts for the dissipation. Coherent inter-cavity hopping models spin-flip interaction.

These platforms allowed for the theoretical proposition and actual realization of a wide

array of models. The authors of Ref. [73] for example proposed the realization of

driven-dissipative Kerr resonators, subject to one- and two-photon processes. In that

study the authors investigated a Kerr non-linearity inside of a photonic cavity subject

to coherent one- and two-photon driving as well as one- and two-photon losses. They

discovered that this system possesses a dissipative phase transition similar to the one

of the Jaynes-Cummings model. A different proposition was made by the authors

of [74]. They proposed that an ensemble of superconducting qubits coupled to an

array of photonic waveguides could act as a platform for a model of supercorrelated

radiance. In the last few years many platforms and methods have been proposed and

implemented,such as the 1D circuit QED lattices, fluorescence spectra in driven coupled

cavity arrays, the quantum Rabi model to optical hysteresis of semiconductor micro-

cavities to name but a few [74–79]. All of this goes to show the incredible richness of

dissipative phase transitions and open quantum systems in general.
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As we have mentioned above we are interested in understanding the effects that

baths have on the phase of the system. Our way of approaching this question is

by contrasting dissipative phase transitions which have an equilibrium counterpart

with purely non-equilibrium phase transitions. So far we have discussed PT -symmetry

breaking as well as regular dissipative phase transitions. In the next few paragraphs

we will discuss the class of models which we will use to engineer both types of phase

transitions.

2.4 Collective Spin Models

A particularly interesting class of models are collective spin models. Collective spin

models can be regarded as a large collection of spin-1/2 which experience a homogeneous

all-to-all interaction. This allows one to write a N -spin-1/2 system as a 1-spin-N/2

system, which is generally much simpler to solve.

As an example consider a two site transverse field Ising model:

H = Jσx1σ
x
2 + g (σz1 + σz2) . (2.28)

One can always add constant terms to any Hamiltonian, as that merely shifts the

eigenvalues but neither changes the level spacings nor the eigenstates. A possible

constant term we can add to this Hamiltonian is
(
(σx1 )

2 + (σx2 )
2
)
/2 = 1:

H′ = Jσx1σ
x
2 + g (σz1 + σz2) +

J

2

(
(σx1 )

2 + (σx2 )
2
)

(2.29)

This completes the square and allows us to rewrite the Hamiltonian in terms of

collective spin operators Sj =
∑

i σ
j
i with j ∈ {x, y, z}. The term collective refers to
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the fact that the operators act on all spins simultaneously:

H′ = Jσx1σ
x
2 + g (σz1 + σz2) +

J

2

(
(σx1 )

2 + (σx2 )
2
)

(2.30)

=
J

2

(
2σx1σ

x
2 + (σx1 )

2 + (σx2 )
2
)
+ gSz (2.31)

=
J

2
(σx1 + σx2 )

2 + gSz (2.32)

=
J

2
S2
x + gSz. (2.33)

We can now readily see that
[
S2
x, S

2
]
=
[
Sz, S

2
]
= 0, where S2 = S2

x + S2
y + S2

z is

the total spin operator. Thus, the Hamiltonian conserves total spin. Furthermore, the

Hamiltonian is fully symmetric under any permutation of sites. In the two-site case

P12 (σ
x
1 ) = σx2 , however, it generalises to any number of sites. Total spin conservation

and permutation symmetry suggests we choose a basis in which both operators are

diagonal. One such basis is:

S2 Sz P12

|↑↑⟩ 1 1 1

|↑↓⟩+ |↓↑⟩ 1 0 1

|↓↓⟩ 1 -1 1

|↑↓⟩ − |↓↑⟩ 0 0 -1

There are two distinct sectors of the spin, one which lies on the shell of the collective

bloch sphere and has total spin S = 1, and one which lies at its center and has spin

S = 0. Symmetry under permutation suggests that the only states the collective spin

Hamiltonian can act upon lie on the shell. Thus, we can regard an all-to-all coupled

two-site spin-1/2 Hamiltonian as a collective, single-site spin-1 Hamiltonian. This can

readily be generalized to any number of sites N .

Two of the most common collective spin models are the Dicke model [80] as well

as the Lipkin-Meshkov-Glick Model (LMG) [22]. The Dicke model describes N 2-

level atoms interacting with a single bosonic mode and has garnered attention for its

prediction of a transition to a superradiant phase [81]. Over the years, various possible
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experimental setups have been proposed and realized. See in particular [82] for a cavity

QED implementation, where the two lowest lying states of interacting 4-state-atoms

are coupled via two Raman channels. The authors of [83, 84] coupled a BEC to an

optical cavity and observed self-organization within the BEC as they varied the pump

strength. For a more in-depth introduction to the Dicke model in both closed and open

system settings, see [85].

The LMG model was first introduced by Lipkin, Meshkov and Glick in 1965 in

the context of nuclear physics [22] but has since been shown to map to a vast number

of Hamiltonians in many different fields, from bosonic Josephson junctions [86, 87] to

nitrogen-vacancy centres in magnetic fields [88]. The mapping between a 2-site Bose-

Hubbard model and the LMG model is based on Schwinger bosons, which opens up the

possibility to realise the with ultracold atoms in optical lattices [89]. The LMG model,

which we have see to arise from a TFI with all-to-all interactions, is described by the

following Hamiltonian:

HLMG = −J
S
S2
x − gSz. (2.34)

Here Sx and Sz are collective spin operators of total spin S. J gives the strength of

the self-interaction term and g the strength of a transverse field. The LMG model has

the same Z2-symmetry as the TFI of Eq. 2.23, i.e. it is invariant under Sx → −Sx,

Sy → −Sy and Sz → Sz.

The model itself can be solved exactly by semi-classical approximations in the ther-

modynamic limit, see [90]. In this limit, the model possesses a surprisingly rich phase

diagram with both a first-order and a second-order phase transition, depending on

whether its non-linearity is ferromagnetic or antiferromagnetic, see Fig. 2.4. The figure

shows the magnetization of the state along the Z-axis across a scan of g/J for J = −1

(a) and J = 1 (b). One can see a clear qualitative difference in the behaviour of the

magnetisation. For an overall ferromagnetic non-linearity (b), i.e. J = 1 the model

undergoes two second-order phase transitions at g/J = ±2. This is marked by a closing

of the gap across the entire region |g/J | < 2. Across this region, the magnetization

changes smoothly from Z = +1 at g/J = −2 to Z = −1 at g/J = 1. This is in stark

contrast to the anti-ferromagnetic case of plot (a). Here the gap closes at only a single
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Figure 2.4: This figure shows the first-(a) and second-order (b) phase transition of the
LMG model for J = ±1 respectively for various sizes of the spin.

point, namely g/J = 0, and the magnetization jumps discontinuously from Z = −1

at g/J = 0− to Z = +1 at g/J = 0+. The scans were repeated for different spin

sizes to show how the transitions become sharper towards the semi-classical limit. The

entanglement properties of these transitions have been investigated by the Vidal et al.

in the dual study [8] (first-order) and [9] (second-order).

While the model is trivially solved by various semi-classical methods, away from the

thermodynamic limit finite size effects leave the system highly non-trivial. Extensive

research has been done among others by Dusuel et al. [91,92] on the finite size scaling

exponents of various observables and the entanglement entropy [93,94].

Ribeiro et al have investigated the spectrum of the LMG model in both the thermo-

dynamic limit as well as at finite sizes [95]. A broad discussion of various ground-state

collective spin models has been presented by Vidal et al in 2007 [94]. More recently,

Huang et al investigated ways to stabilize a state close to the mean-field ground state

through a small perturbation [96], which goes to show that even 60 years after its

original publication, the ground-state model still offers rich opportunities for discovery.

In 2008 Morrisson and Parkins proposed a dissipative version of the LMGmodel [97].

They were able to show numerically that the open model inherits the first- and second-

order phase transition of the ground-state LMG model. They found however, that the

first- and second-order phase transition both appear when just a single parameter is
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varied, as opposed to the ground-state model where the order of the phase transition

varies as the relative sign of the interaction and field strength flips. In the same year

Morrison and Parkins also presented a possible experimental implementation of the

dissipative LMG model in [98] which is closely related to the setup presented in [82]

for the Dicke model.

A more recent study by Ferreira et al. investigates the dissipative phase transitions

of a collective spin model coupled to a metallic surface [99] as well as a magnetic tip.

The spin model is well described by the LMG Hamiltonian, while the coupling to the

environment could be modelled by a Markovian dissipation term. They found rich phase

diagrams depending on whether the magnetic tip is polarized parallel or perpendicular

to the applied magnetic field of the LMG model.

2.5 Summary

In this chapter we discussed the literature necessary to understand our results in Ch. 4.

The thesis in general and Part I in particular focus on the properties of the steady

states of open quantum systems. As described in the introduction, we are keen on

understanding how phenomena exclusive to open quantum systems and phenomena

from equilibrium physics compete with each other. The model we identified to serve us

best is a PT -symmetric LMG dimer with a coherent spin-flip interaction. There are a

few reasons for this. For one, as we have seen, individual LMG models are analytically

solvable using semi-classic approximations, and possess a rich phase diagram in both

closed and open scenarios. These approximations have been found to become exact

in the thermodynamic limit. As we have seen, it is further a well established and

understood model across a vast number of fields, with various proposed and realized

experimental implementations. All of this makes the LMG model a prime candidate as

the “equilibrium-analogue” part of our investigation.

The driven-dissipative spin-flip model of [1,15], on the other hand, is a well under-

stood model possessing PT -symmetry breaking. It has been investigated analytically

using Holstein-Primakof approximation, mean-field approximations and brute-force

numerical integration. As with the LMG model, experimental realizations have been
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proposed. Furthermore, the model has made appearances in the description of time-

crystals as well as of lasers, where gain and loss are necessary for the lasing process

to exist. In fact the semi-classical model of Eq. 2.14 can be thought of as a 2-mode

laser setup. Given how well understood each individual model is, we believe they are

perfect candidates to investigate their competition and learn more about the effects of

environments on the system.

With the groundwork of this part of the thesis done, we will discuss the methods

we employ to investigate this PT -symmetric LMG dimer in Ch. 3. These are primarily

the mean-field approximation and linear stability analysis. An important and novel

result introduced in the next chapter will be the sufficient condition on the Hamilto-

nian’s symmetries for PT -symmetry breaking to occur. Once the methods we used to

investigate the LMG dimer are introduce, we will discuss our results in Ch. 4. That

chapter will contain most of the novel findings of this part of the thesis.
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LMG Dimer Theory

In the previous chapter we discussed our motivation for investigating open systems and

the PT -symmetric LMG dimer in particular. In this chapter we introduce the methods

and approximations we for our investigation. In particular we will discuss the Holstein-

Primakoff approximation in Sec. 3.2, which we use to derive analytic expression for

various observables. In Sec. 3.3, we will use a mean-field approximation to derive

equations of motions for the spin degrees of freedom of the system. In Sec. 3.4 also

work out the conditions under a systems symmetries for it to be able to undergo a

PT -symmetry breaking phase transition. Finally we discuss quantum trajectories in

Sec. 3.5. These will be used along Holstein-Primakoff and mean-field to derive and

understand our results.

3.1 The PT -model and the LMG-model

In this part of the thesis we are interested in the PT -symmetric LMG-dimer model.

This model possesses both a PT -symmetry breaking phase transition as well as a

second-order phase transition, depending on which system parameter is varied. In this

section we will briefly discuss the two individual models which we use to construct the

LMG-dimer.
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3.1.1 PT -model

The first model we consider is the spin-flip- or PT -model given by the following

equation:

ρ̇ = −i[HPT, ρ] +
γ

S

(
D[S+

A ] +D[S−
B ]
)

(3.1)

HPT = λ(S−
AS

+
B + S+

AS
−
B ) (3.2)

D[S+
A ] = S+

AρS
−
A − 1

2
{S−

AS
+
A , ρ} (3.3)

D[S−
B ] = S−

BρS
+
B − 1

2
{S+

BS
−
B , ρ} (3.4)

It consists of two collective spins of size S, one of which experiences gain, while the

other experiences loss. They are coupled via a collective spin-flip interaction. The

model is notable for its PT -symmetry breaking phase transition between the “normal”

state, i.e. the dark state of the dissipators and the maximally mixed state. This phase

transition is driven by a competition between the coherent and incoherent terms of

the Lindblad master equation. For vanishing λ the dissipation dominates, driving the

system into the normal state. In the limit of large λ or small dissipation strength γ

the Hamiltonian mixes the states of the sites completely, driving the system into the

maximally mixed state.

3.1.2 LMG-model

The second model we consider is the dissipative LMG-model. It consists of a single

collective spin of size S, which is subject to a field in Z-direction as well as a self-

interaction inX-direction. The model possesses a second-order phase transition between

the normal state of the dissipation and a symmetry broken phase. It is driven by a

competition between the non-commuting terms of the Hamiltonian. For small self-

interaction strength J the field term dominates. Since the dark state of the dissipation

is an eigenstate of the field term, the system is driven into this state. For large J the

quadratic term dominates, which drives the system into the symmetry-broken phase.

Other than the PT -symmetry breaking phase transition, this transition is connected
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to its equilibrium counter part. As we will see in Ch. 4, we recover the critical Jc of the

equilibrium phase transition in the limit of dissipation strength γ → 0. As a reminder,

the dissipative LMG-model is given by the following Lindblad master equation:

ρ̇ = −i[HLMG, ρ] +
γ

S
D[S−] (3.5)

HLMG = −J
S
S2
x − gSz (3.6)

D[S−] = S−ρS+ − 1

2
{S+S−ρ}. (3.7)

The capital-letter Sx-operators are collective spin-operators of size S: Sx =
∑

i σ
x
i ,

where the sum runs over all spins of the system. As we have seen in Ch. 2, a system

of N all-to-all interacting spin-1/2 can be rewritten as a single spin-S model, where

S = N/2.

3.2 Hosltein-Primakoff Approximation

In this section we will discuss one of the two semiclassical approximations we will make

to simplify the problem, the Holstein-Primakoff (HP) approximation. HP maps spin

systems to bosonic systems. In the limit of large S one can linearize the transformation

which simplifies the resulting bosonic model. One picks some spin state as the vacuum

state and linearises around it. HP breaks down if too many states contribute or the

system moves too far away from the vacuum state. In the case of the PT -model it

allows us to derive analytic expressions for the σz-expectation values as well as the

purity P .

A spin-state is usually written as |S,m⟩, where S is the total spin and m the

magnetization

S2 |S,m⟩ = S(S + 1) |S,m⟩

Sz |S,m⟩ = m |S,m⟩ .
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We note that for some total spin S, the magnetization can take any value

m = S − n; n = 0 · · · 2S. (3.8)

This then looks like a bosonic mode with fixed maximum excitation number n, i.e. for

n = 0 we have some vacuum-state. We can turn this around and write

n = S −m. (3.9)

With this we have |s,m⟩ → |s, n⟩ as well as:

|1/2, 1/2⟩ → |1/2, 0⟩ (3.10)

|1/2,−1/2⟩ → |1/2, 1⟩ , (3.11)

i.e. the up-state is the non-excited vacuum state and n counts how far we are away

from the vacuum. In the case of spin-1/2 we have only two possible states, up (vacuum)

and down (excited). We then have

Sz |S,m⟩ = m |S,m⟩ = (S − n) |s,m⟩ = (S − n) |S, n⟩ (3.12)

⇒ Sz |n⟩ = (S − n) |n⟩ (3.13)

⇒ Sz = (S − a†a), (3.14)

where in the last line we made use of the bosonic number operator. This is also where

”expanding around a certain point on the Bloch sphere” comes in. Our choice of the

vacuum state tells us what n is counting. Enforcing the correct commutation relations

leads to expressions for S+ and S− as well

Sz = (S − a†a) (3.15)

S+ =
√
2S

√
1− a†a

2S
a (3.16)

S− =
√
2S

√
1− a†a

2S
a†. (3.17)
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These equations can be simplified by expanding up to linear order in S:

Sz = (S − a†a) (3.18)

S+ =
√
2Sa (3.19)

S− =
√
2Sa†. (3.20)

Note that we could as well choose any other point on the Bloch sphere as the vacuum

state. Depending on the choice, however the equations might become very unwieldy.

3.2.1 Holstein-Primakoff approximation of the PT -Model

Above, we discussed the basics of HP approximations. Now we will apply it to the

PT -model of Eq. 3.1 to derive an analytic expression for the Sz-expectation value as

well as the purity.

The HP-transformation, up to lowest order in s and linearised around the |↑, ↓⟩-state

is defined as

S−
A ≈

√
2Sa† (3.21)

S+
A ≈

√
2Sa (3.22)

S−
B ≈

√
2Sb (3.23)

S+
B ≈

√
2Sb†. (3.24)

Inserting this transformation into the above equation yields

H = λ2S(ab+ a†b†) (3.25)

D[a] = γ2S(aρa† − 1

2
a†aρ− 1

2
ρa†a) (3.26)

D[b] = γ2S(bρb† − 1

2
b†bρ− 1

2
ρb†b). (3.27)

The problem is now quadratic and bosonic, which vastly simplifies it. We can use this

to calculate the equations of motion for various operators and then try to find the

steady-state solution. For simplicity we define G ≡ λ2S and Γ ≡ γ2S. We begin with
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the expectation of a:

dt⟨a⟩ = dtTr[ρa] = Tr[−i[H, ρ]a] + Tr[D[a]a] + Tr[D[b]a] (3.28)

The first term is:

Tr[−i[H, ρ]a] = −iG⟨b†⟩/ (3.29)

The dissipative terms can be simplified:

Tr[OD[A]] = Tr[OAρA† − 1

2
OA†Aρ− 1

2
OρA†A] (3.30)

=
1

2
Tr[([A†, O]A+A†[O,A])ρ]. (3.31)

(3.32)

With this we can reduce the derivation of the equations of motion with the dissipator

to two simple commutators. The second term of Eq. 3.28 then reads:

Tr[aD[a]] = −Γ

2
⟨a⟩. (3.33)

The third term obviously vanishes, as we have [a, b] = [a, b†] = 0. Hence, the time

derivative of ⟨a⟩ is

dt⟨a⟩ = −iG⟨b†⟩ − Γ

2
⟨a⟩. (3.34)

Since neither the dissipator nor the Hamiltonian distinguish between a and b, the

equation of motion for ⟨b⟩ looks quite similar:

dt⟨b⟩ = −iG⟨a†⟩ − Γ

2
⟨b⟩. (3.35)

The expectations for the excitations can be derived similarly:

dt⟨a†a⟩ = Tr[−i[H, ρ]a†a] + Tr[a†aD[a]]. (3.36)

Here the third term vanishes again, for the same reasons as above. The first term looks
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like

[a†a,H] = [a†a, ab− a†b†] = [a†a, ab] + [a†a, a†b†] (3.37)

= −ab+ a†b†. (3.38)

Hence,

−iGTr[[a†a,H]ρ] = −iG⟨−ab⟩+ ⟨a†b†⟩. (3.39)

For the second term we get

Tr[a†aD[a]ρ] = −Γ⟨a†a⟩. (3.40)

And thus

dt⟨a†a⟩ = −iG(⟨−ab⟩+ ⟨a†b†⟩)− Γ⟨a†a⟩. (3.41)

The same arguments hold again or dt⟨b†b⟩:

dt⟨b†b⟩ = −iG(⟨−ab⟩+ ⟨a†b†⟩)− Γ⟨b†b⟩. (3.42)

These equations contain ⟨ab⟩ and ⟨a†b†⟩. Their time derivative is given by:

dt⟨ab⟩ = −iG(1 + ⟨b†b⟩+ ⟨a†a⟩)− Γ⟨ab⟩ (3.43)

dt⟨a†b†⟩ = iG(1 + ⟨b†b⟩+ ⟨a†a⟩)− Γ⟨a†b†⟩. (3.44)

With this we have a system of 8 linear equations that are partially coupled. The

interesting equations are the ones for the density ⟨a†a⟩ as that appears in the ⟨Sz
A⟩ in

spin-basis.

⟨Sz
A⟩ = S − ⟨a†a⟩. (3.45)

We note then that ⟨ab⟩† = ⟨a†b†⟩, since [a, b] = 0, so it is only three coupled equations.

Since we care for the steady-state where the time derivatives vanish we set the equations

39



Chapter 3. LMG Dimer Theory

to zero and try to solve:

dt⟨a†a⟩ = −iG(−⟨ab⟩+ ⟨ab⟩†⟩)− Γ⟨a†a⟩ = 0 (3.46)

dt⟨b†b⟩ = −iG(−⟨ab⟩+ ⟨ab⟩†)− Γ⟨b†b⟩ = 0 (3.47)

dt⟨ab⟩ = −iG(1 + ⟨b†b⟩+ ⟨a†a⟩)− Γ⟨ab⟩ = 0. (3.48)

We can rewrite these equations as:

− iG
Γ
(−⟨ab⟩+ ⟨ab⟩†⟩) = ⟨a†a⟩ (3.49)

− iG
Γ
(−⟨ab⟩+ ⟨ab⟩†) = ⟨b†b⟩ (3.50)

− iG
Γ
(1 + ⟨b†b⟩+ ⟨a†a⟩) = ⟨ab⟩, (3.51)

where it becomes immediately obvious that ⟨a†a⟩ = ⟨b†b⟩. This simplifies the system

of equation to:

− iG
Γ
(−⟨ab⟩+ ⟨ab⟩†⟩) = ⟨a†a⟩ (3.52)

− iG
Γ
(1 + 2⟨a†a⟩) = ⟨ab⟩, (3.53)

for readability we define ix := iGΓ and insert the 2nd equation into the first:

⟨a†a⟩ = 2x2

(1− 4x2)
(3.54)

Reinserting the original definitions x = G
Γ as well as G = λ2S and Γ = γ2S yields

⟨a†a⟩ = 2λ2

γ2(1− 4
(

λ
γ2

)2
)
=

2λ2

(γ2 − 4λ2)
. (3.55)

This expression suggests a phase transition at γ = 2g. For γ > 2g we have a well defined

excitation number, while it diverges at the point of transition. For γ < 2g we have

a negative excitation number which suggests a breakdown of the Holstein-Primakoff

approximation.
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At this stage we should note that there are two different conventions for the dissipative

part of the Liouvillian which one can encounter in the literature:

D1(A) = γ

(
AρA† − 1

2
{A†A, ρ}

)
(3.56)

D2(A) = γ′
(
2AρA† − {A†A, ρ}

)
, (3.57)

where γ′ = γ
2 . These are ultimately equivalent but lead to rescaling of the dissipation

strength. In this chapter we use the first convention, however the code base we employed

uses the second. Thus while the our calculations suggest a phase transition at γ = 2λ,

we will in fact see it at γ = λ in our results.

3.2.2 Holstein-Primakoff Approximation of the Purity

In this section we will use the Holstein-Primakoff approximation of the the previous

section to derive an analytic expression for the purity of the state. We know that

Holstein-Primakoff works best the closer we are to the pure state we linearized around.

We thus expect the purity to be largest in the region where Holstein-Primakoff is

applicable and for it drop steeply close to the phase transition. To calculate the purity

we make use of the results obtained in Ref. [100]. They derived that the purity of

a Gaussian state is fully characterized by its covariance matrix σ. A Gaussian state

refers to a state which is fully characterized by its first and second statistical moments

xi and pi ,where i is the site index and pi = p∗i is defined to be anti-hermitian. In the

case of a two-mode bosonic system we then have:

x1 =
1√
2

(
a+ a†

)
(3.58)

p1 =
1√
2

(
a− a†

)
(3.59)

x2 =
1√
2

(
b+ b†

)
(3.60)

p2 =
1√
2

(
b− b†

)
(3.61)
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With this the covariance matrix for a two-site system is given by

σij =
1

2
⟨XiXj +XjXi⟩ − ⟨Xi⟩⟨Xj⟩, (3.62)

where X⃗ = (x1, p1, x2, p2)
T is the vector of all relevant moments. The purity of the

state of such a 2-mode bosonic system is then given by

P(σ) =
1

4
√

|σ|
, (3.63)

where |σ| is the determinant of the covariance matrix.

We begin by giving a step-by-step derivation of the covariance matrix. As covariance

matrices are necessarily symmetric, we will restrict ourselves to the upper triangle,

however. The first term of the covariance matrix is given by:

σ11 = ⟨x1x1⟩ − ⟨x1⟩⟨x1⟩ (3.64)

=
1

2
⟨aa+ 2a†a+ a†a† + 1⟩ − 1

2

(
⟨a+ a†⟩

)2
(3.65)

=
1

2

(
⟨aa⟩+ 2⟨a†a⟩+ ⟨a†a†⟩+ 1

)
− 1

2

(
⟨a+ a†⟩

)2
. (3.66)

First we note that (aa)† = a†a†. We also note that we know the analytic expression for

⟨a†a⟩ of Eq. 3.55:

⟨a†a⟩ = 2λ2

(γ2 − 4λ2)
. (3.67)

The steady-state expression for ⟨a†a†⟩ can be derived in a similar fashion to what we

did above, i.e. derive the equation of motion for ⟨a†a†⟩, set it to 0, and solve for the

moment:

d

dt
⟨a†a†⟩ = −2iλ⟨a†b⟩ − γ⟨a†a†⟩ = 0 (3.68)

⇒ ⟨a†a†⟩ = −2iλ

γ
⟨a†b⟩ (3.69)
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Similar processes for other moments yields:

⟨a†b⟩ = iλ

γ

(
⟨bb⟩ − ⟨a†a†⟩

)
(3.70)

⟨bb⟩ = −2iλ

γ
⟨a†b⟩. (3.71)

Inserting the expressions for ⟨a†a†⟩ and ⟨bb⟩ into ⟨a†b⟩ yields:

2λ2

γ2
⟨a†b⟩ = ⟨a†b⟩, (3.72)

which suggests that ⟨a†b⟩ = 0, which means ⟨a†a†⟩ = ⟨aa⟩† = 0 as well. Next up we

need to look at the last term of σ11:

(
⟨a+ a†⟩

)2
=
(
⟨a⟩2 + 2⟨a†⟩+ ⟨a†⟩2

)
. (3.73)

Again, we derive all necessary analytic steady-state expressions:

⟨a⟩ = −2iλ

γ
⟨b†⟩ (3.74)

⟨b†⟩ = −2iλ

γ
⟨a⟩. (3.75)

Inserting the latter into the first yields:

⟨a⟩ = −4λ2

γ2
⟨a⟩, (3.76)

which again suggests that ⟨a⟩ = 0. With this we can finally write the first element of

the covariance matrix as:

σ11 =
2λ2

(γ2 − 4λ2)
+

1

2
. (3.77)
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We now progress along the diagonal with σ22:

σ22 = ⟨p1p1⟩ − ⟨p1⟩⟨p1⟩ (3.78)

=
1

2
⟨aa− 2a†a+ a†a† − 1⟩+ 1

2

(
⟨a− a†⟩

)2
(3.79)

=
1

2

(
⟨aa⟩ − 2⟨a†a⟩+ ⟨a†a†⟩ − 1

)
+

1

2

(
⟨a− a†⟩

)2
. (3.80)

Many of the arguments from the previous derivation apply here. In particular, we now

know that
(
⟨a− a†⟩

)2
= 0 and that ⟨aa⟩ = ⟨aa⟩† = 0 as well. This leaves us with:

σ22 = − 2λ2

(γ2 − 4λ2)
− 1

2
. (3.81)

By exactly the same arguments we arrive at expressions for σ33 and σ44:

σ33 =
2λ2

(γ2 − 4λ2)
+

1

2
(3.82)

σ44 = − 2λ2

(γ2 − 4λ2)
− 1

2
. (3.83)

We now move on to the off-diagonal elements. As before, most of the work has been

done during the derivation of the first element, and we will just have to put everything

into its place. We begin with σ12:

σ12 =
1

2
⟨x1p1 + p1x1⟩ − ⟨x1⟩⟨p1⟩. (3.84)

As we have shown above ⟨a⟩ = 0 in the steady state. This makes terms like ⟨Xi⟩⟨Xj⟩

vanish and we will from now on neglect them in our derivations. The remaining term

then looks like:

σ12 =
1

2
⟨x1p1 + p1x1⟩ (3.85)

=
1

4
⟨(a+ a†)(a− a†) + (a− a†)(a+ a†)⟩ (3.86)

=
1

4

(
2⟨aa⟩ − 2⟨a†a†⟩

)
= 0. (3.87)
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This tells us that both σ12 and σ34 vanish. The next terms we will derive are σ13 and

σ31:

σ13 =
1

2
⟨x1x2 + x2x1⟩ (3.88)

= ⟨x1x2⟩ =
1

2
⟨ab+ a†b† + ab† + a†b⟩, (3.89)

due to [a, b] = [a, b†] = 0. We know from before that ⟨ab†⟩ = ⟨a†b⟩† = 0. This leaves us

with the task of finding steady-state expressions for ⟨ab⟩. We know from the previous

section that

⟨ab⟩ = −iλγ
(γ2 − 4λ2)

. (3.90)

With this we now have that

σ13 = ⟨ab⟩+ ⟨ab⟩† (3.91)

=
−iλγ

(γ2 − 4λ2)
+

iλγ

(γ2 − 4λ2)
= 0. (3.92)

The next element we look at is σ14, where we again omit the term ⟨x1⟩⟨p2⟩:

σ14 =
1

2
⟨ab− a†b† − ab† + a†b⟩. (3.93)

⟨ab†⟩ as well as ⟨a†b⟩† vanish as we before and we just derived ⟨ab⟩. with this we can

easily see that:

σ14 =
−iλγ

(γ2 − 4λ2)
. (3.94)

Similarly, we get for σ23:

σ23 =
−λγ

(γ2 − 4λ2)
. (3.95)
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With this we finally have all elements of σ:

σ =


2λ2

(γ2−4λ2)
+ 1

2 0 0 −iλγ
(γ2−4λ2)

0 − 2λ2

(γ2−4λ2)
− 1

2
−λγ

(γ2−4λ2)
0

0 −λγ
(γ2−4λ2)

2λ2

(γ2−4λ2)
+ 1

2 0

−iλγ
(γ2−4λ2)

0 0 − 2λ2

(γ2−4λ2)
− 1

2

 . (3.96)

This is now the complete covariance matrix of the steady-state of the driven-dissipative

PT -model of Eq. 3.1.

The determinant of this matrix is of the form |σ| = a4+ b4+2a2b2, where a are the

diagonal elements and b are the off-diagonal elements. Inserting yields the determinant

|σ| = γ4

16(γ2 − λ2)2
. (3.97)

With this the purity of Eq. 3.63 is:

P = 1− 4λ2

γ2
. (3.98)

This is the result found in Ref. [1]. It is a closed expression for the purity of the steady

state for the parameter range in which HP is applicable. The purity is largest at the

point we linearized around in the Holstein-Primkaoff approximation, i.e. the normal

state |↑, ↓⟩. As λ grows and the system moves further and further away from the vacuum

state the purity begins to decrease. At the point of the phase transition, γ = 2λ, in our

convention, it becomes 0. Afterwards, when the system enters the maximally mixed

state, i.e. is furthest from the chosen vacuum state, the purity becomes negative,

indicating that Holstein-Primakoff breaks down.

In summary, in this section we discussed the Hosltein-Primakoff approximation

and applied it to the PT -model. This allowed us to derive analytic expressions for

the critical parameters as well for the purity, bearing in mind the rescaling of the

dissipation strength due to the choice of convention. We will use these expressions in

the next chapter when we investigate the PT -symmetric LMG dimer in more detail.
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3.3 Mean-field Equations

Mean-field approximations are powerful analytical tools. They have been used as early

as 1907 by Pierre Curie and Pierre Weiss to describe phase transitions [101]. Mean-

field theory generally works by breaking up correlations within the system in one way

or another. Originally, one assumed that sites don’t interact directly, but that all

neighbours of a site form an average, or mean, field, which acts on it. This usually

leads to equations which need to be solved self-consistently, as each site appears in the

mean-field of each other site. The mean-field approximation we employ is simpler and

requires no self-consistency. We will calculate the time derivatives of the expectation

values of the spin components and will assume that correlations break apart, i.e.

⟨AB⟩ = ⟨A⟩⟨B⟩. (3.99)

This will lead to a set of coupled differential equations whose fixed points will be mean-

field approximations of the steady-states of the full open quantum model.

Naturally, such a crass approximation raises the question of its validity. Generally,

mean-field approximations will only give a first, qualitative idea of the real behaviour

of a model. However, the approximation will get better as the strength of correlations

decreases. This is often the case for a large spatial dimension or strong long-range

interactions. The models we care about possess an infinite-range interaction and large,

i.e. slow spins, and should in principle be well explained by mean-field approximations.

We will use the resulting non-linear coupled mean-field equations to find the steady-

state values of the spin components as well as to generate the linear stability phase

diagram, which we will discuss in detail in Ch. 4.

3.3.1 Mean-field Equations of the LMG-model

We begin with a detailed derivation of the mean-field equations of motion for the

LMG model of Eq. 3.5. Since it is an effective single-site model, we only require three

equations of motion. The discussion of this model will transfer directly to the PT -model

in the next section.

47



Chapter 3. LMG Dimer Theory

We calculate the time-derivative of the expectation values of ⟨Sx⟩,⟨Sy⟩ as well as

⟨Sz⟩. To this end we need the following two identities. The first is the well known

commutator relation:

[A,BC] = [A,B]C +B [A,C] . (3.100)

The other is a simplification of the trace over the dissipator D[A]:

Tr [OD[A]] =
1

2
Tr
[([

A†, O
]
A+A† [O,A]

)
ρ
]
, (3.101)

which reduces the whole derivation to the calculation of two commutators of spin-

operators. We begin with Sx:

d

dt
⟨Sx⟩ = Tr [ρ̇Sx] (3.102)

= Tr [−i [H, ρ]Sx] + Tr
[ γ
S
D[S−]Sx

]
. (3.103)

We begin with the Hamiltonian term:

−iTr [[H, ρ], Sx] = g⟨Sy⟩. (3.104)

The dissipative part follows Eq.3.101 and will require the mean-field approximation

Eq. 3.99 for the first time:

Tr
[
Sx
γ

S
D[S−]

]
=

γ

2S
(⟨SzSx⟩+ ⟨SxSz⟩ − ⟨Sx⟩) (3.105)

We can now use the mean-field approximation, ⟨SzSx⟩ = ⟨Sx⟩⟨Sz⟩, and finally arrive

at:

Tr
[
Sx
γ

S
D[S−]

]
= − γ

2S
⟨Sx⟩+

γ

S
⟨Sx⟩⟨Sz⟩. (3.106)

With this the time derivative of the Sx-expectation value finally looks like this:

˙⟨Sx⟩ = g⟨Sy⟩ −
γ

2S
⟨Sx⟩+

γ

S
⟨Sx⟩⟨Sz⟩. (3.107)

Note that this equations still scales with S. However, we wish that expectations values
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of spins are confined to the range [−1, 1]. Hence, we will normalize ˙⟨Sx⟩ by S and define

X := ⟨Sx⟩/S. With this we get the following equation for Ẋ:

Ẋ =
g

S
⟨Sy⟩ −

γ

2S2
⟨Sx⟩+

γ

S2
⟨Sx⟩⟨Sz⟩ (3.108)

= gY + γXZ. (3.109)

Note that we neglected the term γX/S as that term vanishes as S tends to infinity. In

a fashion completely analogous to this derivation we can arrive at equations for Ẏ and

Ż as well. This leads us to the following set of coupled, differential equations:

Ẋ = gY + γZX (3.110)

Ẏ = −gX + 2JZX + γZY (3.111)

Ż = −2JY X − γ(X2 + Y 2). (3.112)

Here we have exchanged a linear full quantum description of the dynamics of the density

matrix to a non-linear set of equations for the spin-degrees of freedom. These equations

can now be analysed with methods from dynamical system theory, see Sec. 3.3.3 for a

description of linear stability analysis.

These equations are always solved by the point X = 0 Y = 0 Z = −1, which we

refer to as the normal state. In terms of γ the critical interaction strength at which

this state becomes unstable is given by:

Jc
g

= −(γ2 + 1)

2
. (3.113)

More concretely, for γ/g = 0.5 this state is stable for J/g > −0.625. For J/g < −0.625
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the set of solutions is given by

X = ±

√
−g2Ξ2 + γ2

2JγΞ
(3.114)

Y = −XΞ (3.115)

Z =
gΞ

γ
(3.116)

where Ξ = 2J +
√
4J2 − 1.

These equations determine the time-evolution of the spin-components, sometimes

also referred to as the flow through the phase space, where the surface of the Bloch

sphere is the phase space of a spin. “Flow” refers to the fact that the equations describe

the rate of change at every point of the surface, and hence, how an imagined object

will flow across the surface. In the full quantum picture, described by the Lindblad

master equation Eq. 2.12, we are generally interested in its steady-state, i.e. the state

which remains constant in time. In the context of this mean-field approximation this

translates to finding the point p on the surface of the Bloch sphere where the rate of

change vanishes, i.e.
dp⃗∗

dt
= 0, (3.117)

where p⃗∗ is referred to as a fixed point, or solution of the system of equations. To

analyse the “linear stability” of a solution, we can use employ the Jacobian matrix of

the system of equations, see Sec. 3.3.3. We will make extensive use of this technique

in Ch. 4 to determine a first approximation of the phase diagram. The Jacobian is the

matrix of first order derivatives:

J (X,Y, Z) =


Zγ g Xγ

−g + 2JZ Zγ 2JX + Y γ

−2JY − 2γX −2JX − 2γY 0

 . (3.118)

In this section we made use of a mean-field approximation to find equations of

motion for the spin-degrees of freedom of the LMG-model. We further derived the

Jacobian of this set of equations, which will allow us to assess the stability of a given
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solution, i.e. whether some initial condition will converge towards it with time or be

driven away from it.

3.3.2 Mean-field Equations of the PT -model

The derivation of the equations of motion for the PT -model of Eq. 3.1 uses the same

concepts developed in the last section, with the added complication that we now have

two spins interacting. The derivation of the other components will then follow the exact

same structure, and, due to parity-symmetry of the Hamiltonian, the second spin will

be identical up to a change in indices. The equations of motions for the six degrees of

freedom are

Ẋa = λZaYb + γXaZa (3.119)

Ẏa = −λZaXb + γYaZa (3.120)

Ża = λ(XaYb − YaXb)− γ(X2
a + Y 2

a ) (3.121)

Ẋb = λZbYa − γXbZb (3.122)

Ẏb = λZbXa − γYbZb (3.123)

Żb = λ(XaYb − YaXb) + γ(X2
b + Y 2

b ). (3.124)

Note the different signs in the dissipation of the two sites. This suggests, that a hermi-

tian conjugation of a term in the dissipator of the Lindblad master equation leads to a

flipped sign of γ on the level of the mean-field equations. The derivation of the Y and

Z components of either spin are completely analogous. This set of equations again has

a normal state Xa/b = Ya/b = 0, Za/b = ±1. It is, however not easy to see where its

stable. This is a question we consider in more detail in the next chapter. With this, we

have now derived a set of equations, which describe the behaviour of the spin-degrees

of freedom in the semiclassical limit. Furthermore, we have now seen how to derive the

mean-field equations of motion as well as the Jacobian. In the next chapter we use this
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knowledge to present the mean-field equations of the full LMG-dimer model

H = HLMG,a ⊗ 1+ 1⊗HLMG,b +HPT (3.125)

D[S−
a ] = S−

a ρS
+
a − 1

2
{S+

a S
−
a , ρ} (3.126)

D[S+
b ] = S+

b ρS
−
b − 1

2
{S−

b S
+
b , ρ}. (3.127)

Solving these equations will allow us to get a qualitative understanding of the steady-

states of the model in various different regimes. To get a first impression of the entire

phase diagram we will make use of the Jacobian. If the system of equations undergoes

a bifurcation, i.e. a phase transition in physicists terms, the number of stable solutions

will change. Solving the systems of equations for a large number of initial conditions

while varying the system parameters will then allow us to generate a “linear stability

phase diagram”.

3.3.3 Linear Stability Analysis

In this section we will give a brief introduction to linear stability analysis as we employ

it in Sec. 4.4.2. Linear stability analysis uses the eigenvalues of the Jacobian Matrix,

evaluated at a specific fixed point p⃗∗ to determine whether that point is attractive or

repulsive. If the fixed point is repulsive, i.e. if all points around it will be driven further

away from it over time, we say it is an unstable solution. An unstable fixed point still

solves the the equations, in the sense that

dp⃗∗

dt
= 0, (3.128)

however it will either never be reached, or a tiny perturbation will lead to fast divergence

from it. Attractive fixed points are said to be stable for the same reason. They attract

all points around them and can never be left. To see how the Jacobian can help us

evaluate the linear stability of a fixed point consider the following. Assume we are given

a vector p⃗ of the co-ordinates that describe the system and some non-linear function
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F (p⃗). Then the time evolution of p⃗ is given by:

dp⃗

dt
= F⃗ (p⃗). (3.129)

We call a fixed point a point that no longer changes under time evolution. Such a fixed

point of the system p⃗∗ must always satisfy the condition

dp⃗∗

dt
= 0. (3.130)

We can now investigate whether the solution is stable by adding a finite but small

perturbation, p̃(t) = p⃗∗ + δp⃗ to it and see how the perturbation grows with time:

dp̃

dt
=
d(p⃗∗ + δp⃗)

dt
=
dδp⃗
dt

= F⃗ (p⃗∗ + δp⃗). (3.131)

This tells us that we can get an expression for the time evolution of the perturbation

by performing a Taylor expansion of the function F⃗ (p̃) around the point p⃗∗:

F⃗ (p⃗∗ + δp⃗)|p⃗∗ = F⃗ (p⃗∗) +
dFi

dpj

∣∣∣∣
p⃗∗
δp⃗ +O(δ2p⃗). (3.132)

The first term on the right-hand side vanishes by definition, while the second term is

the Jacobian evaluated at the fixed point p⃗∗

J (p⃗∗) :=
dFi

dpj

∣∣∣∣
p⃗∗

=


dF1
dp1

· · · dF1
dpn

...
. . .

...

dFn
dp1

· · · dFpn
dpn


∣∣∣∣∣∣∣∣∣
p⃗∗

. (3.133)

With this we can now see that the time-evolution of the perturbation is, in linear order,

determined by the Jacobian:
dδp⃗
dt

= J (p⃗∗). (3.134)

53



Chapter 3. LMG Dimer Theory

From now on the explicit dependency of the Jacobian on the fixed point will be dropped

to minimize clutter. The formal solution to this equation is

δp⃗(t) = eJ tδp⃗(0). (3.135)

We can always expand the vector δp⃗(0) in the eigenbasis of the Jacobian:

δp⃗(0) =
∑
i

ci(0)ϕi, (3.136)

where ci are the expansion coefficient and ϕi is the ith eigenstate of the Jacobian

evaluated at a specific point :

J ϕi = jiϕi. (3.137)

With this the perturbation at time t becomes:

δp⃗(t) =
∑
i

ci(0)e
jitϕi. (3.138)

From this equation it becomes obvious that a solution to the original problem can only

be linearly stable if the real parts of all eigenvalues of the Jacobian, evaluated at that

solution, are smaller than zero. Otherwise any small perturbation will drive the systems

exponentially fast away from the solution. Also note, that linear stability analysis does

not recognize limit cycles or chaos as stable solutions. This can lead to various phases

being invisible in the linear stability phase diagram.

3.4 PT -Symmetry and Stability of the Maximally Mixed

State

In the previous sections we talked about various transformations one can do to make

the PT -model more accessible. We found in the mean-field case a set of six equations

of which we know has a normal phase in the limit of vanishing interaction. Here, we

will discuss the case of large interaction strength. We will see that the system possesses

a maximally mixed phase in this limit which suggests a phase transition occurs at some
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finite interaction strength. We will use this argument to better understand some phases

of the the phase diagrams presented in Ch. 4

To investigate this limit we perform something akin to a linear stability analysis,

i.e. we assume to be in the maximally mixed state and investigate the time evolution

of an infinitesimal perturbation. From this we derive the conditions under which the

maximally mixed state is stable. This section follows closely the derivation from Ref. [1].

They found that certain systems whose Lindblad operators are linked via a parity-

symmetry possesses a PT -symmetry breaking phase transition akin to what was found

in the non-Hermitian systems we discussed in Ch. 2. In particular they required for

the Liouvillian that

L [PT (H);PT (ja),PT (jb)] = L [H; ja, jb] . (3.139)

Here, L [H; ja, jb] refers to the super-operator that appears in the Lindblad master

equation Eq. 2.12. It depends on the HamiltonianH as well as the set of jump-operators

ja and jb acting on subsystem a and b respectively. The symmetries themselves act

upon an operator as

PT (Oa) = O†
b . (3.140)

Here, P is the spatial parity symmetry, which exchanges two sites. T refers to the

time-inversion symmetry. It exchanges gain and loss, e.g. σ+ → σ− and vice versa.

Both the P and the T symmetries represent the Z2-symmetry group, i.e. P2 = T 2 = 1.

Given this symmetry, the Liouvillian will have a maximally mixed steady state, which

lies in a different symmetry sector than the normal state.

A question we found interesting was what the precise conditions on the system and

the symmetry are, and if we could generalize it to Zn-like symmetries. This would

lead to a prescription for constructing OQS with possible novel phases and transitions.

We find that a sufficient condition for a PT -like phase transition is that the relevant

symmetry is part of the center of the Hamiltonians symmetry group. This means that

the relevant symmetry commutes with all other symmetries of the Hamiltonian. We

further find that this only works for Z2-like symmetries.
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Figure 3.1: Sketch of the discussed model. We have a chain of sites with periodic
boundary conditions. Each site is acted upon by a jump-operator jn. The jump oper-
ators on neighbouring sites are related via Eq. 3.141.

We begin by assuming that we are given a Hamiltonian H which acts on n sites. It

has a symmetry S which commutes with all other symmetries of H, i.e. it lies in the

center of the Hamiltonians symmetry group. S is of order n and generates the cyclic

group of order n, Sn = 1. We call jn the jump-operator that acts on the nth site. Then

jump operators on neighbouring sites are related as

j†n = Sjn−1S−1, (3.141)

see Fig. 3.1 for a sketch of the model. We can then show that 1) if the jn is non-

hermitian the maximally mixed state is only stable for n = 2, and 2) for odd orders of

the symmetry group only n = 1 is possible. Furthermore, in the latter case the jump-

operator must necessarily be hermitian. The symmetry S acts on the mth eigenstate

of the Hamiltonian like as well as

S |Em⟩ = sm |Em⟩

Sn−1 |Em⟩ = (sm)n−1 |Em⟩ ,

where sm is the mth eigenvalues of S.
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If ρ is diagonal in the eigenbasis of the Hamiltonian it commutes with H, i.e. it is

a stationary state. As we have discussed the neighbouring jump-operators are related

Eq. 3.141. Similar to the proof found in Ref. [1] we assume to be in the maximally

mixed state and check how a perturbation to this state behaves under time evolution.

To see that only the maximally-mixed state is stable we make the ansatz ρa,b(t) =

δa,b/D + ∆ρa,b(t), where D is the dimension of the density matrix. We assume that

∆ρa,b(t = 0) = 0 and ask the question how it evolves in time. We have then

⟨Ea|ρ̇|Eb⟩ =
d

dt

(
δa,b
D

+∆ρa,b

)
= ⟨Ea|L[ρ]|Eb⟩. (3.142)

Here dt(δa,b/D) = 0 as the derivative of a constant is always 0. With this we have

∆̇ρa,b = ⟨Ea|L[ρ]|Eb⟩ = L[δa,b/D] + L[∆ρa,b ] (3.143)

= −i(Ea − Eb)ρa,b +
2

D

∑
η

⟨Ea|[jη, j†η]|Eb⟩, (3.144)

where the first term comes from the unitary part of the Liouvillian LH = −i[H, ρ]. η

runs over all jump operators. In the case of Ea ̸= Eb, the formal solution is, see [1]

∆ρa,b(t) ≃ −i 2

D(Ea − Eb)

∑
η

⟨Ea|[jη, j†η]|Eb⟩ ×
(
−e−(Ea−Eb)t

)
. (3.145)

This is bounded from above, so in the limit of vanishing dissipation, i.e. jη → 0,

|∆ρa,b | → 0. In the case of Ea = Eb we have

∆̇ρa,b ∝
∑
η

⟨Ea|[jη, j†η]|Eb⟩. (3.146)

We can expand the commutator and insert a resolution of identity, Zn−1Z = I:

∆̇ρa,b ∝
n∑

η=1

⟨Ea| Sn−1Sjηj†ηSn−1S |Eb⟩ − ⟨Ea| Sn−1Sj†ηjηSn−1S |Eb⟩ . (3.147)
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We can reorder this such that neighbouring terms transform into one another:

∆̇ρa,b ∝
n∑

η=1

⟨Ea| Sn−1Sjηj†ηSn−1S |Eb⟩ − ⟨Ea| Sn−1Sj†η+1jη+1Sn−1S |Eb⟩ , (3.148)

where we again impose “periodic boundary” conditions on the operator, i.e. jn+1 = j1.

Transforming the positive term of the right hand side and using the identity in the

negative terms yields:

∆̇ρa,b ∝
n∑

η=1

((s∗a)
n−1sb) ⟨Ea| jηj†η |Eb⟩ − ⟨Ea| Ij†η+1jη+11 |Eb⟩

∝
n∑

η=1

((s∗a)
n−1sb − 1) ⟨Ea| jηj†η |Eb⟩ .

As mentioned before sa is the ath eigenvalue of S and hence a root of 1, i.e. sna = 1.

For the maximally mixed state to be a steady-state, we require this to be zero:

0 =

n∑
η=1

((s∗a)
n−1sb − 1) ⟨Ea| jηj†η |Eb⟩ , (3.149)

For this to vanish as a generic property of the symmetry, we require

(s∗a)
n−1sb = 1. (3.150)

Since S is an element of the center by assumption, we have that the eigenvalues must

be identical, i.e. sa = sb. This is quite easy to via contradiction:

Let [H,P] = [P,S] = 0 ∀P ∈ G(H), the symmetry group ofH. LetH be degenerate,

i.e. there exists some symmetries which do not commute with each other:

Hϕ0 = Eϕ0

Hϕ1 = Eϕ1,

then ϕ0 and ϕ1 have the same P-eigenvalue.

Proof by contradiction: We have [H,X ] = [X ,S] = 0 and Xϕ0 = xϕ1, i.e. X is one
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of the symmetries that we cannot simultaneously diagonalize. We assume that both

states have different S-eigenvalues, i.e. s0 ̸= s1.

We want to show either:

� A) [S,X ] ̸= 0 or

� B) s0 = s1.

Since [P,X ] = 0 by assumption, we have

[X ,S]ϕ0 = (XS − SX )ϕ0 (3.151)

= XSϕ0 − Sxϕ1 (3.152)

= X s0ϕ0 − s1xϕ1 (3.153)

= s0xϕ1 − s1xϕ1 (3.154)

̸= 0. (3.155)

Hence, if the two symmetries commute, then both states must have the same S-

eigenvalue.

Furthermore, S is unitary, i.e. sb = sa = (s∗a)
∗. Hence we have:

(s∗a)
n−2 = 1. (3.156)

By assumption we have that Sn = 1. The possible eigenstates of the symmetry however

have sn−2
a = 1. As previously mentioned, the latter are roots of 1. We thus need to

find an (n− 2)th root, s′, that fulfils (s′)n = 1.

As a quick reminder, if a number s is a jth root of 1, then it is also an (mj)th root

of 1. Let s with sj = 1 be a jth root of 1. Then we have for zmj :

smj = (sj)m = sj × sj × . . . sj = 1× 1× . . . 1 = 1, (3.157)

We now need to find a nth root which is also an (n− 2)th root or show that such a

root does not exist. The latter is much easier. What we need to show is that there is
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no j > 2 that is both an nth and (n− 2)th root for even n, i.e. there is no j > 2 such

that that divides both n and n− 2. Analogously, there is no j > 1 that divides n and

(n− 2) for odd n. This boils down to showing that the greatest common divisor, gcd,

of n and (n− 2) is 2 for even n.

We can achieve this by using Euclid’s algorithm. Given two positive integers a and

b, with a > b, then the common divisors of a and b are the same as a−b and b. Euclid’s

algorithm iteratively replaces the larger of the two numbers by the difference until both

sides align:

gcd(n, n− 2) = gcd(n− (n− 2), n− 2) (3.158)

= gcd(2, n− 2) (3.159)

= gcd(2, n− 2− 2 · · · − 2) (3.160)

= gcd(2, 2) (3.161)

In the last equality we used that n was even and subtracting any number of 2s leaves

the result even. Thus the smallest gcd of 2 and any other even number must be 2. The

statement for odd numbers follows analogously.

We have now shown that in the case of even orders n the only roots s′ that fulfil

this requirement are of those of second-order, i.e. s′a = ±1 for all even symmetries. We

have also proven that in the case of odd orders n the only possible root is of first order,

i.e. s′a = 1 for all odd symmetries. Thus the only possible symmetries are of order

n = 2 for even ordered symmetries or n = 1 for odd ordered symmetries.

For odd n we necessarily have n = 1 and S = 1. Following Eq. 3.141 with only one

site this has the consequence

j†0 = j0. (3.162)

Hence, for for odd ordered symmetries the jump operators must be Hermitian. Hermi-

tian jump operators have the consequence that the maximally mixed state is stable at

all times, independent of the symmetry or the strength of the dissipation. As above we
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will get for the time derivative of some perturbation:

∆̇ρa,b ∝
∑
η

⟨Ea|[jη, j†η]|Eb⟩. (3.163)

This time however the jump-operators are hermitian. We have then:

∆̇ρa,b ∝
∑
η

⟨Ea|[jη, j†η]|Eb⟩

=
∑
η

⟨Ea|[jη, jη]|Eb⟩

=
∑
η

⟨Ea|jηjη − jηjη|Eb⟩

= 0 ∀a, b.

The maximally-mixed state must thus be a steady-state at all times. As we have seen

above, this is in contrast to the case on non-hermitian jump operators. There the

maximally mixed state and the normal state of the jump operators lie in two different

symmetry sectors and are separated by a phase transition.

In this section we have discussed the conditions under which an OQS can undergo

a PT -symmetry breaking phase transition. We found that for such a transition to be

possible, the jump-operators on neighbouring sites need to be related by a symmetry of

the center of the Hamiltonians symmetry group. In particular, we also saw that is only

possible for symmetries of order n = 2. This gives us instructions how to construct

PT -symmetric systems. We have used this to construct the PT -symmetric LMG dimer

which we introduced in the previous sections and which we will further investigate in

the next chapter.

3.5 Quantum Trajectories and Monte Carlo Wavefunctions

When analytic results aren’t available, i.e. for finite spin sizes, we need to solve the

full master equation numerically. In this section we will briefly introduce an import

method we use to find the NESS of open quantum systems in Ch. 4 for larger spin sizes.
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In this thesis we will often compare results from various methods or different spin

sizes with each other. Like this we are able to gauge how well the methods work and

how well the quantum physics aligns with our mean-field predictions. For small spin

or system sizes we often use Exact Diagonalization (ED). ED is a numerical method

which diagonalizes a matrix and returns eigenenergies and eigenvectors. In case of non-

Hermitian Hamiltonians away from exceptional points it returns complex eigenvalues.

The method requires the full system matrix and all its eigenstates to be constructed

explicitly, which limits the total system and spin size significantly. By vectorising

the density matrix, i.e. ρ → |ρ⟩⟩ one can transform an open system problem into a

linear algebra problem. This allows one to find target the “lowest-energy” states via

well-understood linear algebra based solvers.

An approximative method which targets the states of open quantum systems specifi-

cally, was introduced in the nineties by the authors of Ref. [68]. It is known as Quantum

Trajectories or the Monte Carlo wavefunction method. The method is based on the

insight that the Lindblad master equation of Eq. 2.12 can be rewritten in terms of an

effective non-hermitian Hamiltonian

Heff = H − i

2

∑
k

γkA
†
kAk, (3.164)

and a so-called recycling term

R =
∑
k

γkAkρsA
†
k. (3.165)

Rewritten like this, the master equation reads

d

dt
ρs = −i (Heffρ− ρHeff) +R (3.166)

The effective non-hermitian Hamiltonian, just like in the previous chapter, describes

the coherent dynamics of a system subjected to dissipation. The recycling term on the

other hand describes the sudden jumps that occur in the system as the system gets

“measured” by the environment. The effective Hamiltonian, due to its non-hermitian
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nature, will cause the state to “leak” probability density into the environment, whereas

the the recycling term causes the state to collapse into a specific state with unit norm.

When investigating a system, one is often interested in expectation values of oper-

ators in a given state. If the system is in a mixed state, as is generically the case in

open quantum systems, the expectation values involves both a a quantum mechanical

average and an ensemble average:

⟨O⟩ = Tr[Oρ] =
∑
n

pn ⟨ϕn| O |ϕn⟩ =
∑
n

pnOn. (3.167)

The latter is a weighted sum pure-state expectation values. The weights of the sum

are the classical probability of finding any one state in some ensemble, i.e. if one were

to draw a large amount of samples, one would expect them to be distributed according

to those weights. This can be used to approximate the last term of Eq. 3.167:

⟨O⟩ ≈ 1

Ns

∑
s

⟨s| O |s⟩ , (3.168)

where the sum runs over the randomly generated sample wave-functions s, and Ns is the

total number of samples. In the limit ofNs → ∞, this method becomes exact. A sample

is generated by following the stochastic trajectory of some initial state |ϕ(t = 0)⟩. This

state is time-evolved according to the following algorithm, see Ref. [27] for an in-depth

review of the method and its application.

We begin with calculating the time-step according to the effective Hamiltonian to

first order in δt:

|ϕ(t0 + δt)⟩ = (1− iHeffδt) |ϕ(t0)⟩ . (3.169)
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The norm of this state is then given by:

⟨ϕ(t0) |ϕ(t0 + δt)⟩ = ⟨ϕ(t0 + δt)| (1 + iH†
effδt)(1− iHeffδt) |ϕ(t0)⟩ (3.170)

= 1− δt⟨ϕ(t0)|i(Heff −H†
eff) |ϕ(t0)⟩+O(δ2t ) (3.171)

= 1− δt
∑
k

γk⟨ϕ(t0)|A†
kAk |ϕ(t0)⟩+O(δ2t ) (3.172)

≈ 1−
∑
k

δpk, (3.173)

where δp =
∑

k δpk quantifies the amount of norm that dissipates into the environment

due to each dissipation channel. One can interpret 1 − δp as the probability that a

evolves coherently and δp that a “measurement” occurs. The author of Ref. [27] shows

that, under this interpretation one recovers the full master equation.

As a next step, one evolves the state |ϕ(t0⟩ either

1. according to

|ϕ(t0 + δt)⟩ =
(1− iHeffδt)√

1− δp
|ϕ(t0)⟩ , (3.174)

with a probability of 1− δp, or

2. according to

|ϕ(t0 + δt)⟩ =
Ak |ϕ(t0)⟩√

1− δp,
(3.175)

with probability δpk, where a specific Ak is chosen randomly with probability

δpk/δp.

This process will produce a jagged looking trajectory full of random jumps. If we

repeat it many times and average over all trajectories, we will eventually arrive at the

“true” trajectory, the full quantum system would take towards the steady-state, see

Fig. 3.2. In the figure we evolved 100 trajectories using the dissipative LMG model of

Eq. 3.5. We show two example trajectories (solid lines) as well as the average over all

trajectories (dashed line). As this procedure only cares about an effective Hamiltonian

and wave functions, it scales much better than the full open system dynamics. The

trade-off is the requirement to keep track of many trajectories and repeating a costly

Monte-Carlo step many times.
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Figure 3.2: The plot shows 2 individual trajectories (solid lines) as well the average over
1000 trajectories (dashed line). The system under consideration is a simple dissipative
spinH = σx with γ = 1. One can see clearly distinguished the coherent Rabi oscillations
from the incoherent and irregular quantum jumps.

In this chapter we have discussed the Hosltein-Primakoff approximation as well

as the mean-field approximation of the PT - and LMG-models. We derived analytic

expressions for the Sz-component and the purity P of the PT -model as well as mean-

field equations of motion for each model. We concluded the chapter with an introduction

quantum trajectories. In the next chapter we will use these methods to compute a linear

stability phase diagram of the PT -symmetric LMG dimer model and try to understand

its phases and transitions. This phase diagram will contain the number of linearly stable

solutions as a function of the system parameters.
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Chapter 4

Results

4.1 Introduction

In the previous two chapters we have discussed the theoretical context of our work as

well as the methods we employed. In this chapter we will now discuss our findings.

As we have mentioned in the first chapter our goal is to investigate the competition

between phenomena exclusive to open quantum systems and phenomena which have

an analogue in equilibrium systems. To this end we choose two well understood models

and investigate how they interact with each other, namely the LMG model, see Eq. 4.1

as well as the PT -dimer model, see Eq. 3.1. The former was chosen for its second-order

groundstate phase transition, which survives into the dissipative case. The PT -model

on the other hand possesses a phase transition which is fully disconnected from any

equilibrium type phase transition. As we will see later, both have a magnetically

ordered steady-state and branch out into different phases along different axes of the

phase diagram. While the LMG model transitions into a symmetry-broken phase of

two valid steady-state, the PT -model will transition into the maximally mixed state.

A sketch of the model can be seen in Fig. 4.1.

This chapter will begin by a discussion of the individual models in Secs. 4.2 and 4.3

and then move on to the discussion of the full model in Sec. 4.4. This section begins with

a discussion of the phase diagram of linearly stable states as well as a discussion of mean-

field trajectories which exemplify the general behaviour of the mean-field equations in
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Figure 4.1: The plot shows a sketch of the full model. There are two collective spins
connected by a the spin flip interaction of the PT -model whose strength is given by
λ/g. Each spin experiences an LMG-non-linearity of strength J/g. The spins are
further subject to a field perpendicular to the self-interaction. The field strength g = 1
has been chosen as our unit of energy. Both spins are open with a coupling strength of
γ/g. One is driven, while the other is dissipative.

those phases. We move on to a comparison of mean-field results and results from

exact diagonalization. Again, example trajectories are given for some points along the

parameter scans. We end the section by comparing the mean-field trajectories to spin-

Wigner calculations in some phases. Overall we find that there is indeed a competition

between the second-order phase transitions of the regular LMG model and the PT -

symmetry breaking phase transition. This competition leads to a strong deformation

of the phase boundaries and creates an incredibly rich phase diagram.

4.2 LMG Model

4.2.1 Hamiltonian, Liouvillian and Mean-field Equations recap

The first part of our PT -symmetric LMG dimer is the LMG model itself. As we have

seen Ch. 2 it is a transverse field Ising model with all-to-all coupling in the limit of very

large spins. Its Hamiltonian is given by

HLMG =
J

s
S2
x − gSz. (4.1)
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Here g is the strength of the transverse field and will be used as our unit of energy, i.e.

g = 1 from now on. J/g is the strength of the self-interaction. Si are spin operators of

a spin of size s.

In Ch. 2 we saw the phase transitions of the LMG model as a scan over the field

strength for (anti-)ferromagnetic self-interaction. When constructing the full model

Eq. 4.35, we ran into the issue that in the limit of vanishing field, we would not recover

the simple PT -model, as the self-interaction added more than a simple offset. Hence,

we fix the field strength as the unit of energy and scan over J/g. For completeness sake

we show the ground-state scan below, see Fig. 4.2.

A simple ground-state mean-field calculation in a similar vein as we have done in

the previous chapter yields the critical value Jc/g:

E = ⟨HLMG⟩ = −J
s
⟨S2

x⟩ − ⟨Sz⟩ (4.2)

At this point we use the mean-field approximation ⟨AB⟩ ≈ ⟨A⟩⟨B⟩ and break up the

correlation:

ϵ ≡ E

s
= − J

s2
⟨Sx⟩2 −

1

s
⟨Sz⟩. (4.3)

We now absorb the spin size into the expectation values and define X := ⟨Sx⟩/s. To

represent a physical state we now require that all expectation values are real and lie

between ±1:

ϵ = −JX2 − Z. (4.4)

Finally, we use the total spin conservation X2+Z2 = 1 to get rid of the X-dependence.

Note that since Y does not appear in the model, its expectation will always be zero

and we can neglect it here:

ϵ = −J(1− Z2)− Z. (4.5)

Now that we have a simple expression for the energy, we can find the state which
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minimizes it by taking the derivative:

dϵ

dZ
= 2JZ − 1 = 0 (4.6)

⇒ Z =
1

2J
(4.7)

⇒ X = ±
√
1− 1

4J2
(4.8)

This becomes imaginary if 1 < 1
4J2 . Hence mean-field predicts a phase transition at

Jc
g

= ±1

2
(4.9)

We can see in Fig. 4.2 that the mean-field prediction of the phase transition is in

excellent agreement with the results we obtained from exact diagonalization for various

spin sizes. We can clearly see that the kink at the mean-field approximation of the

critical value, Jc/g = 1/2, gets more and more pronounced as S → ∞. The insets show

the energy E as well as the energy gap δE at each point. The energy gap closes at the

critical point and remains closed after the transition. This confirms that this transition

is indeed a second-order phase transition.

Note, that the equilibrium model discussed here and depicted in Fig. 4.2 has its spin

fully up in the ordered phase. This is in contrast to the dissipative model we discuss in

the next section, where the ordered steady-state will be the down state. However, the

phase transition of this particular equilibrium model will reappear in the full model,

where it connects to the phase transition of the driven spin.

4.2.2 Steady state

In the last section we derived a mean-field approximation of the critical self-interaction

strength Jc/g for the equilibrium LMG model. We further compared the results for

various spin sizes and found a second-order phase transition at the predicted value.

Let us now see how adding dissipation changes the qualitative and quantitative

behaviour of the model. In Ch. 3 we have already introduced the dissipative LMG

Eq. 3.5. As a reminder, it is an open LMG whose jump-operator is given by a collective
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Figure 4.2: A scan over J/g of the equilibrium LMG model Eq. 4.1 of the Z-expectation
values. The insets show the energy gap δE as well as the total energy of the ground
state E. The closed gap over a large area shows that this is indeed a second-order
phase transition.

spin-lowering operator, S−. With this the Lindblad master equation looks like

L[ρ] = −i [HLMG, ρ] +
γ

S
D[S−][ρ] (4.10)

D[S−][ρ] = S−ρS+ − 1

2
{S+S−, ρ}. (4.11)

In the previous chapter we have derived the following set of mean-field equations

for the spin-components from this master equation

Ẋ = Y + γXZ (4.12)

Ẏ = −X + 2JZX + γY Z (4.13)

Ż = −2JY X − γ(1− Z2) (4.14)

If we set them to zero and solve for X,Y, Z, we get the spin components of the steady

state. It is easy to see that a state which solves these equations for every set of

parameters is X = Y = 0, Z = ±1. The general solution in the symmetry-broken
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phase is

X = ±
√
γ2 − gΞ

2JΞ
(4.15)

Y = −XΞ

γ
(4.16)

Z =
gΞ

γ2
(4.17)

with Ξ = J +
√
J2 − γ2. To derive this one has to divide by X, hence this solution

cannot be applied to the normal phase, where X = 0. The normal state refers to the

state X = Y = 0, Z = ±1 and is denoted by ν±. We can use this knowledge to make

a linear stability analysis and find the critical value at which this solution becomes

unstable, see the discussion of linear stability in Ch. 3. As a brief reminder of linear

stability analysis, the solution to a set of coupled, non-linear equations is said to be

unstable, if at least one eigenvalue of the associated Jacobian is positive. The Jacobian

of this set of equations is given by:

J (X,Y, Z) =


Zγ 1 Xγ

−1 + 2JZ Zγ 2JX + Y γ

−2JY − 2γX −2JX − 2γY 0

 . (4.18)

Plugging in the normal state yields an effective 2× 2 matrix.

J (ν−) =


−γ 1 0

−1− 2J −γ 0

0 0 0

 . (4.19)

The eigenvalues of this matrix are given by:

λ0 = 0 (4.20)

λ± = −γ ±
√
−1− 2J. (4.21)

Setting this to zero and solving for J yields the γ-dependent Jc at which the eigenvalues

change sign. First note that λ− < λ+, so it suffices to check when λ+ = 0. Solving this
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Figure 4.3: This figure shows the solutions of the mean-field equations Eq. 4.12. As was
predicted by the linear stability analysis, for γ/g = 0.5 we see a symmetry breaking
phase transition at Jc/g = −0.625. Before that the only stable state is the normal
state, aligned with the jump-operator.

then yields:

Jc =
−(γ2 + 1)

2
. (4.22)

Note here, that if we were to plug in ν+, we would get for the eigenvalues

λ′± = γ ±
√
2J − 1. (4.23)

One can see, that the real part of λ+ ≥ 0∀J . Hence, while this state is technically a

solution, it is an unstable one.

In all our calculations we use γ/g = 0.5, hence the mean-field approximation for the

critical interaction strength is given by Jc/g = −0.625. Fig. 4.3 shows the solutions to

the mean-field equations over a range of interaction strengths. The different solutions

for X and Y were obtained by time-evolving various different initial conditions. As

expected, the normal state goes unstable exactly as the linear stability analysis predicted.

Beyond the phase transition we can see two stable solutions emerge, which are degenerate

in X and described by the equations 4.15. Fig. 4.4 on the other hand shows a

comparison of the mean-field solution of the Z-component with results obtained from

exact diagonalization for various spin sizes. One can clearly see that the results from
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Figure 4.4: Similar to Fig. 4.2 this figure shows a comparison of the mean-field solution
for the Z-component with solutions from exact diagonalization. We can see again a
good convergence of the full-quantum results towards the mean-field predictions as the
spin size increases. The inset shows the purity of the state. We can see a pronounced
dip which converges towards the point of the phase transition.

exact diagonalization converge towards the mean-field solution as S → ∞. As in the

equilibrium model, this confirms that the mean-field solutions are indeed exact in the

thermodynamic limit. This is a second-order phase transition which breaks the Z2

symmetry of the model. The symmetry-broken states are the solutions X± of Eq. 4.15.

Both solutions contribute equally to the expectation value, which causes them to vanish.

This is why we have omitted them in the plot. The phase transition we see here is the

dissipative analogue of that of the equilibrium model shown in Fig. 4.2. There the

ground-state was degenerate in the X-component as well, which leads to a vanishing

expectation value. We can see that the dissipative phase transition connects directly

to the equilibrium phase transition, when we take the limit γ → 0 in Eq. 4.22. In the

limit of vanishing dissipation, we recover the critical Jc of the equilibrium model. Note,

that in the case of the dissipation, we recover the phase transition of an equilibrium

model with negative Field strength g = −1.
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Figure 4.5: The plot shows a sketch of the PT -model. There are two collective spins
connected by a the spin flip whose strength is given by λ/g. Both spins are open with
a coupling strength of γ/g. One is driven, while the other is dissipative.

4.3 PT -Model

The second part of the LMG-dimer is the PT -model of Eq. 3.1, see Fig. 4.5 for a sketch.

In the context of PT -symmetry breaking phase transitions it has been thoroughly

discussed by Huber et al. in Ref. [1]. As a brief reminder, the model is described by

the following master equation:

L[ρ] = −i [HPT, ρ] +
γ

S

(
D[S−

a ][ρ] +D[S+
b ][ρ]

)
(4.24)

HPT =
λ

2S

(
S+
a S

−
b + S−

b S
+
a

)
(4.25)

D[S−
a ][ρ] = S−

a ρS
+
a − 1

2
{S+

a S
−
a , ρ} (4.26)

D[S+
b ][ρ] = S+

b ρS
−
b − 1

2
{S−

b S
+
b , ρ}. (4.27)

Here, λ/g is the interaction strength between the two spin and γ/g = 0.5 as in the

previous model. The model has been chosen such that the PT -symmetry breaking

phase transition occurs at λc = γ. This Lindblad master equation allows for two

analytic treatments, mean-field as well as Holstein-Primakoff, see Ch. 3 for the full

derivation. We use the mean-field equations to predict a phase diagram.

We use the Holstein-Primakoff transformation to rewrite the spin model as one of

two coupled bosonic modes. This allows us to derive analytic expressions for the purity

as well as the magnetization. This gives us a good way of ensuring the correctness of
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our derivations. As we have seen in Ch. 3 the mean-field equations are

Ẋa = λZaYb + γXaZa (4.28)

Ẏa = −λZaXb + γYaZa (4.29)

Ża = λ(XaYb − YaXb)− γ(1− Z2
a) (4.30)

Ẋb = λZbYa − γXbZb (4.31)

Ẏb = λZbXa − γYbZb (4.32)

Żb = λ(XaYb − YaXb) + γ(1− Z2
b ), (4.33)

where Xa is the X-component on site a. Setting these equations to zero and solving

for the spin components yields their steady-state values. These can be seen in Fig. 4.6.

The main part of the figure shows the Z-component of the solutions for both sites and

compares them to the results from exact diagonalization and quantum trajectories for

various spin sizes. As the LMG model, the PT -model also a possess a normal state,

Xa = 0, Ya = 0, Za = −1, Xb = 0, Yb = 0, Zb = ±1. This state is stable for λ/g < 0.5.

At the point of the phase transition, this state transitions into the maximally mixed

state. As before, we can see a good convergence towards the mean-field prediction

for increasing spin sizes. The inset shows the Holstein-Primakoff approximation for the

purity of the state, which we re-derived in theory and which was first published in [15]:

P = 1− λ2

γ2
. (4.34)

One can see that the Holstein-Primakoff prediction of the purity aligns with the dis-

cussion of the stability of the maximally-mixed state found in Ch. 3. Take note, that

this is not well defined in the limit γ → 0 and does not connect to any equilibrium

phase transition like the LMG model. This is a further indicator that this is a purely

non-equilibrium phenomenon. At the point of the PT -symmetry breaking phase tran-

sition, the steady-state gains a P-symmetry, which neither the normal state nor the

model possess.
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Figure 4.6: This figure compares the Z-expectation values for the dissipative site a
(dashed) and the pumped site b (solid) for various spin sizes with the solutions to the
mean-field equations (purple). As with the LMG-model, we see a convergence of the
results towards the mean-field solutions for increasing spin-sizes. The inset shows the
the purity of the steady-states as well as the purity from Holstein-Primakoff (purple).
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4.4 LMG-Dimer model

In the last two sections we have seen how the individual models behave as we scan

them across their relevant parameter and drive them across their respective phase

transitions. We saw that the LMG model possesses a continuous phase transition

along it self-interaction strength, while the PT -model has a PT -symmetry breaking

phase transition as a function of the interaction strength. In this section we will now

introduce the full model and see how those two phenomena influence each other.

4.4.1 Mean-field Equations

As before, the starting point of our investigations is the full quantum model:

L[ρ] = −i [H, ρ] + γ

S

(
D[S−

a ][ρ] +D[S+
b ][ρ]

)
(4.35)

H = HLMG,a ⊗ 1+ 1⊗HLMG,b +HPT (4.36)

D[S−
a ][ρ] = S−

a ρS
+
a − 1

2
{S+

a S
−
a , ρ} (4.37)

D[S+
b ][ρ] = S+

b ρS
−
b − 1

2
{S−

b S
+
b , ρ}, (4.38)

where HLMG,a and HLMG,b refer to the LMG-models of site a and b respectively.

While conceptually we coupled two different LMG models via a PT -symmetric model

with carefully balanced gain and loss, the total Hamiltonian is just a sum of the

individual Hamiltonians. Therefore, the total mean-field equations are just the sum
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of the individual models on the respective sites:

Ẋa = gYa + λZaYb + γXaZa (4.39)

Ẏa = −gXa + 2JZaXa − λZaXb + γYaZa (4.40)

Ża = −2JYaXa − λ(XaYb − YaXb)− γ(1− Z2
a) (4.41)

Ẋb = gYb + λZbYa − γXbZb (4.42)

Ẏb = −gXb + 2JZbXb − λZbXa − γYbZb (4.43)

Żb = −2JYbXb + λ(XaYb − YaXb) + γ(1− Z2
b ) (4.44)

(4.45)

These equations are notably not symmetric under J → −J , which explains the asym-

metry we will find in the phase diagram along that axis. We further have a symmetry

X → −X, Y → −Y and Z → Z. This is just a reflection of the Z2-symmetry of the

original system. Notably, we can also find the symmetry a → b with γ → −γ. Now a

negative dissipation makes little sense on the level of the master equation. However, as

we have seen in the derivation of the equations in Ch. 3, the sign of γ in the mean-field

equations follows from the type of coupling present in the master equation. This means

that γS+ leads to −γ while γS− leads to +γ in the X and Y equations and vice versa in

the Z equations. Hence this symmetry is the mean-field analogue of the PT -symmetry

of the master equation.

These equations still have a stable normal state, i.e. ν = |↓, ↑⟩ ⟨↓, ↑| for small λ/g

and small |J/g|. In the limit of zero coupling, λ/g = 0, we recover two independent

LMG models, one of which is dissipative and one of which is driven. The driven

LMG model connects to the equilibrium LMG model we saw earlier and has its phase

transition at Jc/g = +0.625 for γ/g = 0.5. The dissipative LMG model is the one we

saw earlier as well. It becomes critical at Jc/g = −0.625. In the limit of J/g = 0 we

recover the PT -model from the previous section.
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Figure 4.7: This figure shows a scan over the parameter ranges J/g and λ/g respectively
at γ/g = 0.5. One can see three distinct linearly stable phase: The normal phase
(turquoise), the LMG phases (yellow), and the PT -phase (purple). The insets show
typical mean field trajectories in the Xb − Yb-plane in each of theses phases. At λ =
0.25, J = 0 we are deep in the normal phase and all initial conditions quickly evolve
towards the Xb = Yb = 0. At λ = 0.25, J = 1.5 we are deep in the LMG phase and
the initial conditions spiral towards either of two fixed points, see Fig. 4.1 for more
detail. At λ = 0.45, J = 1.5 two of the initial conditions evolve into stable limit cycles
after some time, while the remaining two initial conditions spiral towards the known
LMG-fixed points. The final inset at λ = 1.5, J = 0 shows a single limit cycle. This is
the phase that [1] identify as the maximally mixed, or PT phase and [2] as boundary
time crystals.
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4.4.2 Linear Stability Phase Diagram

The first step of our investigation into the full system began by developing the linear

stability phase diagram over a wide parameter range. The linear phase diagram was

found using brute force integration of many initial conditions and using linear stability

analysis to test how many different solutions are stable. The Jacobian for the system

of equations in Eq. 4.39 is given by

J =



Zaγ 1 Ybλ + Xγ 0 Zaλ 0

−1 + 2JZa Zaγ 2JXa − Xbλ + Yaγ −Zaλ 0 0

−2JYa − Ybλ −2JXa + Xbλ 2Zaγ Yaλ −Xaλ 0

0 Zbλ 0 −Zbγ 1 Yaλ − Xbγ

−Zbλ 0 0 −1 + 2JZb −Zbγ 2JXb − Xaλ + Ybγ

Ybλ −Xbλ 0 −2JYb − Yaλ −2JXb + Xaλ −2Zbγ


.

(4.46)

The reasoning is that once the number of stable solution changes the dynamical system

underwent a bifurcation, which translates to a phase transition of the full quantum

system. This method, while crude, gave us an excellent first idea of how the phase

diagram looks and what kind of phase we could expect. The diagram, we developed

in this fashion can be seen in Fig. 4.7. At each of the 200 × 200 points we used 64

initial conditions and counted the number of linearly stable solutions we could find.

This method allows us to identify 3 distinct linearly stable phases: The normal phase

(turquoise), the LMG phases (yellow), and the PT -phase (purple). In the normal phase

we find just a single stable state, which coincides with the normal state of the individual

models, i.e. Za = −1, Zb = 1. The LMG phases, upon closer inspection reveal that

they are two distinct phases, each with their own set of two stable states, see Fig. 4.3

for reference. As we have discussed previously, the dissipative LMG model of site (a)

will undergo a phase transition at negative J/g, while the driven one of site (b) will

undergo a phase transition at negative J/g. This is similar to what we saw in Fig. 4.4,

excepting that the precise values for X and Y are influenced by λ. While for λ/g = 0

one site will always remain in the normal state, at finite λ/g, a small perturbation will

drive the usually non-critical site out of the normal state as well. Lastly, we find that

in a large part of the phase diagram not a single solution is stable. A first explanation

can be derived from the phase diagram of the PT -model Fig. 4.6. Beyond the phase
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transition, all expectation values and the purity are zero. That means, the state is in

the maximally mixed state. The mean-field equations were derived under the condition

that X2 + Y 2 + Z2 = S2, hence that spin is conserved. This cannot be fulfilled by the

maximally mixed state, hence no stable solution exists. Note that this is an artefact of

the mean-field approximation that the spin-correlations factorise. In the full quantum

model we still have full spin conservation as we have ⟨S2
x⟩+ ⟨S2

y⟩+ ⟨S2
z ⟩ = S2.

The second important feature of the phase diagram are the lobes and the bending

of the LMG phase boundary. These features are the most striking consequences of

the competition between the PT -symmetry breaking phase transition and the second-

order phase transition of the LMG-model. From the previous discussions it is clear

that the central lobe must correspond to the phase transition we have seen in Fig.4.6.

It is stretched and lobe-like shape which remains to be understood. To this end we

will make use of linear stability analysis once more. As we have discussed in Ch. 3, a

state can only be a stable solution if all eigenvalues of the Jacobian are negative. We

know, that at any point in the turquoise region of Fig. 4.7 the normal state is stable.

A straightforward path to understanding the shape of the phase boundaries is thus to

investigate the eigenvalues of the Jacobian of the normal state. The Jacobian of the

normal state looks like

J(ν) =



−γ 1 0 0 −λ 0

−1− 2J −γ 0 λ 0 0

0 0 −2γ 0 0 0

0 λ 0 −γ 1 0

−λ 0 0 −1 + 2J −γ 0

0 0 0 −0 0 −2γ


. (4.47)

Looking a bit closer one can see that the 3rd row and column as well as the 6th row

and column have zeros in all but one place. Hence the first two eigenvalues are known

and the problem reduces to an effective 4x4 matrix. The eigenvalues of this problem
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can then be found more readily. The full set is:

ϵ1,2 = −2γ (4.48)

ϵ3 = −γ −
√

−2
√
J2λ2 + J2 − λ2 + λ2 − 1 (4.49)

ϵ4 = −γ +

√
−2
√
J2λ2 + J2 − λ2 + λ2 − 1 (4.50)

ϵ5 = −γ −
√

2
√
J2λ2 + J2 − λ2 + λ2 − 1 (4.51)

ϵ6 = −γ +

√
2
√
J2λ2 + J2 − λ2 + λ2 − 1 (4.52)

The first step of understanding the center lobe and LMG phase boundary is to find the

eigenvalues which change sign. A simple, brute force parameter scan reveals that only

ϵ4 and ϵ6 can become unstable. We have plotted both eigenvalues in Fig. 4.8, where

the eigenvalues ϵ4 (a) and ϵ6 (b) have been scanned across the parameter range. To

highlight the thresholds the value range has been artificially restricted to ϵ = ±0.1.

Now that we know which eigenvalues are responsible to destabilize the normal state,

we can try to get analytic expressions for the critical Jc(λ) and the critical λ(J). ϵ6 can

be readily solved for Jc without any further tricks. This yields the following expression:

|Jc| =
√

(γ2 − λ2 + 1)2 + 4λ2

4λ2 + 4
. (4.53)

A Taylor series expansion around λ/g = 0 yields

Jc/g = ±0.625± 1

80
λ2 +O(λ4), (4.54)

i.e quadratic corrections to the critical self-interaction strength Jc ∝ λ2 in λ. In Fig. 4.8

this is shown by the green lines. This explains the shape of the LMG phase transition.

Reaching an expression for the critical λc(J) is a bit more involved as it requires

solving the real part of ϵ4 = 0 for λ/g. The issue here is the minus sign under the

first square root, which is not present in ϵ6. To get around this issue, one can perform

a Taylor series expansion of ϵ4 = 0 around J/g = 0. This will yield an approximate,

complex expression for ϵ4. We can then take the real part of this expression and set it
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Figure 4.8: This figure shows a scan of the Jacobian eigenvalues which experience a
sign change, ϵ4 (a) and ϵ6 (b). Each plot has 200× 200 points. To highlight the phase
boundaries the value range was artificially restricted to ϵ±0.1. These are the eigenvalues
which let the normal state become unstable across the LMG-phase transition as well
as the PT -transition. The green line shows the critical Jc from Eq. 4.53, while the
magenta line shows Eq. 4.57.

to zero, to reach an approximate expression for λc(J).

Re{T (ϵ4)|J=0} = λ− γ − J2

2

(λ2 + 1)

λ3 + λ
+O(J4) = 0 (4.55)

⇒ λc/g ≈ 1

4

(
1 +

√
1 + 8J2

)
(4.56)

≈ 1

4

(
2 + 4J2

)
. (4.57)

In the last line we expanded the expression for λc/g once more around small J/g. The

expression we get is approximately quadratic in the LMG non-linearity, and as we can

see in Fig. 4.8 fits the PT -phase transition quite well for such a crude approximation.

The linear phase digram by itself would suggest that the outer lobes follow a similar

mechanism, i.e. in each phase, the interaction strength λ will reach a critical value

compared to the dissipation strength and drive the system across a PT -symmetry
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breaking phase transition. However, in the LMG phases the stable states differ at

each point in parameter space. Thus an analysis of the eigenvalues of the Jacobian

for a specific state won’t tell us anything useful about the shape of the threshold or

the corrections to the critical values. To investigate the outer lobes we will have to

manually look at the mean-field trajectories at different points. Inspecting the mean-

field trajectories suggest a more complex series of phase transitions, see the insets of

Fig. 4.7 and in particular Fig. 4.9. The latter shows the trajectories at six points a long

a λ/g-scan at J/g = 1.5.

The insets of Fig. 4.7 and the plots of Fig. 4.9 show typical mean-field trajectories

in the Xb − Yb-plane. We plot four example trajectories which we found to belong

to different basins of attraction, i.e. they are characterised by their initial conditions

which are given by:

blue : x = 1/
√
2, y = −1/

√
2, z = 0 (4.58)

red : x = −1/
√
2, y = 1/

√
2, z = 0 (4.59)

orange : x = 0, y = −1, z = 0 (4.60)

magenta : x = 0, y = 1, z = 0 (4.61)

In the normal phase at λ/g = 0.25 and J/g = 0 we see that all trajectories spiral

towards the same fixed point - X = 0, Y = 0, Z = 1. At the center of the LMG

phase at λ/g = 0.25 and J/g = 1.5 we see two separate stable fixed points appear.

This suggests that the system underwent a pitchfork-bifurcation. This corresponds to

the phase transition we see at the full quantum level, see Fig. 4.2 and Fig. 4.3. In the

PT -phase we see a single limit cycle which explains the vanishing expectation values

on the quantum level. The interesting feature appears at λ/g = 0.45 and J/g = 1.5.

Here we see two stable limit cycles as well as two stable fixed points appear, which

become just two stable limit cycles beyond the apparent LMG-PT threshold. Such a

region of bistability where one set of states becomes less and less present while another

gains suggests that this is not a PT -symmetry breaking phase transition but a simple

first-order phase transition.
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A more detailed investigation of mean-field trajectories was done as part of the

comparison of mean-field parameter scans and full quantum simulations in Fig. 4.10.

Fig. 4.11 shows the mean-field trajectories for the usual initial conditions Eq. 4.58

at five different points along the parameter scan at J/g = 1.5. The plots show four

distinct phases and a region of bistability. In order from left to right: The LMG phase,

the bistable region, the bicyclic phase, the monocyclic phase and finally chaos. The

different cycles and fixed points are more pronounced for site b as we start in the phase

were the pumped site has undergone a phase transition. The fact that the a site shows

similar behaviour at all is not due to a phase transition on the a site, but due to the

interaction between the sites. Note how in Eq.4.39 the λ-terms contain information

about the X and Y -components of the other site. If the initial conditions lead to

different Xb and Yb, they will naturally lead to slightly different steady states for Xa,

Ya and Za as well.

These figures suggest a first-order phase transition from the LMG phase across

the bistable region, of two stable limit cycles and two stable fixed points into what

we call the bicyclic phase. This phase is characterized by two stable limit cycles. The

figures further show that the two limit cycles coalesce into a single cycle, which suggests

another second-order phase transition. Here, the bicyclic phase has two stable solutions

for each site, which are related by a Z2-symmetry. This suggests a symmetry-broken

phase which transitions into a symmetric state. Finally, we see this Monocyclic phase

transition into chaos, where all spin-components on either site have zero expectation.

This suggests that it is this last transition that is the PT -symmetry breaking transition

of these lobes.

4.4.3 Mean-field Comparisons

The next step of our investigation was concerned with comparing the results from

mean-field with the exact behaviour of the full quantum model. The main purpose of

these comparisons was again to ascertain how well the full quantum picture converges

towards the mean-field predictions. Furthermore, we were interested in how the mean-

field parameter scans themselves behave under the full model.
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Figure 4.9: This figure shows the enlarged insets from Fig. 4.7. The plots are at λ =
1.5, J = 0 (a), at λ = 0.25, J = 0 (b), at λ = 0.25, J = 1.5 (c) and at λ = 0.45, J = 1.5
(d). For the bistable region the first 400 data points have been cut off, to emphasis
that past the transitory phase the trajectory settles into two limit cycles on top of the
two attractive fixed points. As we scanned primarily around the upper lobe, where the
b-site becomes critical, we plot all trajectories in the Xb-Yb-plane.
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Figure 4.10: This figure compares parameter scans of our mean-field equations (green)
with results from exact diagonalization (blue, orange) as well as Quantum Trajectories
(green). The background color of the four main plots is chosen to match those of the
phase diagram and give an indication of where the phase transitions are. Figure (a)
and (b) are scans of the strength of the LMG non-linearity along λ/g = 0.25(0.75)
respectively. Scans (c) and (d) are along λ at J/g = 0(1.5) respectively. The insets of
figure (d) show the mean-field trajectories at different points along the scan.
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To this end we began choosing four scans across the phase diagram. We picked

two simple ones, which closely mimic the individual models. This was done as a sanity

check, to ensure that the full model shows no unwanted or unexpected behaviour in the

correct limits. The remaining two scans were more involved and ran across a variety

of phase transitions. This made the overall stability of the numerical simulations as

well as the overall convergence much worse. The results of these scans can be found

in Fig. 4.10. The figure shows the evolution of the Zb-expectation value along four

lines. The background of the individual plots are lightly shaded to match those of

the phase diagram, i.e. a yellow background means those parameters belong to one of

the LMG phases. The inset in (c) shows the phase diagram as well as the lines along

which the scans were performed. Each plot consists of four graphs, which corresponds

to S = 3/2 (blue), S = 9/2 (orange), S = 36/2 (green) as well as mean-field (red).

The data for S = 3/2 and S = 9/2 where generated with exact diagonalization, while

for S = 36/2 we employed quantum trajectories. Plot (a) and (c) show the sanity

checks along J/g and λ/g respectively. As in Fig. 4.3 as well as Fig. 4.6 we see an

excellent convergence of the full quantum results towards the mean-field predictions.

This suggests that the limits of the full model work as intended. Plot (b) shows a scan

along J/g at λ/g = 0.75. This plot was chosen for its eight phase transitions. We can

clearly see that while the various, closely packed phase transitions caused the semi-

classical numerics some difficulties, it nonetheless follows the curve we would expect

from our previous discussion. Crossing from the LMG phase over into the monocyclic

phase, we see a smooth rise towards the expectation value of the normal state. This is

followed by a sharp drop in expectation in the PT -state. Afterwards we see a similar

behaviour play out in reverse, up to the asymmetry in J/g. Other than the scans of the

individual models we see a much slower convergence towards the mean-field solution

in this case. Plot (d) shows a scan along λ/g at J/g = 1/5. Originally, we expected

a single phase transition to occur across this line. Our discussion, however, suggested

that we should expect a much more complicated picture of four phases and a region of

bi-stability. Looking at the actual plot we see various points at which the slope of the

graph suddenly changes, which usually indicates a change of state.
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Figure 4.11: This figure shows the insets of Fig. 4.10 for the initial conditions
of Eq. 4.58. In reading order the trajectories are at J = 1.5 and λ/g =
0.408, 0.428, 0.531, 0.592, 1.469, where we have omitted the trajectory at λ/g = 0.653 as
we weren’t able to ascertain if this was a true feature of the equations or an instability.
As with the trajectories in Fig. 4.9 we have cut off the transient phases to emphasise
the limit cycles, where appropriate.

The insets of plot (d) show the mean-field trajectories at the points where the

slope changes most drastically. One can see again the stable solutions in the LMG

phase (λ/g = 0.408), which evolves into a stable limit cycle before the LMG-PT phase

transition (λ/g = 0.428). At the point of the phase transitions we see what appears

to be period doubling in the limit cycles ((λ/g ≈ 0.531)). Shortly after he LMG-PT

transition we can see that the initial conditions spreads across the (z=+1) pole of the

Bloch sphere (λ/g = 0.592). At λ/g = 0.653 we see what appears to be period doubling

closer to equator of the sphere, which causes the expectation to dip. This is a feature

which is neither persistent across different solvers nor does it not seem present in the

full quantum picture. We assume at this point that it is likely a numerical artefact.

Towards larger λ/g we see the mean-field trajectory fill the entire bloch sphere, which

indicates chaos (λ/g = 1.469).

The insets are presented in more detail in Fig. 4.11. In that figure we have omitted
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the trajectory found at the dip in plot (d) as we weren’t able to ascertain if that was

a feature or a numerical instability. To understand the remaining five insets better,

we used the four initial conditions from Eq. 4.58, which we found to belong to four

different basins of attraction. The figure shows the mean-field trajectories for both

spins at positive J/g. That is the region in which the pumped site (b) goes critical.

Hence, why all effects are much more pronounced in the Xb − Yb-plane. Due to the

spin-flip coupling between the two sites we do see similar effects for the dissipative site,

albeit much more muted.

From left to right it shows the trajectories are at J = 1.5 and λ/g = 0.408, 0.428,

0.531, 0.592, 1.469. We can clearly see that it transitions from a region of two stable

fixed points to a region where both limit cycles and fixed points are stable, to a region

where only limit cycles are stable. This suggests a first-order phase transition across

a region of bi-stability. As the fixed point before, these two limit cycles are connected

via Z2-symmetry, namely a rotation around the Z-axis. This transitions to a phase

of a single limit cycle, which suggests a second-order phase transition. Finally, we

see what we assume to be a PT -symmetry breaking phase transition from a single

solution to chaos, mimicking the transition from the normal phase to the PT -phase. A

visualization of our current working hypothesis is shown in Fig. 4.12. This figure shows

a rough sketch of all phase transitions of the top half of the phase diagram of Fig. 4.7.

The three main phases are the well known normal phase (turquoise), the LMG phase

(yellow) and the PT -phase. Going off of the known PT -symmetry breaking transition,

we assume that for such a transition to occur, we require a unique steady state before

the transition. We know that the normal phase and the LMG phase are connected

via a symmetry breaking phase transition, which creates two fixed points in the LMG

phase. This forces the systems through a variety of phases as the coupling strength

is increase, as it tries to reach a phase with a unique steady-state from which it can

transition into a PT -phase.

We saw in the PT -phase of the center lobe of Fig. 4.7 that the PT -Hamiltonian

causes the fixed point of the normal phase to transition into a limit cycle in the X−Y -

plane in the PT -phase. Something similar occurs in the LMG-phase where the PT -
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Figure 4.12: A rough sketch of all suspected phases of the model. In addition to
the known transitions we see the bistable region, the bicyclic phase, as well as the
monocyclic phase. As limit cycles are not detected by simple linear stability analysis,
these phases did not appear in the linear stability phase diagram.

Hamiltonian causes each individual fixed point to transition into a limit cycle. However,

whereas the limit cycle of the PT -phase is unique and spreads around the entire equator

of the Bloch sphere, the limit cycles that occur near the LMG-phase have a finite Z-

component. Hence, this cannot be a PT -symmetry breaking phase transition, see Ch. 3.

The appearance of limit cycles centred around the fixed points also doesn’t change the

symmetry properties of the state. Hence this must be a first-order phase transition.

This explains the appearance of a region of bistability where both fixed points and limit

cycles are stable. As the coupling strength increases we see it expand the limit cycles

until they touch and merge at the north pole of the Bloch sphere. At this point the

system undergoes a further second-order phase transition to a monocyclic phase. This is

now a unique steady-state which attracts all initial conditions. Increasing the coupling

any further pushes the system across the PT -symmetry breaking phase transition of

the outer lobes. While the coupling Hamiltonian prefers a large limit cycle in the

X − Y -plane, the LMG non-linearity causes this cycle to topple and spread across the

91



Chapter 4. Results

surface of the Bloch sphere.

4.4.4 Spin Wigner

The final piece we needed was a better understanding of the phase space of the full

quantum model. In classical dynamics the phase space is the space spanned by the

degrees of freedom as well as their time derivatives. In low-dimensional classical models

the phase space gives full information about the state of system and its immediate

future. Plotting trajectories in phase space for sufficiently many initial conditions then

gives full knowledge of all possible states and evolutions. Here we will compare the

trajectories of the mean-field equations of Eq. 4.35 with the so called spin-Wigner

distribution in phase space. In bosonic systems one such representation is given by

the Wigner functions or Wigner quasi-probability functions. Others such as P and Q

functions also exist. Wigner functions assign each point in position-momentum space

a probability density, which allows for a neat visualization of the states in phase space.

Spin-Wigner functions are analogous but not entirely equivalent to the bosonic Wigner

functions. They are the absolute value squared of the expectation value of a spin-

coherent state

W(θ, ϕ) = |Tr[ρssκ(θ, ϕ)]|2. (4.62)

Here, ϕ ∈ [0, 2π) and θ ∈ [0, π] are spherical coordinates of a point on the surface of

the Bloch sphere. κ(θ, ϕ) is the coherent state density matrix at that point and ρss is

the steady-state density matrix. Preceding the discussion of our results will be a brief

derivation of these spin-coherent states.

In Bosonic systems a coherent state is the state of the harmonic oscillator which

most closely resembles a classical harmonic oscillator, in the sense that it minimizes

the amplitude-phase uncertainty. Furthermore, the peak of its probability distribution

always follows the classical trajectory under time evolution. For spins something similar

can be defined, in the sense that spin-coherent states minimizes the uncertainty of Sx,

Sy, Sz. The following derivation follows in broad strokes the one found in [102].

We begin our derivation of the spin-coherent state by defining the vacuum state to
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be |0⟩ = |s,−s⟩, i.e. the down state. Then we have:

S2 |s,m⟩ = s(s+ 1) |s,m⟩ (4.63)

Sz |s,m⟩ = m |s,m⟩ (4.64)

S+ |s,m⟩ ∝ |s,m+ 1⟩ (4.65)

S− |s,m⟩ ∝ |s,m− 1⟩ (4.66)

S− |0⟩ = 0. (4.67)

We can then write n = m+ s. We further have the identities:

S+S− = S2 − S2
z + Sz (4.68)

S−S+ = S2 − S2
z − Sz. (4.69)

These allow us to determine the normalization constants of the operators S+ and S−:

⟨n|S−S+ |n⟩ = ⟨n|S2 − S2
z − Sz |n⟩ (4.70)

= (2s− n)(n+ 1) (4.71)

⇒ S+ |n⟩ =
√
(2s− n)(n+ 1) |n+ 1⟩ (4.72)

as well as:

⟨n|S+S− |n⟩ = ⟨n|S2 − S2
z + Sz |n⟩ (4.73)

= n(2s− n+ 1) (4.74)

⇒ S− |n⟩ =
√
n(2s− n+ 1) |n− 1⟩ . (4.75)

With this we are in a position to calculate (S+)p |n⟩:

(S+)p |n⟩ =
√
(2sn− n)(n+ 1) · · · (2s− n− p+ 1)(n+ p) |n+ p⟩ . (4.76)
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Acting on the vacuum state, this simplifies to:

(S+)p |0⟩ =

√
2s!p!

(2s− p)!
|p⟩ . (4.77)

In analogy with the Bosonic coherent states we define the state:

|µ⟩ = 1√
N
eµS

+ |0⟩ (4.78)

=
1√
N

∞∑
p=0

µp

p!
(S+)p |0⟩ (4.79)

=
1√
N

2S∑
p=0

µp

√
2s!

(2s− p)!p!
|0⟩ . (4.80)

The normalization of this state is then:

1 = ⟨µ|µ⟩ = 1

N

2S∑
p,q=0

µ∗pµq

√
2s!

(2s− p)!p!

√
2s!

(2s− q)!q!
⟨p|q⟩ (4.81)

=
1

N

2s∑
p=0

|µ|2p 2s!

(2s− p)!p!
(4.82)

=
1

N

2s∑
p=0

|µ|2p
(
2s

p

)
(4.83)

=
1

N
(1 + |µ|2)2s. (4.84)

Hence,
√
N = (1 + |µ|2)s. (4.85)

With this the coherent state is given by

|µ⟩ = 1

(1 + |µ|2)2
eµS

+ |0⟩ . (4.86)

In this formulation the state is parametrized by the real part R(µ) and the imaginary

part I(µ). A more useful parametrization can be derived by projecting every point of

a sphere uniquely onto the plane spanned by R(µ) and I(µ), see Fig. 4.13.

Thus one finds a parametrization of the state in terms of the two angles ϕ ∈ [0, 2π)
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Figure 4.13: A sketch of the conversion between the two coordinate systems. Each
point of the sphere is uniquely projected onto the sphere and vice versa. A slight issue
arises at the north pole of the sphere, which is projected to infinity.

and θ ∈ [0, π] we have seen above:

µ = eiϕtan(θ/2). (4.87)

We then have |µ|2 = tan2(θ/2) and 1 + |µ|2 = sec2(θ/2):

|µ⟩ → |θ, ϕ⟩ = 1

sec2
(
θ
2

)exp(eiϕtan(θ
2

)
S+

)
|0⟩ . (4.88)

With this the coherent state density matrix we have used in Eq. 4.62 is given by:

κ(θ, ϕ) = |θ, ϕ⟩ ⟨θ, ϕ| . (4.89)

Now we have derived a spin-coherent state parametrized by the spherical angles θ

and ϕ. This will allow us to get a decent first impression of the behaviour of the full

quantum model, by visualizing it on the surface of the Bloch Sphere. At this stage we

need to note that these are not fully analogous to bosonic coherent states. The most

important difference comes from the fact that the spin Hilbert space is limited, while

the bosonic Fock space is not. Bosonic coherent state truly are an infinite superposition

of Fock states, and each time one applies the annihilation operator a, the number of

states at the top don’t change. This is contrast to spin-coherent state. Each time we
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Figure 4.14: This Plot shows a comparison of spin-Wigner functions for S=6/2 with
mean-field trajectories in 3 distinct phases. The comparisons are done for the driven
site b. (a) Normal Phase at J/g = λ/g = 0, (b) LMG Phase at J/g = 1.5, λ/g = 0 and
(c) Bicyclic Phase at J/g = 1.5, λ/g = 0.5.

apply either of the spin-lowering operator, we effectively remove a state from the finite

sum, until at last we reach the bottom. This doesn’t change the fact, though, that they

are still very useful tools to represent spin states in their phase space.

In quantum mechanics one does not have absolute knowledge of position and mo-

mentum. One can however calculate probabilities and plot those in phase space. These

phase-space probability functions are known as Wigner-functions. For spins something

closely related exists, called spin-Wigner functions. They assign each point on the bloch

sphere a probability density, which allows for a neat visualization. In our case ,they

are the expectation values of a spin-coherent state with a non-equilibrium steady-state.

Ordinary coherent states are states of the linear harmonic oscillator. They are known to

be the most “classical” quantum states in the sense that they minimize the uncertainty

between position and momentum as well as that the time evolution of the probability

distribution they define, is centred around the classical trajectory. Ordinary coherent

states can be derived as the eigenstates of the annihilation operator. Spin-coherent

states are the spin-analogues of coherent states. They were derived to be the most
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classical spin, i.e. a point on the Bloch-sphere.

The spin-Wigner function on site b is then given by Wb:

Wb(θ, ϕ) =
∣∣∣Tr [ρbssκ(θ, ϕ)]∣∣∣2 (4.90)

κ(θ, ϕ) = |θ, ϕ⟩ ⟨θ, ϕ| (4.91)

|θ, ϕ⟩ = cos2s(θ/2)exp
[
tan(θ/2)exp(iϕ)S−] |↑⟩ . (4.92)

Here ρbss is the partial density matrix of site b. κ(θ, ϕ) is the spin-coherent state density

matrix parametrized by spherical angles. As the spin has a fixed length, the radius was

taken to be constant and omitted. The spin-coherent state itself is given by the last

expression. In Fig. 4.14 the results of full scans over θ and ϕ has been plotted onto

sphere for the normal phase (a), the LMG phase of site b (b) as well as the bistable

phase (b). The liens in red show sample mean-field trajectories. In all cases we see

excellent agreement of the center of the spin-wigner function and the fixed-point or

the centres of the limit cycles respectively. This agreement between the full quantum

simulation and the mean-field results gives us confidence that the conclusions drawn

from mean-field are really there in the full quantum dynamics.

4.5 Summary and Outlook

In this part of the thesis we discussed the competition of equilibrium and dissipative

phenomena in the context of a collective spin-dimer. We found that the PT -symmetry

breaking phase transitions occur between phases with a unique steady-state and a

phase of vanishing expectation values. The parameter which drives the system across

this transition is the coupling strength, which mixes the states of the two spins.

We began our investigation with a detailed discussion of the phase diagrams of

the individual models, namely the LMG-model of Eq. 4.1 as well as the PT -model of

Eq. 3.1. We choose the open LMG model for its symmetry breaking phase transition

which is directly connected to an equilibrium phase transition. The PT -model was

chosen for its well understood PT -symmetry breaking phase transition, which is a
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purely non-equilibrium phenomenon.

Using linear stability analysis we developed a first phase diagram, which separates

phases by the number of stable states. We find two different, linearly stable phases

and one large phase of no stable solutions. The linearly stable phases are the normal

phase, in which the only stable solution is the state dictated by the Lindblad operators

as well as the LMG phases. The LMG phases are technically two different phases as

the either the dissipative or the driven state becomes critical, while the other remains

the in normal state.

As part of a closer investigation of the mean-field trajectories we compared parame-

ter scans across the phase diagram with results from the full quantum model. We found

the full quantum model to overall converge well towards the mean-field predictions.

We also found that the scans possessed more structure than the linear stability phase

diagram would suggest. Closer investigation of the mean-field trajectories revealed

that the picture was more complicated than linear-stability suggested. We found that

between the LMG phase and the phase of zero stable solutions is not a PT -symmetry

breaking phase transition but a first-order phase transition from two fixed points to

two stable limit cycles. We further found another second-order phase transition which

restores the original Z2-symmetry of the normal state. This monocyclic phase finally

transitions into PT -symmetric state.

This suggests that a PT -symmetry breaking phase transition is generally preceded

by a phase with a unique steady-state. As of yet, this is a conjecture and we have not

yet found a rigorous proof.

Finally, we used spin-Wigner functions to compare the mean-field predictions to

quasi-probability functions of the full spin systems. We found that the trajectories

either converge or encircle the regions of highest probability density.

Possible avenues of future research include working out the precise mechanics of

the PT -symmetry breaking transition. Furthermore, one could attempt to find a

generalization of the symmetry conditions of PT -symmetry breaking to Zn which

include possible generalization of the T -symmetry.
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Chapter 5

Introduction

5.1 Review of Numerical Methods

In this part of the thesis we will discuss a neural quantum state for non-equilibrium

steady states which we developed in Ref. [5]. Similar to the previous part, our discussion

will come in three parts. In this chapter we will discuss the context of our research

as well as review the relevant literature. Ch. 6 will then focus on the the concrete

ansatz we propose as well as its shortcomings and how we handle them. It will derive

and discuss two optimization schemes, one could use and discuss the MCMC method,

which is necessary to estimate the gradient of the cost with respect to the network

parameters.

In the previous part of the thesis we investigated a PT -symmetric LMG-dimer.

We found that the competition of equilibrium-connected phenomena, like the LMG-

transition, as well as purely dissipative effects such as the PT -symmetry breaking

transition, leads to a rich phase diagram. One of the reasons we chose the LMG-

dimer was its accessibility to analytic methods like the mean-field approximation, and

the subsequent numerical integration of just six equations of motion. Furthermore,

the linear scaling of the state space with the size of the spin made exact numerical

simulations of comparatively large spins possible.

These large spin-sizes and small spatial dimensions are the crux of the matter

though. In the case of the LMG model we have a single degree of freedom, but as
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soon as we go to larger models we run into an exponentially scaling state space. This

is even worse in open quantum systems where the state is given by a density matrix

which grows as the square of the Hilbert space of the equilibrium model. Naturally,

this drastically limits the size of systems that are accessible to numerical simulations

and makes it very difficult to make concrete statements about which phases are stable

in the thermodynamic limit of most systems.

Luckily, nature is local. As a consequence, while the state space might grow expo-

nentially fast, few of those states contribute with a finite weight to the groundstate of

equilibrium systems or the steady states of open quantum systems, see Refs. [67, 103].

This fact allowed the emergence of two rough categories of approaches to emerge.

One set is stochastic in nature and uses the fact that the weights with which each

state contributes can be regarded as a probability. These probabilities can be used to

generate configurations either directly or as a Markov chain, see Ch. 6, and arrive at

an approximation of the ground- or steady state distribution. Generally, all of that is

necessary for this is knowledge of a function which is proportional to the true probability

distribution. This set of methods consists of the many different Monte Carlo methods

which have been developed since as early as the 1930s by Fermi [104]. The other set

attempts to compress the state by filtering out the most important basis states, i.e.

those which contribute with the greatest weight. The most important methods of this

class are based on tensor networks.

Both types of algorithms are concerned with finding an accurate and efficient way to

represent the problem using a smaller space of parameters. One does so stochastically

by moving through configuration space and spending more time in high-weight regions.

The other does so by fixing a number of parameters and optimizing them such that

the ansatz minimises the systems energy. A method which bridges the apparent gap

between stochastic methods and compression methods is called Variational Monte Carlo

(VMC). In VMC one defines an “ansatz” or “trial” wavefunction, which parametrises

the true wavefunction in some way. By expanding the energy in terms of this ansatz

wavefunction, one can cast it into a form which can be estimated via Markov Chain

Monte Carlo (MCMC). Similarly, one can estimate the gradient of the energy with
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respect to the ansatz parameters with Monte Carlo. This allows for very straightforward

optimisation of the ground- or steady state distribution. The expanded energy looks

like

Eα =
∑
s

[
|Ψα(s)|2

|Ψα|2
×
∑
s′

⟨s|H|s′⟩Ψα(s
′)

Ψα(s)

]
, (5.1)

where s and s′ run over all possible basis states and were introduced in the expansion of

the energy expectation value. Here Ψα is an ansatz parametrized by a set of parameters

α. The first factor on the right-hand-side defines a probability distribution over the

basis configurations:

p(s) =
|Ψα(s)|2

|Ψα|2
, (5.2)

while the second factor is called the “local energy”:

Eloc(s) =
∑
s′

⟨s|H|s′⟩Ψα(s
′)

Ψα(s)
. (5.3)

By drawing samples from the unknown probability distribution via MCMC, one can

estimate the energy as a simple average over the samples, see Ch. 6 and Refs. [16,105,

106]. The quality of convergence critically depends on the quality of trial wavefunction,

i.e. the closer the parameter structure of the ansatz function the easier and better

the overall convergence. One such ansatz wavefunction was recently proposed by the

authors of Ref. [17]. Their proposed ansatz is called Neural Quantum States (NQS)

and is based on the ability of Neural Networks (NN) to efficiently represent complex

probability distributions. It further uses their non-local nature to efficiently encode

long range correlations. It has shown great promise in both 1D and 2D equilibrium

systems and some attempts at extensions to non-equilibrium steady state (NESS) have

been made. This part of the thesis is concerned with developing and benchmarking an

ansatz density matrix for a NESS. It makes use of the Choi-isomorphism which has

already been used by the authores of Ref. [19]. Similar to vectorized density matrices

in MPS the proposed ansatz is not generally physical. As we will see in Ch. 6 and

Ch. 7, it nevertheless converges towards a physical NESS in all cases and outperforms

the Neural Density Machine (NDM) ansatz, which was the state-of-the art NESS NQS
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at the time of writing.

Now we have a rough overview of some of the most widely used methods in the

context of this thesis as well as our goal. We will spend the next few paragraphs briefly

going into more detail on Monte Carlo and Tensor network methods and elucidate their

strengths and weaknesses and where our ansatz fits in. In the next chapter we will give

a technical introduction to our ansatz as well as an explanation of why and how it can

find a physical steady state even though it is neither Hermitian nor positive.

The first set of methods we have to discuss are the stochastic Monte Carlo methods.

In the previous part of the thesis we already encountered two examples of Monte Carlo

implementations. The first was the groundstate Monte Carlo method we used for the 2D

classical Ising model, where we started from a “cold” state and randomly flipped spins

until we reached the ground state configuration, see Ch. 2. The second implementation

were the quantum trajectories we used to approximate the steadystate density matrix.

At each time step we flipped a weighted coin and decided either to evolve it coherently

or perform a quantum jump. Performed over enough trajectories the estimate will

become exact, see the Ch. 3 as well as Refs. [27, 68,69].

The precursor of modern Monte Carlo was first developed and used by Enrico Fermi

in the 1930s. It was later extended by Ulam and von Neumann while they were working

at Los Alamos. Ref. [104] contains a summary of the history of the method. Since

its inception Monte Carlo has been widely used to solve integrals [107], optimization

problems, or to generate samples from an unknown probability distribution [108, 109].

All of these applications make use of an underlying probability distribution in one way

or another. Integration techniques for example often use the ratio of some trial space to

the value of the integral. Probably the most famous example of this is the calculation

of π. One takes a quarter circle confined to a box and randomly generates dots in the

total space. As N → ∞ the ratio of dots inside the circle to the dots outside the circle

will approach π/4, see [110] for an excellent introduction to Monte Carlo methods.

Drawing samples from an unknown porbability distribution is the application that

is most relevant to this thesis. It is incredibly useful when one cannot normalise their

wavefunction due to the sheer size of the state space but still requires an estimate
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of distribution of the basis states in the ground state or steady state. The standard

algorithm for this is called “Markov Chain Monte Carlo” (MCMC), see Ch. 6 and

in particular Ref. [16] for a detailed discussion of the algorithm, its history and its

convergence properties.

MCMC and in particular the Metropolis-Hastings algorithm have found many ap-

plications, from finding the ground state of the Ising model at different tempertures, see

Ch. 2, over the estimation of spin-glass states [111–113], to the estimation of expectation

values and gradients, see for example Ch. 6 and Ref. [16] for the general derivation as

well as Ch. 7 and Ref. [5, 17] for concrete applications.

In particular the authors of [111] proposed an interesting extension of the MCMC

algorithm, which proves very useful. In their proposal several Markov chains at different

“temperatures” run in parallel and exchange samples at set steps in the optimization.

The “temperature” in this case is a factor which scales the acceptance probability of

samples. Low temperatures strongly favouring low-energy configurations, while high

temperature chains will scan large areas of configuration space. This has the effect

that main Markov chain will more likely find the global energy minimum more reliably.

This has been successfully applied to spin glasses [111], correlated electronic structure

problems [114] and the 1D Hubbard model [115], among others. For a detailed review

see Ref. [116].

5.2 Matrix Product States and Tensor Networks

In the last section we briefly discussed the most widely regarded family of stochastic

methods. We will now turn our attention towards compression algorithms and specifi-

cally Tensor Networks.

One of the most powerful compression algorithms for 1D quantum states are Matrix

Product States (MPS) [117]. They are derived by considering the set of expansion

parameters of an arbitrary wavefunction as a tensor.

|Ψ⟩ =
∑
{ϕi}

Ψϕ1ϕ2...ϕN
|ϕ1 . . . ϕN ⟩ (5.4)
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Here ϕi denotes one of D local physical states. This tensor is the iteratively broken

apart into a product of smaller tensor via a single value decomposition:

Ψϕ1ϕ2...ϕN
= Ψϕ1,(ϕ2,...ϕN ) =

∑
a1

Aϕ1
1,a1

Σa1,a1(V
∗)a1,(ϕ2...ϕN ) (5.5)

≡
∑
a1

Aϕ1
1,a1

Ψa1ϕ2...ϕN
(5.6)

Here, Aϕ1
1,a1

represents the state of site 1 and its correlations with the rest of the chain.

Note that A not only has a physical index ϕ1 but also so called bond-indices a1, which

store a sites correlations with the rest of the chain. After the full tensor has been

completely broken apart the final MPS reads:

|Ψ⟩ =
∑
{ϕi}

∑
{ai}

Aϕ1
1,a1

Aϕ2
a1,a2 . . . A

ϕN−1
aN−2,aN−1A

ϕN
aN−1,1

|ϕ1 . . . ϕN ⟩ . (5.7)

The total dimension of these auxiliary indices is called the bond dimension and it

determines the total correlation capacity of the states. The original state can be

reconstructed by contracting i.e. summing over bond indices:

Ca,c =
∑
b

Aa,bBb,c. (5.8)

This example shows simple matrix multiplication. Two matrices share an index, b.

Once that is contracted, the remaining matrix is indexed by a and c. An equally

important example is that of an expectation value:

D =
∑
a,b

AaBa,bCb. (5.9)

After this contraction no index is left, which means the result must be a scalar. This is

exact and can represent any state in the Hilbert space as long as the size of these bond

dimensions grow exponentially. Fig. 5.1 shows a graphical representation of an MPS

(a). The physical indices ϕi are represented by the horizontal lines, whereas the bond

indices ai are represented by the vertical lines. The colored circles represent the tensors
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Figure 5.1: This figure shows three diagrammatic representation of a matrix product
state (a), a matrix product operator (b) as well as of an expectation value (c). The
horizontal lines are called “legs” and represent the physical indices ϕi as well as their
conjugates ϕ′i, whereas the vertical lines represent the bond indices ai. The expectation
value is calculated by contracting, i.e. summing over all shared indices.

which describe the states of the sites Aϕi
ai−1,ai . Fig. 5.1(c) shows diagrammatically how

an expectation value can be calculated. After physical indices are connected to a

corresponding local operator all indices are summed over, i.e. “contracted”.

The SVD decomposes a matrix M into singluar values as well as left and right

singular vectors. The singular values correspond to the importance or weight with

which each singular vector contributes to the original matrix. Hence, the main use

of the SVD step is to make a low-rank approximation [66, 67, 118], i.e. find a smaller

matrix M̄ which nevertheless contains most of the important information of the original

matrix. As this happens during the break up of the wavefunction, this is a very simple

and highly efficient way of compressing the exponentially large wavefunction. This way

of compressing the state leads to a so-called truncation error.

Operators can be decomposed in a similar fashion, except they will have two

physical indices instead of one. They can be connected to MPS by contracting the

shared physical index. This allows one to calculate expectation values. For MPS

one can always find so-called canonical forms, which make contracting and calculating

expectation values very straight forward [66,67].

MPS turned out to be the theoretical foundation of the Density Matrix Renormal-

ization Group algorithm (DMRG). A very powerful groundstate algorithm proposed

in the 1990s, see Ref. [64]. A time evolution method based on a Trotter-Suzuki
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decomposition [119] was developed in 2004, called the Time Evolving Block Decimation

(TEBD), see Ref. [65]. It decomposes a global time evolution operator into a product

of local time evolution operators which act only on two neighbouring sites:

e−iH∆t = e−ih1∆t/2 . . . e−ihN−1∆t/2e−ihN−1∆t/2 . . . e−ih1∆t/2 +O(∆t3). (5.10)

The operators hi are called bond-gates and are defined to act on the sites connected by

the ith bond, i.e. i and i+ 1 in the case of a chain. Each bond hi is acted upon twice,

once sweeping forward along the chain and once backward. In addition to the truncation

error above it adds the Trotter Error which stems from the approximate decomposition

of the time evolution operator. We must note here that coherent evolution drives up the

entanglement, which generally limits the time one can evolve an MPS. Both methods

have extensions to the thermodynamic limit, see [120] for iDMRG and [121] for iTEBD.

Over the years MPS have proven to be exceptionally powerful and efficient when

it comes to accuracy and speed. They are, however, not without flaws. For one, the

truncation error limits it to low-entangled states. Highly entangled states require a large

bond-dimension which causes the method to become inefficient. Furthermore, the way

they are decomposed makes handling long-ranged Hamiltonians cumbersome during

TEBD. While these Hamiltonians can be handled via so-called swap-gates, their states

tend to exhibit a larger entanglement. Generally, they are best suited for representing

short-range 1D, gapped Hamiltonians [66, 67]. The entanglement of low-energy states

of such Hamiltonians has been proven to follow a so called area-law [122–124], i.e. it

grows with the area between two subsystems instead of their volume.

The extension to two and higher spatial dimensions is called Projected Entangled

Pair States (PEPS), see Ref. [125]. To truncate the tensor of PEPS in the context of

real or imaginary time evolution there are two proposed truncation schemes. After a

time step the bond dimension will have increased. The simple update scheme (SU) [126]

will truncate it “locally”, i.e. simply cut it back to the bond dimension using SVD.

The “full update” scheme (FU) [127] instead takes the entire wavefunction into account

when choosing which singular values to neglect. This is optimal yet very costly.
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PEPS have certain issues that MPS do not have. For one they do not allow for an

exact canonical form, which makes calculations of expectations values and entanglement

spectra more difficult. Furthermore, exact contractions of PEPS is always exponential-

ly costly in systems size [67, 128]. For both issues approximate methods have been

developed, see Ref. [67] and the references therein. Nevertheless, PEPS are severely

limited compared to their 1D counterparts.

As we have discussed in Part I and the introduction to this part, we are interested

in investigating the NESS of open quantum systems. As we have seen in Ch. 2 this

generally involves density matrices or, using the Choi isomorphism [19], density kets.

These scale much worse than pure states, exacerbating the need for efficient numerical

methods. An issue we have in open quantum systems which does not exist in this form

in equilibrium systems is that the NESS is the end-point of a time-evolution. As we

have seen in Ch. 3 the Liouvillian contains both coherent and incoherent parts. The

first will generally increase the entanglement while the incoherent part will drive the

system into a steady-state. If the dissipation is weak, the system will pass through a

high-entanglement region before a NESS is reached, which will inevitably rake up a

large truncation error or blow up the bond dimension. In either case, this renders the

weak-dissipation limit difficult to access with these methods.

In the previous section we have seen that MPS have proven to be extremely effective

at representing groundstates in equilibrium systems. Here we will discuss various

methods which have since been put forward to extend them to open systems. For

a more detailed discussion see Ref. [77].

One of the first methods put forward areMatrix Product Density Operators (MPDOs),

see Ref. [129]. Similar to MPS they decompose the tensor of coefficients of the full

density matrix as a product of tensors. Each tensor represents then the mixed state

of a site as well as the correlations with the rest of the chain. This MPDO can be

written in terms of a pure state by employing the local purification method described

in Ref. [130].

Purification is a method which relates a mixed state on a Hilbert space to a pure
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state on a larger Hilbert space. It uses the Schmidt decomposition of pure states

|Ψ⟩ =
∑
i

si |Ai⟩ ⊗ |Bi⟩ (5.11)

which writes a pure state as a tensor product of the states of two subsystems of the

total system. Ai and Bi are the ith Schmidt basis vectors of subsystem A and B

respectively. si is the ith expansion coefficient. Consider now a mixed state whose

eigen-decomposition is known

ρ =
∑
i

pi |ϕi⟩ ⟨ϕi| . (5.12)

By adding so called auxiliary sites aj we can artificially enlarge the Hilbert space in

which the physical state lives and define the following pure state using the Schmidt

decomposition:

|ψ⟩ =
∑
j

√
pj |ϕj⟩ ⊗ |aj⟩ . (5.13)

The original density matrix can be easily recovered by tracing out the virtual sites:

ρ = Tra [|ψ⟩ ⟨ψ|] (5.14)

= Tra

∑
ij

√
pi
√
pj |ϕi⟩ ⟨ϕj | ⊗ |ai⟩ ⟨aj |

 (5.15)

=
∑
i

pi |ϕi⟩ ⟨ϕi| . (5.16)

The resulting state can then be time evolved using the TEBD algorithm, where any

operator only acts on the physical sites. The virtual sites are left untouched by any

operation and exist only to enlarge the Hilbert space. Note, that the decomposition of

a physical density matrix guarantees that MPDOs are physical themselves.

A method presented in [19] makes use of the Choi-Isomorphism instead of a local

purification. This relates a matrix to a vector

ρ = |ψ⟩ ⊗ ⟨ψ| → |ρ⟩⟩ = |ψ⟩ ⊗ |ψ⟩ . (5.17)
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This is a simple way of making the density matrix representable as an MPS and open

it TEBD. However, this does not guarantee a physical density matrix across the entire

evolution. As long as the time evolution is governed by a Liouvillian, this should still

lead to a physical NESS. This is similar to the approach we took in Ch. 6 and Ch. 7.

An alternative approach was taken by the authors of [131]. They used that the

operator H̃ = L†L is hermitian and that the ground state is equal to the NESS of L.

This opens H̃ up to variational approaches which targets the groundstate directly. This

was later extended to infinite chains in [132]. An issue with this is that while L might

be strictly local in its interactions, L†L will be highly non-local. In addition to this

issue, if L has small eigenvalues close to a transition, then L†L will have even smaller

eigenvalues, effectively leaving some states extremely long-lived. This might make a

treatment more cumbersome. See for this the discussion in Ref. [133].

The first foray into 2D open quantum systems in the thermodynamic limit was

done by the authors of [134]. Similarly to the authors of Ref. [19] they made use of

the Choi-Isomorphism. For the time-evolution they employ the SU proposed in [126].

For the efficient evaluation of observables they employed the corner transfer matrix

method outlined in Ref. [135]. The authors discuss the shortcomings of time-evolution

for finding the NESS in the context of PEPS. As mentioned above, coherent time

evolution causes the entanglement to increase, which limits the time one can evolve.

This limits the method to strong dissipations. The authors suggest that one could evolve

to the NESS in a strong dissipation limit and use the resulting state as the initial state

at slightly weaker dissipations to reach sensible NESS in the weak dissipation limit.

It was pointed out by the authors of [133] that SU is not optimal. While it reaches

a fixed point for a wide range of parameters, this point might go unstable if the bond

dimension is reached. Furthermore, there are parameter ranges where no NESS is ever

found. The authors believe, that there is a bond dimension for which SU will produce

sensible NESS, but they were not able to find it.

A different approach was taken by the authors of Ref. [136]. They too vectorize

the density matrix and do a full time integration using TEBD. The main difference

to [134] lies in the update scheme used to truncate the bond dimension. While [134]
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employs simple updates and truncates locally, the authors of Ref. [136] use a full update

scheme adapted from Ref. [137]. The corner transfer matrix method they employ

follows Ref. [138]. The authors were able to show that the full updates allow for

much better convergence, albeit at a much higher numerical cost. In particular a

strong and moderate damping they see excellent or good convergence towards. In the

weak dissipation limit the results are excellent for small times and begin to diverge at

longer times, as expected from an entanglement-limited method. This is a non-trivial

limitation as the Lindblad master equation is derived explicitly in the limit of weak

dissipation. This restricts the applicability of this class of methods to problems where

large dissipations can be justified. Overall, tensor network methods remain unbeaten

in one spatial dimension but tend to suffer in two and higher dimensions as well as for

long range interacting problems.

As we have mentioned above, recently a new class of ansatz wavefunction for VMC

was proposed by Carleo and Troyer [17, 139]. This class of ansatz wavefunctions is

based on neural networks and their exceptional capacity to extract the most relevant

features of a given set of data. Already in their seminal paper they showed that their

ansatz beat PEPS in a 10×10 AF Heisenberg model in accuracy. A few attempts have

since been made at defining a positive-hermitian Neural Quantum State (NQS) ansatz

for NESS density matrices. The ansatz we proposed in [5] and which we will discuss

further in the following chapters will forgo physicality constraints in favour of efficiency.

In the following sections we will give a brief overview of the equilibrium and open

quantum system NQS ansatze in 1D and 2D in a similar fashion to MPS and PEPS

above. We will discuss their strengths and weaknesses and attempt to elucidate where

our ansatz fits into this picture.

5.3 Neural Network Quantum States

In recent years Neural Networks have found broad applications in a variety of fields and

many different architectures have been developed. Several of these architectures have

since found applications in physics as Neural Quantum States (NQS). Before moving
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h1 h2 h3

s1 s2 s3

b1 b2 b3

a1 a2 a3

W1,1

Figure 5.2: This figure shows a schematic representation of the RBM architecture.
RBMs are bipartite networks consisting of hidden units denoted by h1 and visible units
denoted by si and represented by the blue and green circles respectively. Each unit has
a bias denoted as bi for the hidden biases and ai for the visible biases. The ith visible
unit and the jth hidden unit are connected by a weight Wi,j . The weights and biases
of the network are the parameters of the network which will be optimized to represent
some probability distribution.

on to NQS, we briefly introduce some neural network nomenclature. Generally, neural

networks consist of various layers of nodes or units, which are connected via links. Each

node and link has an associated parameter. The node-parameter are called “biases”,

while the link-parameter are called ”weights”. Layers which are used to provide input or

which provide an output are dubbed “visible”, while all other layers are called “hidden”.

The architecture which is probably simplest and most widely used are the so-called

Restricted Boltzmann Machines (RBMs) [17, 139–142]. RBMs consist of one visible

and one hidden layer with no intra-layer connections, see Fig. 5.2 for a schematic.

The units of the visible layer correspond to the physical degrees of freedom s, whereas

the “hidden” are artificial helper nodes h. These nodes can take two different but

arbitrary values. This is sometimes referred to as “labelling freedom”. The inter-layer

connections can be either dense, i.e. each hidden node is connected to each visible

node, or sparse.

Classically, the parameters α of an RBM are real-valued. They infer a probability
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distribution over the input samples

Pα(v⃗, h⃗) =
e(−Eα(s⃗,⃗h))

Zα
(5.18)

Zα =
∑
s,h

e(−Eα(s⃗,⃗h)), (5.19)

by minimizing a free-energy like quantity:

Eα(s⃗, h⃗) =
∑
j

ajsj +
∑
i

bihi +
∑
ij

Wijhisj . (5.20)

Here, α stands for the network parameters (weights and biases), sj denotes the state

of the jth visible unit (up, down; 0,1). This can for example be used in recommender

systems, where each sample represents a person and each input represents, say, a movie

they like sj = 1, dislike sj = 0, or have not seen yet si = −1. The latter is not a viable

input value and merely tells the program to ignore that node in the evaluation. In

such an inference step one would first calculate the conditional activation of the hidden

nodes depending on the input, while ignoring si = −1

p(⃗h|s⃗) =
∏
j

p(⃗hj |s⃗), (5.21)

and from that hidden vector the conditional activation of the visible nodes

p(s⃗|⃗h) =
∏
k

p(s⃗k |⃗h). (5.22)

This yields a new vector s̃ in which previously unseen movies si = −1 are now either

marked as probably disliked si = 0 or as probably liked si = 1. The probability with

which each is flipped, can be used to rank the recommendations. While we do not

much care about movie recommendations, the ability of learning and inferring from a

probability distribution is exactly what a numerical ansatz for a wave-function needs

to do. This, their simplicity and their obvious ties to two coupled classical Ising chains,

has led to RBMs to be chosen as the first Neural Quantum State (NQS) in 2017 [17].
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We now know understand the basic structure and classical uses of RBMs. In the

following few paragraphs we will discuss how to use them as neural quantum states.

What we wish an NQS to learn is the probability distribution over the basis states

within the ground-state. Taking inspiration from the classical RBM we can identify

Pα(s, h) → Ψα(s, h). We are however interested in the marginal probability distribution

which only depends on s. Hence we define the following ansatz wave-function:

Ψα(s) =
∑
{hi}

e
∑

j ajsj+
∑

i bihi+
∑

ij Wijhisj . (5.23)

Here {hi} denotes the set of all hidden units and sj denotes the spin-component in

z-direction of the jth spin. Hence, s is some spin-configuration in the z-basis. As

before each visible unit can only take two values and we have to make a choice on

basis. The sum then runs over both values each hidden unit can take. We can use the

labelling-freedom of RBMs and choose for the hidden units hi = ±1. This allows us to

perform the sum explicitly and simplify the expression:

Ψα(s) = e
∑

j ajsj ×
M∏
i=1

2 cosh

bi +∑
j

wijsj

 . (5.24)

This wave function ansatz now allows us to define an energy which we can later

minimize. As the network now represents an actual physical quantity, the energy is no

longer something abstract, but the actual physical energy:

Eα =
⟨Ψα|H |Ψα⟩

|Ψα|2
. (5.25)

This is not an expression which is of much use to us. To reach an expression we can
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easily handle, on a configuration-to-configuration basis, we need to do a little algebra:

Eα =
1

|Ψα|2
∑
s,s′

Ψ∗
α(s)Ψα(s

′)⟨s|H|s′⟩ (5.26)

=
1

|Ψα|2
∑
s,s′

|Ψα(s)|2Ψα(s
′)

Ψα(s)
⟨s|H|s′⟩ (5.27)

=
∑
s

[
|Ψα(s)|2

|Ψα|2
×
∑
s′

⟨s|H|s′⟩Ψα(s
′)

Ψα(s)

]
(5.28)

=
∑
s

p(s;α)× Eloc(s;α). (5.29)

With this we have two expressions, which can be calculated for an individual spin-

configuration. As we will see, this will come in handy during training, when we generate

configurations, or samples, using Monte Carlo, see 6.4 for the detailed algorithm. Here,

p(s;α) defines the probability distribution over the sample space. The so-called “local

energy” is defined by

Eloc(s;α) =
∑
s′

⟨s|H|s′⟩Ψα(s
′)

Ψα(s)
. (5.30)

The sum runs over states which are connected via the Hamiltonian. As long as the

Hamiltonian is sparse, i.e. local in its interactions, this can be evaluated very efficiently.

A difference to the classical RBM, which we have not yet discussed, is that the wave

function has both a probability amplitude as well as a phase. To be a proper ansatz

wave function, the RBM needs to learn both. There are broadly speaking two ways of

handling this. Either one has two separate networks which learn the different parts, or

one employs complex parameters. Both ways have been discussed in the literature and

successfully implemented, see Refs. [17, 21, 143]. We will make use of complex-valued

parameters.

There are several important reasons for the wide use of RBMs. For one, and

this cannot be overstated, they are exceedingly simple and easy to implement. The

logarithmic derivative, which plays an important role in the optimization of the varia-

tional energy Eq. 5.1, can be calculated analytically and hard-coded, see Ch. 6. This

makes for a very efficient calculation of the derivatives. Furthermore, they are very
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well understood in terms of tensor network theory. In particular [18,141] have worked

out under which circumstances RBMs can be mapped unto MPS and vice versa. This

allowed them to find upper bounds of the RBMs entanglement capacity. They could

show that sparse RBMs follow a similar area-law as MPS, while dense RBMs follow

indeed a volume-law. This opens up a large class of states to numerical studies

that were not accessible by TNs before. For further studies into the expressivity of

NQS see Refs. [144, 145], and for discussion of a correspondence of deep learning and

the renormalization group see Ref. [146]. In contrast to Recurrent Neural Networks

(RNNs) for example, RBMs are amenable to simple symmetrization which increases

their performance drastically, see Ref. [143] for a detailed discussion of the comparison

as well as Ref. [147] for discussion of possible symmetrization strategies for RNNs.

RBMs have been successfully used to study the groundstate of the 1D Transverse Field

Ising model (TFI) as well as the 2D Heisenberg model [17]. Further studies include

quenched TFIs [148] as well as the J1−J2-model [149]. A recent publication by Ciuti et

al. discusses possible ways of doing accurate time evolution with autoregressive models,

see Ref. [150]. This could be of interest when one were to consider RNNs as candidates

for an open-system density matrix.

Another architecture which has found some application as a NQS are the afore-

mentioned RNNs, see Refs. [147, 151–154]. RNNs belong to the class of autoregressive

models. RBMs and other “feed-forward” type models take as input a configuration and

provide as output the complex amplitude Ψα(s). A RNN on the other hand recurrently

builds a configuration from scratch as

Ψα(s⃗) = Ψα(s1)×Ψα(s2|s1)× · · · ×Ψα(sN |s1, s2, ..., sN−1), (5.31)

by feeding the configuration and the state of the hidden units back into itself. This

allows one to draw independent samples from the overall probability distribution without

resorting to MCMC. As well discussed in Ref. [143] this has the advantage of not having

to care about autocorrelation times, however, it is also not parallelizable in a similar

fashion as MCMC. Furthermore, it is also not as amenable to symmetrization strategies
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as non-autoregressive models which can significantly hamper performance.

The last major class of NQSs we will discuss here are Convolutional Neural Networks

(CNNs), see Refs. [155–158]. CNNs use a set of convolutional filters on each layer

to better capture spatial correlations. The structure and process are explained in

Ref. [156]. The authors of Ref. [159] have shown that deep CNN are more efficient

at representing volume-law entangled states than shallow RBMs. CNNs have the

advantage of being a deep architecture by design, as seen in Ref. [141, 159] drastically

improves their entanglement capacity. As discussed in Ref. [156] the parameter structure

is also somewhat independent of input size. The authors use the same CNN for the

J1 − J2-model at various sizes. They mention that a well converged ansatz at smaller

size can help convergence at a larger size. As discussed by the authors of Ref. [143]

CNNs also appear to be suited for scaling to larger system sizes, due to the favourable

scaling of parameter number and evaluation cost in system size compared to RBMs

and RNNs. The main trade-off is that it is much more complex in structure and

implementation. Furthermore, while the number of parameters might remain constant

at increasing system size it could be overkill at smaller system sizes, drastically reducing

optimal convergence time.

NQS have also been used to study the dynamics and NESS of driven-dissipative

open quantum systems. In this section we will briefly discuss the three main ways this

has been attempted in the literature as well as their strengths and weaknesses. As

we have seen with TNs, open quantum systems pose a more complex challenge than

equilibrium systems. For one, we have both coherent and incoherent dynamics. We

also have that the system state is generally mixed and must be described by a positive-

semi definite and hermitian matrix with unit trace. Developing an ansatz which is

guaranteed to fulfil these physicality constraints is as difficult for NQS as it was TNs.

As far as we are aware, the only way of guaranteeing a physical density matrix at every

step of the optimization is some sort of purification scheme. These are similar to those

used previously with TNs and are based on the ansatz from Ref. [130].

Early ansatze sought to purify RBMs, see Refs. [21, 160–163]. All of them have

in common the use some additional hidden layer of auxiliary sites, which encode the
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systems entanglement with the environment. Tracing these auxiliary sites out then

leaves a mixed state. While they may differ in the exact details of the parameter

structure or protocols for restoring the system density matrix from the pure state, they

are ultimately quite similar in spirit and performance. In Ch. 7 we will use in particular

Ref. [21] as that ansatz is pre-implemented in the NetKet library [164].

More recently [165] proposed a purified deep autoregressive network. It has shown

an improved accuracy over the shallow networks, at the cost of higher complexity. As

an autoregressive network, special care needs to be taken when symmetrizing the state

if it is possible at all. This could diminish its scalability. Another extension on purified

RBMs are the purified CNNs of [166]. This ansatz’ parametrisation is scale invariant

and translational symmetry is easy to implement. It has been shown to improve upon

the results of Ref. [21] for a fifth of the parameters.

In particular the shallow ansatze suffer from their inability to represent mixed

product states without the use of hidden units. As we will see in Ch. 7, this drastically

reduces their correlation capacity and severely limits their ability to efficiently represent

stationary states for many models of interest.

Another very powerful ansatz, which nevertheless does not guarantee physicality,

involves the use of Positive Operator Valued Measures (POVMs), see Refs. [153, 167,

168]. The POVM formulation uses that given an informationally complete set of

measurement operators Ma, one can define a probability distribution over all possible

measurement outcomes.

P a = Tr (ρMa) . (5.32)

Here, for a single-spin POVM M = {Ma} is a positive semi-definite matrix with the

normalization
∑

aM
a = 1, [167]. The N -spin operator corresponding to a specific

measurement a = a1 · a2 . . . aN is then just the tensor product

Ma =Ma1 ⊗ · · · ⊗MaN . (5.33)
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Solving Eq. 5.32 for ρ yields

ρ = P a
(
T aa′

)−1
Ma, (5.34)

with T aa′
= Tr

(
MaMa′

)
[168]. One can now take the time derivative of Eq. 5.32.

Together with the Lindblad master equation Eq. 2.12 and Eq. 5.34 one then reaches a

master equation for P a:

Ṗ a = LabPb. (5.35)

This is the Lindblad master equation in terms of the measurement outcomes. It can

be split into a unitary Fab and a dissipative part Dab

Lab = Uab +Dab, (5.36)

where the unitary part is given by

Uab = Tr
(
−iH

[
T−1bb′

Mb′
,Mb

])
(5.37)

and the dissipative part by

Dab = Tr

(∑
k

AkT
−1bb′

Mb′
A†

kM
a − 1

2
{T−1bb′

Mb′
,Ma}

)
, (5.38)

see the supplementary material of Ref. [168]. The operators Ak are the Lindblad or

jump-operators. This equation has as its steady state the probability distribution which

with Eq. 5.34 leads to the stead-state density matrix. As P a is a probability distribution

itself, one can use any network architecture suited to learning probability distributions

to represent it. The authors of Ref. [168] have presented a time dependent variational

principle to solve Eq. 5.35. The main weakness they identify is the lack of guaranteed

positivity of their ansatz. The results however, speak for excellent expressibility of their

ansatz in the NESS.

An alternative route has been taken by the authors of Ref. [169]. Similar to the

authors of Ref. [19] 15 years before them they employed the Choi-Isomorphism to
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rewrite the density matrix as a density ket. Numerically the state is represented by

a RBM with one additional “fictitious” unit per visible unit which takes care of the

additional two local basis states. Similar to the TN case, this approach does not

guarantee physicality. To work around this, the authors use that L†L is a hermitian

operator whose groundstate, |ρ0⟩⟩ corresponds to the NESS of L,

Lρ0 = 0. (5.39)

They then use an ordinary variational approach to target the groundstate of hermitian

operator. This approach has several issues however. The first is the use of the hermitian

operator L†L. As discussed previously, while L might be sparse, the number of non-

zero elements of L†L grows approximately quadratically in system size and possesses

long-range interactions. This increases both memory and computation cost.

5.4 Liouville Density Machines

In the last section we have discussed various approach of representing the NESS of

a Lindbladian system as a NQS. A common issue we encountered is the waste of

correlation capacity on uncorrelated states. In the purified ansatze an additional layer

of hidden units is introduced to incorporate the mixedness. In the ansatz of Ref. [169]

part of the mixedness was taken care of by the incorporation of a second unit per

spin. To represent arbitrary mixed product states, correlations between these units

were required however.

This issue is what we attempt to iterate upon in our publication Ref. [5]. Our

ansatz is based on the insight of the authors of Ref. [20]. They developed an extension

of RBMs to three possible input values and showed that it was the most compact

representation possible. We used this insight to develop an RBM ansatz that makes

full use of the Choi-Isomorphism and lives entirely in Liouville space. Our ansatz makes

full use of the advantages of a dense RBM, i.e. volume-law capacity, labelling freedom

and analytical gradients without having to use hidden units, i.e. correlation capacity,

on product states.
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In Ch. 6 we will explain the architecture in more detail, as well as how and why we

can find the steady-state despite having a technically non-physical ansatz. In Ch. 7 we

will present and discuss our results and discuss possible avenues for improvement.
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LDM Theory

In the previous chapter we have discussed various different approaches to numerical

simulations of correlated many-body systems as well as their advantages and disadvan-

tages. A method which is of particular interest to us is Variational Monte Carlo (VMC).

In VMC one defines an ansatz or trial wave function whose number of parameters grows

polynomial in system size. These parameters are then iteratively updated until the

ansatz represents a target state with the desired accuracy. A class of ansatz functions

which has been proposed recently are based on neural networks, and most importantly

the Restricted Boltzmann Machine (RBMs). In this chapter we propose and discuss an

extension to RBMs which targets the non-equilibrium steady state of open quantum

systems. We will build upon our previous of Sec. 5.3 and discuss how such an RBM can

be used to find the ground state using stochastic gradient descent in Sec. 6.1. In Sec. 6.2

we will introduce our ansatz. In Sec. 6.3 we discuss the Stochastic Reconfiguration, an

extension of stochastic gradient descent which will help us to reliably reach the steady-

state with our ansatz. Finally, in Sec. 6.4 we discuss the Markov chain Monte Carlo

method we have briefly mentioned in Ch. 5 in more detail and provide pseudocode for

a simple implementation.
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6.1 Ground State Algorithm

In Sec. 5.3 we have discussed various possible neural quantum state ansatze with a

particular focus on RBMs. We have introduced the general architecture as well as how

it can be used to represent a quantum state. We have, however glanced over one of the

central aspects of neural networks: the optimisation. Training a neural network often

entails the minimisation of some cost function. Classically, cost functions are functions

which measure the distance of the network’s prediction from some the ground truth,

i.e the expected outcome, in the case of the supervised learning, or from the original

input in the case of unsupervised learning. Here, supervised learning means that a set

of labelled data exists. The network will then be trained to align its own output given

some input data with the corresponding label. In unsupervised learning the data is not

labelled and the network attempts to find patterns and fit probability distributions by

mimicking the input data, i.e. the parameters are optimized such, that the output of

the network is as close to the input as possible. This is usually done by minimizing

some sort of cost or energy function.

In the case of neural network quantum states the physical energy plays the role

of the cost function. In this section we will briefly explain how to find the ground

state of a complex-valued NQS. This algorithm is very similar to how we will find the

steady-state and there is merit in explaining it here first.

As we have seen above, the energy for some set of parameters is given by

Eα =
∑
s

p(s;α)× Eloc(s;α). (6.1)

To understand how to minimize this it is illustrative to think of the energy as the height

of hilly landscape and the parameters as coordinates. The gradient, i.e. the derivative

of the energy with respect to its parameters is the vector which points in the direction

of the steepest ascent.

f(α) = ∇Eα (6.2)

If we were to follow the gradient, i.e. add it to the parameters, we would be sure to
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move towards the nearest peak of the landscape. Similarly, we move in the opposite

direction, we are sure to move away from the peak and towards some minimum

α′ = α− ηf(α), (6.3)

where η is the “learning rate”. It determines how far we follow the gradient. If η is

small we are most likely to always follow the optimal route down the energy landscape,

but it will likely take a long time to converge. On the other hand, if η is very large,

one is more likely to overshoot in a certain direction, i.e. actually go up in energy. If

the path down the energy landscape is reasonably flat, this can speed up convergence.

This idea is called gradient descent. There are a few issues with this. For one, we are

taking the derivative of a real-valued-complex-parametrised function. To do that, we

will make use of the so-called “Wirtinger” calculus. Another issue is the usual “curse

of dimensionality”, i.e. the Hilbert space grows exponentially in systems size. This

means that calculating the normalization of the probability distribution in Eq. 5.29

is impossible. Local minima are another issue. They can cause Stochastic Gradient

Descent (SGD) to get stuck at suboptimal solutions. Lastly, we don’t know yet what

the gradient actually looks like.

6.1.1 Wirtinger Calculus:

Wirtinger Calculus as we employ it here has been thoroughly discussed in the Ref. [170]

and we will merely give a very brief introduction to the idea. Generally, any function

of a complex variable z can be written as

f(z) = u(x, y) + iv(x, y), (6.4)

where z = x+iy. Complex functions are said to be holomorphic if they are differentiable

in the complex plane, i.e. when they fulfil the Cauchy-Riemann equations. As f(z) is

strictly real in the case of a cost function, it cannot be holomorphic. i.e. no complex

derivative exists. What Wirtinger now used was that one can treat a real-valued

function f : R2 → R2 (R) in the complex plane by introducing conjugate coordinate
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z∗ = x − iy to z = x + iy. This allows us to do a coordinate transformation from

(x, y) → (z, z∗) and f(x, y) → f(z, z∗) by calculating the inverse relations x = (z+z∗)/2

and y = −(z− z∗)/2. With this we can then write the complex derivative of f(z, z∗) as

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
(6.5)

∂f

∂z∗
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (6.6)

Eq. 6.5 is now the complex derivative we have been looking for. Concretely, we have

f(z) = Eα, where α is a vector of complex parameters. Hence, whenever we write

something like ∂Eα/∂αi it is

∂E

∂αi
=

1

2

(
∂E

∂R(αi)
− i

∂E

∂I(αi)

)
, (6.7)

that we implement numerically.

6.1.2 Gradient Descent

Now that we have a notion of what it means to take the complex derivative of a non-

holomorphic function, let us move on to the remaining two issues: The exponentially

large state space and the concrete expression of the derivative of the energy with respect

to the parameters α.

The expression of the derivative is independent of the concrete variational ansatz

and has been derived in Ch.6.3 of [16]. Here we just give a summary of the key steps

without going into great detail. We begin with the formal expression for the gradients

fi =
∂Eα

∂αi
=

∂

∂αi

⟨Ψα|H |Ψα⟩
|Ψα|2

. (6.8)

and note that the parameter dependence lies wholly with the state Ψα. By introducing

the logarithmic derivative

Oi(s) =
1

Ψα(s)

∂Ψα(s)

∂αi
, (6.9)

125



Chapter 6. LDM Theory

we can write a small variation of the state as

|Ψα+δαi
⟩ = (1 + δαiOi) |Ψα⟩+O(δα2

i ). (6.10)

As a next step we define a normalised wave-function:

|ν0,α⟩ =
|Ψα⟩
||Ψα||

, (6.11)

and a set of states orthogonal to it:

|νi,α⟩ = (Oi − Ōi) |ν0,α⟩ , (6.12)

with Ōi = ⟨ν0,α|Oi |ν0,α⟩. Next we work out the normalised state with varied parameters:

|ν0,α+δαi
⟩ =

(
1 + I(δαiŌi)

)
|ν0,α⟩+ δαi |νi,α⟩+O(δα2

i ). (6.13)

With this the derivative formally becomes:

∂E

∂αi
= limδαi→0

⟨ν0,α+δαi
|H |ν0,α+δαi

⟩ − ⟨ν0,α|H |ν0,α⟩
δαi

(6.14)

= 2R
(
⟨Ψα|H(Oi − Ōi) |Ψα⟩

||Ψα||

)
. (6.15)

Using the usual resolution of identity 1 =
∑

s |s⟩ ⟨s| we are left with:

fi = −2R

(∑
s

p(s;α)E∗
loc(s;α)(Oi(s)− Ōi)

)
. (6.16)

This is a closed expression for the gradient of a variational energy, which is fully

independent from the parameter-structure of the underlying ansatz. In the case of

RBMs the Oi can be calculated analytically. This allows one, in principle, to evaluate

this expression quite easily numerically. However, the sum in Eq. 6.16, the sum in the

local energy in Eq. 5.30, and the normalization of the probability run over all states

in state space. This is the aforementioned curse of dimensionality, which for larger

systems, renders the expression entirely intractable.
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The way around this is to use a Markov Chain Monte Carlo approach to draw

N random samples from the probability distribution p(s;α). See Sec. 6.4 for an

explanation of the algorithm we use. Using this algorithm we have a number of samples

which approximate the underlying probability distribution. This allows us to estimate

the necessary expectation values in Eq. 6.16 by simply averaging over the samples. The

samples are drawn proportional to the underlying distribution. In the limit of N → ∞

the distribution will be reproduced exactly and the method becomes exact. Hence, by

increasing the number of samples one can increase the accuracy. This comes at the cost

of increasing computation time, however.

fi = −2R

(
1

N

N∑
n=1

E∗
loc(sn;α)(Oi(sn)− Ōn)

)
(6.17)

Ōi ≈
1

N

N∑
n=1

Oi(sn) (6.18)

Since we are no longer averaging over all possible configurations, but only over a handful

of high-probability samples, this derivative is inherently stochastic in nature. Hence,

why the optimization algorithm is called Stochastic Gradient Descent.

6.2 Liouville Density Machines for Open Quantum Systems

6.2.1 Lindbladian Dynamics in Liouville Space

As we have seen in Part I of this thesis, the presence of an external environment

fundamentally changes the nature of the dynamics of a quantum system. The state

is no longer captured by a wavefunction and the non-unitary dynamics cannot be

described by the Schrödinger equation. Instead, the natural description is in terms of a

reduced density operator for the system, ρ, and a master equation which defines its time

evolution. This then allows for energy dissipation, decoherence and, most importantly

for the present manuscript, the relaxation into a non-equilibrium steady-state in the

long time limit.

If the coupling to the environment is weak and structureless, one can assume that
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system-induced correlations within the bath decay faster than the effects of the bath on

the system. This leads to the particularly simple Lindblad master equation of Eq. 2.12.

As we have seen the time evolution of the density operator is then governed by the

formal expression

ρ(t) = eLtρ(0), (6.19)

such that in the long time limit the stationary state satisfies

lim
t→∞

Lρ(t) = 0. (6.20)

To simplify what follows both mathematically and numerically we recast Eq. (2.12)

in Liouville space (sometimes also referred to as Choi’s space). In this space the density

matrix is reshaped into a vector,

ρ =
∑
m

∑
n

ρm,n |m⟩ ⟨n| → |ρ⟩⟩ =
∑
m,n

ρm,n |m,n⟩⟩. (6.21)

Here the density matrix is expanded in the basis {|m⟩} with expansion coefficients ρm,n.

The double-ket notation, |·⟩⟩, used above denotes a vectorized operator which lives in a

Hilbert space consisting of two copies of the original, |ρ⟩⟩ ∈ H ⊗H. As we will discuss

below, this allows us to cast the Lindblad master equation in a simpler form which allows

us to use “simple” linear algebra methods to solve it. Then superoperators which act

on these operator-kets are elements of Liouville space L ∈ (H⊗H)∗⊗ (H⊗H) [40,169].

Here we often abbreviate the double index (m,n) with a single index s which runs over

the ket- and bra-indices of the density matrix
∑

m,n ρm,n |m,n⟩⟩ ≡
∑

s ρ(s) |s⟩⟩. With

this Eq. (2.12) now reads:

d

dt
|ρ⟩⟩ = L |ρ⟩⟩. (6.22)
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where

L =− i
(
H ⊗ 1− 1⊗HT

)
(6.23)

+
∑
k

[
Ak ⊗A∗

k −
1

2

(
1⊗ (A†

kAk)
T + (A†

kAk)⊗ 1

)]
(6.24)

is the matrix form of the superoperator L that acts from the left on a density-ket, |ρ⟩⟩.

This then allows us to use standard linear algebra results to find the eigenvalues and

eigenkets of the matrix L, such that

L |ρi⟩⟩ = λi |ρi⟩⟩. (6.25)

A stationary state has λi = 0 while all other states have R(λi) < 0.

As we have seen above, the size of the required Liouville space scales much more

quickly than the already exponentially growing Hilbert space. For example, for spin-

1/2 lattice problems, the state vector of a closed system grows as O(2N ), with the

system size N . The density matrix, on the other hand, grows as O(4N ) and hence

the Liouvillian has up to O(16N ) elements which limits the size of accessible systems

even further. In the following sections we will detail how we use the NQS approaches

outlined above to make progress on these problems.

6.2.2 Finding the Steady State

We will now discuss how we will find the steady-state. Many routes to accessing larger

system sizes with numerical simulations are variational methods [77,103]. For example,

tensor network methods [19] can be seen as variationally finding the steady-state by

optimizing over the set of states captured by a given tensor network architecture, while

corner space RG [70] optimizes a particular (small) set of basis states which can be

used to build up to larger system sizes, see also Ch. 5 for a more in-depth discussion

these methods. As we will see later, neural network techniques make use of the same

underlying mathematical structures. Crucial to these methods is the use an ansatz

function which specifies the full state with a finite number of parameters, which we

denote by α. We may then write ρ(s; t) → ρα(s; t) and optimize over α, to find the
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closest representation of the steady-state within this class. For this approach to be an

efficient solution, the number of parameters must grow at most polynomially with the

system size.

To find the steady-state, limt→∞ ρ(t) ≡ ρss, we require a cost function which

measures how close the ansatz is to the true stationary density operator. To do this

we make use of the fact that L |ρss⟩⟩ = 0 and that for all other states this quantity

is finite. This gives us a cost function to optimize as well as a metric for how well

the variational state parametrizes the true steady-state. The cost function we wish to

optimize is given by the quantity

|Cα|2 =
∣∣∣∣⟨⟨ρα|L|ρα⟩⟩⟨⟨ρα|ρα⟩⟩

∣∣∣∣2 , (6.26)

this uniquely vanishes in the steady-state. Note that the vectors appearing above are

in Liouville space, hence the denominator involves the sum over all elements of the

density matrix ⟨⟨ρα|ρα⟩⟩ =
∑

s |ρα(s)|2. Expanding this cost function yields a form

that can easily evaluated via Markov chain Monte Carlo

Cα =
⟨⟨ρα|L|ρα⟩⟩
⟨⟨ρα|ρα⟩⟩

(6.27)

=
1∑

s′ |ρα(s′)|2
∑
s,s′

ρ∗α(s)ρα(s
′)⟨⟨s|L|s′⟩⟩ (6.28)

=
1∑

s′ |ρα(s′)|2
∑
s,s′

|ρα(s)|2ρα(s′)
ρα(s)

⟨⟨s|L|s′⟩⟩ (6.29)

=
∑
s

p(s;α)Cloc(s;α), (6.30)

where

p(s;α) =
|ρα(s)|2∑
s′ |ρα(s′)|2

, (6.31)

defines a probability distribution over the entire density matrix which we can draw

samples from. The local cost associated to each element of this distribution is then
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Cloc(s;α) =
∑
s′

⟨⟨s|L|s′⟩⟩ρα(s
′)

ρα(s)
. (6.32)

Here we split the cost function into a probability distribution as well as a “local cost”

in a similar fashion to the groundstate example above. The states s′ which connect

via the matrix element of the Liouvillian to the original state s are generated during

the Metropolis-Hastings step and can be accessed at any later stage of the process, see

Sec. 6.4 for details on the algorithm used. Since, for a local Liouvillian, the number of

non-zero elements grows only polynomially in system size, the evaluation of the matrix

elements of L can also be done efficiently. The samples we draw follow the distribution

p(s;α), and so the cost can be calculated as a simple mean over the local costs [16]

Cα ≈ 1

Ns

∑
s

Cloc(s;α), (6.33)

where Ns is the number of samples and the sum runs over the Monte Carlo samples.

Along with an estimate for the cost function we also need a way of updating the

parameters, α such that the state we find is optimised. The simplest way to do this

is via stochastic gradient descent (SGD), where the gradients of Cα are also estimated

with the Monte Carlo samples and at each step in the simulation the parameters are

updated according to Eq. 6.3. There are several problems with this approach, e.g. it

has been shown [171] that SGD has severe problems with steep energy surfaces. The

main problem for the present case is that L also has a left eigenstate with eigenvalue 0,

⟨⟨T|L = 0. (6.34)

This is the trace-state which is defined as

⟨⟨T|ρ⟩⟩ = Tr [ρ] , (6.35)

and since the dynamics of any physical master equation is necessarily trace preserving

we find the result above. This means that there is another state which optimizes
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the cost function. A solution to both of these problems is to instead use Stochastic

Reconfiguration (SR) [16,171] to update the parameters.

6.3 Stochastic Reconfiguration

The stochastic reconfiguration can be derived by asking which parameter update γ,

α→ α′ = α+ ηγ, (6.36)

best approximates a step in real time. Here, η is the learning rate we have used before

in SGD and γ is the vector which contains the individual parameter updates. Since the

trace state cannot be found by a real-time evolution generated by L this guarantees that

we will find the correct steady-state when optimizing the cost, Eq. (6.26). Furthermore,

SR takes into account the curvature of the energy landscape, speeding up the optimization

on flat areas and slowing down in the presence of strong curvature. The derivation of

the SR update in this section is based on the ones found in Refs. [16, 171, 172]. We

recommend especially [16] for various additional ways of deriving SR and Ref. [171] for

an in-depth discussion of the properties of the quantum Fisher matrix which plays an

important role in SR.

Consider an ansatz function |ρα⟩ with variational parameters α. For the derivation,

we assume that the ansatz is normalised: ||ρα||2 = ⟨ρα|ρα⟩ = 1. We can use this to

define a semi-orthogonal basis consisting of |ρi=0,α⟩ = |ρα⟩, the ansatz function, as well

as its derivatives

|ρi,α⟩ = (Oi − ⟨Oi⟩) |ρ0,α⟩ , (6.37)

where ⟨Oi⟩ = ⟨ρ0,α|Oi |ρ0,α⟩ and Oi is the logarithmic derivative operator Oi(s) =

1
ρα(s)

∂
∂αi
ρα(s). A variation by a small parameter shift γ then yields:

|ρα+γ⟩ ≈
Np∑
i=0

γi |ρi,α⟩ , (6.38)
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where Np runs over all parameters and γi is the update to the ith parameter. Let us

now suppose we are given some Liouvillian L, then real-time evolution over some small

time-step δt is given by e−δtL |ρα⟩. Expanding this around a small time-step yields

e−δtL |ρ0,α⟩ ≈ (1− δtL) |ρ0,α⟩ . (6.39)

We now have:

|ρα+γ⟩ ≈
Np∑
i=0

γi |ρi,α⟩ (6.40)

|ρ̃0,α⟩ ≈ (1− δtL) |ρ0,α⟩ . (6.41)

The idea is now to project both sides into the non-orthogonal basis and ask, under

which conditions they become equal [172]:

⟨ρi,α|ρ̃0,α⟩ = ⟨ρi,α|ρα+γ⟩ (6.42)

⇒ ⟨ρi,α|(1− δtL) |ρ0,α⟩ = ⟨ρi,α|
Np∑
j=0

γj |ρj,α⟩ (6.43)

⇒ −δt⟨ρi,α|L |ρ0,α⟩ =
Np∑
j=1

γj⟨ρi,α|ρj,α⟩ (6.44)

(6.45)

The left-hand side now reads

−δt⟨ρ0,α|(O∗
i − ⟨O∗

i ⟩)L |ρ0,α⟩ = −δt(⟨O∗
iL⟩ − ⟨O∗

i ⟩⟨L⟩), (6.46)

while the right-hand side reads
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Np∑
j=1

γj⟨ρ0,α|(O∗
i − ⟨O∗

i ⟩)(Oj − ⟨Oj⟩)ρ0,α⟩ (6.47)

Np∑
j=1

γj(⟨O∗
iOj⟩ − ⟨O∗

i ⟩⟨Oj⟩) (6.48)

Equating both sides yields:

−δt(⟨O∗
iL⟩ − ⟨O∗

i ⟩⟨L⟩) =
Np∑
j=1

γj(⟨O∗
iOj⟩ − ⟨O∗

i ⟩⟨Oj⟩). (6.49)

Identifying the forces fi = ⟨O∗
iL⟩ − ⟨O∗

i ⟩⟨L⟩ and the quantum Fisher matrix Si,j =

⟨O∗
iOj⟩ − ⟨O∗

i ⟩⟨Oj⟩ we can write this more succinctly

−δtf = Sγ, (6.50)

where we identify the learning rate η = δt. The solution of this system of linear

equations γ are the parameter updates which most closely resemble a step in real-time

of size δt. The matrix S is defined to be positive, however when estimating it via Monte

Carlo sampling, it can happen that some eigenvalues vanish and S becomes singular.

One can work around this problem by either calculating the pseudo-inverse or adding

a small regularization, λ ≈ 10−3, to the diagonal. We employ the latter method here.

With this the parameter update becomes

γ = −δt (S + λ)−1 f. (6.51)

As discussed, updating the parameters like this will guarantee that we find the

correct steady state in the long time limit, which also fixes any possible issues arising

from local minima. The Fisher matrix can be regarded as something akin to a metric

tensor, see Ref. [171], which contains information of the curvature of the cost landscape.

Dividing by its inverse as the effect of accelerating the learning in flat areas, where

other solvers might get stuck as well as treading more carefully in the vicinity of large

curvature, where other solvers might overshoot.
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Figure 6.1: The plot shows the convergence behaviour of SGD and SR towards the
groundstate energy of a 1D Heisenberg model with 20 sites. The learning rate was
chosen to be η = 0.001, while the diagonal shift of the SR was chosen to be λ = 0.1,
see Sec. 6.3 for an introduction to Stochastic Reconfiguration.

For an example convergence plot see Fig. 6.1. It shows the convergence towards the

groundstate energy of a 20 site 1D-Heisenberg model with J = 1. It compares SGD

with the SR. We choose a symmetrized RBM as implemented in NetKet [164]. We see

that while SGD does get close to the minimum reached by SR, the convergence is much

less stable. This is one of the reasons why we use the SR algorithm for this kind of

optimisation problem.

6.4 Markov Chain Monte Carlo Sampling

In the previous section we have discussed a powerful extension of the SGD, which

will allow us to reliably find the correct steady-state. Similar to SGD, stochastic

reconfiguration requires expectation values which in turn require sums over an ex-

ponentially fast growing state space. In this section we will discuss a way of mitigating

this issue.

Since the size of the required state space grows exponentially fast with the system
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size, it quickly becomes impossible to calculate expectation values and gradients exactly.

This requires us to draw sample states from the total space in a way that follows the

true probability distribution parametrized by the variational ansatz.

The algorithm we employ to generate the samples is the Metropolis-Hastings algo-

rithm. It can be used to draw samples from an unknown distribution, as long as we

have a function which is at least proportional to that distribution. We achieve this by

realizing that the relative probability of two configurations, p(s′)/p(s), is independent

of the exact normalization of the distribution. This means, that if p(s′)/p(s) > 1, the

we know immediately that p(s′) > p(s), i.e. s′ has a higher probability. We can use

this to iteratively generate a new sample from a previous one, by flipping a spin, for

example. In this way a Markov Chain of samples is created that can be used to estimate

expectations and gradients.

In the following paragraphs we will discuss the algorithm in a bit more detail. We

will do so for a spin-1/2 groundstate model for the sake of simplicity. Everything

generalises to larger local dimensions without issue. Let Ψα(x) be the function that

is proportional to the desired distribution |Ψα|2. Further, let Q(x|y) = Q(y|x) be the

symmetric, conditional probability that determines the jumps. In the literature this

is often referred to as the trial probability. Note, that we will never use an explicit

expression for Q(x|y). In case of flipping one random spin, the probability to flip any

spin is always 1/N independent of the current configuration. Hence, Q(x|y) = Q(y|x)

is trivially fulfilled.

Generating a new sample We begin with discussing again how a sample is generated

and what is ultimately added to the chain. Suppose we are given a configuration s of N

spins. In the Z-basis this is an array of 0′s and 1′s denoting the up- and down-state of

each spin respectively. The first step will be to randomly determine one of those spins

as the one to flip. In a next step we compare the probabilities of the two configurations.

If the new one is more probable, we will always accept it. Otherwise, we accept it with

a probability equal to the ratio. If the new configuration is rejected, we add the old

configuration to the chain again.
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1: function GenerateSample (Ψα(), s)

2: L = len(s)

3: i = randint((1, L))

4: s′ = copy(s)

5: s′[i] = (s′[i] + 1)%2

6: if random(0, 1) < abs
(
Ψα(s′)
Ψα(s)

)2
then

7: return s′, Ψα(s
′)

8: else

9: return s, Ψα(s)

10: end if

11: end function.

Initial Sample, Burn In and Sweeps We will now discuss how to initialize the

Markov chain. A possibility is to generate some random configuration. An issue with

this is that a randomly chosen initial configuration is unlikely to lie within the equilib-

rium probability distribution of the Markov process. This may add some finite weight

to configuration which would otherwise not be part of the equilibrium distribution.

The solutions is a so called burn-in. One generates a number of samples using the

above procedure and keeps the last as the initial configuration for the Markov chain.

Sometimes, this process is also called a sweep. The idea behind this is that any Markov

process which fulfils ergodicity and detailed balance will necessarily thermalize after a

number of steps and only samples with a finite weight are left.

1: function Sweep (Ψα(), Nb, s)

2: for i = 1 to Nb do

3: s, p = GenerateSample(Ψα(), s)

4: end for

5: return s, p

6: end function.

A further issue with the Markov Chain Monte Carlo algorithm is that neighbouring

samples aren’t independent from one another and the chain is strongly autocorrelated.
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This has the effect of skewing the estimated probability distribution and all derived

expectation values. Luckily, the correlation time and the thermalization time coincide,

see Ch. 3.8 of Ref. [16]. Hence, one can simply generate Nb samples at each step and

only add the last one to the chain.

Markov Chain Monte Carlo With this we have all the necessary ingredients for

the full algorithm. We begin by generating a random configuration. As discussed this is

very likely to be a vanishing-weight configuration, so we perform a burn-in. This yields

a configuration which lies somewhere in the equilibrium distribution of the Markov

chain, i.e has a finite contribution to the state parametrized by α. We add this as the

first configuration to the Markov Chain, and save the state in a separate one. Both the

configurations and states can then later be used to calculate expectation values and

gradients. We then repeat the process for Ns times.

1: function MCMC (Ψα(), L,Ns,Nb)

2: s0 = randint((0, 1), size = L)

3: ConfigChain = array((Ns,L)) ▷ Stores the Configurations

4: StateChain = array(Ns) ▷ Stores the States

5: ConfigChain[1, :], StateChain[1] = Sweep(Ψα(), Nb, s0)

6: for i = 2 to Ns do

7: ConfigChain[i, :], StateChain[i] = Sweep(Ψα(), Nb,ConfigChain[i− 1, :])

8: end for

9: return ConfigChain, StateChain

10: end function.

In this chapter we discussed RBMs and how they can be used as neural quantum

states. We introduced the basics of the Wirtinger calculus as a means to deal with

complex-valued networks. We further introduced the Liouville Density Machines ansatz

for the stead-states of open quantum systems. We further discussed possible issue that

may arise on the way towards the steady-state and how to mitigate them via Stochastic

Reconfiguration. Finally, we discussed Markov Chain Monte Carlo sampling and its

pitfalls.
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In Ch. 7 we will see how this machinery performs when compared to the Quantum

Trajectories method introduced in Ch. 3, Matrix Product States as well as the Neural

Density Machines we have discussed in Ch. 5.
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Results

In Ch. 5 we discussed the theoretical context of our methods and how it fits in between

tensor network based methods and other neural quantum state based methods. In Ch. 6

we then proposed a novel ansatz to represent the steady-state of open quantum systems

as well as how to optimize it. The proposed LDMs are highly compact representations of

non-equilibrium steady states (NESS). They make full use of the volume-law correlation

capacity of RBMs without having to sacrifice capacity to represent mixedness, see Ch. 5.

In this chapter we wish to investigate the convergence properties of LDMs as well as

benchmark them against various other methods. We will begin with the transverse-field

Ising model with longitudinal dissipation of Eq. 7.1 for different system sizes in Sec. 7.1.

For this model we will also investigate how the state approaches physicality, i.e. how the

positivity and hermiticity evolve as the optimisation progresses. In Sec. 7.2 we will look

at a transverse-field Ising model with transverse dissipation, i.e. the Hamiltonian has

been rotated around the Y -axis, while the original dissipation has remained invariant.

This has the effect that the dissipation no longer breaks the Z2-symmetry of the Hamil-

tonian, which suggests that it is possible that the model undergoes a second-order phase

transition in the thermodynamic limit. This naturally leads to an increased correlation

content in the states, which makes it much more difficult, albeit more interesting, than

the original model. To better understand the performance of our ansatz we compare it

with MPS and Neural Density Machines (NDMs) at each step. Finally, in Sec. 7.3 we

will have a brief look at the total information content of the steady states of each model.
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Figure 7.1: Properties of the state obtained by using SR at three different values of h
and J/γ = 2. We used 4500 samples, a learning rate of η = 10−2 and a regularization of
λ = 10−2. Panel (a) shows the real part of the minimum eigenvalue of the full density
matrix obtained from the LDM. In (b) we show the sum of the absolute value of the
imaginary parts of the eigenvalues of the density matrix. Panel (c) gives the fidelity of
the ansatz with the exact density matrix.

To this end we will look at the purity as a stand in for the von Neumann entropy as

well as the negativity as a measure for the entanglement content. Large parts of this

chapter, including figures, captions and text are taken without explicit citation from

our own paper [5].

7.1 Transverse Field Ising Model

To benchmark and understand the strengths and limitations of the LDM ansatz we

study the stationary state of the 1D dissipative transverse-field Ising (TFI) model [10,

21, 51, 153, 169, 173]. The system consists of a chain of spin-1/2 particles. The Hamil-

tonian part of the evolution is governed by

H =
J

4

N−1∑
i

σzi σ
z
i+1 +

h

2

N∑
i

σxi . (7.1)
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Here, N is the number of sites, σ are the usual Pauli matrices, J is the interaction

strength and h is the strength of the transverse field. The dissipation is governed by

excitation loss on each site, so the jump operators which appear in the Liouvillian of

Eq. 2.12 are Ai = σ−i . We choose the units of the interaction and field such that the

dissipation strength is γ = 1. In all calculations that follow we set the interaction

strength to J/γ = 2 to be able to compare with the results from Ref. [21].

The steady-state of this model then has simple solutions in two limiting cases.

When h→ 0 the dissipation dominates the dynamics and the stationary state is a pure

product-state with all the spins pointing down

lim
h→0

ρss =
N⊗

|↓⟩ ⟨↓| . (7.2)

This follows easily from the commutation of ρss with the Hamiltonian and the fact that

σ− |↓⟩ = 0, i.e. the steady-state is the dark state of the dissipators. In the opposite

limit where h → ∞ there is only competition between the local onsite field and the

dissipation and so the steady-state ends up again as a product-state, but this time the

state on each site is mixed

lim
h→∞

ρss =

N⊗ 1

2
(|↑⟩ ⟨↑|+ |↓⟩ ⟨↓|) . (7.3)

At intermediate values of h the steady-state interpolates between these two, building

up complex long range classical and quantum correlations.

To test that the state we obtain is physical, we construct the full density matrix

from the LDM. In the top panel of Fig. 7.1 we show how the real part of the smallest

eigenvalue of this constructed density matrix evolves. For a randomly initiated state

the minimum eigenvalue is negative, which indicates a non-physical density matrix.

However, as the optimisation goes on the minimum eigenvalues become closer to 0 or

positive, indicating that the final density matrix is positive semi-definite.

The middle panel of this figure shows the imaginary parts of all eigenvalues. They

are quickly suppressed as the stochastic reconfiguration leads the ansatz towards the

true steady-state. This, together with the positive-semi-definiteness of the ansatz in
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(a)

(b)

(c)

(d)

Figure 7.2: Comparison of the steady-state of Eq. (7.1) using both the NDM and LDM
approaches. The system size, N = 6, is small enough that exact diagonalization is
possible. (a) The expectation value of σxi as a function of h. (b) The expectation value
of the σzi σ

z
i+1 correlation function. In both cases the expectation value is taken on the

central site(s). The blue lines show the exact result, the NDM with β = 1 is green,
the LDM with β = 1(2) is orange (red). (c) The absolute value squared of the cost
function in Eq. 6.26 for the two LDM results. (d) The expectation value ⟨L†L⟩ used as
a cost function for the NDM ansatz employed by NetKet. For both cases with β = 1 we
used 4500 samples and optimized for 1000 steps with a learning rate of η = 10−2 and
a regularization of λ = 10−2, for the expectation values we used 500 diagonal samples.
In the β = 2 case we used 6000 samples and 2000 steps and 800 diagonal samples. The
other meta parameters were the same in both cases.

the steady-state, shows that we are able to reach the physical NESS of the system. In

Fig. 7.1(c) we compare the fidelity of the ansatz with the exact steady-state. We see

that, as we will see in the results of Fig. 7.2, the fidelity is highest in the cases where

the transverse field strength is either very large or very small and the fidelity is lowest

where the steady state has large entanglement around h = γ. A fidelity F > 1 can be

explained with the imaginary parts of the eigenvalues.

We will now compare the results of the LDM ansatz to those obtained using the

NDM approach as implemented in the NetKet library [164]. For small system sizes

we will also be able to compare to results obtained from exact diagonalization, these

are calculated using QuTIP [174]. As a first example we look at the case of a small
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system with N = 6. Our findings are summarised in Fig. 7.2. In each case we

randomly initialise the parameter values and at each step we take Monte Carlo samples

to approximate the cost function

|C(α)|2 =
∣∣∣∣⟨⟨ρα|L|ρα⟩⟩⟨⟨ρα|ρα⟩⟩

∣∣∣∣2 , (7.4)

and the best updates to the parameters. At the end of each run we produce a new

Markov chain, but this time sample from a probability distribution which follows the

diagonal of the density matrix. This allows us to estimate the expectation value of

observables of interest. Since there are fewer diagonal states than entries in the full

density matrix we usually only need about 500-800 diagonal samples.

In panels (a)–(b) of Fig. 7.2 we show the expectation value of σxi on the central

site and the σzi σ
z
i+1 correlation function on the central pair of sites as a function of

the field strength, h. This gives a good indication of how well the various approaches

are able to produce single site observables. We see that, in general, there is good

agreement between the exact results and those obtained using both the LDM and

NDM approaches. In all cases the agreement is worst in the central region where

1 ≤ h/γ ≤ 2.5, which is in agreement with the results of Ref. [21]. For the LDM a

hidden unit density of β = 1 corresponds to 132 parameters for the NDM this is 174

parameters. We see that even with only 3/4 of the parameters the LDM generally gives

as good or better results than the NDM. By increasing the number of hidden units in

the LDM we also increase the number of parameters so that, at β = 2, there are 246

parameters. We see that for the LDM ansatz increasing the value of β and hence the

number of parameters used is able to significantly decrease the deviation from the exact

result, thus we may use the hidden unit density as a way of checking for convergence

when exact results are no longer possible. We can also see this effect more clearly in

Fig. 7.2(c) and (d) where we show the Monte Carlo estimated cost function for each

ansatz. The value of the cost function is significantly decreased at all values of h when

β is increased. We also see that for the LDM ansatz the cost function is at a maximum

in the regions where the convergence to the steady-state is worst, this allows us to use

this estimate to again judge the accuracy of our results for system sizes where exact
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(a)

(b)

Figure 7.3: Convergence of the LDM ansatz for two different hidden unit densities.
Panel (a) shows the running estimate for the cost function while panel (b) is the variance
in the same quantity. Increasing the hidden unit density improves the accuracy of the
results. Both calculations were done at h/γ = 1 using the same parameters as Fig. 7.2.

methods are unavailable. This is not true of the NDM approach where the cost function

reaches a maximum at intermediate values of h and does not significantly decrease as

h increases further. The ill convergence of the NDM is because the mixed product

state, described in Eq. (7.3), is not so easy to represent in a purification ansatz. Such

a mixed state requires a large amount of entanglement between the real and auxiliary

spins. The LDM approach on the other hand can represent this state exactly without

using hidden units, which makes convergence easier.

In Fig. 7.3 we show how the cost function of the LDM evolves for two different

values of β over 6000 steps at one of the most difficult points, h = γ. By increasing

the number of variational parameters from 132 to 246 we were able to reduce the cost

function by an order of magnitude. We also see that simply checking the value of the

cost function does not give an accurate stopping condition for the algorithm. After

around 1400 steps the cost function for β = 2 is very small but the variance is quite

large. This means that the LDM has not found an eigenstate of the Liouvillian but is

still giving a small value for the cost function. We propose that a condition based on a

combination of both of these quantities can give a good way to automatically stop the
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h/

(a)

(b)

(c)

(d)

Figure 7.4: Steady-state of Eq. (7.1) as a function of field strength for a system size
N = 16. The expectation value of σxi and σzi σ

z
i+1 on the central site(s) are shown in

panels (a)–(b) and the relevant cost functions in panels (c)–(d). Results are compared
to those obtained from MPS simulations.

learning process when a good approximation to the steady-state has been reached.

We now go on to examine how the accuracy of these approaches scales to larger

system sizes. At N = 16 it becomes difficult to use exact methods to compare against,

however this model is straightforward to solve with MPS simulations which we found

to be fully converged for a bond-dimension of χ = 7. Results of these calculations are

shown in Fig. 7.4. We used β = 1.4 in the case of LDM and β = 1 for the NDM

to ensure that both approaches use a similar number of parameters. The NDM has

1104 parameters, while the LDM has 1126. For reference, a bond dimension of χ = 7

corresponds to 1952 matrix elements in the MPS. We evolved for 7000 steps with a

learning rate of η = 10−3 and a regularization of λ = 3× 10−3. We used 9000 samples

as well as 800 diagonal samples to estimate the expectation values. We see very similar

behaviour to the N = 6 case, both approaches are more difficult to converge in the

region of intermediate h/γ and the cost function for the LDM has a peak in this region.

In Fig. 7.5 we show how the convergence can again be improved by increasing the

hidden unit density. Here we choose h = 2γ as this is the point where the convergence
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(a)

(b)

Figure 7.5: Improvement of convergence as a function of β for the N = 16 TFI model
at h = 2γ. In (a) we show the σxi σ

x
i+1 correlation function and in panel (b) the estimate

for the cost function. All calculations ran for 7000 steps. To accommodate for higher
parameter counts we increased the number of samples with β from 9000 at β = 1 to
17000 at β = 2. Other parameters are the same as in Fig. 7.4.

is worst. We see that as β is increased the cost function decreases towards zero and the

expectation value moves towards that found in the MPS simulation. The expectation

value here is a two-point correlation function which, in general, are harder to converge

than single-site operators.

In this section we saw that, while the LDM ansatz forgoes explicit physicality

constraints throughout its optimisation, the use of Stochastic Reconfiguration enforces

the correct, physical steady-state. We also benchmarked the LDM ansatz vs NDM and

MPS in the context of the transverse-field Ising model with longitudinal dissipation.

We found that it presents an improvement over the NDM ansatz, in particular in the

intermediate regime of 1 ≤ h/γ ≤ 2.5. This improvement becomes more pronounced

as the number of sites increases.

7.2 Rotated TFI

We will now move on to the the rotated transverse-field Ising model. As discussed above,

we reach this model by rotating the Hamiltonian around the Y -axis, while keeping the
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(a)

(b)

(c)

(d)

Figure 7.6: Optimizing the rotated TFI model as in Eq. 7.5 for N = 6. The exact
results are in blue, those obtained with the LDM are orange and the NDM in green.
Different hidden unit densities are shown by different line-styles. In panel (a) we give
the steady-state expectation value of σzi and in (b) we show the two-point correlation
function ⟨σzi σzi+1⟩. Panels (c) and (d) show the relevant cost functions for each ansatz.

dissipation fixed [10,173,175]

H =
J

4

N−1∑
i=0

σxi σ
x
i+1 +

h

2

N∑
i=0

σzi . (7.5)

This has the result of making the convergence of both neural network approaches

considerably worse. In this case the dissipation does not explicitly break the Z2 symme-

try of the model as the interaction term is perpendicular to the dissipation. Therefore

the competition between the coherent and dissipative dynamics gives rise to complex

correlations in the steady-state. This leads to a very rich mean-field phase diagram

in high dimensions with possibilities for both first- and second-order phase transitions

between different magnetic orderings [51, 175, 176]. In 1D these phase transitions turn

into continuous crossovers, but complex correlations still build up when h ∼ J ∼ γ.

For a detailed review of the behaviour of this model in 1D see Ref. [10].
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In the last section we saw that the ansatz converges towards a physical state and

can be improved by increasing the number of parameters. We will therefore focus

our attention on the convergence of both the LDM and NDM approaches towards the

steady-state of this model. As we will see, obtaining convergence is much more difficult

for either ansatz and requires a higher degree of optimisation. We will therefore restrict

ourselves to a system size of N = 6. While small, this is sufficient to see the overall

differences in capabilities of the two ansatze. The results of our investigations are shown

in Fig. 7.6 for N = 6 sites. In all cases the optimisation was run for 4000 steps, with

a learning rate of η = 10−3 and 2000 diagonal samples to estimate the expectation

values. For β = 1 we used 4500 samples and a regularization of λ = 10−3. For β = 2

the number of samples was increased to 18000 and the regularization was 10−2.

In panels (a) and (b) of Fig. 7.6 we show how both a single site and two-site

observables varies with the applied field h. We see that even when using a large amount

of samples and parameters, the NDM ansatz is not able to find a good approximation

to the exact result, while the LDM is able to get much closer to the expected result,

especially at small and large values of h. We see that for both approaches the cost

function estimate is much larger than it was for the simpler model described by Eq. (7.1).

This is because the steady-state in this case has much more complex correlations than

in the previous model, simple expressions like those in Eqs. (7.2)–(7.3) are not available,

except at very large h→ ∞ where the steady-state is the same as given in Eq. (7.2). We

next go on to show how using measures of the entanglement found in the steady-state

can give good intuition for when these kinds of difficulties arise.

7.3 Entanglement Properties

One of the main reasons for the development of the LDM ansatz was the lack of a

thorough understanding of what class of states the NDM were well suited to represent.

From [10] we know that MPS are capable of representing the steady-state of Eq. 7.5

with a bond dimension of χ = 20 for N = 40. This suggests that a very compact

representation is possible. During preliminary investigations we found, however, that

NDM are incapable of representing the steady-states of this model efficiently. To
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(a)

(b)

Figure 7.7: (a) The steady-state entanglement negativity, defined in Eq. (7.6) and (b)
purity, P = Tr[ρ2], for the σxσx-model (red) and the σzσz-model (blue). Comparing
with the results of Figs. 7.2 and 7.6 we observe a correlation between a large negativity
and poor accuracy of the neural network.

further understand which classes of models the ansatze are well suited to represent,

we will investigate the entanglement present in the steady-states of both models over a

range of parameters. Contrary to pure states, quantifying the amount of correlations

that are present in a mixed state isn’t as simple as just calculating the entanglement

entropy between two halves of the system [177]. For our purposes we find that the

negativity [178,179]

N =
||ρTA || − 1

2
, (7.6)

provides a useful measure of the correlations which are difficult to represent using the

LDM approach described above. Here, ||ρTA || denotes the trace norm of the partially

transposed density matrix with the transpose taken over the degrees of freedom labeled

by A. This quantity gives a measure for the separability of a state. If two subsystems

are entangled, the partial transpose can lead to negative eigenvalues, which leads to a

trace norm greater than one and hence a non-zero negativity.
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Panel (a) of Fig. 7.7 shows the negativity for both models considered in this paper for

the three different possible bipartitions of a four-site system. In the case of the simpler

model in Eq. (7.1) with the σzσz interaction we see a clear peak in the negativity at

around h ∼ 0.9γ for all partitions and a fast decay to zero at values of h above and

below this point. This is because of the two limiting cases described in Eqs. (7.2)

and (7.3) which both have zero negativity. The peak corresponds well to the range of

h-values which were the the most difficult to find convergence with the neural networks.

In case of the more difficult model described in Eq. (7.5) with σxσx interactions we

see a much higher negativity across the whole range of values of h. This ties in well

with our experience that this model is much harder to properly converge using both

the LDM and NDM approaches across the board, with LDMs still converging much

better overall. We see that there is no region where the negativity reaches zero.

This model does not have a simple product state steady-state anywhere in the

observed parameter range, which suggests that LDMs are able to handle the higher

information content of the states more efficiently. These results are in line with what

we expected when we designed the ansatz following Ref. [20].

7.4 Conclusion and Outlook

In summary we have proposed a NNQS ansatz which compactly represents density

matrices in Liouville space, allowing us to find the steady-state of lattice models

described by a Markovian master equation. This LDM approach was shown to be

able to calculate the steady-state of a 1D open transverse field Ising model with 6 and

16 sites. The results were compared to the powerful NDM ansatz as implemented in

NetKet. We found that our approach is always able to reach a comparable accuracy

and in many cases is better able to find steady-state, especially when it contains a lot

of correlations. We were able to show that the accuracy of this approach is able to

be systematically improved by increasing the number of hidden units and hence free

parameters in the ansatz.

This permits a clear understanding of the class of states accessible to the LDM
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ansatz. As we show in Figs. 7.2 and 7.4, the most difficult regions to find convergence

are very strongly correlated with parameters where the true steady-state has high

negativity. This is in contrast with the NDM approach where there is difficulty rep-

resenting mixed states with no correlations leading to a plateaus in the cost function

which do not significantly decrease as the steady-state becomes more separable.

The results shown here are just a starting point for examining the usefulness

of neural network approaches to finding the steady-state of open quantum systems.

RBMs are the simplest network architecture and extending the approach presented

here to deep networks such as as deep RBMs [180], Recurrent Neural Networks [181],

or transformers [182], provides a route to improving both the accuracy and numerical

efficiency. While the models studied here are very simple and accessible by other

methods such as tensor network based techniques, the lack of an underlying lattice

geometry for these neural networks can be exploited to study models with long range

interactions and higher spatial dimensions.

Apart from an investigation of various architectures, a natural next step would be

an extension to larger spin sizes. The authors of [20] have shown in great detail how

their ansatz extends from spin-1/2 to spin-1 systems and in [5] we have shown how to

extended it to spin-1/2 density matrices in a similar fashion. The number of parameters

grows linearly in spin size, i.e.

Np = N(d− 1) +NM(d− 1) +M, (7.7)

where N is the number of spins, M is the number of hidden units and d is the local

dimension of the Liouville space, i.e. d = 4 for spin-1/2. A possible issue is that each

local state needs to be assigned a numerical label. As discussed in Ch. 6, common

labels are Ising like: [−S, · · · , 0, · · ·S] or numerical: [0 · · · d − 1]. An issue that could

arise for larger spin sizes is that the ansatz is exponential in label-sizes and thus highly

sensitive to changes in parameters. This could be mitigated by moving the ansatz into

so-called log-space. Here, the object of interest is not the wave-function ψ but the log

of the wave function logψ.

The advantages of CNNs discussed in Ch. 5 make CNN excellent candidates for
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future extensions of LDMs. Now that we know that a compact representation is

possible, we will want to go to 2D and more involved systems. CNN with their more

efficient encoding of volume law entanglement seem well suited to this endeavour.
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operators for the steady state of dissipative quantum systems. Phys. Rev. Lett.,

114:220601, Jun 2015.

[132] Adil A. Gangat, Te I, and Ying-Jer Kao. Steady states of infinite-size dissipative

quantum chains via imaginary time evolution. Phys. Rev. Lett., 119:010501, Jul

2017.

166



Bibliography

[133] Dainius Kilda, Alberto Biella, Marco Schirò, Rosario Fazio, and Jonathan
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[158] Christopher Roth, Attila Szabó, and Allan H. MacDonald. High-accuracy vari-

ational monte carlo for frustrated magnets with deep neural networks. Physical

Review B, 108(5), August 2023.

[159] Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua. Quantum

entanglement in deep learning architectures. Phys. Rev. Lett., 122:065301, Feb

2019.

[160] Giacomo Torlai and Roger G. Melko. Latent space purification via neural density

operators. Phys. Rev. Lett., 120:240503, Jun 2018.

[161] Michael J. Hartmann and Giuseppe Carleo. Neural-network approach to

dissipative quantum many-body dynamics. Phys. Rev. Lett., 122:250502, Jun

2019.

169



Bibliography

[162] Alexandra Nagy and Vincenzo Savona. Variational quantum monte carlo method

with a neural-network ansatz for open quantum systems. Phys. Rev. Lett.,

122:250501, Jun 2019.

[163] Johannes Mellak, Enrico Arrigoni, Thomas Pock, and Wolfgang von der Linden.

Quantum transport in open spin chains using neural-network quantum states.

Phys. Rev. B, 107:205102, May 2023.

[164] Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom

Westerhout, Fabien Alet, Emily J. Davis, Stavros Efthymiou, Ivan Glasser,

Sheng-Hsuan Lin, Marta Mauri, Guglielmo Mazzola, Christian B. Mendl, Evert

van Nieuwenburg, Ossian O’Reilly, Hugo Théveniaut, Giacomo Torlai, Filippo
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Appendix A

Liouville Density Machine Code

The code we used for the Part II of the thesis has been developed by the author. Parts

of the code were tested individually. For the sampler a fixed set of parameters was used,

which heavily favours a single state. The LDM itself was similarly tested using fixed

parameter sets and configurations with known results. The optimizer was first tested

on a purely dissipative model, whose steady-state is the all-down state. Subsequently,

more complex models where tested, whose steady states could be compared to exact

results from QUTIP. Similarly, expectation values of local observables where calculated

for edge cases first, where the results can be derived analytically. Afterwards, more

complex expectation values were compared with results from QUTIP and MPS.

The code is fully annotated. It is currently stored both on the University internal

GitLab as well as my own GitHub. The repositories are managed by me and Dr. Peter

Kirton.
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