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Abstract 
Gait analysis is the systematic study of human movement. It is used in the 
assessment and treatment of a variety of medical conditions where normal 
movement is impaired. The current gold standard method is fully 
instrumented three-dimensional gait analysis. This uses spatial information 
from motion capture systems in conjunction with data from force plates. The 
information is processed with kinematic and kinetic models which output vast 
amounts of data.  

For analysis, gait data is separated into individual cycles and normalized 
from 1-100% where certain events are expected to occur at certain stages of 
the cycle. This is normally achieved using information from the force plates. 
In the absence of force plate data this information can be calculated using 
motion capture data.  

In addition to their proprietary formats, the majority of motion capture 
systems use a standard file format (C3D) to output data. Current methods for 
reading and interpreting these files, to acquire the information commonly 
used in reporting gait, are complicated, time consuming and require 
expensive licenses and training. 

A utility with a straightforward graphical user interface is developed using 
Matlab. The utility reads C3D files and can be used quickly and easily to 
present only the relevant information necessary for producing gait reports. 
The utility includes an algorithm to calculate individual gait cycles from 
motion capture data where desired. The primary outputs of the utility are ‘gait 
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graphs’ which display different joint angles over the gait cycle and are a 
major component of most gait reports. One or multiple C3D files can be input 
and the utility extracts the angles from each individual gait cycle, normalizes 
them to a percentage scale, calculates the average and produces a plot. The 
ability to use motion capture data to calculate some of the parameters 
assessed by visual gait scoring is also demonstrated.  
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Introduction 
Gait analysis is the study of human locomotion where certain features are 
measured and analysed during walking in order to provide a meaningful 
assessment of an individual’s gait. In the clinical setting, gait analysis is used 
to quantify the effects of certain disorders, such as cerebral palsy, on a 
patient’s movement (Davis et al, 1991). Gait analysis is also an essential part 
of the planning process for surgical intervention to relieve the symptoms of 
these disorders and to assess and quantify the effect of these interventions 
(Benedetti et al, 2013). 

Components of Gait Analysis 
The main aspects of modern gait analysis are the study of spatiotemporal 
parameters, kinematics, kinetics and electromyography. 

Spatiotemporal parameters describe the basic features of gait such as step 
length, step width, walking speed and cadence. Kinematics describes how 
the body moves, usually by way of a simplified model. In kinematic modelling 
the body is split into a number of segments and position and orientation of 
these segments is studied to understand how different parts of the body 
move relative to each other during gait. Kinetics is concerned with the forces 
and moments in the body responsible for and resulting from this movement. 
Force plates are used to measure ground reaction forces and these are 
combined with spatial data to produce a kinetic model. Electromyography 
(EMG) involves the measurement of the electrical activity that occurs when 
muscles contract. EMG provides information about muscle contractions and 
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is particularly useful for characterizing the timing of muscle activations 
(Whittle, 2007).       

Evolution of Gait Analysis 
Human gait has been analysed scientifically since as early as the 17th 
century, although for much of this time it was seriously hampered by the lack 
of available technology. In the late 1800’s, Braun and Fischer were able to 
measure individual joint angles and segment displacements by attaching 
Geissler tubes (a precursor to neon lighting) to limbs, which they switched on 
and off at regular intervals while capturing photographs from positions 
surrounding the subject. The process was extremely time-consuming with 
data collection taking 8 to 10 hours per subject and the resulting data 
requiring months of analysis to produce meaningful kinematic 
measurements. The safety of the technique was also questionable, with 
subjects required to wear rubber suits to protect them from electric shock 
(Sutherland, 2002). Notable advances were made by Dr. Vern Inman in the 
1940’s who introduced electromyography and the measurement of 3-
dimensional force and energy, significantly progressing gait analysis towards 
the practice we recognise today (Sutherland, 2001). The current state-of-the-
art in gait analysis is based around 3-dimensional kinematic and kinetic 
modelling performed with data from sophisticated motion capture systems in 
conjunction with force plates (Lee & Pollo, 2001). These systems produce a 
vast amount of data and with all the benefits this offers, it also poses a 
challenge when considering how best to analyse and present the information. 
According to Whittle (2007), one of the leading authors on the subject:     
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“The next stage in the evolution of gait analysis will hopefully involve 
improvements in the ease and speed with which gait data can be collected 
and interpreted, and decreases in the cost of the equipment and the skill 
level needed to use it.”  

Benefits of Gait Analysis 
Gait analysis has been shown to have a positive effect on clinical decision 
making in a number of different areas. In a study comparing planning 
methods for the correction of spastic equinovarus deformities, the use of fully 
instrumented 3-dimensional gait analysis (3DGA) was found to have a 
substantial influence on the recommendations made. Surgeons were asked 
to produce a surgical plan, first using only observational gait analysis and 
subsequently with the aid of fully instrumented 3DGA. The use of 3DGA 
resulted in surgeons modifying their plans an average of 64% of the time, 
regardless of their level of experience. It also led to significantly higher levels 
of agreement between surgeons. The resulting surgery was successful in 
100% of cases and, although this wasn’t a controlled trial, this success rate 
was found to be significantly greater than anything published without the use 
of fully instrumented 3DGA (Fuller et al.,2002).  

The West of Scotland Mobility and Rehabilitation Centre 
Gait analysis and reporting varies between facilities and many of the issues 
highlighted in the process are based on personal experience and anecdotal 
evidence. The West of Scotland Mobility and Rehabilitation Centre 
(WestMARC), which has close links to the University of Strathclyde, is taken 
as a representative case study. WestMARC provides a range of rehabilitation 
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services to over 42,000 patients from its headquarters at the Queen 
Elizabeth University Hospital campus and a number of smaller satellite 
centres. They are pioneers in the area of neurobiomechanics, the interaction 
of biomechanics and neurology, where gait analysis plays a critical role.  

Three Dimensional Motion Analysis Procedure 
Three dimensional motion analysis is usually carried out with a number of 
infrared cameras which determine and record the position of reflective 
markers placed on specific points on the body over time. The positions of the 
markers can then be fed into a model which calculates the desired gait 
parameters (Carse et al., 2013). The most commonly used model is Vicon 
Plug-in-Gait (Nair et al, 2010). 

Plug-in-Gait 
Plug-in-Gait (Vicon Motion Systems, Oxford, UK) is an implementation of the 
conventional gait model which calculates and outputs a number of 
spatiotemporal parameters, and kinematic and kinetic data such as joint 
angles, forces and moments. The data from this model can be output in a 
number of formats including C3D. 

C3D 
C3D is the standard file format which is utilised by virtually all motion capture 
systems.The main objectives in developing the format were to allow for 
flexible storage of different data types; to provide storage for parameters and 
parameter types in a separate section and to allow for descriptive naming of 
parameters, thereby improving readability. The aim was to incorporate all of 
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this information in a single file which could be easily read and interpreted, 
added to or modified (Motion Lab Systems, 2008). 

Reporting 

The Gait Cycle 
In order to analyse gait it is split into individual cycles where one cycle 
represents the interval between two successive occurrences of the same 
event. A gait cycle is generally defined as the interval between successive 
foot strikes (i.e. the initial contact between the foot and the ground) of the 
same foot. The typical gait cycle is shown in Figure 1 below. 

 
Figure 1 - The Gait Cycle (www.clinicalgaitanalysis.com) 
 

Detecting Events 
While foot strike and foot off events are often detected with the use of force 
plates which record when the foot contacts and leaves the ground, there are 
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times when force plate data is not available. This may be the case if gait 
analysis is carried out on a treadmill since treadmills fitted with force plates 
are prohibitively expensive for many gait laboratories (Leitch et al., 2011). In 
some applications, such as Nexus (Vicon Motion Systems, Oxford, UK), 
events can be entered manually by studying footage of the trial and marking 
the frames where events are judged to have taken place. Where either of 
these options is not possible, or desired, it would be beneficial to have an 
alternative method for detecting events. Since the gait cycle is bounded by 
successive foot strikes, and the foot off timings are used to delineate stance 
and swing phases, it is important that these events are accurately defined. 
Events can be calculated from marker trajectories using either a co-ordinate 
based or velocity based approach. Zeni Jr et al. (2008) tested algorithms 
using both of these approaches and found them both to compare well with 
the gold standard method based on force plate data. While the velocity based 
approach was found to be slightly more accurate, the co-ordinate based 
method is chosen initially since it is simpler to implement and has less 
computational cost. The method used defines foot strikes as occurring when 
the anterior-posterior (X) distance between the heel and sacrum is at a 
maximum and foot offs occurring when the X distance between the toe and 
sacrum is at a minimum using the formulae: 

tHS = (Xheel – Xsacrum)max 

tTO= (Xtoe – Xsacrum)min  
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Gait Graphs 
A major component of a gait analysis report are gait graphs showing joint 
angles normalised to a percentage scale over each gait cycle. The 11 graphs 
most commonly included are pelvic tilt; pelvic obliquity; pelvic rotation; hip 
flexion/extension; hip abduction/adduction; hip rotation; knee 
flexion/extension; knee abduction/adduction; knee rotation; ankle 
dorsiflexion/plantarflexion and foot progression. 

Visual Gait Scoring 
Although visual gait scoring is principally thought of as a less comprehensive 
substitute where 3DGA is not available, it does offer some additional benefits 
in gait analysis reporting. A visual gait score provides a simple measure 
giving an indication of the overall quality of the gait which can be useful when 
making comparisons or documenting changes over time and is sought after 
by clinicians (Hillman et al., 2007).  

The Edinburgh Gait Score (EVGS) (Read et al., 2003) is considered the most 
comprehensive of the established visual gait scoring methods as it examines 
movement in both the frontal and sagittal planes. It has been shown to 
correlate well with 3DGA data and has high intra-observer reliability (Harvey 
& Gorter, 2011). Reliability between different observers is lower (Maathuis et 
al., 2005), with it being found to increase with experience (Ong et al., 2008). 
The high correlation with 3DGA data means that a score automatically 
generated from the data could be used as a benchmark during quality 
assurance or training. It has the potential to accelerate the process of gaining 
experience and, as a result, improve inter-observer reliability. 
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Analysis and Reporting Process 
The typical referral and assessment process for WestMARC is shown in 
Figure 2. 

 
Figure 2 - WestMARC Timescales 
 
The target times, or Key Performance Indicators (KPI’s), are 4 weeks from 
referral to assessment and a further 3-4 weeks from assessment to reporting. 
It normally takes around 5 or 6 hours to produce a report for one patient. 
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Much of the process, which is currently carried out manually, could be 
automated leading to substantial time savings in the generation of reports. 

Gait Report Content 
The Clinical Movement Analysis Society (CMAS), which is the national 
accreditation body for clinical movement analysis, currently has no guidelines 
on the content of reports. Reporting at WestMARC is based on the 
impairment focused reporting described by Baker (2013). 

The current reporting template used at WestMARC begins with some basic 
information about the patient including their demographic details and the 
clinicians involved in their care. On the first page there is a brief summary of 
the report detailing: the patient’s diagnosis; a number of gait classification 
scores (GMFCS, FMS, EVGS and GPS); the walking velocity and the 
average step length.      Following this is a summary of major and moderate 
impairments with associated treatment recommendations and details of the 
patient’s medical history. The report also provides details of a comprehensive 
physical examination. For this PROJECT, the main area of interest is the 
section containing the 3D Clinical Gait Analysis Report as this contains the 
information derived from the C3D data. Spatiotemporal parameters are 
reported in this section with a table containing: walking speed; cadence; step 
length; stride length; step time and stride time. These parameters are often 
output by the Plug-in-Gait model and, if not, they can also be calculated from 
the marker trajectories. Also included in the report are the 11 standard gait 
graphs detailed above and the movement analysis profile (MAP). 
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Current Reporting Utilities 
The most widely used reporting utilities are Polygon (Vicon Motion Systems, 
Oxford, UK) and Visual3D (C-Motion Inc., Rockville, MD) which are both 
compatible with C3D files although Polygon requires specific prior processing 
of the files limiting it’s compatibility with other systems (C-Motion Inc, 2012). 
Both of these utilities require expensive licenses which may not be 
accessible to some users. They also require specialized and costly training to 
be able to use them effectively and there is an anecdotal view that the 
complexity of these utilities makes them difficult to use to produce simple 
reports. 

There is software available as part of the P&O Clinical Movement Data 
package (Siliconcoach Ltd, 2012) which generates EVGS reports but it 
requires all of the data to be input manually and merely adds up the score. 

Aims 
The aim of this project is to develop and test a software application using 
Matlab to automatically extract as much relevant and clinically useful 
information from the data as possible with minimal input from the end user.  
While the results obtained will still require some professional interpretation, 
the aim is to provide the clinician with all of the objective data required to 
inform a subjective report. The application will output the data in the form of 
graphs displaying a number of gait parameters selected by the user 
throughout the gait cycle. It will also calculate the EGS parameters that can 
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be quantified and allow calculation of an overall EGS ‘score’ by allowing 
users to fill in the rest of the parameters. 

The application will be capable of using marker position data to identify start 
and end points of individual gait cycles where force plate data which would 
typically be used is not available. Identified gait cycles will then be 
normalized to a percentage scale to enable meaningful comparisons to be 
made. 

Objectives 
Be compatible with C3D files to enable widespread use. 

Accurately identify the occurrence of foot strikes and foot offs in the absence 
of force plate data. 

Use foot strikes (either calculated or extracted from the C3D file where 
provided) to identify and extract all of the individual gait cycles from a trial 
and foot offs to identify the transition between stance and swing phases, to 
be plotted as a vertical line on the gait graphs. 

Be easy to use as measured subjectively by responses to a questionnaire 
issued to prospective users. 

Methodology   
The utility was developed through a process of iterative design with the 
choice of features to be included informed by interviews with clinicians and 
shadowing clinical reporting sessions.   
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MATLAB is a high level, object-oriented programming language. One of its 
features is the use of global variables which allows variables given a prefix 
(in this case UOSBME) to be passed between any functions selected. 
Another feature of programming with MATLAB  is that data can be stored in 
multidimensional arrays (Figure below) which is indexed by row, column and 
then ‘page’. These two features are used extensively in the development of 
the utility.  

 

 

 

Wherever mentioned in the methodology, trial refers to one continuous data 
capture (i.e. one C3D file) and cycle refers to the period between two 
successive foot strikes of the same foot.  

The full code for the utility comprises 36 bespoke functions, covering the 
equivalent of over 100 printed A4 pages, so is included as an electronic 
appendix. 
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The Biomechanical ToolKit 
In order to read data from C3D files the Biomechanical Toolkit (BTK) is used. 
The BTK provides an open source and cross platform solution capable of 
reading and also modifying C3D files in addition to a number of the 
proprietary file formats used by motion capture systems (Barre & Armand, 
2014) 
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Basic Program Function 
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Initial Functions 
The program uses a Graphical User Interface (GUI) which designed to be 
accessible and easy to use, in line with the objectives. The initial script is a 
function which clears all software objects and restores all assumptions to the 
MATLAB defaults before calling the function which constructs the GUI It then 
calls a function to populate the initial screen and another function which 
switches between tabs of the interface with the argument (0,0,1) passed 
instructing it to display this initial screen.  

The GUI consists of multiple tabs and is based on the Multiple Tab GUI 
(Willmann, 2014 which is available for use under the conditions of the BSD 
license via the MATLAB Central File Exchange repository. The function 
which sets up the GUI (‘buildGUI’) begins by setting up the number of tabs 
and recording the names to be displayed on each as a series of strings. The 
size of the user’s screen is found with the inbuilt ‘get’ function which queries 
a selected property, in this case ‘ScreenSize’. This returns a four-element 
position vector containing the distance from the left hand side; the distance 
from the bottom; the width and the height. In the case of the monitor the first 
two elements are zero and the third and fourth elements represent the 
monitor width and height and are stored as the variables ‘MaxMonitorX’ and 
‘MaxMonitorY’ respectively. The size of the GUI window (‘MaxWindowX’, 
‘MaxWindowY’) is set by multiplying the width and height of the monitor by 
defined scaling factors (‘MainFigXScale’, ‘MainFigYScale’) and the 
surrounding borders (‘XBorder’, ‘YBorder’) are found as half of the difference 
between the size of the window and the size of the monitor. These 
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dimensions are then used to define the position of the main figure 
(‘UOSBME.hTabFig’) as the four-element position vector [XBorder, YBorder, 
MaxWindowX, MaxWindowY] with the elements representing the parameters 
described previously. The width of the tab selection buttons is set as the 
width of the window divided by the previously defined number of tabs and a 
suitable height selected leaving a display panel corresponding to each tab 
which is the window height minus the button height. Once all of these 
parameters are defined, a cell array is initialised which contains all of the 
information relating to the appearance of the tabs. Storing the information in 
this manner allows all of the tabs (regardless of the number chosen) to be 
created using a ‘for loop’ as shown in figure below. 

for TabNumber = 1:NumberOfTabs 
    % create a UIPanel 
    UOSBME.TabHandles{TabNumber,1} = uipanel('Units', 'pixels',... 
        'Visible', 'off',... 
        'Backgroundcolor',UOSBME.White,... 
        'BorderWidth',1, ... 
        'Position', [0 0 UOSBME.PanelWidth UOSBME.PanelHeight]); 
     
    % create a selection pushbutton 
    UOSBME.TabHandles{TabNumber,2} = uicontrol('Style', 
'pushbutton',... 
        'Units', 'pixels', ... 
        'BackgroundColor', BGColor, ... 
        'Position', [(TabNumber-1)*UOSBME.ButtonWidth 
UOSBME.PanelHeight          UOSBME.ButtonWidth UOSBME.ButtonHeight], 
... 
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        'String', UOSBME.TabHandles{TabNumber,3},... 
        'HorizontalAlignment', 'center',... 
        'FontName', 'arial',... 
        'FontWeight', 'bold',... 
        'FontSize', 10); 
     
end 
 
For each tab the ‘uipanel’ is created which is a container object that other 
graphics objects can be displayed inside. All of the panels are initially set to 
be invisible and it is by toggling the visibility of specific panels on and off that 
the basis of the interface navigation is formed. The buttons which form the 
tabs along the top are created as a ‘uicontrol’ in the same way. A ‘uicontrol’ is 
a control object which allows the user to interact with the program. There are 
a number of default styles available and the ‘pushbutton’ used here is one of 
the simplest, generating an action when clicked on. The action to be 
performed is set by a ‘callback’, in this case a function (‘TabSelectCallback’) 
which defines what happens when each of the tabs are clicked. 

The ‘TabSelectCallback’ function accepts three input arguments as shown in 
the figure below. 

function TabSelectCallback(~,~,SelectedTab) 
 
The use of ‘~’ for the first two arguments tells the function that these should 
be ignored. When a ‘uicontrol’ is activated it automatically passes data about 
itself using these arguments (hObject and eventdata) and in this case the 
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data is not relevant to the operation of the function. The third argument 
(‘SelectedTab’) is passed as a number representing the desired tab and 
instructs the function which tab and panel to make active. In addition to when 
the tab buttons are clicked, the function is called several times throughout the 
operation of the utility to control what is displayed when certain actions are 
performed. 

The first tab displays the home screen which has a text object displaying 
instructions and a number of push buttons to allow the user to select what 
they want to do. The buttons all have the same ‘callback’ function but pass a 
different value as an argument which determines which mode the utility will 
run in and dictates how it behaves later. There is also a checkbox which can 
be selected to force the utility to use foot events calculated with its own 
algorithm even when events are present in the C3D data. A checkbox is a 
‘uicontrol’ which has two possible states (selected or deselected). The 
‘callback’ function for this checkbox (forceEventsCallback) simply changes 
the value of a global variable (UOSBME.forceEvents) between 1 and 0 
depending on whether the checkbox is selected or not. As opposed to the 
‘pushbuttons’ described earlier, this ‘callback’ utilises the ‘hObject’ properties 
of the checkbox ‘uicontrol’ as input arguments to the function, shown in figure 
below. 
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function forceEventsCallback(hObject,~) 
  
global UOSBME 
  
if (get(hObject,'Value')==get(hObject,'Min')) 
    UOSBME.forceEvents = 0; 
else 
    UOSBME.forceEvents = 1; 
     
end 
 

The value passed by the checkbox can be defined as either ‘Min’ (i.e. 
deselected) in which case the variable (‘UOSBME.forceEvents’) is set to 0, or 
‘Max’ (i.e. selected) in which case it is set to 1. 

Once the user selects any of the buttons on the home screen, the function 
which allows the user to import data (‘getDataCallback’) is called. This begins 
by calling another two functions, the first of which (‘initialiseVars’) sets initial 
values for a number of global variables used throughout the operation of the 
utility. The other function (‘loadNormalData’) loads the file which contains the 
normal population data to be plotted in the background of the gait graphs. 
The argument dependent on which button the user selected is assigned to a 
global variable so that it can be used to control what is displayed later. Files 
are imported using the command ‘uigetfile’ (figure below) which opens a 
dialog box (figure below) allowing the user to select which C3D files they 
want to process.  
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[UOSBME.gaitTrialFileName,UOSBME.gaitTrialPathName,~] = uigetfile( 
... 
    {'*.c3d','c3d file(s) (*.c3d)'}, ... 
   'Select gait file(s) to be reported','Multiselect','on'); 
  
UOSBME.gaitTrialFullName = fullfile(UOSBME.gaitTrialPathName, 
UOSBME.gaitTrialFileName) 
 
 

  

 

Input parameters are set to show only C3D files and to display an 
explanatory title on the dialog box. The parameter ‘Multiselect’ is set to ‘on’ to 
allow for the selection of multiple files. The function returns an array of all 
selected file names (‘UOSBME.gaitTrialFileName’) and the corresponding 
paths (UOSBME.gatiTrialPathName’) as character strings. If only one file is 
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selected a character string is returned for each. The file names and paths are 
concatenated using the ‘fullfile’ function to give a complete description of their 
location (UOSBME.gaitTrialFullName’) which allows files from any folder to 
be accessed.  

Once the C3D files are selected, the function which extracts the necessary 
information (‘fileReadLoop’) shown in figure below. 

 

function fileReadLoop 
  
global UOSBME 
  
%% Loop for opening multiple files 
  
if ischar(UOSBME.gaitTrialFullName); 
    loopSize = 1; 
else loopSize = size(UOSBME.gaitTrialFullName, 2); 
end 
  
for n = 1:loopSize; 
     
    if ischar (UOSBME.gaitTrialFullName) 
        fileName = UOSBME.gaitTrialFullName; 
    else 
        fileName = char(UOSBME.gaitTrialFullName(n)); 
    end         
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    % Read file and extract necessary fields 
    UOSBME.acq = btkReadAcquisition(fileName); 
    UOSBME.markers = btkGetMarkers(UOSBME.acq); 
    UOSBME.angles = btkGetAngles(UOSBME.acq);   
    UOSBME.footEvents = btkGetEvents(UOSBME.acq); 
    UOSBME.firstFrame = btkGetFirstFrame(UOSBME.acq); 
    UOSBME.noOfFrames = btkGetPointFrameNumber(UOSBME.acq); 
    UOSBME.currentTrial = n; 
     
    getEventsByCoOrds 
  
end 
  
normalise 
 

The function consists of a ‘for loop’ which processes all of the selected files 
sequentially. The first ‘if else’ statement sets the size of the loop by first 
checking if there are multiple files or just one. If there is only one file then the 
variable UOSBME.gaitTrialFullName will be a character string and the size of 
the loop ‘loopSize’ is set to 1. If there are multiple files the strings will be 
stored in an array, the size of which is returned as ‘loopSize’. Inside the ‘for 
loop’ the BTK functions are utilised to extract the necessary data from each 
C3D file. The three dimensional positions of each of the markers with each 
marker stored in a separate field with a row for each frame and three 
columns, one each for the X, Y and Z co-ordinates. The angles calculated by 
the model (currently Plug-in-Gait) are returned similarly with the three 
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columns representing the rotations around the X, X and Z axes. Foot events 
are returned (if present in the data) as the time in seconds when each ‘foot 
strike’ and ‘foot off’ occur and are stored in horizontal arrays as shown in 
figure below. 

 

footEvents =  

     Left_Foot_Strike: [1.5800 2.6700 3.7600] 

       Right_Foot_Off: [1.7300 2.7950 3.8900] 

    Right_Foot_Strike: [2.1360 3.2100] 

        Left_Foot_Off: [2.2500 3.3420] 

 

The total number of frames (‘UOSBME.noOfFrames’) and the number of the 
first frame (‘UOSBME.firstFrame’) are also recorded. All of this information is 
stored as global variables to be accessed by subsequent functions along with 
a variable representing the current trial (‘UOSBME.currentTrial’) used later to 
represent the level of the multidimensional array in which the data for each 
trial is stored. Still inside the ‘for loop’ the function to calculate foot events 
(‘getEventsByCoOrds’) is called and this determines all of the ‘foot strike’ and 
‘foot off’ events present in each of the C3D files based on the positions of 
certain markers as described above. 

The first events to be calculated are left ‘foot strike’, shown in figure below. 
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%% FIND LEFT FOOT STRIKE 
  
LeftHeelMinusSacrum = UOSBME.markers.LHEE(:,1) - 
UOSBME.markers.LPSI(:,1); 
  
% correct for when walking in negative x direction (50 and 1 
arbitrary) 
if UOSBME.markers.LHEE(50) < UOSBME.markers.LHEE(1) 
     
    LeftHeelMinusSacrum = -LeftHeelMinusSacrum; 
end 
  
% find index of peaks which correspond to event frame 
[~, ILFS] = findpeaks(LeftHeelMinusSacrum); 
  
% correct for frame not starting at zero 
UOSBME.getLFSbyCoOrds = [ILFS]' + UOSBME.firstFrame; 
 
 

The distance in the X direction between the left heel and the left posterior 
superior iliac spine (LPSI) is found. The LPSI is used in place of the sacrum 
here since the test data uses the standard Plug-in-Gait lower body marker 
set with LPSI and RPSI markers instead the SACR marker. Since the trials 
consist of patients walking in both directions, the value of the X co-ordinate at 
the 1st and 50th frames is compared to determine whether the patient is 
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progressing in the progressing in the positive or negative X direction. If the 
patient is walking in the negative X direction then the difference is multiplied 
by negative one to ensure it is positive when the heel is anterior to the 
sacrum. The ‘findpeaks’ function returns the positive maxima (which 
represent each ‘foot strike’ as described in XXXX) and their corresponding 
index positions. In this case the values of the maxima are irrelevant and are 
ignored with ‘~’. The array of indices found is transposed in order to match 
the format of events returned from the C3D file. Since the frames in the data 
do not start at one, the value of the first frame is added to each index to give 
the frame numbers of each ‘foot strike’. A similar process is used for ‘foot off’ 
using the formula described in XXX and this is repeated for the right hand 
side. 

The next function (‘getEvents’), reads the ‘foot strike’ and ‘foot off’ events 
from the C3D file, if they are present, and determines which events should be 
used to define the gait cycles. The process for the left ‘foot strike’ is shown in 
the figure below. 

 
%% GET LEFT FOOT STRIKEif isfield(UOSBME.footEvents, 
'Left_Foot_Strike') && UOSBME.forceEvents == 0; 
    LFS = getfield(UOSBME.footEvents, 'Left_Foot_Strike'); 
    UOSBME.LFSFrames = round(LFS*100); 
else 
    UOSBME.LFSFrames = UOSBME.getLFSbyCoOrds; 
end 
    



31 
 

The ‘isfield’ function checks for the presence of the ‘Left_Foot_Strike’ field in 
the C3D data. If this is present, and the user did not select the option to force 
the use of the algorithm to detect events, then these are used as the ‘foot 
strike’ events which act as the boundaries to extract each individual gait 
cycle. The ‘foot strike’ times are multiplied by 100 since they are reported in 
seconds and need to be converted to frame numbers using the standard 
frequency of 100 frames per second (100 Hz). In the case of events not 
being present in the C3D file, or the user selecting to use calculated events, 
the events calculated by the previous function are used. 

All of the angles to be plotted in the graphs (detailed in XXX above) are then 
extracted and stored in arrays by the next function (‘getAngles’). The code for 
the left hand side is shown in the figure below. 

 
UOSBME.fullLeftAngles(1:UOSBME.noOfFrames,:,UOSBME.currentTrial) = 
... 
                                                                   
... 
                        [UOSBME.angles.LPelvisAngles(:,1),... 
                         UOSBME.angles.LPelvisAngles(:,2),... 
                         UOSBME.angles.LPelvisAngles(:,3),... 
                         UOSBME.angles.LHipAngles(:,1),... 
                         UOSBME.angles.LHipAngles(:,2),... 
                         UOSBME.angles.LHipAngles(:,3),... 
                         UOSBME.angles.LKneeAngles(:,1),... 
                         UOSBME.angles.LKneeAngles(:,2),... 
                         UOSBME.angles.LKneeAngles(:,3),... 
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                         UOSBME.angles.LAnkleAngles(:,1),... 
                         UOSBME.angles.LFootProgressAngles(:,3)]; 
 
 

The selected angles are set to fill rows in the array from 1 to the number of 
frames in the current trial (1:UOSBME.noOfFrames); all available columns 
and the ‘page’ of the current trial (UOSBME.currentTrial). This results in one 
angle per column with a row for every frame on each ‘page’, with a ‘page’ for 
every complete trial (i.e. each C3D file). It is important to specify that the data 
should only fill rows for every frame present since each ‘page’ must have the 
same dimensions in order to be concatenated and this results in empty rows 
being filled with zeros resulting in arrays with equal dimensions. This process 
is repeated for the same angles on the right hand side and also all of the 
marker trajectories necessary for calculating EVGS parameters later. 

The next function (‘extractOneCycle’) takes all of this data for each trial and 
extracts each individual cycle based on the ‘foot strike’ events defined earlier. 
This is achieved for the left hand side as shown in figure below. 

 
UOSBME.noOfLeftCycles = size(UOSBME.LFSFrames,2)-1; 
  
for n = 1:UOSBME.noOfLeftCycles 
     
UOSBME.leftCycleSize = UOSBME.LFSFrames(n+1)-UOSBME.LFSFrames(n)+1; 
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UOSBME.oneCycleLeftAngles(1:UOSBME.leftCycleSize,:,UOSBME.currentLef
tCycle) = UOSBME.fullLeftAngles((UOSBME.LFSFrames(n))-
(UOSBME.firstFrame):... 
    (UOSBME.LFSFrames(n+1))-
(UOSBME.firstFrame),:,UOSBME.currentTrial); 
  
UOSBME.oneCycleLeftMarkers(1:UOSBME.leftCycleSize,:,UOSBME.currentLe
ftCycle) = UOSBME.fullMarkers((UOSBME.LFSFrames(n))-
(UOSBME.firstFrame):... 
    (UOSBME.LFSFrames(n+1))-
(UOSBME.firstFrame),:,UOSBME.currentTrial); 
  
if UOSBME.LFOFrames(n) > UOSBME.LFSFrames(n) 
    UOSBME.normLFO(:,UOSBME.currentLeftCycle) = 
interp1([UOSBME.LFSFrames(n), UOSBME.LFSFrames(n+1)],[1, 100], 
UOSBME.LFOFrames(n)); 
else  
    UOSBME.normLFO(:,UOSBME.currentLeftCycle) = 
interp1([UOSBME.LFSFrames(n), UOSBME.LFSFrames(n+1)],[1, 100], 
UOSBME.LFOFrames(n+1)); 
end 
  
  
UOSBME.currentLeftCycle = UOSBME.currentLeftCycle + 1; 
  
end 
 
 



34 
 

The number of cycles (‘UOSBME.noOfLeftCycles’) is found as one less than 
the number of foot strikes (since the first cycle consists of two foot strikes and 
each subsequent foot strike adds another cycle). The number of cycles is 
then used to establish the size of the ‘for loop’ which processes each cycle 
present in the trial. The number of frames present in the current cycle 
(‘UOSBME.leftCycleSize’) is found by subtracting the frame number of the 
opening foot strike (‘UOSBME.LFSFrames(n)’) from the frame number of the 
terminating foot strike (‘UOSBME.LFSFrames(n+1)’) and adding one (since 
cycle 1 is bounded by foot strikes 1 and 2, cycle 2 is bounded by foot strikes 
2 and 3 etc.). This size is necessary, to determine how many rows to write 
the data to, in order to ensure equally sized arrays as noted ABOVE. The 
cycles are then extracted to the determined number of rows; all necessary 
columns and to a ‘page’ for each cycle (‘UOSBME.currentLeftCycle’). This 
variable, ‘UOSBME.currentLeftCycle’, was initially set to 1 by the 
‘initialiseVars’ function. The frames from the complete set of angle data 
(‘UOSBME.fullLeftAngles’) for the current trial (‘UOSBME.currentTrial’) to be 
included in each cycle are set by the array positions of the opening and 
terminating foot strike frames (i.e. the frame numbers minus the value of the 
first frame). This process is repeated for the necessary markers. Since the 
‘foot off’ must be found for each cycle this is also calculated within this ‘for 
loop’. The ‘if else’ statement satisfies the two possible cases where the foot is 
in either stance phase or swing phase at the beginning of the trial. If the foot 
off frame is greater than the corresponding foot strike frame (i.e. the foot is 
initially in swing phase), then the first recorded foot off is in the cycle initiated 
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by the first recorded foot strike. If the first foot off frame is not greater than 
the first foot strike frame then the foot was initially in stance phase and it is 
the foot off frame in the following indexed position that belongs to that cycle. 
This is true for each subsequent cycle in the trial since the pattern of foot off 
preceded by foot strike is continuous. The percentage at which foot off 
occurs is found by interpolating for the ‘foot off’ frame over the interval where 
the surrounding successive foot strike frames correspond to 1 and 100. Since 
this is a linear function the default MATLAB method of linear interpolation is 
used and returns the true value. Finally the current cycle 
(‘UOSBME.currentLeftCycle’) is incremented by one, this is done manually 
here since its value must be maintained when the next trial is processed. 

After all of the cycles have been extracted from every selected trial, the ‘for 
loop’ which processes all of the C3D files (within ‘fileReadLoop’) ends and 
the function which normalises all of the cycles to a 1-100 scale (‘normalise’) 
is called. The method for normalising the angles on the left side is shown in 
figure below. 

for n = 1:UOSBME.totalLeftCycles 
     
    nonZeroLeftAngleCycle = UOSBME.oneCycleLeftAngles(:,:,n); 
    nonZeroLeftAngleCycle(all(~nonZeroLeftAngleCycle,2), :) = []; 
    colLength = size(nonZeroLeftAngleCycle,1); 
    x=linspace(1,100,colLength)'; 
    xi=(1:1:100)'; 
    UOSBME.oneLeftNormalised(:,:,n) = interp1(x, 
nonZeroLeftAngleCycle, xi, 'linear', 'extrap'); 
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    nonZeroLeftMarkerCycle = UOSBME.oneCycleLeftMarkers(:,:,n); 
    nonZeroLeftMarkerCycle(all(~nonZeroLeftMarkerCycle,2), :) = []; 
    colLength = size(nonZeroLeftMarkerCycle,1); 
    x=linspace(1,100,colLength)'; 
    xi=(1:1:100)'; 
    UOSBME.markerLeftNormalised(:,:,n) = interp1(x, 
nonZeroLeftMarkerCycle, xi, 'linear', 'extrap'); 
 
end 
  

Since some ‘pages’ of cycles are padded with zeros to allow concatenation, 
these must first be removed to give the true cycles. The number of rows 
(‘colLength’) in the resulting array (‘nonZeroLeftAngleCycle’) is found to give 
the number of data points present in the current trial. The ‘linspace’ function 
then creates a vector (x) with this number of points equally spaced between 1 
and 100. Another vector (xi) is defined that goes from 1 to 100 in increments 
of 1 (i.e. 1,2,3,4…100). The ‘interp1’ function then interpolates to find values 
of the function (where the ‘y values’ are ‘nonZeroLeftAngleCycle’ and are 
defined at the ‘x values’ in ‘x’) at the points in ‘xi’. Linear interpolation is used 
and the ‘extrap’ parameter specified in order to allow extrapolation if there 
are less than 100 data points (i.e. there are less than 100 frames in a cycle). 
This is repeated for the marker trajectories and the data for the right hand 
side.       
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The following function (‘createAngleMatrices’) utilises another ‘for loop’ to 
take the normalised data for the same angles from every cycle (the same 
column from every ‘page’) and create a 2-dimensional array for each angle. 
This is shown for the left pelvic tilt and left pelvic obliquity in figure below. 

for n = 1:UOSBME.totalLeftCycles 
 
UOSBME.leftPelvicTilt(:,n,1) = UOSBME.oneLeftNormalised(:,1,n); 
UOSBME.leftPelvicTilt(1,n,2) = UOSBME.normLFO(:,n); 

UOSBME.leftPelvicObliq(:,n,1) = UOSBME.oneLeftNormalised(:,2,n); 
UOSBME.leftPelvicObliq(1,n,2) = UOSBME.normLFO(:,n); 

For the currently selected cycle (‘page’ n) all rows and the desired column (1 
for left pelvic tilt (‘UOSBME.leftPelvicTilt’), 2 for left pelvic obliquity 
(‘UOSBME.leftPelvicObliq’) etc.) are extracted from the normalised cycles 
(UOSBME.oneLeftNormalised) and put into columns to form the 2-
dimensional array for each angle (individual angle data from cycle 1 (‘page’ 
1) goes into column 1, cycle 2 into column 2 etc.). Another ‘page’ is added to 
each angle array containing the normalised ‘foot off’ from the corresponding 
cycle. These are duplicated and stored with every individual angle for every 
cycle since there is an option to remove individual angle graphs from the data 
set later and the corresponding ‘foot off’ lines must be removed at the same 
time.   

The individual gait graphs showing the selected angles in every complete gait 
cycle can now be plotted. The function (‘Tab4’) sets up 12 panels in which 
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the 11 graphs are plotted, leaving a space in the centre at the bottom, shown 
in figure below. 

 

An ‘axis’ is created inside each panel along with two buttons which lead to a 
page where individual graphs can be removed for each angle as shown in 
figure below. 

aa1 = axes('Parent', UOSBME.a1, 'Position', axisPos); 
 
ableft1 = uicontrol('Parent', UOSBME.a1,... 
                 'units', 'normalized',... 
                 'Position', leftButtonPos,... 
                 'Style', 'pushbutton',... 
                 'Callback', {@Tab6, 1, 6},... 
                 'ForegroundColor', UOSBME.leftColour,... 
                 'String', leftString); 
                         
              
abright1 = uicontrol('Parent', UOSBME.a1,... 
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                 'units', 'normalized',... 
                 'Position', rightButtonPos,... 
                 'Style', 'pushbutton',... 
                 'Callback', {@Tab6, 1, 7},... 
                 'ForegroundColor', UOSBME.rightColour,... 
                 'String', rightString);              
 

The ‘callback’ for the buttons loads the function which plots the individual 
graphs (Tab6) with the arguments identifying which graph has been selected 
(1) and whether graphs from the left or right side should be displayed (6 or 
7). 

The area to be filled to display the range of normal population data within two 
standard deviations is set using the commands shown in figure below. 

x = UOSBME.xPoints; 
y1 = (UOSBME.meanPlus2StdALLnormCycles(:,2)); 
y2 = (UOSBME.meanMinus2StdALLnormCycles(:,2)); 
X = [x; flipud(x)]; 
Y = [y1; flipud(y2)]; 
 

fill(X,Y,UOSBME.fillColour,'EdgeColor','none', 'FaceAlpha', 
UOSBME.fillAlpha); 
 

The ‘flipud’ function reverses the direction of the vectors so that one of the 
vectors can be plotted ‘outwards’ in the positive direction and the other is 
plotted ‘backwards’ in the negative direction, thus creating an enclosed 
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space. The colour is set to a light grey defined earlier as a global variable 
(‘UOSBME.fillColour’). The ‘FaceAlpha’ parameter sets the opacity 
(‘UOSBME.fillAlpha’) which can be changed between 1 (fully opaque) and 0 
(fully transparent) to toggle the display of this information on and off when a 
button is clicked. The ‘callback’ function for this button (‘normalOnOff’) is 
shown in figure below. 

function normalOnOff(~,~,cBack,selectedGraph) 
global UOSBME 
  
UOSBME.fillAlpha = 1-UOSBME.fillAlpha; 
  
Tab4 
Tab5 
  
if UOSBME.runMode == 2 
    beforeAfterGraphs 
end 
  
if cBack > 5 
Tab6(0,0,selectedGraph, cBack) 
end 
 
TabSelectCallback(0,0,cBack) 
  

Subtracting the variable (‘UOSBME.fillAlpha’) from 1 switches it between 1 
and 0 each time the function is called. The remainder of the function recalls 
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the functions which generate the display of the desired tabs so that the 
change in displaying this data is mirrored throughout the utility. The ‘if’ 
statements ensure that it only calls functions which have been called 
previously, in order to prevent any errors occurring from trying to perform 
tasks such as loading variables which don’t exist yet. The 
‘TabSelectCallback’ function (described ABOVE) is then called with the 
current tab as an argument so that this tab remains displayed. There is a 
similar function (‘footOffOnOff’) to control whether or not the ‘foot off’ line is 
displayed on the graphs and this works in the same way. 

All of the graphs and ‘foot off’ lines are plotted on their axes as shown for 
pelvic tilt in figure below. 

plot(UOSBME.leftPelvicTilt(:,:,1),UOSBME.leftColour, 'LineWidth', 
plotLineWidth) 
plot(UOSBME.rightPelvicTilt(:,:,1),UOSBME.rightColour, 'LineWidth', 
plotLineWidth) 
  
for n = 1:size(UOSBME.leftPelvicTilt, 2) 
    line([UOSBME.leftPelvicTilt(1,n,2) 
UOSBME.leftPelvicTilt(1,n,2)],get(gca,'YLim'),'color',UOSBME.leftCol
our, 'LineWidth', plotLineWidth, 'LineStyle', UOSBME.footOffLine) 
  
end 
  
for n = 1:size(UOSBME.rightPelvicTilt, 2) 
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    line([UOSBME.rightPelvicTilt(1,n,2) 
UOSBME.rightPelvicTilt(1,n,2)],get(gca,'YLim'),'color',UOSBME.rightC
olour, 'LineWidth', plotLineWidth, 'LineStyle', UOSBME.footOffLine) 
   
end 
 

The ‘foot off’ lines are plotted between two points by setting the X value of 
both points to the ‘foot off’ percentage and the Y values to the limits of the Y-
axis (found using the ‘get’ function). This process is repeated to plot all 11 of 
the graphs before functions are called to calculate the average for each angle 
(findAverage) and generate the graphs of these average values (Tab5).  

If the user clicks one of the buttons below any of the graphs they are taken to 
a tab where individual graphs can be removed from either the right or left 
side angles. These buttons call the function ‘Tab6’ as shown in figure below. 

ableft1 = uicontrol('Parent', UOSBME.a1,... 
                 'units', 'normalized',... 
                 'Position', leftButtonPos,... 
                 'Style', 'pushbutton',... 
                 'Callback', {@Tab6, 1, 6},... 
                 'ForegroundColor', UOSBME.leftColour,... 
                 'String', leftString); 
                         
              
abright1 = uicontrol('Parent', UOSBME.a1,... 
                 'units', 'normalized',... 
                 'Position', rightButtonPos,... 
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                 'Style', 'pushbutton',... 
                 'Callback', {@Tab6, 1, 7},... 
                 'ForegroundColor', UOSBME.rightColour,... 
                 'String', rightString);              
 

The first argument in the ‘callback’ represents the selected graph (in this 
case 1 for pelvic tilt) and the second argument controls whether the tab 
containing the left or right graphs is displayed (6 for left, 7 for right). The left 
and right graphs are both generated by the same function so that they are 
generated at the same time and switching between the tabs at the top always 
displays the same angle, as would be the expected behaviour. The graphs 
for each angle are displayed as ‘subplots’ and all generated as shown for 
pelvic tilt in figure below. 

for n=1:size(UOSBME.leftPelvicTilt, 2) 
         
        sPlot = subplot(subX,subY,n); 
        sPlotPos = getpixelposition(sPlot); 
         
        hold all 
         
        x = UOSBME.xPoints; 
        y1 = (UOSBME.meanPlus2StdALLnormCycles(:,2)); 
        y2 = (UOSBME.meanMinus2StdALLnormCycles(:,2)); 
        X = [x; flipud(x)]; 
        Y = [y1; flipud(y2)]; 
        fill(X,Y,UOSBME.fillColour,'EdgeColor','none',... 
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        'FaceAlpha', UOSBME.fillAlpha); 
        plot(UOSBME.leftPelvicTilt(:,n,1),UOSBME.leftColour) 
        line([UOSBME.leftPelvicTilt(1,n,2),... 
              UOSBME.leftPelvicTilt(1,n,2)],... 
        get(gca,'YLim'),'color',UOSBME.leftColour,... 
        'LineWidth', plotLineWidth,... 
        'LineStyle', UOSBME.footOffLine) 
        leftPositionMat(n,:)= sPlotPos; 
         
    end 
     
    for n=1:size(leftPositionMat, 1) 
         
        cBox1 = uicontrol('Parent',tab6panel, ... 
            'Units', 'pixels', ... 
            'Style', 'checkbox',... 
            'Value', 1,... 
            'Position', 
[leftPositionMat(n,1)+leftPositionMat(n,3),leftPositionMat(n,2)+left
PositionMat(n,4),15,15],... 
            'Callback',{@leftBoxValue, n},... 
            'String', n,... 
            'BackgroundColor', 'white',... 
            'HorizontalAlignment', 'center'); 
         
    end 
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The ‘subplot’ function plots graph axes in specified positions within a grid. 
Here the number of rows and columns in the grid are defined as ‘subX’ and 
‘subY’ (both currently set as 6) respectively. The ‘for loop’ then plots the 
graph of the angle from each ‘page’ at position ‘n’ for every cycle present. For 
every graph plotted, the position of the subplot is found using 
‘getpixelposition’.  The positions are stored in an array and this position 
information used to create a checkbox at the top right hand corner of each 
graph (shown in figure below). 

  

If any of these checkboxes are clicked, the function ‘leftBoxValue’ (or 
‘rightBoxValue’ for graphs on the right hand side) (figure below) is called. The 
argument ‘n’ is passed which represents the number of the graph that has 
been selected or deselected. 

function leftBoxValue(hObject,~,leftBoxNo) 
  
global UOSBME 
  
if (get(hObject,'Value')==get(hObject,'Min')) 
    UOSBME.leftRemoveList(1,leftBoxNo) = 1; 
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else 
    UOSBME.leftRemoveList(1,leftBoxNo) = 0; 
     
end 
 
This function (‘leftBoxValue’) alters the global variable 
(‘UOSBME.removeList’) which has been initially set to an array of zeros the 
size of which represents the total number of graphs for that side. When a 
checkbox is deselected the corresponding value in 
‘UOSBME.leftRemoveList’ is set to 1 (marking the selected graph for future 
deletion) and if it is reselected it is set back to 0. When the user has finished 
selecting which graphs to remove, they click a button in the bottom left corner 
to call the function (‘deleteLeftGraphs’) which removes them. The deletion 
process for the first graph (left pelvic tilt) is shown in figure below. 

if graphToDel == 1 
  
    for n = 1:size(UOSBME.leftPelvicTilt, 2) 
        if UOSBME.leftRemoveList(1,n) == 1; 
            UOSBME.leftPelvicTilt(:,n,:) = 0; 
        end 
    end    
UOSBME.leftPelvicTilt = 
UOSBME.leftPelvicTilt(:,any(any(UOSBME.leftPelvicTilt), 3),:); 
 
end 
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The ‘if’ statement checks for entries in the remove list equal to one (graphs 
which have been selected for deletion) and sets the values of the 
corresponding column to zero (removing that graph from the array). The ‘any’ 
functions are then used to get rid of the columns containing only zeros. At the 
end of this function, the functions ‘Tab4’, ‘Tab5’ and ‘Tab6’ are called again in 
order to update all of the graphs. If data has been removed this results in 
lines being removed from the corresponding graphs in ‘Tab4’, the average 
graph being changed in ‘Tab5’ and individual graphs being removed from 
‘Tab6’. The ‘Tab6’ function is called with the argument passed to select 
‘Tab4’ so the utility returns to the screen showing all of the remaining lines for 
each angle on the same graph.           

The ‘findAverage’ function, which is called at the end of ‘Tab4’, simply 
calculates the mean for each angle and the corresponding ‘foot off’ and the 
graphs are generated in ‘Tab5’ in the same way as described for ‘Tab4’. A 
button is created in the top right hand corner, the function of which changes 
depending on the value of the global variable ‘UOSBME.runMode’ which 
depends on what the user has input previously. The display of these buttons 
is controlled by the code shown in FIGURE below. 

if UOSBME.runMode == 0 
    loadAfterButton1 = uicontrol('Parent', tab5header,... 
                               'units', 'normalized',... 
                               'Position', [0.8 0.1 0.19 0.8],... 
                               'Style', 'pushbutton',... 
                               'Callback', {@exportGraphs},... 
                               'String', 'Export Graphs'); 
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end 
                            
if UOSBME.runMode == 1 
    loadAfterButton2 = uicontrol('Parent', tab5header,... 
                               'units', 'normalized',... 
                               'Position', [0.8 0.1 0.19 0.8],... 
                               'Style', 'pushbutton',... 
                               'Callback', {@beforeAfter},... 
                               'String', 'Load "After" Data'); 
end 
  
if UOSBME.runMode == 2 
    loadAfterButton3 = uicontrol('Parent', tab5header,... 
                               'units', 'normalized',... 
                               'Position', [0.8 0.1 0.19 0.8],... 
                               'Style', 'pushbutton',... 
                               'Callback', {@beforeAfterGraphs},... 
                               'String', 'Plot Before/After 
Graphs'); 
end 
   

For the value of UOSBME.runMode to be 0, the user must have selected the 
first option on the ‘home screen’ to simply process one set of trials. In this 
case, the button functions to allow these graphs to be exported, since this set 
of graphs is generally the desired output. If the value is 1 then the user has 
selected the option to plot before and after graphs and this button functions 
to allow the loading of the ‘after’ data. In this case the ‘callback’ function 
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(beforeAfter) saves all of the average angles to separate global variables, 
sets the value of UOSBME.runMode to 2 and reopens the ‘getDataCallback’ 
function described ABOVE. This allows the user to select the next set of data 
for comparison which is processed by repeating all of the functions described 
previously. The utility basically stores all of the average data from the first 
trials and starts again.  

On returning to this tab with the value of UOSBME.runMode now set to 2, the 
button serves to plot the ‘before’ graphs on top of the newly loaded average 
graphs using the ‘callback’ function ‘beforeAfterGraphs’. This function is the 
same as the regular function to display the average graphs (‘Tab5’) except it 
now plots the ‘before’ graphs in addition to the current ones as shown for 
pelvic tilt in figure below. 

fill(X,Y,UOSBME.fillColour,'EdgeColor','none', 'FaceAlpha', 
UOSBME.fillAlpha); 
  
plot(UOSBME.meanLeftPelvicTilt(:,:,1),UOSBME.leftColour, 
'LineWidth', plotLineWidth) 
plot(UOSBME.meanRightPelvicTilt(:,:,1),UOSBME.rightColour, 
'LineWidth', plotLineWidth) 
  
line([UOSBME.meanLeftPelvicTiltFO 
UOSBME.meanLeftPelvicTiltFO],get(gca,'YLim'),'color',UOSBME.leftColo
ur, 'LineWidth', plotLineWidth, 'LineStyle', UOSBME.footOffLine) 
line([UOSBME.meanRightPelvicTiltFO 
UOSBME.meanRightPelvicTiltFO],get(gca,'YLim'),'color',UOSBME.rightCo
lour, 'LineWidth', plotLineWidth, 'LineStyle', UOSBME.footOffLine) 
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plot(UOSBME.meanLeftPelvicTiltBefore ,UOSBME.leftColour, 
'LineWidth', plotLineWidth, 'LineStyle', UOSBME.beforeLine)  
plot(UOSBME.meanRightPelvicTiltBefore ,UOSBME.rightColour, 
'LineWidth', plotLineWidth, 'LineStyle', UOSBME.beforeLine)  
  
line([UOSBME.meanLeftPelvicTiltBeforeFO 
UOSBME.meanLeftPelvicTiltBeforeFO],get(gca,'YLim'),'color',UOSBME.le
ftColour, 'LineWidth', plotLineWidth, 'LineStyle', 
UOSBME.beforeFootOffLine) 
line([UOSBME.meanRightPelvicTiltBeforeFO 
UOSBME.meanRightPelvicTiltBeforeFO],get(gca,'YLim'),'color',UOSBME.r
ightColour, 'LineWidth', plotLineWidth, 'LineStyle', 
UOSBME.beforeFootOffLine) 
 

This function is displayed in the same tab as the previous one (‘Tab5’) and 
the button in the right hand corner now gives the option to export the before 
and after graphs, using the same function as for exporting the graphs 
(‘exportGraphs’)  from one trial described previously.  

The ‘exportGraphs’ function creates a new figure displaying the contents of 
the current tab. The function uses ‘uiputfile’ to open a dialog box for the user 
to select a location to save the file. The user is given the option to save the 
file in the ‘.jpg’, ‘.png’ or ‘.pdf’ formats, although there is also an option to 
save as ‘All files’ by default, so the user can specify their own file type if 
desired. The file name is then generated as shown in figure below. 
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[saveFileName,savePathName] = uiputfile({'.jpg';'.png';'.pdf'}) 
saveFileAs = fullfile(savePathName,saveFileName) 
  

The ‘uiputfile’ function returns the desired file name and path and then 
concatenates these to the full file location similarly to when files are retrieved 
using the ‘uigetfile’ function described ABOVE. The data is then saved to this 
location, using the ‘while loop’ shown in figure below to ensure the file is 
saved without error. 

count = 0; 
err_count = 0; 
while count == err_count 
    try 
        saveas(UOSBME.allAvgGraphs, saveFileAs) 
    catch ME 
        if saveFileAs ~=0 
            invalidFileWarning = warndlg('Please choose a valid 
filename!', 'Unable to save file!', 'modal'); 
            uiwait 
            [saveFileName,savePathName] = 
uiputfile({'.jpg';'.png';'.pdf'}); 
            saveFileAs = fullfile(savePathName,saveFileName); 
            err_count = err_count + 1; 
        end 
    end 
    count = count + 1; 
end 
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The ‘try, catch’ function first attempts to save the file to the selected location. 
If there is an error (e.g. the selected file name is not valid) then a dialog box 
(figure below) will pop up instructing the user to select a valid file name.   

 

The ‘uiputfile’ function is called again, reopening the dialog box to allow the 
user to select a different file name, and the error count (‘err_count’) is 
incremented by one. This continues until no error occurs since the ‘while 
loop’ runs until the count variable (‘count’)  and ‘err_count’ are not equal and 
‘count’ is incremented on every iteration while ‘err_count’ is only incremented 
if there is an error. The preceding ‘if’ statement checks whether no file name 
has been selected (i.e. the user has clicked cancel) since the ‘uiputfile’ 
function has its own error handling functionality if this is the case. 

The function which calculates the EVGS (‘calcEGS’) score is incomplete, but 
is provided as a proof of concept. The process for the first quantifiable 
parameter (maximum ankle dorsiflexion in mid stance) is shown in figure 
below. First the phases of the gait cycle used in the EVGS are defined. Mid 
stance is found as when the left heel passes the right heel by finding the first 
point where the anterior-posterior distance between the two becomes 
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negative (corrected, if necessary, for walking in the negative X direction). 
Stance phase (leftStancePhase) is defined as the portion of the gait cycle 
before foot off and swing phase (leftSwingPhase) as the portion after foot off. 

%Find left foot midstance 
  
leftHeelMinusRightHeel = UOSBME.markerLeftNormalised(:,1,:)-
UOSBME.markerLeftNormalised(:,2,:); 
  
for n = 1:size(leftHeelMinusRightHeel, 3) 
if leftHeelMinusRightHeel(1,1,n) < 0 
    leftHeelMinusRightHeel(:,:,n) = -leftHeelMinusRightHeel(:,:,n); 
end 
meanLeftHeelMinusRightHeel =  mean(leftHeelMinusRightHeel, 3); 
end 
  
leftNormMidStance = find(meanLeftHeelMinusRightHeel < 0, 1); 
leftStancePhase = 1:round(mean(UOSBME.normLFO)); 
leftSwingPhase = round(mean(UOSBME.normLFO)):100; 
  
%EGS 3 Max Ankle Dorsiflexion in Stance 
  
EGS3leftValue = max(UOSBME.meanLeftFootDorsi(leftStancePhase)); 
  
if EGS3leftValue > 40 
    UOSBME.EGS3leftBox = 1; 
    UOSBME.EGSleftScore(3) = 2; 
end 
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if EGS3leftValue > 25 && EGS3leftValue <= 40  
    UOSBME.EGS3leftBox = 2; 
    UOSBME.EGSleftScore(3) = 1; 
end 
if EGS3leftValue > 5 && EGS3leftValue <= 25  
    UOSBME.EGS3leftBox = 3; 
    UOSBME.EGSleftScore(3) = 0; 
end 
if EGS3leftValue > -10 && EGS3leftValue <= 5  
    UOSBME.EGS3leftBox = 4; 
    UOSBME.EGSleftScore(3) = 1; 
end 
if EGS3leftValue <= -10  
    UOSBME.EGS3leftBox = 5; 
    UOSBME.EGSleftScore(3) = 2; 
end 
 

The maximum ankle dorsiflexion in stance phase (‘EGS3leftValue’) is found 
and a series of ‘if’ statements check its value and set the variables 
‘UOSBME.EGS3leftBox’ and ‘UOSBME.EGSleftScore(3)’ accordingly. 
‘UOSBME.EGSleftScore’ is an array containing an element containing the 
scores for each of the EGS parameters (The first to be calculated is element 
3 since the first two parameters are not quantifiable and must be input 
manually).  
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The function to display the EGS (‘displayEGS’) sets up a number of ‘uipanels’ 
to display all of the text and buttons. The nested function to update the gait 
score (‘updateLeftScore’) shown in figure below is then called.   

function updateLeftScore 
  
    totalLeftScore = sum(UOSBME.EGSleftScore); 
     %   Display it 
     printLeftScore = uicontrol('Style', 'text',... 
         'Units', 'normalized',... 
         'Position', [0 0 0.5 0.5],... 
         'Parent',tab3swingButtonPanel, ... 
         'string', totalLeftScore,... 
         'BackgroundColor', UOSBME.White,... 
         'HorizontalAlignment', 'center',... 
         'FontName', 'arial',... 
         'FontWeight', 'bold',... 
         'FontSize', 14); 
 

The EGS ‘score’ is calculated, by summing the scores for all of the 
parameters (contained in the array ‘UOSBME.EGSleftScore’), and then 
displayed. Initially this will display the score for all of the parameters 
calculated from the data. The radio buttons showing the currently selected 
value for each parameter and allowing the user to change these parameters 
are set up in groups shown in figure below. 

bg3 = uibuttongroup(tab3stanceButtonPanel, 'Position', [0 0.7 1 
0.1],  
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  'SelectionChangeFcn', {@radioCallback, 
3}); 

 
r3a = uicontrol(bg3,'Style','radiobutton',... 
                  'units','normalized',... 
                  'Position',[0.1 0.1 0.05 0.5],... 
                  'HandleVisibility','off'); 
               
r3b = uicontrol(bg3,'Style','radiobutton',... 
                   'units','normalized',... 
                  'Position',[0.3 0.1 0.05 0.5],... 
                  'HandleVisibility','off'); 
  
r3c = uicontrol(bg3,'Style','radiobutton',... 
                    'units','normalized',... 
                  'Position',[0.5 0.1 0.05 0.5],... 
                  'HandleVisibility','off'); 
               
r3d = uicontrol(bg3,'Style','radiobutton',... 
                    'units','normalized',... 
                  'Position',[0.7 0.1 0.05 0.5],... 
                  'HandleVisibility','off'); 
  
r3e = uicontrol(bg3,'Style','radiobutton',... 
                    'units','normalized',... 
                  'Position',[0.9 0.1 0.05 0.5],... 
                  'HandleVisibility','off'); 
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Using the ‘uibuttongroup’ function allows all of the radio buttons in the group 
to share the same ‘callback’.  When any of these buttons is clicked the 
nested function ‘radioCallback’ (figure below) is called with an argument (in 
this case ‘3’) passed representing the selected parameter. 

function radioCallback(~,buttonInfo,boxNo) 
  
if buttonInfo.NewValue == r2a || buttonInfo.NewValue == r3a || 
buttonInfo.NewValue == r4a || buttonInfo.NewValue == r5a 
        UOSBME.EGSleftScore(boxNo) = 2; 
end 
  
if buttonInfo.NewValue == r2b || buttonInfo.NewValue == r3b || 
buttonInfo.NewValue == r4b || buttonInfo.NewValue == r5b 
         UOSBME.EGSleftScore(boxNo) = 1; 
end 
  
if buttonInfo.NewValue == r1c || buttonInfo.NewValue == r2c || 
buttonInfo.NewValue == r3c || buttonInfo.NewValue == r4c || 
buttonInfo.NewValue == r5c 
         UOSBME.EGSleftScore(boxNo) = 0; 
end 
  
if buttonInfo.NewValue == r1d || buttonInfo.NewValue == r2d || 
buttonInfo.NewValue == r3d || buttonInfo.NewValue == r4d || 
buttonInfo.NewValue == r5d 
         UOSBME.EGSleftScore(boxNo) = 1; 
end 
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if buttonInfo.NewValue == r1e || buttonInfo.NewValue == r2e || 
buttonInfo.NewValue == r3e || buttonInfo.NewValue == r4e || 
buttonInfo.NewValue == r5e 
         UOSBME.EGSleftScore(boxNo) = 2; 
end 
  
updateLeftScore 
  
end 
 

This function sets the value of the element of ‘UOSBME.EGSleftScore’ 
representing the selected parameter to the appropriate value depending on 
which radio button is selected. The second argument used by this function 
(‘buttonInfo’) is passed automatically as a property of the radio button 
‘uicontrol’ and its ‘NewValue’ field details which button has been selected. 
The ‘updateLeftScore’ function is called every time in order to display the 
new score whenever a radio button is selected. 

If a score for a parameter has been automatically calculated then the radio 
button initially selected is set using the ‘switch’ function shown in figure 
below. 

switch box3  
    case 1 
        set(bg3, 'SelectedObject', r3a); 
    case 2 
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        set(bg3, 'SelectedObject',r3b); 
    case 3 
        set(bg3, 'SelectedObject', r3c); 
    case 4 
        set(bg3, 'SelectedObject', r3d); 
    case 5  
        set(bg3, 'SelectedObject', r3e); 
end 
 

The variable ‘box3’ is an input argument of the main function (displayEGS) 
and represents which of the 5 radio buttons should be selected based on the 
value of the EGS parameter calculated. If the value is 1 then the first button 
becomes the ‘SelectedObject’ and so on. Currently ‘box3’ is the only input 
argument of the function (‘displayEGS’) but this can be expanded to have an 
argument for each of the calculable parameters. The current output for the 
EGS functions is shown in figure below. 
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Discussion 
Although not a finished article the utility demonstrates a successful proof of 
concept and meets many of the objectives set out at the beginning of the 
project. It is capable of reading information directly from C3D files, with the 
aid of the BTK, and consequently can be used by a large number of users 
regardless of their choice of motion capture system. Foot strikes and foot offs 
are identified with reasonable accuracy when compared to the gold standard 
method of calculation using force plate data (within 2 frames for the test data 
studied). Individual gait cycles are identified successfully and the method in 
which they are extracted and stored is robust and should function correctly 
regardless of the number of trials present and the number of cycles within 
each trial. The utility is considered to be reasonably straightforward and it is 
hopefully apparent that careful thought has gone in to ensuring the GUI 
works intuitively.  

There are however a number of limitations, many due to time constraints and 
some due to the nature of the data being reported. Most noticeably, the 
functions which calculate and display the EVGS are incomplete. Even so, the 
parts of the functions written are sufficient to display its potential functionality. 
All of the necessary methods are written and presented and these just need 
to be expanded to incorporate the missing parameters. Although the foot 
events calculated were found to be reasonably accurate for the test data, this 
data was from a healthy subject and further testing would be required to see 
if the method holds up for studying pathological gait. The paper by Zeni Jr. et 
al. (2008) demonstrated some success for a small sample (7 MS patients) 



61 
 

but found the alternative velocity based algorithm to be slightly more accurate 
so it would be beneficial if this algorithm  could be implemented either in 
place or alongside the existing one. There will always be errors in the event 
detection regardless of the method used. Even the gold standard method of 
detecting events by force plates has issues with accuracy since it relies on 
setting a threshold value which is fine for foot strike, when the change in 
force occurs rapidly, but is subject to more variation in results when detecting 
foot off due to the more gradual change in force. (O’Connor et al., 2007).  

There are a number of methods available for interpolating the data which 
could have been used when performing the normalisation. The default 
method of linear interpolation was chosen as initial testing showed no visible 
difference between the methods, especially considering the small size of 
each graph. Statistical testing could be carried out to determine whether 
there are significant differences in the data points produced by the different 
methods. One method which can be ruled out is the fast fourier transform 
(FFT) as this produces ‘end effects’ if extrapolation is required. 

Presently the utility is only compatible with the Plug-in-Gait model although 
this could be expanded to any model which outputs the necessary angles. 
The utility could determine the model used based on the fields present in the 
C3D data and, where recognised fields are not present, even allow for 
custom labels representing the angles to be read from the files and selected 
by the user. It is also only currently compatible with the standard frame rate 
of 100 frames per second (100Hz). The frame rate is generally reported in 
the C3D file and the utility could be easily modified to access this data and 
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adjust the calculations accordingly. There are however, some newer motion 
capture systems which utilise a variable frame rate and to make the utility 
compatible with data from these systems would require more substantial 
recoding.   

The function which displays the individual graphs is currently limited to 
displaying 36 graphs for each side. This was chosen as a limit to ensure the 
graphs remained a reasonable size, and is probably sufficient for most 
purposes, but the function could be expanded to allow the graphs to be 
shown across multiple pages. In the same function it may have been easier 
to grey out the graphs chosen for deletion and just remove their values from 
the mean calculations. This could also have provided a way to reinsert the 
graphs if desired rather than removing them completely, although this was 
not considered an essential feature since the user can always load all of the 
data again if a mistake is made. 

There are a many visual aspects which could be improved given more time. 
Perhaps most importantly, all of the graphs should be properly labeled and 
have set standard limits on their Y-axes to ensure consistency when 
interpreting the data. The gap between the graphs on the bottom row should 
also contain a legend detailing what each line represents.  

The aesthetic of the utility is a subjective issue and it would be worthwhile 
submitting it to users for feedback regarding the overall ‘look and feel’. When 
implementing the complete EVGS functionality the appearance of this could 
be achieved more elegantly and efficiently by modifying the properties of the 
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radio button ‘uicontrol’ in the underlying Java code in order to display text 
above the buttons rather than to the side. One seemingly unavoidable visual 
issue with the graphs is that often only one foot off line is shown with test 
data since the foot offs occur at the same point in the cycle and one is plotted 
over the other. This is, however, unlikely to be an issue if used in practice 
since pathological gait is typically asymmetric. 

Error handling is another issue which needs to be properly addressed. For 
example, currently if all the graphs from a trial are deleted then MATLAB will 
throw an error. Given sufficient time, these errors, and any more that are 
found, could be prevented from occurring fairly easily. When saving files (the 
only place where manual error handling is currently provided) the error 
handling functions as it is supposed to and prevents runtime errors from 
occurring. Since the option exists to manually specify the file extension, the 
user can still save the files in inappropriate formats (so long as that format 
exists). This could be altered to allow for only certain formats (which will 
result in properly readable files) to be saved but initially the main aim was to 
allow for saving to as many formats as possible so the ability to save as ‘All 
files’ was included. The choice of file types is another area which would 
benefit from user feedback. Also at present the only data which can be 
exported are the average graphs and the ‘before and after’ graphs but the 
way the exporting is achieved would make it straightforward to expand this to 
allow all pages to be exported. 

The function to calculate the EVGS will always be limited since not all 
parameters can be filled in automatically, especially swing clearance due to 
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differences in toe marker placement for patients with highly abnormal gait. It 
has also been observed anecdotally that a lot of the value of using the EVGS 
comes from the process of carefully observing the gait to evaluate the score 
rather than the score itself.  

It is important to note that even if the utility is successful in reducing the time 
taken to generate gait reports; this may not always lead to shorter waiting 
times for patients. Successful reporting sessions rely on the input and 
expertise of many clinicians and other individuals and must be scheduled 
around the availability of all involved. The increased automation achieved 
using this utility could, however, give more time for those who compile the 
reports to focus on the more subjective aspects of gait analysis. 
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Appendix 
 
As requested by the examiner, the full code is available as an electronic 
appendix only.  


