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Abstract

In this thesis we study lubrication flows of thixotropic and antithixotropic fluids

in two flow problems: unsteady flow in a slowly varying 3D pipe, and oscillating

flow in a uniform cylindrical pipe. We consider two fluid models which exhibit in-

teresting non-Newtonian behaviour: the viscous Moore–Mewis–Wagner (MMW)

model, and the viscoplastic Houška model.

In Chapters 2–6 we study unsteady thixotropic flow in a slowly varying pipe, in a

particular regime in which the thixotropic effects are considered ‘weak’, with the

aim of determining whether we may describe generally the qualitative behaviour

of thixotropic fluids in such flows. Previous work by Pritchard et al. [Journal

of Non-Newtonian Fluid Mechanics, 238: 140–157, 2016] in the related problem

of steady 2D channel flow suggests that such a description may be available.

After obtaining the governing equations for this problem, we perform a detailed

analysis of the flow for the MMW and Houška models, and determine all of the

possible behaviours of these models. This analysis shows that the results and

physical interpretations of Pritchard et al. are insightful but not complete. We

also study the application of an off-the-shelf finite element program to determine

the suitability of such programs for studying slowly varying thixotropic flows.

In Chapter 7 we study the similar but simpler problem of unsteady thixotropic

pipe flow driven by an oscillating pressure gradient. This problem is simpler than

the problem considered in Chapters 2–6, which allows us to explore a wider range

of thixotropic behaviours, in which the thixotropic effects range from ‘weak’ to

‘strong’. We are able to describe the full range of thixotropic behaviour using a

combination of analytical and numerical methods.
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Chapter 1

Introduction

1.1 Complex fluids

This thesis concerns complex fluids. Fluids may be described as either Newtonian

or non-Newtonian, depending on how they deform when stressed. Newtonian

fluids are the simplest fluids, which deform at a rate linearly proportional to the

stress, where the constant of proportionality in simple shear flow is the viscosity

[1]. Of course, no real fluid is perfectly Newtonian, but the behaviour of some,

including air and water, is similar enough to Newtonian behaviour for it to be an

accurate approximation [1, 2].

In contrast, many common fluids, including various foods, oils, blood, and paints,

exhibit non-Newtonian behaviour [2, 3], and are therefore known as non-New-

tonian fluids, or complex fluids [4]. Such fluids, for example, may increase or

decrease in viscosity when deformed, or may resist flow until a critical stress is

reached. In this thesis, we focus on a category of complex fluids called thixotropic

fluids, which we will briefly introduce here and discuss in more detail in Section

1.2.

In this introductory chapter, we discuss four types of non-Newtonian behaviour.

A fluid may have a viscosity that varies with the rate of deformation. Shear-

thinning and shear-thickening fluids decrease and increase in viscosity, respec-

tively, as the rate of deformation increases [2]. Paint is an example of a shear-

1
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thinning fluid, which becomes less viscous when it is being applied, allowing for

an even coat, but increases in viscosity after application to reduce dripping [2].

Viscoplastic, or yield-stress fluids are solid under low stresses, but ‘yield’ and

flow like viscous liquids when a sufficiently large stress is applied [2]. A common

example is mayonnaise [5], which retains peaks and knife marks rather than

flowing to find its level.

Viscoelastic fluids are time-dependent and both stretch like an elastic solid and

flow like a viscous fluid under stress [2]. The timescale of the deformation has

a significant effect on the behaviour of viscoelastic fluids. When the timescale

is long, fluids have a viscous response, but when the timescale is short, as in

impacts, the response is elastic [2]. Between these extremes fluids exhibit both

viscous and elastic effects. Silly putty is a well-known example of a viscoelastic

fluid [6], which flows under gravity when left on a surface, but bounces when

dropped from a height. The important difference between flow under gravity

and under impact in this example is the timescale: flows under gravity are much

slower than impacts. The ratio of the timescale of the flow (or process) and the

characteristic timescale of the fluid, which is an intrinsic characteristic of the

fluid, is called a Deborah number, and will play and important role in this thesis.

Thixotropic fluids are also time-dependent fluids, and are the focus of this thesis.

Thixotropic fluids behave differently depending on how they were deformed in

the past, often referred to as the flow history or shear history [7]. An example is

ketchup [8], which is a thixotropic shear-thinning fluid: when a bottle of ketchup

is shaken, the liquid gradually becomes less viscous, allowing for easy pouring;

when the bottle is left to rest, the fluid slowly increases in viscosity, gradually

tending towards its original, unshaken viscosity.

Thixotropy is manifested as a time-dependent aspect of the viscous, plastic, or

elastic properties of a fluid. In addition to the thixotropic shear-thinning be-

haviour seen in ketchup, thixotropic shear-thickening behaviour [9], thixotropic

viscoplasticity [10, 11], and thixotropic viscoelasticity [11, 12] also exist. We dis-

cuss each of these behaviours and the impact of thixotropy on them in more detail

in Sections 1.2.2 and 1.2.3.

The prevalence and wide range of behaviours of complex fluids makes understand-
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ing them important to many industries, such as the oil industry (see e.g. [13, 14]),

and also provides an interesting area of scientific study. Rheology is the science

of the deformation and flow of matter [2]. More specifically, in the context of this

thesis, it is the study of the relationships between the deformation of a complex

fluid and the stress that deforms it.

The rheology of complex fluids is studied experimentally using rheometers, which

measure the properties of a sample of fluid [2]. Rheometers may use shear flows,

also called ‘rheometric’ or ‘viscometric’ flows (e.g. flow between two parallel mov-

ing plates) or extensional flows (e.g. stretching a fluid sample between two plates).

[4]. Rheometers typically impose either a constant deformation or a constant

stress, and provide data on the stress or deformation, respectively [4]. The data

obtained is used to identify qualitative phenomena, such as shear-thickening or

yield-stress behaviour (see e.g. [15]), and is used to guide the construction and

calibration of mathematical models [9, 16, 17], called rheological models, which

describe in general terms the relationship between deformation and stress. Rheo-

logical models can then be combined with the other governing equations of fluid

dynamics to predict the flow of complex fluids in non-rheometric settings [17].

The macroscopic rheological behaviour of complex fluids often depends on the

interaction of suspended microscopic particles [3]. In particular, these particles

may arrange into larger mesoscopic structures, including flocs [3, 7], which affect

the macroscopic behaviour of the fluid. Examples of such mesoscopic structures

include entanglements of molecules in polymer solutions [3, 18] and “house-of-

cards” arrangements of platelets [19]. Mesoscopic structures often depend on

both present and past flow conditions, which yields time-dependent behaviour,

including the focus of this thesis — thixotropy [3, 7, 20].

When studying complex fluids, it may or may not be necessary or the desire of the

rheologist to know the precise details of all the particle interactions. For example,

Swan et al. [21] consider the ‘microrheology’ of a fluid for which the interactions

between individual particles must be known, whereas Hewitt and Balmforth [22]

consider the macroscopic behaviour of a fluid, so only the macroscopic effects of

the particle interactions are important, rather than the details. In this thesis,

we consider fluid models of the latter kind, which assume all particle interactions
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may be modelled by a single scalar ‘structure parameter’ [7].

As well as identifying the rheological properties of a fluid, one may also wish to

understand how a particular rheological property affects its flow. For example, in

the case of avalanche-like behaviour of rock and mud slides [22], in which a fluid-

like material resists flow down an inclined plane under gravity for a time, before

catastrophically destructuring and flowing rapidly down the plane, the run-out

at the bottom of the slope is important. In the flow of waxy crude oils along

pipelines, the complex rheology of oil makes restarting flow after maintenance

tricky [23]. The scale of such flows makes them impractical to study experimen-

tally, so studying the effects of various rheological properties theoretically is often

advantageous. There are two dominant approaches to studying theoretically how

rheological properties affect flow. One builds complexity from simplicity, while

the other approach is complex from the outset.

The first approach is to consider rheometric flows. Depending on the particular

rheological model used, the governing equations of rheometric flows are often sim-

ple enough for analytical and numerical progress to be made towards describing

the behaviour [24, 25]. Analytical and numerical simulations may be compared

and verified, which provides mutual support and a solid grounding for the numer-

ical model so that more complex behaviour not accessible by analytical methods

may be studied [26, 27]. While the simplicity of rheometric flows has advantages

over flows in complicated geometries, it also has the disadvantage of being rather

idealised compared to many practical situations. In addition, to observe com-

plex fluid behaviours, some degree of complexity in the flow is required, such as

start-up flows [28] or non-uniform geometries [29], for example.

The second approach is to consider complex geometries motivated by particular

practical situations, for instance flow in extrusion dies [30] or mixing tanks [31].

While some analytical simplification of the set-up may be possible [21, 32, 33,

34, 35], such flows are typically too complex for much analytical progress to

be made, so numerical simulations are usually the only way to approach them

[36, 37]. If analytical progress is unlikely, then the rheological models employed

do not need to be particularly simple, and their complexity is limited by the

computational power available. Highly complex rheological models typically give
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rise to a wealth of rheological behaviour, which often comes at the expense of

a limited understanding of how each component of the model affects the flow,

which decreases its practical usefulness.

It is clear there is a need for studies which lie somewhere between these two

extremes and which inherit some of the advantages of both: simplicity from the

former and practicality from the latter. In particular, there is a need for studies

which are simple enough to clearly highlight the effect of a rheological property

on a flow and to determine whether a particular aspect of a flow is generic, both

of which require a detailed analysis of the flow. On the other hand, we wish to use

this approach to study flows complex enough to yield non-trivial results which

may be used as a benchmark for numerical models.

Lubrication flows, also called “slowly varying” or “slender” flows, provide an op-

portunity for such studies. In these flows, the typical lengthscale of variation in

one dimension is significantly smaller than the lengthscales in the other dimen-

sions [38]. Lubrication theory was first formulated by Reynolds [39] to model the

behaviour of lubricating Newtonian fluid in bearings, and yields a significant sim-

plification of the governing equations of the set-up. Lubrication theory has been

applied to a wide range of complex fluids, including viscous non-Newtonian fluids

[24, 40], viscoplastic fluids [41, 42, 43, 44, 45], and thixotropic fluids [29, 46], and,

in particular, to the free-surface flows of muds and lavas [47, 48]. It has also been

used to simplify complex fluid flows before they are studied numerically [33, 34].

Substantial reviews on slowly varying flows have been provided by Oron et al.

[49] and more recently by Craster and Matar [50]. Both reviews discuss mainly

slowly varying flows of Newtonian fluids, and focus on free-surface flows, which

is indicative of the comparatively limited research in the areas of complex fluids

and constrained flows. We discuss lubrication theory in more detail in Section

1.3.

In this thesis, we build on the asymptotic approach for steady 2D thixotropic

lubrication flows developed by Pritchard et al. [29] in two important ways. We

extend the approach to include unsteady flows, which are often an important

feature of complex flow set-ups [28, 46]. In addition, we extend the approach

to model axisymmetric geometries, with the particular aim of studying unsteady
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slowly varying pipe flows, which arise in several industrial processes which use

thixotropic fluids, including liquid foods [10, 51, 52], drilling muds, and oils [23,

46, 53]. We obtain a number of theoretical results using analytical methods which

provide a physical insight into the mechanisms of the flow, and which we use to

determine whether generic behaviour exists, and whether artefacts of widely used

rheological models play a significant role.

Following the analytical investigation of the flow, we study the application of

a standard numerical method (namely finite-element methods (FEM) as imple-

mented in the commercial package COMSOL [54]) to such problems. We use our

analytical results to provide a stern benchmarking test for the numerical method.

This initial numerical testing brings to light the challenges of studying thixotropic

lubrication flows numerically, and provides some guidance for future attempts in

the area.

Finally, we study the simpler but related unsteady set-up of periodically forced, or

oscillating, flow in a uniform pipe. The flow in this case provides further insight

into the unsteady flow of complex fluids, a substantial amount of which can

be obtained through analytical methods. These results provide new benchmark

solutions and important insights into the physical mechanisms of thixotropic flow.

1.2 Rheological models

In this section, we introduce rheological models, which are constructed with the

aim of modelling one or more aspects of fluid behaviour. Naturally, owing to the

wide range of behaviours of fluids, there are numerous models of varying complex-

ity, accuracy, and generality. We cover these in approximate order of complexity

from Newtonian fluids to complex fluids with multiple physical properties and

modelling approaches.

The flow of an incompressible (constant-density) fluid is governed by the Navier–

Stokes equation (see [38]), which is given by

ρ
Du

Dt
= −∇p+ ρg +∇ · τ , (1.2.1)



CHAPTER 1. INTRODUCTION 7

where ρ is the density, D(·)/Dt = ∂(·)/∂t+u ·∇(·) is the material derivative, u is

the velocity, p is the pressure, g is gravity, and τ is the stress tensor, and where

the fluid satisfies the incompressibility condition

∇ · u = 0. (1.2.2)

The stress experienced by a fluid element is given by the stress tensor τ , which

depends on the shear-rate tensor eij, which describes the way the fluid deforms as

it flows. In this thesis, we are concerned primarily with fluid flow along cylindrical

pipes, so we write the shear-rate tensor in cylindrical co-ordinates (see [38]) as

eij =
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, (1.2.3)

where r, θ, and z are the radial, azimuthal, and axial co-ordinates, respectively,

with the respective velocities u, v, and w. We define the total shear rate γ̇ (where

γ is the shear) and total stress τ , using Einstein summation notation, as

γ̇ =

√

1

2
eijeij and τ =

√

1

2
τijτij, (1.2.4)

respectively, where τij are elements of τ .

An integral part of any rheological model is the constitutive relation (also known

as the constitutive equation), which describes the relationship between the shear

rate and the shear stress. We present a range of constitutive relations in the

following sections.

1.2.1 Newtonian fluid

The simplest and most familiar model of fluid behaviour is the Newtonian model.

In a Newtonian fluid, the stress experienced by a fluid element is proportional to
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the shear rate, where the constant of proportionality is the viscosity η (though

µ is also commonly used to denote viscosity). The constitutive relation for a

Newtonian fluid is therefore given by

τij = ηeij. (1.2.5)

Deviations from the behaviour described by (1.2.5) are called non-Newtonian

behaviour, which is the subject of the next section.

1.2.2 Non-thixotropic non-Newtonian fluids

A wide variety of rheological models exist, designed to capture different rheolog-

ical behaviour. We discuss purely viscous behaviour in Section 1.2.2.1, viscoplas-

ticity in Section 1.2.2.2, viscoelasticity in Section 1.2.2.3. We discuss thixotropic

behaviour in Section 1.2.3 and present a range of approaches to modelling it in

Section 1.2.4.

1.2.2.1 Purely viscous behaviour

Purely viscous non-Newtonian fluids differ from Newtonian fluids, presented in

Section 1.2.1, in one crucial way: the viscosity relating the shear stress and the

shear-rate tensor varies with the shear rate or other factors, i.e. η in (1.2.5) is

not constant. A class of such fluids are the generalised Newtonian fluids, whose

constitutive relations have the form

τij = η(γ̇)eij, (1.2.6)

where the viscosity η(γ̇) depends on the total shear rate. (There are some models

similar to generalised Newtonian models which have a constitutive relation of the

form shown (1.2.6) but have non-monotonic stress–strain relations, and so are

not generalised Newtonian fluids. We discuss some examples of these models in

Sections 1.2.2.2 and 1.2.4.2.)

Table 1.1 shows examples of models for generalised Newtonian fluids, with the
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Model η(γ̇) Refs
Power-law model η0γ̇

n−1 [24, 39]

Carreau model η∞ + (η0 − η∞) (1 + (λγ̇)2)
(n−1)/2

[2, 24]

Ellis model η0
(

1 + |τ/τ1/2|α−1
)−1

[2, 24]

Cross model η∞ + (η0 − η∞) (1 + (λγ̇)1−n)
−1

[2]

Table 1.1: Examples of common models for generalised Newtonian fluids.

corresponding forms of η(γ̇). The various parameters and exponents in these

models are chosen to model a range of viscous behaviours. In particular, η0

and η∞ are the viscosities at zero and infinite shear rate, respectively, λ is a

constant parameter with the dimension of time, τ1/2 is the shear stress at which

the viscosity is η0/2, and α is a dimensionless parameter.

In the power-law model, the exponent n describes the tendency of a fluid to be-

come more or less viscous with varying shear rate. When n < 1, the viscosity

decreases with increasing shear, known as shear-thinning (or pseudoplastic) be-

haviour. When n > 1, the viscosity increases with increasing shear, known as

shear-thickening (or dilatant) behaviour. When n = 1, the viscosity no longer

depends on the shear rate, so we recover Newtonian behaviour; such model sim-

plifications are common in many areas of rheological modelling. Figure 1.1 shows

the relationship between the shear rate γ̇ and the shear stress τ for the power-law

model, for various values of n.

Each of the models in Table 1.1 has strengths and weaknesses. For example, the

power-law model, which arises later in this thesis, has the advantage of being

very simple and is therefore widely used, but a significant drawback is that it

yields physically unrealistic behaviour in low-shear and high-shear conditions. In

contrast, the Carreau model may be preferable as it yields physically realistic

behaviour in all flow conditions, but its relative complexity, as noted by Myers

[24], means that even for simple set-ups, such as free-surface flow down an inclined

plane, it may be difficult to make significant analytical progress. Such limitations

should be taken into account when a rheological model is chosen for a flow set-up.
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τ

γ̇0

n > 1

n = 1, Newtonian model

n < 1

Figure 1.1: Shear-stress–shear-rate curves for the power-law model, which con-
tains the Newtonian model as a special case when n = 1. In this model, n < 1 cor-
responds to shear-thinning behaviour and n > 1 corresponds to shear-thickening
behaviour.

1.2.2.2 Purely viscoplastic behaviour

In addition to viscosity, many fluids also exhibit plasticity, and are therefore

referred to as viscoplastic (VP) fluids. Viscoplasticity, also known as yield-stress

behaviour, is the property of a fluid of resisting shear under increasing stress

until a critical stress is reached, called the yield stress, denoted τy, after which

the fluid ‘yields’ and flows like a viscous fluid [19]. Viscoplastic fluids arise in

both industrial settings, including drilling muds and crude oil, and in everyday

settings, such as mayonnaise [51].

Many VP rheologies have a constitutive relation of the form







τ =

(

η(γ̇) +
τy
γ̇

)

eij when τ ≥ τy,

γ̇ = 0 otherwise,
(1.2.7)

where the viscosity η(γ̇) may be Newtonian or generalised Newtonian. The sim-

plest VP model, and one of the most widely used, is the Bingham model (see

[19]), in which the viscosity is constant. In the Bingham model, the fluid remains

rigid when the applied stress is below the yield stress, but flows with constant
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τ

τy

γ̇0

n > 1

n = 1, Bingham model

n < 1

Figure 1.2: Shear-stress–shear-rate curves for the Herschel–Bulkley model, which
contains the Bingham model as a special case when n = 1. In this model, n < 1
corresponds to shear-thinning post-yield behaviour and n > 1 corresponds to
shear-thickening post-yield behaviour. The yield stress for the Herschel–Bulkley
model is denoted τy.

viscosity like a Newtonian fluid when the yield stress is exceeded, as in (1.2.5).

A slightly more complex model, and an example which uses a generalised Newto-

nian viscosity, is the Herschel–Bulkley model (see [19]), in which the fluid exhibits

power-law behaviour post-yield. Figure 1.2 shows the shear-stress–shear-rate re-

lationship for a Bingham fluid (n = 1) and two Herschel–Bulkley fluids, one shear

thinning (n < 1) and one shear thickening (n > 1).

True viscoplasticity is exhibited when the shear rate in a fluid remains zero until

the yield stress is reached, after which the fluid yields and flows like a purely

viscous fluid, as described by the Bingham and Herschel–Bulkley models. When

the stress is below the yield stress, the viscosity diverges, the fluid solidifies and

shearing ceases. The debate on the existence of true yield-stress behaviour is on-

going — many theoreticians and experimentalists continue to use the simple and

traditional VP models (e.g. Balmforth and Craster [41] and Frigaard and Ryan

[43]), and others are moving away from these models in favour of a more complete

and physics-based approach to viscoplasticity (e.g. Coussot et al. [55]). In many

viscoplastic fluids, some small ‘creeping’ flow is observed experimentally when the

fluid is unyielded. Many (e.g. Barnes and Walters [56], Renardy [57]) theorise that
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Figure 1.3: Stress–shear-rate relationship for the Papanastasiou-regularised Bing-
ham model (solid lines) for examples for the regularisation parameter (1, 10, 100),
and for the unregularised Bingham model (dotted line). The arrow shows the di-
rection of increasing regularisation parameter; as this parameter becomes large,
the Papanastasiou model approximates the true Bingham model more and more
closely.

true plasticity does not exist, and that yield-stress behaviour is a myth. Rather,

as supported by experiments (e.g. Coussot et al. [55]), proponents of yield-stress

as a myth consider viscoplasticity to be simply purely viscous behaviour in which

the viscosity rapidly decreases when the ‘yield stress’ is exceeded.

One approach to allow the continued use of the traditional VP models is to

regularise them. In the context of viscoplasticity, model regularisation slightly

modifies a model so that the fluid is not completely rigid for stresses below the

yield stress. As an illustrative example, Papanastasiou [58] presents an example of

a regularisation for the Bingham model. Regularisation is often considered in the

limiting case of minimal divergence from the original model. In the case of the

Papanastasiou model, increasing the regularisation parameter yields behaviour

which more and more closely approximates the behaviour of the unregularised

Bingham model. Figure 1.3 shows how regularisation affects the stress–shear-

rate curve.

Another approach to including creeping behaviour in models is to use a model
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with two characteristic viscosities, a low-shear viscosity and a high-shear viscosity

(the Carreau, Ellis, and Cross models given in Table 1.1 are examples of this

approach), and by assuming the transition from one viscosity to the other occurs

over a small change in the shear rate. Such models are constructed so that for

low stresses, the fluid flows with the higher viscosity, which is similar to plug-like

flow. When the stress reaches a critical stress, equivalent to a yield stress, the

viscosity decreases to the lower viscosity, which is equivalent to a yielded fluid.

In such a model, there is a 1-to-1 correspondence between the shear rate and the

shear stress, and the high-viscosity (unyielded) fluid may deform.

1.2.2.3 Purely viscoelastic behaviour

In addition to viscosity, many fluids exhibit elasticity, and are therefore referred to

as viscoelastic (VE) fluids. In everyday settings, viscoelasticity is most noticeable

in fluids that have a “springy” or “bouncy” quality, such as silly putty [6]. More

formally, elasticity and viscosity are the properties of a fluid in which, under

strain, the stresses experienced by a fluid element due to elasticity and viscosity

depend on the strain γ and the rate of strain γ̇, respectively [59]. These stresses

are referred to as the elastic and viscous stresses.

The viscous and elastic stresses are analogous to the forces involved in deforming

dashpots and extending springs, respectively, and so provide useful mechanical

analogies for visualising viscoelastic behaviour [59]. Springs and dashpots can be

combined in various ways to construct models of fluids with particular behaviours.

The two simplest combinations are given by the Maxwell model, which contains a

spring and dashpot connected in series as shown in Figure 1.4(a), and the Kelvin–

Voigt model, which contains a spring and dashpot connected in parallel as shown

in Figure 1.4(b).

In the Maxwell model, both the spring and the dashpot experience the applied

stress τ fully, but they deform independently, with deformations γe and γv, re-

spectively. In the Kelvin–Voigt model, the applied stress is shared by the spring

and the dashpot, with stresses τe and τv, respectively, but as these components

are connected in parallel, they experience the same deformation γ. We may write
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G η

τ

(b) G

η τ

Figure 1.4: Mechanical analogies for (a) the Maxwell model and (b) the Kelvin–
Voigt model. The spring has elastic modulus G and the dashpot has viscosity η.

the total stress τ and total strain γ in each of these models as

Maxwell: τ = τe = τv and γ = γe + γv, (1.2.8)

Kelvin–Voigt: τ = τe + τv and γ = γe = γv. (1.2.9)

As the elastic and viscous stresses are proportional to the strain and the rate of

strain, respectively, we may write

τe = Gγe and τv = ηγ̇v, (1.2.10)

respectively, where G is the elastic modulus and η is the viscosity. So the stress–

strain relations for the Maxwell and Kelvin–Voigt models are given by

τ̇

G
+

τ

η
= γ̇ and τ = Gγ + ηγ̇, (1.2.11)

respectively.

A notable feature of VE fluids is the presence of more than one timescale over

which the fluid behaves. Over short timescales, under sudden impact or rapid

shearing for example, elastic effects dominate over viscous effects, so a VE fluid

exhibits behaviour similar to rubber. Over long timescales, as when a lump of VE

fluid is left to slump under gravity, viscous effects dominate over elastic effects

and VE fluids behave similarly to purely viscous fluids.

While VE effects have an absolute timescale which depends on the fluid, it is

more useful to consider the timescale of viscoelasticity compared to the timescale

of the fluid flow, referred to as the ‘process’. When modelling the flow of time-
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dependent fluids, one often obtains a dimensionless Deborah number, which is

the ratio of the timescale of fluid to the timescale of the process. On one hand,

if the timescale of the process is much longer than the timescale of the fluid, for

example in the slumping of a small piece of highly viscous VE fluid under gravity,

the Deborah number is small and the time-dependent effects do not greatly affect

the flow. On the other hand, if the timescale of the process is shorter than the

timescale of the fluid, for example in a quickly oscillating flow of a VE fluid, the

Deborah number is large and the time-dependence of the fluid has a significant

effect on the flow.

1.2.3 Thixotropic behaviour

In all the models discussed in the previous sections, the properties of the fluid

are assumed to respond immediately to changes in the stress acting on the fluid.

In many fluids these properties are subject to variation with the duration and

history of stresses in the fluid, which is called thixotropy.

There is no universally agreed definition of thixotropy, though Mewis and Wagner

[7] present three characteristics which essentially define thixotropic behaviour,

which we quote here exactly: (i) it is based on viscosity; (ii) it implies a time-

dependent decrease of the viscosity induced by flow; (iii) the effect is reversible

when the flow is decreased or arrested. Here, ‘based on viscosity’ implies that

thixotropy does not affect elasticity or plasticity, or any other fluid property aside

from viscosity.

Whilst this definition of thixotropy essentially covers the more common time-

dependent decrease of viscosity (time-dependent shear-thinning behaviour), less

commonly fluids (e.g. carbon black suspensions [9]) exhibit a time-dependent

increase in viscosity, usually referred to as antithixotropy or rheopexy. (Mewis and

Wagner [7] define rheopexy as a slightly different phenomenon to antithixotropy,

though such a distinction is not necessary here.) For convenience throughout

this thesis, we refer to both time-dependent shear-thinning and time-dependent

shear-thickening behaviour as ‘thixotropy’, though where further clarification is

necessary, we use ‘thixotropy’ and ‘antithixotropy’ accordingly, which will be



CHAPTER 1. INTRODUCTION 16

made clear by the context. Purely viscous thixotropic fluids, whether thixotropic

or antithixotropic, are also referred to as ‘ideal’ thixotropic fluids, following the

definition of Larson [60].

1.2.3.1 Non-ideal thixotropic behaviour

In addition to viscosity, the effects of elasticity and plasticity may also be time-

dependent in a similar way to purely viscous thixotropy. For example, when a VP

fluid is sheared above its yield stress for an extended time, the yield stress may

decrease so that, following a cessation of shearing and subsequent re-shearing, the

fluid yields at a lower stress. This behaviour creates problems when measuring

the yield stress experimentally [61]. Such effects are occasionally referred to as the

‘ageing’ of fluid, and often arise in the context of thixotropy over long timescales.

Many everyday fluids exhibit a combination of thixotropic, elastic, viscous and

plastic behaviours, depending on the flow conditions. For example, at small

and slow rates of deformation, the behaviour of mayonnaise is characteristically

elastic [51], though for larger and quicker deformations the behaviour is viscous

shear thinning. So mayonnaise could be described as an elastoviscoplastic (EVP)

material in general, with specific behaviours arising in varying flow conditions.

The full range of behaviours of thixoelastoviscoplastic (TEVP) fluids [12] are dif-

ficult to model accurately in their entirety, so rheological models tend to focus

on a single or a few behaviours in a specific environment, whilst neglecting other,

relatively weak behaviours. Using again the example of mayonnaise, one rheo-

logical model could describe the purely elastic response of the fluid and another

could describe the viscoplastic response, which would be confined to small de-

formations and large deformations, respectively. As such, navigating the TEVP

space of models in search of an appropriate model for an experiment, for example,

is not a task with a clear approach. However, a recent conceptual attempt has

been made by Ewoldt and McKinley [11] to construct a map of TEVP behaviour

by extending the map of elastoviscous behaviour constructed by Pipkin [62].



CHAPTER 1. INTRODUCTION 17

1.2.4 Thixotropic models

It is generally agreed that there are three methods for modelling thixotropy

mathematically [3, 7]. A popular approach among theoreticians is the struc-

ture parameter-based approach, which is not concerned with the details of the

build-up and breakdown of the mesoscopic structure in the fluid. Instead, the

instantaneous state of the structure is represented by a single scalar variable, usu-

ally denoted by λ and called the structure parameter (not to be confused with

the timescale of a fluid, occasionally denoted the same way), which is governed

by an appropriate evolution equation. The local value of λ then may affect the

viscosity, yield stress, and elastic modulus of the fluid.

Another approach is the viscoelasticity-based approach, examples of which are

presented by Renardy and co-workers [27, 57, 63]. Models of this form do not use

a structure parameter, rather they focus on thixotropic behaviour in the form of

ageing, which arises in a limiting case of VE behaviour, and can exhibit complex

fluid behaviour such as shear banding and hysteresis. Finally, the least commonly

used approach is to model the micro-physics of suspended particles and their

interactions directly. Naturally, these three approaches to modelling thixotropy

vary in accuracy, simplicity, and applicability; we discuss each of them in the

following sections.

1.2.4.1 Manifestations of thixotropy

Thixotropy may have a ‘strong’ or a ‘weak’ effect on the behaviour of the fluid.

Thixotropic effects occur over a timescale which depends on the fluid, a relevant

example of which is the timescale over which suspended particles rearrange under

shearing. It is therefore more useful to consider the timescale of thixotropy com-

pared to the characteristic timescale of a process, expressed mathematically as a

dimensionless Deborah number, as for the case of VE fluids, discussed in Section

1.2.2.3.

Whilst thixotropy is a time-dependent effect, the flow of a thixotropic fluid need

not be unsteady for thixotropy to affect the flow. For example, suspended parti-

cles in a fluid may be advected to a region of higher or lower shear rate. For this
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reason, we identify two processes, with independent timescales. The first we term

the ‘temporal effect of thixotropy’ or, for brevity, ‘temporal thixotropy’, which

has an associated temporal Deborah number. In temporal thixotropy, the process

which builds up and breaks down the fluid is the time-dependence of the flow,

which may arise, for example, from a time-dependent pressure gradient. The sec-

ond we term the ‘advective effect of thixotropy’ or ‘advective thixotropy’, which

has an associated advective Deborah number. In advective thixotropy, the pro-

cess which builds up and breaks down the fluid is the advection of the structure

of the fluid to regions with higher or lower shear rates. Whilst we have referred to

two kinds of thixotropy, a thixotropic fluid has only one thixotropic property (we

do not consider two independent fluid structures with separate timescales), so the

temporal and advective effects of thixotropy are manifestations of thixotropy in

the context of a particular process.

1.2.4.2 Structure-parameter-based models

The structure parameter λ is bounded below by λ = 0, which represents a com-

pletely destructured state, but may or may not be bounded above; in either case

the maximum value of λ represents a fully structured state. Depending on the

shear rate and the current state of the structure, the structure of the fluid evolves

according to a structure evolution equation of the form

Dλ

Dt
= f(γ̇, λ), (1.2.12)

where f(γ̇, λ) describes the dependence of the evolution of the structure on the

shear rate and the current state of the structure.

A variety of choices of f(γ̇, λ) made by previous authors are extensively reviewed

by Mewis and Wagner [7], who propose a general form of f(γ̇, λ), given by

f(γ̇, λ) = −k1γ̇
aλb + k2γ̇

c(1− λ)d, (1.2.13)

where the parameters a, b, c, and d are non-negative, and k1 and k2 are positive

breakdown and build-up rate constants, respectively. This function (1.2.13) con-
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Model Breakdown Build-up Refs
Mujumbar et al. k1γ̇λ k2(1− λ) [64]
Pinder k1λ

2 k2 [65]
Houška model k1γ̇

aλ k2(1− λ) [10, 66]
Coussot model k1γ̇λ k2 [55]
Billingham & Ferguson* k1γ̇λ k2(1− λ) [67]

Table 1.2: Examples of models which use Mewis and Wagner’s structure equation
(1.2.13). *Billingham and Ferguson [67] add a diffusive term to their structure
equation.

tains a breakdown term k1γ̇
aλb, which vanishes when λ = 0, i.e. when the fluid is

completely destructured. This function also contains a build-up term k2γ̇
c(1−λ)d,

which adds Brownian restructuring when c = 0 and shear-driven restructuring

when c > 0; in addition, when d > 0 the structure is bounded above by λ = 1,

but when d = 0, λ may grow without bound.

Table 1.2 shows examples of several models used by previous authors which are

special cases of Mewis and Wagner’s structure evolution equation (1.2.13). We

note that the model of Billingham and Ferguson [67] adds a term to (1.2.12)

representing the diffusion of structure. It is therefore not a true special case of

Mewis and Wagner’s structure evolution equation, but is cited here as a closely

related approach.

In purely viscous structure-parameter models, the constitutive relation is assumed

to be generalised Newtonian in form (see (1.2.6)), except that the viscosity is

modified to depend on the structure:

τij = η(γ̇, λ)eij. (1.2.14)

Some models incorporate a structure parameter to model viscoplastic behaviour,

including the Houška model [10, 66]. In such models, the yield-stress term is

modified to depend on the structure. By allowing the yield stress to depend on

the structure, the phenomenon of ageing is incorporated. Structure parameter

models are also used to model viscoelastic behaviour, an example of which is the

Dullaert and Mewis model [68].
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ηs(λ)Gs(λ)

τ

Figure 1.5: Mechanical analogy of the TEVP components of de Souza Mendes
[70, 71]. In the Maxwell element (cf. Figure 1.4), the elastic modulus Gs and
the structural viscosity ηs depend on the structure parameter λ. The additional
viscous element η∞, connected in parallel to the Maxwell element, is the infinite
shear-rate viscosity.

A series of models by de Souza Mendes and co-workers [69, 70, 71] model both

viscoplasticity and viscoelasticity, or elastoviscoplasticity, in the framework of

structure-based thixotropy, yielding a so-called thixoelastoviscoplastic (TEVP)

model. These models are modifications and extensions of the viscoelastic Maxwell

model. The initial modification by de Souza Mendes [69] consists of a Maxwell

element in which the elastic modulus and the viscosity depend on a structure pa-

rameter λ, which itself evolves according to a structure evolution equation. This

model was extended by de Souza Mendes [70] to include an additional viscosity

term not dependent on the structure parameter, which is shown to improve the

ability of the model to predict certain experimental results. In the mechanical

analogy, this additional dashpot is connected in parallel to the Maxwell element,

as shown in Figure 1.5, with constant viscosity η∞. Thixotropy is directly incor-

porated into these models via a structure evolution equation of the form

dλ

dt
=

1

teq
g(λ, τ), (1.2.15)

where g(λ, τ) contains the build-up and breakdown terms, which depend on the

structure λ and the stress τ . The term teq is the equilibrium time, the character-

istic timescale of the change of λ. We note that breakdown is driven by stress,

which is a departure from the more familiar shear-driven structure build-up and
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breakdown rates (cf. (1.2.12)), such as those in the review by Mewis and Wagner

[7]. We note also that (1.2.15) contains only the time-derivative of the structure

(rather than the full material derivative, as in (1.2.12)), so the equilibrium time

teq represents the strength of temporal thixotropy. As mentioned by de Souza

Mendes [70], a further addition could be made to the models discussed above by

using the full material derivative of the structure (as done by Oishi et al. [36]),

which would introduce advective thixotropy, in addition to temporal thixotropy.

Hewitt and Balmforth [22] constructed a structure-parameter model to study

the thixoviscoplastic behaviour observed in avalanche flows by Coussot and co-

workers [37, 55]. They were also able to model the viscosity bifurcation observed

by [72], which occurs in thixoviscoplastic (TVP) fluids. Below the yield stress,

TVP fluids have a high viscosity and the structure is said to be ‘jammed’. When

a TVP fluid yields under stress, the fluid destructures and the viscosity decreases

significantly, and due to thixotropy the yield stress also decreases. When the

fluid is allowed to rest, the structure rebuilds and the viscosity begins to increase.

Once shearing begins again, the behaviour of the fluid depends on how long the

fluid was allowed to rest between periods of shearing. If the rest time is short, the

structure breaks down again and the viscosity decreases, but if the rest time is

long enough, the structure rebuilds to a jammed state. So depending on the rest

time, a TVP fluid may behave drastically differently for only a small difference

in the applied stress, if the applied stress is similar to the yield stress of the fluid.

Hewitt and Balmforth construct a variation of a generalised Newtonian, structure-

parameter-based model, but unlike other similar models, they consider the limit-

ing case of instantaneous structure-parameter adjustment, and therefore instan-

taneous viscosity adjustment, i.e. f(γ̇, λ) = 0 in (1.2.12). In this limit, their

model defines a non-monotonic shear-stress–shear-rate curve, so that the stress τ

may or may not define a unique shear-rate γ̇. In fact, the value of γ̇ for a given

τ depends on the shear history of the fluid. For a fluid in a fully structured and

rigid state, as the stress increases the viscosity is high and the shear rate is low

until τ reaches a critical value at which the fluid suddenly yields, the viscosity

decreases and the shear rate increases. This critical stress may be likened to the

yield stress of VP fluids. When the stress decreases, the now destructured fluid

continues to flow, even for stresses lower than the original critical stress, until
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a second lower critical stress is reached at which point the fluid becomes rigid

and the shear rate decreases to zero. This change in the apparent yield stress,

and the resulting hysteretic behaviour, is the main way thixotropy arises in the

model of Hewitt and Balmforth [22], who refer to the ‘jumping’ up and down be-

tween branches of the stress–shear-rate curve as a viscosity bifurcation. As noted

by Hewitt and Balmforth [22], this definition differs slightly from that presented

by Coussot et al. [72], which only applies to the initial ‘yielding’, and not the

‘unyielding’, of the fluid.

Hewitt and Balmforth [22] improve the flexibility of their model by including an

ageing effect via a constant ageing-time parameter λ0, which affects the yield

stress of the fluid. This ageing effect adds a very strongly thixotropic effect,

in which the typical timescale of structure adjustment is much longer than the

typical timescale of the flow, hence λ0 may be assumed to be constant. One way

to extend their model to study more complex thixotropic behaviour would be to

include structure-parameter adjustment over a short timescale, i.e. to consider

the case where f(γ̇, λ) 6= 0. Another would be to consider the case where the

ageing parameter λ0 is not constant. These extensions would allow one to study

complex thixotropic behaviour over multiple timescales.

1.2.4.3 Viscoelasticity-based models

For many of those who study and model thixotropy, the explicit inclusion of

thixotropy via a structure parameter assumes thixotropy is a fundamental prop-

erty of a fluid, in the same way plasticity or elasticity is. An alternative approach

used by Renardy and co-workers eliminates the need for a structure parameter

[57, 63], and suggests that thixotropy arises naturally from a combination of vis-

cous, plastic, and elastic effects, without the need for its deliberate inclusion. A

similar line of thought is promoted by some experimental rheologists, who note

the difficulty of using structure-parameter models with experiments.

Following Barnes and Walters [56], Renardy [57] described true yield-stress be-

haviour as a myth, citing significant disagreement between experimental yield-

stress behaviour and the behaviour predicted by yield-stress rheological models.

These disagreements mainly stem from a yield stress that depends on the shear
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history of the fluid, which leads to behaviour including stress–strain hysteresis,

stress overshoots, and fast and slow yielding. Thixotropy also arises in the form

of the Mullins effect — the dependence of the elastic response of a fluid on the

history of the strain applied to the fluid [73]. In particular, the slow yielding

and unyielding of fluid means that fluid prestrained above the yield stress re-

mains unyielded for an extended time after the stress is removed. This complex

yield-stress behaviour implies that yield-stress fluids do not have a definitive yield

stress, and so there is no ‘true’ yield-stress behaviour.

Renardy [57] constructs a model which exhibits complex yield-stress behaviour in

a particular limiting case of a viscoelastic model. He draws an analogy with his

model to the yield-stress behaviour of the viscoplastic Bingham model that arises

as a limiting case of a regularised yield-stress model, referencing the model of

Papanastasiou [58] in particular (discussed in Section 1.2.2.2). Unlike the TEVP

models of de Souza Mendes [69, 70, 71], and indeed a significant proportion

of other thixotropic models, Renardy avoids the need for a phenomenological

structure parameter.

The model constructed by Renardy is a modification of the Partially Extending

strand Convection (PEC) model originally described by Larson [74], in which the

shear stress is a non-monotonic function of the shear rate. In the PEC model,

in qualitative terms, as the shear rate increases, the shear stress increases to a

maximum, then decreases to zero as the shear rate becomes large. A sketch of

the flow curve of the PEC model is shown as a dotted line in Figure 1.6. For

large relaxation times, the shear rate at which the shear stress is a maximum

is low, tending to zero in the limit of large relaxation times. In this limit, the

maximum in the flow curve resembles an apparent yield stress which, for a fluid

at rest, must be overcome to initiate flow. Renardy modifies the PEC model

so that the shear stress has two components. The first of these components is

a modification of the elastic component of the PEC model, which provides the

non-monotonicity of the shear stress–shear rate relation. Renardy generalises this

component so that the shear stress tends to τPECR, a non-negative value, as the

shear rate becomes large, forming the PEC–Renardy (PECR) model, shown as a

dashed line in Figure 1.6. The second component is a Newtonian component, so

that, post-yielding, the shear stress increases linearly with the shear rate, forming
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PECR-N

PECR

PEC

τ

γ̇

τ → 0

τ → τPECR

τ ∝ γ̇
(Newtonian)

Figure 1.6: Shear stress–shear rate curves for the PEC (dotted), PECR (dashed),
and PECR-N (solid) models. In the PEC model, τ → 0 as γ̇ → ∞; in the PECR
model, τ → τPECR ≥ 0 as γ̇ → ∞; in the PECR-N model, τ ∝ γ̇ as γ̇ → ∞ (i.e.
Newtonian behaviour post-yielding). Adapted from [63].

the PECR-N model, shown as a solid line in Figure 1.6.

The large relaxation times and apparent yield-stress behaviour of the PECR-N

model results in ‘fast’ and ‘slow’ timescales, leading to hysteresis, shear banding

(see [75, 76]), and thixotropy. The PECR-N model (along with similar models) is

an important step forward in the study of thixotropic behaviour as it eliminates

the tricky task of measuring the value of the structure parameter experimentally

(a problem encountered recently by Jeon and Hodges [77]). However, the ability

of these models to exhibit thixotropy is limited to the Mullins effect, so they

cannot be used to model weak thixotropy.

1.2.4.4 Microphysics-based models

Thixotropy may also be modelled by considering the underlying physical mech-

anisms which lead to thixotropic behaviour. The interaction of suspended par-

ticles with each other and with the suspending fluid often yields non-Newtonian

behaviour. Modelling fluids this way is complex as it involves a full descrip-

tion of the structure or suspended particles, a complexity which is avoided in
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structure-parameter-based models.

Some authors (e.g. Patel and Russel [78]) model suspended flocs which vary in

size depending on the stress, and so affect the properties of the fluid in different

ways. Others, including Swan et al. [21], model suspended spherical particles

which diffuse in the fluid via Brownian motion over varying timescales. When

the particles diffuse slowly compared to the timescale of the flow, thixotropic

behaviour may be strong enough to affect the flow.

1.3 Slowly varying flows

In this thesis, we will consider the unsteady axisymmetric flow of thixotropic fluid

along a uniform cylindrical pipe and a cylindrical pipe of slowly varying radius,

which is a case of slowly varying flow. Following the application of lubrication

theory, we expand the governing equations to study a flow at various orders of

approximation. The benefit of applying lubrication theory for a slowly varying

flow is that the leading-order behaviour is simply that of uniform flow. Geomet-

rical corrections to account for the slowly varying radius enter the expansion at

second order in the expansion, not first order, meaning that lubrication theory

allows one to approximate slowly varying flow to a high accuracy by considering

an equivalent uniform set-up. Since Reynolds [39], lubrication theory has been

used to model flow in various geometries and for various fluids, which we discuss

in the following sections.

1.3.1 Lubrication flow of non-Newtonian fluids

Non-Newtonian fluids arise in the context of lubrication flows in a variety of

settings, including in avalanches, in which snow may be modelled as a VP fluid

[55], and in crude oil transportation [23]. Myers [24] studied and compared the

flow of generalised Newtonian fluids, specifically the power-law, Carreau, and

Ellis fluids, in 2D channels and down inclined planes. A well-known problem

of the power-law model is its unphysical behaviour in low shear rates, so Myers

presents the behaviour of non-pathological models which could be preferred over
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the power-law model. He notes that a more physically realistic model comes at

the expense of simplicity.

Wilson et al. [79] studied the steady lubrication flow of a rivulet of power-law fluid.

This work was extended by Yatim et al. [80] to unsteady behaviour of power-law

fluid, and most recently by Al Mukahal et al. [81, 82]. These works provide an

important baseline for studying more complex fluids, such as thixotropic fluids.

Yatim et al. [80] also study the limiting behaviour of the power-law model. In

particular, they consider the so-called shear-thinning limit, in which the power-

law exponent tends to zero (n → 0), and the shear-thickening limit (n → ∞).

Lubrication flow of viscoplastic fluids typically features regions of yielded, purely

viscous flow, and regions of unyielded, ‘plug-like’ flow. In the case of pipe flow,

for example, a VP fluid is yielded near the wall of the pipe where the shear stress

is high, and unyielded near the centre of the pipe where the shear stress is low.

The viscous flow near the wall lubricates the plug near the centreline, which is

bounded by a ‘yield surface’. The higher the yield stress of a fluid, the wider

the plug will be. Lubrication theory for VP fluids, particularly Bingham and

Herschel–Bulkley fluids, predicts the plug to be completely unyielded, and the

yield surface divides purely viscous and purely plug-like flow. Conversely, the

same approach yields solutions which describe flow within the supposedly rigid

plug. This disagreement has been termed the ‘Bingham paradox’, the ‘lubrication

paradox’, and the ‘yield-stress paradox’.

One way to avoid this paradox is to relax the rheological model, an example of

which was presented by Wilson [83]. Instead of assuming the fluid is completely

rigid when unyielded, Wilson assumes the fluid has two characteristic viscosities,

often referred to as a bi-viscous model, with one viscosity being much larger than

the other. This model is constructed so that for low stresses, the fluid flows

with the higher viscosity, which is similar to plug-like flow. When the stress

reaches a critical stress, equivalent to the yield stress, the viscosity rapidly, but

smoothly, decreases to the lower viscosity, which is equivalent to a yield fluid. In

such a model, there is a 1-to-1 correspondence between the shear rate and the

shear stress, and the high-viscosity (unyielded) fluid may deform. This process of

relaxing a rheological model is also referred to as a ‘regularisation’ of the model,
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and will be encountered later in this thesis.

Balmforth and Craster [41] present a consistent lubrication theory for the free

surface flow of a viscoplastic fluid. Specifically, they use the exact Bingham

model, but unlike Wilson [83], they allow for no relaxation or regularisation of

the model. Following an expansion of the governing equations, they show that

the plug does in fact yield ‘weakly’ at a higher order, and so they define a ‘pseudo-

plug’ accordingly, which is bounded by a ‘fake’ yield surface. Frigaard and Ryan

[43] studied Bingham flow along a 2D channel of slowly varying width. Pritchard

et al. [84] studied free-surface flow of power-law and Carreau fluids, as well as the

viscoplastic Bingham and Casson fluids, on inclined planes of varying gradient.

Huilgol [85] reviews analytical solutions for VP fluids in a range of geometries,

including channel and pipe flows, and free-surface flows. Huilgol notes similar

difficulties to Myers [24], specifically of obtaining analytical solutions for VP

fluids which are non-linear post-yield, such as Herschel–Bulkley fluids.

1.3.2 Lubrication flow of thixotropic fluids

Due to the complexity of thixotropic fluids, simplifying methods, which include

lubrication theory or making assumptions on λ in fluid layers, are often used when

studying slowly varying flows of thixotropic fluids. Interest in slowly varying flows

of thixotropic fluids arose from studies of avalanche behaviour, though Pearson

and Tardy [86] proposed using lubrication theory to study thixotropic flows in

porous media. Avalanche experiments of yield-stress fluids are usually performed

by placing a blob of yield-stress fluid at one end of a plane and allowing the fluid

to rest for an extended time. The plane is then inclined until the fluid yields

and flows, with the distance travelled by the leading ‘head’ of the fluid being of

particular interest. Coussot et al. [55] showed that while theory predicts that the

fluid flows quickly after yielding, and gradually slows, an experiment showed that

the flow is initially slow after yielding, occasionally referred to a creeping flow,

then accelerates and flows well past the predicted stopping point of the leading

head (see their Figure 2(b)). Coussot et al. conclude that thixotropy has the

effect of breaking down the structure of the fluid after yielding, decreasing the

viscosity, and eventually allowing the fluid to flow rapidly down the plane, further
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decreasing the viscosity leading to a long runout.

Following further studies by Coussot and co-workers [37, 72], and Chanson et al.

[87], Hewitt and Balmforth [22] constructed a structure-parameter-based rheolog-

ical model to study the thixotropic yield-stress behaviour observed by Coussot

and co-workers. Their model emphasised the decrease of the apparent yield stress

of the fluid due to thixotropy, and incorporated viscosity bifurcations (discussed

in Section 1.2.4.2), and, repeating Coussot’s experiments, found rough qualitative

agreement between their theoretical and experimental results. Hewitt and Balm-

forth note some differences between their results, which highlight the difficulty

constructing a rheological model for thixotropic fluids. In addition, Pritchard

and Pearson [88] studied the flow of thixotropic fluid in a porous medium and

in fracture of varying width. Chanson et al. [87] and Pritchard and Pearson [88]

both reduced the governing equations by assuming that the structure over a cross-

section could be averaged, yielding a single quantity characteristic of the state

of the structure. Chanson et al. [87] averaged the structure parameter vertically,

while Pritchard and Pearson [88] averaged the value of the fluidity in a version

of Bautista et al.’s model [89].

Dullaert and Mewis [68] propose a structure parameter-based model for a thixo-

viscoelastic fluid, in which the structure of a suspension affects the elastic modulus

of the elastic component and the viscosity of the viscous component. The sus-

pension is itself suspended in an inelastic medium of constant viscosity. The au-

thors were keen to demonstrate an agreement between the behaviour of structure-

parameter-based models and experimental behaviour of thixoviscoelastic fluids.

Recently, Ahmadpour and Sadeghy [28] studied start-up flows of Dullaert–Mewis

thixotropic fluids in axisymmetric pipelines, with emphasis on the effect of elas-

ticity on success or failure of restarting flow in oil pipelines. Whilst the authors

did not use lubrication theory, we are able to compare their results for a uni-

form pipe directly to the leading-order behaviour of a slowly varying pipe in the

present work. In particular, we are able to use Ahmadpour and Sadeghy’s results

to match a limiting case of the MMW model in the present work to a limiting

case of the Houška model.

Livescu et al. [90] study the levelling of a thin sinusoidally rippled film of thixotropic
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fluid. They use Moore’s structure-based model [91], which uses a special case of

Mewis and Wagner’s structure equation (1.2.13). To simplify the mathematical

problem further, they use the results of numerical simulations to approximate the

inverse of the viscosity across the thin film, using the boundary conditions for

the viscosity at the substrate and the free surface. A downside to this approach

is that in order to simplify the problem further following lubrication theory, one

must perform a numerical study for the full problem.

Recently, Uppal et al. [35] used lubrication theory to study the spreading of a

thixotropic droplet, modelled using Moore’s structure-parameter model [91]. In

addition to simplifying the problem using lubrication theory, they also employ a

cross-sectional averaging over the depth of the droplet to obtain a ‘1.5D’ model,

in which the structure evolution equation retains vertical dependence explicitly

and the continuity equation is depth-integrated.

The work of Pritchard et al. [29]

Recently Pritchard et al. [29] (hereafter PWM) studied the steady flow of a purely

viscous thixotropic fluid and a thixoviscoplastic fluid along a slowly varying 2D

channel, and derived a general theory for thixotropic lubrication flow for a general

rheology. They study the so-called weakly advective regime of thixotropy in

which the structure of the fluid is advected through wider and narrow regions

of the channel. They obtain an advective Deborah number, which is the ratio

of the timescale of the structure evolution to the timescale of the advection of

structure along the channel. The timescale of the structure evolution, or structure

response, of a real-world fluid is difficult to determine. Dullaert and Mewis [92]

found typical timescales of 0.1s to 10s for a suspension of fumed silica particles,

Boek et al. [93] found timescales of 1s to 100s for a wormlike micellar solution,

and Ardakani et al. [30] found a timescales of around 10s for toothpaste.

Pritchard et al. use Mewis andWagner’s structure evolution equation [7], given by

(1.2.13), with a version of Moore’s constitutive relation [91], to form the Moore–

Mewis–Wagner (MMW) model. This model has also been used recently in the

similar context of the Stokes boundary layer problem [94] Unlike others who

use Mewis and Wagner’s structure equation, Pritchard et al. make significant
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analytical progress without specifying values of the parameters a, b, c, and d,

and obtain general leading-order and perturbation solutions for the velocity and

structure parameter. We discuss the results of Pritchard et al. in more detail in

Section 3.3.1, where we are able to make comparisons between their results and

the results in this thesis.

In this thesis, we build on the results of Pritchard et al. [29] in two main ways:

we generalise their approach further by allowing for unsteady flow; and we study

the related geometry of a slowly varying cylindrical pipe. Unlike Pritchard et al.

we perform an in-depth analysis of the behaviour of the fluid for three rheological

models, and attempt to determine what general statements can be made about

the behaviour of thixotropic fluids in slowly varying geometries.

1.4 Overview of thesis

In this thesis, we study the behaviour of thixotropic fluids in a uniform and

a non-uniform cylindrical pipe, in both steady and unsteady flow conditions.

Chapters 2–5 focus on the unsteady flow of a thixotropic fluid in a slowly varying

pipe. In particular, in Chapter 2 we derive the governing equations for unsteady

thixotropic flow in a slowly varying pipe, and obtain thixotropic regimes of var-

ious characteristic thixotropic strengths through an asymptotic expansion. By

focussing on the weakly thixotropic behaviour in Chapter 3, we obtain solutions

for unsteady thixotropic pipe flow for a general rheology in the weakly thixotropic

regimes. Thixotropic behaviour in these regimes is characterised by a structure

timescale which lies between instantaneous and the timescale driving structure

evolution. We use the previous work of Pritchard et al. [29] to define a reference

case for thixotropic behaviour against which we compare the weakly thixotropic

behaviour is this thesis. In Chapters 4 and 5, we present the fluid behaviour for

the simplified MMW model, the full MMW model, and the viscoplastic Houška

model, and determine whether we are able to make generic statements about the

behaviour thixotropic fluid in pipe flow.

General solutions are not available for all thixotropic regimes as they are in the

weakly thixotropic regime. Consequently, in Chapter 6, we attempt to implement
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unsteady thixotropic flow in a slowly varying pipe numerically using the finite

element analysis software package COMSOL [54] to verify and expand the results

of Chapters 2–5. We have some limited success with this implementation, and

indicate where likely challenges lie in the numerical problem.

In Chapter 7, we focus on the oscillating flow of a thixotropic fluid in a uniform

pipe, which is related to the set-up studied in Chapters 2–5. A key difference

between the slowly varying set-up and the oscillating set-up is that the latter is

simpler. Two key advantages of the simpler set-up are that we can make more

analytical progress than in the former set-up, particulars in studying thixotropic

regimes other than the weakly thixotropic regime, and that we can obtain more

accurate numerical solutions. Indeed, we are able to build a full picture of oscil-

lating thixotropic pipe flow using both analytical and numerical methods.

Finally, in Chapter 8, we summarise the findings of this thesis and indicate pos-

sible directions for further study in this area.

1.5 Presentations and publications

The main results of Chapter 3 of this thesis have been presented at the following

conferences: the British Applied Mathematics Colloquia (BAMC) at the Uni-

versity of Oxford in April 2016, and the University of Surrey in April 2017; the

Scottish Fluid Mechanics Meetings (SFMM) at the University of Edinburgh in

May 2016, and the University of Strathclyde in May 2017; the British Society

of Rheology Mid-Winter Meetings at the University of Glasgow in December

2015, and the University of Reading in December 2016; the Society of Indus-

trial and Applied Mathematics (SIAM) Annual Meeting (AN17) in July 2017 in

Pittsburgh, USA; the European Coating Symposium (ECS) in November 2017

in Fribourg, Switzerland. The main results of Chapter 3 have been published in

Physics of Fluids [95].



Chapter 2

Model Formulation

In this chapter, we formulate the problem of unsteady thixotropic flow in a slowly

varying pipe of small aspect ratio δ. As mentioned in the Chapter 1, we consider

a slowly varying pipe because the flow will be complex enough to yield interest-

ing thixotropic behaviour, while remaining simple enough to thoroughly explore

analytically. We begin by deriving the governing equations for the unsteady flow

of an incompressible fluid in an axisymmetric geometry in Section 2.1. We then

rescale and non-dimensionalise these equations, and obtain two Deborah num-

bers in Section 2.2. Using lubrication theory, we expand the governing equations

and obtain equations at leading order and first order in δ in Section 2.3. We

define various regimes of the Deborah numbers in Section 2.4. Finally, in Section

2.5, we introduce three rheological models: the simplified Moore–Mewis–Wagner

(sMMW) model, the full Moore–Mewis–Wagner (MMW) model, and the regu-

larised Houška model. In this chapter, a distinction between thixotropic and an-

tithixotropic behaviour is not necessary, so for brevity we refer to time-dependent

shear-thinning or -thickening behaviour as thixotropy.

2.1 Governing equations

We consider the unsteady flow of an incompressible thixotropic fluid along a pipe

of slowly varying radius, using cylindrical co-ordinates (r̂, θ, ẑ). Here, as with

32
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ẑ

r̂

α̂(ẑ)

û(r̂, ẑ, t̂)

ŵ(r̂, ẑ, t̂)λ(r̂, ẑ, t̂)

Figure 2.1: Sketch of unsteady axisymmetric flow of a thixotropic fluid along a
pipe of slowly varying radius r̂ = α̂(ẑ).

terms below, a circumflex represents a dimensional quantity and dimensionless

terms are unadorned. In particular, we assume that the typical lengthscale of the

flow L̂ is much larger than the typical radius R̂, i.e. R̂/L̂ = δ ≪ 1, where δ is

the small aspect ratio of the flow. We assume thixotropic behaviour arises from

the time-dependent build-up and breakdown of a mesoscopic internal structure,

which we model using the scalar structure parameter λ.

We assume the flow along the pipe is axisymmetric, with no swirl, so the velocity

has the form û = (û(r̂, ẑ, t̂), 0, ŵ(r̂, ẑ, t̂)). The radius of the pipe varies slowly

with distance in the ẑ-direction, and is given by r̂ = α̂(ẑ), so that any transverse

cross section of the pipe is circular, and α̂′(ẑ) = O(δ). Figure 2.1 shows a sketch

illustrating the geometry of this set-up.

This problem involves the flow of viscous fluid, which is governed by the Navier–

Stokes equation

ρ̂
Dû

Dt̂
= −∇p̂+ µ∇2τ̂ , (2.1.1)

where ρ̂ is the constant density, p̂ is the pressure, τ̂ is the stress tensor, and D/Dt̂

is the material derivative. We take τ̂ to depend on the shear rate via an extended

generalised Newtonian constitutive relation in which the viscosity η̂ depends on
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the total shear rate γ̇ and the structure parameter λ, i.e.

τ̂ij = η̂(γ̇, λ)êij, (2.1.2)

where êij are terms of the shear-rate tensor and γ̇ =
√

êij êij/2 is the total shear

rate. The shear-rate tensor, in cylindrical co-ordinates (r̂, θ, ẑ), for axisymmetric

flow with no swirl, i.e. with all terms and derivatives in θ set equal to zero, is

given by [38]:

êij =
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. (2.1.3)

We assume the fluid is incompressible, so its velocity satisfies the mass conserva-

tion equation ∇̂ · û = 0, i.e.

1

r̂

∂

∂r̂
(r̂û) +

∂ŵ

∂ẑ
= 0. (2.1.4)

We assume the usual no-slip and no-penetration boundary conditions apply at

the pipe wall, along with the symmetry condition at the centreline of the pipe,

given by

û = 0 at r̂ = α̂(ẑ) and τ̂rz = 0 = û at r̂ = 0, (2.1.5)

respectively. The flow is driven by a time-dependent pressure gradient and has

volume flux Q̂(t̂) given by

Q̂(t̂) = 2π

∫ α̂(ẑ)

0

ŵ(r̂, ẑ, t̂)r̂ dr̂. (2.1.6)

We note that by incompressibility (2.1.4), the flux is independent of the stream-

wise co-ordinate ẑ. We will have the option to prescribe either the pressure

gradient or the volume flux. We choose to prescribe the volume flux, which will

allow us to obtain general solutions at a later stage, and to compare the solutions

with those of PWM.
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The flow has zero Reynolds number, so we may neglect the inertial term of the

Navier–Stokes equation (2.1.1), yielding, in component form, the Cauchy momen-

tum equations:

∂p̂

∂r̂
=

1

r̂

∂

∂r̂
(r̂τ̂rr) +

∂τ̂rz
∂ẑ

, (2.1.7)

∂p̂

∂ẑ
=

1

r̂

∂

∂r̂
(r̂τ̂zr) +

∂τ̂zz
∂ẑ

, (2.1.8)

for the er- and ez-components respectively. Using the constitutive relation (2.1.2)

and the shear-rate tensor (2.1.3), equations (2.1.7) and (2.1.8) become

∂p̂

∂r̂
=

1

r̂

∂

∂r̂

(

2r̂η̂
∂û

∂r̂

)

+
∂

∂ẑ

[

η̂

(

∂û

∂ẑ
+

∂ŵ

∂r̂

)]

, (2.1.9)

∂p̂

∂ẑ
=

1

r̂

∂

∂r̂

[

r̂η̂

(

∂û

∂ẑ
+

∂ŵ

∂r̂

)]

+
∂

∂ẑ

(

2η̂
∂ŵ

∂ẑ

)

, (2.1.10)

respectively.

For convenience, we define

Γ̂ = γ̇2 = 2

(

∂û

∂r̂

)2

+

(

∂û

∂ẑ
+

∂ŵ

∂r̂

)2

+ 2

(

∂ŵ

∂ẑ

)2

. (2.1.11)

The structure evolves according to an advection-kinetic equation

Dλ

Dt̂
= f̂(Γ̂, λ), (2.1.12)

where the function f̂ is the structure evolution rate, which describes the shear-

driven build-up and breakdown of the structure. The structure evolution rate

f̂(Γ̂, λ) and the viscosity η̂(γ̇, λ), given in (2.1.2), describe the rheological prop-

erties of the fluid, and together form the rheological model. We do not specify

a particular rheological model at this stage as we are able to make significant

progress toward solutions for the velocities and the structure parameter, whilst

keeping the rheological model general.



CHAPTER 2. MODEL FORMULATION 36

2.2 Non-dimensionalisation

We now rescale and non-dimensionalise the governing equations introduced in

Section 2.1, to which end we define dimensionless quantities, with the scaling δ,

via

r̂ = R̂r, ẑ =
R̂z

δ
, û =

δQ̂refu

R̂2
, ŵ =

Q̂refw

R̂2
,

Γ̂ =
Q̂2

refΓ

R̂6
, Q̂ = Q̂refQ, p̂ =

µ̂0Q̂refp

δR̂3
, η̂ = µ̂0η, (2.2.1)

α̂(ẑ) = R̂α(z), t̂ = T̂ t, and f̂(Γ̂, λ) = f̂0f(Γ, λ),

where R̂ is the typical radius of the pipe, δ is the small aspect ratio of the flow,

µ̂0 is the typical viscosity, Q̂ref is the typical volume flux, and T̂ is the typical

timescale of the flow.

Following non-dimensionalisation, the mass conservation equation (2.1.4) simply

becomes
1

r

∂

∂r
(ru) +

∂w

∂z
= 0. (2.2.2)

The Cauchy momentum equations (2.1.9) and (2.1.10) non-dimensionalise and

simplify to

∂p

∂r
= δ2

[

1

r

∂

∂r

(

2rη
∂u

∂r

)

+
∂

∂z

(

η
∂w

∂r

)]

+ δ4
∂

∂z

(

η
∂u
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)

, (2.2.3)

∂p
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r

∂
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rη
∂w

∂r

)

+ δ2
[

1

r

∂

∂r

(

rη
∂u

∂z

)

+
∂

∂z

(

2η
∂w

∂z

)]

, (2.2.4)

respectively.

The equation for Γ̂ (2.1.11) non-dimensionalises and simplifies to

Γ =

(

∂w

∂r

)2

+ δ2

[

2

(

∂u

∂r

)2

+ 2
∂u

∂z

∂w

∂r
+ 2

(

∂w

∂z

)2
]

+ δ4
(

∂u

∂z

)2

. (2.2.5)
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We also non-dimensionalise the boundary conditions (2.1.5) to obtain

u = 0 = w at r = α(z) and η(γ̇, λ)
∂w

∂r
= 0 = u at r = 0, (2.2.6)

and the volume flux condition (2.1.6) non-dimensionalises simply to

Q(t) = 2π

∫ α(z)

0

w(r, z, t)r dr. (2.2.7)

Finally, we non-dimensionalise the structure evolution equation (2.1.12) to obtain

Dt
∂λ

∂t
+Da

(

u
∂λ

∂r
+ w

∂λ

∂z

)

= f(Γ, λ), (2.2.8)

where Da =
Q̂refδ

f̂0R̂3
and Dt =

1

f̂0T̂
,

where Da is the advective Deborah number and Dt is the temporal Deborah

number. These dimensionless numbers are the ratios of the structure response

timescale to, respectively, the timescales of advection and of an unsteady ap-

plied pressure gradient. So there are two manifestations of thixotropy: advective

thixotropy in which the shear rate acting on a fluid element changes as the fluid

is advected to wider or narrower sections of the pipe, and temporal thixotropy

in which the shear rate acting on a fluid element changes as the pressure gradi-

ent increases or decreases. We provide more discussion of the Deborah numbers,

including a description of the effect of their magnitude on the flow, in Section

2.4.

2.3 General expansion scheme

Using lubrication theory to simplify the governing equations, we consider the

flow in the limit δ → 0, and seek asymptotic solutions for the velocity and the

structure parameter at various orders of δ. To this end, we now expand the
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pressure, velocities and structure parameter in powers of the aspect ratio δ:

(p, w, u, λ) =
∞
∑

i=0

δi(pi, wi, ui, λi). (2.3.1)

We note from equation (2.2.3) that the pressure only depends on the radial co-

ordinate r at O(δ2), so p0 and p1 are functions of z and t only. Aside from p0 and

p1, all quantities in (2.3.1) are functions of r, z, and t.

We also expand η(Γ, λ) and f(Γ, λ) to obtain

η =
∞
∑

i=0

δiηi, and f =
∞
∑

i=0

δifi, (2.3.2)

where ηi and fi are the ith-order terms, evaluated at (Γ0, λ0).

We now insert the expanded quantities (2.3.1) into the mass conservation equa-

tion (2.2.2), the momentum equation (2.2.4), and the equation for Γ (2.2.5). In

addition, we insert the expanded quantities into the boundary conditions (2.2.6),

the flux condition (2.2.7), and the structure evolution equation (2.2.8). Using

(2.3.1), we expand the mass conservation equation (2.2.2), which yields

1

r

∂

∂r
(ruk) +

∂wk

∂z
= 0, (2.3.3)

and the momentum equation (2.2.4), which yields

∂pk
∂z

=
1

r

∂

∂r

k
∑

i=0

δirηi
∂wk−i

∂r
= −Gk(z, t), (2.3.4)

where Gk is the k-th order pressure gradient. The equation for Γ (2.2.5) yields

Γ =
∞
∑

i=0

δi
i
∑

j=0

{

∂wj

∂r

∂wi−j

∂r

+2δ2
(

∂uj

∂r

∂ui−j

∂r
+

∂uj

∂z

∂wi−j

∂r
+

∂wj

∂z

∂wi−j

∂z

)

+ δ4
∂uj

∂z

∂ui−j

∂z

}

.

(2.3.5)
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We apply the expansion 2.3.1 to the boundary conditions (2.2.6), which yield

uk = 0 = wk at r = α(z), (2.3.6)

k
∑

i=0

ηk
∂wk−i

∂r
= 0 = uk at r = 0, (2.3.7)

and to the volume flux condition (2.2.7), which yields

Q(t) = 2π

∫ α(z)

0

w0(r, z, t)r dr and 0 =

∫ α(z)

0

wk(r, z, t)r dr, k ≥ 1. (2.3.8)

Finally, using (2.3.1), we expand the structure evolution equation (2.2.8), which

yields

Dt

∞
∑

k=0

δkλk,t +Da

∞
∑

k=0

δkφk =
∞
∑

k=0

δkfk, (2.3.9)

where for brevity we have defined

λk,t =
∂λk

∂t
and φk =

k
∑

i=0

ui
∂λk−i

∂r
+ wi

∂λk−i

∂z
. (2.3.10)

It is clear from (2.3.9) that the role of thixotropy depends on the relative magni-

tudes of the temporal and advective Deborah numbers Dt and Da, and the aspect

ratio δ. Again, we provide more discussion of the Deborah numbers in Section

2.4.

We consider the behaviour at the lowest and next-lowest orders of δ with non-

trivial solutions, i.e. at leading order and first order. We use the governing equa-

tions at these orders to obtain solutions for the leading-order streamwise velocity

w0, transverse velocity u0, structure parameter λ0, the streamwise velocity per-

turbation w1, and structure parameter perturbation λ1.

The leading-order terms of Γ (2.3.5), and the viscosity η and the structure evo-
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lution rate f (2.3.2) are

Γ0 =

(

∂w0

∂r

)2

, and Γ1 = 2
∂w0

∂r

∂w1

∂r
, (2.3.11)

η0 = η(Γ0, λ0), and η1 = ηΓΓ1 + ηλλ1, (2.3.12)

f0 = f(Γ0, λ0), and f1 = fΓΓ1 + fλλ1, (2.3.13)

where for convenience we define

ηΓ =
∂η

∂Γ

∣

∣

∣

∣

(Γ0,λ0)

, and ηλ =
∂η

∂λ

∣

∣

∣

∣

(Γ0,λ0)

, (2.3.14)

fΓ =
∂f

∂Γ

∣

∣

∣

∣

(Γ0,λ0)

, and fλ =
∂f

∂λ

∣

∣

∣

∣

(Γ0,λ0)

. (2.3.15)

At leading order and first order in δ, the governing equations, excluding the

structure evolution equation, are the mass conservation equation (2.3.3), the mo-

mentum equation (2.3.4), the boundary conditions (2.3.6) and (2.3.7), and the

flux condition (2.3.8), with k = 0 and k = 1, respectively. So at leading order

the governing hydrodynamic equations are:

1

r

∂

∂r
(ru0) +

∂w0

∂z
= 0, (2.3.16)

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G0(z, t), (2.3.17)

u0 = 0 = w0 at r = α(z), (2.3.18)

η0
∂w0

∂r
= 0 = u0 at r = 0, (2.3.19)

2π

∫ α(z)

0

w0(r, z, t)r dr = Q(t). (2.3.20)
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At first order the governing hydrodynamic equations are:

1

r

∂

∂r
(ru1) +

∂w1

∂z
= 0, (2.3.21)

1

r

∂

∂r

[

r

(

η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r

)]

= −G1(z, t), (2.3.22)

u1 = 0 = w1 at r = α(z), (2.3.23)

η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r
= 0 = u1 at r = 0, (2.3.24)

∫ α(z)

0

w1(r, z, t)r dr = 0. (2.3.25)

In the following section, we discuss the importance of the magnitudes of the

Deborah numbers, and present the structure evolution equation (2.3.9) at leading

order and first order for the various regimes of the Deborah numbers.

2.4 Regimes of the Deborah numbers

The structure evolution equations at leading order and first order in δ depend on

the magnitudes of the Deborah numbers Dt and Da, and the aspect ratio δ.

When the Deborah numbers are O(δ2) (or smaller) in magnitude, the thixotropic

effects are too weak to affect the flow at leading order (O(1)) or first order (O(δ)),

so the fluid does not exhibit any thixotropic effects, and the behaviour is entirely

dependent on the local build-up and breakdown rates. When the Deborah num-

bers are O(δ) in magnitude, the thixotropic effects enter as perturbations to the

leading-order behaviour. The case when the Deborah numbers are O(δ) in mag-

nitude is the focus of Chapters 3–5. When the Deborah numbers are O(1) in

magnitude, the thixotropic effects are similar in magnitude to local build-up and

breakdown. We expect this regime of behaviour to be particularly complicated.

When the Deborah numbers are O(δ−1) or O(δ−2) in magnitude, the thixotropic

effects are strong compared to local build-up and breakdown, and the flow is

dominated by the upstream behaviour.

For convenience, we define the regime Rm,n as the regime in which Dt = O(δm)
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and Da = O(δn). We may write Dt = δmD∗
t and Da = δnD∗

a, where D∗
t = O(1)

and D∗
a = O(1), so that (2.3.9) becomes

δmD∗
t

∞
∑

k=0

δkλk,t + δnD∗
a

∞
∑

k=0

δkφk =
∞
∑

k=0

δkfk. (2.4.1)

By selecting a regime we obtain the structure evolution equation at leading order

and first order from (2.4.1). For example, for the regime R1,0, m = 1 and n = 0,

so (2.4.1) becomes

δD∗
t (λ0,t + δλ1,t + · · · ) +D∗

a(φ0 + δφ1 + · · · ) = f0 + δf1 + · · · , (2.4.2)

from which collecting terms in δ yields

D∗
aφ0 = f0, (2.4.3)

D∗
tλ0,t +D∗

aφ1 = f1, (2.4.4)

at leading order and first order, respectively. Tables 2.1 and 2.2 show the structure

evolution equation (2.4.1) at leading order and first order, respectively, for m,n =

−2,−1, 0, 1, 2 (which is the full range of interesting regimes, and m and n outside

these values do not yield new unique regimes).

We name the regimes according to the strengths of temporal and advective

thixotropy. When Dt is small, the structure adjusts quickly to changes in the

flux, compared to the build-up and breakdown rates, and when Dt is large, the

structure adjusts slowly. As in PWM, when Da is small, the effect of advection is

weak compared to the build-up and breakdown, and when Da is large, the effect

of advection is strong.

We deduce that several of the regimes Rm,n share behaviour or have behaviour

which is a simplified case of another regime. We note from (2.2.3), (2.2.4), and

(2.2.5) that atO(1) the behaviour is that of generalised Newtonian laminar flow in

a pipe, with geometrical corrections at O(δ2), so there is a ‘gap’ in the expansion

at O(δ). The regimes are:

• Weakly thixotropic regimes (R1,1, R1,2, R2,1, and R2,2): In R1,1, the quickly
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adjusting and weakly advective regime, when Dt = O(δ) and Da = O(δ),

the thixotropic behaviour enters the expansion as a perturbation to the

O(1) generalised Newtonian behaviour. As we show in Chapter 3, the per-

turbations are composed of a combination of a temporal term (proportional

to DtQ
′) and an advective term (proportional to Daα

′) (see equation (3.3.4)

in particular). By setting DtQ
′ = 0 or Daα

′ = 0, we can eliminate tem-

poral or advective thixotropy respectively, and obtain the weakly advective

(and very quickly adjusting) regime R2,1 or the quickly adjusting (and very

weakly advective) regime R1,2, respectively. By setting DtQ
′ = Daα

′ = 0,

we obtain the regime R2,2, in which thixotropy enters at O(δ2) or higher

and so does not affect the flow at O(1) or O(δ).

• Regime groups: Consider as an example the regimes R2,−2, R1,−2, and

R0,−2, i.e. when Da = O(δ−2) and Dt = O(1) or smaller. These regimes

are identical (at leading order and first order) because temporal thixotropy

is too weak to affect the behaviour at either leading order or first order

(in this case, O(δ−2) and O(δ−1) respectively). We can see that they are

identical by noting that their corresponding structure evolution equations

are identical, as shown by the box at the bottom-left of Tables 2.1 and

2.2. Following this reasoning, we identify four regime groups of identical

behaviour (at leading order and first order), and name them accordingly.

These groups are

R−2,0 = R−2,1 = R−2,2, ‘Very Slowly Adjusting Group’,

R−1,1 = R−1,2, ‘Slowly Adjusting Group’,

R0,−2 = R1,−2 = R2,−2, ‘Very Strongly Advective Group’,

R1,−1 = R2,−1, ‘Strongly Advective Group’,

and are indicated in Tables 2.1 and 2.2.

In total, there are 19 unique regimes, which are shown in Table 2.3. Indicated

at the bottom-right of Table 2.3 are the weakly thixotropic regimes R2,1, R1,2,

and R2,2, the behaviour of which can be obtained from the behaviour in regime

R1,1, and is the focus of Chapters 3–5. Also indicated in Table 2.3 are the

regime groups. In summary, we consider this problem at leading order and first
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Dt\Da O(δ−2) O(δ−1) O(1) O(δ) O(δ2)

O(δ−2) R−2,−2 R−2,−1 R−2,0 R−2,1 R−2,2

O(δ−1) R−1,−2 R−1,−1 R−1,0 R−1,1 R−1,2

O(1) R0,−2 R0,−1 R0,0 R0,1 R0,2

O(δ) R1,−2 R1,−1 R1,0 R1,1 R1,2

O(δ2) R2,−2 R2,−1 R2,0 R2,1 R2,2

Table 2.3: Regimes considered for the problem, where Dt and Da are the temporal
and advective Deborah numbers, respectively.

order, the equations for which are given by (2.3.16)–(2.3.20) and (2.3.21)–(2.3.25),

respectively, along with the appropriate structure evolution equations, given in

Tables 2.1 and 2.2.

2.5 Rheological models

In this section, we introduce the three rheological models that we use in the

remainder of this thesis. They are the simplified Moore–Mewis–Wagner (sMMW)

model and the full Moore–Mewis–Wagner (MMW) model [7, 91], which exhibit

viscous non-Newtonian behaviour, and the viscoplastic Houška model [10, 66].

2.5.1 The Moore–Mewis–Wagner model

In this model, the viscosity is taken to be a version of Moore’s constitutive relation

[91], which is given in dimensional form by

η̂ = µ̂0λ, (2.5.1)

and the structure parameter λ satisfies Mewis and Wagner’s structure evolution

rate [7], which is given in dimensional form by

f̂(Γ̂, λ) = −k̂1Γ̂
a/2λb + k̂2Γ̂

c/2(1− λ)d. (2.5.2)
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The parameters a, b, c, and d are non-negative, and the first and second terms

on the right-hand side of (2.5.2) are the breakdown and build-up terms, with the

associated positive rate constants k̂1 and k̂2, respectively.

We non-dimensionalise the constitutive relation (2.5.1) and the structure evolu-

tion rate (2.5.2) using the quantities defined in (2.2.1) and

f̂0 =
k̂1Q̂

a
ref

R̂3a
and κ =

k̂2Q̂
c−a
ref

k̂1R̂3(c−a)
, (2.5.3)

to obtain

η = λ, (2.5.4)

and

f(Γ, λ) = −Γa/2λb + κΓc/2(1− λ)d, (2.5.5)

respectively. At equilibrium, when the build-up and breakdown rates are bal-

anced, denoted λ = λeq, the structure evolution rate is zero, i.e. f(Γ, λeq) = 0, so

from (2.5.5) we obtain
λb
eq

(1− λeq)d
= κΓ(c−a)/2. (2.5.6)

We are not able to isolate λeq in (2.5.6) for general a, b, c, and d. However, in

the special case of d = 0, in which we obtain the sMMW model, (2.5.6) yields

η = λeq = κ1/bΓ(n−1)/2, where n =
c− a

b
+ 1. (2.5.7)

So at equilibrium, the constitutive relation (2.5.7) is that of a power-law fluid,

where n is the familiar power-law exponent (for which we require n > 0 for

physical behaviour) and κ1/b is a dimensionless consistency parameter.

When d > 0, the build-up term in (2.5.5) bounds λ above, but when d = 0, λ

may become large. For the sMMW model, we are able to obtain explicit solutions

for the leading-order and first-order quantities in the weakly thixotropic regimes,

which we present in Chapter 4. There are other special cases of the MMW model,

aside from the sMMW model, which yield a constitutive relation simple enough

to obtain explicit solutions, which we discuss briefly in Appendix B.
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2.5.2 The regularised Houška model

We also consider fluids with yield-stress behaviour described by the Houška model

— a thixotropic model, introduced by Houška [66], which exhibits structure-

dependent yield-stress behaviour by incorperating a Herschel–Bulkley constitu-

tive relation [96], and a structure-dependent viscosity parameter. The constitu-

tive relation is







η̂(γ̇, λ) =
τ̂y(λ)

γ̇
+ η̂H(λ)γ̇

n−1 if τ̂ > τ̂y(λ),

γ̇ = 0 if τ̂ ≤ τ̂y(λ),
(2.5.8)

where γ̇ is the shear rate, η̂ is the viscosity, τ̂y is the yield stress, and η̂H is the

viscosity parameter. Houška takes τ̂y and η̂H to be linear functions of λ, i.e.

τ̂y(λ) = τ̂y0 + λτ̂y1 and η̂H(λ) = η̂H0 + λη̂H1, (2.5.9)

where λ ∈ [0, 1]. We assume the viscosity parameter η̂H and the yield stress τ̂y

increase as the structure increases, hence we assume that η̂H1 > 0 and τ̂y1 >

0. The structure evolves according to a special case of the structure evolution

equation described by Mewis and Wagner [7], given by (2.5.2), in which a = 1,

b = 1, c = 0, and d = 1, i.e.

f̂(Γ̂, λ) = −k̂1Γ̂
1/2λ+ k̂2(1− λ). (2.5.10)

We can select n < 1, n = 1, or n > 1 in the constitutive relation (2.5.8) for

shear-thinning, Bingham, or shear-thickening yield-stress behaviour, respectively,

though here we take n = 1 for simplicity. The constitutive relation is only

differentiable at τ̂ = τ̂y when n < 1, but for n ≥ 1 it is not, and the stress–

shear-rate relation is not well defined at γ̇ = 0. We regularise the constitutive

relation so that it exhibits ‘pseudo-yield-stress’ behaviour using a single, smooth

function incorporating a regularisation parameter k̂, as done by Papanastasiou

[58]. When k̂ is numerically large, we approximate true yield-stress behaviour

without the associated numerical difficulties. To this end, we follow PWM and
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Papanastasiou [58] and amend (2.5.8) so that

η̂(γ̇, λ) =
τ̂y(λ)(1− e−k̂γ̇)

γ̇
+ η̂H(λ)γ̇

n−1, (2.5.11)

for all values of γ̇. We non-dimensionalise (2.5.10) and (2.5.11) using the quanti-

ties defined in (2.2.1) and (2.5.3), together with the scale µ̂0 = η̂H0 and

ηH1 =
η̂H1

η̂H0

, k =
k̂Q̂ref

R̂3
, τy0 =

τ̂y0R̂
3

η̂H0Q̂ref

, and τy1 =
τ̂y1R̂

3

η̂H0Q̂ref

, (2.5.12)

which (with n = 1) yields

f(Γ, λ) = −Γ1/2λ+ κ(1− λ), (2.5.13)

η(γ̇, λ) =
(τy0 + λτy1)(1− e−kγ̇)

γ̇
+ 1 + ληH1, (2.5.14)

respectively. The constitutive relation (2.5.14) now exhibits pseudo-yield-stress

behaviour as k → ∞, in which limit we recover true yield-stress behaviour.

Generally, pipe flow of a viscoplastic fluid consists of a yielded region of fluid

near the wall of the pipe in which the yield stress is exceeded and the fluid

is viscous, and a ‘plugged’ region at the centre of the pipe where the fluid is

not yielded and the viscosity is at its maximum. At the boundary between the

yielded and unyielded fluid there is a ‘fake’ yield surface [41]. As viscoplasticity

is a common property of complex fluids, we are keen to see how it affects the

flow of a thixotropic fluid. In addition, by studying the Houška model, we will

be able to compare the qualitative behaviour between a viscoplastic model and

a purely viscous model, and therefore obtain insight into the generality of flow

features across models. This comparison is important for determining whether

we may describe the qualitative behaviour of thixotropic fluid flow.



Chapter 3

General Solutions in the Weakly

Thixotropic Regimes

In this chapter, we obtain general solutions for the unsteady flow of a thixotropic

or antithixotropic fluid in the weakly thixotropic regimes — the quickly adjusting

(and very weakly advective) regime R1,2, the weakly advective (and very quickly

adjusting) regime R2,1, and the quickly adjusting and weakly advective regime

R1,1. The governing equations for these regimes were derived in Chapter 2.

In the weakly thixotropic regimes, the Deborah numbers areO(δ) in magnitude or

smaller. At leading order (O(1)), fluid flowing in the weakly thixotropic regimes

exhibits generalised Newtonian behaviour, with no thixotropic behaviour. At

first order (O(δ)), thixotropic effects enter as perturbations to the leading-order

behaviour. As discussed in Section 2.4, we do not need to consider each of the

weakly thixotropic regimes separately from the outset because we can obtain the

solutions in R1,2, R2,1, and R2,2 by setting the appropriate Deborah number(s)

to zero in the solutions in R1,1.

After obtaining the general solutions, we study the leading-order behaviour and

perturbations for three rheological models, introduced in Section 2.5. In Chapter

4, we study the simplified MMW (sMMW, with d = 0) and full MMW (with

d > 0) models, which both exhibit purely viscous behaviour. In Chapter 5, we

study the regularised viscoplastic Houška model. To guide the discussion of the

49
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behaviour of these models, we refer to the work of Pritchard et al. [29] (PWM),

who studied the steady flow of thixotropic and antithixotropic fluids in a slowly

varying 2D channel. From their results, we obtain the qualitative behaviour of

the perturbations for a thixotropic (shear-thinning) fluid in a widening channel,

and a corresponding physical interpretation of the behaviour based on physical

intuition. We define the behaviour in this reference case in Section 3.3.1, and

aim to determine whether this reference case and corresponding interpretation

obtained from PWM provide a qualitative description of thixotropic pipe flow in

general.

We present the governing equations for unsteady thixotropic pipe flow in the

quickly adjusting and weakly advective regime in Section 3.1. The then use these

solutions to study the behaviour for the three rheologies in the following chapters.

3.1 Governing equations

At leading order, the weakly thixotropic regimes R1,1, R1,2, R2,1, and R2,2 share

the same governing equations: the mass conservation equation (2.3.16), the mo-

mentum equation (2.3.17), and the corresponding structure evolution equation

from Table 2.1. We rewrite these equations here for reference:

1

r

∂

∂r
(ru0) +

∂w0

∂z
= 0, (3.1.1)

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G0(z, t), (3.1.2)

0 = f0. (3.1.3)

Equations (3.1.1)–(3.1.3) are subject to the no-slip and no-penetration conditions

at the wall (2.3.18), the symmetry condition at the centreline (2.3.19), and the
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flux condition (2.3.20):

u0 = 0 = w0 at r = α(z), (3.1.4)

η0
∂w0

∂r
= 0 = u0 at r = 0, (3.1.5)

2π

∫ α(z)

0

w0(r, z, t)r dr = Q(t). (3.1.6)

At first order, the governing equations for the quickly adjusting and weakly ad-

vective regime R1,1 are the mass conservation equation (2.3.21), the momentum

equation (2.3.22), and the corresponding structure evolution equation from Table

2.2. We rewrite these equations here for reference:

1

r

∂

∂r
(ru1) +

∂w1

∂z
= 0, (3.1.7)

1

r

∂

∂r

[

r

(

η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r

)]

= −G1(z, t), (3.1.8)

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)

= 2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1. (3.1.9)

Equations (3.1.7)–(3.1.9) are subject to the no-slip and no-penetration conditions

at the wall (2.3.23), the symmetry condition at the centreline (2.3.24), and the

flux condition (2.3.25):

u1 = 0 = w1 at r = α(z), (3.1.10)

η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r
= 0 = u1 at r = 0, (3.1.11)

∫ α(z)

0

w1(r, z, t)r dr = 0. (3.1.12)

We can obtain the governing equations for the weakly advective regime or the

quickly adjusting regime by setting D∗
t = 0 or D∗

a = 0, respectively, in (3.1.9).

We are able to solve the governing equations in the weakly thixotropic regimes

in general, without specifying a particular rheology, i.e. for general η(Γ, λ) and

f(Γ, λ), to obtain asymptotic solutions in terms of integrals. In Section 3.2, we

obtain general solutions for the leading-order streamwise velocity w0, transverse
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velocity u0, structure parameter λ0, and pressure gradient G0. In Section 3.3, we

obtain general solutions for the streamwise velocity perturbation w1, the structure

parameter perturbation λ1, and the pressure gradient perturbation G1.

3.2 General solutions at O(1)

In this section, we solve the leading-order governing equations (3.1.1)– (3.1.3)

subject to (3.1.4)–(3.1.6) for general η(Γ, λ) and f(Γ, λ). We begin by adapting

the method of PWM [29], and define a variable q equal to the leading-order shear

rate, so at equilibrium (f(Γ, λ) = 0) we may write the stress τ as

τ(q) = η(q2, λ)q, subject to f(q2, λ) = 0, where q =
∂w0

∂r
. (3.2.1)

We rewrite the leading-order momentum equation (3.1.2) using (3.2.1), which

yields
1

r

∂

∂r
(rτ(q)) = −G0(z, t). (3.2.2)

Rearranging and integrating (3.2.2) with respect to r yields

τ(q) = −G0(z, t)r

2
or q = τ−1

(

−G0(z, t)r

2

)

, (3.2.3)

where we have applied the symmetry condition (3.1.5). We note that for (3.2.3) to

be valid, τ(q) must be invertible (which is a constraint on the rheological models

we may use). To obtain the general solution for w0, we integrate the second of

(3.2.3) with respect to r, which yields

w0(r, z, t) = −
∫ α(z)

r

τ−1

(

−G0(z, t)r
′

2

)

dr′. (3.2.4)

Using the substitution ξ = −G0(z, t)r
′/2, so dr′ = −(2/G0(z, t))dξ, (3.2.4) be-

comes

w0(r, z, t) =
2

G0(z, t)

∫ −G0(z,t)α(z)/2

−G0(z,t)r/2

τ−1(ξ) dξ, (3.2.5)
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which we evaluate using quadrature.

To obtain the general solution for u0, we rearrange and integrate the mass con-

servation equation (3.1.1) with respect to r, which yields

u0(r, z, t) =
1

r

∫ α(z)

r

r′
∂w0

∂z
dr′. (3.2.6)

We require ∂w0/∂z, which we obtain by differentiating (3.2.5) with respect to z,

which yields

∂w0

∂z
=

2

G0

∂

∂z

∫ −G0α/2

−G0r/2

τ−1(ξ) dξ − 2G0,z

G2
0

∫ −G0α/2

−G0r/2

τ−1(ξ) dξ, (3.2.7)

where G0,z ≡ ∂G0/∂z. Evaluating the integrals in (3.2.7) using Leibniz’s rule for

differentiation under an integral sign yields

∂w0

∂z
=

2

G0

[

− τ−1

(

−G0α

2

)

∂

∂z

(

G0α

2

)

+ τ−1

(

−G0r

2

)

∂

∂z

(

G0r

2

)

+

∫ −G0α/2

−G0r/2

∂

∂z
τ−1(ξ) dξ

]

− 2G0,z

G2
0

∫ −G0α/2

−G0r/2

τ−1(ξ) dξ.

(3.2.8)

We define the leading-order shear rate at the wall as

qw = q(α(z), z, t) so that τ(qw) = −G0(z, t)α(z)

2
. (3.2.9)

By using the second of (3.2.3) and by comparing the last term on the right-hand

side of (3.2.8) with (3.2.5), (3.2.8) becomes

∂w0

∂z
=

2

G0

[

−qw
∂

∂z

(

G0α

2

)

+ q
∂

∂z

(

G0r

2

)]

− G0,z

G0

w0, (3.2.10)

which simplifies to

∂w0

∂z
=

1

G0

∂G0

∂z
(qr − w0)−

qw
G0

∂

∂z
(G0α) . (3.2.11)
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By replacing ∂w0/∂z in (3.2.6) with (3.2.11), (3.2.6) becomes

u0(r, z, t) =
1

G0(z, t)r

∂G0

∂z

∫ α(z)

r

qr′2 − r′w0(r
′, z, t) dr′

− qw(z, t)

G0(z, t)r

∂

∂z
(G0(z, t)α(z))

∫ α(z)

r

r′ dr′.

(3.2.12)

We evaluate the first integral on the right-hand side of (3.2.12) by parts to obtain

∫ α(z)

r

qr′2 − r′w0(r
′, z, t) dr′ =

[

w0(r
′, z, t)r′2

]α(z)

r
− 3

∫ α(z)

r

r′w0(r
′, z, t) dr′.

(3.2.13)

After applying the no-slip boundary condition at the wall (3.1.4) and evaluating

the second integral in (3.2.12), we obtain

u0(r, z, t) = − 1

G0(z, t)r

∂G0

∂z

(

w0(r, z, t)r
2 + 3

∫ α(z)

r

r′w0(r
′, z, t) dr′

)

− qw(z, t)

2G0(z, t)r

∂

∂z
(G0(z, t)α(z))

(

α2 − r2
)

.

(3.2.14)

Following some simplification and evaluating the integral in (3.2.14) by integrat-

ing by parts, we obtain

u0(r, z, t) =
r

2G0

(

2
∂G0

∂z
w0 − qw

∂

∂z
(G0α)

)

− qwα
2

2G0r

∂

∂z
(G0α)

+
3

2G0r

∂G0

∂z

(

r2w0 +

∫ α

r

r′2
∂w0

∂r
dr′
)

.

(3.2.15)

We perform a variable change in the integral in (3.2.15) from r to q. To achieve

this change, we differentiate the first of (3.2.3) with respect to r using the chain

rule, which yields
dτ

dq

∂q

∂r
= −G0(z, t)

2
, (3.2.16)

and so, after rearranging, we find

dr = − 2τ ′(q)

G0(z, t)
dq. (3.2.17)
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In addition, by rearranging the first of (3.2.3) to isolate r, we obtain

r = − 2τ(q)

G0(z, t)
. (3.2.18)

Now, using (3.2.9), we can rewrite (3.2.15) as

u0(r, z, t) =
r

2G0

(

2
∂G0

∂z
w0 − qw

∂

∂z
(G0α)

)

− qwα
2

2G0r

∂

∂z
(G0α)

+
3r

2G0

∂G0

∂z
w0 −

12

G4
0r

∂G0

∂z

∫ qw

q

qτ 2τ ′ dq.

(3.2.19)

We also require general solutions for G0, ∂G0/∂z, and ∂G0/∂t to use with (3.2.5)

and (3.2.19). To find these solutions, we use the leading-order flux condition

(3.1.6) and change variables following Weissenberg (see PWM and [84]). In par-

ticular, we evaluate the integral in (3.1.6) by integrating by parts, which yields

Q(t) = 2π

(

[

r2

2
w0(r, z, t)

]α(z)

0

−
∫ α(z)

0

r2

2

∂w0

∂r
dr

)

. (3.2.20)

The no-slip condition (3.1.4) requires that w0 = 0 at r = α, so (3.2.20) becomes

Q(t) = −π

∫ α(z)

0

r2
∂w0

∂r
dr. (3.2.21)

From here, we perform a variable change from r to q following the same process

used for the integral in (3.2.15). We note that at the centreline the shear rate is

zero, so the lower limit of the integral r = 0 in (3.2.21) becomes q = 0. Following

the variable transformation, we obtain

Q(t) =
8π

G3
0(z, t)

∫ qw

0

qτ 2(q)τ ′(q) dq. (3.2.22)

We rearrange (3.2.22) for G3
0(z, t) to obtain

G3
0(z, t) =

8π

Q(t)

∫ qw

0

qτ 2(q)τ ′(q) dq. (3.2.23)
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We find the derivatives of G0 by differentiating and rearranging (3.2.23) appro-

priately. First, we find the derivative of ∂G0/∂z by differentiating (3.2.23) with

respect to z, which yields

3G2
0(z, t)

∂G0

∂z
=

2π

Q(t)
qw(z, t)G

2
0(z, t)α

2(z)
∂

∂z

(

−G0(z, t)α(z)

2

)

, (3.2.24)

and rearranges to

∂G0

∂z
= −πqw(z, t)G0(z, t)α

2(z)α′(z)

3Q(t) + πqw(z, t)α3(z)
. (3.2.25)

Now, for the derivative of G0 with respect to t, we find

3G2
0(z, t)

∂G0

∂t
= − 8π

Q2(t)
Q′(t)

∫ qw

0

qτ 2(q)τ ′ dq

+
2π

Q(t)
qw(z, t)G

2
0(z, t)α

2(z)
∂

∂t

(

−G0(z, t)α(z)

2

)

,

(3.2.26)

which rearranges to

∂G0

∂t
= − 8πQ′(t)

G2
0(z, t)Q(t)

[

3Q(t) + πqw(z, t)α
3(z)

]

∫ qw

0

qτ 2(q)τ ′ dq. (3.2.27)

We are able to obtain a general solution for λ0, as it is defined implicitly by

f(q2(r, z, t), λ0(r, z, t)) = 0. (3.2.28)

We also require various derivatives to obtain the general solutions at first order

(presented in Section 3.3). We find these derivatives by implicitly differentiating

(3.2.28) with respect to r, z, and t, which yields

∂f

∂x
= 2qfΓ(q

2, λ0)
∂q

∂x
+ fλ(q

2, λ0)
∂λ0

∂x
= 0, (3.2.29)

where x ∈ {r, z, t}. By rearranging (3.2.29) we obtain

∂λ0

∂x
= −2qfΓ(q

2, λ0)

fλ(q2, λ0)

∂q

∂x
. (3.2.30)
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Using (3.2.3), we find the derivatives of q with respect to r, z, and t, given by

∂q

∂r
= −G0(z, t)

2τ ′(q)
,

∂q

∂z
= −∂G0

∂z

r

2τ ′(q)
, and

∂q

∂t
= −∂G0

∂t

r

2τ ′(q)
, (3.2.31)

respectively.

We have now obtained general solutions for w0, u0, λ0, and G0, and the various

associated derivatives. After selecting the rheological model by defining f(Γ, λ)

and η(Γ, λ), we evaluate the integrals in (3.2.5), (3.2.19), and (3.2.23) using the

computer algebra package Maple. For some rheologies, such as the sMMWmodel,

we are able to obtain explicit solutions for the leading-order behaviour.

3.3 General solutions at O(δ)

In this section, we solve the first-order governing equations (3.1.7)–(3.1.9) subject

to (3.1.10)–(3.1.12) for general η(Γ, λ) and f(Γ, λ). We begin by isolating λ1 in

(3.1.9) to obtain

λ1 =
1

fλ

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

− 2
fΓ
fλ

∂w0

∂r

∂w1

∂r
. (3.3.1)

Replacing λ1 in (3.1.8) using (3.3.1) yields

1

r

∂

∂r

[

rA(r, z, t)
∂w1

∂r
+ rB(r, z, t)

]

= −G1(z, t), (3.3.2)

where

A(r, z, t) = η0 + 2

(

ηΓ − ηλ
fΓ
fλ

)(

∂w0

∂r

)2

, (3.3.3)

B(r, z, t) =
ηλ
fλ

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

∂w0

∂r
, (3.3.4)

where B(r, z, t) is the additional stress due to thixotropy, which we refer to as

the thixotropic stress term. By rearranging (3.3.2) and integrating with respect
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to r, we obtain

A(r, z, t)
∂w1

∂r
+ B(r, z, t) = −1

2
G1(z, t)r +

C

r
, (3.3.5)

where C is a constant of integration. For (3.3.5) to be well defined as r → 0, we

require C = 0. Now, rearranging (3.3.5) for ∂w1/∂r yields

∂w1

∂r
= − G1(z, t)r

2A(r, z, t)
+

B(r, z, t)

A(r, z, t)
. (3.3.6)

Integrating (3.3.6) with respect to r, using the no-slip condition at the wall

(3.1.10), yields the general solution for w1:

w1(r, z, t) =
1

2
G1(z, t)

∫ α(z)

r

r′

A(r′, z, t)
dr′ +

∫ α(z)

r

B(r′, z, t)

A(r′, z, t)
dr′. (3.3.7)

Finally, by integrating (3.3.7) with respect to r, applying the flux condition

(3.1.12), and rearranging, we obtain the general solution for G1:

G1(z, t) = −
2

∫ α(z)

0

r

∫ α(z)

r

B(r′, z, t)

A(r′, z, t)
dr′dr

∫ α(z)

0

r

∫ α(z)

r

r′

A(r′, z, t)
dr′dr

. (3.3.8)

The solutions for w1, λ1, and G1, given by (3.3.7), (3.3.1), and (3.3.8), respec-

tively, are the perturbation solutions for general η and f . In some cases we

are able to obtain explicit solutions, such as the sMMW model and a few spe-

cial cases of the MMW model (presented in Appendix B), which provide results

against which we have verified the implementation of the general solutions in

Maple. Before presenting examples of the perturbation quantities, we use the

results of PWM to define a reference case for the ‘expected’ behaviour of the

perturbations w1 and λ1.
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(a)

u1

y

(b)

λ1

y

Figure 3.1: Sketches of (a) the streamwise velocity perturbation u1 and (b) the
structure parameter perturbation λ1 for a thixotropic fluid in a widening channel
in the weakly advective regime, as found by PWM. We refer to this behaviour as
the thixotropic reference case (TRC).

3.3.1 Thixotropic reference case (TRC)

When studying the perturbation quantities in the present flow set-up, we use the

recent results of PWM as a reference case. PWM studied the steady flow of a

thixotropic or antithixotropic fluid in a widening 2D channel in the weakly advec-

tive regime. Figure 3.1 shows, retaining the notation of PWM in which y is the

transverse co-ordinate, the qualitative behaviour of the streamwise velocity per-

turbation u1 (equivalent to w1 in the present work) and the structure parameter

perturbation λ1 for a thixotropic fluid.

We refer to the behaviour shown in Figure 3.1, in which the streamwise velocity

perturbation is positive at the centre of the channel and negative at the walls,

and the structure parameter perturbation is negative and largest at the centre of

the channel, as the thixotropic reference case (TRC).

The behaviour in the TRC agrees with physical intuition, because in a widen-

ing pipe the shear rate is higher upstream than downstream, so the structure is

broken down upstream. As the fluid flows downstream, the structure is advected

from a region of high shear to a region of low shear. In the absence of thixotropy,

the structure would build up immediately as the shear rate decreases, but ad-
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vective thixotropy slows the build-up, so the structure remains broken down,

as indicated by the negative structure parameter perturbation in Figure 3.1(b).

PWM reason that fluid with a lower structure shears more readily, so flows more

quickly, yielding a positive perturbation to the streamwise velocity at the centre

of the channel where advection is strongest, i.e. where the leading-order velocity

is largest, as shown in Figure 3.1(a). The streamwise velocity is negative near

the walls to maintain the prescribed volume flux. We show in a later section that

this reasoning does not fully explain all of the behaviour of the perturbations,

but it will suffice for the following examples.

In addition to the TRC, we also pose two analogies that we expect, using the

physical intuition described above, to hold. The first analogy is a thixotropy/

antithixotropy analogy, in which we expect the behaviour of the perturbations

for antithixotropic fluids to be opposite to those for thixotropic fluids, i.e. to

be the opposite of the behaviour shown in Figure 3.1. This analogy holds for

the examples of antithixotropic fluids provided by PWM, but we shall see that

it is not sufficient in all cases. The second analogy is a widening/decelerating

analogy, in which we expect the behaviour of a fluid in a widening pipe in the

weakly advective regime to be qualitatively similar to that in a decelerating flow

in the quickly adjusting regime, because in both cases the shear rate decreases

following a fluid element. As for the thixotropy/antithixotropy analogy, we will

find that the widening/decelerating analogy does not hold in all cases.

In the following sections, we obtain and present the leading-order and perturba-

tion solutions for the three rheological models, and determine the limits of the

TRC and the analogies described above, and where the physical intuition behind

them breaks down. When we describe a perturbation quantity as agreeing or

disagreeing with the TRC, we assume that the appropriate analogy or analogies

are applied.

3.4 Summary

In this chapter, we used the governing equations for unsteady and slowly vary-

ing thixotropic pipe flow derived in Chapter 2 to obtain general solutions for
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flow in the quickly adjusting and weakly advective regimes. In addition, we con-

structed a reference case from the results of PWM, the TRC, for the perturbations

to the streamwise velocity and the structure parameter, and presented a corre-

sponding interpretation based on physical intuition. In further addition to the

TRC, we posed two analogies: the thixotropic/antithixotropic analogy and the

widening/decelerating analogy, which we used to extend the descriptive range of

the TRC to antithixotropic fluids, and from the weakly advective regime to the

quickly adjusting regime.

Having solutions for a general rheology, we are at liberty to choose specific rhe-

ologies that provide insight into thixotropic flows. In the following chapters, we

use the general solutions obtained in this chapter, along with the TRC and analo-

gies, to determine whether general statements can be made on the behaviour of

unsteady thixotropic flows in a slowly varying pipe by thoroughly analysing the

behaviour for three rheological models. In particular, in Chapter 4 we study the

purely viscous sMMW and full MMW models, and in Chapter 5 we study the

viscoplastic Houška model.



Chapter 4

Results for the sMMW and

MMW models

In this chapter, we study the purely viscous models sMMW and full MMW mod-

els, introduced in Section 2.5.1. For the sMMW model, we are able to obtain

closed-form solutions and thus we may present a full analysis of the behaviour of

the fluid. For the MMW model, we use the general solutions obtained in Chapter

3 to present an extensive analysis of the behaviour of the fluid. In both cases,

we find examples of behaviour that agree with the TRC and examples that do

not. The latter behaviours indicate that the TRC and the analogies do not de-

scribe purely viscous thixotropic flow in general. For each model, we obtain the

qualitative behaviour for the range of their respective parameters, and indictate

which parameters yield TRC-like behaviour and which do not.

4.1 Results for the sMMW model

In this section, we obtain and discuss solutions for the leading-order behaviour

and the perturbations for the sMMW model, introduced and non-dimensionalised

in Section 2.5.1. The sMMW model is given by

η = λ and f = −Γa/2λb + κΓc/2, (4.1.1)

62
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where the dimensionless quantities are defined via (2.2.1) and (2.5.3):

r̂ = R̂r, ẑ =
R̂z

δ
, û =

δQ̂refu

R̂2
, ŵ =

Q̂refw

R̂2
, Γ̂ =

Q̂2
refΓ

R̂6
,

Q̂ = Q̂refQ, p̂ =
µ̂0Q̂refp

δR̂3
, η̂ = µ̂0η, α̂(ẑ) = R̂α(z), t̂ = T̂ t, (4.1.2)

f̂(Γ̂, λ) = f̂0f(Γ, λ), f̂0 =
k̂1Q̂

a
r

R̂3a
and κ =

k̂2Q̂
c−a
r

k̂1R̂3(c−a)
.

For this model we are able to obtain explicit solutions, which will provide a

validation test for the later implementation of the general solutions in Maple.

We obtain the leading-order solutions in Section 4.1.1 and present examples of

the behaviour in Section 4.1.2, and we obtain the perturbation solutions in Section

4.1.3 with examples in Sections 4.1.4–4.1.8.

4.1.1 Leading-order solutions

In this section, we obtain the solutions for the leading-order quantities w0, λ0,

u0, and G0. Recalling from (2.3.11) that Γ0 = (∂w0/∂r)
2 and using (2.5.7), at

leading order, we obtain

η0 = λ0 = κ1/b

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

n−1

, (4.1.3)

where n is the power-law exponent, defined in (2.5.7). By rearranging and in-

tegrating the leading-order momentum equation (3.1.2) with respect to r, and

applying the symmetry condition at the centreline, given by (3.1.5), we obtain

η0
∂w0

∂r
= −1

2
G0r. (4.1.4)

Substituting η0 in (4.1.3) into (4.1.4) yields

(

∂w0

∂r

)n−1
∂w0

∂r
= −1

2
κ−1/bG0r. (4.1.5)
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By rearranging and integrating (4.1.5) with respect to r we obtain

w0(r, z, t) =
n

n+ 1

(

1

2
κ−1/bG0

)1/n

α(n+1)/n

(

1−
( r

α

)(n+1)/n
)

, (4.1.6)

using the no-slip boundary condition (3.1.4). This is the streamwise velocity of

a power-law fluid in pipe flow (see, for example, [1]).

By using (4.1.6) with the flux condition (3.1.6) we obtain

Q(t) =
2πn

n+ 1

(

κ−1/bG0(t)

2

)1/n ∫ α

0

(

α(n+1)/n − r(n+1)/n
)

r dr, (4.1.7)

which yields

Q(t) =
πn

3n+ 1

(

κ−1/bG0

2

)1/n

α(3n+1)/n. (4.1.8)

Rearranging (4.1.8) yields the leading-order pressure gradient G0 in terms of

known quantities:

G0(z, t) = 2κ1/bα−(3n+1)

(

3n+ 1

πn
Q

)n

. (4.1.9)

Substituting (4.1.9) for G0 in (4.1.6) yields the solution for w0:

w0(r, z, t) =
3n+ 1

π(n+ 1)

Q

α2

(

1−
( r

α

)(n+1)/n
)

. (4.1.10)

Using (4.1.10) with (4.1.3) yields the solution for λ0:

λ0(r, z, t) = κ1/b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−1

r(n−1)/n. (4.1.11)

Finally, we rearrange and integrate the mass conservation equation (3.1.1) with

respect to r to obtain

u0 =
1

r

∫ α

r

∂w0

∂z
r′ dr′, (4.1.12)
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which with (4.1.10) yields the solution for u0:

u0(r, z, t) =
3n+ 1

π(n+ 1)

Q

α2

α′

α
r

(

1−
( r

α

)(n+1)/n
)

. (4.1.13)

The leading-order solutions are important to understanding the behaviour of the

perturbations, so in the following section, we briefly present and discuss examples

of the leading-order behaviour.

4.1.2 Examples of leading-order quantities

In this section, we present examples of the leading-order quantities w0, λ0, u0, and

G0, given by (4.1.10), (4.1.11), (4.1.13), and (4.1.9), respectively. Figures 4.1(a)–

(c) show examples these quantities, respectively, in a widening pipe (α′ > 0) for

various values of n. We note that the dimensionless quantities (4.1.2) vary with a

and c (and so vary with n), so here, and in subsequent figures, profiles for different

values of a, b, or c are not directly comparable. In this figure, the arrows indicate

the direction of increasing n. In addition, Figure 4.1(d) shows an example of G0

as a function of n.

Figure 4.1(a) shows examples of the leading-order streamwise velocity w0, given

by (4.1.10), which exhibits the well-known behaviour of a power-law fluid (e.g.

see [1]). In particular, when n = 1, the profile of w0 is that of classic Poiseuille

flow of a Newtonian fluid along a pipe. When n < 1, i.e. for thixotropic fluids,

the profile of w0 near the centre of the pipe is flatter than when n = 1, indicating

plug-like flow, with a steeper gradient near the wall of the pipe, indicating a high

shear rate. When n > 1, i.e. for antithixotropic fluids, the profile of w0 near the

centre of the pipe is sharper than when n = 1, with a shallower gradient near the

wall.

Figure 4.1(b) shows examples of the leading-order structure parameter λ0, given

by (4.1.11). In particular, when n = 1 the fluid is Newtonian, so the structure

does not depend on the shear rate, so λ0 = κ1/b = 1 across the width of the

pipe. In the example shown in Figure 4.1(b), we choose κ = 1 and b = 1, so

λ0 = 1. When n < 1, λ0 diverges at the centre of the pipe, and so the viscosity
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Figure 4.1: sMMW model: profiles of (a) w0, (b) λ0, and (c) u0 for various values
of n, and (d) G0 as a function of n. In (a,b,c) n = 0.4 (c = 0.4, G0 = 2.502),
n = 0.7 (c = 0.7, G0 = 2.543), n = 1 (c = 1, G0 = 2.546), n = 1.3 (c = 1.3,
G0 = 2.534), and n = 1.6 (c = 1.6, G0 = 2.515). The common parameters are
κ = 1, Q(t) = 1, α(z) = 1, α′(z) = 1, a = 1, and b = 1. The arrows show the
direction of increasing n, i.e. from thixotropic to antithixotropic behaviour.
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also diverges here (as η0 = λ0). When n > 1, λ0 decreases monotonically from

the wall to zero at the centre of the pipe, and so the viscosity is also zero at the

centre.

Figure 4.1(c) shows examples of the transverse velocity u0. In general for a

widening pipe, u0 is positive everywhere, indicating that the direction of flow is

away from the centre, as expected, and u0 is largest between the centre of the

pipe and the wall. The behaviour of u0 does not vary substantially with n, except

that u0 is larger near the wall for n < 1 than for n > 1. Figure 4.1(d) shows

G0 as a function of n. We note that the pressure gradient required to drive the

prescribed flux is largest when n is slightly less than unity. It is not clear why

this is the case.

The leading-order behaviour shown in Figure 4.1 agrees with physical intuition.

For thixotropic fluids, the fluid is highly structured near the centreline where

the shear rate is low, leading to a flat profile near the centreline. Near the wall,

the shear rate is high which de-structures the fluid and decreases the viscosity,

allowing the fluid to flow more easily, which lubricates the high-viscosity fluid

near the centreline. For antithixotropic fluids, the behaviour is reversed. Near

the wall, the high shear rate builds up the structure and the viscosity, which

means the fluid flows less readily, so to maintain the prescribed volume flux, flow

is increased near the centreline where the viscosity is low.

4.1.3 Perturbation solutions

In this section, we obtain the solutions for the perturbation quantities w1, λ1,

and G1. To find the solutions for the perturbations we use the general solu-

tions obtained in Section 3.3. In particular, we use equations (3.3.7), (3.3.1),

and (3.3.8) to find solutions for w1, λ1, and G1, respectively. We also require

the terms A(r, z, t) and B(r, z, t), given by (3.3.3) and (3.3.4), respectively, and

the leading-order solutions (4.1.10), (4.1.11), (4.1.13), and (4.1.9). We begin by

finding A(r, z, t) and B(r, z, t), where, for the sMMW model, ηΓ and ηλ, given by
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(2.3.14), and fΓ and fλ, given by (2.3.15), are

ηΓ = 0, fΓ = −a

2
Γ
a/2−1
0 λb

0 +
c

2
κΓ

c/2−1
0 , (4.1.14)

ηλ = 1, fλ = −bΓ
a/2
0 λb−1

0 , (4.1.15)

where η(Γ, λ) and f(Γ, λ) are given by (4.1.1). So (3.3.3) and (3.3.4) become

A(r, z, t) = λ0 −
1

b

(

aλ0 − cκΓ
(c−a)/2
0 λ1−b

0

)

, (4.1.16)

B(r, z, t) = −1

b
Γ
(1−a)/2
0 λ1−b

0

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

, (4.1.17)

respectively. Now, using the solution for λ0 with (4.1.16) and (4.1.17), we obtain

A(r, z, t) = κ1/b

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)n−1

(4.1.18)

×
[

1− 1

b

(

a− cΓ
(c−a)/2
0

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)−b(n−1)
)]

,

and

B(r, z, t) = −1

b
(n− 1)Γ

(1−a)/2
0 κ(2−b)/b

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)(n−1)(2−b)

×
[

D∗
t

Q′

Q
+D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

(

1−
( r

α

)(n+1)/n
)]

, (4.1.19)

respectively. Recalling that Γ0 = (∂w0/∂r)
2, we use (4.1.10) to obtain

Γ0 =

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)2

, (4.1.20)

so now (4.1.18) and (4.1.19) become

A(r, z, t) = κ1/bn

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)n−1

(= nλ0 ≥ 0), (4.1.21)
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and

B(r, z, t) =
1

b
κ(2−b)/b(n− 1)

(

3n+ 1

πn
Qα−(3n+1)/nr1/n

)2n−c−1

×
[

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

(

1−
( r

α

)(n+1)/n
)]

,

(4.1.22)

respectively. We note from (4.1.21) that A(r, z, t) ≥ 0, which will be important

later in this chapter.

In the general solutions for w1 and G1, given by (3.3.7) and (3.3.8) respectively,

we must evaluate the integrals

∫ α

r

r′

A(r′, z, t)
dr′, and

∫ α

r

B(r′, z, t)

A(r′, z, t)
dr′, (4.1.23)

which we do now to simplify the subsequent presentation. Using (4.1.21), the

first integral in (4.1.23) is

∫ α

r

r′

A(r′, z, t)
dr′ =

κ−1/b

n

(

3n+ 1

πn
Qα−(3n+1)/n

)1−n ∫ α

r

r′r′(1−n)/n dr′, (4.1.24)

which, upon evaluating the integral on the right-hand side, yields

∫ α

r

r′

A(r′, z, t)
dr′ =

κ−1/b

n+ 1

(

3n+ 1

πn
Qα−(3n+1)/n

)1−n
(

α(n+1)/n − r(n+1)/n
)

.

(4.1.25)

Using (4.1.21) and (4.1.22), the second integral in (4.1.23) is

∫ α

r

B(r′, z, t)

A(r′, z, t)
dr′ = κ(1−b)/bn− 1

b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

(4.1.26)

×
∫ α

r

[

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

(

1−
(

r′

α

)(n+1)/n
)]

r′(n−c)/n dr′,
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which, upon evaluating the integral on the right-hand side, yields

∫ α

r

B(r′, z, t)

A(r′, z, t)
dr′ = κ(1−b)/bn− 1

b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

(4.1.27)

×
[(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

)

α(2n−c)/n

2n− c

(

1−
( r

α

)(2n−c)/n
)

+ D∗
a

3(3n+ 1)Qα′α−(n+c)/n

π(n+ 1)(3n− c+ 1)

(

1−
( r

α

)(3n−c+1)/n
)]

.

For convenience, we briefly write (4.1.27) as

∫ α

r

B(r′, z, t)

A(r′, z, t)
dr′ = D1

[

D2 +D3 −D2

( r

α

)(2n−c)/n

−D3

( r

α

)(3n−c+1)/n
]

,

(4.1.28)

where

D1 = κ(1−b)/bn− 1

b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

, (4.1.29)

D2 =

(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

)

α(2n−c)/n

2n− c
, (4.1.30)

D3 = D∗
a

3(3n+ 1)Qα′α−(n+c)/n

π(n+ 1)(3n− c+ 1)
. (4.1.31)

We can now use the general solution for the pressure gradient perturbation G1,

given by (3.3.8), with (4.1.25) and (4.1.28), to obtain the solution for G1:

G1(z, t) = −
2D1

[

1

2
(D2 +D3)−

n

4n− c
D2 −

n

5n− c+ 1
D3

]

α2

κ−1/b

2(3n+ 1)

(

3n+ 1

πn
Qα−(3n+1)/n

)1−n

α(3n+1)/n

. (4.1.32)

Replacing D1, given by (4.1.29), and simplifying we obtain

G1(z, t) = −κ(2−b)/b2(3n+ 1)(n− 1)

bα(n+1)/n

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−1

×
[

D2 +D3 −
2n

4n− c
D2 −

2n

5n− c+ 1
D3

]

.

(4.1.33)
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Using (4.1.30) and (4.1.31) we find

D2 +D3 = D∗
t

Q′

Q

α(2n−c)/n

2n− c
−D∗

a

3(3n+ 1)Qα′α−(n+c)/n

π(2n− c)(3n− c+ 1)
, (4.1.34)

− 2n

4n− c
D2 = −D∗

t

Q′

Q

2nα(2n−c)/n

(2n− c)(4n− c)
+D∗

a

6n(3n+ 1)Qα′α−(n+c)/n

π(n+ 1)(2n− c)(4n− c)
,

(4.1.35)

− 2n

5n− c+ 1
D3 = −D∗

a

6n(3n+ 1)Qα′α−(n+c)/n

π(n+ 1)(3n− c+ 1)(5n− c+ 1)
. (4.1.36)

By collecting terms in D∗
t and terms in D∗

a, we obtain the solution for G1:

G1(z, t) = −κ(2−b)/b2(3n+ 1)(n− 1)

b(4n− c)

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−1

α(n−c−1)/n

×
[

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(5n− c+ 1)

Qα′

α3

]

. (4.1.37)

The general solution for the streamwise velocity perturbation w1 is given by

(3.3.7). By using the integrals evaluated in (4.1.25) and (4.1.27) with (3.3.7) we

obtain

w1(r, z, t) =
1

2
G1

κ−1/b

n+ 1

(

3n+ 1

πn
Qα−(3n+1)/n

)1−n

α(n+1)/n

(

1−
( r

α

)(n+1)/n
)

+ κ(1−b)/bn− 1

b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

(4.1.38)

×
[(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Q

α2

α′

α

)

α(2n−c)/n

2n− c

(

1−
( r

α

)(2n−c)/n
)

+ D∗
a

3(3n+ 1)Qα′α−(n+c)/n

π(n+ 1)(3n− c+ 1)

(

1−
( r

α

)(3n−c+1)/n
)]

.

SubstitutingG1, given by (4.1.37), into (4.1.38) and simplifying yields the solution
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for w1:

w1(r, z, t) = −κ(1−b)/bn− 1

b

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

α(2n−c)/n (4.1.39)

×
[(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(5n− c+ 1)

Qα′

α3

)

3n+ 1

(4n− c)(n+ 1)

(

1−
( r

α

)(n+1)/n
)

−
(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Qα′

α3

)

1

2n− c

(

1−
( r

α

)(2n−c)/n
)

−D∗
a

3(3n+ 1)

π(n+ 1)

Qα′

α3

1

3n− c+ 1

(

1−
( r

α

)(3n−c+1)/n
)]

.

Using the leading-order solutions (4.1.10), (4.1.11), and (4.1.13), and the stream-

wise velocity perturbation (4.1.39), and simplifying yields the solution for λ1

(3.3.1):

λ1 = −κ(2−b)/bn− 1

bn

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−2

r(2n−c−2)/n

×
[

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(n+ 1)

Qα′

α3

(

1−
( r

α

)(n+1)/n
)

(4.1.40)

+
(n− 1)(3n+ 1)

4n− c

(

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(5n− c+ 1)

Qα′

α3

)

( r

α

)(−n+c+1)/n
]

.

We note from the solutions for w1 and λ1, given by (4.1.39) and (4.1.40) respec-

tively, that in the quickly adjusting regime R1,2 (when D∗
t = O(1) and D∗

a = 0),

w1 and λ1 are proportional to D∗
tQ

′(t). Similarly, in the weakly advective regime

R2,1 (when D∗
a = O(1) and D∗

t = 0), w1 and λ1 are proportional to D∗
aα

′(z).

Consequently, we do not gain any extra insight into R1,2 by considering both a

decelerating flow (Q′(t) < 0) and an accelerating flow (Q′(t) > 0), or into R2,1 by

considering both a widening pipe (α′(z) > 0) and a narrowing pipe (α′(z) < 0).

Unless stated otherwise, when discussing the perturbations for the sMMW model

in the following sections, and indeed for the full MMW model and the Houška

model, we only consider a decelerating flow in a widening pipe (Q′(t) < 0 and

α′(z) > 0). The behaviour for accelerating flows or narrowing pipes can be ob-

tained by simply reversing the signs of w1 and λ1 accordingly.
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4.1.4 Examples of perturbation quantities

In this section, we present examples of the perturbation quantities w1 and λ1,

given by (4.1.39) and (4.1.40), respectively, for the sMMW model. We discuss

G1, given by (4.1.37), in detail in Section 4.1.8. Whilst these solutions are for the

quickly adjusting and weakly advective regime R1,1, in order to study the effect

of thixotropy in an unsteady flow and in a varying pipe, we consider the quickly

adjusting regime R1,2 and the weakly advective regime R2,1 separately. To this

end, we consider D∗
t = 1 and D∗

a = 0 for R1,2, and D∗
a = 1 and D∗

t = 0 for R2,1

separately. As stated at the end of Section 4.1.3, we consider decelerating flow

in a widening pipe. Specifically, we set Q′ = −1 and α′ = 1. We present profiles

of w1 and λ1 here for illustrative purposes, and provide a more detailed analysis

of the full range of behaviours of w1 and λ1 in Section 4.1.5, where we determine

when the TRC describes the perturbations, and when it does not.

Figures 4.2(a) and (b) show examples of w1 and λ1 in the quickly adjusting

regime for various values of n (the arrows show the direction of increasing n).

For thixotropic fluids (n < 1), w1 is positive near the centre of the pipe and, to

preserve the prescribed volume flux, negative near the wall, and λ1 is negative

and largest near the centre of the pipe. For antithixotropic fluids (n > 1), w1 is

negative near the centre of the pipe and positive near the wall, and λ1 is positive

and largest near the centre of the pipe.

Figures 4.2(c) and (d) show examples for w1 and λ1 in the weakly advective

regime, for various values of n (the arrow shows increasing n). The velocity and

structure perturbations in the weakly advective regime are qualitatively simi-

lar to those in the quickly adjusting regime, shown in Figures 4.2(a) and (b),

respectively.

Each of the examples of w1 and λ1 shown in Figure 4.2 agree with the TRC,

discussed in Section 3.3.1 and shown in Figure 3.1, using the thixotropic/ an-

tithixotropic and widening/decelerating analogies. However, in cases of strong

antithixotropy there are other behaviours of w1 and λ1 which do not agree with

the TRC.

Figures 4.3(a) and (b) show examples of w1 and λ1 respectively, in the quickly
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Figure 4.2: sMMW model: profiles of (a,c) w1 and (b,d) λ1 in (a,b) the quickly
adjusting regimeR1,2 and (c,d) the weakly advective regimeR2,1. The parameters
are n = 0.7 (a = 1.3, G1 = −0.8410 (R1,2), G1 = −0.7113 (R2,1)), n = 0.85
(a = 1.15, G1 = −0.4074 (R1,2), G1 = −0.3250 (R2,1)), n = 1 (a = 1, G1 = 0
(R1,2), G1 = 0 (R2,1)), n = 1.15 (a = 0.85, G1 = 0.3948 (R1,2), G1 = 0.2917
(R2,1)), and n = 1.3 (a = 0.7, G1 = 0.7808 (R1,2), G1 = 0.5621 (R2,1)). The
common parameters are κ = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1, b = 1,
and c = 1, and (a,b) D∗

t = 1, D∗
a = 0 and (c,d) D∗

a = 1, D∗
t = 0. The arrows show

the direction of increasing n, i.e. from thixotropic to antithixotropic behaviour.
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Figure 4.3: sMMW model: profiles of (a) w1 and (b) λ1 in the quickly adjust-
ing regime R1,2 and weakly advective regime R2,1 (labelled accordingly). The
common parameters are a = 0.1, b = 0.2, c = 4 (n = 20.5, G1 = 53.08 (R1,2),
G1 = 31.84 (R2,1)), κ = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1, and (R1,2)
D∗

t = 1, D∗
a = 0 and (R2,1) D∗

a = 1, D∗
t = 0.

adjusting regime R1,2 and the weakly advective regime R2,1 which do not agree

with the TRC. Using the TRC and the analogies, we expect these profiles to be

similar to those of the antithixotropic fluids shown in Figure 4.2, i.e. we expect

w1 to be negative near the centre of the pipe and positive at the wall.

For the case plotted in the weakly advective regime R2,1, w1, shown in Figure

4.3(a), is similar to the TRC, but there is an extra change in the sign of ∂w1/∂r

near the centreline of the pipe, yielding a local maximum at the centreline, rather

than a local minimum. For the case plotted in the quickly adjusting regime R1,2,

w1 is the opposite to what we would expect for an antithixotropic fluid. Instead,

w1 is qualitatively similar to that of a thixotropic fluid (cf. R1,2 in Figure 4.3(a)

and the profiles for thixotropic fluids in Figure 4.2(a)), so it does not agree with

the TRC.

In both cases plotted in Figure 4.3(b), λ1 is qualitatively different from the

TRC. With the thixotropy/antithixotropy and widening/decelerating analogies,

we would expect λ1 to be positive and largest at the centreline in both regimes,

similar to λ1 for the antithixotropic fluids shown in Figures 4.2(b) and (d). In-

stead, λ1 is zero at the centreline and positive and largest at the wall.
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The behaviours of w1 and λ1 shown in Figure 4.3 indicate that the TRC, the

accompanying analogies and corresponding physical interpretation are insuffient

to full describe the behaviour of antithixotropic flow in some cases. This result is

important because it provides proof by counter example that it is not possible to

make general statements regarding the qualitative behaviour of the perturbations,

and, hence, the flow. The behaviours also indicate that the more pronounced

features of thixotropic flow may be caused by a subtle process which is overlooked

by an intuitive physical interpretation.

We study the anomalous behaviour of w1 and λ1 shown in Figure 4.3 in the

following section by considering the centreline behaviour of the perturbations. In

particular, we highlight the ways in which the analogies break down and in Section

4.1.6 we discuss the physical mechanisms leading to the anomalous behaviour.

4.1.5 Centreline behaviour of perturbations

In this section, we present the behaviour of w1 and λ1 near the centreline, which

we obtain by analysing the solutions, given by (4.1.39) and (4.1.40), as r → 0.

This analysis will allow us to determine the full range of qualitative behaviours

for the sMMW model, and thus determine when the behaviour agrees with the

TRC, and when it does not. We present the results of this analysis here; the

details are presented for w1 in Appendix A.1 and for λ1 in Appendix A.2. In

the appendices, we determine the sign and the boundedness of the perturbations

at the centreline, and the nature of their radial derivatives as r → 0, which are

what determines the qualitative behaviour of the perturbations. We find a range

of qualitatively distinct behaviours for the perturbations, which we organise into

a regime diagram of the parameter space of the sMMW model. In addition, we

find exactly for which parameters the behaviours of perturbations agree with the

TRC, and for which they do not, which allows an in-depth study of the anomalous

behaviour shown in Figure 4.3.
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4.1.5.1 Regime diagrams

We summarise the behaviour of w1 and λ1 at the centreline in the quickly ad-

justing regime and in the weakly advective regime as follows. The critical lines

of the parameter space (a, b, c) of the sMMW model, obtained in Appendices A.1

and A.2, are n − 1 = 0, n − c = 0, 2n − c − 2 = 0, 2n − c = 0, 4n − c = 0,

and n − c − 1 = 0, which, using n = (c − a)/b + 1, are a = c, a = b + c(1 − b),

a = c(1−b/2), a = b+c(1−b/2), a = b+c(1−b/4), and a = c(1−b), respectively.

We note that, given that a, b, c ≥ 0, the line a = c(1 − b/2) only exists in this

quadrant of (c, a)-space when b < 2, and similarly the line a = c(1−b) only exists

in this quadrant when b < 1. By plotting these lines in (c, a)-space (for a, c ≥ 0)

we obtain a regime diagram for all possible behaviours of w1 and λ1. Figure 4.4

shows examples of this regime diagram, for b = 0.8 and b = 1.2.

The labels in Figure 4.4 refer to regions of qualitatively similar centreline be-

haviour of w1, for decelerating flow in a widening pipe. Regions T̄II–T̄IV contain

only thixotropic behaviour (note there is no region T̄I), characterised by

• Region T̄II: w1 is positive and flat at the centreline,

• Region T̄III: w1 is positive and has a cusp at the centreline,

• Region T̄IV: w1 is positive and singular at the centreline.

Regions ĀII–ĀIV contain only antithixotropic behaviour, characterised by

• Region ĀII: w1 is negative and flat at the centreline,

• Region ĀIII: w1 is negative and has a cusp at the centreline,

• Region ĀIV: w1 is negative and singular at the centreline.

Finally, regions Ā1,2
I and Ā2,1

I are characterised by

• Region Ā1,2
I : in the quickly adjusting regime, w1 is positive and flat at the

centreline,
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Figure 4.4: sMMW model: regime diagrams in (c, a)-space for (a) b = 0.8 and
(b) b = 1.2, for the centreline behaviour of w1 and λ1. The lines a = c(1 − b)
(dashed), a = b + c(1 − b) (dot-dashed), and a = b + c(1 − b/2) (dotted) apply
to w1 only. The line a = c(1− b/2) (space-dashed, grey) applies to λ1 only. The
lines a = c (solid) applies to both w1 and λ1. The labels T̄II, ĀII, etc. denote
regions of qualitatively similar centreline behaviour of w1.
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• Region Ā2,1
I : in the weakly advective regime, w1 is negative and flat at the

centreline.

Regions Ā1,2
I and Ā2,1

I are bounded above by the line a = c(1− b). When b < 1,

these regions are present in the regime diagram, as shown in Figure 4.4(a), but

when b > 1, these regions are absent, as shown in Figure 4.4(b).

When a < c(1−b/2), λ1 is zero and has a cusp at the centreline, when c(1−b/2) <

a < c, λ1 is positive and singular at the centreline, and when a > c, λ1 is negative

and singular at the centreline.

The thick solid lines in Figure 4.4 denote a = b + c(1 − b/4), and we require

a < b + c(1 − b/4) (or 4n − c > 0) for our small-δ asymptotic expansion to be

valid (which relies on the flux (3.1.12) being integrable, see Appendix A.1). In

addition, the thin solid lines in Figure 4.4 denote a = b + c (i.e. n = 0), and we

require a < b+ c (i.e. n > 0), for the sMMW model to be physically meaningful.

So there is a region of the parameter space (b + c(1− b/4) < a < b + c, labelled

‘Expansion breaks down’ in Figure 4.4 which is physically meaningful but beyond

the scope of the expansion scheme. In this region, the asymptotic approach we

have used is not appropriate because the perturbations ‘jump’ order, and the

leading-order behaviour is no longer independent of thixotropy. We require a

different technique, such as numerical methods, to access the behaviour of w1

and λ1 in this region.

Figure 4.5 shows a table of schematics: sketches of the leading-order quantities

w0 and λ0, and the perturbations w1 and λ1 in each of the regions of the regime

diagram, for a widening pipe and a decelerating flow. This table is a summary of

all qualitative behaviours of the sMMWmodel in the weakly advective regime and

in the quickly adjusting regime that we may obtain using our expansion scheme.

The vertical and horizontal lines represent the boundaries between the regions

of the regime diagram, shown in Figure 4.4. The vertical line, labelled a = c

denotes the boundary between thixotropic fluids to the left and antithixotropic

fluids to the right. The grey box indicates the behaviours that agree with the

TRC, using the thixotropy/antithixotropy and widening/decelerating analogies,

and so the profile sketches outwith this box do not agree with the TRC.
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For thixotropic fluids, in regions T̄II–T̄IV, in both the weakly advective regime

and in the quickly adjusting regime, w1 is positive near the centreline, with some

qualitative variation, and negative near the wall. In addition, λ1 is negative and

largest at the centreline. So the behaviours of w1 and λ1 agree with the TRC using

the widening/decelerating analogy. We conclude that the thixotropic behaviour

of the sMMW model may be qualitatively described in general. In particular, the

behaviour is described by the TRC.

For the antithixotropic fluids in regions ĀII–ĀIV, in both the weakly advective

regime and in the quickly adjusting regime, w1 is negative near the centre-

line, with some qualitative variation, and positive near the wall, i.e. the op-

posite of thixotropic fluids. In these regions, w1 agrees with the TRC using

the thixotropy/antithixotropy and widening/decelerating analogies. Region Ā2,1
I

contains antithixotropic fluids in the weakly advective regime. As illustrated in

Figure 4.5, w1 for fluids in region Ā2,1
I do not agree with the TRC. Whilst w1

is negative near the centreline and positive near the wall, as for antithixotropic

fluids in regions ĀII–ĀIV, there is an extra change in the sign of the gradient of

w1 near the centreline not described by the TRC. So for fluids in region Ā2,1
I , the

thixotropy/antithixotropy analogy does not hold and so the physical explanation

of the behaviour of the perturbations must be refined. Region Ā1,2
I contains an-

tithixotropic fluids in the quickly adjusting regime. As illustrated in Figure 4.5,

w1 for fluids in region Ā1,2
I do not agree with the TRC. Unlike fluids in region

Ā2,1
I , w1 is the opposite of what the TRC describes, i.e. w1 is positive near the

centreline and negative near the wall, and so is qualitatively similar to thixotropic

fluids in regions T̄II–T̄IV. So for fluids in region Ā1,2
I , the widening/decelerating

and thixotropy/antithixotropy analogies do not hold and so the physical explana-

tion of the behaviour of the perturbations must again be refined. We discuss the

physical mechanisms behind the anomalous behaviour in regions Ā2,1
I and Ā1,2

I in

Section 4.1.6.

We have not defined regions for the behaviour of λ1, but we note that when

a > c(1 − b/2), which includes all thixotropic fluids and some antithixotropic

fluids, λ1 agrees with the TRC using the analogies. When a < c(1− b/2), which

includes only strongly antithixotropic fluids, shown in the right-most column in

Figure 4.5, λ1 does not agree with the TRC.
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4.1.6 Mechanisms for behaviour of w1

We find the source of the anomalous behaviour exhibited by w1 in regions Ā2,1
I

and Ā1,2
I in the equation for the radial derivative ∂w1/∂r. The general form of

this equation is given by (3.3.6), which we rewrite here for convenience:

∂w1

∂r
= −

[

1

2
G1(z, t)r −B(r, z, t)

]

1

A(r, z, t)
, (4.1.41)

where G1 is the pressure gradient perturbation (4.1.37), B is the thixotropic stress

term (4.1.22), and A is non-negative (4.1.21). It is clear from (4.1.41) that the

sign of ∂w1/∂r is determined by the relative sizes of the terms G1r/2 and B:

when G1r/2 ≶ B, ∂w1/∂r ≷ 0.

We are interested in how the relative size of these terms differs between regions

Ā2,1
I and ĀII in the weakly advective regime, and between regions Ā1,2

I and ĀII in

the quickly adjusting regime, so it will be useful to plot an example of −G1r/2

and B in each of these regions. Such examples are shown in Figure 4.6(a) and

(b) for the weakly advective regime and in Figure 4.6(c) and (d) for the quickly

adjusting regime. Figures 4.6(a) and (c) show profiles in region ĀII, and Figures

4.6(b) and (d) show profiles in regions Ā2,1
I and Ā1,2

I respectively, and use the

same parameters as the profiles in Figure 4.3.

The term −G1r/2 is linear in r, so always takes the form shown by the dotted

lines in Figure 4.6. The general form of the thixotropic stress term B (3.3.4) is

given by

B(r, z, t) =
ηλ
fλ

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

∂w0

∂r
. (4.1.42)

We note from (4.1.42) that because the shear rate ∂w0/∂r vanishes at the cen-

treline, B also always vanishes at the centreline.

In the weakly advective regime (D∗
t = 0), B is proportional to the advective

derivative u0 ·∇λ0, and is forced to equal zero at the wall by the no-slip condition.

The constraints on B at the centreline and at the wall mean that B must take

the particular form shown by the solid lines in Figures 4.6(a) and (b). Given that
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Figure 4.6: sMMW model: profiles of −1
2
G1r (dotted) and B (solid) in (a) region

ĀII and (b) region Ā2,1
I in the weakly advective regime, and (c) region ĀII and (d)

region Ā1,2
I in the quickly adjusting regime. The parameters are (a,c) a = 3.35

and (b,d) a = 0.1. The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1,
α(z) = 1, α′(z) = 1, b = 0.2, and c = 4, and (a,b) D∗

a = 1, D∗
t = 0 and (c,d)

D∗
t = 1, D∗

a = 0. The profiles in (b,d) are the profiles of −1
2
G1r and B for the

parameters used in Figure 4.3.
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B is always zero at the wall and −G1r/2 is always negative at the wall, ∂w1/∂r

is always negative at the wall, so w1 must be positive near the wall, as shown by

the sketches of w1 in regions Ā2,1
I and ĀII in Figure 4.5.

In region ĀII (Figure 4.6(a)), |B| > | − G1r/2| near the centreline, so ∂w1/∂r

is positive near the centreline. In region Ā2,1
I (Figure 4.6(b)), B has a different

concavity which decreases its value near the centreline so that |B| < | −G1r/2|,
and consequently ∂w1/∂r is negative near the centreline. It is clear then that a

slight change in the concavity of |B| leads to a localised change in the gradient of

w1, which yields the difference in behaviour of w1 near the centreline in regions

Ā2,1
I and ĀII. We interpret the decrease of |B| near the centreline as a weakening

of thixotropy.

In the quickly adjusting regime (D∗
a = 0), B is proportional to the time derivative

∂λ0/∂t, which is not zero at the wall in general. So, in contrast to the weakly

advective regime, B is only constrained to equal zero at the centreline, and can

vary significantly at the wall, as shown by the solid lines in Figures 4.6(c) and

(d). In fact, as shown by Figure 4.6(c) and (d), B is similar to −G1r/2 across the

width of the pipe, and ∂w1/∂r is determined by a fine balance between the two

terms. In region ĀII, shown in Figures 4.6(c), |B| > |−G1r/2| near the centreline
and |B| < | − G1r/2| near the wall, so ∂w1/∂r is positive and negative at these

locations respectively, which yields the profile sketched for region ĀII in Figure

4.5. As in the weakly advective regime, a slight change in the concavity of B

leads to a decrease in |B|, as shown in Figures 4.6(d). The fine balance between

B and G1r/2 means that this change in the concavity of B leads to a reversal of

the sign of ∂w1/∂r across the pipe, which reverses w1, as shown by the profile

sketched for region Ā1,2
I in Figure 4.5.

We note that on the boundary a = c(1 − b), between regions Ā1,2
I and ĀII, B,

given by (4.1.22), is

B(r, z, t) = D∗
tκ

(2−b)/b c

b

Q′

Q

(

3c+ 4

π(c+ 1)
Qα−(3c+4)/(c+1)

)c+1

r = −1

2
G1r. (4.1.43)

So on this boundary, ∂w1/∂r = 0, so w1 = 0, and thus antithixotropy does not

affect the streamwise velocity, but it does affect the structure parameter and the
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pressure gradient.

In summary, in both the weakly advective regime and the quickly adjusting

regime, the anomalous behaviour of regions Ā2,1
I and Ā1,2

I , respectively, arises

from a change in the concavity of the thixotropic stress term B. In the weakly

advective regime, this change in concavity only affects the flow near the centre-

line, so it only has a localised effect on w1. In the quickly adjusting regime,

this change in concavity affects w1 across the width of the pipe and results in a

reversal of w1.

4.1.7 Cancellation of thixotropic effects

In this section, we discuss the possible ‘cancellation’ of advective thixotropy and

temporal thixotropy in the quickly adjusting and weakly advective regime (R1,1).

In previous sections, we have studied decelerating flow (Q′(t) < 0) in a widening

pipe (α′(z) > 0), in which advective thixotropy and temporal thixotropy have

similar effects on the flow in most cases (excluding fluids in regions Ā2,1
I and

Ā1,2
I of the regime diagram). Here we study accelerating flow (Q′(t) > 0) in a

widening pipe (α′(z) > 0), in which advective thixotropy and temporal thixotropy

have opposite effects on the flow in most cases.

There are several ways we could choose to define the thixotropic effects as being

cancelled, such as minimising the magnitude of the streamwise velocity perturba-

tion or the structure perturbation. We choose to define the thixotropic effects as

being cancelled when G1 = 0, i.e. when there is no perturbation to the pressure

gradient, despite the presence of thixotropy. In the quickly adjusting and weakly

advective regime, G1 is given by (4.1.37). By setting G1 = 0 in this equation, we

obtain

0 = −κ(2−b)/b2(3n+ 1)(n− 1)

b(4n− c)

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−1

α(n−c−1)/n

×
[

D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(5n− c+ 1)

Qα′

α3

]

. (4.1.44)

As κ, b, n,Q, α > 0, (4.1.44) is satisfied when either n = 1, the trivial Newtonian
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case in which all perturbations are zero, or when

0 = D∗
t

Q′

Q
−D∗

a

3(3n+ 1)

π(5n− c+ 1)

Qα′

α3
, (4.1.45)

which, following some rearrangement, yields

D∗
tQ

′

D∗
aα

′
=

3(3n+ 1)

π(5n− c+ 1)

Q2

α3
. (4.1.46)

The terms D∗
tQ

′ and D∗
aα

′ determine the strengths of temporal and advective

thixotropy respectively, so the term on the L.H.S. of (4.1.46) is the ratio of

thixotropic strengths.

We recall that for the volume flux perturbation condition to be satisfied, 4n−c >

0, so 5n−c+1 > 0 always, so the right-hand side of (4.1.46) is always positive. It

is only possible for the thixotropic effects to cancel (with G1 = 0) when D∗
tQ

′ and

D∗
aα

′ have the same sign. For the following examples we consider an accelerating

flow in a widening pipe (with Q′ = 1 and α′ = 1), then tune D∗
t and D∗

a so that

(4.1.46) is satisfied.

Figure 4.7 shows an example of w1 and λ1 from each of the regions of the regime

diagram (Figure 4.4), with G1 = 0. In all of the examples (and for all behaviour in

R1,1) the centreline behaviour of w1 and λ1 matches that described in the regime

diagram and in the table of schematics (Figure 4.5). In contrast to R1,2 and R2,1,

w1 in region ĀI when G1 = 0 does not exhibit any anomalous behaviour, so is

qualitatively similar to behaviour in region ĀII.

We note that for the examples in Figure 4.7(a), w1 is similar to the behaviour of

w1 in R2,1 in a widening pipe (cf. Figure 4.2(c)), rather than w1 in R1,2 in an

accelerating flow, which is the sign-reverse of the behaviour in Figure 4.2(a).

4.1.8 Behaviour of pressure gradient perturbation G1

In this section, we explore the behaviour of the pressure gradient perturbation

G1, given by (4.1.37), in the quickly adjusting regime and in the weakly advective

regime.
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Figure 4.7: sMMW model: profiles of (a) w1 and (b) λ1 in the quickly adjusting
and weakly advective regime R1,1, where G1 = 0. The parameters are a = 0.6
and c = 0.25 (n = 0.5625, region T̄II, D∗

t = 0.7204), a = 1.2 and c = 1 (n = 0.75,
region T̄III, D∗

t = 0.8276), a = 2.2 and c = 2 (n = 0.75, region T̄IV, D∗
t = 1.129),

a = 0.1 and c = 4 (n = 5.875, region ĀI, D∗
t = 0.6743), a = 1 and c = 4 (n = 4.75,

region ĀII, D∗
t = 0.7018), a = 2.5 and c = 4 (n = 2.875, region ĀIII, D∗

t = 0.808),
a = 3.5 and c = 4 (n = 1.625, region ĀIV, D∗

t = 1.095). The common parameters
are κ = 1, Q(t) = 1, Q′(t) = 1, α(z) = 1, α′(z) = 1, b = 1, and D∗

a = 1. The
arrows show the direction T̄II–T̄IV and ĀI–ĀIV.
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Figure 4.8: sMMW model: plots of the pressure gradient perturbation G1 as a
function of a for (a) c = 0, 0.5, 1.5, 2.5, 4, 5.5, 7 (for inset c = 0, 0.01, 0.1) and
(b) c = 25, 30, 35, 40 (black, solid lines). Also shown are the boundaries a = c
(grey, solid, intersects G1 at crosses), a = c(1 − b) (grey, dashed, intersects G1

at diamonds), a = b + c(1 − b) (grey, dot-dashed, intersects G1 at circles) and
a = b+c(2−b)/2 (grey, dotted, intersects G1 at squares) from the regime diagram
shown in Figure 4.4. The parameters are κ = 1, α(z) = 1, α′(z) = 1, Q(t) = 1,
b = 0.5, D∗

t = 0 and D∗
a = 1. The arrows show the direction of increasing c.

Figures 4.8(a) and (b) show G1 as a function of the parameter a for various values

of c (black, solid lines), in the weakly advective regime. Also shown for reference

are the boundaries from the regime diagram (Figure 4.4); these are a = c (grey,

solid, G1 = 0), a = c(1 − b) (grey, dashed), a = b + c(1 − b) (grey, dot-dashed)

and a = b + c(2 − b)/2 (grey, dotted), which intersect G1 at crosses, diamonds,

circles and squares, respectively. It is clear from (4.1.37) and Figure 4.8(a) that

G1 < 0 for thixotropic fluids (n < 1, a > c), G1 > 0 for antithixotropic fluids

(n > 1, a < c), and G1 = 0 on the boundary (n = 1, a = c), on which the fluid is

a generalised-Newtonian fluid at equilibrium.

As Figure 4.8 shows, when c < 4, G1 decreases monotonically as a increases,

and becomes singular and negative as a approaches the line n = c/4, i.e. as

a → b + c(4 − b)/4 (shown as a thick, solid line in Figure 4.4), at which the

expansion scheme breaks down. When c is not too much larger than c = 4

(specifically for 4 < c . 10.54 when b = 0.5, as in Figure 4.8(a)), G1 decreases to a

minimum as a increases, before increasing unboundedly as a → b+c(4−b)/4. For

larger values of c (specifically for c & 10.54 when b = 0.5, as in Figure 4.8(b)), G1
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increases monotonically as a increases, and becomes singular as a → b+c(4−b)/4.

The plot of G1 for c = 4 and b = 0.5 is labelled in Figure 4.8(a), and is char-

acteristic of the plot of G1 when c = 4 for all values of b. The plot of G1 for

c = 4 and a = 4 lies on the line a = c between thixotropic and antithixotropic

fluids, where we expect G1 = 0, and on the line a = b + c(4 − b)/4, where

the expansion scheme breaks down and we expect G1 to be singular. In the

double limit c → 4 and a → 4, the terms n − 1 and 4n − c, in the numera-

tor and denominator of G1 respectively, both tend to zero, and the value G1

takes depends on how this limit is approached. In particular, upon fixing c = 4,

(n−1)/(4n− c) = (c−a)/(4(c−a)− b(4− c)) = 1/4 for all values of a. Similarly,

upon fixing a = 4, (n− 1)/(4n− c) = (c− a)/(4(c− a)− b(4− c)) = 1/(4− b) for

all values of c.

The plot of G1 for c = 0 and b = 0.5 is labelled in the inset of Figure 4.8(a),

and is characteristic of the plot of G1 for c = 0 for all values of b. The point

c = 0 and a = b lies on the line a = b + c(4− b)/4, where the expansion scheme

breaks down and we expect G1 to be singular. It is clear in the inset of Figure

4.8(a) that when a = b, G1 is singular as c → 0 (as shown by the plots labelled

c = 0.1, 0.01), but when c = 0, G1 remains finite as a → b (as shown by the plot

labelled c = 0), so the value of G1 in the limit c → 0 and a → b depends on how

we approach it, which can be shown in a similar way to method shown for the

limit c → 4 and a → 4.

Figures 4.9(a) and (b) show G1 as a function of a for various values of c (black,

solid lines), in the quickly adjusting regime. Also shown for reference are the

boundaries from the regime diagram (Figure 4.4). As in the weakly advective

regime, G1 < 0 for thixotropic fluids (n < 1, a > c), G1 > 0 for antithixotropic

fluids (n > 1, a < c), and G1 = 0 on the boundary (n = 1, a = c), where the

fluid is a generalised-Newtonian fluid at equilibrium.

The plots of G1 in the quickly adjusting regime, shown in Figure 4.9, are quali-

tatively similar to those in the weakly advective regime, shown in Figure 4.8, so

no further discussion is required.

The analysis of the sMMW model presented in this section has shown that even

in simple rheological models of purely viscous fluids, anomalous behaviour can
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Figure 4.9: sMMW model: plots of the pressure gradient perturbation G1 as
a function of a (black, solid lines) for (a) c = 0, 0.5, 1.5, 2.5, 4, 5.5, 7 (for inset
c = 0, 0.01, 0.1) and (b) c = 25, 30, 35, 40. Also shown are the boundaries a = c
(grey, solid), a = c(1− b) (grey, dashed), a = b+ c(1− b) (grey, dot-dashed) and
a = b + c(2 − b)/2 (grey, dotted) from the regime diagram shown in Figure 4.4.
The parameters are κ = 1, α(z) = 1, α′(z) = 1, Q(t) = 1, Q′(t) = −1, b = 0.5,
D∗

t = 1 and D∗
a = 0. The arrows show the direction of increasing c.

arise. These anomalous cases demonstrate that the TRC and the accompanying

physical interpretation are not valid in general. In the following section, we

study the full MMW model, for which we find similar anomalous behaviour to

the sMMW model and additional anomalous behaviour not present in the sMMW

model. We find some similarities between the sMMW and MMW models, so we

present a conclusion for the results in this section and in the following section at

the end of the chapter, where we may highlight such similarities in the context

of the larger question of this thesis: whether we may make general statements

regarding the behaviour of thixotropic flows.

4.2 Results for the full MMW model

In Section 4.1, we obtained asymptotic solutions for the sMMW model. By

simplifying the model this way, we were able to obtain explicit solutions for the

leading-order and perturbation quantities. In this section, we consider the full

MMW model with d > 0, introduced in Section 2.5.1, given in dimensionless form
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by

η = λ and f = −Γa/2λb + κΓc/2(1− λ)d, (4.2.1)

where the dimensionless quantities are given by (4.1.2) and are presented again

here for convenience:

r̂ = R̂r, ẑ =
R̂z

δ
, û =

δQ̂refu

R̂2
, ŵ =

Q̂refw

R̂2
, Γ̂ =

Q̂2
refΓ

R̂6
,

Q̂ = Q̂refQ, p̂ =
µ̂0Q̂refp

δR̂3
, η̂ = µ̂0η, α̂(ẑ) = R̂α(z), t̂ = T̂ t, (4.2.2)

f̂(Γ̂, λ) = f̂0f(Γ, λ), f̂0 =
k̂1Q̂

a
r

R̂3a
and κ =

k̂2Q̂
c−a
r

k̂1R̂3(c−a)
.

When d > 0, we are not able to isolate λeq in (2.5.6) for general a, b, c, and d,

so we are unable to obtain explicit solutions for leading-order and perturbation

quantities. Instead, we use the general solutions obtained in Sections 3.2 and

3.3. We use the computer-algebra package Maple to evaluate the integrals in

the general solutions using quadrature, and obtain ‘semi-analytical’ solutions for

leading-order and perturbation quantities. In limited cases, such as when b =

d = 1, we can obtain explicit solutions. We present an example of such a case

in Appendix B.1, for which we are able to match our solutions with those for a

limiting case of the Houška model (see Ahmadpour and Sadeghy [26]). Whilst

we are unable to analyse the full MMW model in as much depth as the sMMW

model, we can use the semi-analytical solutions, along with an asymptotic analysis

of the centreline behaviour of the MMW model, to construct a regime diagram

and the corresponding sketches of the behaviour similar to those for the sMMW

model (shown in Figures 4.4 and 4.5 respectively). We highlight the similarities

and differences between the sMMW and the MMW models, and discuss whether

the TRC and the associated analogies, presented in Section 3.3.1, agree with the

behaviour of the MMW model.

In Section 4.2.1, as done for the sMMW model, we present solutions for the

leading-order quantities w0, λ0, and u0, which apply to the three weakly thixotropic

regimes R2,1, R1,2, and R1,1. In Section 4.2.2, we present solutions for the per-

turbation quantities w1 and λ1 in the quickly adjusting regime and in the weakly

advective regime.
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4.2.1 Examples of leading-order quantities

In this section, we present examples of the leading-order quantities w0, λ0, and u0,

given by (3.2.5), (3.2.28), and (3.2.19), respectively. Figure 4.10 shows examples

of the leading-order quantities w0, λ0, and u0 in a widening pipe (α′ > 0) for

various values of c with a = b = d = 1. In this figure, the arrows indicate the

direction of increasing c.

Figure 4.10(a) shows examples of the streamwise velocity w0. In particular, when

a > c, i.e. for thixotropic fluids, the profile of w0 is flat near the centre of the

pipe, indicating plug-like flow. When a = c, w0 is that of classic Poiseuille flow

of a Newtonian fluid along a pipe. When a < c, i.e. for antithixotropic fluids,

the profile of w0 is sharp near the centre of the pipe. The behaviour of w0 is

qualitatively similar to that of the sMMW model (cf. Figure 4.1(a), which uses

the same values of a, b, and c as Figure 4.10), though the variation of w0 with c

(via n) in the sMMW model is larger than in the MMW model.

Figure 4.10(b) shows examples of the structure parameter λ0. The behaviour of

λ0 for antithixotropic fluids and when a = c is qualitatively similar to that in

the sMMW model (cf. Figure 4.1(b)). For thixotropic fluids, λ0 is positive and

largest at the centreline, as for the sMMW model, but it is bounded above by

λ0 = 1. This upper bound of λ0 is built into the model. When d > 0, the term

(1 − λ)d in the build-up term in (4.2.1) vanishes when λ = 1, so the structure

does not build up further.

Figure 4.10(c) shows examples of the transverse velocity u0. The behaviour of u0

is qualitatively similar to that of the sMMW model (cf. Figure 4.1(c)), though,

as for w0, u0 varies more significantly with c (via n) in the sMMW model than

in the MMW model.

4.2.2 Examples of perturbation quantities

In this section, we present examples of the perturbation quantities w1 and λ1,

given by (3.3.7) and (3.3.1), respectively. As for the sMMW model in Section

4.1.4, we consider the quickly adjusting regime R1,2 and the weakly advective
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Figure 4.10: MMW model: profiles of (a) w0, (b) λ0, and (c) u0 for various values
of c. The parameters are c = 0.4 (G0 = 1.266), c = 0.7 (G0 = 1.273), c = 1
(G0 = 1.273), c = 1.3 (G0 = 1.270), and c = 1.6 (G0 = 1.265). The common
parameters are κ = 1, Q(t) = 1, α(z) = 1, α′(z) = 1, a = 1, b = 1, and d = 1. The
arrows show the direction of increasing c, i.e. from thixotropic to antithixotropic
behaviour.
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regime R2,1 separately. To this end, we consider D∗
t = 1 and D∗

a = 0 for R1,2,

and D∗
a = 1 and D∗

t = 0 for R2,1 separately. As stated at the end of Section 4.1.3,

we consider decelerating flow in a widening pipe. Specifically, we set Q′ = −1

and α′ = 1. We present profiles of w1 and λ1 here for illustrative purposes, and

provide a more detailed analysis of the full range of behaviours of w1 and λ1 in

Section 4.2.3.

Figures 4.11(a) and (b) show examples of w1 and λ1, in the quickly adjusting

regime for various values of c with a = b = d = 1 (the arrows show the direction

of increasing c (and n)). For thixotropic fluids (a > c), the velocity perturbation

is positive near the centre of the pipe and negative near the wall. The structure

parameter perturbation is negative and singular at the centre of the pipe. For

antithixotropic fluids (a < c), the velocity perturbation is negative near the centre

of the pipe and, to preserve the prescribed volume flux, positive near the wall.

The structure parameter perturbation is positive and singular at the centre of

the pipe.

Figures 4.11(c) and (d) show examples of w1 and λ1 in the weakly advective

regime. The streamwise velocity and structure parameter perturbations in the

weakly advective regime are qualitatively similar to those in the quickly adjusting

regime.

The behaviour in the quickly adjusting regime and in the weakly advective regime

shown in Figure 4.11 is qualitatively similar to the behaviour of the sMMWmodel,

for the same values of the parameters a, b, and c (cf. Figure 4.2).

Each of the examples of w1 and λ1 in Figure 4.11 agree with the TRC (discussed

in Section 3.3.1), using the thixotropic/antithixotropic and widening/decelerating

analogies. However, in cases of strong thixotropy and strong antithixotropy, there

are other behaviours of w1 and λ1 which do not agree with the TRC.

Figure 4.12 shows examples of w1 and λ1 for strongly antithixotropic fluids in

the quickly adjusting regime R1,2 and in the weakly advective regime R2,1 which

do not agree with the TRC. Using the TRC and the analogies, we expect these

profiles to be similar to that of the antithixotropic fluids shown in Figure 4.11,

i.e. we expect w1 to be negative near the centre of the pipe and positive near the

wall.
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Figure 4.11: MMW model: profiles of (a,c) w1 and (b,d) λ1 in (a,b) the quickly
adjusting regimeR1,2 and (c,d) the weakly advective regimeR2,1. The parameters
are c = 0.6 (G1 = −0.8410 (R1,2), G1 = −0.7113 (R2,1)), c = 0.8 (G1 = −0.4074
(R1,2), G1 = −0.3250 (R2,1)), c = 1 (G1 = 0 (R1,2), G1 = 0 (R2,1)), c = 1.2
(G1 = 0.3948 (R1,2), G1 = 0.2917 (R2,1)), and c = 1.4 (G1 = 0.7808 (R1,2),
G1 = 0.5621 (R2,1)). The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1,
α(z) = 1, α′(z) = 1, a = 1, b = 1, d = 1, and (a,b) D∗

t = 1, D∗
a = 0 and

(c,d) D∗
a = 1, D∗

t = 0. The arrows show the direction of increasing c, i.e. from
thixotropic to antithixotropic behaviour.
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Figure 4.12: MMW model: profiles of (a) w1, (b) λ1 for strongly antithixotropic
fluids in the quickly adjusting regime R1,2 and weakly advective regime R2,1

(labelled accordingly). The parameters are c = 0.75 (solid, G1 = 0.4709, R1,2),
c = 4 (dotted, G1 = 2.444, R1,2), c = 10 (solid, G1 = 9.823, R2,1). The common
parameters are a = 0.1, b = 0.2, d = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1,
and κ = 1, and (R1,2) D∗

t = 1, D∗
a = 0 and (R2,1) D∗

a = 1, D∗
t = 0.

In the example shown from R2,1, w1 is similar to the TRC, but there is an extra

change in the sign of ∂w1/∂r near the centreline of the pipe, as shown by the solid

line labelled R2,1 in Figure 4.12(a), yielding a local maximum at the centreline,

rather than a local minimum as in the TRC. This behaviour is qualitatively

similar to the equivalent fluids in the sMMW model (cf. Figure 4.3(a)).

In contrast to the sMMW model, this behaviour is also seen in R1,2 (as shown

by the solid line labelled R1,2 in Figure 4.12(a)). Meanwhile, for some strongly

antithixotropic fluids in R1,2, the profile of w1 is the opposite of the TRC, as

shown by the dotted profile in Figure 4.12(a), which is qualitatively similar to

the corresponding fluids in the sMMW model (cf. Figure 4.3(a)). So there is

an additional behaviour of w1 for the MMW model that is not present in the

sMMW model, one in which w1 in R1,2 is qualitatively similar to that in R2,1.

The profile of λ1 in these anomalous cases does not agree with the TRC. Instead

λ1 is qualitatively similar to the strongly antithixotropic fluids in the sMMW

model (cf. Figure 4.3(b)).

In the sMMW model in R1,2, for increasingly strongly antithixotropic behaviour,
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Figure 4.13: Profiles of w1 for (a) the sMMW model and (b) the MMW model
in the quickly adjusting regime R1,2, illustrating the reversal of w1 for strongly
antithixotropic fluids. The parameters are (a) a = 0.8, b = 0.8, d = 0, and
c = 3, 3.5, 4, 4.5, 5, and (b) a = 0.1, b = 0.2, d = 1, and c = 0.5, 0.75, 1, 1.5, 2.5.
The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1,
D∗

t = 1, and D∗
a = 0. The arrows show the direction of increasing c, i.e. of

increasingly strong antithixotropic behaviour.

w1 and ∂w1/∂r change sign when crossing from region ĀII to Ā1,2
I , with w1 = 0

on the boundary (a = c(1 − b)). This change in behaviour is illustrated in

Figure 4.13(a), in which the arrow shows the direction of increasingly strongly

antithixotropic behaviour (increasing n via increasing c). In contrast, in the

MMW model w1 is not zero across the width of the pipe when w1 reverses sign. In

the MMWmodel, for increasingly strongly antithixotropic fluids, ∂w1/∂r changes

sign first, then for more strongly antithixotropic behaviour w1 changes sign at the

centreline and eventually becomes the opposite of that described by the TRC.

This change in behaviour is illustrated in Figure 4.13(b), in which the arrow

shows the direction of increasingly strongly antithixotropic behaviour (increasing

c).

Figure 4.14 shows examples of w1 and λ1 for strongly thixotropic fluids in the

quickly adjusting regime R1,2 and the weakly advective regime R2,1 which do not

agree with the TRC. Using the TRC and the analogies, we expect these profiles

to be similar to the profiles of thixotropic fluids shown in Figure 4.11, i.e. we

expect w1 to be positive near the centre of the pipe and negative near the wall.
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Figure 4.14: MMW model: profiles of (a) w1, (b) λ1 for strongly thixotropic
fluids in the quickly adjusting regime R1,2 and weakly advective regime R2,1

(labelled accordingly). The parameters are c = 0.62 (solid, G1 = −0.3270, R1,2),
c = 0.5 (dotted, G1 = −0.6076, R1,2), c = 0.62 (solid, G1 = −0.2115, R2,1).
The common parameters are a = 0.75, b = 0.5, d = 0.1, Q(t) = 1, Q′(t) = −1,
α(z) = 1, α′(z) = 1, and κ = 1, and (R1,2) D∗

t = 1, D∗
a = 0 and (R2,1) D∗

a = 1,
D∗

t = 0.

In R2,1, w1 is similar to the TRC, as shown in Figure 4.14(a), but there is an

extra change in the sign of ∂w1/∂r near the centreline of the pipe, yielding a local

minimum at the centreline, rather than a local maximum as in the TRC.

For some thixotropic fluids in R1,2, w1 is similar to the TRC, as shown by the

solid profile labelled R1,2 in Figure 4.14(a), but there is an extra change in the

sign of ∂w1/∂r near the centreline of the pipe, yielding a local minimum at

the centreline, rather than a local maximum as in the TRC. For some strongly

thixotropic fluids in R1,2 only, the profile of w1 is the opposite of the TRC, as

shown by the dotted profile in Figure 4.14(a). The profile of w1 reverses in a

similar way to w1 for antithixotropic fluids, as shown in Figure 4.13: first ∂w1/∂r

changes sign, then w1 changes sign at the centreline, and eventually, as c (and n)

increases, w1 completely reverses.

The profiles of λ1 in these anomalous cases, shown in Figure 4.14(b) do not

agree with the TRC. As for the strongly antithixotropic fluids in the MMW

model, shown in Figure 4.12(b), λ1 = 0 at the centreline. In contrast to the

antithixotropic fluids, |λ1| has a maximum between the wall and the centre of the
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pipe, and in R2,1 λ1 changes sign near the wall. In some cases in R1,2, λ1 changes

sign near the centreline, as shown by the dotted profile in Figure 4.14(b).

The range of behaviours of w1 and λ1 shown in Figures 4.11– 4.14 cast doubt on

the validity of the thixotropy/antithixotropy and widening/decelerating analo-

gies. In the following section, we study the anomalous behaviour of the per-

turbations in the MMW model, as done for the sMMW model in Section 4.1.5,

by considering the centreline behaviour of the perturbations. We then go on in

Section 4.2.4 to consider the ways in which the analogies break down and the

physical mechanisms causing this breakdown.

4.2.3 Centreline behaviour of perturbations

In this section, we discuss the behaviour of w1 and λ1 near the centreline. Un-

like for the sMMW model, we do not have explicit asymptotic solutions for the

full MMW model, but we can study the centreline behaviour by considering the

behaviour in the asymptotic limit r → 0. We must consider thixotropic and

antithixotropic fluids separately, thus we obtain approximations to w1 and λ1

for a > c and for a < c, which are valid for 0 < r ≪ 1. We use this asymp-

totic behaviour to study the boundedness and nature of the perturbations at the

centreline in Appendices B.2 and B.3. We find a range of qualitatively distinct

behaviours for w1 and λ1, which we organise into a regime diagram of the param-

eter space of the MMW model. We study thixotropic fluids in Section 4.2.3.1,

followed by antithixotropic fluids in Section 4.2.3.2.

4.2.3.1 Centreline behaviour of thixotropic fluids

To obtain the asymptotic behaviour of w1 and λ1 as r → 0 for thixotropic fluids

(a > c), we seek an expansion in r for 0 < r ≪ 1 of the form

w0(r, z, t) ∼ W00(z, t)−W01(z, t)r
ω, λ0(r, z, t) ∼ 1− Λ01(z, t)r

ζ ,

and u0(r, z, t) ∼ U00(z, t)r,
(4.2.3)
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where we assume ω > 0 and ζ > 0. From (4.2.3) we find the derivatives

∂w0

∂r
∼ −ωW01r

ω−1,
∂λ0

∂r
∼ −ζΛ01r

ζ−1,

∂λ0

∂z
∼ −∂Λ01

∂z
rζ , and

∂λ0

∂t
∼ −∂Λ01

∂t
rζ .

(4.2.4)

We substitute terms from (4.2.3) and (4.2.4) into the leading-order momentum

equation (3.1.2), given by

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G0(z, t), (4.2.5)

which, recalling that η0 = λ0 in the MMW model, yields

1

r

∂

∂r
[−ωW01r

ω] ∼ −G0. (4.2.6)

By performing the differentiation in (4.2.6) we find

ω2W01r
ω−2 = G0, so ω = 2. (4.2.7)

We also use (4.2.3) and (4.2.4) with the structure evolution equation (3.1.3), via

(2.5.6), to find

1

(Λ01rζ)d
∼ κ(2W01r)

c−a. (4.2.8)

By comparing the exponents of r in each side of (4.2.8) we find

r−ζd = rc−a, so ζ =
a− c

d
. (4.2.9)

By comparing the coefficients of r in (4.2.8), using (4.2.7), we find

Λ−d
01 = κ(2W01)

c−a, so Λ01 = κ−1/d(2W01)
ζ = κ−1/d

(

G0

2

)ζ

. (4.2.10)
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To find the solutions for the perturbations we must also use η(Γ, λ) and f(Γ, λ),

given by (4.2.1), along with their derivatives, given by

ηΓ(Γ0, λ0) = 0, fΓ(Γ0, λ0) = −a

2
Γ
a/2−1
0 λb

0 +
c

2
κΓ

c/2−1
0 (1− λ0)

d, (4.2.11)

ηλ(Γ0, λ0) = 1, fλ(Γ0, λ0) = −bΓ
a/2
0 λb−1

0 − dκΓ
c/2
0 (1− λ0)

d−1. (4.2.12)

Recalling that Γ0 = (∂w0/∂r)
2 ∼ (G0r/2)

2 and substituting (4.2.3) and (4.2.4)

into the equations for fΓ and fλ we find

fΓ(Γ0, λ0) ∼ −a

2

(

G0

2
r

)a−2

+
c

2
κ

(

G0

2
r

)c−2

κ−1

(

G0

2
r

)ζd

, (4.2.13)

=
1

2
(c− a)

(

G0

2

)a−2

ra−2, (4.2.14)

and

fλ(Γ0, λ0) ∼ −b

(

G0

2
r

)a

− dκ

(

G0

2
r

)c

κ(1−d)/d

(

G0

2
r

)ζ(d−1)

, (4.2.15)

= −b

(

G0

2
r

)a

− dκ1/d

(

G0

2
r

)a−ζ

, (4.2.16)

respectively. As ζ > 0 and therefore a > a− ζ, (4.2.16) reduces to

fλ(Γ0, λ0) ∼ −dκ1/d

(

G0

2

)a−ζ

ra−ζ . (4.2.17)

We can now find A(r, z, t) and B(r, z, t), given by (3.3.3) and (3.3.4) respectively,

which we rewrite here for convenience:

A(r, z, t) = η0 + 2

(

ηΓ − ηλ
fΓ
fλ

)(

∂w0

∂r

)2

, (4.2.18)

B(r, z, t) =
ηλ
fλ

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

∂w0

∂r
. (4.2.19)



CHAPTER 4. RESULTS FOR THE sMMW AND MMW MODELS 102

So for A(r, z, t) we obtain

A(r, z, t) ∼ 1− Λ01r
ζ − 2











1

2
(c− a)

(

G0

2

)a−2

ra−2

−dκ1/d

(

G0

2

)a−ζ

ra−ζ











(

G0

2
r

)2

, (4.2.20)

= 1− ζ + 1

κ1/d

(

G0

2

)ζ

rζ , (4.2.21)

and for B(r, z, t) we obtain

B(r, z, t) ∼ 1

−dκ1/d

(

G0

2

)a−ζ

ra−ζ

(4.2.22)

×
[

−D∗
t

∂Λ01

∂t
rζ +D∗

a

(

−U00ζΛ01r
ζ − (W00 −W01r

2)
∂Λ01

∂z
rζ
)]

G0

2
r,

=
ζ

dκ2/d

(

G0

2

)2ζ−a+1

r2ζ−a+1 (4.2.23)

×
[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +

(

W00 −
(

G0

4

)

r2
)

1

G0

∂G0

∂z

)]

,

∼ ζ

dκ2/d

[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)](

G0

2

)2ζ−a+1

r2ζ−a+1.

(4.2.24)

We see from (4.2.21) that A → 1 as r → 0. In addition, we see from (4.2.24) that

B → 0 as r → 0 if the exponent 2ζ − a + 1 > 0, and B becomes unbounded as

r → 0 if 2ζ − a+ 1 < 0.

Using (4.2.21) and (4.2.24) with the equation for ∂w1/∂r, given by (3.3.6), we

obtain

∂w1

∂r
∼ −G1(z, t)r

2
(4.2.25)

− ζ

dκ2/b

[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)](

G0

2

)2ζ−a+1

r2ζ−a+1,
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which we then integrate with respect to r to find w1:

w1 ∼ −G1(z, t)r
2

4
− ζ

dκ2/d(2ζ − a+ 2)
(4.2.26)

×
[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)](

G0

2

)2ζ−a+2

r2ζ−a+2 + C,

where C is a constant of integration.

Now we can find the solution for λ1 using equation (3.3.1):

λ1 = D∗
t

1

fλ

∂λ0

∂t
+D∗

a

1

fλ

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)

− 2
fΓ
fλ

∂w0

∂r

∂w1

∂r
. (4.2.27)

Using (4.2.3), (4.2.4), and (4.2.26) we obtain

λ1 ∼ D∗
t

ζ

dκ2/d

(

G0

2

)2ζ−a

r2ζ−a 1

G0

∂G0

∂t
(4.2.28)

+D∗
a

ζ

dκ2/d

(

G0

2

)2ζ−a

r2ζ−a

(

U00 +

(

W00 −
G0

4
r2
)

1

G0

∂G0

∂z

)

− ζκ−1/d

(

G0

2

)ζ−1

rζ−1

(

− G1r

2
− ζ

dκ2/d

×
[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)](

G0

2

)2ζ−a+1

r2ζ−a+1

)

,

which simplifies to

λ1 ∼
ζ

dκ2/d

[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)]

×
[

(

G0

2

)2ζ−a

r2ζ−a + ζκ−1/d

(

G0

2

)3ζ−a

r3ζ−a

]

.

(4.2.29)

As ζ = (a− c)/d > 0, we see that 2ζ− a < 3ζ− a, so the term with the exponent

2ζ − a will dominate as r → 0, hence

λ1 ∼
ζ

dκ2/d

[

D∗
t

1

G0

∂G0

∂t
+D∗

a

(

U00 +W00
1

G0

∂G0

∂z

)](

G0

2

)2ζ−a

r2ζ−a.(4.2.30)

We note that in the limit d → 0, ζ → ∞ and the exponent of λ0, given in
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(4.2.3) diverges, so the centreline behaviour obtained in this section only applies

to d > 0, and cannot be used for the sMMW model.

4.2.3.2 Centreline behaviour of antithixotropic fluids

To obtain the asymptotic behaviour of w1 and λ1 as r → 0 for antithixotropic

fluids (a < c), we seek an expansion in r for 0 < r ≪ 1 of the form

w0(r, z, t) ∼ W00(z, t)−W01(z, t)r
χ, λ0(r, z, t) ∼ Λ01(z, t)r

ξ,

and u0(r, z, t) ∼ U00(z, t)r,
(4.2.31)

where we assume χ > 0 and ξ > 0. From (4.2.31) we find the derivatives

∂w0

∂r
∼ −χW01r

χ−1,
∂λ0

∂r
∼ ξΛ01r

ξ−1,

∂λ0

∂z
∼ ∂Λ01

∂z
rξ, and

∂λ0

∂t
∼ ∂Λ01

∂t
rξ.

(4.2.32)

We substitute terms from (4.2.31) and (4.2.32) into the leading-order momentum

equation (3.1.2), given by

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G0(z, t), (4.2.33)

which, recalling that η0 = λ0, yields

1

r

∂

∂r

[

−χΛ01W01r
ξ+χ
]

∼ −G0. (4.2.34)

By performing the differentiation in (4.2.34) we find

ξ + χ = 2 and 2χΛ01W01 = G0. (4.2.35)

We also use (4.2.31) and (4.2.32) with the structure evolution equation (3.1.3),

via (2.5.6), to find

(Λ01r
ξ)b ∼ κ(χW01r

χ−1)c−a. (4.2.36)
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By comparing the exponents and coefficients of r in (4.2.36), using (4.2.35), we

find

ξ =
n− 1

n
and χ =

n+ 1

n
, where n =

c− a

b
+ 1, (4.2.37)

and

Λb
01 = κ(χW01)

c−a, so Λ01 = κ1/b(χW01)
n−1 = κ1/b

(

G0

2

)ξ

. (4.2.38)

To find the solutions for the perturbations we must also use η(Γ, λ) and f(Γ, λ),

given by (4.2.1), along with their derivatives, given by (4.2.11) and (4.2.12).

Recalling that Γ0 = (∂w0/∂r)
2 ∼ (G0r/2)

2 and substituting (4.2.31) and (4.2.32)

into the equations for fΓ and fλ we find

fΓ ∼ −a

2

(

G0

2
r

)(a−2)/n

κ

(

G0

2
r

)ξb

+
c

2
κ

(

G0

2
r

)(c−2)/n

, (4.2.39)

=
1

2
κ (c− a)

(

G0

2

)(c−2)/n

r(c−2)/n, (4.2.40)

and

fλ ∼ −b

(

G0

2
r

)a/n

κ(b−1)/b

(

G0

2
r

)ξ(b−1)

− dκ

(

G0

2
r

)c/n

, (4.2.41)

= −bκ(b−1)/b

(

G0

2
r

)c/n−ξ

− dκ

(

G0

2
r

)c/n

, (4.2.42)

respectively. As ξ > 0, and therefore c/n− ξ < c/n, (4.2.42) reduces to

fλ ∼ −bκ(b−1)/b

(

G0

2
r

)(c−n+1)/n

. (4.2.43)

We can now find A(r, z, t) and B(r, z, t), given by (4.2.18) and (4.2.19) respec-
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tively. For A(r, z, t) we obtain

A(r, z, t) ∼ Λ01r
ξ − 2











1

2
κ (c− a)

(

G0

2

)(c−2)/n

r(c−2)/n

−bκ(b−1)/b

(

G0

2

)(c−n+1)/n

r(c−n+1)/n











(

G0

2
r

)2/n

,

(4.2.44)

= κ1/bn

(

G0

2

)(n−1)/n

r(n−1)/n, (4.2.45)

and for B(r, z, t) we obtain

B(r, z, t) ∼ −κ(1−b)/b

b

(

G0

2

)ξ−c/n

rξ−c/n

(

G0

2
r

)1/n

(4.2.46)

×
[

D∗
t

∂Λ01

∂t
rξ +D∗

a

(

U00rξΛ01r
ξ−1 + (W00 −W01r

χ)
∂Λ01

∂z
rξ
)]

,

∼ −κ(1−b)/b

b
ξ

[

D∗
t

G0,t

G0

+D∗
a

(

U00 +W00
G0,z

G0

)](

G0

2
r

)(2n−c−1)/n

.

(4.2.47)

We see from (4.2.45) that A → 0 as r → 0. In addition, we see from (4.2.47) that

B → 0 as r → 0 if the exponent 2n − c − 1 > 0, and B becomes unbounded as

r → 0 if 2n− c− 1 < 0.

Using (4.2.45) and (4.2.47) with the equation for ∂w1/∂r, given by (3.3.6), we

obtain

∂w1

∂r
∼ −G1

2

κ−1/b

n

(

G0

2

)(1−n)/n

r1/n (4.2.48)

+
κ−1

bn
ξ

[

D∗
t

G0,t

G0

+D∗
a

(

U00 +W00
G0,z

G0

)](

G0

2

)(n−c)/n

r(n−c)/n,
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which we then integrate with respect to r to find w1:

w1 ∼ −G1

2

κ−1/b

n+ 1

(

G0

2

)(1−n)/n

r(n+1)/n (4.2.49)

+
ξ

b

κ−1/b

2n− c

[

D∗
t

G0,t

G0

+D∗
a

(

U00 +W00
G0,z

G0

)](

G0

2

)(n−c)/n

r(2n−c)/n + C,

where C is a constant of integration. We can now find the behaviour of λ1 near

the centreline using (4.2.27), (4.2.31), (4.2.32), and (4.2.49), which yields λ1:

λ1 ∼
cκ− a

cκ− a+ b

(

G0

2
r

)(n−1)/n
G1

G0

(4.2.50)

− ξ

b
κ(2−b)/b

[

D∗
t

G0,t

G0

+D∗
a

(

U00 +W00
G0,z

G0

)](

G0

2
r

)(2n−c−2)/n

.

Having obtained asymptotic solutions for w1 and λ1 for thixotropic and an-

tithixotropic fluids, we analyse them to determine the centreline behaviour of

these quantities. The details of these analyses are presented for w1 in Appendix

B.2 and for λ1 in Appendix B.3. We find a range of qualitatively distinct be-

haviours for w1 and λ1, which we organise into a regime diagram of the parameter

space of the MMW model. As for the sMMW model, we find that the parameter

space (a, b, c, d) of the MMW model can be divided into various regions of qual-

itatively similar behaviour of w1 and λ1. In addition, we find exactly for which

parameter values the behaviours of w1 and λ1 agree with the TRC, and for which

they do not, which allows an in-depth study of the anomalous behaviour shown

in Figures 4.12 and 4.14.

4.2.3.3 Regime diagrams

We summarise the behaviour of w1 and λ1 at the centreline in the quickly ad-

justing regime and in the weakly advective regime as follows. We note, given

a, b, c ≥ 0, that the line a = c(1− b/2) only exists in this quadrant of (c, a)-space

when b < 2, and similarly the line a = c(1− b) only exists in this quadrant when

b < 1. In addition, given that a, c, d ≥ 0, the line a = 2c/(2 − d) only exists in

this quadrant of (c, a)-space when d < 2, and similarly the line a = c/(1 − d)
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only exists in this quadrant when d < 1. By plotting these lines in (c, a)-space,

we obtain a regime diagram for all possible behaviours of w1 and λ1. Figure 4.15

shows an example of this regime diagram, for b = 0.8 and d = 0.8.

The critical lines for thixotropic fluids, given along the top of Figure 4.15, do not

depend on the parameter b, and those for antithixotropic fluids, given along the

right of Figure 4.15, do not depend on the parameter d. This suggests that the

centreline behaviour of thixotropic fluids is dominated by the build-up term of

the structure evolution rate (4.2.1) (κΓc/2(1− λ)d), and the centreline behaviour

of antithixotropic fluids is dominated by the breakdown term of the structure

evolution rate (4.2.1) (−Γa/2λb). In addition, we note that the critical lines for

antithixotropic fluids in the full MMW model are identical to those in the sMMW

model (cf. the equations along the right of the regime diagram in Figure 4.15

and those along the right of the regime diagrams in Figure 4.4).

The labels in Figure 4.15 refer to regions of qualitatively similar centreline be-

haviour of w1, for decelerating flow in a widening pipe. Regions TI–TIV contain

only thixotropic behaviour, characterised by

• Region TI: w1 is positive and flat, with a local minimum at the centreline,

rather than a maximum,

• Region TII: w1 is positive and flat at the centreline,

• Region TIII: w1 is positive and has a cusp at the centreline,

• Region TIV: w1 is positive and singular at the centreline.

Regions AI–AIV contain only antithixotropic behaviour, characterised by

• Region AI: w1 is negative and flat, with a local maximum at the centreline,

rather than a minimum,

• Region AII: w1 is negative and flat at the centreline,

• Region AIII: w1 is negative and has a cusp at the centreline,

• Region AIV: w1 is negative and singular at the centreline.
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(4,4)

Figure 4.15: MMW model: regime diagram for b = 0.8 and d = 0.8, for the
centreline behaviour of w1 and λ1. The critical lines of the parameter space
of the MMW model, obtained in Appendices B.2 and B.3, are a = c and, for
thixotropic fluids (a > c): a = c/(1 − d), a = 2c/(2 − d), a = (2c − d)/(2 − d),
a = 2(c − d)/(2 − d), a = 2(c − 2d)/(2 − d), and, for antithixotropic fluids
(a < c): a = c(1 − b), a = b + c(1 − b), a = c(1 − b/2), a = b + c(1 − b/2), and
a = b+ c(1− b/4).
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Region TI is bounded to the right by a = c/(1 − d). When d < 1 this region

is present in the regime diagram, as shown in Figure 4.15, but when d > 1 this

region is absent (because it would require c < 0). Region AI is bounded above by

a = c(1− b). When b < 1 this region is present in the regime diagram, as shown

in Figure 4.15, but when b > 1 this region is absent (because it would require

a < 0).

For thixotropic fluids, when a > 2c/(1 − 2d), λ1 is zero and has a cusp at the

centreline, when a < 2c/(1 − 2d), λ1 is negative and singular at the centreline.

For antithixotropic fluids, when a < c(1− b/2), λ1 is zero and has a cusp at the

centreline, when a > c(1− b/2), λ1 is positive and singular at the centreline.

The thick solid lines in Figure 4.15 denote a = 2(c−2d)/(2−d) and a = b+c(1−
b/4). For thixotropic fluids we require a > 2(c − 2d)/(2 − d) for the expansion

scheme to be valid, and for antithixotropic fluids we require a < b + c(1 − b/4)

for the expansion scheme to be valid. So there is a region of the parameter space

(b + c(1 − b/4) < a < b + c), labelled ‘Expansion breaks down’ in Figure 4.15

which is physically meaningful but beyond the reach of the expansion scheme.

We require a different technique, such as numerical simulation, to access the

behaviour of the velocity and structure parameter in this region.

We note that when b = d, as in Figure 4.15, the dashed lines (a = c/(1− d) and

a = c(1− b)), the space-dashed lines (a = 2c/(2−d) and a = c(1− b/2)), and the

dotted lines (a = 2(c−d)/(2−d) and a = b+c(1−b/2)) have reflective symmetry

about the thin solid line a = c. The dot-dashed lines (a = (2c − d)/(2 − d)

and a = b + c(1 − b)) and the thick solid lines (a = 2(c − 2d)/(2 − d) and

a = b + c(1 − b/4)) are not symmetric about a = c, which implies that the

thixotropic/antithixotropic analogy does not always hold for the MMW model.

For example, in Figure 4.15, the thixotropic region TIII lies to the right of the

space-dashed line a = 2c/(2 − d), so in this region w1 is positive and has a

cusp at the centreline, and λ1 is always negative and singular at the centreline.

However, in the equivalent antithixotropic region AIII, w1 is negative and has

a cusp at the centreline, but λ1 may be positive and singular at the centreline

(when a > c(1− b/2)) or zero at the centreline (when a < c(1− b/2)).

Figure 4.16 shows a table of schematics for the MMW model, the equivalent of
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that presented for the sMMW model in Figure 4.5. It shows sketches of the per-

turbation quantities w1 and λ1 in each of the regions TI–TIV and AI–AIV, and so is

a summary of all possible qualitative behaviours of the MMWmodel in the weakly

advective regime and in the quickly adjusting regime. The line labelled a = c

denotes the boundary between thixotropic fluids to the left and antithixotropic

fluids to the right. The grey box indicates the behaviours that agree with the

TRC, using the thixotropy/antithixotropy and widening/decelerating analogies,

and so profile sketches outwith this box do not agree with the TRC.

For thixotropic fluids, whilst there is some variation in the behaviour at the

centreline, w1 in both the weakly advective regime and in the quickly adjusting

regime is positive near the centreline and negative near the wall. In addition, λ1

is negative and either zero or singular at the centreline. For antithixotropic fluids,

whilst there is some variation in the behaviour at the centreline, w1 in both the

weakly advective regime and in the quickly adjusting regime is negative near the

centreline and positive near the wall. In addition, λ1 is positive and either zero

or singular at the centreline.

For thixotropic fluids in regions TII–TIV, in both the weakly advective regime and

in the quickly adjusting regime, w1 is positive, with some qualitative variation,

near the centreline and negative near the wall. In these regions, w1 agrees with

the TRC using the widening/decelerating analogy. Region TI contains strongly

thixotropic fluids. Figure 4.16 shows that for fluids in region TI, w1 does not

agree with the TRC. Whilst w1 is positive near the centreline and negative near

the wall, as for thixotropic fluids in regions TII–TIV, there is an extra change

in the sign of the gradient of w1 near the centreline not described by the TRC.

As this anomalous behaviour occurs in both the weakly advective regime and

in the quickly adjusting regime, the widening/accelerating analogy holds, so the

physical description for the TRC must be refined. We note that for thixotropic

fluids in R1,2, w1 may be the opposite of the TRC, resembling the reversal of w1

in Ā1,2
I for the sMMW model (we recall that there is no corresponding reversal in

w1 for thixotropic fluids in the sMMW model).

For antithixotropic fluids in regions AII–AIV, in both the weakly advective regime

and in the quickly adjusting regime, w1 is negative, with some qualitative varia-
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tion, near the centreline and positive near the wall, i.e. the opposite of thixotropic

fluids. In these antithixotropic regions, w1 agrees with the TRC using the

thixotropic/antithixotropic and widening/decelerating analogies. Region AI con-

tains strongly antithixotropic fluids. Figure 4.16 shows that for fluids in region

AI, w1 does not agree with the TRC. Whilst w1 is negative near the centreline

and positive near the wall, as for antithixotropic fluids in regions AII–AIV, there

is an extra change in the sign of the gradient of w1 near the centreline not de-

scribed by the TRC. As this anomalous behaviour occurs in both the weakly

advective regime and in the quickly adjusting regime, as well as occurring for the

thixotropic region TI, the thixotropic/antithixotropic and widening/accelerating

analogies hold, so the physical description for the TRC must be refined. As for

thixotropic fluids, we note that for antithixotropic fluids in R1,2, w1 may be the

opposite of the TRC, resembling the reversal of w1 in Ā1,2
I for the sMMW model.

We have not defined regions for the behaviour of λ1, but we note that for

thixotropic fluids when a < 2c/(2 − d), and antithixotropic fluids when a >

c(1− b/2), λ1 agrees with the TRC using the analogies. When a > 2c/(2− d) or

a < c(1− b/2), λ1 does not agree with the TRC.

4.2.4 Mechanisms for behaviour of w1

As for the sMMWmodel, we find the source of the anomalous behaviour exhibited

by w1 in the antithixotropic region AI and the thixotropic region TI in the equa-

tion for the radial derivative ∂w1/∂r, given by (3.3.6). As discussed in Section

4.1.6 for the sMMW model, the behaviour of ∂w1/∂r depends on the interaction

between the terms −G1r/2 and B. We are interested in how the relative size of

these terms differs between regions AI and AII, and between TI and TII, so it will

be useful to plot an example of −G1r/2 and B in each of these four regions, for

the weakly advective regime and for the quickly adjusting regime.

We first study the antithixotropic regions AI and AII, for which examples of w1

are shown in Figure 4.12(a). Figures 4.17(a) and (b) show −G1r/2 (dotted) and

B (solid) in regions AII and AI respectively, in the weakly advective regime. These

profiles are qualitatively similar to those for the equivalent regions of the sMMW
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Figure 4.17: MMW model: profiles of −1
2
G1r (dotted) and B(r, z, t) (solid) in

(a) region AII and (b) region AI in the weakly advective regime, and (c) region
AII and (d,e) region AI in the quickly adjusting regime. The parameters are (a)
a = 8.1 and c = 10, (b) a = 0.1 and c = 10, (c) a = 0.7 and c = 0.75, (d) a = 0.1
and c = 0.75, and (e) a = 0.1 and c = 4. The common parameters are κ = 1,
Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1, b = 0.2, and (a,b) D∗

a = 1, D∗
t = 0

and (c,d,e) D∗
t = 1, D∗

a = 0. The profiles in (b,d,e) are the profiles of −1
2
G1r and

B for the parameters used in Figure 4.12.
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model (cf. Figures 4.6(a) and (b)), presented in Section 4.1.6, so we omit the

corresponding discussion here for brevity.

Figures 4.17(c), (d), and (e) show −G1r/2 (dotted) and B (solid) in regions AII

and AI in the quickly adjusting regime. Figures 4.17(c) and (e) are qualitatively

similar to those for the equivalent regions of the sMMW model (cf. Figures 4.6(c)

and (d)). However, there is no equivalent of Figure 4.17(d) in the sMMW model,

which corresponds to the solid profile of w1 in Figure 4.12(a) in R1,2. Figure

4.17(d) shows −G1r/2 and B for antithixotropic fluids in region AI, but where

w1 is negative at the centreline. In this case, a change in the shape of B affects

w1 near the centreline only, as in R2,1 (cf. Figures 4.17(b) and (d)).

We now study the thixotropic regions TI and TII, for which examples are shown

in Figure 4.14. Figures 4.18(a) and (b) show −G1r/2 (dotted) and B (solid) in

regions TII and TI, respectively, in the weakly advective regime. These profiles

and the corresponding discussion are qualitatively similar to the sign-reverse of

those for the equivalent regions of the sMMW model (cf. Figures 4.6(a) and

(b)), presented in Section 4.1.6. Following a similar argument for antithixotropic

fluids, we see that an apparent weakening of thixotropy near the centreline in

both the weakly advective regime and the quickly adjusting regime leads to a

change in the concavity of B, which changes the sign of ∂w1/∂r.

Figures 4.18(c) and (d) show −G1r/2 and B in regions TII and TI, respectively,

in the quickly adjusting regime. In this regime, B is not constrained to equal

zero at the wall, in contrast to the weakly advective regime, but in similarity to

the weakly advective regime, a weakening of thixotropy near the centreline leads

to a change in the concavity of B, which changes the sign of ∂w1/∂r near the

centreline. Figures 4.18(e) shows −G1r/2 and B in region TI for a case in R1,2

when w1 is completely reversed.

4.3 Summary

In this chapter, we studied the unsteady flow of purely viscous thixotropic and

antithixotropic fluids in a slowly varying pipe in the quickly adjusting and weakly
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Figure 4.18: MMW model: profiles of −1
2
G1r (dotted) and B(r, z, t) (solid) in

(a) region TII and (b) region TI in the weakly advective regime, and (c) region
TII and (d,e) region TI in the quickly adjusting regime. The parameters are (a,c)
a = 0.65 and c = 0.62, (b,d) a = 0.75 and c = 0.62, and (e) a = 0.75 and c = 0.5.
The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1,
b = 0.5, d = 0.1, and (a,b) D∗

a = 1, D∗
t = 0 and (c,d,e) D∗

t = 1, D∗
a = 0. The

profiles in (b,d,e) are the profiles of −1
2
G1r and B for the parameters used in

Figure 4.14.
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advective regimes. We sought to determine whether or not general statements

could be made regarding the effect of thixotropy on pipe flow. More specifically,

we used the TRC and the thixotropic/antithixotropic and widening/decelerating

analogies, constructed from the results of PWM (see Section 3.3.1), as a reference

case for the behaviour of the streamwise velocity and the structure parameter

perturbations. We compared the perturbations for two rheological models to

the TRC to determine how well and how generally the TRC and the analogies

describe thixotropic and antithixotropic flow. These models were the sMMW

model (d = 0) and the full MMW model (d > 0). These models provided a

different insight in the behaviour of the flow, and a different test of the TRC.

The first of these models is the purely viscous sMMW model, discussed in Section

4.1. Of the models we consider for this problem (the sMMW and MMW models,

and the Houška model, which we study in Chapter 5), this is the only one for

which we obtain explicit solutions in general (for the parameters a, b, and c),

and so is of particular use because we are able to fully analyse its behaviour. A

notable drawback of this model is that it exhibits power-law behaviour at leading

order, and so in many cases there are non-physical singularities near the centre

of the pipe.

The analysis in this chapter shows that for the sMMW model, the TRC de-

scribes the behaviour of the perturbations (w1 and λ1) of all thixotropic fluids in

both the quickly adjusting regime and the weakly advective regime. The TRC

also describes the behaviour in a part of the parameter space of antithixotropic

fluids (specifically, those for which a > c(1 − b)) in both regimes. However,

for the rest of the parameter space of antithixotropic fluids (those for which

a < c(1 − b), in regions Ā2,1
I and Ā1,2

I of the regime diagram (see Figure 4.4))

the TRC does not describe the behaviour. In the weakly advective regime, w1 is

similar to the TRC, but the radial gradient of w1 changes sign twice between the

wall and the centre of the pipe, compared to only once in the TRC. In Section

4.1.6 we find the cause of this anomalous behaviour to be a weakening of the

thixotropic stress near the centreline for strongly antithixotropic fluids. There is

no equivalent behaviour for thixotropic fluids, which implies that the TRC with

the thixotropic/antithixotropic analogy does not always hold. In the quickly ad-

justing regime, w1 is the complete opposite of the TRC. In Section 4.1.6 we find
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that the competition between the terms determining the gradient of w1 in the

quickly adjusting regime is much more finely tuned than in the weakly advective

regime. In the quickly adjusting regime, a weakening of thixotropic stress near

the centreline for strongly antithixotropic fluids reverses the profile of w1 across

the width of the pipe. The difference between the behaviour of w1 in region Ā1,2
I

and region Ā2,1
I implies that the TRC with the widening/decelerating analogy

does not always hold. For the sMMW model, we therefore conclude that we are

not able to make general statements about the behaviour of the perturbations.

The full MMWmodel, discussed in Section 4.2, is also a purely viscous model, but

unlike the sMMW model, we cannot obtain explicit solutions in general (though

we can obtain explicit solutions in some special cases). An advantage of the MMW

model over the sMMW model is that the leading-order structure parameter is

bounded above by unity (whereas it is unbounded in the sMMW model), so the

MMW model exhibits more physically realistic behaviour.

For the MMW model, we find that the behaviour of all antithixotropic fluids,

excluding those in the quickly adjusting region A1,2
I , is qualitatively similar to

the corresponding fluids in the sMMW model, regardless of the value of d. The

TRC describes the behaviour of w1 and λ1 when a > c(1−b), but not in the weakly

advective region A2,1
I (when a < c(1−b)). In the quickly adjusting region A1,2

I the

behaviour of w1 is slightly different from the equivalent in the sMMW model. For

increasingly strongly antithixotropic behaviour, w1 eventually reverses to become

the opposite of the TRC, but w1 changes sign in a more complicated way (see

Figure 4.13(b)).

The regime diagram for thixotropic fluids in the MMW model (given in Figure

4.15 is significantly different to the sMMW model. For a part of the parameter

space of thixotropic fluids (specifically, those for which a < c/(1 − d)) the TRC

describes the behaviour of the perturbations (as in the sMMW model). However,

for the rest of the parameter space of thixotropic fluids (those for which a >

c/(1 − d), regions T2,1
I and T1,2

I ) the TRC does not describe the behaviour. In

these regions, the behaviour is qualitatively similar to the sign reverse of the

corresponding behaviour in the antithixotropic regions (A2,1
I and A1,2

I ).

As in the sMMW model, the TRC does not hold in general for the MMW model,
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and the accelerating/decelerating analogy does not always hold. However, in

contrast to the sMMW model, the thixotropic/antithixotropic analogy appears

to hold for all parameter values.

Following the analysis presented in this chapter, we conclude that the TRC and

the associated physical interpretation is a useful heuristic for the behaviour of

purely viscous thixotropic and antithixotropic fluids in pipe flow, but fails to

capture the behaviour in the extremes of the models presented. Interestingly, the

TRC fails for different reasons in each of the models, making it difficult to make

statements on thixotropic pipe flow for general rheologies. In the following chap-

ter, we study the Houška model, which provides a different test of TRC, and use

the results of this chapter and Chapter 5 to update the TRC and accompanying

physical interpretation.



Chapter 5

Results for the regularised

Houška model

In this chapter, we present solutions for the leading-order behaviour and the per-

turbations for the Papanastasiou-regularised Houška model, introduced in Section

2.5.2. The sMMW and MMWmodels, studied in Chapter 4, model purely viscous

behaviour. In contrast, the Houška model includes the property of plasticity, or

yield-stress behaviour, so is a model of viscoplastic behaviour, which allows the

study of the effect of plasticity on thixotropic lubrication flows. In addition to

exhibiting an interesting physical phenomenon, the Houška model does not have

the centreline singularity problems exhibited by the sMMW and MMW models.

5.1 The Houška model

We present the Papanastasiou-regularised Houška model again here for reference.

The non-dimensionalised constitutive relation (see Section 2.5.2) is

η(γ̇, λ) =
(τy0 + λτy1)(1− e−kγ̇)

γ̇
+ 1 + ληH1, (5.1.1)

where γ̇ is the shear rate, η is the effective viscosity, τy0 is the yield stress of an

unstructured fluid (λ = 0), τy1 controls how strongly the yield stress depends on
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the structure, ηH1 controls how strongly the viscosity depends on the structure,

and k is the regularisation parameter. The structure evolution rate f is a special

case of the MMW model with a = 1, b = 1, c = 0, and d = 1:

f(Γ, λ) = −Γ1/2λ+ κ(1− λ). (5.1.2)

The dimensionless quantities are defined via (2.2.1) and (2.5.3), together with

the scale µ̂0 = η̂H0 and

ηH1 =
η̂H1

η̂H0

, k =
k̂Q̂r

R̂3
, τy0 =

τ̂y0R̂
3

η̂H0Q̂r

, and τy1 =
τ̂y1R̂

3

η̂H0Q̂r

. (5.1.3)

For this model we are not able to obtain explicit solutions, so we must proceed

using the general solutions obtained in Section 3.3, evaluating the integrals using

the computer algebra package Maple. In the following sections, we study the effect

of varying the regularisation parameter k (Section 5.2), the viscosity parameter

ηH1 (Section 5.3), and the yield-stress parameter τy1 (Section 5.4), on the leading-

order and perturbation quantities.

As we are using a regularised Houška model, we cannot observe true yield-stress

behaviour, as in the case of the unregularised model. An effect of regularisation

is that we instead observe behaviour similar to yield-stress behaviour, but with

small deviations from true yield-stress behaviour. For brevity, we refer to aspects

of this ‘regularised yield-stress’ behaviour as follows. When the stress in the fluid

is above and below the yield stress τy = τy0 + λτy1, we say it is ‘yielded’ and

‘unyielded’, respectively. For plug-like flow, in which the fluid is unyielded near

the centre of the pipe and yielded near the wall, we refer to the unyielded region

as a ‘pseudo-plug’, which is bounded by a ‘yield surface’. We use this terminology

throughout this section, while remaining aware that we use these terms to refer

to regularised yield-stress behaviour, rather than true yield-stress behaviour.

When studying the perturbations for the Houška model, we refer to the TRC,

discussed in Section 3.3.1. Whilst the TRC is based on purely viscous behaviour,

we use it here as a reference case for the Houška model. Given that a = 1 and

c = 0, the Houška model displays only thixotropic behaviour (as a > c), so only
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the widening/decelerating analogy is relevant to the following discussion.

5.2 Effect of varying the regularisation param-

eter k

First we consider the effect of varying k on w0, λ0, w1, and λ1, in the quickly

adjusting regime and in the weakly advective regime. This parameter is an artifi-

cial parameter which controls how closely the behaviour of the regularised model

matches the behaviour of the unregularised model; larger k yield behaviour more

similar to the unregularised model. Figure 5.1 shows examples of these profiles

for k = 1, 10, 100, 1000. For k = 1, 10, the fluid does not exhibit yield-stress

behaviour, as shown in Figures 5.1(a) and (b), in which the profiles of w0 and

λ0 are rounded. As we increase k, a pseudo-plug with defined edges forms, as

shown in Figures 5.1(a) and (b), where the pseudo-plug extends from r = 0 to

r ≈ 0.5. In the pseudo-plug, the fluid is fully structured (λ0 = 1, as shown in

Figure 5.1(b)) and the profile of w0 is flat. Outside the pseudo-plug, where the

fluid is yielded, the shear rate is high and the structure is broken down.

Figure 5.1(c) shows the effect of varying k on w1 in the quickly adjusting regime.

When k = 1, w1 is negative near the wall and the centreline, and positive between

the wall and the centreline. As k increases, w1 becomes positive near the centre-

line while remaining negative near the wall, and a pseudo-plug begins to form.

For k = 100, 1000 the profile has a distinct plateau, showing strong yield-stress

behaviour. We note that an effect of regularisation is that w1 is slightly larger

just outside the pseudo-plug than in the pseudo-plug, though we expect this to

vanish as k becomes large, and the behaviour more closely matches the behaviour

of the unregularised model.

Figure 5.1(d) shows the effect of varying k on λ1 in the quickly adjusting regime.

The structure remains fully formed at the centreline, i.e. λ1(0, z, t) = 0, for all

values of k, and as k increases a pseudo-plug forms in the centre, in which λ1 = 0,

and widens. Immediately outside the pseudo-plug, the increased shear rate breaks

down the structure, as shown by the troughs at r ≈ 0.5 in Figure 5.1(d).
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Figure 5.1: Regularised Houška model: profiles for (a) w0, (b) λ0, (c,e) w1 and
(d,f) λ1, for (c,d) D∗

t = 1 and D∗
a = 0, and (e,f) D∗

a = 1 and D∗
t = 0, for

k = 1, 10, 100, 1000. The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1,
α(z) = 1, α′(z) = 1, τy0 = 1, τy1 = 1, and ηH1 = 1. The arrows show the direction
of increasing k.
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Figures 5.1(e) and (f) show the effect of varying k on w1 and λ1 respectively, in

the weakly advective regime. The profiles show similar behaviour to that in the

quickly adjusting regime — a pseudo-plug forms and widens as k increases, and

w1 in the pseudo-plug increases. The behaviour of λ1 in the weakly advective

regime is qualitatively similar to that in the quickly adjusting regime.

We note that in the pseudo-plug the shear rate is zero, so there is nothing to break

down or build up the structure, so the structure perturbation in the pseudo-plug

is always zero. In the remaining sections we take k = 1000, which yields clear

yield-stress behaviour with a well-defined pseudo-plug.

5.3 Effect of varying the viscosity parameter ηH1

In this section, we consider the effect of varying the viscosity parameter ηH1 on w0,

λ0, w1, and λ1, in the quickly adjusting regime and in the weakly advective regime.

Figure 5.2 shows examples of these profiles for ηH1 = 1, 101/2, 10, 103/2, 100. Fig-

ures 5.2(a) and (b) show the effect of varying ηH1 on w0 and λ0, respectively. It

is clear that an increase in ηH1 leads to a narrowing of the pseudo-plug. As ηH1

increases the viscosity of the fluid increases, which flows less readily and leads to

an increase in the pressure gradient required to maintain the prescribed volume

flux. An increase in the pressure gradient, without an increase in the pseudo-

yield stress, leads to more unyielded fluid and hence a narrower pseudo-plug.

The wider sheared region also means that the shear rate near the wall decreases

and so the structure near the wall increases.

Considering the constitutive relation (5.1.1), as ηH1 becomes large, the effective

viscosity η depends more on the viscous contribution than on the yield-stress

contribution. In particular, η ∼ ληH1 as ηH1 → ∞. This constitutive relation

is similar to that for the MMW model, given by (2.5.4), except that here the

structure λ is scaled by ηH1.

Figures 5.2(c) and (d) show the effect of varying ηH1 on w1 and λ1 in the quickly

adjusting regime R1,2. When ηH1 = 1, w1 is positive at the centre of the pipe
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Figure 5.2: Regularised Houška model: profiles for (a) w0, (b) λ0, (c,e) w1 and
(d,f) λ1, for (c,d) D∗

t = 1 and D∗
a = 0, and (e,f) D∗

a = 1 and D∗
t = 0, for

ηH1 = 1, 101/2, 10, 103/2, 100. The common parameters are κ = 1, Q(t) = 1,
Q′(t) = −1, α(z) = 1, α′(z) = 1, k = 1000, τy0 = 1, and τy1 = 1. The arrows
show the direction of increasing ηH1.
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and negative at the wall, which agrees with the TRC (cf. Figure 3.1(a)). In

addition, λ1 is negative everywhere except in the pseudo-plug, where λ1 = 0. As

ηH1 increases, w1 decreases near the centre, the pseudo-plug narrows and an extra

change in the sign of ∂w1/∂r appears just outside the pseudo-plug. When ηH1 is

sufficiently large, w1 becomes negative near the centre and positive near the wall,

as shown for ηH1 = 10, 103/2, 100 in Figure 5.2(c), which is the opposite of what

the TRC describes.

Figures 5.2(e) and (f) show the effect of varying ηH1 on w1 and λ1 in the weakly

advective regime R2,1. When ηH1 = 1, w1 is positive at the centre of the pipe

and negative at the wall, which agrees with the TRC (cf. Figure 3.1(a)). In

addition, λ1 is negative everywhere except in the pseudo-plug, where λ1 = 0, and

at the wall where λ1 is positive. As ηH1 increases, w1 decreases near the centre,

the pseudo-plug narrows and an extra change in the sign of ∂w1/∂r appears just

outside the pseudo-plug. In contrast to the quickly adjusting regime, when ηH1

is increased, w1 remains positive near the centre and negative near the wall.

5.4 Effect of varying the yield-stress parameter

τy1

In the section, we consider the effect of varying the yield-stress parameter τy1 on

w0, λ0, w1, and λ1, in the quickly adjusting regime and in the weakly advective

regime. Figure 5.3 shows examples of these profiles for ηH1 = 0, 0.5, 1, 1.5, 2.

Figures 5.3(a) and (b) show the effect of varying τy1 on w0 and λ0, respectively.

It is clear that an increase in τy1 leads to a widening of the pseudo-plug, as shown

in Figure 5.3(a). As τy1 increases the yield stress of the fluid increases, so less

of the fluid is yielded. As the pseudo-plug widens, the shear rate near the wall

increases, which breaks down the structure near the wall as shown in Figure

5.3(b). We note that when τy1 = 0, as in the examples shown in Figure 5.3, the

yield stress does not depend on the structure.

Figures 5.3(c) and (d) show the effect of varying τy1 on w1 and λ1 in the quickly

adjusting regime R1,2. When τy1 = 1, 1.5, 2, w1 is positive at the centre of the
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Figure 5.3: Regularised Houška model: profiles for (a) w0, (b) λ0, (c,e) w1 and
(d,f) λ1, for (c,d) D∗

t = 1 and D∗
a = 0, and (e,f) D∗

a = 1 and D∗
t = 0, for

τy1 = 0, 0.5, 1, 1.5, 2. The common parameters are κ = 1, Q(t) = 1, Q′(t) = −1,
α(z) = 1, α′(z) = 1, k = 1000, τy0 = 1, and ηH1 = 1. The arrows show the
direction of increasing τy1.
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pipe and negative at the wall, which agrees with the TRC (cf. Figure 3.1(a)).

In addition, λ1 is negative everywhere except in the pseudo-plug, where λ1 = 0.

When τy1 is sufficiently small, such as when τy1 = 0 in Figure 5.3(c), w1 is negative

near the centre and positive at the wall, which is the opposite of what the TRC

describes. For a few cases, such as when τy1 = 0.5 in Figure 5.3(c), w1 changes

sign twice across the width of the pipe.

Figures 5.3(e) and (f) show the effect of varying τy1 on w1 and λ1 in the weakly

advective regime R2,1. For all values of τy1 in Figure 5.3(e), w1 is positive at

the centre of the pipe and negative at the wall, which agrees with the TRC (cf.

Figure 3.1(a)). In addition, λ1 is negative everywhere except in the pseudo-plug,

where λ1 = 0.

In both the quickly adjusting regime and the weakly advective regime, a larger

yield stress yields a larger velocity perturbation, as shown in Figure 5.3(c) and

(e), respectively. A larger yield stress yields a wider pseudo-plug and increases

the leading-order shear rate near the wall.

5.5 Mechanisms for behaviour of w1

We find the source of the anomalous behaviour exhibited by w1 in Figures 5.2

and 5.3. As discussed in Section 4.1.6 for the sMMW model, the behaviour of

∂w1/∂r depends on the interaction between the terms −G1r/2 and B. We are

interested in how the relative size of these terms differs as we vary the parameters

ηH1 and τy1, so it will be useful to plot examples of −G1r/2 and B for some of

these parameters, for the weakly advective regime and for the quickly adjusting

regime.

We first study the effect of varying the viscosity parameter ηH1, for which ex-

amples are shown in Figures 5.2(e) and (f) for the weakly advective regime and

in Figures 5.2(c) and (d) for the quickly adjusting regime. Figures 5.4(a) and

(b) show −G1r/2 (dotted) and B (solid) in the weakly advective regime for two

values of ηH1: a case which agrees with the TRC (ηH1 = 101/2, Figure 5.4(a))

and a case which does not (ηH1 = 103/2, Figure 5.4(b)). As ηH1 increases, the
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0

1

2

3

4

5

6

1 0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

1 0.5 0 0.5 1

(a)

(c)

(b)

(d)

r r

r r

Figure 5.4: Regularised Houška model: profiles of −1
2
G1r (dotted) and B(r, z, t)

(solid) for (a,c) ηH1 = 101/2 and (b,d) ηH1 = 103/2 in (a,b) the weakly advective
regime, and (c,d) in the quickly adjusting regime. The common parameters are
κ = 1, Q(t) = 1, Q′(t) = −1, α(z) = 1, α′(z) = 1, k = 1000, τy0 = 1, τy1 = 1,
and (a,b) D∗

a = 1, D∗
t = 0 and (c,d) D∗

t = 1, D∗
a = 0. The profiles in (b,d) are the

profiles of −1
2
G1r and B for the corresponding parameters used in Figure 5.2.
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pseudo-plug becomes narrower and −G1r/2 and B become more similar in shape

near r = 0, so the balance between them becomes finer.

Figures 5.4(c) and (d) show −G1r/2 and B in the quickly adjusting regime for two

values of ηH1: a case which agrees with the TRC (ηH1 = 101/2, Figure 5.4(c)) and

a case which does not (ηH1 = 103/2, Figure 5.4(d)). As in the weakly advective

regime, the balance between −G1r/2 and B becomes finer as ηH1 increases. In

contrast to the weakly advective regime, one of the intersections −G1r/2 and

B vanishes (cf. Figures 5.4(c) and (d)), which indicates that one of the turning

points of w1 vanishes, when ηH1 is sufficiently large. This leads to a reversal of w1,

which only occurs in the quickly adjusting regime, so that it becomes the opposite

of the TRC, which brings doubt on the accuracy of the widening/decelerating

analogy.

For the yield-stress parameter τy1, for which examples are shown in Figures 5.3(e)

and (f) for the weakly advective regime and in Figures 5.3(c) and (d) for the

quickly adjusting regime, the mechanisms for the anomalous behaviour of w1 are

qualitatively similar to that for the viscosity parameter ηH1. For brevity, we do

not detail the mechanisms leading to the anomalous behaviour of w1 when τy1 is

varied.

5.6 Summary

In this chapter, we studied the unsteady flow of viscoplastic thixotropic and

antithixotropic fluids in a slowly varying pipe in the quickly adjusting and weakly

advective regimes. As in Chapter 4, we sought to determine whether or not

general statements could be made regarding the effect of thixotropy on pipe flow.

Again, we used the TRC and the widening/decelerating analogy, constructed from

the results of PWM (see Section 3.3.1), as a reference case for the behaviour of

the streamwise velocity and the structure parameter perturbations. We compared

the perturbations for the Houška model to the TRC to determine how well and

how generally the TRC and the analogies describe thixotropic and antithixotropic

flow.
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The Houška model provided a different test of the TRC from the (s)MMW mod-

els, because an addition feature of the flow, the pseudo-plug, was present. In

addition, the Houška model has two distinct advantages over the sMMW and

MMW models. One is that it does not yield unphysical singular behaviour near

the centreline. The other is that the parameters of the structure evolution rate

are fixed (a = 1 and c = 0, i.e. the Houška model is always thixotropic, so the

thixotropic/antithixotropic analogy is not relevant), and the model is tuned using

the yield-stress and viscosity parameters in the constitutive relation.

The results of this chapter show that the TRC describes the behaviour of the

perturbations when the yield-stress parameter τy1 is sufficiently large, and when

the viscosity parameter ηH1 is sufficiently small. When the yield-stress parameter

τy1 is too small, or when the viscosity parameter ηH1 is too large, w1 changes sign

near the centreline in a similar way to the thixotropic regions T1,2
I and T2,1

I in

the MMW model. In the quickly adjusting regime w1 may change sign at the

centreline as the parameters are varied, but in the weakly advective regime w1

does not change sign near the centreline.

Following the analysis presented in this chapter, we conclude that the TRC and

the associated physical interpretation is a useful heuristic for the behaviour of

thixotropic and antithixotropic fluids in pipe flow, but fails to capture the be-

haviour in the extremes of the models presented. Interestingly, the TRC fails for

different reasons in each of the models, making it difficult to make statements on

thixotropic pipe flow for general rheologies.

Using the results in this chapter and in Chapter 4, we are now in a position to

update the TRC and the accompanying physical interpretation. PWM presented

the following reasoning for the TRC (which we present here for a pipe rather than

for a channel): (a) the timescale of advection is strongest where the leading-order

flow is fastest, i.e. at the centreline of the pipe, so this is where the advective

effect of thixotropy is strongest; (b) fluid with a low structure, and therefore a

low viscosity, is more readily sheared than fluid with a high viscosity, so it flows

faster; (c) to conserve the prescribed volume flux, an increase in the w1 near the

centre of the pipe must be offset by a decrease near the wall.

We modify this interpretation of the TRC as follows: (a) advection is strongest
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at the centreline, but temporal evolution may be strongest at the centreline or

at the wall of the pipe; (b) the advective component of the thixotropic stress

term is zero at the centreline and the wall, but the temporal component is zero

at the centreline and largest at the wall; (c) the pressure gradient perturbation,

which maintains the prescribed volume flux, is largest at the wall and smallest

at the centreline, so has the largest and smallest contribution to thixotropy-

induced shear at these locations, respectively. The advective component of the

thixotropic stress term is always weaker at the wall than the pressure gradient

perturbation, which gives the characteristic shape of w1 in the TRC, and this

behaviour appears to be generic except very close to the centreline, where a

weakening of the thixotropic stress term may alter the shape of w1. In contrast,

the temporal component of the thixotropic stress term may be larger or smaller

than the pressure gradient perturbation anywhere across the pipe, so we cannot

predict the shape of the profile of w1 in general.



Chapter 6

Numerical Results for Weak

Thixotropy

6.1 Introduction

In Chapter 2, we obtained the governing equations for unsteady thixotropic pipe

flow for various regimes of thixotropic strength, from the very weakly to the

very strongly thixotropic regimes. In Chapters 3–5, we obtained and analysed

asymptotic solutions for unsteady thixotropic pipe flow in the weakly thixotropic

regimes R2,1, R1,2, and R1,1, for three rheological models.

We wish now to verify the asymptotic solutions obtained in Chapters 3–5, and

extend our understanding of thixotropic pipe flow from the weakly thixotropic

regimes, in which the Deborah numbers Dt = O(δ) and/or Da = O(δ), to the

regimes of balanced thixotropy, in which Dt = O(1) and/or Da = O(1), and the

strongly thixotropic regimes, in which Dt = O(δ−1) and/or Da = O(δ−1). To do

so, we use the finite element analysis software package COMSOL Multiphysics R©

[54].

Using COMSOL, we intended to achieve the following three goals: (i) to reproduce

and verify the asymptotic solutions presented in Chapters 3–5; (ii) to study the

robustness of the lubrication approach, i.e. to find for what range of the aspect

ratio δ the perturbation solutions are accurate; and (iii) to study regimes of

133



CHAPTER 6. NUMERICAL RESULTS FOR WEAK THIXOTROPY 134

strong thixotropy out of the reach of the asymptotic methods developed for weak

thixotropy. Although we were able to obtain some partial results which provide

useful insights into thixotropic pipe flow, we did not fully achieve these three

goals, for reasons which we will describe in this chapter. Consequently, this

chapter will be a summary of the partial numerical results obtained using our

approach, in which we highlight the main problems encountered and the insights

gained so that they may be considered in future work in this area.

Of the three models used in Chapters 3–5, the sMMW, MMW and Houška models,

which each have their own individual characteristics, we had to determine which

is the most appropriate to begin to tackle the first of the three goals. We decided

to focus on the sMMW and Houška models. The sMMWmodel has the advantage

that we were able to analyse fully the behaviour of the model in Chapter 4, but,

as that analysis showed, this model has the disadvantage of yielding pathological

centreline behaviour for a large range of parameters. The full MMW model

exhibits similar pathological centreline behaviour to the sMMW, but without the

advantage of having closed-form solutions available, so we do not consider the

full MMW model further here. The Houška model is more well-behaved near

the centreline than the sMMW and MMW models, but it yields behaviour that

is difficult to capture numerically, particularly at the edge of the pseudo-plug.

We also found that simulations using the Houška model are highly sensitive to

the initial and boundary conditions. For the Houška model, the pathological

behaviour arises near the edge of the pseudo-plug in the first-order asymptotic

solutions and is difficult to capture numerically. Aside from this problem, we

had difficulty in general in obtaining numerical solutions of sufficient accuracy to

validate the COMSOL model against the leading-order and first-order asymptotic

solutions.

The asymptotic solutions presented in Chapter 3 are formally valid in the limit

of small aspect ratio, i.e. as δ → 0. When simulating this problem in COMSOL,

we must set the aspect ratio to be numerically small (e.g. δ ≈ 10−3). We found

that setting δ too small yields inaccurate numerical solutions, particularly near

the centreline, because the perturbation solutions cannot be distinguished from

numerical noise. Increasing δ yields behaviour out of the range of validity of the

asymptotic solutions.
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To begin to work towards achieving the goals stated above, we first implemented

the problem of thixotropic pipe flow in COMSOL, which we describe in Section

6.2. In Section 6.3 we present some examples of numerical solutions for the

leading-order and perturbation quantities. In Section 6.4 we present a battery of

tests used to eliminate various possible errors in the numerical results. In Section

6.5 we present examples of results which provide some insight into the behaviour

of the numerical solutions, and the robustness of the lubrication approach. Finally

in Section 6.6 we briefly summarise the findings of this chapter.

6.2 Implementation

In this section, we implement the problem of thixotropic pipe flow in COMSOL.

In particular, we discuss the implementation of a slowly varying pipe in Section

6.2.1, then introduce some notation to simplify the discussion of the numerical

results, and describe how we obtain numerical solutions for the leading-order and

perturbation quantities in Section 6.2.2.

For convenience, we rewrite the governing equations for this problem, given by

(2.2.2), (2.2.3), (2.2.4), and (2.2.8):

mass conservation: ∇ · u = 0, (6.2.1)

Cauchy momentum equation: ∇p = ∇ · τ , (6.2.2)

constitutive relation: τij = η(γ̇, λ)eij , (6.2.3)

structure evolution equation: Dt
∂λ

∂t
+Da

(

u
∂λ

∂r
+ w

∂λ

∂z

)

= f(γ̇, λ), (6.2.4)

where the functions η(γ̇, λ) and f(γ̇, λ) define the rheological model. We solve

equations (6.2.1)–(6.2.4) subject to the boundary conditions, given by (2.2.6):

no-slip and no-penetration condition: u = 0 at r = α, (6.2.5)

symmetry conditions: τrz = 0 = u at r = 0, (6.2.6)

where α = α(z) is the radius of the pipe. We note that we do not directly impose

the volume flux condition (2.2.7) in COMSOL, rather we prescribe the velocity
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z

Figure 6.1: Geometry set-up in COMSOL. Profiles are taken along the dotted
line at z = 5, where α(5) = 1 and α′(5) = δ. The centreline (r = 0) is shown as
a dashed line.

field u at the inlet, which in turn imposes a specified flux. We discuss this in

more detail in Section 6.2.1.

6.2.1 Geometry

We construct a slowly varying axisymmetric pipe as shown in Figure 6.1. We

chose a straight pipe wall, shown as a solid line, which is defined by r = α(z) =

1 + (z − 5)δ, where δ is the aspect ratio of the pipe, and we chose to consider a

pipe 10 units in length. We discuss the reason why this length is appropriate in

Section 6.4.2. We can vary the value of δ to vary the rate of widening (δ > 0)

or narrowing (δ < 0) of the pipe. The inlet has radius α(0) = 1 − 5δ and the

outlet has radius α(10) = 1 + 5δ. Half way along the pipe (shown as a dotted

line) the radius is α(5) = 1. We obtain numerical solutions for the velocities and

the structure parameter along the entire pipe, and we sample these quantities at

z = 5, from r = 0 to r = 1, to compare the numerical solutions to the asymptotic

solutions.

We set Q(t) = Qi+Q′t, where Q(0) = Qi is the initial value of Q(t), and Q′ is the

rate of change of the volume flux (Q′ > 0 for accelerating flows and Q′ < 0 for

decelerating flows). We need to calculate the flow from t = 0 to a sufficiently large

value that the solutions are no longer affected by the initial conditions, which we

refer to as ‘settling’. For consistency, when we compare the numerical solutions

to the asymptotic solutions, we select the values of Qi and Q′ such that Q = 1

for the final value of t. Examples of these values are Qi = 2 and Q′ = −0.01 for
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t = [0, 100] for a decelerating flow, or Qi = 1 and Q′ = 0 for steady flow.

6.2.2 Notation and obtaining numerical solutions

We denote the numerical solutions for the streamwise velocity and the structure

parameter we obtain from a simulation in COMSOL by wN and λN, respectively.

We need to extract numerical solutions for the leading-order behaviour, w0,N and

λ0,N, and the perturbations, w1,N and λ1,N, from the COMSOL output wN and

λN, and determine their accuracy (in the sense which we define below).

To obtain numerical solutions for w0,N and λ0,N, we simply use the numerical

solutions for the quantities with the thixotropic effects switched off, i.e. with

Da = Dt = 0. This yields numerical solutions for the leading-order quantities

with higher-order corrections at O(δ2). We intended to use w0,N and λ0,N to verify

that we can obtain accurate numerical solutions for the leading-order quantities,

which will enable us to use the asymptotic solutions to obtain numerical solutions

for the perturbation quantities.

When thixotropic effects are switched on, the numerical solutions are composed

of the leading-order behaviour, perturbations due to thixotropy, and higher-

order corrections, at O(1), O(δ), and O(δ2) in magnitude, respectively. To

obtain numerical solutions for w1,N and λ1,N, we need to remove the leading-

order behaviour from the numerical solutions. We can do this by subtracting

the appropriate leading-order asymptotic solution from the numerical solutions,

which leaves the perturbation quantities and the higher-order corrections, e.g.

δw1,N = wN − w0 +O(δ2).

We describe numerical solutions as ‘accurate’ if the magnitude of the difference

between the numerical and the asymptotic solutions, which we refer to as the

absolute error of the numerical solutions, is sufficiently small. For the leading-

order numerical solutions (without thixotropy), the absolute error, using w as an

example, is w0,err = |w0,N−w0|. The absolute error of the numerical solutions for

the perturbations is w1,err = |w1,N − w1|. In particular, we describe the leading-

order solutions as accurate if w0,err = O(δ) or smaller, and the perturbations

as accurate if w1,err = O(δ) (or δw1,err = O(δ2)) or smaller. We cannot, in
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general, obtain a higher accuracy (i.e. a smaller absolute error) for wN than

O(δ2) because we are limited by the geometrical corrections and higher-order

thixotropic behaviour at O(δ2). We note that, as discussed in the analysis of

the asymptotic solutions for the sMMW model in Section 4.1, the lubrication

approach we have used breaks down for some models and parameters, and leads

to unphysical behaviour such as singularities, particularly near the centre of the

pipe. The definition of accuracy presented above will be sufficient to verify the

asymptotic solutions, but will clearly break down as we move away from weakly

thixotropic behaviour, i.e. when δ is not small or when the Deborah numbers are

much larger than δ.

6.3 Example of typical numerical solutions

In this section, we present the numerical solutions for a typical set of parameters

for the sMMWmodel which highlight their main problem, i.e. where they disagree

with the asymptotic solutions to an extent where we may not rely on the numerical

solutions. Figure 6.2 shows the leading-order and first-order streamwise velocities

and structure parameters obtained using COMSOL (solid lines) and from the

asymptotic solutions (dotted lines with diamonds).

Figure 6.2(a) shows the numerical and asymptotic solutions for the leading-order

streamwise velocity, w0,N and w0, respectively. This strong similarity is typical

for a wide range of the sMMW model parameters, and we may be confident that

we can use COMSOL to obtain the leading-order streamwise velocity.

Figure 6.2(b) shows the numerical and asymptotic solutions for the streamwise

velocity perturbation, w1,N and w1, respectively. The two solutions are in good

agreement away from the centre of the pipe, as in the leading-order case. Unlike

the leading-order case, the numerical solution does not match the asymptotic

solution near the centreline. This disgreement near the centreline is typical for

a wide range of the sMMW model parameters (though not for all parameters,

as we discuss in Section 6.5). This disagreement is the most significant problem

with the numerical solutions, and is what we must eliminate to achieve the goal

of verifying the asymptotic solutions.
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Figure 6.2: Typical numerical (solid lines) and asymptotic (dotted lines with
diamonds) solutions for (a) the leading-order streamwise velocity w0,N and w0, (b)
the streamwise velocity perturbation w1,N and w1, (c) the leading-order structure
parameter λ0,N and λ0, The model parameters are a = 1, b = 1, c = 1.5, κ = 1,
Q(t) = 1, α(z) = 1, DtQ

′(t) = 0, and Daα
′(z) = 0.01 (δ = 0.01).



CHAPTER 6. NUMERICAL RESULTS FOR WEAK THIXOTROPY 140

Figure 6.2(c) shows the numerical and asymptotic solutions for the leading-order

structure parameter, λ0,N and λ0, respectively. Figure 6.2(d) shows the numerical

and asymptotic solutions for the structure parameter perturbation, λ1,N and λ1,

respectively. In both cases the numerical solutions are less accurate away from the

wall than the corresponding solutions for the streamwise velocity. In addition, it

is clear that the numerical solutions are least accurate near the centreline where

∂λ0/∂r and λ1 diverge. We would expect less accuracy near the centreline because

pathological centreline behaviour is a known pitfall of the power-law model.

6.4 Simulation tests

In this section, we test the implementation of the problem in COMSOL by study-

ing the effect of varying various controllable factors which affect the accuracy of

the numerical solution for the streamwise velocity perturbation. The aim of these

tests is to reduce the error in the numerical solutions w1,N and λ1,N near the cen-

treline. As we are considering a time-dependent problem, we must allow the

simulation to settle over a sufficient time so that the initial state of the fluid

structure no longer affects the flow, which we discuss in Section 6.4.1. In an

analogous way, we must ensure the pipe is long enough so that thixotropic flow

downstream is no longer affected by the boundary conditions at the inlet, which

we discuss in Section 6.4.2. Finally, we study the effect of varying the strength of

thixotropy and δ in Section 6.4.3. In these sections, for brevity, we consider only

steady non-uniform flow, unless stated otherwise; similar results and problems

presented here also arise in unsteady uniform flow.

We must perform these tests to ensure that we are obtaining the most accurate

numerical results feasible, and that the low accuracy near the centreline shown

in Figure 6.2 cannot be reduced. The results of these tests determine whether

we may continue to study this problem using COMSOL, i.e. whether we have

achieved the first of the three goals, which is to verify the asymptotic solutions.

In this section, we show that we are not able to eliminate the disagreement near

the centreline for the streamwise velocity perturbation and hence we cannot verify

the asymptotic solutions. Consequently, the numerical solutions we obtain from
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Figure 6.3: The errors (a) w1,err and (b) λ1,err (shown on a log scale), for three
discretisation methods: P1+P1, P2+P1, and P3+P2, with δ = 0.01 indicated for
reference. The model parameters are a = 1, b = 1, c = 1.5, κ = 1, Q(t) = 1,
α(z) = 1, DtQ

′(t) = 0, Daα
′(z) = 0.01 (δ = 0.01).

COMSOL are not grounded well enough to allow us to progress to the second

and third of the three goals.

Figures 6.3(a) and (b) show the error in the streamwise velocity perturbation w1,err

and in the structure parameter perturbation λ1,err, respectively, in steady non-

uniform flow (Daα
′ 6= 0) for three discretisation methods. Using P1+P1, both

w1,err and λ1,err are jagged at an O(δ) scale, and are larger in magnitude than

O(δ). Clearly the discretisation method P1+P1 is not sufficient for this problem

requirements. Discretising using either of the methods P2+P1 or P3+P2 makes

the numerical solution smoother and more accurate than using P1+P1, as shown

in Figures 6.3(a) and (b). For both perturbations, the errors using P2+P1 and

P3+P2 are very similar, though for λ1,N, the error is very slightly reduced. The

benefit of this minor increase in accuracy is offset by a substantial increase in

computational running time (e.g. 404 seconds of machine time for P2+P1 and

611 seconds for P3+P2, for the examples shown in Figure 6.3, i.e. a roughly 50%

increase in running time).

We conclude that, despite the increase in computational running time, the most
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appropriate discretisation method is P3+P2, which we use for all numerical so-

lutions for the subsequent examples in this chapter. We note that by default

COMSOL includes consistent stabilisation (streamline and crosswind diffusion),

but this stabilisation is only designed to be used with P1+P1. We therefore switch

off consistent stabilisation methods when using P3+P2, as the flow is sufficiently

resolved by the mesh and stabilisation has a negligible effect on the numerical

solutions.

6.4.1 Simulation settling in time

In weakly thixotropic flow, thixotropy affects the flow over a short timescale,

so the shear history of the fluid is quickly forgotten. Consequently, the initial

conditions in the present problem do not have a lasting effect on the flow, and

serve only to establish the flow in COMSOL. In this section, we determine the

range of t that is required for the numerical solutions to settle, i.e. for the initial

conditions to no longer affect the flow. By performing this test, we ensure that

the error at the centreline of the numerical solutions is not a remnant of the initial

conditions.

Figures 6.4(a) and (b) show the error in the streamwise velocity perturbation

w1,err and in the structure parameter perturbation λ1,err, respectively, in steady

non-uniform flow (Daα
′ 6= 0) at t = 0.1, 0.5, 1, 2. When t = 0.1, both w1,N and

λ1,N are still settling, but for t & 0.5, both w1,N and λ1,N no longer vary, indicating

that the fluid has ‘forgotten’ the initial conditions. Once the flow has settled, the

error in both w1,N and λ1,N near the centreline remains too large, since we require

w1,err . O(δ) and λ1,err . O(δ) (δ = 0.01 is indicated in each plot).

We must also ensure that in unsteady uniform flow (DtQ
′ 6= 0) the initial con-

ditions do not affect the flow after a certain time. Unlike in the steady case, we

cannot directly compare the numerical solutions at various times because Q(t)

continuously changes, but we may compare the errors of the numerical solutions

for the perturbations.

Figures 6.5(a) and (b) show the error in the streamwise velocity perturbation

w1,err and in the structure parameter perturbation λ1,err, respectively, in unsteady
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Figure 6.4: Plots of the errors (a) w1,err and (b) λ1,err at t = 0.1, 0.5, 1, 2 in steady
non-uniform flow. The model parameters are a = 1, b = 1, c = 1.5, κ = 1,
Q(t) = 1, α(z) = 1, DtQ

′(t) = 0, and Daα
′(z) = 0.01 (δ = 0.01, indicated). The

arrows show the direction of increasing t.

uniform flow at t = 1, 2, 3, 4. When t = 1, w1,N is still settling, but for t & 2, w1,N

settles, in the sense that the error no longer varies significantly. The error in λ1,N

settles more slowly than w1,N. As in the steady non-uniform example Figure 6.4,

once the flow has settled, the error in both w1,N and λ1,N remains too large, since

we require w1,err . O(δ) and λ1,err . O(δ) (δ = 0.01 is indicated in each plot).

For both steady flow and unsteady flow we have shown that for t > 4 the flow

has established and the initial conditions no longer affect the flow. In particular,

the error at the centreline of w1,N is not the result of a long-lasting effect of the

initial conditions on the flow. The subsequent numerical solutions presented in

this chapter are obtained by sampling the behaviour when t = 10.

6.4.2 Simulation settling in space

As mentioned in Section 6.4.1, weak thixotropy affects the flow over a short

timescale, so the shear history and the initial state of the fluid structure are

quickly forgotten. In weakly advective thixotropy, the boundary conditions at

the inlet in the present problem should not have a lasting effect on the effect on

the flow. In this section, we determine the distance along the pipe from the inlet z
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Figure 6.5: Plots of the errors (a) w1,err and (b) λ1,err at t = 1, 2, 3, 4 in unsteady
uniform flow. The model parameters are a = 1, b = 1, c = 1.5, κ = 1, Q(t) = 1,
α(z) = 1, DtQ

′(t) = −0.01, and Daα
′(z) = 0 (δ = 0.01, indicated). The arrow

in (b) shows the direction of increasing t; no arrow is given for (a), but we note
that the error is largest when t = 1.

that is required for the flow to fully establish from the inlet boundary conditions.

This is important to determine the most appropriate position along the pipe at

which to sample the quantities, to ensure that the inlet conditions do not affect

the accuracy of the solution.

Figures 6.4(a) and (b) show the error in the streamwise velocity perturbation

w1,err and in the structure parameter perturbation λ1,err, respectively, in steady

non-uniform flow (Daα
′ = 0.01) at z = 1, 2, 3, 4, 5 (where the outlet is at z = 10).

Note that we scale r by the radius α(z) so that we may compare the error plots.

The error plots for both w1,N and λ1,N vary very little between z = 1 and z = 5,

showing that the flow adjusts from the boundary conditions close to the inlet.

It is clear that the error in w1,N near the centreline is not a result of a slow

adjustment from the boundary conditions.

By sampling the flow quantities at z = 5, at the middle of the pipe, we can be

sure that errors in the perturbation quantities are not a result of sample too close

to the inlet (and hence the boundary conditions).
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Figure 6.6: Plots of the errors (a) w1,err and (b) λ1,err at z = 1, 2, 3, 4, 5 in steady
non-uniform flow. The model parameters are a = 1, b = 1, c = 1.5, κ = 1,
Q(t) = 1, α(z) = 1, DtQ

′(t) = 0, and Daα
′(z) = 0.01 (δ = 0.01, indicated).

6.4.3 The effect of varying δ

The asymptotic solutions for thixotropic pipe flow presented in Chapter 3 are

formally valid only in the asymptotic limit δ → 0. We cannot consider this limit

directly in COMSOL, but we may study the effect of varying δ (by varying α′) on

the numerical solutions. We require δ to be sufficiently small so that the behaviour

at O(δ2) is too small to affect the accuracy of the behaviour at O(δ) significantly.

For example, if we choose δ = 0.1 then δ2 = 0.01, so the behaviour at O(δ2) will

make it difficult to obtain the O(δ) behaviour; if δ = 0.001 then δ2 = 0.000001, so

the O(δ2) behaviour will be much smaller and the O(δ) solutions we be clearer.

However, we cannot simply decrease δ as much as we wish because eventually

numerical noise will affect the accuracy of the O(δ) solutions.

Figure 6.7(a) shows the effect of varying δ on the numerical solution for the

streamwise velocity perturbation w1,N (solid lines), along with the corresponding

asymptotic solution w1 (dotted line). For δ = 0.00001, the smallest value of δ

shown here, the profile is jagged across the width of the pipe and has a large spike

near the centreline. For the larger values of δ = 0.001, 0.0001 the jaggedness is

reduced, but the spike near the centreline is still present. It is not until δ is

increased further that there is a significant reduction in the size of the spike, as
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Figure 6.7: (a) Numerical solutions w1,N (solid) and the corresponding asymptotic
solution w1 (dotted, visible only near the centreline), and (b) the absolute error
divided by δ, for δ = 0.01, 0.001, 0.0001, 0.00001. We require w1,err/δ < 1 for the
absolute error to be w1,err < δ. The arrows show the direction of increasing δ.

shown for δ = 0.01.

Figure 6.7(b) shows how the error in the numerical solutions shown in Figure

6.7(a) decreases as δ increases. In Figure 6.7(b) we require the error to be much

less than unity, which is almost the case when δ = 0.01, except that the error

near the centreline remains too large. Besides this error, it is clear that δ = 0.01

yields the most accurate solutions.

6.4.4 Numerical results for the Houška model

In the previous sections we showed that we could not eliminate the error at

the centreline for the sMMW model. We may instead use the Houška model, for

which there is no pathological behaviour at leading order, to verify the asymptotic

solutions. (However, the magnitude of ∂λ1/∂r may be large at the edge of the

pseudo-plug, particularly with large values of the regularisation parameter k: see,

for example, the troughs in the profiles of λ1 in Figures 5.1(d) and (f).) As for the

sMMW model, we begin by trying to verify the asymptotic solutions and achieve

the first goal.
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We study the Houška model in steady uniform flow, without thixotropy (Da =

Dt = 0). Figures 6.8(a) and (c) show the leading-order asymptotic solutions w0

and λ0 (dotted with diamonds) and the corresponding numerical solutions w0,N

and λ0,N (solid) for an illustrative example of the Houška model in a uniform

pipe. The corresponding absolute errors w0,err or λ0,err are shown in Figures

6.8(b) and (d). We expect the errors in this example to be very small because

we are considering steady uniform flow, so there are no geometrical corrections.

However, the errors shown in Figures 6.8(b) and (d), at around the order of

10−5– 10−4 are too large. Whilst we were not able to obtain numerical solutions

for the perturbations (due to the sensitivity of the simulation to the initial and

boundary conditions), the error shown here would be similar in magnitude to

the perturbation quantities, so extracting the perturbation quantities would be

difficult.

The absolute error near the centreline is not larger than away from the centreline

for either w0,err or λ0,err, so the numerical solutions for the Houška model do

not have a large centreline error similar to the sMMW model. We note that

for λ0,err the error is largest near the edge of the pseudo-plug (r ≈ 0.15), which

is also arises for other parameters of the Houška model. It is possible that the

pathological behaviour near the edge of the pseudo-plug would be difficult to

capture numerically.

From Figure 6.8 it is clear that the numerical solutions for the Houška model are

not sufficiently accurate to verify the asymptotic solutions. We would require a

significantly higher accuracy across the width of the pipe to study the perturba-

tions and strong thixotropy for the Houška model. In general we found simulating

the flow of a Houška fluid is highly sensitive to the initial and boundary condi-

tions. We obtain these conditions from the asymptotic solutions, so setting up a

simulation is often time-consuming because each simulation must be tailored for

each parameter set of the Houška model (unlike for the sMMW model where the

closed-form solutions allow us to study various parameter sets quickly).



CHAPTER 6. NUMERICAL RESULTS FOR WEAK THIXOTROPY 148

(a)

(c)

(b)

(d)

r r

r r

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

0 0.2 0.4 0.6 0.8 1

Figure 6.8: Numerical (solid) and asymptotic (dotted with diamonds) solutions
for (a) w0 and (c) λ0 in steady and uniform flow (δ = 0), with the corresponding
absolute errors (b) w0,err and (d) λ0,err. The parameters are τy0 = 0, τy1 = 0.5,
ηH0 = 1, ηH1 = 0.2, and k = 100.
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6.5 Partial results

Whilst the numerical results are not accurate enough to allow us to continue to

use COMSOL to validate the asymptotic solutions (and achieve the first goal),

the results we have obtained offer some insight into the validity of the asymptotic

solutions. In this section, we present some numerical solutions for the sMMW

model which provide such insights. We present the numerical solution for the

anomalous behaviour of Region Ā1,2
I of the regime diagram. We also present

examples of numerical solutions which agree with the asymptotic solutions across

the width of the pipe, and which show how we may expect the numerical and

asymptotic solutions to disagree more as the strength of thixotropy increases.

The first example is for the anomalous behaviour of w1 in Region Ā1,2
I of the

regime diagram, first presented in Section 4.1.4 and discussed in detail in Section

4.1.6. We recall that in this region, which only applies to the case of temporal

thixotropy (R1,2), the profile of w1 is the opposite of that described by the TRC.

In particular, w1 in Region Ā1,2
I is positive at the centre of the pipe and negative

near the wall (see, for example, the profile labelled R1,2 in Figure 4.3(a)).

Figure 6.9 shows w1,N (solid) and w1 (dotted with diamonds) for a fluid in Region

Ā1,2
I (specifically a = 0.2, b = 0.8, and c = 4). We note that the dotted line is only

visible for r . 0.2; further away from the centreline the numerical and asymptotic

solutions overlap. Aside from the disagreement near the centreline, the numerical

solution presented in Figure 6.9 strongly agrees with the corresponding asymp-

totic solution. Most importantly, the numerical solutions predict the anomalous

reversal in the behaviour of w1 in this region of the regime diagram, which pro-

vides strong support for the asymptotic solutions in this anomalous case.

However, we were not able to obtain similarly accurate numerical solutions for

the anomalous behaviour in the equivalent region for advective thixotropy Ā2,1
I .

In this region, the radial derivative of w1 has an additional change of sign, as

illustrated by the profile labelled R2,1 in Figure 4.3(a). This feature is much

more subtle than the reversal of w1 in Region Ā1,2
I , so it is much more difficult to

capture numerically.
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Figure 6.9: Numerical solution w1,N (solid) and asymptotic solution w1 (dotted
with diamonds) in uniform flow. The parameters are a = 0.2, b = 0.8, c = 4 in
Region Ā1,2

I of the regime diagram, Q(t) = 1, DtQ
′(t) = −0.001, α(z) = 1, and

Daα
′(z) = 0. The solutions are in excellent agreement except at the centreline,

where the numerical solution has a large spike not described by the asymptotic
solution.

We can also gain insight into the effect of increasing the strength of thixotropy,

which we achieve by increasing DtQ
′(t). Figure 6.10 shows, for a fluid in Region

ĀIII, numerical (solid) and asymptotic (dotted with diamonds) solutions for the

streamwise velocity perturbation, for two values of DtQ
′(t). We note that in

Figure 6.10 the dotted line is only visible near the centreline near w1 = −0.23.

Away from the centreline the numerical and asymptotic solutions cannot be dis-

tinguished in this plot.

There is good agreement between the asymptotic and numerical solutions away

from the centreline when DtQ
′(t) = −0.001. Near the centreline, the numerical

solution has a large spike not described by the asymptotic solution. For stronger

thixotropy, such as when DtQ
′(t) = −0.1, the numerical and asymptotic solutions

differ significantly across the width of the pipe, suggesting that DtQ
′(t) = −0.1

is out of the range of weak thixotropy.

For some parameters of the sMMW model we are able to obtain accurate numer-

ical solutions across the width of the pipe. One of the best numerical solutions

w1,N we obtained is shown by the solid line in Figure 6.11. The corresponding
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Figure 6.10: Numerical solution w1,N (solid) and asymptotic solution w1 (dotted
with diamonds) in uniform flow. The parameters are a = 2, b = 0.8, c = 4
(Region ĀIII of the regime diagram), Q(t) = 1, DtQ

′(t) = −0.001,−0.1, α(z) = 1,
Daα

′(z) = 0. The arrow shows the direction of increasing DtQ
′(t).

asymptotic solution is shown as a dotted line with diamonds, but is not visible

because it lies on top of the numerical solution. The numerical and asymptotic

solutions agree across the pipe including the region near the centreline, where nu-

merical solutions for other parameters are much less accurate. Figure 6.11 shows

an example of a numerical solution that is of the required accuracy, which implies

that obtaining solutions of such an accuracy using COMSOL is possible.

We also obtained similar partial results for steady flow. Figure 6.12 shows an

example of the numerical solution w1,N for an antithixotropic fluid in the weakly

advective regime. As in Figures 6.9 and 6.10, the numerical solution (solid) shown

in Figure 6.12 agrees with the corresponding asymptotic solution (dotted with

diamonds), except near the centreline.

6.6 Summary

In this chapter, we aimed to use COMSOL to achieve three goals: to verify

the asymptotic solutions presented in Chapters 3–5; to study the robustness of

the asymptotic approach, i.e. to find for what range of the aspect ratio δ the
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Figure 6.11: Numerical solution w1,N (solid) and asymptotic solution w1 (dotted
with diamonds) in uniform flow. The parameters are a = 2, b = 1, c = 4,
Q(t) = 1, DtQ

′(t) = −0.001,−0.1, α(z) = 1, and Daα
′(z) = 0.
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Figure 6.12: Numerical solution w1,N (solid) and asymptotic solution w1 (dotted
with diamonds) in steady flow. The parameters are a = 1, b = 1, c = 1.1,
Q(t) = 1, DtQ

′(t) = 0, α(z) = 1, and Daα
′(z) = 0.01.
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perturbation solutions are accurate; and to study regimes of strong thixotropy

out of the reach of the asymptotic methods developed for weak thixotropy. We

had to progress through these goals in this order, as each goal depended on the

success of the previous. As discussed in this chapter, we were not able to verify

the asymptotic solutions using COMSOL, so we did not achieve the first of these

goals.

We studied two models in this chapter. For the sMMW model, a significant

disagreement near the centreline between the numerical and asymptotic solutions

for the streamwise velocity perturbation, such as that shown in Figure 6.2(b),

is the main reason we are not able to verify the asymptotic solutions. For the

Houška model, the numerical and asymptotic solutions for the streamwise velocity

disagree across the width of the pipe, as shown in Figure 6.8(b).

We obtained some partial results, presented in Section 6.5, which provide some

support for the asymptotic solutions. In particular for the sMMW model, the

numerical and asymptotic solutions agree away from the centre of the pipe for a

large range of the parameters a, b, and c, including the anomalous behaviour of

w1 in Region Ā1,2
I of the regime diagram, as shown in Figure 6.10. In some cases,

the numerical and asymptotic solutions agree across the width of the pipe, as

shown in Figure 6.11, which is an example of the accuracy we require in general

to verify the asymptotic solutions.

It may be possible to obtain accurate results across the width of the pipe for

different rheological models from the ones used here. In particular, a rheological

model which is well-behaved across the width of the pipe, and for which closed-

form asymptotic solutions are available, would presumably be easier to calculate

numerically. For such a model, initial conditions would be defined analytically

and there would be no difficult-to-capture pathological behaviour. The results

presented in this chapter suggest that a quantitative improvement in the numer-

ical results would allow us to explore regimes of stronger thixotropy, as originally

planned.

One may also consider an approach using adaptive mesh refinement [97] to tackle

the steep spatial gradients near the centreline. Adaptive mesh refinements may

also improve the numerical solutions for the Houška model, where steep profile
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gradients often arise between the centreline and the pipe wall.



Chapter 7

Oscillating Thixotropic Pipe

Flow

In this chapter, we formulate and investigate the problem of unsteady thixotropic

flow in a uniform cylindrical pipe, driven by an oscillating pressure gradient.

There are two key differences between the problem in this chapter and the prob-

lem considered in Chapters 2–6. In this problem, we consider a uniform pipe and

uniform flow, so the advective effect of thixotropy is absent. Consequently, we

only consider regimes of temporal thixotropy. In addition, we specify the pressure

gradient in this problem, rather than the volume flux, so the volume flux will be

perturbed by thixotropy instead of the pressure gradient. This second difference

means that the shape of the profiles of the perturbation quantities will be quali-

tatively different in this problem from the profiles in the previous set-up. We also

consider the slowly adjusting regime, in which the fluid adjusts to changes in the

shear rate over a much longer timescale than the pressure gradient oscillation.

We begin by deriving the governing equations for the flow of an incompressible

thixotropic fluid in an axisymmetric geometry in Section 7.1. We then rescale and

non-dimensionalise these equations, and obtain an appropriate temporal Deborah

number Dt in Section 7.2. We consider the quickly adjusting regime, in which the

typical timescale of the structure evolution is much smaller than the timescale

of the pressure gradient, i.e. when 0 < Dt ≪ 1. We also consider the slowly

adjusting regime in which the structure evolves over a smaller timescale than

155
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the timescale of the pressure gradient, i.e. when Dt ≫ 1. We did not consider

the slowly adjusting regime in Chapters 2–6, but we are able to make analytical

progess in the present set-up.

In the quickly adjusting regime, we do not choose a particular pressure gradient

from the outset because we can obtain general solutions. When we present illus-

trative examples for particular rheological models, we specialise to an sinusoidally

oscillating pressure gradient. In Section 7.3, we asymptotically expand the gov-

erning equations in powers of small Dt, and obtain the governing equations at

leading order and first order. We obtain the general solutions for the quickly

adjusting regime in Section 7.4, then consider the MMW model in Section 7.5

and the Houška model in Section 7.6.

In the slowly adjusting regime, we can only make limited progress towards general

solutions, so we specify a sinusoidal pressure gradient and a rheology from the

outset. In Section 7.7, we asymptotically expand the governing equations in

powers of small D−1
t and obtain the governing equations, and in Section 7.8 we

study the behaviour of the MMW model in the slowly adjusting regime.

A substantial benefit of the geometry of this problem is that the flow is in the

streamwise direction only, making it a much simpler problem to study numeri-

cally. We study this problem numerically using COMSOL in Section 7.9. The

method of obtaining asymptotic solutions for this problem in the quickly adjust-

ing regime is similar to that for the previous set-up. We present the full derivation

of this problem here, noting the differences where appropriate. After verifying

the asymptotic solutions in the quickly adjusting and slowly adjusting regimes

using COMSOL, we explore the full range of thixotropic behaviours in Section

7.9.4.

7.1 Governing equations

We consider the flow of an incompressible thixotropic or antithixotropic fluid

along a cylindrical pipe of uniform radius, with no swirl and driven by an unsteady

pressure gradient, Ĝ(t̂) = −∂p̂/∂ẑ. Throughout this chapter we refer to Ĝ(t̂) (and
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subsequently G(t)) as the pressure gradient for convenience, where we note that

we are refering to the sign-reverse of the pressure gradient. The velocity is û =

(0, 0, ŵ(r̂, t̂)), where ŵ is the streamwise velocity. Here and throughout, a caret

denotes a dimensional quantity, whereas dimensionless quantities are unadorned.

The derivation of the governing equations for this problem follows that of the

previous set-up, detailed in Chapter 2, except that all quantities in the transverse

direction are zero. In particular, the constitutive relation (2.1.2) is unchanged,

the shear-rate tensor (2.1.3) reduces to

êij =











0 0
∂ŵ

∂r̂
0 0 0
∂ŵ

∂r̂
0 0











, (7.1.1)

and as before we define Γ̂ = γ̇2 = (∂ŵ/∂r̂)2.

Using the constitutive relation (2.1.2) and the shear-rate tensor (7.1.1), the hy-

drodynamic equations are

∂p̂

∂r̂
= 0, (7.1.2)

∂p̂

∂ẑ
=

1

r̂

∂

∂r̂

(

r̂η̂
∂ŵ

∂r̂

)

= −Ĝ(t̂). (7.1.3)

The mass conservation equations (2.1.4) reduces to

∂ŵ

∂ẑ
= 0, (7.1.4)

which is automatically satisfied in uniform flow. We assume the usual no-slip and

no-penetration boundary conditions apply at the wall of the pipe, along with the

symmetry condition at the centre, given by

û = 0 at r̂ = R̂ and τ̂rz = 0 = û at r̂ = 0, (7.1.5)

respectively, where R̂ is the radius of the pipe. The unsteady volume flux Q̂(t̂) is
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given by

Q̂(t̂) = 2π

∫ R̂

0

r̂ŵ(r̂, t̂) dr̂. (7.1.6)

We have the option to prescribe either the pressure gradient or the volume flux.

In this chapter, in contrast to the problem considered in Chapters 2–6, we choose

to impose an unsteady pressure gradient Ĝ(t̂) = −∂p̂/∂ẑ.

The structure evolves according to a kinetic equation of the form

∂λ

∂t̂
= f̂(Γ̂, λ), (7.1.7)

where f̂ is the structure evolution rate, which describes the shear-driven build-up

and breakdown of the structure. This structure evolution equation differs from

the equation for the previous set-up, given by (2.1.12), because it only has ∂λ/∂t̂

on the left-hand-side rather than the material derivative. As for the previous

set-up, the structure evolution rate f̂(Γ̂, λ) and the viscosity η̂(Γ̂, λ) describe the

rheological properties of the fluid, and together form a rheological model. We

do not specify a particular rheological model from the outset as we are able to

obtain general solutions in closed form (containing integrals) for the velocity and

the structure parameter in the quickly adjusting regime.

7.2 Non-dimensionalisation

We now rescale and non-dimensionalise the governing equations introduced in

Section 7.1, to which end we define dimensionless quantities via

r̂ = R̂r, ŵ =
Ĝ0R̂

2w

µ̂0

, Ĝ = Ĝ0G, η̂ = µ̂0η,

f̂(Γ̂, λ) = f̂0f(Γ, λ), t̂ =
1

ω̂
t, Q̂ =

Ĝ0R̂
4

µ̂0

Q,

(7.2.1)

where Ĝ0 is the amplitude of the pressure gradient, f̂0 is the structure response

timescale, µ̂0 is the typical viscosity, ω̂ is the frequency of the pressure-gradient

oscillation. We note that there are fewer dimensionless quantities here than in
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the previous set-up because there are no quantities for the transverse direction.

Using the quantities in (7.2.1) to non-dimensionalise the momentum equation

(7.1.3), we obtain
1

r

∂

∂r

(

rη
∂w

∂r

)

= −G. (7.2.2)

We non-dimensionalise the boundary conditions (7.1.5) to obtain

u = 0 = w at r = 1 and η(γ̇, λ)
∂w

∂r
= 0 = u at r = 0, (7.2.3)

and the volume flux (7.1.6) to obtain

Q(t) = 2π

∫ 1

0

rw(r, t) dr. (7.2.4)

Finally, we non-dimensionalise the structure evolution equation (7.1.7) to obtain

Dt
∂λ

∂t
= f(Γ, λ), where Dt =

ω̂

f̂0
, (7.2.5)

i.e. Dt is the temporal Deborah number, which is the ratio of the structure re-

sponse timescale to the timescale of the unsteady pressure gradient.

7.3 Expansion in the quickly adjusting regime:

0 < Dt ≪ 1

For the quickly adjusting regime, we expand the velocity, structure parameter,

and volume flux in powers of the small temporal Deborah number Dt:

(w, λ,Q) =
∞
∑

i=0

Di
t(wi, λi, Qi). (7.3.1)

We note that G(t) is prescribed so we do not expand it. At leading order (O(1))

and first order (O(Dt)), terms of Γ = (∂w/∂r)2, the viscosity η(Γ, λ), and the
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structure evolution rate f(Γ, λ) are

Γ0 =

(

∂w0

∂r

)2

, and Γ1 = 2
∂w0

∂r

∂w1

∂r
, (7.3.2)

η0 = η(Γ0, λ0), and η1 = ηΓΓ1 + ηλλ1, (7.3.3)

f0 = f(Γ0, λ0), and f1 = fΓΓ1 + fλλ1, (7.3.4)

where for convenience, as for the previous set-up, we define

ηΓ =
∂η

∂Γ

∣

∣

∣

∣

(Γ0,λ0)

, and ηλ =
∂η

∂λ

∣

∣

∣

∣

(Γ0,λ0)

, (7.3.5)

fΓ =
∂f

∂Γ

∣

∣

∣

∣

(Γ0,λ0)

, and fλ =
∂f

∂λ

∣

∣

∣

∣

(Γ0,λ0)

. (7.3.6)

We now substitute the expanded quantities (7.3.1)–(7.3.4), into the momentum

equation (7.2.2), the boundary conditions (7.2.3), the volume flux (7.2.4), and

the structure evolution equation (7.2.5).

The momentum equation (7.2.2) becomes

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G(t), (7.3.7)

1

r

∂

∂r

(

rη0
∂w1

∂r
+ r

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r

)

= 0, (7.3.8)

at leading order and first order, respectively. The boundary conditions (7.2.3)

become

w0 = 0 at r = 1 and η0
∂w0

∂r
= 0 at r = 0, (7.3.9)

w1 = 0 at r = 1 and η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r
= 0 at r = 0,

(7.3.10)

at leading order and first order, respectively.
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The volume flux (7.2.4) becomes

Q0(t) = 2π

∫ 1

0

rw0(r, t) dr, and Q1(t) = 2π

∫ 1

0

rw1(r, t) dr, (7.3.11)

at leading order and first order, respectively.

After expansion, the structure evolution equation (7.2.5) becomes

Dt

(

∂λ0

∂t
+Dt

∂λ1

∂t
+O(D2

t )

)

= f0 +Dt

(

2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1

)

+O(D2
t ).

(7.3.12)

In the quickly adjusting regime 0 < Dt ≪ 1, so the structure evolution equation

(7.2.5) is

f0 = 0, (7.3.13)

2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1 =

∂λ0

∂t
, (7.3.14)

at leading order and first order, respectively.

7.4 Solutions in the quickly adjusting regime

In this section, we consider the quickly adjusting regime, in which the temporal

Deborah number is small, i.e. 0 < Dt ≪ 1, so the structure response timescale

is much smaller than the typical timescale of the pressure gradient. When we

consider the specific case of a sinusoidally oscillating pressure gradient, the typical

timescale is the period of the oscillation. The leading-order governing equations in

the quickly adjusting regime are the momentum equation (7.3.7) and the structure

evolution equation (7.3.13):

1

r

∂

∂r

(

rη0
∂w0

∂r

)

= −G(t) (7.4.1)

f0 = 0, (7.4.2)
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subject to the boundary conditions (7.3.9):

w0 = 0 at r = 1 and η0
∂w0

∂r
= 0 at r = 0. (7.4.3)

The first-order governing equations in the quickly adjusting regime are the mo-

mentum equation (7.3.8) and the structure evolution equation (7.3.14):

1

r

∂

∂r

(

rη0
∂w1

∂r
+ r

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r

)

= 0 (7.4.4)

2fΓ
∂w0

∂r

∂w1

∂r
+ fλλ1 =

∂λ0

∂t
, (7.4.5)

subject to the boundary conditions (7.3.10):

w1 = 0 at r = 1 and η0
∂w1

∂r
+

(

2ηΓ
∂w0

∂r

∂w1

∂r
+ ηλλ1

)

∂w0

∂r
= 0 at r = 0.

(7.4.6)

We may now solve the governing equations to obtain general leading-order and

first-order solutions for the velocity and structure parameter. We solve the

leading-order equations in Section 7.4.1 and the first-order equations in Section

7.4.2.

7.4.1 General solutions at O(1)

In this section, we solve the leading-order governing equations (7.4.1) and (7.4.2)

subject to the no-slip and symmetry conditions (7.4.3) for general η(γ̇, λ) and

f(γ̇, λ) to obtain asymptotic solutions in terms of integrals. We follow the method

presented in Section 3.2, except that here we prescribe the pressure gradient G(t),

rather than the volume flux Q(t). A result of prescribing the pressure gradient is

that the perturbation to the volume flux, Q1(t), will not be zero in general. We

can solve the leading-order governing equations to obtain general solutions for

the leading-order velocity w0(r, t), the leading-order structure parameter λ0(r, t),

and the leading-order flux Q0(t).

We begin by defining a variable q equal to the leading-order shear rate, so at



CHAPTER 7. OSCILLATING THIXOTROPIC PIPE FLOW 163

equilibrium (f(Γ, λ) = 0) we may write the stress τ as

τ(q) = η(q2, λ)q, subject to f(q2, λ) = 0, where q =
∂w0

∂r
. (7.4.7)

We rewrite the leading-order momentum equation (7.4.1) using (7.4.7), which

yields
1

r

∂

∂r
[rτ(q)] = −G(t). (7.4.8)

Rearranging and integrating (7.4.8) with respect to r, and applying the symmetry

condition at r = 0 (7.4.3), yields

τ(q) = −G(t)r

2
or q = τ−1

(

−G(t)r

2

)

, (7.4.9)

where we have . We note that for (7.4.9) to hold, τ(q) must be invertible. To

obtain the general solution for w0, we integrate the second of (7.4.9) with respect

to r, to find

w0(r, t) = −
∫ 1

r

τ−1

(

−G(t)r′

2

)

dr′. (7.4.10)

Using the substitution ξ = −G(t)r′/2, so dr′ = −(2/G(t))dξ, we obtain

w0(r, t) =
2

G(t)

∫ −G(t)/2

−G(t)r/2

τ−1(ξ) dξ. (7.4.11)

We are able to obtain a general solution for λ0, which is defined implicitly by

f(q2(r, t), λ0(r, t)) = 0. (7.4.12)

We also require ∂λ0/∂t to solve the general solutions at first order (presented in

Section 7.4). We find this derivative by implicitly differentiating (7.4.12) with

respect to t, which yields

∂f

∂t
= 2qfΓ(q

2, λ0)
∂q

∂t
+ fλ(q

2, λ0)
∂λ0

∂t
= 0. (7.4.13)
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By rearranging (7.4.13) we obtain

∂λ0

∂t
= −2qfΓ(q

2, λ0)

fλ(q2, λ0)

∂q

∂t
. (7.4.14)

Using the first of (7.4.9), we find the derivative of q with respect to t:

∂q

∂t
= −G′(t)r

2τ ′(q)
. (7.4.15)

We have now obtained general solutions for w0 and λ0, and the required deriva-

tives. After we select a rheological model and define f and η, we use the computer

algebra package Maple to evaluate the integral in (7.4.11) using quadrature.

7.4.2 General solutions at O(Dt)

In this section, we solve the first-order governing equations (7.4.4) and (7.4.5)

subject to the no-slip and symmetry conditions (7.4.6) for general η(γ̇, λ) and

f(γ̇, λ) to obtain asymptotic solutions in terms of integrals.

We begin by rearranging (7.4.5) for λ1, which yields

λ1 =
1

fλ

(

∂λ0

∂t
− 2fΓ

∂w0

∂r

∂w1

∂r

)

. (7.4.16)

By replacing λ1 in (7.4.4) using (7.4.16), we obtain

1

r

∂

∂r

[

rA(r, t)
∂w1

∂r
+ rB(r, t)

]

= 0, (7.4.17)

where

A(r, t) = η0 + 2

(

ηΓ − fΓ
ηλ
fλ

)(

∂w0

∂r

)2

, (7.4.18)

B(r, t) =
ηλ
fλ

∂λ0

∂t

∂w0

∂r
. (7.4.19)
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By rearranging and integrating (7.4.17) with respect to r, we obtain

A(r, t)
∂w1

∂r
+ B(r, t) =

C

r
. (7.4.20)

By using the symmetry condition at the centreline in (7.4.6) and rearranging, we

obtain
∂w1

∂r
= −B(r, t)

A(r, t)
. (7.4.21)

By integrating (7.4.21) with respect to r, we obtain the general solution for the

streamwise velocity perturbation:

w1(r, t) =

1
∫

r

B(r′, t)

A(r′, t)
dr′. (7.4.22)

Using (7.4.16), the general solution for the structure parameter perturbation is

λ1(r, t) =
1

fλ

(

∂λ0

∂t
+ 2fΓ

∂w0

∂r

B(r, t)

A(r, t)

)

. (7.4.23)

Finally, using (7.3.11), we can obtain the solution for the volume flux perturba-

tion:

Q1(t) = 2π

1
∫

0

r

1
∫

r

B(r′, t)

A(r′, t)
dr′ dr. (7.4.24)

Having obtained the general solutions at leading order and first order, we now

consider the purely viscous MMW model in Section 7.5.

7.5 Quickly adjusting regime: results for the

MMW model

We consider purely viscous fluids described by the MMW model, discussed in

detail in Section 2.5.1. We present the MMW model again here for reference.

The constitutive relation is

η̂ = µ̂0λ, (7.5.1)
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and the structure evolution rate is

f̂(Γ̂, λ) = −k̂1Γ̂
a/2λb + k̂2Γ̂

c/2(1− λ)d, (7.5.2)

where the parameters a, b, c, and d are non-negative.

We non-dimensionalise the constitutive relation (7.5.1) and the structure evolu-

tion rate (7.5.2) using the quantities defined in (7.2.1) and

f̂0 = k̂1

(

Ĝ0R̂

µ̂0

)a

and κ =
k̂2

k̂1

(

Ĝ0R̂

µ̂0

)c−a

, (7.5.3)

to obtain

η = λ, (7.5.4)

and

f(Γ, λ) = −Γa/2λb + κΓc/2(1− λ)d. (7.5.5)

At equilibrium, when λ = λeq, the structure evolution rate is zero, i.e. f(Γ, λeq) =

0, so from (7.5.5) we obtain

λb
eq

(1− λeq)d
= κΓ(c−a)/2. (7.5.6)

We are not able to isolate λeq in (7.5.6) for general a, b, c, and d. However, in

the special case of d = 0 (7.5.6) yields

η = λeq = κ1/bΓ(n−1)/2, where n =
c− a

b
+ 1. (7.5.7)

So at equilibrium, the constitutive relation (7.5.7) is that of a power-law fluid at

leading order, where n is the familiar power-law exponent (for which we require

n > 0 for physical behaviour) and κ1/b is a dimensionless consistency parameter.

We study both the simplified MMW model (sMMW, with d = 0) and the full

MMW model. We are able to obtain explicit solutions for the leading-order and

first-order quantities for the sMMW model, which we present in the following

section.
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7.5.1 Leading-order solutions for the sMMW model

In this section, we obtain solutions for the leading-order quantities w0, λ0, and

Q0. Recalling that Γ = (∂w0/∂r)
2 and using (7.5.7), at leading order we obtain

η0 = λ0 = κ1/b

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

n−1

. (7.5.8)

By rearranging and integrating the leading-order momentum equation (7.4.1)

with respect to r, and applying the symmetry condition at the centreline (7.4.3)

we obtain

η0
∂w0

∂r
= −1

2
G(t)r. (7.5.9)

Substituting (7.5.8) into (7.5.9) yields

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

n−1
∂w0

∂r
= −1

2
κ−1/bG(t)r. (7.5.10)

Given that κ, r ≥ 0, we may write

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

n

=
1

2
κ−1/b|G(t)|r, (7.5.11)

which yields
∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

=

(

1

2
κ−1/b|G(t)|r

)1/n

. (7.5.12)

When the pressure gradient G(t) > 0, the velocity is positive and largest at the

centreline and zero at the wall, and when G(t) < 0, the velocity is negative and

largest at the centreline and zero at the wall. In addition, the velocity will be

monotonically increasing or decreasing in the radial direction, so sgn(∂w0/∂r) =

−sgn(G(t)). So from (7.5.12) we may write

∂w0

∂r
= −κ−1/(bn)

(

1

2
|G(t)|r

)1/n
G(t)

|G(t)| . (7.5.13)
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By rearranging and integrating (7.5.13) with respect to r we obtain the solution

for w0:

w0(r, t) = κ−1/(bn) n

n+ 1

(

1

2
|G(t)|

)1/n
G(t)

|G(t)|
(

1− r(n+1)/n
)

, (7.5.14)

using the no-slip boundary condition (7.4.3).

We obtain the solution for the leading-order structure λ0 using (7.5.8) and (7.5.12):

λ0(r, t) = κ1/(bn)

(

1

2
|G(t)|

)(n−1)/n

r(n−1)/n. (7.5.15)

Finally, we obtain the leading-order volume flux using (7.3.11) and (7.5.14):

Q0(t) = κ−1/(bn) nπ

3n+ 1

(

1

2
|G(t)|

)1/n
G(t)

|G(t)| . (7.5.16)

7.5.2 First-order solutions for the sMMW model

In this section, we obtain solutions for the first-order quantities w1, λ1, and Q1.

To find A(r, t) and B(r, t), given by (7.4.18) and (7.4.19), respectively, we require

ηΓ = 0, fΓ = −a

2
Γ
a/2−1
0 λb

0 +
c

2
κΓ

c/2−1
0 , (7.5.17)

ηλ = 1, fλ = −bΓ
a/2
0 λb−1

0 , (7.5.18)

where f is given by (7.5.5) with d = 0. So A(r, t) and B(r, t) are

A(r, t) = nκ1/(bn)

(

1

2
|G|r

)(n−1)/n

= nλ0, (7.5.19)

B(r, t) = κ(a−b+1)/(bn)n− 1

bn

G′

|G|

(

1

2
|G|r

)(2n−c−1)/n

. (7.5.20)
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Using the general solution for w1, given by (7.4.22), with (7.5.19) and (7.5.20),

we obtain

w1(r, t) = κ(a−b)/(bn)n− 1

bn2

G′

|G|

(

1

2
|G|
)(n−c)/n

1
∫

r

r′(n−c)/n dr′, (7.5.21)

from which we obtain the solution for w1:

w1(r, t) = κ(a−b)/(bn) n− 1

bn(2n− c)

G′

|G|

(

1

2
|G|
)(n−c)/n

(

1− r(2n−c)/n
)

. (7.5.22)

We can now obtain the solution for the structure parameter perturbation λ1 using

(7.4.23):

λ1(r, t) = −κ(a−b+2)/(bn)n− 1

bn2

GG′

|G|2
(

1

2
|G|
)(2n−c−2)/n

r(2n−c−2)/n. (7.5.23)

Finally, we obtain the first-order volume flux using (7.3.11):

Q1(t) = κ(a−b)/(bn) (n− 1)π

bn(4n− c)

G′

|G|

(

1

2
|G|
)(n−c)/n

. (7.5.24)

Now we have obtained leading-order and first-order solutions for the sMMW

model. In the following section we present some illustrative examples of the

behaviour of the sMMW model.

7.5.3 Illustrative results

In order to present illustrative examples of the leading-order and first-order be-

haviour, we consider a sinusoidal pressure gradient of the form Ĝ(t̂) = Ĝ0 sin(ω̂t̂),

which is

G(t) = sin(t) (7.5.25)

in dimensionless form. By selecting a sinusoidal pressure gradient, we will be able

to analytical solutions in closed form, and hence allow an in-depth analysis of the

flow behaviour. We note the solutions for w0, λ0, w1, and λ1, given by (7.5.14),
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(7.5.15), (7.5.22), and (7.5.23), respectively, are composed of the product of a

function of t and a function of r. For a given set of parameters (a, b, c), the

oscillating pressure gradient only has the effect of scaling w0, λ0, w1, and λ1.

7.5.3.1 Leading-order behaviour

We present illustrative examples of w0 and λ0 for the sMMW model in Figure 7.1,

given by (7.5.14) and (7.5.15) respectively, at various times and for various values

of n. Each subfigure shows w0 and λ0 at t/(2π) = 0.15, 0.2, 0.25. At these times,

G(t)(= −∂p/∂z) is positive, so the velocity is positive. (We note that whether or

not the flow is accelerating or decelerating does not affect the velocity or structure

at leading order.) In Figures 7.1(a) and (b), n = 0.8; in Figures 7.1(c) and (d);

n = 1, and in Figures 7.1(e) and (f), n = 1.2. For all of the fluids, the velocity w0

increases as G(t) increases, as expected. For thixotropic fluids, for example when

n = 0.8, the structure breaks down as the pressure gradient increases, as shown

in Figure 7.1(b). For thixotropic fluids, for example when n = 1, the structure

is constant across the width of the pipe regardless of the pressure gradient, as

shown in Figure 7.1(d). For antithixotropic fluids, for example when n = 1.2, the

structure builds up as the pressure gradient increases, as shown in Figure 7.1(f).

When the pressure gradient is negative, w0 will be the opposite of those shown in

Figure 7.1, but λ0, which depends on the magnitude of the shear rate |∂w0/∂r|,
will be the same as those shown in Figure 7.1.

Figure 7.2 shows examples of the leading-order volume flux Q0, given by (7.5.16),

over one period of the pressure gradient, with n = 0.4, 0.7, 1, 1.3, 1.6 increasing

following the arrow. For thixotropic fluids, as the pressure gradient begins to

increase, the volume flux increases slowly at first because the viscosity is high.

As the pressure gradient increases further the structure breaks down and the fluid

flows more easily, allowing the volume flux to increase more rapidly. Conversely,

the volume flux for antithixotropic fluids increases rapidly at first because the

viscosity is low. As the pressure gradient increases, the structure builds up and

the fluid flows less easily.
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Figure 7.1: Profiles of (a,c,e) w0 and (b,d,f) λ0 for (a,b) n = 0.8, (c,d) n =
1, and (e,f) n = 1.2. The parameters in common are κ = 1 and b = 1, at
t/(2π) = 0.15, 0.2, 0.25, for the pressure gradient G(t) = sin(t). The arrows show
the direction of increasing t.
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Figure 7.2: Plots of the leading order volume flux Q0 for n = 0.4, 0.7, 1, 1.3, 1.6,
for the pressure gradient G(t) = sin(t). The other parameters are κ = 1 and
b = 1. The arrows show the direction of increasing n.

7.5.3.2 First-order behaviour

We present illustrative examples of w1 and λ1 for the sMMW model in Figure 7.3,

given by (7.5.22) and (7.5.23) respectively, at various times and for various values

of n. Each subfigure shows w1 and λ1 at t/(2π) = 0.15, 0.2, 0.25, 0.3, 0.35. We

note that when t/(2π) = 0.15, 0.2 the pressure gradient is increasing, so the flow

is accelerating, and when t/(2π) = 0.3, 0.35 the pressure gradient is decreasing,

so the flow is decelerating.

For thixotropic fluids, for example n = 0.8 as shown in Figure 7.3(a), w1 is neg-

ative when the flow is accelerating, and is positive when the flow is decelerating.

In addition, λ1, shown in Figure 7.3(b), is positive across the pipe when the flow

is accelerating and negative when the flow is decelerating. For antithixotropic

fluids, for example n = 1.2 as shown in Figure 7.3(c), w1 is positive when the

flow is accelerating, and is negative when the flow is decelerating. In addition,

λ1, shown in Figure 7.3(d), is negative across the pipe when the flow is accel-

erating and positive when the flow is decelerating. At t/(2π) = 0.25 in Figure

7.3, the magnitude of the pressure gradient is at its maximum. At these times,

the derivative of the pressure gradient G′(t) = cos(t) = 0 and the flow is neither

accelerating nor decelerating, so w1 = 0 and λ1 = 0.

The behaviour of w1 and λ1 shown in Figure 7.3 is what we would expect. For
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Figure 7.3: Profiles of (a,c) w1 and (b,d) λ1 for (a,b) n = 0.8 (a = 1.2) and
(c,d) n = 1.2 (a = 0.8). The other parameters are κ = 1, b = 1, and c = 1,
at t/(2π) = 0.15, 0.2, 0.25, 0.3, 0.35, for the pressure gradient G(t) = sin(t). The
arrows show the direction of increasing t.
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Figure 7.4: Plots of Q1 for n = 0.8 (a = 1.2), n = 0.9 (a = 1.1), n = 1 (a = 1),
n = 1.1 (a = 0.9), and n = 1.2 (a = 0.8). The other parameters are κ = 1, b = 1,
and c = 1, for the pressure gradient G(t) = sin(t). The arrows show the direction
of increasing n.

thixotropic fluids in increasing pressure gradients, the effect of thixotropy is to

slow the breakdown of the structure, so the fluid is more structured than it would

be in the absence of thixotropy, so λ1 is positive. A more structured, and hence

more viscous, fluid is less readily sheared, so the velocity is negatively perturbed.

Conversely for antithixotropic fluids in increasing pressure gradients, the effect

of antithixotropy is to slow the build up of structure, so the structure is more

broken down, so λ1 is negative. A less structured fluid is more readily sheared,

so the velocity is positively perturbed.

Figure 7.4 shows plots of the volume flux perturbation Q1, given by (7.5.24), over

one period of the pressure-gradient oscillation, for n = 0.8, 0.9, 1, 1.1, 1.2. At times

of flow reversal, at t/(2π) = 0, 0.5, 1 in Figure 7.4, the pressure gradient is zero and

the volume flux perturbation diverges for both thixotropic and antithixotropic

fluids. This divergence indicates that the small-Dt asymptotic expansion breaks

down when the pressure gradient is small, i.e. when the leading-order shear rate

is low. In Figure 7.4, the magnitude of the pressure gradient is at its maximum at

t/(2π) = 0.25, 0.75, and the derivative of the pressure gradient G′(t) = cos(t) = 0,

so the flow is neither accelerating nor decelerating, so Q1 = 0.

Figure 7.5 shows an example of the first-order-accurate volume flux Q0 + DtQ1

(solid line, Dt = 0.05) and Q0 (dotted line) over one period of the pressure-
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Figure 7.5: Plot of the first-order-accurate volume flux Q0+DtQ1 (solid) and Q0

(dotted) for n = 0.8 (a = 1.2), for the pressure gradient G(t) = sin(t). The other
parameters are Dt = 0.05, κ = 1, b = 1, and c = 1. Note the breakdown of the
perturbation approach when t = kπ for k ∈ Z.

gradient oscillation for a thixotropic fluid (n = 0.8). In the case of a thixotropic

fluid, the effect of thixotropy is to decrease the volume flux when the flow is

accelerating and to increase it when the flow is decelerating. Away from times

of maximum or minimum pressure gradient (t/(2π) = 0.25, 0.75), the flux with

thixotropy (Q0 + DtQ1) lags behind the flux without thixotropy (Q0) and the

pressure gradient (G).

7.6 Quickly adjusting regime: results for the

Houška model

We also consider fluids with yield-stress behaviour described by the Houška model,

discussed in detail in Section 2.5.2. We present the Papanastasiou-regularised

Houška model again here for reference. The constitutive relation is

η̂(γ̇, λ) =
τ̂y(λ)(1− e−k̂γ̇)

γ̇
+ η̂H(λ), (7.6.1)

where γ̇ is the shear rate, η̂ is the effective viscosity, and the yield stress τ̂y and

the viscosity parameter η̂H are linear functions of λ:

τ̂y(λ) = τ̂y0 + λτ̂y1 and η̂H(λ) = η̂H0 + λη̂H1, (7.6.2)
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where λ ∈ [0, 1]. The form of f̂(Γ̂, λ) is that of the MMW model with b = 1,

c = 0, and d = 1:

f̂(Γ̂, λ) = −k̂1Γ̂
a/2λ+ k̂2(1− λ). (7.6.3)

We non-dimensionalise (7.6.3) and (7.6.1) using the quantities defined in (7.2.1)

and (7.5.3), together with the scale µ̂0 = η̂H0 and

ηH1 =
η̂H1

η̂H0

, k =
k̂Ĝ0R̂

η̂H0

, τy0 =
τ̂y0

Ĝ0R̂
, and τy1 =

τ̂y1

Ĝ0R̂
, (7.6.4)

which yields

f(Γ, λ) = −Γa/2λ+ κ(1− λ), (7.6.5)

and

η(γ̇, λ) =
(τy0 + λτy1)(1− e−kγ̇)

γ̇
+ 1 + ληH1, (7.6.6)

respectively.

7.6.1 Illustrative results

In this section, we present illustrative examples of the leading-order behaviour for

the Houška model. To obtain these solutions, we evaluate the general solutions

obtained in Sections 7.4.1 and 7.4.2, evaluating the integrals using quadrature in

the computer algebra package Maple.

As we are using a regularised Houška model, we cannot observe true yield-stress

behaviour, as in the case of the unregularised model. As before, we refer to

aspects of this ‘regularised yield-stress’ behaviour as follows. When the stress

in the fluid is above and below the yield stress τy, we say it is ‘yielded’ and

‘unyielded’, respectively. For plug-like flow, in which the fluid is unyielded near

the centre of the pipe and yielded near the wall, we refer to the unyielded region

as a ‘pseudo-plug’, which is bounded by a ‘yield surface’. We use this terminology

throughout this section.
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Figure 7.6: Profiles of (a) w0, (b) λ0 at t/(2π) = 0.06, 0.07, 0.08. The parameters
are κ = 1, τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1. The arrows show the direction
of increasing t.

7.6.1.1 Leading-order solutions

At low shear rates, the fluid is in an unyielded state in which it is highly structured

across the width of the pipe. As the pressure gradient increases the shear rate

increases, and the fluid near the wall, where the shear rate is largest, eventually

yields. Following yielding, the velocity increases rapidly, further destructuring

the fluid near the wall, and reducing the width of the pseudo-plug. Figures 7.6(a)

and (b) show w0 and λ0, respectively, just before and just after yielding, with the

arrow indicating the direction of increasing t (and increasing pressure gradient).

We note that in a true yield-stress fluid prior to yielding w0 = 0 and λ0 = 1;

in the present case, an effect of regularisation is that w0 and λ0 deviate from

true yield-stress behaviour when the fluid is unyielded. As the pressure gradient

increases, λ0 decreases near the wall, as shown in Figure 7.6(b), which decreases

the width of the pseudo-plug and allows w0 to increase, as shown in Figure 7.6(a).

Figure 7.7 shows the leading-order volume flux Q0 over one period of the pressure

gradient, illustrating clearly the process of yielding and unyielding. When the

pressure gradient is sufficiently small, the fluid does not yield anywhere, as shown

by the flat sections in Figure 7.7.
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Figure 7.7: Plot of Q0 over one period of the pressure-gradient oscillation. The
parameters are κ = 1, τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1.

7.6.1.2 First-order solutions

Figures 7.8(a) and (b) show w1 and λ1, respectively, just before and just after

yielding, with the arrow indicating the direction of increasing t (and increas-

ing pressure gradient). When the fluid is unyielded, the velocity and structure

perturbations are zero. After yielding, the velocity perturbation grows in magni-

tude as the pressure gradient increases and the structure perturbation increases

near the wall where the fluid is yielded. The effect of thixotropy is to slow the

breakdown of fluid under shearing, so the structure remains more built up and

so the structure perturbation is positive. The increase in structure means that

the fluid is less readily sheared than in the absence of thixotropy, so the velocity

is negatively perturbed.

Figure 7.9 shows the volume flux perturbation over one period of the pressure

gradient. As for Q0, Q1 = 0 when the fluid is unyielded. In addition, Q1 = 0

at t/2π = 0.25, 0.75, when the magnitude of the pressure gradient is largest. As

the pressure gradient increases, the fluid yields at t/2π ≈ 0.1 and Q1 decreases

to a minimum at t/(2π) ≈ 0.15, then increases. When the time-derivative of the

pressure gradient G′(t) > 0, Q1 > 0, and when G′(t) < 0, Q1 < 0.

Thixotropy has the effect of delaying the peaks in the volume flux. Figure 7.10,

which shows Q0 + DtQ1 (solid) and Q0 (dashed), illustrates this effect clearly.

Comparing the leading-order flux with the combination of the leading-order and
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Figure 7.8: Profiles of (a) w1, (b) λ1 at t/(2π) = 0.06, 0.07, 0.08. The parameters
are Dt = 1, κ = 1, τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1. The arrows show the
direction of increasing t.
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Figure 7.9: Plot of Q1 when Dt = 1, κ = 1, τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1.
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Figure 7.10: Plot of Q0 + DtQ1 (solid) and Q0 (dashed) when Dt = 1, κ = 1,
τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1.

first-order fluxes shows that thixotropy has the effect of moving the peak of the

flux to the right, i.e. to a later time. So when thixotropy is present, the flux lags

slightly behind the pressure gradient.

We note that just after yielding at t/2π ≈ 0.1, Figure 7.10 shows Q to be negative,

which implies that the fluid flows against the pressure gradient immediately after

yielding. This behaviour is not physically meaningful and arises simply because

we set Dt = 1 in Figure 7.10 to clearly illustrate the lag in the volume flux. This

feature indicates a local-in-time breakdown of the perturbation approach since

Q0 ∼ DtQ1 when Q0 is small. When Dt is made appropriately small, as shown

in Figure 7.11, this feature vanishes as expected.

7.7 Expansion and solutions in the slowly ad-

justing regime: Dt ≫ 1

In this section, we study flow in the slowly adjusting regime. It is difficult to

make significant progress towards solutions for general rheologies, unlike in the

quickly adjusting regime (shown in Section 7.4). We make a small amount of

progress before specialising to the sMMW model, for which explicit solutions are

available.

In this regime, we expand the velocity, structure parameter, and volume flux in
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Figure 7.11: Plot of Q0 + DtQ1 (solid) and Q0 (dotted) when Dt =
0.01, 0.25, 0.5, 0.75, 1, and κ = 1, τy0 = 1, τy1 = 0.2, η0 = 1, and η1 = 1. The
arrow shows the direction of decreasing Dt.

powers of the reciprocal of the large temporal Deborah number Dt:

(w, λ,Q) =
∞
∑

i=0

1

Di
t

(wi, λi, Qi). (7.7.1)

We note that G(t) is prescribed so we do not expand it.

At leading order and first order, excluding the structure evolution equation, we

obtain the same governing equations as in the quickly adjusting regime, given by

(7.3.7)–(7.3.11), where we note that the quantities w0, λ0, etc. are now from the

expansion (7.7.1). In the slowly adjusting regime, after the expansion (7.7.1), the

structure evolution equation (7.2.5) becomes

Dt

(

∂λ0

∂t
+

1

Dt

∂λ1

∂t
+O

(

1

D2
t

))

= f0 +
1

Dt

f1 +O
(

1

D2
t

)

, (7.7.2)

so at O(Dt) and O(1) we obtain

∂λ0

∂t
= 0 and

∂λ1

∂t
= f0, (7.7.3)

respectively, where f0 = f(γ̇0, λ0).
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From (7.7.3), we see that λ0 does not depend on t, so λ depends only on r at

leading order: λ ≃ λ0(r) + h.o.t. We expect to obtain this result, because when

the structure adjusts much more slowly than the characteristic timescale of the

pressure gradient oscillation, the structure must be almost constant in time.

Following McArdle et al. [94], we assume the pressure gradient has been oscillat-

ing infinitely long so that the initial state of the fluid has been ‘forgotten’ and the

flow is periodic. While the structure will not be in equilibrium, in general, with

the shear rate, there will be no net build-up or breakdown over one period of the

oscillation. Integrating the first-order structure evolution equation in (7.7.3) over

one period of the pressure gradient yields

∫ 2π

0

∂λ1

∂t
dt =

∫ 2π

0

f0 dt. (7.7.4)

Since λ1 is periodic, we obtain

0 =

∫ 2π

0

f0 dt, (7.7.5)

so there is no net build-up or breakdown over one period of the pressure gradient,

as expected. In the following section we obtain solutions for the sMMW model

by first specialising to the MMW model, then specialising further to the sMMW

model.

7.8 Slowly adjusting regime: results for the MMW

model

In this section, we make some progress towards solutions for the full MMWmodel,

though to obtain explicit solutions, we must specialise further to the sMMW

model, which we present in the following section.

We begin by rearranging and integrating (7.4.1) with respect to r, and applying
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the symmetry condition at the centreline to obtain

∂w0

∂r
= − r

2η0
sin(t), (7.8.1)

where we have chosen a sinusoidal pressure gradient G(t) = sin(t).

Now we use (7.7.5) with the MMW structure evolution rate, which yields

0 =

∫ 2π

0

−
∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

a

λb
0 + κ

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

c

(1− λ0)
d dt. (7.8.2)

Following some rearrangement, and since λ0 does not depend on t, we obtain

λb
0

(1− λ0)d
=

κ

∫ 2π

0

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

c

dt

∫ 2π

0

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

a

dt

. (7.8.3)

Replacing the shear-rate terms in (7.8.3) using (7.8.1), recalling that in the MMW

model η0 = η0(λ0), we obtain

λb
0

(1− λ0)d
= κ

(

r

2η0

)c−a

∫ 2π

0

|sin(t)|c dt
∫ 2π

0

|sin(t)|a dt

. (7.8.4)

For convenience, we rewrite this as

λb
0

(1− λ0)d
= κ

(

r

2η0

)c−a

β(a, c), (7.8.5)

where

β(a, c) =
B
(

1+c
2
, 1
2

)

B
(

1+a
2
, 1
2

) , (7.8.6)

and B(x, y) is the Beta function:

B(x, y) = 2

∫ π

2

0

(sin(θ))2x−1(cos(θ))2y−1 dθ. (7.8.7)
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To make further analytical progress, we must be able to solve (7.8.5) for λ0, which

is not possible for general b and d. As discussed in Appendix B, there are various

specific choices for b and d that we may use. We choose to specialise to the

sMMW model, in which d = 0.

7.8.1 Results for the sMMW model

Upon specialising to the sMMWmodel, where η0 = λ0 and d = 0, (7.8.5) becomes

λb
0 = κ

(

r

2λ0

)c−a

β(a, c), (7.8.8)

which we rearrange to obtain the solution for λ:

λ0(r) =

(

(κβ)1/b

2n−1

)1/n

r(n−1)/n, (7.8.9)

where n = (c− a+ b)/b, and we have written β ≡ β(a, c) for convenience.

We may now obtain the solution for w0 using (7.8.1), together with the no-slip

boundary condition (7.4.3):

w0(r, t) =

(

(κβ)−1/b

2

)1/n
n

n+ 1
sin(t)(1− r(n+1)/n). (7.8.10)

The volume flux is

Q0(t) = 2π

∫ 1

0

rw0 dr, (7.8.11)

so using (7.8.10), we obtain the solution for the volume flux:

Q0(t) = π

(

(κβ)−1/b

2

)1/n
n

3n+ 1
sin(t). (7.8.12)

There are similarities between the solutions in the slowly adjusting regime, given

by (7.8.10), (7.8.9), and (7.8.12), and the leading-order solutions in the quickly

adjusting regime, given by (7.5.14), (7.5.15), and (7.5.16), respectively (we note

that these solutions are also the solutions for the case when Dt = 0, i.e. with no
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thixotropy). In particular, the solutions when Dt ≫ 1 and when Dt = 0 only

differ by a factor α(t):

wDt≫1 = α(t)wDt=0, λDt≫1 =
1

α(t)
λDt=0, and QDt≫1 = α(t)QDt=0,

(7.8.13)

where

α(t) =

( | sin(t)|n−1

β1/b

)1/n

. (7.8.14)

7.9 Numerical solutions using COMSOL

Having obtained asymptotic solutions for the unsteady flow of thixotropic fluid

along a uniform cylindrical pipe in Sections 7.1–7.5, 7.7, and 7.8, we now study

this problem numerically using the finite element analysis software package COM-

SOL Multiphysics R© [54]. (Due to time constraints, we were not able to explore

the behaviour of the Houška model numerically in this thesis. Asymptotic so-

lutions for the Houška model are presented in Section 7.6.) In particular, we

wish to verify the results of the asymptotic approach used for the quickly adjust-

ing regime in Sections 7.4–7.6, and the slowly adjusting regime in Sections 7.7

and 7.8. We also wish to use the asymptotic solutions with COMSOL to extend

our understanding of thixotropic pipe flow and build a full picture of thixotropic

behaviour, from the quickly adjusting regime, through the regime of balanced

thixotropy, to the slowly adjusting regime, i.e. for Dt in the range [0,∞).

We formalise these aims in a similar way to Chapter 6 for the first goal: (i) to

verify the solutions presented in Sections 7.1–7.8. Since we have solutions for

both the quickly and the slowly adjusting regimes, we tackle a different second

goal here: (ii) to use COMSOL to obtain the behaviour when Dt = O(1), and

therefore obtain the full range of possible thixotropic behaviours in this problem.
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7.9.1 Implementation

In this section, we present the implementation of this problem in COMSOL,

which differs from the implementation for the previous set-up in a few ways.

The most notable is that we consider a uniform pipe, which means that we may

study the flow in COMSOL in a 1D axisymmetric geometry, rather than a 2D

axisymmetric geometry. This difference considerably simplifies the numerical

problem, which allows for the use of higher-order discretisations and more refined

meshes compared to the previous set-up.

We implement the geometry for this problem as a 1D axisymmetric interval, with

a radius equal to unity. As we are considering a 1D geometry, there are no inlet

or outlet conditions like those in the previous set-up. The governing equations

for this problem are the momentum equation (7.2.2) and the structure evolution

equation (7.2.5), which are subject to the no-slip boundary condition, and, as we

are considering a time-dependent flow, initial conditions.

We rearrange (7.2.2) to obtain

∂

∂r

(

rη
∂w

∂r

)

= −Gr, (7.9.1)

which we implement, as termed in COMSOL, as a general form PDE. We apply

the no-slip boundary condition as a Dirichlet boundary condition. We also im-

plement the structure evolution equation (7.2.5) using the same general equation

in COMSOL. We note that as in the previous set-up, we do not need to manually

adjust the equations for the axisymmetric geometry in the present set-up.

The flow is driven by a sinusoidal pressure gradient G(t) = sin(t), and for the

initial conditions we use the solutions in the slowly adjusting regime, given by

(7.8.10) and (7.8.9), which are suitable for both quickly adjusting and slowly

adjusting flow. When Dt is small, the fluid will quickly adjust from the initial

conditions to periodic flow, ‘forgetting’ the initial conditions in the process. When

Dt is large, the initial conditions are close to the periodic solutions to which the

flow gradually converges.

Following some initial tests for the sMMW model, it is clear that this set-up
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is much less computationally expensive than for the set-up in Chapter 6; the

running times are roughly 500 times smaller in the former case, for a single

value of t, with similar mesh refinements and discretisation orders. This shorter

running time means we are able to use a high mesh resolution and discretisation

order, which will yield more accurate numerical solutions. In general, for the

numerical solutions in this Chapter, we use 10 000 uniformly distributed mesh

points, and we discretise the problem using seventh-order polynomials, the highest

order available in COMSOL. In a typical simulation of slowly adjusting flow, for

50 periods of the pressure gradient, which is sufficient for periodic flow to be

established from the initial conditions. Quickly adjusting flow converges to a

periodic solution more quickly than slowly adjusting flow, so running times are

shorter.

In Sections 7.9.2 and 7.9.3 we verify the asymptotic solutions in the quickly ad-

justing and slowly adjusting regimes, respectively. To distinguish the asymptotic

solutions in these regimes, we denote the structure parameter λq or λs and the

volume flux Qq or Qs, respectively. We also denote corresponding numerical so-

lutions λN and QN, and when referring to a quantity in general, we use λ and Q.

We also indicate whether a solution is leading order or first order where appro-

priate, e.g. λq,0. We continue to use this notation when presenting results for the

full range of thixotropic behaviour in Section 7.9.4.

7.9.2 Verification and solutions for the quickly adjusting

regime 0 < Dt ≪ 1

Having implemented the problem in COMSOL, we begin with goal (i): to verify

the asymptotic solutions, which will provide support for the asymptotic approach

in the quickly adjusting regime. As expected, we are able to obtain significantly

more accurate results for the present set-up than for the problem in Chapter

6. For brevity, we focus on numerical solutions for the perturbation quantities.

Sufficient accuracy of the leading-order numerical solutions is implied by a high

accuracy in the numerical solutions for the perturbations. We use the same

notation and terminology as introduced in Section 6.2.2.
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Figure 7.12: Plots of Q0,N (solid) and Qq,0 (dotted, not visible) over 10 periods
of the pressure gradient. The parameters are Dt = 10−3, κ = 1, a = 1, b = 1,
and c = 1.2 (n = 1.2). The cross indicates the time for which an example of w1,N

and λ1,N is shown later in this section.

In this section, we present illustrative examples of numerical solutions for the

perturbation quantities for the sMMW model, showing that they are in good

agreement with the asymptotic solutions (presented in Section 7.5.2). Figure

7.12 shows the numerical solution for the leading-order flux Q0,N (solid), and the

corresponding asymptotic solution Qq,0 (dotted), which lies on top of the solid

line and so is not visible.

Figures 7.13(a) and (c) show numerical solutions for the velocity w1,N and the

structure parameter λ1,N (solid lines), respectively, for an antithixotropic fluid

(n = 1.2). The plots are taken at the time indicated by the cross in Figure 7.12,

where t/2π = 9.125, G(t) ≈ 0.707 and G′(t) ≈ 0.707. These figures also include

the corresponding asymptotic solutions wq,1 and λq,1 (dotted with diamonds).

Note that in Figure 7.13(a), wq,1 cannot be distinguished from w1,N. In Figure

7.13(c), λq,1 is visible at r . 0.01, but not further away from the centreline.

Figures 7.13(b) and (d) show the corresponding absolute errors wq,1,err and λq,1,err,

respectively.

Figure 7.14 shows the equivalent plots to those in Figure 7.13 for a thixotropic

fluid (n = 0.9). In particular, Figures 7.14(a) and (c) show the numerical so-

lutions w1,N and λ1,N (solid lines), respectively. These figures also include the

corresponding asymptotic solutions wq,1 and λq,1 (dotted with diamonds). Note

that in Figure 7.14(c), λq,1 cannot be distinguished from λ1,N. Figures 7.14(b)

and (d) show the corresponding absolute errors wq,1,err and λq,1,err, respectively.
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Figure 7.13: Profiles of (a) w1,N (solid) and wq,1 (dotted with diamonds), (b)
wq,1,err, (c) λ1,N (solid) and λq,1 (dotted with diamonds), and (d) λq,1,err, at t/2π =
9.125, when G(t) ≈ 0.707 and G′(t) ≈ 0.707. The parameters are Dt = 10−3,
κ = 1, a = 1, b = 1, and c = 1.2 (n = 1.2).
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Figure 7.14: Profiles of (a) w1,N (solid) and wq,1 (dotted with diamonds), (b)
wq,1,err, (c) λ1,N (solid) and λq,1 (dotted with diamonds), and (d) λq,1,err, at t/2π =
9.125, when G(t) ≈ 0.707 and G′(t) ≈ 0.707. The parameters are Dt = 10−3,
κ = 1, a = 1, b = 1, and c = 0.9 (n = 0.9).
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Figures 7.13(a) and 7.14(a) show that the numerical and asymptotic solutions for

the velocity perturbation are in excellent agreement, which is confirmed by the

corresponding error plots in Figures 7.13(b) and 7.14(b). In the antithixotropic

case wq,1,err < 10−4 everywhere (where we require wq,1,err < Dt = 10−3), and in

the thixotropic case the maximum error is wq,1,err ≈ 10−3 near the centreline, but

still sufficiently small everywhere. In both cases the error is sufficiently small to

describe the numerical solutions as accurate.

Figures 7.13(c) and 7.14(c) show that the numerical and asymptotic solutions for

the structure parameter perturbation also appear to be in excellent agreement.

However, the respective error plots, Figures 7.13(d) and 7.14(d), show that the

numerical solutions are only accurate away from the centreline, and that the ac-

curacy decreases approaching the centreline. This is as expected, because the

asymptotic solution for the structure parameter perturbation λq,1 exhibits patho-

logical behaviour at the centreline, as shown in Figures 7.3(b) and (d). In partic-

ular, λq,1 diverges as r → 0 in both cases. This pathological behaviour indicates

a local breakdown of the asymptotic expansion, and the divergent gradients in

λq,1 are impossible to fully capture numerically, so we expect some disagreement

between the numerical and asymptotic solutions near the centreline.

7.9.3 Verification and solutions for the slowly adjusting

regime Dt ≫ 1

In this section, we present illustrative examples of numerical solutions for the

sMMW model in the slowly adjusting regime, showing that they are in good

agreement with the analytical solutions (presented in Section 7.8.1). In the fol-

lowing examples of numerical solutions, we set Dt = 105 unless stated otherwise.

To ensure the flow is periodic, after adjusting from the initial conditions, we

simulate the flow over 50 periods of the pressure gradient oscillation.

Figure 7.15(a) shows an antithixotropic (n = 2) example of the numerical solution

for the volume flux QN (solid), and the corresponding analytical solution Qs

(dotted with diamonds). Figure 7.15(b) shows an equivalent thixotropic (n =

0.8) example of the numerical solution for the volume flux QN (solid), and the
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Figure 7.15: Plots of QN (solid) and Qs (dotted with diamonds), for (a) an
antithixotropic fluid (n = 2) and (b) a thixotropic fluid (n = 0.8), over two
periods of the pressure gradient. The parameters are Dt = 105, κ = 1, a = 1,
b = 1, and (a) c = 2 (n = 2) and (b) c = 0.8 (n = 0.8).
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corresponding analytical solution Q (dotted with diamonds). It is clear that in

both cases the numerical and analytical solutions are in good agreement.

Figure 7.16 shows an antithixotropic example of the numerical solutions for the

velocity and structure parameter in the slowly adjusting regime, and the corre-

sponding error plots, when t/2π = 49.25 (G = 1 and G′ = 0). Figure 7.16(a)

shows an example of the numerical solution wN (solid) and the analytical solution

ws (dotted with diamonds) when n = 2. These solutions are in good agreement

across the width of the pipe. As the plot for ws,err in Figure 7.16(b) shows, the

error is largest at the centreline, where ws,err ≈ 0.00017, and decreases monoton-

ically to the wall.

An example of the numerical and analytical solutions λN (solid) and λs (dotted

with diamonds), respectively, when n = 2 is shown in Figure 7.16(c). Again,

these solutions are in good agreement across the width of the pipe. As the

plot for λs,err in Figure 7.16(d) shows, the error is smallest at the centreline and

increases monotonically to the wall, where λs,err ≈ 0.00005.

Figure 7.17 shows a thixotropic example of the numerical solutions for the veloc-

ity and structure parameter in the slowly adjusting regime, and the corresponding

error plots, when t/2π = 49.25 (G = 1 and G′ = 0). Figure 7.17(a) shows an

example of the numerical solution wN (solid) and the analytical solution ws (dot-

ted with diamonds) when n = 0.8. These solutions are in good agreement across

the width of the pipe. As the plot for ws,err in Figure 7.17(b) shows, the error is

largest at the centreline, where ws,err ≈ 0.0005, and decreases monotonically to

the wall.

Figure 7.17(c) illustrates good agreement between the numerical and analytical

solutions λN (solid) and λs (dotted with diamonds), respectively, when n = 0.8.

As shown in Figure 7.17(d), the error is smallest just outside the centreline, and,

apart from a spike at the centreline, increases to the wall, where λs,err ≈ 0.00011.

In the slowly adjusting regime, the typical timescale of the variation of the struc-

ture parameter is much larger than the timescale of the pressure gradient os-

cillation. Consequently, we do not expect the structure parameter to vary sig-

nificantly with time as the pressure gradient oscillates, once periodic behaviour

is established. We formalised this expectation in Section 7.7, where we took
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Figure 7.16: Profiles of (a) wN (solid) and ws (dotted with diamonds), (b) ws,err,
(c) λN (solid) and λs (dotted with diamonds), and (d) λs,err. The parameters are
Dt = 105, κ = 1, a = 1, b = 1, and c = 2 (n = 2).
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Figure 7.17: Profiles of (a) wN (solid) and ws (dotted with diamonds), (b) ws,err,
(c) λN (solid) and λs (dotted with diamonds), and (d) λs,err. The parameters are
Dt = 105, κ = 1, a = 1, b = 1, and c = 0.8 (n = 0.8).
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Figure 7.18: Plots of λN(r = 1) (solid) and λs(r = 1) (dotted with diamonds)
over two periods of the pressure gradient, for (a) an antithixotropic fluid and (b)
a thixotropic fluid. The parameters are Dt = 105, κ = 1, a = 1, b = 1, and (a)
c = 2 (n = 2) and (b) c = 0.8 (n = 0.8).

λ = λs(r) + h.o.t., which assumes there is some higher-order, i.e. small, variation

in time. We can confirm this assumption is correct by studying how λN varies

with time.

Figure 7.18(a) shows λN (solid) and λs (dotted with diamonds) at the wall of the

pipe, for an antithixotropic fluid (n = 2). Figure 7.18(b) shows the equivalent

plot for a thixotropic fluid (n = 0.8). The value of λN at the wall oscillates,

with a magnitude of roughly 10−6 in both cases, at twice the frequency of the

pressure gradient. This oscillation arises from oscillations in higher-order terms

not obtained in our asymptotic expansion. Aside from this oscillation, λN does

not vary significantly as the pressure gradient oscillates, indicating that the initial

assumption that λs = λs(r) + h.o.t. is accurate, with the higher-order terms

depending on time. The absolute error between the numerical and asymptotic

solutions in the antithixotropic case is roughly 0.000005, and in the thixotropic

case is roughly 0.000001.
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7.9.4 Full range of thixotropic behaviour

In this section, we study the full range of thixotropic behaviour, from the quickly

adjusting regime through the balanced regime, in which Dt = O(1), to the slowly

adjusting regime. In the balanced regime the typical timescale of the structure

is similar to the timescale of the pressure gradient oscillation. We are not able to

explore this regime analytically, but we may use the solutions already obtained

for the sMMW model in the quickly adjusting regime in Section 7.5.1 and in the

slowly adjusting regime in Section 7.8.1 to make progress. In Sections 7.9.2 and

7.9.3, we showed that we can obtain accurate numerical solutions using COMSOL

in both of these regimes, so we are confident that we may use COMSOL to obtain

accurate numerical solutions for the regime of balanced thixotropy.

7.9.4.1 Variation of λ in time

In this section, we study how λ varies in time at a given radial position as Dt

varies. In particular, we show an example for a thixotropic and antithixotropic

fluid at two locations in the pipe: at the wall (r = 1) and between the wall and

the centre of the pipe (r = 0.5). Figures 7.19(a) and (b) show λ at r = 0.5 and

r = 1, respectively, for an antithixotropic fluid (n = 2), for various values of Dt.

The dotted line with diamonds is the asymptotic solution λq, given by (7.5.15).

The other dotted line, which is not visible, at λs ≈ 0.45 in (a) and λs ≈ 0.62

in (b), is the asymptotic solution λs, given by (7.8.9). The solid lines are the

numerical solutions λN for Dt = 10−3, 10−1/2, 1, 101/2, 103, where the arrows show

the direction of increasing Dt, i.e. from λq, through λN, to λs.

When Dt = 10−3, the numerical and asymptotic solutions are in good agreement,

and are in phase with the pressure gradient oscillation (not shown). The structure

is the most broken down when G = 0 (at t/2π = 0, 0.5, 1, 1.5, 2 in Figure 7.19),

and the most built up when |G| is largest (at t/2π = 0.25, 0.75, 1.25, 1.75 in Figure

7.19). As Dt increases, the peaks and troughs in the structure move to larger t,

so the structure lags behind the pressure gradient. As Dt continues to increase,

the lag increases and λ varies less with time. The effect of the lag is that the

structure is the most broken down just after when G = 0 and is the most built up
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Figure 7.19: Plots of λN (solid) and λq and λs (dotted with diamonds) with
respect to time for various values of Dt for an antithixotropic fluid, at (a) r = 0.5
and (b) r = 1. For λN, Dt = 10−3, 10−1/2, 1, 101/2, 103. The arrows show the
direction of increasing Dt. The parameters are κ = 1, a = 1, b = 1, and c = 2
(n = 2).
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just after when |G| is largest. As Dt becomes large, λ tends towards a constant

value.

For the antithixotropic fluid shown in Figure 7.19, λ increases monotonically with

r, so λ is smaller near the centreline (cf. corresponding values of λ in Figures 7.19

(a) and (b)). Since the shear rate is higher near the wall than near the centreline,

λ is larger near the wall. In addition, λ varies more strongly near the wall, which

yields a larger variation in λ in time at r = 1 than at r = 0.5.

Figures 7.20(a) and (b) show the equivalent plots of λ at r = 0.5 and r =

1, respectively, for a thixotropic fluid (n = 0.8), for various values of Dt. In

this plot, the asymptotic solutions λq and λs (≈ 1.55) in (a) and λs ≈ 1.3 in

(b), are not visible. The solid lines are the numerical solutions λN for Dt =

10−3, 10−3/2, 10−1, 1, 103, where the arrows show the direction of increasing Dt.

Note that the values of Dt used in Figure 7.20 differ from those in Figure 7.19.

In each figure, we use values of Dt which clearly show how λ varies.

As in the antithixotropic case, when Dt = 10−3, the numerical and asymptotic

solutions are in good agreement, and are in phase with the pressure gradient

oscillation (not shown). As Dt increases, λ varies less significantly with time,

and begins to lag behind the pressure gradient. In contrast to the antithixotropic

case, when Dt is small, the structure is the most built up when G = 0 (at

t/2π = 0, 0.5, 1, 1.5, 2 in Figure 7.20), and most broken down when |G| is largest
(at t/2π = 0.25, 0.75, 1.25, 1.75 in Figure 7.20). As in the antithixotropic case, as

Dt increases, λ lags increasingly behind the pressure gradient and varies less with

time. The result is that the structure is the most built up just after when G = 0

and is the most broken down just after when |G| is largest. As Dt becomes large,

λ tends towards a constant value.

For the thixotropic fluid shown in Figure 7.20, λ decreases monotonically with r,

so λ is larger near the centreline (cf. corresponding values of λ in Figures 7.20 (a)

and (b)). Since the shear rate is higher near the wall than near the centreline, λ

is smaller near the wall. In addition, as in the antithixotropic case, λ varies more

strongly near the wall, which yields a larger variation in λ in time at r = 1 than

at r = 0.5.

It is clear that when Dt = O(1), for both thixotropic and antithixotropic fluids,
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Figure 7.20: Plots of λN (solid) and λq and λs (dotted with diamonds) with
respect to time for various values of Dt for a thixotropic fluid, at (a) r = 0.5 and
(b) r = 1. For λN, Dt = 10−3, 10−3/2, 10−1, 1, 103. The arrows show the direction
of increasing Dt. The parameters are κ = 1, a = 1, b = 1, and c = 0.8 (n = 0.8).
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the structure lags behind the pressure gradient oscillation. The lag increases as

Dt increases, but this will have a decreasing effect on the flow because λ also

varies less as Dt increases.

We note in Figures 7.19 and 7.20 that some plots of λN have a small wobble

when the pressure gradient changes direction, i.e. at t/2π = 48.5, 49, 49.5. These

wobbles are most noticeable in Figure 7.19 when Dt = 10−1/2, 1, and in Figure

7.19 when Dt = 10−3/2, 10−1. When the pressure gradient changes direction, the

shear rate drops to zero, which briefly slows the evolution of λ. This feature is

only apparent when Dt = O(1) because it arises from a balance between sufficient

variation in λ with time, which is not present when Dt ≫ 1, and a lag in the

evolution of λ, which is not present when 0 < Dt ≪ 1.

7.9.4.2 Variation of Q in time

In this section, we present examples of how Q varies as Dt varies, and how the

behaviour of λ affects Q as Dt varies. We show an example for a thixotropic and

antithixotropic fluid over two periods of the pressure gradient. We use the same

parameters in the examples in this section as in Figures 7.19 and 7.20, so the

plots are directly comparable.

Figure 7.21(a) shows QN, Qq, and Qs for an antithixotropic fluid (n = 2), for

various values of Dt. Figure 7.21(b) shows a zoom of half of a period, in which

G > 0. The asymptotic solutions Qq and Qs are given by (7.5.16) and (7.8.12)

respectively. The solid lines in Figures 7.21(a) and (b) are the numerical solutions

QN for Dt = 10−3, 10−1/2, 1, 101/2, 103, where the arrows show the direction of

increasing Dt, i.e. from Qq, through QN, to Qs.

As Dt increases, the peaks and troughs of the flux increase in magnitude near

when G is largest, either positive or neagtive, i.e. when |G| is largest (t/2π =

0.25, 0.75, 1.25, 1.75, when forcing in either direction is largest), which is particu-

larly noticeable when Dt = 10−1/2, 1, 101/2 in Figure 7.21(b). As shown in Figure

7.19, the structure lags behind G. The structure is thus broken down relative

to its equilibrium state just before the peak in |G|, and so the fluid flows more

easily, yielding a larger flux just before these maxima. We note that the flux is
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Figure 7.21: Plots of QN (solid) and Qq (dotted with boxes) and Qs (dotted with
diamonds) with respect to time for various values of Dt for an antithixotropic fluid
(n = 2), where Dt = 10−3, 10−1/2, 1, 101/2, 103. The arrows show the direction of
increasing Dt. The parameters are κ = 1, a = 1, b = 1, and c = 2 (n = 2).
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not largest when λ is smallest, rather it is largest at a time when the reduced

structure is balanced with a sufficiently large pressure gradient.

Figure 7.22(a) shows QN, Qq, and Qs for a thixotropic fluid (n = 2), for various

values of Dt. Figure 7.22(b) shows a zoom of half of a period, in which G > 0.

As in Figure 7.21, the asymptotic solutions Qq and Qs are given by (7.5.16)

and (7.8.12) respectively. The solid lines in Figures 7.22(a) and (b) are the

numerical solutions QN for Dt = 10−3, 10−1/2, 1, 101/2, 103, where the arrows show

the direction of increasing Dt, i.e. from Qq, through QN, to Qs.

In contrast to the antithixotropic case, as Dt increases in the thixotropic case, the

flux decreases in magnitude near when the magnitude of the pressure gradient

is largest (t/2π = 0.25, 0.75, 1.25, 1.75). The peaks and troughs in the flux lag

slightly behind G, which is particularly noticeable when Dt = 10−1/2, 1 in Figure

7.22(b). As shown in Figure 7.20, and as in the antithixotropic case, the structure

lags behind G. The structure is thus broken down relative to its equilibrium state

just after the peak in |G|, and so the fluid flows more easily, yielding a larger flux

just after these maxima.

The difference between the antithixotropic and thixotropic case is that in the

thixotropic case the structure is the most broken down just after the peak in the

pressure gradient, and so the fluid flows most easily, yielding a larger flux.

7.10 Summary

In this chapter, we studied the oscillating flow of thixotropic and antithixotropic

fluids in a uniform pipe. This flow set-up bore similarities to the previous set-up,

studied in Chapters 2–6. The set-up studied in this chapter is simpler than the

previous set-up: we consider a uniform pipe, so the advective effect of thixotropy

is absent. So only the temporal change in the pressure gradient drives structure

evolution, which yields the temporal effect of thixotropy. A result of this simpli-

fication is that we are able to obtain explicit asymptotic solutions for the sMMW

model in the quickly adjusting regime, as in the previous set-up, and in the slowly

adjusting regime, which we were not able to explore in the previous set-up. A
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Figure 7.22: Plots of QN (solid) and Qq (dotted with solid) and Qs (dotted with
diamonds) with respect to time for various values of Dt for a thixotropic fluid
(n = 0.8), where Dt = 10−3, 10−3/2, 10−1, 1, 103. The arrows show the direction of
increasing Dt. The parameters are κ = 1, a = 1, b = 1, and c = 0.8 (n = 0.8).
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further benefit of this simplification is that we were able to successfully study

this problem numerically using the finite element analysis software COMSOL.

Through asymptotic and numerical methods, we were able to build a complete

picture of the range of thixotropic behaviours.

In the quickly adjusting regime we followed a similar approach to obtain gen-

eral asymptotic solutions used for the previous set-up in Chapters 3–5, with one

important difference. In this chapter, we chose to prescribe a time-dependent

pressure gradient, whereas in the previous set-up we specified the volume flux. In

the previous set-up, the prescribed volume flux constrained the streamwise veloc-

ity perturbation to take a particular shape, such as that shown in Figure 3.1. In

the present set-up, the streamwise velocity perturbation was not constrained by a

flux condition, so in general it took a shape like those shown in Figure 7.3, which

is largest in magnitude at the centreline and decreases in magnitude towards the

wall.

In the previous set-up, the balance of the pressure gradient perturbation and the

thixotropic stress term which enforces the flux condition (discussed in detail in

Sections 4.1.6, 4.2.4, and 5.5) meant that the shape of the streamwise velocity per-

turbation was finely tuned, and could yield unexpected behaviour. In the present

set-up there was no such subtle balance, and the shape of the perturbations may

be described in general.

In the slowly adjusting regime we were able to obtain explicit solutions for the

sMMW model, which corresponded with the explicit solutions in the quickly

adjusting regime. We were not able to obtain equivalent solutions in the previous

set-up. These solutions allowed us to explore strongly thixotropic behaviour in

which the structure remains constant in time at leading order.

Having obtained explicit solutions in the quickly adjusting regime and slowly ad-

justing regime, we were able to study the regime of balanced thixotropy numeri-

cally, in which the timescale of structure evolution is similar to the timescale of

the pressure gradient oscillation. As in the previous set-up, we used COMSOL for

this. After implementing the problem in COMSOL, we first verified the asymp-

totic solutions in both the quickly adjusting and slowly adjusting regimes. Then

after confirming the asymptotic and numerical solutions were in good agreement
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in both regimes, we studied the effect of varying Dt to build a full picture of the

thixotropic behaviour: from the asymptotic solutions for 0 < Dt ≪ 1, through

numerical solutions, including when Dt = O(1), to the asymptotic solutions for

Dt ≫ 1.

The full range of behaviour for a thixotropic fluid can be summarised as follows.

When Dt is small, the structure adjusts quickly to changes in the shear rate.

At times of flow reversal, when the pressure gradient is small, the structure is

at a maximum, as shown by the divergent peaks of λq at these times in Figure

7.20. When the magnitude of the pressure gradient is largest, the structure

is at a minimum, as shown by the troughs in Figure 7.20. As Dt increases,

the behaviour of the structure is affected in two ways. The first is that the

structure varies less, tending towards a constant value as Dt diverges. The second

is that the peaks and troughs begin to lag behind the pressure gradient. The

lag is particularly noticeable when Dt = O(1). When the pressure gradient is

largest in magnitude, the structure gradually breaks down, tending towards a

minimum over an O(1) timescale. Before the structure reaches this minimum,

the pressure gradient begins to decrease in magnitude, which cuts off the structure

breakdown. The result is that the structure is most broken down just after the

maximum magnitude of the pressure gradient. A similar process takes place for

antithixotropic fluids, except that the structure is the most built up just after

the pressure gradient maximum.

The behaviour of the structure when Dt = O(1) has a clear effect on the volume

flux (and the streamwise velocity). The volume flux depends on the pressure

gradient and the structure parameter. In particular, the flux will be large when

the pressure gradient is large and when the structure is broken down. When

0 < Dt ≪ 1, for thixotropic fluids, the structure is always smallest when the

pressure gradient is largest, so the volume flux is in phase with the pressure

gradient. For larger values of Dt, the structure is the most broken down just

after the maxima of the pressure gradient, so the flux is largest at a compromise

between large pressure gradient and broken down structure. As shown in Figure

7.22, this compromise causes the flux to lag slightly behind the pressure gradient.

A similar process takes place for antithixotropic fluids, except that the structure is

the most broken down just before the pressure gradient maximum, so the volume
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flux leads the pressure gradient.

A clear direction for further work on this flow set-up would be to explore the

parameter space of the full MMW model, in particular to see how the value of

the parameters a, b, c, and d affect the lags and leads in the flow. In addition,

a study of a viscoplastic model, such as the regularised Houška model used in

previous sections, would be insightful, particularly regarding the yielding and

unyielding of the fluid and how it affects the volume flux.



Chapter 8

Conclusions and Future Work

The focus of this thesis was on slowly varying flows of complex fluids. We ob-

tained asymptotic solutions for two closely related pipe-flow problems in order to

determine the characteristic behaviour and underlying mechanisms of thixotropic

flow in slowly varying geometries, and whether thixotropic and antithixotropic

fluid flow could be described in general, in the sense that their qualitative features

could be predicted without a detailed analysis. In addition, we investigated the

application of the standard FEM software COMSOL to these problems in order

to explore the strengths and weaknesses of ‘off-the-shelf’ numerical packages for

such flows.

8.1 Conclusions

In Chapters 2–5 we studied the unsteady flow of thixotropic fluids in a slowly

varying pipe. We analysed the behaviour of thixotropic fluids in detail using three

rheological models, the simplified and full Moore–Mewis–Wagner viscous models

(the sMMW and MMWmodels, respectively), and the Houška viscoplastic model,

and obtained a complete description of their behaviours. Work on the simpler

set-up of steady flow in a slowly varying 2D channel done by Pritchard et al. [29]

(PWM) had suggested that the behaviour of thixotropic fluids in these problems

could be described in general. Specifically, PWM suggested that it could be

208
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described by the thixotropic reference case (TRC), in which in a widening channel

the streamwise velocity perturbation is positive near the centre of the pipe and

negative near the walls, and the structure parameter perturbation is negative

everywhere and largest at the centreline (see Section 3.3.1 and Figure 3.1 for

details).

In the process of exploring the behaviour of the three rheological models, we

found that the TRC fails to capture the full range of behaviour that each rheo-

logical model is capable of displaying, and so the corresponding description of the

mechanisms presented by PWM is not complete. While the description presented

by PWM is in accord with physical intuition, it does not account for the subtle

interaction between two aspects of the dynamics. In our analysis, we found that

the behaviour of the fluid depends on a combination of the effects of the pressure

gradient perturbation and a thixotropic stress term. In some cases a fine balance

between these two terms emerges and so a small change in either can yield be-

haviour which is not described by the TRC. For example, the streamwise velocity

perturbation is the opposite of what is predicted by the TRC for some particu-

larly strongly antithixotropic sMMW and MMW fluids, and some low-yield-stress

Houška fluids. Consequently, we had to refine the description of the mechanisms

presented by PWM to include the more subtle effects of the pressure gradient

perturbation and the thixotropic stress term.

The important consequence of this work is that those studying thixotropic fluids

in slowly varying geometries should be aware that commonly used rheological

models, such as the MMW and Houška models, may exhibit behaviour that is

inconsistent with the TRC. In particular, the behaviour of these models for one

set of parameters may be qualitatively different from the behaviour for another

set, so one cannot assume that any particular set of results represents the general

description of the problem. This discovery complicates the use of thixotropic

models in slowly varying geometries, and a detailed analysis similar to that pre-

sented in Chapters 4 and 5 may be necessary to determine whether any particular

behaviour is generic.

In Chapter 6, we investigated the application of the off-the-shelf FEM package

COMSOL to the set-up in Chapters 2–5. It is clear that the numerical solutions
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obtained are least accurate when the shear rate is low, which occurs near the

centre of the pipe for the sMMW and MMW models, and in or at the edges

of the pseudo-plug in the Houška model. Various attempts to resolve this issue

were not entirely successful, which suggests that off-the-shelf FEM software is

not suitable for this kind of problem, or was not implemented correctly.

Despite the drawbacks of the numerical results in Chapter 6, some numerical

results provided support for the asymptotic results in Chapter 4. For example, as

shown in Section 6.5, we obtained numerical results that were accurate away from

the centreline, including for an illustrative case where the behaviour is inconsistent

with the TRC (see Figure 6.9).

In Chapter 7, we investigated the oscillating flow of a thixotropic fluid in a uni-

form pipe. This set-up is simpler than that studied in Chapters 2–6, and as a

consequence we were able to make more analytical and numerical progress. In

Chapters 2–5 we specified the volume flux, which gave the streamwise velocity

profiles (including the TRC) their characteristic shape. Conversely in Chapter

7, we specified the pressure gradient, which meant there was no fine balance be-

tween the pressure gradient and the thixotropic stress term, so the streamwise

velocity perturbation profiles were always positive everywhere or negative every-

where. Consequently, we were able to qualitatively describe the behaviour of a

fluid based on whether it was thixotropic or antithixotropic.

Unlike in Chapters 2–5, we obtained asymptotic solutions for this set-up for both

small and large Dt. The large-Dt solutions revealed that the structure parameter

for strongly thixotropic fluids is constant in time, though not in space, at leading

order. We would expect this behaviour because the structure of a thixotropic

fluid which evolves over a long timescale adjusts too slowly to changes in the

pressure gradient to affect the leading-order behaviour.

The application of COMSOL to the set-up in Chapter 7 was more successful than

for the set-up studied in Chapters 2–5, because only one spatial dimension was

involved and so we could use a much higher resolution. We obtained numerical

solutions that were sufficiently accurate to allow an exploration of thixotropic

behaviour for all values of Dt, including that out of the scope of the asymptotic

approach, when Dt = O(1). We showed the changing effect of thixotropy on the
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flow as Dt is varied.

The most interesting behaviour occurs when Dt = O(1), when thixotropic ef-

fects yield a noticeable lag in the flow quantities. For both thixotropic and an-

tithixotropic fluids, the structure lags behind the pressure gradient, as expected,

but the effect of this lag on the velocity, and therefore the volume flux, differs

for thixotropic and antithixotropic fluids. In thixotropic fluids, the velocity and

flux lag behind the pressure gradient, but in antithixotropic fluids, they lead the

pressure gradient. This behaviour occurs because the peaks in the velocity and

structure are controlled by a balance between low structure and high pressure

gradient. A high velocity and volume flux requires a low structure and a high

pressure gradient, which when Dt = O(1) occurs just after the peak in the pres-

sure gradient for thixotropic fluids and just before the peak for antithixotropic

fluids.

8.2 Future work

A continuation of the work in Chapters 2–6 is an obvious direction in which

to build on the work described in this thesis. Interesting unexpected behaviour

arose in the weakly thixotropic regimes, and whether this persists into regimes of

strong thixotropy is an important open question. It is important to use the results

of Chapter 6 to build an appropriate numerical solver to fully verify the results

of Chapters 4 and 5. Following the verification, one could study the strongly

thixotropic regimes as done in Chapter 7, which would allow a full analysis for

the problem to be completed, and to determine whether and how the behaviour

inconsistent with the TRC arises in more strongly thixotropic flow.

A clear direction for extending the work in Chapter 7 is to study the Houška

model for the full range of the Deborah number Dt. In the analysis of the quickly

adjusting regime in Section 7.4, the absence of pathological behaviour meant that

Houška fluid flow provided a useful insight into slowly varying thixotropic flow,

and we expect it to do the same for the balanced regime and the slowly adjusting

regime.
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In addition to these directions, one may also consider applying the asymptotic

approach employed in this thesis to other lubrication set-ups. Such set-ups include

free-surface thin-film and rivulet flows, which have been studied in the context of

non-Newtonian fluids by Hewitt and Balmforth [22] and by Wilson and co-workers

[44, 81, 82].

It is clear from the work presented in this thesis that thixotropic fluids continue

to be an interesting and sometimes unpredictable area of research. Much work

remains to be done to fully understand the behaviour and role of thixotropic

fluids in industrial and everyday settings.



Appendix A

sMMW model

In this appendix, we obtain the centreline behaviour (flat, cusp or singularity)

of w1 (Section A.1) and λ1 (Section A.2) from the explicit solutions presented in

Section 4.1.3.

A.1 Behaviour of w1 near the centreline

In this section, we analyse the behaviour of w1, given by (4.1.39), near the cen-

treline. In particular, we first determine the dominant terms of w1 and ∂w1/∂r

as r → 0, and determine the nature of w1 at the centreline, then we find the sign

of w1 at the centreline. We use this information to determine when w1 agrees

with the TRC and when it does not.

The behaviour of w1 near the centreline depends on which term in r in (4.1.39)

dominates as r → 0, i.e. which exponent of r has the lowest value. The exponents

of r in (4.1.39) are

r0, r(n+1)/n, r(2n−c)/n, and r(3n−c+1)/n. (A.1.1)

As n > 0, the constant term in w1 is always larger than the term in r(n+1)/n as

r → 0, so the term in r(n+1)/n never dominates as r → 0. In addition, the term

in r(2n−c)/n is always larger than the term in r(3n−c+1)/n as r → 0, which becomes

213
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clear by rewriting the exponent (3n−c+1)/n as (2n−c)/n+(n+1)/n. So either

the constant term or the term in r(2n−c)/n dominates as r → 0, so the centreline

behaviour of w1 is determined by whether (2n− c)/n is greater than or less than

zero. When (2n− c)/n > 0, r(2n−c)/n → 0 as r → 0 and so the constant term in

w1 dominates. When (2n − c)/n < 0, r(2n−c)/n grows without bound as r → 0

and so the term in r(2n−c)/n in w1 dominates. We note that for the expansion

scheme to be valid we require the flux condition (3.1.12) to be satisfied, i.e. we

require rw1 to be integrable. The flux condition is satisfied when r(2n−c)/n+1 is

integrable, i.e. when (2n− c)/n+ 1 > −1, or 4n− c > 0.

The behaviour of ∂w1/∂r at the centreline is dominated by the term in r with

the lowest value exponent. The terms of r are the derivatives with respect to r

of those in (A.1.1), and are given by

r1/n, r(n−c)/n, and r(2n−c+1)/n. (A.1.2)

As n > 0, the term in r1/n → 0 as r → 0, so if this term dominates, ∂w1/∂r → 0

and w1 is flat at the centreline. The term in r(n−c)/n is always larger than the

term in r(2n−c+1)/n as r → 0, which becomes clear by rewriting the exponent

(2n − c + 1)/n as (n − c)/n + (n + 1)/n. So we may determine the centreline

behaviour of ∂w1/∂r by studying the exponent (n− c)/n. When 0 < (n− c)/n,

∂w1/∂r → 0 as r → 0, so w1 is flat at the centreline. When −1 < (n− c)/n < 0,

i.e. when 0 < 2n − c < n, ∂w1/∂r → ∞ as r → 0, so w1 has a cusp at the

centreline (when 0 < 2n− c, the constant term dominates in w1 as r → 0, so w1

remains finite). When (n − c)/n < −1, i.e. when 2n − c < 0, ∂w1/∂r → ∞ as

r → 0, so w1 is singular at the centreline (when 2n − c < 0, terms in r(2n−c)/n

dominate w1 as r → 0, so w1 grows without bound).

To summarise, when n < 2n − c, the constant term in w1 dominates as r → 0

and w1 is flat and finite at the centreline. When 0 < 2n − c < n, the constant

term in w1 dominates as r → 0 and w1 has a cusp and is finite at the centreline.

When 2n− c < 0, terms in r(2n−c)/n in w1 dominate as r → 0 and w1 is singular

at the centreline. The sign of w1 at the centreline is the sign of the constant term

when 0 < 2n− c and of the coefficient of the term in r(2n−c)/n when 2n− c < 0.

We discuss the sign of w1 at the centreline in the following section.
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Sign of w1 at the centreline

We now discuss the sign of w1 at the centreline in more detail. For simplicity,

we consider the quickly adjusting regime R1,2 (D∗
t 6= 0, D∗

a = 0) and the weakly

advective regime R2,1 (D∗
a 6= 0, D∗

t = 0) separately.

Sign of w1 at the centreline in R1,2

In the quickly adjusting regime (D∗
a = 0), the solution for w1 (4.1.39) is

w1(r, z, t) = −D∗
tκ

(1−b)/bn− 1

b

Q′

Q

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

α(2n−c)/n (A.1.3)

×
[

3n+ 1

(4n− c)(n+ 1)

(

1−
( r

α

)(n+1)/n
)

− 1

2n− c

(

1−
( r

α

)(2n−c)/n
)]

.

We note that κ, b, n,Q, α > 0 and r(n+1)/n → 0 as r → 0.

When (2n− c)/n > 0, w1 is finite at the centreline, with the sign of the constant

term in (A.1.3), i.e.

lim
r→0

sgn(w1) = sgn

{

−D∗
tQ

′

(

3n+ 1

(4n− c)(n+ 1)
− 1

2n− c

)}

. (A.1.4)

As stated in Section 4.1.3, we only consider decelerating flow and assume that

D∗
tQ

′ < 0, so with some rearrangement (A.1.4) becomes

lim
r→0

sgn(w1) = sgn

{

(n− 1)(n− c− 1)

(2n− c)(n+ 1)(4n− c)

}

. (A.1.5)

Given that here 2n − c > 0 and n + 1 > 0, and for the flux condition to be

satisfied, 4n− c > 0, (A.1.5) becomes

lim
r→0

sgn(w1) = sgn{(n− 1)(n− c− 1)}. (A.1.6)

So for 2n− c > 0, when n− 1 < 0 (and so n− c− 1 < 0) and when n− c− 1 > 0

(and so n−1 > 0), w1 is positive and finite at the centreline. When n−1 > 0 and

n− c− 1 < 0, i.e. when 0 < n− 1 < c, w1 is negative and finite at the centreline.



APPENDIX A. sMMW MODEL 216

We note then that w1 is positive for some antithixotropic fluids and is negative

for others.

When (2n − c)/n < 0, w1 is unbounded at the centreline, with the sign of the

coefficient of the term in r(2n−c)/n in (A.1.3), i.e.

lim
r→0

sgn(w1) = sgn {−(n− 1)} , (A.1.7)

for D∗
tQ

′ < 0 and 2n − c < 0. So when n − 1 < 0 (for thixotropic fluids) w1 is

positive and unbounded at the centreline, and when n−1 > 0 (for antithixotropic

fluids) w1 is negative and unbounded at the centreline.

Sign of w1 at the centreline in R2,1

In the weakly advective regime (D∗
t = 0), the solution for w1 (4.1.39) is

w1(r, z, t) = D∗
aκ

(1−b)/b3(3n+ 1)(n− 1)

bπ(n+ 1)

Qα′

α(n+c)/n

(

3n+ 1

πn
Qα−(3n+1)/n

)n−c

×
[

3n+ 1

(4n− c)(5n− c+ 1)

(

1−
( r

α

)(n+1)/n
)

(A.1.8)

− 1

2n− c

(

1−
( r

α

)(2n−c)/n
)

+
1

3n− c+ 1

(

1−
( r

α

)(3n−c+1)/n
)]

.

Again, we note that κ, b, n,Q, α > 0, r(n+1)/n → 0 as r → 0, and r(3n−c+1)/n <

r(2n−c)/n when 0 < r ≪ 1.

When (2n− c)/n > 0, w1 is finite at the centreline, with the sign of the constant

term in (A.1.8), i.e.

lim
r→0

sgn(w1) = sgn

{

D∗
aα

′(n− 1)

[

3n+ 1

(4n− c)(5n− c+ 1)
− 1

2n− c
+

1

3n− c+ 1

]}

.

(A.1.9)

As stated in Section 4.1.3, we only consider flow in a widening pipe and assume
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that D∗
aα

′ > 0, so with some rearrangement (A.1.9) becomes

lim
r→0

sgn(w1) = sgn

{

− 2n(n− 1)(n2 + 3(2 + c)n− (c2 + c− 1))

(2n− c)(3n− c+ 1)(4n− c)(5n− c+ 1)

}

. (A.1.10)

Given that here 2n − c > 0 (so 3n − c + 1 > 0) and n > 0, and for the flux

condition to be satisfied 4n− c > 0 (so 5n− c+ 1 > 0), (A.1.10) becomes

lim
r→0

sgn(w1) = sgn
{

−(n− 1)(n2 + 3(2 + c)n− (c2 + c− 1))
}

. (A.1.11)

The sign of n2 +3n(c+2)− (c2 + c− 1) in (A.1.11) is not immediately clear, but

by setting this term equal to zero and finding its roots, we are able to show that

it is positive for all (2n− c)/n > 0. By setting n2 + 3n(c+ 2)− (c2 + c− 1) = 0

we obtain a concave-up quadratic in n. After solving for n using the quadratic

formula, we obtain only one root n which may be positive, which is given by

n = −3

2
(2 + c) +

1

2

√
13c2 + 40c+ 32. (A.1.12)

When n is larger than this root, n2+3n(c+2)−(c2+c−1) > 0. For (2n−c)/n > 0,

so n > c/2, if
c

2
> −3

2
(2 + c) +

1

2

√
13c2 + 40c+ 32, (A.1.13)

then n is greater than the root. Following some rearrangement, (A.1.13) becomes

3c2 + 8c+ 4 > 0, (A.1.14)

which is always true because c > 0, so (A.1.13) holds, and so

n > −3

2
(2 + c) +

1

2

√
13c2 + 40c+ 32. (A.1.15)

Hence n2 + 3n(c+ 2)− (c2 + c− 1) > 0 when (2n− c)/n > 0. So we can rewrite

(A.1.11) as

lim
r→0

sgn(w1) = sgn {−(n− 1)} . (A.1.16)

So for 2n − c > 0, when n − 1 < 0 (thixotropic fluids), w1 is positive and finite
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at the centreline, and when n− 1 > 0 (antithixotropic fluids), w1 is negative and

finite at the centreline.

When (2n−c)/n < 0, w1 is finite at the centreline, with the sign of the coefficient

of the term in r(2n−c)/n in (A.1.8), i.e.

lim
r→0

sgn(w1) = sgn {−(n− 1)} , (A.1.17)

for D∗
aα

′ > 0 and 2n−c < 0. When n−1 < 0, w1 is positive and unbounded at the

centreline, and when n− 1 > 0, w1 is negative and unbounded at the centreline.

Unlike in the quickly adjusting regime, w1 is negative at the centreline for all

antithixotropic fluids in the weakly advective regime.

We summarise the sign of w1 at the centreline as follows. In the quickly adjusting

regime with D∗
tQ

′ < 0:

• when n − 1 < 0 (a > c), i.e. for all thixotropic fluids, w1 is positive at the

centreline;

• when n−1 > 0 (a < c) and n−c−1 < 0 (a > c(1−b)), i.e. for antithixotropic

fluids satisfying n− c− 1 < 0, w1 is negative at the centreline;

• when n−1 > 0 (a < c) and n−c−1 > 0 (a < c(1−b)), i.e. for antithixotropic

fluids satisfying n− c− 1 > 0, w1 is positive at the centreline.

In the weakly advective regime with D∗
aα

′ > 0:

• when n − 1 < 0 (a > c), i.e. for all thixotropic fluids, w1 is positive at the

centreline;

• when n− 1 > 0 (a < c), i.e. for all antithixotropic fluids, w1 is negative at

the centreline.

We note that for thixotropic fluids, w1 is positive at the centreline in both the

quickly adjusting regime and in the weakly advective regime. On the other hand

for antithixotropic fluids, w1 is not always negative at the centreline in the quickly

adjusting regime, as it is in the weakly advective regime.
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A.2 Behaviour of λ1 near the centreline

In this section, we analyse the behaviour of λ1, given by (4.1.40), near the cen-

treline. In particular, we first determine the dominant terms of λ1 and ∂λ1/∂r as

r → 0, and determine the nature of λ1 at the centreline, then we find the sign of

λ1 at the centreline. We use this information to determine when λ1 agrees with

the TRC and when it does not.

The behaviour of λ1 near the centreline depends on which term in r in (4.1.40)

dominates as r → 0, i.e. which exponent of r has the lowest value. The exponents

of r in (4.1.40) are

r(n−1)/n, r(2n−c−2)/n, and r(3n−c−1)/n. (A.2.1)

The term in r(2n−c−2)/n is always larger than the term in r(3n−c−1)/n as r → 0,

which becomes clear by rewriting the exponent (3n − c − 1)/n as (2n − c −
2)/n + (n + 1)/n, where n > 0. So the term in either r(n−1)/n or r(2n−c−2)/n

dominates as r → 0, and so the centreline behaviour of λ1 is determined by

the sign of (2n − c − 2)/n − (n − 1)/n, i.e. by the sign of n − c − 1. When

(n−1)/n < (2n− c−2)/n (so n− c−1 > 0), which includes only antithixotropic

fluids (n−1 > 0), the behaviour of λ1 depends on the term in r(n−1)/n, so λ1 → 0

as r → 0. When (n − 1)/n > (2n − c − 2)/n (so n − c − 1 < 0), the behaviour

of λ1 depends on the term in r(2n−c−2)/n. So when 2n − c − 2 > 0, λ1 → 0 as

r → 0, and when 2n− c− 2 < 0, λ1 grows without bound as r → 0, with the sign

determined by the coefficient of the term in r(2n−c−2)/n.

The behaviour of ∂λ1/∂r at the centreline is dominated by the term in r with

the lowest value exponent. The terms of r are the derivatives with respect to r

of those in (A.2.1), and are given by

r−1/n, r(n−c−2)/n, and r(2n−c−1)/n. (A.2.2)

As n > 0, the term in r−1/n grows without bound as r → 0 for all values of n, so

∂λ1/∂r → ±∞ as r → 0, and λ1 is infinitely steep at the centreline.
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To summarise, λ1 is singular at the centreline when 2n−c−2 < 0, which includes

all thixotropic fluids (n−1 < 0) and some antithixotropic fluids (0 < n−1 < c/2).

When 0 < 2n− c−2, λ1 is zero with a cusp at the centreline, which includes only

antithixotropic fluids (c/2 < n − 1). The sign of λ1 at the centreline is the sign

of the coefficient of the term in r(2n−c−2)/n when 2n− c− 2 < 0. We discuss the

sign of λ1 at the centreline in the following section.

Sign of λ1 at the centreline

We now discuss the sign of λ1 at the centreline in more detail. For simplicity,

we consider the quickly adjusting regime R1,2 (D∗
t 6= 0, Da = 0) and the weakly

advective regime R2,1 (D∗
a 6= 0, Dt = 0) separately.

Sign of λ1 at the centreline in R1,2

In the quickly adjusting regime (D∗
a = 0), the solution for λ1 (4.1.40) is

λ1 = −D∗
t

Q′

Q
κ(2−b)/bn− 1

bn

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−2

×
[

r(2n−c−2)/n +
(n− 1)(3n+ 1)

4n− c
α(n−c−1)/nr(n−1)/n

]

. (A.2.3)

We note that κ, b, n,Q, α > 0, so the sign of λ1 at the centreline is

lim
r→0

sgn(λ1) = lim
r→0

sgn {−D∗
tQ

′(n− 1) (A.2.4)

×
(

r(2n−c−2)/n +
(n− 1)(3n+ 1)

4n− c
α(n−c−1)/nr(n−1)/n

)}

.

When (n − 1)/n < (2n − c − 2)/n, i.e. when n − c − 1 > 0 (so n − 1 > 0), the

sign of λ1 at the centreline depends on the sign of the coefficient of the term in

r(n−1)/n in (A.2.4). Given that n− 1 > 0, r(n−1)/n → 0 as r → 0, so λ1 = 0 at the

centreline when n− c− 1 > 0.

When (n − 1)/n > (2n − c − 2)/n, i.e. when n − c − 1 < 0, the sign of λ1 at

the centreline depends on the sign of the coefficient of the term in r(2n−c−2)/n in
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(A.2.4), i.e.

lim
r→0

sgn(λ1) = lim
r→0

sgn
{

(n− 1)r(2n−c−2)/n
}

, (A.2.5)

for D∗
tQ

′ < 0. When 2n − c − 2 > 0, r(2n−c−2)/n → 0 as r → 0, so λ1 = 0 at the

centreline. When 2n− c− 2 < 0, the sign of λ1 at the centreline depends on the

sign of the coefficient of the term in r(2n−c−2)/n in (A.2.5):

lim
r→0

sgn(λ1) = sgn {n− 1} . (A.2.6)

So when n− 1 < 0 and 2n− c− 2 < 0, λ1 is negative at the centreline, and when

n− 1 > 0 and 2n− c− 2 < 0, λ1 is positive at the centreline.

Sign of λ1 at the centreline in R2,1

In the weakly advective regime (D∗
t = 0), the solution for λ1 (4.1.40) becomes

λ1 = D∗
aκ

(2−b)/b3(3n+ 1)(n− 1)

πbn

Qα′

α3

(

3n+ 1

πn
Qα−(3n+1)/n

)2n−c−2

r(2n−c−2)/n

×
[

1

n+ 1

(

1−
( r

α

)(n+1)/n
)

+
(n− 1)(3n+ 1)

(4n− c)(5n− c+ 1)

( r

α

)(−n+c+1)/n
]

.

(A.2.7)

We note that κ, b, n,Q, α > 0, and r(3n−c−1)/n < r(2n−c−2)/n when 0 < r ≪ 1, so

the sign of λ1 at the centreline is

lim
r→0

sgn(λ1) = lim
r→0

sgn

{

D∗
aα

′(n− 1)

[

1

n+ 1
r(2n−c−2)/n (A.2.8)

+
(n− 1)(3n+ 1)

(4n− c)(5n− c+ 1)
r(n−1)/nα(n−c−1)/n

]}

.

When (n − 1)/n < (2n − c − 2)/n, i.e. when n − c − 1 > 0 (so n − 1 > 0), the

sign of λ1 at the centreline depends on the sign of the coefficient of the term in

r(n−1)/n in (A.2.8). Given that n− 1 > 0, r(n−1)/n → 0 as r → 0, so λ1 = 0 at the

centreline when n− c− 1 > 0.

When (n − 1)/n > (2n − c − 2)/n, i.e. when n − c − 1 < 0, the sign of λ1 at
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the centreline depends on the sign of the coefficient of the term in r(2n−c−2)/n in

(A.2.8), i.e.

lim
r→0

sgn(λ1) = lim
r→0

sgn
{

(n− 1)r(2n−c−2)/n
}

, (A.2.9)

for D∗
aα

′ > 0. When 2n − c − 2 > 0, r(2n−c−2)/n → 0 as r → 0, so λ1 = 0 at the

centreline. When 2n− c− 2 < 0, the sign of λ1 at the centreline depends on the

sign of the coefficient of the term in r(2n−c−2)/n in (A.2.9):

lim
r→0

sgn(λ1) = sgn {n− 1} . (A.2.10)

So when n− 1 < 0 and 2n− c− 2 < 0, λ1 is negative at the centreline, and when

n− 1 > 0 and 2n− c− 2 < 0, λ1 is positive at the centreline.

In summary, in decelerating flow in the quickly adjusting regime (D∗
tQ

′ < 0) and

in a widening pipe in the weakly advective regime (D∗
aα

′ > 0), λ1 is negative and

singular at the centreline for all thixotropic fluids (n < 1, a > c). In addition, in

these regimes λ1 is positive and singular at the centreline for some antithixotropic

fluids (1 < n < c/2 + 1, c(1 − b/2) < a < c), and zero at the centreline, with a

cusp, for the other antithixotropic fluids (n > c/2 + 1, a < c(1− b/2)).



Appendix B

MMW model

In this appendix, we present explicit solutions for special cases of the MMWmodel

(Section B.1), and obtain the centreline behaviour (flat, cusp or singularity) of

w1 (Section B.2) and λ1 (Section B.3) from the centreline asymptotics presented

in Sections 4.2.3.1 and 4.2.3.2.

B.1 MMW model with b = d = 1

In this section, we obtain solutions for a special case of the MMW model. We

are able to find explicit solutions for the leading-order streamwise and transverse

velocities, the structure parameter, and the relevant perturbations. From (2.5.6),

which we rewrite here for convenience

λb
eq

(1− λeq)d
= κΓ(c−a)/2, (B.1.1)

we consider the special case in which b = d = 1. In this case, (B.1.1), following

some rearrangement, becomes

λeq =
κΓ(c−a)/2

1 + κΓ(c−a)/2
= (κ−1Γ(a−c)/2 + 1)−1. (B.1.2)

223
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Recalling that the constitutive relation, given by (2.5.4), is

η = λ, (B.1.3)

so the leading order momentum equation (3.1.2) becomes

1

r

∂

∂r

[

rλ0
∂w0

∂r

]

= −G0(z, t). (B.1.4)

At leading order (B.1.2) is

λ0 =

(

κ−1

∣

∣

∣

∣

∂w0

∂r

∣

∣

∣

∣

a−c

+ 1

)−1

, (B.1.5)

so (B.1.4) becomes

1

r

∂

∂r



r

(

−κ−1

(

∂w0

∂r

)a−c

+ 1

)−1
∂w0

∂r



 = −G0. (B.1.6)

We integrate (B.1.6) with respect to r and rearrange to obtain

(

−κ−1

(

∂w0

∂r

)a−c

+ 1

)−1
∂w0

∂r
= −G0r

2
, using

∂w0

∂r

∣

∣

∣

∣

r=0

= 0. (B.1.7)

From (B.1.7) we obtain a polynomial equation in terms of ∂w0/∂r:

−G0r

2κ

(

∂w0

∂r

)a−c

+
∂w0

∂r
+

G0r

2
= 0. (B.1.8)

We can choose a relationship between a and c so that we can solve (B.1.8) to

obtain explicit solutions for w0. We consider a−c = 1 and a−c = 2 in Appendices

B.1.1 and B.1.3 respectively.
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B.1.1 MMW model with b = d = 1 and a− c = 1

By specialising to a − c = 1, (B.1.8) becomes a linear equation in ∂w0/∂r, the

solution of which is
∂w0

∂r
=

G0κr

G0r − 2κ
. (B.1.9)

Integrating (B.1.9) with respect to r yields the solution for w0:

w0(r, z, t) = κ

(

r − α +
2κ

G0

ln

(

G0r − 2κ

G0α− 2κ

))

, (B.1.10)

using the no-slip condition. We note that, as κ > 0 and 0 ≤ r ≤ α, (B.1.10) is

only valid for G0α− 2κ < 0. Using (B.1.10) with the flux condition (3.1.6) yields

Q(t) = 2π

∫ α

0

w0(r, z, t)r dr = 2π

∫ α

0

κ

(

r − α +
2κ

G0

ln

(

G0r − 2κ

G0α− 2κ

))

r dr.

(B.1.11)

Evaluating the integral in (B.1.11) yields

Q(t) = 2πκ

[

−α3

6
− κα2

2G0

− 2κ2α

G2
0

+
4κ3

G3
0

ln

(

2κ

2κ−G0α

)]

. (B.1.12)

For a prescribed Q(t), (B.1.12) implicitly defines G0 in (B.1.10).

Using (B.1.5) and (B.1.9), we find the solution for λ0:

λ0 = 1− G0r

2κ
. (B.1.13)

Using the leading-order mass conservation equation, given by (3.1.1), we obtain

the solution for u0:

u0(r, z, t) =
κ

r

[

−
(

G0αα,z

2
+

2κ2G0,z

G2
0

)

(α2 − r2)

(G0α− 2κ)
+

6κ2G0,z

G3
0

(α− r)

+
12κ3G0,z

G4
0

ln

(

G0α− 2κ

G0r − 2κ

)

− κG0,z

G2
0

ln

(

(G0α− 2κ)α
2

(G0r − 2κ)r2

)

(B.1.14)

+
κG0,z

G2
0

(

1

2
+ ln(G0α− 2κ)

)

(α2 − r2)

]

,
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where G0,z is given, via (B.1.12), by

G0,z =

G2
0α

2α′

2
+ κG0αα

′ + 2κ2α′ − 4κ3α′

2κ−G0α
κα2

2
+

4κ2α

G0

+
4κ3α

G0(2κ−G0α)
− 12κ3

G2
0

ln

(

2κ

2κ−G0α

) . (B.1.15)

For the solutions for the perturbations, we will also need G0,t, which is given, via

(B.1.12), by

G0,t =
Q′G2

0

2πκ2

[

α2

2
+

4κα

G0

(

3κ−G0α

2κ−G0α

)

− 12κ2

G2
0

ln

(

2κ

2κ−G0α

)]−1

. (B.1.16)

We can now find solutions at O(δ) in the weakly advective and quickly adjusting

regime R1,1. We require the equations for A(r, z, t) and B(r, z, t), given by (3.3.3)

and (3.3.4) respectively, and rewritten here for convenience:

A(r, z, t) = η0 + 2

(

ηΓ − ηλ
fΓ
fλ

)(

∂w0

∂r

)2

, (B.1.17)

B(r, z, t) =
ηλ
fλ

[

D∗
t

∂λ0

∂t
+D∗

a

(

u0
∂λ0

∂r
+ w0

∂λ0

∂z

)]

∂w0

∂r
, (B.1.18)

where

ηΓ = 0, fΓ = −a

2
Γ
a/2−1
0 λb

0 +
c

2
κΓ

c/2−1
0 (1− λ0)

d, (B.1.19)

ηλ = 1, fλ = −bΓ
a/2
0 λb−1

0 − dκΓ
c/2
0 (1− λ0)

d−1. (B.1.20)

Given that b = d = 1 and a− c = 1, (B.1.19) and (B.1.20) reduce to

ηΓ = 0, fΓ = −a

2
Γ
a/2−1
0 λ0 +

c

2
κΓ

c/2−1
0 (1− λ0), (B.1.21)

ηλ = 1, fλ = −Γ
a/2
0 − κΓ

c/2
0 . (B.1.22)

Using (B.1.21) and (B.1.22) with (B.1.17) we find the equation for A(r, z, t):

A(r, z, t) =

(

1− G0r

2κ

)2

. (B.1.23)
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For R1,2, using (B.1.21) and (B.1.22) with (B.1.18) we find the equation for

B(r, z, t):

B(r, z, t) = −D∗
t

G0G0,tr
2

4κ2

(

2κ−G0r

G0κr

)c

.

Using the general solution for w1, given by (3.3.7), to obtain

w1(r, z, t) =
2κ2G1

G2
0

[

ln

(

G0α− 2κ

G0r − 2κ

)

+
2κG0(α− r)

(G0α− 2κ)(G0r − 2κ)

]

− D∗
tG0G0,t

(κG0)c

∫ α(z)

r

(

2κ

r′
−G0

)c−2

dr′. (B.1.24)

The integral in (B.1.24) can be evaluated for any integer or half-integer c > 0.

B.1.2 Comparison with the results of Ahmadpour and

Sadeghy

Ahmadpour and Sadeghy [26] (AS) obtained an explicit solution for the stream-

wise velocity of a Houška fluid in a cylindrical pipe. The structure evolution

equation of the Houška model is of the form discussed in Appendix B.1.1, and

the constitutive relation of the Houška model can be simplified to that of the

MMW model by setting the yield-stress parameters to zero. In this section, we

compare AS’s model to the full MMW model of the present work, and, upon tak-

ing the appropriate asymptotic limits of AS’s exact solution for the streamwise

velocity (denoted W (r) here), given by (18) in [26], we recover the equivalent

solution of the present work, given by (B.1.10).
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The solution for the streamwise velocity obtained by AS (18) is given by

W (r) =
1

8
(1− r2) +

1

2
(r − 1)

(

Bn∞ +
1 + S

Tx

)

− 1

2

(

r

2
− Bn∞ +

1− S

Tx

)

×
√

r2

4
+ r

(

−Bn∞ +
1− S

Tx

)

+

[

Bn2
∞ +

(S + 1)2

Tx2
+

2Bn∞(1 + S)− 4Bn0

Tx

]

+ 2 ln

(

− 2Bn∞ +
2− 2S

Tx
+ r

+ 2

√

r2

4
+ r

(

−Bn∞ +
1− S

Tx

)

+

[

Bn2
∞ +

(S + 1)2

Tx2
+

2Bn∞(1 + S)− 4Bn0

Tx

]

)

×
(

Bn0 −Bn∞

Tx
− S

Tx2

)

+
1

2

(

1

2
−Bn∞ +

1− S

Tx

)

×
√

1

4
+

(

−Bn∞ +
1− S

Tx

)

+

[

Bn2
∞ +

(S + 1)2

Tx2
+

2Bn∞(1 + S)− 4Bn0

Tx

]

− 2 ln

(

− 2Bn∞ +
2− 2S

Tx
+ 1

+ 2

√

1

4
+

(

−Bn∞ +
1− S

Tx

)

+

[

Bn2
∞ +

(S + 1)2

Tx2
+

2Bn∞(1 + S)− 4Bn0

Tx

]

)

×
(

Bn0 −Bn∞

Tx
− S

Tx2

)

, (B.1.25)

where Bn0 ∝ τy,0 and Bn∞ ∝ τy,∞ are Bingham numbers, S ∝ 1/η∞ is a viscosity

number, and Tx ∝ 1/η∞ is the Thixotropy number of Wachs et al. [46].

We simplify the Houška model, as presented by AS, to obtain a special case of

the MMW model in the present work. In particular, we set a = κ = 1, b = 1,

and m = 1 in (3) of AS to obtain the structure evolution equation of the MMW

model with a = b = d = 1 and c = 0 (equation (4.2.1), where Γ = γ̇2):

dλ

dt
= −γ̇λ+ (1− λ). (B.1.26)

We also set the yield stress parameters τy,∞ = τy,0 = 0, the high-shear viscosity
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η∞ = 0, the low-shear viscosity η0 = 1, and n = 1 in (2) of AS to obtain the

constitutive relation of the MMW model:

τ = λγ̇. (B.1.27)

Following the model simplification, the Bingham numbers become Bn0 = Bn∞ =

0 and the viscosity parameter η0 = 1 in (B.1.25). We note from AS that now

S = 1/η∞ and T = G/η∞, where G is the imposed pressure gradient of AS and,

for presentational clarity, T ≡ Tx, so we set S = T/G, where G = O(1). Now,

after simplification, (B.1.25) yields

W (r) =
1

8
(1− r2) +

1

2
(r − 1)

(

1

T
+

1

G

)

− 1

2

(

r

2
+

1

T
− 1

G

)

sq(r) +
1

2

(

1

2
+

1

T
− 1

G

)

sq(1)

− 2 ln







2

T
− 2

G
+ r + 2sq(r)

2

T
− 2

G
+ 1 + 2sq(1)







1

GT
, (B.1.28)

where

sq(r) =

√

r2

4
+ r

(

1

T
− 1

G

)

+
1

G2
+

2

GT
+

1

T 2
. (B.1.29)

We consider the limit η∞ → 0, so T → ∞. Following an asymptotic expansion

of (B.1.28) in powers of 1/T , we obtain the terms
√

(2/G− r)2/(2/G − r) and
√

(2/G− 1)2/(2/G− 1) (where 0 ≤ r ≤ 1). Taking 2/G− 1 > 0 (so G− 2 < 0,

as required in (B.1.10)), we obtain

W (r) =
1

T

(

r − 1 +
2

G
ln

(

Gr − 2

G− 2

))

+O
(

1

T 2

)

, (B.1.30)

where terms at O(1) cancel to zero. Hence by scaling W (r) via Ŵ (r) = W (r)T

in (B.1.30), we obtain

Ŵ (r) = r − 1 +
2

G
ln

(

Gr − 2

G− 2

)

+O
(

1

T

)

. (B.1.31)
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Now (B.1.31) agrees with (B.1.10), after setting κ = 1 and α = 1:

w0 = r − 1 +
2

G0

ln

(

G0r − 2

G0 − 2

)

, (B.1.32)

as required.

B.1.3 MMW model with b = d = 1 and a− c = 2

By specialising to a − c = 2, (B.1.8) becomes a quadratic equation in ∂w0/∂r,

the solutions of which are

∂w0

∂r
=

1

G0r

(

κ+
√

κ(G2
0r

2 + κ)

)

, (B.1.33)

∂w0

∂r
=

1

G0r

(

κ−
√

κ(G2
0r

2 + κ)

)

. (B.1.34)

By integrating these with respect to r we obtain

w0 =
1

G0

√

κ (G2
0r

′2 + κ)− κ

G0

ln

(

2κ2 + 2κ
√

κ(G2
0r

′2 + κ)

r′2

)∣

∣

∣

∣

∣

α

r

, (B.1.35)

w0 = − 1

G0

√

κ (G2
0r

′2 + κ) +
κ

G0

ln

(

2κ2 + 2κ
√

κ(G2
0r

′2 + κ)

)∣

∣

∣

∣

α

r

, (B.1.36)

respectively.

B.2 Behaviour of w1 at the centreline

The centreline behaviour of w1 for thixotropic fluids is determined by the relative

sizes of the exponents in the terms in

r2 and r2ζ−a+2 (B.2.1)

in (4.2.26). When 2 < 2ζ − a+ 2, the first term in (4.2.26) dominates as r → 0.

In this case, ∂w1/∂r contains only terms in r with positive exponents, which are

r and r2ζ−a+1, so ∂w1/∂r → 0 as r → 0 and w1 is flat at the centreline. When
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2 > 2ζ − a + 2, the second term in (4.2.26) dominates as r → 0. In this case,

when 2ζ − a+2 > 1, ∂w1/∂r → 0 as r → 0, so w1 is flat at the centreline. When

0 < 2ζ − a + 2 < 1, ∂w1/∂r diverges as r → 0 but w1 remains finite as r → 0,

so w1 has a cusp at the centreline. When 2ζ − a+ 2 < 0, ∂w1/∂r and w1 diverge

as r → 0, so w1 is singular at the centreline. For the expansion scheme to be

valid we require the flux condition (3.1.12) to be satisfied, i.e. we require rw1 to

be integrable. The flux condition is satisfied when 2ζ − a + 2 > −2, i.e. when

2ζ − a+ 4 > 0.

The centreline behaviour of w1 for antithixotropic fluids is determined by the

relative sizes of the exponents in the terms in

r(n+1)/n and r(2n−c)/n (B.2.2)

in (4.2.49). When (n + 1)/n < (2n− c)/n, i.e. when n > c + 1, the first term in

(4.2.49) dominates as r → 0. In this case, ∂w1/∂r contains only terms in r with

positive exponents, which are r1/n and r(n−c)/n, so ∂w1/∂r → 0 as r → 0 and w1

is flat at the centreline. When (n + 1)/n > (2n − c)/n, i.e. when n < c + 1, the

second term in (4.2.49) dominates as r → 0. In this case, when (2n−c)/n > 1, i.e.

when c < n < c+ 1, ∂w1/∂r → 0 as r → 0, so w1 is flat at the centreline. When

0 < (2n − c)/n < 1, i.e. when c/2 < n < c, ∂w1/∂r diverges as r → 0 but w1

remains finite as r → 0, so w1 has a cusp at the centreline. When (2n− c)/n < 0,

i.e. when n < c/2, ∂w1/∂r and w1 diverge as r → 0, so w1 is singular at the

centreline. For the expansion scheme to be valid we require the flux condition

(3.1.12) to hold, i.e. we require rw1 to be integrable. The flux condition is satisfied

when (2n−c)/n > −2, i.e. when n > c/4. We note that these regions of centreline

behaviour are identical to those for antithixotropic fluids when d = 0.

B.3 Behaviour of λ1 at the centreline

The centreline behaviour of λ1 for thixotropic fluids is determined by the size

of the exponent in the term in r2ζ−a in equation (4.2.30). When 2ζ − a > 1,

∂λ1/∂r → 0 as r → 0, so λ1 is flat at the centreline. When 0 < 2ζ − a < 1,
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∂λ1/∂r diverges as r → 0 but λ1 remains finite as r → 0, so λ1 has a cusp at the

centreline. When 2ζ − a < 0, ∂λ1/∂r and λ1 diverge as r → 0, so λ1 is singular

at the centreline.

The centreline behaviour of λ1 for antithixotropic fluids is determined by the

relative sizes of the exponents in the terms in

r(n−1)/n and r(2n−c−2)/n (B.3.1)

in (4.2.50). We note that ∂λ1/∂r contains a term in r−1/n and so ∂λ1/∂r always

diverges as r → 0. When (n − 1)/n < (2n − c − 2)/n, i.e. when n > c + 1, the

first term in (4.2.50) dominates as r → 0. In this case, λ1 → 0 as r → 0 because

n − 1 > 0 for antithixotropic fluids, and λ1 has a cusp at the centreline. When

(n − 1)/n > (2n − c − 2)/n, i.e. when n < c + 1, the second term in (4.2.50)

dominates as r → 0. In this case, when (2n− c− 2)/n > 0, λ1 is singular at the

centreline. When (2n− c− 2)/n < 0, λ1 → 0 as r → 0 and λ1 has a cusp at the

centreline.
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Fossum, and D. Bonn. Quick clay and landslides of clayey soils. Physics of

Fluids, 103:188301, 2009.

[49] A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid

films. Reviews of Modern Physics, 69(3):931–980, 1997.

[50] R. V. Craster and O. K. Matar. Dynamics and stability of thin liquid films.

Reviews of Modern Physics, 81(3):1131–1198, 2009.

[51] P. R. de Souza Mendes and E. S. S. Dutra. Viscosity function for yield-stress

liquids. Applied Rheology, 14(6):296–302, 2004.



BIBLIOGRAPHY 238
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Benzollösungen. Kolloid-Zeitschrift, 39(4):291–300, 1926.

[97] W. Huang and R. D. Russell. Adaptive moving mesh methods. Springer

Science & Business Media, 2011. ISBN 978-1441979155.


