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ABSTRACT 

Ships and offshore structures can experience damages due to many reasons such as 

collisions, groundings, explosions, corrosion, fatigue, overloading, or extreme 

conditions, etc. To date, the prediction of progressive damages in these structures 

is a challenging research area. The classical continuum mechanics uses partial 

differential equations which become invalid in the presence of discontinuities. By 

contrast, the recently introduced nonlocal peridynamics (PD) theory uses integro-

differential equations that are valid in both continuous and discontinuous models. 

Therefore, the peridynamics theory is highly suitable for predicting crack initiation 

and crack growth.  

In this thesis, progressive damages in ship and offshore structures are predicted by 

using peridynamics. To do that, first, novel PD models for predicting linear elastic 

deformations of 3D beam structures and 3D shell structures are developed. The 

deformations of 3D beams and 3D shell structures predicted by using the developed 

PD beam and shell models agree very well with the FEA results with less than 3% 

relative errors. It is also found that the developed PD beam and shell models are 

suitable for predicting progressive brittle damages in ship and offshore structures. 

The PD shell model can also predict the ultimate bending moment of a ship with 

only 0.102% difference from the experimental result.  

Second, novel nonlinear PD models for predicting damages in one-dimensional 

(1D), two-dimensional (2D), and three-dimensional (3D) structures, 3D beam 

structures, and plates subjected to large deformations are developed. The large 

deformations structures predicted by using the developed nonlinear PD models 

agree very well with the FEA results with maximum 5% relative errors. The 

developed nonlinear PD models show a capability to predict progressive damages 

for many complex problems. The damage patterns captured by the nonlinear PD 

models agree very well with the experimental results in the literature.   

Third, a novel energy-based PD model for fatigue cracking is also developed. 

Instead of using the cyclic bond strain range for PD fatigue equations available in 

the literature, the energy-based PD fatigue model proposes a definition of the cyclic 

bond energy release rate range and use this term for PD fatigue equations. The 

fatigue life of the structure predicted by the energy-based PD fatigue model is 

4.108% different from the experimental results while the predicted fatigue crack 

growth, 𝑞 − 𝑁 curve agrees very well with experimental results. The energy-based 

PD fatigue model can be more suitable for beam and shell structures since in these 

structures, the bond energy release rate is unique although the bond strain consists 

of in-plane, shear, and bending components.  

Finally, to reduce the computational cost for PD simulations, novel 1D and 2D 

peridynamic-based machine learning models for damage prediction are developed. 

The relations between displacements of a material point and the displacements of 

its family members as well as the externally applied forces are obtained by using 

linear regression. The machine learning models can easily be coupled with the PD 

models. Specifically, the PD model is used for the regions that are near crack 

surfaces or near boundary areas. Meanwhile, the ML model is used for the 

remaining regions to reduce the computational cost. Like the traditional PD model, 

it is found that the coupled PD-ML model is also suitable for damage prediction. 

The crack patterns predicted by using the coupled PD-ML model agree very well 

with experimental results in many complex problems. Therefore, the hybrid 
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approach of coupling ML with PD can be a potential approach for future research 

to reduce the computational cost for PD simulations while the capability of PD 

models in terms of damage prediction is maintained.  

After All, it is expected that the results of the studies carried out in this thesis can 

make a significant contribution to the development of peridynamic theory and 

expand its application to ship and offshore structures. More importantly, the PD 

models developed in this thesis without any special treatment can be used for 

practical structural analysis to predict potential brittle damages in ship and offshore 

structures in complex phenomena. Therefore, the potential of structural damages 

can be minimized and the safety of the structures can be improved. 
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1. INTRODUCTION 

 

This chapter aims to describe the background, motivation, objectives, and the 

novelty of the research contained in this Ph.D. thesis. First, the background and 

motivation of the research are presented in Section 1.1. Second, the aim and 

objectives of the research are presented in Sections 1.2 and 1.3, respectively. Next, 

the research approaches and thesis structure are presented in Sections 1.4 and 1.5, 

respectively. Finally, the assumptions adopted in this thesis are also presented.  

1.1. Background and motivations 

Damage prediction for ship and offshore structures: a big challenge  

The safety of the ship and other marine structures is very important because their 

damages can cause many crucial issues. Therefore, these structures are often 

designed with high safety factors to minimize the potential of damages. However, 

according to the report in [1], there are still 1036 total losses for vessels over 100GT 

(GT: Gross Tonnage) over the past 10 years. The losses happened to various types 

of vessels as shown in Fig. 1.1 [1]. The cargo ship has the highest number of total 

losses with 429 cases, followed by fishery, bulk, passenger, and chemical product 

vessels with 149, 93, 67, and 56 cases, respectively. These ship losses can cause 

many serious effects such as environmental damages, human life, and economic 

losses. For example, the total number of losses for tanker, LPG, and chemical 

vessels are 78 which means that there were probably many thousands tons of 

environmentally harmful products left on or under the sea. This could destroy the 

sea environment as well as kill the sea and coastal creatures.   

 

 
Fig. 1.1. Total losses by type of vessel over 100 GT from 2009 to 2018 [1] 

For the reasons of ship losses, sinking and hull related damages are two main 

reasons as shown in Fig. 1.3 [1]. The high number of ship losses due to sinking and 

hull related damages shows that there are many uncertainties in the process of the 

ship structural design and assessment. One of these uncertainties is the limitation in 

terms of predicting possible progressive damages and fully understanding the 

behaviours of the ship structures during the damage progress.  
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Ship and offshore structures can experience either brittle or ductile fractures. 

Ductile fractures are common damages on ship structures. Beyond the elastic limit 

of the steel, the ship structures can experience plastic response before being 

collapsed. Brittle fractures can also occur on a ship structure due to high cycle 

fatigue loading or when the ship is subjected to the conditions of low-temperature, 

high-loading rate, multi-axial stress constraint, or low weldability of steel [2-6]. 

 

 

 
Fig. 1.2. Causes of losses from 2009 to 2018 for vessels over 100GT [1] 

To date, analytical calculations based on regulations from classification society 

rules as well as finite element analysis (FEA) are common methods used in the ship 

structural design and assessment processes. However, in terms of damage 

prediction, the traditional finite element method (FEM) faces conceptual and 

mathematical difficulties to predict complex damages especially for multiple crack 

paths and crack branching problems since partial-differential equations used in 

CCM and FEM become invalid in presence of discontinuities.  

 

To overcome this drawback for the traditional FEM, the simplest method is the use 

of remeshing techniques. However, for complex 3D structures and stiffened 

structures with multiple crack problems, the implementation of automatic 

remeshing techniques is very difficult.  

 

To avoid the remeshing work, the extended finite element method (XFEM) was 

proposed [7-10]. This method allows cracks to pass through the elements leading 

to better approximations of crack paths without remeshing. However, XFEM uses 

additional criteria [7-10] to guide crack growth speed, direction, and coalescence 

or branching of cracks which are not easy to implement for multiple crack problems.  

 

Besides, linear elastic fracture mechanics (LEFM) was also proposed for fracture 

problems. However, in LEFM, the size of the plastic zone ahead crack tips is 

assumed to be negligible. Therefore, LEFM applies to only brittle materials and the 

method also requires initial crack existing in the structures [11-13]. This means that 

bodies with blunt notches, but no cracks cannot be analysed using LEFM. 
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Unlike LEFM, the cohesive zone model (CZM) can adequately predict the 

behaviour of uncracked structures, including those with blunt notches [14-17]. 

Moreover, the size of the plastic zone need not be negligible in comparison with 

other dimensions of the cracked geometry in CZM. As the cohesive surfaces 

separate, traction first increases until a maximum is reached, and then subsequently 

reduces to zero which results in complete separation. In CZM, the cohesive 

constitutive relation must be selected with great caution since it decides the 

accuracy of the fracture predictions [18]. Therefore, a key issue for CZM is how to 

determine cohesive relations and parameters which often require experimentally 

studies [19]. Moreover, since the constitutive parameters in CZM may not have a 

clear physical meaning, that can be difficult to identify these parameters 

experimentally.  

 

Peridynamics: a new paradigm for damage predictions 

Peridynamic (PD) is a reformulation of classical continuum mechanics using 

integro-differential equations that are valid in both continuous and discontinuous 

models [20, 21]. Therefore, discontinuities can be naturally involved in the PD 

analysis without any special treatment. Peridynamics was first introduced by Silling 

[20] in 2000. After 20 years of development, the PD theory has been widely 

expanded to many applications. The PD theory can be used to analyze both elastic 

and inelastic material responses [22-26]. Moreover, it can also be either used to 

analyze composite and polycrystalline materials [27-31] or be applied for 

multiphysics [32-34] and multiscale modeling [35, 36]. Peridynamics can also be 

combined with finite element analysis [29, 37-39] as well as implemented in the 

FEA framework [40-42]. The extensive literature surveys on peridynamics can be 

found in [43-45]. 

 

In peridynamics, the motion of a material point is influenced by the collective 

deformations of surrounding material points within a distance, 𝛿, which is called 

the horizon size. Material points within the horizon of a material point are called 

family members of that material point. As introduced by Silling [20], the motion of 

a particle in peridynamics is expressed by using integro-differential equations as  

( ) ( ) ( ) ( ), ( , , ) ( , , ) ,

xH

t t t dV t      = − − − − − +x u x t u u x x t u u x x b x  (1.1a) 

which can also be represented in the discrete form as 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 ( )( ) ( ) ( ) ( ) ( )

( , , )

( , , )

N
k j j k j k

k k j k

j j k k j k j

t
V

t


=

− − 
= +  − − − 


t u u x x
u b

t u u x x
  (1.1b) 

where 𝜌 represents the mass density, 𝐮 and 𝐛 represent displacement and body force 

vectors, respectively. In Eq. (1.1b), 𝑁 represents the number of family members of 

material point 𝑘, 𝑗 represents the family member of material point 𝑘, 𝐭(𝑘)(𝑗) 

represents the force density that material point 𝑗 exerts on material point 𝑘, and 

𝐭(𝑗)(𝑘) represents the force density that material point 𝑘 exerts on material point 𝑗. 

 

Peridynamics theory includes bond-based, ordinary state-based, and non-ordinary 

state-based formulations. In the bond-based PD (BBPD) theory, the force densities 

𝐭(𝑘)(𝑗)and 𝐭(𝑗)(𝑘) are equal in magnitude but opposite in direction [21, 43, 44]. 

However, the volumetric and deviatoric parts of strain energy density are not 
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distinguished in the bond-based theory. Therefore, the bond-based PD theory is 

only applicable for elastic material with Poisson’s ratio equal to 1/4 for 3D 

structures and 2D structures in the plane strain condition, or material with Poisson’s 

ratio equal to 1/3 for 2D structure in the plane stress condition [43, 44].  

 

In the ordinary state-based model (OSBPD), the force densities 𝐭(𝑘)(𝑗)and 𝐭(𝑗)(𝑘) 

may have opposite direction but their magnitudes can be different [44, 46]. The PD 

strain energy density includes the volumetric and deviatoric parts. Therefore, the 

OSBPD can overcome the limitation of the BBPD in terms of Poisson’s ratio. Note 

that, in both BBPD and OSBPD models, the force densities 𝐭(𝑘)(𝑗) and 𝐭(𝑗)(𝑘) are 

parallel to the line of interaction between material points 𝑘 and 𝑗 in the deformed 

configuration. On the other hand, in the non-ordinary state-based model 

(NOSBPD), the force densities 𝐭(𝑘)(𝑗) and 𝐭(𝑗)(𝑘) can have different directions and 

they may not be parallel to the line of interaction between material points 𝑘 and 𝑗 
in the deformed configuration [44, 46]. 

 

The force densities in Eq. (1.1) can be calculated by using the relation between PD 

strain energy density, 𝑊(𝑘)
𝑃𝐷 and PD force densities developed by Madenci and 

Oterkus [44] as 

( )

( )( )

( ) ( )

1
PD

k

k j

j k

W

V


= −


t

u
, ( )

( )( )

( ) ( )

1
PD

j

j k

k j

W

V


= −


t

u
 (1.2) 

where 𝑊(𝑘)
𝑃𝐷 represents the PD strain energy density of material point 𝑘. 

In peridynamics, progressive damage can be naturally involved by introducing the 

elimination of interactions between material points. When the interaction between 

two material points is broken, the force densities between these points are 

irreversibly removed, and it leads to crack growth. The state of the interaction 

between material points 𝑘 and 𝑗 can be represented by a function,  𝜓(𝑘)(𝑗) which is 

introduced by Silling and Askari [21] as 

( )( )( ) ( ) ( )

1  if interaction exists,
,

0  if interaction is broken
k j j k t


− = 


x x  (1.3) 

Therefore, the PD equation of motion given in Eq. (1.1b) can be rewritten as 

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )

1

N

k k k j k j j k j k

j

V 
=

= − +u t t b  (1.4) 

In peridynamics, the local damage on the structures is represented by the damage 

index, 𝜙(𝐱(𝑘), 𝑡). This damage index is the ratio of eliminated interactions to the 

total number of interactions associated with a material point within its horizon, and 

it can be represented as [21] 

( )
( )( ) ( )

1

( )

( )

1

, 1

N

k j j

j

k N

j

j

V

t

V




=

=

= −




x  (1.5) 

The value of the damage index is between 0 and 1, in which 𝜙 = 0 represents no 

damage at the material point, and 𝜙 = 1 represents all interactions of that material 

point with its family members are eliminated.  
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The interaction state, 𝜓(𝑘)(𝑗), given in Eq. (1.3) can be decided by using two 

common damage criteria which are critical bond stretch [20, 21, 44] and critical 

energy release rate [25, 26, 47]. The damage criterion using critical bond stretch 

can be described as [21, 44] 

( )( ) ( )( )

( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

k j c k j

k j c k j

s s

s s





 → =

 → =
 (1.6) 

where 𝑠(𝑘)(𝑗) represents the bond stretch between material points 𝑘 and 𝑗. The term 

𝑠𝑐 represents the critical bond stretch which can be estimated as [44] 

4
3 5

3
4 3

c
c

G
s

   

=
    

+ −         

 for 3D structures (1.7a) 

( )2

6 16
2

9

c
c

G
s

   
 

=
 

+ − 
 

 for 2D structures (1.7b) 

where 𝐺𝑐 represents the critical energy release rate of material, 𝜇 and 𝜅 are the shear 

modulus and Bulk modulus of the material, respectively. 

 

The damage criterion using critical bond energy release rate can be described as 

[25, 26] 

( )( ) ( )( )

( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

k j c k j

k j c k j

g g

g g





 → =

 → =
 (1.8) 

where 𝑔̄(𝑘)(𝑗) represents the energy release rate for interaction between material 

points 𝑘 and 𝑗 which can be calculated as 

( )( )( ) ( )( ) ( )( )

1

2
k j k j j kg g g= +  (1.9a) 

with  

( )( ) ( )( ) ( ) ( )

1
k j k j k j

crack

g V V
A

=   (1.9b) 

( )( ) ( )( ) ( ) ( )

1
j k j k j k

crack

g V V
A

=   (1.9c) 

where Φ(𝑘)(𝑗) and Φ(𝑗)(𝑘) represent micropotentials of the interaction between 

material points 𝑘 and 𝑗. The term 𝐴𝑐𝑟𝑎𝑐𝑘 represents a unit crack surface in the PD 

model [25, 26] which can be defined as 

2

for 1D structures

for 2D structures

for 3D structures

crack

A

A x h

x




= 



 (1.10) 

where 𝛥𝑥 represents the mesh size for the PD model.  

The term, g𝑐, in Eq. (1.8) represents the critical energy release rate for one 

interaction which can be approximated as [25, 26] 

c
c

c

G
g

N
=  (1.11) 

where 𝑁𝑐 represents the total number of interactions passing through a unit crack 
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surface [25, 26].  

For 1D structures, the unit crack surface can be considered as the beam cross-

section. Therefore, as shown in Fig. 1.3, there are 𝑁𝑐 = 12 interactions passing 

through the crack surface.  

 

 
Fig. 1.3. Counting the number of interactions passing through the crack surface 

For 2D structure, the line of interaction between two material points can pass either 

through the crack tips or through the crack surface as shown in Fig. 1.4. The 

interactions passing through the crack tips can be counted as 1/2 interaction, 

meanwhile, the interaction passing through the crack surface can be counted as 1 

interaction [25, 26]. As shown in Fig. 1.4, for 2D structures there are 24 interactions 

passing through the crack surface and 24 interactions passing through the crack tips. 

Therefore, the total number of interactions passing the unit crack surface can be 

counted as 𝑁𝑐 = 24 × 1 + 24 × 1/2 = 36. 
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Fig. 1.4. Counting the number of interactions, 𝑁𝑐, passing unit crack surface on a 

2D plate for 𝛿 = 3.015𝛥𝑥 

For 3D structure, the line of interaction between two material points can pass 

through either crack edge, or crack corner, or crack surface, 𝐴𝑐𝑟𝑎𝑐𝑘 as shown in Fig. 

1.5. The interaction passing through the crack surface can be counted as 1 

interaction. The interaction passing through the crack edges can be counted as 1/2 

interaction, meanwhile, the interaction passing through the crack corners can be 

counted as 1/4 interaction. For a PD model with a horizon size of 𝛿 = 3.015𝛥𝑥, 

there are 392 interactions passing through the unit crack surface, 320 interactions 

passing through the crack edges, and 32 interactions passing through the crack 

corners. Therefore, the total number of interactions passing the unit crack surface 

can be counted as 𝑁𝑐 = 392 × 1 + 320 × 1/2 + 32 × 1/4 = 560. 

 
(a) 

 
(b) 
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(c) 

Fig. 1.5. Interaction passing (a) crack edges, (b) crack corners, (c) a point inside 

crack surface on 3D structures for 3.015 x =   

Research gaps 

Although the PD theory has many applications, developing a PD model for complex 

structures such as a ship and offshore structures is still challenging work. When 

analysing these complex structures, the existing three-dimensional PD model 

becomes computationally expensive. Therefore, simplified peridynamic structural 

models can be used to reduce the computational cost.  

 

The first peridynamic model capturing the tension and compression for 1D bars is 

introduced by Silling, et al. [48]. Later, O’Grady and Foster [49] introduced a non-

ordinary state-based PD model for the Euler-Bernoulli beam by including 

transverse displacements but disregarding the transverse shear deformations. To 

include transverse shear deformations, Diyaroglu, et al. [50] introduced a bond-

based PD model based on the Timoshenko beam theory. The PD beam model 

provided by Diyaroglu, et al. [50] has two degrees of freedom (DOF), which are 

transverse displacement and rotation. Meanwhile, the PD beam model developed 

by O’Grady and Foster [49] has one degree of freedom, which is the transverse 

displacement. It is obvious that a 3D beam, based on the Timoshenko beam theory, 

has six degrees of freedom (DOFs) including three translational displacements and 

three rotations. Moreover, beam structures in the real world often include many 

beams joined together, and each beam can be straight or curved. Therefore, a PD 

model with 6 degrees of freedom, which can capture deformations for complex 

beam structures such as a jacket platform, needs to be developed. 

 

Another common type of simplified structural model used in engineering is plates 

or shells. In peridynamics, the first simplified PD model for two-dimensional (2D) 

structures, which includes two in-plane DOFs, was introduced by Silling and 

Bobaru [51], and later by Madenci and Oterkus [44]. To account for bending 

deformations, O’Grady and Foster [52] introduced a non-ordinary state-based PD 

model based on Kirchhoff–Love plate theory. Later, Diyaroglu, et al. [50] 

developed a bond-based PD model for plates based on the Mindlin plate theory. 

The PD models developed by the authors can be applied for a single plate or flat 

shell. In practice, a shell structure can be constructed from many individual shells 

and plates. Therefore, a PD shell model with 6 DOFs that can capture the 

deformation and predict progressive damage for complex shell structures such as a 

ship needs to be developed.  
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Moreover, it is very common that large-scale bodies such as ship and offshore 

structures can experience large elastic or inelastic deformations during their 

operational process. In such cases, nonlinear analyses need to be used to capture the 

correct behaviours of the structures. A fundamental difference between elastic and 

inelastic analyses is that in the elastic solution the total stress can be directly 

evaluated from total strain, whereas in the inelastic analysis the stress and strain 

history is also included in the calculation of total stress. In peridynamics, the 

original PD model [20, 21] can capture large elastic deformations for 3D structures. 

Later, Foster, et al. [22], Mitchell [24], Madenci and Oterkus [25], Rahaman, et al. 

[53], Amani, et al. [54], Sun and Sundararaghavan [55], LADANYI and JENEI [56] 

developed PD models for inelastic deformations. However, within the elasticity, the 

current PD models for 1D and 2D structures [44, 57], for beams, plates, and shells 

[50, 58, 59] are only applicable for small deformations. Therefore, to make PD 

becomes applicable for analysing ship and offshore structures, nonlinear PD models 

for large deformations of 1D and 2D structures, as well as beam, plate, and shell 

structures need to be developed.  

 

Besides, ships and offshore structures are often designed with the expectation of a 

long lifetime in the marine environment. Due to the repetition of the loading caused 

by wind, wave, current, and other harsh conditions, fatigue damages can occur on 

the structures, which may lead to major accidents. Therefore, fatigue design 

assessment (FDA) is one of the design drivers for ship and offshore structures. For 

fatigue crack prediction, the first PD fatigue model is proposed by Silling and 

Askari [60], in which, each interaction has its own remaining life. During the cyclic 

loading processes, the remaining life is updated by using the PD fatigue equations 

for the cyclic bond strain range. However, in some special cases, the bond strain 

can consist of different components. For instance, the bond strains in beams and 

shell structures consist of in-plane, shear, and bending components [61, 62]. 

Therefore, deciding which strain will be used for the PD fatigue equation can be a 

challenge. Therefore, to investigate fatigue damages in ship and offshore structures, 

a novel PD fatigue model which can be applicable for beam and shell structures is 

needed. 

 

Moreover, solving PD equations of motion could be time-consuming, especially 

when real-time predictions on live data are required. By contrast, with the support 

of computer resources as well as the rapid growth of available data, data-driven 

models are providing an alternative, robust solution for physics-based models. 

Therefore, to speed up PD simulations for large complex ship and offshore 

structures, PD-based machine learning models for damage prediction is needed. 

 

 

1.2. The aim of the research 

This thesis aims to use peridynamics to predict accurately progressive damages in 

ship and offshore structures and clearly understand the behaviours of ship and 

offshore structures during their damage processes. Therefore, further actions can be 

made to prevent catastrophic failure and to enhance structural safety. 
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1.3. The objectives of the research 

To obtain the research aim, the research in this thesis has five main objectives: 

 

1. Development of a novel PD beam and shell models with 6DOFs for 

predicting progressive damages in the complex 3D beam and 3D shell 

structures.  

 

2. Development of novel nonlinear PD models for geometrically nonlinear 

analyses of 1D, 2D, 3D structures, 3D beams, and plates.  

 

3. Development of a novel energy-based PD fatigue model that is potentially 

applicable for predicting fatigue damage initiation and propagation in shell 

structures. 

 

4. Development of a novel PD-based machine learning model for fracture 

prediction of structures as well as to speed up the traditional PD simulations.  

 

5. Applying the developed PD models to predict progressive damages and 

residual strengths of ship and offshore structures subjected to different 

loading conditions. 

 

1.4. The research approaches 

To obtain the proposed objectives, the research in this thesis will be conducted 

using the following approaches: 

 

1. To develop novel PD models for 3D beam and 3D shells, first, the existing 

PD models in the literature for beams and shells are critically reviewed to 

find out the needed further research. Second, the kinematics of the 

Timoshenko beam and Mindlin plate in classical continuum mechanics are 

studied. Third, the linear PD formulations for analysing 3D beams and shell 

structures are developed. Next, for verification purposes, the deformations 

of beam and shell structures predicted by using the developed PD models 

are compared against FEA results. Finally, the PD beam and shell models 

are used to predict damages in beams, shells, and stiffened structures. These 

goals are achieved in Nguyen and Oterkus [61-64] as parts of the research 

described in Chapter 2. 

 

2. To develop novel nonlinear PD models for geometrically nonlinear analyses 

of 1D, 2D, 3D structures, 3D beams, and plates, first, the existing nonlinear 

PD models in the literature are critically reviewed to find out the needed 

further research. Second, the nonlinear kinematics of 1D, 2D, 3D structures, 

3D beams, and plates in classical continuum mechanics are studied. Third, 

the nonlinear PD formulations for analysing large deformations of 1D, 2D, 

3D structures, 3D beams, and plates are developed. Next, for verification 

purposes, the large deformations of the structures predicted by using the 

developed nonlinear PD models are compared against FEA results. Finally, 

the developed nonlinear PD models are used to predict damages in 2D, 3D 
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structures, 3D beams, and plates. These goals are achieved in Nguyen and 

Oterkus [65], [66, 67] as parts of the research described in Chapter 3. 

 

3. To develop a novel energy-based PD fatigue model, first, the applicability 

of the existing PD fatigue model in the literature for shells and stiffened 

structures is critical reviewed. Second, a novel energy-based PD fatigue 

model is developed by proposing novel energy-based fatigue equations in 

PD. Finally, the capability of the developed energy-based PD fatigue model 

is verified by investigating mode I and mixed-mode fatigue crack growth 

problems. This goal is achieved in Nguyen and Oterkus [68] as part of the 

research described in Chapter 4. 

 

4. To develop a novel PD-based machine learning model for fracture 

predictions, first, the potential applications of machine learning as well as 

physic-guided machine learning models for structural analysis and damage 

predictions are critically reviewed to determine the needed further 

development. Second, the PD-based machine learning model is developed 

by training data generated from modal analyses in ANSYS. Third, a hybrid 

approach to couple the developed PD-based machine learning model with 

the traditional PD model for damage predictions is developed. Finally, the 

accuracy and capability of the PD-based model and the coupled models for 

damage predictions are proven by investigating various fracture problems. 

This goal is achieved in Nguyen, et al. [69] as part of the research described 

in Chapter 5. 

 

5. To apply the developed PD models for damage predictions of ship and 

offshore structures, the developed linear PD beam and shell models are 

used. Progressive damages on a jacket platform, a hull girder, and corroded 

stiffened structures subjected to different loading conditions are predicted. 

The residual strengths of the ship and stiffened structures during damage 

processes are also investigated. This goal is achieved in Nguyen and 

Oterkus [62], [63, 64] as part of the research described in Chapter 2. 

 

1.5. Thesis Structure 

This thesis is constituted by the following 6 chapters as follows: 

 

Chapter 1. This chapter provides a review of ship losses and structural damages 

from 2009 to 2019. The critical challenges in terms of progressive damage 

prediction for ship structures are also addressed. Moreover, the suitability of 

peridynamics for damage prediction and the current research gaps are addressed. 

Finally, the research aim, objectives, and approaches as well as the thesis structure 

are described. 

 

Chapter 2. This chapter provides detailed formulations for novel PD models for 

3D beam and 3D shell structures. The bond-based PD model for three-dimensional 

complex beam structures with 6 degrees of freedom is developed based on the 

Timoshenko beam theory. The ordinary state-based PD model for 3D shell 

structures is developed based on Mindlin plate theory. The numerical techniques 
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for dealing with complex beam and shell structures are provided for the first time 

in the peridynamic literature. The energy-based damage criteria for 3D beam and 

3D shell structures are also presented. The validity of peridynamic predictions for 

beams is established by considering various examples, including straight beams, 

curved beams, and offshore jacket platform. The validity of peridynamic 

predictions for shells is achieved by predicting mechanical and thermomechanical 

deformations for a flat shell, a curved shell, and a stiffened structure. Later, the 

developed PD beam model is used to predict damages for a pre-notched beam 

subjected to impact loading, for a jacket platform subjected to ship collisions. The 

developed PD shell model is used to predict progressive damages in different plates 

subjected to out-of-plane deformations, a ship structure subjected to different 

loading conditions, a stiffened structure with localized corrosion subjected to 

uniform pressure. The residual strength of the ship and stiffened structures during 

damage propagations are also numerically calculated.  

 

Chapter 3. This chapter provides detailed formulations for novel peridynamic 

models for geometrically nonlinear analysis of 1D, 2D, 3D structures, 3D beams, 

and plates. The nonlinear PD models for 1D structures and 3D beams are bond-

based PD formulations. Meanwhile, the nonlinear PD models for 2D, 3D structures 

and plates are ordinary state-based PD formulations. The nonlinear PD equations 

of motion are obtained based on the principle of virtual displacements using Total 

Lagrange formulation. The accuracy of the developed nonlinear PD model is 

verified by comparing it with nonlinear FEA. To further demonstrate the 

capabilities of the nonlinear PD models, damages on different 2D and 3D structures, 

a spaghetti subjected to bending and torsion, a plate with a single crack subjected 

to stretching and tearing, a plate with two parallel cracks subjected to tearing, and 

a plate subjected to torsional loading are predicted.  

Chapter 4. This chapter provides detailed formulations for a novel energy-based 

peridynamic model for fatigue cracking. The definition of cyclic bond energy 

release rate and the energy-based peridynamic fatigue equations for both phases 

(crack initiation and crack growth) are introduced. For validation, first, a problem 

of mode-I fatigue crack growth is investigated. Next, different mixed-mode fatigue 

damages are also investigated and the peridynamic results are compared with the 

experimental results. 

 

Chapter 5. This chapter provides detailed formulations for a novel peridynamic-

based machine learning model for one and two-dimensional structures. The linear 

relationships between the displacement of a material point and displacements of its 

family members and applied forces are obtained by using linear regression. The 

numerical procedure for combining the peridynamic model and the machine 

learning model is also provided. The accuracy of the coupled model is verified by 

considering various examples of a one-dimensional bar and two-dimensional plate. 

To further demonstrate the capabilities of the coupled model, damage prediction for 

a plate with a pre-existing crack, a two-dimensional representation of a three-point 

bending test, and a plate subjected to dynamic load are simulated. 

 

Chapter 6. This chapter highlights the novelty and contributions of this research. 

Moreover, the recommendations for the industry as well as the limitations of the 

current research are also presented. Finally, the recommended future work is also 

addressed. 
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Chapter 7. This chapter gives final remarks for the thesis as well as summarizes 

the major findings. 

 

1.6. Assumptions used in this thesis 

In this thesis, the following assumptions are adopted: 

First, the linear and nonlinear PD beam models in Sections 2.2 and 3.3, the 

nonlinear PD model for 1D structure in Section 3.2, the PD-based machine learning 

model in Chapter 5 are based on bond-based PD formulations. Meanwhile, the PD 

models for the remaining sections and chapters are based on the ordinary state-

based formulations. 

Second, in Sections 2.2, 3.2, and 3.3, the numerical results were obtained for 

materials with zero Poisson’s ratio, 𝜈 = 0. Meanwhile, the Poisson’s ratio in 

Chapter 5 is 𝜈 = 1/3 for 2D plane stress and 𝜈 = 1/4 for 2D plane strain and 3D 

models. 

Third, the energy-based damage criteria given in Eq. (1.8) are used throughout the 

thesis except Chapter 5. In the PD models used in the thesis, every bond is assumed 

to have the same critical energy release rate, 𝑔𝑐. Therefore, the value of the critical 

energy release rate for a bond, 𝑔𝑐, is simply estimated by using Eq. (1.11).  

Finally, material nonlinearity is not considered, and materials are assumed to have 

brittle damages. 
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2. PERIDYNAMICS FOR LINEAR ANALYSIS OF BEAM AND 

SHELL STRUCTURES 
 

2.1. Introduction 

Beam structures in the real world often include many beams joined together, and 

each beam can be straight or curved. Similarly, shell structures can be constructed 

from many individual shells and plates. In classical continuum mechanics, a 3D 

beam, based on the Timoshenko beam theory, has six local degrees of freedom 

(DOFs) including three translational displacements and three rotations. Meanwhile, 

a 3D beam, based on the Euler–Bernoulli beam theory, has only three translational 

displacements. In plate theories, a plate based on Mindlin plate theory can have five 

local degrees of freedom including three displacements and two rotations. 

Meanwhile, a plate based on the Kirchhoff–Love plate theory can have three local 

degrees of freedom which are three displacements. The formulations based on 

Mindlin plate theory are commonly used for shells and complex stiffened 

structures.  

 

In FEA, to govern every parameter for complex beam and shell structures, the 

Cartesian coordinate system, which is fixed and unique, is often chosen as the 

reference coordinate system. In beam structures, each beam element has 6 global 

degrees of freedom. These 6 global DOFs can be obtained by multiplying the 

transformation matrix [70] with the vector of 6 local DOFs. In shell structures, each 

shell element also has 6 global degrees of freedom, meanwhile, based on Mindlin 

plate theory, it has only 5 local degrees of freedom. Therefore, if the drilling rotation 

is not considered as the sixth local DOF, all the resistance to the drilling rotation of 

each node comes directly from the coupling of other rotational DOFs of the non-

planar surrounding nodes. When the model is discretized with very fine mesh, 

angles of the kinks between two elements, which are located next to each other, will 

become close to 2𝜋 and the coupling effect is much reduced [71]. As a result, the 

global stiffness matrix may become singular and it results in unrealistic solution 

results. Therefore, to avoid this problem, the drilling rotation can be considered as 

the 6th local DOF and a small stiffness associated with drilling rotation can be added 

[71]. 

 

In peridynamics, the current studies in the literature only considered formulations 

for 2D plane beams and single plates and shells. Specifically, O’Grady and Foster 

[49] introduced a non-ordinary state-based PD model for a 2D plane beam based 

on Euler-Bernoulli beam theory. Later, Diyaroglu, et al. [58] also introduced an 

ordinary state-based PD model for a 2D plane beam based on this beam theory. For 

the Timoshenko beam, Diyaroglu, et al. [50] also introduced a bond-based PD 

model for 2D plane beams. The PD beam model [50] consists of two degrees of 

freedom (DOF), which are transverse displacement and rotation. For plates and flat 

shells, O’Grady and Foster [52] introduced a non-ordinary state-based PD model 

based on Kirchhoff–Love plate theory with 1 DOF which is the transverse 

displacement. Later, Diyaroglu, et al. [50] developed a bond-based PD model for 

plates based on the Mindlin plate theory. The model developed by Diyaroglu, et al. 

[50] can capture behaviours of a single plate with 3 local DOFS which are 

transverse displacement (𝑤) and two rotations (𝜃𝑥, 𝜃𝑦). 
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Therefore, in this chapter, novel PD models for 3D beam structures and 3D shell 

structures are developed. First, a bond-based PD beam model with 6 local degrees 

of freedom based on the Timoshenko beam theory is developed. The equations of 

motion for a beam element in the local coordinate system are obtained by using the 

Euler-Lagrange equation. Similar to FEA, six global equations of motion for a beam 

element are obtained by using the transformation matrix for a beam element [62]. 

Therefore, the developed PD beam model can capture deformations for a straight 

beam, curved beam, and complex beam structures. Second, a novel ordinary state-

based PD model for a flat shell with 6 local DOFs based on Mindlin plate theory is 

developed. Similar to the PD beam model, equations of motion for 6 local DOFs 

are obtained by using the Euler-Lagrange equation. Next, equations of motion for 

6 global DOFs are obtained by using the transformation matrix for a shell element 

[61, 64]. Therefore, the developed PD shell model can capture deformations for flat 

shells, curved shells, and complex stiffened structures. 

 

2.2. Peridynamics for linear 3D beam structures 

In this section, a novel bond-based peridynamic model is developed for three-

dimensional complex beam structures with 6 degrees of freedom based on the 

Timoshenko beam theory. The energy-based damage criteria for beam structures 

with 6 degrees of freedom are also presented. The validity of peridynamic 

predictions is established by considering various examples. Initially, the proposed 

PD model is used to predict the structural behaviour of straight and curved beams. 

Next, the proposed PD model is used to investigate a jacket platform. The PD 

predictions are verified by comparing the predicted results with finite element 

solutions. Finally, the developed PD beam model is used to predict damage in a 

jacket platform subjected to ship-jacket platform collisions. 

2.2.2. Beam kinematics in classical continuum mechanics 

In this section, first, stress-strain relations for beam structures are obtained. Next, 

the strain energy density is established based on the small deformation assumption. 

According to the Timoshenko beam theory, it is assumed that plane cross-section 

remains plane after the deformation, but it does not have to remain normal to the 

neutral axis [70]. The Timoshenko beam has six degrees of freedom [72]; three 

displacements (𝑢, 𝑣, 𝑤) and three cross-sectional rotations (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) as shown in 

Fig. 2.1. The displacement components of a material point can be defined as [70] 

ˆ( , , ) ( ) ( ) ( )y zu x y z u x z x y x = + −  (2.1a) 

ˆ( , , ) ( ) ( )xv x y z v x z x= −  (2.1b) 

ˆ( , , ) ( ) ( )xw x y z w x y x= +  (2.1c) 

where 𝑥 represents the beam’s longitudinal axis which is located at the centreline 

of the beam and  𝑢̂, 𝑣̂, 𝑤̂ represent the displacement components at the centreline 

of the beam. 
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Fig. 2.1. Beam configuration with 6 DOFs 

By using the displacement components defined in Eq. (2.1), the linear strain 

components of the beam can be calculated as 

, , , ,
ˆ

xx x x y x z xu u z y  = = + −  (2.2a) 

, , , ,
ˆ

xy y x x z x xu v v z  = + = − −  (2.2b) 

, , , ,
ˆ

xz z x x y x xu w w y  = + = + +  (2.2c) 

0yy zz yz  = = =  (2.2d) 

Based on the small deformation assumptions in linear elasticity, Cauchy stress 

components can be directly calculated from linear strain components as [70] 

( ), , ,
ˆ

xx xx x y x z xE E u z y   = = + −  (2.3a) 

( ), ,
ˆ

xy xy x z x xG G v z   = = − −  (2.3b) 

( ), ,
ˆ

xz xz x y x xG G w y   = = + +  (2.3c) 

0yy zz yz  = = =  (2.3d) 

where 𝐸 represents the elastic modulus and 𝐺 represents the shear modulus. The 

strain energy per unit length of the beam can be calculated as 

2 2 2

1 2
2 2 2

xx xy xz
A

E G G
U dA U U  

 
= + + = + 

 
  (2.4a) 

with 

2

1
2

xx
A

E
U dA=   (2.4b) 

2 2

2
2

xy xz
A

G
U dA  = +   (2.4c) 

where 𝐴 represents the cross-sectional area of the beam. 

 

Utilizing the strain definition given in Eq. (2.2), the strain energy per unit length of 

the beam given in Eq. (2.4) can be rewritten as  

( ) ( )2 2 2 2 2

1 , , , , , , , ,
ˆ ˆ2 2

2
x y x z x y x z x x y x z x

A

E
U u z y yz u z y dA      = + + − + −

   (2.5a) 
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( ) ( ) ( )

( ) ( )( )

22 2 2 2

, , ,

2

, , ,

ˆ ˆ

2 ˆ ˆ2 2

x z x y x x

A

x y x z x x

v w z yG
U dA

y w z v

  

  

  − + + + +
   =
 
+ + − −  

  (2.5b) 

By considering a beam with symmetric cross-section, the area moment of inertia 

and the first moment of area are obtained as 
2 2;  ;  0yy zz yz

A A A
I z dA I y dA I yzdA= = = =    (2.6a) 

0;  0y z
A A

S zdA S ydA= = = =   (2.6b) 

By utilizing relations given in Eq. (2.6), strain energy per unit length can be written 

as 

( )2 2 2

1 , , ,
ˆ . .

2 2
x yy y x zz z x

EA E
U u I I = + +  (2.7a) 

( ) ( ) ( )
22 2 2 2

2 , , ,
ˆ ˆ

2 2
x z x y x x

A

GA G
U v w z y dA     = − + + + +

       (2.7b) 

By adding the shear correction factor, 𝑘𝑠 [73], and replacing ∫ (𝑧2 + 𝑦2)𝑑𝐴
𝐴

 by 

torsional constant, 𝑘𝑡 [74], Eq. (2.7b) becomes  

( ) ( )
22 2

2 , , ,
ˆ ˆ

2 2

s t
x z x y x x

k GA k G
U v w   = − + + +

  
 (2.8) 

By substituting Eq. (2.7a), (2.8) into Eq. (2.4a) the strain energy per unit length of 

the beam can be written as  

( )

( ) ( )

2 2 2

, , ,

22 2

, , ,

ˆ . .
2 2

ˆ ˆ      
2 2

x yy y x zz z x

s t
x z x y x x

EA E
U u I I

k GA k G
v w

 

  

= + +

 + − + + +
  

 (2.9) 

The strain energy density can be defined as 

( )

( ) ( )

2 2 2

, , ,

22 2

, , ,

ˆ . .
2 2

ˆ ˆ             
2 2

x yy y x zz z x

s t
x z x y x x

U E E
W u I I

A A

k G k G
v w

A

 

  

= = + +

 + − + + +
  

 (2.10) 

The strain energy density can also be decomposed into its axial, bending, shear and 

torsional components as 

axial bending shear torsionalW W W W W= + + +  (2.11a) 

where 

2

,
ˆ

2
axial x

E
W u=  (2.11b) 

( )2 2

, ,
2

bending yy y x zz z x

E
W I I

A
 = +  (2.11c) 

( ) ( )
22

, ,
ˆ ˆ

2

s
shear x z x y

k G
W v w  = − + +

  
 (2.11d) 

2

,
2

t
torsional x x

k G
W

A
=  (2.11e) 

2.2.3. Beam kinematics in peridynamics 

In the PD, a beam is uniformly discretized into material points along the beam 

centre line as shown in Fig. 2.2. As explained by Madenci and Oterkus [44], the 
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equation of motion can also be derived based on the principle of virtual work by 

satisfying the Lagrange equation. Therefore, in Section 2.3.1, a PD form of strain 

energy is established, and the PD constants are obtained by comparing SED in PD 

and classical continuum mechanics. After obtaining the Lagrangian function from 

kinetic energy and total potential energy, the equation of motion for the beam is 

obtained by using the Euler-Lagrange equation in Section 2.3.2. 

 
Fig. 2.2. PD material points and horizon size for a beam 

2.2.3.1. Strain energy density 

Similar to the SED in classical continuum mechanics provided in Eq. (2.11a), the 

SED for a beam in PD can also be represented as 

( ) ( ) ( ) ( ) ( )

PD PD PD PD PD

k axial k bending k shear k torsional kW W W W W= + + +  (2.12) 

Peridynamic form of the axial part of SED was introduced by Diyaroglu [75] as 
2

( ) ( )

( ) ( )

1

1 1

2 2

N
j kPD

axial k ax j

j

u u
W C V

=

− 
=  

 
  (2.13) 

In which, the bond constant 𝐶𝑎𝑥 is defined as [75] 

2

2
ax

E
C

A
=  (2.14) 

In Eq. (2.13), 𝑁 represents the number of family members of material point 𝑘, 𝑗 
represents the family member material point 𝑘. The terms 𝑢(𝑘) and 𝑢(𝑗) represent 

the axial displacement of material points k and j, respectively. The parameter 𝜉 

represents the distance between two material points 𝑘 and 𝑗. 
 

Peridynamic form of bending part of SED in Eq. (2.12) can be expressed as 
2 2

( ) ( ) ( ) ( )

( ) ( )

1

1 1

2 2

N
y j y k z j z kPD

bending k by bz j

j

W C C V
   


 =

 − −   
= +    

     
  (2.15) 

where 𝐶𝑏𝑦 and 𝐶𝑏𝑧 represent the bending bond constants which can be determined 

as follows. 

First, the rotational angles of material point 𝑗 are expressed by using the first two 

terms in Taylor’s series expansion as 

( ) ( ) ( ), ( ) ( )( )y j y k y k x j kx x  = + −  (2.16a) 

( ) ( ) ( ), ( ) ( )( )z j z k z k x j kx x  = + −  (2.16b) 

or  
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( ) ( )

( ), ( )( )

y j y k

y k x k j

 
 



−
=  (2.16c) 

( ) ( )

( ), ( )( )

z j z k

z k x k j

 
 



−
=  (2.16d) 

with 

( ) ( )

( )( )

j k

k j

x x




−
=  (2.16e) 

By using the relations in Eq. (2.16), the PD form of bending part of SED in Eq. 

(2.15) can be written as 

( ) ( )
2 2

( ) , ( )( ) , ( )( ) ( )

1

1 1

2 2

N
PD

bending k by y x k j bz y x k j j

j

W C C V    
=

 = +
    (2.17a) 

or 

( ) ( )
2 2

( ) , , ( )

1

1 1

2 2

N
PD

bending k by y x bz y x j

j

W C C V  
=

 = +
    (2.17b) 

Next, bending strain energy density given in Eq. (2.17b) can be rewritten in the 

integral form by disregarding the peridynamic interactions beyond the horizon as 

( ) ( ) ( )
2 2

, ,

0

1
2

4

PD

bending by y x bz y xW x A C C d



    = +
    (2.18) 

After performing the integrations in Eq. (2.18), the strain energy density for the 

bending part becomes  

( ) 2 2 2

, ,

1

4

PD

bending by y x bz z xW x A C C   = +   (2.19) 

By comparing SED in Eq. (2.19) and Eq. (2.11c), the PD constants for bending can 

be determined as 

2 2

2 yy

by

EI
C

A 
=  (2.20a) 

2 2

2 zz
bz

EI
C

A 
=  (2.20b) 

Peridynamic form of the shear part of SED in Eq. (2.12) can be expressed as 
2

( ) ( ) ( ) ( )

( )( )

( ) ( )2
1

( ) ( ) ( ) ( )

( )( )

21 1

2 2

2

j k z j z k

k j
N

PD

shear k s j

j
j k y j y k

k j

v v

W C V
w w

 





 




=

 − + 
−  

  
=  

− +  
+ +  
  

  (2.21) 

where 𝐶𝑠 represents the shear bond constant which can be determined as follows.  

First, similar to the bending part, the explicit expression of shear SED in Eq. (2.21) 

can be written in integral form as 

( ) ( )
22

( ) , ,

0

1
2

4

PD

shear k s x z x yW AC v w d



    = − + +
    (2.22) 

Next, by performing integrations in Eq. (2.22), the peridynamic form of the shear 

part of SED can be rewritten as 

( ) ( )
222

, ,

1

4

PD

s s x z x yW A C v w   = − + +
  

 (2.23) 

By comparing Eq. (2.23) and Eq. (2.11d), the PD constant for the shear part of SED 

can be defined as 
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2

2 s
s

k G
C

A
=  (2.24) 

Peridynamic form of the torsional part of SED in Eq. (2.12) can be explicitly 

expressed according to Diyaroglu [75] as  
2

( ) ( )

( ) ( )

1

1 1

2 2

x j x kPD

torsional k t j

j

W C V
 


=

− 
=  

 
  (2.25a) 

In which, the torsional bond constant tC  can be defined as [75] 

2 2

2 t
t

k G
C

A 
=  (2.25b) 

 

2.2.3.2. Equations of motion 

The equations of motion for a beam can be achieved by using the Euler-Lagrange 

equation [44]. The Euler-Lagrange equation can be written as 

0
i i

d L L

dt q q

  
− = 

  
 (2.26) 

where 𝐿 represents the Lagrangian, 𝑞𝑖 represents the degree of freedom with 𝒒 =
{𝑢 𝑣 𝑤 𝜃𝑥 𝜃𝑦 𝜃𝑧} and  𝑞̇𝑖 represents the time derivative of 𝑞𝑖.  
 

The Lagrangian function for a beam can be expressed as  

L T U= −  (2.27a) 

with 

2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

12

N
yyxx zz

k k k x k y k z k k

k

II I
T u v w V

A A A


  

=

 
= + + + + + 

 
  (2.27b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 ( ) ( ) ( ) ( ) ( ) ( )

PDN
k x k k y k k z k k

k

k x k x k y k y k z k z k

W b u b v b w
U V

m m m  =

 − − −
=  

 − − − 
  (2.27c) 

where 𝑇 represents the total kinetic energy, 𝑈 represents the total potential energy, 

𝑏𝑥(𝑘), 𝑏𝑦(𝑘), 𝑏𝑧(𝑘)  represent the applied body forces, 𝑚𝑥(𝑘), 𝑚𝑦(𝑘), 𝑚𝑧(𝑘) represent 

the moment per unit volume at material point k. Substituting Lagrangian provided 

in Eq. (2.27) into Eq. (2.26), the peridynamic form of the equation of motion for a 

beam can be obtained as 

( ) ( )

( ) ( ) ( )

1

N
j k

k ax j x k

j

u u
u C V b

=

− 
= + 

 
  (2.28a) 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 2

N
j k z j z k

k s k j j y k

j

v v
v C V b

 
 

=

− + 
= − + 

 
  (2.28b) 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 2

N
j k y j y k

k s k j j z k

j

w w
w C V b

 
 

=

− + 
= + + 

 
  (2.28c) 

( ) ( )

( ) ( ) ( )

1

N
x j x kxx

x k t j x k

j

I
C V m

A

 


=

− 
= + 

 
  (2.28d) 
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( ) ( )

( ) ( )

1

( ) ( ) ( ) ( )

( )( ) ( ) ( )

1

1

2 2

N
yy y j y k

y k by j

j

N
j k y j y k

s k j j y k

j

I
C V

A

w w
C V m

  




 
 



=

=

− 
=  

 

− + 
− + + 

 





 (2.28e) 

( ) ( )

( ) ( )

1

( ) ( ) ( ) ( )

( )( ) ( ) ( )

1

1

2 2

N
z j z kzz

z k bz j

j

N
j k z j z k

s k j j z k

j

I
C V

A

v v
C V m

 




 
 



=

=

− 
=  

 

− + 
+ − + 

 





 (2.28f) 

The PD form of the equation of motion given in Eq. (2.28) can also be written in 

the vector form as 

( ) ( ) ( )( ) ( ) ( )

1

N
L L L L

k k k j j k

j

V
=

= +m u f b  (2.29a) 

where 

( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx
L

k

yy

zz

I

A

I

A

I

A













 
 
 
 
 
 

=  
 
 
 
 
 
 

m ; 

( )

( )

( )

( )

( )

( )

( )

k

k

kL

k

x k

y k

z k

u

v

w







 
 
 
 

=  
 
 
 
  

u ; 

( )

( )

( )

( )

( )

( )

( )

x k

y k

z kL

k

x k

y k

z k

b

b

b

m

m

m

 
 
 
 

=  
 
 
 
  

b  (2.29b) 

and 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
yx z

T
L u v w

k j k j k j k j k j k j k jf f f f f f
  =

 
f  (2.29c) 

with 

( ) ( )

( )( )

j ku

k j ax

u u
f C



− 
=  

 
 (2.29d) 

( ) ( ) ( ) ( )

( )( ) ( )( )
2

j k z j z kv

k j s k j

v v
f C

 




− + 
= − 

 
 (2.29e) 

( ) ( ) ( ) ( )

( )( ) ( )( )
2

j k y j y kw

k j s k j

w w
f C

 




− + 
= + 

 
 (2.29f) 

( ) ( )

( )( )
x x j x k

k j tf C


 



− 
=  

 
 (2.29g) 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1

2 2

y y j y k j k y j y k

k j by s k j

w w
f C C
    

 
 

− − +   
= − +   

   
 (2.29h) 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1

2 2
z

z j z k j k z j z k

k j bz s k j

v v
f C C


   
 

 

− − +   
= + −   

   
 (2.29i) 
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2.2.4. Coordinate systems and transformation of equations of motion 

The equations of motion provided in Eq. (2.28) are derived in the local coordinate 

system. However, the geometrical properties of complex structures are often 

governed with respect to the global coordinate system. Therefore, the equation of 

motion for each material point needs to be transformed from local to global 

coordinates. In this section, first, the relationship between local and global 

coordinates is provided in Section 2.4.1. Next, the transformation of the equation 

of motion for straight and curved beams are presented in Sections 2.4.2 and 2.4.3, 

respectively.  

 

2.2.4.1. Local and global coordinate systems 

In the global coordinate system, the orientation of each beam is governed by the 

unit vectors, 𝑛⃗ 𝑥, 𝑛⃗ 𝑦, 𝑛⃗ 𝑧 located at the centreline of the beam as shown in Fig. 2.3. 

If the beam is straight, every cross-section of the beam has the same unit vectors. 

On the other hand, if the beam is curved, the unit vectors for each section will be 

different as shown in Fig. 2.3. Assuming that the unit vectors of material point 𝑘 

are defined as  

( ) 1( ) 2( ) 3( )

T

x k k k kn a a a =    (2.30a) 

( ) 1( ) 2( ) 3( )

T

y k k k kn b b b =    (2.30b) 

( ) 1( ) 2( ) 3( )

T

z k k k kn c c c =    (2.30c) 

 

 
Fig. 2.3. Local and global coordinate systems  

The relationship between global and local coordinates can be defined as 

( ) 1( ) 2( ) 3( ) 1( ) 1( )

( ) 1( ) 2( ) 3( ) 2( ) ( ) 2( )

( ) 1( ) 2( ) 3( ) 3( ) 3( )

k k k k k k

k k k k k k k

k k k k k k

x a a a x x

y b b b x x

z c c b x x

       
       

= =       
       
       

H  (2.31a) 

with 

( ) ( ) ( ) ( )

T

k x k y k z kn n n =  H  (2.31b) 

where 𝐇(𝑘) represents the coordinate transformation matrix of material point 𝑘. The 
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transformation of displacement vectors can be also defined as 

( ) ( ) ( )

L G

k k k=u T u  (2.32a) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
L

k k k k x k y k z ku v w    =  u  (2.32b) 

( ) 1( ) 2( ) 3( ) 1( ) 2( ) 3( )

T
G

k k k k k k ku u u    =  u  (2.32c) 

where 𝒖(𝑘)
𝐿  and 𝒖(𝑘)

𝐺  are displacement vectors in the local and global coordinate 

systems, respectively. 𝐓(𝑘) represents the displacement transformation matrix of 

material point 𝑘. This matrix can be obtained from the coordinate transformation 

matrix, 𝐇(𝑘) as 

( )

( )

( )

k

k

k

 
=  
 

H 0
T

0 H
 (2.33) 

 

2.2.4.2. Transformation of equations of motion from local to the global coordinate 

system 

By using the relations given in Eq. (2.32a), the equations of motion for a beam 

given in Eq. (2.29a) can be written as 

( ) ( ) ( ) ( )( ) ( ) ( )

1

N
L G L L

k k k k j j k

j

V
=

= +m T u f b  (2.34) 

Multiplying both sides by 𝑻(𝑘)
𝑇  results in 

( ) ( ) ( ) ( )( ) ( ) ( )

1

N
G G T L L

k k k k j j k

j

V
=

 
= + 

 
m u T f b  (2.35) 

As a result, the equation of motion in global coordinates becomes 

( ) ( ) ( )( ) ( ) ( )

1

N
G G G G

k k k j j k

j

V
=

= +m u f b  (2.36) 

where 

( )( ) ( ) ( )( )

G T L

k j k k j=f T f  (2.37) 

( ) ( ) ( )

G T L

k k k=b T b  (2.38) 

( ) ( ) ( ) ( )

G T L

k k k k=m T m T  (2.39) 

Note that sgn(𝑥(𝑗) − 𝑥(𝑘)) in Eq. (2.17c) can be calculated in global coordinates by 

using Eq. (2.31) as 

( ) ( )1( ) 1( ) 2( ) 2( ) 3( ) 3( ) 1( ) 1( ) 2( ) 2( ) 3( ) 3( )

( )( )

j j j j j j k k k k k k

k j

a x a x a x a x a x a x




+ + − + +
=  (2.40) 

For curved beams, the transformation matrix 𝑻(𝑘) used in Eq. (2.34-2.39) can be 

replaced by 𝑻(𝑘)(𝑗) which can be defined as 

( )( )

( )( )

( )( )

k j

k j

k j

 
=  
 

H 0
T

0 H
 (2.41c) 

with 

( )( ) ( )( ) ( )( ) ( )( )

T

k j x k j y k j z k jn n n =  H  (2.41d) 

where 𝑛⃗ 𝑥(𝑘)(𝑗), 𝑛⃗ 𝑦(𝑘)(𝑗), 𝑛⃗ 𝑧(𝑘)(𝑗)can be represented as 
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( )
( )

( ) ( )

( )( )

( ) ( )

x k x j

x k j

x k x j

n n
n

n n

+
=

+
 (2.41e) 

( )
( )

( ) ( )

( )( )

( ) ( )

y k y j

y k j

y k y j

n n
n

n n

+
=

+
 (2.41f) 

( )
( )

( ) ( )

( )( )

( ) ( )

z k z j

z k j

z k z j

n n
n

n n

+
=

+
 (2.41g) 

 

2.2.5. Damage prediction for PD beam model 

For damage prediction, the PD equation of motion given in Eq. (2.36) can be written 

as 

( ) ( ) ( )( ) ( )( ) ( ) ( )

1

N
G G G G

k k k j k j j k

j

V
=

= +m u f b  (2.42) 

For beam structures, the damage criteria based on the critical energy release rate 

presented in Chapter 1 is used. By applying the same idea introduced by Madenci 

and Oterkus [25], [26], the micropotentials, Φ(𝑘)(𝑗)and Φ(𝑗)(𝑘) given in Eq. (1.9b-

c) in Chapter 1, can be calculated as 

( )( ) ( )( ) ( )( )

( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
0 0 0

( )( ) ( )( )
0

         

          + 

yx z

u v w
k j k j k j

k j
x x

u v w

k j k j k j k j k j k j k j

s s s
u u v v w w

k j k j k j k j k j k j

s

k j k j

t ds t ds t ds

t ds

 

 

  



 =  + + + + +

= + +  
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
0 0

yx z
k j k jy y z z

s s

k j k j k j k jt ds t ds
 

    + +  

 (2.43a) 

 

( )( ) ( )( )j k k j =  (2.43b) 

 

For linear elastic deformation problems, the micropotential Φ(𝑘)(𝑗) given in Eq. 

(2.43) can be simplified as  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 1 1

2 2 2

1 1 1
          + 

2 2 2

y yx x z z

u u v v w w

k j k j k j k j k j k j k j

k j k j k j k j k j k j

t s t s t s

t s t s t s
    

  

  

 = + +

+ +

 (2.44a) 

where  

( ) ( )

( )( )

j ku

k j

u u
s



−
= , ( )( ) ( )( )

1

2

u u

k j k jt f=  (2.44b) 

( ) ( )

( )( )
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

−
= , ( )( ) ( )( )

1

2

v v

k j k jt f=  (2.44c) 

( ) ( )

( )( )

j kw

k j

w w
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

−
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1

2

w w

k j k jt f=  (2.44d) 
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x x j x k

k js
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

−
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1

2
x x
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with ( )( )

u

k jf , ( )( )

v

k jf , ( )( )

w

k jf , ( )( )
x

k jf


, ( )( )
y

k jf


, ( )( )
z

k jf


 can be calculated by using Eq. (2.29). 

 

2.2.6. Numerical implementations 

In this section, the numerical implementations of the PD beam model are presented. 

First, the model discretization for a beam structure with three beams joined is 

presented in Section 2.6.1. Next, the determination for the geometrical and material 

properties of the joint points is presented in Section 2.6.2.  

2.2.6.1. Model discretization 

Fig. 2.4 demonstrates the model discretization for pin joined beam structures. As 

shown in Fig. 2.4, three beams A, B, and C are joined together at one point. To 

generate material points for this structure, each beam is firstly discretized into 

material points. After the discretization, for the points that share the same location 

such as points 𝑖(𝐴), 𝑘(𝐵), 𝑗(𝐶)as shown in Fig. 2.4, only one material point is kept, 

the other points are removed. The point 𝑘(𝐴,𝐵,𝐶) in Fig. 2.4 represents the joint point 

for three beams. 

 

 
Fig. 2.4. The connection of beams at joint points 

2.2.6.2. Geometrical and material properties at the joint points 

It is considered that the family members for a joint point 𝑘(𝐴,𝐵,𝐶) in Fig. 2.4 include 

the material points from all three beams. If material point 𝑘(𝐴,𝐵,𝐶) interacts with 

material points in beam A, the material properties and geometrical parameters of 

material point 𝑘(𝐴,𝐵,𝐶) are set the same as beam A. On the other hand, if material 

point 𝑘(𝐴,𝐵,𝐶) interacts with material points in beam B, the material properties and 

geometrical parameters of material point 𝑘(𝐴,𝐵,𝐶) are set the same as beam B. 

 

2.2.7. Numerical results 

In this section, first, for verification purposes, the results predicted by using the 

proposed PD beam model are compared with finite element solutions. The finite 

element analyses are conducted using ANSYS commercial software and the 

BEAM188 element is used. Next, in section 2.7.2, the progressive damage in the 

jacket platform subjected to ship collision is investigated.  
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The beams are made of steel material with Young’s modulus 𝐸 = 2 × 1011 N/m2, 

shear modulus 𝐺 = 1 × 1011 N/m2, and mass density of 𝜌 = 7850 kg/m3. For 

static solutions, an explicit scheme is used by implementing the adaptive dynamic 

relaxation method [76, 77] (Appendix A2).  

 

In this section, the PD predictions for a 2D frame with straight beams, a curved 

beam, and a jacket platform subjected to concentrated loads are presented. In all 

these examples, the weight of the structure is ignored. 

 

2.2.7.1. 2D frame with straight beams subjected to a constant concentrated load 

To verify the developed PD model for straight beams, a 2D frame subjected to point 

load is investigated. The steel frame consists of two beams as shown in Fig. 2.5. 

The frame is subjected to a concentrated force 𝐹3 = −3 × 10
6 N at (𝐿, 𝐿, 0) and it 

is clamped at both ends. Both beams have the same length 𝐿 = 1 m and same square 

cross-section, 𝐴 = 0.1 × 0.1 m2. 

 

In the peridynamic model, both beams are discretized with uniform 200 integration 

points. To implement the fixed ends of the frame, three fictitious points [26, 33] are 

added at both ends and all the displacement and rotation components of these 

fictitious points are set equal to zero. In Fig. 2.5(b), red points represent the material 

points in the real region. On the other hand, black points represent the material 

points in the fictitious region. In the FEA model, each beam is meshed with 200 

elements.  

 
                       (a)                                                             (b) 

Fig. 2.5. 2D frame subjected to concentrated load (a) geometry, (b) PD 

discretization  

Due to the small deformation assumption, the beams have three nonzero DOFs. 

These are transverse displacement 𝑢3, rotation 𝜃1 , and 𝜃2. Fig. 2.6-Fig. 2.8 

represent the displacement variations along each beam in the deformed 

configuration. As can be seen in the figures, PD results agree very well with the 

FEA results which shows the accuracy of the developed PD model for straight 

beams. 
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                          (a)                                                          (b) 

Fig. 2.6. Variation of displacement 𝑢3(m) in deformed configuration (a) PD, (b) 

FEA 

 

 
                       (a)                                                           (b) 

Fig. 2.7. Variation of 𝜃1 (rad) in deformed configuration (a) PD, (b) FEA 

 

 
                       (a)                                                             (b) 

Fig. 2.8. Variation of 𝜃2 (rad) in deformed configuration (a) PD, (b) FEA 

2.2.7.2. Curved beam subjected to a constant concentrated load 

To verify the developed PD model for curved beams, a semi-circular beam of radius 

R subjected to point load is investigated as shown in Fig. 2.9. The semi-circular 

beam is clamped at both ends and it is subjected to static loading 𝐹2 = −1 × 10
8 N 

and 𝐹3 = −2 × 10
6 N. The semi-circular beam has a radius of 𝑅 = 0.5 m and 

square cross-section as 𝑏 = ℎ = 0.1 m.  
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                       (a)                                                                    (b) 

Fig. 2.9. Semi-circular beam subjects to concentrated load (a) geometry, (b) PD 

discretization 

 

In the peridynamic model, the beam is discretized with uniform 500 integration 

points. In the FEA model, the beam is meshed with 500 elements. To implement 

the fixed ends of the frame, three fictitious points are added at both ends and all the 

displacement and rotation components of these fictitious points are set equal to zero. 

As shown in Fig. 2.9(b), red points represent the material points in the real region, 

and black points represent the material points in the fictitious region.  

 

Fig. 2.10-Fig. 2.11 represent the deformed shape of the beam and displacement and 

rotation variations along the semi-circular beam, respectively. It can be seen from 

Fig. 2.10 that the deformed shape of the beam predicted by PD agrees very well 

with the FEA solutions. It is also observed that all 6 DOFs of the beam predicted 

by PD and FEA have a very good agreement as shown in Fig. 2.11. 

 
Fig. 2.10. The deformed and undeformed shape of the beam 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2.11. Variation of (a) 𝑢1, (b) 𝑢2, (c) 𝑢3, (d) 𝜃1, (e) 𝜃2, (f) 𝜃3 along the beam 

length 

2.2.7.3. Jacket platform subjected to a constant concentrated load 

After verifying the developed PD model for the simple frame and curved beam, the 

accuracy of the PD model is tested for a jacket platform which consists of 28 beams 

and 16 joints. For this purpose, a 27 m high jacket platform is modeled as shown in 

Fig. 2.12. The jacket platform has the following dimensions: 𝐻1 = 9 m,𝐻2 =
18 m,𝐻3 = 27 m, 𝐿1 = 𝐿2 = 12 m, 𝐿3 = 𝐿4 = 4 m. The jacket platform is fixed 

on 4 legs at the location of 𝑥3 = 0 and subjected to concentrated loading 𝐹2 =
2 × 107 N at (𝐿3/2, −𝐿4/2, 𝐻3) and (−𝐿3/2,−𝐿4/2, 𝐻3). Each beam component 

of the jacket platform has a hollow circular cross-section. Four main legs, shown in 

red, have an outer diameter of 0.6 m and inner diameter 0.576 m, the other beams, 

shown in blue, have an outer diameter of 0.4 m, and an inner diameter of 0.384 m.  
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                       (a)                                                                (b) 

Fig. 2.12. Jacket platform (a) geometry, (b) beam numbers and joint points 

 

In the PD model, beams 1, 2, 3, 4 (shown in red) are discretized into 300 material 

points, and other beams (shown in blue) are discretized into 100 material points. 

Similarly, for the ANSYS model, beams 1, 2, 3, 4 are meshed with 300 elements, 

and other beams are meshed with 100 elements. 

 

Similar to the previous examples, to apply boundary conditions, three fictitious 

material points are added for beam 1, 2, 3, 4, 25, 26, 27, and 28 on the centreline of 

each beam, a long negative 𝑥3 direction and all DOF of these fictitious points are 

set equal to zero.  

 

Shown in Fig. 2.13-Fig. 2.18 are the variations of 6 DOFs of the jacket platform in 

the deformed shape in the global coordinates. The results obtained from the PD 

analysis match very well with those in FEA.  

 
                       (a)                                                             (b) 

Fig. 2.13. Displacement 𝑢1 (m) in deformed configuration (a): PD analysis, (b): 

FEA 
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                       (a)                                                           (b) 

Fig. 2.14. Displacement 𝑢2(m) in deformed configuration (a): PD analysis, (b): 

FEA 

 
                       (a)                                                             (b) 

Fig. 2.15. Displacement 𝑢3 (m) in deformed configuration (a): PD analysis, (b): 

FEA 

 

 
                       (a)                                                               (b) 

Fig. 2.16. Rotational angle 𝜃1 (rad) in deformed configuration (a): PD analysis, 

(b): FEA 
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                       (a)                                                              (b) 

Fig. 2.17. Rotational angle 𝜃2 (rad) in deformed configuration (a): PD analysis, 

(b): FEA 

 

 
                    (a)                                                                (b) 

Fig. 2.18. Rotational angle 𝜃3 (rad) in deformed configuration (a): PD analysis, 

(b): FEA 

 

2.2.7.4. Damage prediction for jacket platform subjected to ship collision 

In this example, the jacket platform subjected to ship collision is investigated. The 

ship is considered as a rigid body, moving with a constant velocity of 𝑣0 = 30 m/s 
in 𝑥1 direction. It is assumed that the collision is between the front part of the ship 

and the jacket platform. Therefore, only the front part of the ship is modeled as 

shown in Fig. 2.19. The geometrical and material properties of the jacket platform 

are the same as in Section 2.7.2. The structure does not have any initial damage, but 

it is hit by the ship at 𝑡 = 0. For simplification, the critical energy release rate of 

the material is chosen as 𝐺𝑐 = 𝐺I𝑐 = 720 J/m
2.  

 

Fig. 2.19 presents the extent of damage due to contact between the ship and the 

jacket platform. As the ship moves to the left, the ship growingly collides with the 

jacket platform causing the increase of damage region on the jacket platform. As 

shown in Fig. 2.19, the deformed shape of the contact region on the jacket platform 

is also associated with the shape of the contact region on the ship's body. After 0.15 

seconds, the ship with the velocity of  𝑣0 = 30 m/s  moves 0.45 m and breaks the 

jacket platform on contact regions. 
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(a) 

 
                       (b) 

 
                         (c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2.19. Damage coefficient 𝜑 in deformed configuration at (a) 𝑡 = 0, (b) 𝑡 =

0.03 s, (c) 𝑡 = 0.06 s, (d) 𝑡 = 0.09 s, (e) 𝑡 = 0.12 s, (f) 𝑡 = 0.15 s 
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2.3. Peridynamics for linear 3D shell structures 

This section focuses on developing a novel ordinary state-based peridynamic model 

to predict the thermomechanical behaviour of three-dimensional shell structures 

with 6 degrees of freedom. The numerical techniques to deal with complex shell 

structures are also provided. For verification purposes, static analyses of a flat shell, 

a curved shell, and a stiffened structure are presented. After verifying the accuracy 

of the PD model, damages on a flat shell in a double torsion problem, a flat shell 

with a rectangular cut-out subjected to bending, a hull girder subjected to bending 

and torsion, and a corroded stiffened structure subjected to uniform pressure are 

predicted.  

 

2.3.2. Kinematics of Flat Shells in Classical Continuum Mechanics 

In this section, first, the descriptions of degrees of freedom for a material point on 

a shell structure are provided. Next, the formulations for linear strain and stress are 

obtained. Finally, the strain energy density formulation in classical continuum 

mechanics for shell structures is presented. 

2.3.2.1. Degrees of Freedom 

The kinematics of a flat shell is initially based on the theory of plates by including 

transverse shear deformations [78-80]. According to assumptions in Mindlin [78], 

Reissner [79], [80], the deformation of each material point in a plate is represented 

by five degrees of freedom. As presented by Wisniewski [81], the drilling rotation, 

which is the rotation with respect to the normal axis of the plate’s plane, can be 

added.  

 

Fig. 2.20 presents a material point in a flat shell with 6 degrees of freedom; 𝑢1, 𝑢2, 

𝑢3, 𝜃1, 𝜃2, 𝜃3 in the global and  𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 in the local coordinate systems 

with respect to undeformed configuration. The components 𝑢 and 𝑣 represent the 

in-plane displacements of the mid-surface in 𝑥 and 𝑦 directions, respectively. 

Meanwhile, 𝑤 represents the transverse displacement of the middle surface in 𝑧 

direction. The rotations 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 represent the rotations of the plate around 𝑥, 𝑦 

and 𝑧, respectively. The drilling rotation, 𝜃𝑧 can be found from the rotational 

constraint equation as [81] 

 

𝑠𝑘𝑒𝑤(𝑸𝑇𝑭) = 0 (2.45a) 

where 

cos sin

sin cos

z z

z z

 

 

− 
=  
 

Q  (2.45b) 

, ,

, ,

1

1

x y

x y

u u

v v

+ 
=  

+ 
F  (2.45c) 

The rotational constraint in Eq. (2.45a) can also be written as  

( ) ( ), , , ,2 sin cos 0y x z x y zv u v u − + + + − =  (2.46) 

If 𝜃𝑧 ≠ 𝜋/2, Eq. (2.46) becomes [81] 

, ,

, ,

arctan
2

x y

z

y x

v u

v u


 −
=   + + 

 (2.47) 
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For small rotation and small strain conditions, Eq. (2.47) becomes  

( ), ,

1

2
z x yv u = −  (2.48) 

 
Fig. 2.20. A material point in a flat shell with 6 degrees of freedom 

2.2.2.2. Linear Strain Components 

For small deformations, the displacement components of a point located at (𝑥, 𝑦, 𝑧) 
with respect to mid-surface can be expressed as [70, 78-80] 

( ) ( )ˆ , , , yu x y z u x y z= +  (2.49a) 

( ) ( )ˆ , , , xv x y z v x y z= −  (2.49b) 

( ) ( )ˆ , , ,w x y z w x y=  (2.49c) 

where 𝑢, 𝑣, 𝑤  represent the displacement components of a point located at the mid-

surface and 𝑢̂, 𝑣̂, 𝑤̂  represent the displacement components at any point. 

 

By using the displacement components given in Eq. (2.49), the linear strain 

components can be determined as 
T

xx yy xy xz yz     =  ε  (2.50a) 

where  

, ,
ˆ

xx x y xu x u z =   = +  (2.50b) 

, ,
ˆ

yy y x yv y v z =   = −  (2.50c) 

( ), , , ,
ˆ ˆ

xy y x y y x xu y v x u v z  =   +   = + + −  (2.50d) 

,
ˆ ˆ

xz x yu z w x w =   +  = +  (2.50e) 

,
ˆ ˆ

yz y xv z w y w =   +  = −  (2.50f) 

Note that based on the small deformation assumptions in linear elasticity, the strain 

component in the thickness direction of the shell can be neglected, 𝜀𝑧𝑧 = 0 [70]. 

 

If the temperature effect is considered, total strain components in Eq. (2.50) can be 

determined as a summation of mechanical strain, 𝜺𝑚 and thermal strain, 𝜺𝑇 as [82] 
m T= +ε ε ε  (2.51a) 

with 
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 0 0 0
TT T T =  ε  (2.51b) 

where 𝛼 represents the coefficient of linear thermal expansion and Δ𝑇 represents 

the temperature change. Therefore, the mechanical strain components can be 

defined as 
T

m T m m m m m

xx yy xy xz yz     = − =  ε ε ε  (2.52a) 

where 

, ,

m

xx x y xu z T  = + −   (2.52b) 

, ,

m

yy y x yv z T  = − −   (2.52c) 

( ), , , ,

m

xy xy y x y y x xu v z   = = + + −  (2.52d) 

,

m

xz xz x yw  = = +  (2.52e) 

,

m

yz yz y xw  = = −  (2.52f) 

 

2.2.2.3. Stress Components 

For a linear elastic isotropic, homogeneous material with 𝜎𝑧𝑧 = 0, the stress 

components can be expressed as [82] 

T= − σ Dε Dα  (2.53a) 

with 

2

1 0 0 0

1 0 0 0

1
0 0 0 0

2
1 1

0 0 0 0
2

1
0 0 0 0

2

E







 



 
 
 
 −
 

=  
− − 

 
 

− 
  

D  (2.53b) 

 0 0 0
T

 =α  (2.53c) 

where 𝑫 represents the constitutive relations and 𝜶 represents the vector of linear 

thermal expansion coefficients. 

 

By substituting Eq. (2.50) into Eq. (2.53), the stress components can be expressed 

as 

( ) ( ), , , ,2
1

1
xx x y x y x y

E
u z v z T     


 = + + − − + 
 −

 (2.54a) 

( ) ( ), , , ,2
1

1
yy y x y x y x

E
v z u z T     


 = − + + − + 
 −

 (2.54b) 

( )
( ), , , ,

2 1
xy y x y y x x

E
u v z  


 = + + −
 +

 (2.54c) 

( )
,

2 1
xz x y

E
w 


 = + +

 (2.54d) 

( )
,

2 1
yz y x

E
w 


 = − +

 (2.54e) 
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2.2.2.4. Strain Energy Density 

In linear elasticity, the strain energy density (SED) can be expressed as [83]  
1

2

m m m m m m

xx xx yy yy zz zz xy xy xz xz yz yzW             = + + + + + 
 (2.55) 

By substituting the stress and mechanical strain components given in Eq. (2.54) and 

Eq. (2.52) into Eq. (2.55), the strain energy density can be obtained as 

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( ) ( )

, , , , , ,2

, , , , , ,2

2

, , , ,

2 2

, ,

1
1 .

2 1

1 .
1

2 1

2 1 2 1

x y x y x y x y x

y x y x y x y x y

y x y y x x

x y y x

E
W u z v z T u z T

E
v z u z T v z T

E
u v z

E E
w w

      


      


 


 
 

  = + + − − +  + −   −

 + − + + − +  − − 
 −

 + + + −
 +


   + + + −    + + 

 (2.56) 

By integrating the SED given in Eq. (2.56) through the thickness of the shell, the 

strain energy per unit area, W , can be obtained as 

( )
( )

( )
( )

( ) ( )

( ) ( )( )

( )
( ) ( )

/2
2 2

, , , , , ,2

/2

2

, ,

3
2 2

, , , , , ,2

2 2

, ,

4
4 12 1

     
1

1
     4

24(1 ) 2

     
4 1

h

x y y x x y

h

x y

x y y x x x y y y x x y

s
x y y x

Eh Eh
W Wdz u v u v u v

Eh
T T u v

Eh

k Eh
w w



 



     



 


−

 = = + + + −
  +−

 +  −  +
 −

− 
+ − + − + −  

 + + + −
  +



 (2.57) 

where h  represents the thickness of the flat shell, 𝜈 represents the Poisson’s ratio, 

𝐸 represents Young’s modulus, 𝑘𝑠 = 5/6 represents the shear correction factor to 

account for the non-uniformity of the shear stresses [70] 

 

The strain energy per unit area given in Eq. (2.57) can be represented as  

inplane bending shearW W W W= + +  (2.58a) 

with 

( )
( )

( )
( )

( ) ( )

2 2

, , , , , ,2

2

, ,

4
4 12 1

             
1

inplane x y y x x y

x y

Eh Eh
W u v u v u v

Eh
T T u v



 


 = + + + −
  +−

 +  −  +
 −

 (2.58b) 

( ) ( )( )
3

2 2

, , , , , ,2

1
4

24(1 ) 2
bending y x x y x x y y y x x y

Eh
W


     



− 
= − + − + −  

 (2.58c) 

( )
( ) ( )

2 2

, ,
4 1

s
shear x y y x

k Eh
W w w 


 = + + −
  +

         (2.58d) 

where 𝑊̄𝑖𝑛𝑝𝑙𝑎𝑛𝑒, 𝑊̄𝑏𝑒𝑛𝑑𝑖𝑛𝑔, 𝑊̄𝑠ℎ𝑒𝑎𝑟 represent the strain energy per unit area for in-

plane, bending, and shear deformations, respectively. 



38 

 

 

According to the Mindlin–Reissner plate theory, plate element is developed with 5 

degrees of freedom (DOF) as provided in Eq. (2.58). However, to simulate curved 

and stiffened structures 6 DOF shell elements are required. If the drilling rotation 

is not considered, all the resistance to the drilling rotation of each node comes 

directly from the coupling of other rotational DOFs of the non-planar surrounding 

nodes. When the model is discretized with very fine mesh, angles of the kinks 

between two elements, which are located next to each other, will become close to 

2𝜋 and the coupling effect is much reduced [71]. As a result, the global stiffness 

matrix may become singular and it results in unrealistic solution results. Therefore, 

to produce a small stiffness associated with drilling rotation, an additional fictitious 

torsional strain energy per unit area corresponding to the drilling rotation can be 

added as [71] 

inplane bending shear torsionalW W W W W= + + +  (2.59a) 

where 

( )
( )

2

, ,

1

2 1 2
torsional T z x y

Eh
W k v u



 
= − − +  

 (2.59b) 

in which 𝑘𝑇 represents torsional constant [71]. 

Note that, the value of the fictitious stiffness needs to be small enough to ensure 

that this stiffness will not distort the global solution results [71]. 

 

2.3.3. Kinematics of Flat Shells in Peridynamics 

In this section, first, the peridynamic form of strain energy density is established. 

Next, the kinetic energy, total potential energy, Lagrangian function are obtained 

by using Eq. (2.27). Finally, the equations of motion for shells are obtained by using 

the Euler-Lagrange equation given in Eq. (2.26). 

 

2.3.3.1. PD Strain Energy Density  

Similar to the strain energy per unit area in classical continuum mechanics provided 

in Eq. (2.59a), the peridynamic form of strain energy per unit area for a flat shell 

can be presented as 

( ) ( ) ( ) ( ) ( )

PD PD PD PD PD

k inplane k bending k shear k torsional kW W W W W= + + +  (2.60) 

where 𝑊̄𝑖𝑛𝑝𝑙𝑎𝑛𝑒(𝑘)
𝑃𝐷 , 𝑊̄𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑘)

𝑃𝐷 , 𝑊̄𝑠ℎ𝑒𝑎𝑟(𝑘)
𝑃𝐷  represent the components of strain 

energy per unit area for in-plane, bending, shear deformations, respectively. The 

term 𝑊̄𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙(𝑘)
𝑃𝐷  represents the additional strain energy per unit area that 

corresponds to drilling rotation. 

 

Similar to strain energy density definition by Madenci and Oterkus [44], the PD 

form of strain energy per unit area for in-plane deformations can be defined as  

( )
2

2 2

( ) 1 ( ) 2 ( ) ( ) 3 ( ) ( )( ) ( ) ( )

1

N
PD

inplane k ip k ip k k ip k ip ip k j k j

j

W a a T a T b s T V   
=

= −  +  + −   (2.61) 

where 𝜗(𝑘) represents the dilatation of material point 𝑘, 𝑠𝑖𝑝(𝑘)(𝑗) represents the 

relative bond stretch of in-plane displacement components between material point 

𝑘 and material point 𝑗.  
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In Eq. (2.61), the terms 𝑎𝑖𝑝1, 𝑎𝑖𝑝2 , 𝑎𝑖𝑝3,  and 𝑏𝑖𝑝 represent in-plane PD constants 

which can be determined as (Appendix B1) 

( )

( )1 2

3 1

4 1
ip

Eh
a





−
=

−
 (2.62a) 

( )2 12
3 1 4

1
ip ip

Eh
a a


 


= − =

−
 (2.62b) 

( ) 2 2

3 12
3 1 4

1
ip ip

Eh
a a  


= − =

−
 (2.62c) 

3

3

1
ip

E
b

 
=

+
 (2.62d) 

The effect of temperature change on dilatation term can be included as [26, 44]  

( )( ) ( )( ) ( ) ( ) ( )

1

2
N

k ip ip k j k j k

j

d s T V T  
=

= −  +   (2.63) 

where 𝑑𝑖𝑝 represents the in-plane PD constant for dilatation as (Appendix B1) 

2

2
ipd

h 
=  (2.64) 

The relative bond stretch for in-plane displacement components between two 

material points can be defined as [75] 

( ) ( )( ) ( ) ( ) ( )

( )( )

cos sinj k j k

ip k j

u u v v
s

 



− + −
=  (2.65) 

where 𝑢(𝑘), 𝑣(𝑘) and 𝑢(𝑗),  𝑣(𝑗) represent two in-plane degrees of freedom of material 

points 𝑘 and 𝑗, respectively. The parameter 𝜑 represents the angle of interaction 

between material points 𝑘 and 𝑗 with respect to the local axis, 𝑥 in the undeformed 

configuration as shown in Fig. 2.21. 

 
Fig. 2.21. Deformed and initial configuration of a flat shell in PD  

The PD form of strain energy per unit area for bending deformations can be defined 

as 
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2 2

( ) ( ) ( )( ) ( )

1

N
PD

bending k b b k b b k j j

j

W a b s V 
=

= +   (2.66) 

where 𝑎𝑏  and 𝑏𝑏 represent PD constants for bending which can be defined as 

(Appendix B2)  
3

2

3 1

48 1
b

Eh
a





−
=

−
 (2.67a) 

2

34(1 )
b

Eh
b

 
=

+
 (2.67b) 

The terms 𝜗𝑏(𝑘) and 𝑠𝑏(𝑘)(𝑗) in Eq. (2.66) can be defined as  

( ) ( )( ) ( )

1

N

b k b b k j j

j

d s V
=

=   (2.68a) 

( ) ( )( ) ( ) ( ) ( )

( )( )

cos siny j y k x j x k

b k js
     



− − + −
=  (2.68b) 

with 

2

2
bd

h 
=  (2.68c) 

Here, 𝜃𝑥 and 𝜃𝑦 represent rotational degrees of freedom with respect to 𝑥 and 𝑦 

axes as shown in Fig. 2.20. 

 

The PD form of strain energy per unit area for shear deformations can be defined 

as 
2

( ) ( ) ( ) ( )

( ) ( )

1

1

4 2

N
j k k jPD

shear k s j

j

w w
W C V

 


=

 − +
= −  

 
  (2.69) 

where 𝐶𝑠 represents PD constant for the shear deformations as (Appendix B3) 

( )3

3

1

s
s

k E
C

 
=

+
 (2.70) 

In Eq. (2.69) the terms 𝜃̄(𝑘) and 𝜃̄(𝑗) represent the rotations with respect to the line 

of action between the material points 𝑘 and 𝑗 as shown in Fig. 2.21. These rotations 

can be calculated as [50]   

( ) ( ) ( )cos sink y k x k    = − +  (2.71a) 

( ) ( ) ( )cos sinj y j x j    = − +  (2.71b) 

The torsional strain energy per unit area in PD can be defined as 
2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

1
cos sin

2 2

N
z k z j j k j kPD

torsional k t j

j

v v u u
W C V

 
  

 =

 + − −  
= − −  

  
  (2.72) 

where 𝜃𝑧(𝑘) and 𝜃𝑧(𝑗) represent drilling rotations, which are with respect to 𝑧-axis, 

of material points 𝑘 and 𝑗, respectively. 

In Eq. (2.72), 𝐶𝑡 represents PD constant for torsional deformations as (Appendix 

B4)    

3

3

2 1
t T

E
C k

 
=

+
 (2.73) 

As explained in Section.2.4, the value of the fictitious stiffness corresponding to the 

drilling rotation needs to be small enough to ensure that this stiffness will not distort 

the global solution results. As suggested by Kanok‐nukulchai [71], the value of the 
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torsional constant, 𝑘𝑇, can be chosen to make the torsional strain energy per unit 

area has the same order as the bending strain energy per unit area. Therefore, by 

equating Eq. (2.67b) and Eq. (2.73), the value of 𝑘𝑇 can be chosen as 
2

0
6

T

h
k k=  (2.74) 

where 𝑘0 constant is added for convergence in PD solution, which is inherited from 

the suggestion by Kanok‐nukulchai [71] for convergence in FEA simulations, and 

it is chosen as 𝑘0 ≥ 1.  

Note that ordinary state-based formulations for in-plane and bending strain energy 

as provided in Eq. (2.63) and (2.66) removed the limitation on Poisson’s ratio.  

 

2.3.3.2. PD Equations of Motion in the Local Coordinate System 

By using Eq. (2.27), the PD form of kinetic energy, total potential energy, and the 

Lagrangian function can be defined as 

( )
3

( )2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( )

1

2 12

pN

zz k

k k k x k y k z k k

k k

hIh
T hu hv hw A

A


     

=

 
= + + + + +  

 
  (2.75a) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

pN

PD

k x k k y k k z k k x k x k y k y k k

k

U W b u b v b w m m A 
=

= − − − − −  (2.75b) 

L T U= −  (2.75c) 

where 𝑁𝑝 represents the total number of material points of the PD model, 𝑏̄𝑥(𝑘), 

𝑏̄𝑦(𝑘) and 𝑏̄𝑧(𝑘) represent the applied forces per unit area at material point 𝑘 in 𝑥, 𝑦, 

and 𝑧 directions, respectively. The parameters 𝑚̄𝑥(𝑘) and 𝑚̄𝑦(𝑘) represent applied 

moments per unit area with respect to local coordinate 𝑥 and 𝑦, respectively. The 

parameter 𝐼𝑧𝑧(𝑘) represents the moment of inertia with respect to 𝑧-axis. If the shell 

is uniformly discretized with a grid size Δ𝑥, the moment of inertia, 𝐼𝑧𝑧(𝑘) for each 

material point can be calculated as [61] 

( )
4

( )
6

zz k

x
I


=  (2.76) 

Therefore, by substituting the Lagrangian function obtained from Eq. (2.75) into 

Eq. (2.26) in Chapter 2, the equations of motion for flat shells can be obtained as 

( ) ( )

( )

1 ( ) ( ) 2 ( ) ( )

( ) ( ) ( )

1

( )( ) ( )

1 1
2

cos

4

N
ip ip k j ip ip k j
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ip ip k j k

a d a d T T
hu V b

b s T

 
  


=

 
+ −  +  

= + 
 + − 
 

  (2.77a) 

( ) ( )

( )

1 ( ) ( ) 2 ( ) ( )

( ) ( ) ( )

1

( )( ) ( )

1 1
2

sin

4

N
ip ip k j ip ip k j

k j y k

j

ip ip k j k

a d a d T T
hv V b

b s T

 
  


=

 
+ −  +  

= + 
 + − 
 

  (2.77b) 

( )
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( ) ( ) ( )

1
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2 sin

N
y k y jj k

k s j z k

j
x k x j

w w
hw C V b

  

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  − +− 
 = − + 
 + +   

  (2.77c) 



42 

 

( )

( )
( )

( )

3

( ) ( ) ( ) ( )( ) ( )
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   
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  


   

=

=

 
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 
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The equations of motion in the local coordinate system given in Eq. (2.77) can be 

rewritten in vector form as 

( ) ( ) ( )( ) ( ) ( )

1

N
L L L L

k k k j j k

j

V
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= +m u f b  (2.78a) 
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and 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
yx z

T
L u v w

k j k j k j k j k j k j k jf f f f f f
  =

 
f  (2.78c) 

with 

( ) ( )

( )

1 ( ) ( ) 2 ( ) ( )

( )( )

( )( ) ( )

1 1
2

cos

4

ip ip k j ip ip k j
u

k j

ip ip k j k

a d a d T T
f

b s T

 
  



 
+ −  + 

=  
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 

 (2.78d) 
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1 1
2
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4
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

 
+ −  +  

=  
 + − 
 

 (2.78e) 
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( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )

1
cos sin

2

j kw

k j s y k y j x k x j

w w
f C      



− 
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
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 
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 
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
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( ) ( ) ( ) ( ) ( ) ( )

( )( ) cos sin
2

z
z k z j j k j k

k j t

v v u u
f C

 
  

 

 + − −  
= − −  

  
 (2.78i) 

Note that the torsional strain energy per unit area is fictitious and it creates a small 

stiffness corresponding to drilling DOF. Therefore, the contribution of drilling 

rotation to in-plane displacements can be neglected in the equations of motion [71].  

Note that the PD constants provided in Appendices B1-B4 are obtained based on 

the small deformation assumption. Therefore, the developed PD model is applicable 

for linear analysis of shell structures with small deformations. 

 

2.3.4. PD Equations of Motion in the Global Coordinate System 

The equations of motion provided in Eq. (2.78) are derived in local or body-attached 

coordinates. For a structure that includes plates and shells joined, the equations of 

motion for each material point needs to be transformed from local coordinates to 

global coordinates. Therefore, in this section, the transformation of equations of 

motion for flat and curved shells is presented. 

 

2.3.4.1. Coordinate Transformation  

As shown in Fig. 2.20, the local coordinates of a shell can be defined with respect 

to the global coordinates by unit vectors 𝑛⃗ 𝑥, 𝑛⃗ 𝑦, 𝑛⃗ 𝑧. The unit vectors for material 

point 𝑘 can be defined from the geometry of the shell as  

( ) 1( ) 2( ) 3( )

T

x k k k kn a a a =    (2.79a) 

( ) 1( ) 2( ) 3( )

T

y k k k kn b b b =    (2.79b) 

( ) 1( ) 2( ) 3( )

T

z k k k kn c c c =    (2.79c) 

Similar to the relations presented in Chapter 2, the relationship between global and 

local coordinates can be written as 

( ) ( ) ( )

L G

k k k=x H x  (2.80a) 

where 

( ) ( ) ( ) ( )

T
L

k k k kx y z =  x  (2.80b) 
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 
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The transformation of the displacement vector can be defined as 

( ) ( ) ( )

L G

k k k=u T u  (2.81a) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
L

k k k k x k y k z ku v w    =  u  (2.81b) 

( ) 1( ) 2( ) 3( ) 1( ) 2( ) 3( )

T
G

k k k k k k ku u u    =  u  (2.81c) 

where 𝐮(𝑘)
𝐿  and 𝐮(𝑘)

𝐺  represent displacement vectors in the local and global 

coordinate systems, respectively. The parameter 𝐓(𝑘) represents the displacement 

transformation matrix of material point 𝑘, which can be obtained from the 

coordinate transformation matrix, 𝐇(𝑘) as 

( )

( )

( )

k

k

k

 
=  
 

H 0
T

0 H
 (2.82) 

 

2.3.4.2. Transformation of Equations of Motion for Flat Shells 

By using the relations given in Eq. (2.81a), the equations of motion for shell given 

in Eq. (2.78a) can be written as 

( ) ( ) ( ) ( )( ) ( ) ( )

1

N
L G L L

k k k k j j k

j

V
=

= +m T u f b  (2.83) 

Multiplying both sides by 𝑻(𝑘)
𝑇  results in 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1
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T L G T L L

k k k k k k j j k

j

V
=

 
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 
T m T u T f b  (2.84) 

As a result, the equation of motion in global coordinates becomes 

( ) ( ) ( )( ) ( ) ( )

1

N
G G G G

k k k j j k

j

V
=

= +m u f b  (2.85a) 

where 

( )( ) ( ) ( )( )

G T L

k j k k j=f T f  (2.85b) 

( ) ( ) ( )

G T L

k k k=b T b  (2.85c) 

( ) ( ) ( ) ( )

G T L

k k k k=m T m T  (2.85d) 

 

2.3.4.3. Transformation of Equations of Motion for Curved Shells 

In general, curved shells can be analysed by dividing them into a suitable number 

of flat shell elements [84]. Each flat shell element can be considered as a material 

point with kinematics described in Section 3 with the orientation represented by 

three unit vectors given in Eq. (2.79). Therefore, the equations of motions for each 

material point need to be transformed into the global coordinate system. Since each 

material point has a different displacement transformation matrix, the equations of 

motion for curved shells can be obtained by modifying Eq. (2.84) as 
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( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )

1

N
T L G T L L

k j k k j k k j k j j k

j

V
=

 
= + 

 
T m T u T f b  (2.86a) 

where 𝑻(𝑘)(𝑗) represent the transformation matrix of interaction between material 

points 𝑘 and 𝑗. This transformation matrix can be defined as [62, 84] 

( )( )

( )( )

( )( )

k j

k j

k j

 
=  
 

H 0
T

0 H
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with 

( )( ) ( )( ) ( )( ) ( )( )

T

k j x k j y k j z k jn n n =  H  (2.87b) 

where 𝑛⃗ 𝑥(𝑘)(𝑗), 𝑛⃗ 𝑦(𝑘)(𝑗), 𝑛⃗ 𝑧(𝑘)(𝑗)can be represented as [62, 84]  

( )
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2.3.5. Damage prediction for the linear PD shell model 

In this section, a PD damage criterion based on the critical energy release rate is 

introduced. The energy release rate for each interaction is calculated and compared 

with the critical value. By including function 𝜓(𝑘)(𝑗), the PD equations of motion 

given in Eq. (2.86a) can be written as 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )

1

N
T L G T L G

k j k k j k k j k j k j j k

j

V
=

   = +   T m T u T f b  (2.88) 

Note that, by including the state of interaction represented by 𝜓(𝑘)(𝑗) [21], the 

dilatation, 𝜗(𝑘), given in Eq. (2.63), and  the term, 𝜗𝑏(𝑘), given in Eq. (2.68a) can 

be rewritten as  

( )( ) ( )( ) ( )( ) ( ) ( ) ( )

1

2
N

k ip k j ip k j k j k

j

d s T V T   
=

= −  +   (2.89a) 

( ) ( )( ) ( )( ) ( )

1

N

b k b k j b k j j

j

d s V 
=

=   (2.89b) 

To decide the state of interaction which is represented by the function 𝜓(𝑘)(𝑗), the 

damage criteria based on the critical energy release rate as presented in Chapter 1 

is used. The micropotentials, Φ(𝑘)(𝑗) and Φ(𝑗)(𝑘), of the interaction between material 

point 𝑘 and 𝑗 can be calculated as 

( )( ) ( )( ) ( )( ) ( )( )k j inplane k j shear k j bending k j =  + +  (2.90a) 

( )( ) ( )( ) ( )( ) ( )( )k j inplane k j shear k j bending k j =  + +  (2.90b) 

where Φ𝑖𝑛𝑝𝑙𝑎𝑛𝑒(𝑘)(𝑗), Φ𝑠ℎ𝑒𝑎𝑟(𝑘)(𝑗), Φ𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑘)(𝑗) represent micropotentials for in-

plane, shear, and bending deformations, respectively. Note that the contribution of 

drilling rotation is not included in the calculation of total micropotential in Eq. 

(2.90) because the strain energy density caused by this DOF is fictitious. 
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In linear elasticity with small deformation, the relationship between relative bond 

stretch and force density is linear. Therefore, by applying the same idea introduced 

by [25], Madenci and Oterkus [26], the in-plane micropotential Φ𝑖𝑛𝑝𝑙𝑎𝑛𝑒(𝑘)(𝑗) can 

be calculated as  

( )( )( ) ( )( ) ( )( ) ( )

1

2
inplane k j ip k j ip k j kt s T

h
  = −   (2.91a) 
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 

 (2.91b) 

The bending micropotential Φ𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝑘)(𝑗) can be calculated as  

( )( ) ( )( ) ( )( )

1

2
bending k j b k j b k jt s

h
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The shear micropotential Φ𝑠ℎ𝑒𝑎𝑟(𝑘)(𝑗) can be calculated as  

( )( ) ( )( ) ( )( )

1

2
shear k j shear k j shear k jt s

h
 =  (2.93a) 

where  
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( ) ( )
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j k

shear k j

w w
s



−
=  (2.93c) 

Note that the micropotentials given in Eq. (2.90) include in-plane, shear, and 

bending components. The in-plane micropotential can be caused by either in-plane 

tension or compression. The shear micropotential is caused by shear deformations. 

Meanwhile, the bending micropotential is caused by bending deformations. 

Therefore, the contribution of tensional, compressional, shear, and bending 

deformations are considered for the calculation of bond energy release rate for 

damage prediction which is given in Eq. (1.9) in Chapter 1. Hence, the energy-

based damage criteria used in this Section are applicable for tensional, 

compressional, shear, and bending deformations for linear analysis. 

 

It should be noted that to predict damages in shells and stiffened structures using 

the energy-based damage criteria given in Eq. (1.9), the critical energy release rate 

of material should be a value that is applicable for mixed-mode loading. However, 

to simplify the determination for the value of 𝐺𝑐 in section 2.3.7, the critical energy 

release rate of the material is simply chosen as 𝐺𝑐 = 𝐺I𝑐. 
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2.3.6. Numerical implementation 

For stiffened structures, the geometrical and material properties as well as family 

members for each material point need to be defined. Depending on the location of 

the material point, different procedures are used. As an example, the stiffened 

structure shown in Fig. 2.22(a) is considered. Fig. 2.22(b) demonstrates the model 

discretization for a stiffened structure with three shells 𝑆𝐴, 𝑆𝐵, 𝑆𝐶.  In Fig. 2.22(a) 

lines 𝐿1, 𝐿2, 𝐿3 represent the intersections between shells and point 𝑘 represents the 

intersection of the three shells.  The material points located at the intersection lines 

are identified such as (𝐿1𝐴, 𝐿1𝐵), (𝐿2𝐴, 𝐿2𝐶), (𝐿3𝐵 , 𝐿3𝐶) as shown in Fig. 2.22(b).  

During the discretization, material points along lines 𝐿1𝐵, 𝐿2𝐶, 𝐿3𝐶 are removed, 

material points along lines 𝐿1𝐴, 𝐿2𝐴, 𝐿3𝐵 are set as joint points and the material 

point 𝑘 is set as the intersection point of three shells as shown in Fig. 2.22(b). 

 

 

 

 
(a) 

 
(b) 

Fig. 2.22. Stiffened structure (a) geometry, (b) model discretization 

Fig. 2.23 represents the family members for material points at two different 

locations. As shown in Fig. 2.23(a), material point 8 is located on the shell 𝑆𝐵, 

therefore the family members of this material point belong to the shell 𝑆𝐵. On the 

other hand, material point 4 is located at the intersection of shell 𝑆𝐴 and 𝑆𝐵 as shown 

in Fig. 2.23(b), therefore its family members belong to both shells. As a 

demonstration, Fig. 2.24 shows the number of family members for a stiffened 

structure. 

 
(a) 

 
(b) 
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Fig. 2.23. Identification of family members for a material point located (a) on the 

shell (b) at the intersection 

For a stiffened structure, each shell may have different material and geometrical 

properties. The material and geometrical properties of each interaction are 

determined based on the family member of each material point. As shown in Fig. 

2.23(a), since material point 8 and its family members are located on the shell 𝑆𝐵,  

the material and geometrical properties of material point 8 are obtained from the 

shell 𝑆𝐵. On the other hand, as shown in Fig. 2.23(b) material point 4 and its family 

members are located at both shells 𝑆𝐴 and 𝑆𝐵.  Therefore, material and geometrical 

properties are determined based on the interaction between material points.  For the 

interaction between material points 4 and 10, since the neighbour material point 10 

belongs to the shell 𝑆𝐵, the material and geometrical properties of the interaction 

are included for the shell 𝑆𝐵. Similarly, for the interaction between material points 

4 and 31, since the neighbour material point 31 belongs to the shell 𝑆𝐴, the material 

and geometrical properties of the interaction are included for the shell 𝑆𝐴. Material 

points 4 and  5 are located at the interface. Therefore, the interaction forces between 

these points are calculated by summing two interaction forces. Each interaction 

force in the shell’s local coordinate system is calculated by using Eq. (2.78) and 

transformed into the global coordinates by using Eq. (2.85) or Eq. (2.86a). 

 
Fig. 2.24. Number of family members of material points on a stiffened structure  

 

2.3.7. Numerical results 

For verification purposes, the proposed PD model is compared to FEA solutions. 

For static or quasi-static problems, the adaptive dynamic relaxation method, which 

is described in Appendix A3, is used in PD. The FEA solutions are conducted by 

using ANSYS commercial software with the SHELL181 element. In PD theory, the 

boundary conditions can be implemented through fictitious layers as described by 

Macek and Silling [40]. Based on numerical experiments, to ensure that the 

imposed boundary condition is accurately reflected in the real domain, this layer 

needs to be at least at the size of the horizon, 𝛿. 
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2.3.7.1. A flat shell subjected to constant static loading 

To verify the developed PD model for flat shells, a square flat shell with dimensions 

𝐿 = 𝑊 = 1 m, and thickness ℎ = 0.1 m is investigated as shown in Fig. 2.25(a). 

The flat shell is fixed on the left end and subjected to uniformly distributed loading 

along the right edge in both 𝑥1 and negative 𝑥3 directions as 𝑝1 = 1 × 10
7 N/m, 

𝑝3 = −1 × 10
7 N/m, respectively. The material has Young’s modulus of 𝐸 =

2 × 1011 N/m2 and Poisson’s ratio of 𝜈 = 0.45.  

 

In the PD model, the shell is discretized with uniform 150 integration points along 

each direction. As shown in Fig. 2.25(b), to apply boundary conditions along the 

left edge, fictitious layers of material points, shown in black, are added on the left 

edge. All DOFs of these fictitious points are set equal to zero. In the FEA model, 

the same mesh size is also used. 

 
                            (a)                                                           (b) 

Fig. 2.25. Flat shell subjected to static constant loading (a) geometry, (b) model 

discretization 

As given in Eq. (3.29-30), the PD constant for torsional deformations depends on 

𝑘0 which is added for convergence in PD solutions. Therefore, the effect of 𝑘0 to 

the PD solution is investigated as shown in Fig. 2.26 with the horizon size of 𝛿 =
3.015Δ𝑥. As can be seen from the figure, the PD results for displacements and 

rotations of the flat shell is stable for various values of 𝑘0. After checking the 

stability of the PD solutions, 𝑘0 = 1 is chosen. 
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Fig. 2.26. Effect of the torsional coefficient 𝑘0 on PD results at (𝑥1 = 𝐿, 𝑥2 =

𝑊/2), horizon size 𝛿 = 3.015Δ𝑥. 

The effect of horizon size on PD results is investigated by comparing with FEA 

solutions. Fig. 2.27 shows the variation of relative error between PD and ANSYS 

predictions. The relative error for each DOF is calculated as  

( )%error 100

FEA PD

FEA

q q
q

q

−
=   (2.94) 

where 𝑞𝐹𝐸𝐴 and 𝑞𝑃𝐷 represent the FEA and PD solution for a degree of freedom, 𝑞, 

respectively. 

As can be seen from Fig. 2.27, the relative error between PD and ANSYS 

predictions reduces as the horizon size increases. When the horizon size is bigger 

than 𝛿 = 3𝛥𝑥, the relative error for all degrees of freedom is less than 3%. 

Therefore, to reduce the computational time 𝛿 = 3.015Δ𝑥 is chosen. Note that, the 

extra value 0.015Δ𝑥 is added into horizon size to ensure that all material points 

within a distance of 3Δ𝑥 is included. 
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Fig. 2.27. Effect of horizon size on PD prediction results at (𝑥2 = 𝐿, 𝑥2 = 3𝑊/4) 

Fig. 2.28-Fig. 2.33 present the comparison of PD and ANSYS predictions for 6 

DOFs with 𝛿 = 3.015Δ𝑥 and 𝑘0 = 1. As can be seen from the figures, PD 

predictions agree very well with FEA results. Moreover, the good agreement of 

drilling rotation, 𝜃3 shows that the additional PD equation of motion for drilling 

rotation is acceptable. 

 

 
(a) (b) 

Fig. 2.28. Variation of displacement 𝑢1(𝑚) of shell with 𝐿/ℎ = 10 (a) PD, (b) 

FEA results 
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(a) 

 
(b) 

Fig. 2.29. Variation of displacement 𝑢2 (𝑚) of shell with 𝐿/ℎ = 10 (a) PD, (b) 

FEA results 

 
(a) 

 
(b) 

Fig. 2.30. Variation of displacement  𝑢3 (𝑚) of shell with 𝐿/ℎ = 10 (a) PD, (b) 

FEA results 

 
(a) 

 
(b) 

Fig. 2.31. Variation of rotation 𝜃1 (rad) of shell with 𝐿/ℎ = 10 (a) PD, (b) FEA 

results 
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(a) 

 
(b) 

Fig. 2.32. Variation of rotation 𝜃2(rad) of shell with 𝐿/ℎ = 10 (a) PD, (b) FEA 

results 

 
(a) 

 
(b) 

Fig. 2.33. Variation of rotation 𝜃3(rad) of shell with 𝐿/ℎ = 10 (a) PD, (b) FEA 

results 

To have a better comparison, the PD and FEA solution results along 𝑥2 = 𝑊/2 and 

𝑥1 = 𝐿/2 are compared as shown in Fig. 2.34 and Fig. 2.35, respectively. As can 

be seen from the figures, PD and FEA solution results agree very well for both in-

plane and out-of-plane deformations. Therefore, the developed PD model for thick 

flat shells is verified.  

 
(a) 

 
(b) 

Fig. 2.34. Variation of (a): 𝑢1 (𝑚), (b): 𝑢3 (𝑚) and 𝜃2 (rad) along 𝑥2 = 𝑊/2 
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(a) 

 
(b) 

Fig. 2.35. Variation of DOFs 𝑢2 (𝑚), 𝜃1 (rad) along 𝑥2 = 𝐿/2 

2.3.7.2. A curved shell subjected to constant static loading 

To verify the developed PD model for curved shells, a shell with a radius of 𝑅 is 

investigated as shown in Fig. 2.36(a). The shell is clamped at 𝛽 = 75∘ and it is 

subjected to a distributed load as 𝑝3 = −1 × 10
7 N/m at 𝛽 = 90∘. The shell has a 

thickness of ℎ = 0.1 m and a length of 𝐿 = 0.7907 m. It is made of steel with 

Young’s modulus 𝐸 = 2 × 1011 N/m2 and Poisson’s ratio 𝜈 = 0.27. 

 

The shell is discretized with uniform 150 integration points in each direction. To 

apply boundary conditions, fictitious layers of material points are added as shown 

in Fig. 2.36(b). All DOFs of these fictitious points are set equal to zero. In the FEA 

model, the same mesh size is used. 

 

 
(a) 

 
(b) 

Fig. 2.36. A curved shell subjected to static loading (a) geometry, (b) model 

discretization 

Similar to the previous example, the effects of 𝑘0 on PD predictions with horizon 

size 𝛿 = 3.015Δ𝑥 are investigated as shown in Fig. 2.37. To check the effect of the 

curvature, the curved shell is studied with two different values of radius, 𝑅 = 1m 

and 𝑅 = 3m. As can be seen from the figure, the PD predictions for all degrees of 

freedom of the two curved shells have good agreement with the FEA solution when 

𝑘0 ≥ 1. Therefore, it can be concluded that the value of 𝑘0 given in Eq. (2.76) can 

be chosen as 𝑘0 ≥ 1 for both flat and curved shells. Therefore, in the following 

sections 𝑘0 = 1 is chosen. 
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(a) 

 
(b) 

Fig. 2.37. Effect of the torsional coefficient 𝑘0 to solutions of curved shell radius 

of curvature (a) 𝑅 = 1𝑚  (b) 𝑅 = 3𝑚 at (𝑥1 = 𝐿/2, 𝑥2 = 0, 𝑥3 = 𝑅) 

The effects of horizon size on PD results for curved shells are also investigated. 

Fig. 2.38 shows the relative errors between PD and FEA results for nonzero DOFs 

of the material point located at (𝑥1 = 𝐿/2, 𝑥2 = 0, 𝑥3 = 3) on the curved shell with 

𝑅 = 3𝑚. As can be seen from the figure, the PD results converge to the FEA 

solution when 𝛿 = 3.015Δ𝑥 in which all the relative errors are smaller than 1.5%. 

Therefore,  𝛿 = 3.015Δ𝑥 is chosen for the PD representation of curved shells. 

 
Fig. 2.38. Effect of horizon size on PD results at (𝑥1 = 𝐿/2, 𝑥2 = 0, 𝑥3 = 3) 

After investigating the stability of the PD prediction, the PD predictions with 𝑘0 =
1  and 𝛿 = 3.015Δ𝑥 for the curved shell with radius 𝑅 = 3𝑚 are compared with 

the FEA solution. Fig. 2.39-Fig. 2.44 show the variations of 6 DOFs of the shell in 

the deformed configuration. The results obtained from PD analysis agree very well 

with those in FEA. Moreover, as shown in Fig. 2.45, the deformed shape along the 

line of 𝑥1 = 𝐿/2 captured in PD and FEA solutions are on top of each other which 

shows the accuracy of the developed PD model for curved shells. 
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(a) 

 
(b) 

Fig. 2.39. Variation of displacement 𝑢1(𝑚) in the deformed configuration (a) PD, 

(b) FEA  

 

 
(a) 

 
(b) 

Fig. 2.40. Variation of displacement 𝑢2 (𝑚) in the deformed configuration (a) PD, 

(b) FEA  

 

 

 
(a) 

 
(b) 

Fig. 2.41. Variation of displacement 𝑢3 (𝑚) in the deformed configuration (a) PD, 

(b) FEA  
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(a) 

 
(b) 

Fig. 2.42. Variation of rotation 𝜃1(rad) in the deformed configuration (a) PD, (b) 

FEA  

 

 
(a) 

 
(b) 

Fig. 2.43. Variation of rotation 𝜃2(rad) in the deformed configuration (a) PD, (b) 

FEA 

 

 
(a) 

 
(b) 

Fig. 2.44. Variation of rotation 𝜃3(rad) in the deformed configuration (a) PD, (b) 

FEA 
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Fig. 2.45. Deformed configuration of the curved shell along 𝑥1 = 𝐿/2 

2.3.7.3. A stiffened structure subjected to constant static pressure 

After verifying the developed PD model for flat and curved shells, this example is 

to verify the developed PD model for stiffened structures. As shown in Fig. 2.46(a), 

a stiffened structure constructed by a cylindrical shell and four stringers is 

investigated. The cylindrical shell has a radius of 𝑅 = 2 m and total length of 𝐿 =
𝐿1 + 𝐿2 + 𝐿3 = 1.0472 m with 𝐿1 = 𝐿3 = 𝐿/4 m. The side view of the stiffened 

structure is shown in Fig. 2.46(b). The height of each stringer is 𝐻 = 0.1057 m. 

All the shells have a thickness of ℎ = 0.1 m and they are made of steel with 

Young’s modulus 𝐸 = 2 × 1011 N/m2 and Poisson’s ratio 𝜈 = 0.27. The 

cylindrical shell is subjected to the constant pressure of 𝑝0 = 2 × 10
9 N/m2. All 

four edges of the curved shell and two ends of each stringer, shown in black in Fig. 

2.46(a), are clamped.  

 

In the peridynamic model, the curved shell is discretized with 150 × 150 material 

points and each stringer is discretized with 150 × 20  material points. The horizon 

size is 𝛿 = 3.015Δ𝑥. To apply boundary conditions, four fictitious layers of 

material points, shown in black, are added as shown in Fig. 2.47. All 6 DOFs of 

these fictitious material points are set equal to zero. In the FEA model, the same 

mesh size is used. 

 

Fig. 2.48-Fig. 2.53 show the variation of 6 DOFs of the shell structure. As shown 

in Fig. 2.50, due to the applied pressure, the middle region of the curved shell has 

the highest deformation in the vertical direction. As a result, due to the connection 

between the curved shell and the stringers, all stringers are twisted towards the 

centre of the cylindrical shell as shown in Fig. 2.48 and Fig. 2.49. As can be seen 

from the figures, the PD results agree very well with the FEA results which shows 

the accuracy of the developed PD model for stiffened structures. 
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(a) 

 
(b) 

Fig. 2.46. Stiffened structure subjected to constant pressure (a) 3D view, (b) side 

view 

 
Fig. 2.47. Model discretization for stiffened structure  

 
(a) 

 
(b) 

Fig. 2.48. Variation of displacement 𝑢1 (rad) (a) PD, (b) FEA results 

 
(a) 

 
(b) 

Fig. 2.49. Variation of displacement 𝑢2 (rad) (a) PD, (b) FEA results 
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(a) 

 
(b) 

Fig. 2.50. Variation of displacement 𝑢3 (rad) (a) PD, (b) FEA results 

 
(a) 

 
(b) 

Fig. 2.51. Variation of rotation 𝜃1 (rad) (a) PD, (b) FEA results 

 

 
(a) 

 
(b) 

Fig. 2.52. Variation of rotation 𝜃2 (rad) (a) PD, (b) FEA results 

 
(a) 

 
(b) 

Fig. 2.53. Variation of rotation 𝜃3 (rad) (a) PD, (b) FEA results 
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2.3.7.4. A glass cup subjected to a constant temperature change 

To verify the developed PD model for the thermomechanical behaviour of shell 

structures, a glass cup subjected to uniform temperature change is considered as 

shown in Fig. 2.54. The shape of the cup is defined as  

cos cosx b  =  (2.95a) 

cos siny b  =  (2.95b) 

( )sin sinz a e  = +  (2.95c) 

where 𝑎 = 0.1 m, 𝑏 = 0.06 m, 𝑒 = 0.04 m, −𝜋/2 ≤ 𝜃 ≤ 𝜋/12, −𝜋 ≤ 𝜙 ≤ 𝜋 

 

                                  (a)                                                        (b) 

 

(c) 

Fig. 2.54. Glass cup subjected to a uniform temperature change (a) side view, (b) 

3D view, (c) coordinate system 

The cup is made of glass with Young’s modulus 𝐸 = 68 × 109 N/m2, Poisson’s 

ratio 𝜈 = 0.17, mass density 𝜌 = 2710 kg/m3, and linear thermal expansion 

coefficient 𝛼 = 8.5 × 10−6 m/mK [34]. The thickness of the cup is ℎ =

1 × 10−3 m. The cup is subjected to Δ𝑇 = 80 oC uniform temperature change and 

it is fixed from the bottom part as shown with the red region in Fig. 2.54(b). The 
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PD model is discretized by setting incremental angles as 𝑑𝜃 = 𝜋/120 and 𝑑𝜙 =

𝜋/90.  

Since the material is isotropic and the cup is subjected to uniform temperature 

change, the rotation 𝜃3 is almost zero. Fig. 2.55-Fig. 2.60 show the variations of 

displacements and rotations of the cup. Fig. 39 represents the deformed shape of 

the cup along the centreline at 𝑥1 = 0. Since the cup is fixed from the bottom, the 

bending deformations are more visible in the bottom part of the cup as shown in 

Fig. 39. As can be seen from the results, the PD and FEA solutions have a very 

good agreement. Therefore, it can be concluded that the thermomechanical 

behaviour of shell structure in the developed PD model is verified. 

 

                                  (a)                                                        (b) 

Fig. 2.55. Variation of displacement 𝑢1(𝑚)  (a) PD, (b) FEA results 

 

 

 
                                  (a)                                                        (b) 

Fig. 2.56. Variation of displacement  𝑢2(𝑚) (a) PD, (b) FEA results 

 

 
                                  (a)                                                        (b) 

Fig. 2.57. Variation of displacement 𝑢3(𝑚) in (a) PD, (b) FEA results 
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                                  (a)                                                        (b) 

Fig. 2.58. Variation of rotation 𝜃1(rad) in (a) PD, (b) FEA results 

 

 
                                  (a)                                                        (b) 

Fig. 2.59. Variation of rotation 𝜃2(rad) in (a) PD, (b) FEA results 

 

 
Fig. 2.60. Deformed configuration of the centreline at 𝑥1 = 0 (displacements are 

magnified by 200 times) 

 

2.3.7.5. Damage prediction for double torsion problem 

After verifying the developed PD model for both mechanical and 

thermomechanical behaviour of shell structures, the damage process in a flat shell 

in a double torsion problem is investigated. As shown in Fig. 2.61, the dimensions 

of the flat shell are 𝐿 = 180 mm, 𝑊 = 60 mm, 𝑊𝑛 = 23.35 mm, ℎ = 5 mm [85]. 

The shell has an initial notch at 𝑥1 = 𝑊/2 with initial notch length, 𝑎 = 3.6 mm. 

Along the line 𝑥1 = 𝑊/2, an initial channel is created with 𝑏 = 2.4 mm and ℎ𝑛 =
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2.48 mm [85]. The material is marble with Young’s modulus 𝐸 = 26.68 GPa, 

Poisson’s ratio 𝜈 = 0.24 [85], the fracture toughness 𝐾𝐼𝑐 = 0.644 MPa√m [86]. 

For simplification, the critical energy release rate of the material is calculated as 

𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 = 15.545 J/m2.  

 

The shell is placed on 4 steel balls located at four corners with distances Δ =
1.2 mm from corners. The shell is applied quasi-static loading on two points located 

at 𝑥1 = 𝑊𝑛 and 𝑥 = 𝑊 −𝑊𝑛, respectively. The history of the total applied force, 

𝐹, includes two stages as shown in Fig. 2.62 [85]. In the first stage, the load is 

increased to the peak value of 𝐹 = 158 N at 𝑡 = 17.079 s. Next, in the second 

stage, the load is slowly decreased to 𝐹 = 120 N as shown in Fig. 2.62.  

 

 
Fig. 2.61. Double torsion problem 

 

 
Fig. 2.62. Load–time curve [85] 
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In PD simulations, the model is discretized into 50 × 150 material points (50 layers 

of material points along 𝑥1direction and 150 layers along 𝑥2 direction). To 

represent the initial trough, the thickness of material points located along the trough 

is defined as ℎ− ℎ𝑛, meanwhile, other material points have a constant thickness h. 

To apply loading conditions, two material points located at the locations of loading 

are defined. During the simulation, these two material points are equally applied 

force per unit area 𝑏̄3 = 𝐹/2(Δ𝑥
2) in which the value of 𝐹 as a function of time is 

given in Fig. 2.62. The adaptive dynamic relaxation methodology [76, 77] is used 

in the PD solution for this quasi-static problem (Appendix A3). The problem is 

simulated in 40000 load steps, in which 15000 load steps are used for the first 

loading stage, and 25000 load steps are used for the second loading stage. Based 

on this information, the loading history in real-time given in Fig. 2.62 is converted 

to loading history for a quasi-static solution. 

 

Fig. 2.63 shows the damage evolution on the flat shell predicted by using the 

developed PD model. The damage coefficient is presented in a range of 0 ≤ 𝜙 ≤
0.37. Material points that have 𝜙 ≥ 0.37 are considered as completely damaged. 

As shown in Fig. 2.63(a), after 𝑡 = 17.079 s when the load reaches the peak value, 

the structure is primarily damaged along the initial trough. The damage coefficients 

of material points along the trough are smaller than 0.1 which can be understood 

that the crack is not visibly propagated. At 𝑡 = 22.794 s, the crack starts 

propagating and the structure is more damaged along the channel as shown in Fig. 

2.63(b). As shown in Figs. 40(c, d, e), the crack propagates along the channel up to 

the locations at, 𝑥2 = 50 mm, 𝑥2 = 85 mm and 𝑥2 = 121 mm when 𝑡 =
88.425 s, 𝑡 = 247.989 s and 𝑡 = 567.116 s, respectively. Fig. 2.63(f) shows the 

completely damaged experimental specimens in [85]. As can be seen from the 

figures, the crack paths captured by PD simulation and experiment [85] agree very 

well. 

 

Fig. 2.64 shows the variation of crack length and crack growth velocity captured by 

PD simulation and experiments in [85]. As can be seen from the figure, both the 

crack length and crack growth velocity captured by PD simulation agree with the 

experiment which shows the capacity of the developed PD model.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Fig. 2.63. Variation of damage coefficient, 𝜙 at (a) 𝑡 = 17.079 s, (b) 𝑡 =

22.794 s, (c) 𝑡 = 88.425 s, (d) 𝑡 = 247.989 s, (e) 𝑡 = 567.116 s, (f) completely 

damaged specimens [85].  

 

 
Fig. 2.64. Variation of crack length and crack growth velocity (experiment [85]) 

 

2.3.7.6. A flat shell with a rectangular cut-out 

A square plate with dimensions of 𝐿 = 𝐵 = 1 m and thickness of ℎ = 0.01 m is 

investigated as shown in Fig. 2.65. The plate has a rectangular cut-out in the middle. 

The cut-out has dimensions of 𝑙 = 0.4 m, 𝑏 = 0.3 m.  
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Fig. 2.65. Plate with a rectangular cut-out 

The plate is made of steel with Young’s modulus 𝐸 = 2 × 1011 N/m2, Poisson’s 

ratio 𝜈 = 0.27, the fracture toughness 𝐾𝐼𝑐 = 70 × 10
6 Nm−3/2 [87]. For 

simplification, the critical energy release rate of the material is calculated as 𝐺𝑐 =
𝐺I𝑐 = 𝐾𝐼𝑐

2 /𝐸 = 2.2714 J/m2. The plate is fixed on the left edge and it is subjected 

to bending moments on the right edge as shown in Fig. 2.65.  

 

In the PD model, the shell is uniformly discretized with a mesh size of Δ𝑥 =
0.0067 m, and the horizon size 𝛿 = 3.015Δ𝑥 is used. To apply boundary 

conditions, three fictitious layers of material points are added on the left side of the 

plate and all degrees of freedom of these fictitious points and material points located 

at 𝑥 = −𝐿/2 are set equal to zero [61].  

 

The right end of the plate is subjected to the bending moment per unit length 𝑚2 as 

shown in Fig. 2.65. Therefore, the loading for each material point on the right edge 

can be calculated as 

 20 0 0 0 0
TG m x= B  (2.96) 

At each load step, the value of the bending moment per unit length, 𝑚2, is chosen 

to have at least one new broken interaction in the PD model. The value of 𝑚2 is 

also not too large to avoid the breakages of too many bonds in a load step which 

may lead to numerical instabilities. 

 

Fig. 2.66 shows the damage evolution on the plate predicted by using the PD shell 

model. As shown in Fig. 2.66(a), at 20𝑡ℎ load step when the applied bending 

moment per unit length is 𝑚2 = 1.606 × 10
3 Nm/m, the damage initiates at two 

corners of the cut-out, which are near the right edge of the plate where the bending 

moment is applied. To further investigate the behaviour of the plate when it is 

subjected to the bending moment per unit length 𝑚2 = 1.606 × 10
3 Nm/m at 20𝑡ℎ 

load step, the variations of von Mises stresses captured by PD and FEA are 

compared as shown in Fig. 2.67. The FEA is conducted by using the ANSYS 

SHELL181 element. As shown in Fig. 2.67, von Mises stress distribution in 

ANSYS is similar to PD results. Moreover, the maximum stress locations agree 

with the locations of the damage initiation predicted by PD as shown in Fig. 2.66(a).  

 

The damages predicted by PD propagate nearly parallel to the right edge of the plate 

as shown in Fig. 2.66(b-d). After 1120 load steps when the applied bending 
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moment is 𝑚2 = 1.066 × 10
3 Nm/m, the damage propagation reaches locations at 

𝑥2 = ±0.31 m as shown in Fig. 2.66(d).  

 
                          (a)                                                           (b) 

 

 
                         (c)                                                             (d) 

Fig. 2.66. Damage evolution on the plate at (a) 20𝑡ℎ, (b) 400𝑡ℎ, (c)  800𝑡ℎ (d)  

1120𝑡ℎ load steps when applied bending moment 𝑚2 = 1.606 × 10
3, 

1.537 × 103, 1.238 × 103, 1.066 × 103 Nm/m, respectively 

 

 
                           (a)                                                            (b) 

Fig. 2.67. Variation of von Mises stress (Pa) predicted by (a) PD, (b) FEA 

 

 

Fig. 2.68 shows the loading history of applied bending moment per unit length, 𝑚2 

and corresponding crack paths, shown in black, on the plate at different load steps. 

Since the plate is symmetric with respect to the 𝑥1 axis, only the crack path on the 

positive direction of the 𝑥2 axis is presented. As can be seen from the figure, as the 

crack propagates during the first 200 load steps, the applied bending moment, 𝑚2 

reduces quickly from 1.606 × 103 Nm/m to 1.474 × 103 Nm/m. Initially, the 

cracks propagate with an angle of 10𝑜 with respect to the 𝑥1 axis. Later, the cracks 

change their directions and propagate parallel to the right edge of the plate. At 400𝑡ℎ 

load step, the applied bending moment increases slightly to 1.537 × 103 Nm/m. 

Afterward, the cracks propagate towards the location  (𝑥1 = 0.2133 m, 𝑥2 =
±0.31 m) at the 1120𝑡ℎ load step. The required bending moment is sharply reduced 

due to reduced strength caused by damage growth.  
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Fig. 2.68. Load history of applied bending moment per unit length, 𝑚2 

2.3.7.7. Damage prediction for a ship structure 

An experimental MST4-ship model developed by Nishihara [88] with dimensions 

of 𝐿 × 𝐵 × 𝐻 = 0.9 × 0.72 × 0.72 m3 is investigated. The 3D model and the 

cross-section details of the ship are shown in Fig. 2.69. The ship is made of steel 

with Young’s modulus 𝐸 = 2.08 × 1011N/m2, Poisson’s ratio 𝜈 = 0.281 [88], 

fracture toughness, 𝐾𝐼𝑐 = 54 × 10
6 Nm−3/2 [89]. For simplification, the critical 

energy release rate of the material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 =

1.2912 J/m2.  

 

The ship is investigated for two basic loading conditions which are bending and 

torsion as shown in Fig. 2.70. In the PD model, the ship is discretized with a mesh 

size of Δ𝑥 = 0.02 m. Similar to the previous examples, the horizon size 𝛿 =
3.015Δ𝑥 is used. To apply loading conditions, two thick rigid plates are added at 

two ends of the model as shown in Fig. 2.71. The rigid plates are represented by 

Young’s modulus 𝐸𝑟 = 20 × 𝐸, Poisson’s ratio 𝜈𝑟 = 𝜈 , and thickness ℎ𝑟 =
20 × ℎ. 

 
(a) 
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(b) 

Fig. 2.69. MST4 ship model [88] (a): 3D model (b): ship cross-section at 𝑥1 =
0.45 m 

 

 
                          (a)                                                          (b) 

Fig. 2.70. Two basic loading conditions (a): Sagging, (b): Torsion 

In Fig. 2.71, the plates on the deck, the sides, and the bottom are discretized with 

1794 material points. Each longitudinal frame includes 184 material points. Each 

transverse frame includes 560 material points. Moreover, each rigid plate is 

discretized into 1521 material points. Therefore, 12058 material points are 

corresponding to 72348 DOFs used for the intact ship model.  
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Fig. 2.71. PD discretized model for the ship model (the plates at 𝑥3 = 𝐻 and 𝑥2 =

𝐵/2 are hidden for visualization purposes) 

Ship structure subjected to bending (sagging) 

In this section, the ship is subjected to bending loading as shown in Fig. 2.70(a). 

The bending moments for the material points located at the left end of the model at 

𝑥1 = 0 are applied as 

2 2 /L LM M N=  (2.97) 

On the other hand, the bending moments for the material points located at the right 

end of the model at 𝑥1 = 𝐿 are applied as 

2 2 /R RM M N= −  (2.98) 

where 𝑁𝐿 and 𝑁𝑅 represent total numbers of material points located at the left end 

and right end of the model, respectively. The parameter 𝑀2 represents the total 

bending moment applied on the ship structure as shown in Fig. 2.70(a).   

 

Similar to the previous example, the value of the bending moment, 𝑀2, at each load 

step is chosen as the critical value to have at least one new broken interaction.  

 

The boundary conditions for this loading condition can be described as 

( )1 1 2 30  at  / 2, / 2 / 2,0u x L B x B x H= = −      (2.99a) 

( )2 1 2 30  at  0, 0,0u x x x H= = =    (2.99b) 

( )2 1 2 30  at  , 0,0u x L x x H= = =    (2.99c) 

( )3 1 2 30  at  0, / 2 / 2,u x B x B x H= = −   =  (2.99d) 

( )3 1 2 30  at  , / 2 / 2,u x L B x B x H= = −   =  (2.99e) 



72 

 

The ship structure is investigated for different scenarios. First, the intact ship 

subjected to bending loading is investigated. Next, the ship is assumed to have 

square cut-outs on the bottom with dimensions of 0.2 × 0.2 m2or 0.4 × 0.4 m2 as 

shown in Fig. 2.72. 

     
                                 (a)                                                     (b) 

Fig. 2.72. The bottom of the ship with a square cut-out with dimensions of (a) 

0.2 × 0.2 m2, (b) 0.4 × 0.4 m2 

Intact ship subjected to bending loading 

By using the uniform mesh size of Δ𝑥 = 0.02 m, 12058 material points are 

corresponding to 72348 degrees of freedom in the PD discretized model. Fig. 2.73-

Fig. 2.75 present the damage evolution on the ship structure. As shown in Fig. 2.73, 

at 400𝑡ℎ load step when the applied bending moment is 𝑀2 = 4.73 × 10
5 N.m, 

there is significant damage in the middle of the deck. As the applied bending 

continues, the damage on the deck propagates toward two sides of the ship as shown 

in Fig. 2.74-Fig. 2.75. At 1200𝑡ℎ load step when the applied bending moment is 

𝑀2 = 2.05 × 10
5 N.m, the damage develops beyond the ship deck and propagates 

towards the ship side as shown in Fig. 2.75. 

 
Fig. 2.73. Damage plot at 400𝑡ℎ load step when applied bending moment 𝑀2 =

4.73 × 105 N.m (displacements are magnified 100 times for deformed 

configuration. Rigid plates are removed for visualization.)  
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Fig. 2.74. Damage plot at 800𝑡ℎ load step when applied bending moment 𝑀2 =

3.19 × 105 N.m (displacements are magnified 100 times for deformed 

configuration. Rigid plates are removed for visualization.)  

 

 
Fig. 2.75. Damage plot at 1200𝑡ℎ load step when applied bending moment 𝑀2 =

2.05 × 105 N.m (displacements are magnified 100 times for deformed 

configuration. Rigid plates are removed for visualization.) 

 

Ship with square cut-out subjected to bending loading 

Similar to the previous case, the mesh size of Δ𝑥 = 0.02 m is used. Therefore, in 

the PD discretized model for the ship with the smaller cut-out, 11904 material 

points are corresponding to 71424 degrees of freedom. In the PD discretized model 

for the ship with the larger cut-out, there are 11428 material points and 68568 

degrees of freedom. Fig. 2.76-Fig. 2.78 present damage evolution on the ship with 

0.2 × 0.2 m2cut-out. In this case, the damages initiate at four corners of the cut-out 

as shown in Fig. 2.76. As can be seen from the figures, the cracks propagate from 

four corners of the cut-out towards the two sides of the ship structure. As the load 
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is continuously applied, the cracks propagate vertically on two sides of the ship 

structure as shown in Fig. 2.77-Fig. 2.78.  

 

 
(a) 

 

 
(b) 

Fig. 2.76. Damage plot at load step 400𝑡ℎ when applied bending moment 𝑀2 =

2.22 × 105 N.m (a): 3D model (b): a view for material points with 𝑥3 ≤ 0.1 m 

(displacements are magnified 100 times for deformed configuration. Rigid plates 

are removed for visualization.) 

 



75 

 

 
(a) 

 

 
(b) 

Fig. 2.77. Damage plot at 800𝑡ℎ load step when applied bending moment 𝑀2 =

1.58 × 105 N.m (a): 3D model (b): a view for material points with 𝑥3 ≤ 0.3 m 

(displacements are magnified 100 times for deformed configuration. Rigid plates 

are removed for visualization.) 
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(a) 

 

 
(b) 

Fig. 2.78. Final damage plot on the ship at 1200𝑡ℎ load step when applied bending 

moment 𝑀2 = 8.53 × 10
4 N.m (a): 3D model (b): a view for material points with 

𝑥3 ≤ 0.6 m (displacements are magnified 100 times for deformed configuration. 

Rigid plates are removed for visualization.) 

Loading history 

Fig. 2.79 shows the variations of bending moment, 𝑀2 and change in the moment 

of inertia, Δ𝐼2, of the ship cross-section for three cases. The moment of inertia 

reduces with respect to the intact ship. The reduction of the moment of inertia, Δ𝐼2, 

can be defined as 

2(current) 2(intact )

2

2(intact )

100%
I I

I
I

−
 =   (2.100) 

where 𝐼2(intact) and 𝐼2(current) represent the moment of inertia with respect to the 

neutral axis in 𝑥2 direction for the intact ship and damaged ship, respectively. At 

each load step, material points with damage coefficients 𝜙 ≥ 0.3 are determined 

and they are defined as damaged parts of the ship structure. Therefore, neutral axis 
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locations and moment of inertia 𝐼2(current) values are recalculated based on the 

remaining intact parts. 

As shown in Fig. 2.79, the maximum bending moment for the intact ship captured 

by PD is 𝑀2𝑚𝑎𝑥 = 9.28 × 10
5 𝑁𝑚 which is 0.102% different from the 

experimental result of 𝑀2𝑚𝑎𝑥( 𝑒𝑥𝑝 𝑒𝑟𝑖𝑒𝑚𝑛𝑡) = 9.2705 × 10
5 Nm conducted by 

Nishihara [88]. As it can also be observed from the loading history curve for case 

1, shown in blue, there is a stage that the bending moment drops suddenly from 

4.65 × 105 Nm to 2.38 × 105 Nm while the moment of inertia is not much 

reduced. This is the stage that all the shells on the ship deck which are numbered 3, 

11, 12, 13, are collapsed and the crack starts propagating along two sides of the ship 

structure. Therefore, at this stage, the ship structure is much weakened, and the 

required bending moment is much reduced. For case 2, shown in red, due to the 

initial cut-out, the moment of inertia of the ship cross-section is initially reduced by 

12.6% compared to the intact ship. The maximum bending moment captured by 

PD is 𝑀2𝑚𝑎𝑥 = 3.85 × 10
5 𝑁𝑚 which is equal to 41.49% of the maximum 

bending moment for the intact case. For case 3, due to a bigger cut-out, the initial 

reduction of the moment of inertia is 27.4% and the maximum bending moment is 

𝑀2𝑚𝑎𝑥 = 2.47 × 10
5 𝑁𝑚 which is equal to 26.62% of the maximum bending 

moment for the intact case. Moreover, the moment of inertia of the final damaged 

ship in both cases 2 and 3 decreases by more than 55% as shown in Fig. 2.79.  

 

 
Fig. 2.79. Variations of the critical bending moment versus change in the moment 

of inertia for the ship structure 

Ship structure subjected to torsional loading 

After investigating the ship model in bending condition, the ship with the 0.2 × 0.2 
m2 cut-out is further investigated for the torsional loading condition as shown in 

Fig. 2.70(b). The left end of the ship is fixed, and the right end of the ship is 

subjected to torsional loading, 𝑀1 with respect to the neutral axis of the ship in 𝑥1 

direction. Similar to the previous example, it is assumed that the right end of the 

ship structure is attached to a rigid plate. The torsional moment 𝑀1 is applied by 

applying nodal forces as shown in Fig. 2.80 as 
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( ) ( ) ( )k k f kf=f e  (2.101) 

where 𝑓(𝑘) represents the magnitude and 𝒆𝑓(𝑘) represents a unit vector of the nodal 

force 𝒇(𝑘). The magnitude of the nodal force is calculated as 

1
( )

( )

1
k

R k

M
f

N d
=  (2.102) 

where 𝑀1 represents the applied torque, 𝑁𝑅 represents the total number of material 

points on the rigid plate at the right end, 𝑑(𝑘) represents the distance between 

material point 𝑘 and the centre of the rigid plate at (𝑥1 = 𝐿, 𝑥2 = 0, 𝑥3 = 𝐻/2). 

The unit vector, 𝒆𝑓(𝑘) in Eq. (2.101) can be defined as 

( ) 1 ( )f k k= e i i  (2.103a) 

with 

 1 1 0 0
T

=i  (2.103b) 

0( ) 0( )

( )

( )0( )

k k

k

kk
d

= =
i i

i
i

 (2.103c) 

0( ) 1( ) 2( ) 3( ) 2( ) 3( )0 / 2 0 / 2
T T

k k k k k kx L x x H x x H   = − − − = −   i  (2.103d) 

 
                               (a)                                                           (b) 

Fig. 2.80. Applying torque on the rigid plate by using dual forces (a): 3D view, 

(b): 2D view  

 

In the PD discretized model, the same mesh size Δ𝑥 = 0.02 m is used. Fig. 2.81-

Fig. 2.83 present damage evolution on the ship for torsional loading conditions. As 

can be seen from Fig. 2.81, damages initiate at four corners of the cut-out when 

applied torque is 2.365 × 105 Nm. At 600𝑡ℎ load step when applied torque is 

1.699 × 105 Nm, the damages propagate from four corners of the cut-out as shown 

in Fig. 2.82. At 1200𝑡ℎ load step when applied torque is 1.6988 × 105 Nm, 

damages propagate along with the transverse frames as shown in Fig. 2.83.  
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(a) 

 

 
(b) 

Fig. 2.81. Damage plot at load step 100𝑡ℎ when applied bending moment 𝑀1 =

2.365 × 105 Nm (a): 3D model (b): a view for material points with 𝑥3 ≤ 0.1 m 

(displacements are magnified 20 times for deformed configuration. Rigid plates 

are removed for visualization.) 
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(a) 

 

 
(b) 

Fig. 2.82. Damage plot at load step 600𝑡ℎ when applied bending moment 𝑀1 =

1.699 × 105 Nm (a): 3D model (b): a view for material points with 𝑥3 ≤ 0.1 m 

(displacements are magnified 20 times for deformed configuration. Rigid plates 

are removed for visualization.) 
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(a) 

 

 
(b) 

Fig. 2.83. Final damage plot at load step 1200𝑡ℎ when applied bending moment 

𝑀2 = 1.6988 × 10
5 Nm (a): 3D model (b): a view for material points with 𝑥3 ≤

0.1 m (displacements are magnified 20 times for deformed configuration. Rigid 

plates are removed for visualization) 

 

Fig. 2.84 shows the loading history and the corresponding progressive damages on 

the bottom of the ship. In this figure, point (I) is associated with 600th load step 

when applied torque equal to 1.699 × 105 N.m. Points (II) and (III) are associated 

with 800th and 1200th load steps when applied torques are 1.324 × 105 N.m and 

1.6988 × 105 N.m, respectively. As can be seen from the figure, the applied torque 

is decreased from the initial value of 2.552 × 105 N.m to 1.699 × 105 N.m (point 

I) after 600 load steps. At 600th load step (point I), cracks propagate on the shell 

(1), from 4 corners of the cut-out to two longitudinal shells, (5) and (7) (as shown 

in Fig. 2.69). Small vertical cracks also appeared on the longitudinal frames.  
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Fig. 2.84. Variations of the critical torsional moment, 𝑀1 versus change in the 

polar moment of inertia for the ship structure with 0.2 × 0.2 m2 cut-out 

 

It is also observed from Fig. 2.84 that the applied torque is sharply reduced from 

1.699 × 105 Nm at point (I) to 1.324 × 105 N.m at point (II). Later, the applied 

torque is increased to 1.6988 × 105 Nm at point (III). To analyse these interesting 

phenomena, details of the crack paths up to these points are shown in Fig. 2.85. In 

this figure, the blue lines represent the edges of the cut-out. The scatter data 

represents the material points that have the local damage index, 𝜙 exceeding 0.2. 

The black lines represent the possible crack paths on the ship structure. These crack 

paths are defined based on the local damage index, 𝜙 and the crack openings in the 

deformed configurations.  

 

As shown in Fig. 2.85, the damage initiates at four corners A, B, C, D of the cut-

out. By checking the damage plots every 20 load steps, it is observed that the 

damages start at the corners C and D first. Later, damages also appear at corners A 

and B. As shown in Fig. 2.85(a), after 600 load steps, the damages propagate from 

two corners C and D to the locations of (𝑥1 = 0.7 m, 𝑥2 = 0.21 m, 𝑥3 = 0) and 

(𝑥1 = 0.7 m, 𝑥2 = −0.21 m, 𝑥3 = 0), respectively. There are also two short 

vertical cracks on the longitudinal shells (shells 5 and 7 in Fig. 2.69) at the locations 

of (𝑥1 = 0.68 m, 𝑥2 = ±0.18 m, 0 ≤ 𝑥3 ≤ 0.0167 m). Moreover, the damages 

also propagate from two corners A and B to the locations of (𝑥1 = 0.24 m, 𝑥2 =
0.168 m, 𝑥3 = 0) and (𝑥1 = 0.24 m, 𝑥2 = −0.168 m, 𝑥3 = 0), respectively.  

 

From 600𝑡ℎ load step (point (I) in Fig. 2.84) to 800𝑡ℎ load step (point (II) in Fig. 

2.84), the cracks propagate on the bottom and vertical shells by very short distances 

(approximately equal to Δ𝑥) as shown in Fig. 2.85(b). Since the vertical cracks are 

already created at 600𝑡ℎ load step, the required torques to continue propagating 

small amounts of cracks are much reduced from point (I) to point (II) as shown in 

Fig. 2.84.  
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At 1200𝑡ℎ load step (point (III) in Fig. 2.84), there are two new vertical cracks 

compared to the damages at 800𝑡ℎ load step (point (II) in Fig. 2.84) as shown in 

Fig. 2.85(c). The locations of these new vertical cracks are (𝑥1 = 0.21 m, 𝑥2 =
±0.18 m, 0 ≤ 𝑥3 ≤ 0.05 m) on the longitudinal shells (shells 5 and 7 in Fig. 2.69). 

Moreover, the vertical cracks observed from 600𝑡ℎ and 800𝑡ℎ load steps also 

propagate to the locations of (𝑥1 = 0.68 m, 𝑥2 = ±0.18 m, 0 ≤ 𝑥3 ≤ 0.05 m). 
Note that all vertical cracks reach the height of 0.05 m which means the 

longitudinal shells (shells 5 and 7 in Fig. 2.69) are completely damaged at 1200𝑡ℎ 

load step.  

 

Also, it can be observed from Fig. 2.85 that the cracks initiating from corners C and 

D propagate toward the free end of the ship where the loading conditions are 

applied. On the other hand, the cracks initiating from two corners A and B propagate 

toward the fixed end of the ship where the boundary conditions are applied. The 

fixed end and the free end of the ship are shown in Fig. 2.70(b). Moreover, it can 

also be observed that the cracks initiating from corners C and D propagate quicker 

than the cracks initiating from corners A and B. In other words, breaking the 

structures near the fixed end is more difficult than breaking the structures near the 

free end. This observation can be the reason for the increase of the required torques 

from 1.324 × 105 Nm for the point (II) to 1.6988 × 105 Nm for the point (III) as 

shown in Fig. 2.84.  

 

 
(a) 
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(b) 

 

 
(c) 

Fig. 2.85. Crack paths at (a) 600𝑡ℎ  (point I), (b) 800𝑡ℎ(point II), (c) 1200𝑡ℎ (point 

III) load step 

2.3.7.8. Damages on a corroded stiffened structure subjected to the uniform 

pressure 

In this section, damage propagations on a stiffened structure subjected to uniform 

quasi-static pressure as shown in Fig. 2.86 are predicted. The stiffened structure is 

assumed to have localized corrosion located at (𝑥1 = 0, 𝑥2 = 0.145 m, 𝑧 = 0) on 

plate (1). The dimensions of the localized corrosion are represented by 𝑎 =
0.1 m, 𝑏 = 0.01 m and the corrosion rate of 60% is assumed. The material has the 

elastic modulus of 𝐸 = 2.022 × 1011 N/m2, the Poisson’s ratio of 𝜈 = 0.3, the 

fracture toughness of 𝐾𝐼𝑐 = 54 × 10
6 Nm−3/2 [89]. For simplification, the critical 

energy release rate of the material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 =

13123 J/m2.  

The structure is fixed on the four boundaries as shown in black in Fig. 2.86. The 

plate (1) is subjected to uniform pressure, 𝑝3 in a negative 𝑥3 direction. Similar to 

previous examples, the critical value of pressure 𝑝3 at each load step is chosen as 

the load required for crack growth by comparing the energy with the critical energy 

release rate value for each interaction [61, 64]. 

In the PD model, uniform mesh size  Δ𝑥 = 0.005 m and the horizon size 𝛿 =
3.015Δ𝑥 are used. To represent the localized corrosion, material points located 

within the corroded regions are defined and the thickness of the plate (1) at these 

points is reduced by 60% as shown in Fig. 2.87. 
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Fig. 2.86. The corroded stiffened structure 

 

 

Fig. 2.87. Variation of thickness on the corroded stiffened structure 

 

Fig. 2.88 shows the damage evolution on the stiffened structure. As shown in Fig. 

2.88(a), after 100 load steps, the damage initiates at the location of the corroded 

region. As shown in Fig. 2.88(b), as the pressure is continuously applied, the 

damage grows along with the line AD (Fig. 2.86). It can be observed from Fig. 

2.88(b) that after 1000 load steps, the crack changes its direction and then moves 

along line AB and DC as shown in Fig. 2.88(c). Later, the crack changes its 

direction again and moves along line BC as shown in Fig. 2.88(d). As can be 

observed from the figures, the crack changes its direction due to the presence of the 

stiffeners. Similar behaviour is also predicted for a pipe with a strap [90]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.88. Damage on the stiffened structure subjected to quasi-static pressure at 

(a): 100th, (b): 1000th, (c): 2000th, (d): 3000th load steps (Displacement is 

magnified by 10 for deformed configuration) 

To visualize the damage patterns, the damage evolution on the plate (1) is shown in 

Fig. 2.89. As can be observed from Fig. 2.89, the damage propagates along the four 

intersection lines, AD, AB, DC, BC, between the plate (1) and the four stringers. 

After 3000 load steps, the damage nearly develops to a close region as shown in 

Fig. 2.89(d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Fig. 2.89. Damage on the plate (1) at (a): 100th, (b): 1000th, (c): 2000th, (d): 

3000th load steps (Displacement is magnified by 10 for deformed configurations. 

The black dash lines represent the locations of the stringers) 

Fig. 2.90 shows the history of the required pressure for crack growth. As shown in 

Fig. 2.90, to initiate the first damage, the required pressure needs to reach the peak 

at 1.913 × 106 N/m2. During the first 240 load steps afterward, the required 

pressure reduces quickly to 1.227 × 106 N/m2 since the damage propagates within 

the corroded region. When the damage starts propagating beyond the corroded 

region, the required applied pressure increases significantly to 1.628 × 106 N/m2 

at 360th load step. Afterward, the applied pressure continuously reduces due to the 

damage growth. After 3000 load steps, the required pressure reduces to 

9.477 × 104 N/m2. 

 

Fig. 2.90. History of required pressure for crack growth, 𝑝3 for the stiffened 

structure 

2.4. Concluding remarks 

This chapter provides novel PD models for dealing with complex beam and shell 

structures. First, a bond-based PD beam model with 6 degrees of freedom is 

developed. The numerical implementations for investigating complex beam 

structures are also introduced for the first time in the PD literature. The results from 

PD analyses have good agreement with those in FEA solutions. Damage criteria for 

beam model based on critical energy release rate are provided for damage 

predictions. To demonstrate the capability of the PD beam model, the developed 

PD model is used to predict the damage for a 27 m high jacket platform subjected 

to collision. The developed PD beam model can be used for any type of beam 

structure such as jacket platforms with real dimensions to predict possible brittle 

damages that may occur during the operation process. 

 



88 

 

Second, a novel state-based PD model for the thermomechanical behaviour of shell 

structures in three-dimensional space with 6 degrees of freedom is developed. 

Initially, the PD model is developed for flat shells. Later, it is modified for curve 

shells and stiffened structures. The numerical implementations to deal with 

complex shell structures are also provided. The behaviours of shell structures 

captured by the developed PD model are verified by comparing with FEA solutions 

with very good agreements. The PD damage criteria for shell structures based on 

the critical energy release rate is provided for damage predictions. The developed 

PD shell model is used to predict damage on a flat shell in a double torsion problem, 

a flat shell with a rectangular cut-out subjected to bending, a hull girder subjected 

to bending and torsion, and a corroded stiffened structure subjected to uniform 

pressure. The developed PD model can be used for any type of shell structures such 

as ships and offshore structures to predict possible brittle damages that may occur 

during the operation process. 
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3. PERIDYNAMICS FOR NONLINEAR ANALYSIS 

3.1. Introduction 

This chapter focuses on developing novel nonlinear PD models for geometrically 

nonlinear analyses. The nonlinear PD formulations and equations of motion are 

obtained based on the principle of virtual displacements by using the Total 

Lagrange formulation.  

First, as discussed by Madenci and Oterkus [44], Cauchy stress components can be 

expressed in terms of PD force densities. In classical continuum mechanics, Cauchy 

stress is calculated based on the deformed configuration which is affected by 

volume changes and rotations for large deformation problems. Therefore, rotations 

and volume changes can also affect the calculation of PD force densities. In current 

PD literature, the PD force densities, in bond-based and ordinary state-based PD 

models, are parallel to the line of interaction on the deformed configuration. 

However, the effect of volume change is excluded from the calculation of PD force 

densities. Therefore, for large deformation problems in which the effects of volume 

change are significant, a new formulation of PD force densities, which considers 

both effects of rotation and volume change, need to be used. Therefore, in this 

chapter, nonlinear PD models for 1D, 2D, and 3D structures that consider the effects 

of rotations and volume changes are developed.  

Second, to investigate slender and thin-wall structures, the existing PD beam [48-

50, 58] and shell [50, 52, 59] models in literature including the PD models [61-64] 

developed in Chapter 2 in this thesis can only apply for linear elastic material 

responses since they are based on small deformation assumptions. Therefore, in this 

chapter, novel nonlinear PD models for geometrically nonlinear analysis of beams 

and plates are developed. The nonlinear PD beam model is based on the 

Timoshenko beam theory. Meanwhile, the nonlinear PD plate model is based on 

the Mindlin–Reissner plate theory.  

3.2. Peridynamics for nonlinear analysis of 1D, 2D, 3D structures 

In this section, novel nonlinear PD models for 1D, 2D, and 3D structures are 

developed. The effects of rotations and volume changes are included in the 

calculation of PD force densities. The logarithmic bond stretch is defined and used 

for the first time in the PD literature. The PD formulation and equations of motion 

are obtained based on the principle of virtual displacements by using Total 

Lagrange formulation. The numerical procedure for PD nonlinear analysis is 

provided. The capabilities of the PD model are verified by considering 1D, 2D, and 

3D structures subjected to large deformations. The developed nonlinear PD model 

is used to predict damages in 2D plates and 3D structures. The damage predictions 

are compared with experimental results conducted by Kalthoff [87], [91], Kalthoff 

and Winkler [92], Jenq and Shah [93]. 

3.2.1. Peridynamics equation of motion for large deformations 

The PD equations of motion for nonlinear analyses can be written in a discrete form 

as  

( ) 0

( ) ( ) 0 ( )( ) 0 ( )( ) ( ) ( )

1

N
t t t t

k k k j j k j k

j

V
=

= − +u t t b  (3.1a) 
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with 
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where 𝑁 represents the total number of family members of material point 𝑘. 

Similar to the relation given in Eq. (1.2) in Chapter 1, the relationship between the 

PD force densities and the nonlinear PD strain energy density can be expressed as 
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By using similar PD strain energy density expressions defined in [21, 44, 46], the 

PD strain energy density for large deformations can be described as 
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Here 𝜗0
𝑡
(𝑘) represents the PD volumetric strain, 𝑠0

𝑡
𝐻 represents the logarithmic bond 

stretch and 𝑉0 (𝑗) represents the volume of material point 𝑗 in the undeformed 

configuration. The parameters 𝑎 and 𝑏 represent the peridynamic constants. 

The logarithmic bond stretch, 𝑠0
𝑡
𝐻, is defined similarly to Hencky strain definition 

[94] for large deformation problems as [70] 
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 (3.4a) 

with  

( ) ( ) ( )
2 2 2

0 0 2 0 2 0 2 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )x y z j k j k j kx x y y z z   = + + = − + − + −  (3.4b) 

( ) ( ) ( )
2 2 2

2 2 2

( ) ( ) ( ) ( ) ( ) ( )

t t t t t t t t t t

x y z j k j k j kx x y y z z   = + + = − + − + −  (3.4c) 

where 𝜉𝑡  and 𝜉0  represent the current length and initial length of the bond between 

two material points as shown in Fig. 3.1. Here ( 𝑥0 , 𝑦0 , 𝑧0 ) and ( 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) 
represent coordinates in the initial (undeformed) and current configurations, 

respectively. Whereas, ( 𝜉0 𝑥 , 𝜉
0
𝑦, 𝜉

0
𝑧) and ( 𝜉𝑡 𝑥 , 𝜉

𝑡
𝑦, 𝜉

𝑡
𝑧) represent relative 

coordinates between two material points in the initial and current configurations, 

respectively. 
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Fig. 3.1. Initial and deformed configuration of an interaction 

In Eq. (3.4a), the linear form of stretch, 𝑠0
𝑡 , is defined according to [21] as 

0

0 0

t
t s

 



−
=  (3.5) 

Similar to classical form, for small deformations, 𝑠0
𝑡 ≪ 1, the logarithmic bond 

stretch reduces to its linear form as 

( )0 0 0ln 1t t t

Hs s s= +   (3.6) 

The PD volumetric strain term in Eq. (3.3a) can be calculated as 

( )
0

0 0 ( )

1

N
t t

H jk
j

d s V
=

=   (3.7) 

where 𝑑 represents peridynamic constant. 

By substituting strain energy density definitions provided in Eq. (3.3a) into Eq. 

(3.2), the force density components that material point j  exerts on material point 𝑘 

can be represented as 

( )( ) ( )
0

0 ( )( ) 0 00

1
2 2

t
t t t

k j Hk t t
ad b s




  

 
= + 
 

ξ
t  (3.8) 

Similarly, the force density components that material point 𝑘 exerts on material 

point 𝑗 can be represented as 

( )( ) ( )
0

0 ( )( ) 0 00

1
2 2

t
t t t

j k Hj t t
ad b s




  

 
= − + 

 

ξ
t  (3.9) 
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Note that the force densities given in Eqs. (3.8-3.9) are parallel to the deformed 

configuration and the term 𝜉0 / 𝜉𝑡  represents the ratio between initial and current 

bond lengths.  

By substituting Eqs. (3.8-3.9) into Eq. (3.1), the nonlinear PD equation of motion 

can be obtained as 

For 3D and 2D: 

( ) ( )( ) ( )
0

0

( ) 0 0 0 ( ) ( )0
1

1
2 4

tN
t t t t t

k H j kk j t t
j

ad b s V


  
  =

 
= + + + 

 


ξ
u b  (3.10) 

For 1D: 

( )
0

0

( ) 0 ( ) ( )

1

4
tN

t t tx
k H j x kt t

j

u b s V b



 =

= +  (3.11) 

The PD constants, 𝑎 and 𝑏, are determined by comparing the virtual values of strain 

energy density in PD and classical continuum mechanics based on the principle of 

virtual displacement provided in Eq. (C27) (Appendix C).  

The peridynamic constants, 𝑎, 𝑏 and 𝑑 for 3D structures are obtained as (Appendix 

D1) 

2
a

 −
= ; 4

15

2
b




= ; 3

9

4
d


=  (3.12) 

where 𝛿 represents horizon size in the initial configuration, 𝜆 and 𝜇 represent 

Lame’s constants 

( )( ) ( )
;

1 1 2 2 1

E E
 

  
= =

+ − +
 (3.13) 

where 𝐸 represents the elastic modulus and 𝜈 represents the Poisson’s ratio. 

The peridynamic constants, 𝑎, 𝑏 and 𝑑 for 2D structures are obtained as (Appendix 

D2) 

2
a

 −
= ; 3

6
b

h



 
= ; 2

2
d

h 
=  (3.14) 

where ℎ represents the thickness of the plate in the initial configuration, 𝛼 represents 

a constant which can be defined as 

1 2
for plane stress

1

1 for plane strain



 

−


= −



 (3.15) 

As provided in Appendix D3, peridynamic constants for 1D structures can be 

obtained as 

( )0 22

E
b

A 
=  (3.16) 
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where 𝐴0  represents the cross-section area of the bar in the initial configuration.  

Note that the PD constants provided in Eq. (3.12), Eq. (3.14), and Eq. (3.16) agree 

to those given in [44]. Therefore, it can be concluded that the key difference 

between PD formulations for small deformation problems and large deformation 

problems is the use of logarithmic bond stretch provided in Eq. (3.4). As a result, 

the change of bond length is included in the formulations of PD force densities as 

given in Eqs. (3.8-3.9). 

3.2.2. Damage prediction 

The nonlinear PD equations of motion given in Eqs. (3.10-3.11) can be rewritten 

as 

0

( ) ( ) ( )( ) 0 ( )( ) ( ) ( )

1

N
t t t

k k k j k j j k

j

V 
=

= +u f b  (3.17a) 

with 

( ) ( )( )

( ) ( )( )

( ) ( )( )
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0 ( )( ) 0 0 00
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1
2 4
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2 4
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f  for 3D (3.17b) 
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0

0 ( )( ) 04
t

t t x
k j H t t

b s


 
=f  for 1D (3.17d) 

where 𝜓(𝑘)(𝑗) is the damage parameter to represent the interaction state between 

material points 𝑘 and 𝑗, which is given in Eq. (1.3) in Chapter 1. 

Note that, the volumetric strain in PD for damage prediction can be updated by 

including the damage parameter, 𝜓(𝑘)(𝑗) as 

0

0 ( ) ( )( ) 0 ( )

1

N
t t

k k j H j

j

d s V 
=

=   (3.18) 

Similar to the energy-based damage criteria used in Chapter 2 and 3, the state of 

interaction can be determined based on the critical energy rate as [25, 26] 

0 ( )( ) ( )( )

0 ( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

t c

k j k j

t c

k j k j

g g

g g





 → =

 → =
 (3.19) 
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where 𝑔0
𝑡̄
(𝑘)(𝑗)represents the average energy release rate for the interaction between 

material points 𝑘 and 𝑗 at time 𝑡. The parameter 𝑔𝑐 represents the average critical 

energy release rate for one interaction which is presented in Chapter 1.  

Similar to the formulation given in Chapter 1, the energy release rate for the 

interaction between material points 𝑘 and 𝑗 in Eq. (3.19) can be approximated as 

[25, 26] 

( ) 0 0

0 ( )( ) 0 ( )( ) 0 ( )( ) ( ) ( )

1 1

2

t t t

k j k j j k k j

crack

g V V
A

 
=  +  

 
 (3.20) 

where Φ0
𝑡
(𝑘)(𝑗)

 represents the micropotential at time 𝑡 of the interaction between 

material points 𝑘 and 𝑗 in which material point 𝑗 is a family member of material 

point 𝑘, Φ0
𝑡

(𝑗)(𝑘)
 represents the micropotential at time 𝑡 of the interaction between 

material points 𝑗 and 𝑘 in which material point 𝑘 is a family member of material 

point 𝑗. The term 𝐴𝑐𝑟𝑎𝑐𝑘 represents the unit crack surface which is described in 

Chapter 1.  

As introduced by Madenci and Oterkus [25], [26] the micropotential Φ0
𝑡

(𝑘)(𝑗)
 can 

be calculated in the nonlinear analysis as 

0 ( )( )

0

0

0 ( )( ) 0 ( )( ) 0 ( )( )

0

t t
k js

t t t

k j k j k jt ds t d





  = =   (3.21a) 

with 
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0 0 00

2                 for 1D structures

1
2  for 2D and 3D structures

t
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




 

 





= 
  + +  

 (3.21b) 

The integration in Eq. (3.21a) can be numerically calculated as 

0 ( )( ) 0 ( )( ) ( )( )

t t t

k j k j k j

+  =  +   (3.22) 

where Φ0
𝑡
(𝑘)(𝑗)

 and Φ0
𝑡+Δ𝑡

(𝑘)(𝑗)
 represent micropotentials at the time step 𝑡 and 𝑡 +

Δ𝑡, respectively. The term ΔΦ(𝑘)(𝑗) represents the incremental value of 

micropotential from time 𝑡 to time 𝑡 + Δ𝑡, which can be calculated as  

( )( )( )( ) 0 ( )( ) 0 ( )( )

1

2

t t t t t t

k j k j k jt t  + + = − −  (3.23) 

where the terms  𝑡0
𝑡
(𝑘)(𝑗) and 𝑡0

𝑡+Δ𝑡
(𝑘)(𝑗) represent the force densities, as given in 

Eq. (3.8), at time 𝑡 and 𝑡 + Δ𝑡, respectively.  

3.2.3. Numerical results 

In this section, first, the developed nonlinear PD model is verified by considering 

various examples of 1D, 2D, and 3D structures. For verification purposes, the 

proposed PD model is compared to FEA solutions. The explicit time integration is 
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used in the PD solution by using the ADR method as discussed in Appendix A [76, 

77]. In the PD solution, the horizon size 𝛿 = 3.015Δ𝑥 is used. The FEA solutions 

are conducted by using ANSYS commercial software with LINK180 element for 

the 1D bar, PLANE182 element for 2D plates, and SOLID185 element for 3D 

structures. Next, damage predictions on a steel plate subjected to dynamic loading, 

an L-shape plate subjected to large deformations, and on a concrete beam in three 

points bending test are presented.  

 

3.2.3.1. Large deformations in a 1D structure 

To verify the proposed PD model for one dimension, a bar with a cross-sectional 

area 𝐴 = 0.1 × 0.1 m2 with a length of 𝐿 = 1 m subjected to axial loading is 

investigated as shown in Fig. 3.2. The bar is made of steel with Young’s modulus 

𝐸 = 2 × 1011 N/m2. The bar is subjected to two different loading conditions which 

are a tensile load of 𝐹𝑥 = 5 × 10
8 N and a compressive load of 𝐹𝑥 = −5 × 10

8 N. 

 
(a) 

 

 
(b) 

Fig. 3.2. Bar subjected to axial loading (a) geometry, (b) PD model discretization 

In the peridynamic model, the bar is discretized with uniform 100 integration 

points. To implement the fixed end, three fictitious points [26, 95] are added as 

shown in Fig. 3.2(b) and displacements of these fictitious points and a material point 

located at 𝑥 = 0 are set equal to zero. The red points represent the material points 

in the real region, on the other hand, black points represent the material points in 

the fictitious region as shown in Fig. 3.2(b). In the FEA model, the bar is discretized 

with 100 elements by using the link180 element. In both loading conditions, the 

constant body force 𝑏𝑡 𝑥 = 𝐹𝑥/ 𝑉0  is applied to the material point located at 𝑥 = 𝐿.  

Fig. 3.3 shows the displacement variations along the bar. As can be seen from Fig. 

3.3(a), under tensile loading, the displacement of the bar in nonlinear cases is much 

larger than in the linear case. On the other hand, in the compressive loading 

condition, the nonlinear cases provide much smaller displacement values than those 

captured in the linear case as shown in Fig. 3.3(b). It can be observed that results 

captured in nonlinear PD analysis match very well with the results in nonlinear 

FEA. 
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(a)                                                              (b) 

Fig. 3.3. Displacements of material points along the bar subjected to axial load: 

(a) 𝐹𝑥 = 5 × 10
8𝑁, (b) 𝐹𝑥 = −5 × 10

8𝑁 (L: linear, NL: nonlinear) 

To further verify the developed 1D nonlinear PD model, the bar described in Fig. 

3.2 is further investigated by applying various tensile forces. Fig. 3.4 shows the 

displacement variation of the material point located at 𝑥 = 1 m. As can be seen 

from the figure, when the applied force is large, deformations observed in nonlinear 

and linear analyses have significant differences, and the results captured by the 

developed nonlinear PD model match very well with nonlinear FEA results.  

Table 3.1 shows the comparison between nonlinear PD and nonlinear FEA 

displacement results at 𝑥 = 0.5 m. The relative error between the two results is 

calculated as 

( )% 100
NL PD NL FEA

NL FEA

u u
Error

u

− −

−

−
=   (3.24) 

As can be seen from Table 3.1, the relative errors between nonlinear PD and 

nonlinear FEA results are less than 0.5% for all loading cases. Therefore, it can be 

concluded that the developed PD model for large deformation analysis of one-

dimensional structure is verified. 

Table 3.1. Comparison between nonlinear PD and nonlinear FEA results 

𝐹𝑥(𝑁) 𝑢𝑁𝐿−𝐹𝐸𝐴(𝑚) 𝑢𝑁𝐿−𝑃𝐷(𝑚) 𝐸𝑟𝑟𝑜𝑟 (%) 

1.0E+07 0.00252 0.00253 0.335% 

4.0E+07 0.01299 0.01303 0.331% 

1.0E+08 0.02706 0.02715 0.326% 

2.0E+08 0.05916 0.05935 0.316% 

3.0E+08 0.09829 0.09859 0.310% 

4.0E+08 0.14785 0.14833 0.323% 

4.0E+08 0.21442 0.21529 0.406% 
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Fig. 3.4. Variation of displacement of the material point located at 𝑥 = 1 m versus 

applied forces (L: linear, NL: nonlinear) 

3.2.3.2. Large deformations in 2D structures 

To verify the developed 2D nonlinear PD model, a square plate with 𝐿 = 𝑊 = 1 m 

and thickness of ℎ = 0.01 m is investigated as shown in Fig. 3.5. The plate is made 

of steel with Young’s modulus 𝐸 = 2 × 1011 N/m2 and Poisson’s ratio 𝜈 = 0.27. 

The plate is fixed on the left edge. The plate is investigated in two different loading 

conditions as shown in Fig. 3.5. In each loading condition, the plate is investigated 

for both plane strain and plane stress conditions.  

To apply boundary conditions on the left edge, three fictitious layers of material 

points are added in the discretized model in PD as shown in Fig. 3.5(c) and all 

degrees of freedom of these fictitious points and material points located at 𝑥 = 0 

are set equal to zero. The plate is discretized with mesh size 𝛥𝑥 = 𝐿/100 in both 

PD and FEA models.  

 
                                  (a)                                                             (b) 
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(c) 

Fig. 3.5. Plate subjected to large deformations (a): tensional loading, (b): shear 

loading, (c): PD model discretization 

Plate subjected to tensile loading 

In this problem, the plate is subjected to the constant pressure, 𝑝 = 5 × 1010 N/m2 

normal to the surface on the right edge of the plate as shown in Fig. 3.5(a). In the 

PD model, the loading condition is applied to the material points located at 𝑥 = 𝐿 

by converting the constant pressure to body forces. Details of the implementation 

of loading conditions are presented in Appendix D4.2. 

Plane strain condition: 

Fig. 3.6 and Fig. 3.7 present the variations of displacement components of the plate 

for the plane strain condition. As can be seen from the figures, the PD and nonlinear 

FEA prediction results match very well.  

 

Fig. 3.8 shows the comparison between nonlinear PD and nonlinear FEA results for 

the variations of displacement components along two centrelines 𝑥 = 𝐿/2 and 𝑦 =
𝑊/2. Fig. 3.8(a) represents the horizontal displacements at 𝑥 = 𝐿/2 and Fig. 3.8(b) 

represents the vertical displacements at 𝑦 = 𝑊/2. As can be seen from the results, 

PD and nonlinear FEA solutions agree very well, and there is a big difference 

between linear FEA and nonlinear solutions.  

 
                            (a)                                                              (b) 

Fig. 3.6. Variation of horizontal displacements, 𝑢 in (a) nonlinear PD; (b) 

nonlinear FEA in the deformed configuration 
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                            (a)                                                              (b) 

Fig. 3.7. Variation of vertical displacements, 𝑣 in (a) nonlinear PD; (b) nonlinear 

FEA in the deformed configuration 

 
(a)                                                            (b) 

Fig. 3.8. Variations of displacements (a) 𝑢 along 𝑦 = 𝑊/2; (b) 𝑣 along 𝑥 = 𝐿/2 

(L: linear, NL: nonlinear) 

Plane stress condition: 

Fig. 3.9-Fig. 3.11 represent the variations of displacement components of the plate 

for plane stress conditions. Similar to the plane strain problem, the variations of 

displacement components along the centre lines are investigated. It is observed that 

the results provided by the developed PD model have good agreement with those 

captured in nonlinear FEA. 

 
                            (a)                                                              (b) 

Fig. 3.9. Variation of horizontal displacements, 𝑢 in (a) nonlinear PD; (b) 

nonlinear FEA in the deformed configuration 
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                          (a)                                                               (b) 

Fig. 3.10. Variation of vertical displacements, 𝑣 in (a) nonlinear PD; (b) nonlinear 

FEA in the deformed configuration 

 

 
 (a)                                                                  (b) 

Fig. 3.11. Variations of displacements (a) 𝑢 along 𝑦 = 𝑊/2; (b) 𝑣 along 𝑥 = 𝐿/2 

(L: linear, NL: nonlinear) 

Plate subjected to shear loading 

In this problem, the plate is subjected to the uniform pressure 𝑝2 =
1.3 × 1010 N/m2 normal to the surface on the top edge as shown in Fig. 3.5(b). In 

the PD model, the loading condition is applied to the material points located at 𝑦 =
𝑊 by converting the constant pressure to body forces. Details of the implementation 

of loading conditions are presented in Appendix D4.2. 

 

Plane strain condition 

Fig. 3.12-4.22 present the results for the plane strain condition. As can be seen from 

Fig. 3.12 and Fig. 3.13, the variations of displacements 𝑢 and 𝑣 captured in PD and 

FEA solutions have a very good agreement. Moreover, as presented in Fig. 3.14 

and Fig. 3.15, the results captured by the developed PD model agree very well with 

those in nonlinear FEA whereas a significant difference between linear and 

nonlinear results is observed. 
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(a)                                                              (b) 

Fig. 3.12. Variation of horizontal displacements, 𝑢 in (a) nonlinear PD; (b) 

nonlinear FEA in the deformed configuration 

 
(a)                                                                    (b) 

Fig. 3.13. Variation of vertical displacements, 𝑣 in (a) nonlinear PD; (b) nonlinear 

FEA in the deformed configuration 

 
 (a)                                                             (b) 

Fig. 3.14. Variations of displacement components (a) 𝑢, (b) 𝑣 at 𝑦 = 𝑊/2 (L: 

linear, NL: nonlinear) 
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 (a)                                                              (b) 

Fig. 3.15. Variations of displacement components (a) 𝑢, (b) 𝑣  along 𝑥 = 𝐿/2  

Plane stress condition 

Fig. 3.16-Fig. 3.19 present the results for the plane stress condition. As can be seen 

from the figures, the results in nonlinear PD and nonlinear FEA solutions match 

very well. Therefore, it can be concluded that the accuracy of the developed 2D 

nonlinear PD model is verified.  

 
(a)                                                                    (b) 

Fig. 3.16. Variation of displacement, 𝑢 in (a) nonlinear PD; (b) nonlinear FEA in 

the deformed configuration 

 

 (a)                                                             (b) 

Fig. 3.17. Variation of displacement, 𝑣 in (a) nonlinear PD; (b) nonlinear FEA in 

the deformed configuration 
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 (a)                                                            (b) 

Fig. 3.18. Variations of displacement components (a) 𝑢, (b) 𝑣 along 𝑦 = 𝐿/2 (L: 

linear, NL: nonlinear) 

 

 (a)                                                            (b) 

Fig. 3.19. Variations of displacement components (a) 𝑢, (b) 𝑣 along 𝑥 = 𝐿/2 (L: 

linear, NL: nonlinear) 

For further comparison, the displacements at (𝑥 = 3𝐿/4, 𝑦 = 3𝑊/4) obtained 

from nonlinear PD and nonlinear FEA are compared as shown in Table 3.2. As can 

be seen from the table, the relative errors between the results are less than 5% for 

all loading conditions. Therefore, the accuracy of the developed nonlinear PD 

model for 2D structures is verified for both plane stress and plane strain conditions.  

Table 3.2. Comparison of displacements for a material point located at (𝑥 =

3𝐿/4, 𝑦 = 3𝑊/4) 

  

𝑢𝑁𝐿𝐹𝐸𝐴 

(m) 

𝑢𝑁𝐿𝑃𝐷 

(m) 

𝐸𝑟𝑟𝑜𝑟 
(%) 

𝑣𝑁𝐿𝐹𝐸𝐴 

(m) 

𝑣𝑁𝐿𝑃𝐷 

(m) 

𝐸𝑟𝑟𝑜𝑟 
(%) 

Plate 

subjected 

to tensile 

loading 

Plane  

strain 0.2531 0.2485 1.8% -0.0421 -0.0416 1.2% 

Plane  

stress 0.2792 0.2862 2.5% -0.0334 -0.0334 0.0% 

Plate 

subjected 

to shear 

loading 

Plane  

strain -0.0993 -0.0959 3.4% 0.2084 0.2029 2.6% 

Plane  

stress -0.101 -0.0969 4.0% 0.2153 0.209 2.9% 
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Table 3.3 shows the information in terms of computational time in nonlinear PD 

and nonlinear FEA simulations. The PD and FEA simulation time for the problem 

of the plate under tension in the plane strain condition with different mesh sizes is 

considered. As mentioned in the first paragraph of Section 3.2.3, the ADR method 

with the explicit time integration scheme is used for the nonlinear PD simulations. 

The PD codes are written using Matlab 2018b. On the other hand, nonlinear FEA 

simulations are conducted by using ANSYS with the implicit solver.  

As can be observed from Table 3.3, the number of iterations required to obtain 

converged solutions, 𝑁𝑡, in the nonlinear PD simulations are much higher than those 

in the nonlinear FEA. In PD, the simulation with a finer mesh requires more 

iterations to obtain the converged solution. Specifically, for the PD model with 

50 × 50 material points, the required number of iterations is 600. For the PD model 

with 150 × 150 material points, this number is 2000. In FEA, since the implicit 

solver is used, the FEA simulations converged after 100 iterations for all mesh sizes. 

As a result, the running time for nonlinear PD simulations is much higher than those 

of nonlinear FEA. 

However, it is also observed that the time per iteration in nonlinear PD simulation 

is less than those in nonlinear FEA. The reason is that the nonlinear PD uses the 

explicit integration scheme meanwhile the nonlinear FEA uses the implicit solver 

which requires the solutions for large linear and nonlinear stiffness matrices. 

Table 3.3. Computational time in NL-PD and NL-FEA for 2D plane strain 

problems 

 

 

3.2.3.3. Large deformations in 3D structures 

To verify the proposed PD model for 3D structures, a 3D beam subjected to constant 

shear force is investigated as shown in Fig. 3.20. The dimensions of the beam are 

𝐿 × 𝐵 × 𝐻 = 1 × 0.1 × 0.1 m3 and it is made of steel with Young’s modulus 𝐸 =
2.06 × 1011 N/m2 and Poisson’s ratio 𝜈 = 0.3. The structure is subjected to a 

distributed force 𝑓𝑧 = −1 × 10
8 N/m at the right end as shown in Fig. 3.20. 

Number of material 

points (nodes)

Nt

Time: t

(s)

Time per 

iteration: t/Nt

(s)

Nt

Time: t

(s)

Time per 

iteration: t/Nt

(s)

Nt

Time: t

(s)

Time per 

iteration: t/Nt

(s)

NL PD explicit 

using ADR method
600 49.47 0.0825 1200 306.58 0.2555 2000 1134 0.5670

NL FEA implicit 

using ANSYS
100 15.77 0.1577 100 36.49 0.3649 100 78.96 0.7896

50x50 100x100 150x150

Nt: number of iterations to obtain converged solution.
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(a) 

 
(b) 

Fig. 3.20. 3D beam subjected to static loading (a) geometry, (b) PD model 

discretization 

In the peridynamic model, the 3D beam is discretized with uniform 101 × 10 × 10 

material points. In the FEA model, the same mesh size is used. To apply boundary 

conditions, three fictitious layers of material points are added as shown in Fig. 

3.20(b) and displacements of these fictitious points and material points located at 

𝑥 = 0 are set equal to zero. As shown in Fig. 3.20(b), red points represent the 

material points in the real region, on the other hand, black points represent the 

material points in the fictitious region. In the PD model, the loading condition is 

applied to the material points located at 𝑥 = 𝐿, 0 ≤ 𝑦 ≤ 𝐵, 𝑧 = 𝐻 as body forces. 

The details of applying loading conditions in PD simulation are presented in 

Appendix D4.3. 

Fig. 3.21-Fig. 3.23 show the displacement variations along the beam. The PD 

predictions are compared with nonlinear and linear FEA results. As shown in Fig. 

3.21 for the variation of displacement 𝑢, both the nonlinear PD model and nonlinear 

FEA provide similar results, meanwhile, the linear FEA results are completely 

different. The maximum displacement captured by linear FEA is almost 8 times 

larger than nonlinear PD and FEA solutions. Moreover, the variation of 

displacement 𝑣 along the beam captured by linear FEA is completely different from 

the nonlinear PD and FEA results as shown in Fig. 3.22. In Fig. 3.23, it is observed 

that the maximum displacement 𝑤 of the beam captured by linear FEA solution is 

two times larger than the maximum deflection captured by nonlinear solutions. As 

can be seen from the results, the developed 3D nonlinear PD model and nonlinear 

FEA solution show very good agreement for all displacement components.  
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(a)                                                                  (b) 

 
(c) 

Fig. 3.21. Variations of displacement component 𝑢 (m) in (a) nonlinear PD; (b) 

nonlinear FEA; (c) linear FEA results in the deformed configuration 

 

(a)                                                                (b) 
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(c) 

Fig. 3.22. Variations of displacement component 𝑣 (m) in (a) nonlinear PD; (b) 

nonlinear FEA; (c) linear FEA results in the deformed configuration 

 

 

(a)                                                               (b) 

 

(c) 

Fig. 3.23. Variations of displacement component 𝑤 (m) in (a) nonlinear PD; (b) 

nonlinear FEA; (c) linear FEA results in the deformed configuration 

Similar to previous examples, for further comparison, the nonlinear PD and 

nonlinear FEA displacements at (𝑥 = 3𝐿/4, 𝑦 = 3𝐵/4, 𝑧 = 3𝐻/4) are compared 

as shown in Table 3.4. It is found that the relative errors for all displacement 
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components are smaller than 1%. Therefore, it can be concluded that the accuracy 

of the developed 3D nonlinear PD model is verified. 

Table 3.4. Comparison of displacements for a material point located at (𝑥 =

3𝐿/4, 𝑦 = 3𝑊/4) 

Displacement: 𝑢 (m) 𝑢𝑁𝐿𝐹𝐸𝐴 𝑢𝑁𝐿𝑃𝐷 Error (%) 

-0.248143 -0.248328 0.07% 

Displacement: 𝑣 (m) 𝑣𝑁𝐿𝐹𝐸𝐴 𝑣𝑁𝐿𝑃𝐷 Error (%) 

-0.000131 -0.000130 0.70% 

Displacement: 𝑤 (m) 𝑤𝑁𝐿𝐹𝐸𝐴 𝑤𝑁𝐿𝑃𝐷 Error (%) 

-0.534627 -0.539694 0.95% 

 

3.2.3.4. Damage prediction in 2D plate 

After verifying the accuracy of the developed nonlinear PD model for 2D structures, 

in this section, damage on a plate is predicted. The experiment presented by 

Kalthoff [87], [91], Kalthoff and Winkler [92] for a pre-notched plate subjected to 

dynamic load is simulated by using the developed PD model. 

 

Since the problem is symmetric, only the upper haft plate is modelled as shown in 

Fig. 3.24. The plate with 𝐿 = 𝑊 = 0.1 m and thickness of ℎ = 0.009 m is 

investigated [87]. The plate is made of steel with Young’s modulus 𝐸 =
2 × 1011 N/m2, Poisson’s ratio 𝜈 = 0.27. The fracture toughness of steel is 𝐾𝐼𝑐 =
70 × 106 Nm−3/2[87]. For simplification, the critical energy release rate of the 

material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 = 22714 J/m2.  

The left edge which is under the crack surface is subjected to velocity conditions as 

[96, 97] 

0 0

0

0 0

for

for

t
v t t

t

v t t




= 
 

v  (3.25) 

with 𝑣0 = 16.5 m/s, 𝑡0 = 1 𝜇𝑠. 

The plate is considered in the plane stress condition and it is discretized into 

200 × 200 material points. The horizon size is 𝛿 = 3.015Δ𝑥. The problem is 

simulated using the dynamic explicit time integration scheme with the time step 

0.01 𝜇𝑠 and the total simulation time of 80𝜇𝑠. 
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Fig. 3.24. The geometry and symmetrical boundary conditions for the Kalthoff 

experiment 

Fig. 3.25 presents the crack evolution at different times captured by the nonlinear 

PD model with the horizon size of 𝛿 = 3.015Δ𝑥. As shown in Fig. 3.25, the crack 

starts branching up 70.2𝑜 with respect to the horizontal axis at 𝑡 = 30 𝜇𝑠. As time 

progresses, the crack continues propagating in the same direction and the crack 

reaches the top edge of the plate at 𝑡 = 80 𝜇𝑠.  

 
                             (a)                                                            (b) 

 
                             (c)                                                            (d) 

Fig. 3.25. Crack evolution at different times (a) 𝑡 = 30 𝜇𝑠, (b) 𝑡 = 50 𝜇𝑠, (c) 𝑡 =

70 𝜇𝑠, (d) 𝑡 = 80 𝜇𝑠 (displacements are magnified by 5 for the deformed 

configuration) 
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Fig. 3.26 shows the 𝛿 − convergence study in terms of the crack path. In this 

convergence study, the nodal density is kept constant (𝑚 = 𝛿/𝛥𝑥 = 3) [98-100], 

meanwhile the horizon size is taken as smaller and smaller (𝛿 → 0) [98-100]. As 

can be seen from Fig. 3.26(c-d), when the horizon size is small the predicted crack 

paths are 70.2𝑜 with respect to the horizontal axis and it agrees very well with the 

experimental observations in [87, 91, 92], which is around 70𝑜.  

 

                          (a)                                                             (b) 

 

                             (c)                                                             (d)  

Fig. 3.26. convergence −  in terms of crack paths with 𝑚 = 𝛿/𝛥𝑥 = 3 and 

horizon size (a): 𝛿 = 0.006 m, (b): 𝛿 = 0.003 m, (c): 𝛿 = 0.002 m, (d): 𝛿 =

0.0015 m 

3.2.3.5. Damage prediction for an L-shape plate subjected to large deformation 

In this section, damage in an L-shape plate subjected to large deformation, as shown 

in Fig. 3.27, is predicted. The L-shape plate has dimensions of 𝐿 = 10 m, 𝑊 =
2 mand thickness of ℎ = 0.1 m. The material has Young’s modulus of 𝐸 =
1.0667 × 104 N/m2, Poisson’s ratio of 𝜈 = 0.333 and critical energy release rate 

of 𝐺𝑐 = 2.7 × 10
3 J/m2 [101]. The bottom edge of the plate is fixed, and the right 

edge of the plate is attached to a stiff plate, shown in blue in Fig. 3.27.  

 

In the PD model, plane stress condition is considered. Similar to Section 4.4.2, to 

apply boundary conditions, three fictitious layers of material are generated at the 

bottom, and all displacement components of the fictitious material points as well as 

material points located at the location at 𝑦 = 0 are set equal to zero. To represent 

the stiff plate at the right edge, Young’s modulus of the stiff plate is considered as 

𝐸 = 1.0667 × 105 N/m2. 
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The plate is subjected to incremental vertical displacement at (𝑥 = 𝐿, 𝑦 = 𝐿 −
𝑊/2) as  

( ) ( 1)  (m)n nv v v−= +  (3.26) 

with 𝑣(0) = 10.075 m, Δ𝑣 = 0.001 m 

where 𝑣(𝑛) represents applied displacement at 𝑛𝑡ℎ load step (𝑛 = 1,2…2900), Δ𝑣 

represents the incremental value of applied displacement, 𝑣(0) represents the first 

value of vertical displacement applied for the plate.  

In the PD model, the plate is discretized with the mesh size of Δ𝑥 = 𝑊/20. The 

material point located at (𝑥 = 𝐿, 𝑦 = 𝐿 −𝑊/2) is subjected to the incremental 

displacement given in Eq. (3.38). The Adaptive Dynamic Relaxation (ADR)  

method [76, 77] is used to simulate this quasi-static problem (Appendix A1). To 

ensure the ADR solution is converged at each load step, the PD solution is run over 

10000 time steps for each incremental displacement. 

 
Fig. 3.27. L-shape plate subjected to large deformation 

Fig. 3.28 shows the damage evolution on the plate subjected to large deformations. 

As shown in Fig. 3.28(a), when the applied displacement is 𝑣 = 10.175 m, damage 

initiates around the inner corner of the plate, at (𝑥 = 𝑊, 𝑦 = 𝐿 −𝑊/2). As the 

applied displacement is increased, the crack propagates toward the outer corner of 

the L-shape plate as shown in Fig. 3.28(b-d). When the applied displacement is 𝑣 =
12.975 m, the crack opens largely, and the L-shape plate is almost split into two 

parts as shown in Fig. 3.28(d). It is observed that the damage evolution captured by 

the nonlinear PD model agrees very well with the previous study [101]. 



112 

 

 

               (a)                        (b)                             (c)                          (d) 

Fig. 3.28. Crack evolution on the L-shape plate in the deformed configuration 

when the applied displacement is (a) 𝑣 = 10.175 m, (b) 𝑣 = 10.975 m, (c) 𝑣 =

11.975 m, (d) 𝑣 = 12.975 m 

3.2.3.6. Damage prediction in 3D pre-notched concrete beam subjected to 

bending 

After verifying the accuracy of the developed nonlinear PD model for 3D structures, 

damage on a 3D structure is predicted. The experiment presented by Jenq and Shah 

[93] for a pre-notched concrete beam is simulated by using the developed PD 

model. The concrete beam has dimensions of 𝐿 × 𝐵 × 𝐻 = 304.8 × 28.6 ×
70.2 mm3 and the pre-notch has the height of 𝑎 = 35.1 mm as shown in Fig. 3.29. 

The beam is placed on two rigid cylinders located at 𝑥 = 0.1𝐿 and 𝑥 = 0.9𝐿. The 

material has Young’s modulus 𝐸 = 30 × 109 N/m2, Poisson’s ratio 𝜈 = 0.2. For 

simplification, the critical energy release rate of the material is chosen as 𝐺𝑐 =
𝐺I𝑐 = 20.7368 J/m

2.  
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Fig. 3.29. 3D beam with pre-notched  

In the PD model, the structure is discretized with uniform 101 × 10 × 24 material 

points. To create the notch, the material points located at 𝑥 = 0.7𝐿, 0 ≤ 𝑦 ≤ 𝐵 and 

𝑧 ≤ 𝑎 are removed from the model. 

 

The loading is applied by increasing the displacement by Δ𝑤 = −10−8 at 𝑥 =
0.5𝐿, 0 ≤ 𝑦 ≤ 𝐵, 𝑧 = 𝐻 for each load step. Zero vertical displacements, 𝑤 = 0 is 

applied at 𝑥 = 0.1𝐿, 0 ≤ 𝑦 ≤ 𝐵, 𝑧 = 0 and 𝑥 = 0.9𝐿, 0 ≤ 𝑦 ≤ 𝐵, 𝑧 = 0. The 

explicit time integration is used for this quasi-static problem by using the ADR 

method [76, 77].  

 

Fig. 3.30-4.42 present the crack evolution for the concrete beam. In Fig. 3.30(b)-

42(b), blue regions represent the initial notch and red regions represent the new 

crack surfaces. The new crack surfaces are represented by the material points with 

the damage coefficient 𝜙 ≥ 0.3. As shown in Fig. 3.30(a), when the applied 

displacement is 𝑤(0.5𝐿, 𝑦, 𝐻) = −2 × 10−6 m, the crack propagates towards the 

middle section of the beam and reaches the location (𝑥 = 0.206, 𝑦, 𝑧 = 0.046). The 

peridynamic results show that the failure angle is 𝛽 = 34𝑜 which is similar to the 

failure angle observed in experiments [93].  

 

As time progresses, the crack continues propagating in the same direction and 

reaches the location (𝑥 = 0.1962, 𝑦, 𝑧 = 0.0582) when 𝑤(0.5𝐿, 𝑦, 𝐻) =
−2.5 × 10−6 m as shown in Fig. 3.31. The crack propagates to the location of 

(𝑥 = 0.1928, 𝑦, 𝑧 = 0.0625) when 𝑤(0.5𝐿, 𝑦, 𝐻) = −3 × 10−6 m as shown in 

Fig. 3.32. The crack propagated to the location (𝑥 = 0.1869, 𝑦, 𝑧 = 0.0691) when 

𝑤(0.5𝐿, 𝑦, 𝐻) = −4 × 10−6 m as shown in Fig. 3.34, then propagated towards the 

top surface of the beam when 𝑤(0.5𝐿, 𝑦, 𝐻) = −4.5 × 10−6 m as shown in Fig. 

3.35. 

 
(a) 
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(b) 

Fig. 3.30. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −2 × 10−6 m (a) front view for 

material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 

 

(a) 

 
(b) 

Fig. 3.31. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −2.5 × 10−6 m (a) front view 

for material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 

 

(a) 
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(b) 

Fig. 3.32. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −3 × 10−6 m (a) front view for 

material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 

 

 

(a) 

 
(b) 

Fig. 3.33. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −3.5 × 10−6 m (a) front view 

for material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 

 

(a) 
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(b) 

Fig. 3.34. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −4 × 10−6 m (a) front view for 

material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 

 

 

 

(a) 

 
(b) 

Fig. 3.35. Crack evolution when 𝑤(0.5𝐿, 𝑦, 𝐻) = −4.5 × 10−6 m (a) front view 

for material points located at 𝑦 = 𝐵/2 (b) 3D crack surface 
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3.3. Peridynamics for nonlinear analysis of 3d beam structures 

In this section, a novel PD model for geometrically nonlinear analysis of beam 

structures with 6 DOFs is proposed. The nonlinear PD formulations and equations 

of motion are obtained based on the principle of virtual displacements by using the 

Total Lagrange formulation. The numerical procedure in PD nonlinear analysis for 

beams is provided. The capabilities of the nonlinear PD model are verified by 

considering various examples of straight beams and curved beams subjected to 

large deformations. The developed nonlinear PD model is used to predict damages 

on a straight beam, which is a representation of dry spaghetti, subjected to different 

loading conditions.  

3.3.1. Nonlinear beam kinematics in classical continuum mechanics 

In this section, a three-dimensional straight beam is considered as shown in Fig. 

3.36. The beam kinematics are obtained with respect to the body-attached 

coordinate system of the beam, 𝑥, 𝑦, 𝑧, which is called the local coordinate system. 

The beam is assumed to have symmetric cross-sections. The nonlinear strain energy 

density for the beam is obtained through three main steps. First, the displacement 

components of a beam element are presented in Section 3.3.1.1. Next, the Green-

Lagrange strain and Second Piola-Kirchhoff stress components are presented in 

Section 3.3.1.2 and 3.3.1.3, respectively. Finally, the nonlinear strain energy density 

for a beam structure is presented in Section 3.3.1.4. 

 

3.3.1.1. Displacement components 

Based on the Timoshenko theory [72], a beam has 6 local degrees of freedom, 

𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 as shown in Fig. 3.36. The terms 𝑢, 𝑣, 𝑤 represent the local 

displacements of the point located at the centre line of the beam and 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 

represent local rotations of beam cross-section.  

 

Since in nonlinear analysis, three rotations 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 are co-rotated, the rotations of 

the beam at time 𝑡 are controlled by using director vectors, 𝑽𝑡 𝑠, 𝑽
𝑡
𝑡 [70] as shown 

in Fig. 3.36.  
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Fig. 3.36. Beam configurations with 6 local DOFs 

As shown in Fig. 3.36, material point 𝑃 is located at ( 𝑥0 , 𝑦0 , 𝑧0 ) and material 

point 𝑄 is located at ( 𝑥0 , 0,0) which is on the centre line of the beam.  

The degrees of freedom at time 𝑡 and time 𝑡 + Δ𝑡 for material points 𝑃 and 𝑄 are 

represented as 

( )ˆ ˆ ˆ,  ,  t t tu v w , ( )ˆ ˆ ˆ,  ,  t t t t t tu v w+ + +  for P  (3.27a) 

( ),  ,  ,  ,  ,  t t t t t t

x y zu v w    , ( ),  ,  ,  ,  ,  t t t t t t t t t t t t

x y zu v w   + + + + + +  for Q

 (3.27b) 

According to Bathe [70], the displacement components of material point 𝑃 located 

at ( 𝑥0 , 𝑦0 , 𝑧0 ) at time 𝑡 can be defined as 

( ) ( )0 0 0 0ˆt t t t

tx tx sx sxu u z V V y V V= + − + −  (3.28a) 

( ) ( )0 0 0 0ˆt t t t

ty ty sy syv v z V V y V V= + − + −  (3.28b) 

( ) ( )0 0 0 0ˆt t t t

tz tz sz szw w z V V y V V= + − + −  (3.28c) 

where 𝑉𝑡 𝑠𝑥, 𝑉
𝑡
𝑠𝑦, 𝑉

𝑡
𝑠𝑧 represent components of the director vector 𝑽𝑡 𝑠 at time 𝑡 

with respect to local axes 𝑥, 𝑦, 𝑧, respectively. The terms 𝑉0 𝑠𝑥, 𝑉
0
𝑠𝑦, 𝑉

0
𝑠𝑧 represent 

components of the director vector 𝑽0 𝑠 at time 𝑡 = 0 with respect to local axes 

𝑥, 𝑦, 𝑧, respectively. Similarly, 𝑉𝑡 𝑡𝑥, 𝑉
𝑡
𝑡𝑦, 𝑉

𝑡
𝑡𝑧 represent components of the 

director vector 𝑽𝑡 𝑡 at time 𝑡 with respect to local axes 𝑥, 𝑦, 𝑧, respectively. The 
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terms 𝑉0 𝑡𝑥, 𝑉
0
𝑡𝑦, 𝑉

0
𝑡𝑧 represent components of the director vector 𝑽0 𝑡 at time 𝑡 =

0 with respect to local axes 𝑥, 𝑦, 𝑧, respectively.  

Note that, in Eq. (3.28), the director vectors at time 𝑡, including ( 𝑉𝑡 𝑠𝑥, 𝑉
𝑡
𝑠𝑦, 𝑉

𝑡
𝑠𝑧) 

and ( 𝑉𝑡 𝑡𝑥, 𝑉
𝑡
𝑡𝑦, 𝑉

𝑡
𝑡𝑧) are unknown. These director vectors can be updated 

numerically by using the director vectors at the previous time step as given in Eq. 

(3.64d-f) in Section 4. Meanwhile, the director vectors at time 𝑡 = 0 can be defined 

based on the initial configuration of the beam. In this section, for simplification, a 

straight beam is considered, and the beam’s local coordinates are assumed to be 

aligned with the global coordinates as shown in Fig. 3.36. Therefore, the director 

vectors at time 𝑡 = 0 for a straight beam can be defined as 

 0 0 1 0
T

s =V with 
0 0 00;   1;   0sx sy szV V V= = =  (3.29d) 

 0 0 0 1
T

t =V with 
0 0 00;   0;   1tx ty tzV V V= = =  (3.29e) 

 0 1 0 0
T

r =V  with 
0 0 01;   0;   0rx ry rzV V V= = =  (3.29f) 

By substituting Eq. (3.29) into Eq. (3.28), the displacement components of material 

point 𝑃 located at ( 𝑥0 , 𝑦0 , 𝑧0 ) at time 𝑡 can be defined as [70] 

0 0ˆ . .t t t t

tx sxu u z V y V= + +  (3.30a) 

( )0 0ˆ . 1t t t t

ty syv v z V y V= + + −  (3.30b) 

( )0 0ˆ 1 .t t t t

tz szw w z V y V= + − +  (3.30c) 

Similar to Eq. (3.30), the displacement components of material point 𝑃 at time 𝑡 +

Δ𝑡 can be calculated as [70] 

0 0ˆ . .t t t t t t t t

tx sxu u z V y V+ + + += + +  (3.31a) 

( )0 0ˆ . 1t t t t t t t t

ty syv v z V y V+ + + += + + −  (3.31b) 

( )0 0ˆ 1 .t t t t t t t t

tz szw w z V y V+ + + += + − +  (3.31c) 

By substituting Eq. (3.30) and Eq. (3.31) into Eq. (C2a), the incremental 

displacements from time 𝑡 to time 𝑡 + 𝛥𝑡 can be calculated as [70] 

( ) ( )0 0ˆ ˆ ˆt t t t t t t t t t t t

tx tx sx sxu u u u u z V V y V V+ + + += − = − + − + −  (3.32a) 

( ) ( )0 0ˆ ˆ ˆt t t t t t t t t t t t

ty ty sy syv v v v v z V V y V V+ + + += − = − + − + −  (3.32b) 

( ) ( )0 0ˆ ˆ ˆt t t t t t t t t t t t

tz tz sz szw w w w w z V V y V V+ + + += − = − + − + −  (3.32c) 

The relations given in Eq. (3.32) can be rewritten as 

0 0

  
ˆ

tx sxu u zV yV= + +  (3.33a) 
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0 0

  
ˆ

ty syv v zV yV= + +  (3.33b) 

0 0

  
ˆ

tz szw w zV yV= + +  (3.33c) 

with 

t t tu u u+= −  (3.33d) 

t t tv v v+= −  (3.33e) 

t t tw w w+= −  (3.33f) 

and 

  ;       t t t t t t

sx sx sx tx tx txV V V V V V+ += − = −  (3.33g) 

  ;      t t t t t t

sy sy sy ty ty tyV V V V V V+ += − = −  (3.33h) 

  ;      t t t t t t

sz sz sz tz tz tzV V V V V V+ += − = −  (3.33i) 

In Eq. (3.33d-f), 𝑢̱, 𝑣̱, 𝑤̱ represent the incremental displacements from time 𝑡 to 

time 𝑡 + Δ𝑡 of point Q located at ( 𝑥0 , 0,0) on the centre line of the beam. The terms 

𝑉̱ 𝑠𝑥, 𝑉̱ 𝑠𝑦, 𝑉̱ 𝑠𝑧 represent components of the incremental director vector, 𝑽̱𝑠, from time 

𝑡 to time 𝑡 + Δ𝑡. Similarly, the terms 𝑉̱ 𝑡𝑥, 𝑉̱ 𝑡𝑦, 𝑉̱ 𝑡𝑧 represent components of the 

incremental director vector, 𝑽̱𝑡, from time 𝑡 to time 𝑡 + Δ𝑡.  

The relations given in Eq. (3.33g-i) can be rewritten in the compact form as 

t t t

s s s

+= −V V V  (3.34a) 

 

t t t

t t t

+= −V V V  (3.34b) 

with 

   s sx sy szV V V =  V  (3.34c) 

    t tx ty tzV V V =  V  (3.34d) 

According to Bathe [70], the incremental director vectors given in Eq. (3.34c-d) can 

be approximated by using the director vectors at time 𝑡 as 

( ) ( ) ( ) 

T
t t t t t t t

s s y sz z sy z sx x sz x sy y sxV V V V V V      =  = − − −
 

V θ V  (3.35a) 

( ) ( ) ( )
T

t t t t t t t

t t y tz z ty z tx x tz x ty y txV V V V V V      =  = − − −
 

V θ V  (3.35b) 

with  
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T
t t t

x y z  +  = − =  θ θ θ  (3.35c) 

t t t

x x x  += −  (3.35d) 

t t t

y y y  += −  (3.35e) 

t t t

z z z  += −  (3.35f) 

where 𝜃̱𝑥, 𝜃̱𝑦, 𝜃̱𝑧 represent the incremental rotations of the beam cross-section from 

time 𝑡 to time 𝑡 + Δ𝑡 as 

Therefore, by using the incremental director vectors given in Eq. (3.35a-b), the 

incremental displacements in Eq. (3.33a-c) can be calculated as 

( ) ( )0 0ˆ t t t t

y tz z ty y sz z syu u z V V y V V   = + − + −  (3.36a) 

( ) ( )0 0ˆ t t t t

z tx x tz z sx x szv v z V V y V V   = + − + −  (3.36b) 

( ) ( )0 0ˆ t t t t

x ty y tx x sy y sxw w z V V y V V   = + − + −  (3.36c) 

 

3.3.1.2. Strain components 

By using displacements at time 𝑡 given in Eq. (3.30), the Green-Lagrange strain 

components [70] in Eq. (C4) can be calculated as  

( ) ( ) ( ) 
( )( ) ( )( ) ( )( ) 

( )( ) ( )( ) ( )( ) 

2 2 2

0 0 , 0 , 0 , 0 ,

0

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1
ˆ

2

       

t t t t t

xx x x x x

t t t t t t t

sx x x sx x x sy x x sz x

t t t t t t t

tx x x tx x x ty x x tz x

u u v w

y V u V v V w V

z V u V v V w V

 = + + +

+ + + +

+ + + +

 (3.37a) 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( ) 

0 , 0 , 0 ,

0

0 0 , 0 , 0 ,

0

0 , 0 , 0 ,

1
ˆ

2

t t t t t t t

sy x sx sx x sz x

t t t t t t t

xy sy sy x sx sx x sz sz x

t t t t t t

sy ty x sx tx x sz tz x

V v V V u V w

y V V V V V V

z V V V V V V



 + + +
 
 

= + + + 
 
 + + +
 

 (3.37b) 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( ) 

0 , 0 , 0 ,

0

0 0 , 0 , 0 ,

0

0 , 0 , 0 ,

1
ˆ

2

t t t t t t t

tz x tx tx x ty x

t t t t t t t

xz tz sz x tx sx x ty sy x

t t t t t t

tz tz x tx tx x ty ty x

V w V V u V v

y V V V V V V

z V V V V V V



 + + +
 
 

= + + + 
 
 + + +
 

 (3.37c) 

0 0 0
ˆ ˆ ˆ 0t t t

yy yz zz  = = =  (3.37d) 

with 
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0 , 0 , 0 ,0 0 0
;          ;           

t t t
t t t

x x x

u v w
u v w

x x x

  
= = =
  

 (3.37e) 

0 , 0 , 0 ,0 0 0
;        ;       

tt t
syt t tsx sz

sx x sy x sz x

VV V
V V V

x x x

 
= = =
  

 (3.37f) 

0 , 0 , 0 ,0 0 0
;        ;       

tt t
tyt t ttx tz

tx x ty x tz x

VV V
V V V

x x x

 
= = =
  

 (3.37g) 

By using the displacements at time 𝑡 given in Eq. (3.30) and the incremental 

displacements given in Eq. (3.36), the linear incremental strain components [70], 

0  ̂ije , given in Eq. (C9) can be calculated as 

( ) ( )( ) ( )( )

( )
( )

( )( )

( )( )
( )

( )( )

( )

( )
( )

0  0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 ,0

0

0 , 0 , 0 , 0 , 0 ,0

0 , 0

0 , 0

0

ˆ 1

1

 

1

   +

t t t

xx x x x x x x

t t

y sz z syt t

x sx x x

t t

z sx x szt t t

sy x x x sz x x

t t

x sy y sxt

x

t t

y tz z tyt

x

e u u v v w w

V V
u V u

x

V V
y V v v V w

x

V V
w

x

V V
u

x

z

 

 

 

 

= + + +

  −
 + +

 
  − 

+ + + + 
 

  −
 +

  

 −
+


( )( )

( )( )
( )

( )( )

( )

0 , 0 ,

0 , 0 , 0 , 0 , 0 ,0

0 , 0

t

tx x x

t t

z tx x tzt t t

ty x x x tz x x

t t

x ty y txt

x

V u

V V
V v v V w

x

V V
w

x

 

 

 
 +
 
  − 
+ + + 

 
  −
 +

  

 (3.38a) 

( ) ( ) ( )

( )( )

( ) ( )

( ) ( )

( )

0  , 0  , 0 ,

0 ,

0 , 0 ,0  

0 , 0 ,
0

0 ,

1

1
ˆ

2

t t t

sy x sx x sz x

t t t

x y sz z sy

t t t t t t

z sx x sz x x x sy y sxxy

t t t t t t t t

x x ty sz tz sy y x tz sx tx sz

t t t t

z x tx sy ty sx

V v V u V w

u V V

V V v w V Ve

V V V V V V V V
z

V V V V

 

   

 



 + +
 
 + + −
 
 + − + −=
 
  − + −  +  
 + −   

 (3.38b) 
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( ) ( ) ( )

( )( )

( ) ( )

( ) ( )

( )

0 , 0 , 0 ,

0 ,

0 , 0 ,0  

0 , 0 ,0

0 ,

1

1
ˆ

2

t t t

tz x tx x ty x

t t t

x y tz z ty

t t t t t t

x z tx x tz x x ty y txxz

t t t t t t t t

x x sy tz sz ty y x sz tx sx tz

t t t t

z x sx ty sy tx

V w V u V v

u V V

v V V w V Ve

V V V V V V V V
y

V V V V

 

   

 



 + +
 
 + + −
 
 + − + −=
 
  − + −  +   + −   

 (3.38c) 

0  0  0  
ˆ ˆ ˆ 0yy yz zze e e= = =  (3.38d) 

with 

0 , 0 , 0 ,0 0 0
;          ;          x x x

u v w
u v w

x x x

  
= = =
  

 (3.38e) 

 

3.3.1.3. Stress components 

By using the Green-Lagrange strains given in Eq. (3.37a-d) and the stress-strain 

relations given in Eq. (C19) and Eq. (C21), the second Piola-Kirchhoff stress at 

time 𝑡 can be calculated as [70] 

( ) ( ) ( ) 
( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( )

2 2 2

0 , 0 , 0 , 0 ,

0 , 0 , 0 ,0

0 0

0 , 0 , 0 , 0 ,

0 , 0 , 0 ,
0

0 , 0 , 0 , 0 ,

1

2

ˆ ˆ

t t t t

x x x x

t t t

sx x x sx xt t

xx xx t t t t

x sy x x sz x

t t t

tx x x tx x

t t t t

x ty x x tz x

u u v w

V u V
S E E y

v V w V

V u V
z

v V w V



 
 

+ + + 
 
  +  = = +   + +   
 

 +  
+   

+ +    

 (3.39a) 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( ) 

0 , 0 , 0 ,

0

0 0 0 , 0 , 0 ,

0

0 , 0 , 0 ,

ˆ ˆ2

t t t t t t t

sy x sx sx x sz x

t t t t t t t t

xy s xy s sy sy x sx sx x sz sz x

t t t t t t

sy ty x sx tx x sz tz x

V v V V u V w

S k G k G y V V V V V V

z V V V V V V



 + + +
 
 

= = + + + 
 
 + + +
 

 (3.39b) 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( ) 

0 , 0 , 0 ,

0

0 0 0 , 0 , 0 ,

0

0 , 0 , 0 ,

ˆ ˆ2

t t t t t t t

tz x tx tx x ty x

t t t t t t t t

xz s xz s tz sz x tx sx x ty sy x

t t t t t t

tz tz x tx tx x ty ty x

V w V V u V v

S k G k G y V V V V V V

z V V V V V V



 + + +
 
 

= = + + + 
 
 + + +
 

 (3.39c) 

 

3.3.1.4. Strain energy density 

By substituting the second Piola-Kirchhoff stress components given in Eq. (3.39) 
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and the incremental strain components given in Eq. (3.38) into Eq. (C32), the 

averaged strain energy density through the cross-section of the beam of a beam can 

be represented as [70] 

 

( ) ( )

( ) ( ) ( )( ) ( )( ) 

( )

( )( )

( )( )

( )( )

( )

0

0

0 0  0 0  0 0

0

2 2 2

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ,

0 , 0 , 0 ,

0 , 0 ,0

0 , 0 ,

ˆ ˆ ˆˆ ˆ ˆ2 2

1
      1

2

  

t t t

xx xx xy xy xz xzNL A

t t t t t t t

x x x x x x x x x x

t

tx xt t t

tx x x tx x

yy t t

x ty x

t t

x tz x

S e S e S e d A
W

A

E u u v w u u v v w w

V
V u V

EI
v V

A
w V

+ +
=

 
= + + + + + + 

 

 +
 
 

+ + 
 
+  



( ) ( )( ) ( )( )

( )
( )

( ) ( )

( )

( )( )

( )( )

( )( )

( )( )

0 , 0 , 0 , 0 , 0 ,

0 , 0

0 , 0 ,0 0

0 , 0 , 0

0 , 0 , 0 ,

0 , 0 ,0

0 , 0 ,

1

  

t t

x ty x x tz x x

t t

y tz z tyt

x

t t t t

z tx x tz x ty y txt t

x x

t

sx x xt t t

sx x x sx x

t tzz

x sy x

t t

x sz x

u V v V w

V V
u

x

V V V V
v w

x x

V u
V u V

EI
v V

A
w V

 

   

 
+ + 

 
 − 

+ + + 
 

  −  −
 + +

  

+
 +
 
 

+ + 
 
+  

( )( ) ( )( )

( )
( )

( ) ( )

( )
( ) ( ) ( )

( )

, 0 , 0 , 0 ,

0 , 0

0 , 0 ,0 0

0  , 0  , 0 ,

0 , 0 ,

0 ,

0 ,

1

1
1

t t

sy x x sz x x

t t

y sz z syt

x

t t t t

z sx x sz x sy y sxt t

x x

t t t

sx x sy x sz x
t t t t

sx x sy x t t

x y sz
t t

sz x

s

V v V w

V V
u

x

V V V V
v w

x x

V u V v V w
V u V v

u V
V w

k G

 

   



 
+ 

 
 − 

+ + + 
 

  −  −
 + +

  

+ +
 + + 

+ + − 
+  

+

( )

( ) ( )

( )
( ) ( ) ( )

( )( )

( ) ( )

0 , 0 ,

0 , 0 , 0 ,

0 , 0 ,

0 ,

0 ,

0 , 0 ,

1
1

t

z sy

t t t t t t

z sx x sz x x x sy y sx

t t t

tz x tx x ty x
t t t t

tx x ty x t t t

x y tz z ty
t t

tz x t t t t t t

x z tx x tz x x ty y tx

V

V V v w V V

V w V u V v
V u V v

u V V
V w

v V V w V V



   

 

   

  
 
 
 
 
+ − + −  

 + +
  + +  

+ + + −  
+   

+ − + −  

( )

( )

( ) ( )

( ) ( )

( )

0 , 0 , 0 ,

0

0 , 0 , 0 ,

t t t t t t t t t t

sy ty x x x ty sz tz sy y x tz sx tx sz
t

t t t t t t t t

sx tx x sz tz x z x tx sy ty sx

V V V V V V V V V Vk G

A V V V V V V V V

 




 
 
 
 
 
 
 
 
 
 
  

  − + −  
+   

+ + + −    

 (3.40) 

where 𝑘𝑠 represents the shear correction factor for the beam cross-section [70], 𝑘𝑡 

represents torsional constant for beam cross-section. The terms 𝐼𝑦𝑦 and 𝐼𝑧𝑧 given in 

Eq. (3.40) represent the area moment of inertia of beam cross-section. The torsional 

constant, 𝑘𝑡, can be defined as [62, 74] 

( ) ( )  ( )
2 2

0 0 0

t
A

k z y d A= +  (3.41) 

The area moment of inertia of beam cross-section, 𝐼𝑦𝑦 and 𝐼𝑧𝑧, can be defined as 

[70, 73] 

( ) ( ) ( ) ( )
2 2

0 0 0 0;         yy zz
A A

I z d A I y d A= =   (3.42) 

Similar to the study in [62], the strain energy density for a beam given in Eq. (3.40) 

can be decomposed into axial, bending, shear and torsional components as 
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NL NL NL NL NL

axial bending shear torsionW W W W W= + + +  (3.43a) 

with 

( )
( ) ( )( )

( )( )

0 , 0 , 0 , 0 ,
2 2 2

0 , 0 , 0 , 0 ,

0 , 0 ,

11

2

t t

x x x xNL t t t t

axial x x x x
t
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where 𝑊̄𝑎𝑥𝑖𝑎𝑙
𝑁𝐿 , 𝑊̄𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝑁𝐿 , 𝑊̄𝑠ℎ𝑒𝑎𝑟
𝑁𝐿  and 𝑊̄𝑡𝑜𝑟𝑠𝑖𝑜𝑛

𝑁𝐿  represent strain energy density 

corresponding to axial, bending, shear, and torsional deformations, respectively.  

For simplification, the SED components given in Eq. (3.43) can be rewritten as 

( )( )0 10 0 10

NL t

axialW E a a=  (3.44a) 

( )
( )( )

( )
( )( )0 12 0 12 0 11 0 110 0

yyNL t tzz
bending

EI EI
W a a a a

A A
= +  (3.44b) 

( )( ) ( )( )0 13 0 13 0 14 0 14

NL t t

shear sW k G a a a a = +
 

 (3.44c) 
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( )( )0 15 0 150

NL tt
torsion

k G
W a a

A
=  (3.44d) 

with 

0 1 0 , 0 2 0 , 0 3 0 ,;     ;      t t t t t t

x x xa u a v a w= = =  (3.44e) 

0 4 0 , 0 5 0 , 0 6 0 ,;     ;     t t t t t t

sx x sy x sz xa V a V a V= = =  (3.44f) 

0 7 0 , 0 8 0 , 0 9 0 ,;     ;     t t t t t t

tx x ty x tz xa V a V a V= = =  (3.44g) 

( ) ( )2 2 2 2 3 2

0 10 0 , 0 , 0 , 0 , 0 1 0 1 0 2 0 3

1 1

2 2

t t t t t t t t t

x x x xa u u v w a a a a= + + + = + + +  (3.44h) 
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3.3.2. Nonlinear beam kinematics in peridynamics 

For nonlinear analysis of a beam, the PD equation of motion for material point 𝑘 

can be described in discrete form as 

( )
0 0

0 ( )( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( )0 0
1 0 ( )( ) ( ) ( ) ( ) ( )

( , , )

( , , )

t t t
N

k j j k j kt t

k k j kt t t
j j k k j k j

t
V

t


=

 − −
 = +
 − − − 


t u u x x

u b
t u u x x

  (3.45) 

where 𝜌 represents the mass density, t
u  represents the vector of accelerations at 

time 𝑡. The term 𝒖𝑡  represents the vector of displacements at time 𝑡, 𝒃𝑡 (𝑘) 

represents the vector of external forces and moments per unit volume at time 𝑡. The 

term 𝑁 represents the number of family members of material point 𝑘, and 𝑗 

represents a family member material point 𝑘. The term 𝒕0
𝑡
(𝑘)(𝑗) represents the force 

density at time 𝑡 that material point 𝑗 exerts on material point 𝑘, and 𝒕0
𝑡
(𝑗)(𝑘)  

represents the force density at time 𝑡 that material point 𝑘 exerts on point 𝑗. For a 

beam with six degrees of freedom, the parameters in Eq. (3.45) can be represented 

as 

0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( )
yx z

T
t t u t v t w t t t
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  =

 
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j k k j k j k j k j k j k j kt t t t t t
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 
t  (3.46b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
t t t t t t t

k k k k x k y k z ku v w    =  u   (3.46c) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
t t t t t t t

k x k y k z k x k y k z kb b b m m m =  b   (3.46d) 

0 0

( ) ( ) 0 0k kx =  x   (3.46e) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
t t t t t t t

k k k k x k y k z ku v w    =  u   (3.46f) 

where 𝑡0
𝑡
(𝑘)(𝑗)
𝑢 , 𝑡0

𝑡
(𝑘)(𝑗)
𝑣 , 𝑡0

𝑡
(𝑘)(𝑗)
𝑤 , 𝑡0

𝑡
(𝑘)(𝑗)
𝜃𝑥 , 𝑡0

𝑡
(𝑘)(𝑗)

𝜃𝑦
, and 𝑡0

𝑡
(𝑘)(𝑗)
𝜃𝑧  represents force 

densities corresponding to six degrees of freedom, 𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧, 

respectively. 

Similar to the relation given in Eq. (1.2) in Chapter 1, the relationship between the 

components of force densities and strain energy density for nonlinear analysis of 

beam structures can be described as [44, 102] 
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with 

,  ,  ,  ,  ,  i x y zq u v w   =  (3.47c) 

,  ,  ,  ,  ,  i x y zq u v w   =  (3.47d) 

where the parameter 𝑞𝑖 represents the degree of freedom which can be 𝑢, 𝑣, 𝑤, 𝜃𝑥, 

𝜃𝑦, or 𝜃𝑧. The parameter 𝑞̱𝑖 represents the incremental value of 𝑞𝑖 which can be 𝑢̱, 

𝑣̱, 𝑤̱, 𝜃̱𝑥, 𝜃̱𝑦, or 𝜃̱𝑧.  

The terms 𝑡0
𝑡
(𝑘)(𝑗)
𝑞𝑖  and 𝑡0

𝑡
(𝑗)(𝑘)
𝑞𝑖  represent force densities corresponding to the degree 

of freedom 𝑞𝑖. The terms 𝑊̄(𝑘)
𝑁𝐿𝑃𝐷 and 𝑊̄(𝑗)

𝑁𝐿𝑃𝐷 represent PD nonlinear strain energy 

densities of material points 𝑘 and 𝑗, respectively.  

In the bond-based PD model, the force densities 𝒕0
𝑡
(𝑗)(𝑘) and 𝒕0

𝑡
(𝑘)(𝑗) have the same 

magnitude and they are in opposite directions ( 𝒕0
𝑡
(𝑘)(𝑗) = − 𝒕0

𝑡
(𝑗)(𝑘)) [21]. Therefore, 

the PD equations of motion given in Eq. (3.45) can be rewritten as 

( ) 0 0 0

( ) ( ) 0 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
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( , , )
N

t t t t t

k k k j j k j k j k

j

t V
=

= − − +u f u u x x b  (3.48a) 

with 

0 ( )( ) 0 ( )( )2t t

k j k j=f t  (3.48b) 

In the following sections, first, the nonlinear PD strain energy densities and PD 

bond constants for a straight beam are presented in Section 3.3.2.1. Next, the PD 

equations of motion in the local coordinate system of a straight beam are obtained 

in Section 3.3.2.2. Finally, the transformation of equations of motion from the 

beam’s local coordinate system to the global coordinate system is presented in 

Section 3.3.2.3. 

3.3.2.1. Peridynamic strain energy density 

Similar to the classical formulations given in Eq. (3.43a), the nonlinear SED in PD 

for a beam can be represented as 

NLPD NLPD NLPD NLPD NLPD

axial bending shear torsionW W W W W= + + +  (3.49) 

where 𝑊̄𝑎𝑥𝑖𝑎𝑙
𝑁𝐿𝑃𝐷, 𝑊̄𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝑁𝐿𝑃𝐷 , 𝑊̄𝑠ℎ𝑒𝑎𝑟
𝑁𝐿𝑃𝐷, and 𝑊̄𝑡𝑜𝑟𝑠𝑖𝑜𝑛

𝑁𝐿𝑃𝐷  represent the PD strain energy 

densities for axial, bending, shear, and torsional deformations, respectively. Similar 

to the classical formulation given in Eq. (3.44a), the PD strain energy density for 

axial deformations can be represented as 



129 

 

( )( )( )0 0

0 10 0 10 ( )( ) ( )

1

1

2

N
NLPD t PD PD

axial ax k j j

j

W C a a V
=

=   (3.50a) 

with 

( ) ( ) ( )( )2 2 2

0 10 0 1 0 1 0 2 0 3

1

2

t PD t PD t PD t PD t PDa a a a a= + + +  (3.50b) 

( ) ( )( ) ( )  ( )  ( ) ( ) ( ) 0

0 10 0 1 0 2 0 3 ( )( )0 0 0

( )( ) ( )( ) ( )( )

1
j k j k j kPD t PD t PD t PD

k j

k j k j k j

u u v v w w
a a a a 

  

 − − −
= + + +  
 

 (3.50c) 

( ) ( ) 0

0 1 ( )( )0

( )( )

t t

j kt PD

k j

k j

u u
a 



−
=  (3.50d) 

( ) ( ) 0

0 2 ( )( )0

( )( )

t t

j kt PD

k j

k j

v v
a 



−
=  (3.50e) 

( ) ( ) 0

0 3 ( )( )0

( )( )

t t

j kt PD

k j

k j

w w
a 



−
=  (3.50f) 

0 0 0

( )( ) ( ) ( )k j j kx x = −  (3.50g) 

0 0

( ) ( )0

( )( ) 0

( )( )

j k

k j

k j

x x




−
=  (3.50h) 

where 𝐶𝑎𝑥 in Eq. (3.50a) represents PD constant for axial deformations. This PD 

constant can be obtained by comparing nonlinear SED for axial deformations in 

CCM to PD as presented in Appendix E.1 as 
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2
ax
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A 
=  (3.51) 

Similar to the classical formulation given in Eq. (3.44b), the nonlinear PD strain 

energy density for bending deformations, 𝑊̄𝑏𝑒𝑛𝑑𝑖𝑛𝑔
𝑁𝐿𝑃𝐷 , in Eq. (3.49) can be 

represented as 
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with 

( ) ( )( ) ( )( )0 11 0 4 0 1 0 2 0 5 0 3 0 61t PD t PD t PD t PD t PD t PD t PDa a a a a a a= + + +  (3.52b) 

( )( ) ( )( ) ( )( )0 12 0 7 0 1 0 2 0 8 0 3 0 91t PD t PD t PD t PD t PD t PD t PDa a a a a a a= + + +  (3.52c) 
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where the terms, 𝐶𝑏𝑦, 𝐶𝑏𝑧 in Eq. (3.52a) represent PD constants for bending 

deformations.  As presented in Appendix E2, these PD constants can be obtained 

by comparing nonlinear SED for bending deformations in CCM to PD as 

( ) ( )
2 2

0 2 0 2

2 2
;

yy zz
by bz

EI EI
C C

A A 
= =  (3.53) 

Similar to the classical formulation given in Eq. (3.44c), the PD strain energy 

density for shear deformations, 𝑊̄𝑠ℎ𝑒𝑎𝑟
𝑁𝐿𝑃𝐷, in Eq. (3.49) can be represented as 
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 (3.54e) 

where the term 𝐶𝑠ℎ in Eq. (3.54a) represents the PD constant for shear deformations. 

As presented in Appendix E3, this PD constant can be obtained by comparing 

nonlinear SED for shear deformations in CCM to PD as 
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k G
C

A 
=  (3.55) 

Similar to the classical formulation given in Eq. (3.44c), the PD strain energy 

density for torsional deformations, 𝑊̄𝑡𝑜𝑟𝑠𝑖𝑜𝑛
𝑁𝐿𝑃𝐷 , in Eq. (3.49) can be represented as 
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where the term 𝐶𝑡 in Eq. (3.56a) represents the PD constant for torsional 

deformations. As presented in Appendix E.4, this PD constant can be obtained by 

comparing nonlinear SED for torsional deformations in CCM to PD as 
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=  (3.57) 

3.3.2.2. Nonlinear equation of motion in the local coordinate system for a beam 

By substituting the nonlinear SED given in Eq. (3.49) into Eq. (3.47a), the PD force 

densities 𝑡0
𝑡
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𝑞𝑖  can be represented as 
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Therefore, by substituting PD force densities given in Eq. (3.58) into Eq. (3.48), the 

nonlinear PD equations of motion for a straight beam can be obtained as 
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The equations of motion given in Eq. (3.59) can be rewritten in matrix form as [61, 

62] 
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where 𝐦(𝑘)
𝐿 , 𝐛𝑡 (𝑘)

𝐿 , 𝐟0
𝑡
(𝑘)(𝑗)
𝐿  and ( )

t L

ku  represent mass matrix, body force vector, PD 

force density vector, and acceleration vector in the local coordinate system, 
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respectively. These terms can be defined as 
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3.3.2.3. Transformation of the equation of motion to the global coordinate system 

As given in Eq. (3.60), the PD equations of motion for a beam are derived with 

respect to the beam’s local coordinate system. Therefore, to investigate complex 

beam structures and curved beams, the equations of motion in the local coordinate 

system need to be transformed into the global coordinate system [62]. The global 

coordinate system is fixed and it is often chosen as the Cartesian coordinate system 

(𝑥1, 𝑥2, 𝑥3) as shown in Fig. 3.37. The beam has six global degrees of freedom 

denoted as (𝑢1, 𝑢2, 𝑢3, 𝜃1, 𝜃2, 𝜃3). 

 

 

Fig. 3.37. Beam configurations in the global coordinate system 

As presented in section 5.2, each material point has three director vectors 

( 𝑽0 𝑟 , 𝑽
0

𝑠, 𝑽
0
𝑡)  or ( 𝑽𝑡 𝑟 , 𝑽

𝑡
𝑠, 𝑽

𝑡
𝑡) measured in the local coordinate system. 

These director vectors can be transformed to the global coordinate system by using 

the following relations as 
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0 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

G G G T

r k s k t k k r k s k t k
   =   V V V H V V V  (3.62a) 

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

t G t G t G T t t t

r k s k t k k r k s k t k
   =   V V V H V V V  (3.62b) 

with  

0 0 0 0

( ) ( ) ( ) ( )

T
G G G

k r k s k t k
 =  H V V V  (3.62c) 

where 𝐇0 (𝑘) represents the coordinate transformation matrix for material point 𝑘 

[61, 62], 𝐇0 (𝑘)
𝑇  is transpose matrix of 𝐇0 (𝑘). The terms ( 𝐕0 𝑟(𝑘), 𝐕

0
𝑠(𝑘), 𝐕

0
𝑡(𝑘)) 

and ( 𝐕𝑡 𝑟(𝑘), 𝐕
𝑡
𝑠(𝑘), 𝐕

𝑡
𝑡(𝑘)) are the director vectors in local coordinates at 𝑡 = 0 

and at time 𝑡, respectively. Meanwhile, ( 𝐕0 𝑟(𝑘)
𝐺 , 𝐕0 𝑠(𝑘)

𝐺 , 𝐕0 𝑡(𝑘)
𝐺 ) and 

( 𝐕𝑡 𝑟(𝑘)
𝐺 , 𝐕𝑡 𝑠(𝑘)

𝐺 , 𝐕𝑡 𝑡(𝑘)
𝐺 ) are the director vectors in the global coordinates at 𝑡 =

0 and at time 𝑡, respectively. As given in Eq. (3.29), the director vectors in local 

coordinates at 𝑡 = 0 are presented as 

0

( ) [1 0 0]T

r k =V  (3.63a) 

0

( ) [0 1 0]T

s k =V  (3.63b) 

0

( ) [0 0 1]T

t k =V  (3.63c) 

The global director vectors at time 𝑡 given in Eq. (3.62b) can be estimated based on 

the director vectors in the previous configuration as [70] 

( ) ( ) ( ) ( )

t G t t G G t t G

s k s k k s k

− −= + V V θ V  (3.64a) 

( ) ( ) ( ) ( )

t G t t G G t t G

t k t k k t k

− −= + V V θ V  (3.64b) 

and 

( )

( )

( )

t G

s kt

s k t G

s k

=
V

V
V

 (3.64c) 

( )

( )

( )

t G

t kt G

t k t G

t k

=
V

V
V

 (3.64d) 

( ) ( ) ( )

t G t G t G

r k s k t k= V V V  (3.64e) 

where ( )

t G

s kV  and ( )

t G

t kV  have the same directions with director vectors, 𝐕𝑡 𝑠(𝑘)
𝐺  and 

𝐕𝑡 𝑡(𝑘)
𝐺 . However, ( )

t G

s kV  and ( )

t G

t kV  may not be unit vectors. Therefore, to ensure 

the director vectors are unit vectors, the approximations in Eq. (3.64c-d) are used. 

The term 𝜽̱(𝑘)
𝐺  represents the vector of the global incremental rotations from time 

𝑡 − 𝛥𝑡 to time 𝑡. This vector can be defined as 

( ) ( ) ( ) 1( ) 2( ) 3( )

T
G t G t t G

k k k k k k  −  = − =  θ θ θ  (3.65) 
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As given in Eq. (3.62c), 𝑯0 (𝑘) is the coordinate transformation matrix for material 

point 𝑘. Therefore, for the interaction between material points 𝑘 and 𝑗, the 

coordinate transformation matrix can be approximated as [61, 62] 

0 0 0 0

( )( ) ( )( ) ( )( ) ( )( )

T
G G G

k j r k j s k j t k j
 =  H V V V  (3.66a) 

with 

( )
( )

0 0

( ) ( )0

( )( ) 0 0

( ) ( )

G G

r k r jG

r k j G G

r k r j

+
=

+

V V
V

V V
 (3.66b) 

( )
( )

0 0

( ) ( )0

( )( ) 0 0

( ) ( )

G G

s k s jG

s k j G G

s k s j

+
=

+

V V
V

V V
 (3.66c) 

( )
( )

0 0

( ) ( )0

( )( ) 0 0

( ) ( )

G G

t k t jG

t k j G G

t k t j

+
=

+

V V
V

V V
 (3.66d) 

Therefore, the transformation matrix for six degrees of freedom of the beam, 

𝑻0 (𝑘)(𝑗), can be defined as 

0

( )( )0

( )( ) 0

( )( )

k j

k j

k j

 
=  
  

H 0
T

0 H
 (3.67) 

By using the transformation matrix 𝑻0 (𝑘)(𝑗), the relationship between the local and 

global degrees of freedom can be presented as [61, 62] 

0

( ) ( )( ) ( )

t L t G

k k j k=u T u  (3.68a) 

0

( ) ( )( ) ( )

t L t G

j k j j=u T u  (3.68b) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
t L t t t t t t

k k k k x k y k z ku v w    =  u  (3.68c) 

( ) 1( ) 2( ) 3( ) 1( ) 2( ) 3( )

T
t G t t t t t t

k k k k k k ku u u    =  u  (3.68d) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
t L t t t t t t

j j j j x j y j z ju v w    =  u  (3.68e) 

( ) 1( ) 2( ) 3( ) 1( ) 2( ) 3( )

T
t G t t t t t t

j j j j j j ju u u    =  u  (3.68f) 

where 𝒖𝑡 (𝑘)
𝐿  and 𝒖𝑡 (𝑗)

𝐿  represent vectors of DOFs in local coordinates for material 

points  𝑘 and 𝑗, respectively. Meanwhile, 𝒖𝑡 (𝑘)
𝐺  and 𝒖𝑡 (𝑗)

𝐺  represent vectors of 

DOFs in global coordinates for material points  𝑘 and 𝑗, respectively. 

By multiplying both sides of Eq. (3.60) with the matrix 𝑻0 (𝑘)(𝑗)
𝑇 , the nonlinear 

equation of motion for a beam can be transformed to the global coordinate system 

as [61, 62] 
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( ) ( )0 0 0 0 0

( )( ) ( ) ( )( ) ( ) ( )( ) 0 ( )( ) ( ) ( )( ) ( )

1

N
T L t G T t L T t L

k j k k j k k j k j j k j k

j

V
=

= +T m T u T f T b  (3.69a) 

or 

( ) ( ) 0

( ) ( ) 0 ( )( ) ( ) ( )

1

N
G t G t G t G

k k k j j k

j

V
=

= +m u f b  (3.69b) 

with 

0 0

( ) ( )( ) ( ) ( )( )

G T L

k k j k k j=m T m T  (3.69c) 

( )
3 31 2 1 2

0

0 ( )( ) ( )( ) 0 ( )( )

               0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( )

t G T t L

k j k j k j

T
uu ut t t t t t

k j k j k j k j k j k jf f f f f f
 

=

 =  

f T f

 (3.69d) 

( )0

( ) ( )( ) ( ) 1( ) 2( ) 3( ) 1( ) 2( ) 3( )

T
t G T t L t t t t t t

k k j k k k k k k kb b b m m m = =  b T b  (3.69e) 

 

where 𝑻0 (𝑘)(𝑗)
𝑇  is the transpose matrix of 𝑻0 (𝑘)(𝑗). The terms 𝒎(𝑘)

𝐺 , ( )

t G

ku , 𝒇𝑡 (𝑘)(𝑗)
𝐺  

and 𝒃𝑡 (𝑘)
𝐺  represent mass matrix, acceleration vector, PD force density vector and 

the applied body force vector in the global coordinate system, respectively.  

Note that term 𝛽0 (𝑘)(𝑗) given in Eq. (3.50h) can be calculated in global coordinates 

as 

( )
( )

( )

( )

0 0 00 0 0
( )( ) ( ) ( )( )( ) ( ) ( )0

( )( ) 0 0 0 0 0 0

( )( ) ( ) ( ) ( )( ) ( ) ( )

1 if

1 if

G G GG G G
r k j j kr k j j k

k j G G G G G G

r k j j k r k j j k


−  − − 

= = 
 −  −

V x xV x x

V x x V x x
 (3.70a) 

with 

0 0 0 0

( ) 1( ) 2( ) 3( )

T
G

k k k kx x x =  x  (3.70b) 

0 0 0 0

( ) 1( ) 2( ) 3( )

T
G

j j j jx x x =  x  (3.70c) 

where 𝒙0 (𝑘)
𝐺  and 𝒙0 (𝑗)

𝐺  represent the global coordinates in the initial configuration 

of material points 𝑘 and 𝑗, respectively. Note that, the parameter 𝛽0 (𝑘)(𝑗) in Eq. 

(3.70a) equal to -1 if two vectors  𝑽0 𝑟(𝑘)(𝑗)
𝐺  and ( 𝒙0 (𝑗)

𝐺 − 𝒙0 (𝑘)
𝐺 ) have opposite 

directions. On the other hand, 𝛽0 (𝑘)(𝑗) equal to 1 if two vectors  𝑽0 𝑟(𝑘)(𝑗)
𝐺  and 

( 𝒙0 (𝑗)
𝐺 − 𝒙0 (𝑘)

𝐺 ) have the same directions.  

3.3.2.4. Damage prediction 

By introducing the damage parameter 𝜓(𝑘)(𝑗) given in Eq. (1.3), the PD equations 

of motion in local and global coordinate systems given in Eq. (3.60) and Eq. 

(3.69b), respectively, can be rewritten as 
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( ) ( ) 0

( ) ( ) ( )( ) 0 ( )( ) ( ) ( )

1

N
L t L t L t L

k k k j k j j k

j

V
=

= +m u f b  (3.71a) 

( ) ( ) 0

( ) ( ) ( )( ) 0 ( )( ) ( ) ( )

1

N
G t G t G t G

k k k j k j j k

j

V
=

= +m u f b  (3.71b) 

As presented in the previous section, the deformations of the beam include axial, 

shear, bending, and torsional components. Therefore, to decide the state of 

interaction which is represented by the damage parameter 𝜓(𝑘)(𝑗) given in Eq. (1.3), 

the damage criterion based on the critical energy release rate is used. Similar to Eq. 

(1.8), the energy-based damage criterion for the nonlinear analysis of a beam can 

be described as [25, 26, 61, 62, 64, 102] 

0 ( )( ) ( )( )

0 ( )( ) ( )( )

interaction exists: 1

interaction is broken: 0

t

k j c k j

t

k j c k j

g g

g g





 → =

 → =
 (3.72) 

where 𝑔𝑐 represents the critical energy release rate for one interaction. As presented 

in Eq. (1.11) in Chapter 1, for beam structure 𝑔𝑐 = 𝐺𝑐/12, in which 𝐺𝑐 represents 

the critical energy release rate for the material. 

Similar to Eq. (1.9) in Chapter 1, the energy release rate for interaction between 

material points 𝑘 and 𝑗, 0 ( )( )

t

k jg , can be calculated as 

( )0 ( )( ) 0 ( )( ) 0 ( )( )

1

2

t t t

k j k j j kg g g= +  (3.73a) 

with  

( )( )( )0 0

0 ( )( ) 0 ( )( ) ( ) ( )0

1t t

k j k j k jg V V
A

=   (3.73b) 

( )( )( )0 0

0 ( )( ) 0 ( )( ) ( ) ( )0

1t t

j k j k k jg V V
A

=   (3.73c) 

where 𝛷0
𝑡
(𝑘)(𝑗) and 𝛷0

𝑡
(𝑗)(𝑘) represent micropotentials at time 𝑡 of the interaction 

between material points 𝑘 and 𝑗. For the bond-based PD model, Φ0
𝑡

(𝑘)(𝑗)
and Φ0

𝑡
(𝑗)(𝑘)

 

are equal to each other. By applying the same idea introduced by Madenci and 

Oterkus [25], [26], the micropotentials Φ0
𝑡

(𝑘)(𝑗)
 and Φ0

𝑡
(𝑗)(𝑘)

 for one interaction can 

be calculated for the bond-based PD model as 
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( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0 ( )( ) 0 ( )( )

0 ( )( ) ( ) ( ) 0 ( )( ) ( ) ( )

0 0

0 ( )( ) ( ) ( ) 0 ( )( ) ( ) ( )

0 0

0 ( )( ) ( ) ( )

0

1
      +  

2

t t t t
j k j k

t t t t
j k x j x k

x

t
y j

y

t t

j k k j

u u v v

t u t v

k j j k k j j k

w w

t w t

k j j k k j x j x k

t

k j y j y k

f d u u f d v v

f d w w f d

f d

 







 

 

− −

− −

 = 

− + −

= + − −

+ −

 

 

( )
( ) ( ) ( )

0 ( )( ) ( ) ( )

0

t t t
y k z j z k

zt

k j z j z kf d

  

  

− −

 
 
 
 
 
 
 
 
 + −
 
 

 

 (3.74) 

where 𝑓0
𝑡
(𝑘)(𝑗)
𝑢 , 𝑓0

𝑡
(𝑘)(𝑗)
𝑣 , 𝑓0

𝑡
(𝑘)(𝑗)
𝑤 , 𝑓0

𝑡
(𝑘)(𝑗)
𝜃𝑥 , 𝑓0

𝑡
(𝑘)(𝑗)

𝜃𝑦
, 𝑓0
𝑡
(𝑘)(𝑗)
𝜃𝑧  are given in Eq. (3.59g-h). 

3.3.3. Numerical results 

In this section, large deformations of beam structures are predicted. For verification 

purposes, the results predicted by the proposed nonlinear PD model are compared 

with nonlinear FEA results in Section 3.3.3.1. After verifying the accuracy of the 

nonlinear PD model, damages on a beam subjected to bending and torsional loading 

conditions are predicted in Section 3.3.3.2. 

 

In nonlinear PD analyses, the horizon size of 𝛿 = 3.015Δ𝑥, in which Δ𝑥 represents 

the mesh size, is used. The adaptive dynamic relaxation (ADR) method [77] is used 

for these static loading conditions [76] as described in Appendix A2 The nonlinear 

FEA is conducted by using the BEAM188 element in ANSYS. 

3.3.3.1. A cantilever beam subjected to static loading 

In this section, a cantilever beam with a length of 𝐿 = 1 m and a square cross-

section of 𝑏 = ℎ = 0.1 m is investigated as shown in Fig. 3.38. The beam has an 

elastic modulus of 𝐸 = 2 × 1011 N/m2 and shear modulus of 𝐺 = 1 × 1011 N/m2. 

The shear correction factor for a square cross-section is 𝑘𝑠 = 5/6 [70].  

 
                        (a)           (b) 

Fig. 3.38. Cantilever beam: (a) geometry, (b) PD model discretization and 

boundary conditions 

The beam is fixed on the left end and it is subjected to a transverse force 𝐹2 =
−8 × 106 N in 𝑥2 direction at the right end as shown in Fig. 3.38(a). In the PD 

model, the beam is discretized with a mesh size of Δ𝑥 = 𝐿/100. In the FEA, the 

same mesh size is used.  

 

To apply boundary conditions in PD, three fictitious material points, shown in black 

in Fig. 3.38(b), are added on the left end of the beam. All degrees of freedom of 

these fictitious material points and the material point located at 𝑥1 = 0 are set equal 

to zero.  
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Fig. 3.39 shows a comparison between nonlinear PD results and FEA results. As 

shown in Fig. 3.39(a), the deformed configurations of the beam captured by using 

the nonlinear PD model and nonlinear FEA match very well, meanwhile the linear 

FEA gives a completely different deformed configuration. As can be seen from Fig. 

3.39(b), the linear FEA results show that the beam does not have axial deformations 

when it is subjected to transverse force. On the contrary, both nonlinear PD and 

nonlinear FEA results show that the beam has nonzero axial deformations due to 

the coupling of the axial, shear, and bending deformations. As shown in Fig. 3.39(c-

d), the nonlinear PD and nonlinear FEA solutions have a very good agreement on 

𝑢2 and 𝜃3, meanwhile, the linear FEA gives much larger values.  

 
(a)                                                           (b) 

 
(c)                                                          (d) 

Fig. 3.39. The deformation of the beam subjected to a transverse end force 𝐹2 =

−8 × 106𝑁 (a) deformed configurations, (b) displacements 𝑢1, (c) displacement 

𝑢2, (d) rotation 𝜃3 (L represents linear; NL represents nonlinear) 

Table 3.5 shows the information in terms of computational time in nonlinear PD 

and nonlinear FEA simulations for different mesh sizes. As mentioned in Section 

3.3.3, the ADR method and the explicit time integration scheme are used for the 

nonlinear PD simulations. The PD codes are written using MATLAB 2018b. On 

the other hand, nonlinear FEA simulations are conducted by using ANSYS with the 

implicit solver.  

As can be observed from Table 3.5, the number of iterations required to obtain 

converged solutions, 𝑁𝑡, in the nonlinear PD simulations are much higher than those 

in the nonlinear FEA. In PD, the simulation with a finer mesh requires more 

iterations to obtain the converged solution. Specifically, the nonlinear PD beam 

model with 50 material points requires 4000 iterations to obtain the converged 
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results. Meanwhile, the nonlinear PD beam model with 200 material points requires 

15000 iterations to obtain the converged results. By contrast, the FEA simulations 

converged after 100 iterations for all mesh sizes since the implicit solver is used. 

As a result, the running time for nonlinear PD simulations is much higher than those 

of nonlinear FEA.  

However, it is also observed that the time per iteration in nonlinear PD simulation 

is less than those in nonlinear FEA. The reason is that the nonlinear PD uses the 

explicit integration scheme meanwhile the nonlinear FEA uses the implicit solver 

which requires the solutions for large linear and nonlinear stiffness matrices. 

Table 3.5. Computational time in NL-PD and NL-FEA models 

 

To further verify the nonlinear PD model for straight beams, a parametric study for 

the beam subjected to various transverse forces, 𝐹2 = −𝑛 × 10
6 N with 𝑛 =

2, 4, . . . , 18, 20, is investigated as shown in  

Fig. 3.40. As can be observed from  

Fig. 3.40(a), the deformed configurations of the beam captured by the nonlinear PD 

model match very well with those captured by nonlinear FEA.  

Fig. 3.40(b) shows the variations of nonzero degrees of freedom, 𝑢1, 𝑢2 and 𝜃3, on 

the right tip of the beam. As can be seen from the figure, the nonlinear PD and 

nonlinear FEA results agree very well which shows the accuracy of the nonlinear 

PD model for straight beams. 

 
(a)                                                            (b) 

Number of material 

points (nodes)

Nt

Time: t

(s)

Time per 

iteration: 

t/Nt

(s)

Nt

Time: t

(s)

Time per 

iteration: 

t/Nt

(s)

Nt

Time: t

(s)

Time per 

iteration: 

t/Nt

(s)

Nt

Time: t

(s)

Time per 

iteration: 

t/Nt

(s)

NL PD explicit 

using ADR method
4000 17.48 0.0044 8000 88.9 0.0111 12000 145.7 0.0121 15000 239 0.0159

NL FEA implicit 

using ANSYS
100 7.01 0.0701 100 7.06 0.0706 100 7.88 0.0788 100 8.12 0.0812

50 100 150 200

Nt: number of iterations to obtain converged solution.
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Fig. 3.40. Deformations of the beam subjected to a transverse force 𝐹2 =
−𝑛 × 106 N with 𝑛 = 2 ÷ 20 (a) deformed configurations, (b) displacements and 

rotation of the right end (L represents linear; NL represents nonlinear) 

To further verify the PD model, another parametric study for the beam subjected to 

various bending moments 𝑀2 = 𝑛 × 2𝜋𝐸𝐼22/𝐿 with 𝑛 = 1, 3/4, 1/2, 1/3, 1/4, 1/
5, 1/10, 1/20 on the right end is investigated as shown in Fig. 3.41. As can be 

observed from the figure, the deformed configurations of the beam captured by the 

nonlinear PD model agree very well with the nonlinear FEA results studied by Pai 

and Palazotto [103]. Therefore, the accuracy of the nonlinear PD for the straight 

beams is verified. 

 
Fig. 3.41. Deformed configurations of the cantilever beam subjected to bending 

moment 𝑀2 = 𝑛 × 2𝜋𝐸𝐼22/𝐿 

3.3.3.2. A half-circular beam subjected to tangential end load  

In this section, a half-circular beam subjected to tangential end loads is investigated 

as shown in Fig. 3.42. The beam has a radius of 𝑅 = 0.127 m and a rectangular 

cross-section with 𝑏 = 6.35 × 10−3 m and ℎ = 𝑏/3 [103]. The beam has an elastic 

modulus of 𝐸 = 6.895 × 1010 N/m2 and shear modulus of 𝐺 = 2.6518 ×
1010 N/m2. For the rectangular cross-section, the shear correction factor is chosen 

as 𝑘𝑠 = 5/6 [70] . 

 

The beam is fixed at (𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0) and subjected to a tangential force 

𝐹1 = 𝑛𝐸𝐼22/𝑅
2 with 𝑛 = 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 in 𝑥1 direction at (𝑥1 =

0, 𝑥2 = 0, 𝑥3 = −2𝑅). In the PD model, the beam is discretized with a mesh size 

of 𝛥𝑥 = 𝜋𝑅/300. In FEA, the same mesh size is used. To apply the boundary 

conditions in PD, three fictitious material points are added on the fixed end, and all 

DOFs of these points, as well as DOFs of the material point located at (𝑥1 = 0, 𝑥2 =
0, 𝑥3 = 0) are set equal to zero.  
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(a)                                         (b) 

Fig. 3.42. A half-circular beam subjected to tangential load: (a) geometry; (b) PD 

model discretization and boundary conditions 

Fig. 3.43 shows the comparison between the nonlinear PD and nonlinear FEA 

results. Fig. 3.43(a) shows the deformed configurations for the beam in all loading 

conditions. Fig. 3.43(b) shows the deflection versus n curve of the right tip. It can 

be observed from the figures that the nonlinear PD and nonlinear FEA results have 

a very good agreement and both results agree very well with those captured by Pai 

and Palazotto [103]. 

 

 

 

 
 

(a) (b) 

Fig. 3.43. The deformations of a half-circular beam subjected to end force 𝐹1 =

𝑛𝐸𝐼22/𝑅
2 (a) the deformed configurations, (b) the deflection versus n curve of the 

right tip (NL represents nonlinear) 

3.3.3.3. Large displacements in the 3D analysis of a 45-degree curved beam 

In this section, a 45-degree curved beam subjected to end load is investigated as 

shown in Fig. 3.44. The beam has a radius of 𝑅 = 2.54 m and a square cross-section 

with 𝑏 = ℎ = 0.0254 m. The beam has the elastic modulus of 𝐸 = 6.895 ×
1010 N/m2 and shear modulus of 𝐺 = 3.4474 × 1010 N/m2. The beam is 

investigated in two loading conditions with 𝐹3 = 1334.4665 N and 𝐹3 =
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2668.933 N [104]. For the square cross-section, the shear correction factor is 

chosen as 𝑘𝑠 = 5/6 [70], and the torsional constant can be chosen as 𝑘𝑡 =
0.1406 × 𝑏4 [74] 

 

In the PD model, the beam is discretized into 300 material points. Similar to 

previous analyses, three fictitious material points are added on the fixed end as 

shown in Fig. 3.44(b). All degrees of freedom of these fictitious points, as well as 

the material point located at (𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0) are set equal to zero.  

 
(a)                                                                (b) 

Fig. 3.44. A 45-degree curved beam (a) geometry; (b) PD discretized model 

 

Fig. 3.45 shows the deformed configurations of the beam. It can be observed from 

the figure that nonlinear PD and nonlinear FEA results have good agreement in both 

loading conditions. Table 3.6 shows the locations of the free end of the beam in two 

loading conditions. As can be seen from Table 3.6, the nonlinear PD results agree 

well with both nonlinear FEA results by using ANSYS and results studied by Bathe 

and Bolourchi [104]. Therefore, the accuracy of the nonlinear PD model is verified. 

 

Table 3.6. Positions of the right tip with different applied force values 

 
Right tip location (𝑥1, 𝑥2, 𝑥3) in meters 

Applied force 

𝐹3(𝑁) 

Nonlinear PD 

(5.120 elements) 

Nonlinear ANSYS 

(5.120 elements) 

Bathe and Bolourchi [104] 

(8 elements) 

1334.467 (0.565, 1.505, 1.008) (0.563, 1.489, 1.025) (0.5715, 1.504, 1.003) 

2668.933 (0.388, 1.212, 1.355) (0.397, 1.193, 1.360) (0.404, 1.199, 1.356) 
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Fig. 3.45. Deformed configurations of the 45-degree curved beam 

 

3.3.3.4. Damage prediction for a spaghetti 

After verifying the accuracy of the proposed nonlinear PD model, in this section, 

damages on a dry spaghetti subjected to bending and torsion are predicted. The 

spaghetti is represented by a straight beam with a length of 𝐿 = 0.24 m and it has 

a solid circular cross-section with an average radius of 𝑟 = 0.00085 m as shown in 

Fig. 3.46 [105]. In the PD model, the beam is discretized with a mesh size of Δ𝑥 =
𝐿/6000. To represent the imperfection of the spaghetti microstructure [106], the 

radius of the beam’s cross-section is assumed to vary randomly in a range of 

8.4832 × 10−4 ≤ 𝑟(𝑥1) ≤ 8.5169 × 10
−4 m as shown in Fig. 3.46(b).  

 

The material has a mass density of 𝜌 = 1500 kg/m3, the elastic modulus of 𝐸 =

3.8 × 109 N/m2 [105],  the fracture toughness of  𝐾𝐼𝑐 = 0.478 MPa√m [106]. For 

simplification, the critical energy release rate of the material is calculated as 𝐺𝑐 =
𝐺I𝑐 = 𝐾𝐼𝑐

2 /𝐸 = 60.1274 J/m2. The spaghetti is investigated in two loading 

conditions: pure bending (case 1) and a combination of torsion and bending (case 

2) [105].  
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(a) 

 
(b) 

Fig. 3.46. A dry spaghetti (a): geometry, (b): randomly variation of cross-section 

radius along the beam length 

Case 1: Spaghetti subjected to pure bending 

In this case, the beam is subjected to bending moments at two ends as shown in Fig. 

3.47. The boundary and loading conditions applied for the beam include two stages: 

(1) Stage 1: the beam is subjected to incremental bending moments while fixing 

the node at the middle of the beam as shown in Fig. 3.47(a-b). The bending 

moments are kept increasing until the first damage occur as shown in Fig. 

3.47(c).  

 

(2) Stage 2: after the first damage occurs at the end of stage 1, the bending 

moments are released. Then, two ends of the beam are kept at the deformed 

configuration as shown in Fig. 3.48 until the final damages occur. 

 

In stage 1, the beam is subjected to incremental bending moments per unit volume 

at two ends as 

( )
3(1) 0

(1)

t t

t
M M

m
V

− + 
=  (3.75a) 

( )
3( ) 0

( )

t t

t

N

N

M M
m

V

− + 
= −  (3.75b) 

with 
0 2 0 2

(1) (1) ( ) ( ),     N NV r x V r x =  =   (3.75c) 
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0 90,    10  NmM M −=  =  (3.75d) 

where 𝑉0 (1) and 𝑉0 (𝑁) represent volumes of material points located at the left end 

and right end of the beam, respectively. The term 𝑀𝑡−𝛥𝑡  represents the applied 

bending moment at the previous load step, Δ𝑀 represents the incremental value of 

the bending moment. In Eq. (3.75c), 𝑟(1) and 𝑟(𝑁) represent the beam’s radius of 

material points located at the left end and right end, respectively. 

 

Besides, all material points along the beam are also subjected to the gravitational 

body forces as  

2( )

t

kb g= −  (3.76) 

where 𝑔 = 9.81 N/m2 represents the gravitational acceleration. 

The boundary conditions for the beam in this stage can be represented as 

𝑢2(0,0,0) = 𝑢2(𝐿, 0,0) = 0 (3.77a) 

𝑢3(0,0,0) = 𝑢3(𝐿, 0,0) = 0 (3.77b) 

𝑢1(𝐿/2,0,0) = 𝑢3(𝐿/2,0,0) = 0 (3.77c) 

In stage 2, when the first damage occurs, the gravitational forces given in Eq. (3.76) 

are maintained, meanwhile, the bending moments at the two ends given in Eq. 

(3.75) are released as  

3(1) 3( ) 0t t

Nm m= =  (3.78) 

To apply boundary conditions in the second stage, three material points on each end 

of the beam are maintained their configurations as the first damage occurs as shown 

in Fig. 3.48(b). The boundary conditions for the beam in stage 2 is represented as 

( ) ( )0 0 0 0 0 0

1 2 3 1 2 3 1 2 3 1 2 3 1, , , , , , , , , ,    at 3
t t t t t tt t t t t tu u u u u u x x     =    (3.79a) 

( ) ( )0 0 0 0 0 0

1 2 3 1 2 3 1 2 3 1 2 3 1, , , , , , , , , ,    at 3
t t t t t tt t t t t tu u u u u u x L x     =  −   (3.79b) 

where 𝑡0 is the moment that the first damage occurs and 

( 𝑢
𝑡0

1, 𝑢
𝑡0

2, 𝑢
𝑡0

3, 𝜃
𝑡0

1, 𝜃
𝑡0

2, 𝜃
𝑡0

3)represent displacements and rotations at time 𝑡0 

when the first damage occurs. 

 



149 

 

 
(a)                                                               (b) 

 
(c) 

Fig. 3.47. Boundary and loading conditions for a spaghetti subjected to pure 

bending in stage 1 (a): geometry, (b): PD discretized model, (c): deformed 

configuration at the end of stage 1 when the first damage occurs 

 

 
(a)                                                               (b) 

Fig. 3.48. Boundary and loading conditions for spaghetti in stage 2 (a): deformed 

configuration when the first damage occur and the bending moments are released, 

(b): PD discretized model 

The beam is assumed to be in quasi-static loading conditions and the PD solution is 

obtained by using the ADR method [76, 77]. Fig. 3.49 shows the damage evolution 

on the beam in the pure bending condition after stage 1. As shown in Fig. 3.49(a), 

after 178 × 105 time steps, the first damage occurs at the middle section of the 

beam. After 178.26 × 105 time steps, in stage 2 the beam has two more damages 

located symmetrically with respect to the middle section of the beam as shown in 

Fig. 3.49(b). After 178.62 × 105 time steps, the beam is finally broken into 6 

segments with 5 locations of damage located symmetrically with respect to the 

middle section of the beam as shown in Fig. 3.49(c). As it can be observed from the 

results, the damage evolution on the beam predicted by the nonlinear PD model has 

good agreement with the experimental results in [105]. 
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(a) 

 

(b) 

 

(c) 

Fig. 3.49. Damage evolution on the dry spaghetti subjected to pure bending (a): 

first damage occurrence at (a) 178 × 105 (b): 178.26 × 105 , (c): 178.62 × 105 

time steps 

Case 2: spaghetti subjected to a combined loading: torsion and bending 

In this case, the boundary and loading conditions applied for the beam include three 

stages as follows. 

(1) Stage 1: the beam is twisted by 𝜃 ∗= 100𝑜 (𝜃1(0,0,0) = −𝜃 ∗/2,   
𝜃1(𝐿, 0,0) = 𝜃 ∗/2) as shown in Fig. 3.50.  
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(2) Stage 2: In addition to torsional loading, the beam is subjected to incremental 

bending moments at two ends as shown in Fig. 3.51. The loading conditions 

in this stage are given in Eq. (3.75). 

 

(3) Stage 3: when the first damage occurs, the bending moments are released. 

The beam is fixed at two ends and the remaining parts of the beam can be 

freely moved as shown in Fig. 3.52. In all stages, the beam is subjected to 

the gravitational forces as given in Eq. (3.76).  

 

 
(a)                                                               (b) 

Fig. 3.50. Spaghetti subjected to torsion in the stage 1 (a): geometry, (b): PD 

discretized model 

 

(a)                                                                     (b) 

Fig. 3.51. Spaghetti subjected to torsion and bending in stage 2 (a): PD discretized 

model, (b): deformed configuration at the end of stage 2 when the first damage 

occurs 

 

 

(a)                                                                     (b) 

Fig. 3.52. Boundary and loading conditions for the spaghetti in stage 3 (a): 

deformed configuration when the first damage occur and the bending moments 

and torsional loading are released, (b): PD discretized model 

Similarly, the beam is considered in quasi-static loading conditions and the PD 

solution is obtained by using the ADR method. In stage 1 for the torsional loading, 

the converged solution is obtained after 𝑁0 = 2 × 10
5 time step. In the second 

stage, the torsional angles, 𝜃1 of the material points located at two ends of the beam 

are kept constant, meanwhile, the incremental bending moments are applied on two 
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ends of the beam as given in Eq. (3.75). Fig. 3.53 shows the damage evolution on 

the beam in the combined loading conditions. Similar to the previous loading 

condition in Section 5.5.2.1, the first damage occurs in the middle section of the 

beam at 𝑁0 + 175.6 × 10
5 load step as shown in Fig. 3.53(a). Later, two more new 

damage locations occur symmetrically with respect to the middle section of the 

beam as shown in Fig. 3.53(b). As can be observed from the figure, in this loading 

condition, the beam is only damaged into 4 pieces. This prediction also agrees with 

the experimental results in [105]. 

 
(a) 

 

(b) 

Fig. 3.53. Damage evolution on the dry spaghetti subjected to torsion and bending 

(a): first damage occurrence at (a) 𝑁0 + 175.6 × 10
5 time steps (when the first 

damage occurs), (b): 𝑁0 + 177.08 × 10
5 time steps. (𝑁0 = 2 × 10

5 time steps for 

obtaining a converged solution for torsional loading in stage 1) 
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3.4. Peridynamics for nonlinear analysis of plates 

In this section, a novel ordinary state-based PD model for geometrically nonlinear 

analysis of plates based on Mindlin–Reissner theory is developed. The nonlinear 

PD formulations and equations of motion are obtained based on the principle of 

virtual displacements by using the Total Lagrange formulation. The energy-based 

criterion for damage prediction is used. To verify the accuracy of the proposed 

nonlinear PD model, large deformations of a plate subjected to bending and a plate 

subjected to vertical shear force are investigated. For verification purposes, the 

predicted results by using the proposed nonlinear PD model are compared with the 

nonlinear FEA results. Furthermore, damages on a plate subjected to out-of-plane 

stretching and tearing, a plate subjected to tearing, and a plated subjected to 

torsional loading are also predicted by using the nonlinear PD model. 

3.4.1. Nonlinear kinematics of plates in Classical Continuum Mechanics 

In this section, the nonlinear kinematics of a plate are presented. According to 

Mindlin [78], Reissner [79], each material point on the mid-plane of the plate has 

five degrees of freedom, including three displacements (𝑢, 𝑣, 𝑤) and two rotations 

(𝜃𝑥, 𝜃𝑦) as shown in Fig. 3.54 and Fig. 3.55.  

3.4.1.1. Displacement field 

As shown in Fig. 3.54, material point P is located at ( 𝑥0 , 𝑦0 , 𝑧0 ) and material 

point Q is located at ( 𝑥0 , 𝑦0 , 0) which is at the mid-plane of the undeformed plate. 

The degree of freedoms at time 𝑡 and time 𝑡 + 𝛥𝑡for material points P and Q are 

represented as 

( )ˆ ˆ ˆ,  ,  t t tu v w , ( )ˆ ˆ ˆ,  ,  t t t t t tu v w+ + +  for P (3.80a) 

( ),  ,  ,  ,  t t t t t

x yu v w   , ( ),  ,  ,  ,  t t t t t t t t t t

x yu v w  + + + + +  for Q (3.80b) 

According to Barut [107], the displacements of material point P located at 

( 𝑥0 , 𝑦0 , 𝑧0 ) at time 𝑡 and 𝑡 + Δ𝑡 can be represented as [107] 

( )0ˆ sint t t

yu u z = +   (3.81a) 

( )0ˆ sint t t

xv v z = −   (3.81b) 

ˆt tw w=  (3.81c) 

and 

( )0ˆ sint t t t t t

yu u z + + += +  (3.81d) 

( )0ˆ sint t t t t t

xv v z + + += −  (3.81e) 

ˆt t t tw w+ +=  (3.81f) 

with 

0/ 2 / 2h z h−    (3.81g) 
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where ℎ represents the thickness of the plate. 

 

Fig. 3.54. Displacement vectors of a material point located on mid-plane and a 

material point located at any location in the initial and deformed configurations of 

a plate  

On the other hand, the incremental displacements from time 𝑡 to time 𝑡 + Δ𝑡 of 

material point P located at ( 𝑥0 , 𝑦0 , 𝑧0 ) can be calculated by using Eq. (C2) in 

appendix C as 

ˆ ˆ ˆt t tu u u+= −  (3.82a) 

ˆ ˆ ˆt t tv v v+= −  (3.82b) 

ˆ ˆ ˆt t tw w w+= −  (3.82c) 

By using Eq. (3.81), the incremental displacements in Eq. (3.82) can be represented 

as 

( ) ( ) ( )0ˆ sin sint t t t t t

y yu u u z  + + = − + −
 

 (3.83a) 

( ) ( ) ( )0ˆ sin sint t t t t t

x xv v v z  + + = − − −
 

 (3.83b) 

ˆ t t tw w w+= −  (3.83c) 

which can be rewritten as 

( ) ( )0ˆ sin sint t t

y yu u z  + = + −
 

 (3.84a) 

( ) ( )0ˆ sin sint t t

x xv v z  + = − −
 

 (3.84b) 
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ŵ w=  (3.84c) 

with 

t t tu u u+= −  (3.84d) 

t t tv v v+= −  (3.84e) 

t t tw w w+= −  (3.84f) 

where 𝑢̱, 𝑣̱, 𝑤̱ represent the incremental displacements from time 𝑡 to time 𝑡 + Δ𝑡 
of point 𝑄 located at ( 𝑥0 , 𝑦0 , 0) at the mid-plane of the plate. 

 

Fig. 3.55. Five degrees of freedom of material points located on the mid-plane in 

the initial and deformed configurations of a plate  

By using the Eqs. (3.84a-c), the incremental displacements at any point 𝑃 can be 

rewritten in terms of incremental displacements of point 𝑄 at the mid-plane by using 

trigonometric relations as 

( ) ( )0ˆ 2 sin cos cos sin sin
2 2 2

y y yt t

y yu u z
  

 
      

= + −      
      

 (3.85a) 

( ) ( )0ˆ 2 sin cos cos sin sin
2 2 2

x x xt t

x xv v z
  

 
      

= − −      
      

 (3.85b) 

ŵ w=  (3.85c) 
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with 

t t t

x x x  += −  (3.85d) 

t t t

y y y  += −  (3.85e) 

where 𝜃̱𝑥 and 𝜃̱𝑦 represent the incremental rotations from time 𝑡 to time 𝑡 + Δ𝑡 of 

a material point located on the mid-plane of the plate (see Fig. 3.55).  

Similar to the approximation in nonlinear FEA [70],  the incremental rotations 𝜃̱𝑥 

and 𝜃̱𝑦 can be assumed very small as  

2sin ,   cos 1,   sin 0
2 2 2 2

y y y y        
       

     
 (3.86) 

Therefore, the incremental displacements at any point P located at ( 𝑥0 , 𝑦0 , 𝑧0 ) 

provided in Eqs. (3.85a-c) can be simplified as 

( )0ˆ cos t

y yu u z = +  (3.87a) 

( )0ˆ cos t

x xv v z = −  (3.87b) 

ŵ w=  (3.87c) 

 

3.4.1.2. Strain field 

By using the displacements given in Eq. (3.81), the Green-Lagrange strain at time 

𝑡 given in Eq. (C4) in Appendix C2 for a material point located at ( 𝑥0 , 𝑦0 , 𝑧0 ) can 

be represented as [107] 

( )

( ) ( ) ( ) ( )

0 2 2 2

0 0 , 0 , 0 , 0 ,0

0 0 0 0

0 , 0 ,0 0 0 0

sin 1
ˆ

2

sin sin sin sin1
    2 2

2

t

yt t t t t

xx x x x x

t t t t

y y x xt t

x x

u z u v w
x

z z u z z v
x x x x




   


 = + + + + 

       
    + + + −

       
    

 (3.88a) 

( )

( ) ( ) ( ) ( )

0 2 2 2

0 0 , 0 , 0 , 0 ,0

0 0 0 0

0 , 0 ,0 0 0 0

sin 1
ˆ

2

sin sin sin sin1
       + 2 2

2

t

xt t t t t

yy y y y y

t t t t

y y x xt t

y y

v z u v w
y

z u z z z v
y y y y




   


 = − + + + 

       
    + + −

       
    

 (3.88b) 
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( ) ( )

( ) ( ) ( ) ( )

( )

0 0

0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 0

0 0 0 0

0 , 0 ,0 0 0 0

0 0

0 ,0

sin sin1
ˆ

2

sin sin sin sin

1
        +

2 sin sin

t t

y xt t t t t t t t t

xy y x x y x y x y

t t t t

y y y yt t

y x

t

x t

y

u z v z u u v v w w
y x

z u z u z z
x y x y

z v z
x

 


   



  
 = + + − + + +

   

      
   + + +
      
   

 
− −



( ) ( ) ( )
0 0

0 ,0 0 0

sin sint t t

x x xt

xv z z
y x y

  

 
 
 
 
     
    − −

      
    

 (3.88c) 

( ) ( ) ( )

( ) ( )

0 0 , 0 , 0 ,

0 0

0 , 0 ,

1
ˆ sin sin sin

2

1
       + sin sin

2

t t t t t t t
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0
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with 
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x





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; 0 , 0

t
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yt

y x
x



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

; 
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t
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y y
y





=


 (3.88h) 

Note that, the relation given in Eq. (3.88f) is applicable for small strain problems. 

In the small strain conditions, the thickness of the plate is assumed as unchanged. 

Therefore, the strain in the thickness direction of the plate is ignored.  

By assuming the plate is moderately thin, the following terms in Eq. (3.88) can be 

neglected as [107] 

( ) ( ) ( ) ( )
0 0 0 0

0 , 0 ,0 0 0 0
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2
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 

 (3.89e) 

Therefore, the Green-Lagrange strains in Eq. (3.88) can be simplified as [107] 
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( )0 2 2 2
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0
ˆ 0t

zz   (3.90f) 

On the other hand, by substituting the displacement fields given in Eq. (3.81) and 

Eq. (3.87) into incremental Green-Lagrange strain, 0
ˆ

ije  in Eq. (C9) in appendix C2 

and by neglecting higher-order terms, the linear components of the incremental 

Green-Lagrange strain, 0
ˆ

ije , can be represented as [107] 
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with 
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 (3.91g) 
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w
w

y


=
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 (3.91h) 

 

3.4.1.3. Second Piola-Kirchhoff stress 

By substituting the Green-Lagrange strain at time t  given in Eq. (3.90) into Eq. 

(C19) in Appendix C3, the second Piola-Kirchhoff stress components for a plate 

with large displacements, large rotations, but small elastic strains can be calculated 

as [107] 
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yz y x

k E
S w 


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0
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zzS   (3.92f) 

 

3.4.1.4. The strain energy density 

By substituting the second Piola-Kirchhoff stress components given in Eq. (3.92) 

and the incremental strains given in Eq. (3.91) into Eq. (C30) in Appendix C4, the 

SED of a plate can be represented as [107] 
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 (3.93) 

The strain energy per unit area, 𝑊̄𝑁𝐿, can be obtained by integrating the SED given 

in Eq. (3.93) through the thickness of the plate as [70, 108] 
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 (3.94) 

The strain energy per unit area given in Eq. (3.94) can be rewritten as 
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2 2 2

0 , 0 , 0 ,

1

2

1
                            

2

t t t t t t t t

xx yy x y x x x

t t t

y y y

u v u v w

u v w

  = + = + + + +

+ + +

 (3.95d) 

0 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,       

t t

x y x x y y

t t t t

x x y y x x y y

u v u u u u

v v v v w w w w

 = + + +

+ + + +
 (3.95e) 

The strain energy per unit area given in Eq. (3.95a) can also be decomposed as [61] 

𝑊̄𝑁𝐿 = 𝑊̄𝑖𝑝
𝑁𝐿 + 𝑊̄𝑠ℎ

𝑁𝐿 + 𝑊̄𝑏
𝑁𝐿 (3.96a) 

with 

( )( )

( )

0 02
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0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
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0 , 0 , 0 , 0 ,
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  

  + + + + + +  
+

+  +
−

+ +

0 , 0 , 0 ,

0

0 , 0 , 0 , 0 ,

t

y y yt

xx t t

y y y y

v u u

v v w w


 
 
 
 
    +
     +

     + +    

 (3.96b) 
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( )

( )( ) ( )( )

( )( ) ( )( )

0 , 0 ,

0 , 0 ,

sin cos

2 1 sin cos
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x y x y y
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sh
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 (3.96c) 
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 
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 (3.96d) 

where 𝑊̄𝑖𝑝
𝑁𝐿, 𝑊̄𝑠ℎ

𝑁𝐿 and 𝑊̄𝑏
𝑁𝐿 represent the strain energy per unit area for in-plane, 

shear, and bending deformations, respectively. 

According to Barut [107], the strain energy per unit area for bending deformation 

given in Eq. (3.96d) can be further simplified as 

( )

( )( )

( )( )

( ) ( )

0 , 0 , 0 , 0 ,

3

0 , 0 , 0 , 0 ,2

0 , 0 , 0 , 0 ,

1
12 1
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Eh
W
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

   

 − + − +
 
  = − −−  − +
  + +

  

 (3.97a) 

which can be rewritten as 

( )
( )( )

( )( )

( ) ( )

3
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0 , 0 , 0 , 0 ,

1

212 1 2 2
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   
 
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  − + +

  

 (3.97b) 

with 

0 0 , 0 ,

t t t

b y x x y  = − +  (3.97c) 

0 0 , 0 ,b y x x y  = − +  (3.97d) 

where 

0 , 0

x

x x
x





=


; 0 , 0

x

x y
y





=


 (3.97e) 

0 , 0

y

y x
x





=


; 0 , 0

y

y y
y





=


 (3.97f) 

 

3.4.2. Nonlinear kinematics of plate in peridynamics 

Similar to the equation of motion given in Eq. (3.1), the PD equation of motion for 

nonlinear analysis of a plate can be described in the discrete form as 
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( ) ( ) 0

( ) ( ) 0 ( )( ) 0 ( )( ) ( ) ( )

1

N
t t t t

k k k j j k j k

j

V
=

= − +u t t b  (3.98) 

where 𝜌 represents the mass density, t
u  represents the vector of accelerations at 

time 𝑡. The term, 𝒖𝑡  represents the vector of displacements at time 𝑡. Meanwhile, 

𝒖̱ represents the vector of incremental displacement from time 𝑡 to time 𝑡 + Δ𝑡. The 

term ( )

t

kb  represents the vector of external forces and moments per unit area at time 

𝑡. The terms 0 ( )( )

t

k jt  and 0 ( )( )

t

j kt  represent the vectors of force densities at time 𝑡 

in which 0 ( )( )

t

k jt is the force density that material point 𝑗 exerts on material point 𝑘. 

On the other hand, 0 ( )( )

t

j kt is the force density that material point 𝑘 exerts on 

material point 𝑗. Both of these force densities are measured with respect to the initial 

configuration. For a plate with five degrees of freedom, these force densities can be 

represented as 

0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( )
yx

T
t t u t v t w t t

k j k j k j k j k j k jt t t t t
 =

 
t  (3.99a) 

0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( ) 0 ( )( )
yx

T
t t u t v t w t t

j k j k j k j k j k j kt t t t t
 =

 
t  (3.99b) 

where 0 ( )( )

t u

k jt , 0 ( )( )

t v

k jt , 0 ( )( )

t w

k jt , 0 ( )( )
xt

k jt


, 0 ( )( )
yt

k jt


 represents force densities corresponding 

to five degrees of freedom, 𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦, respectively. 

Similar to the relation given in Eq. (1.2) in chapter 1, the relationships between the 

PD force densities and the strain energy per unit area in nonlinear analysis of plates 

can be represented as 

( )

0 ( )( ) 0

( ) ( )

1
i

NLPD

kqt

k j

j i k

W
t

V q


= −


 (3.100a) 

and 

( )

0 ( )( ) 0

( ) ( )

1
i

NLPD

jqt

j k

k i j

W
t

V q


= −


 (3.100b) 

with 

,  ,  ,  ,  i x yq u v w  =  (3.100c) 

,  ,  ,  ,  i x yq u v w  =  (3.100d) 

where 0 ( )( )
iqt

k jt  and 0 ( )( )
iqt

j kt  represent the force density component that corresponds to 

the degree of freedom 𝑞𝑖 as given in Eq. (3.99). The parameter 𝑞𝑖 represents the 

degree of freedom which can be 𝑢, 𝑣, 𝑤, 𝜃𝑥 or 𝜃𝑦. The parameter 𝑞̱𝑖 represents the 

incremental value of 𝑞𝑖 which can be 𝑢̱, 𝑣̱, 𝑤̱, 𝜃̱𝑥, or 𝜃̱𝑦. 

In the following sections, first, nonlinear strain energy per unit area for a plate in 

peridynamics is presented in Section 6.3.1. The PD constants are obtained by 

comparing the nonlinear strain energies per unit area in PD with those in classical 



164 

 

continuum mechanics. Later, the PD equations of motion for geometrically 

nonlinear analysis of a plate are presented in Section 6.3.2.  

3.4.2.1. Peridynamic strain energy per unit area 

Similar to the classical formulation of the nonlinear strain energy per unit area given 

in Eq. (3.96), the nonlinear strain energy per unit area in PD for a plate can be 

decomposed as 

( ) ( ) ( ) ( )

NLPD NLPD NLPD NLPD

k ip k sh k b kW W W W= + +  (3.101) 

where 𝑊̄𝑖𝑝(𝑘)
𝑁𝐿𝑃𝐷, 𝑊̄𝑠ℎ(𝑘)

𝑁𝐿𝑃𝐷, and 𝑊̄𝑏(𝑘)
𝑁𝐿𝑃𝐷 represent the nonlinear PD strain energies per 

unit area for the in-plane, shear, and bending deformations, respectively. 

The nonlinear PD strain energy per unit area for the in-plane deformations can be 

represented as 

( )( ) ( )( ) 0 0

( ) 0 ( ) 0 ( ) 0 ( )( ) 0  ( )( ) ( )

1

2 2
N
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ip k ip k k ip ip k j ip k j j
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u u v v
s

u u v v w w

 





− + −
=

− + − + −
+

 (3.102b) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0  ( )( ) 0 0 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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t t
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t t t t
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s

v v v v w w w w

 
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− + − − −
= +

− − − −
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 (3.102c) 

0

0 ( ) 0 ( )( ) ( )

1

N
t t

k ip ip k j j

j

d s V
=

=   (3.102d) 

( ) 0

0  ( ) 0  ( )( ) ( )

1

N

k ip ip k j j

j

d s V
=

=   (3.102e) 

0 0

( ) ( )j jV A h=  (3.102h) 

In Eq. (3.102), 𝑘 is a material point in the PD discretized model and 𝑗 is a family 

member of material point 𝑘. The parameter 𝑁 represents the total number of family 

members of material point 𝑘. The term 𝑠0
𝑡
𝑖𝑝(𝑘)(𝑗) in Eq. (3.102b) represents the 

nonlinear bond stretch at time 𝑡. Meanwhile, 0  ( )( )ip k js  given in Eq. (3.102c) 

represents the incremental bond stretch from time 𝑡 to time 𝑡 + Δ𝑡. Both bond 

stretches are measured with respect to the initial configuration. The term 𝜗0
𝑡
(𝑘) in 

Eq. (3.102d) represents the dilatation at time 𝑡. The classical formulation of this 

dilatation is given in Eq. (3.95d). The term 0  ( )k  in Eq. (3.102e) represents the 
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incremental dilatation from time 𝑡 to time 𝑡 + Δ𝑡. The classical formulation of this 

incremental dilatation is given in Eq. (3.95e). 

In Eq. (3.102), the terms 𝑎𝑖𝑝, 𝑏𝑖𝑝, 𝑑𝑖𝑝 represent the PD constants for in-plane 

deformations. The terms 𝑢𝑡 (𝑘), 𝑣𝑡 (𝑘) and 𝑤𝑡 (𝑘) represent the displacements at 

time 𝑡 of material point 𝑘. Meanwhile, 𝑢̱(𝑘), 𝑣̱(𝑘) and 𝑤̱(𝑘) represent the incremental 

displacements of material point 𝑘 from time 𝑡 to time 𝑡 + Δ𝑡. Similarly, 𝑢𝑡 (𝑗), 

𝑣𝑡 (𝑗) and 𝑤𝑡 (𝑗) represent the displacements at time 𝑡 of material point 𝑗. 

Meanwhile, 𝑢̱(𝑗), 𝑣̱(𝑗) and 𝑤̱(𝑗) represent the incremental displacements of material 

point 𝑗 from time 𝑡 to time 𝑡 + Δ𝑡. These displacements and incremental 

displacements are shown in Fig. 3.55. The term 𝑉0 (𝑗) represents the volume of 

material point 𝑗 in the undeformed configuration (at time 𝑡 = 0), 𝐴0 (𝑗) represents 

the area of material point 𝑗 in the undeformed configuration. The term 
0  represents 

the distance between material points 𝑘 and 𝑗 in the undeformed configuration which  

is defined as 

 ( ) ( )
2 2

0 0 0 0 0

( ) ( ) ( ) ( )j k j kx x y y = − + −  (3.103) 

In Eq. (3.102), 𝜑 represents the angle between the 𝑥0  axis in the undeformed 

configuration and the line connecting material points 𝑘 and 𝑗. The terms 𝑠𝑖𝑛 𝜑 and 

𝑐𝑜𝑠 𝜑 in Eq. (3.102) can be calculated as 

0 0 0 0

( ) ( ) ( ) ( )

0 0
cos ;    sin

j k j kx x y y
 

 

− −
= =  (3.104) 

The PD constants for the in-plane deformations, 𝑎𝑖𝑝, 𝑏𝑖𝑝, 𝑑𝑖𝑝 can be obtained by 

comparing the strain energy per unit area for in-plane deformations in PD to those 

in classical continuum mechanics as presented in Appendix F1. These PD constants 

can be represented as 

2

2
ipd

h 
=  (3.105a) 

( )

( )2

3 1

4 1
ip

Eh
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



−
=

−
 (3.105b) 

( ) 3

3

1
ip

E
b
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=

+
 (3.105c) 

where 𝛿 represents the horizon size. The terms 𝐸 and 𝜈 represent the elastic 

modulus and Poisson’s ratio of the material, ℎ represents the thickness of the plate. 

Based on the classical formulation given in Eq. (3.96c), the nonlinear PD strain 

energy per unit area for the shear deformations given in Eq. (3.101) can be presented 

as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 0 0

( ) ( )0 0
1

ˆ ˆˆ ˆ1

2 2 2

t t t tN
k jj k k j j kNLPD
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j

w w w w
W C V

  


 =

   +− + −
  = − −

  
  

  (3.106a) 
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with 

( ) ( )( ) ( ) ( )
ˆ sin cos sin sint t t

k y k x k    = − +  (3.106b) 

( ) ( )( ) ( ) ( ) ( ) ( )
ˆ cos cos cos sint t

k y k y k x k x k      = − +  (3.106c) 

( ) ( )( ) ( ) ( )
ˆ sin cos sin sint t t

j y j x j    = − +  (3.106d) 

( ) ( )( ) ( ) ( ) ( ) ( )
ˆ cos cos cos sint t

j y j y j x j x j      = − +  (3.106e) 

where 𝜃𝑡 𝑥(𝑘) and 𝜃𝑡 𝑦(𝑘) represent the rotations of material point 𝑘 at time 𝑡. The 

terms 𝜃̱𝑥(𝑘) and 𝜃̱𝑦(𝑘) represent the incremental rotations from time 𝑡 to time 𝑡 + Δ𝑡 

of material point 𝑘 (see Fig. 3.56). Similarly, 𝜃𝑡 𝑥(𝑗) and 𝜃𝑡 𝑦(𝑗) represent the 

rotations of material point 𝑗 at time 𝑡. The terms 𝜃̱𝑥(𝑗) and 𝜃̱𝑦(𝑗) represent the 

incremental rotations from time 𝑡 to time 𝑡 + 𝛥𝑡 of material point 𝑗 (see Fig. 3.56). 

The parameter 𝐶𝑠ℎ represents the PD constant for shear deformations. As presented 

in Appendix F2, 𝐶𝑠ℎ is determined by comparing the strain energy per unit area for 

shear deformations in PD to those in CCM as 

( ) 3

3

1

s
s

k E
C

 
=

+
 (3.107) 

 
(a) (b) 

Fig. 3.56. Rotations and incremental rotations of material points (a): rotations at 

time 𝑡, (b): incremental rotations from time 𝑡 to time 𝑡 + Δ𝑡 

Based on the classical formulation given in Eq. (3.97b), the nonlinear PD strain 

energy per unit area for the bending deformations given in Eq. (3.101) can be 

presented as 

( )( ) ( )( ) 0 0

( ) 0 ( ) 0 ( ) 0 ( )( ) 0 ( )( ) ( )
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b k b b k b k b b k j b k j j

j

W a b s s V  
=

= +   (3.108a) 
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=   (3.108c) 

( ) ( )( ) ( ) ( ) ( )

0 ( )( ) 0

cos sint t t t

y j y k x j x kt

b k js
     



− − + −
=  (3.108d) 

( ) ( )( ) ( ) ( ) ( )

0  ( )( ) 0
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
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=  (3.108e) 

where 𝑠0
𝑡
𝑏(𝑘)(𝑗) represents the bond stretch for bending deformations at time 𝑡. 

Meanwhile, 0  ( )( )b k js  represents the incremental bond stretch for bending 

deformation from time 𝑡 to time 𝑡 + Δ𝑡. The terms 𝜃𝑡 𝑥(𝑗) and 𝜃𝑡 𝑦(𝑗) represent the 

rotations at time 𝑡 of material point 𝑗. Meanwhile, 𝜃̱𝑥(𝑗) and 𝜃̱𝑦(𝑗) represent the 

incremental rotations from time 𝑡 to time 𝑡 + 𝛥𝑡 of material point 𝑗. The term 𝜗0
𝑡
𝑏(𝑘) 

and 0 ( )b k  given in Eqs. (3.108b-c) corresponds to the term 𝜗0
𝑡
𝑏 and 0 b  in classical 

continuum mechanics given in Eqs. (3.97c-d). 

In Eq. (3.108), the terms 𝑎𝑏, 𝑏𝑏, 𝑑𝑏 represent the PD constants for bending 

deformations. As presented in Appendix F3, these PD constants can be represented 

as 
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 (3.109b) 

( )

2

34 1
b

Eh
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 
=

+
 (3.109c) 

3.4.2.2. Nonlinear peridynamic equations of motion for a plate 

By substituting the strain energy per unit area components given in Eq. (3.102), Eq. 

(3.106), and Eq. (3.108) into Eq. (3.101), the strain energy per unit area for a 

material point 𝑘 in the plate is calculated. Next, by substituting the strain energy 

per unit area given in Eq. (3.101) into Eq. (3.100a), the force density 0 ( )( )
iqt

k jt  can be 

obtained as 
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Similarly, by considering material point 𝑗 and its family members within its horizon 

size, the strain energy per unit area of material point 𝑗 can be calculated using Eqs. 

(3.101-109). Therefore, the force density 0 ( )( )
iqt

j kt  that material point 𝑘 exerts on 

material point 𝑗 can be obtained using Eq. (3.100b) as 
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Therefore, by substituting the force densities given in Eqs. (3.110-3.111) into Eq. 

(3.98), the nonlinear PD equations of motion for a plate can be rewritten as 

( ) ( ) ( ) ( ) 0

( ) 0 ( ) 0 ( ) 0 ( )( ) ( ) ( )0 0
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where ( )

t

x kb , ( )

t

y kb , ( )

t

z kb  represent external forces per unit area applied on 

material point 𝑘 at time 𝑡, ( )

t

x km  and ( )

t

y km  represent external moments per unit 

area applied on material point 𝑘 at time 𝑡. Note that, for small strain problems, the 

thickness of the plate and volume of material points are assumed to be unchanged. 

Therefore, the external loading at time 𝑡 can be represented as 

( ) ( ) ( )

( ) ( ) ( )0 0 0
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;    ;    
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with 

0

( )0

( )

k

k

V
A

h
=  (3.113c) 

where 𝐴0 (𝑘) represents the area of material point 𝑘 in the undeformed 

configuration. The terms 𝐹𝑡 𝑥(𝑘), 𝐹𝑡 𝑦(𝑘) and 𝐹𝑡 𝑧(𝑘) represent the external forces 
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applied on material point 𝑘 at time 𝑡. Meanwhile, 𝑀𝑡 𝑥(𝑘) and 𝑀𝑡 𝑦(𝑘) represent the 

external bending moments applied on material point 𝑘 at time 𝑡.  

 

3.4.3. Damage criteria 

Similar to the equation of motion given in Eq. (3.17) in chapter 3, by introducing a 

damage parameter, 𝜓(𝑘)(𝑗), the PD equations of motion given in Eq. (3.112) can be 

rewritten as [21] 
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To decide the interaction state, which is represented by the damage parameter, 

𝜓(𝑘)(𝑗) given in Eq. (1.3), the energy-based damage criterion given in Eq. (1.8-1.11) 

in chapter 1 is used. Similar to the formulations given in Eq. (2.90) in Chapter 2 for 

the linear PD shell model, the micropotentials Φ0
𝑡

(𝑘)(𝑗)
 and Φ0

𝑡
(𝑗)(𝑘)

 can be 

calculated as [61, 64] 
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where the force densities 0 ( )( )
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Note that, the damage parameter 𝜓(𝑘)(𝑗) is also included in the calculation of the 

dilatations, 𝜗0
𝑡
(𝑘), 0 ( )k  and the term, 𝜗0
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0 ( ) ( )( ) 0 ( )( ) ( )

1

N
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k ip k j ip k j j
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1

N

b k b k j b k j j

j

d s V 
=

=   (3.118d) 

Note that, in the formulations of the micropotentials given in Eq. (3.115), the first 

two components, Φ(𝑘)(𝑗)
𝑢

0
𝑡 , Φ(𝑘)(𝑗)

𝑣
0
𝑡 , can be caused by in-plane tension or 
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compression. The micropotential Φ(𝑘)(𝑗)
𝑤

0
𝑡  can be caused by shear deformations. 

Meanwhile, the micropotential Φ(𝑘)(𝑗)
𝜃𝑥

0
𝑡  and Φ(𝑘)(𝑗)

𝜃𝑦
0
𝑡  can be caused by bending 

deformations. Therefore, the contribution of tensional, compressional, shear, and 

bending deformations are considered for the calculation of bond energy release rate 

for damage prediction which is given in Eq. (1.9) in Chapter 1. Hence, the energy-

based damage criteria used in this section are applicable for tensional, 

compressional, shear, and bending deformations for non-linear analysis. 

 

It should be noted that to predict damages in shells and stiffened structures using 

the energy-based damage criteria given in Eq. (1.9), the critical energy release rate 

of material should be a value that is applicable for mixed-mode loading. However, 

to simplify the determination for the value of 𝐺𝑐 in section 3.4.4, the critical energy 

release rate of the material is simply chosen as 𝐺𝑐 = 𝐺I𝑐. 
 

3.4.4. Numerical results 

In this section, large deformations of plates are predicted by using the proposed 

nonlinear PD model. First, the verifications for the nonlinear model are presented 

in Sections 3.4.4.1 and 3.4.4.2. The nonlinear PD results are compared with the 

nonlinear FEA results. Next, in Sections 3.4.4.3-5, the nonlinear PD model is used 

to predict progressive damages on plates subjected to different loading conditions. 

For static and quasi-static loading conditions, the adaptive dynamic relaxation 

method [76, 77] is used. Details of the adaptive dynamic relaxation method for 

nonlinear PD analysis of plate are presented in Appendix A3. 

3.4.4.1. A plate subjected to bending 

In this section, a square plate subjected to bending as shown in Fig. 3.57 is 

investigated. The plate has dimensions of 𝐿 = 𝑊 = 1 m and the thickness of ℎ =
𝐿/10. The plate is fixed on the left edge and it is subjected to bending, 𝑚𝑦 =

3 × 107 Nm/m on the right edge. The plate is made of steel with an elastic modulus 

of 𝐸 = 2 × 1011 N/m2 and Poisson’s ratio of 𝜈 = 0.3. 

In the PD model, the plate is uniformly discretized with a mesh size of Δ𝑥 = 𝐿/100. 

To apply boundary conditions, three fictitious layers of material points are added 

on the left side of the plate as shown in Fig. 3.57(b). All DOFs of the fictitious 

points as well as the DOFs of the material points located at 𝑥 = 0 are set equal to 

zero. To apply the loading condition, the bending per unit area, 𝑚̄𝑦 = 𝑚𝑦/Δ𝑥, is 

applied to the material points located at 𝑥 = 𝐿. In the FEA by using ANSYS, the 

SHELL181 element with the same mesh size Δ𝑥 = 𝐿/100 is used. 

 

                               (a)                                                       (b) 
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Fig. 3.57. A square plate subjected to bending (a): geometry, (b): PD discretized 

model 

To decide a suitable horizon size for the PD nonlinear model, the deformation of 

the plate is predicted by using the nonlinear PD model with different horizon sizes. 

The nonlinear PD results for significant DOFs, (𝒖, 𝒘, and 𝜽𝒚), of the material points 

located at (𝑥 = 𝐿, 𝑦 = 𝑊/2) and (𝑥 = 3𝐿/4, 𝑦 = 𝑊/4) are compared with the 

nonlinear FEA results of the nodes located at the same locations as shown in Fig. 

3.58. The relative errors between the nonlinear PD and nonlinear FEA results are 

calculated as 

𝐸𝑟𝑟𝑜𝑟(𝑞) =
|𝑞𝑃𝐷−𝑞𝐹𝐸𝐴|

|𝑞𝐹𝐸𝐴|
× 100  (%) (3.119) 

where 𝑞 represents the degree of freedom, 𝑞𝑃𝐷 and 𝑞𝐹𝐸𝐴 represent the nonlinear PD 

and nonlinear FEA results for the degree of freedom 𝑞, respectively. 

As can be observed from Fig. 3.58, the nonlinear PD results start to converge to the 

nonlinear FEA results when the horizon size 𝛿 ≥ 3Δ𝑥. The relative errors between 

the nonlinear PD and nonlinear FEA results for the material point located at (𝒙 =
𝟑𝑳/𝟒, 𝒚 = 𝑾/𝟒) are smaller than 𝟐%. Meanwhile, these relative errors for the 

material point located at (𝒙 = 𝑳, 𝒚 = 𝑾/𝟐) are smaller than 𝟓%. Therefore, to 

minimize the computational cost in the PD simulation, the horizon size 𝛿 ≥
3.015Δ𝑥 is chosen. 

 

                               (a)                                                              (b) 

Fig. 3.58. Relative errors between the nonlinear FEA and nonlinear PD results 

with different horizon sizes for significant DOFs: 𝑢, 𝑤, and 𝜃𝑦 of material points 

located at (a): (𝑥 = 𝐿, 𝑦 = 𝑊/2), (b): (𝑥 = 3𝐿/4, 𝑦 = 𝑊/4) 

 

Fig. 3.59-Fig. 3.63 show the comparison of nonlinear results for all DOFs in the 

deformed configuration of the plate. As can be seen from the figures, the nonlinear 

PD results and nonlinear FEA results have good agreements. 
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(a) (b) 

Fig. 3.59. Variation of displacement 𝑢 (𝑚) in (a): nonlinear PD, (b): nonlinear 

FEA 

 

 

                               (a)                                                      (b) 

Fig. 3.60. Variation of displacement 𝑣 (𝑚) in (a): nonlinear PD, (b): nonlinear 

FEA 

 

                               (a)                                                         (b) 
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Fig. 3.61. Variation of displacement 𝑤 (𝑚) in (a): nonlinear PD, (b): nonlinear 

FEA 

 

                               (a)                                                        (b) 

Fig. 3.62. Variation of rotation 𝜃𝑥 (rad) in (a): nonlinear PD, (b): nonlinear FEA 

 

 

                               (a)                                                       (b) 

Fig. 3.63. Variation of rotation 𝜃𝑦 (rad) in (a): nonlinear PD, (b): nonlinear FEA 

Fig. 3.64 shows the comparison of the deformed configuration of the centreline at 

𝑦 = 𝑊/2 predicted by nonlinear PD analysis and nonlinear FEA. As it can be 

observed from the figure, the deformed configurations captured by both methods 

have a very good match except a small difference at the right end of the plate. 
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Fig. 3.64. Deformed configurations of the centreline / 2y W=  

3.4.4.2. A plate subjected to vertical shear forces 

In this section, a rectangular plate with the dimensions of 𝐿 = 1 m, 𝑊 = 0.2 m, 

and thickness of ℎ = 𝐿/50 is investigated as shown in Fig. 3.65. The plate is fixed 

on the left edge and it is subjected to vertical shear forces on the right edge. The 

values of the distributed forces are defined as 𝑓𝑧 = 𝑛 × 10
4 N/m with 𝑛 =

5, 10, 50, 100. The plate has the elastic modulus of 𝐸 = 2 × 1011 N/m2 and 

Poisson’s ratio of 𝜈 = 0.4.  

In the PD model, the plate is uniformly discretized with a mesh size of Δ𝑥 = 𝐿/100. 

The same method discussed in the previous section is used for applying boundary 

conditions. To apply the loading condition, the force per unit area 𝑏̄𝑧 = 𝑓𝑧/Δ𝑥 is 

applied to the material points located at 𝑥 = 𝐿. In the nonlinear FEA, the 

SHELL181 element and the same mesh size are used. 

 

                               (a)                                                            (b) 

Fig. 3.65. A plate subjected to vertical shear forces (a): geometry, (b): PD 

discretized model 

Fig. 3.66 shows the deformed configurations of the plate in different loading 

conditions. Fig. 3.67 shows the deformed configurations of the plate along the 

centreline 𝑦 = 𝑊/2. As can be seen from Fig. 3.67, the nonlinear PD and nonlinear 

FEA results show good agreements for all loading conditions. The difference 
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between the two results for the large loading condition with 𝑛 = 100 is still small 

which can verify the accuracy of the nonlinear PD model.  

 

Fig. 3.66. Deformed configurations of the plate subjected to distributed force 𝑓𝑧 =

𝑛 × 104 N/m with 𝑛 = 5, 10, 50, 100 

 

 

Fig. 3.67. Deformed configurations of the centreline at 𝑦 = 𝑊/2 of the plate 

subjected to distributed force 𝑓𝑧 = 𝑛 × 10
4 N/m with 𝑛 = 5, 10, 50, 100 

3.4.4.3. Out-of-plane stretching and tearing of a plate 

After verifying the accuracy of the nonlinear PD model, in this section, progressive 

damage on a square plate with pre-existing crack subjected to out-of-plane 

stretching and tearing is investigated. The experimental details for this problem can 

be found in [109]. The square plate has dimensions of 𝐿 = 𝑊 = 0.203 m and 
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thickness of ℎ = 8 × 10−4 m. The plate has an initial crack at 𝑥 = 0 with the crack 

length of 𝑎0 = 60 × 10
−3 m. The plate has the elastic modulus of 𝐸 =

2 × 1011 N/m2, Poisson’s ratio of 𝜈 = 0.3. For simplification, the critical energy 

release rate of the material is chosen as 𝐺𝑐 = 𝐺I𝑐 = 255 × 10
3 J/m2 [110]. The 

plate is fixed at two edges 𝑥 = −𝐿/2 and 𝑥 = 𝐿/2, and it is subjected to 

incremental vertical displacements at two points located at (𝑥 = ±3.3333 ×
10−4 m, 𝑦 = 6.6667 × 10−4 m).  

 

                     (a)                                                            (b) 

Fig. 3.68. Plate subjected to stretching and tearing (a): geometry, (b): PD 

discretized model 

In the PD model, the plate is uniformly discretized with the mesh size of Δ𝑥 =
6.6667 × 10−4 m. To apply boundary conditions, three fictitious layers of material 

points are added on the left and the right sides of the plate. All DOFs of the fictitious 

material points as well as DOFs of the material points located at 𝑥 = −𝐿/2 and 𝑥 =
𝐿/2 are set equal to zero. To apply the loading conditions, material points located 

at (𝑥 = 3.3333 × 10−4 m, 𝑦 = 6.6667 × 10−4 m) and (𝑥 = −3.3333 ×
10−4 m, 𝑦 = 6.6667 × 10−4 m) are applied incremental displacements as 𝑤 =
0.002 × 𝑖𝑙, with 𝑖𝑙 = 1,… ,42 represents the load step number. At each load step, 

the quasi-static solution is obtained for 18000 iterations by using the ADR method 

[76, 77]. The numerical procedure for this problem is shown in Fig. 3.69.  
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Fig. 3.69. Numerical procedure for the problem of a plate subjected to stretching 

and tearing 

Fig. 3.70-Fig. 3.73 show the damage evolution on the plate. It can be observed from 

the figures that when the vertical displacements are continuously increased, the 

crack propagates along the positive y-direction. When the applied displacement is 

𝑤 = 0.084 m, the crack propagates to the location of nearly (𝑥 = 0, 𝑦 =
0.2 m, 𝑧 = 0) as shown in Fig. 3.73. Moreover, larger crack openings are observed 

due to the larger deformations. This observation agrees well with the experimental 

results in [109] and the numerical results in [110, 111]. 

Apply loading conditions: 

𝑤 3.333 × 10−4 m, 6.6667 × 10−4 m = −0.002 × 𝑖𝑙  (m)
𝑤 −3.333 × 10−4 m, 6.6667 × 10−4 m = −0.002 × 𝑖𝑙  (m)

Apply boundary conditions: zero displacements and rotations 

for material points located at 𝑥 ≤ −𝐿𝑥/2  or 𝑥 ≥ 𝐿𝑥/2   

Go to next load step:

il = il + 1 

Loop over load steps

𝑖𝑙 = 1, 2, … , 𝑖𝑙 ≤ 𝑁𝑙𝑜𝑎𝑑

Solving equations of motions by using ADR 

method and updating new interaction state for 

all inteartions*

𝑖𝑙  𝑁𝑙𝑜𝑎𝑑

Output results

End

False

True

Preparation of PD discretized model*

Loop over iterations 

𝑖𝑡 = 1, 2, … , 𝑖𝑡 ≤ 𝑁𝑡

𝑖𝑡  𝑁𝑡
True

it = it + 1 

False
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Fig. 3.70. Damage on the plate when the applied displacement 𝑤 = 0.024 m 

 

 

Fig. 3.71. Damage on the plate when the applied displacement 𝑤 = 0.044 m 
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Fig. 3.72. Damage on the plate when the applied displacement 𝑤 = 0.064 m 

 

 

Fig. 3.73. Damage on the plate when the applied displacement 𝑤 = 0.084 m 

Fig. 3.74 shows the history of the equivalent applied forces versus the applied 

vertical displacements. At each load step, after 18000 iterations for the ADR 

solution, the equivalent applied forces on two material points located at (𝑥 =
3.3333 × 10−4 m, 𝑦 = 6.6667 × 10−4 m) and (𝑥 = −3.3333 × 10−4 m, 𝑦 =
6.6667 × 10−4 m) are calculated as 

0

( ) 0

( ) ( )( ) ( )( ) ( )

1

N
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z i i j i j j
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
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h


=

=  f  (3.120b) 

where i  and l  are the material points located at (𝑥 = 3.3333 × 10−4 m, 𝑦 =
6.6667 × 10−4 m) and (𝑥 = −3.3333 × 10−4 m, 𝑦 = 6.6667 × 10−4 m), 
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respectively. Material point 𝑗 is one of the family members of material point 𝑖. 
Meanwhile, material point 𝑚 is one of the family members of material point 𝑙. The 

equivalent applied forces shown in Fig. 3.74 are the average values of the forces 

calculated by using Eq. (3.120). 

As can be observed from Fig. 3.74, the equivalent applied forces versus the applied 

displacements captured by the nonlinear PD model has a good agreement with the 

experimental results given in [109]. When the applied displacements are smaller 

than 0.06 m, the PD and the experimental results have a very good agreement. 

However, when the applied displacements are higher than 0.06 m, there are small 

differences between the calculated forces in PD and the experimental values. These 

differences can be caused by plastic deformation effects, which are not considered 

in the PD simulation. 

 

Fig. 3.74. Equivalent applied forces versus the applied displacements 

 

3.4.4.4. Tearing a plate 

In this section, another example of a plate subjected to tearing is investigated as 

shown in Fig. 3.75. The plate has the dimensions of 𝐿 = 0.06 m, 𝑊 = 2𝐿, and 

thickness of ℎ = 5 × 10−4 m. The plate has two initial cracks located at 𝑥 =
0.01 m and 𝑥 = −0.01 m. The initial crack lengths are 𝑎 = 0.03 m. The material 

has an elastic modulus of 𝐸 = 5.96 GPa, Poisson’s ratio of 𝜈 = 0.2. For 

simplification, the critical energy release rate of the material is chosen as 𝐺𝑐 =
𝐺I𝑐 = 8.8 × 10

3 J/m2 [112]. 

Three edges of the plate are fixed and one edge is free as shown in Fig. 3.75. In PD, 

the model is uniformly discretized with the mesh size Δ𝑥 = 𝐿/200. To apply the 

boundary conditions, three fictitious layers of material points are added on each 

fixed edge. All DOFs of the fictitious material points as well as material points 

located along the fixed edges of the plate at 𝑥 = ±𝐿/2 and 𝑦 = 𝑊 are set equal to 

zero.  

The plate shown in Fig. 3.75 is subjected to incremental vertical displacements at 

the location of (−0.01 m ≤ 𝑥 ≤ 0.01 m, 𝑦 = 0, 𝑧 = 0). In the peridynamic model, 

the material points located at (−0.01 m ≤ 𝑥 ≤ 0.01 m, 𝑦 = 0, 𝑧 = 0) are subjected 
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to incremental displacements as 𝑤 = 0.001 × 𝑖𝑙  ,  𝑖𝑙 = 1,… ,60, where 𝑖𝑙 
represents the load step number. Similar to the previous example, at each load step, 

the quasi-static solution is obtained for 10000 iterations by using the ADR method. 

The same numerical procedure, except loading condition, shown in Fig. 3.69 is used 

for this problem for the given loading condition. 

 
                     (a)                                                     (b) 

Fig. 3.75. Tearing a plate (a): geometry, (b): PD discretized model 

Fig. 3.76-Fig. 3.78 show the damage evolution on the plate. As shown in Fig. 3.76, 

the cracks start propagating when the applied displacement is 𝑤 = 0.025 m. As the 

applied displacements are continuously increased, the cracks propagate diagonally 

as shown in Fig. 3.77. When the applied displacement is 𝑤 = 0.033 m, two cracks 

meet each other at (𝑥 = 0.039 m, 𝑦 = 0) as shown in Fig. 3.78. In Fig. 3.78, the 

final damage of the plate is shown in both deformed and undeformed 

configurations. It is observed that the damage pattern captured by the developed 

nonlinear PD model is similar to the results obtained by Silling and Bobaru [51]. 

 
Fig. 3.76. Damage on the plate when the applied displacement 𝑤 = 0.025 m 
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Fig. 3.77. Damage on the plate when the applied displacement 𝑤 = 0.029 m 

 

 
(a) 

 
(b) 

Fig. 3.78. Damage on the plate when the applied displacement 𝑤 = 0.033 m, (a): 

3D view in deformed configuration, (b): 2D view in the undeformed configuration 
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3.4.4.5. Plate subjected to torsion 

In this section, damages on a plate subjected to torsional loading are investigated as 

shown in Fig. 3.79. The plate has dimensions of 𝐿 = 0.3 m, 𝑊 = 0.127 m, and 

thickness of ℎ = 6 × 10−3 m. The plate has an initial crack with a length of 𝑎0 =
26 × 10−3 m as shown in Fig. 3.79. The material has the elastic modulus of 𝐸 =
2 × 1011 N/m2 and Poisson’s ratio of 𝜈 = 0.3. For simplification, the critical 

energy release rate of the material is chosen as 𝐺𝑐 = 𝐺I𝑐 = 22295 J/m
2 [113].  

Two edges of the plate are attached with rigid parts, shown in black in Fig. 3.79(a), 

and they are applied incremental rotations as 

7 7

(left) 10  (rad), 1, ,10x it it −= −  =   (3.121a) 

7 7

(right) 10  (rad), 1, ,10x it it −=  =   (3.121b) 

In PD, the model is uniformly discretized with a mesh size of Δ𝑥 = 𝐿/100, and the 

quasi-static solution is obtained by using the ADR method. To apply loading 

conditions, three fictitious layers of material points are added on the left and right 

sides of the plate as shown in Fig. 3.79(b). The rotation boundary conditions given 

in Eq. (68) are implemented by using displacement boundary conditions as 

 
T

u v w = −Rx x  (3.122) 

where 𝑹 is the rotation matrix. Therefore, the displacements of the fictitious 

material points on the left side are implemented as 

( ) ( ) ( )

( ) (left) (left) ( ) ( )

( ) (left) (left) ( ) ( )

1 0 0
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0 sin cos

k k k

k x x k k

k x x k k

u x x

v y y

w z z

 

 

       
       

= − −       
       
       

 (3.123) 

Meanwhile, the displacements of the fictitious material points on the right side are 

implemented as 

( ) ( ) ( )

( ) (right) (right) ( ) ( )

( ) (right) (right) ( ) ( )

1 0 0

0 cos sin

0 sin cos

j j j

j x x j j

j x x j j

u x x

v y y

w z z

 

 

       
       

= − −       
       
       

 (3.124) 

 

                  (a)                                                          (b) 

Fig. 3.79. Plate subjected to torsion  
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Fig. 3.80-Fig. 3.82 show the damage evolution on the plate subjected to torsion. As 

shown in Fig. 3.80, the crack starts propagating when the applied rotational angle 

is |𝜃𝑥| = 0.082 (rad). As the rotation |𝜃𝑥| is increased, the crack propagates along 

the positive 𝑦 direction and reaches the final damage location at (𝑥 = 0, 𝑦 =
0.125 m) when the applied rotational angle reaches |𝜃𝑥| = 0.094 (rad) as shown 

in Fig. 3.82. It can also be observed that the damage pattern captured by the 

nonlinear PD agrees well with the results captured by Zavattieri [113]. 

 

Fig. 3.80. Damage on the plate when |𝜃𝑥| = 0.082 (rad) 

 

 

Fig. 3.81. Damage on the plate when |𝜃𝑥| = 0.088 (rad) 
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Fig. 3.82. Damage on the plate when |𝜃𝑥| = 0.094 (rad) 

Fig. 3.83 shows the variations of the crack length versus the rotational angles. As it 

can be observed from the figure, when the rotational angle is smaller than 

0.08 (rad), the crack growth is quite slow. Beyond this limit, the crack starts 

growing much faster and reaches the final length of 0.125 m when the applied 

rotational angle is |𝜃𝑥| = 0.094 (rad). 

 

Fig. 3.83. Crack length (m) versus rotational angle (rad) 

3.5. Concluding remarks 

This chapter presents novel peridynamic models for geometrically nonlinear 

analysis based on Total Lagrange formulations. For nonlinear analysis of 1D, 2D, 

and 3D structures, a logarithmic bond stretch has been proposed for the first time 

in the PD literature. The effects of volume changes and rotations are considered in 

the calculation of PD force densities. The energy-based damage criterion is used 

for damage prediction. The accuracy of the developed nonlinear PD model is 
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verified by comparing it to nonlinear FEA solutions. For damage prediction, first, 

the developed nonlinear PD model is used to predict damages for a plate subjected 

to dynamic loading and an L-shape plate subjected to large deformation. Then, 

damage pattern in 3D pre-notched concrete beam subjected to quasi-static loading 

condition is predicted. All results show very good agreement with experimental 

results.  

For nonlinear analysis of beam structures, a novel nonlinear bond-based PD beam 

model with 6 degrees of freedom is developed. The energy-based damage criterion 

is used for damage prediction. The accuracy of the nonlinear PD model is verified 

for both straight and curved beams. The results from nonlinear PD analyses have 

good agreement with those in nonlinear FEA solutions, as well as the results from 

previous studies in the literature. To show the capability of the developed PD model 

for damage prediction, damages on a spaghetti subjected to different loading 

conditions are predicted. The predicted PD results show a good agreement with the 

experimental results given in the literature. The developed PD model can be used 

for any type of beam structure to predict possible damages that may occur during 

the operation process. 

For nonlinear analysis of shell structures, a novel nonlinear PD model for plates is 

developed. The energy-based damage criterion is used for damage prediction. The 

accuracy of the nonlinear PD model is verified by comparing the PD results with 

the nonlinear FEA results. After the verification, the nonlinear PD model is used to 

predict progressive damages on a plate subjected to out-of-plane stretching and 

tearing, a plate with two parallel cracks subjected to tearing, and a plate with a pre-

existing crack subjected to torsional loading. The predicted results in terms of 

damage patterns agree very well with the observations from the experiments and 

previous numerical studies. The proposed nonlinear PD can be further applied to 

predict possible damages on plates and shell structures subjected to large 

deformations during their operation process. 
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4. PERIDYNAMICS FOR FATIGUE CRACKING 

4.1. Introduction 

Stochastic fatigue analyses are commonly used in the fatigue design assessment 

(FDA) for ship and offshore structures. First, the stress combination caused by hull 

girder loads, external wave pressure, and internal cargo pressure is obtained. 

Subsequently, by using a suitable wave energy spectrum, the short-term stress 

response in irregular waves and short-term accumulated fatigue damage for the 

structures are predicted by using the well-known Palmgren-Miner rule. Next, by 

using the service profile probability matrix, including wave heights, wave periods, 

ship headings, ship speeds, loading conditions, long-term accumulated fatigue 

damage, and deterministic fatigue life probability of failure are predicted. This 

approach is recommended by many classification societies [114-120], and it is also 

widely used in many practical ships and offshore structure analyses [121-125]. By 

using the stochastic approach, the total lifetime accumulated fatigue damage (in the 

long-term fatigue analysis) and the probability of failure (in the reliability fatigue 

damage analysis) are common outputs. Meanwhile, the details of damage initiation 

and propagation are still infrequently investigated.  

 

To predict fatigue crack growth, the traditional finite element method (FEM) by 

using the remeshing techniques [126, 127], or various modified versions of the 

FEM such as the extended finite element method [128, 129], have been used. 

However, as mentioned in the previous Chapters, one conceptual problem for 

classical continuum mechanics (CCM) is that it uses the partial differential 

equations to represent structural behaviours. Therefore, additional criteria are 

needed to predict crack growth speed and direction or the branching of cracks [130-

133]. 

 

In Peridynamics, the first PD model for fatigue cracking is proposed by Silling and 

Askari [60]. Further validations for the PD model were studied by Zhang, et al. 

[134], Jung and Seok [135]. As proposed by Silling and Askari [60], during the 

cyclic loading processes, the reduction of the remaining life of each interaction is 

updated by using the cyclic bond strain range. However, in some special cases, the 

bond strain can consist of different components. For instance, in beam and shell 

structures, the bond strain consists of in-plane, shear, and bending components [61, 

62]. Therefore, deciding which strain will be used for the PD fatigue equation can 

be a challenge. By contrast, as presented in previous Chapters, the energy release 

rate for a bond is unique and it can be calculated by summing all components of the 

energy release rate. Therefore, this chapter proposes a novel energy-based PD 

model for fatigue cracking. The definition of the cyclic bond energy release rate 

range is introduced for the first time in the PD literature. The PD fatigue equations 

based on the cyclic bond energy release rate range are proposed. For simplification, 

this chapter focuses on the formulations for 2D structures. The proposed PD model 

is verified by considering both mode-I and mixed-mode fatigue crack growth 

problems. 

4.2. Peridynamics for fatigue cracking based on cyclic bond strain range 

In this section, a brief review of the existing PD model for fatigue cracking 

developed by Silling and Askari [60] is presented. In the model developed by 
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Silling and Askari [60], a bond can be defined in either the crack nucleation phase 

(phase I) or the crack growth phase (phase II). Rapid crack growth (Phase III) can 

also be incorporated with the PD fatigue model when some interactions in the PD 

model have stretches exceeding the critical value [134]. The fatigue life of each 

bond is represented by its remaining life, 𝜆(𝒙, 𝝃, 𝑁) that is defined as [60] 

( ) 1

( )

( )( )( 0) ( )

( )( ) 1 ( )( ) 1 11,      with  0,  0

N
mk jN N

k j k j

d
A A m

dN


 = = = −    for phase (I)  (4.1a) 

( ) 2

( )

( )( )( 0) ( )

( )( ) 2 ( )( ) 2 21,      with  0,  0

N
mk jN N

k j k j

d
A A m

dN


 = = = −    for phase (II) (4.1b) 

where (𝐴1, 𝑚1) and (𝐴2, 𝑚2) represent the positive fatigue parameters for phase (I) 

and phase (II), respectively. The parameter 𝜆(𝑘)(𝑗)
(𝑁)

 represents the remaining life of 

the interaction between material points 𝑘 and 𝑗 at the 𝑁𝑡ℎ cycle of loading. The 

parameter 𝜀(𝑘)(𝑗)
(𝑁)

 represents the cyclic bond strain range between material points 𝑘 

and 𝑗 at 𝑁𝑡ℎ cycle of loading which can be defined as [60] 

( )
( )( ) ( )( ) ( )( )

( )

( )( ) 1
k j k j k j

N

k j s s s R + − += − = −  (4.2) 

where 𝑠(𝑘)(𝑗)
+  represents the bond stretch corresponding to the maximum load 𝑃𝑚𝑎𝑥, 

𝑠(𝑘)(𝑗)
−  represents the bond stretch corresponding to the minimum load 𝑃𝑚𝑖𝑛. The 

term 𝑅 represents the load ratio that can be defined as 

( )( ) ( )( )min max/ /
k j k j

R P P s s− +=   (4.3) 

If the fatigue limit is considered, Eq. (4.1a) can be rewritten for phase (I) as [60] 

( ) 1( ) ( ) ( )
( )( )( 0) 1 ( )( ) ( )( )

( )( )

,  if  
1,    

0                                    otherwise

mN N N
k jN k j k j

k j

d A

dN

    
 =  

− − 
= = 



 (4.4) 

where 𝜀∞ ≥ 0 represents the fatigue limit which is the lowest cyclic bond strain 

range that still results in fatigue damages. The fatigue limit, 𝜀∞ can be determined 

from the experiment. Note that 𝜀∞ can be set equal to zero if the fatigue limit is not 

considered [60]. 

 

By using the relations given in Eq. (4.4), the remaining life of a bond in phase (I) 

can be calculated as 

( ) 1( 1) ( ) ( )

( )( ) 1 ( )( ) ( )( )( 0) ( )

( )( ) ( )( )
( 1)

( )( )

,  if  
1,   

                                     otherwise

m
N N N

k j k j k jN N

k j k j
N

k j

A    
 



−

 =

−

 − − 
= = 



   (4.5) 

By using the relations given in Eq. (4.1b), the remaining life of a bond in phase (II) 

can be calculated as 

( ) 2( 0) ( ) ( 1) ( )

( )( ) ( )( ) ( )( ) 2 ( )( )1,   
m

N N N N

k j k j k j k jA   = −= = −   (4.6) 

Beyond the crack growth phase (phase II), the structures can experience rapid crack 

growth (phase III). In this case, the traditional PD model [21, 43, 44, 46] for damage 

prediction can be used. Therefore, the interaction state of a bond can be defined as 

( )( ) ( )( )

( )( ) ( )( )

( )

( )( )

( )

( )( )

0    or     s     0

0   and    s     1

k j c k j

kk

N

k j

N

j j c k j

s

s

 

 

   → =


  → =

 (4.7) 
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4.2.1. Fatigue parameters for phase (I) 

Assuming that 𝝃1 is the bond that has the largest cyclic bond strain in the structure, 

according to Silling and Askari [60], crack nucleation occurs when 

1
1

1 1

1
m

N
A

=  (4.8) 

where 𝜀1 represents the largest cyclic bond strain in the PD model. 

If the fatigue limit, 𝜀∞ is considered, Eq. (4.8) can be rewritten as 

( ) 1
1

1 1

1
m

N
A  

=
−

 (4.9) 

The relations in Eqs. (4.8-7.9) can be rewritten as 

( ) ( )
( )1

1 1

1 1

log1
log log

A
N

m m
 = − −  (4.10a) 

and 

( ) ( )
( )1

1 1

1 1

log1
log log

A
N

m m
 − = − −  (4.10b) 

By using the relations in Eq. (4.10), the parameters 𝐴1 and 𝑚1 can be obtained from 

𝜀 − 𝑁 test data for material as shown in Fig. 4.1. 

 

 
(a)                                                                   (b) 

Fig. 4.1. Calibration phase (I) parameters 𝐴1 and 𝑚1 (a) without fatigue limit, (b) 

with fatigue limit 

As shown in Fig. 4.1, the experimental results for 𝑙𝑜𝑔 𝜀 versus 𝑙𝑜𝑔𝑁 or 

𝑙𝑜𝑔(𝜀 − 𝜀∞) versus 𝑙𝑜𝑔𝑁 are often represented with scatter data, shown in blue. 

Based on these scatter data, the fitted curves, shown in red, can be obtained. The 

slopes of the fitted curves are equal to −1/𝑚1. Meanwhile, the intersections of the 

slopes with the 𝑙𝑜𝑔 𝜀 or 𝑙𝑜𝑔(𝜀 − 𝜀∞) axis (the vertical axis) are equal to 

− 𝑙𝑜𝑔(𝐴1) /𝑚1. Therefore, the fatigue parameters, (𝐴1, 𝑚1), for phase (I) can be 

obtained from the fitted curve. 

 

 

4.2.2. Fatigue parameters for phase (II) 

In phase (II), the fatigue crack growth follows the well-known Paris law that can be 

represented as 

Mdq
c K

dN
=   (4.11) 
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where 𝑞 represents the crack length and 𝑁 represents the number of loading cycles, 

𝑐 and 𝑀are material constants, Δ𝐾 represents the stress intensity factor range.  

According to Silling and Askari [60], the parameter 𝑚2 in Eq. (4.6) can be obtained 

directly from the material constant 𝑀 as 

2m M=  (4.12) 

Meanwhile, the parameter 𝐴2 in Eq. (4.6) needs to be calibrated by conducting a 

trial PD fatigue simulation. Details of the calibration for the parameter 𝐴2 is 

presented in the appendix G1 which can be described as follows; 

Step 1: Assume an arbitrary value for 𝐴2 2A  as: 𝐴2 = 𝐴2(trial)  

Step 2: Conduct a PD fatigue simulation with the trial value 𝐴2 = 𝐴2(trial) and 

calculate the crack growth rate and stress intensity (SIF) range for this trial case: 
(𝑑𝑞/𝑑𝑁)(trial) and Δ𝐾(trial).  

Step 3: Plot the scatter data of (Δ𝐾 − 𝑑𝑞/𝑑𝑁)(trial) in the logarithmic scale and find 

the best-fit equation: (𝑑𝑞/𝑑𝑁)(trial) = 𝐶(trial)Δ𝐾
𝑀 

Step 4: Calibrate the value for 2A  as [60] 

( )

( )
(experiment)

2 2(trial)

(trial)

/

/

dq dN
A A

dq dN
=  (4.13a) 

or 

(experiment) (experiment)

2 2(trial) 2(trial)

(trial) (trial)

M

M

C K C
A A A

C K C


= =


 (4.13b) 

where  

( ) (experiment)(experiment)
/ Mdq dN C K=   (4.13c) 

 

Here Eq. (4.13c) is the Paris law equation obtained from the experimental data.  

 

Note that 𝑚1, 𝐴1 and 𝑚2 are material constants which are independent of the 

horizon size. However, the parameter 𝐴2 is dependent on the horizon size [60]. 

According to Silling and Askari [60], the relationship between the parameter 𝐴2 

and the horizon size 𝛿 can be presented as 

( ) 2( 2)/2

2 2
ˆ m

A A  −
=  (4.14) 

where 𝐴̂2 is a constant and it is independent of 𝛿.  

Therefore, the value of the parameter 𝐴2 can be scaled due to the change of horizon 

size as follows: 

Assuming that 𝐴2
(1)

 is the calibrated value for the parameter 𝐴2 obtained from a trial 

PD simulation (see Appendix G1 for the calibration procedure) by using the horizon 

size of 𝛿(1), for example 𝛿(1) = 3𝛥𝑥1 in which Δ𝑥1 represents the mesh size used 

in the trial PD simulation.  

By substituting 𝐴2
(1)

 and 𝛿(1) into Eq. (4.14), the value for the parameter 𝐴̂2 can be 

calculated as 

( ) 2

(1)

2
2 ( 2)/2

(1)

ˆ
m

A
A


−

=  (4.15) 

Now, assuming that a PD fatigue simulation with a different mesh size Δ𝑥2 ≠ Δ𝑥1 

and a horizon size of 𝛿(2) = 3Δ𝑥2 is needed. Therefore, by substituting Eq. (4.15) 
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into Eq. (4.14) and by putting 𝛿 = 𝛿(2), a new value of the parameter 𝐴2 for the PD 

fatigue simulation with a mesh size of Δ𝑥2 ≠ Δ𝑥1 and a horizon size of 𝛿(2) =
3Δ𝑥2  can be obtained as 

( )
( )

( )2 2

2

(1)
( 2)/2 ( 2)/2

(2) (2) (2)2
2 2 ( 2)/2

(1)

ˆ m m

m

A
A A  



− −

−
= =  (4.16) 

4.3. An energy-based PD model for fatigue cracking 

In this section, a novel PD model for fatigue damage prediction based on the cyclic 

bond energy release rate range for 2D structures is proposed. The fatigue equation 

in Eq. (4.1) is rewritten in the energy-based form. New fatigue parameters for the 

proposed model are also presented. 

 

By considering only in-plane deformations in the PD shell model given in Chapter 

2, the PD equations of motion for 2D structures can be found in Eq. (2.77a, b) in 

Chapter 2 as 

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

1

1
2 4 cos

N

k k j k j k j j x k

j

hu ad bs V b    
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 
  (4.17a) 
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k k j k j k j j y k

j
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 
= + + + 

 
  (4.17b) 

where 𝜗(𝑘) and 𝜗(𝑗) represent the dilatations at material points 𝑘 and 𝑗, respectively. 

The terms, 𝑎, 𝑏, 𝑑 are the PD constants for in-plane deformations, 𝑠(𝑘)(𝑗) represents 

the linear bond stretch for in-plane deformations which is given in Eq. (2.65) in 

chapter 2. The terms, 𝑏̄𝑥(𝑘) and 𝑏̄𝑦(𝑘) represent the external forces per unit area. 

Details of these parameters can be found in Chapter 2. 

 

Similarly, by substituting the micro-potentials of in-plane deformations given in 

Eq. (2.91) in Chapter 2 into Eq. (1.9) in Chapter 1, the energy release rate for 

interaction between material points 𝑘 and 𝑗 in 2D structures can be represented as 

( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( )( ) 2

1 2
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The energy release rate in Eq. (4.18) can be rewritten as 
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or 
2

( )( ) 0( )( ) ( )( )k j k j k jg C s=  (4.19b) 
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 (4.19c) 

For the bond-based PD model, the term 𝑎 = 0 in Eq. (4.19) [44]. Therefore, Eq. 

(4.19c) can be simplified as 

( ) ( )

0( )( ) 2( )

k j

k j

V V
C b

x h
=


 (4.20) 
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As can be observed from Eq. (4.20) for the bond-based PD model, the parameter 

𝐶0(𝑘)(𝑗) is independent of loading conditions. However, for the ordinary state-based 

PD model, the dilatation terms exist. Therefore, as given in Eq. (4.19c), 𝐶0(𝑘)(𝑗) is 

loading dependent and it can be updated during the PD fatigue prediction.  

 

4.3.1. The cyclic bond energy release rate range 

Similar to the definition of the cyclic bond strain range proposed by Silling and 

Askari [60], the  cyclic bond energy release rate range at 𝑁𝑡ℎ cycle of loading can 

be defined as 

( )( )

( )

( )( ) ( )( )k j

N

k j k j

R
g g g

R

+ −= −  (4.21) 

where ḡ(𝑘)(𝑗)
+  and ḡ(𝑘)(𝑗)

−  represent the energy release rates for interaction between 

material points 𝑘 and 𝑗 in maximum and minimum loading conditions, respectively. 

These energy release rates can be calculated by using Eq. (4.19). The loading ratio 

𝑅 is defined in Eq. (4.3).  

 

By using the relationship given in Eq. (4.19b), the cyclic bond energy release rate 

range in Eq. (4.21) can be rewritten as 
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By using the relation given in Eq. (4.2), the cyclic bond energy release rate range 

in Eq. (4.22b) can be rewritten as 
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 (4.23a) 

or 
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N N
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 
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 (4.23c) 

 

4.3.2. The energy-based PD fatigue model 

Similar to the original PD fatigue model [60], in this energy-based model, the 

remaining life of the interaction between material points 𝑘 and 𝑗 can be represented 

in terms of the cyclic bond energy release rate range as 

 

For phase (I): 
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For phase (II): 
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where (𝐵1(𝑘)(𝑗), 𝑛1) and (𝐵2(𝑘)(𝑗), 𝑛2) represent the fatigue parameters used in the 

energy-based PD fatigue model for phase (I) and phase (II), respectively. The 

parameter 𝑔(𝑘)(𝑗)
(𝑁)

 represents the cyclic bond energy release rate range of the 

interaction between material points  𝑘 and 𝑗 at the 𝑁𝑡ℎ loading cycle.  

 

If a fatigue limit is considered, the fatigue equation in Eq. (4.24a) for phase (I) can 

be rewritten as 

( ) 1( ) ( ) ( )
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0                                      otherwise
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with 
2

1( )( )k jg C  =  (4.25b) 

where g∞ represents the cyclic bond energy release rate range corresponding to the 

fatigue limit 𝜀∞. 

By integrating Eq. (4.25a), the remaining life of a bond in phase (I) can be 

calculated as 
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  (4.26) 

By integrating Eq. (4.24b), the remaining life of a bond in phase (II) can be 

calculated as 
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n
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Similar to the damage criteria given in Eq. (4.7), the state of interaction in the 

energy-based model can be defined as 
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 (4.28) 

 

 

4.3.3. Fatigue parameters (𝑩𝟏(𝒌)(𝒋), 𝒏𝟏), (𝑩𝟐(𝒌)(𝒋), 𝒏𝟐)  

In this section, the relationships between the fatigue parameters in the proposed 

energy-based PD model, (𝐵𝑖(𝑘)(𝑗), 𝑛𝑖) and the fatigue parameters in the cyclic bond 

strain model, (𝐴𝑖, 𝑚𝑖) are presented. The values of (𝐵𝑖(𝑘)(𝑗), 𝑛𝑖) can be obtained 

indirectly from the experimental data through the calibrations for (𝐴𝑖, 𝑚𝑖). Note 

that, in this section, 𝑖 = 1 denotes phase (I) and 𝑖 = 2 denotes phase (II). 
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By comparing Eq. (4.24) with Eq. (4.1), the relationships between fatigue 

parameters in the energy-based model, (𝐵𝑖(𝑘)(𝑗), 𝑛𝑖) and the cyclic bond strain 

model, (𝐴𝑖, 𝑚𝑖) can be obtained as 

( )( ) ( )( ) ( )( )
i im n

i k j i k j k jA B g =  (4.29a) 

or 

( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )log log log logi i k j i k j i k jA m B n g+ = +  (4.29b) 

On the other hand, the relation given in Eq. (4.23b) can be rewritten as 

( ) ( ) ( )1( )( ) ( )()( ) )(l 2og log logkk kjj jCg = +  (4.30) 

Therefore, by using the relation given in Eq. (4.30), the relations in Eq. (4.29b) can 

be rewritten as 

( ) ( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )1( )( )logl o 2og log log gl ki ji k j i k j i i k jA m B n nC + += +  (4.31a) 

or 

( )
( ) ( ) ( )(

1( )

)( ) ( )( )

( )

( )( )log log l log 2 og
i

i
i k j i k j i

k j

k jn

A
m B

C
n 

 
  + =


+


 

 (4.31b) 

To ensure Eq. (4.31b) is correct for every interaction, the following relations 

between fatigue parameters in the energy-based PD model, (𝐵𝑖(𝑘)(𝑗), 𝑛𝑖) and the 

cyclic bond strain PD model, (𝐴𝑖, 𝑚𝑖) can be obtained as 

/ 2i in m=  (4.32a) 

( )
2

1 )

( )( )

( ( )

/i

i

m

k

k j

j

i

C

A
B =  (4.32b) 

which can be written for phase (I) and (II) as 

1 1 2/n m=  (4.33a) 

( ) 1

1

2

(

1

)

( ) ) /

)

(

1(

k j m

k jC

A
B =  (4.33b) 

and 

2 2 2/n m=  (4.34a) 

( ) 2

2

2

(

2

)

( ) ) /

)

(

1(

k j m

k jC

A
B =  (4.34b) 

 

4.3.4. Phase transition 

According to Silling and Askari [60], the PD bond strains in the nucleation phase 

can agree with the measured strain data. However, in the growth phase, the actual 

process zone at a crack tip is usually smaller than the PD continuum-level model. 

Therefore, bond strains in phase (II) could be fictitious. As a result, the transition 

between phase (I) and phase (II) might not be smooth.  

 

To have a smooth transition between two phases for a material point, Silling and 

Askari [60] proposed a method for phase transition, which is based on the 

information of the damage index 𝜙 (given in Chapter 1) at that material point and 

its family members. Specifically, phase (I) fatigue equation given in Eq. (4.5) or 

Eq. (4.26) for a given material point 𝑘 is valid,  if all material points within its 
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horizon (including itself) has the damage index 𝜙  𝜙0. By contrast, the phase (II)  

fatigue equation given in Eq. (4.6) or Eq. (4.27) is valid when material point k  or 

at least one of its family members have 𝜙 ≥ 𝜙0. According to Silling and Askari 

[60], 𝜙0 can be chosen as 𝜙0 = 0.5. In this study, the same approach is used. 

However, 𝜙0 = 0.398 is used for two-dimensional models for considering damage 

at each material point. 

 

If some interactions have energy release rates exceeding the critical value, ḡ(𝑘)(𝑗) ≥

g𝑐, the fatigue simulation is stopped and the conventional PD model for damage 

prediction (phase III) [21, 43, 44, 46] can be used.  

 

4.4. Numerical results 

In this section, mode-I and mixed-mode fatigue damages on 2D structures are 

predicted by using the proposed energy-based PD fatigue model as shown in Fig. 

4.3 and Fig. 4.6. The structures are made of aluminum 6061-T6 with an elastic 

modulus of 𝐸 = 68 × 109 N/m2, Poisson’s ratio of 𝜈 = 0.33 [136], and fracture 

toughness of 𝐾𝐼𝐶= 48.7 × 10
6 MPa√m[137]. For simplification, the critical energy 

release rate of the material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 = 34878 J/m2. 

 

The fatigue parameters for phase (I) can be calibrated by using the experimental 

results (𝜀 − 𝑁 curve) provided in [138]. In this study, the 𝜀 − 𝑁 data provided in  

[138] is reconstructed and plotted on a log-log scale as shown in Fig. 4.2. Based on 

the calibration shown in Fig. 4.2, the fatigue parameters for phase (I) (without the 

consideration of fatigue limit) are obtained as  

𝑚1 = 2.29153 (4.35a) 

1

1

log
0.87975

A

m
− = −  (4.35b) 

or  

1 103.7465A =  (4.35c) 

Therefore, the fatigue parameters for phase (I) in the energy-based PD model can 

be obtained by using Eq. (4.33) as 

1
1 1.145765

2

m
n ==  (4.36a) 

( ) 1

1

2

(

1

)

( ) ) /

)

(

1(

k j m

k jC

A
B =  (4.36b) 

where 𝐶1(𝑘)(𝑗) is obtained by using Eq. (4.23c).  
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Fig. 4.2. Calibration for phase (I) parameters for aluminum 6061-T6 ((*): the 

experimental data is reproduced from [138]) 

4.4.1. Mode I fatigue crack propagation  

In this section, the mode-I fatigue problem is investigated as shown in Fig. 4.3(a). 

The dimensions of the plate are shown in Fig. 4.3(a) and the PD discretized model 

is shown in Fig. 4.3(b). The plate is subjected to cyclic loading with the maximum 

loading 𝑃𝑚𝑎𝑥 = 14 kN, load ratio 𝑅 = 0.1, and loading frequency of 10 Hz [136].  

 

In PD, the model is uniformly discretized with mesh size Δ𝑥 = 6 × 10−4 mm, and 

the horizon size 𝛿 = 3.015Δ𝑥 is used. Since the problem is symmetric, the fixed 

boundary conditions at two material points located at (1.25𝑊,Δ𝑥/2) and 
(1.25𝑊,−Δ𝑥/2), shown in black in Fig. 4.3(b), are assumed.  

 

To apply loading conditions, first, material points located inside the cut-outs, shown 

in red in Fig. 4.3(b), are assumed as rigid with the elastic modulus of 𝐸𝑟𝑖𝑔𝑖𝑑 =

200𝐸. Next, the extreme load 𝑃 = 14 × 103 N is applied to the material points 

located at the centres of the cut-outs as shown in Fig. 4.3(b).  

 

The fatigue parameter 𝑚2 = 2.6183 is obtained from the experimental results 

given by Sajith, et al. [136]. Therefore, the phase (II) fatigue parameter for the 

energy-based PD model 𝑛2 = 1.3092 is used.  

 

To obtain values for parameters 𝐴2 and 𝐵2(𝑘)(𝑗), a trial value 𝐴2(trial) = 1174 is 

assumed and the corresponding value 𝐵2(𝑘)(𝑗)
(trial)

 is obtained for each interaction by 

using Eq. (4.34b). Next, A trial fatigue simulation using (𝐵1(𝑘)(𝑗), 𝑛1) obtained 

from Eq. (4.37) for phase (I) and (𝐵2(𝑘)(𝑗)
(trial)

, 𝑛2 = 1.3092) for phase (II) is conducted 
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to calculate the fatigue crack growth rate (𝑑𝑞/𝑑𝑁)(trial) and the SIF range Δ𝐾(trial) 

(see appendix G1). The best-fit equation with the form of (𝑑𝑞/𝑑𝑁)(trial) =

𝐶(trial)Δ𝐾
𝑀 is obtained by using (𝑑𝑞/𝑑𝑁)(trial) and Δ𝐾(trial) values. Finally, by 

comparing (𝑑𝑞/𝑑𝑁)(trial) with the experimental values (𝑑𝑞/𝑑𝑁)(experiment), the 

calibrated value of the parameter 𝐴2 = 1055 is obtained by using Eq. (4.13b) and 

the parameter 𝐵2(𝑘)(𝑗) is obtained for each interaction by using Eq. (4.34b). 

 

 
(a)                                               (b) 

Fig. 4.3. Mode I fatigue problem (a) geometry (b) PD discretized model 

 

Fig. 4.4 shows the fatigue damage evolution on the plate under the mode-I loading 

condition. After 2000 loading cycles, the crack starts propagating as shown in Fig. 

4.4(a). As expected, the crack propagates along its initial direction toward the right 

edge of the plate as shown in Fig. 4.4(b-d). After 40850 loading cycles, the crack 

reaches the location at 𝑥 = 0.0522 mas shown in Fig. 4.4(d). Fig. 4.5 shows crack 

length, 𝑞 versus load cycle, 𝑁 for fatigue crack growth of the plate. As can be 

observed from the figure, the PD prediction results have good agreement with the 

experimental results [136]. The crack length, 𝑞 versus load cycle, 𝑁 predicted by 

the PD model agrees very well with the experimental curve for the first 30000 

cycles. Later, the predicted crack growth is slightly quicker than the experimental 

results. The final predicted fatigue life is 𝑁𝑓
𝑃𝐷 = 40850 (cycles), meanwhile, the 

experimental value is 𝑁𝑓
experimental

= 42600 (cycles). Therefore, the relative error 

in terms of the final fatigue life can be estimated as 
ex perimental

ex perimental
(%) 100 4.108%

PD

f f

f

N N
error

N

−
=  = −  (4.37) 
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(a)                                                          (b) 

 

 
(c)                                                          (d) 

Fig. 4.4. Fatigue damage evolution at (a) 2000 cycles, (b) 15000 cycles, (c) 30000 

cycles, (d) 40850 cycles 

 
Fig. 4.5. Fatigue crack length, 𝑞 versus load cycle, 𝑁 (the experimental data is 

obtained from [136]) 
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4.4.2. Mixed-mode fatigue crack propagation 

After verifying the energy-based PD fatigue model for mode-I fatigue crack 

evolution, the proposed PD model is further used to predict fatigue damages in the 

mixed-mode loading conditions as shown in Fig. 4.6. The dimensions for the 

specimen are in mm as shown in Fig. 4.6(b). The plate has an initial notch with a 

length of 40 mm and a 5 mm initial fatigue crack is created [136]. The material 

properties are the same as in Section 7.5.1. The loading is defined by the extreme 

load 𝑃 = 16 kN, load ratio 𝑅 = 0.1 , and the loading angle 𝛼 as shown in Fig. 4.6(a) 

and Fig. 4.7(a).  

 

The boundary and loading conditions for the numerical models suggested by Sajith, 

et al. [136] are shown in Fig. 4.7(a). In PD, the model is uniformly discretized with 

a mesh size of Δ𝑥 = 6 × 10−4 mm. As shown in Fig. 4.7(b), material points, shown 

in blue, green, black, and red, which are associated with 6 cut-outs, are defined as 

rigid with the elastic modulus of 𝐸𝑟𝑖𝑔𝑖𝑑 = 200𝐸. Material points, shown in black 

in Fig. 4.7(b), located at the centres of the lower cut-outs are fixed. Meanwhile, 

material points, shown in red in Fig. 4.7(b), located at the centres of the upper cut-

outs are subjected to applied forces as [136] 

 

( )( )1 0.5cos / sinF P e f = +  (4.38a) 

2 sinF P = −  (4.38b) 

( )( )3 0.5cos / sinF P e f = −  (4.38c) 

 
(a)                                                          (b) 

Fig. 4.6. Mixed-mode fatigue problem (a) experimental configuration in [136], (b) 

specimen’s dimensions 
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(a)                                                              (b) 

Fig. 4.7. Loading and boundary conditions (a) suggested by Sajith, et al. [136], (b) 

used in the PD model 

7.5.2.1. Crack path prediction 

Fig. 4.8 shows the fatigue crack propagation in the mixed-mode loading in the case 

of 𝛼 = 45𝑜. As shown in Fig. 4.8(a), the crack starts propagating upward at 10000 

loading cycles. The angle of crack propagation with respect to the horizontal axis 

is measured numerically as 𝛽𝑃𝐷 = 38.66
𝑜 at 30000 loading cycles as shown in Fig. 

4.8(c). This observation has good agreement with the experimental results which is 

𝛽𝑒𝑥𝑝 𝑒riment = 40.263
𝑜. Later, the crack propagates with a slightly smaller angle 

and reaches the final fatigue crack growth state (before phase III) at 42768 loading 

cycles as shown in Fig. 4.8(d). The slight reduction of crack propagation angles is 

also observed in the experiment by Sajith, et al. [136], Chung and Yang [139], 

Borrego, et al. [140]. 

 
(a)                                                             (b) 
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(c)                                                           (d) 

Fig. 4.8. Fatigue crack evolution in mixed-mode loading with 𝛼 = 45𝑜 at (a) 

10000 (b) 20000, (c) 30000, (d) 42768 cycles 

Fig. 4.9 shows the prediction results for the mixed-mode fatigue crack propagation 

in the case of 𝛼 = 60𝑜. Fig. 4.9(a-c) shows the crack evolution at 20000, 35000 

and 44500 loading cycles, respectively. Similar to the previous loading condition, 

the fatigue crack also propagates upward but with a larger angle 𝛽𝑃𝐷 = 50.19
𝑜. 

This observation has very good agreement with the experimental results 

𝛽𝑒𝑥 𝑝eriment = 51.33
𝑜[136]. Similar to the previous loading condition, after 44500 

loading cycles, the crack starts propagating with a slightly smaller angle and reaches 

the final fatigue crack growth state (before phase III) at 53727 loading cycles as 

shown in Fig. 4.9(d). This observation has good agreement with the experimental 

results studied by Sajith, et al. [136], Chung and Yang [139], Borrego, et al. [140]. 

 
(a)                                                             (b) 
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. 

(c)                                                             (d) 

Fig. 4.9. Fatigue crack evolution in mixed-mode loading with 𝛼 = 60𝑜 at (a) 

20000 (b) 35000, (c) 44500, (d) 53727 cycles 

Fig. 4.10 shows the crack tip positions in the two loading conditions predicted by 

the proposed energy-based PD fatigue model. As can be seen from the figure, the 

PD results have good agreement with the experimental results studied by Sajith, et 

al. [136] which shows the accuracy of the proposed PD model in terms of crack 

path prediction.  

 
Fig. 4.10. Crack tip locations (the experimental data is obtained from [136]) 

7.5.2.2. Fatigue life prediction 

Fig. 4.11 shows the fatigue crack length, 𝑞 versus load cycle, 𝑁 in two loading 

conditions. As can be seen from Fig. 4.11(a) for the loading condition with 𝛼 =
45𝑜, the predicted results have very good agreement with experimental results in 

the first 28000 loading cycles. Later, there is a small difference between the two 

results. The predicted results show a slightly slower crack growth compared to the 
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observation from the experiment [136]. As can be seen from Fig. 4.11(b), the 

predicted crack growth in case of 𝛼 = 60𝑜 has very good agreement with the 

experimental results which shows the accuracy of the proposed PD fatigue model 

in terms of fatigue life prediction.  

 
(a)                                                       (b) 

Fig. 4.11. Crack length, 𝑞 versus load cycle, 𝑁  for mixed-mode fatigue crack 

growth with load angle (a) 𝛼 = 45𝑜, (b) 𝛼 = 60𝑜 (the experimental data is 

obtained from [136]) 

4.5. Concluding remarks 

In this Chapter, a novel energy-based PD model for fatigue damage prediction is 

proposed. The definition of cyclic bond energy release rate range is proposed and 

used for fatigue equations for the first time in the PD literature. The numerical 

procedure to predict fatigue cracking by using the proposed PD model is presented. 

The capability of the proposed PD model is verified by considering mode-I and 

mixed-mode fatigue crack propagations. The results predicted by the proposed PD 

model show a good agreement with the experimental results in terms of the crack 

paths as well as the crack growth rates. The developed PD model can be further 

extended to the 3D formulation and it can also be used to predict fatigue damage 

for structures during the operation process.  
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5. COUPLING PERIDYNAMICS WITH MACHINE LEARNING 

5.1. Introduction 

In peridynamics, due to nonlocal interactions, solving equations of motion could be 

time-consuming. By contrast, with the support of computer resources as well as the 

rapid growth of available data, artificial intelligence (AI), machine learning (ML), 

and data analytics are providing an alternative solution for physics-based models. 

These data-driven models can be applicable for many scientific disciplines such as 

image recognition [141], natural language processing [142], cognitive science 

[143], and genomics [144]. In engineering, machine learning and artificial 

intelligence also show potential applications in many areas, including material 

science [145], fluid dynamics [146, 147], structural health monitoring [148], 

additive manufacturing [149], fracture mechanics, and failure analysis [150-152].  

 

As proposed in [150, 152] for failure analysis, the neural networks are trained by 

using the crack propagation data that is generated in trial numerical predictions, 

which can be very computationally expensive and limited. On the other hand, when 

available data are limited, the vast majority of recent machine learning techniques 

are lacking robustness and accuracy [153]. Therefore, a hybrid approach of 

combining machine learning and physics-based modeling becomes highly 

beneficial. Therefore, in this chapter, a PD-based machine learning model or 

fracture prediction is developed. Moreover, a hybrid approach of coupling machine 

learning and peridynamic models for fracture prediction of structures is presented. 

Specifically, the PD model is applied for special regions in structures such as near 

crack surfaces or near boundary areas. Meanwhile, the ML model is used for the 

remaining regions to reduce the computational cost.  

 

The machine learning models to find displacements of a material point based on 

displacements of its family members and its external body forces in one-

dimensional (1D) and two-dimensional (2D) structures are presented. The 

capability of the hybrid approach is verified by considering various examples for 

1D and 2D structures. The results predicted by the coupled models are compared 

with FEA and conventional PD results. For further verifying the capability of the 

coupling model, progressive damages in a plate with a pre-existing crack subjected 

to tension, on a 2D representation of a three-point bending test, on a plate subjected 

to dynamic loads are presented.  

5.2. Multiple linear regression 

In this section, the basic concept of multiple linear regression is presented. 

According to Montgomery et al. [154] and Alpaydin [155], in the multiple linear 

regression, the numeric output y  is assumed to be written as a function of several 

input variables, 𝑥1, 𝑥2, … , 𝑥𝑁 and noise as 

0 1 1 2 2 N Ny w w x w x w x = + + + + +  (5.1) 

where 𝑥1, 𝑥2, … , 𝑥𝑁 represent the input variables that can be called the regressors. 

The parameters 𝑤0, 𝑤1, … , 𝑤𝑁 represent regression coefficients that need to be 

determined. The parameter 𝜀 represents the noise of the model.  
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The coefficients in Eq. (5.1) can be determined based on the least square criterion 

[154, 155]. The sum of the squares of the differences between the predicted values 

and the correct outputs are minimized. The minimization of the squared errors can 

be expressed as follows; 

Let’s assume that we have training data as (𝑥1(𝑖), 𝑥2(𝑖), … , 𝑥𝑁(𝑖), 𝑦(𝑖)),  𝑖 = 1,… ,𝑀. 

Therefore, Eq. (5.1) can be rewritten for every single data as 

0 1 1( ) 2 2( ) ( ) ( ) ,   1,2, ,i i i N N i iy w w x w x w x i M= + + + + + =  (5.2) 

The sum of squared errors can be calculated as  

( )( )
2

0 1 0 1 1( ) 2 2( ) ( )

1

( , , , )
M

N i i i N N i

i

S w w w y w w x w x w x
=

= − + + + +  (5.3) 

To minimize the squared errors given in Eq. (5.3), the coefficients 𝑤𝑗 ,  𝑗 =

1, 2, … ,𝑁 must satisfy the following conditions 

0,   0,1,2, ,
j

S
j N

w


= =


 (5.4) 

By substituting Eq. (5.3) into Eq. (5.4), the following relations are obtained 

 
( )

0 1 1( ) 2 2( ) ( )

1 1 1 1

2

1( ) 0 1( ) 1 1( ) 2 1( ) 2( ) 1( ) ( )

1 1 1 1 1

( ) 0 ( ) 1 ( ) 1( ) 2 ( ) 2( )

1 1 1 1

   

M M M

i i i N N i

i i i i

M M M M M

i i i i i i N i N i

i i i i i

M M M M

N i i N i N i i N i i N

i

M

i i i

y Mw w x w x w x

x y w x w x w x x w x x

x y w x w x x w x x w x

= = = =

= = = = =

= = = =

= + + + +

= + + + +

= + + + +

   

    

    ( )
2

( )

1

M

N i

i=



 (5.5) 

The relations in Eq. (5.5) can be rewritten in a matrix form as 

T T=X Xw X y  (5.6a) 

with 

1(1) 2(1) (1)

1(2) 2(2) (2)

1( ) 2( ) ( )

1

1

1

N

N

M M N M

x x x

x x x

x x x

 
 
 =
 
 
  

X , 

0

1

N

w

w

w

 
 
 =
 
 
 

w , 

(1)

(2)

( )M

y

y

y

 
 
 =
 
 
  

y  (5.6b) 

Therefore, the vector of coefficients, 𝒘, can be obtained as 

( )
1

T T
−

=w X X X y  (5.7) 

5.3. Peridynamic models for 1D and 2D structures 
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In this section, the PD models for 1D and 2D structures are summarized. The PD 

equation of motion for 1D structures can be found in Eq. (2.28a) in Chapter 2 as 

[20, 43, 62, 75] 

( ) ( )

( ) ( ) ( )

1

N
j k

k ax j x k

j

u u
u C V b

=

−
= +  (5.9a) 

with 

( )

( )

x k

x k

F
b

A x
=


 (5.9b) 

and 

2

2
ax

E
C

A
=  (5.9c) 

where 𝑏𝑥(𝑘) represents the axial body force applied on the material point 𝑘, 𝜉 

represents the distance between material points 𝑘 and 𝑗. The term 𝐶𝑎𝑥 represents 

the PD bond constant for axial deformations. 

For a static state with 𝑢̈(𝑘) = 0, Eq. (5.9a) can be rewritten as 

( ) ( )

( ) ( )

1

N
j k

x k ax j

j

u u
b C V

=

− 
= −  

 
  (5.10) 

 

The bond-based PD equations of motion for 2D structures can be found in Eq. (4.17) 

by ignoring dilatation terms as [20, 43, 61, 75] 

( ) ( )( ) ( )( ) ( ) ( )

1

cos
N

k k j k j j x k

j

hu C s V b  
=

= +  (5.11a) 

( ) ( )( ) ( )( ) ( ) ( )

1

sin
N

k k j k j j y k

j

hv C s V b  
=

= +  (5.11b) 

with 

( )

( ) 2

x k

x k

F
b

x
=


 (5.11c) 

( )

( ) 2

y k

y k

F
b

x
=


 (5.11d) 

( ) 3

12

1

E
C

 
=

+
 (5.11e) 

where 𝑏̄𝑥(𝑘) and 𝑏̄𝑦(𝑘) represent applied force per unit area as given in Chapter 2 

[61], Δ𝑥 represents uniform mesh size in the PD discretized model. The term 𝑠(𝑘)(𝑗) 

represents linearized bond stretch for in-plane deformations as given in Eq. (2.65), 

ℎ represents the thickness of the plate, 𝐶 represents bond constant for in-plane 

deformation. Note that, 𝐶 = 4𝑏𝑖𝑝, where 𝑏𝑖𝑝 is given in Eq. (2.62d) in chapter 2. 

 

If a static condition with 𝑢̈(𝑘) = 𝑣̈(𝑘) = 0 is considered, Eqs. (5.11a-b) can be 

rewritten as 
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( ) ( )( ) ( )( ) ( )

1

cos
N

x k k j k j j

j

b C s V 
=

 
= − 

 
  (5.12a) 

( ) ( )( ) ( )( ) ( )

1

sin
N

y k k j k j j

j

b C s V 
=

 
= − 

 
  (5.12b) 

 

5.4. PD-based machine learning model 

In this section, the PD-based machine learning models for 1D and 2D structures are 

presented. The displacement of one material point is expressed as a linear function 

of displacements of its family members in the horizon size of 𝛿 = 3.015Δ𝑥 and the 

external forces applied to it. The training data are generated by using modal analysis 

in ANSYS. The PD-based machine learning model is obtained from the data set by 

using linear regression. 

5.4.1. PD based machine learning model for one-dimensional structures 

As presented in Eq. (5.10), within the linear elasticity, the relation between applied 

body force and displacements of material points is linear. Moreover, the 

relationship between the displacement of a material point and its family members 

can also be linear. Therefore, the displacement value for a material point can be 

expressed as a linear function of displacements of its family members and the 

external force applied to it as 

( ) 1 ( 3) 2 ( 2) 3 ( 1) 4 ( 1)

( )

5 ( 2) 6 ( 3) 7        

k k k k k

x k

k k

u m u m u m u m u

F x
m u m u m

AE

− − − +

+ +

= + + +

 
+ + +  

 

 (5.13a) 

or 

( )

( ) ( ) ( ) 7

x k

k j j

F x
u m

AE

 
=  +  

 
m u  (5.13b) 

with 

 ( ) 1 2 3 4 5 6j m m m m m m=m  (5.13c) 

( ) ( 3) ( 2) ( 1) ( 1) ( 2) ( 3)j k k k k k ku u u u u u− − − + + +
 =  u  (5.13d) 

where 𝑚𝑖 , 𝑖 = 1, . . . ,7 represent coefficients that need to be determined for the ML 

model. The term 𝐹𝑥(𝑘) represents the axial force applied on the material point 𝑘, Δ𝑥 

represents mesh size in the discretized model, 𝐴 represents the cross-sectional area 

of the 1D bar, and 𝐸 represents material elastic modulus. In Eq. (5.13), (𝑘 −

3), . . . , (𝑘 + 3) represent family members of the material point  𝑘 as shown in Fig. 

5.1.  
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Fig. 5.1. A material point with its family members, 𝛿 = 3Δ𝑥 

Note that with the mesh size, elastic modulus, and cross-sectional area presented in 

the last term of Eq. (5.13a), the coefficient 𝑚7 is expected to be independent of 

these geometrical and material properties. As a result, the expected ML model can 

be applied for any cross-sectional area, mesh size, and elastic modulus.  

Generating the training and testing data set  

In this section, the training and testing data for Eq. (5.13a) is obtained from the 

modal analysis. The data set includes seven input variables 

(𝑢(𝑘−3), 𝑢(𝑘−2), 𝑢(𝑘−1), 𝑢(𝑘+1), 𝑢(𝑘+2), 𝑢(𝑘+3), 𝐹𝑥(𝑘)𝛥𝑥/𝐴𝐸) and one output variable 

𝑢(𝑘). 

By using Eq. (5.9c), the last input variable in Eq. (5.13a) can be represented as 

( )
2

( ) ( )x k x kF x b x

AE E

 
=  (5.14) 

By utilizing the PD relation given in Eq. (5.10), the input variable in Eq. (5.14) can 

be calculated as 

( )
2( ) ( )

( )

1( )

N
j k

ax j

jx k

u u
C V x

F x

AE E

=

− 
−  

  =


 (5.15) 

To generate the data set for 1D structures, a bar with a length of 𝐿 = 6 m, a cross-

sectional area of 𝐴 = 0.01 m2 and the elastic modulus of 𝐸 = 2 × 1011 N/m2 is 

chosen. The bar is discretized with 6 elements (7 material points) with a uniform 

mesh size of Δ𝑥 = 1 m and the link180 element is used by allowing only axial 

deformations. The bar is considered for 10 basic boundary conditions as shown in 

Fig. 5.2.  
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Fig. 5.2. Boundary conditions in modal analyses for 1D structure 

By considering all possible vibration modes of the bar for 10 boundary conditions 

as shown in Fig. 5.2, 50 data sets are obtained. The data sets are arranged as shown 

in Table 5.1. Specifically, for each vibration mode of the bar, the displacements of 

all nodes are obtained. The displacement of node 𝑘 is added into the output variable 

column in Table 5.1. The displacements of the remaining nodes (𝑢(𝑘−3), 𝑢(𝑘−2), 

𝑢(𝑘−1), 𝑢(𝑘+1), 𝑢(𝑘+2), 𝑢(𝑘+3)) are added into the first 6 columns in Table 5.1.  The 

input variable in 7𝑡ℎ column is calculated by using Eq. (5.15).   

Table 5.1. Arrangement for the dataset for 1D machine learning model 

dataset 

 

Input variables 

Output variable 

𝑢(𝑘−3) 𝑢(𝑘−2) 𝑢(𝑘−1) 𝑢(𝑘+1) 𝑢(𝑘+2) 𝑢(𝑘+3) 𝐹𝑥(𝑘)𝛥𝑥

𝐴𝐸
 

𝑢(𝑘) 

1 0 0.0817 0.1414 0.1414 0.0817 0 0.0399 0.16331 

2 0 -0.1514 -0.1514 0.1514 0.1514 0 0 0 

. . . . . . . . . 

. . . . . . . . . 

49 0.2957 -0.2812 0.2392 0.0914 0 0 -0.1808 -0.1738 

50 0.2719 -0.2626 0.2355 0.1359 -0.0704 0 -0.1968 -0.1922 

 

Finding the coefficients for the ML model 

The data are split into two parts for training and testing purposes. The first 45 data 

sets are used for training and the remainders are used for testing the accuracy of the 

ML model. By using linear regression, the coefficients for the relation given in Eq. 

(5.13a) are obtained as 

1 6 0.05134596m m= =  (5.16a) 



213 

 

2 5 0.14955135m m= =  (5.16b) 

3 4 0.29910269m m= =  (5.16c) 

7 1.35942174m =  (5.16d) 

To evaluate the accuracy of the regression model, the obtained regression model is 

used to predict output for the test data. By using Eq. (5.3), the mean squared error 

between the predicted values and the original output values in the testing data is 

calculated as 9.09 × 10−20. 

Extending the PD based ML model for dynamic problems 

The machine learning model provided in Eq. (5.13a) can be used for static 

problems. The model can also be further developed by adding the inertia term for 

dynamic problems. 

The relationship provided in Eq. (5.13a) can be rewritten as 

1 ( 3) 2 ( 2) 3 ( 1)

( )2

4 ( 1) 5 ( 2) 6 ( 3) ( )7

1
0

k k k

x k

k k k k

m u m u m uE
b

m u m u m u ux m

− − −

+ + +

+ + 
+ =  + + + −  

 (5.17) 

Next, by adding the inertia term, Eq. (5.17) can be extended for dynamic problems 

as 

1 ( 3) 2 ( 2) 3 ( 1)

( ) ( )2

4 ( 1) 5 ( 2) 6 ( 3) ( )7

1 k k k

k x k

k k k k

m u m u m uE
u b

m u m u m u ux m


− − −

+ + +

+ + 
= +  + + + −  

 (5.18a) 

or 

( )( ) ( ) ( ) ( )2

7

1
k j j k x k

E
u u b

x m
 =  − +


m u  (5.18b) 

where the linear regression coefficients are presented in Eq. (5.16). 

 

5.4.2. PD based machine learning model for two-dimensional structures 

In this section, first, the machine learning model for 2D is presented. Next, training 

and testing data set are obtained from modal analyses by using ANSYS. The data 

set is then used for linear regression analysis to obtain the regression coefficients 

for the machine learning model. 

The displacement of the material point 𝑘 can be determined based on the 

displacements of its family members and the applied forces. In the discretized 

model, the material point 𝑘 with a horizon size of 𝛿 = 3.015Δ𝑥 has 28 family 

members that can be numbered in the order as shown in Fig. 5.3.  
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Fig. 5.3. PD horizon in the 2D model 

Similar to the 1D structure, the displacement of a material point 𝑘 can be assumed 

as a linear function of the displacements of its family members and the applied 

forces as 

( )
( ) ( )28

( ) ( ) ( )

1

2 1 2 1
k j j j j x k y k

j

u a u b v c F d F
Eh Eh

 

=

+ +   
= + + +   

   
  (5.19a) 

( )
( ) ( )28

( ) ( ) ( )

1

2 1 2 1
k j j j j x k y k

j

v m u n v p F q F
Eh Eh

 

=

+ +   
= + + +   

   
  (5.19b) 

or 

( ) ( )
( ) ( ) ( )

2 1 2 1
k j j j j x k y ku c F d F

Eh Eh

 + +   
=  +  + +   

   
a u b v  (5.19c) 

( ) ( )
( ) ( ) ( )

2 1 2 1
k j j j j x k y kv p F q F

Eh Eh

 + +   
=  +  + +   

   
m u n v  (5.19d) 

with 

 1 2 28, , ,j a a a=a  (5.19e) 

 1 2 28, , ,j b b b=b  (5.19f) 

 1 2 28, , ,j m m m=m  (5.19g) 

 1 2 28, , ,j n n n=n  (5.19h) 

 1 2 28, , ,j u u u=u  (5.19g) 

 1 2 28, , ,j v v v=v  (5.19h) 

where 𝑎𝑗, 𝑏𝑗, 𝑚𝑗, 𝑛𝑗, 𝑐, 𝑑, 𝑝, 𝑞 are coefficients that need to be determined for the 

ML model. The terms 𝐹𝑥(𝑘), 𝐹𝑦(𝑘) represent external forces in 𝑥, 𝑦 directions that 

are applied to the material point 𝑘.  

Note that the vectors 𝒂𝑗, 𝒃𝑗, 𝒎𝑗, 𝒏𝑗 store the coefficients 𝑎𝑗, 𝑏𝑗, 𝑚𝑗, 𝑛𝑗 which are 
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associated with 1𝑠𝑡, … ,28𝑡ℎ family members of the material point 𝑘. Similarly, 

vectors 𝒖𝑗 and 𝒗𝑗 store displacement components of 1𝑠𝑡, … ,28𝑡ℎ family members 

of the material point 𝑘 as shown in Fig. 5.3. 

Generating the training and testing data set  

In this section, the training and testing data for Eq. (5.19) is obtained from the modal 

analysis. The data set includes 58 input variables and two output variables 

(𝑢(𝑘), 𝑣(𝑘)). 

By using Eq. (5.11c, d, g) the last two terms on the right-hand side of Eq. (5.19c-d) 

can be represented as 

( )

( )
( )

( ) 3

2 1 24
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+
=


 (5.20b) 

where 𝐶 represent the bond constant given in Eq. (5.11g). 

By using the PD relationships given in Eq. (5.12), the input variables in Eq. (5.20) 

can be calculated as 
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 (5.21b) 

To generate data set for 2D structures, a 6 × 6 m2 square plate is chosen as shown 

in Fig. 5.3. The plate has a thickness of 0.1 m, the elastic modulus of 𝐸 =
2 × 1011 N/m2 and Poisson’s ratio of 𝜈 = 1/3. The plate is discretized with a mesh 

size of Δ𝑥 = 1 m. The material point 𝑘 located at (𝑥 = 3 m, 𝑦 = 3 m), shown in 

blue, and its 28 family members, shown in red, are considered for the data set. 

  

Note that, the dimensions of the plate, as well as the elastic modulus, are chosen 

arbitrarily for obtaining the data set. The ML model is expected to be applicable for 

any geometry and linear elastic material.  

 

The data set is obtained from modal analyses for the plate by using the PLANE182 

element in ANSYS. The plate is considered in 16 basic boundary conditions as 

shown in Fig. 5.4. In each boundary condition, the 20 possible vibration modes of 

the plate are considered. The displacements of the material point 𝑘 and its 28 family 

members are obtained and added into the data set. Therefore, the data set includes 

320 deformation states and it is arranged as shown in Table 5.2. Specifically, in 

each vibration mode of the plate, the displacements of all nodes are obtained. The 

displacements of node 𝑘 (see Fig. 5.3), (𝑢(𝑘), 𝑣(𝑘)), are added into the two last 

columns in Table 5.2 for the output variables. The displacements of the remaining 

nodes (𝑢1, 𝑢2, ⋯𝑢28, 𝑣1, 𝑣2, ⋯ 𝑣28) are added for the first 56 columns in Table 5.2. 

The input variables in 57𝑡ℎ and 58𝑡ℎ columns are calculated by using Eq. (5.21).  
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Fig. 5.4. Boundary conditions in modal analyses for the training model for 2D 

structures 

Table 5.2. Arrangement for the dataset for 2D machine learning model 

Dataset 

Input variables Output 

variables 

𝑢1 
 

𝑢28 𝑣1  𝑣28 2(1 + 𝜈)

𝐸ℎ
𝐹𝑥(𝑘) 

2(1 + 𝜈)

𝐸ℎ
𝐹𝑦(𝑘) 

𝑢(𝑘) 𝑣(𝑘) 

1 -0.0014 . -0.0014 0.0012 . 0.0012 -3.4E-05 3.4E-05 -0.0015 0.0015 

2 0.0014 . 0.0014 0.0012 . 0.0012 3.4E-05 3.4E-05 0.0015 0.0015 

. . . . . . . . . . . 

. . . . . . . . . . . 

319 -0.0023 . 0.0023 0.0011 . -0.0011 0 0 0 0 

320 -0.0024 . -0.0024 0.0004 . 0.0004 -0.0006 -0.0008 -0.0005 -0.0007 

Finding the coefficients for the ML model 

To obtain the coefficients for the ML model, the obtained data set is split into two 

parts in which the 310 deformation states are used for training purposes and the 

remainders are used for testing the accuracy of the ML model. By using the training 

data, the coefficients of the linear relation given in Eq. (5.19) are obtained by using 

linear regression as 
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  1 94.42141045 10 ,  3.40539888 10c d − − =     (5.22c) 
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 (5.22e) 

  8 1-2.54221850 10 ,  4.42141016 10p q − − =     (5.22f) 

Similar to the 1D model, by using the testing data, the mean squared error between 

the predicted values and the original values from testing data is 6.42 × 10−23. 

 

Extending the PD based ML model for dynamic problems 

As given in Eq. (5.22), the coefficients 𝑑 and 𝑝 are very small which can be ignored 

as 
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0 ;  0d p   (5.23) 

Therefore, Eq. (5.19) can be rewritten as 
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Therefore, by reintroducing the inertia forces on the left-hand side of Eqs. (5.24e-

f), the machine learning model can be extended for dynamic problems as 
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5.5. Numerical implementation 

As given in Section 5.4, the PD based ML models for 1D and 2D structures are 

obtained for material points with full interactions with their family members. 

Specifically, the 1D ML model is applicable for material points with 6 interactions 

and the 2D ML model is applicable for material points with 28 interactions. 

However, for material points that have some missing family members or broken 

interactions such as material points near boundary surfaces or near crack surfaces, 

the developed ML models can produce significant errors. Moreover, generating 

training data for all of these special cases can be very time-consuming. Therefore, 

a hybrid approach that couples the ML model with the PD model is used. The 

behaviours of the material points with full interactions are predicted by using the 

ML model. Meanwhile, all other material points are predicted using the PD model.  

 

Similar to the conventional PD solution, the deformations of structures can be 

obtained by using a meshless scheme. The domain is divided into a uniform mesh. 

In this study, for static and quasi-static loading conditions, the adaptive dynamic 

relaxation (ADR) method [76, 77] is used (Appendix A1). For dynamic problems, 

the explicit time integration scheme [44] is used.  
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For 1D problems, the PD region is defined by material points with less than 6 

interactions (near boundary regions). Meanwhile, the ML region is defined by 

material points with 6 interactions (regions that are far from boundaries). For 1D 

static problems, the displacements of PD material points are obtained by solving 

the PD equations of motion given in Eq. (5.9). Then based on the displacements of 

PD material points, the displacements of ML points are obtained by using Eq. 

(5.13). For 1D dynamic problems, the force densities for all material points, 

including PD and ML regions, are calculated. If a material point belongs to the PD 

regions, the PD force densities for that material point are obtained by using Eq. 

(5.9). Meanwhile, the force densities of material points belong to ML regions are 

calculated by using Eq. (5.18). After that, the equations of motion are solved by 

using the time explicit integration scheme.  

 

For 2D problems, the PD region is defined by material points with less than 28 

intact interactions (near boundaries and crack surfaces). Meanwhile, the ML region 

is defined by material points with 28 intact interactions (regions that are far from 

boundaries and crack surfaces). For 2D static problems, the displacements of 

material points in PD regions are obtained by solving the PD equations of motion 

given in Eq. (5.11) and the displacements of material points in ML regions are 

obtained by using the linear relations given in Eq. (5.19). For 2D dynamic problems, 

the force densities for all material points, including PD and ML regions, are 

calculated according to Eq. (5.11) or Eq. (5.25). After that, the equations of motion 

are solved by using the time explicit integration scheme.  

 

5.6. Numerical results 

In this section, first, the PD based machine learning models are verified by 

considering various examples of 1D, 2D structures. As presented in Section 5.5, a 

hybrid approach for coupling the machine learning models and bond-based PD 

models are used. The results obtained by the coupled approach is compared to PD 

and finite element analysis (FEA) solutions. The FEA solutions are conducted by 

using ANSYS commercial software with the LINK180 element for the 1D bar and 

PLANE182 element for the 2D plate. To further verify the capabilities of the 

coupled approach, damage predictions on a plate with pre-existing crack subjected 

to tension, on a 2D representation of a three-point bending test, and a plate subjected 

to dynamic loading is performed.  

5.6.1. Verification for 1D model 

In this section, a 1D structure subjected to different loading conditions is 

investigated. The displacements of 4 material points on the left end and 4 material 

points on the right end of the bar are obtained by solving the PD equation of motion. 

On the other hand, the displacements of the remaining material points are obtained 

by using the machine learning model.  

Bar subjected to simple axial loading 

A bar with a cross-sectional area 𝐴 = 0.2 × 0.2 m2 and a length of 𝐿 = 1 m is 

investigated as shown in Fig. 5.5. The bar has an elastic modulus of 𝐸 =
69 × 109 N/m2. The bar is fixed on the left end and it is subjected to two different 
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loading conditions which are the tensile load of 𝐹𝑥 = 5 × 10
7 N and the 

compressive load of 𝐹𝑥 = −5 × 10
7 N. 

 

 
(a) 

 

 
(b) 

Fig. 5.5. Bar subjected to axial loading (a): geometry, (b): model discretization 

The bar is discretized with uniform 100 integration points. To implement the 

boundary condition, three fictitious points [26, 95] are added on the left end of the 

bar as shown in Fig. 5.5(b). Displacements of three fictitious points as well as the 

displacement of the material point located at 0x =  are set equal to zero. Therefore, 

as shown in Fig. 5.5(b), the first four material points on the left end of the bar are 

subjected to the zero displacement condition. In Fig. 5.5(b), the red points represent 

the material points in the real region, and black points represent the material points 

in the fictitious region. In the FEA model, the bar is discretized with 100 elements 

by using the link180 element.  

Fig. 5.6 shows the displacement variations along the bar for two loading conditions. 

As can be seen from the figures, the results captured by the coupled machine 

learning and PD models match very well with the results from FEA. 
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(a)                                                          (b) 

Fig. 5.6. Displacement variation along the bar subjected to an axial force (a): 𝐹𝑥 =

5 × 107 N, (b): 𝐹𝑥 = −5 × 10
7 N 

Bar subjected multiple axial loading 

For further verification, another bar with different geometrical and material 

properties is investigated as shown in Fig. 5.7. The bar has a cross-sectional area of 

𝐴 = 0.02 m2 and length of 𝐿 = 2 m and the elastic modulus of 𝐸 =
3.8 × 109 N/m2. The bar is subjected to forces 𝐹3 = 5 × 10

6 N at the right end,  

𝐹1 = 0.4𝐹3 at 𝑥1 = 0.6 m and 𝐹2 = 0.5𝐹3 at 𝑥2 = 1.4 m. 

 
Fig. 5.7. Bar subjected to multiple axial loading 

The bar is discretized with uniform 200 integration points. Fig. 5.8 shows the 

displacement variation along the bar. As can be seen from the figure, the results 

captured by the coupled model match very well with the FEA results. 
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Fig. 5.8. Displacement variation along the bar length 

Bar vibration 

In this example, the vibration of a bar with a length of 𝐿 = 1 m, a cross-sectional 

area of 𝐴 = 0.05 m2 is investigated. The bar has an elastic modulus of 𝐸 =

2 × 1011 N/m2 and it is discretized with a mesh size of Δ𝑥 = 0.005 m. Initially, 

the bar is subjected to a displacement gradient of 𝜕𝑢/𝜕𝑥 = 0.1. Later, the bar is left 

to freely vibrate meanwhile the left end is fixed [44]. 

Fig. 5.9 shows the displacement variation of a material point located at 𝑥 = 𝐿/2. 

As can be seen from the figure, the results captured by the coupled model match 

very well with the results in both PD and FEA. Therefore, the accuracy of the 

coupled ML and PD models is verified. 
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Fig. 5.9. Variation of displacement 𝑢 (m) of the material located at 𝑥 = 𝐿/2 

 

5.6.2. Verification for 2D model  

In this section, the coupled 2D model is verified by considering various examples 

of 2D structures with different geometrical and material properties.   

Plate subjected to tension 

A square plate with dimensions of 𝐿 = 𝑊 = 1 m and thickness of ℎ = 0.01 m is 

investigated as shown in Fig. 5.10(a). The plate has an elastic modulus of 𝐸 =

69 × 109 N/m2 and Poisson’s ratio of 𝜈 = 1/3 and it is subjected to tensional force 

per unit length of 𝑓𝑥 = 2 × 10
8 N/m.  

The plate is discretized uniformly with a mesh size of 𝛥𝑥 = 𝐿/100. Similar to 1D 

problems, the plate is discretized with two regions as shown in Fig. 5.10(b). The 

PD regions, shown in red, include 3 layers of material points on 4 edges of the plate. 

The displacements of these points are obtained by solving the PD equations of 

motion. Since the effects of near-surface boundaries are significant in the PD 

models, the surface correction [44] is adopted for the PD regions. The remaining 

material points, shown in blue, belong to the ML region. The displacements of these 

material points are obtained by using the machine learning model. 
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(a)                                                           (b) 

Fig. 5.10. Plate subjected to axial loading (a): geometry, (b) Model discretization 

(PD regions are shown in red, ML regions are shown in blue) 

Fig. 5.11 and Fig. 5.12 present the variations of displacement components of the 

plate. Fig. 5.13 shows variations of displacement components along two centrelines 

𝑥 = 𝐿/2 and 𝑦 = 𝑊/2. As can be seen from the figures, the results captured by the 

coupled model match very well with FEA results.  

 

 
(a)                                                           (b) 

Fig. 5.11. Variation of displacement 𝑢 (𝑚) on the plate captured by (a): FEA, (b): 

coupled ML and PD models 

 
(a)                                                          (b) 

Fig. 5.12. Variation of displacement 𝑣 (𝑚) on the plate captured by (a): FEA, (b): 

coupled ML and PD models 
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(a)                                                               (b) 

Fig. 5.13. Variations of displacements (a) 𝑢 along 𝑦 = 𝑊/2; (b) 𝑣 along 𝑥 = 𝐿/2 

(ML-PD: coupled ML and PD models) 

Fig. 5.14 shows the comparison of the computational time for the bond-based PD 

model and the coupled approach. The relationships between run-time per time step 

and the total number of material points in the discretized models are considered. In 

the PD solution, the adaptive dynamic relaxation (ADR) method presented in 

Appendix A1 is used [76, 77]. In the coupled solution, the ADR method is also used 

for the PD region. As can be seen from the figure, the solution by using coupled 

ML and PD models requires less computational time for each time step than the 

conventional PD solution. Therefore, by using the coupled ML and PD models, the 

computational cost can be reduced.  

 
Fig. 5.14. Run time (s) per time step vs. the number of material points 

 

Plate with square cut-out subjected to tension 

In this section, a square plate with dimensions of 𝐿 = 𝑊 = 0.05 m and thickness 

of ℎ = 0.0005 m is investigated as shown in Fig. 5.15(a). The plate has a 
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0.01 × 0.01 m2 square cut-out in the middle and it is subjected to loading condition 

of  𝑢0 = ±0.005 m at two ends. The plate has an elastic modulus of 𝐸 =
192 × 109 N/m2 and Poisson’s ratio of 𝜈 = 1/3. The plate is discretized uniformly 

with a mesh size of 𝛥𝑥 = 𝐿/100. As shown in Fig. 5.15(b), the PD regions are 

shown in red and the ML regions are shown in blue. Similar to the previous 

example, the surface correction [44] is adopted for the PD regions. 

 
(a) 

 
(b) 

Fig. 5.15. Plate with square cutout subjected to axial loading (a): geometry, (b): 

model discretization (PD regions are shown in red, ML regions are shown in blue) 

Fig. 5.16 and Fig. 5.17 show the displacement fields on the plate. Fig. 5.18 shows 

variations of displacement components along two centrelines 𝑥 = 𝐿/2 and 𝑦 =
𝑊/2. As can be seen from the figures, the results captured by using coupled ML 

and PD models and the FEA have a good agreement which shows the accuracy of 

the coupled model for 2D.  
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(a)                                                             (b) 

Fig. 5.16. Variation of displacement 𝑢 (𝑚) on the plate captured by (a): FEA, (b): 

coupled ML and PD models 

 
(a)                                                             (b) 

Fig. 5.17. Variation of displacement 𝑣 (𝑚) on the plate captured by (a): FEA, (b): 

coupled ML and PD models 

 

 
(a)                                                              (b) 

Fig. 5.18. Variations of displacements (a) 𝑢 along 𝑦 = 𝑊/2; (b) 𝑣 along 𝑥 = 𝐿/2 

(ML-PD: coupled ML and PD models) 

 



228 

 

5.6.3. Damage predictions 

After verifying the accuracy of the hybrid approach by coupling of ML and PD 

models, in this section, damage predictions for 2D plates are presented. To properly 

capture the behaviours of the structures with progressive damages, the PD regions 

and ML regions are updated adaptively. At each time step, material points with 28 

intact interactions are updated and the behaviours of these material points are 

obtained by using the 2D ML model. On the other hand, the behaviours of material 

points with less than 28 intact interactions, which are either near boundary surfaces 

or near crack surfaces, are obtained by using PD solution. Similar to the previous 

examples, the surface correction [44] is adopted for the PD regions near boundary 

surfaces. 

5.6.3.1. Plate with pre-existing crack subjected to tension 

In this example, a plate with dimensions of 𝐿 ×𝑊 = 0.5 × 0.806 m2 and thickness 

of ℎ = 0.01 m is investigated as shown in Fig. 5.19 [156]. The plate has a pre-

existing crack with a length of 2𝑎 = 0.1 m in the middle. The material properties 

are represented by the elastic modulus of 𝐸 =  2.16 × 1011 N/m2, Poisson’s ratio 

of 𝜈 = 1/3, fracture toughness 𝐾𝐼𝑐 = 70 × 10
6 Nm−3/2[91]. For simplification, 

the critical energy release rate of the material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 =

21233 J/m2.  The critical stretch can be calculated by using the relation given in 

Eq. (1.7b) as 𝑠𝑐 = 0.0021.  

 

The plate is subjected to incremental displacements on top and bottom by |𝛥𝑣| =
10−8 m per each time step as shown in Fig. 5.19. In the numerical model, the plate 

is discretized with a mesh size of Δ𝑥 = 𝐿/150. As shown in Fig. 5.19(b), to apply 

loading conditions, three layers of material points, shown in red, are added on top 

and bottom of the plate and incremental displacements are applied to these material 

points as 

 
1 8

(top) (top) 10  (m)n nv v dt− −= +  (5.33a) 

1 8

(bot ) (bot ) 10  (m)n nv v dt− −= −  (5.33b) 

0 0

(bot ) ( top) 0v v= =  (5.33c) 

 

where 𝑣𝑛 (top) and 𝑣𝑛 (bot) represent displacements at the current time step of 

material points on the top and bottom boundaries, respectively. The terms 𝑣𝑛−1
(top) 

and 𝑣𝑛−1
(bot) represent displacements at the previous time step of material points 

on the top and bottom boundaries, respectively. The time step size is chosen as 𝑑𝑡 =
1𝑠. 
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(a)                                                         (b) 

Fig. 5.19. Plate with pre-existing crack subjected to tensional loading 

Fig. 5.20 shows the damage evolution on the plate. As shown in Fig. 5.20(a), the 

crack starts propagating when the applied displacements equal to 3.5 × 10−4 m. As 

the applied displacements increase, the crack propagates horizontally as expected 

and it nearly reaches two sides of the plate when applied displacements are 

5.3 × 10−4 m. This observation has good agreement with the experimental results 

captured by Simonsen and Törnqvist [156].  

 

Fig. 5.21 shows the machine learning and PD regions at different load steps. As can 

be seen from the figure, the PD and ML regions are adaptively updated as damage 

progresses. All material points with less than 28 intact interactions are determined 

at each load step and they are defined as PD region. The remaining material points, 

shown in blue, are defined as the ML region. As shown in Fig. 5.21, there are a 

small number of material points, shown in red, that need to use PD solution. As 

shown in Fig. 5.21(d), when the applied displacement equals to 5.3 × 10−4 m, the 

PD region includes 1602 material points, meanwhile, the total number of material 

points is 37750. Therefore, the computational cost for the simulation can be reduced 

by using this coupled approach. 

 

 
(a)                                                             (b) 
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(c)                                                            (d) 

Fig. 5.20. Damage evolution on the plate when the applied displacement equals to 

(a): 3.5 × 10−4 m, (b): 4.5 × 10−4 m, (c): 5 × 10−4 m, (d): 5.3 × 10−4 m 

 

 
(a)                                                              (b) 

 

 
(c)                                                             (d) 

Fig. 5.21. Adaptive machine learning and PD regions when the applied 

displacement equals to (a): 3.5 × 10−4 m, (b): 4.5 × 10−4 m, (c): 5 × 10−4 m, 

(d): 5.3 × 10−4 m (PD regions are shown in red and ML regions are shown in 

blue) 

5.6.3.2. Three-point-bending test 

In this example, a 2D representation of a three-point-bending test for a concrete 

beam conducted by Jenq and Shah [93] is investigated as shown in Fig. 5.22. The 
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dimensions of the plate are defined by 𝑆 = 0.3048 mand 𝐻 = 0.0702 m. The plate 

has an initial crack located at 𝑋 = 0.25𝑆 with a crack length of 𝑎 = 0.5𝐻. The 

material properties are represented by the elastic modulus of 𝐸 =  30 × 109 N/m2, 

Poisson’s ratio of 𝜈 = 1/4. For simplification, the critical energy release rate of the 

material is chosen as 𝐺𝑐 = 𝐺I𝑐 = 20.7368 J/m
2[93]. The critical stretch can be 

calculated by using the relation given in Eq. (1.7b) as 𝑠𝑐 = 4.4376 × 10
−4. 

 

 
Fig. 5.22. Three-point bending problem 

 

The plate is discretized with uniform 301 × 58 material points. The quasi-static 

loading is applied by increasing the displacement by Δ𝑤 = −10−9 at 𝑥 = 0.6𝑆,𝑦 =
𝐻 for each load step. A zero vertical displacement 𝑣 = 0 is applied at 𝑥 = 0.1𝑆, 

𝑦 = 0 and 𝑥 = 1.1𝑆, 𝑦 = 0.  

 

Fig. 5.23 shows the damage evolution on the plate. As expected, the crack 

propagates towards the middle position of the specimen. As shown in Fig. 5.23(b), 

the angle between the crack path and vertical axis is approximate 350 which shows 

good agreement with the experimental result [93]. Fig. 5.24 shows the adaptive PD 

and ML regions at different load steps. Similar to the previous example, the PD and 

ML regions are automatically updated based on the progressive damages in the 

structure. As shown in Fig. 5.24(c), when the applied displacement equals to 

14 × 10−5 m, the number of material points in the PD region is 2523, which is 

14.5% of the total number of material points in the discretized model, 17458.  

 

 
(a) 
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(b) 

 

 
(c) 

Fig. 5.23. Damage evolution on the beam when the applied displacement equals 

to (a): 8 × 10−5 m, (b): 11 × 10−5 m, (c): 14 × 10−5 m 

 
(a) 

 
(b) 
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(c) 

Fig. 5.24. Adaptive machine learning and PD regions when the applied 

displacement equals to (a): 8 × 10−5 m, (b): 11 × 10−5 m, (c): 14 × 10−5 m (PD 

regions are shown in red and ML regions are shown in blue) 

5.6.3.3. Kalthoff experiment 

In this section, the experiment presented by Kalthoff and Winkler [92], Kalthoff 

[87, 91] for a pre-notched plate subjected to dynamic load is simulated by using the 

coupled ML and PD models. Since the problem is symmetric, only the upper half 

plate with dimensions of 𝐿 = 𝑊 = 0.1 m and thickness of ℎ = 0.009 m is modeled 

as shown in Fig. 5.25. The plate is made of steel with the elastic modulus of 𝐸 =
2 × 1011N/m2, Poisson’s ratio of 𝜈 = 1/3. The fracture toughness of steel is 𝐾𝐼𝑐 =
70 × 106 Nm−3/2[87]. For simplification, the critical energy release rate of the 

material is calculated as 𝐺𝑐 = 𝐺I𝑐 = 𝐾𝐼𝑐
2 /𝐸 = 22714 J/m2. The critical stretch can 

be calculated by using the relation given in Eq. (1.7b) as 𝑠𝑐 = 0.0089. The left edge 

which is under the crack surface is subjected to velocity conditions as [96] 

0 0

0

0 0

for

for

t
v t t

t

v t t




= 
 

v  (5.34) 

with 𝑣0 = 16.5m/s, 𝑡0 = 1𝜇𝑠. 

The plate is discretized into 150 × 150 material points and the solution results are 

obtained by using a dynamic explicit time integration scheme with a time step of 

0.01𝜇𝑠 and the total simulation time of 80𝜇𝑠. Similar to the previous examples, the 

solution results are obtained by solving Eq. (5.11) for the PD region and by using 

Eq. (5.25) for the ML region.  
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Fig. 5.25. The geometry and symmetrical boundary conditions for the Kalthoff 

experiment 

Fig. 5.26 presents the damage evolution on the plate. As can be seen from the figure, 

under dynamic loading conditions, the crack propagates up 67. 30 orientation with 

respect to the horizontal axis. After 80𝜇𝑠, the crack propagates nearly to the top 

edge of the plate as shown in Fig. 5.26(d). As can be seen from the figure, the crack 

paths captured by coupled ML and PD models match very well with the 

experimental results in [87, 91, 92]. Fig. 5.27 shows the PD and ML regions at 

different time steps. As shown in Fig. 5.27(d) for the coupling model at 80𝜇𝑠, 
12.68% of the total number of material points (2909 per 22950 material points) 

belong to the PD region.  

 

(a)                                                          (b) 
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(c)                                                           (d) 

Fig. 5.26. Damage evolution on the plate at (a): 20𝜇𝑠, (b): 40𝜇𝑠, (c): 60𝜇𝑠, (d): 

80𝜇𝑠 (displacements are magnified by 5 times for deformed configurations) 

 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

Fig. 5.27. Adaptive machine learning and PD regions at (a): 20𝜇𝑠, (b): 40𝜇𝑠, (c): 

60𝜇𝑠, (d): 80𝜇𝑠 (PD regions are shown in red and ML regions are shown in blue 

in the undeformed configuration) 

5.7. Concluding remarks 

In this chapter, the PD based machine learning models for 1D and 2D structures are 

presented and verified by conducting various problems. The main conclusions 

arising from the present study are listed below: 

(1) The PD based machine learning models are obtained for linear elastic 

material for the first time in the PD literature by using linear regression. The 
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linear relationships between displacements of a material point with 

displacements of its family members and its applied forces are presented in 

the analytical form which can be used straightforward.  

(2) The machine learning models for both 1D and 2D structures can be coupled 

with the traditional PD solutions. The results captured by the coupling 

models show good agreements with both PD and FEA results. 

(3) The capability of the coupled model is also further verified by considering 

various fracture problems. The results captured by the coupled model have 

very good agreement with the experimental results. 

(4) The PD and ML regions can be updated adaptively at each time step. 

Therefore, the coupled ML and PD model can use the advantage of the PD 

model in terms of capturing complex fracture problems, and the advantages 

of the machine learning model in terms of saving computational cost.  

(5) The hybrid approach proposed in this study can be further applied in the PD 

literature for other types of structures.  

  



237 

 

6. DISCUSSION 

6.1. Novelty of the research 

The biggest novelty of the research in this thesis lies in successfully applying a new 

method “Peridynamics” to predict progressive damages in ship and offshore 

structures. Unlike other methods, peridynamics can predict complex fracture 

phenomena in ship and offshore structures without any special treatment. 

Therefore, the structural behaviours during the damage process can be fully 

understood. 

 

To apply peridynamics for damage prediction in ship and offshore structures, a 

crucially important task is the development of PD models that can analyse complex 

beam and shell structures. This work is done by the research presented in Chapter 

2. Specifically, novel PD models for predicting damages in 3D complex beams, 3D 

shells, and complex stiffened structures were developed. These PD beam and shell 

models were the first studies that extended the applications of PD for ship and 

offshore structures. These PD beam and shell models can also be used for any type 

of beam and shell structures to predict possible damages that may occur during the 

operation process. 

 

Moreover, to improve the capability of the developed PD models in Chapter 2 for 

large deformation problems, novel PD models for geometrically nonlinear analyses 

of 1D, 2D, and 3D structures, 3D beams, and plates were developed in Chapter 3. 

Therefore, PD can be further used to predict damages in ship and offshore structures 

for large deformation problems. 

 

As also discussed in Chapter 1, due to the repetition of the sea loads, fatigue 

damages are very common problems for ship and offshore structures. Therefore, in 

Chapter 4, a novel energy-based PD fatigue model, which is more suitable for 

complex shell structures such as ship and offshore units, was developed.  

 

Finally, due to nonlocal interactions, the PD simulations are often more expensive 

than FEA. Moreover, a relatively fine mesh is often used in PD simulations to 

ensure well-predicted crack paths. As a result, PD simulations are often expensive. 

On the other hand, data-driven models are becoming an alternative solution for 

many physics-based models in engineering and solid mechanics. Therefore, to 

reduce the computational cost for the simulations, this thesis proposed a novel idea 

to couple PD with machine learning for damage prediction. The rightness of the 

proposed idea is proven by the successful development of a novel PD-based 

machine learning model for fracture prediction was developed. The PD-based 

machine learning model can be adaptively coupled with the traditional PD model 

to predict complex fracture problems. By coupling PD-based machine learning and 

the traditional PD models, the hybrid models can take advantage of both data-driven 

and physics-based models. The data-driven models can help to reduce the 

computational cost. Meanwhile, the physics-based model can help to maintain the 

accuracy of the predictions for highly complex phenomena. 
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6.2. Contributions of the research findings 

6.2.1. Contributions to the peridynamic literature 

The biggest contribution of this research to the PD literature lies in expanding the 

applications of peridynamics to ship and offshore structures as well as any other 

types of beams and shell structures in the industry. To the best of the author’s 

knowledge, this is the first time in the PD literature that the progressive damages of 

ships and offshore structures can be predicted by using Peridynamics.  

 

Throughout the thesis, various novel PD models were developed with verified 

accuracy and proven capabilities. In summary, there are four main contributions to 

the peridynamic literature achieved in this thesis as follows 

 

• Developed linear and nonlinear PD models for linear and geometrically 

nonlinear analyses of complex 3D beam and shell structures. These works 

expanded applications of the PD theory to slender, thin-wall, and stiffened 

structures which are the majority of offshore and onshore units in many 

industries. 

 

• Developed nonlinear PD models for geometrically nonlinear analysis of 1D, 

2D, and 3D structures. As discussed in Chapter 1, within the elasticity, the 

simplified 2D and 1D PD models in the PD literature are based on small 

deformations assumption which can be applicable only for linear elastic 

deformations. Therefore, by developing PD models for geometrically 

nonlinear analyses of 1D, 2D, and 3D structures, PD theory now becomes 

fully applicable for linear elastic, geometrically nonlinear, and material 

nonlinear problems. 

 

• Developed a novel energy-based PD fatigue model that is suitable for shell 

and stiffened structures.  

 

• Proposed and proved a novel approach to reduce the computational cost for 

PD simulations by coupling the traditional PD model with a PD-based 

machine learning model. This work can also open a new research direction 

for the PD community since the idea can apply to many PD models in many 

fields. 

6.2.2. Contributions to the industry 

This thesis proposed and successfully applied a new method, namely 

“Peridynamics”, for damage prediction in ship and offshore structures. The 

developed PD models in this thesis can be used to predict brittle damages in ships 

and offshore structures which may be due to high cycle fatigue loading, low-

temperature conditions, high-loading rate, multi-axial stress constraint, or low 

weldability of steel etc. As a mesh-free method based on the nonlocal theory, 

peridynamics can predict complex fracture problems without any special treatment. 

This method overcomes the limitations of the traditional FEA and modified 

versions of FEA that are currently used in the marine industry for structural design 

and assessment. Therefore, peridynamics can be a new powerful method for 

structural design and damage prediction in the shipbuilding and offshore industry. 
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By using such a new method, the behaviours of ship and offshore structures with 

progressive damages can be clearly understood and further actions can be 

announced to enhance the safety of the structures.  

 

6.3. Recommendations for the industry 

As demonstrated in this thesis, PD is suitable for damage prediction and it is also 

applicable for complex ship and offshore structures. Therefore, the following future 

applications of PD are recommended:  

 

• The use of peridynamics for design stages 

In the design stages, to ensure the safety of ship and offshore structures, many 

structural assessment processes including structural analysis for critical loading 

conditions as well as fatigue design assessments are conducted. For this purpose, 

PD can be a powerful tool that can predict possible damages on the structures as 

well as help to clearly understanding structural responses during the damage 

process. Peridynamic models can be coupled with FEM models for dealing with 

large complex structures. Specifically, FEM models can be used for global analyses 

to determine hotspot locations. Meanwhile, PD models can be used for local 

analyses for hotspot locations to answer whether there are possible damages or not. 

If there are some possible damages, the PD analyses can answer important questions 

such as where the exact locations are, when the damages happen, and how the 

damages will propagate. As the result, further action can be made to strengthen the 

structures to avoid the damages.  

 

• The use of peridynamics for structural assessments 

During the operational process, structures can subject to some unexpected critical 

conditions or they can have some small damages due to corrosion, fatigue, or 

collision. In these cases, the couple PD and FEM models can be used to investigate 

the structural safety. FEM model can be used for global analysis meanwhile PD 

model can be used for local analysis and damage prediction. Fundamental questions 

such as are there any new damages, how (how big, how fast, which direction) the 

damage will develop, what is the structural remaining strength, can be answered. 

As the result, the safety of structures can be carefully estimated, and further actions 

can be made if it is necessary. 

 

6.4. Limitations 

In Chapters 2-3, the novel PD models for linear and geometrically nonlinear 

analyses of 1D, 2D, 3D structures, 3D beams, and shell structures were developed. 

However, the developed PD formulations for beams and shells are based on a small 

strain assumption. For large strain problems, the change of the beam’s cross-

sectional area and the change of the shell’s thickness need to be considered. 

Moreover, the material nonlinearity was not included in the formulations of the 

developed PD models. Therefore, the currently developed PD models are only 

applicable for brittle materials. For ductile materials, further studies that include 

material nonlinearity are needed. 
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In Chapter 4, a novel energy-based PD fatigue model was developed. The PD 

fatigue model is presented for 2D formulations. Also, both the energy-based PD 

fatigue model developed in this thesis and the original PD fatigue model in [60] 

were developed for elastic deformations which are mainly used for high cycle 

fatigue problems. For low cycle fatigue problems, in which the plastic deformations 

of the region surrounding the crack tip may become important, new PD fatigue 

models need to be proposed.  

 

In Chapter 5, a PD-based machine learning model was developed. The bond-based 

PD formulations for 1D and 2D structures were considered. Therefore, the proposed 

idea in Chapter 5 can be further extended to 3D structures, beams, and shells, as 

well as other state-based PD models. 

 

6.5. Future study 

As a future study, first, the current nonlinear PD models for beams and shells 

presented in chapter 3 will be further developed by considering material 

nonlinearity. Second, the energy-based PD fatigue model presented in chapter 4 

will be further developed for 3D structures, shells, and composite structures. 

Moreover, both the energy-based PD fatigue model developed in this thesis and the 

original PD fatigue model in [60] can be further extended for low cycle fatigue 

problems by considering plastic deformations. Finally, the idea of the PD-based 

machine learning model will be further extended to state-based PD models, 3D 

structures, beams, and shell structures. 
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7. CONCLUSION 

 

Based on the research work discussed in this thesis, the following conclusions can 

be drawn: 

 

1) The prediction of progressive damages in ship and offshore structures is 

very important but challenging work. Many approaches including FEA and 

modified versions of FEA have been proposed still face difficulties in terms 

of predicting complex fracture problems such as crack branching and 

multiple crack paths. By contrast, peridynamics is very suitable for damage 

prediction even for complex fracture phenomena. However, since the 

peridynamics is still in development, the applications of PD for ship and 

offshore structures are very limited. Therefore, the study in this thesis to 

make PD becomes applicable to ship and offshore structures are crucially 

important. This will help to propose a new method for structural analysis of 

ship and offshore structures which can improve structural safety. 

 

2) In the literature, the PD formulations for beams and shells are still 

incomplete. Therefore, a crucially important task to apply peridynamics for 

damage prediction in ship and offshore structures is the development of 

linear and nonlinear PD models for complex beam and shell structures. This 

work is done in this thesis with the development of novel PD models for 

linear and geometrically nonlinear analyses of 1D, 2D, and 3D structures, 

3D beams, and plates and shells. 

 

3) Fatigue design assessment is also one of the design drivers for ship and 

offshore structures. Therefore, the development of a PD fatigue model that 

can apply for beam and shell structures is important. This work is done in 

this thesis by developing a novel energy-based PD fatigue model to predict 

fatigue crack initiation and propagation. 

 

4) Another important task to make peridynamics becomes applicable to 

damage prediction in ship and offshore structures is reducing the 

computational cost for PD simulations. As point out in this thesis, due to 

nonlocal interactions, the PD simulations are often more expensive than 

FEA. Besides existing approaches such as coupling with FEA, using CPU 

and GPU techniques, this thesis proposed a novel method for computational 

cost reduction. That is coupling the traditional PD model with the PD-based 

machine learning model. The PD-based machine learning model help to 

speed up the simulations while the traditional PD model help to maintain 

the accuracy of the predictions for complex parts such as near boundary 

surfaces or near crack surfaces. 

 

5) Through this research project, a new powerful method for damage 

prediction in ship and offshore structures, “peridynamics”, was successfully 

developed. Although there are still some limitations that require some future 

works, this thesis demonstrated the potential development of a powerful tool 

for structural analysis and damage prediction which can help to improve and 

ensure the safety of ship and offshore and marine structures. 
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Appendix A. Adaptive Dynamic Relaxation for static and quasi-static linear 

and nonlinear analyses 

In this section, the adaptive dynamic relaxation method used for static and quasi-

static problems in PD is presented. The procedure for using the explicit time 

integration scheme in the ADR method is described by Madenci and Oterkus [44], 

Kilic and Madenci [76]. In the ADR method, the calculation of the mass stable 

matrix 𝐌(𝑘) decides the stability and speed of the simulation. Too small values of 

𝐌(𝑘) will cause the diverged simulations. Meanwhile, too big value of 𝐌(𝑘) will 

cause slowly convergent simulations which increases the simulation time. 

Therefore, this section focuses on the calculation of the mass stable matrix 𝐌(𝑘). 

First, the calculation of the mass stable matrices for 1D, 2D, 3D PD models are 

presented in Appendix A.1. Next, the calculation of the mass stable matrices for PD 

beam models are presented in Appendix A.2. Finally, the calculation of the mass 

stable matrices for PD models for plates and shells are presented in Appendix A.3  

A1. ADR method used in PD simulations for 1D, 2D, 3D structures 

According to Kilic and Madenci [76], Underwood [77], by using the adaptive 

dynamic relaxation, the equation of motion in Eq. (1.4) can be rewritten as 

( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )

1

N

k k k k k j k j j k j k

j

V
=

+ = − +M u C u t t b  (A.1) 

Similarly, the nonlinear PD equation of motion in Eq. (3.1a) can be rewritten as 

( ) 0

( ) ( ) ( ) ( ) 0 ( )( ) 0 ( )( ) ( ) ( )

1

N
t t t t t

k k k k k j j k j k

j

V
=

+ = − +M u C u t t b  (A.2) 

where 𝐌(𝑘) represents the mass stable matrix, 𝐂(𝑘) represents the damping matrix 

[77].  

 

For one-dimensional PD model (either linear or nonlinear models), the mass stable 

matrix can be calculated as [44, 75] 

( )

2
1

4

ax
k

dt AC

x
M





 (A.3) 

where 𝑑𝑡 = 1 represents the time step for a quasi-static solution [77], 𝐴 is the beam 

cross-section area, 𝛿 is the horizon size, Δ𝑥 is the mesh size used in the PD 

discretized model. The term 𝐶𝑎𝑥 represents the PD bond constant for 1D structures. 

This bond constant is given in Eq. (2.14), Eq. (5.9c) as 

2

2
ax

E
C

A
=  (A.4) 

 

For 2D PD models (either linear or nonlinear models), the mass stable matrix can 

be calculated as [44, 75] 

( )

( )

( )

0

0

u

k

k v

k

M

M

 
=  
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M  (A.5a) 

with 

2

( ) ( )

21

4

u v

k k

C h
dt

x
M M

 
= 


 (A.5b) 

where 𝐶 is the bond constant for the 2D bond-based PD model which is given in 
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Eq. (5.11e). This constant can also be calculated as 

4C b=  (A.6) 

where 𝑏 is PD constant for 2D nonlinear PD model which is given in Eq. (3.14). 

 

For 3D PD models, the mass stable matrix can be calculated as [44, 75] 

( )

( ) ( )

( )
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M

M

M

 
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with 
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4
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k k kM d
b

t
x

M M 
 
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




 (A.7b) 

where 𝑏 is PD constant for 3D nonlinear PD model which is given in Eq. (3.12). 

 

A2. ADR method used in PD simulations for beams 

For the linear PD beam model in Chapter 2, to use the ADR method, the PD 

equation of motion given in Eq. (2.42) can be rewritten as 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

1

G G G G

k k k k k j k j j k

j

V
=

+ = +M u C u f b  (A.8) 

Similarly, the equation of motion for the nonlinear PD beam model given in Eq. 

(3.71b) can be rewritten as 
0

( ) ( ) ( ) ( ) ( )( ) 0 ( )( ) ( ) ( )

1

t G t G t G t G

k k k k k j k j j k

j
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+ = +M u C u f b  (A.9) 

According to Underwood [77], the right-hand side of Eq. (A.8-9) should be real 

physical values, but the left-hand side of Eq. (A.8-9), which includes mass stable 

vector and the damping matrix which can be chosen arbitrarily to get a converged 

solution. However, the matrix 𝐌(𝑘) is required to be a diagonal matrix. A simple 

way for determination of mass stable vectors in global coordinates is described as 

follows 
1
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with 

( )31 2
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uu u u v w

k k k k k kM M M M M M= = =  (A.10b) 

( )31 2

( ) ( ) ( ) ( ) ( ) ( )max , ,yx z

k k k k k kM M M M M M
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= = =  (A.10c) 

where 𝑀(𝑘)
𝑢1 , 𝑀(𝑘)

𝑢2 , 𝑀(𝑘)
𝑢3 , 𝑀(𝑘)

𝜃1 , 𝑀(𝑘)
𝜃2 , 𝑀(𝑘)

𝜃3  represent the components mass stable 

vector corresponding to translational and rotational DOFs in the global coordinates. 

Meanwhile, 𝑀(𝑘)
𝑢 ,𝑀(𝑘)

𝑣 , 𝑀(𝑘)
𝑤 , 𝑀(𝑘)

𝜃𝑥 , 𝑀
(𝑘)

𝜃𝑦
, 𝑀(𝑘)

𝜃𝑧  represent the components of a mass 

stable vector in the local coordinates. The components of the mass stable vector in 

the local coordinates can be calculated based on PD bond constants as 
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where 𝐶𝑎𝑥, 𝐶𝑠, 𝐶𝑏𝑦, 𝐶𝑏𝑧, and 𝐶𝑡 are PD bond constants that are given in Eq. (2.14), 

Eq. (2.24), Eq. (2.20), and Eq. (2.25) Chapter 2 or Eq. (3.51), Eq. (3.55), Eq. (3.53), 

and Eq. (3.57) in Chapter 3. 

 

A3. ADR method used in PD simulations for plates and shells 

For the linear PD shell model presented in Chapter 2, to use the ADR method, the 

PD equations of motion given in Eq. (2.88) can be rewritten as 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

1

G G G G

k k k k k j k j j k

j

V
=

+ = +M u C u f b  (A.12) 

For the nonlinear PD model for plates presented in Chapter 3, to use the ADR 

method, the PD equations of motion given in Eq. (3.114) can be rewritten as 

0
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where the mass stable matrix 𝑴(𝑘) can be calculated by using the same formulations 

given in Eq. (A.10). The components of the mass stable vector in the local 

coordinates can be calculated based on PD bond constants as 
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where 𝑏𝑖𝑝, 𝐶𝑠, 𝑏𝑏 represent PD constants for in-plane, shear, bending deformations 

which are given in Eq. (2.62d), Eq. (2.70), Eq. (2.67b) in Chapter 2 or Eq. (3.105c), 

Eq. (3.107), Eq. (3.109c) in Chapter 3. The term 𝐶𝑡 represents PD constant for 

torsional deformations which is given in Eq. (2.73) in Chapter 2. 
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Appendix B. Peridynamics constants for linear PD shell model 

B1. PD constants for in-plane deformations 

B1.1. PD dilatation constant, 𝒅𝒊𝒑 

By using Taylor’s series expansion and by ignoring the higher-order terms, the 

displacements and rotations of material point 𝑗 can be expressed as 

( ) ( )( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )j k x k j k y k j ku u u x x u y y= + − + −  (B.1a) 

( ) ( )( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )j k x k j k y k j kv v v x x v y y= + − + −  (B.1b) 

( ) ( )( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )j k x k j k y k j kw w w x x w y y= + − + −  (B.1c) 

( ) ( )( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )x j x k x x k j k x y k j kx x y y   = + − + −  (B.1d) 

( ) ( )( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )y j y k y x k j k y y k j kx x y y   = + − + −  (B.1e) 

 

The relations in Eq. (B.1) can be rewritten as 
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Therefore, by using Eq. (B.2a) and (B.2b), the bond stretch for in-plane 

deformations given in Eq. (2.65) can be rewritten as 
2 2
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Therefore, the dilatation for in-plane deformations given in Eq. (2.63) can be 

rewritten in an integral form as 
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By performing integrations given in Eq. (B.4), the dilatation for in-plane 

deformations can be calculated as 
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Meanwhile, the classical form of dilatation can be described as 

( ) , ( ) , ( )

CCM

k x k y ku v = +  (B.6) 

By comparing Eq. (B.5) and (B.6), the PD dilatation constant ipd  can be defined as 
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2
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=  (B.7) 
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B1.2. PD material constants, 𝒂𝒊𝒑𝟏, 𝒂𝒊𝒑𝟐, 𝒂𝒊𝒑𝟑 and 𝒃𝒊𝒑 

By using the stretch definition in Eq. (B.3) and dilatation term in Eq. (B.6), the 

strain energy per unit area for in-plane deformations given in Eq. (2.61) can be 

rewritten in an integral form as 
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After performing integrations given in Eq. (B.8), the strain energy per unit area for 

the in-plane deformations can be evaluated as 

( ) ( )

( )

( )

2
2

( ) 1 , ( ) , ( ) 2 , ( ) , ( ) ( ) 3 ( )

3
2 2 2 2

, ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )

3

( ) , ( ) , ( )

               3 3 2 2
12

2
                

3

PD

inplane k ip x k y k ip x k y k k ip k

ip x k y k y k x k x k y k y k x k

ip k x k y k

W a u v a u v T a T

h
b u v u v u v u v

h
b T u v

 

 
 

= + − +  + 

+ + + + + +

+ −  + + 2 2

( )kT 
 

 (B.9) 
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By comparing Eq. (B.10) and Eq. (2.58b) following relations can be obtained 
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h Eh
b

 


=

+
 (B.11a) 

( )

3

1 24 2 1
ip ip

h Eh
a b

 


+ =

−
 (B.11b) 

3

2

2

3 1
ip ip

h Eh
a b

 
 


+ =

−
 (B.11c) 

3
2 2

3

2

3 1
ip ip

h Eh
a b

 
 


+ =

−
 (B.11d) 

Therefore, the PD constants for in-plane deformations can be defined as 

( )3

3

1
ip

E
b
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+
 (B.12a) 

( )

( )1 2

3 1

4 1
ip

Eh
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−
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−
 (B.12b) 

( )2 2
3 1

1
ip

Eh
a





= −

−
 (B.12c) 



247 

 

( ) 2

3 2
3 1

1
ip

Eh
a  


= −

−
 (B.12d) 

 

B2. PD constants for bending deformations 

B2.1. PD constant, 𝒅𝒃 

By using Eq. (B.2d-e), the term 𝑠𝑏(𝑘)(𝑗) in Eq. (2.68b) can be rewritten as 
2 2

( )( ) , ( ) , ( ) , ( ) , ( )cos sin cos sin cos sinb k j y x k y y k x x k x y ks          = − − + +  (B.13) 

Therefore, the term 𝜗𝑏(𝑘) in Eq. (2.68a) can be rewritten in an integral form as 
2

2 , ( ) , ( )

( ) 20 0
, ( ) , ( )

cos sin cos

sin cos sin

y x k y y k

b k b

x x k x y k

d h d d
      

   
    

 − −
 =
 + + 

   (B.14) 

By performing integrations in Eq. (B.14), the term 𝜗𝑏(𝑘) can be written as 

( )
2

( ) , ( ) , ( )
2

b k b y x k x y k

h
d
 

  = − +  (B.15) 

On the other hand, the corresponding term in classical form can be described as 

( ) , ( ) , ( )

CCM

b k y x k x y k  = − +  (B.16) 

By comparing Eq. (B.15) and (B.16), the PD constant, 𝑑𝑏, can be defined as 

2

2
bd

h 
=  (B.17) 

 

B2.2. PD material constants, 𝒂𝒃 and 𝒃𝒃 

By using Eq. (B.13) and (B.16), the strain energy per unit area for bending 

deformations in Eq. (2.66) can be rewritten in an integral form as 

( )
2

( ) , ( ) , ( )

2
2

2 , ( ) , ( ) 2

20 0
, ( ) , ( )

cos sin cos
               

sin cos sin

PD

bending k b y x k x y k

y x k y y k

b

x x k x y k

W a

b h d d
 

 

    
  

    

= − +

 − −
 +
 + + 

 

 (B.18) 

After performing integrations given in Eq. (B.18), the strain energy per unit area 

for bending deformations can be written as 

( )

( ) ( )

2

( ) , ( ) , ( )

3
2 2

, ( ) , ( ) , ( ) , ( ) , ( ) , ( )                3 4
12

PD

bending k b x y k y x k

b x y k y x k y x k x y k x x k y y k

W a

h
b

 

 
     

= −

 + − + + −
  

 (B.19) 

By comparing Eq. (B.19) and (2.58c), PD constants for bending deformations can 

be defined as 

( )

2

34 1
b

Eh
b

 
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+
, 

( )

( )

3

2

3 1

48 1
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Eh
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

−
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−
 (B.20) 
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B3. PD constant for shear deformations 

By assuming material points 𝑘 and 𝑗 are very closed to each other, the 

approximation 𝜃̄(𝑘) ≈ 𝜃̄(𝑗) is assumed for small deformations. Therefore, the strain 

energy per unit area for shear deformations given in Eq. (2.69) becomes 
2

( ) ( )

( ) ( ) ( )

1

1

4

N
j kPD

shear k s k j

j

w w
W C V 

=

− 
= − 

 
  (B.21) 

By using the relations in Eq. (B.2c) and (2.71a), the strain energy per unit area for 

shear deformations given in Eq. (B.21) can be rewritten in an integral form as 

( )

( )

2

2 , ( ) ( ) 2

( )
0 0

, ( ) ( )

cos1

4 sin

x k y kPD

shear k s

y k x k

w
W C h d d

w

   
  

 

 +
 =
 + −
 

   (B.22) 

By performing integrations given in Eq. (B.22), the strain energy per unit area for 

shear deformations can be written as 

( ) ( )
2 2

3

( ) , ( ) ( ) , ( ) ( )

1

12

PD

shear k s x k y k y k x kW C h w w    = + + −
  

 (B.23) 

By comparing Eq. (B.23) and (2.58d), the PD constants for shear deformations can 

be defined as 

( )3

3

1 
=

+

s
s

k E
C  (B.24) 

 

B4. PD constant for torsional deformations 

By using strain energy per unit area given in Eq. (2.59b), the potential energy 

corresponding to drilling rotation, 𝜃𝑧, can be defined as 

( )
( )

2

, ,

1

2 1 2
torsional torsional T z x y

A A

Eh
U W dA k v u dA



 
= = − − +  
   (B.25) 

The kinetic energy corresponding to drilling rotation can be defined as 

21

2z zz zT hI  =  (B.26) 

By using Eq. (B.25) and (B.26), the Lagrangian corresponding to drilling rotation 

can be obtained as 

( )
( )

2

2

, ,

1 1

2 2 1 2z z z zz z T z x y
A

Eh
L T U hI k v u dA     



 
= − = − − − +  

  (B.27) 

As mentioned in section 3.3, since the torsional strain energy is fictitious, the 

contribution of drilling rotation into the equation of motion other degrees of 

freedom can be neglected [71]. Therefore, the equation of motion for drilling 

rotation in classical continuum mechanics can be derived by using the Euler-

Lagrange equation given in Eq. (2.26) in Chapter 2 as  

( ), ,

1

1 2

zz
z T z x y

hI Eh
k v u

A


 



 
= − − +  

 (B.28) 

Meanwhile, by using relations given in Eq. (B.2a-b), the PD equation of motion for 

drilling rotation given in Eq. (2.77f) can be written in an integral form as 
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( )

2
2 , ( ) , ( )( ) ( ) ( ) 2

( ) 20 0
, ( ) , ( )
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2 sin cos sin

x k y kzz k z k z j

z k t

k x k y k

v vhI
C h d d

A u u
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  
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  = −

  − −   
   (B.29) 

By assuming material points 𝑘 and 𝑗 are very closed to each other, the 

approximation 𝜃𝑧(𝑗) ≈ 𝜃𝑧(𝑘) is assumed for small deformations. Therefore, Eq. 

(B.29) can be rewritten as 

( )

2
2 , ( ) , ( )( ) 2

( ) ( ) 20 0
, ( ) , ( )

cos sin cos

sin cos sin

x k y kzz k

z k t z k

k x k y k

v vhI
C h d d

A u u

    
    

  

  +
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 − −   
   (B.30) 

By performing integrations given in Eq. (B.30), the equation of motion for drilling 

rotation can be written as 

( )

( )
3

( )

( ) ( ) , ( ) , ( )

2 1

3 2

zz k

z k t z k x k y k

k

hI h
C v u

A

  
 

 
= − − 

 
 (B.31) 

By comparing Eq. (B.28) and (B.31), the PD constant for drilling rotation can be 

defined as 

3

3

2 1
t T

E
C k

 
=

+
 (B.32) 
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Appendix C. Total Lagrangian Formulations For Nonlinear Analysis 

In this section, classical formulations for deformation gradient, Green-Lagrange 

strain, Second Piola-Kirchhoff stress tensors, and the principle of virtual 

displacement are presented. The motions of a structure at different times in the 

Cartesian coordinate system are shown in Fig. C1. As shown in Fig. C1, P is a 

material point on the structure, and its coordinates at time 𝑡 = 0 are denoted by 

( 𝑥0 , 𝑦0 , 𝑧0 ). Meanwhile, the coordinates of this point at time 𝑡 and 𝑡 + 𝛥𝑡 are 

denoted by ( 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) and ( 𝑥𝑡+𝛥𝑡 , 𝑦𝑡+𝛥𝑡 , 𝑧𝑡+𝛥𝑡 ), respectively. The relationships 

between these coordinates can be represented as 

0 ˆt t= +x x u  (C1a) 

0 ˆt t t t+ += +x x u  (C1b) 

with 

0 0 0 0
T

x y z =  x  (C1c) 

T
t t t tx y z =  x  (C1d) 

T
t t t t t t t tx y z+ + + + =  x  (C1e) 

ˆ ˆ ˆ ˆ
T

t t t tu v w =  u  (C1f) 

ˆ ˆ ˆ ˆ
T

t t t t t t t tu v w+ + + + =  u  (C1g) 

where ˆt
u  and ˆt t+

u  represent the displacement vectors for a material point which 

is initially located at ( 𝑥0 , 𝑦0 , 𝑧0 ) as shown in Fig. C1 at time 𝑡 and 𝑡 + 𝛥𝑡, 
respectively. The relationship between these vectors of displacements can be 

represented as 

ˆ ˆ ˆt t t+ = +u u u  (C2a) 

with 

 ˆ ˆ ˆ ˆu v w=u  (C2b) 

where û  represents the vector of the incremental displacements from time 𝑡 to 𝑡 +

𝛥𝑡 of a material point which is initially located at ( 𝑥0 , 𝑦0 , 𝑧0 ). 
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Fig. C1. Motions of a structure in the Cartesian coordinate frame 

 

C1. Deformation gradient 

The deformation gradient can be defined as [70] 

0 0 0

0 0 0 0

0 0 0

t t t

t t t
t

t t t

x x x

x y z

y y y

x y z

z z z

x y z

   
 
  
 
   

=  
   
   
 
    

X  (C3a) 

or  

( )( )0 0

T
t t T= X x  (C3b) 

with  

0 0 0 0

T

x y z

   
 =  

   
 (C3c) 

where 0  represents the gradient operator with respect to the initial configuration 

and 𝐱𝑡 𝑇 represents the transposed vector of 𝐱𝑡 . 

C2. Green-Lagrange strain 

By using the deformation gradient given in Eq. (C3), the Green-Lagrange strain at 

time 𝑡 can be defined as [70] 

( )0 0 0

1
ˆ

2

t t T t= −ε X X I  (C4a) 
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which can be explicitly rewritten as [70] 

( )0 0 , 0 , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ

2

t t t t t

ij i j j i k i k ju u u u = + +  (C4b) 

or 

( ) ( ) ( )
2 2 2

0 0 , 0 , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ

2

t t t t t

xx x x x xu u v w  = + + +
  

 (C4c) 

( ) ( ) ( )
2 2 2

0 0 , 0 , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ

2

t t t t t

yy y y y yv u v w  = + + +
  

 (C4d) 

( ) ( ) ( )
2 2 2

0 0 , 0 , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ

2

t t t t t

zz z z z zw u v w  = + + +
  

 (C4e) 

( )( ) ( )( ) ( )( )0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2

t t t t t t t t t

xy y x x y x y x yu v u u v v w w   = + + + +   
 (C4f) 

( )( ) ( )( ) ( )( )0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2

t t t t t t t t t

xz z x x z x z x zu w u u v v w w   = + + + +   
 (C4g) 

( )( ) ( )( ) ( )( )0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2

t t t t t t t t t

yz z y y z y z y zv w u u v v w w   = + + + +   
 (C4h) 

where I  represents the identity matrix. The term 0 ,
ˆt

k ju  represents the derivative of 

the displacement ˆt

ku  (at time 𝑡) with respect to the initial configuration, 𝑥0 𝑗. The 

derivative 0 ,
ˆt

k ju can be represented as 

( )
( )0 , 0

ˆ
ˆ

t

kt

k j

j

u
u

x


=


 (C5) 

where ˆt

ku  represents the displacement at time t and 𝑥0 𝑗 represents the initial 

(reference) configuration. 

The Green-Lagrange strain at time 𝑡 + 𝛥𝑡 can be calculated as [70, 108] 

0 0 0
ˆ ˆ ˆt t t+ = +ε ε ε  (C6a) 

or 

0 0 0  
ˆ ˆ ˆt t t

ij ij ij  + = +  (C6b) 

where 
0
ˆt t+
ε  (or 0

ˆt t

ij
+

) represents the Green-Lagrange strain tensor (or components) 

at time 𝑡 + 𝛥𝑡 as provided in Eq. (C4) and 0 ε̂  (or 
0  ̂ij ) represents the incremental 

Green-Lagrange strain tensor (or components) from time 𝑡 to time 𝑡 + 𝛥𝑡. The 

incremental strain, 
0  ̂ij , can be decomposed as [70] 

0  0  0  
ˆ ˆˆ

ij ij ije = +  (C7a) 

with  
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0  0  , 0  , 0  , 0  , 0  , 0  ,

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2

t t

ij i j j i k i k j k j k ie u u u u u u = + + +   (C7b) 

0  0  , 0  ,

1
ˆ ˆ ˆ

2
ij k i k ju u =  (C7c) 

where 
0  ̂ije  and 

0  
ˆ

ij  represent the linear and nonlinear components of the 

incremental Green-Lagrange strain, respectively. The term 
0  ,

ˆ
k ju  represents the 

derivative of the incremental displacement  
ˆ

ku  as provided in Eq. (C2b), with 

respect to the initial coordinate, 
0

jx  which can be defined as [70] 

( )
 

0  , 0

ˆ
ˆ k

k j

j

u
u

x


=


 (C8) 

On the left-hand side of Eq. (C8), the subscript “0” in 
0  ,

ˆ
k ju  refers to the reference 

configuration at time 0t = .  

Note that, the derivative 0 ,
ˆt

k ju  on the left-hand side of Eq. (C5) has the superscript 

“ t ” because 0 ,
ˆt

k ju  represents the derivative of the displacement at time t . On the 

other hand, the term 
0  ,

ˆ
k ju  in Eq. (C8) does not have any left superscript since it 

represents the derivative of the incremental displacement  
ˆ

ku . 

The linear and nonlinear components of the incremental Green-Lagrange strain 

given in Eqs. (C7b-c) can also be written as [70] 

0  0  , 0  , 0  , 0  , 0  , 0 , 0 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆt t t

xx x x x x x x xe u u u v v w w= + + +  (C9a) 

0  0  , 0 , 0  , 0 , 0  , 0 , 0 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆt t t

yy y y y y y y ye v v v u u w w= + + +  (C9b) 

0  0 , 0 , 0 , 0 , 0 , 0 , 0 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆt t t

zz z z z z z z ze w u u v v w w= + + +  (C9c) 

( )
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0  0  , 0  ,

0 , 0 , 0 , 0 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ

2 2 ˆ ˆ ˆ ˆ

t t t t

x y y x x y y x

xy y x t t

x y y x

u u u u v v v v
e u v

w w w w

 + + +
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 (C9d) 

( )
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 0 , 0 ,

0 , 0 , 0 , 0 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ

2 2 ˆ ˆ ˆ ˆ

t t t t

z y y z z y y z

yz z y t t

y z z y

u u u u v v v v
e v w
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 (C9e) 

( )
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 0 , 0 ,

0 , 0 , 0 , 0 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ

2 2 ˆ ˆ ˆ ˆ

t t t t

x z z x x z z x

xz z x t t

x z z x

u u u u v v v v
e u w
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 + + +
 = + +
 + + 

 (C9f) 

and 

( ) ( ) ( )( )2 2 2

0  0  , 0  , 0 ,

1
ˆ ˆ ˆ ˆ

2
xx x x xu v w = + +  (C10a) 

( ) ( ) ( )( )2 2 2

0  0  , 0  , 0 ,

1
ˆ ˆ ˆ ˆ

2
yy y y yu v w = + +  (C10b) 
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( ) ( ) ( )( )2 2 2

0  0  , 0  , 0 ,

1
ˆ ˆ ˆ ˆ

2
zz z z zu v w = + +  (C10c) 

( )0  0  , 0  , 0  , 0  , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
xy x y x y x yu u v v w w = + +  (C10d) 

( )0  0  , 0  , 0  , 0  , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
xz x z x z x zu u v v w w = + +  (C10e) 

( )0  0  , 0  , 0  , 0  , 0 , 0 ,

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
yz y z y z y zu u v v w w = + +  (C10f) 

 

C3. Second Piola-Kirchhoff stress  

In nonlinear analyses, the second Piola-Kirchhoff stress (SPK) tensor, 0
ˆt
S , is always 

work-conjugate with the Green-Lagrange tensor, 
0
ˆt
ε , since they are often used as a 

pair [70].  

❖ SPK stress for 3D structures 

For a generally 3D structure, the SPK stress tensor, 0
ˆt
S , can be calculated by using 

the following procedure [70]: 

Step 1: Calculate the deformation gradient, 
0

t
X  by using Eq. (C3). 

Step 2: Using the relation
0 0 0

t t t=X R U , find the rotational matrix, 
0

t
R  and right 

stretch tensor, 
0

t
U  by using polar decomposition [70] 

2.1. Find the right Cauchy-Green deformation tensor, 
0

t
C  

0 0 0

t t T t=C X X  (C11) 

2.2. Find eigenvalues, 
0

t
λ  and eigenvectors, P  of 

0

t
C  by solving the 

following equation 

0 0

t t=CP P λ  (C12) 

2.3. Find rotational matrix, 
0

t
R , and right stretch tensor, 

0

t
U  

- Find the deformation gradient in the principal coordinates, 
0

t X  

0 0  t T t =X P X P  (C13) 

- Find rotational matrix and right stretch tensor 

0

t T=R P R P  (C14a) 

0

t T=U PΛP  (C14b) 

with 
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( )
1/2

0

t=Λ λ  (C14c) 

( )
1/2

0 0

t t
−

 =R X λ  (C14d) 

Step 3: Find the Hencky strain tensor, 0
ˆt H
E  [70] 

( )( )0
ˆ lnt H T=E P Λ P  (C15a) 

Mean strain:  

( )0 0

1ˆ ˆ
3

t H t H

mE tr= E  (C15b) 

Deviatoric strain:  

0 0 0
ˆ ˆ ˆt H t H t H

d mE= −E E I  (C15c) 

where I represents the identity matrix. 

Step 4: Calculate Cauchy stress, ˆt
σ  [70] 

- Calculate stress measure, σ  

d m= +σ σ I  (C16a) 

with 

( )0
ˆ2 t H

d d=σ E  (C16b) 

( )0
ˆ3 t H

m mE =  (C16c) 

where   represents the Bulk modulus of the material,   represents the 

Lame’s constant as given in Eq. (3.13). 

- Calculate Cauchy stress, ˆt
σ  

( ) ( )0 0

0

1
ˆ

det

t t t T

t
=σ R σ R

X
 (C17) 

Step 5: Calculate SPK stress [70] 

 ( )( )( )( )1

0 0 0 0
ˆ ˆdett t t t t T− −=S X X σ X  (C18) 

❖ SPK stress for beams and shells 

For beam and shell structures subjected to large deformations, large rotations, but 

small strains, the SPK stress tensor can be simply estimated as [70] 

0 0 0
ˆ ˆt t t=S C ε  (C19) 

where 
0

t
C  represents the elasticity tensor.  
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For plates and shells, the SPK stress, 0
ˆt
S , the Green-Lagrange strain, 

0
ˆt
ε , and the 

elasticity tensor, 
0

t
C , can be represented as [70] 

0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ                

T
t t t t t t

xx yy xy yz xzS S S S S =
 

S  (C20a) 

0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆˆ                 

T
t t t t t t

xx yy xy yz xz     =  ε  (C20b) 

( )

( )

( )

0 2

1 0 0 0

1 0 0 0

0 0 1 0 0
1

0 0 0 1 0

0 0 0 0 1

t

s

s

E

k

k












 
 
 
 −=

−  
− 

 − 

C  (C20c) 

with 

5 6sk =  (C20d) 

where E  and   represent the elastic modulus and Poisson’s ratio of the material, 

sk  represents shear correction factor [70].  

For beam structures, the SPK stress, 0
ˆt
S , the Green-Lagrange strain, 

0
ˆt
ε , and the 

elasticity tensor, 
0

t
C , can be represented as [70] 

0

0 0

0

ˆ

ˆ ˆ

ˆ

t

xx

t t

xy

t

xz

S

S

S

 
 

=  
 
  

S ;  

0

0 0

0

ˆ

ˆˆ

ˆ

t

xx

t t

xy

t

xz







 
 

=  
 
 

ε ; 
0

0 0

0 2 0

0 0 2

t

s

s

E

k G

k G

 
 

=
 
  

C  (C21) 

where sk  represents the shear correction factor for the beam cross-section [70], G  

represents the elastic modulus and shear modulus of the material.  

The SPK stress tensor at time t t+   can be represented as [70, 108] 

0 0 0
ˆ ˆ ˆt t t+ = +S S S   (C22a) 

or 

0 0 0
ˆ ˆ ˆt t t

ij ij ijS S S+ = +   (C22b) 

where 0 Ŝ   represents the incremental SPK stress tensor from time 𝑡 to time 𝑡 + 𝛥𝑡. 

C4. Principle of virtual displacement 

In this section, the principle of virtual displacement based on Total Lagrange 

formulation is presented. In the Total Lagrange formulation, the equation of motion 

for a structure is written with respect to the initial configuration as [70] 

( ) ( ) ( )0

0

0 0
ˆ ˆt t t t t t

ij ij
V

S d V + + +=   (C23) 
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where 0
ˆt t

ijS+  and 0
ˆt t

ij
+

 represent components of SPK stress tensor and Green 

Lagrange strain at time t t+  as given in Eq. (C22) and Eq. (C6), respectively. The 

term ( )0
ˆt t

ij +  represents the virtual value of 0
ˆt t

ij
+

, 
0V  represents the volume in 

the undeformed configuration, 
t t+   represents the external virtual work which can 

be calculated as 

( )( ) ( ) ( )( ) ( )ˆ ˆ
t t t t

t t t t B t t t t S s t t

V S
d V d S 

+ +

+ + + + += + f u f u  (C24) 

where t t B+
f  and t t S+

f  represent external force per unit volume and external force 

per unit surface area at time t t+  , respectively. 
t tS+

 represents surface at time 

t t+   on which the external force per unit surface area is applied, ˆ su  represents 

virtual displacement evaluated on the surface 
t tS+

. 

By using the relations given in Eq. (C6) and Eq. (C22), the principle of virtual 

displacements given in Eq. (C23) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 0 0

0 0 0 0 0 0
ˆ ˆ ˆˆ ˆ ˆt t t t

ij ij ij ij ij ij
V V V

S d V S d V S e d V    ++ = −    (C25) 

For dynamic problems, the work caused by the inertia forces can be added on the 

left-hand side of Eq. (C25) as [70] 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

0 0

0 0

0 0

0 0 0 0

ˆˆ ˆˆ ˆ

ˆ ˆˆ ˆ                               

T t t

ij ij
V V

t t t t

ij ij ij ij
V V

d V S d V

S d V S e d V

  

  

+

+

+

+ = −

 

 

u m u
 (C26) 

where the first term on the left-hand side of Eq. (C26) represents the virtual work 

of the inertia forces, m̂  represents the time-independent mass matrix, ˆt t+
u  

represents the acceleration vector at time t t+  of the material point located at 
0 0 0( , , )x y z , û  represents the incremental displacement vector of the material point 

located at 
0 0 0( , , )x y z  as given in Eq. (C2b), ˆ T

u  represents the transpose of the 

incremental displacement vector, û .  

According to Bathe [70], the equation of motion given in Eq. (C26) is written for 

dynamic problems for the implicit time integration scheme. If the explicit time 

integration scheme is used, Eq. (C26) can be simplified as [70] 

( ) ( ) ( ) ( )0 0

0 0

0 0
ˆˆˆ ˆ ˆT t t t

ij ij
V V

d V S e d V = − u m u  (C27) 

The second term on the right-hand side of Eq. (C27) is the virtual work which is 

associated with the element stress at time t . The corresponding strain energy 

density (SED) for this virtual work can be written for a 3D structure as [102]  

( )( )
3 3

0 0

1 1

ˆ ˆNL t

ij ij

i j

W S e
= =

=  (C28a) 

or 

0 0  0 0  0 0  0 0  0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 2NL t t t t t t

xx xx yy yy zz zz xy xy yz yz xz xzW S e S e S e S e S e S e= + + + + +  (C28b) 

For 1D and 2D structures, the nonlinear SED in Eq. (C28b) can be simplified as 
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0 0  
ˆ ˆNL t

xx xxW S e=  for 1D (C29a) 

0 0  0 0  0 0  
ˆ ˆ ˆˆ ˆ ˆ2NL t t t

xx xx yy yy xy xyW S e S e S e= + +  for 2D (C29b) 

For plates and shells, the nonlinear SED in Eq. (C28b) can be simplified as 

0 0  0 0  0 0  0 0 0 0
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2 2NL t t t t t

xx xx yy yy xy xy yz yz xz xzW S e S e S e S e S e= + + + +  (C30) 

For beam structures, the nonlinear SED in Eq. (C28b) can be simplified as 

0 0  0 0  0 0
ˆ ˆ ˆˆ ˆ ˆ2 2NL t t t

xx xx xy xy xz xzW S e S e S e= + +  (C31) 

By considering the beams with symmetrical cross-sections, the SED for the beam 

can be averaged through the cross-section as 

( ) ( ) ( )00

00

0 0  0 0  0 0

0 0

ˆ ˆ ˆˆ ˆ ˆ2 2t t tNL

xx xx xy xy xz xzNL AA
S e S e S e d AW d A

W
A A

+ +
= =


 (C32) 
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Appendix D. PD constants for nonlinear 1D, 2D, and 3D PD models  

D1. PD constants for 3D structures 

To determine PD constants, two different loading cases resulting in isotropic 

expansion and simple shear can be considered [44] by comparing the virtual values 

of strain energy density in classical continuum mechanics and their PD 

representations. The procedure for PD bond constants for 3D structures can be 

summarised as follows: 

The virtual values of SED and volumetric strain in classical continuum mechanics 

for isotropic expansion is calculated in Section D1.1.1. The PD representation of 

SED and volumetric strain for isotropic expansion is represented in Section D1.1.2. 

By comparing the PD and the classical continuum mechanics representations, the 

relations for PD constants and material constants are provided in Section D1.1.3.  

Similarly, the virtual values of SED in classical continuum mechanics and PD for 

simple shear loading are presented in Sections D1.2.1 and D1.2.2, respectively. By 

comparing the PD and the classical continuum mechanics representations, the 

relations for PD constants and material constants are provided in Section D1.2.3.  

In this section, to simplify the notations, we write the displacements at time t 

ˆ ˆ ˆ, ,t t tu v w  as , ,t t tu v w , and incremental displacements ˆ ˆ ˆ, ,u v w  as , ,u v w . 

D1.1. Loading 1: Isotropic expansion 

 

D1.1.1. Strain Energy Density and volumetric strain definitions in classical 

continuum mechanics 

A loading case of isotropic expansion can be obtained by applying the following 

conditions 

0 , 0 , 0 ,

t t t

x y zu v w = = = ; 0 , 0 , 0 , 0 , 0 , 0 , 0t t t t t t

y z x z x yu u v v w w= = = = = =  (D1) 

The corresponding deformation gradient tensor can be calculated as 

0

1 0 0

0 1 0

0 0 1

t







+ 
 

= +
 
 + 

X  (D2) 

By using the procedure in Appendix C3 for the calculation of SPK stress, the right 

stretch tensor and rotational tensor can be represented as 

0 0

t t=U X  and 
0

t =R I  (D3) 

Therefore, the Hencky strain tensor and the SPK stress tensor can be obtained as 

( )

( )

( )
0

ln 1 0 0

ˆ 0 ln 1 0

0 0 ln 1

t H







+ 
 

= + 
 + 

E  (D4) 
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( )

( )

( )

( )

( )
0 2

ln 1 0 0
3 2ˆ 0 ln 1 0
1

0 0 ln 1

t


 






+ 
+  

= + 
+

 + 

S  (D5) 

For the loading case provided in Eq. (D1), virtual strain values can be represented 

by using Eq. (C9) as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0  , 0 , 0  , 0 , 0  ,

0 , 0 ,

ˆ

              1

t t

xx x x x x x

t

x x

e u u u v v

w w  

   

 

= + +

+ = +
 (D6a) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 , 0 , 0 , 0 , 0 ,

0 , 0 ,

ˆ

               1

t t

yy y y y y y

t

y y

e v v v u u

w w  

   

 

= + +

+ = +
 (D6b) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 , 0 , 0 , 0 , 0 ,

0 , 0 ,

ˆ

1

t t

zz z z z z z

t

z z

e w u u v v

w w  

   

 

= + +

+ = +
 (D6c) 

( ) ( ) ( )0 0 0
ˆ ˆ ˆ 0xy yz xze e e  = = =  (D6d) 

with 

( ) ( ) ( )0 , 0 , 0 ,x y zu v w   = = =  (D6e)

( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 , 0 , 0y z x z x yu u v v w w     = = = = = =  (D6f) 

By substituting the SPK stress tensor given in Eq. (D5) and strain components in 

Eq. (D6) into Eq. (C28b), the virtual value of SED in classical continuum 

mechanics can be calculated as 

( )
( )

( )3 3 2 ln 1
1

CCMW


   


= + +
+

 (D7) 

The volumetric strain in classical continuum mechanics for isotropic expansion can 

be calculated by using the Hencky strain tensor given in Eq. (D4) as 

( )0 0 0 0 3ln 1t CCM t H t H t H

xx yy zzE E E = + + = +  (D8) 

 

D1.1.2. Strain Energy Density and volumetric strain definitions in Peridynamic 

form 

The displacement components of material point j  can be expressed in terms of 

displacements of material point k  by using Taylor’s series expansion by ignoring 

the higher-order terms as 

( )( )

( )( ) ( )( )

0 0

( ) ( ) 0 ( ), ( ) ( )

0 0 0 0

0 ( ), ( ) ( ) 0 ( ), ( ) ( )          

t t t

j k k x j k

t t

k y j k k z j k

u u u x x

u y y u z z

= + −

+ − + −
 (D9a) 
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( )

( ) ( )

0 0

( ) ( ) 0 ( ), ( ) ( )

0 0 0 0

0 ( ), ( ) ( ) 0 ( ), ( ) ( )        

t t t

j k k x j k

t t

k y j k k z j k

v v v x x

v y y v z z

= + −

+ − + −
 (D9b) 

( )

( ) ( )

0 0

( ) ( ) 0 ( ), ( ) ( )

0 0 0 0

0 ( ), ( ) ( ) 0 ( ), ( ) ( )          

t t t

j k k x j k

t t

k y j k k z j k

w w w x x

w y y w z z

= + −

+ − + −
 (D9c) 

or  

( ) ( )

0 ( ), 0 ( ), 0 ( ),0

t t

j k t t t

k x x k y y k z z

u u
u c u c u c



−
= + +  (D9d) 

( ) ( )

0 ( ), 0 ( ), 0 ( ),0

t t

j k t t t

k x x k y y k z z

v v
v c v c v c



−
= + +  (D9e) 

( ) ( )

0 ( ), 0 ( ), 0 ( ),0

t t

j k t t t

k x x k y y k z z

w w
w c w c w c



−
= + +  (D9f) 

with 

0 0

( ) ( )

0
sin cos

j k

x

x x
c  



−
= =  (D9g) 

0 0

( ) ( )

0
sin sin

j k

y

y y
c  



−
= =  (D9h) 

0 0

( ) ( )

0
cos

j k

z

z z
c 



−
= =  (D9i) 

where ( , , )    serve as spherical coordinates [44]. 

Meanwhile, the linear bond stretch, 0

t s  given in Eq. (3.5) can be rewritten as 

( ) ( ) ( )
2 2 2

( ) ( ) ( ) ( ) ( ) ( )

0 0 0
1 1

t t t t t t
t

j k j k j kt
x x y y z z

s


 

− + − + −
= − = −  (D10a) 

or 

( ) ( ) ( ) ( )

( ) ( )

2 2
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

0 2
0 0

( ) ( ) ( ) ( )

0

1

t t t t

j k j k j k j k

t

t t

j k j k

x x u u y y v v

s

z z w w

 



   − + − − + −
   +
   
   

= −
 − + −
 +
 
 

 (D10b) 

By using the relations in Eq. (D9), the linear bond stretch, 0

t s  given in Eq. (D10b) 

can be rewritten as 
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( )

( )

( )

2

0 ( ), 0 ( ), 0 ( ),

2

0 0 ( ), 0 ( ), 0 ( ),

2

0 ( ), 0 ( ), 0 ( ),

1

t t t

x k x x k y y k z z

t t t t

y k x x k y y k z z

t t t

z k x x k y y k z z

c u c u c u c

s c v c v c v c

c w c w c w c

+ + +

= + + + + −

+ + + +

 (D11) 

By substituting the conditions given in Eq. (D1) into Eq. (D11), the linear PD bond 

stretch can be calculated as 

0

t s =  (D12) 

Therefore, the logarithmic bond stretch can be calculated by using Eq. (3.4a) as 

( )0 ln 1t

Hs = +  (D13) 

By using the logarithmic bond stretch given in Eq. (D13), the volumetric strain in 

PD given in Eq. (3.7) can be rewritten as 

( ) 0

0 ( ) ( )

1

ln 1
N

t

k j

j

d V 
=

= +  (D14) 

By disregarding the PD interactions beyond the horizon of material point 𝑘, the 

expression for 𝜗0
𝑡
(𝑘) in Eq. (D14) can be recast as 

( ) ( )
2 3

0 2 0

0 ( )

0 0 0

4
ln 1 sin ln 1

3

t

k d d d d d

  


       = + = +    (D15) 

where   represents the horizon size on the initial configuration. 

Similarly, by substituting the logarithmic stretch given in Eq. (D13) and volumetric 

strain in Eq. (D8) into Eq. (3.3a), the strain energy density in PD for isotropic 

expansion can be defined as 

( ) ( )2 2 0 0

( ) ( )

1

9 ln 1 ln 1
N

NLPD

k j

j

W a b V  
=

= + + +  (D16) 

By disregarding the PD interactions beyond the horizon of material point 𝑘, the 

expression for ( )

NLPD

kW  can be rewritten in the integral form as 

( ) ( )
2

2 2 0 3 0

( )

0 0 0

9 ln 1 ln 1 sinNLPD

kW a b d d d

  

      = + + +    (D17) 

By performing the integrations in Eq. (D17), the SED in PD for isotropic expansion 

state can be defined as 

( ) ( )2 4 2

( ) 9 ln 1 ln 1NLPD

kW a b  = + + +  (D18) 

Therefore, the virtual value of strain energy density in PD can be calculated as 

( ) ( )4

( ) 18 ln 1 2 ln 1
1 1

NLPD

kW a b
 

   
 

= + + +
+ +

 (D19) 
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D1.1.3. PD constants 

By comparing volumetric strain given in Eq. (D8) and Eq. (D15), the PD constant, 

d , can be determined as 

3

9

4
d


=  (D20) 

By comparing the virtual value of strain energy density definitions in Eq. (D7) and 

Eq. (D19), the relationships between PD constants and engineering material 

constants can be obtained as 

( )418 2 3 3 2a b  + = +  (D21) 

 

D1.2. Loading 2: Simple shear  

 

D1.2.1. Strain Energy Density and volumetric strain definitions in classical 

continuum mechanics  

The simple shear can be obtained by assuming the following conditions 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0t t t t t t t t

x z x y z x y zu u v v v w w w= = = = = = = = ; 0 ,

t

yu =  (D22) 

Therefore, the deformation gradient tensor can be defined as 

0

1 0

0 1 0

0 0 1

t

 
 

=
 
  

X  (D23) 

By using the procedure in Appendix C3 for the calculation of SPK stress, the 

Hencky strain tensor and Second Piola-Kirchhoff stress tensor can be obtained as 

1
0

2

2 0
ˆ

ˆ 2 0
4

0 0 0

H
t H E






− 
 

=
 

+
  

E  (D24a) 

( )2 2

21
0

2

3 2 0
ˆ

ˆ 2 2 0
4

0 0 0

H
t E

  

  


 − + +
 

= + − 
+  

  

S  (D24b) 

with 

22

1

41 2ˆ ln
2 2 2

HE
  ++

 = +
 
 

 (D24c) 

For the loading conditions provided in Eq. (D22), the strain components 

corresponding to virtual displacements given in Eq. (C9) can be calculated as 

( ) ( ) ( ) ( )0 0 0 0
ˆ ˆ ˆ ˆ 0xx zz xz yze e e e   = = = =  (D25a) 
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( ) ( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
ˆ t t t

yy y y y y y y ye v v v u u w w    = + + + =  (D25b) 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

0 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 ,

1
ˆ

2

1

2

1 1

2 2

xy y x

t t t

x y x y y x

t t t

y x x y y x

e u v

u u v v u u

v v w w w w





 

  

   

= +

+ + +

+ + + =

 (D25c) 

with 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0x z x yu u v v   = = = =  (D25d) 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0z x y zv w w w   = = = =  (D25e) 

( )0 , yu =  (D25f) 

By using the SPK stress tensor given in Eq. (D24b) and the strain components in 

Eq. (D25), the virtual value of strain energy density in classical continuum 

mechanics given in Eq. (C28b) can be calculated as 

2 2

2

41
2 ln 1

24

CCMW
  

  


 + +
 = +
 +  

 (D26) 

By assuming small shear strain condition, 1 , the virtual value of strain energy 

density in classical continuum mechanics given in Eq. (D26) can be simplified as 

3 5 6 7 8 31 1 1 1 1
( )

6 6 3 4 8

CCMW O          
 

 − − − − −  + 
 

 (D27) 

where 3( )O   represents third and higher-order terms which can be neglected. 

The volumetric strain in classical continuum mechanics for simple shear can be 

calculated by using the Hencky strain tensor given in Eq. (D24a) as 

0 0 0
ˆ ˆ ˆ 0CCM t H t H t H

xx yy zzE E E = + + =  (D28) 

 

D1.2.2. Strain Energy Density strain definition in PD form 

By using the relations given in Eq. (D22), the linear bond stretch in Eq. (D11) can 

be calculated as 

2 2 2 2

0 1 2 sin sin cos sin sin 1t s       = + + −  (D29) 

By assuming small shear strain, 1 , Eq. (D29) can be simplified as 

2

0 sin sin costs      (D30) 
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Therefore, the logarithmic bond stretch can be calculated as 

( )

( )

2

0

2
2 2

ln 1 sin sin cos

1
    sin sin cos sin sin cos

2

t

Hs    

       

 +

 − +

 (D31) 

By using the stretch definition given in Eq. (D31) and volumetric strain in Eq. 

(D28), the strain energy density in PD given in Eq. (3.3a) can be calculated as 

( ) ( )
2

2
2 2 0 0

( )

1

1
sin sin cos sin sin cos

2

N
NLPD

jk
j

W b V        
=

 
 − 

 
  (D32) 

By disregarding the PD interactions beyond the horizon of material point k , the 

strain energy density in Eq. (D32) can be recast as 

( ) ( )

2
2

2

0 3 0
2

2

0 0 0

sin sin cos

sin1
sin sin cos

2

NLPD

k
W b d d d

      

    
   

 
 
 −
  

    (D33a) 

or 

( )

2

2 5 2 2 0 3 0 3

0 0 0

sin sin cos ( )NLPD

k
W b d d d O

  

         +    (D33b) 

By performing integrations given in Eq. (D33b), the strain energy density in PD for 

the simple shear state can be calculated as 

( )
24 31

( )
15

NLPD

k
OW b  +  (D34) 

Therefore, the virtual value of the strain energy density in PD can be calculated as 

( )
34 2
( )

15

NLPD

k
OW b   +  (D35) 

 

D1.2.3. PD constants 

By comparing Eq. (D27) and Eq. (D35) and by neglecting third and higher-order 

terms, the following relations are obtained 

42

15
b   =  (D36a) 

or 

4

15

2
b




=  (D36b) 

Substituting PD constant, b  given in Eq. (D36b) into Eq. (D21), the PD constant, 

𝑎 can be determined as 

2
a

 −
=  (D37) 
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D2. PD constants for 2D structures 

Similar to 3D formulations, the PD constants for the 2D case can also be obtained 

by comparing the virtual values of strain energy density in classical continuum 

mechanics and peridynamics in two basic loading conditions: isotropic expansion 

and simple shear. The procedure for PD bond constants for 2D structures can be 

summarised as follows: 

The virtual values of SED and volumetric strain in classical continuum mechanics 

for isotropic expansion is calculated in Section D2.1.1. The PD representation of 

SED and volumetric strain for isotropic expansion is represented in Section D2.1.2. 

By comparing the PD and the classical continuum mechanics representations, the 

relations for PD constants and material constants are provided in Section D2.1.3. 

Similarly, the virtual values of SED in classical continuum mechanics and PD for 

simple shear loading are presented in Sections D2.2.1 and D2.2.2, respectively. By 

comparing the PD and the classical continuum mechanics representations, the 

relations for PD constants and material constants are provided in Section D2.2.3.  

 

D2.1. Loading 1: Isotropic expansion 

 

D2.1.1. Strain Energy Density and volumetric strain definitions in classical 

continuum mechanics  

The isotropic expansion can be obtained by assuming the following conditions 

0 , 0 ,

t t

x yu v = = ;  0 , 0 , 0t t

y xu v= =  (D38) 

Therefore, the deformation gradient tensor in 2D form can be defined as 

0

1 0

0 1

t




+ 
=  

+ 
X  (D39) 

By using the procedure in Appendix C3 for the calculation of SPK stress, the 

Hencky strain tensor can be obtained as 

( )

( )

( ) ( )

0

0 0

0

ˆ 0 0 ln 1 0 0

ˆ ˆ0 0 0 ln 1 0

ˆ 0 0 2 1 ln 10 0

t H

xx

t H t H

yy

t H

zz

E

E

E





 

  + 
   

= = +   
   − +   

E  (D40) 

where   is defined in Eq. (3.15). 

Similarly, by using the procedure given in Appendix C3, the SPK stress tensor can 

be obtained as 
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( ) ( )

( )

( ) ( )

( )

( )( ) ( )

( )
( )

2

0 2

4 1

2 ln 1
0 0

1

2 ln 1ˆ 0 0
1

2 2 1 ln 1
0 0

1

t



  



  



   


−

 + +
 
 +
 

+ + 
=  

+ 
 

+ − +
 
 + 

S  (D41) 

For the loading conditions provided in Eq. (D38), the strain components 

corresponding to virtual displacements given in Eq. (C9) can be calculated as 

( ) ( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 , 0 ,
ˆ 1t t

xx x x x x xe u u u v u     = + + = +  (D42a) 

( ) ( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 , 0 ,
ˆ 1t t

yy y y y y ye v v v u u     = + + = +  (D42b) 

( )0
ˆ 0xye =  (D42c) 

with 

( ) ( ) ( ) ( )0 , 0 , 0 , 0 ,, 0x y y xu v u v    = = = =  (D42d) 

Since ( )0 0
ˆ ˆ 0t

zz zzS e =  for both plane strain and plane stress conditions, the virtual 

value of SED in classical continuum mechanics can be calculated as 

( ) ( ) ( )0 0 0 0 0 0
ˆ ˆ ˆˆ ˆ ˆ2CCM t t t

xx xx yy yy xy xyW S e S e S e   = + +  (D43) 

By substituting the SPK stress tensor given in Eq. (D41) and strain components in 

Eq. (D42) into Eq. (D43), the virtual value of SED can be calculated as 

( )
( )

( )4 ln 1
1

CCMW


   


= + +
+

 (D44) 

The 2D volumetric strain in classical continuum mechanics can be calculated from 

Eq. (D40) as 

( )0 0 2ln 1CCM t H t H

xx yyE E = + = +  (D45) 

 

D2.1.2. Strain Energy Density and volumetric strain definitions in PD form 

The displacement components of material point j  can be expressed in terms of 

displacements of material point k  by using Taylor’s series expansion by ignoring 

the higher-order terms as 

( ) ( )0 0 0 0

( ) ( ) 0 ( ), ( ) ( ) 0 ( ), ( ) ( )

t t t t

j k k x j k k y j ku u u x x u y y= + − + −  (D46a) 

( ) ( )0 0 0 0

( ) ( ) 0 ( ), ( ) ( ) 0 ( ), ( ) ( )

t t t t

j k k x j k k y j kv v v x x v y y= + − + −  (D46b) 
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or  

( ) ( )

0 ( ), 0 ( ),0
cos sin

t t

j k t t

k x k y

u u
u u 



−
= +  (D46c) 

( ) ( )

0 ( ), 0 ( ),0
cos sin

t t

j k t t

k x k y

v v
v v 



−
= +  (D46d) 

with 

0 0

( ) ( )

0
cos

j kx x




−
=  (D46e) 

0 0

( ) ( )

0
sin

j kv v




−
=  (D46f) 

Meanwhile, the linear bond stretch, 0

t s  given in Eq. (3.5) can be rewritten as 

2 2

( ) ( ) ( ) ( )

0 0 0
1

t t t t

j k j kt
x x y y

s
 

   − −
= + −      

   

 (D47a) 

or 

( ) ( ) ( ) ( )
2 2

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0
1

t t t t

j k j k j k j kt
x x u u y y v v

s
 

   − + − − + −
   = + −
   
   

 (D47b) 

By using the relations in Eqs. (D46c-f), the linear bond stretch, 0

t s  given in Eq. 

(D47b) can be rewritten as 

( )

( )

2

0 ( ), 0 ( ),

0 2

0 ( ), 0 ( ),

cos cos sin
1

sin cos sin

t t

k x k yt

t t

k x k y

u u
s

v v

  
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+ +
= −

+ + +

 (D48) 

By substituting conditions given in Eq. (D38) into Eq. (D48), the PD linear bond 

stretch can be calculated as 

0

t s =  (D49) 

Therefore, the logarithmic bond stretch can be calculated as 

( )0 ln 1t

Hs = +  (D50) 

By using the logarithmic bond stretch given in Eq. (D50), the PD volumetric strain 

given in Eq. (3.7) can be rewritten as 

( ) 0

( ) ( )

1

ln 1
N

k j

j

d V 
=

= +  (D51) 
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By disregarding the PD interactions beyond the horizon of material point k , the 

expression for ( )k  in Eq. (D51) can be recast as 

( ) ( )
2

0 0 2

( )

0 0

ln 1 ln 1k dh d d d h

 

       = + = +   (D52) 

where h  represents the plate thickness on the initial configuration. 

Similarly, by substituting the logarithmic bond stretch given in Eq. (D50) and 

volumetric strain in Eq. (D45) into Eq. (3.3a), the strain energy density in PD in the 

isotropic expansion state can also be defined as 

( ) ( )2 2 0 0

( ) ( )

1

4 ln 1 ln 1
N

NLPD

k j

j

W a b V  
=

= + + +  (D53) 

By disregarding the PD interactions beyond the horizon of material point k , the 

expression for ( )

NLPD

kW  can be recast in the integral form as 

( ) ( )
2

2 2 0 2 0

( )

0 0

4 ln 1 ln 1NLPD

kW a bh d d

 

    = + + +   (D54a) 

or 

( ) ( )
3

2 2

( )

2
4 ln 1 ln 1

3

NLPD

k

h
W a b

 
 = + + +  (D54b) 

Therefore, the virtual value of strain energy density in PD can be calculated as 

( ) ( )
3

( )

4
8 ln 1 ln 1

1 3 1

NLPD

k

h
W a b

   
  

 
= + + +

+ +
 (D55) 

 

D2.1.3. PD constants 

By comparing Eq. (D45) and Eq. (D52), the PD constant, d  can be determined as 

2

2
d

h 
=  (D56) 

By comparing Eq. (D44) and Eq. (D55), the relationships between PD constants 

and engineering material constants can be obtained as 

3

2
3

h
a b

 
 + = +  (D57) 

 

D2.2. Loading 2: Simple shear 

D2.2.1. Strain Energy Density definition in classical continuum mechanics  

The simple shear in 2D structures can be obtained by assuming the following 

conditions 
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0 , 0 , 0 , 0t t t

x x yu v v= = = ; 0 ,

t

yu =  (D58) 

Therefore, the deformation gradient tensor can be defined as 

0

1

0 1

t
 

=  
 

X  (D59) 

By using the procedure in Appendix C3 for the calculation of SPK stress, the 

Hencky strain tensor and the SPK stress tensor can be obtained as 

1
0

2

2 0
ˆ

ˆ 2 0
4

0 0 0

H
t H E






− 
 

=
 

+
  

E  (D60a) 

( )2 2

21
0

2

3 2 0
ˆ

ˆ 2 2 0
4

0 0 0

H
t E

  
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

 − + +
 

= + − 
+  

  

S  (D60b) 

where 

22

1

41 2ˆ ln
2 2 2

HE
  ++

 = +
 
 

 (D60c) 

Note that in simple shear loading condition, the component 0
ˆ 0t H

zzE =  and 

( )0 0
ˆ ˆ 0t

zz zzS e =  in both plane stress and plane strain conditions.  

For the loading case provided in Eq. (D58), the strain components corresponding 

to virtual displacements can be defined as 

( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 , 0 ,
ˆ 0t t

xx x x x x xe u u u v v   = + + =  (D61a) 

( ) ( ) ( ) ( )0 0 , 0 , 0 , 0 , 0 ,
ˆ t t

yy y y y y ye v v v u u    = + + =  (D61b) 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1
ˆ

2

1

2 2

xy y x

t t t t

x y x y y x y x

e u v

u u v v u u v v

  


   

= +

+ + + + =

 (D61c) 

with 

( ) ( ) ( )0 , 0 , 0 , 0x x yu v v  = = =  (D61d) 

( )0 , yu =  (D61e) 

By substituting the SPK stress tensor given in Eq. (D60b) and the strain components 

given in Eq. (D61) into Eq. (D43), the virtual value of strain energy density in 

classical continuum mechanics can be calculated as 
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2 2

2

41
2 ln 1

24

CCMW
  
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

 + +
 = +
 +  

 (D62) 

Similar to 3D structures, by assuming that 1 , the virtual value of strain energy 

density in classical continuum mechanics given in Eq. (D62) can be simplified as 

3 5 6 7 8 31 1 1 1 1
( )

6 6 3 4 8

CCMW O          
 

 − − − − −  + 
 

 (D63) 

The volumetric strain in classical continuum mechanics for simple shear can be 

calculated by using the Hencky strain tensor given in Eq. (D60a) as 

0 0 0
ˆ ˆ ˆ 0CCM t H t H t H

xx yy zzE E E = + + =  (D64) 

 

D2.2.2. Strain Energy Density strain definition in PD form 

In peridynamics, by using conditions given in Eq. (D58), the linear stretch given in 

Eq. (D48) can be calculated for 1  as 

2 2

0 1 2 sin cos sin 1 sin cost s        = + + −   (D65) 

Therefore, the logarithmic stretch given in Eq. (3.4a) can be calculated as 

( ) ( )
2

0

1
ln 1 sin cos sin cos sin cos

2

t

Hs          +  −  (D66) 

By using the logarithmic bond stretch given in Eq. (D66) and the volumetric strain 

in Eq. (D64), the strain energy density in PD given in Eq. (3.3a) can be calculated 

as 

2 2 2 0 0 3

( ) ( )

1

sin cos ( )
N

NLPD

k j

j

W b V O    
=

 +  (D67) 

The strain energy density given in Eq. (D67) can be recast as 

2

2 2 2 0 2 0 3

( )

0 0

sin cos ( )NLPD

kW bh d d O

 

      = +   (D68) 

By performing integrations given in Eq. (D68), the strain energy density in PD for 

the simple shear state can be calculated as 

3

(

2 3

)

1
( )

12

NLPD

kW b h O    +  (D69) 

Therefore, the virtual value of the strain energy density in PD can be calculated as 

3 3

( )

1
( )

6

NLPD

kW b h O     +  (D70) 
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D2.2.3. PD constants 

By comparing Eq. (D63) and Eq. (D70), the following relations are obtained 

31

6
b h   =  (D71a) 

or 

3

6
b

h



 
=   (D71b) 

Substituting PD constant, b  given in Eq. (D71b) into Eq. (D57), the PD constant, 

a  can be determined as 

2
a

 −
=  (D72) 

 

D3. PD constants for 1D structures 

The procedure for PD bond constants for 1D structures can be summarised as 

follows: 

The virtual values of SED in classical continuum mechanics for uniform stretch is 

calculated in Section D3.1. The PD representation of SED and volumetric strain for 

uniform stretch is represented in Section D3.2. By comparing the PD and the 

classical continuum mechanics representations, the relations for PD constants and 

material constants are provided in Section. D3.3.  

 

D3.1. Strain Energy Density definitions in classical continuum mechanics  

 

To determine the PD constant, a bar can be assumed to be subjected to a uniform 

stretch of  

0 ,

t

xu =  (D73) 

which results in the deformation gradient as 

0 1t = +X  (D74) 

By using the procedure as given in Appendix C3, the Hencky strain tensor and the 

SPK stress tensor can be 

( )0
ˆ ln 1t H = +E  (D75a) 

( )
( )0 2

1ˆ ln 1
1

t E 


= +
+

S  (D75b) 

For the loading case provided in Eq. (D73), virtual strain values can be represented 

by using Eq. (C9) as 

( ) ( ) ( ) ( )0 0 , 0 , 0 ,
ˆ 1t

xx x x xe u u u      = + = + = +  (D76a) 
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with 

( )0 ,xu =  (D76b) 

Therefore, the virtual value of strain energy density in classical continuum 

mechanics can be calculated as 

( ) ( )0 0
ˆ ˆ ln 1

1

CCM t

xx xxW S e E


  


= = +
+

 (D77) 

 

D3.2. Strain Energy Density in Peridynamic form 

The relation between the relative coordinate of two material points in the initial and 

deformed configurations can be assumed as 

( )( )0 0

( ) ( ) ( ) ( ) 0  t t

j k j kx x x x k j− −     (D78a) 

or 

0 0

( ) ( ) ( ) ( )

0
  

t t

j k j k

t

x x x x
k j

 

− −
=    (D78b) 

Moreover, the linear bond stretch given in Eq. (3.5) can be rewritten for 1D 

structure as 

( ) ( ) ( ) ( ) ( ) ( )

0 0 0
1 1

t t t t t t
j k j k j kt

t

x x x x x x
s

  

− − −
= − = −  (D79) 

Therefore, by using the relation given in Eq. (D78b), the linear bond stretch given 

in Eq. (D79) can be rewritten as 

0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0
1

t t t t

j k j k j k j k j kt
x x u u x x u u x x

s
   

− + − − − −
= − =  (D80) 

Meanwhile, the displacement components of material point j  can be expressed in 

terms of displacements of material point k  by using Taylor’s series expansion by 

ignoring the higher-order terms as 

( )0 0

( ) ( ) 0 , ( ) ( ) ( )

t t t

j k x k j ku u u x x= + − +  (D81a) 

or 

( )0 0

( ) ( )( ) ( )

0 , ( )0 0

t t
j kj k t

x k

x xu u
u

 

−−
= +  (D81b) 

Therefore, by utilizing the relation given in Eq. (D81b), the linear bond stretch 

given in Eq. (D80) can be rewritten as 
2

0 0

( ) ( )

0 0 , ( ) 0 , ( )0

j kt t t

x k x k

x x
s u u



 −
= =  

 
 (D82) 
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By substituting the relation given in Eq. (D73) into Eq. (D82), the linear PD bond 

stretch can be obtained as 

0

t s =  (D83) 

Therefore, the logarithmic bond stretch can be obtained as 

( )0 ln 1t

Hs = +  (D84) 

By utilizing the logarithmic bond stretch given in Eq. (D84), the strain energy 

density given in Eq. (3.3b) can be written as 

( )2 0 0

( ) ( )

1

ln 1
N

NLPD

k j

j

W b V 
=

= +  (D85) 

The SED given in Eq. (D85) can be rewritten in an integral form with respected to 

the initial configuration as 

( ) ( )0 2 0 0

( )

0

2 ln 1NLPD

kW b A d



  = +  (D86) 

where 0 A  represents the cross-section area on the initial configuration. 

By performing integration given in Eq. (D86), the SED for the bar can be calculated 

as  

( ) ( )0 2 2

( ) ln 1NLPD

kW b A  = +  (D87) 

Therefore, the virtual value of strain energy density in PD can be calculated as 

( ) ( )0 2

( ) 2 ln 1
1

NLPD

kW b A


  


= +
+

 (D88) 

 

D3.3. PD constant 

By comparing Eq. (D77) and Eq. (D88), the PD bond constant can be defined as 

( )0 22

E
b

A 
=  (D89) 
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Appendix E. PD constants for nonlinear PD beam model 

In this section, the derivations to obtain the PD constants are presented. First, let k  

and j  be two material points in a beam structure. By using Taylor’s series 

expansion, a variable ( )0

( )jf x  at material point j  can be expressed in term of the 

variable ( )0

( )kf x  at material point k  as 

( ) ( ) ( ) ( )0 0 0 0 0

( ) ( ) ( ) ( ) ( )0j k j k kf x f x x x f x
x


= + − +


 (E1a) 

or 

( ) ( ) ( )0 0 0 0

( ) ( ) 0 , ( ) ( ) ( )j k x k j kf x f x f x x= + − +  (E1b) 

with 

( )0

0 , ( ) ( )0x k kf f x
x


=


 (E1c) 

In Eq. (E1), the parameter f  can be any variable. For instance, f  can be the 

displacements and rotations of material points, ( ), , , , ,x y zu v w    . 

If k  and j  are two different material points ( k j ), the distance between them in the 

undeformed configuration is nonzero (
0

( )( ) 0k j  ). Therefore, Eq. (E1b) can be 

rewritten as 

( ) ( )0 0 0 0
( ) ( ) ( ) ( )

0 , ( )0 0

( )( ) ( )( )

j k j k

x k

k j k j

f x f x x x
f

 

− −
= +  (E2) 

By using the relations given in Eq. (3.50h), Eq. (E2) can be rewritten as 

( ) ( )0 0

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

j k

x k k j

k j

f x f x
f 



−
= +  (E3) 

Replacing f  variable in Eq. (E3) by displacements, rotations, and director vectors 

at time t  of material points k  and j  results in the following relations 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

j k t

x k k j

k j

u u
u 



−
= +  (E4a) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

j k t

x k k j

k j

v v
v 



−
= +  (E4b) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

j k t

x k k j

k j

w w
w 



−
= +  (E4c) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

x j x k t

x x k k j

k j

 
 



−
= +  (E4d) 
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( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

y j y k t

y x k k j

k j

 
 



−
= +  (E4e) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

z j z k t

z x k k j

k j

 
 



−
= +  (E4f) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

sx j sx k t

sx x k k j

k j

V V
V 



−
= +  (E4g) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

sy j sy k t

sy x k k j

k j

V V
V 



−
= +  (E4h) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

sz j sz k t

sz x k k j

k j

V V
V 



−
= +  (E4i) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

tx j tx k t

tx x k k j

k j

V V
V 



−
= +  (E4j) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

ty j ty k t

ty x k k j

k j

V V
V 



−
= +  (E4k) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

t t

tz j tz k t

tz x k k j

k j

V V
V 



−
= +  (E4l) 

Similarly, replacing f  in Eq. (E3) by incremental displacements and incremental 

rotations (from time t  to time t t+  ) of material points k  and j  results in the 

following relations 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

j k

x k k j

k j

u u
u 



−
= +  (E5a) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

j k

x k k j

k j

v v
v 



−
= +  (E5b) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

j k

x k k j

k j

w w
w 



−
= +  (E5c) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

x j x k

x x k k j

k j

 
 



−
= +  (E5d) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

y j y k

y x k k j

k j

 
 



−
= +  (E5e) 

( ) ( ) 0

0 , ( ) ( )( )0

( )( )

z j z k

z x k k j

k j

 
 



−
= +  (E5f) 
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Therefore, by using the relation given in Eq. (E4) and Eq. (E5), the terms, 0 1

t PDa , 

0 2

t PDa , 0 3

t PDa  given in Eq. (3.50d-f) can be rewritten as 

( )
2

0

0 1 0 , ( ) ( )( ) 0 , ( )

t PD t t

x k k j x ka u u= =  (E6a) 

( )
2

0

0 2 0 , ( ) ( )( ) 0 , ( )

t PD t t

x k k j x ka v v= =  (E6b) 

( )
2

0

0 3 0 , ( ) ( )( ) 0 , ( )

t PD t t

x k k j x ka w w= =  (E6c) 

with 

( )
2

0 0
2 ( ) ( )0

( )( ) 0

( )( )

1
j k

k j

k j

x x




 −
= =  
 

 (E6d) 

Similarly, by using the relation given in Eq. (E4) and Eq. (E5), the terms, 0 4

t PDa , 

0 5

t PDa , 0 6

t PDa , 0 7

t PDa , 0 8

t PDa , 0 9

t PDa  given in Eq. (3.52f-k) can be rewritten as 

0 4 0 , ( )

t PD t

sx x ka V= ;  0 5 0 , ( )

t PD t

sy x ka V= ;  0 6 0 , ( )

t PD t

sz x ka V=  (E7a) 

0 7 0 , ( )

t PD t

tx x ka V= ;  0 8 0 , ( )

t PD t

ty x ka V= ;  0 9 0 , ( )

t PD t

tz x ka V=  (E7b) 

Therefore, the terms, 0 10

t PDa , 0 11

t PDa , 0 12

t PDa  given in Eq. (3.50b) and Eq. (3.52b-c) 

can be obtained as 

( ) ( ) ( )( )2 2 2

0 10 0 1 0 1 0 2 0 3

1

2

t PD t PD t PD t PD t PDa a a a a= + + +  (E8a) 

( ) ( )( ) ( )( )0 11 0 4 0 1 0 2 0 5 0 3 0 61t PD t PD t PD t PD t PD t PD t PDa a a a a a a= + + +  (E8b) 

( )( ) ( )( ) ( )( )0 12 0 7 0 1 0 2 0 8 0 3 0 91t PD t PD t PD t PD t PD t PD t PDa a a a a a a= + + +  (E8c) 

Moreover, by assuming that the beam is discretized with fine mesh, material points 

k  and j  are very close to each other within the horizon size. Therefore, the 

following approximation can be assumed 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( );   ;    
2 2 2

t t t t t t

sx j sx k sy j sy k sz j sz kt t t

sx k sy k sz k

V V V V V V
V V V

+ + +
    (E9a) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( );      ;      
2 2 2

t t t t t t

tx j tx k ty j ty k tz j tz kt t t

tx k ty k tz k

V V V V V V
V V V

+ + +
    (E9b) 

Therefore, by using the relations given in Eq. (E9), the terms, 0 13

t PDa , 0 14

t PDa  and 

0 15

t PDa  given in Eq. (3.54b-c) and Eq. (3.56b) can be approximated as 

( ) ( ) ( )0 13 0 1 ( ) 0 2 ( ) 0 3 ( )1t PD t PD t t PD t t PD t

sx k sy k sz ka a V a V a V= + + +  (E10a) 
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( ) ( ) ( )0 14 0 1 ( ) 0 2 ( ) 0 3 ( )1t PD t PD t t PD t t PD t

tx k ty k tz ka a V a V a V= + + +  (E10b) 

( ) ( ) ( )0 15 0 8 ( ) 0 7 ( ) 0 9 ( )

t PD t PD t t PD t t PD t

sy k sx k sz ka a V a V a V= + +  (E10c) 

By comparing Eq. (E6-8), Eq. (E10) to Eq. (3.44e-m), it can be observed that the 

terms, 0 1 0 15,...,t PD t PDa a  in PD and the terms 0 1 0 15,...,t ta a  in classical continuum 

mechanics are equal to each other.  

Similarly, by using the relations given in Eq. (E4-5), the terms 0 10

PDa , 0 11

PDa , 0 12

PDa  

given in Eq. (3.50c) and Eq. (3.52d-e) can be rewritten as 

( )( ) ( ) ( )0 10 0 , ( ) 0 1 0 2 0 , ( ) 0 3 0 , ( )1PD t PD t PD t PD

x k x k x ka u a a v a w= + + +  (E11a) 

( )( ) ( )( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

0 4 0 , ( ) 0 5 0 , ( ) 0 6 0 , ( )

0 1 ( ) ( ) ( ) ( )0

0 11

0 2 ( ) ( ) ( ) ( )0

0 3 ( ) ( ) ( ) ( )0

1

t PD t PD t PD

x k x k x k

t PD t t

y k sz k z k sy k

PD

t PD t t

z k sx k x k sz k

t PD t t

x k sy k y k sx k

a u a v a w

a V V
x

a
a V V

x

a V V
x

 

 

 

 + +
 
 
+ + − 


 =  
+ −
 
 

 + − 
 

 (E11b) 

( )( ) ( )( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

0 7 0 , ( ) 0 8 0 , ( ) 0 9 0 , ( )

0 1 ( ) ( ) ( ) ( )0

0 12

0 2 ( ) ( ) ( ) ( )0

0 3 ( ) ( ) ( ) ( )0

1

t PD t PD t PD

x k x k x k

t PD t t

y k tz k z k ty k

PD

t PD t t

z k tx k x k tz k

t PD t t

x k ty k y k tx k

a u a v a w

a V V
x

a
a V V

x

a V V
x

 

 

 

 + +
 
 
+ + − 


 =  
+ −
 
 

 + − 
 

 (E11c) 

By using the relations given in Eq. (E4-5) and Eq. (E9), the terms 0 13

PDa , 0 14

PDa  and 

0 15

PDa  given in Eq. (3.54d-e) and Eq. (3.56c) can be rewritten as 

( ) ( ) ( )

( )( )

( )( )

( )( )

( ) 0 , ( ) ( ) 0 , ( ) ( ) 0 , ( )

0 1 ( ) ( ) ( ) ( )

0 13

0 2 ( ) ( ) ( ) ( )

0 3 ( ) ( ) ( ) ( )

1

t t t

sx k x k sy k x k sz k x k

t PD t t

y k sz k z k sy k
PD

t PD t t

z k sx k x k sz k

t PD t t

x k sy k y k sx k

V u V v V w

a V V
a

a V V

a V V

 

 

 

 + +
 
 + + −
 =
 + −
 
 + −
 

 (E12a) 

 

( ) ( ) ( )

( )( )

( )( )

( )( )

( ) 0 , ( ) ( ) 0 , ( ) ( ) 0 , ( )

0 1 ( ) ( ) ( ) ( )

0 14

0 2 ( ) ( ) ( ) ( )

0 3 ( ) ( ) ( ) ( )

1

t t t

tx k x k ty k x k tz k x k

t PD t t

y k tz k z k ty k
PD

t PD t t

z k tx k x k tz k

t PD t t

x k ty k y k tx k

V u V v V w

a V V
a

a V V

a V V

 

 

 

 + +
 
 + + −
 =
 + −
 
 + −
 

 (E12b) 
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( )( )

( )( )

( )( )

( ) ( ) ( ) ( ) 0 , ( )

0 15 ( ) ( ) ( ) ( ) 0 , ( )

( ) ( ) ( ) ( ) 0 , ( )

t t t t

ty k sz k tz k sy k x x k

PD t t t t

tz k sx k tx k sz k y x k

t t t t

tx k sy k ty k sx k z x k

V V V V

a V V V V

V V V V







 −
 
 = + −
 
 + −
 

 (E12c) 

By comparing Eq. (E11-E12) with Eq. (3.44n-s), it can be observed that the terms, 

0 10 0 11 0 15, ,...,PD PD PDa a a  in PD and the terms 0 10 0 11 0 15, ,...,a a a  in classical continuum 

mechanics are equal to each other.  

 

E1. PD constant for axial deformations 

By disregarding the PD interactions beyond the horizon, the PD strain energy 

density for axial deformations given in Eq. (3.50a) can be rewritten in integral form 

as 

( ) ( )( )( ) ( )0 0 0

0 10 0 10 ( )( ) ( )( )
0

NLPD t PD PD

axial ax k j k jW A C a a d


 =   (E13) 

By performing the integrations in Eq. (E13), the nonlinear PD strain energy density 

for axial deformations can be rewritten as 

( ) ( )( )0 2

0 10 0 10

1

2

NLPD t PD PD

axial axW A C a a=  (E14) 

As proved in the previous section, the terms 0 10

t PDa , 0 10

PDa  in PD and 0 10

ta , 
0 10a  in 

classical continuum mechanics are equal to each other. Therefore, by comparing 

Eq. (3.50a) and Eq. (E14), the PD bond constant for axial deformations, axC  can 

be obtained as 

( )0 2

2
ax

E
C

A 
=  (E15) 

 

E2. PD constants for bending deformations 

By disregarding interactions beyond the horizon of material point k , the PD strain 

energy density for bending deformations given in Eq. (3.52a) can be rewritten as 

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

0 0 0

0 11 0 11 ( )( ) ( )( )
0

0 0 0

0 12 0 12 ( )( ) ( )( )
0

           

NLPD t PD PD

bending bz k j k j

t PD PD

by k j k j

W C A a a d

C A a a d





 

 

=

+




 (E16) 

By performing the integrations in Eq. (E16), the SED for bending deformations can 

be rewritten as 

( ) ( )( ) ( ) ( )( )0 2 0 2

0 11 0 11 0 12 0 12

1 1

2 2

NLPD t PD PD t PD PD

bending bz byW C A a a C A a a = +  (E17) 
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As proved in the previous section, the terms 0 11

t PDa , 0 11

PDa , 0 12

t PDa , 0 12

PDa  in PD and 

0 11

ta , 0 11a , 0 12

ta , 0 12a  in classical continuum mechanics are equal to each other. 

Therefore, by comparing Eq. (3.44b) and Eq. (E17), the PD bond constants for 

bending deformations, byC  and bzC , can be represented as 

( )
2

0 2

2 yy

by

EI
C

A 
=  (E18a) 

( )
2

0 2

2 zz
bz

EI
C

A 
=  (E18b) 

E3. PD constants for shear deformations 

By disregarding interactions beyond the horizon of material point k , the PD strain 

energy density for bending deformations given in Eq. (3.54a) can be rewritten as 

( ) ( )( ) ( )( ) ( ) ( )0 0 0

0 13 0 13 0 14 0 14 ( )( ) ( )( )
0

NLPD t PD PD t PD PD

shear s k j k jW C A a a a a d


  = +
   (E19) 

By performing the integrations in Eq. (E19), the SED for shear deformations can 

be rewritten as 

( ) ( )( ) ( )( )0 2

0 13 0 13 0 14 0 14

1

2

NLPD t PD PD t PD PD

shear sW C A a a a a  = +
 

 (E20) 

As proved in the previous section, the terms 0 13

t PDa , 0 13

PDa , 0 14

t PDa , 0 14

PDa  in PD and 

0 13

ta , 0 13a , 0 14

ta , 0 14a  in classical continuum mechanics are equal to each other. 

Therefore, by comparing Eq. (3.44c) and Eq. (E20), the PD bond constants for shear 

deformations, shC , can be represented as 

( )0 2

2 s
s

k G
C

A 
=  (E21) 

E4. PD constants for torsional deformations 

By disregarding interactions beyond the horizon of material point k , the PD strain 

energy density for bending deformations given in Eq. (3.56a) can be rewritten as 

( ) ( )( )( ) ( )0 0 0

0 15 0 15 ( )( ) ( )( )
0

NLPD t PD PD

torsion t k j k jW C A a a d


 =   (E22) 

By performing the integrations in Eq. (E22), the nonlinear PD strain energy density 

for torsional deformations can be rewritten as 

( ) ( )( )0 2

0 15 0 15

1

2

NLPD t PD PD

torsion tW C A a a=  (E23) 
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As proved in the previous section, the terms 0 15

t PDa , 0 15

PDa  in PD and 0 15

ta , 0 15a  in 

classical continuum mechanics are equal to each other. Therefore, by comparing 

Eq. (3.44d) and Eq. (E23), the PD bond constants for torsional deformations, tC  

can be obtained as 

( )
2

0 2

2 t
t

k G
C

A 
=  (E24) 
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Appendix F. PD constants for nonlinear PD model for plates 

F1. PD constants for in-plane deformations 

In this section, the derivations to obtain the PD constants for in-plane deformations 

are presented. First, let k  and j  be two material points in a two-dimensional 

structure. By using Taylor’s series expansion, a variable ( )0 0

( ) ( ),j jf x y  at material 

point j  can be expressed in term of the variable ( )0 0

( ) ( ),k kf x y  at material point k  

as 

( ) ( ) ( )

( )

0 0 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

0 0 0 0

( ) ( ) ( ) ( )0

, , ( , )

                          ( , )

j j k k j k k k

j k k k

f x y f x y x x f x y
x

y y f x y
y


 = + −  


 + − +  

 (F1a) 

or 

( ) ( )0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 , ( ) ( ) ( )

0 0

0 , ( ) ( ) ( )

, ,

                        

j j k k x k j k

y k j k

f x y f x y f x x

f y y

 = + − 

 + − + 

 (F1b) 

with 

( )0 0

0 , ( ) ( ) ( )0
( , )x k k kf f x y

x


=


 (F1c) 

and 

( )0 0

0 , ( ) ( ) ( )0
( , )y k k kf f x y

y


=


 (F1d) 

In Eq. (F1), the parameter f  can be any variable. For instance, f  can be the 

displacements and rotations of material points.  

If k  and j  are two different material points ( k j ), the distance between them in the 

undeformed configuration is nonzero (
0 0  ). Therefore, Eq. (F1b) can be rewritten 

as 

( ) ( )0 0 0 0 0 0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 , ( ) 0 , ( )0 0 0

, ,j j k k j k j k

x k y k

f x y f x y x x y y
f f

  

− − −
= + +  (F2) 

By using the relations given in Eq. (3.104), Eq. (F2) can be rewritten as 

( ) ( )0 0 0 0

( ) ( ) ( ) ( )

0 , ( ) 0 , ( )0

, ,
cos sin

j j k k

x k y k

f x y f x y
f f 



−
= + +  (F3) 

where the angle   represents the angle between the 0 x  axis in the undeformed 

configuration and the line connecting material points k  and j .  

Replacing f  variable in Eq. (F3) by displacements and rotations at time t  of 

material points k  and j  results in the following relations 
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( ) ( )

0 , ( ) 0 , ( )0
cos sin

t t

j k t t

x k y k

u u
u u 



−
= + +  (F4a) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

t t

j k t t

x k y k

v v
v v 



−
= + +  (F4b) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

t t

j k t t

x k y k

w w
w w 



−
= + +  (F4c) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

t t

x j x k t t

x x k x y k

 
   



−
= + +  (F4d) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

t t

y j y k t t

y x k y y k

 
   



−
= + +  (F4e) 

Similarly, replacing f  in Eq. (F3) by incremental displacements and incremental 

rotations (from time t  to time t t+  ) of material points k  and j  results in the 

following relations 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

j k

x k y k

u u
u u 



−
= + +  (F5a) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

j k

x k y k

v v
v v 



−
= + +  (F5b) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

j k

x k y k

w w
w w 



−
= + +  (F5c) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

x j x k

x x k x y k

 
   



−
= + +  (F5d) 

( ) ( )

0 , ( ) 0 , ( )0
cos sin

y j y k

y x k y y k

 
   



−
= + +  (F5e) 

Therefore, by using the relations given in Eqs. (F4-5), the bond stretches given in 

Eqs. (3.102b-c) can be rewritten as 

( ) ( )

( )

2 2

0 ( )( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2 2

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

cos sin cos sin cos sin

cos sin cos sin1
              

2 cos sin

t t t t t

ip k j x k y k x k y k

t t t t

x k y k x k y k

t t

x k y k

s u u v v

u u v v

w w

     

   

 

= + + +

 + + +
 +
 
+ +  

 (F6a) 
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( )( )

( )( )

2 2

0   ( )( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 ,

cos sin cos sin cos sin

cos sin cos sin

              cos sin cos sin

cos

ip k j x k y k x k y k

t t

x k y k x k y k

t t

x k y k x k y k

t t

x k

s u u v v

u u u u

v v v v

w w

     

   

   



= + + +

+ +

+ + + +

+ +( )( )( ) 0 , ( ) 0 , ( )sin cos siny k x k y kw w  

 
 
 
 
 +
 

 (F6b) 

Therefore, by using the bond stretches given in Eq. (F6) and by disregarding the 

interactions beyond the horizon size of a material point, the dilatations given in Eqs. 

(3.102d-e) can be rewritten as 

( )

( )

( )

2

0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

2 2
0 0

0 ( ) 0 , ( ) 0 , ( )
0 0

2

0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

cos sin cos

sin cos sin

1
+ cos sin

2

1
cos sin

2

1
cos sin

2

t t

x k y k

t t

x k y k

t t t

k ip x k y k

t t

x k y k

t t

x k y k

u u

v v

d h u u d d

v v

w w

 

  

  

     

 

 

 
 

+ 
 
+ + 
 
 = +
 
 
+ + 
 
 
+ +  

  (F7a) 

( )( )

( )( )

( )

2

0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

0 ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( )

cos sin cos

sin cos sin

cos sin cos sin

cos sin cos sin

cos sin co

x k y k

x k y k

t t

k ip x k y k x k y k

t t

x k y k x k y k

t t

x k y k x k

u u

v v

d h u u u u

v v v v

w w w

  

  

    

   

 

+

+ +

= + + +

+ + +

+ + ( )

2
0 0

0 0

0 , ( )s siny k

d d

w

 

  

 

 
 
 
 
 
 
 
 
 +
 

   (F7b) 

By performing the integrations in Eq. (F7), the dilatations can be calculated as 

( )
2 2 22

0 , ( ) 0 , ( ) 0 , ( )

0 ( ) 0 , ( ) 0 , ( ) 2 2 2

0 , ( ) 0 , ( ) 0 , ( )

1

2 2

t t t

x k y k x kt t t

k ip x k y k t t t

y k x k y k

u u vh
d u v

v w w

 


  + +
  = + +

 + + +   

 (F8a) 

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )
2

0 ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2

t t

x k y k x k x k y k y k

t t

k ip x k x k y k y k

t t

x k x k y k y k

u v u u u u

h
d v v v v

w w w w

 


 + + +
 

= + + 
 
+ +  

 (F8b) 

By comparing Eq. (F8) with Eqs. (3.95d-e), the PD constant for dilatations can be 

obtained as 

2

2
ipd

h 
=  (F9) 

Similarly, by disregarding the interactions beyond the horizon size of material point 

k , the nonlinear strain energy per unit area for the in-plane deformations given in 

Eq. (3.102a) can be rewritten in the integral form as 
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( )( ) ( )( )
2

0 2 0

( ) 0 ( ) 0 ( ) 0 ( )( ) 0 ( )( )
0 0

2 2NLPD t t

ip k ip k k ip ip k j ip k jW a b h s s d d
 

    = +    (F10) 

By utilizing the bond stretches in Eq. (F6) and by performing the integrations given 

in Eq. (F10), the nonlinear strain energy per unit area for the in-plane deformations 

can be calculated as 

( ) 0 ( ) 0 ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )0 , ( ) 0 , ( )

0 ( ) 0 ( )

0 , ( ) 0 , ( ) 0 ,

3 0 , ( ) 0 , ( )

2

3

6

NLPD t

ip k ip k k

tt t

y k x k x k y ky k x k

t tt t

y k x k x k y kx k y kt

k k t t

x k y k
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x k y k

ip
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u v u uu v

u u v vu u

v v v

w w
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 

 

 
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  + ++
 
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  + 
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( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2 2

0 , ( ) 0 , ( ) 0 , ( )0 , ( ) 0 , ( )

0 , ( ) 2

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , (

0 , ( )

1

2

2

1

2

t

y k x k

t t

x k y k y k x k

tt t

x k x k x ky k y kt

y k t t t

y k x k x k x k x k

t

x kt

x k

v

w w w w

u u uu v
v

w v v w w

u
u

 
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 
 
 
  + + 

    ++
   +

    + + +    
−

+ +

2 2

0 , ( ) 0 , ( ) 0 , ( )) 0 , ( )

2

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

tt

y k y k y kx k

t t t

x k y k y k y k y k

v u uv

w v v w w

 
 
 
 
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 
 
 

  
  
  
  
     ++
     

     + + +       

 (F11a) 

or 

3

( ) 0 ( ) 0 ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0

3 0 , ( ) 0 , ( )

2
2

6

NLPD t

ip k ip ip k k

tt t

y k x k x k y ky k x k

t tt t

y k x k x k y kx k y k
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x k y k

t t

x k y k

ip
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W a b

u v u uu v

u u v vu u

v v v

w w
h

b

 
 

 

 
= + 
 

  + ++
 

+ ++ 
 
+ + 

  + 
+

, ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( )

0 ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( )

0 ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2

t

y k x k

t t

x k y k y k x k

t

x k x k x kt

yy k t t

x k x k x k x k

t

y k y k y kt

xx k t t

y k y k y k y k

v

w w w w

u u u

v v w w

v u u

v v w w





 
 
 
 
 
  + + 

 +
 
 + + 

−
 +

+
+ +

 
 
 
 
 
 
 
 

  
  
  
  

  
        

 (F11b) 

where 0

t

xx  and 0

t

yy  are defined in Eqs. (3.95b-c). 

By comparing Eq. (F11b) with Eq. (3.96b), the following relations are obtained 

( )

3

6 2 1
ip

h Eh
b

 


=

+
 (F12a) 

3

22 1
ip ip

h Eh
a b

 


+ =

−
 (F12b) 

Therefore, the PD constants for in-plane deformations can be obtained as 
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( ) 3

3

1
ip

E
b

 
=

+
 (F13a) 

( )
( )

2
3 1

4 1
ip

Eh
a 


= −

−
 (F13b) 

F2. PD constant for shear deformations 

In this section, the determination of the PD constant, shC , for shear deformations 

is presented. As shown in Fig. 6.3, ( ) ( )
ˆ ˆ,  t t

k j   and ( ) ( )
ˆ ˆ,  k j   are rotations and 

incremental rotations around the line of interaction between material points k  and 

j . The relative values of these rotations and incremental rotations represent the 

torsional angles (twisting angles) of the bond between material points k  and j . 

Therefore, by assuming the PD model is discretized with a fine mesh and the 

torsional deformations of the bond between material points k  and j  are 

insignificant, the approximation ( ) ( )
ˆ ˆt t

k j   and ( ) ( )
ˆ ˆ

k j   can be assumed [61]. 

Thus, the nonlinear PD strain energy per unit area for the shear deformations given 

in Eq. (3.106a) can be rewritten as 

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( )0 0
1

1 ˆ ˆ
2

t tN
j k j kNLPD t

sh k s k k j

j

w w w w
W C V  

 =

 − − 
= − −   

  
  (F14) 

By using Eqs. (3.106b-c), the nonlinear PD strain energy per unit area for the shear 

deformations given in Eq. (F14) can be rewritten as 

( )

( )

( )

( )

( ) ( )( ) ( )

0 0

( )( ) ( )( )

0 0

( ) ( ) ( ) ( ) ( )( ) ( )

1

( ) ( ) ( )

1
sin cos cos cos

2

sin sin cos sin

t t

j kj k

k j k j
N

NLPD t t

sh k s y k y k y k k j j

j
t t

x k x k x k

w ww w

W C V

 

     

    
=

  −−  
+ +  

  
  

= + +  
  
− −  

  
  

  (F15) 

By using the relation given in Eq. (F4c) and Eq. (F5c), and by disregarding the 

interactions beyond the horizon size of material point k , Eq. (F15) can be rewritten 

as 

( )

( )

( )

( )

2
0 , ( ) ( ) ( )0 , ( ) ( ) 0 2 0

( )

0 0 0 , ( ) ( ) 0 , ( ) ( ) ( )
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     
  

    

   ++
  =
  + − + −
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   (F16) 

By performing the integrations in Eq. (F16), the nonlinear PD strain energy per unit 

area for the shear deformations can be obtained as 

( ) ( )( )

( ) ( )( )

3
0 , ( ) ( ) 0 , ( ) ( ) ( )

( )

0 , ( ) ( ) 0 , ( ) ( ) ( )

sin cos1

2 3 sin cos
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x k y k x k y k y k
NLPD
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t t t
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   
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 + +
 =
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 (F17) 
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By comparing Eq. (F17) with Eq. (3.96c), the PD constant for shear deformations 

can be obtained as 

( ) 3

3

1

s
s

k E
C

 
=

+
 (F18) 

 

F3. PD constants for bending deformations 

By using the relations given in Eqs. (F4d-e) and Eqs. (F5d-e), the bond stretches 

for bending deformations given in Eqs. (3.108d-e) can be rewritten as 

2

0 ( )( ) 0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

cos sin cos

              sin cos sin

t t t

b k j y x k y y k

t t
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 (F19a) 

2

0 ( )( ) 0 , ( ) 0 , ( )

2
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x x k x y k

s     

    

= − −

+ +
 (F19b) 

By using Eq. (F19) and disregarding the interactions beyond the horizon of material 

point k , the terms given in Eqs. (3.108b-c) can be expressed as 

22
0 , ( ) 0 , ( ) 0 0

0 ( ) 2
0 0 0 , ( ) 0 , ( )

cos sin cos

sin cos sin

t t

y x k y y kt
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Performing the integrations given in Eq. (F20) results in 

( )
2

0 ( ) 0 , ( ) 0 , ( )
2

t t t

b k b y x k x y k

h
d
 

  = − +  (F21a) 

( )
2

0 ( ) 0 , ( ) 0 , ( )
2

b k b y x k x y k

h
d
 

  = − +  (F21b) 

By comparing Eq. (F21) with Eqs. (3.97c-d), the PD constant bd  can be obtained 

as 

2

2
bd

h 
=  (F22) 

Similarly, by using Eq. (F19) and by disregarding the interactions beyond the 

horizon of material point k , the nonlinear PD strain energy per unit area for bending 

formulations given in Eq. (3.108a) can be expressed as 

( )( )
2

0 2 0

( ) 0 ( ) 0 ( )

0 0

2 2NLPD t

b k b b k b k bW a b h AB d d

 

    = +    (F23a) 

with 
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2

0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

cos sin cos

sin cos sin

t t

y x k y y k

t t

x x k x y k

A
    

    

 − −
 =
 + + 

 (F23b) 

and 

2

0 , ( ) 0 , ( )

2

0 , ( ) 0 , ( )

cos sin cos

sin cos sin

y x k y y k

x x k x y k

B
    

    

 − −
 =
 + + 

 (F23c) 

By performing the integration in Eq. (F23a), the nonlinear PD strain energy per unit 

area for bending formulations can be obtained as 

( )( )

( )( )

( )( )

( ) 0 ( ) 0 ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )
3

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2

3

           
6

2 2

NLPD t

b k b b k b k

t t

y x k x y k y x k x y k

t t

b x x k y y k x x k y y k

t t

x y k y x k y x k x y k

W a

h
b

 

   

 
   

   

=

 − −
 
 + + − −
 
 + +
 

 (F24a) 

or 

( )( )

( )( )

( )( )

( ) 0 ( ) 0 ( )

0 ( ) 0 ( )
3

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

0 , ( ) 0 , ( ) 0 , ( ) 0 , ( )

2

3
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2 2
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t

b k b k
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b x x k y y k x x k y y k

t t

x y k y x k y x k x y k

W a

h
b

 

 

 
   

   

=

 
 
 + + − −
 
 + +
 

 (F24b) 

Therefore, by comparing Eq. (F24b) with Eq. (3.97b), the following relations 

between PD constants for bending deformations and material constants can be 

obtained as 

( )

3 3

6 24 1
b

h Eh
b
 


=

+
 (F25a) 

( )

3 3

2
2

2 12 1
b b

h Eh
a b

 


+ =

−
 (F25a) 

Therefore, the PD constants for bending deformations can be obtained as 

( )

( )

3

2

3 1

48 1
b

Eh
a





−
=

−
 (F26a) 

( )

2

34 1
b

Eh
b

 
=

+
 (F26b) 
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Appendix G. Calibration for the parameter 𝑨𝟐 in the PD fatigue model and 

implicit solution for fatigue simulations 

G1. Calibration for parameter 𝑨𝟐 

In this section, details of the calibration for the parameter 2A  used in Section 7.5.1 

are presented. The calibration for the parameter 2A  is conducted by the following 

steps; 

Step 1: Assume a trial value for 2A  as: 2(trial) 1174A =   

Step 2: Conduct a PD fatigue simulation with the trial value 2(trial) 1174A =  and 

calculate ( )
(trial)

/dq dN  and (trial)K .  

Step 2.1. Calculate ( )
(trial)

/dq dN  

First, by using the PD results for 2(trial) 1174A = , the crack length, (trial)q  versus load 

cycle, (trial)N  is obtained as shown in red in Fig. G1.  Later, a smoothed curve for 

the PD results is obtained as shown in blue in Fig. G1. Finally, ( )
(trial)

/dq dN is 

numerically obtained from the smoothed curve as 

( ) (trial)

(trial)
(trial)

/
q

dq dN
N


=


 (G1) 

 

Step 2.2. Calculate (trial)K  

By using the data of the crack length, (trial)q  obtained from the trial PD fatigue 

simulation and by assuming that the material is linear-elastic, the stress intensity 

factor (SIF) range, (trial)K  can be calculated as [157] 

( )
( )2 3 4

(trial) 3/2

2
0.886 4.64 13.32 14.72 5.6

1

P q
K q q q q

h W q

 +
 = + − + −

−
 (G2a) 

with  

(trial)q
q

W
=  (G2b) 

max (1 )P P R = −  (G2b) 

 

Step 3: Plot the scatter data of ( )
(trial)

/dq dN  versus (trial)K  in the logarithmic scale 

and find the best fit Paris law equation for the scatter data: ( ) (trial)(trial)
/ Mdq dN C K=   

First, by using the ( )
(trial)

/dq dN  and (trial)K  calculated in Eq. (G1) and  Eq. (G2a), 

respectively; the scatter data ( )
(trial)

/dq dN  versus ( )
(trial)

K , shown in blue in Fig. 



290 

 

G2, is plotted in the logarithmic scale. From this scatter data, the best fit curve, 

shown in black in Fig. G2, is obtained as 

( ) 7 2.6183

(trial)
/ 4.8295 10dq dN K−=    (G3) 

 

Fig. G1. Fatigue crack length, (trial)q versus  load cycle, (trial)N  (the experimental 

data is obtained from [136]) 

 

Fig. G2. Fatigue crack growth curve for  ( )
(trial)

/dq dN versus ( )
(trial)

K   with 

2(trial) 1174A =  (the experimental data is obtained from [136]) 

Step 4: Calibrate the value for 2A  
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As can be found in [136], the best fit Paris law equation for the experimental results 

is written as 

( ) 7 2.6183

(experiment)
/ 4.34 10dq dN K−=    (G4) 

Therefore, the value of the parameter 2A  can be estimated as 

7 2.6183 7

2 2(trial) 7 2.6183 7

4.34 10 4.34 10
1174 1055

4.8295 10 4.8295 10

K
A A

K

− −

− −

  
= = =

  
 (G5) 

 

G2. Implicit solver for static conditions in ordinary state-based peridynamics 

In this section, the implicit solver for ordinary state-based peridynamics for static 

conditions is presented. First, the PD equations of motion for static conditions given 

in Eq. (4.17) can be rewritten as 

( )( )( ) ( ) ( ) ( )( ) ( ) ( )

1

1
2 4 cos

N

k j k j k j j x k

j

ad bs V b   
=

 
− + + = 

 
  (G6a) 

( )( )( ) ( ) ( ) ( )( ) ( ) ( )

1

1
2 4 sin

N

k j k j k j j y k

j

ad bs V b   
=

 
− + + = 

 
  (G6b) 

By using the dilatation given in Eq. (2.63) without consideration of temperature 

effects and the bond stretch given in Eq. (2.65), the equations of motion given in 

Eq. (G6) can be rewritten in a matrix form as 

( )

( ) ( ) ( )

( )( ) ( )( )

1 1( ) ( ) ( )

( )

k

N N
k j x kdila BB

k j k j

j jj k y k

j

u

u b

v b

v



= =

 
 

    + =          
 
  

 k k  (G7a) 

with 
2 2

( )

( )( ) ( )( ) 2 2

4 cos cos sin cos sin cos

sin cos sin cos sin sin

jBB

k j k j

bV      


      

 − −
=  

− − 
k  (G7b) 

and 

( )( ) ( )( ) ( )

cos cos2

sin sin

dila

k j k j j

ad
V

 


 

− − 
=  

− − 
k  (G7c) 

Note that, Eq. (G7) is the equation of motion for material point k . Assuming that 

the PD discretized model has m  material points. Therefore, the equation of motion 

for all material points in the PD model can be written as 

( ) ( )dila BB+ =K θ K U B  (G8a) 

with 

(1) (2) ( ) (1) (2) ( )

T

m mu u u v v v =  U  (G8b) 

(1) (2) ( 1) ( )

T

m m   −
 =  θ  (G8c) 

(1) (2) ( ) (1) (2) ( )

T

x x x m y y y mb b b b b b =  B  (G8d) 
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1,1 1,2 1,2

2,1 2,2 2,2

2 ,1 2 ,2 2 ,2

BB BB BB

m

BB BB BB

mBB

BB BB BB

m m m m

k k k

k k k

k k k

 
 
 =
 
 
  

K  (G8e) 

 

1,1 1,2 1,

2,1 2,2 2,

2 ,1 2 ,2 2 ,

dila dila dila

m

dila dila dila

mdila

dila dila dila

m m m m

k k k

k k k

k k k

 
 
 =
 
 
  

K  (G8f) 

where B  and U  represent the vector of applied forces per unit area and the vector 

of displacements of the PD discretized model. The term BB
K  represents the global 

stiffness matrix corresponding to the local stiffness ( )( )

BB

k jk , dila
K  represents the 

global stiffness matrix corresponding to the local stiffness ( )( )

dila

k jk . Note that, the 

matrix BB
K  in Eq. (G8e) has a size of ( )2 2m m . Meanwhile, dila

K  given in Eq. 

(G8f) has a size of ( )2m m .  

On the other hand, by excluding the effect of temperature, the dilatation given in 

Eq. (2.63) can be rewritten as 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

1

cos sinN
j k j k

k k j j

j

u u v v
d V

 
 

=

− + −
=   (G9a) 

or 

 

( )

( )

( ) ( )( ) ( )

1 ( )

( )

cos cos sin sin

k

N
j

k k j j

j k

j

u

ud
V

v

v

     
=

 
 
 = − −
 
 
  

  (G9b) 

or 

( )

( )

( ) ( )( )

1 ( )

( )

k

N
j

k k j

j k

j

u

u

v

v


=

 
 
 =
 
 
  

k  (G9c) 

with 

 ( )( ) ( )( ) ( ) cos cos sin sink j k j j

d
V     


= − −k  (G9d) 

Note that Eq. (G9c) is the dilatation for material point k . By assuming the PD 

discretized model has m  material points, the global dilatation vector of all material 

points in the PD model can be calculated as 

( )=θ K U  (G10a) 

with  
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1,1 1,2 1,2

2,1 2,2 2,2

,1 ,2 ,2

m

m

m m m m

k k k

k k k

k k k

  

  



  

 
 
 =
 
 
  

K  (G10b) 

Note that, the matrix 
K  in Eq. (G10b) has a size of ( )2m m .  

Therefore, by substituting Eq. (G10a) into Eq. (G8a), the PD equation of motion 

for static loading conditions can be written as 

( )( ) ( )( )dila BB + =K K K U B  (G11a) 

or 

=KU B  (G11b) 

with 

( )( ) ( )dila BB= +K K K K  (G11c) 

where K  represent the total stiffness matrix of the PD model.  

By solving Eq. (G11b), the displacement field of the PD model is obtained. In this 

chapter, the PD simulation is implemented in MATLAB and the displacement field 

is obtained by using the backslash (\) operator. 
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