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ABSTRACT

Ships and offshore structures can experience damages due to many reasons such as
collisions, groundings, explosions, corrosion, fatigue, overloading, or extreme
conditions, etc. To date, the prediction of progressive damages in these structures
is a challenging research area. The classical continuum mechanics uses partial
differential equations which become invalid in the presence of discontinuities. By
contrast, the recently introduced nonlocal peridynamics (PD) theory uses integro-
differential equations that are valid in both continuous and discontinuous models.
Therefore, the peridynamics theory is highly suitable for predicting crack initiation
and crack growth.

In this thesis, progressive damages in ship and offshore structures are predicted by
using peridynamics. To do that, first, novel PD models for predicting linear elastic
deformations of 3D beam structures and 3D shell structures are developed. The
deformations of 3D beams and 3D shell structures predicted by using the developed
PD beam and shell models agree very well with the FEA results with less than 3%
relative errors. It is also found that the developed PD beam and shell models are
suitable for predicting progressive brittle damages in ship and offshore structures.
The PD shell model can also predict the ultimate bending moment of a ship with
only 0.102% difference from the experimental result.

Second, novel nonlinear PD models for predicting damages in one-dimensional
(1D), two-dimensional (2D), and three-dimensional (3D) structures, 3D beam
structures, and plates subjected to large deformations are developed. The large
deformations structures predicted by using the developed nonlinear PD models
agree very well with the FEA results with maximum 5% relative errors. The
developed nonlinear PD models show a capability to predict progressive damages
for many complex problems. The damage patterns captured by the nonlinear PD
models agree very well with the experimental results in the literature.

Third, a novel energy-based PD model for fatigue cracking is also developed.
Instead of using the cyclic bond strain range for PD fatigue equations available in
the literature, the energy-based PD fatigue model proposes a definition of the cyclic
bond energy release rate range and use this term for PD fatigue equations. The
fatigue life of the structure predicted by the energy-based PD fatigue model is
4.108% different from the experimental results while the predicted fatigue crack
growth, g — N curve agrees very well with experimental results. The energy-based
PD fatigue model can be more suitable for beam and shell structures since in these
structures, the bond energy release rate is unique although the bond strain consists
of in-plane, shear, and bending components.

Finally, to reduce the computational cost for PD simulations, novel 1D and 2D
peridynamic-based machine learning models for damage prediction are developed.
The relations between displacements of a material point and the displacements of
its family members as well as the externally applied forces are obtained by using
linear regression. The machine learning models can easily be coupled with the PD
models. Specifically, the PD model is used for the regions that are near crack
surfaces or near boundary areas. Meanwhile, the ML model is used for the
remaining regions to reduce the computational cost. Like the traditional PD model,
it is found that the coupled PD-ML model is also suitable for damage prediction.
The crack patterns predicted by using the coupled PD-ML model agree very well
with experimental results in many complex problems. Therefore, the hybrid
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approach of coupling ML with PD can be a potential approach for future research
to reduce the computational cost for PD simulations while the capability of PD
models in terms of damage prediction is maintained.

After All, it is expected that the results of the studies carried out in this thesis can
make a significant contribution to the development of peridynamic theory and
expand its application to ship and offshore structures. More importantly, the PD
models developed in this thesis without any special treatment can be used for
practical structural analysis to predict potential brittle damages in ship and offshore
structures in complex phenomena. Therefore, the potential of structural damages
can be minimized and the safety of the structures can be improved.
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1. INTRODUCTION

This chapter aims to describe the background, motivation, objectives, and the
novelty of the research contained in this Ph.D. thesis. First, the background and
motivation of the research are presented in Section 1.1. Second, the aim and
objectives of the research are presented in Sections 1.2 and 1.3, respectively. Next,
the research approaches and thesis structure are presented in Sections 1.4 and 1.5,
respectively. Finally, the assumptions adopted in this thesis are also presented.

1.1. Background and motivations
Damage prediction for ship and offshore structures: a big challenge

The safety of the ship and other marine structures is very important because their
damages can cause many crucial issues. Therefore, these structures are often
designed with high safety factors to minimize the potential of damages. However,
according to the report in [1], there are still 1036 total losses for vessels over 100GT
(GT: Gross Tonnage) over the past 10 years. The losses happened to various types
of vessels as shown in Fig. 1.1 [1]. The cargo ship has the highest number of total
losses with 429 cases, followed by fishery, bulk, passenger, and chemical product
vessels with 149, 93, 67, and 56 cases, respectively. These ship losses can cause
many serious effects such as environmental damages, human life, and economic
losses. For example, the total number of losses for tanker, LPG, and chemical
vessels are 78 which means that there were probably many thousands tons of
environmentally harmful products left on or under the sea. This could destroy the
sea environment as well as kill the sea and coastal creatures.

Other N 38
Barge & Tug W 11
Dredger W 13
Tanker & LPG 1 22
Supply/Offshore 1 23
Ro-ro mmmm 38
Container mE 41
Tug N 56
Chemical/Product N 56
Passenger N 67
Bulk m—— 93
Fishery I 149
Cargo I 429

0 100 200 300 400 500
Fig. 1.1. Total losses by type of vessel over 100 GT from 2009 to 2018 [1]

For the reasons of ship losses, sinking and hull related damages are two main
reasons as shown in Fig. 1.3 [1]. The high number of ship losses due to sinking and
hull related damages shows that there are many uncertainties in the process of the
ship structural design and assessment. One of these uncertainties is the limitation in
terms of predicting possible progressive damages and fully understanding the
behaviours of the ship structures during the damage progress.



Ship and offshore structures can experience either brittle or ductile fractures.
Ductile fractures are common damages on ship structures. Beyond the elastic limit
of the steel, the ship structures can experience plastic response before being
collapsed. Brittle fractures can also occur on a ship structure due to high cycle
fatigue loading or when the ship is subjected to the conditions of low-temperature,
high-loading rate, multi-axial stress constraint, or low weldability of steel [2-6].

Hull related
damages
29%

Machinery
damage
6%

Fire/explosio
10%

Fig. 1.2. Causes of losses from 2009 to 2018 for vessels over 100GT [1]

To date, analytical calculations based on regulations from classification society
rules as well as finite element analysis (FEA) are common methods used in the ship
structural design and assessment processes. However, in terms of damage
prediction, the traditional finite element method (FEM) faces conceptual and
mathematical difficulties to predict complex damages especially for multiple crack
paths and crack branching problems since partial-differential equations used in
CCM and FEM become invalid in presence of discontinuities.

To overcome this drawback for the traditional FEM, the simplest method is the use
of remeshing techniques. However, for complex 3D structures and stiffened
structures with multiple crack problems, the implementation of automatic
remeshing techniques is very difficult.

To avoid the remeshing work, the extended finite element method (XFEM) was
proposed [7-10]. This method allows cracks to pass through the elements leading
to better approximations of crack paths without remeshing. However, XFEM uses
additional criteria [7-10] to guide crack growth speed, direction, and coalescence
or branching of cracks which are not easy to implement for multiple crack problems.

Besides, linear elastic fracture mechanics (LEFM) was also proposed for fracture
problems. However, in LEFM, the size of the plastic zone ahead crack tips is
assumed to be negligible. Therefore, LEFM applies to only brittle materials and the
method also requires initial crack existing in the structures [11-13]. This means that
bodies with blunt notches, but no cracks cannot be analysed using LEFM.



Unlike LEFM, the cohesive zone model (CZM) can adequately predict the
behaviour of uncracked structures, including those with blunt notches [14-17].
Moreover, the size of the plastic zone need not be negligible in comparison with
other dimensions of the cracked geometry in CZM. As the cohesive surfaces
separate, traction first increases until a maximum is reached, and then subsequently
reduces to zero which results in complete separation. In CZM, the cohesive
constitutive relation must be selected with great caution since it decides the
accuracy of the fracture predictions [18]. Therefore, a key issue for CZM is how to
determine cohesive relations and parameters which often require experimentally
studies [19]. Moreover, since the constitutive parameters in CZM may not have a
clear physical meaning, that can be difficult to identify these parameters
experimentally.

Peridynamics: a new paradigm for damage predictions

Peridynamic (PD) is a reformulation of classical continuum mechanics using
integro-differential equations that are valid in both continuous and discontinuous
models [20, 21]. Therefore, discontinuities can be naturally involved in the PD
analysis without any special treatment. Peridynamics was first introduced by Silling
[20] in 2000. After 20 years of development, the PD theory has been widely
expanded to many applications. The PD theory can be used to analyze both elastic
and inelastic material responses [22-26]. Moreover, it can also be either used to
analyze composite and polycrystalline materials [27-31] or be applied for
multiphysics [32-34] and multiscale modeling [35, 36]. Peridynamics can also be
combined with finite element analysis [29, 37-39] as well as implemented in the
FEA framework [40-42]. The extensive literature surveys on peridynamics can be
found in [43-45].

In peridynamics, the motion of a material point is influenced by the collective

deformations of surrounding material points within a distance, §, which is called

the horizon size. Material points within the horizon of a material point are called

family members of that material point. As introduced by Silling [20], the motion of

a particle in peridynamics is expressed by using integro-differential equations as

p(X)u(x,t)= I (tu' —u, X' —x, ) —t'(u—u’,x—x,t))dV’+b(x,t) (1.1a)
HX

which can also be represented in the discrete form as

N (o) Uy =Yg Xy =X 1)

u =
Fo ; L0 Uy =Ygy Xy =Xy 1)
where p represents the mass density, u and b represent displacement and body force
vectors, respectively. In Eq. (1.1b), N represents the number of family members of
material point k, j represents the family member of material point k, tg;
represents the force density that material point j exerts on material point k, and
t k) represents the force density that material point k exerts on material point j.

Vi) +by (1.1b)

Peridynamics theory includes bond-based, ordinary state-based, and non-ordinary
state-based formulations. In the bond-based PD (BBPD) theory, the force densities
tooHand ey are equal in magnitude but opposite in direction [21, 43, 44].
However, the volumetric and deviatoric parts of strain energy density are not
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distinguished in the bond-based theory. Therefore, the bond-based PD theory is
only applicable for elastic material with Poisson’s ratio equal to 1/4 for 3D
structures and 2D structures in the plane strain condition, or material with Poisson’s
ratio equal to 1/3 for 2D structure in the plane stress condition [43, 44].

In the ordinary state-based model (OSBPD), the force densities t;yand t(j)
may have opposite direction but their magnitudes can be different [44, 46]. The PD
strain energy density includes the volumetric and deviatoric parts. Therefore, the
OSBPD can overcome the limitation of the BBPD in terms of Poisson’s ratio. Note
that, in both BBPD and OSBPD models, the force densities t¢;, and t;q,) are
parallel to the line of interaction between material points k and j in the deformed
configuration. On the other hand, in the non-ordinary state-based model
(NOSBPD), the force densities t)(;y and t(;)«,) can have different directions and
they may not be parallel to the line of interaction between material points k and j
in the deformed configuration [44, 46].

The force densities in Eq. (1.1) can be calculated by using the relation between PD
strain energy density, W(%’ and PD force densities developed by Madenci and

Oterkus [44] as

_ L oWy 1 oW 12
0 =7y (12)

t i G N .
AT
(y g Vi 0Ug)

where W(l,';’)’ represents the PD strain energy density of material point k.

In peridynamics, progressive damage can be naturally involved by introducing the
elimination of interactions between material points. When the interaction between
two material points is broken, the force densities between these points are
irreversibly removed, and it leads to crack growth. The state of the interaction
between material points k and j can be represented by a function, ¥y which is

introduced by Silling and Askari [21] as

(x « t) _ |1 if interaction exists, (13)
Voo @ =% 7= 0 if interaction is broken '
Therefore, the PD equation of motion given in Eq. (1.1b) can be rewritten as

N
Paolgy = Zl:‘/’(k)m (t(k)(j) L )V(i) +by, (1.4)
j=

In peridynamics, the local damage on the structures is represented by the damage
index, qb(x(k), t). This damage index is the ratio of eliminated interactions to the

total number of interactions associated with a material point within its horizon, and
it can be represented as [21]

N
Zﬂ(k)(j)V(,-)
j=1

N
ZVU)
j=1

The value of the damage index is between 0 and 1, in which ¢ = 0 represents no
damage at the material point, and ¢ = 1 represents all interactions of that material
point with its family members are eliminated.

# (X t) =1~ (1.5)



The interaction state, ¥ x(;), given in Eq. (1.3) can be decided by using two
common damage criteria which are critical bond stretch [20, 21, 44] and critical
energy release rate [25, 26, 47]. The damage criterion using critical bond stretch
can be described as [21, 44]

Seocjy < S. — interaction exists: ., ;, =1 .
Sw(j) = Sc — interaction is broken: v, ;) =0

where sy represents the bond stretch between material points k and j. The term
s, represents the critical bond stretch which can be estimated as [44]

S = l G, for 3D structures (1.7a)

’ 3N 5
Bu+|> —ulls
(Lo (2] -2
s = G, for 2D structures (1.7b)

¢ 6 16
— U+ K—2 o
(7: H 9r° ( ﬂ)]
where G, represents the critical energy release rate of material, u and x are the shear
modulus and Bulk modulus of the material, respectively.

The damage criterion using critical bond energy release rate can be described as
[25, 26]

Ty < 9 — interaction exists: ;) =1

[ ion i (1.8)
T = 9. — interaction is broken: y,, , =0
where g ;) represents the energy release rate for interaction between material
points k and j which can be calculated as

_ 1
iy =§(g<k><j) + g(i)(k)) (1.9a)
with
1
Y = A DoV Vi (1.9b)
rack
1
9w = Diy0ViiVio (1.9¢)

rack

where @y and @), represent micropotentials of the interaction between

material points k and j. The term A_,,c, represents a unit crack surface in the PD
model [25, 26] which can be defined as

A for 1D structures
A .« =12xh  for 2D structures (1.10)
Ax?  for 3D structures

where Ax represents the mesh size for the PD model.

The term, g., in Eq. (1.8) represents the critical energy release rate for one
interaction which can be approximated as [25, 26]

_5 (1.11)
gc - N .

c

where N, represents the total number of interactions passing through a unit crack
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surface [25, 26].

For 1D structures, the unit crack surface can be considered as the beam cross-
section. Therefore, as shown in Fig. 1.3, there are N, = 12 interactions passing
through the crack surface.

ICrack surface: 4

-2 -1 k  k+1 k+2
Fig. 1.3. Counting the number of interactions passing through the crack surface

For 2D structure, the line of interaction between two material points can pass either
through the crack tips or through the crack surface as shown in Fig. 1.4. The
interactions passing through the crack tips can be counted as 1/2 interaction,
meanwhile, the interaction passing through the crack surface can be counted as 1
interaction [25, 26]. As shown in Fig. 1.4, for 2D structures there are 24 interactions
passing through the crack surface and 24 interactions passing through the crack tips.
Therefore, the total number of interactions passing the unit crack surface can be
countedas N, =24 x 1+ 24 x1/2 = 36.



Crack surface, 4 e——e Interaction is counted as 1 interaction
e——o Interaction is counted as 1/2 interaction

Fig. 1.4. Counting the number of interactions, N, passing unit crack surface on a
2D plate for § = 3.0154x

For 3D structure, the line of interaction between two material points can pass
through either crack edge, or crack corner, or crack surface, Arqcx 8 shown in Fig.
1.5. The interaction passing through the crack surface can be counted as 1
interaction. The interaction passing through the crack edges can be counted as 1/2
interaction, meanwhile, the interaction passing through the crack corners can be
counted as 1/4 interaction. For a PD model with a horizon size of § = 3.0154x,
there are 392 interactions passing through the unit crack surface, 320 interactions
passing through the crack edges, and 32 interactions passing through the crack
corners. Therefore, the total number of interactions passing the unit crack surface
can be countedas N, =392 x 1+ 320x 1/2 + 32 x 1/4 = 560.
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Fig. 1.5. Interaction passing (a) crack edges, (b) crack corners, (c) a point inside
crack surface on 3D structures for 6 =3.015Ax

Research gaps

Although the PD theory has many applications, developing a PD model for complex
structures such as a ship and offshore structures is still challenging work. When
analysing these complex structures, the existing three-dimensional PD model
becomes computationally expensive. Therefore, simplified peridynamic structural
models can be used to reduce the computational cost.

The first peridynamic model capturing the tension and compression for 1D bars is
introduced by Silling, et al. [48]. Later, O’Grady and Foster [49] introduced a non-
ordinary state-based PD model for the Euler-Bernoulli beam by including
transverse displacements but disregarding the transverse shear deformations. To
include transverse shear deformations, Diyaroglu, et al. [50] introduced a bond-
based PD model based on the Timoshenko beam theory. The PD beam model
provided by Diyaroglu, et al. [50] has two degrees of freedom (DOF), which are
transverse displacement and rotation. Meanwhile, the PD beam model developed
by O’Grady and Foster [49] has one degree of freedom, which is the transverse
displacement. It is obvious that a 3D beam, based on the Timoshenko beam theory,
has six degrees of freedom (DOFs) including three translational displacements and
three rotations. Moreover, beam structures in the real world often include many
beams joined together, and each beam can be straight or curved. Therefore, a PD
model with 6 degrees of freedom, which can capture deformations for complex
beam structures such as a jacket platform, needs to be developed.

Another common type of simplified structural model used in engineering is plates
or shells. In peridynamics, the first simplified PD model for two-dimensional (2D)
structures, which includes two in-plane DOFs, was introduced by Silling and
Bobaru [51], and later by Madenci and Oterkus [44]. To account for bending
deformations, O’Grady and Foster [52] introduced a non-ordinary state-based PD
model based on Kirchhoff-Love plate theory. Later, Diyaroglu, et al. [50]
developed a bond-based PD model for plates based on the Mindlin plate theory.
The PD models developed by the authors can be applied for a single plate or flat
shell. In practice, a shell structure can be constructed from many individual shells
and plates. Therefore, a PD shell model with 6 DOFs that can capture the
deformation and predict progressive damage for complex shell structures such as a
ship needs to be developed.



Moreover, it is very common that large-scale bodies such as ship and offshore
structures can experience large elastic or inelastic deformations during their
operational process. In such cases, nonlinear analyses need to be used to capture the
correct behaviours of the structures. A fundamental difference between elastic and
inelastic analyses is that in the elastic solution the total stress can be directly
evaluated from total strain, whereas in the inelastic analysis the stress and strain
history is also included in the calculation of total stress. In peridynamics, the
original PD model [20, 21] can capture large elastic deformations for 3D structures.
Later, Foster, et al. [22], Mitchell [24], Madenci and Oterkus [25], Rahaman, et al.
[53], Amani, et al. [54], Sun and Sundararaghavan [55], LADANY | and JENEI [56]
developed PD models for inelastic deformations. However, within the elasticity, the
current PD models for 1D and 2D structures [44, 57], for beams, plates, and shells
[50, 58, 59] are only applicable for small deformations. Therefore, to make PD
becomes applicable for analysing ship and offshore structures, nonlinear PD models
for large deformations of 1D and 2D structures, as well as beam, plate, and shell
structures need to be developed.

Besides, ships and offshore structures are often designed with the expectation of a
long lifetime in the marine environment. Due to the repetition of the loading caused
by wind, wave, current, and other harsh conditions, fatigue damages can occur on
the structures, which may lead to major accidents. Therefore, fatigue design
assessment (FDA) is one of the design drivers for ship and offshore structures. For
fatigue crack prediction, the first PD fatigue model is proposed by Silling and
Askari [60], in which, each interaction has its own remaining life. During the cyclic
loading processes, the remaining life is updated by using the PD fatigue equations
for the cyclic bond strain range. However, in some special cases, the bond strain
can consist of different components. For instance, the bond strains in beams and
shell structures consist of in-plane, shear, and bending components [61, 62].
Therefore, deciding which strain will be used for the PD fatigue equation can be a
challenge. Therefore, to investigate fatigue damages in ship and offshore structures,
a novel PD fatigue model which can be applicable for beam and shell structures is
needed.

Moreover, solving PD equations of motion could be time-consuming, especially
when real-time predictions on live data are required. By contrast, with the support
of computer resources as well as the rapid growth of available data, data-driven
models are providing an alternative, robust solution for physics-based models.
Therefore, to speed up PD simulations for large complex ship and offshore
structures, PD-based machine learning models for damage prediction is needed.

1.2. The aim of the research

This thesis aims to use peridynamics to predict accurately progressive damages in
ship and offshore structures and clearly understand the behaviours of ship and
offshore structures during their damage processes. Therefore, further actions can be
made to prevent catastrophic failure and to enhance structural safety.



1.3. The objectives of the research

To obtain the research aim, the research in this thesis has five main objectives:

1.

Development of a novel PD beam and shell models with 6DOFs for
predicting progressive damages in the complex 3D beam and 3D shell
structures.

Development of novel nonlinear PD models for geometrically nonlinear
analyses of 1D, 2D, 3D structures, 3D beams, and plates.

Development of a novel energy-based PD fatigue model that is potentially
applicable for predicting fatigue damage initiation and propagation in shell
structures.

Development of a novel PD-based machine learning model for fracture
prediction of structures as well as to speed up the traditional PD simulations.

Applying the developed PD models to predict progressive damages and
residual strengths of ship and offshore structures subjected to different
loading conditions.

1.4. The research approaches

To obtain the proposed objectives, the research in this thesis will be conducted
using the following approaches:

1.

To develop novel PD models for 3D beam and 3D shells, first, the existing
PD models in the literature for beams and shells are critically reviewed to
find out the needed further research. Second, the kinematics of the
Timoshenko beam and Mindlin plate in classical continuum mechanics are
studied. Third, the linear PD formulations for analysing 3D beams and shell
structures are developed. Next, for verification purposes, the deformations
of beam and shell structures predicted by using the developed PD models
are compared against FEA results. Finally, the PD beam and shell models
are used to predict damages in beams, shells, and stiffened structures. These
goals are achieved in Nguyen and Oterkus [61-64] as parts of the research
described in Chapter 2.

To develop novel nonlinear PD models for geometrically nonlinear analyses
of 1D, 2D, 3D structures, 3D beams, and plates, first, the existing nonlinear
PD models in the literature are critically reviewed to find out the needed
further research. Second, the nonlinear kinematics of 1D, 2D, 3D structures,
3D beams, and plates in classical continuum mechanics are studied. Third,
the nonlinear PD formulations for analysing large deformations of 1D, 2D,
3D structures, 3D beams, and plates are developed. Next, for verification
purposes, the large deformations of the structures predicted by using the
developed nonlinear PD models are compared against FEA results. Finally,
the developed nonlinear PD models are used to predict damages in 2D, 3D
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structures, 3D beams, and plates. These goals are achieved in Nguyen and
Oterkus [65], [66, 67] as parts of the research described in Chapter 3.

3. To develop a novel energy-based PD fatigue model, first, the applicability
of the existing PD fatigue model in the literature for shells and stiffened
structures is critical reviewed. Second, a novel energy-based PD fatigue
model is developed by proposing novel energy-based fatigue equations in
PD. Finally, the capability of the developed energy-based PD fatigue model
is verified by investigating mode | and mixed-mode fatigue crack growth
problems. This goal is achieved in Nguyen and Oterkus [68] as part of the
research described in Chapter 4.

4. To develop a novel PD-based machine learning model for fracture
predictions, first, the potential applications of machine learning as well as
physic-guided machine learning models for structural analysis and damage
predictions are critically reviewed to determine the needed further
development. Second, the PD-based machine learning model is developed
by training data generated from modal analyses in ANSYS. Third, a hybrid
approach to couple the developed PD-based machine learning model with
the traditional PD model for damage predictions is developed. Finally, the
accuracy and capability of the PD-based model and the coupled models for
damage predictions are proven by investigating various fracture problems.
This goal is achieved in Nguyen, et al. [69] as part of the research described
in Chapter 5.

5. To apply the developed PD models for damage predictions of ship and
offshore structures, the developed linear PD beam and shell models are
used. Progressive damages on a jacket platform, a hull girder, and corroded
stiffened structures subjected to different loading conditions are predicted.
The residual strengths of the ship and stiffened structures during damage
processes are also investigated. This goal is achieved in Nguyen and
Oterkus [62], [63, 64] as part of the research described in Chapter 2.

1.5. Thesis Structure

This thesis is constituted by the following 6 chapters as follows:

Chapter 1. This chapter provides a review of ship losses and structural damages
from 2009 to 2019. The critical challenges in terms of progressive damage
prediction for ship structures are also addressed. Moreover, the suitability of
peridynamics for damage prediction and the current research gaps are addressed.
Finally, the research aim, objectives, and approaches as well as the thesis structure
are described.

Chapter 2. This chapter provides detailed formulations for novel PD models for
3D beam and 3D shell structures. The bond-based PD model for three-dimensional
complex beam structures with 6 degrees of freedom is developed based on the
Timoshenko beam theory. The ordinary state-based PD model for 3D shell
structures is developed based on Mindlin plate theory. The numerical techniques
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for dealing with complex beam and shell structures are provided for the first time
in the peridynamic literature. The energy-based damage criteria for 3D beam and
3D shell structures are also presented. The validity of peridynamic predictions for
beams is established by considering various examples, including straight beams,
curved beams, and offshore jacket platform. The validity of peridynamic
predictions for shells is achieved by predicting mechanical and thermomechanical
deformations for a flat shell, a curved shell, and a stiffened structure. Later, the
developed PD beam model is used to predict damages for a pre-notched beam
subjected to impact loading, for a jacket platform subjected to ship collisions. The
developed PD shell model is used to predict progressive damages in different plates
subjected to out-of-plane deformations, a ship structure subjected to different
loading conditions, a stiffened structure with localized corrosion subjected to
uniform pressure. The residual strength of the ship and stiffened structures during
damage propagations are also numerically calculated.

Chapter 3. This chapter provides detailed formulations for novel peridynamic
models for geometrically nonlinear analysis of 1D, 2D, 3D structures, 3D beams,
and plates. The nonlinear PD models for 1D structures and 3D beams are bond-
based PD formulations. Meanwhile, the nonlinear PD models for 2D, 3D structures
and plates are ordinary state-based PD formulations. The nonlinear PD equations
of motion are obtained based on the principle of virtual displacements using Total
Lagrange formulation. The accuracy of the developed nonlinear PD model is
verified by comparing it with nonlinear FEA. To further demonstrate the
capabilities of the nonlinear PD models, damages on different 2D and 3D structures,
a spaghetti subjected to bending and torsion, a plate with a single crack subjected
to stretching and tearing, a plate with two parallel cracks subjected to tearing, and
a plate subjected to torsional loading are predicted.

Chapter 4. This chapter provides detailed formulations for a novel energy-based
peridynamic model for fatigue cracking. The definition of cyclic bond energy
release rate and the energy-based peridynamic fatigue equations for both phases
(crack initiation and crack growth) are introduced. For validation, first, a problem
of mode-I fatigue crack growth is investigated. Next, different mixed-mode fatigue
damages are also investigated and the peridynamic results are compared with the
experimental results.

Chapter 5. This chapter provides detailed formulations for a novel peridynamic-
based machine learning model for one and two-dimensional structures. The linear
relationships between the displacement of a material point and displacements of its
family members and applied forces are obtained by using linear regression. The
numerical procedure for combining the peridynamic model and the machine
learning model is also provided. The accuracy of the coupled model is verified by
considering various examples of a one-dimensional bar and two-dimensional plate.
To further demonstrate the capabilities of the coupled model, damage prediction for
a plate with a pre-existing crack, a two-dimensional representation of a three-point
bending test, and a plate subjected to dynamic load are simulated.

Chapter 6. This chapter highlights the novelty and contributions of this research.
Moreover, the recommendations for the industry as well as the limitations of the
current research are also presented. Finally, the recommended future work is also
addressed.
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Chapter 7. This chapter gives final remarks for the thesis as well as summarizes
the major findings.

1.6. Assumptions used in this thesis

In this thesis, the following assumptions are adopted:

First, the linear and nonlinear PD beam models in Sections 2.2 and 3.3, the
nonlinear PD model for 1D structure in Section 3.2, the PD-based machine learning
model in Chapter 5 are based on bond-based PD formulations. Meanwhile, the PD
models for the remaining sections and chapters are based on the ordinary state-
based formulations.

Second, in Sections 2.2, 3.2, and 3.3, the numerical results were obtained for
materials with zero Poisson’s ratio, v = 0. Meanwhile, the Poisson’s ratio in
Chapter 5 is v = 1/3 for 2D plane stress and v = 1/4 for 2D plane strain and 3D
models.

Third, the energy-based damage criteria given in Eq. (1.8) are used throughout the
thesis except Chapter 5. In the PD models used in the thesis, every bond is assumed
to have the same critical energy release rate, g.. Therefore, the value of the critical
energy release rate for a bond, g, is simply estimated by using Eq. (1.11).

Finally, material nonlinearity is not considered, and materials are assumed to have
brittle damages.
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2. PERIDYNAMICS FOR LINEAR ANALYSIS OF BEAM AND
SHELL STRUCTURES

2.1. Introduction

Beam structures in the real world often include many beams joined together, and
each beam can be straight or curved. Similarly, shell structures can be constructed
from many individual shells and plates. In classical continuum mechanics, a 3D
beam, based on the Timoshenko beam theory, has six local degrees of freedom
(DOFs) including three translational displacements and three rotations. Meanwhile,
a 3D beam, based on the Euler—Bernoulli beam theory, has only three translational
displacements. In plate theories, a plate based on Mindlin plate theory can have five
local degrees of freedom including three displacements and two rotations.
Meanwhile, a plate based on the Kirchhoff-Love plate theory can have three local
degrees of freedom which are three displacements. The formulations based on
Mindlin plate theory are commonly used for shells and complex stiffened
structures.

In FEA, to govern every parameter for complex beam and shell structures, the
Cartesian coordinate system, which is fixed and unique, is often chosen as the
reference coordinate system. In beam structures, each beam element has 6 global
degrees of freedom. These 6 global DOFs can be obtained by multiplying the
transformation matrix [70] with the vector of 6 local DOFs. In shell structures, each
shell element also has 6 global degrees of freedom, meanwhile, based on Mindlin
plate theory, it has only 5 local degrees of freedom. Therefore, if the drilling rotation
is not considered as the sixth local DOF, all the resistance to the drilling rotation of
each node comes directly from the coupling of other rotational DOFs of the non-
planar surrounding nodes. When the model is discretized with very fine mesh,
angles of the kinks between two elements, which are located next to each other, will
become close to 2 and the coupling effect is much reduced [71]. As a result, the
global stiffness matrix may become singular and it results in unrealistic solution
results. Therefore, to avoid this problem, the drilling rotation can be considered as
the 6™ local DOF and a small stiffness associated with drilling rotation can be added
[71].

In peridynamics, the current studies in the literature only considered formulations
for 2D plane beams and single plates and shells. Specifically, O’Grady and Foster
[49] introduced a non-ordinary state-based PD model for a 2D plane beam based
on Euler-Bernoulli beam theory. Later, Diyaroglu, et al. [58] also introduced an
ordinary state-based PD model for a 2D plane beam based on this beam theory. For
the Timoshenko beam, Diyaroglu, et al. [50] also introduced a bond-based PD
model for 2D plane beams. The PD beam model [50] consists of two degrees of
freedom (DOF), which are transverse displacement and rotation. For plates and flat
shells, O’Grady and Foster [52] introduced a non-ordinary state-based PD model
based on Kirchhoff-Love plate theory with 1 DOF which is the transverse
displacement. Later, Diyaroglu, et al. [50] developed a bond-based PD model for
plates based on the Mindlin plate theory. The model developed by Diyaroglu, et al.
[50] can capture behaviours of a single plate with 3 local DOFS which are
transverse displacement (w) and two rotations (6,, 8,).

14



Therefore, in this chapter, novel PD models for 3D beam structures and 3D shell
structures are developed. First, a bond-based PD beam model with 6 local degrees
of freedom based on the Timoshenko beam theory is developed. The equations of
motion for a beam element in the local coordinate system are obtained by using the
Euler-Lagrange equation. Similar to FEA, six global equations of motion for a beam
element are obtained by using the transformation matrix for a beam element [62].
Therefore, the developed PD beam model can capture deformations for a straight
beam, curved beam, and complex beam structures. Second, a novel ordinary state-
based PD model for a flat shell with 6 local DOFs based on Mindlin plate theory is
developed. Similar to the PD beam model, equations of motion for 6 local DOFs
are obtained by using the Euler-Lagrange equation. Next, equations of motion for
6 global DOFs are obtained by using the transformation matrix for a shell element
[61, 64]. Therefore, the developed PD shell model can capture deformations for flat
shells, curved shells, and complex stiffened structures.

2.2. Peridynamics for linear 3D beam structures

In this section, a novel bond-based peridynamic model is developed for three-
dimensional complex beam structures with 6 degrees of freedom based on the
Timoshenko beam theory. The energy-based damage criteria for beam structures
with 6 degrees of freedom are also presented. The validity of peridynamic
predictions is established by considering various examples. Initially, the proposed
PD model is used to predict the structural behaviour of straight and curved beams.
Next, the proposed PD model is used to investigate a jacket platform. The PD
predictions are verified by comparing the predicted results with finite element
solutions. Finally, the developed PD beam model is used to predict damage in a
jacket platform subjected to ship-jacket platform collisions.

2.2.2. Beam kinematics in classical continuum mechanics

In this section, first, stress-strain relations for beam structures are obtained. Next,
the strain energy density is established based on the small deformation assumption.
According to the Timoshenko beam theory, it is assumed that plane cross-section
remains plane after the deformation, but it does not have to remain normal to the
neutral axis [70]. The Timoshenko beam has six degrees of freedom [72]; three
displacements (u, v, w) and three cross-sectional rotations (Hx, 0y, 92) as shown in

Fig. 2.1. The displacement components of a material point can be defined as [70]

u(x, y,z) =0(x) +z6,(x) — yo,(x) (2.1a)
v(X,Y,z) =V(x)—z6,(X) (2.1b)
w(X, Y, z) = W(X) + yé, (X) (2.1c)

where x represents the beam’s longitudinal axis which is located at the centreline
of the beam and 1, U, w represent the displacement components at the centreline
of the beam.
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Fig. 2.1. Beam configuration with 6 DOFs

By using the displacement components defined in Eq. (2.1), the linear strain
components of the beam can be calculated as

£ =U,=U,+26,,—Y0,, (2.2a)
Y =U,+V, =V, -0 -20,, (2.2b)
Vg =U, W, =W, +6, +Y0, , (2.2¢)
Ey=6,=7,=0 (2.2d)

Based on the small deformation assumptions in linear elasticity, Cauchy stress
components can be directly calculated from linear strain components as [70]

o, =Ee, =E(0,+20,,-Y0,,) (2.3)
o, =Gy, =G(V,-6,-120,,) (2.3b)
o, =Gy, =G(W,+6,+y0,,) (2.3¢)
o,=0,=0,=0 (2.3d)

where E represents the elastic modulus and G represents the shear modulus. The
strain energy per unit length of the beam can be calculated as

E , G , G ,
U :J‘A|:ngx +E7/xy +nyz :|dA:U1+U2 (24&)
with
_E 2
U, == [ 2, dA (2.4b)
_G 2 2
U2 _EJ-A[J/XV +7x ]dA (24C)

where A represents the cross-sectional area of the beam.

Utilizing the strain definition given in Eq. (2.2), the strain energy per unit length of
the beam given in Eq. (2.4) can be rewritten as

U, = %J.A[avxz +(220y,x2 + yz‘gz,x2 - 2yzgy,XgLX ) + 209‘ (Z@VYX ~ YO, )} dA (253)
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G [(\ZX -0, )2 +(v”\/’X +0, )2}+(22 + yZ)HX,X2

T2 +(2y(wyx+0y)—22(\7’x—9))¢9

z X, X

dA (2.5b)

By considering a beam with symmetric cross-section, the area moment of inertia
and the first moment of area are obtained as

l, :'[Azsz; I, :IAysz; 1, :IAysz:O (2.6a)
s, =jAsz=o; S, :J.AydAzo (2.6b)

By utilizing relations given in Eq. (2.6), strain energy per unit length can be written
as

0, =S, +(, 0, [+ S[[ (2 +y)oa],. @

By adding the shear correction factor, k, [73], and replacing fA(z2 + y?)dA by
torsional constant, k, [74], Eq. (2.7b) becomes

u, = kSSA[(v -0,) +(w, +9y)1+kt7G9X,X2 (2.8)

By substituting Eq. (2.7a), (2.8) into Eq. (2.4a) the strain energy per unit length of
the beam can be written as

X

u-E2y +E(| 0,+1,0,7)
2 X 2 yy Uy, X 22'77,X (29)
k.GA 2 27 kG '
+ == v.-6) +(Ww, +0 }+t—¢9 2
2 |:( X z) (,x y) 2 X, X
The strain energy density can be defined as
W=9=50X2+£(| 0, +1,6,7)
A 2 ' 2A W v ' (2 10)
kG 2 2] kG '
+ 5200, -0,) + (W, +0 }rt_ez
2 |:( X z) ( X y) 2A X, X

The strain energy density can also be decomposed into its axial, bending, shear and
torsional components as

W =Vvaxial +Wbending +Wshear +Wtorsional (2113)
where
E .
Wi =5 U (2.11b)
W, _E 1.6, 2+1.0 2 211
bending _ﬁ( yyZy.x +1, Z,x ) ( . C)
kGl . 2 . 2
W, :ST[(VVX—HZ) (W, +0,) } (2.11d)
W, kG, (2.11e)

torsional = X, X
2A

2.2.3. Beam kinematics in peridynamics

In the PD, a beam is uniformly discretized into material points along the beam
centre line as shown in Fig. 2.2. As explained by Madenci and Oterkus [44], the
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equation of motion can also be derived based on the principle of virtual work by
satisfying the Lagrange equation. Therefore, in Section 2.3.1, a PD form of strain
energy is established, and the PD constants are obtained by comparing SED in PD
and classical continuum mechanics. After obtaining the Lagrangian function from
kinetic energy and total potential energy, the equation of motion for the beam is
obtained by using the Euler-Lagrange equation in Section 2.3.2.

k-3 k-2 k-1 k k+1  k+2 +3 N-1 N
R I ) Xao| Xernf X2)| X3

N

Fig. 2.2. PD material points and horizon size for a beam

2.2.3.1. Strain energy density

Similar to the SED in classical continuum mechanics provided in Eq. (2.11a), the
SED for a beam in PD can also be represented as

W(E;) WaX|aI(k) +Wbend|ng(k) +Wshear(k) +Wt<frlsjlonal(k) (2.12)
Peridynamic form of the axial part of SED was introduced by Diyaroglu [75] as
2
1341 Ui, —u
Wazg _Cax [J—(k)] §V (213)
Ik) — 2 ; 2 (;: (1)
In which, the bond constant C,,, is defined as [75]
2E
C,= s (2.14)

In Eq. (2.13), N represents the number of family members of material point k, j
represents the family member material point k. The terms u,, and u;, represent
the axial displacement of material points k and j, respectively. The parameter &
represents the distance between two material points k and j.

Peridynamic form of bending part of SED in Eq. (2.12) can be expressed as

1801 0,1y~ 0,0 ) 0, 0. Y
IACHI 2215[be [%J +C, (%j &V, (2.15)
]

where C,, and C,, represent the bending bond constants which can be determined
as follows.

First, the rotational angles of material point j are expressed by using the first two
terms in Taylor’s series expansion as

> = Oy + Oy Xy = %) (2.16a)
62(].) - z(k>+‘9z(k>.x(x(j)_x(k)) (2.16b)
or
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e, .,—6

1 £ S zey(k),xﬁ(k)(j) (2.16¢)
0., -0

z(j) z(k) _
JT =6,00xBw0) (2.16d)
with

X .y —X

By = (”—é © (2.16¢)

By using the relations in Eqg. (2.16), the PD form of bending part of SED in Eg.
(2.15) can be written as

1811 2 2
Woreing 0 :EZ;@ Coy (6yxBiiiy) +Cux (B }fv(n (2.17a)
=
or
PD 1 N 1_ 2 2
Werding :EZ;E Coy (6,) +Cux (6,) }fv(j) (2.17b)
=2l

Next, bending strain energy density given in Eq. (2.17b) can be rewritten in the
integral form by disregarding the peridynamic interactions beyond the horizon as

Wol2ing (X) = 2A] ﬂcby (6, )2 +Cyr (6., )2} fde (2.18)

After performing the integrations in Eq. (2.18), the strain energy density for the
bending part becomes

1
szr?ding (X) = Z A52 I:begy,x2 + Cbzez,xzjl (219)
By comparing SED in Eq. (2.19) and Eqg. (2.11c), the PD constants for bending can
be determined as

2EI,

by — W (220&)
2El,

Cbz :W (220b)

Peridynamic form of the shear part of SED in Eq. (2.12) can be expressed as
- A
[V(n —Vo By - O.) + O J
N ) 2

WsEeDar(k) = lzlcs 5

232 = O, +6,4

= Wi =W y() T %

+ P o) T 5

where C, represents _the shear bond constant which can b_e determined as follows.

First, similar to the bending part, the explicit expression of shear SED in Eq. (2.21)
can be written in integral form as

Wy = 2AC, %j[(vx -0, )2 +(wx +6), )Z}Q:dg (2.22)
0

Next, by performing integrations in Eq. (2.22), the peridynamic form of the shear
part of SED can be rewritten as

W, :%AcSZCS [(vyx -0,) +(w, +6, )2} (2.23)

&, (2.22)

z

By comparing Eqg. (2.23) and Eqg. (2.11d), the PD constant for the shear part of SED
can be defined as
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C. - 2ks(23

AS
Peridynamic form of the torsional part of SED in Eq. (2.12) can be explicitly
expressed according to Diyaroglu [75] as

(2.24)

Oy = O )
Wt;'?lonal (k) — 1ZCt l <) < év(j) (2253)
2572 ¢
In which, the torsional bond constant C, can be defined as [75]
2k.G
= A2t52 (2.25Db)

2.2.3.2. Equations of motion

The equations of motion for a beam can be achieved by using the Euler-Lagrange
equation [44]. The Euler-Lagrange equation can be written as

E(G.LJ Ly (2.26)
dt\ og; 8q,

where L represents the Lagrangian, g; represents the degree of freedom with q =
fu v w 6, 6, 6,}and g; represents the time derivative of g;.

The Lagrangian function for a beam can be expressed as

L=T-U (2.272)
with
P . Ixx )2 yy 2 Izz 2
:EkZ(u(k)-i_V(k) Vi KHX(") O + ez(k)j ) (2.27b)
U :i W' = x(k)“(k)_by(k>V<k>_bz(k)W(mJV(k) (2.270)
A MG =My Gy = Moy G

where T represents the total kinetic energy, U represents the total potential energy,
by iy, by iy, b2y represent the applied body forces, myxy, My, i), M,k represent
the moment per unit volume at material point k. Substituting Lagrangian provided
in Eq. (2.27) into Eq. (2.26), the peridynamic form of the equation of motion for a
beam can be obtained as

,, =C y Yo Y% ly 4y (2.28a)
Pl = *ax e & )] x(k) .
j=
N (V. —V 0. . +0
G G "V Y6 T %
pv(k)—CSZ;{ J g : > ﬁ(k)(njvuﬁby(k) (2.28b)
j=
.. N (W —W g,.+0
pw(k) :Cszll( (J)é (k) + y(i) > y (k) ﬂ(k)(])j (j)+bz(k) (2.280)
J:
Pl N(O,\—0,
Ok :Ctz 0 o Viiy + My (2.28d)
A = S
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pl, . N0, = O
Ayy ey(k):beZ( Vg

1 J:lN W) 5 0, +06 (2.28¢)
—ECSZ By + y(_nz V‘“ng(j)+my(k)
J=
pl, I
A z(k)_Csz_l[JT V(j)
2 0 (2.28f)
V. —V L+ 0,
APy CZ{ 0 By ~ (1)2 (k)jfv(jﬁmz(k)

The PD form of the equatlon of motion given in Eq. (2.28) can also be written in
the vector form as

L
MUy = Zf(k)(J)V(J)+b(k) (2.29a)
where
(p 0 0 O 0 0 |
0 0 0 0 r 7 r .
0 'g 0 0 8 U by sy
P | Vi by
Pl W b
0 0 O 0 0 |. ® |. 2(k)
My = A Lub =] % |5 bY, = (2.29h)
pl HX(k) mx(k)
0 0 O 0 Ayy 0 6’(k) M,
| e(k) | M) |
000 O Py
L A
and
.
L u \ w Oy y g,
fom = [f(k)(n fon  fow  foe  fom f(k)(n] (2.29¢)
with
. u ., —u
foom = Car [%) (2.29d)
V., —V 6,,+0
v W "V %) T«
foou = C( J £ J 5 ﬂ(k)(j)j (2.29)
w W, —W, 0,,+06
fr=c,| 0o S0 T 5 (2.29f)
¢ 2
0, -0,
f(i)(n =C, [M] (2.299)
6 1 (W —W, 0, +06
(k)(” y(J) y(k) _Cs () (k) ﬂ(k)(j)+ y(i) y(k) 5 (2.29h)
2 g 2
92 z 1 V.., —V 92 : +92 .
(k)(J)_CbZ( w_ (k)J ECS(%IB@(D_%)? (2.29i1)
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2.2.4. Coordinate systems and transformation of equations of motion

The equations of motion provided in Eg. (2.28) are derived in the local coordinate
system. However, the geometrical properties of complex structures are often
governed with respect to the global coordinate system. Therefore, the equation of
motion for each material point needs to be transformed from local to global
coordinates. In this section, first, the relationship between local and global
coordinates is provided in Section 2.4.1. Next, the transformation of the equation
of motion for straight and curved beams are presented in Sections 2.4.2 and 2.4.3,
respectively.

2.2.4.1. Local and global coordinate systems

In the global coordinate system, the orientation of each beam is governed by the
unit vectors, 7, 1,, i, located at the centreline of the beam as shown in Fig. 2.3.
If the beam is straight, every cross-section of the beam has the same unit vectors.
On the other hand, if the beam is curved, the unit vectors for each section will be

different as shown in Fig. 2.3. Assuming that the unit vectors of material point k
are defined as

ﬁx(k)::al(k) Ay a3(k):T (2.30a)

ﬁy(k)::bl(k) 0 bs(k):T (2.30b)

ﬁz(k)::cl(k) Cok Ce,(k):T (2.30c)
Straight beam Curved beam

z X9 z
' X1
X3

Fig. 2.3. Local and global coordinate systems

The relationship between global and local coordinates can be defined as

Xio | [ Sw e || X X1
Yoo [ =] By oy Bsgy || Yoy | = Hao | %o (2.31a)
Zky Cy Cato Bago || Xt X300
with
N N N T
H(k) = [nx(k) (I nz(k)] (2.31b)

where Hy, represents the coordinate transformation matrix of material point k. The
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transformation of displacement vectors can be also defined as

L G

Ut = Tyl (2.32a)

with

W [u Ve W 6 T (2.32b)
© =Y Voo WMo Gw e G :

UG =[Uygy Uy Uy O T (2.32c)
©=[%eo Y Yo Go Gwo O :

where u,, and u(Gk) are displacement vectors in the local and global coordinate
systems, respectively. T, represents the displacement transformation matrix of

material point k. This matrix can be obtained from the coordinate transformation
matrix, H as

T, = Ao O (2.33)
v 0 Hy

2.2.4.2. Transformation of equations of motion from local to the global coordinate
system

By using the relations given in Eq. (2.32a), the equations of motion for a beam
given in Eq. (2. 29a) can be written as

Mo Teol = me(n o b (2.34)
Multiplying both sides by T (k) Tesults in

Moty = T [wa)(nv(n +b(Lk>J (2.35)
As a result, the equation of motion in global coordinates becomes

G

MGyl = Zf(k)(nv(n +by, (2.36)
where

G T L
foom = Toofwa (2.37)

G T L
b(k) Toobo (2.38)

T
MGy = oMo T (2.39)

Note that sgn(x(j) — x(k)) in EQ. (2.17c¢) can be calculated in global coordinates by

using Eqg. (2.31) as

B (ai(nxun B0 X0+ By Xat) ) = (B g * oo Xego s et )
(G ~

4

For curved beams, the transformation matrix T, used in Eq. (2.34-2.39) can be
replaced by T ¢y which can be defined as

(2.40)

H,. . 0
K)) :
J { 0 Hyg
with
. . . T
Hooi :[nx(k)(n My ey nZ(k)(J):I (2.41d)

where 7, o)) Ty () Tzcky(j)CaN be represented as
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s = ( 0 + ) (2.41e)
(o + X(J))‘

oy = ( y(k)+ny<1>) (2.41f)
( y(k) y(J))‘

i ( 20 T z(J)) (2.419)

= (e + Z(J))‘

2.2.5. Damage prediction for PD beam model

For damage prediction, the PD equation of motion given in Eq. (2.36) can be written
as

G
MGyUcy = Z‘/’(k)(n oV T (2.42)

For beam structures, the damage criteria based on the critical energy release rate
presented in Chapter 1 is used. By applying the same idea introduced by Madenci
and Oterkus [25], [26], the micropotentials, @ and @y« given in Eq. (1.9b-
c) in Chapter 1, can be calculated as

u v w 6, 0,
D@1y = Loy T Loy + Pooiy + P + q)(k)(n + D)
(k)(J) u (k)(J) (k)(l)
I L& A8y + I L& dSgoc) + ,[ o €98y (2.43a)
(k)(J) (k)(l) 49y (k)(l)
+I to & asey) + j tnEdsih) + ,[ ton S Sty
D00 = Py (2.43b)

For linear elastic deformation problems, the micropotential @, given in Eq.
(2.43) can be simplified as
1.,

1 1

_= u v v Law w

Dy ) = zt(kxnfsm(j) + 2t<k)<j>§s<k)m + 2t<k)(n§5(k)(j) ( )

2.44a
St 0 ESe =t ESe ) T =ty S
5 i © S 5 teowe S 5 o S

where
u. —u

oo U T y

Stah ——5 » Loy = f(k)(;) (2.44b)
Vi) — Ve 1

v _ ) v v

J i i .

Sty = 7 Loy = > 5 foowm (2.44c)
W, —W

wo Vo) W L w

St T tiogy = f(k)(J) (2.44d)
0, -0

o, _ %0 "% . 6,

St = P Loy = f(k)(n (2.44e)
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0, -0, 1

O vy Ty 40 _ 6,

Stam = ; + Ly =3 foian (2.44f)
0,.,-6 1

o, _Ym % L, _1gg

St = 7 s Lo =5 fadn (2.449)

. 0 .
with T foom s feom: fem: fam: fe can be calculated by using Eq. (2.29).

2.2.6. Numerical implementations

In this section, the numerical implementations of the PD beam model are presented.
First, the model discretization for a beam structure with three beams joined is
presented in Section 2.6.1. Next, the determination for the geometrical and material
properties of the joint points is presented in Section 2.6.2.

2.2.6.1. Model discretization

Fig. 2.4 demonstrates the model discretization for pin joined beam structures. As
shown in Fig. 2.4, three beams A, B, and C are joined together at one point. To
generate material points for this structure, each beam is firstly discretized into
material points. After the discretization, for the points that share the same location
such as points i), k®) j(©as shown in Fig. 2.4, only one material point is kept,
the other points are removed. The point k“F:©) in Fig. 2.4 represents the joint point
for three beams.

Beam A Beam A Beam A
Beam B G0 o Beam B Beam B
eﬂ. ? . . kM.H,C)
A4)
oo ! o . .
a_a.e‘a‘a I P points iV and j©
Beam C a.a'a' Beam C o® Beam C are removed

Fig. 2.4. The connection of beams at joint points

2.2.6.2. Geometrical and material properties at the joint points

It is considered that the family members for a joint point k45 in Fig. 2.4 include
the material points from all three beams. If material point k“4B:) interacts with
material points in beam A, the material properties and geometrical parameters of
material point k45 are set the same as beam A. On the other hand, if material
point k5. interacts with material points in beam B, the material properties and
geometrical parameters of material point k45 are set the same as beam B.

2.2.7. Numerical results

In this section, first, for verification purposes, the results predicted by using the
proposed PD beam model are compared with finite element solutions. The finite
element analyses are conducted using ANSYS commercial software and the
BEAM188 element is used. Next, in section 2.7.2, the progressive damage in the
jacket platform subjected to ship collision is investigated.
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The beams are made of steel material with Young’s modulus £ = 2 X 1011 N/m?,
shear modulus G = 1 x 10'* N/m?, and mass density of p = 7850 kg/m3. For
static solutions, an explicit scheme is used by implementing the adaptive dynamic
relaxation method [76, 77] (Appendix A2).

In this section, the PD predictions for a 2D frame with straight beams, a curved
beam, and a jacket platform subjected to concentrated loads are presented. In all
these examples, the weight of the structure is ignored.

2.2.7.1. 2D frame with straight beams subjected to a constant concentrated load

To verify the developed PD model for straight beams, a 2D frame subjected to point
load is investigated. The steel frame consists of two beams as shown in Fig. 2.5.
The frame is subjected to a concentrated force F; = —3 x 10° N at (L, L, 0) and it
is clamped at both ends. Both beams have the same length L = 1 m and same square
cross-section, A = 0.1 x 0.1 m?.

In the peridynamic model, both beams are discretized with uniform 200 integration
points. To implement the fixed ends of the frame, three fictitious points [26, 33] are
added at both ends and all the displacement and rotation components of these
fictitious points are set equal to zero. In Fig. 2.5(b), red points represent the material
points in the real region. On the other hand, black points represent the material
points in the fictitious region. In the FEA model, each beam is meshed with 200
elements.

X3 X3

X| F3
/
©000000000000000000

(a) (b)
Fig. 2.5. 2D frame subjected to concentrated load (a) geometry, (b) PD

discretization

Due to the small deformation assumption, the beams have three nonzero DOFs.
These are transverse displacement us, rotation 6; , and 6,. Fig. 2.6-Fig. 2.8
represent the displacement variations along each beam in the deformed
configuration. As can be seen in the figures, PD results agree very well with the
FEA results which shows the accuracy of the developed PD model for straight
beams.
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Fig. 2.6. Variation of displacement u;(m) in deformed configuration (a) PD, (b)
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Fig. 2.7. Variation of 8; (rad) in deformed configuration (a) PD, (b) FEA
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Fig. 2.8. Variation of 8, (rad) in deformed configuration (a) PD, (b) FEA

2.2.7.2. Curved beam subjected to a constant concentrated load

To verify the developed PD model for curved beams, a semi-circular beam of radius
R subjected to point load is investigated as shown in Fig. 2.9. The semi-circular
beam is clamped at both ends and it is subjected to static loading F, = —1 x 108 N
and F; = —2 x 10° N. The semi-circular beam has a radius of R = 0.5 m and
square cross-sectionas b = h = 0.1 m.

27



24
e
] /—-p..:
z /fff/é 2 F;
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X2 x

X1 X1

x
(a) (b)

Fig. 2.9. Semi-circular beam subjects to concentrated load (a) geometry, (b) PD
discretization

In the peridynamic model, the beam is discretized with uniform 500 integration
points. In the FEA model, the beam is meshed with 500 elements. To implement
the fixed ends of the frame, three fictitious points are added at both ends and all the
displacement and rotation components of these fictitious points are set equal to zero.
As shown in Fig. 2.9(b), red points represent the material points in the real region,
and black points represent the material points in the fictitious region.

Fig. 2.10-Fig. 2.11 represent the deformed shape of the beam and displacement and
rotation variations along the semi-circular beam, respectively. It can be seen from
Fig. 2.10 that the deformed shape of the beam predicted by PD agrees very well
with the FEA solutions. It is also observed that all 6 DOFs of the beam predicted
by PD and FEA have a very good agreement as shown in Fig. 2.11.

~~~~~
.
~..
~.
~

O s I | | NI '
= ot <] |
g 0024 Undeformed
0031 T_ pimed A 0
0 /\N()?(;?\x\’\\»\\ 0.5
0.3

0.4 & x1 (m)
X2 (m)
Fig. 2.10. The deformed and undeformed shape of the beam
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2.2.7.3. Jacket platform subjected to a constant concentrated load

After verifying the developed PD model for the simple frame and curved beam, the
accuracy of the PD model is tested for a jacket platform which consists of 28 beams
and 16 joints. For this purpose, a 27 m high jacket platform is modeled as shown in
Fig. 2.12. The jacket platform has the following dimensions: H; =9 m,H, =
18 m,H; =27m,L, =L, =12m,L; = L, = 4 m. The jacket platform is fixed
on 4 legs at the location of x; = 0 and subjected to concentrated loading F, =
2x 107 N at (L3/2,—L,/2,H;3) and (—L3/2,—L,/2, H3). Each beam component
of the jacket platform has a hollow circular cross-section. Four main legs, shown in
red, have an outer diameter of 0.6 m and inner diameter 0.576 m, the other beams,
shown in blue, have an outer diameter of 0.4 m, and an inner diameter of 0.384 m.
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Beam number

joint point
.~ number

(a) (b)

Fig. 2.12. Jacket platform (a) geometry, (b) beam numbers and joint points

In the PD model, beams 1, 2, 3, 4 (shown in red) are discretized into 300 material
points, and other beams (shown in blue) are discretized into 100 material points.
Similarly, for the ANSYS model, beams 1, 2, 3, 4 are meshed with 300 elements,
and other beams are meshed with 100 elements.

Similar to the previous examples, to apply boundary conditions, three fictitious
material points are added for beam 1, 2, 3, 4, 25, 26, 27, and 28 on the centreline of
each beam, a long negative x5 direction and all DOF of these fictitious points are
set equal to zero.

Shown in Fig. 2.13-Fig. 2.18 are the variations of 6 DOFs of the jacket platform in
the deformed shape in the global coordinates. The results obtained from the PD
analysis match very well with those in FEA.
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Fig. 2.13. Displacement u; (m) in deformed configuration (a): PD analysis, (b):
FEA

30



1.1367 1.1367
1.0699 1.0699
254 1.0030 25 1.0030
0.9361 0.9361
0.8693 0.8693
20+ 08024 207 0.8024
= N 0.7355 I/ N 0.7355
’é‘ 15 i \/ 0.6687 ’g 15 ] i 0.6687
a2 0.6018 <= 0.6018
9 0.5349 W 0.5349
* 10 04681 10+ 04681
0.4012 0.4012
59 0.3343 54 0.3343
0.2675 0.2675
0 0.2006 0 0.2006
A 0.1337 0.1337
-5 0.0669 B S 0.0669
5 0 0 X 5 0 ¢
X -5 1(m -5
k() x2 (m) ) x2 (m)
_ - @ _ (O _
Fig. 2.14. Displacement u,(m) in deformed configuration (a): PD analysis, (b):
FEA
0.1167 0.1167
0.1030 0.1030
25 0.0893 25 4 , . 0.0893
0.0756 0.0756
0.0619 0.0619
201 00482 20 0.0482
0.0345 0.0345
z1s 0.0208 £ 15 0.0208
= 0.0071 ~~ 0.0071
) -0.0066 & = 1-0.0066
» 104 00203 10+ / -0.0203
-0.0340 -0.0340
5 -0.0477 54 -0.0477
| \ -0.0614 -0.0614
0 < -0.0751 0 : i -0.0751
i \ -0.0888 > \ -0.0888
45 V -0.1025 -5 Vs -0.1025
X1(m) s -0.1162 . 5 o 0 -0.1162
1 X2 (m)
- - - - - (b) -
Fig. 2.15. Displacement u; (m) in deformed configuration (a): PD analysis, (b):
FEA
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Fig. 2.16. Rotational angle 6, (rad) in deformed configuration (a): PD analysis,
(b): FEA
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Fig. 2.17. Rotational angle 6, (rad) in deformed configuration (a): PD analysis,
(b): FEA
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Fig. 2.18. Rotational angle 6 (rad) in deformed configuration (a): PD analysis,
(b): FEA

2.2.7.4. Damage prediction for jacket platform subjected to ship collision

In this example, the jacket platform subjected to ship collision is investigated. The
ship is considered as a rigid body, moving with a constant velocity of v, = 30 m/s
in x; direction. It is assumed that the collision is between the front part of the ship
and the jacket platform. Therefore, only the front part of the ship is modeled as
shown in Fig. 2.19. The geometrical and material properties of the jacket platform
are the same as in Section 2.7.2. The structure does not have any initial damage, but
it is hit by the ship at t = 0. For simplification, the critical energy release rate of
the material is chosen as G, = G;, = 720 J/m?.

Fig. 2.19 presents the extent of damage due to contact between the ship and the
jacket platform. As the ship moves to the left, the ship growingly collides with the
jacket platform causing the increase of damage region on the jacket platform. As
shown in Fig. 2.19, the deformed shape of the contact region on the jacket platform
is also associated with the shape of the contact region on the ship's body. After 0.15
seconds, the ship with the velocity of v, = 30 m/s moves 0.45 m and breaks the
jacket platform on contact regions.
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2.3. Peridynamics for linear 3D shell structures

This section focuses on developing a novel ordinary state-based peridynamic model
to predict the thermomechanical behaviour of three-dimensional shell structures
with 6 degrees of freedom. The numerical techniques to deal with complex shell
structures are also provided. For verification purposes, static analyses of a flat shell,
a curved shell, and a stiffened structure are presented. After verifying the accuracy
of the PD model, damages on a flat shell in a double torsion problem, a flat shell
with a rectangular cut-out subjected to bending, a hull girder subjected to bending
and torsion, and a corroded stiffened structure subjected to uniform pressure are
predicted.

2.3.2. Kinematics of Flat Shells in Classical Continuum Mechanics

In this section, first, the descriptions of degrees of freedom for a material point on
a shell structure are provided. Next, the formulations for linear strain and stress are
obtained. Finally, the strain energy density formulation in classical continuum
mechanics for shell structures is presented.

2.3.2.1. Degrees of Freedom

The kinematics of a flat shell is initially based on the theory of plates by including
transverse shear deformations [78-80]. According to assumptions in Mindlin [78],
Reissner [79], [80], the deformation of each material point in a plate is represented
by five degrees of freedom. As presented by Wisniewski [81], the drilling rotation,
which is the rotation with respect to the normal axis of the plate’s plane, can be
added.

Fig. 2.20 presents a material point in a flat shell with 6 degrees of freedom; u,, u,,
uz, 04, 6,, 65 in the global and u, v, w, 8,, 8, 8, in the local coordinate systems
with respect to undeformed configuration. The components u and v represent the
in-plane displacements of the mid-surface in x and y directions, respectively.
Meanwhile, w represents the transverse displacement of the middle surface in z
direction. The rotations 6,, 6,, 6, represent the rotations of the plate around x, y
and z, respectively. The drilling rotation, 8, can be found from the rotational
constraint equation as [81]

skew(QTF) =0 (2.45a)
where
:|:C?SGZ —sin 6’2} (2.45b)

sing, cosd,
1

- { U Yy } (2.45¢)

v, 1l+v,

The rotational constraint in Eq. (2.45a) can also be written as

~(v,+u, +2)sin6, +(v, -u,)cosd, =0 (2.46)

If 6, # m/2, EQ. (2.46) becomes [81]

0, —arctan| —x "y (2.47)

v, +u,+2
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For small rotation and small strain conditions, Eq. (2.47) becomes

0 - %(vvx —u,) (2.48)

Fig. 2.20. A material point in a flat shell with 6 degrees of freedom

2.2.2.2. Linear Strain Components

For small deformations, the displacement components of a point located at (x, y, z)
with respect to mid-surface can be expressed as [70, 78-80]

G(x,y,z)=u(xy)+z6, (2.49a)
V(x,y,z)=v(x,y)-26, (2.49b)
W(x,y,z)=w(x,y) (2.49¢)

where u, v, w represent the displacement components of a point located at the mid-

surface and i@, U, w represent the displacement components at any point.

By using the displacement components given in Eq. (2.49), the linear strain
components can be determined as

e=[ey &y Yy Te Vul (2.50a)
where

&, =00/0x=u +126,, (2.50D)
&, =Nfoy=v, 20, (2.50c)
¥,y =00/0y +80/0x=u, +v,+2(6,,-6,,) (2.50d)
Y :80/8Z+6\N/8X:WX +0, (2.50e)
¥y, =00/ 0L +OW[oy =w 6, (2.50f)

Note that based on the small deformation assumptions in linear elasticity, the strain
component in the thickness direction of the shell can be neglected, ¢,, = 0 [70].

If the temperature effect is considered, total strain components in Eq. (2.50) can be
determined as a summation of mechanical strain, €™ and thermal strain, €7 as [82]
e=g"+¢g' (2.51a)
with
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g =[aAT aAT 0 0 0] (2.51b)

where a represents the coefficient of linear thermal expansion and AT represents
the temperature change. Therefore, the mechanical strain components can be
defined as

" =e—¢ =[el & v vh Tn) (2.52a)
where

e =U, +20, —a AT (2.52b)
gy =V,—20,  —aAT (2.52¢)
V=V =Uy,+V,+2(6,,-6,,) (2.52d)
Y =V =W, +06, (2.52¢)
Yy =V =W, =6, (2.52f)

2.2.2.3. Stress Components

For a linear elastic isotropic, homogeneous material with o,, = 0, the stress
components can be expressed as [82]

o = De—DoAT (2.53a)
with
1 v 0 0 |
1% 0 0
£ |00 v 5 9
_ 2
D=1 . (2.53b)
00 0 —2 o
2
00 0o o V¥
L 2 |
a=[a « 0 0 0] (2.53c)

where D represents the constitutive relations and a represents the vector of linear
thermal expansion coefficients.

By substituting Eq. (2.50) into Eq. (2.53), the stress components can be expressed
as

O = 1_EV2 [u,+20,, +v(v,~20,,)-(1+v)a AT | (2.54a)
ayy=1_E [v, 20, +v(u, +Z6’yyx)—(1+v)aATJ (2.54b)
) [uy+v +2( 9”)] (2.54c)

E [wxw] (2.54d)
[w -0, | (2.54e)

36



2.2.2.4. Strain Energy Density
In linear elasticity, the strain energy density (SED) can be expressed as [83]

227172

1
W = 5[%821 + Oy e + O+ OV + Ty ¥ O | (2.55)

By substituting the stress and mechanical strain components given in Eg. (2.54) and
Eq. (2.52) into Eg. (2.55), the strain energy density can be obtained as

W = %{l E - [uyx +16,, +V(V,y - zexyy)—(1+ v)a.AT](uvx +126,, —aAT)
—v

+1i2[v,y ~20,,+v(u,+26,,)-(1+ v)a.ATJ(vvy ~120,,-aAT)
—v

2.56
u,+v, +2(6,,-0 X)T (250)

X,

E
+2(1+v)[

E 2 E 2
+m[wx +9y] + 2(1+V)[Wy —GX] }

By integrating the SED given in Eq. (2.56) through the thickness of the shell, the

strain energy per unit area, W , can be obtained as
h/2

i 2 Eh 2
W=,;[,ZWdzz—Z(l—vz)(u’erv’y) +m[(u'Y+V'X) _4U,xV,yJ
Eh 2
+— (aAT) —aAT(u, +v
1_V[ (v, (2.57)

Eh’ 1—
T [(exyy -6,,) +7V((6’x,x -0,,) + 49yyxexvy)}

e (AT

where h represents the thickness of the flat shell, v represents the Poisson’s ratio,

E represents Young’s modulus, k; = 5/6 represents the shear correction factor to
account for the non-uniformity of the shear stresses [70]

The strain energy per unit area given in Eq. (2.57) can be represented as

W =W, iane +Woenging T Wenear (2.58a)

with

Wipiane = 2(%%(% +vvy)2 + 4(3‘/) [(uyy +V,x)2 —4uyxvny -
+%[(aAT)2—aAT(u‘X+vyy)} |

Wy = %{(% -0, +1_TV((9H ~0,,) +46,,0,, )} (2.580)

W, = 4'(‘ihv) |:(W,x +0,) +(w, -, )1 (2.58d)

where Winpiane: Woending: Wshear represent the strain energy per unit area for in-
plane, bending, and shear deformations, respectively.
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According to the Mindlin—Reissner plate theory, plate element is developed with 5
degrees of freedom (DOF) as provided in Eq. (2.58). However, to simulate curved
and stiffened structures 6 DOF shell elements are required. If the drilling rotation
is not considered, all the resistance to the drilling rotation of each node comes
directly from the coupling of other rotational DOFs of the non-planar surrounding
nodes. When the model is discretized with very fine mesh, angles of the kinks
between two elements, which are located next to each other, will become close to
2m and the coupling effect is much reduced [71]. As a result, the global stiffness
matrix may become singular and it results in unrealistic solution results. Therefore,
to produce a small stiffness associated with drilling rotation, an additional fictitious
torsional strain energy per unit area corresponding to the drilling rotation can be
added as [71]

VV :VVianane +vaending +Wshear +Wtorsional (259&)
where

o Eh 1 ’
Wogrsionar = Kr m[@ _E(V'* ~u, )} (2.59b)

in which k; represents torsional constant [71].
Note that, the value of the fictitious stiffness needs to be small enough to ensure
that this stiffness will not distort the global solution results [71].

2.3.3. Kinematics of Flat Shells in Peridynamics

In this section, first, the peridynamic form of strain energy density is established.
Next, the kinetic energy, total potential energy, Lagrangian function are obtained
by using Eq. (2.27). Finally, the equations of motion for shells are obtained by using
the Euler-Lagrange equation given in Eq. (2.26).

2.3.3.1. PD Strain Energy Density

Similar to the strain energy per unit area in classical continuum mechanics provided
in Eq. (2.59a), the peridynamic form of strain energy per unit area for a flat shell
can be presented as

PD PD PD PD PD
W _Wlnplane Wbendlng +Wshear +Vvtorsmnal (k) (260)
Where Wnplane(k), Wbendmg(k), Wshear(k) represent the components of strain
energy per unit area for in-plane, bending, shear deformations, respectively. The
term Wtorstonal(k) represents the additional strain energy per unit area that
corresponds to drilling rotation.

Similar to strain energy density definition by Madenci and Oterkus [44], the PD
form of strain energy per unit area for in-plane deformations can be defined as

PD 2 2
Wit = 8%l ~ % (k)+a1p3AT(k)+b,pZ( in(k)(j) “AT(k)) My (2.61)

where 9, represents the dilatation of materlal point k, sy j) represents the

relative bond stretch of in-plane displacement components between material point
k and material point j.
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In Eq. (2.61), the terms a;,q, a2 , Aip3, and by, represent in-plane PD constants
which can be determined as (Appendix B1)

& = T(%V‘;i) (2.62a)
e 1E_h:‘2 (3v-1)=4aa,, (2.62b)
g = (3 —1)a” = da’ay, (2.62¢)
3 E (2.62d)

P25 1ty
The effect of temperature change on dilatation term can be included as [26, 44]

N
S = dipZ(Sipm(j) —a ATy, )V(J) +2a AT, (2.63)
j=1
where d;,, represents the in-plane PD constant for dilatation as (Appendix B1)
2
o= 2.64
p 7Z'h52 ( )

The relative bond stretch for in-plane displacement components between two
material points can be defined as [75]
(U —Ugy )05 @+ (Vi) =V )sin @

Sty = p (2.65)

where u ), vy and ugj), vy represent two in-plane degrees of freedom of material
points k and j, respectively. The parameter ¢ represents the angle of interaction
between material points k and j with respect to the local axis, x in the undeformed
configuration as shown in Fig. 2.21.

Actual
deformation

Average
deformation

Fig. 2.21. Deformed and initial configuration of a flat shell in PD
The PD form of strain energy per unit area for bending deformations can be defined
as
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N
szrlljding(k) = a'b‘gbz(k) + bnzss(k)(j)fv(j) (2.66)
j=1

where a;, and b, represent PD constants for bending which can be defined as
(Appendix B2)

Eh®3v-1
ab = 4—8m (267&)
Eh?
AT (2870
The terms 9,y and sp )5y In EQ. (2.66) can be defined as
N
S = s 2 Sog0n Vi (2.68a)
j=1
—(6,y =0, )COSOP+(E, .y =0\ |SIN@
Sb(k)(j) _ ( y(i) y(k)) 5 ( () (k)) (2.68b)
with
d, =2 (2.68¢)
* " rho? '

Here, 6, and 6, represent rotational degrees of freedom with respect to x and y
axes as shown in Fig. 2.20.

The PD form of strain energy per unit area for shear deformations can be defined
as

— — 2
_ 1 O (w,—w 0., +0.
PO _ i~ M P TG
Wshear(k) _ZCS;( J g - 2 J J év(j) (269)
where C, represents PD constant for the shear deformations as (Appendix B3)
3k, E
_ 9% 2.70
P8t (1+v) (2.70)

In Eq. (2.69) the terms é(k) and é(j) represent the rotations with respect to the line
of action between the material points k and j as shown in Fig. 2.21. These rotations
can be calculated as [50]
Oy = =0, COSP+ 0,y SN (2.718a)
;) =—0,;, COS@+0, ., Sinp (2.71b)
The torsional strain energy per unit area in PD can be defined as

O %0 [V~ Uy —

17 PD 13 Vi ~Vw W Y o 2

Wtorsional(k) = _zct COSp————-3SINp év(j) (272)
23 2 S 4

where 6,y and 6,y represent drilling rotations, which are with respect to z-axis,

of material points k and j, respectively.

In Eq. (2.72), C; represents PD constant for torsional deformations as (Appendix

B4)

3 B
T 250 14y
As explained in Section.2.4, the value of the fictitious stiffness corresponding to the
drilling rotation needs to be small enough to ensure that this stiffness will not distort
the global solution results. As suggested by Kanok-nukulchai [71], the value of the
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torsional constant, k,, can be chosen to make the torsional strain energy per unit
area has the same order as the bending strain energy per unit area. Therefore, by
equating Eqg. (2.67b) and Eq. (2.73), the value of k; can be chosen as

2
K =k % (2.74)
where k constant is added for convergence in PD solution, which is inherited from
the suggestion by Kanok-nukulchai [71] for convergence in FEA simulations, and
itis chosen as k, > 1.
Note that ordinary state-based formulations for in-plane and bending strain energy
as provided in Eqg. (2.63) and (2.66) removed the limitation on Poisson’s ratio.

2.3.3.2. PD Equations of Motion in the Local Coordinate System

By using Eqg. (2.27), the PD form of kinetic energy, total potential energy, and the

Lagrangian function can be defined as

Np

1 h® phl,
TZEZ{PhU(kﬁPhV + phiir () /iZ (exz(k) eyz(k)) A(—(k)ezz(k)}p\(k) (2.753)

k=1 k)

PD h h
U= Z(W<k> B, 4940 = By0¥ir = Bao Wiy = Moo = Mo Blocer ) Ao (2.75b)

L=T-U (2.75¢)
where N, represents the total number of material points of the PD model, bx(k),
b (k) and bz(k) represent the applied forces per unit area at material point k in x, y,
and z directions, respectively. The parameters m, .y and m,,, represent applied
moments per unit area with respect to local coordinate x and y, respectively. The
parameter I, represents the moment of inertia with respect to z-axis. If the shell
is uniformly discretized with a grid size Ax, the moment of inertia, I,,, for each
material point can be calculated as [61]

(&)’
Ly =" (2.76)

Therefore, by substituting the Lagrangian function obtained from Eg. (2.75) into
Eqg. (2.26) in Chapter 2, the equations of motion for flat shells can be obtained as

v |28 d (9, +9 )-a_d AT B
phtiy, =Y " f( ot %0) =3 5( o) cosgV,;, +b,, (2.772)
. +4b, (Sip(k)(n aAT(k))
N 2a, d,=(%,, +3 a,,di, = (AT, +AT
ph\'i(k) :Z P 65( © (1)) P2 ég( (J)) sin V(J) +by(k) (2.77b)
j=1
J _+4bip(sip(k)(n O‘AT(k))
—W,, 1| 0,0t 0, )COSp _
phig,, =C Z ®_ ( ’ v ) Vi) +b.00 (2.77¢)

j=1 f 2 +(6’X(k) + 0

x(n)Sin(/’

41



] Vv, (277d)

} V,, (2.77¢)

ph® . Nl 2a.d .
ﬁexm Z{ gb(‘gb(k) i)+ 40uSuqqyy [SINPVe)
j=1
N =6, ., +0,. )sinpcosp
T
2 H 2| +(0,49 + 0,5y )sin’ @
+ M,
ph3 5| 2a,d
12 Oy = _Z{ £ (S0 + iy )+ Sy [COSPV
J
1.3 (G460 + 05 ) 005 @
—ECSZ (W(i)‘W<k))C°S(/’_§ .
j=1 +(0X(k)+ X(J))sm(pcosw
+ M,
] I NGO+, [V =V Uy =Ugy .
0 Hz(k):CtZ|: (k)2 (J)_( (1 Y0 o5y — 20 0 S'“wﬂfvm (2779
k) =1 95 68

The equations of motion in the local coordinate system given in Eq. (2.77) can be

rewritten in vector form as

L
(k) (k) Zf(k)(l)v(l)+b(k)

where
ph 0 0 O
0 ph 0 0
0 0 ph 0
3
o lo o0 o AU o
Mgy = 12
3
0 0 0 0 ﬂ
12
0 0 0 0 0
and )
L u s w 0,
foom = [f(k)u) foom foom T
with i
fu _ 2 |p1d g(g(k)—i_‘g(j)) |p2
w0 =
| +4b, (Sip(k)(n _“AT(k))
i 1
oo 2a,,d;, df(,9(k)+l9m) 2,0,
w30 =
| +4b, (Sip(k)(j) _“AT(M)

(kK)(J)

phl,,

A(k)

y
f(k)(l)

1(AT +AT.
ve

) (AT(k) +A

® =

U

0,
f(k)(J)

Vi

(k)

D:

7x(k)

D:

"y

z(k) |

%

T
)

cos @

(J))

sing

| &1 Lo
= 'X
= =
=z

o

z(k)

=

x(k)

3

y(k)

(2.78a)

I

(2.78b)

(2.78c)

(2.78d)

(2.78e)
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fiog =Cs {w _ %[—(ey(k) +0,;) ) COS @+ (6, + O, )in ¢]} (2.78f)

2ad ]
o, _
fida —{ £ ? (‘9b<k) +'9b<j))+4bnsb<k)<j)}'”¢’
) 2.78
_ £ —(Qy(k)+6?y(j))SIn(DCOS(p (2.789)
+2Cy 4 (W) — Wy, Jsing -2 i
2 2 +(6X(k)+ex(j))sm @
6, 2ad
foom = {%(‘gbm +19b(j))+4bbsb(k)(j)}cos¢
) (2.78h)
1 3 —(Gy(k)+9y(j))cos ®
_ECS (Wu)_W(k))COS("_E .
+(B,49 +6,5) )SiN@COS @
O, +0, (Viy—V Uiy —Upy .
fadai ZC{ = > = —[ = : “cos -1 : . Slncoﬂf (2.78i)

Note that the torsional strain energy per unit area is fictitious and it creates a small
stiffness corresponding to drilling DOF. Therefore, the contribution of drilling
rotation to in-plane displacements can be neglected in the equations of motion [71].
Note that the PD constants provided in Appendices B1-B4 are obtained based on
the small deformation assumption. Therefore, the developed PD model is applicable
for linear analysis of shell structures with small deformations.

2.3.4. PD Equations of Motion in the Global Coordinate System

The equations of motion provided in Eq. (2.78) are derived in local or body-attached
coordinates. For a structure that includes plates and shells joined, the equations of
motion for each material point needs to be transformed from local coordinates to
global coordinates. Therefore, in this section, the transformation of equations of
motion for flat and curved shells is presented.

2.3.4.1. Coordinate Transformation

As shown in Fig. 2.20, the local coordinates of a shell can be defined with respect
to the global coordinates by unit vectors 1, 7, 11,. The unit vectors for material

point k can be defined from the geometry of the shell as

— T
Moy = [al(k) &) aS(k):I (2.79a)
. T
My = [bl(k) b1 b3(k):| (2.79b)
— T
N = I:Cl(k) Caw C3(k):| (2.79¢)

Similar to the relations presented in Chapter 2, the relationship between global and
local coordinates can be written as

Xty = HooXo (2.80a)
where

.
X :[X(k) Yoo Z(k)] (2.80b)
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T

X = I:Xi(k) W10 XS(k):' (2.80c)
ai(k) a2(k) aS(k)

H(k) - [ﬁx(k) ﬁy(k) Z(k)] bl(k) b2(k) b3(k) (2.80d)

1(k) C2(k) b3(k)
The transformation of the displacement vector can be defined as

Ugo = TooUio (2.81a)
with
Ugy =[Usy Voo Weo 8 Ik (2.81b)
=Y Yoo W Gw e o :
G —
Uy = [ul(k) Uy Usgy Go  Gog 3(k):| (2.81c)

where ufk) and u(Gk) represent displacement vectors in the local and global
coordinate systems, respectively. The parameter T, represents the displacement

transformation matrix of material point k, which can be obtained from the
coordinate transformation matrix, Hy, as

T, = Ay O (2.82)
v 0 Hy

2.3.4.2. Transformation of Equations of Motion for Flat Shells

By using the relations given in Eq. (2.81a), the equations of motion for shell given
in Eq. (2.78a) can be written as

L

Mo TioU = Zf(k)(nv(n +bg, (2.83)
Multiplying both sides by T (k) results in
T&)mz_k) (k) (k) (k) (zf(k)(J)V(J) + b(l_k)j (284)
As a result, the equation of motion in global coordinates becomes

LG
Mg Ui = Zf(k)(nv(n +byg, (2.852)
where
G T gL

fooi = Taofwa (2.85D)
b = TaoPuo (2.85¢)
M = T(Tk)mLk)T(k) (2.85d)

2.3.4.3. Transformation of Equations of Motion for Curved Shells

In general, curved shells can be analysed by dividing them into a suitable number
of flat shell elements [84]. Each flat shell element can be considered as a material
point with kinematics described in Section 3 with the orientation represented by
three unit vectors given in Eq. (2.79). Therefore, the equations of motions for each
material point need to be transformed into the global coordinate system. Since each
material point has a different displacement transformation matrix, the equations of
motion for curved shells can be obtained by modifying Eq. (2.84) as
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— L
Tk)(J)m(k)T(k)(J) ) = (k)(J) [Zf(k)(l)v(l) + b(k)j (2.86&)

where T (jy represent the transformation matrix of interaction between material
points k and j. This transformation matrix can be defined as [62, 84]

H., 0

T = (1¢)) } (2.873_)

Q)
J [ 0 H o

with

H(k)(J) :I:ﬁx(k)(J) ﬁY(k)(J) ﬁZ(|<)(J'):| (287b)

where 7, o)) Ty () Tzcky(j)Can be represented as [62, 84]
M, + My

Mooty =77 = ~ (J)) (2.87c)
(nx(k) + nx(j))
Ny + 0

Ny o) = (j(k) ﬁy“)) (2.87d)
(y0 + 1)
M, + N,

M o) = (q o ) (2.87¢)
(R + iy )

2.3.5. Damage prediction for the linear PD shell model

In this section, a PD damage criterion based on the critical energy release rate is
introduced. The energy release rate for each interaction is calculated and compared
with the critical value. By including function 1, the PD equations of motion

given in Eq. (2.86a) can be written as

— L G
I:Tk)(J)m(k)T(k)(J)]u(k) Z[Tkon(k)(nf(k)(J)]V(J)+b(k) (2.88)
=i
Note that, by including the state of interaction represented by ;) [21], the
dilatation, 9y, given in Eq. (2.63), and the term, 9, ), given in Eq. (2.68a) can

be rewritten as

S = upZ'//(k)(n ( o) ~ % AT )V(n +2a AT, (2.89a)
S = de‘/’(k)(j)Sb(k)(j)V(J) (2.89b)
j=1

To decide the state of interaction which is represented by the function 1), the
damage criteria based on the critical energy release rate as presented in Chapter 1
is used. The micropotentials, @ ;(;y and @y, of the interaction between material
point k and j can be calculated as

CI)(k)(j) =@ + chhear iy + q)bending(k)(j) (2.90a)
Dy =P pte iy T Poending (k)(j) (2.90b)

where d)inplane(k)(j), Dgpeario) ) Prenaingi)(j) represent micropotentials for in-
plane, shear, and bending deformations, respectively. Note that the contribution of
drilling rotation is not included in the calculation of total micropotential in Eq.
(2.90) because the strain energy density caused by this DOF is fictitious.

inplane(k)(j)

inplane (k)( shear (k
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In linear elasticity with small deformation, the relationship between relative bond
stretch and force density is linear. Therefore, by applying the same idea introduced
by [25], Madenci and Oterkus [26], the in-plane micropotential ®;,,;ane(k)(j) €N
be calculated as

1

DPivpianeqiy = %tip(kxnf (Sip(k)(j) _“AT(k)) (2.91q)
where
2ai ldi a'i Zdi
Gy :{ Zg =S~ pé: ATy, + 2, (Sip(k)(j) —aAT(k))} (2.91b)
The bending micropotential @y ¢pqingi)(j) €an be calculated as
1

Pogning iy = %tb(k)(j)gsb(k)(j) (2.92a)
where

2a,d
by ={ v >0 +2bbsb(k)(i):|

(2.92b)
1. £ (0,00 + 0,1 ) COS P
s (W(J')_W(k))_E .
+(0,00 + 6,3y )sin
The shear micropotential ®g,¢q. (i) (j) €an be calculated as
1
Do oy = Etshear(k)(j)égsshear(k)(j) (2.93a)
where
¢ PR o L G ~(y + ;) )OS 2 93b
shear ()()) ~ 5 1()(D) T o s —ég D) . (2.93b)
+(0,00 + 6,y )sin e
W, —W,
Sshear(k)(j) = % (293C)

Note that the micropotentials given in Eq. (2.90) include in-plane, shear, and
bending components. The in-plane micropotential can be caused by either in-plane
tension or compression. The shear micropotential is caused by shear deformations.
Meanwhile, the bending micropotential is caused by bending deformations.
Therefore, the contribution of tensional, compressional, shear, and bending
deformations are considered for the calculation of bond energy release rate for
damage prediction which is given in Eq. (1.9) in Chapter 1. Hence, the energy-
based damage criteria used in this Section are applicable for tensional,
compressional, shear, and bending deformations for linear analysis.

It should be noted that to predict damages in shells and stiffened structures using
the energy-based damage criteria given in Eq. (1.9), the critical energy release rate
of material should be a value that is applicable for mixed-mode loading. However,
to simplify the determination for the value of G, in section 2.3.7, the critical energy
release rate of the material is simply chosen as G, = Gy..
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2.3.6. Numerical implementation

For stiffened structures, the geometrical and material properties as well as family
members for each material point need to be defined. Depending on the location of
the material point, different procedures are used. As an example, the stiffened
structure shown in Fig. 2.22(a) is considered. Fig. 2.22(b) demonstrates the model
discretization for a stiffened structure with three shells S,, Sz, Sc. In Fig. 2.22(a)
lines Ly, L,, L5 represent the intersections between shells and point k represents the
intersection of the three shells. The material points located at the intersection lines
are identified such as (L14,L1g), (Laa, Lac), (L3, L3c) as shown in Fig. 2.22(b).
During the discretization, material points along lines L.z, L, L3¢ are removed,
material points along lines L4, L,4, L3 are set as joint points and the material
point k is set as the intersection point of three shells as shown in Fig. 2.22(b).

(a) (b)
Fig. 2.22. Stiffened structure (a) geometry, (b) model discretization

Fig. 2.23 represents the family members for material points at two different
locations. As shown in Fig. 2.23(a), material point 8 is located on the shell Sg,
therefore the family members of this material point belong to the shell Sz. On the
other hand, material point 4 is located at the intersection of shell S, and S as shown
in Fig. 2.23(b), therefore its family members belong to both shells. As a
demonstration, Fig. 2.24 shows the number of family members for a stiffened
structure.
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Fig. 2.23. Identification of family members for a material point located (a) on the
shell (b) at the intersection

For a stiffened structure, each shell may have different material and geometrical
properties. The material and geometrical properties of each interaction are
determined based on the family member of each material point. As shown in Fig.
2.23(a), since material point 8 and its family members are located on the shell Sg,
the material and geometrical properties of material point 8 are obtained from the
shell Sgz. On the other hand, as shown in Fig. 2.23(b) material point 4 and its family
members are located at both shells S, and S;. Therefore, material and geometrical
properties are determined based on the interaction between material points. For the
interaction between material points 4 and 10, since the neighbour material point 10
belongs to the shell S, the material and geometrical properties of the interaction
are included for the shell Sg. Similarly, for the interaction between material points
4 and 31, since the neighbour material point 31 belongs to the shell S,, the material
and geometrical properties of the interaction are included for the shell S,. Material
points 4 and 5 are located at the interface. Therefore, the interaction forces between
these points are calculated by summing two interaction forces. Each interaction
force in the shell’s local coordinate system is calculated by using Eq. (2.78) and
transformed into the global coordinates by using Eq. (2.85) or Eq. (2.86a).
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Fig. 2.24. Number of family members of material points on a stiffened structure

2.3.7. Numerical results

For verification purposes, the proposed PD model is compared to FEA solutions.
For static or quasi-static problems, the adaptive dynamic relaxation method, which
is described in Appendix A3, is used in PD. The FEA solutions are conducted by
using ANSY'S commercial software with the SHELL181 element. In PD theory, the
boundary conditions can be implemented through fictitious layers as described by
Macek and Silling [40]. Based on numerical experiments, to ensure that the
imposed boundary condition is accurately reflected in the real domain, this layer
needs to be at least at the size of the horizon, §.
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2.3.7.1. A flat shell subjected to constant static loading

To verify the developed PD model for flat shells, a square flat shell with dimensions
L =W = 1m, and thickness # = 0.1 m is investigated as shown in Fig. 2.25(a).
The flat shell is fixed on the left end and subjected to uniformly distributed loading
along the right edge in both x; and negative x; directions as p; = 1 X 107 N/m,
p3s = —1 X 107 N/m, respectively. The material has Young’s modulus of E =
2 x 10 N/m? and Poisson’s ratio of v = 0.45.

In the PD model, the shell is discretized with uniform 150 integration points along
each direction. As shown in Fig. 2.25(b), to apply boundary conditions along the
left edge, fictitious layers of material points, shown in black, are added on the left
edge. All DOFs of these fictitious points are set equal to zero. In the FEA model,
the same mesh size is also used.

0.5

!
X3 (m)

Py

05— 05

0 92 X2 (m)

04 o6 i 4
X1 X1(m) & 1

(a) (b)
Fig. 2.25. Flat shell subjected to static constant loading (a) geometry, (b) model
discretization

As given in Eq. (3.29-30), the PD constant for torsional deformations depends on
ko which is added for convergence in PD solutions. Therefore, the effect of k, to
the PD solution is investigated as shown in Fig. 2.26 with the horizon size of § =
3.015Ax. As can be seen from the figure, the PD results for displacements and
rotations of the flat shell is stable for various values of k,. After checking the
stability of the PD solutions, k, = 1 is chosen.
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Fig. 2.26. Effect of the torsional coefficient k, on PD results at (x; = L, x, =
W /2), horizon size § = 3.015Ax.

The effect of horizon size on PD results is investigated by comparing with FEA
solutions. Fig. 2.27 shows the variation of relative error between PD and ANSYS
predictions. The relative error for each DOF is calculated as

‘ FEA qPD‘

%error(q):wxloo (2.94)

where gFE4 and gPP represent the FEA and PD solution for a degree of freedom, g,
respectively.

As can be seen from Fig. 2.27, the relative error between PD and ANSYS
predictions reduces as the horizon size increases. When the horizon size is bigger
than 6§ = 34x, the relative error for all degrees of freedom is less than 3%.
Therefore, to reduce the computational time § = 3.015Ax is chosen. Note that, the
extra value 0.015Ax is added into horizon size to ensure that all material points
within a distance of 3Ax is included.
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Fig. 2.27. Effect of horizon size on PD prediction results at (x, = L, x, = 3W /4)

Fig. 2.28-Fig. 2.33 present the comparison of PD and ANSYS predictions for 6
DOFs with 6 = 3.015Ax and k, = 1. As can be seen from the figures, PD
predictions agree very well with FEA results. Moreover, the good agreement of
drilling rotation, 65 shows that the additional PD equation of motion for drilling
rotation is acceptable.
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Fig. 2.28. Variation of displacement u, (m) of shell with L/h = 10 (a) PD, (b)
FEA results
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Fig. 2.29. Variation of displacement u, (m) of shell with L/h = 10 (a) PD, (b)
FEA results
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Fig. 2.30. Variation of displacement u; (m) of shell with L/h = 10 (a) PD, (b)
FEA results
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Fig. 2.31. Variation of rotation 8, (rad) of shell with L /A = 10 (a) PD, (b) FEA
results
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Fig. 2.32. Variation of rotation 6, (rad) of shell with L/h = 10 (a) PD, (b) FEA
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Fig. 2.33. Variation of rotation 85 (rad) of shell with L /A = 10 (a) PD, (b) FEA

results

To have a better comparison, the PD and FEA solution results along x, = W /2 and
x; = L/2 are compared as shown in Fig. 2.34 and Fig. 2.35, respectively. As can
be seen from the figures, PD and FEA solution results agree very well for both in-
plane and out-of-plane deformations. Therefore, the developed PD model for thick

flat shells is verified.
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Fig. 2.34. Variation of (a): u; (m), (b): u3; (m) and 6, (rad) along x, = W /2
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Fig. 2.35. Variation of DOFs u, (m), 8, (rad) along x, = L/2

2.3.7.2. A curved shell subjected to constant static loading

To verify the developed PD model for curved shells, a shell with a radius of R is
investigated as shown in Fig. 2.36(a). The shell is clamped at g = 75° and it is
subjected to a distributed load as p; = —1 x 107 N/m at 8 = 90°. The shell has a
thickness of 2 = 0.1 m and a length of L = 0.7907 m. It is made of steel with
Young’s modulus E = 2 X 10! N/m? and Poisson’s ratio v = 0.27.

The shell is discretized with uniform 150 integration points in each direction. To
apply boundary conditions, fictitious layers of material points are added as shown
in Fig. 2.36(b). All DOFs of these fictitious points are set equal to zero. In the FEA
model, the same mesh size is used.

z(m)

06 T
0.8 0

y (m) X (m)

(@) (b)
Fig. 2.36. A curved shell subjected to static loading (a) geometry, (b) model
discretization

Similar to the previous example, the effects of k, on PD predictions with horizon
size § = 3.015Ax are investigated as shown in Fig. 2.37. To check the effect of the
curvature, the curved shell is studied with two different values of radius, R = 1m
and R = 3m. As can be seen from the figure, the PD predictions for all degrees of
freedom of the two curved shells have good agreement with the FEA solution when
ko = 1. Therefore, it can be concluded that the value of k, given in Eq. (2.76) can
be chosen as k, > 1 for both flat and curved shells. Therefore, in the following
sections k, = 1 is chosen.
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Fig. 2.37. Effect of the torsional coefficient k, to solutions of curved shell radius
of curvature @ R =1m (b) R =3mat (x; =L/2,x, = 0,x3 = R)

The effects of horizon size on PD results for curved shells are also investigated.
Fig. 2.38 shows the relative errors between PD and FEA results for nonzero DOFs
of the material point located at (x; = L/2,x, = 0, x5 = 3) on the curved shell with
R = 3m. As can be seen from the figure, the PD results converge to the FEA
solution when § = 3.015Ax in which all the relative errors are smaller than 1.5%.
Therefore, § = 3.015Ax is chosen for the PD representation of curved shells.
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Fig. 2.38. Effect of horizon size on PD results at (x; = L/2,x, = 0,x3 = 3)

After investigating the stability of the PD prediction, the PD predictions with k, =
1 and § = 3.015Ax for the curved shell with radius R = 3m are compared with
the FEA solution. Fig. 2.39-Fig. 2.44 show the variations of 6 DOFs of the shell in
the deformed configuration. The results obtained from PD analysis agree very well
with those in FEA. Moreover, as shown in Fig. 2.45, the deformed shape along the
line of x; = L/2 captured in PD and FEA solutions are on top of each other which
shows the accuracy of the developed PD model for curved shells.
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Fig. 2.41. Variation of displacement u; (m) in the deformed configuration (a) PD,
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Fig. 2.45. Deformed configuration of the curved shell along x;, = L/2

2.3.7.3. A stiffened structure subjected to constant static pressure

After verifying the developed PD model for flat and curved shells, this example is
to verify the developed PD model for stiffened structures. As shown in Fig. 2.46(a),
a stiffened structure constructed by a cylindrical shell and four stringers is
investigated. The cylindrical shell has a radius of R = 2 m and total length of L =
L;+ Ly +L; =1.0472 m with L, = L3 = L/4 m. The side view of the stiffened
structure is shown in Fig. 2.46(b). The height of each stringer is H = 0.1057 m.
All the shells have a thickness of # = 0.1 m and they are made of steel with
Young’s modulus E =2 x 10 N/m? and Poisson’s ratio v = 0.27. The
cylindrical shell is subjected to the constant pressure of p, = 2 X 10° N/m?. All
four edges of the curved shell and two ends of each stringer, shown in black in Fig.
2.46(a), are clamped.

In the peridynamic model, the curved shell is discretized with 150 x 150 material
points and each stringer is discretized with 150 x 20 material points. The horizon
size is 6§ = 3.015Ax. To apply boundary conditions, four fictitious layers of
material points, shown in black, are added as shown in Fig. 2.47. All 6 DOFs of
these fictitious material points are set equal to zero. In the FEA model, the same
mesh size is used.

Fig. 2.48-Fig. 2.53 show the variation of 6 DOFs of the shell structure. As shown
in Fig. 2.50, due to the applied pressure, the middle region of the curved shell has
the highest deformation in the vertical direction. As a result, due to the connection
between the curved shell and the stringers, all stringers are twisted towards the
centre of the cylindrical shell as shown in Fig. 2.48 and Fig. 2.49. As can be seen
from the figures, the PD results agree very well with the FEA results which shows
the accuracy of the developed PD model for stiffened structures.
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Fig. 2.46. Stiffened structure subjected to constant pressure (a) 3D view, (b) side
view
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2.3.7.4. A glass cup subjected to a constant temperature change

To verify the developed PD model for the thermomechanical behaviour of shell
structures, a glass cup subjected to uniform temperature change is considered as
shown in Fig. 2.54. The shape of the cup is defined as

x=bcos@cos¢p (2.95a)
y =bcos@sin ¢ (2.95b)
z=(a+esing)sing (2.95¢)

wherea =0.1m,b =0.06m,e =0.04m, —7n/2<0<n/12, n<¢p<m

. ' - _0_05\7{,,.V\A.»x—(;;);—a‘"’0';)2 0.04 006
006 -0.04 002 0 002 004 006 x 0,06 -0.04 0.

Yy

(a) (b)

(©)

Fig. 2.54. Glass cup subjected to a uniform temperature change (a) side view, (b)
3D view, (c) coordinate system

The cup is made of glass with Young’s modulus E = 68 x 10° N/m?, Poisson’s
ratio v = 0.17, mass density p = 2710 kg/m3, and linear thermal expansion
coefficient @ = 8.5 % 107 m/mK [34]. The thickness of the cup is 4=
1 % 1073 m. The cup is subjected to AT = 80 °C uniform temperature change and
it is fixed from the bottom part as shown with the red region in Fig. 2.54(b). The
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PD model is discretized by setting incremental angles as d6 = n/120 and d¢ =
/90.

Since the material is isotropic and the cup is subjected to uniform temperature
change, the rotation 65 is almost zero. Fig. 2.55-Fig. 2.60 show the variations of
displacements and rotations of the cup. Fig. 39 represents the deformed shape of
the cup along the centreline at x; = 0. Since the cup is fixed from the bottom, the
bending deformations are more visible in the bottom part of the cup as shown in
Fig. 39. As can be seen from the results, the PD and FEA solutions have a very
good agreement. Therefore, it can be concluded that the thermomechanical
behaviour of shell structure in the developed PD model is verified.
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2.3.7.5. Damage prediction for double torsion problem

After verifying the developed PD model for both mechanical and
thermomechanical behaviour of shell structures, the damage process in a flat shell
in a double torsion problem is investigated. As shown in Fig. 2.61, the dimensions
of the flat shell are L = 180 mm, W = 60 mm, W,, = 23.35 mm, 2z = 5 mm [85].
The shell has an initial notch at x, = W /2 with initial notch length, a = 3.6 mm.
Along the line x; = W /2, an initial channel is created with b = 2.4 mm and 4,, =
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2.48 mm [85]. The material is marble with Young’s modulus E = 26.68 GPa,
Poisson’s ratio v = 0.24 [85], the fracture toughness K;. = 0.644 MPaym [86].
For simplification, the critical energy release rate of the material is calculated as
G. = Gy, = K2 /E = 15.545 ] /mZ.

The shell is placed on 4 steel balls located at four corners with distances A =
1.2 mm from corners. The shell is applied quasi-static loading on two points located
at x; = W, and x = W — W,,, respectively. The history of the total applied force,
F, includes two stages as shown in Fig. 2.62 [85]. In the first stage, the load is
increased to the peak value of F = 158 N at t = 17.079 s. Next, in the second
stage, the load is slowly decreased to F = 120 N as shown in Fig. 2.62.

2 . 4 1
. s
%, b | .3 %

Fig. 2.61. Double torsion problem

158 | T T T T T T |

120 .

80
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0 | 1 1 1 | 1
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Fig. 2.62. Load-time curve [85]
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In PD simulations, the model is discretized into 50 x 150 material points (50 layers
of material points along x;direction and 150 layers along x, direction). To
represent the initial trough, the thickness of material points located along the trough
is defined as # — &,,, meanwhile, other material points have a constant thickness h.
To apply loading conditions, two material points located at the locations of loading
are defined. During the simulation, these two material points are equally applied
force per unit area b; = F /2(Ax?) in which the value of F as a function of time is
given in Fig. 2.62. The adaptive dynamic relaxation methodology [76, 77] is used
in the PD solution for this quasi-static problem (Appendix A3). The problem is
simulated in 40000 load steps, in which 15000 load steps are used for the first
loading stage, and 25000 load steps are used for the second loading stage. Based
on this information, the loading history in real-time given in Fig. 2.62 is converted
to loading history for a quasi-static solution.

Fig. 2.63 shows the damage evolution on the flat shell predicted by using the
developed PD model. The damage coefficient is presented in a range of 0 < ¢ <
0.37. Material points that have ¢p > 0.37 are considered as completely damaged.
As shown in Fig. 2.63(a), after t = 17.079 s when the load reaches the peak value,
the structure is primarily damaged along the initial trough. The damage coefficients
of material points along the trough are smaller than 0.1 which can be understood
that the crack is not visibly propagated. At t = 22.794s, the crack starts
propagating and the structure is more damaged along the channel as shown in Fig.
2.63(b). As shown in Figs. 40(c, d, e), the crack propagates along the channel up to
the locations at, x, = 50mm, x, =85mm and x, =121 mm when t =
88.425s, t = 247989 s and t = 567.116 s, respectively. Fig. 2.63(f) shows the
completely damaged experimental specimens in [85]. As can be seen from the
figures, the crack paths captured by PD simulation and experiment [85] agree very
well.

Fig. 2.64 shows the variation of crack length and crack growth velocity captured by
PD simulation and experiments in [85]. As can be seen from the figure, both the
crack length and crack growth velocity captured by PD simulation agree with the
experiment which shows the capacity of the developed PD model.
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Fig. 2.63. Variation of damage coefficient, ¢ at (a) t = 17.079 s, (b) t =
22.794 s, (c) t = 88.425s, (d) t = 247.989ss, (e) t = 567.116 s, (f) completely
damaged specimens [85].
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Fig. 2.64. Variation of crack length and crack growth velocity (experiment [85])

2.3.7.6. A flat shell with a rectangular cut-out

A square plate with dimensions of L = B = 1 m and thickness of # = 0.01 m is
investigated as shown in Fig. 2.65. The plate has a rectangular cut-out in the middle.
The cut-out has dimensions of [ = 0.4 m, b = 0.3 m.
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Fig. 2.65. Plate with a rectangular cut-out

The plate is made of steel with Young’s modulus E = 2 x 101! N/m?, Poisson’s
ratio v = 0.27, the fracture toughness K, =70 x 10® Nm~3/2 [87]. For
simplification, the critical energy release rate of the material is calculated as G, =
G, = KA/E = 2.2714]/m?. The plate is fixed on the left edge and it is subjected
to bending moments on the right edge as shown in Fig. 2.65.

In the PD model, the shell is uniformly discretized with a mesh size of Ax =
0.0067 m, and the horizon size § = 3.015Ax is used. To apply boundary
conditions, three fictitious layers of material points are added on the left side of the
plate and all degrees of freedom of these fictitious points and material points located
atx = —L/2 are set equal to zero [61].

The right end of the plate is subjected to the bending moment per unit length m,, as
shown in Fig. 2.65. Therefore, the loading for each material point on the right edge
can be calculated as

B®=[0 0 0 0 max 0] (2.96)

At each load step, the value of the bending moment per unit length, m,, is chosen
to have at least one new broken interaction in the PD model. The value of m, is
also not too large to avoid the breakages of too many bonds in a load step which
may lead to numerical instabilities.

Fig. 2.66 shows the damage evolution on the plate predicted by using the PD shell
model. As shown in Fig. 2.66(a), at 20 load step when the applied bending
moment per unit length is m, = 1.606 x 103 Nm/m, the damage initiates at two
corners of the cut-out, which are near the right edge of the plate where the bending
moment is applied. To further investigate the behaviour of the plate when it is
subjected to the bending moment per unit length m, = 1.606 x 10> Nm/m at 20%"
load step, the variations of von Mises stresses captured by PD and FEA are
compared as shown in Fig. 2.67. The FEA is conducted by using the ANSYS
SHELL181 element. As shown in Fig. 2.67, von Mises stress distribution in
ANSYS is similar to PD results. Moreover, the maximum stress locations agree
with the locations of the damage initiation predicted by PD as shown in Fig. 2.66(a).

The damages predicted by PD propagate nearly parallel to the right edge of the plate
as shown in Fig. 2.66(b-d). After 1120 load steps when the applied bending
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moment ism, = 1.066 x 103 Nm/m, the damage propagation reaches locations at
X, = £0.31 m as shown in Fig. 2.66(d).
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Fig. 2.66. Damage evolution on the plate at (a) 20", (b) 400%", (c) 800 (d)
1120%" load steps when applied bending moment m, = 1.606 x 103,
1.537 x 103, 1.238 x 103, 1.066 x 103 Nm/m, respectively
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Fig. 2.67. Variation of von Mises stress (Pa) predicted by (a) PD, (b) FEA

Fig. 2.68 shows the loading history of applied bending moment per unit length, m,
and corresponding crack paths, shown in black, on the plate at different load steps.
Since the plate is symmetric with respect to the x, axis, only the crack path on the
positive direction of the x, axis is presented. As can be seen from the figure, as the
crack propagates during the first 200 load steps, the applied bending moment, m,
reduces quickly from 1.606 x 103 Nm/m to 1.474 x 103 Nm/m. Initially, the
cracks propagate with an angle of 10° with respect to the x; axis. Later, the cracks
change their directions and propagate parallel to the right edge of the plate. At 400"
load step, the applied bending moment increases slightly to 1.537 x 103 Nm/m.
Afterward, the cracks propagate towards the location (x; = 0.2133 m,x, =
4+0.31 m) at the 1120%" load step. The required bending moment is sharply reduced
due to reduced strength caused by damage growth.

68



1800

Load step 400™
1700 | 0.2
0.15 —lJ
|- 0.1
1600 0.15 0.2 03 Load step 800"
g 1500 - 02 |
é th : th
~ 1400 - Load step 200 ) : Load step 1120
=) ' )
0.15
1300 . ,|
0.1
0.15 0.2 02
1200 -
l 100 | | | 1 1 ]
0 200 400 600 800 1000 1200

Load steps
Fig. 2.68. Load history of applied bending moment per unit length, m,

2.3.7.7. Damage prediction for a ship structure

An experimental MST4-ship model developed by Nishihara [88] with dimensions
of LxBXH=0.9x0.72x 0.72m3 is investigated. The 3D model and the
cross-section details of the ship are shown in Fig. 2.69. The ship is made of steel
with Young’s modulus E = 2.08 X 101*N/m?, Poisson’s ratio v = 0.281 [88],
fracture toughness, K;. = 54 x 10° Nm~3/2 [89]. For simplification, the critical
energy release rate of the material is calculated as G, = G, = KA/E =
1.2912 J/m?.

The ship is investigated for two basic loading conditions which are bending and
torsion as shown in Fig. 2.70. In the PD model, the ship is discretized with a mesh
size of Ax = 0.02 m. Similar to the previous examples, the horizon size § =
3.015Ax is used. To apply loading conditions, two thick rigid plates are added at
two ends of the model as shown in Fig. 2.71. The rigid plates are represented by
Young’s modulus E, = 20 X E, Poisson’s ratio v, =v , and thickness 4, =
20 X h.

X1
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Fig. 2.70. Two basic loading conditions (a): Sagging, (b): Torsion

In Fig. 2.71, the plates on the deck, the sides, and the bottom are discretized with
1794 material points. Each longitudinal frame includes 184 material points. Each
transverse frame includes 560 material points. Moreover, each rigid plate is
discretized into 1521 material points. Therefore, 12058 material points are
corresponding to 72348 DOFs used for the intact ship model.
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Fig. 2.71. PD discretized model for the ship model (the plates at x; = H and x, =
B /2 are hidden for visualization purposes)

Ship structure subjected to bending (sagging)

In this section, the ship is subjected to bending loading as shown in Fig. 2.70(a).
The bending moments for the material points located at the left end of the model at
x; = 0 are applied as

M, =M, /N, (2.97)
On the other hand, the bending moments for the material points located at the right
end of the model at x; = L are applied as

M,, =M, /N, (2.98)

where N, and Ny represent total numbers of material points located at the left end
and right end of the model, respectively. The parameter M, represents the total
bending moment applied on the ship structure as shown in Fig. 2.70(a).

Similar to the previous example, the value of the bending moment, M,, at each load
step is chosen as the critical value to have at least one new broken interaction.

The boundary conditions for this loading condition can be described as

u=0 at (x,=L/2,-B/2<x,<B/2,0<x,<H) (2.99a)
u,=0 at (x =0,x,=0,0<x<H) (2.99b)
u,=0 at (x=L,x,=0,0<x<H) (2.99c¢)
u;=0 at (x,=0,-B/2<x,<B/2,x,=H) (2.99d)
u;,=0 at (x,=L,-B/2<x,<B/2,x,=H) (2.99)
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The ship structure is investigated for different scenarios. First, the intact ship
subjected to bending loading is investigated. Next, the ship is assumed to have
square cut-outs on the bottom with dimensions of 0.2 x 0.2 m?or 0.4 X 0.4 m? as
shown in Fig. 2.72.

(@) (b)

Fig. 2.72. The bottom of the ship with a square cut-out with dimensions of (a)
0.2 X 0.2 m?, (b) 0.4 x 0.4 m?

Intact ship subjected to bending loading

By using the uniform mesh size of Ax = 0.02 m, 12058 material points are
corresponding to 72348 degrees of freedom in the PD discretized model. Fig. 2.73-
Fig. 2.75 present the damage evolution on the ship structure. As shown in Fig. 2.73,
at 400%" load step when the applied bending moment is M, = 4.73 x 105 N.m,
there is significant damage in the middle of the deck. As the applied bending
continues, the damage on the deck propagates toward two sides of the ship as shown
in Fig. 2.74-Fig. 2.75. At 1200%" load step when the applied bending moment is
M, = 2.05 x 10° N.m, the damage develops beyond the ship deck and propagates
towards the ship side as shown in Fig. 2.75.

0.400
0.343
0.286
0.229

0.171

0.114

0.057

0.000

Fig. 2.73. Damage plot at 400" load step when applied bending moment M, =
4.73 x 10> N.m (displacements are magnified 100 times for deformed
configuration. Rigid plates are removed for visualization.)
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Fig. 2.74. Damage plot at 800 load step when applied bending moment M, =
3.19 x 10° N.m (displacements are magnified 100 times for deformed
configuration. Rigid plates are removed for visualization.)
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0.057
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Fig. 2.75. Damage plot at 1200%" load step when applied bending moment M, =

2.05 x 10° N.m (displacements are magnified 100 times for deformed
configuration. Rigid plates are removed for visualization.)

Ship with square cut-out subjected to bending loading

Similar to the previous case, the mesh size of Ax = 0.02 m is used. Therefore, in
the PD discretized model for the ship with the smaller cut-out, 11904 material
points are corresponding to 71424 degrees of freedom. In the PD discretized model
for the ship with the larger cut-out, there are 11428 material points and 68568
degrees of freedom. Fig. 2.76-Fig. 2.78 present damage evolution on the ship with
0.2 x 0.2 m?cut-out. In this case, the damages initiate at four corners of the cut-out
as shown in Fig. 2.76. As can be seen from the figures, the cracks propagate from
four corners of the cut-out towards the two sides of the ship structure. As the load
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is continuously applied, the cracks propagate vertically on two sides of the ship
structure as shown in Fig. 2.77-Fig. 2.78.

0.171

0.114

0.057

0.000

0.400

0.171
0.114
0.057

: 0.000
1 -04 2

(b)

Fig. 2.76. Damage plot at load step 400" when applied bending moment M, =
2.22 x 10° N.m (a): 3D model (b): a view for material points with x; < 0.1 m
(displacements are magnified 100 times for deformed configuration. Rigid plates
are removed for visualization.)
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Fig. 2.77. Damage plot at 800%" load step when applied bending moment M, =

1.58 x 10° N.m (a): 3D model (b): a view for material points with x; < 0.3 m
(displacements are magnified 100 times for deformed configuration. Rigid plates
are removed for visualization.)
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Fig. 2.78. Final damage plot on the ship at 1200%" load step when applied bending
moment M, = 8.53 x 10* N.m (a): 3D model (b): a view for material points with
x5 < 0.6 m (displacements are magnified 100 times for deformed configuration.
Rigid plates are removed for visualization.)

Loading history

Fig. 2.79 shows the variations of bending moment, M, and change in the moment

of inertia, Al,, of the ship cross-section for three cases. The moment of inertia

reduces with respect to the intact ship. The reduction of the moment of inertia, Al,,

can be defined as

AIZ _ I2(current) - I2(intact) %100% (2100)
I2(intact)

where Ipntacty aNd Ipcurrenty represent the moment of inertia with respect to the

neutral axis in x, direction for the intact ship and damaged ship, respectively. At

each load step, material points with damage coefficients ¢ > 0.3 are determined

and they are defined as damaged parts of the ship structure. Therefore, neutral axis
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locations and moment of inertia I, meny Values are recalculated based on the
remaining intact parts.

As shown in Fig. 2.79, the maximum bending moment for the intact ship captured
by PD is Myye, = 9.28 X 10° Nm which is 0.102% different from the
experimental result of My qx(experiemnty = 9-2705 X 105 Nm  conducted by
Nishihara [88]. As it can also be observed from the loading history curve for case
1, shown in blue, there is a stage that the bending moment drops suddenly from
4.65 x 10° Nm to 2.38 x 10> Nm while the moment of inertia is not much
reduced. This is the stage that all the shells on the ship deck which are numbered 3,
11,12, 13, are collapsed and the crack starts propagating along two sides of the ship
structure. Therefore, at this stage, the ship structure is much weakened, and the
required bending moment is much reduced. For case 2, shown in red, due to the
initial cut-out, the moment of inertia of the ship cross-section is initially reduced by
12.6% compared to the intact ship. The maximum bending moment captured by
PD is Mypmqy = 3.85 X 10° Nm which is equal to 41.49% of the maximum
bending moment for the intact case. For case 3, due to a bigger cut-out, the initial
reduction of the moment of inertia is 27.4% and the maximum bending moment is
Mymax = 2.47 X 105 Nm which is equal to 26.62% of the maximum bending
moment for the intact case. Moreover, the moment of inertia of the final damaged
ship in both cases 2 and 3 decreases by more than 55% as shown in Fig. 2.79.

5
10 %10
RE€E—— M =9.28E+5 (N.m) —©— Case 1: Ship is initially intact
" . .
4 e —-8-= Case 2: Ship with cut-out 0.2x0.2 m’
8r = = Case 3: Ship with cut-out 0.4x0.4 m?
g o L = 385B+5 (N.m)
Z
[} — -
s 4l R I\/‘[2 max 2.47E+5 (N.m)
I3..._.--"' ~,
2 [ -TD.-E_'—___—_P_,.
ﬁ’%:."%-_-,_
w B>
() 1 1 1 | 1 J
0 10 20 30 40 50 60

Al %
2
Fig. 2.79. Variations of the critical bending moment versus change in the moment
of inertia for the ship structure

Ship structure subjected to torsional loading

After investigating the ship model in bending condition, the ship with the 0.2 x 0.2
m? cut-out is further investigated for the torsional loading condition as shown in
Fig. 2.70(b). The left end of the ship is fixed, and the right end of the ship is
subjected to torsional loading, M; with respect to the neutral axis of the ship in x;
direction. Similar to the previous example, it is assumed that the right end of the
ship structure is attached to a rigid plate. The torsional moment M, is applied by
applying nodal forces as shown in Fig. 2.80 as
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fio = T (2.101)
where f(, represents the magnitude and e, @) represents a unit vector of the nodal
force f ). The magnitude of the nodal force is calculated as

— Ml 1
©-N A
N dg
where M, represents the applied torque, Ny represents the total number of material
points on the rigid plate at the right end, d, represents the distance between

material point k and the centre of the rigid plate at (x; = L,x, = 0,x3 = H/2).

(2.102)

The unit vector, ef(k) in Eq. (2.101) can be defined as

€= i1Xi(k) (2.103a)
with

i,=[1 0 0o (2.103b)
. iO(k) iO(k)

i = oo log (2.103c)
© |'o(k)| d)

. T T
g = [xl(k) —L X4y =0 Xgpo—H /2] = [O Xouy  Xagy — H /2] (2.103d)

Rigid plate
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| (@) - ) .
Fig. 2.80. Applying torque on the rigid plate by using dual forces (a): 3D view,

(b): 2D view

In the PD discretized model, the same mesh size Ax = 0.02 m is used. Fig. 2.81-
Fig. 2.83 present damage evolution on the ship for torsional loading conditions. As
can be seen from Fig. 2.81, damages initiate at four corners of the cut-out when
applied torque is 2.365 x 10°> Nm. At 600" load step when applied torque is
1.699 x 10° Nm, the damages propagate from four corners of the cut-out as shown
in Fig. 2.82. At 1200 load step when applied torque is 1.6988 x 10° Nm,
damages propagate along with the transverse frames as shown in Fig. 2.83.
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Fig. 2.81. Damage plot at load step 100" when applied bending moment M, =

2.365 x 10° Nm (a): 3D model (b): a view for material points with x; < 0.1 m
(displacements are magnified 20 times for deformed configuration. Rigid plates
are removed for visualization.)
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Fig. 2.82. Damage plot at load step 600" when applied bending moment M, =

1.699 x 10° Nm (a): 3D model (b): a view for material points with x; < 0.1 m
(displacements are magnified 20 times for deformed configuration. Rigid plates
are removed for visualization.)
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Fig. 2.83. Final damage plot at load step 1200 when applied bending moment

M, = 1.6988 x 10°> Nm (a): 3D model (b): a view for material points with x; <

0.1 m (displacements are magnified 20 times for deformed configuration. Rigid
plates are removed for visualization)

Fig. 2.84 shows the loading history and the corresponding progressive damages on
the bottom of the ship. In this figure, point (1) is associated with 600™ load step
when applied torque equal to 1.699 x 10> N.m. Points (I1) and (l11) are associated
with 800t and 1200t load steps when applied torques are 1.324 x 10° N.m and
1.6988 x 10° N.m, respectively. As can be seen from the figure, the applied torque
is decreased from the initial value of 2.552 x 10> N.m to 1.699 x 10° N.m (point
) after 600 load steps. At 600" load step (point 1), cracks propagate on the shell
(1), from 4 corners of the cut-out to two longitudinal shells, (5) and (7) (as shown
in Fig. 2.69). Small vertical cracks also appeared on the longitudinal frames.
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Fig. 2.84. Variations of the critical torsional moment, M, versus change in the
polar moment of inertia for the ship structure with 0.2 x 0.2 m? cut-out

It is also observed from Fig. 2.84 that the applied torque is sharply reduced from
1.699 x 10° Nm at point (1) to 1.324 x 10° N.m at point (I1). Later, the applied
torque is increased to 1.6988 x 10° Nm at point (I11). To analyse these interesting
phenomena, details of the crack paths up to these points are shown in Fig. 2.85. In
this figure, the blue lines represent the edges of the cut-out. The scatter data
represents the material points that have the local damage index, ¢ exceeding 0.2.
The black lines represent the possible crack paths on the ship structure. These crack
paths are defined based on the local damage index, ¢ and the crack openings in the
deformed configurations.

As shown in Fig. 2.85, the damage initiates at four corners A, B, C, D of the cut-
out. By checking the damage plots every 20 load steps, it is observed that the
damages start at the corners C and D first. Later, damages also appear at corners A
and B. As shown in Fig. 2.85(a), after 600 load steps, the damages propagate from
two corners C and D to the locations of (x; = 0.7 m, x, = 0.21 m, x3 = 0) and
(x; =0.7m,x, = —0.21m, x5 = 0), respectively. There are also two short
vertical cracks on the longitudinal shells (shells 5 and 7 in Fig. 2.69) at the locations
of (x; =0.68m,x, =10.18m,0 < x; < 0.0167 m). Moreover, the damages
also propagate from two corners A and B to the locations of (x; = 0.24 m, x, =
0.168 m, x; = 0) and (x; = 0.24 m, x, = —0.168 m, x; = 0), respectively.

From 600% load step (point (1) in Fig. 2.84) to 800%" load step (point (1) in Fig.
2.84), the cracks propagate on the bottom and vertical shells by very short distances
(approximately equal to Ax) as shown in Fig. 2.85(b). Since the vertical cracks are
already created at 600%" load step, the required torques to continue propagating
small amounts of cracks are much reduced from point (I) to point (I1) as shown in
Fig. 2.84.
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At 1200%" load step (point (I11) in Fig. 2.84), there are two new vertical cracks
compared to the damages at 800" load step (point (1) in Fig. 2.84) as shown in
Fig. 2.85(c). The locations of these new vertical cracks are (x; = 0.21m, x, =
40.18 m, 0 < x3 < 0.05 m) on the longitudinal shells (shells 5 and 7 in Fig. 2.69).
Moreover, the vertical cracks observed from 600 and 800 load steps also
propagate to the locations of (x; = 0.68 m,x, = £0.18 m, 0 < x5 < 0.05 m).
Note that all vertical cracks reach the height of 0.05m which means the
longitudinal shells (shells 5 and 7 in Fig. 2.69) are completely damaged at 1200%"
load step.

Also, it can be observed from Fig. 2.85 that the cracks initiating from corners C and
D propagate toward the free end of the ship where the loading conditions are
applied. On the other hand, the cracks initiating from two corners A and B propagate
toward the fixed end of the ship where the boundary conditions are applied. The
fixed end and the free end of the ship are shown in Fig. 2.70(b). Moreover, it can
also be observed that the cracks initiating from corners C and D propagate quicker
than the cracks initiating from corners A and B. In other words, breaking the
structures near the fixed end is more difficult than breaking the structures near the
free end. This observation can be the reason for the increase of the required torques
from 1.324 x 10° Nm for the point (1) to 1.6988 x 10> Nm for the point (I11) as
shown in Fig. 2.84.
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Fig. 2.85. Crack paths at (a) 600" (point 1), (b) 800 (point 1), (c) 1200%" (point
[11) load step

2.3.7.8. Damages on a corroded stiffened structure subjected to the uniform
pressure

In this section, damage propagations on a stiffened structure subjected to uniform
quasi-static pressure as shown in Fig. 2.86 are predicted. The stiffened structure is
assumed to have localized corrosion located at (x; = 0,x, = 0.145m, z = 0) on
plate (1). The dimensions of the localized corrosion are represented by a =
0.1 m, b = 0.01 m and the corrosion rate of 60% is assumed. The material has the
elastic modulus of E = 2.022 x 10! N/m?, the Poisson’s ratio of v = 0.3, the
fracture toughness of K;. = 54 x 10® Nm~3/2 [89]. For simplification, the critical
energy release rate of the material is calculated as G, = G, = KA/E =
13123 ]/m?.

The structure is fixed on the four boundaries as shown in black in Fig. 2.86. The
plate (1) is subjected to uniform pressure, p5 in a negative x5 direction. Similar to
previous examples, the critical value of pressure p; at each load step is chosen as
the load required for crack growth by comparing the energy with the critical energy
release rate value for each interaction [61, 64].

In the PD model, uniform mesh size Ax = 0.005 m and the horizon size § =
3.015Ax are used. To represent the localized corrosion, material points located
within the corroded regions are defined and the thickness of the plate (1) at these
points is reduced by 60% as shown in Fig. 2.87.
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Fig. 2.86. The corroded stiffened structure

Fig. 2.87. Variation of thickness on the corroded stiffened structure

Fig. 2.88 shows the damage evolution on the stiffened structure. As shown in Fig.
2.88(a), after 100 load steps, the damage initiates at the location of the corroded
region. As shown in Fig. 2.88(b), as the pressure is continuously applied, the
damage grows along with the line AD (Fig. 2.86). It can be observed from Fig.
2.88(b) that after 1000 load steps, the crack changes its direction and then moves
along line AB and DC as shown in Fig. 2.88(c). Later, the crack changes its
direction again and moves along line BC as shown in Fig. 2.88(d). As can be
observed from the figures, the crack changes its direction due to the presence of the
stiffeners. Similar behaviour is also predicted for a pipe with a strap [90].
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Fig. 2.88. Damage on the stiffened structure subjected to quasi-static pressure at
(a): 100%™, (b): 1000, (c): 2000™, (d): 3000 load steps (Displacement is
magnified by 10 for deformed configuration)

To visualize the damage patterns, the damage evolution on the plate (1) is shown in
Fig. 2.89. As can be observed from Fig. 2.89, the damage propagates along the four
intersection lines, AD, AB, DC, BC, between the plate (1) and the four stringers.

After 3000 load steps, the damage nearly develops to a close region as shown in
Fig. 2.89(d).
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Fig. 2.89. Damage on the plate (1) at (a): 100, (b): 1000, (c): 2000, (d):
3000 load steps (Displacement is magnified by 10 for deformed configurations.
The black dash lines represent the locations of the stringers)

Fig. 2.90 shows the history of the required pressure for crack growth. As shown in
Fig. 2.90, to initiate the first damage, the required pressure needs to reach the peak
at 1.913 x 10° N/m?2. During the first 240 load steps afterward, the required
pressure reduces quickly to 1.227 x 10 N/m? since the damage propagates within
the corroded region. When the damage starts propagating beyond the corroded
region, the required applied pressure increases significantly to 1.628 x 10¢ N/m?
at 360™ load step. Afterward, the applied pressure continuously reduces due to the
damage growth. After 3000 load steps, the required pressure reduces to
9.477 x 10* N/m?.
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Fig. 2.90. History of required pressure for crack growth, p5 for the stiffened
structure

2.4. Concluding remarks

This chapter provides novel PD models for dealing with complex beam and shell
structures. First, a bond-based PD beam model with 6 degrees of freedom is
developed. The numerical implementations for investigating complex beam
structures are also introduced for the first time in the PD literature. The results from
PD analyses have good agreement with those in FEA solutions. Damage criteria for
beam model based on critical energy release rate are provided for damage
predictions. To demonstrate the capability of the PD beam model, the developed
PD model is used to predict the damage for a 27 m high jacket platform subjected
to collision. The developed PD beam model can be used for any type of beam
structure such as jacket platforms with real dimensions to predict possible brittle
damages that may occur during the operation process.
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Second, a novel state-based PD model for the thermomechanical behaviour of shell
structures in three-dimensional space with 6 degrees of freedom is developed.
Initially, the PD model is developed for flat shells. Later, it is modified for curve
shells and stiffened structures. The numerical implementations to deal with
complex shell structures are also provided. The behaviours of shell structures
captured by the developed PD model are verified by comparing with FEA solutions
with very good agreements. The PD damage criteria for shell structures based on
the critical energy release rate is provided for damage predictions. The developed
PD shell model is used to predict damage on a flat shell in a double torsion problem,
a flat shell with a rectangular cut-out subjected to bending, a hull girder subjected
to bending and torsion, and a corroded stiffened structure subjected to uniform
pressure. The developed PD model can be used for any type of shell structures such
as ships and offshore structures to predict possible brittle damages that may occur
during the operation process.
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3. PERIDYNAMICS FOR NONLINEAR ANALYSIS
3.1. Introduction

This chapter focuses on developing novel nonlinear PD models for geometrically
nonlinear analyses. The nonlinear PD formulations and equations of motion are
obtained based on the principle of virtual displacements by using the Total
Lagrange formulation.

First, as discussed by Madenci and Oterkus [44], Cauchy stress components can be
expressed in terms of PD force densities. In classical continuum mechanics, Cauchy
stress is calculated based on the deformed configuration which is affected by
volume changes and rotations for large deformation problems. Therefore, rotations
and volume changes can also affect the calculation of PD force densities. In current
PD literature, the PD force densities, in bond-based and ordinary state-based PD
models, are parallel to the line of interaction on the deformed configuration.
However, the effect of volume change is excluded from the calculation of PD force
densities. Therefore, for large deformation problems in which the effects of volume
change are significant, a new formulation of PD force densities, which considers
both effects of rotation and volume change, need to be used. Therefore, in this
chapter, nonlinear PD models for 1D, 2D, and 3D structures that consider the effects
of rotations and volume changes are developed.

Second, to investigate slender and thin-wall structures, the existing PD beam [48-
50, 58] and shell [50, 52, 59] models in literature including the PD models [61-64]
developed in Chapter 2 in this thesis can only apply for linear elastic material
responses since they are based on small deformation assumptions. Therefore, in this
chapter, novel nonlinear PD models for geometrically nonlinear analysis of beams
and plates are developed. The nonlinear PD beam model is based on the
Timoshenko beam theory. Meanwhile, the nonlinear PD plate model is based on
the Mindlin—Reissner plate theory.

3.2. Peridynamics for nonlinear analysis of 1D, 2D, 3D structures

In this section, novel nonlinear PD models for 1D, 2D, and 3D structures are
developed. The effects of rotations and volume changes are included in the
calculation of PD force densities. The logarithmic bond stretch is defined and used
for the first time in the PD literature. The PD formulation and equations of motion
are obtained based on the principle of virtual displacements by using Total
Lagrange formulation. The numerical procedure for PD nonlinear analysis is
provided. The capabilities of the PD model are verified by considering 1D, 2D, and
3D structures subjected to large deformations. The developed nonlinear PD model
is used to predict damages in 2D plates and 3D structures. The damage predictions
are compared with experimental results conducted by Kalthoff [87], [91], Kalthoff
and Winkler [92], Jenqg and Shah [93].

3.2.1. Peridynamics equation of motion for large deformations

The PD equations of motion for nonlinear analyses can be written in a discrete form

as
N

tes t t t
Py Yy = Z(ot(k)(n - Ot(J)(k)) NV + by (3.1a)

j=1
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with

t t t t
ot =L otxoon  obyorn  otean | (3.1b)
t It t t
ol = [otx(mk) oly(ixw Otz(j)(k)] (3.1c)
t Tt t t T
b —[ by By bz(k):l (3.1d)

where N represents the total number of family members of material point k.

Similar to the relation given in Eq. (1.2) in Chapter 1, the relationship between the
PD force densities and the nonlinear PD strain energy density can be expressed as

NLPD NLPD
1 Wy, t 1 oW (3.2)

t
ot B .0 ) - _—

) = oL
OV(J) 9'ug, Vg 0'ug,

By using similar PD strain energy density expressions defined in [21, 44, 46], the
PD strain energy density for large deformations can be described as

WP =a( g, ) +bZ( 2) %%V, for 3D and 2D (3.3a)

WP = Z( J) %%, for 1D (3.3b)

Here ga(k) represents the PD volumetric strain, &s,, represents the logarithmic bond
stretch and OV(D represents the volume of material point j in the undeformed
configuration. The parameters a and b represent the peridynamic constants.

The logarithmic bond stretch, §sy, is defined similarly to Hencky strain definition
[94] for large deformation problems as [70]

oSy =In(1+ gs)zln(;—iJ (3.4a)

with
N =\/(°x(j) ~ %% ) (Yo = Vi) "z~ "2 ) (3.4b)

€= \/tgxz e G = \/(txm - tX(k))2 (v - ty(k>)2 +(“2) — "2 )2 (3.4¢)

where ‘& and °¢ represent the current length and initial length of the bond between
two material points as shown in Fig. 3.1. Here ( °x, %y, °2) and ( 'x, %y, ‘2)
represent coordinates in the initial (undeformed) and current configurations,
respectively. Whereas, (%, °¢,, %,) and (&, '¢,, €,) represent relative
coordinates between two material points in the initial and current configurations,
respectively.
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Fig. 3.1. Initial and deformed configuration of an interaction

In Eq. (3.4a), the linear form of stretch, s, is defined according to [21] as

(3.5)

Similar to classical form, for small deformations, §s « 1, the logarithmic bond
stretch reduces to its linear form as

oSy =In(1+ js) ~ ;s (3.6)

The PD volumetric strain term in Eg. (3.3a) can be calculated as
N

09 =042 084 V) 3.7)
j=1

where d represents peridynamic constant.

By substituting strain energy density definitions provided in Eq. (3.3a) into Eq.
(3.2), the force density components that material point j exerts on material point k

can be represented as

t 1 t t !
oo =(2ad g(og(k))ub(osH )jéé (3.8)

Similarly, the force density components that material point k exerts on material
point j can be represented as

1 Og t
oLiiw :_(ZadQ(ot‘g(j))Jer(ésH )]?t_g (3.9)
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Note that the force densities given in Egs. (3.8-3.9) are parallel to the deformed
configuration and the term °&/ & represents the ratio between initial and current
bond lengths.

By substituting Egs. (3.8-3.9) into Eq. (3.1), the nonlinear PD equation of motion
can be obtained as

For 3D and 2D:
tes & 1 t t t ° t& t

Pl :Z;(Zad¥(019(kﬁ019(j))+4b(03,4 )]gt—"v(jﬁ by, (3.10)
=

For 1D:
N 0 t

Py, = 21:4b(0‘sH )é% Ve, + By (3.11)
-

The PD constants, a and b, are determined by comparing the virtual values of strain
energy density in PD and classical continuum mechanics based on the principle of
virtual displacement provided in Eq. (C27) (Appendix C).

The peridynamic constants, a, b and d for 3D structures are obtained as (Appendix
D1)

au g B 48
A= T T w T ans®

(3.12)

where & represents horizon size in the initial configuration, A and u represent
Lame’s constants

Ev . E
T2 M2 -

where E represents the elastic modulus and v represents the Poisson’s ratio.

The peridynamic constants, a, b and d for 2D structures are obtained as (Appendix
D2)

da—p.p O g 2 (3.14)

where A represents the thickness of the plate in the initial configuration, a represents
a constant which can be defined as

1-2v for plane stress
a=11-, P (3.15)

1 for plane strain

As provided in Appendix D3, peridynamic constants for 1D structures can be
obtained as

(3.16)
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where °A represents the cross-section area of the bar in the initial configuration.

Note that the PD constants provided in Eq. (3.12), Eq. (3.14), and Eqg. (3.16) agree
to those given in [44]. Therefore, it can be concluded that the key difference
between PD formulations for small deformation problems and large deformation
problems is the use of logarithmic bond stretch provided in Eq. (3.4). As a result,
the change of bond length is included in the formulations of PD force densities as
given in Egs. (3.8-3.9).

3.2.2. Damage prediction

The nonlinear PD equations of motion given in Egs. (3.10-3.11) can be rewritten
as

N
Py Uy = Z];l//(k)(j) of iy Viiy + P (3.17q)
j=
with
_ 2ad i( '3+ 8 )+4bts 0—53_
0§ 0 (k) 0 (]) 0~H tg tg
1 0 &
B =| | 280 o= (89, + 88, ) +dbSs, |22 | for3D (3.17h)
4 ¢ ¢
1 ¢
] 2ad@(Ot‘%k)*ot‘g(n)*“bgs'* g |
(200 L (19 +2i9 )eanss, |55
a %(o (k)+0 (j))+ 0SH E?
ct>(k)(j>: L o e for 2D (3.17¢)
_ 2ad%(029(k)+319“))+4bgs,4 gt_gy—
Ot
of sy =408, %% for 1D (3.17d)

where ;) is the damage parameter to represent the interaction state between
material points k and j, which is given in Eq. (1.3) in Chapter 1.

Note that, the volumetric strain in PD for damage prediction can be updated by
including the damage parameter, ¥y as

N
oS = dZ;'//(k)(n oS Vi) (3.18)
j=

Similar to the energy-based damage criteria used in Chapter 2 and 3, the state of
interaction can be determined based on the critical energy rate as [25, 26]

t= N ; iotar _
080y < 9° — interaction exists: v, ;, =1

g, i ion i : (3.19)
00wy = 9° — interaction is broken: y,, ,, =0
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where gb(k)( jyrepresents the average energy release rate for the interaction between

material points k and j at time t. The parameter g. represents the average critical
energy release rate for one interaction which is presented in Chapter 1.

Similar to the formulation given in Chapter 1, the energy release rate for the
interaction between material points k and j in Eq. (3.19) can be approximated as
[25, 26]

1 (1

te _ t t

oY) = A (E(Oq)(k)(j) + O(D(j)(k))j Ov(k) OV(,-) (3.20)
rack

where 3<D(k)(j) represents the micropotential at time ¢ of the interaction between

material points k and j in which material point j is a family member of material
point k, td)(j)(k) represents the micropotential at time ¢ of the interaction between

material points j and k in which material point k is a family member of material
point j. The term A_,.cr represents the unit crack surface which is described in
Chapter 1.

As introduced by Madenci and Oterkus [25], [26] the micropotential j®
be calculated in the nonlinear analysis as

() &N

oStk ‘e
t t 0 t
ooy = I ooy ¢US = I ol d< (3.21a)

0 05
with
¢

2b,s, B for 1D structures

0 ®G) = (3.21b)

(ad %(O‘Q(k) + (}19(1.))+ 2b,s, Jf—g for 2D and 3D structures
The integration in Eq. (3.21a) can be numerically calculated as

F0Poi) = 0 Pocsy + APy (3.22)
where 5<D(k)(j) and t+A3(D(k)(j) represent micropotentials at the time step ¢ and t +

At, respectively. The term A®d, ;) represents the incremental value of
micropotential from time t to time ¢t + At, which can be calculated as

1. )
AD iy j) Zz(t Stoom ~otoon )(THE=1E) (3.23)

where the terms  §tq ;) and “*45t ;) represent the force densities, as given in
Eqg. (3.8), at time t and t + At, respectively.

3.2.3. Numerical results

In this section, first, the developed nonlinear PD model is verified by considering
various examples of 1D, 2D, and 3D structures. For verification purposes, the
proposed PD model is compared to FEA solutions. The explicit time integration is
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used in the PD solution by using the ADR method as discussed in Appendix A [76,
77]. In the PD solution, the horizon size § = 3.015Ax is used. The FEA solutions
are conducted by using ANSYS commercial software with LINK180 element for
the 1D bar, PLANE182 element for 2D plates, and SOLID185 element for 3D
structures. Next, damage predictions on a steel plate subjected to dynamic loading,
an L-shape plate subjected to large deformations, and on a concrete beam in three
points bending test are presented.

3.2.3.1. Large deformations in a 1D structure

To verify the proposed PD model for one dimension, a bar with a cross-sectional
area A = 0.1 x 0.1 m? with a length of L = 1 m subjected to axial loading is
investigated as shown in Fig. 3.2. The bar is made of steel with Young’s modulus
E = 2 x 10 N/m?. The bar is subjected to two different loading conditions which
are a tensile load of F, = 5 x 108 N and a compressive load of F, = —5 x 108 N.

y 0.1 m
/ 0.1 m
________ ‘_'_‘_-_‘_‘_-_1_'_’—7‘_;
I=1m |
(a)
x=0 x=1L

Qﬂ!\/’\;% o0 0 00 0 L ————— -

u=>0
(b)
Fig. 3.2. Bar subjected to axial loading (a) geometry, (b) PD model discretization

In the peridynamic model, the bar is discretized with uniform 100 integration
points. To implement the fixed end, three fictitious points [26, 95] are added as
shown in Fig. 3.2(b) and displacements of these fictitious points and a material point
located at x = 0 are set equal to zero. The red points represent the material points
in the real region, on the other hand, black points represent the material points in
the fictitious region as shown in Fig. 3.2(b). In the FEA model, the bar is discretized
with 100 elements by using the link180 element. In both loading conditions, the
constant body force ‘b, = F,/ °V is applied to the material point located at x = L.

Fig. 3.3 shows the displacement variations along the bar. As can be seen from Fig.
3.3(a), under tensile loading, the displacement of the bar in nonlinear cases is much
larger than in the linear case. On the other hand, in the compressive loading
condition, the nonlinear cases provide much smaller displacement values than those
captured in the linear case as shown in Fig. 3.3(b). It can be observed that results
captured in nonlinear PD analysis match very well with the results in nonlinear
FEA.
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Fig. 3.3. Displacements of material points along the bar subjected to axial load:
(@) E, = 5% 108N, (b) E, = —5 x 108N (L: linear, NL: nonlinear)

To further verify the developed 1D nonlinear PD model, the bar described in Fig.
3.2 is further investigated by applying various tensile forces. Fig. 3.4 shows the
displacement variation of the material point located at x = 1 m. As can be seen
from the figure, when the applied force is large, deformations observed in nonlinear
and linear analyses have significant differences, and the results captured by the
developed nonlinear PD model match very well with nonlinear FEA results.

Table 3.1 shows the comparison between nonlinear PD and nonlinear FEA
displacement results at x = 0.5 m. The relative error between the two results is
calculated as

NL-PD
—u

NL-FEA
u

NL—FEA|

Error (%) = |><1OO (3.24)

As can be seen from Table 3.1, the relative errors between nonlinear PD and
nonlinear FEA results are less than 0.5% for all loading cases. Therefore, it can be
concluded that the developed PD model for large deformation analysis of one-
dimensional structure is verified.

Table 3.1. Comparison between nonlinear PD and nonlinear FEA results

E.(N) uNL=FEA(m) | uNL=PP(m) |  Error (%)
1.0E+07 0.00252 0.00253 0.335%
4.0E+07 0.01299 0.01303 0.331%
1.0E+08 0.02706 0.02715 0.326%
2.0E+08 0.05916 0.05935 0.316%
3.0E+08 0.09829 0.09859 0.310%
4.0E+08 0.14785 0.14833 0.323%
4.0E+08 0.21442 0.21529 0.406%
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Fig. 3.4. Variation of displacement of the material point located at x = 1 m versus
applied forces (L: linear, NL: nonlinear)

3.2.3.2. Large deformations in 2D structures

To verify the developed 2D nonlinear PD model, a square plate with L = W = 1m
and thickness of 2 = 0.01 m is investigated as shown in Fig. 3.5. The plate is made
of steel with Young’s modulus E = 2 x 101! N/m? and Poisson’s ratio v = 0.27.
The plate is fixed on the left edge. The plate is investigated in two different loading
conditions as shown in Fig. 3.5. In each loading condition, the plate is investigated
for both plane strain and plane stress conditions.

To apply boundary conditions on the left edge, three fictitious layers of material
points are added in the discretized model in PD as shown in Fig. 3.5(c) and all
degrees of freedom of these fictitious points and material points located at x = 0
are set equal to zero. The plate is discretized with mesh size Ax = L/100 in both
PD and FEA models.

- i

l / i x=L/7 o } x=L/2
' /
\
I
\
P
N7/ 'i-— —— N7 T — 7 —————
| y=wr2 | y=W/s2
S N
| X | X 1
— 1 B — L —
(@) (b)
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Fig. 3.5. Plate subjected to large deformations (a): tensional loading, (b): shear
loading, (c): PD model discretization

Plate subjected to tensile loading

In this problem, the plate is subjected to the constant pressure, p = 5 x 101° N/m?
normal to the surface on the right edge of the plate as shown in Fig. 3.5(a). In the
PD model, the loading condition is applied to the material points located at x = L
by converting the constant pressure to body forces. Details of the implementation
of loading conditions are presented in Appendix D4.2.

Plane strain condition:

Fig. 3.6 and Fig. 3.7 present the variations of displacement components of the plate
for the plane strain condition. As can be seen from the figures, the PD and nonlinear
FEA prediction results match very well.

Fig. 3.8 shows the comparison between nonlinear PD and nonlinear FEA results for
the variations of displacement components along two centrelinesx = L/2 and y =
W /2. Fig. 3.8(a) represents the horizontal displacements at x = L/2 and Fig. 3.8(b)
represents the vertical displacements at y = W /2. As can be seen from the results,
PD and nonlinear FEA solutions agree very well, and there is a big difference
between linear FEA and nonlinear solutions.
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Fig. 3.6. Variation of horizontal displacements, u in (a) nonlinear PD; (b)
nonlinear FEA in the deformed configuration
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FEA in the deformed configuration
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Fig. 3.8. Variations of displacements (a) u along y = W/2; (b) v along x = L/2
(L: linear, NL: nonlinear)

Plane stress condition:

Fig. 3.9-Fig. 3.11 represent the variations of displacement components of the plate
for plane stress conditions. Similar to the plane strain problem, the variations of
displacement components along the centre lines are investigated. It is observed that
the results provided by the developed PD model have good agreement with those
captured in nonlinear FEA.
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Fig. 3.9. Variation of horizontal displacements, u in (a) nonlinear PD; (b)
nonlinear FEA in the deformed configuration
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Fig. 3.10. Variation of vertical displacements, v in (a) nonlinear PD; (b) nonlinear
FEA in the deformed configuration
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(L: linear, NL: nonlinear)

Plate subjected to shear loading

In this problem, the plate is subjected to the uniform pressure p, =
1.3 x 101° N/m? normal to the surface on the top edge as shown in Fig. 3.5(b). In
the PD model, the loading condition is applied to the material points located at y =
W by converting the constant pressure to body forces. Details of the implementation
of loading conditions are presented in Appendix D4.2.

Plane strain condition

Fig. 3.12-4.22 present the results for the plane strain condition. As can be seen from
Fig. 3.12 and Fig. 3.13, the variations of displacements u and v captured in PD and
FEA solutions have a very good agreement. Moreover, as presented in Fig. 3.14
and Fig. 3.15, the results captured by the developed PD model agree very well with
those in nonlinear FEA whereas a significant difference between linear and
nonlinear results is observed.
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Fig. 3.12. Variation of horizontal displacements, u in (a) nonlinear PD; (b)
nonlinear FEA in the deformed configuration
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Fig. 3.13. Variation of vertical displacements, v in (a) nonlinear PD; (b) nonlinear
FEA in the deformed configuration
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Fig. 3.15. Variations of displacement components (a) u, (b) v along x = L/2

Plane stress condition

Fig. 3.16-Fig. 3.19 present the results for the plane stress condition. As can be seen
from the figures, the results in nonlinear PD and nonlinear FEA solutions match
very well. Therefore, it can be concluded that the accuracy of the developed 2D

nonlinear PD model is verified.
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Fig. 3.16. Variation of displacement, u in (a) nonlinear PD; (b) nonlinear FEA in

the deformed configuration
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Fig. 3.17. Variation of displacement, v in (a) nonlinear PD; (b) nonlinear FEA in
the deformed configuration
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For further comparison, the displacements at (x = 3L/4,y = 3W /4) obtained
from nonlinear PD and nonlinear FEA are compared as shown in Table 3.2. As can
be seen from the table, the relative errors between the results are less than 5% for
all loading conditions. Therefore, the accuracy of the developed nonlinear PD
model for 2D structures is verified for both plane stress and plane strain conditions.

Table 3.2. Comparison of displacements for a material point located at (x =
3L/4,y = 3W /4)

uNLFEA uNLPD Error vNLFEA vNLPD Error
(m) (m) (%) (m) (m) (%)
Plate Plane
subjected | strain 0.2531 | 0.2485 | 1.8% | -0.0421 | -0.0416 | 1.2%
to tensile | Plane
loading stress 0.2792 | 0.2862 | 2.5% | -0.0334 | -0.0334 | 0.0%
Plate Plane
subjected | strain -0.0993 | -0.0959 | 3.4% | 0.2084 | 0.2029 | 2.6%
to shear Plane
loading stress -0.101 | -0.0969 | 4.0% | 0.2153 | 0.209 | 2.9%

103



Table 3.3 shows the information in terms of computational time in nonlinear PD
and nonlinear FEA simulations. The PD and FEA simulation time for the problem
of the plate under tension in the plane strain condition with different mesh sizes is
considered. As mentioned in the first paragraph of Section 3.2.3, the ADR method
with the explicit time integration scheme is used for the nonlinear PD simulations.
The PD codes are written using Matlab 2018b. On the other hand, nonlinear FEA
simulations are conducted by using ANSY'S with the implicit solver.

As can be observed from Table 3.3, the number of iterations required to obtain
converged solutions, N;, in the nonlinear PD simulations are much higher than those
in the nonlinear FEA. In PD, the simulation with a finer mesh requires more
iterations to obtain the converged solution. Specifically, for the PD model with
50 x 50 material points, the required number of iterations is 600. For the PD model
with 150 x 150 material points, this number is 2000. In FEA, since the implicit
solver is used, the FEA simulations converged after 100 iterations for all mesh sizes.
As a result, the running time for nonlinear PD simulations is much higher than those
of nonlinear FEA.

However, it is also observed that the time per iteration in nonlinear PD simulation
is less than those in nonlinear FEA. The reason is that the nonlinear PD uses the
explicit integration scheme meanwhile the nonlinear FEA uses the implicit solver
which requires the solutions for large linear and nonlinear stiffness matrices.

Table 3.3. Computational time in NL-PD and NL-FEA for 2D plane strain
problems

Number of material 5050 100x100 150x150
points (nodes)
Time-t Time per Time-t Time per Time-t Time per
N; | iteration: t/N; | N " literation: /N | N, " |iteration: /N,
(s) (s (s)
(s) (s) (s)
NLPDexplict | o001 4947| 00825 |1200]306.58| 02555 | 2000 | 1134 | 05670
using ADR method
NLFEAImplcit | 100195771 04577 | 100 | 3649 | 03649 | 100 | 78.96| 0.7896
using ANSYS

N;: number of iterations to obtain converged solution.

3.2.3.3. Large deformations in 3D structures

To verify the proposed PD model for 3D structures, a 3D beam subjected to constant
shear force is investigated as shown in Fig. 3.20. The dimensions of the beam are
LXBXxH=1x0.1x0.1m3 and it is made of steel with Young’s modulus E =
2.06 X 10** N/m? and Poisson’s ratio v = 0.3. The structure is subjected to a
distributed force f, = —1 x 108 N/m at the right end as shown in Fig. 3.20.
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Fig. 3.20. 3D beam subjected to static loading (a) geometry, (b) PD model
discretization

In the peridynamic model, the 3D beam is discretized with uniform 101 x 10 x 10
material points. In the FEA model, the same mesh size is used. To apply boundary
conditions, three fictitious layers of material points are added as shown in Fig.
3.20(b) and displacements of these fictitious points and material points located at
x = 0 are set equal to zero. As shown in Fig. 3.20(b), red points represent the
material points in the real region, on the other hand, black points represent the
material points in the fictitious region. In the PD model, the loading condition is
applied to the material points located at x = L,0 <y < B,z = H as body forces.
The details of applying loading conditions in PD simulation are presented in
Appendix D4.3.

Fig. 3.21-Fig. 3.23 show the displacement variations along the beam. The PD
predictions are compared with nonlinear and linear FEA results. As shown in Fig.
3.21 for the variation of displacement u, both the nonlinear PD model and nonlinear
FEA provide similar results, meanwhile, the linear FEA results are completely
different. The maximum displacement captured by linear FEA is almost 8 times
larger than nonlinear PD and FEA solutions. Moreover, the variation of
displacement v along the beam captured by linear FEA is completely different from
the nonlinear PD and FEA results as shown in Fig. 3.22. In Fig. 3.23, it is observed
that the maximum displacement w of the beam captured by linear FEA solution is
two times larger than the maximum deflection captured by nonlinear solutions. As
can be seen from the results, the developed 3D nonlinear PD model and nonlinear
FEA solution show very good agreement for all displacement components.

105



z (1'11)

-0.6 -

-0.8 4

o —

0.0174

-0.0140
-0.0454
-0.0768
-0.1082
-0.1396
-0.1710
-0.2024
-0.2338
-0.2652
-0.2967
-0.3281

-0.3595
-0.3909
-0.4223
-0.4537
-0.4851

-0.5165

0.1466
0.1295
0.1123
0.0952
0.0781
0.0609
0.0438
0.0266
0.0095
-0.0076
-0.0248
-0.0419
-0.0590
-0.0762
-0.0933
-0.1104
-0.1276
-0.1447

0.0174

-0.0140
-0.0454
-0.0768
-0.1082
-0.1396
-0.1710
-0.2024
-0.2338
-0.2652
-0.2967
-0.3281
-0.3595
-0.3909
-0.4223
-0.4537
-0.4851

-0.5165

Fig. 3.21. Variations of displacement component u (m) in (a) nonlinear PD; (b)

nonlinear FEA; (c) linear FEA results in the deformed configuration
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Fig. 3.22. Variations of displacement component v (m) in (a) nonlinear PD; (b)
nonlinear FEA; (c) linear FEA results in the deformed configuration
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Fig. 3.23. Variations of displacement component w (m) in (a) nonlinear PD; (b)
nonlinear FEA,; (c) linear FEA results in the deformed configuration

Similar to previous examples, for further comparison, the nonlinear PD and
nonlinear FEA displacements at (x = 3L/4,y = 3B/4,z = 3H/4) are compared
as shown in Table 3.4. It is found that the relative errors for all displacement
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components are smaller than 1%. Therefore, it can be concluded that the accuracy

of the developed 3D nonlinear PD model is verified.

Table 3.4. Comparison of displacements for a material point located at (x =

3L/4,y = 3W/4)

Displacement: u (m) yNLFEA ylNLPD Error (%)
-0.248143 -0.248328 0.07%

Displacement: v (m) pNLFEA pNLPD Error (%)
-0.000131 -0.000130 0.70%

Displacement: w (m) wNLFEA wNLPD Error (%)
-0.534627 -0.539694 0.95%

3.2.3.4. Damage prediction in 2D plate

After verifying the accuracy of the developed nonlinear PD model for 2D structures,
in this section, damage on a plate is predicted. The experiment presented by
Kalthoff [87], [91], Kalthoff and Winkler [92] for a pre-notched plate subjected to
dynamic load is simulated by using the developed PD model.

Since the problem is symmetric, only the upper haft plate is modelled as shown in
Fig. 3.24. The plate with L =W =0.1m and thickness of #=0.009m is
investigated [87]. The plate is made of steel with Young’s modulus E =
2 x 10! N/m?, Poisson’s ratio v = 0.27. The fracture toughness of steel is K;. =
70 x 10® Nm~3/2[87]. For simplification, the critical energy release rate of the
material is calculated as G, = G;, = K5 /E = 22714 J/m?.

The left edge which is under the crack surface is subjected to velocity conditions as
[96, 97]

t
—v, for t<t,
V[=1t (3.25)

v, fort>t,
with vy = 16.5m/s, t, = 1 us.

The plate is considered in the plane stress condition and it is discretized into
200 x 200 material points. The horizon size is § = 3.015Ax. The problem is
simulated using the dynamic explicit time integration scheme with the time step
0.01 us and the total simulation time of 80yus.
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Fig. 3.24. The geometry and symmetrical boundary conditions for the Kalthoff
experiment

Fig. 3.25 presents the crack evolution at different times captured by the nonlinear
PD model with the horizon size of § = 3.015Ax. As shown in Fig. 3.25, the crack
starts branching up 70.2° with respect to the horizontal axis at t = 30 us. As time
progresses, the crack continues propagating in the same direction and the crack
reaches the top edge of the plate at t = 80 us.
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Fig. 3.25. Crack evolution at different times (a) t = 30 us, (b) t =50 us, (¢) t =
70 us, (d) t = 80 us (displacements are magnified by 5 for the deformed
configuration)
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Fig. 3.26 shows the § — convergence study in terms of the crack path. In this
convergence study, the nodal density is kept constant (m = §/4x = 3) [98-100],
meanwhile the horizon size is taken as smaller and smaller (5§ — 0) [98-100]. As
can be seen from Fig. 3.26(c-d), when the horizon size is small the predicted crack
paths are 70.2° with respect to the horizontal axis and it agrees very well with the
experimental observations in [87, 91, 92], which is around 70°.
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Fig. 3.26. § —convergence in terms of crack paths withm = §/4x = 3 and
horizon size (a): § = 0.006 m, (b): § = 0.003 m, (c): § = 0.002 m, (d): § =
0.0015m

3.2.3.5. Damage prediction for an L-shape plate subjected to large deformation

In this section, damage in an L-shape plate subjected to large deformation, as shown
in Fig. 3.27, is predicted. The L-shape plate has dimensions of L = 10m, W =
2mand thickness of # = 0.1 m. The material has Young’s modulus of E =
1.0667 x 10* N/m?, Poisson’s ratio of v = 0.333 and critical energy release rate
of G, = 2.7 x 103 J/m? [101]. The bottom edge of the plate is fixed, and the right
edge of the plate is attached to a stiff plate, shown in blue in Fig. 3.27.

In the PD model, plane stress condition is considered. Similar to Section 4.4.2, to
apply boundary conditions, three fictitious layers of material are generated at the
bottom, and all displacement components of the fictitious material points as well as
material points located at the location at y = 0 are set equal to zero. To represent
the stiff plate at the right edge, Young’s modulus of the stiff plate is considered as
E = 1.0667 x 105 N/m?.
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The plate is subjected to incremental vertical displacement at (x =L,y =L —
W/2) as

v =y L Av (m) (3.26)

with v(® = 10.075 m, Av = 0.001 m

where v(™ represents applied displacement at n* load step (n = 1,2 ...2900), Av
represents the incremental value of applied displacement, v(©) represents the first
value of vertical displacement applied for the plate.

In the PD model, the plate is discretized with the mesh size of Ax = W /20. The
material point located at (x = L,y = L — W /2) is subjected to the incremental
displacement given in Eq. (3.38). The Adaptive Dynamic Relaxation (ADR)
method [76, 77] is used to simulate this quasi-static problem (Appendix Al). To
ensure the ADR solution is converged at each load step, the PD solution is run over
10000 time steps for each incremental displacement.

L \V
~

X

Fig. 3.27. L-shape plate subjected to large deformation

Fig. 3.28 shows the damage evolution on the plate subjected to large deformations.
As shown in Fig. 3.28(a), when the applied displacement is v = 10.175 m, damage
initiates around the inner corner of the plate, at (x =W,y =L —W/2). As the
applied displacement is increased, the crack propagates toward the outer corner of
the L-shape plate as shown in Fig. 3.28(b-d). When the applied displacement is v =
12.975 m, the crack opens largely, and the L-shape plate is almost split into two
parts as shown in Fig. 3.28(d). It is observed that the damage evolution captured by
the nonlinear PD model agrees very well with the previous study [101].
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Fig. 3.28. Crack evolution on the L-shape plate in the deformed configuration
when the applied displacementis (a) v = 10.175m, (b) v = 10.975m, (¢) v =
11.975m, (d) v = 12.975 m

3.2.3.6. Damage prediction in 3D pre-notched concrete beam subjected to
bending

After verifying the accuracy of the developed nonlinear PD model for 3D structures,
damage on a 3D structure is predicted. The experiment presented by Jeng and Shah
[93] for a pre-notched concrete beam is simulated by using the developed PD
model. The concrete beam has dimensions of L X B x H = 304.8 X 28.6 X
70.2 mm?3 and the pre-notch has the height of a = 35.1 mm as shown in Fig. 3.29.
The beam is placed on two rigid cylinders located at x = 0.1L and x = 0.9L. The
material has Young’s modulus E = 30 x 10° N/m?, Poisson’s ratio v = 0.2. For
simplification, the critical energy release rate of the material is chosen as G, =
Gy = 20.7368 J/m?.
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Fig. 3.29. 3D beam with pre-notched

In the PD model, the structure is discretized with uniform 101 x 10 X 24 material
points. To create the notch, the material points located at x = 0.7L, 0 < y < B and
z < a are removed from the model.

The loading is applied by increasing the displacement by Aw = —1078 at x =
0.5L, 0 <y < B, z = H for each load step. Zero vertical displacements, w = 0 is
applied at x =0.1L, 0<y<B,z=0and x=09L, 0<y<B, z=0. The
explicit time integration is used for this quasi-static problem by using the ADR
method [76, 77].

Fig. 3.30-4.42 present the crack evolution for the concrete beam. In Fig. 3.30(b)-
42(b), blue regions represent the initial notch and red regions represent the new
crack surfaces. The new crack surfaces are represented by the material points with
the damage coefficient ¢ > 0.3. As shown in Fig. 3.30(a), when the applied
displacement is w(0.5L,y, H) = —2 x 107 m, the crack propagates towards the
middle section of the beam and reaches the location (x = 0.206,y,z = 0.046). The
peridynamic results show that the failure angle is f = 34° which is similar to the
failure angle observed in experiments [93].

As time progresses, the crack continues propagating in the same direction and
reaches the location (x =0.1962, y, z = 0.0582) when w(0.5L,y,H) =
—2.5x 107%m as shown in Fig. 3.31. The crack propagates to the location of
(x =0.1928,y,z = 0.0625) when w(0.5L,y,H) = —3 X 107®m as shown in
Fig. 3.32. The crack propagated to the location (x = 0.1869,y,z = 0.0691) when
w(0.5L,y,H) = —4 x 10~% m as shown in Fig. 3.34, then propagated towards the
top surface of the beam when w(0.5L,y, H) = —4.5 X 10~® m as shown in Fig.
3.35.
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3.3. Peridynamics for nonlinear analysis of 3d beam structures

In this section, a novel PD model for geometrically nonlinear analysis of beam
structures with 6 DOFs is proposed. The nonlinear PD formulations and equations
of motion are obtained based on the principle of virtual displacements by using the
Total Lagrange formulation. The numerical procedure in PD nonlinear analysis for
beams is provided. The capabilities of the nonlinear PD model are verified by
considering various examples of straight beams and curved beams subjected to
large deformations. The developed nonlinear PD model is used to predict damages
on a straight beam, which is a representation of dry spaghetti, subjected to different
loading conditions.

3.3.1. Nonlinear beam kinematics in classical continuum mechanics

In this section, a three-dimensional straight beam is considered as shown in Fig.
3.36. The beam kinematics are obtained with respect to the body-attached
coordinate system of the beam, x, y, z, which is called the local coordinate system.
The beam is assumed to have symmetric cross-sections. The nonlinear strain energy
density for the beam is obtained through three main steps. First, the displacement
components of a beam element are presented in Section 3.3.1.1. Next, the Green-
Lagrange strain and Second Piola-Kirchhoff stress components are presented in
Section 3.3.1.2 and 3.3.1.3, respectively. Finally, the nonlinear strain energy density
for a beam structure is presented in Section 3.3.1.4.

3.3.1.1. Displacement components

Based on the Timoshenko theory [72], a beam has 6 local degrees of freedom,
w,v,w,6,,0,0, as shown in Fig. 3.36. The terms u,v,w represent the local
displacements of the point located at the centre line of the beam and 6,,06,,0,
represent local rotations of beam cross-section.

Since in nonlinear analysis, three rotations 6,, 8,, 6, are co-rotated, the rotations of

the beam at time ¢ are controlled by using director vectors, ‘V, v, [70] as shown
in Fig. 3.36.
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Fig. 3.36. Beam configurations with 6 local DOFs

As shown in Fig. 3.36, material point P is located at ( °x, %y, °z) and material
point Q is located at ( °x, 0,0) which is on the centre line of the beam.

The degrees of freedom at time ¢t and time t + At for material points P and Q are
represented as

(tu\’ t\»i, tw)’(t+Atu\, t+AI\7 t+AtA) for P (3.276.)
(tu’ tV’ tW’ t‘gx’ tey’ tez), (t+Atu' t+AtV’ t+AtW, t+At9X’ t+At0y’ t+At92) for Q
(3.27b)

According to Bathe [70], the displacement components of material point P located
at ( °x, °y, °z) at time t can be defined as

U= tu 07V =V )+ Oy (Ve — V) (3.28a)
V=02 (Vy =V )+ 0y (V= V) (3.28b)
'W="'w+ z(tV -, ) (tV A ) (3.28¢)

where 'V, Vsy, 'V,, represent components of the director vector ‘V at time t
with respect to local axes x, y, z, respectively. The terms °V;,, ° Vsys Oy, represent
components of the director vector °V, at time t = 0 with respect to local axes
x,y,z, respectively. Similarly, V., Vi, 'V;, represent components of the

director vector ‘V, at time t with respect to local axes x,y, z, respectively. The
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terms °V,y, °Viy, °V,, represent components of the director vector °V, attime ¢t =
0 with respect to local axes x, y, z, respectively.

Note that, in Eq. (3.28), the director vectors at time ¢, including ( “Vey, Viy, Viz)

and ( Vi, Viy, Vi) are unknown. These director vectors can be updated
numerically by using the director vectors at the previous time step as given in Eq.
(3.64d-f) in Section 4. Meanwhile, the director vectors at time t = 0 can be defined
based on the initial configuration of the beam. In this section, for simplification, a
straight beam is considered, and the beam’s local coordinates are assumed to be
aligned with the global coordinates as shown in Fig. 3.36. Therefore, the director
vectors at time t = 0 for a straight beam can be defined as

Vv, =[0 1 o] with V,, =0; V=1 %, =0 (3.29d)
°V,=[0 0 1] with ¥, =0; ¥, =0; ¥, =1 (3.29)
°V.=[t 0 o] with V, =1 ¥V, =0; V,=0 (3.29f)

By substituting Eq. (3.29) into Eq. (3.28), the displacement components of material
point P located at ( °x, °y, °z) at time t can be defined as [70]

U="u+"2\V +°y.\V, (3.30a)
W =ty+ OZ.tVty i Oy(tvsy _1) (330b)
'W="'w+ °z(tVtZ —l)+ AN (3.30c)

Similar to Eq. (3.30), the displacement components of material point P at time t +
At can be calculated as [70]

t+Atlj — t+Atu + Oz-t+AtVtX + Oy-t+AtV5X (331&)
Aty _ trAty, Oz.t+AtVty + Oy(t+AtVSy _1) (3.31b)
trAlpy _ trAy 05 (t+AtVtZ _1)+ oy_t+AtVSZ (3.310)

By substituting Eg. (3.30) and Eq. (3.31) into Eg. (C2a), the incremental
displacements from time t to time t + At can be calculated as [70]

Q = AL g = Byt 4 07 (t+AtVtX _ tVtX)+ oy(t+AtVSX _ tvsx) (3.32&)
ﬁ — GG tg Aty by, 0, ( HAtVty _ tVty ) + oy(tmtvsy _ tVsy) (332b)
W — BALR _ GR = Ay by OZ(HAtVtZ . tVtz)+ Oy(HAtVsz _ tVsz) (332(:)

The relations given in Eq. (3.32) can be rewritten as

U=u+"2V, +°yV, (3.33a)
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V=v+°2V, + W, (3.33b)

W=w+ "2V, + W, (3.33¢)
with

u=""u-"u (3.33d)
v="Yy-ly (3.33¢)
w=""w-"w (3.33f)
and

Vo= "V =Vor V=", =V, (3.339)
V=", =V V=Y, = (3.33h)
Vo =" = Vo VY, ="V, -V, (3.33i)

In Eq. (3.33d-f), u, v, w represent the incremental displacements from time t to
time t + At of point Q located at ( °x, 0,0) on the centre line of the beam. The terms
Vex: Vsy, Vs, represent components of the incremental director vector, Vg, from time
t to time ¢ + At. Similarly, the terms V,, V4, V, represent components of the

incremental director vector, V,, from time ¢t to time t + At.

The relations given in Eq. (3.33g-i) can be rewritten in the compact form as

V, ="V -V (3.34a)
V. ="V =Y, (3.34b)
with

Vo=V, vV, Vo] (3.34c)
Vi=[Ve Vy V] (3.34d)

According to Bathe [70], the incremental director vectors given in Eg. (3.34c-d) can
be approximated by using the director vectors at time t as

\_/s = QX t\75 = |:(Qy tVsz - Qz tVsy) (Qz tst - Qx tVsz ) (Qx tVsy - Qy tst ):|T (335&)

\_/t = Q X tVt = |:(Qy tVtz - Qz tvty) (Qz tVtx - Qx tvtz ) (Qx tVty - Qy tVtx )JT (335b)

with
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. T
0=" Atg_te:[gx 0, QJ (3.350)

9,=""6,-'6, (3.35d)
0, =0, -0, (3.35€)
0,=""9,-'6, (3.35f)

where 6,, 6,, 8, represent the incremental rotations of the beam cross-section from
time t to time t + At as

Therefore, by using the incremental director vectors given in Eq. (3.35a-b), the
incremental displacements in Eq. (3.33a-c) can be calculated as

a=u+°2(0,V,-0,V,)+°y(6,V,-0,V,) (3.36a)
V=v+°2(0,V, -0, V, )+ °y(8,Vy -0, V,,) (3.36b)
W=w+°"2(0,V, -0, V, )+ °y (8, V, -0, V,,) (3.36¢)

3.3.1.2. Strain components

By using displacements at time t given in Eq. (3.30), the Green-Lagrange strain
components [70] in Eq. (C4) can be calculated as

o (08 ) (Ve ) (V) (Vo) + (oW, ) (Ve )} (3.37a)
02 Vo (U, ) (Voo )+ (V) (Voo )+ (oW, ) (Ve )}
Vi (V) + Voo + Ve (o, )+ Ve, (oW, )
08 =51+ Vo (Vo Vo (Mo Ve () (3:370)
#02 Vo (M) Ve (Vo + Ve (Vi)
i)V, (10,09, (2
Otéﬂ:% +°y{tvu(gvszx)+tv (Ve )+ Vs (vsyx)} (3.370)
02V (M) Voo (Vocr )+ (M)}
0fyy = 08y = 065 =0 (3.37d)
with
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9% 8% 0T 5%
tV — atst . tV — atvsy ; tV — atVsz
0% sx,x aOX 0% sy,x aOX 0%sz,x aOX
oV, . GRS GAA
(t)Vtx,x = ao)t( ’ (tJVty,x = aT):’ (t)Vtz,x = ao)t(

(3.37¢)

(3.37f)

(3.379)

By using the displacements at time t given in Eg. (3.30) and the incremental
displacements given in Eq. (3.36), the linear incremental strain components [70],

o€, given in Eq. (C9) can be calculated as

ngx = Og,x (1+ Otu,x)+((:v,x)(oy,x)-’_(otw,x)(ov_v,x)

f _ 1y
(e ) 28N 0N) oy ()

0°x
8(6,V, —0.V
v, a0, Y

+ Oy 4+

aOX_ +((t)vtx,x)(0u,x)

0(6,V, -6, V.
+07 +(5Vty,x)(oV,x)+SV,x (_ ta"x

tVsy(OM,x)—f_tvsx(og,x)—i—tVsz(OV_V,x)
+(1+5u, ) (8, V, — 0, V)

Zy Vsz o Lz Vsy

Zx Vs Zx Vsy

ty Vsz

00, (Vi Vo =V Vs )

tz Vsy

tx “sy

6 :% (0, Vo =0,V ) v+ dw, (6, M, — 6,V

Zy Vsx

tz SX

2 ) o)

Y, tZ) +((t)vtz,x)(ow'x)

)

+°Z

tx SZ

)

(3.384)

(3.38D)
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tVtz(OV_V,X)-l_tVtx(Og,x)-i_tVty(OM,x)
+(1+ 0u, )(0,V, -0, V)
ngz :% +0tv,x (QZ tVtX_thVtz)—I—Ot\N,x (Q tV _9 tV ) (338C)
0 OQx,x (tvsy tVtz - tVsz tVty)_I_ (9 (tvsz tV tvsx tvtz)
o +0Q2,x(tvsx tV’ry_tvsy tVtx)
08y =06, =€, =0 (3.38d)
with
T T Thr (338¢)

3.3.1.3. Stress components

By using the Green-Lagrange strains given in Eq. (3.37a-d) and the stress-strain
relations given in Eqg. (C19) and Eq. (C21), the second Piola-Kirchhoff stress at
time t can be calculated as [70]

A Voxx +( u, )( v, X)
_ el oy )0 0 (3.392)
Otsxx Eogx E| + y{—k(;vx)(évsyX)—|—(SWX)(5VSZ'X)}
Oz{évtx,x-’_((:ux)((t)vtxx) }
(0¥ (Vo) + (0 ) (Ve )
‘V(vx) +V, +tv( )+ Ve (ow,)
Othy_2kG0‘C" _kG +0y{ syx V sxx)+v (Vszx)} (339b)
+OZ{ tyx txx) V (Vtzx)}
Vi (oW, )+ Vi + Vi (0u, )+ Vi (o)
38 =2KG 38, =KG 1 + "V {V, (Ve )+ Vo (Vo) + Vi (V)] (3.39¢)
+°z{‘V (Vo )+ Ve (Ve )+ Y, (vwx)}

3.3.1.4. Strain energy density
By substituting the second Piola-Kirchhoff stress components given in Eqg. (3.39)
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and the incremental strain components given in Eg. (3.38) into Eq. (C32), the
averaged strain energy density through the cross-section of the beam of a beam can

be represented as [70]

é

vVNLJ"A( Shob +20S,, 08, +24 szogxz)d(OA)

°A
:E{otu,x +%(0tu,x2+$V,x2+gwx2)}{og,><(l+ tJ[u,x)+(Otv,x)(Oy,x)"'(otw,x)(ow,x)}
tV +< )(é\/ ) (E’Vtxvx)(o ) (tvtyx)( ,x)+(ttlvtzx)(ow,x)
tx,x 1, X ) \
+(EOI—AW) +($V,X)(§,Vly,x) +(1+ (}u’x)a(ey V; XHZ V‘y)+
+(olwyx)((tJV[z,x) iy 8(9 1V 0Xtvt2>+tw 6(9xlvty Hytvtx)
o 0°x 0T 0°x
(2 (v )] | (o ot (B o)+ (M) o)
El, t IY | t a<9ytvsz_g Vsy)
+(°A) +(0V,x)( Vsyx) +(1+ u ) o 4
+($WYX)(8VSZX) 0 eztvsx_ex tVSZ) t 6(€X tVsy_ey tst)
+ W
o 0°x
- tv .
W, (1+ Ju, tvsyov t )‘ (o)
1+ U y Vsz_ez Vsy)
lez UW (9 tV 0 tV )
zsx_xszV+WxSyy5X
k.G
b Vy (14 )+ Vo (oV.r)
+{ o } +(1+ gu, tv -0,V,) (3.40)
tVtz oW tV 6 tV ) (9 tV _0 tV )
. kG_ Vo, () tVty Ve, = Vi Vo )+ 080y, (Ve Vo =V :vsz)
(oA) IV (tvtxx) tV (tvtz X) +, Qz (tvtx tVsy tVty tVSX)

where k, represents the shear correction factor for the beam cross-section [70], k;
represents torsional constant for beam cross-section. The terms I,,,, and I, given in

Eq. (3.40) represent the area moment of inertia of beam cross-section. The torsional
constant, k., can be defined as [62, 74]

k=L (02) +(v) }a ()

The area moment of inertia of beam cross-section, I,,,,
[70, 73]

Ly d(ear = (y) d(°A)

Similar to the study in [62], the strain energy density for a beam given in Eq. (3.40)
can be decomposed into axial, bending, shear and torsional components as

(3.41)

and 1,,, can be defined as

| = (3.42)

yy

zz
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VVNL Wa!\(‘l; szlrl;dmg +Wsr,:leLar +Wt(2\‘rls-|on (3433-)
with
u,(1+} ol v \
W, =E{;ux+1(;ux2+;v Fow 2)} ol ) o)l aa
Sz +(ow, ) (ow
(Vo ) (0U) + (Mg ) (V) (Ve ) (0W)
Mot (10,) ()] (20 g0, ) 20 e ),
NL EIW t 1 X
Wbendlng :m +(0v.x)<ovtyx) . a(Qz tVtx_Qx [Vtz)
Hw) (V) T o
t a(Qx tVty _Qy tVt><)
Tt 0°x (3.43c)
(tvsxx)( ) ( syx)(va) (CI)VSZ,X)(O\A/,X)
o(0,'v,-0,\V,
Mo (0, (o )| [l ) e,
El ¢ g
<0AZZ) +<0V'X)(OVSy'X) t 8(91[\/5><_0><‘Vsz)
+<01\N,x)(([)vsz,x) +OV‘X 6 X
Jrotha(axtvsy 9, st)
' 8°x
I v, v, Y 1
IV (1+ tU ) tVsyOV ( )+ t( )t (OWX)
RV (1+ u )(19y V., -6, vsy)
sz 0 1 1 1 1y
T ke +(0, Vo =0, Vg ) gV, + oW, (0, Vg, — 8, 'V, ) (3.43d)
shear — s
v, VA Y/
v, (1+ ‘u )+tvty(§vyx (ow )+ t( )t ( )
+ v, +(1+ 0u, ) (0, Vi =0,V )
e + v, (0, Ny~ 8,y )+ ow, 8,V — 6, V., )
0, (Vi Ve = Ve, Vs )
tV V 0=x,x y sz z sy
Wtc:\:ls_lon = kotG ’ ( tyX) +0ny(tvtz tVs><_t\/t>< tVsz) (3436)
( A) +tvs (Vtxx) tVs (Vtzx) Y
+0Qz,x (tvtx tVsy - tVty tst)
where W50, Wythaing: Wetear and Wik, represent strain energy density

corresponding to axial, bending, shear, and torsional deformations, respectively.

For simplification, the SED components given in Eq. (3.43) can be rewritten as

Wi = E(oaio)(ogw) (3.443)
El,, El

ngrl;dlng 7oA\ Oa12 08, +0_ZZ (;ail.l 0911) (3-44b)

Wswe:r =k GI:(Ota13)(Oe_ll3)+(0tal4)(0§'14 )J (3.44c)
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Vvtcl:lrtion = ((;A)((;aﬁ)(ogqs) (3.44d)

with

t t . t t . t t

08 = oUys 0@ = oVys o83 = (W, (3.44e)

t 1y . t 1y . t f

08 = Voo 085 = OVsy,x’ 08 = Vax (3.441)

t f . t t . t f

087 = Vs 085 = Vs 089 = Vi (3.449)

080 = ol +%($u,x2 + oV, w7 = ga +§(5af + 485+ a3 (3.44h)

(;ail = (t)st,x + (;u,x (t)st,x + gv,x (t)Vsy,x + (;Wx (I)Vsz,x (3 44|)
= 03, +(oa ) (084 ) + (02, ) 525 +(5a:) (o2

Ota12 = (tlvtx,x + Otu,x (tlvtx,x + Otv,x (t)Vty,x + (;Vv,x (l)vtz,x (344])
= 087 + 08158 + 08 08 + 08308

(;als = tVsy (;V,x + tst + tst (;u,x + tVsz (;Wx (3 44k)
:tVsy((;aZ)+tst+tst((;[a1)+tVsz((;a3) .

(;a'14 = tV’[z 0th + tVtx + tVtx (;u,x + tVty C}V,x (3 44|)

= tVtz (otae)+ tVtx + tVt>< (Otai)+ tV‘y (Otaz)

085 = Vo Vi + Vo Vi + Ve Vi = Vyy (035)+ Ve (037 )+ Ve, (53,)  (3.44m)

sz 0" tz,x
080 = (ol )(1+ 52, )+ 03, (0¥, )+ 535 (4, ) (3.44n)

)a(g V,-0,V,)

y Vsz Lz Vsy

+

ogcuzoa4(0!x)+()taS(OMvX)+(’ta6(°\/_\l’x)+(l+ o2 0°x (3.440)
440

a(a Vo —0,'Vy,)

=z SX =X Sz

0°x

o(0,V, -9,V
+ 08 & P )

t
+0a‘2

) a(Qy tvtz - Qz tVty)

+

ot = (Vo) (o) + 085 (o) + 08 (oW, )+ (14 03 ) == (3.440)
44p

0 eztvx_thVz 0 thv _Q th
1o, 0N O]y 20N 0 )
0§13 = tst (Og,x)+ tVsy (0¥,x)+ tVsz (OV—V,X)+(1+ Otai)(gy tVsz _Qz tVsy)
+53, (0, Vo — 0, 'V, )+ 025 (8, Vg — 0, Vs, )

2Lz Vsx  Zx Vs Zx VYsy Ly Vsx

(3.44q)
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0@y = tVlz( \AI,X)_'_tVtx(og,x)_'_tVty(o ) (1+oa1)( 0.V, HtVty)

(3.44r)
+ 0a2 (Qz tVtx - Qx tVtz ) + (;[a3 (Qx tVty - Qy tVtx)

0815 = OQX,X (tVty tVsz - tVtz tVsy ) + OQy,x (tvtz t\/sx - tV’[x t\/sz )

(3.445s)
+ OQz,x (tvtx tVsy - tVty tst )

3.3.2. Nonlinear beam kinematics in peridynamics

For nonlinear analysis of a beam, the PD equation of motion for material point k
can be described in discrete form as

t t t 0 0
e 1 whf oo Uy = Uggs Xy = X 1)
Po ("ligy) =2

|t t ot 0
T =0t (iy00 (U = Ugyr Xao = X5y 0)

Vv, +'b (3.45)

(k)

where p represents the mass density, 't represents the vector of accelerations at
time t. The term ‘u represents the vector of displacements at time ¢, tb(k)
represents the vector of external forces and moments per unit volume at time t. The
term N represents the number of family members of material point k, and j
represents a family member material point k. The term 3t(k)( j) represents the force
density at time t that material point j exerts on material point k, and 5t(j)(k)

represents the force density at time t that material point k exerts on point j. For a
beam with six degrees of freedom, the parameters in Eq. (3.45) can be represented
as

N
tyu tyv tyw t t t4+ 6,

oLy = [ Tom ol olwa t(k)(n t(ky)(n t(k)(n} (3.462)
t tyu tyv t t4.0, t4.0 t1.6, T

oL (i) = [ oo ol ol ol oliw otu)(k)] (3.46b)
.o .s .s .. . . .. T

tu(k) =|:tu(k) tV(k) tW(k) tex(k) tey(k) ‘ Z(k):l (346C)
‘b =|:tbx(k) By B Mgy Mg Z(k)] (3.46d)
0 o

Xg = X 0 0] (3.46¢)

T
U =Y Yo W G G Cuw] (3.46f)
where ftd. oty oo tgw ot oty and &% . represents force
oty oloy(yr olky(yr olgky(yr ot (k)(])’ ot ()

densities corresponding to six degrees of freedom, u, v, w, 6,, 6,, and 6,,
respectively.

Similar to the relation given in Eq. (1.2) in Chapter 1, the relationship between the
components of force densities and strain energy density for nonlinear analysis of
beam structures can be described as [44, 102]
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1 a _(I’:l)LPD
otdoy = BV (3.47a)
(i %Yo

. 1 OWS5™

ot = _Wﬁ (3.47b)
with

g =uVv,w 6,0,°0, (3.47c)
G =uVv,w0,90,°/, (3.47d)

where the parameter q; represents the degree of freedom which can be u, v, w, 6,,
0y, or 8,. The parameter g; represents the incremental value of g; which can be u,

1_]’ V_Vv Q,’XZ’ Qy’ Or QZ'

t,eqi teqi H™ H
The terms ol oy (i) and ol (jycky represent force densities corresponding to the degree

of freedom g;. The terms W5"” and W/jy"® represent PD nonlinear strain energy

densities of material points k and j, respectively.

In the bond-based PD model, the force densities Gty and Gt have the same
magnitude and they are in opposite directions (§t ;) = —6tjy) [21]. Therefore,
the PD equations of motion given in Eq. (3.45) can be rewritten as

N
tes _ t t t 0 0 t
p(k)( u(k))_zllofmm( Uy = Ugor Xeiy = X 1) V) + By (3.48a)
j=
with
t t
oftory = 2ot (3.48Db)

In the following sections, first, the nonlinear PD strain energy densities and PD
bond constants for a straight beam are presented in Section 3.3.2.1. Next, the PD
equations of motion in the local coordinate system of a straight beam are obtained
in Section 3.3.2.2. Finally, the transformation of equations of motion from the
beam’s local coordinate system to the global coordinate system is presented in
Section 3.3.2.3.

3.3.2.1. Peridynamic strain energy density
Similar to the classical formulations given in Eq. (3.43a), the nonlinear SED in PD

for a beam can be represented as
V\_/ NLPD :V\_/ NLPD +V\_/ NLPD +V\_/ NLPD +V\_/ NLPD (349)

axial bending shear torsion

where WoiiP, Wyt Wiiear, and WNLED represent the PD strain energy

densities for axial, bending, shear, and torsional deformations, respectively. Similar
to the classical formulation given in Eq. (3.44a), the PD strain energy density for
axial deformations can be represented as
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_ N
VLA =2 3 Con (5200 ) (02 ) () Vo

with
salf = o+ (o) +(dare) + (52 )

t.p0 Y “Yw

u.,—u
PD __ | =)  =(K) t,PD
080 —( (1+oa1 )+oa2 0
é(k)(j)

0
é:(k)(j)

t t
Uiy = Y o

t.PD _
& = 0z By
)
t t
PP _ Vin = Vi o
0% = o By
)
W, —w,
t.PD () ) o
08 = oz B
K)J)
0 _loy o
§(k>(,-)—‘ X X(k)‘
0 0
g = X = X
(o = oz
)

t.p0 Wi — Wi
°
)

o

(3.50a)

(3.50b)
J( Oﬁm(j) ) (3:50¢)
(3.50d)

(3.50€)

(3.50f)

(3.509)

(3.50h)

where C,, in Eq. (3.50a) represents PD constant for axial deformations. This PD
constant can be obtained by comparing nonlinear SED for axial deformations in

CCM to PD as presented in Appendix E.1 as
2E

Ay

(3.51)

Similar to the classical formulation given in Eq. (3.44Db), the nonlinear PD strain

energy density for bending deformations,
represented as

_ N
s == (s ) (o2l ) () Vo
C

N
+% j_l(éaf;D )(ngzD)(og(k)(j))ov(j)

with

t4PD

Oall

s = (o) o+

= 03;” (14087 )+ (02;" ) (035" ) + (025"

17 NLPD
bending:

0" )+ (585" ) (535" ) + (5357 ) (535”)

in Eg. (3.49) can be

(3.52a)

(3.52b)

(3.52¢)
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U, —u Vi, —V W, — W,
=) 2w L " Yw Y ~ Yo
(1) g e (1)
St S S
1y 1 1 t
+(1+ taiPD)(QY(j) Vo ~ % sy(,-))—(Qy(k) Vo =@ Vsy(k))
0 0
S
PD _ 0
Ogll - (0 tV _9 1 )_(6 IV _9 IV ) ( ﬂ(k)(l)) (352d)
+( [aPD) =z(j) Tsx())  =x(i) Tsz(i) Zz(k) Vsx(k) T ZLx(k) Vsz(k)
02 0
S
1 1 b b
+( ta;D)(QX(J') VSY(i) _QY(D VSX(]))_(QX(k) VSY(k) _QY(k) VSX(k))
0 0
6“:(k)(i)
u. —u Viiy—V W, —W
=0) T 2K i " Yw LLOIRLO)
(087" ) ="+ (085" ) =g+ (o0& ) T —
S S S
t t 1 t
+(l+ talPD)(QY(j) Ve ~ %) Vty(J))_(Qy(k) Vew ~ G Vty(k))
0 0
S
PD _ 0
08y = (9 Vo gt )_(9 N g ) ( ﬂ(k)(j)) (3529)
+(taPD) Lo Vo) T Zxi) Ve ) T\ Zao Vi) T Zxa Ve
02
"ot
(22 Vot = oty Vot )= (Ccor Vrtwy = Oy V)
t.pp \ \Zx(h) V(b T Zya) V) ) T\ Zxeo Vv Ty Vi
+(0a3 ) 0
S
b 1
V  iy— V
0y =—= 10—y, (3.521)
é&U(D
1 1
V., y—V
afP = sy(OJ) sy(K) Oﬂ(k)(j) (3.529)
é(k)(i)
'[V o tV
otagD = SZ((;) = OIB(k)(j) (3.52h)
g(k)(J')
1 1
V. — V,
t4PD __ tx(j) tx(k) 0 .
o0& =y Bt (3.521)
é&H(D
1 1
V. — V, .
afP = ty(OJ) ty(k) By (3.52))
g(k)(J')
V., =V
t,PD t2(j) (k) 0
08 =7 B (3.52k)
g(k)(J')

where the terms, C,,, C,, in Eq. (3.52a) represent PD constants for bending

deformations. As presented in Appendix E2, these PD constants can be obtained
by comparing nonlinear SED for bending deformations in CCM to PD as

2El,, 2EI,

C,=— 2 ;C =—"tm_ (3.53)
LAyt T (A)

Similar to the classical formulation given in Eq. (3.44c), the PD strain energy

density for shear deformations, WXLFP 'in Eq. (3.49) can be represented as

shear »
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NLPD t~PD PD t~PD PD 0
Wihear :EZ s[(oaiii )(09-13 )+(oa14 )(09-14 )}( ég(k)(j))o\/(j) (3.544a)
i=1
with
1 1 1 1
t,PD _(1+ t PD) Vi) T Ve +( taPD) Vo T Ve
Oa'l3 - Oal 2 o“2 2
(3.54h)
; sz(j +tVsz k
+ ga;D)%
1 1y 1y 1
a7 = (1+ (af®) Vi) + Vixao +(a®) Vo + Vyw
Oa14 - Oal 2 0™2 2
(3.54c¢)
1 1
+($a;D) tz(j); Ve
1 1 1 1
Voo T Ve Yy ~Yg N Vayw T Vai) Yo~V
0 0
2 St 2 Swm o
v y By
Va0 Vai Wi =W
0
2 i)
1 1 1 1
08g; = t,PD (Qy(,-) Vaiy ~ ) Vsy(j))+(Qy(k) Vag) ~ G Vsy(k)) (3.54d)
+(1+0a1 ) >
1 1 1 1
{.PD (Qz(j) Vi) = iy Vsz(j))*(Qz(k) Vo ~ Vsz(k))
() :
1 1 1 1
t.PD (Qx(j) Vo)~ st(j))+(Qx(k) Voo =0 st(k))
+(sa”) >

1 1 1 i
Vito ¥ Vi Y —Yo . Voo T Vi Yoy — Voo
0 0
2 S 2 S 0
8 4 00
N Viro + Vi Wiy =W
0
2 S0
t 1 1 1
0y = +(1+ talPD)(Qy(i) Vo) ~ 8y Vty(,-))+(Qy(k, Vow ~Gaw Vty(k)) (3.54¢)
° 2
(8201 Vot = 0y Vet ) ( @y Vescro = Enroy Ve )
(t o\ \Z2(i) Vi) T Zxi) Vi ) T\ e Vieoo T iy Ve
+(5a3°)
2
(8xciy Vi = 8yiy Voxciy )+ (o Viyr = Byt Voo )
.o\ \Zx(h V() ~ %y Vi ) T\ Exi Viyoo ~Zyo Vi
+(oa”) >

where the term Cy,, in Eq. (3.54a) represents the PD constant for shear deformations.
As presented in Appendix E3, this PD constant can be obtained by comparing
nonlinear SED for shear deformations in CCM to PD as
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©(°A)s”

(3.55)

Similar to the classical formulation given in Eq. (3.44c), the PD strain energy
density for torsional deformations, WNLPP  in Eq. (3.49) can be represented as

torsion’
1 N
VU NEPD t.PD 0
tor5|0n - 2 ZCt (Oa'15 )( )( é:(k)(j))ov(j) (3563.)
j=1
with
tAPD t t sy(j) + Vsy(k) tAPD tst(j) +tvsx(k) t o PD tVsz(j) +tvsz(k)
085 :(oae ) 5 +(oa7 ) 5 +(oa9 ) 5 (3.56b)
1 1 1 i
v T Vo Ve Vaw
2 2 Qx(j) _Qx(k)
i 1 t 1y 0
R 10) + Vtz(k) Vsy(k) + Vsy(j) g(k)(i)
2 2
1 1 i 1
ey ¥ Ve Ve T Ve
g, .—0
0d =| + 2 2 Zy() — %y (Oﬂk ) (3.56¢)
— tV V '[V V Oé: ) (K)(J)
tX(j) tx(k) SZ(J) sz(k) (k)(§)
2 2
1 1 i 1
i)t Voo Vaw T Vi)
+ 2 2 Qz(j) _Qz(k)
Vot Vs Ve + V. % o
tY(J) ty(k) "sx(j) sx(k) (k)3
2 2

where the term C, in Eq. (3.56a) represents the PD constant for torsional
deformations. As presented in Appendix E.4, this PD constant can be obtained by
comparing nonlinear SED for torsional deformations in CCM to PD as

_ 2kG

t (OA)Z 52

3.3.2.2. Nonlinear equation of motion in the local coordinate system for a beam
By substituting the nonlinear SED given in Eq. (3.49) into Eq. (3.47a), the PD force
densities &t . can be represented as

(3.57)

0% (k)())
C..(say )(1+4a™)
ot'[(uk)(j)zi +Cbz( D)(taPD) by(otalF;D)(t pD) (Off(k)(j)) (3.58a)
+Csh(($aizo) sx(k)+ sx(i) (SQZD)M}
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2

1 1
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thoen =5 1+Cu (387) (320 +C,y s202) (320°) (%)
C, ((éaﬂD) sy(k)+ sy(i) (33130)t ty(k)JZrt ty(j)J
C..(s35”)(sa5°)
ottellvq(j):; +Cbz(otale)(t PD)+C (a1 )(otang) (Og(k)(j))
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+%be(ota£D){_(<}a D)tVtz(k) (t PD)tVty(k)}( ﬂ(k)(n)
+1C (0§ _ ) ((;[alpsD){((;aZPD)tVsz(k) (Sa:D)t sy(k)}
4 sh (K)(J) +(331F:1D){(t PD)tVtz(k) (agPD) ly(k)}
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t.PD 2 2 0
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( e ) _t e+ Vew Voo + Ve ( (k)(n)
2 2
$thp =5 Cur (4272 (24 687°) Ve = (330°) Voo } (i)
+1be(0ta1F;D){(l+ (;alpD tVtz(k)_( affD) tx(k)}( ﬂ(k)(]))

1+ gaipD ) tVsz(k) ( OtaCfD ) tst(k)}
( SaspD ) tx(k)}

(3.58D)

(3.58¢)

(3.584)

(3.58e)
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ttfk)(]) ; Cbz ((;aiF;D ){_(1+ OtalpD ) tVsy(k) + D st(k)

1§
+%be(<§afz[)){—(1+ 52 ) Vo + (0257 tVtx(k)}( Broiir)
(OtaizD){( OtaiPD) sy(k)_(ota D) sx(k)}
(gaﬁD){( 0 ) Vi (otazpD)tVtuk)}
Vo + Vi Voo * Vo
2 2

1 1 1
) T Vyw Ve T Ve
2 2

ﬂ(k)(l)

1

+ZCsh (O%E(k)(j)) (3.581)

(Oﬂ(k)(J’))

t
ty(j

Therefore, by substituting PD force densities given in Eq. (3.58) into Eq. (3.48), the
nonlinear PD equations of motion for a straight beam can be obtained as

N
(u(k)) Z;( (k)(n) (J)+tbx(k) (3.59a)
J
N
( (k)) %(o (k)(n) tby(k) (3.59Db)
S t
( (k)) JZ;(o (k)(n) + 0, (3.59¢)
plxx s N 0\/
A (gx(k)) JZ_;(O (k)(n) )+ Mg (3.59d)
ply, N
A (tay(k)) Jz_;(o (k)(]))ov + my(k) (3.59)
N
AZZ(tHZ(k)) JZ;(O (k)(J))OV + mz(k) (3.59f)
with
Otf(LkIXD_Z(Ott(uk)(n)' Otf(\i:)(J)_Z(Ottzlk)(J)>. Jf(r)(n—z(f;t(vl)m) (3.590)
o fisn =2(oteyn )i o feden = Z(O(kxn)' s fn = 2ot ) (3.59h)

The equations of motion given in Eq. (3.59) can be rewritten in matrix form as [61,
62]

N
Mg, (tU(Lk)): le( (k)(J))Ov(J) + by (3.60)
=

where my,, ‘b, &, and ‘U, represent mass matrix, body force vector, PD
force density vector, and acceleration vector in the local coordinate system,
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respectively. These terms can be defined as

(p 0 0 O 0 0 ]
0 p 0 0 0 0 g, 0,5
tes t
00 p 0 0 0 Vo by )
Pl . Wi L
m(Lk): 000 A 0 0 ;tu(Lk): ‘G ;t (Lk): t (3.61a)
| /x(k) M, 1y
000 o 22 oo 0, Mg
A g o
pl z2(k) z(k) |
0 0 O 0 z
L A
tel teu tgv tew t £ 6, tgb) tg0, T
of :[o fiom ofom ofwm  ofim  ofwm o f(k)(j)] (3.61b)

3.3.2.3. Transformation of the equation of motion to the global coordinate system
As given in Eq. (3.60), the PD equations of motion for a beam are derived with
respect to the beam’s local coordinate system. Therefore, to investigate complex
beam structures and curved beams, the equations of motion in the local coordinate
system need to be transformed into the global coordinate system [62]. The global
coordinate system is fixed and it is often chosen as the Cartesian coordinate system
(x1,x5,x3) as shown in Fig. 3.37. The beam has six global degrees of freedom
denoted as (uq, u,, us, 64, 05, 65).

/’_\

Initial configuration at # =0 Deformed configuration at time ¢

Fig. 3.37. Beam configurations in the global coordinate system

As presented in section 5.2, each material point has three director vectors
(v, o, °V,) or ('V,, 'V, 'V,) measured in the local coordinate system.
These director vectors can be transformed to the global coordinate system by using
the following relations as
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0\/G  0y/G  0y/G oyt [o 0 0
[ Vr(k) Vs(k) \/t(k):lz H(k)[ Vr(k) Vs(k) \/t(k):l (362&)
G G G 0
I:tvr(k) tVs(k) tVt(k)] = HIk) tVr(k) tVs(k) t t(k):l (3.62b)
with
.
"Hu =[ Vit Vit “Vio | (3.62¢)

where OH(k) represents the coordinate transformation matrix for material point k
[61, 62], °HJ, is transpose matrix of °Hy. The terms ( *Vio, "Vsay “Vegr)
and ( Ve, Vs, Vi) are the director vectors in local coordinates at ¢ = 0
and at time ¢, respectively. Meanwhile, (°Vis, Vi, °Vi) and
(Vi  Viwy Vi) are the director vectors in the global coordinates at t =
0 and at time t, respectively. As given in Eqg. (3.29), the director vectors in local
coordinates at t = 0 are presented as

V=0 0 0 (3.63a)
V,=[0 1 0T (3.63D)
Vi =[0 0 1T (3.63¢)

The global director vectors at time t given in Eq. (3.62b) can be estimated based on
the director vectors in the previous configuration as [70]

ty /G t-Aty /G G t-Atx7G
Vs(k) = Vs(k) +Q(k) X Vi (3.64a)
ty /G t-Aty /G G t-At§7G
Viio = Vaio t 850 Vigg (3.64b)
and
t\_/G
_ s(k)
Vo = (3.64c)
| Vs(k)
t\_/G
G _ (k)
Ve, = e (3.64d)

% Vi (3.64e)

where Vg, and 'V, have the same directions with director vectors, V&, and

V. However, 'Vg,) and 'V, may not be unit vectors. Therefore, to ensure

the director vectors are unit vectors, the approximations in Eq. (3.64c-d) are used.
The term H?k) represents the vector of the global incremental rotations from time

t — At to time t. This vector can be defined as

T

G tnG t-At 0 G
LU Q(k):[gl(k) Oy QB(k):I (3.65)
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As given in Eq. (3.62c), OH(k) is the coordinate transformation matrix for material

point k. Therefore, for the interaction between material points k and j, the
coordinate transformation matrix can be approximated as [61, 62]

T

"Hoo =[ Vitom Vet Vit (3.66a)
with
0 G 0 G
0\/C _( Vit * Vr(j)) (3.66b)
rO) —Tovie 006 .
‘( Vit t Vr(j))‘
0y /G 0y /G
oS ( Vi + Vs(j)) (3.660)
sk — .
‘(Ovsem + OVscén)‘
0
0y /G ( Vtc<5k>+ovtc<;n)
Vido = Tsce 000 (3.66d)
‘( Vigo + Vtm)‘

Therefore, the transformation matrix for six degrees of freedom of the beam,
°T 4o)j), can be defined as

0
O—I—(k)(i)ZI: Placn 0 ° } (3.67)
0 Hoa

By using the transformation matrix OT(k)(j), the relationship between the local and
global degrees of freedom can be presented as [61, 62]

gy =Ty Uiy (3.68a)
gy = Ty U (3.68b)
with

gy Z[tu(k) Yoo Way Gao Oy z(k)]T (3.68¢)
tu?k) :I:tul(k) tu2(k) tu3(k) t6’1(k) tez(k) ' 3(k)]T (3-68d)
‘ug, :[tum Vi W Gy Gy z(j)]T (3.68e)
‘ug :[tul(n Upgy Uy Oy Oy 3(1)]T (3.68f)

where tufk) and tufj) represent vectors of DOFs in local coordinates for material
points k and j, respectively. Meanwhile, ‘ug,, and ‘uf;, represent vectors of
DOFs in global coordinates for material points k and j, respectively.

By multiplying both sides of Eq. (3.60) with the matrix OT(Tk)U), the nonlinear
equation of motion for a beam can be transformed to the global coordinate system
as [61, 62]
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Tk)(nm(k)( (K)(i) u(k)) Z T(k)(n( (k)(J))OV(J)+ T P (3.693)

=1

or
G t:-G 4 t1.G
MG U(k)):zll( fon) Vo + 06 (3.69b)
j=
with
_ 09T L O
= ToomMa Tao) (3.69¢)

tgG 0T tel
Of(k)(j) - T(k)(J') (Of(k)(i))

t t t ted tgo teg, " (3.69d)
— Uy U; U3 2 3

- |:0 f(k)(i) 0 f(k)(i) 0 f(k)(J') 0 f(k)(i) 0 f(k)(i) 0 f(k)(J)j|

t|G 0T b t t t t t T

b(k) -r(k)(J) ( (k) ) I: bl(k) b2(k) b3(k) rnj_(k) m2(k) m3(k)] (3696)

. . te:G
where °T7,,;y is the transpose matrix of °T ) ;). The terms m,, ‘Usy, “ffiycy
and tb (k) represent mass matrix, acceleration vector, PD force density vector and
the applied body force vector in the global coordinate system, respectively.

Note that term Oﬁ(k)(j) given in Eq. (3.50h) can be calculated in global coordinates
as

5 = :Vrzk)(” (:xij)—:xzk)) _ —1if "V, Ti(oxe_ —°x‘(3k)) 700
‘ Vit ( Xy~ X(k))‘ 1if "Vom TH(°xG = X5 )
with
X&) =[ gy gy oo | (3.70b)
X =" e Oxs(n]T (3.70c)

where Ox(Gk) and 0"6‘) represent the global coordinates in the initial configuration
of material points k and j, respectively. Note that, the parameter OB(R)(D in Eq.
(3.70a) equal to -1 if two vectors  °V§ ;) and ( °x(;) — °x{,) have opposite
directions. On the other hand, °B(;, equal to 1 if two vectors Ve and
(°xf;y — °xf,)) have the same directions.

3.3.2.4. Damage prediction
By introducing the damage parameter ¥ given in Eq. (1.3), the PD equations

of motion in local and global coordinate systems given in Eq. (3.60) and Eg.
(3.69D), respectively, can be rewritten as
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L o(tel ) _ tel tpL
M ( U ) = Z;'/’wxj) (0f<k)(1)) Vi + b (3.71a)
J:

N
G tesG tgG t|WG
m(k)( u(k)):Z;‘r”(k)(j)(of(k)u))ov(j) + by, (3.71b)
J:

As presented in the previous section, the deformations of the beam include axial,
shear, bending, and torsional components. Therefore, to decide the state of
interaction which is represented by the damage parameter ), given in Eq. (1.3),
the damage criterion based on the critical energy release rate is used. Similar to Eq.
(1.8), the energy-based damage criterion for the nonlinear analysis of a beam can
be described as [25, 26, 61, 62, 64, 102]

080y < 9. — interaction exists: v, ;, =1 51
080 jy 2 9. — interaction is broken: v, =0 -

where g, represents the critical energy release rate for one interaction. As presented
in Eq. (1.11) in Chapter 1, for beam structure g. = G./12, in which G, represents
the critical energy release rate for the material.

Similar to Eqg. (1.9) in Chapter 1, the energy release rate for interaction between
material points k and j, gq(k)(j) , can be calculated as

_ 1
0Tt :g(ot oy * o g(i)(k)) (3.73a)
with
1
Otg(k)(j) :ﬁ(éq)(k)(j))((\/(k))(ov(j)) (3.73b)
1
gg(J)(k) :ﬁ(éq)(j)(k))(ov(k))(ov(j)) (3.73¢c)

where 5<D(k)(j) and 5<D(j)(k) represent micropotentials at time t of the interaction
between material points k and j. For the bond-based PD model, td)(k) U.)and 5(13(].) W0

are equal to each other. By applying the same idea introduced by Madenci and
Oterkus [25], [26], the micropotentials 3d>(k) 0 and @ for one interaction can

be calculated for the bond-based PD model as

(M)
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Oq)(i)(k) - Oq)(k)(J)
_t”m‘t“(k) ey =ik |
teu tev
o faocpd (“(J) ‘“(k))+ I o Fod (Vm ‘V<k))
0 0
1 W) =g Ouiy = O (3.74)
_ - tew t g 6, _
=5 + of(k)(nd( () W(k))+ I of(k)(nd(gx(j) Qx(k))
0 0
By()="Oyr) Guiy =" Orir)
tg6,
+ I of(k)(])d(6y<j)“9y(k))+ I of(k)(nd(euj)_@z(k))
0 0

where §fio iy oty 6f o) tf(k)(]), tf(k)(]), Of(k)(]) are given in Eq. (3.59g-h).
3.3.3. Numerical results

In this section, large deformations of beam structures are predicted. For verification
purposes, the results predicted by the proposed nonlinear PD model are compared
with nonlinear FEA results in Section 3.3.3.1. After verifying the accuracy of the
nonlinear PD model, damages on a beam subjected to bending and torsional loading
conditions are predicted in Section 3.3.3.2.

In nonlinear PD analyses, the horizon size of § = 3.015Ax, in which Ax represents
the mesh size, is used. The adaptive dynamic relaxation (ADR) method [77] is used
for these static loading conditions [76] as described in Appendix A2 The nonlinear
FEA is conducted by using the BEAM188 element in ANSYS.

3.3.3.1. A cantilever beam subjected to static loading

In this section, a cantilever beam with a length of L = 1 m and a square cross-
section of b = 2 = 0.1 m is investigated as shown in Fig. 3.38. The beam has an
elastic modulus of E = 2 x 10** N/m? and shear modulus of G = 1 x 10! N/m?.
The shear correction factor for a square cross-section is kg = 5/6 [70].

b
— = +o$o—o+o—o+o—‘—~
! U = u= uq—O
0,=0,=65=0

(a) (b)
Fig. 3.38. Cantilever beam: (a) geometry, (b) PD model discretization and

boundary conditions

The beam is fixed on the left end and it is subjected to a transverse force F, =
—8 % 10° N in x, direction at the right end as shown in Fig. 3.38(a). In the PD
model, the beam is discretized with a mesh size of Ax = L/100. In the FEA, the
same mesh size is used.

To apply boundary conditions in PD, three fictitious material points, shown in black
in Fig. 3.38(b), are added on the left end of the beam. All degrees of freedom of
these fictitious material points and the material point located at x; = 0 are set equal
to zero.
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Fig. 3.39 shows a comparison between nonlinear PD results and FEA results. As
shown in Fig. 3.39(a), the deformed configurations of the beam captured by using
the nonlinear PD model and nonlinear FEA match very well, meanwhile the linear
FEA gives a completely different deformed configuration. As can be seen from Fig.
3.39(b), the linear FEA results show that the beam does not have axial deformations
when it is subjected to transverse force. On the contrary, both nonlinear PD and
nonlinear FEA results show that the beam has nonzero axial deformations due to
the coupling of the axial, shear, and bending deformations. As shown in Fig. 3.39(c-
d), the nonlinear PD and nonlinear FEA solutions have a very good agreement on
u, and 65, meanwhile, the linear FEA gives much larger values.

0
L5+ L-FEA
—e—NL-PD -0.05
- »-NL-FEA =
£ o1
P Z w015
R
o g 0.2
<
05 5 025
a2 03 L-FEA
——NL-PD
1035 - »-NL-FEA
0
0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x, (m) %, (m)
(a) (b)
L5+ L-FEA 1 L-FEA
—8—NL-PD 2 —e—NL-PD
= - »-NL-FEA - »-NL-FEA
=2 =
o] 8
Z 1 2 15-
5 <"
g g
2 05 2
Z
0 —e—p=> ‘ : ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X, (m) X, (m)
(c) (d)

Fig. 3.39. The deformation of the beam subjected to a transverse end force F, =
—8 x 10°N (a) deformed configurations, (b) displacements u,, (c) displacement
u,, (d) rotation 65 (L represents linear; NL represents nonlinear)

Table 3.5 shows the information in terms of computational time in nonlinear PD
and nonlinear FEA simulations for different mesh sizes. As mentioned in Section
3.3.3, the ADR method and the explicit time integration scheme are used for the
nonlinear PD simulations. The PD codes are written using MATLAB 2018b. On
the other hand, nonlinear FEA simulations are conducted by using ANSY'S with the
implicit solver.

As can be observed from Table 3.5, the number of iterations required to obtain
converged solutions, N, in the nonlinear PD simulations are much higher than those
in the nonlinear FEA. In PD, the simulation with a finer mesh requires more
iterations to obtain the converged solution. Specifically, the nonlinear PD beam
model with 50 material points requires 4000 iterations to obtain the converged
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results. Meanwhile, the nonlinear PD beam model with 200 material points requires
15000 iterations to obtain the converged results. By contrast, the FEA simulations
converged after 100 iterations for all mesh sizes since the implicit solver is used.
As a result, the running time for nonlinear PD simulations is much higher than those
of nonlinear FEA.

However, it is also observed that the time per iteration in nonlinear PD simulation
is less than those in nonlinear FEA. The reason is that the nonlinear PD uses the
explicit integration scheme meanwhile the nonlinear FEA uses the implicit solver
which requires the solutions for large linear and nonlinear stiffness matrices.

Table 3.5. Computational time in NL-PD and NL-FEA models

Numper of material 50 100 150 200
points (nodes)
Time per Time per Time per Time per
N Time: t| iteration: N Time: t | iteration: N Time: t | iteration: N Time: t| iteration:
O\ B N, e | N )| N
() ©) O] (s)
NL PD lici
. explicit 4000(17.48| 0.0044 (8000| 88.9 | 0.0111 |12000( 145.7 | 0.0121 |15000( 239 | 0.0159
using ADR method
NL FEAImplcit | 40 | 701 | 0.0701 | 100 | 7.06 | 0.0706 | 100 | 7.88 | 0.0788 | 100 | 812 | 0.0812
using ANSYS
N;: number of iterations to obtain converged solution.

To further verify the nonlinear PD model for straight beams, a parametric study for
the beam subjected to various transverse forces, F, = —n X 10° N with n =
2,4,...,18,20, is investigated as shown in
Fig. 3.40. As can be observed from
Fig. 3.40(a), the deformed configurations of the beam captured by the nonlinear PD
model match very well with those captured by nonlinear FEA.
Fig. 3.40(b) shows the variations of nonzero degrees of freedom, u,, u, and 65, on
the right tip of the beam. As can be seen from the figure, the nonlinear PD and
nonlinear FEA results agree very well which shows the accuracy of the nonlinear
PD model for straight beams.

1

——NL-PD

0.9+ ’
n=20-y 1815 - - -NL-FEA 6

0.8+

—=—u, LFEA /
—.—uI—NL—[‘D
5 -m-u-NLFEA / |
—@—u.-LFEA yd
4} —@—u,NLPD S
- @-u,-NL-FEA /
' 3| p—0,-L-FEA
—p— 0 NL-PD e
2| -p-0NLFEA

up,u, (m) and 0, (rad)

1
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Fig. 3.40. Deformations of the beam subjected to a transverse force F, =

—n X 10® N with n = 2 + 20 (a) deformed configurations, (b) displacements and
rotation of the right end (L represents linear; NL represents nonlinear)
To further verify the PD model, another parametric study for the beam subjected to
various bending moments M, = n X 2nEl,,/L withn =1,3/4,1/2,1/3,1/4,1/
5,1/10,1/20 on the right end is investigated as shown in Fig. 3.41. As can be
observed from the figure, the deformed configurations of the beam captured by the
nonlinear PD model agree very well with the nonlinear FEA results studied by Pai
and Palazotto [103]. Therefore, the accuracy of the nonlinear PD for the straight
beams is verified.
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Fig. 3.41. Deformed configurations of the cantilever beam subjected to bending
moment M, = n X 2nEl,,/L

3.3.3.2. A half-circular beam subjected to tangential end load

In this section, a half-circular beam subjected to tangential end loads is investigated
as shown in Fig. 3.42. The beam has a radius of R = 0.127 m and a rectangular
cross-section with b = 6.35 x 103 mand 4 = b/3 [103]. The beam has an elastic
modulus of E = 6.895 x 101° N/m? and shear modulus of G = 2.6518 x
101° N/m2. For the rectangular cross-section, the shear correction factor is chosen
ask, =5/6[70].

The beam is fixed at (x; = 0,x, = 0,x3 = 0) and subjected to a tangential force
F, = nEl,,/R? withn =1,0.8,0.6,0.5,0.4,0.3,0.2,0.1 in x, direction at (x; =
0,x, = 0,x3 = —2R). In the PD model, the beam is discretized with a mesh size
of Ax = wR/300. In FEA, the same mesh size is used. To apply the boundary
conditions in PD, three fictitious material points are added on the fixed end, and all
DOFs of these points, as well as DOFs of the material point located at (x; = 0, x, =
0, x5 = 0) are set equal to zero.
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(b)
Fig. 3.42. A half-circular beam subjected to tangential load: (a) geometry; (b) PD

model discretization and boundary conditions

Fig. 3.43 shows the comparison between the nonlinear PD and nonlinear FEA
results. Fig. 3.43(a) shows the deformed configurations for the beam in all loading
conditions. Fig. 3.43(b) shows the deflection versus n curve of the right tip. It can
be observed from the figures that the nonlinear PD and nonlinear FEA results have
a very good agreement and both results agree very well with those captured by Pai
and Palazotto [103].
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Fig. 3.43. The deformations of a half-circular beam subjected to end force F; =
nEl,,/R? (a) the deformed configurations, (b) the deflection versus n curve of the
right tip (NL represents nonlinear)

3.3.3.3. Large displacements in the 3D analysis of a 45-degree curved beam

In this section, a 45-degree curved beam subjected to end load is investigated as
shown in Fig. 3.44. The beam has a radius of R = 2.54 m and a square cross-section
with b = h = 0.0254 m. The beam has the elastic modulus of E = 6.895 X
101 N/m? and shear modulus of G = 3.4474 x 10'° N/m?. The beam is
investigated in two loading conditions with F; = 1334.4665N and F; =
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2668.933 N [104]. For the square cross-section, the shear correction factor is
chosen as k, =5/6 [70], and the torsional constant can be chosen as k; =
0.1406 x b* [74]

In the PD model, the beam is discretized into 300 material points. Similar to
previous analyses, three fictitious material points are added on the fixed end as
shown in Fig. 3.44(b). All degrees of freedom of these fictitious points, as well as
the material point located at (x; = 0,x, = 0,x3 = 0) are set equal to zero.

X3

(a) (b)
Fig. 3.44. A 45-degree curved beam (a) geometry; (b) PD discretized model

Fig. 3.45 shows the deformed configurations of the beam. It can be observed from
the figure that nonlinear PD and nonlinear FEA results have good agreement in both
loading conditions. Table 3.6 shows the locations of the free end of the beam in two
loading conditions. As can be seen from Table 3.6, the nonlinear PD results agree
well with both nonlinear FEA results by using ANSY'S and results studied by Bathe
and Bolourchi [104]. Therefore, the accuracy of the nonlinear PD model is verified.

Table 3.6. Positions of the right tip with different applied force values
Right tip location (x4, x,, x3) in meters

Applied force Nonlinear PD Nonlinear ANSYS | Bathe and Bolourchi [104]
Fy(N) (5.120 elements) (5.120 elements) (8 elements)

1334.467 (0.565, 1.505, 1.008) | (0.563, 1.489, 1.025) (0.5715, 1.504, 1.003)

2668.933 (0.388, 1.212, 1.355) | (0.397, 1.193, 1.360) (0.404, 1.199, 1.356)
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Fig. 3.45. Deformed configurations of the 45-degree curved beam

3.3.3.4. Damage prediction for a spaghetti

After verifying the accuracy of the proposed nonlinear PD model, in this section,
damages on a dry spaghetti subjected to bending and torsion are predicted. The
spaghetti is represented by a straight beam with a length of L = 0.24 m and it has
a solid circular cross-section with an average radius of » = 0.00085 m as shown in
Fig. 3.46 [105]. In the PD model, the beam is discretized with a mesh size of Ax =
L/6000. To represent the imperfection of the spaghetti microstructure [106], the
radius of the beam’s cross-section is assumed to vary randomly in a range of
8.4832 x 107* < r(x;) < 8.5169 x 10~* m as shown in Fig. 3.46(b).

The material has a mass density of p = 1500 kg/m3, the elastic modulus of E =
3.8 x 10° N/m? [105], the fracture toughness of K,. = 0.478 MPa+/m [106]. For
simplification, the critical energy release rate of the material is calculated as G, =
G = K2/E = 60.1274]/m?2. The spaghetti is investigated in two loading
conditions: pure bending (case 1) and a combination of torsion and bending (case
2) [105].
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Fig. 3.46. A dry spaghetti (a): geometry, (b): randomly variation of cross-section
radius along the beam length

Case 1: Spaghetti subjected to pure bending

In this case, the beam is subjected to bending moments at two ends as shown in Fig.
3.47. The boundary and loading conditions applied for the beam include two stages:
(1) Stage 1: the beam is subjected to incremental bending moments while fixing

the node at the middle of the beam as shown in Fig. 3.47(a-b). The bending
moments are kept increasing until the first damage occur as shown in Fig.

3.47(c).

(2) Stage 2: after the first damage occurs at the end of stage 1, the bending
moments are released. Then, two ends of the beam are kept at the deformed

configuration as shown in Fig. 3.48 until the final damages occur.

In stage 1, the beam is subjected to incremental bending moments per unit volume

at two ends as

t (“A‘M +AM)
My = oy
)
t (‘-MM +AM)
Myny = SV
(N)
with
_ 2 _ 2

0\/(1) = m’(l)AX, O\/(N) = m’(N)AX

(3.75a)

(3.75h)

(3.75¢)
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‘M =0, AM =10" Nm (3.75d)

where °V(1) and °V(N) represent volumes of material points located at the left end

and right end of the beam, respectively. The term “~4M represents the applied
bending moment at the previous load step, AM represents the incremental value of
the bending moment. In Eq. (3.75¢), 14y and r(yy represent the beam’s radius of
material points located at the left end and right end, respectively.

Besides, all material points along the beam are also subjected to the gravitational
body forces as

tbz(k) =-pg (3.76)

where g = 9.81 N/m? represents the gravitational acceleration.
The boundary conditions for the beam in this stage can be represented as

u,(0,0,0) = u,(L,0,0) = 0 (3.77a)
u5(0,0,0) = us(L,0,0) = 0 (3.77b)
u,(L/2,0,0) = us(L/2,0,0) = 0 (3.77¢)

In stage 2, when the first damage occurs, the gravitational forces given in Eq. (3.76)
are maintained, meanwhile, the bending moments at the two ends given in Eq.
(3.75) are released as

"My = My, =0 (3.78)

To apply boundary conditions in the second stage, three material points on each end
of the beam are maintained their configurations as the first damage occurs as shown
in Fig. 3.48(b). The boundary conditions for the beam in stage 2 is represented as

(‘u, U, 'u5,'0,,16,,'0,) = (Puy, Uy, Puy, 6, %6, °0,)  at X, <3AX (3.79a)
(‘u,'u, 0,16, 10,60, ) = (Puy, ©u,, Pug, ©6,,96,,%60,) atx, =L—-3Ax  (3.79b)

where t, is the moment that the first damage occurs and
ouy, fouy, Pug, 06,, 08, ©°0; )represent displacements and rotations at time ¢,
when the first damage occurs.
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Fig. 3.47. Boundary and loading conditions for a spaghetti subjected to pure

bending in stage 1 (a): geometry, (b): PD discretized model, (c): deformed
configuration at the end of stage 1 when the first damage occurs

damage
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These points are kept at the
X3 deformed configuration
when the first damage occur

(a) (b)

Fig. 3.48. Boundary and loading conditions for spaghetti in stage 2 (a): deformed

configuration when the first damage occur and the bending moments are released,
(b): PD discretized model

The beam is assumed to be in quasi-static loading conditions and the PD solution is
obtained by using the ADR method [76, 77]. Fig. 3.49 shows the damage evolution
on the beam in the pure bending condition after stage 1. As shown in Fig. 3.49(a),
after 178 x 10° time steps, the first damage occurs at the middle section of the
beam. After 178.26 x 10° time steps, in stage 2 the beam has two more damages
located symmetrically with respect to the middle section of the beam as shown in
Fig. 3.49(b). After 178.62 x 10> time steps, the beam is finally broken into 6
segments with 5 locations of damage located symmetrically with respect to the
middle section of the beam as shown in Fig. 3.49(c). As it can be observed from the
results, the damage evolution on the beam predicted by the nonlinear PD model has
good agreement with the experimental results in [105].
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Fig. 3.49. Damage evolution on the dry spaghetti subjected to pure bending (a):
first damage occurrence at (a) 178 x 10° (b): 178.26 x 10>, (c): 178.62 x 10°
time steps

Case 2: spaghetti subjected to a combined loading: torsion and bending

In this case, the boundary and loading conditions applied for the beam include three
stages as follows.
(1) Stage 1: the beam is twisted by 6 = 100° (6,(0,0,0) = -6 */2,
0,(L,0,0) = 8 */2) as shown in Fig. 3.50.
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(2) Stage 2: In addition to torsional loading, the beam is subjected to incremental
bending moments at two ends as shown in Fig. 3.51. The loading conditions
in this stage are given in Eq. (3.75).

(3) Stage 3: when the first damage occurs, the bending moments are released.
The beam is fixed at two ends and the remaining parts of the beam can be
freely moved as shown in Fig. 3.52. In all stages, the beam is subjected to
the gravitational forces as given in Eg. (3.76).

X2

PgA
h________._L_.__.___. mumumuuiﬁ
' (@) (b)

Fig. 3.50. Spaghetti subjected to torsion in the stage 1 (a): geometry, (b): PD
discretized model
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Fig. 3.51. Spaghetti subjected to torsion and bending in stage 2 (a): PD discretized
model, (b): deformed configuration at the end of stage 2 when the first damage
occurs
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Fig. 3.52. Boundary and loading conditions for the spaghetti in stage 3 (a):

deformed configuration when the first damage occur and the bending moments
and torsional loading are released, (b): PD discretized model

Similarly, the beam is considered in quasi-static loading conditions and the PD
solution is obtained by using the ADR method. In stage 1 for the torsional loading,
the converged solution is obtained after N, = 2 x 10> time step. In the second
stage, the torsional angles, 6, of the material points located at two ends of the beam
are kept constant, meanwhile, the incremental bending moments are applied on two
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ends of the beam as given in Eq. (3.75). Fig. 3.53 shows the damage evolution on
the beam in the combined loading conditions. Similar to the previous loading
condition in Section 5.5.2.1, the first damage occurs in the middle section of the
beam at N, + 175.6 x 10° load step as shown in Fig. 3.53(a). Later, two more new
damage locations occur symmetrically with respect to the middle section of the
beam as shown in Fig. 3.53(b). As can be observed from the figure, in this loading
condition, the beam is only damaged into 4 pieces. This prediction also agrees with
the experimental results in [105].

0.5

0.08 + ‘/ﬁrst damage 0.4286
—_ I 0.3571
g 0.06 0.2857
S 0.04 + 0.2143
I 0.1429
0.02 0.0714
0 ' ‘ L ' 0
0 0.05 0.1 0.15 0.2
X, (m)
()
0.5
0.08 1 0.4286
£ 0.06 0.2857
S 0.04 + 0.2143
I 0.1429
0.02 0.0714
0 I ‘ L Al 0
0 0.05 0.1 0.15 0.2
X, (m)
(b)

Fig. 3.53. Damage evolution on the dry spaghetti subjected to torsion and bending
(a): first damage occurrence at (a) N, + 175.6 x 10° time steps (when the first
damage occurs), (b): N, + 177.08 x 10> time steps. (N, = 2 x 10> time steps for
obtaining a converged solution for torsional loading in stage 1)
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3.4. Peridynamics for nonlinear analysis of plates

In this section, a novel ordinary state-based PD model for geometrically nonlinear
analysis of plates based on Mindlin—Reissner theory is developed. The nonlinear
PD formulations and equations of motion are obtained based on the principle of
virtual displacements by using the Total Lagrange formulation. The energy-based
criterion for damage prediction is used. To verify the accuracy of the proposed
nonlinear PD model, large deformations of a plate subjected to bending and a plate
subjected to vertical shear force are investigated. For verification purposes, the
predicted results by using the proposed nonlinear PD model are compared with the
nonlinear FEA results. Furthermore, damages on a plate subjected to out-of-plane
stretching and tearing, a plate subjected to tearing, and a plated subjected to
torsional loading are also predicted by using the nonlinear PD model.

3.4.1. Nonlinear kinematics of plates in Classical Continuum Mechanics

In this section, the nonlinear kinematics of a plate are presented. According to
Mindlin [78], Reissner [79], each material point on the mid-plane of the plate has
five degrees of freedom, including three displacements (u, v, w) and two rotations
(6, 6,) as shown in Fig. 3.54 and Fig. 3.55.

3.4.1.1. Displacement field

As shown in Fig. 3.54, material point P is located at ( °x, %y, °z) and material
point Q is located at ( °x, °y, 0) which is at the mid-plane of the undeformed plate.

The degree of freedoms at time ¢ and time t + Atfor material points P and Q are
represented as

(tu\, t\f), tw)’(tJrAtu\, t+At\7’ t+Atw) for P (3.808.)
(tu, tv’ tW’ tex' tey), (t+Atu’ t+AtV’ t+AtW’ t+At0X' t+At9y) fOI‘Q (3.80b)

According to Barut [107], the displacements of material point P located at
(°x, %y, %2) attime t and t + At can be represented as [107]

‘="u+"zsin('6,) (3.81a)
Y ="v—"zsin('6,) (3.81b)
W= "w (3.81c)
and

G = M Ozsin (N, ) (3.81d)
t+At\7 _ t+AtV _ Ozsin(tmtex) (3.818)
t+Atw: t+AtW (3.81f)
with

~h/2<°%<h/2 (3.819)
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where £ represents the thickness of the plate.
Initial configuration ( £ = 0)
P, Oy, 02)

Q(‘x, %, 0)

Displacements of P: (', v, ‘W)
Displacements and rotations of Q

(u, v, 'w, '0x,'0 )

Deformed configuration at time 7+At
Displacements of P: (t4ly, ALy i+Any)

Displacements and rotations of Q:

(z+Atu) t+sz’ i‘+Atw, t+At9X ,Hm@y)

Fig. 3.54. Displacement vectors of a material point located on mid-plane and a
material point located at any location in the initial and deformed configurations of
a plate

On the other hand, the incremental displacements from time ¢t to time t + At of
material point P located at ( °x, %y, °z) can be calculated by using Eq. (C2) in
(3.823)

appendix C as
(3.82b)

Q — t+At0 _ tu\
Y — t+At\7_ t\fi
W=""- W (3.82¢)
By using Eq. (3.81), the incremental displacements in Eq. (3.82) can be represented
as
a=(""u-"u)+"°z [sin (“*0,)-sin('e, )J (3.83a)
0 =("Mv-v)-"2 [sin (0, )—sin('6, )J (3.83h)
W=""w-"w (3.83¢)
which can be rewritten as
(3.84a)
(3.84b)
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(3.84c)

W=w

with

u=""u-"u (3.84d)
v="Yy-ly (3.84¢)
w=""w-"w (3.84f)

where u, v, w represent the incremental displacements from time ¢t to time t + At
of point Q located at ( °x, °y, 0) at the mid-plane of the plate.

Initial configuration ( ¢ = 0)

deformed configuration at time ¢

deformation

Average
deformation k)

Fig. 3.55. Five degrees of freedom of material points located on the mid-plane in
the initial and deformed configurations of a plate

By using the Egs. (3.84a-c), the incremental displacements at any point P can be
rewritten in terms of incremental displacements of point Q at the mid-plane by using

trigonometric relations as

G =u+2sin [%j[cos(%’y )cos(g—zyj —sin('g, )sin [%H (3.85a)
=v—2°sin [%j{cos(‘ﬂx)cos[%j —sin('g, )sin [%ﬂ (3.85b)

(3.85¢)

1<

=

=W
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with
0,=""0-, (3.85d)

t+At t
0, = " 0,- 0, (3.85€)
where 6, and 6, represent the incremental rotations from time ¢ to time t + At of

a material point located on the mid-plane of the plate (see Fig. 3.55).

Similar to the approximation in nonlinear FEA [70], the incremental rotations 6,
and g, can be assumed very small as

o [ (o4 o
sin (‘—y] ~=2, cos(‘—y] ~1, sin? [‘—VJ ~0 (3.86)
2 2 2 2

Therefore, the incremental displacements at any point P located at ( °x, %y, °z)
provided in Egs. (3.85a-c) can be simplified as

0=u+"20,cos('6,) (3.87a)
v =v-"20, cos('6,) (3.87b)
W=w (3.87¢)

3.4.1.2. Strain field

By using the displacements given in Eqg. (3.81), the Green-Lagrange strain at time
t given in Eq. (C4) in Appendix C2 for a material point located at ( °x, %y, °z) can
be represented as [107]

P
OtéXX = (;u,x + Z%J’-%[JU,XZ + Otv,xz + OtVVyXZJ
. . " . (3.88a)
oL {oz 8(56'2X9y){oz a(Sa"lxﬁy) . 25u,xJ+ . G(S;ZXQX)[OZ 0(5;::) _ ZJVXH
HP
06y = oV, — 2 a(::yex) +%[;u'y2 v, gw,? ]
. . " " (3.88h)
. [02 G(S;rgy@y){zéuyy o G(S;fgy@y)} . a(:fy@)[(’z 6(22y0x) ) 23”]]

156



. _1[1 . 6(sin‘9y) o a(sintex) [

ngy E Ou,y+ ZT+OV,X_ z 8°X +Ou,xotu,y+0tv,x0tv,y+(;vv,><otw,y]
L o(sing,)( ., o(sin'g)) (, , a(sin'g,)), o(sin'6,) ]
) 2= | oy + 2%y H oUg+ g z 2y (3.88c)
+=
21 p(sin'g, a(sin'g, t a(sin'g,))  o(sin'g,
) ) (el
Otéxz—% wx+sin(‘¢9y)+guyxsin(tey)—Otvyxsin(tex)}
2 (3.88d)
= % OtHyvxsin(t&y)+OZO‘QX]Xsin(tHX)]
oéy, —%: wy—sin(tex)+(}uvysin(tey)—O‘vvysin(tHX)}
] (3.88¢)
5[0 2,0, sin('6,)+° oexysm(‘exﬂ
&, 20 (3.88f)
with
06, 0'6,
t(9 P J@Xy 0y y (3.880)
t 0'0,
o‘9y,x=a—' Oy = o y (3.88h)

Note that, the relation given in Eq. (3.88f) is applicable for small strain problems.
In the small strain conditions, the thickness of the plate is assumed as unchanged.
Therefore, the strain in the thickness direction of the plate is ignored.

By assuming the plate is moderately thin, the following terms in Eq. (3.88) can be
neglected as [107]

l_oza(sintgy)[Oza(sinley)+2tu +Dza(sintex)(oza(sintex)_zotv} o (3.8%)
2 ° *

0°x 0°x 0°x

%Oza(sinley)[zgu +0Za(sint@y) +°za(SinteX)L"za(Sintex)—th,y}_—>0 (3.89h)

0%y 0%y 0%

sm [ sm ) J{tu K a(sin‘ey)}za(sintey) 1
0™, x

L 0°
1 y
5 | . |0 @e%)
o(sin ex) 0Za(sm ‘0,) e _Oza(sm 0,) OZa(sm 0,)
Yy o’y o 3°x a%y
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%[Oz 00,,.sin('6,)+°2,6,,sin('6, )] —0 (3.89d)

%[Ozgey'y sin('0,)+°246, ,sin('6,) | >0 (3.8%)

Therefore, the Green-Lagrange strains in Eg. (3.88) can be simplified as [107]

X o(sin'd,) 1
080 = ol + °Z%+E($U,xz +oV,n+ ow,) (3.90a)
ta _ty _oza(Sinté’x)_’_l(tu 2ty 24 Yy z) (3.90b)
06y = oVy %y 5 Loy oV + oW,
. -
N —%{Juy + oV, + OZ{G(S;T;IY) - 8(3{;2)(@)}_ oUy oUy + oV, oV, + oW, oW, | (3.90c)
L8, = %[wa +sin('0, )+ qu, sin('6,) - ov,sin('6, )J (3.90d)
0éy =%[Otwy —sin('6,)+ qu,sin('6,)- v, sin(tHX)J (3.90¢)
0y 20 (3.90f)

On the other hand, by substituting the displacement fields given in Eq. (3.81) and
Eqg. (3.87) into incremental Green-Lagrange strain, OQU in Eq. (C9) in appendix C2
and by neglecting higher-order terms, the linear components of the incremental
Green-Lagrange strain, ,€ ij » can be represented as [107]

. 8(Qy Ccos ‘Hy)

A — t t t
02 = ol 0°x FTolxolxT oV oVt oW oWy (3.91q)
8(0 cos %9)
A — 0 =X X t t t
08y =0V, — 2 8°y ol yoUy+ oV yoVyt oW, oW, (3-91b)

(@, cos'o o(6, cos'o
. 1| U, +ov, +°z (‘yo y)—Oz (‘X 8 X)
0y =3 Y ' oy 2°x (3.91¢c)

t t t t t t
+Og,x Ou,y + Ou,x Og,y + OM,X Ov,y + Ov,x OM,y + Ow,x O\N,y + O\N,x Ov_v,y

A 1r
o€ = 5| oW, +8,cos('0, )] (3.91d)
T 6, cos('6 (3.91e)
e =2, g, co5(1,)] |
with
ou . _ou
o =5 oy = P (3.91f)
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o¥x =55 0¥y :aT_y (3.91g)
ow . _ow
oW = So oW,y “ 3y (3.91h)

3.4.1.3. Second Piola-Kirchhoff stress

By substituting the Green-Lagrange strain at time t given in Eq. (3.90) into Eq.
(C19) in Appendix C3, the second Piola-Kirchhoff stress components for a plate
with large displacements, large rotations, but small elastic strains can be calculated

as [107]

o(sin '@ d(sin'e
- Ju,x+v3vy+°z[ <Sa|:xy)—v (zgyx>]
0 xx_l_vg
+%[(JU,X2+JV’X2+gW’XZ)+v(3u’y2+gvyy2+0‘w'y2)}
Y vy 0 a(sin‘HX)_Va(sintey)
o e
1-v
+%[(3uy2+;v,y2+gwy2)+v(3ulxz+gvyxz+gw
e |l 2008) 2500
09y = T ' ’ o'y 0" X
(d+v) +lu lu + v v+ e, fw
0¥,x 0™y 0%x0%,y 0" x0"y
N k.E .
othz—2(15+V)[gwx+sm(‘9yﬂ
2 k.E
oS 21 v)["tw'y sin (6,
15, =0

3.4.1.4. The strain energy density

(3.92a)

(3.92b)

(3.92¢)

(3.92d)

(3.92¢)

(3.92f)

By substituting the second Piola-Kirchhoff stress components given in Eg. (3.92)
and the incremental strains given in Eq. (3.91) into Eqg. (C30) in Appendix C4, the

SED of a plate can be represented as [107]
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t 2 ty, 2 t 2 t
NL E t ¢ 1 (ou,x ToVx T oW, ol T oU yoUx
W = 2 Ou,X +V0V'y +_ 2 2 2 t t
1_V 2 +V<(;UY + (}V + (;va ) +Oy,x Ov,x + Ov_v,x O\N,x

t 2 t 2 t 2 t
E . ) 1 (Ou,y ToVy +0W,y) oVt U, ol
+ V,o+vou, +—
142 |0 05X "o t2, ty, 2, ty 2 +v W o+ w w
+V OU +0V +0VV,X 0—,y0 Yy O_,yO VY
t t t t + Vv o+ t + t
E Ou,y + OV,x + Ou,x Ou,y Ou,y 0=,x Og,x Ou,y Ou,x Og,y

t t t t
+O!,x OV‘y + OV,x Oy,y + Ov_v,x OW,y + OW,x OV_V,y

2(L+V)| 44V, gV, + oW, oW,
K E (gwx +sin(‘0y))(ov_v'X +0, cos(‘ay))
2(1+v) +((§wy —sin(‘Hx))(OV_\(y -0, cos(‘@x))

[a(sin‘ey) 6(sin‘9x)]5(ﬁy005([9y))

% 0% 0°x

+£8(sin '0,) V&(sin ‘ay)}é(éx cos('0, ))

%y o°x 0%y

2(1+v a°y a°x %y 8°x

e )(02)2£8(sint6’y) a(sin‘ax)][a(QyCOS(‘Hy)) G(QXCOS(‘@))J (3.9

The strain energy per unit area, W%, can be obtained by integrating the SED given
in Eq. (3.93) through the thickness of the plate as [70, 108]

h/2

V\_/NL= WNLdOZ

—h/2
i to2 b, 2ty 2 t
t t 1 (Ou,x + OV,x + O\N,x ) og,x + og,x Ou,x
oUx FVoVy +§ t, 2, ty 2, ty, 2 t t
+V(Ou,y + Ov,y + O\N,y ) +0¥,x Ov,x + O\Lv,x O\N,x

112 t, 2, t, 2ty 2 t
T +l (Ou,y *oVy +0W,y) oV yt ol oy
0Ty oK) W24 v 2 w2 oV, oV, + oW aw
TVoUx T oV oW, oXyoVy ToRyoly

t t t t t t
Eh ou,y + oV,x + ou,x ou,yJ[og,y + Oy,x + Og,x Ou,y + Ou,x Og,y

t t t t
+OM,x OV,y + Ov,x Oy,y + Ow,x O\N,y + Ovv,x Ov_v,y

L4V +VioV, + oW oW,
K Eh _(wa+sin(‘0y))(o\ivvx+chos(‘6’y)) ]

s, s o, 050

[a(sin '0,) _Va(sin ‘HX)JG(Qy cos('0,))
Eh®

0°x 0% 0°x

’ 12(1-v%) J{a(sin '0,)  o(sin ‘Gy)}a(ﬁx cos(tex))

% % o°y

0%y 0°x

Eh® (ﬁ(sin‘ay) a(sintQX)J[a(gycos(‘ey)) 6(Qxcos(‘ex))J (3.94)

T2y o’y %

The strain energy per unit area given in Eq. (3.94) can be rewritten as
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K EN _(‘w +sin(* ))( w, +0, cos('0, )) |
2(1+v)| 4 ( w —sm( x))( -0 cos(te ))
{ (sin'9,) o(sin‘, )}{ (¢, cos('9,)) 6(Qxcos(‘ex))J

0% 0%y 0°x N 0%y

B '[a<sm‘ey> a@mta)}{a(eycos(tey)) a(excosvex))]'

12(1-v?) . 2% 5% 20y 3%
+_
2 ; t . t
+28(sn: '0,) 8(Qy cc;s( 0, ))+26(su1 ‘0,) G(QX CC:S( 0, ))
i 2%y o°x 2°x 2%y 1| (3.95a)
with
1
08 = ol + 2 (U + oV, + ow,?) (3.95b)
0fy = oYy +%(3U,y2 + oV, +oW,?) (3.95¢)
L9 = + u, + v, + ul+'v.2+'w
et 3 ) (3.950)

t t
o‘g =oU, Tt o!,y T ol xoUx T Og,y Ou,y

. . ) . (3.95¢)
+ Oy,x Ov,x + o!,y 0V,y + O\LV,x oW,x + Ov—v,y OW,y

The strain energy per unit area given in Eq. (3.95a) can also be decomposed as [61]

WL — Wisz + WAL 4 N (3.96a)
with
— Eh
WI[:\“_ - 1_V2 ((;'9)(0'9)
i (;Uyy"‘otvyx"'olu,xotu,y oﬂ,y"'o!,x"'og,x Otu,y+0tux09 y ]
Eh +oV oV + oW, oW [ +oV gV + gV, oV |+ W, g W+ W, (W (3.96b)
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o ke [ (oW sin('6,))(ow, +8, cos('g, ))

S

o 2(1+V) _+(0tW,y —sin(tH ))(OV—\/d -0, COS(tHX))

(3.96¢)

X

(a(sin'o,) 8(sin‘9X)J[8(chos(t9y)) a(gxcos(‘ax))J

%  a% 0% - o’y

W = Eh’® _{a(sin‘ey) a(sin‘ex)](a(gycos(tﬂy)) a(QXCOS(tQX))J (3.96d)

o a°x

o o°x

+28(sir:t¢9x)8(é’y Cc;s(tey))Jrza(sir;‘Hy)6(QX c?)s(‘ex))
oy 0% 0°X oy

where W, Wit and W,'" represent the strain energy per unit area for in-plane,

shear, and bending deformations, respectively.

According to Barut [107], the strain energy per unit area for bending deformation
given in Eq. (3.96d) can be further simplified as

(_Otey,x + otex,y)(_ogy’x * OQX’y)

3
W = 12(?1 Vz) v (Otey,y - Otexvx)(ogyvv B OQW) (3.972)
2 142460, (00,,)+250,,(,0,,)

0=x,y

which can be rewritten as

— 8 — te - tgxx Q - Qxx
W= — T (49,) (o) + = (s o e e ) (3.97b)
12<1_V ) 2 +209X,y(OQy,x)+206y,x(0Qx,y)
with
Otlgb = _Otey,x + Otex,y (3970)
0% ==00,t 00y, (3.97d)
where
09, 00,
OQx,x = aox ; OQx,y :a_oy (3976)
00 ol
00y = o0y, == (3.97f)

3.4.2. Nonlinear kinematics of plate in peridynamics

Similar to the equation of motion given in Eq. (3.1), the PD equation of motion for
nonlinear analysis of a plate can be described in the discrete form as
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N —
p(k)( (k)) Zl:( [ ot(j)(k))ov(J)thb(k) (3.98)
=

where p represents the mass density, ‘i represents the vector of accelerations at
time t. The term, “u represents the vector of displacements at time t. Meanwhile,
u represents the vector of incremental displacement from time t to time t + At. The

term IB(k) represents the vector of external forces and moments per unit area at time
t. The terms éf(k)(j) and éf(j)(k) represent the vectors of force densities at time ¢
in which éf(k)(j) is the force density that material point j exerts on material point k.

On the other hand, éf(j)(k) is the force density that material point k exerts on

material point j. Both of these force densities are measured with respect to the initial
configuration. For a plate with five degrees of freedom, these force densities can be
represented as

tgv tFw tF 6, t3 0 T
(k)(J) [t(k)(l) Ot(k)(i) Ot(k)(j) Ot(k)(j) Ot(k)y(i)] (3'993)

T
tyv trw t¥ 6, t36
(J)(k) [t(l)(k) Ot(J')(k) Ot(j)(k) Ot(i)(k) Ot(j)y(k)] (3'99b)

where 5T, oo ols okekiys oy represents force densities corresponding
to five degrees of freedom, u, v, w, 8,, 6, respectively.
Similar to the relation given in Eq. (1.2) in chapter 1, the relationships between the

PD force densities and the strain energy per unit area in nonlinear analysis of plates
can be represented as

1 a A7 NLPD
) = (3.100a)
OV(J) Y )
and
o _ 1 OWEHT 3.100b
Ot(J')(k) ov(k) agi(j) ( )
with
G =u, Vv, w, 6, 6, (3.100c)
G =uv,wb,0 (3.100d)

where | t jand g t « represent the force density component that corresponds to

the degree of freedom q; as given in Eq. (3.99). The parameter g; represents the
degree of freedom which can be u, v, w, 8, or 6,,. The parameter g; represents the

incremental value of g; which can be u, v, w, 8,, or 6,

In the following sections, first, nonlinear strain energy per unit area for a plate in
peridynamics is presented in Section 6.3.1. The PD constants are obtained by
comparing the nonlinear strain energies per unit area in PD with those in classical
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continuum mechanics. Later, the PD equations of motion for geometrically
nonlinear analysis of a plate are presented in Section 6.3.2.

3.4.2.1. Peridynamic strain energy per unit area
Similar to the classical formulation of the nonlinear strain energy per unit area given

in Eq. (3.96), the nonlinear strain energy per unit area in PD for a plate can be
decomposed as

n/ NLPD n/ NLPD A/ NLPD A/ NLPD

Weo ™ =Wory tWaio~ +Wago (3.101)
where W6, Wi » and Wy represent the nonlinear PD strain energies per
unit area for the in-plane, shear, and bending deformations, respectively.

The nonlinear PD strain energy per unit area for the in-plane deformations can be
represented as

N

W™ =28, (050 ) (0 )+ 2 p;(o Sucoci ) (0Simcon ) € Vo (3.1022)
with
N _:(tu(j)—tu(k))c03¢+(‘v(j)—tv(k))sin(p
0Sip(k)(J) 7 -
+1(t“(j) - tU(k))2 +(IV(1) ~ Vi )2 +(IW(J) - t""(k))z |
2 052
s :(9(1)_Q(k))COS(PJF(Yu)_¥<k))5i”¢+(t“(n_tu(k))(g(j)_g(k))
0=ip(k)(j) Oé‘ 052 (3.1020)
( (i) (k))(Y(n (k)) (W(j)_tW())(W(J) (k))
2 0g2
4
o —d-pzo poc) V. (3.102d)
4w —d.pZ( Snco) Vi (3.102¢)
= A ,h (3.102h)

In Eq. (3.102), k is a material point in the PD discretized model and j is a family
member of material point k. The parameter N represents the total number of family
members of material point k. The term (gsip(k)(j) in Eq. (3.102b) represents the

nonlinear bond stretch at time ¢. Meanwhile, ,S;,; given in Eq. (3.102c)

represents the incremental bond stretch from time t to time t + At. Both bond
stretches are measured with respect to the initial configuration. The term §9, in

Eq. (3.102d) represents the dilatation at time t. The classical formulation of this
dilatation is given in Eq. (3.95d). The term Oﬁ(k) in Eq. (3.102¢e) represents the
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incremental dilatation from time t to time t + At. The classical formulation of this
incremental dilatation is given in Eq. (3.95e).

In Eq. (3.102), the terms a;,, b;,, d;, represent the PD constants for in-plane
deformations. The terms ‘ug,, ‘v and ‘w, represent the displacements at
time ¢ of material point k. Meanwhile, w, v(xy and w, represent the incremental
displacements of material point k from time t to time t 4+ At. Similarly, tu(j),
tv(j) and tw(j) represent the displacements at time t of material point j.
Meanwhile, u;), v¢jy and w;y represent the incremental displacements of material
point j from time t to time t+ At. These displacements and incremental
displacements are shown in Fig. 3.55. The term OVU) represents the volume of
material point j in the undeformed configuration (at time t = 0), OAU-) represents

the area of material point j in the undeformed configuration. The term 05 represents

the distance between material points k and j in the undeformed configuration which
is defined as

6= \/(0X<i> B OX(k))Z (" - Oym)z (3.103)

In Eq. (3.102), ¢ represents the angle between the °x axis in the undeformed
configuration and the line connecting material points k and j. The terms sin ¢ and
cos ¢ in EqQ. (3.102) can be calculated as
0 0
i~ K.
¢

Yo~ Voo

"
The PD constants for the in-plane deformations, a;;,, b;,, d;; can be obtained by
comparing the strain energy per unit area for in-plane deformations in PD to those
in classical continuum mechanics as presented in Appendix F1. These PD constants
can be represented as

CosS@ = sing = (3.104)

d, = : > (3.105a)
ho
o —ENG-Y) (3.105h)
Poa(1-v?)
3E
b, = T (3.105¢)

where & represents the horizon size. The terms E and v represent the elastic
modulus and Poisson’s ratio of the material, 4 represents the thickness of the plate.

Based on the classical formulation given in Eq. (3.96c), the nonlinear PD strain
energy per unit area for the shear deformations given in Eq. (3.101) can be presented
as

_ 1 & 'w,—w Gy +' 0 [ Wy =Wy Oy + 0,
WP =2 S S T T T ) W= 2 200 T20) fogoy (3.106a)
2 = g 2 S 2
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with

Dpy =—(5in 0, ) )OS @ +(sIN ‘6, )sin (3.106b)
Oty =~y €050,y ) 0059 + 8, €OS (6, )sin 0 (3.106¢)
95, =—(sin '60,;) ) cosp+(sin ‘6, )sin (3.106d)
05 =0, cos(tey(j) )COS(p“L i) COS(tex(j) )sin @ (3.106¢)

where tex(k) and fey(k) represent the rotations of material point k at time t. The
terms @, (xy and @, represent the incremental rotations from time ¢ to time t + At
of material point k (see Fig. 3.56). Similarly, ‘6, and ‘6, represent the
rotations of material point j at time t. The terms 6, and 8,;, represent the
incremental rotations from time t to time t + At of material point j (see Fig. 3.56).
The parameter Cg;, represents the PD constant for shear deformations. As presented
in Appendix F2, Cy;, is determined by comparing the strain energy per unit area for
shear deformations in PD to those in CCM as
_ 3kE
C, = (1+V)7[53 (3.107)

(b)
Fig. 3.56. Rotations and incremental rotations of material points (a): rotations at
time ¢, (b): incremental rotations from time ¢ to time t + At

Based on the classical formulation given in Eg. (3.97b), the nonlinear PD strain
energy per unit area for the bending deformations given in Eq. (3.101) can be
presented as

— N
W™ =28, (%0 ) (0% ) + bezll(gsmk)m )(oSs000i) € Ve (3.108a)
J:
with
t . t
oo = dbzll 0Sooti) Vi (3.108b)
j=
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N
0o = b (o§b(k)<j))ov(j) (3.108c)

j=1

_(t yG) t‘9y(k))C°5¢+(t‘9x(j) - t‘9x(k))5in ®

0Sb00(1) = P (3.108d)

. —(Qy(,-) —Qy(k))COSg0+(QX(j) _Qx(k))Sim”

0=b(k)(J) ~ 0 (3.108e)

where s, () represents the bond stretch for bending deformations at time t.
Meanwhile, S;; represents the incremental bond stretch for bending

deformation from time ¢ to time t + At. The terms fex(,-) and fey(j) represent the
rotations at time ¢ of material point j. Meanwhile, 8,;, and 8,,;, represent the
incremental rotations from time t to time t + At of material point j. The term 9, )
and Oﬁb(k) given in Egs. (3.108b-c) corresponds to the term 59, and 3, in classical
continuum mechanics given in Egs. (3.97c-d).

In Eqg. (3.108), the terms a,, by, d, represent the PD constants for bending

deformations. As presented in Appendix F3, these PD constants can be represented
as

2
d =
SR, (3.109a)
_Er(v-1 (3.109h)
48(1-v?)
Eh?
- =N 3.109
% 4(1+v) 75 ( ©

3.4.2.2. Nonlinear peridynamic equations of motion for a plate

By substituting the strain energy per unit area components given in Eq. (3.102), Eq.
(3.106), and Eqg. (3.108) into Eq. (3.101), the strain energy per unit area for a
material point k in the plate is calculated. Next, by substituting the strain energy

per unit area given in Eq. (3.101) into Eg. (3.100a), the force density Ott_(f;(j) can be
obtained as

u _Zai di ‘u,—'u

oty = Opé % 0% +2bipgsip(k)(j)}(cos¢+MJ (3.110a)
Fv _zai d; . v, —'v

c:t(k)(j) = opf . ot‘g(k) +2b, Otsip(k)(j):|(5|n¢+%J (3.110b)
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2a d. ‘W —'w
tyw ip~ip t (J) (k)
Ot(k)(j) ( «f ‘9(k) + 2blp OSIP(k)(J) 05

t t
o Mo ” W O+
27| T o 2

[2a.d
obgb 0o 2, 0Ssy

9(1)]

sing

2

2a d
ggb t‘9b(k) 2b, S b(k)(j)

0,

tt_y

t_ex —
oty = 0g(t " : (r
LGS W~ Wy O + ' | 008 O0)
05 2

2

2

2 2

§=— OS¢
0 (k)(j) 0 t t t t t
LG Wy m W O + 'O COS( Hy(k))
%

(3.110¢)

(3.110d)

(3.110¢)

Similarly, by considering material point j and its family members within its horizon
size, the strain energy per unit area of material point j can be calculated using Egs.

(3.101-109). Therefore, the force d

ensity ,

material point j can be obtained using Eq. (3.100b) as

[2a d. ] 'u u
ty _ ip~ip t ) (k)
o = 0z 0%y + 2By 0Sipaociy (COS§”+TJ
[2a d. .. —ty
tyv _ ip™ip t t H (i) (k)
ol =~ é: l9(1) 2bip OSip(k)(j):| sin (P+TJ
o _ [ 280y W = W
ol = g 0%y * 2B oSy e
t t t t
Lo M~ Weo O * ')
e 2
2abdb ‘ . ]
o 0%h(iy + 2% 0Sug0(y
t¥ .
T sing
oY)k = t t t t
j LG EL WGy = Wy O + ') COS( ‘gxm)
2 0 2 2
2abd l

b t
0%haiy 2By 0Ssqi

2

ty oy
Oy _ cos
Ot(J)(k) 0 t t t t (1]
LCoC W)~ Wog O + ') cos('9,,,)
e

2 2

y that material point k exerts on

(3.111a)

(3.111h)

(3.111¢)

(3.111d)

(3.111e)
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Therefore, by substituting the force densities given in Egs. (3.110-3.111) into Eq.
(3.98), the nonlinear PD equations of motion for a plate can be rewritten as

t

Foad _
: U(])—iumjo\/ﬁ)#bx(k) (3,112&)

N . .
ph( 'ty )= 0"5 2 (09 + 0%y )+ 40, 0 ,p(k)m}[coer

=1

N [ 2a,d, v,
(V) = Zl P " (050 + 0% )+ 4By 6 up(kxn}[s'”ﬁoJf—é] Vi + by (3.112D)
=1L
t t T
[23. dlp(t'g T )+4b|p0 » )] W(no_ Wi
N % < N L
ph( <k>)=Z f t AL th (i + B (3.112c)
=1 Wi = Wy G+ )
+C, r - 5
2a.d
ib : (Ot'gbm + 0%, )+4bb 0Sh)()
p—hg‘é —i ° sinpV
12 4 e e[ Wiy = 'Wey Gy + 'O | €08 Gy +C08 G Y (3.112d)
2 0z 2 2
+‘rﬁx(k)
2a.d
) ) —obé:b( b T o ‘9b(1))+4bbotsb(k)(j>
J%LIEY
0,0 =— R A cosp®V,.
12 Y JZ:; e [ Wiy =Wy Gy + Gy 0080,y +€0S 6, Y (3.112e)
2 0 2 2
+ "My

where tbx(k), tby(k), tbz(k) represent external forces per unit area applied on

material point k at time ¢, trﬁx(k) and trﬁy(k) represent external moments per unit

area applied on material point k at time t. Note that, for small strain problems, the
thickness of the plate and volume of material points are assumed to be unchanged.
Therefore, the external loading at time t can be represented as

B ztoi(;(:; By =2%:; b, = IOZZ(:)) (3.113a)

My = I'QAA:“) P My, = tg/'pz“) (3.113b)
k) k)

with

Ay = % (3.113¢)

where OA(k) represents the area of material point k in the undeformed
configuration. The terms ‘F,(), ‘F,u and “F,, represent the external forces
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applied on material point k at time t. Meanwhile, ‘M M,y and My(k) represent the
external bending moments applied on material point k at time t.

3.4.3. Damage criteria

Similar to the equation of motion given in Eq. (3.17) in chapter 3, by introducing a
damage parameter, ), the PD equations of motion given in Eq. (3.112) can be

rewritten as [21]

I
(k)( u(k)) Z'/’(k)(no foiy Vo B (3.114a)
or
My (U ) = oF + By (3.114b)
with
_ph 0 0 0 0 | o
0 ph 0 0 O b, o T
0 0 ph 0 0 b, o focn
M h n S tgw
e I N B A ST o fioy | (3:1140)
12 m, o T
t_
O 0 O 0 p—hs LMy tf(k)(n
L 12 |
SF(k) Z‘/’(k)(,)o (k)(])ov () (3.1140)
tE oty t¥
ofoo = o Lo ~ o Lo (3.114e)
and
tf&) = 0% ~ ol
2a,d, ‘U, —'u (3.114f)
:{ : ( 0% + t‘9(1))““";)0 up(k)(n} cos g+ —2—
¢ &
t \ tFyv FV
0 f(k)(n = ol ~ ol
(3.1149)

2a. d. v, =y
ip i - (j) (k)
:{ Opé: p<0t3(k)+ 19(”)+4b,p0 Ip(k)“)i|($|ngp+_ JO68 J
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t t

W., — W
tyw t t (J) (k)
f(k) Ot(k) t( k) — [ ( '9 + 19(1))+4b|p0 Ip(k)(J)J 05

(3.114h)
W, —'w 119 +t(9
(
+CS J)O (k) _ (j)
& 2
o, 70, F 0
o fdn = olign ~ ok
2a.d
f(ot'gb(k) + 093y ) + 48, 6 Sugors | (3.114i)
- sing
+C50§ W) — W _te(k)+ Gy 105( 'Oy ) + 005 (0,1
2 oz 2 2
—__— 0,
o Fciy = otioc ~ o ki
2a,d, t
—bb + o9 ) +4b, S
0 ( b(k) J)) b 0 b(k)(j) (3.114))

cos ¢

L& “E( W) = W _té(k)+ O |008( ‘0,0 ) +c08( 'y ;)
2 °f 2 2

To decide the interaction state, which is represented by the damage parameter,
Yo givenin Eqg. (1.3), the energy-based damage criterion given in Eq. (1.8-1.11)
in chapter 1 is used. Similar to the formulations given in Eq. (2.90) in Chapter 2 for

: _ JIVED )
the linear PD shell model, the micropotentials 0P () and 0@y CaN be
calculated as [61, 64]

500y = 8000 + P00+ 800 T 20 + g, (3.115a)
t _ tp¥ t t t

50 = 620500 + 89000 + 69000 + 80000 + 690 (3.115b)

where th) represent the micropotentials

y
w00 00y $200y @ Oq)(k)u)
at time t corresponding to the force densities oLy, oluor)» ol o0k ek

respectively. Similarly, OCD ) OCD Y O(I) ) O(I) ) o) % represent the

Uk Uk Uk (K k)
micropotentials at time ¢ corresponding to the force densities o& . ol i+ ol

ok ol respectively. These micropotentials can be calculated as
1 ("ugjy="ug)
t u tyu
0P “h oty d Uy —Ugy) (3.116a)
0
("Vey="Ywy)
‘DY 1 d (v, — V) 3.116b
0Pt T, I oY ®) (3.116b)
0
("wijy="we)
Wy == (W~ W) 3116
(0 = o Ko d (W) — W (3.116¢)
0
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1 _
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tq) ()i _H j Ot(k)(j d(@ x(J) x(k)) (3.116d)
0

t t
COyiy="byry)

t 10 _1
OCD(k)(j)_E _[ Ot(k y(, 0, )) (3.116e)
0
and
1 ("ugy="ucpy)
t u tyu
0Py = n j oo (Ugy —Yg) (3.117a)
0
)
t \
0P = j 0¥ d Vg = Vi) (3.117b)
0
1( 0= W)
t /W _ tyw
oq’(n(k)—ﬁ j o iy d Wey —Wj)) (3.117¢)
0
, 1(‘6&(@—1@(”) ,
t X _ t¥ 6,
oq)(j)(k)—ﬁ J. Ot(j)(k)d(gx(k)_ex(j)) (3.117d)
0
) 1 (“Oy0="0y(5))
tHY _
q)(ixk)_ﬁ .[ Ot( (@09 = 0y3) (3.117¢)
0
where the force densities oTi), oliop ol ok ok @ ok o

T otﬂf)y(k) are given in Eq. (3.110) and Eq. (3.111), respectively.

Note that, the damage parameter . ;y is also included in the calculation of the
dilatations, §9.y, ¢y and the term, 900, oo by modifying Egs. (3.102d-e)
and Eqgs. (3.108b-c) as

Fo = -pzl//(kxn( |p(k)(j)) V) (3.118a)
N
o = dipzll//(k)(j) (o§ip(k)(j)) Ov(j) (3.118b)
j=
t \ t
0%hio = dbzll‘/’(k)(n (oSb(k)(j))OVm (3.118c)
j=
N
0% = db_zl‘/’<k)(n (0§b(k)(n)ov<i> (3.118d)
j=

Note that, in the formulations of the micropotentials given in Eq. (3.115), the first
two components, tCD(k)(]), OCID(k)(]), can be caused by in-plane tension or
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compression. The micropotential SCD‘(",’()(]-) can be caused by shear deformations.
. . . 0 .
Meanwhile, the micropotential 5CI>(9,§‘)(].) and 5d>(,f)(j) can be caused by bending
deformations. Therefore, the contribution of tensional, compressional, shear, and
bending deformations are considered for the calculation of bond energy release rate
for damage prediction which is given in Eq. (1.9) in Chapter 1. Hence, the energy-
based damage criteria used in this section are applicable for tensional,
compressional, shear, and bending deformations for non-linear analysis.

It should be noted that to predict damages in shells and stiffened structures using
the energy-based damage criteria given in Eq. (1.9), the critical energy release rate
of material should be a value that is applicable for mixed-mode loading. However,
to simplify the determination for the value of G, in section 3.4.4, the critical energy
release rate of the material is simply chosen as G, = Gi..

3.4.4. Numerical results

In this section, large deformations of plates are predicted by using the proposed
nonlinear PD model. First, the verifications for the nonlinear model are presented
in Sections 3.4.4.1 and 3.4.4.2. The nonlinear PD results are compared with the
nonlinear FEA results. Next, in Sections 3.4.4.3-5, the nonlinear PD model is used
to predict progressive damages on plates subjected to different loading conditions.
For static and quasi-static loading conditions, the adaptive dynamic relaxation
method [76, 77] is used. Details of the adaptive dynamic relaxation method for
nonlinear PD analysis of plate are presented in Appendix A3.

3.4.4.1. A plate subjected to bending

In this section, a square plate subjected to bending as shown in Fig. 3.57 is
investigated. The plate has dimensions of L = W = 1 m and the thickness of 4 =
L/10. The plate is fixed on the left edge and it is subjected to bending, m, =
3 x 107 Nm/m on the right edge. The plate is made of steel with an elastic modulus
of E = 2 X 10 N/m? and Poisson’s ratio of v = 0.3.

In the PD model, the plate is uniformly discretized with a mesh size of Ax = L/100.
To apply boundary conditions, three fictitious layers of material points are added
on the left side of the plate as shown in Fig. 3.57(b). All DOFs of the fictitious
points as well as the DOFs of the material points located at x = 0 are set equal to
zero. To apply the loading condition, the bending per unit area, m, = m, /Ax, is
applied to the material points located at x = L. In the FEA by using ANSYS, the
SHELL181 element with the same mesh size Ax = L/100 is used.

(a) (b)
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Fig. 3.57. A square plate subjected to bending (a): geometry, (b): PD discretized
model

To decide a suitable horizon size for the PD nonlinear model, the deformation of
the plate is predicted by using the nonlinear PD model with different horizon sizes.
The nonlinear PD results for significant DOFs, (u, w, and 6,), of the material points
located at (x = L,y =W /2) and (x = 3L/4,y = W /4) are compared with the
nonlinear FEA results of the nodes located at the same locations as shown in Fig.
3.58. The relative errors between the nonlinear PD and nonlinear FEA results are
calculated as

PD_qFEAl

Error(q) = la

|qFEA|

X 100 (%) (3.119)

where q represents the degree of freedom, gP? and g4 represent the nonlinear PD
and nonlinear FEA results for the degree of freedom g, respectively.

As can be observed from Fig. 3.58, the nonlinear PD results start to converge to the
nonlinear FEA results when the horizon size § = 3Ax. The relative errors between
the nonlinear PD and nonlinear FEA results for the material point located at (x =
3L/4,y = W/4) are smaller than 2%. Meanwhile, these relative errors for the
material point located at (x = L,y = W/2) are smaller than 5%. Therefore, to
minimize the computational cost in the PD simulation, the horizon size § >
3.015Ax is chosen.

| 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 35 4

5/1Aﬁx (S,’Ax
(a) (b)

Fig. 3.58. Relative errors between the nonlinear FEA and nonlinear PD results
with different horizon sizes for significant DOFs: u, w, and 6,, of material points

located at (a): (x = L,y = W/2), (b): (x = 3L/4,y = W /4)

Fig. 3.59-Fig. 3.63 show the comparison of nonlinear results for all DOFs in the
deformed configuration of the plate. As can be seen from the figures, the nonlinear
PD results and nonlinear FEA results have good agreements.
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Fig. 3.59. Variation of displacement u (m) in (a): nonlinear PD, (b): nonlinear
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Fig. 3.61. Variation of displacement w (m) in (2): nonlinear PD, (b): nonlinear
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Fig. 3.62. Variation of rotation 8, (rad) in (a): nonlinear PD, (b): nonlinear FEA
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Fig. 3.63. Variation of rotation 6,, (rad) in (a): nonlinear PD, (b): nonlinear FEA

Fig. 3.64 shows the comparison of the deformed configuration of the centreline at
y = W /2 predicted by nonlinear PD analysis and nonlinear FEA. As it can be
observed from the figure, the deformed configurations captured by both methods
have a very good match except a small difference at the right end of the plate.
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Fig. 3.64. Deformed configurations of the centreline y=w /2

3.4.4.2. A plate subjected to vertical shear forces

In this section, a rectangular plate with the dimensions of L =1m, W = 0.2 m,
and thickness of 2 = L /50 is investigated as shown in Fig. 3.65. The plate is fixed
on the left edge and it is subjected to vertical shear forces on the right edge. The
values of the distributed forces are defined as f, =n x 10* N/m with n =
5,10,50,100. The plate has the elastic modulus of E =2 x 10! N/m? and
Poisson’s ratio of v = 0.4.

In the PD model, the plate is uniformly discretized with a mesh size of Ax = L/100.
The same method discussed in the previous section is used for applying boundary
conditions. To apply the loading condition, the force per unit area b, = f,/Ax is
applied to the material points located at x = L. In the nonlinear FEA, the
SHELL181 element and the same mesh size are used.

z

z b-
Y 4 ° o%foooooooo l
W f V 0% %0%%%5%%5%%5%%%5%" E %
hi_y 070706 % % % % % % % %0 0 """
s 4 L x x
(@) (b)

Fig. 3.65. A plate subjected to vertical shear forces (a): geometry, (b): PD
discretized model

Fig. 3.66 shows the deformed configurations of the plate in different loading
conditions. Fig. 3.67 shows the deformed configurations of the plate along the
centreline y = W /2. As can be seen from Fig. 3.67, the nonlinear PD and nonlinear
FEA results show good agreements for all loading conditions. The difference
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between the two results for the large loading condition with n = 100 is still small
which can verify the accuracy of the nonlinear PD model.

00—
n=>5
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Fig. 3.66. Deformed configurations of the plate subjected to distributed force f, =
n x 10* N/m withn = 5,10, 50,100
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|- ®-NL-FEA n-30

S n=100

0 0.2 0.4 0.6 0.8 1 1.2
X (m)
Fig. 3.67. Deformed configurations of the centreline at y = W /2 of the plate
subjected to distributed force f, = n x 10* N/m withn = 5,10, 50, 100

3.4.4.3. Out-of-plane stretching and tearing of a plate

After verifying the accuracy of the nonlinear PD model, in this section, progressive
damage on a square plate with pre-existing crack subjected to out-of-plane
stretching and tearing is investigated. The experimental details for this problem can
be found in [109]. The square plate has dimensions of L = W = 0.203 m and
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thickness of 4 = 8 x 10~* m. The plate has an initial crack at x = 0 with the crack
length of a, =60x 1073 m. The plate has the elastic modulus of E =
2 x 101! N/m?, Poisson’s ratio of v = 0.3. For simplification, the critical energy
release rate of the material is chosen as G, = G;. = 255 x 103 J/m? [110]. The
plate is fixed at two edges x = —L/2 and x = L/2, and it is subjected to
incremental vertical displacements at two points located at (x = +3.3333 X
107" m,y = 6.6667 X 10~* m).

(a) (b)

Fig. 3.68. Plate subjected to stretching and tearing (a): geometry, (b): PD
discretized model

In the PD model, the plate is uniformly discretized with the mesh size of Ax =
6.6667 x 10~* m. To apply boundary conditions, three fictitious layers of material
points are added on the left and the right sides of the plate. All DOFs of the fictitious
material points as well as DOFs of the material points located at x = —L/2 and x =
L/2 are set equal to zero. To apply the loading conditions, material points located
at  (x=33333x10"*m,y =6.6667 x10™*m) and (x =—3.3333 X
107* m,y = 6.6667 X 10~* m) are applied incremental displacements as w =
0.002 x i;, with i; = 1, ...,42 represents the load step number. At each load step,
the quasi-static solution is obtained for 18000 iterations by using the ADR method
[76, 77]. The numerical procedure for this problem is shown in Fig. 3.69.
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Loop over load steps
il = 1,2, ey il < Nlaad

v

Apply loading conditions:
w(3.333 X 107" m, 6.6667 X 10~* m) = —0.002 X il (m)
w(—3.333 X 107* m, 6.6667 X 10~* m) = —0.002 X il (m)

!

Apply boundary conditions: zero displacements and rotations
for material points located at x < —Lx/2 or x > Lx/2

R
Loop over iterations
Go to next load step: it=1,2,..,it <Nt
il=il+1
[
)

Solving equations of motions by using ADR
method and updating new interaction state for

it=it+1

all inteartions*

True

Output results

Fig. 3.69. Numerical procedure for the problem of a plate subjected to stretching
and tearing

Fig. 3.70-Fig. 3.73 show the damage evolution on the plate. It can be observed from
the figures that when the vertical displacements are continuously increased, the
crack propagates along the positive y-direction. When the applied displacement is
w = 0.084 m, the crack propagates to the location of nearly (x =0,y =
0.2 m, z = 0) as shown in Fig. 3.73. Moreover, larger crack openings are observed
due to the larger deformations. This observation agrees well with the experimental

results in [109] and the numerical results in [110, 111].
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Fig. 3.70. Damage on the plate when the applied displacement w = 0.024 m
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Fig. 3.71. Damage on the plate when the applied displacement w = 0.044 m
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Fig. 3.72. Damage on the plate when the applied displacement w = 0.064 m
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Fig. 3.73. Damage on the plate when the applied displacement w = 0.084 m

Fig. 3.74 shows the history of the equivalent applied forces versus the applied
vertical displacements. At each load step, after 18000 iterations for the ADR
solution, the equivalent applied forces on two material points located at (x =
3.3333x107*m, y =6.6667 x10"*m) and (x =—-3.3333x10"*m, y =
6.6667 x 10~* m) are calculated as

0/ N _
_ Vo
Fo = h Z;ﬁ‘(i)(j)f(ixnov(j) (3.120a)
j=
Vi & _
Fay = h Z;:u(l)(m)f(l)(m)ov(m) (3.120b)
j=

where 1 and | are the material points located at (x = 3.3333 X 10™*m, y =
6.6667 x10™*m) and (x=-3.3333x10"*m, ¥y =6.6667 x 10~* m),
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respectively. Material point j is one of the family members of material point i.
Meanwhile, material point m is one of the family members of material point [. The
equivalent applied forces shown in Fig. 3.74 are the average values of the forces
calculated by using Eqg. (3.120).

As can be observed from Fig. 3.74, the equivalent applied forces versus the applied
displacements captured by the nonlinear PD model has a good agreement with the
experimental results given in [109]. When the applied displacements are smaller
than 0.06 m, the PD and the experimental results have a very good agreement.
However, when the applied displacements are higher than 0.06 m, there are small
differences between the calculated forces in PD and the experimental values. These
differences can be caused by plastic deformation effects, which are not considered
in the PD simulation.

12000
4 PD

10000 F = Experimental A
Z 8000 | A
6000
S A
e
2 A
w4000 = FZ AA

‘ A
2000 A
0 L | Il
0 0.02 0.04 0.06 0.08 0.1

Applied displacement: w (m)

Fig. 3.74. Equivalent applied forces versus the applied displacements

3.4.4.4. Tearing a plate

In this section, another example of a plate subjected to tearing is investigated as
shown in Fig. 3.75. The plate has the dimensions of L = 0.06 m, W = 2L, and
thickness of # =5 x 10~* m. The plate has two initial cracks located at x =
0.01 m and x = —0.01 m. The initial crack lengths are a = 0.03 m. The material
has an elastic modulus of E = 5.96 GPa, Poisson’s ratio of v = 0.2. For
simplification, the critical energy release rate of the material is chosen as G, =
Gy = 8.8 x 103 J/m? [112].

Three edges of the plate are fixed and one edge is free as shown in Fig. 3.75. In PD,
the model is uniformly discretized with the mesh size Ax = L/200. To apply the
boundary conditions, three fictitious layers of material points are added on each
fixed edge. All DOFs of the fictitious material points as well as material points
located along the fixed edges of the plate at x = +L/2 and y = W are set equal to
zero.

The plate shown in Fig. 3.75 is subjected to incremental vertical displacements at
the location of (—0.01 m < x < 0.01 m,y = 0,z = 0). In the peridynamic model,
the material points located at (—0.01 m < x < 0.01 m,y = 0,z = 0) are subjected
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to incremental displacements as w =0.001xi;, {; =1,..,60, where i
represents the load step number. Similar to the previous example, at each load step,
the quasi-static solution is obtained for 10000 iterations by using the ADR method.
The same numerical procedure, except loading condition, shown in Fig. 3.69 is used
for this problem for the given loading condition.

0000000000000 0C0COCRROOOROORTYS
0000000000000 000000CO0COCOOTS
000000 0000000000000 0000000
.................'.......’7—1
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(a) (b)
Fig. 3.75. Tearing a plate (a): geometry, (b): PD discretized model

Fig. 3.76-Fig. 3.78 show the damage evolution on the plate. As shown in Fig. 3.76,
the cracks start propagating when the applied displacement isw = 0.025 m. As the
applied displacements are continuously increased, the cracks propagate diagonally
as shown in Fig. 3.77. When the applied displacement is w = 0.033 m, two cracks
meet each other at (x = 0.039 m,y = 0) as shown in Fig. 3.78. In Fig. 3.78, the
final damage of the plate is shown in both deformed and undeformed
configurations. It is observed that the damage pattern captured by the developed
nonlinear PD model is similar to the results obtained by Silling and Bobaru [51].
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Fig. 3.76. Damage on the plate when the applied displacement w = 0.025 m
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Fig. 3.77. Damage on the plate when the applied displacement w = 0.029 m
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Fig. 3.78. Damage on the plate when the applied displacement w = 0.033 m, (a):
3D view in deformed configuration, (b): 2D view in the undeformed configuration
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3.4.4.5. Plate subjected to torsion

In this section, damages on a plate subjected to torsional loading are investigated as
shown in Fig. 3.79. The plate has dimensions of L = 0.3 m, W = 0.127 m, and
thickness of # = 6 x 1073 m. The plate has an initial crack with a length of a, =
26 x 1073 m as shown in Fig. 3.79. The material has the elastic modulus of E =
2 X 101 N/m? and Poisson’s ratio of v = 0.3. For simplification, the critical
energy release rate of the material is chosen as G, = G;. = 22295 J/m? [113].

Two edges of the plate are attached with rigid parts, shown in black in Fig. 3.79(a),
and they are applied incremental rotations as

O, = —107" xit (rad), it =1,...,10" (3.121a)
ex(right) = 10_7 X It (rad)1 It :11 (XX ,107 (3121b)

In PD, the model is uniformly discretized with a mesh size of Ax = L /100, and the
quasi-static solution is obtained by using the ADR method. To apply loading
conditions, three fictitious layers of material points are added on the left and right
sides of the plate as shown in Fig. 3.79(b). The rotation boundary conditions given
in Eq. (68) are implemented by using displacement boundary conditions as

[u v W]T=RX—X (3.122)

where R is the rotation matrix. Therefore, the displacements of the fictitious
material points on the left side are implemented as

U 1 0 0 X || X
Vig [=] 0 COSOyery  —SIN ety || Yooy || Vi (3.123)
Wk 0SNG,y  COSOyery || Zgo) Zi)

Meanwhile, the displacements of the fictitious material points on the right side are
implemented as

Ugy | |1 0 0 Xi || X0
Viy [ =10 €08Oigny  —SINO,igny || Yy [~ Ve (3.124)
Wiy 0 sin ‘QX(right) cos gx(right) Z(j) Z(j

L

(a) (b)
Fig. 3.79. Plate subjected to torsion
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Fig. 3.80-Fig. 3.82 show the damage evolution on the plate subjected to torsion. As
shown in Fig. 3.80, the crack starts propagating when the applied rotational angle
is |8,| = 0.082 (rad). As the rotation |8, is increased, the crack propagates along
the positive y direction and reaches the final damage location at (x =0,y =
0.125 m) when the applied rotational angle reaches |6, | = 0.094 (rad) as shown
in Fig. 3.82. It can also be observed that the damage pattern captured by the
nonlinear PD agrees well with the results captured by Zavattieri [113].
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Fig. 3.80. Damage on the plate when |6,| = 0.082 (rad)
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Fig. 3.81. Damage on the plate when |6,| = 0.088 (rad)
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Fig. 3.82. Damage on the plate when |6,| = 0.094 (rad)

Fig. 3.83 shows the variations of the crack length versus the rotational angles. As it
can be observed from the figure, when the rotational angle is smaller than
0.08 (rad), the crack growth is quite slow. Beyond this limit, the crack starts
growing much faster and reaches the final length of 0.125 m when the applied
rotational angle is |8,| = 0.094 (rad).
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Fig. 3.83. Crack length (m) versus rotational angle (rad)

3.5. Concluding remarks

This chapter presents novel peridynamic models for geometrically nonlinear
analysis based on Total Lagrange formulations. For nonlinear analysis of 1D, 2D,
and 3D structures, a logarithmic bond stretch has been proposed for the first time
in the PD literature. The effects of volume changes and rotations are considered in
the calculation of PD force densities. The energy-based damage criterion is used
for damage prediction. The accuracy of the developed nonlinear PD model is
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verified by comparing it to nonlinear FEA solutions. For damage prediction, first,
the developed nonlinear PD model is used to predict damages for a plate subjected
to dynamic loading and an L-shape plate subjected to large deformation. Then,
damage pattern in 3D pre-notched concrete beam subjected to quasi-static loading
condition is predicted. All results show very good agreement with experimental
results.

For nonlinear analysis of beam structures, a novel nonlinear bond-based PD beam
model with 6 degrees of freedom is developed. The energy-based damage criterion
is used for damage prediction. The accuracy of the nonlinear PD model is verified
for both straight and curved beams. The results from nonlinear PD analyses have
good agreement with those in nonlinear FEA solutions, as well as the results from
previous studies in the literature. To show the capability of the developed PD model
for damage prediction, damages on a spaghetti subjected to different loading
conditions are predicted. The predicted PD results show a good agreement with the
experimental results given in the literature. The developed PD model can be used
for any type of beam structure to predict possible damages that may occur during
the operation process.

For nonlinear analysis of shell structures, a novel nonlinear PD model for plates is
developed. The energy-based damage criterion is used for damage prediction. The
accuracy of the nonlinear PD model is verified by comparing the PD results with
the nonlinear FEA results. After the verification, the nonlinear PD model is used to
predict progressive damages on a plate subjected to out-of-plane stretching and
tearing, a plate with two parallel cracks subjected to tearing, and a plate with a pre-
existing crack subjected to torsional loading. The predicted results in terms of
damage patterns agree very well with the observations from the experiments and
previous numerical studies. The proposed nonlinear PD can be further applied to
predict possible damages on plates and shell structures subjected to large
deformations during their operation process.
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4. PERIDYNAMICS FOR FATIGUE CRACKING
4.1. Introduction

Stochastic fatigue analyses are commonly used in the fatigue design assessment
(FDA) for ship and offshore structures. First, the stress combination caused by hull
girder loads, external wave pressure, and internal cargo pressure is obtained.
Subsequently, by using a suitable wave energy spectrum, the short-term stress
response in irregular waves and short-term accumulated fatigue damage for the
structures are predicted by using the well-known Palmgren-Miner rule. Next, by
using the service profile probability matrix, including wave heights, wave periods,
ship headings, ship speeds, loading conditions, long-term accumulated fatigue
damage, and deterministic fatigue life probability of failure are predicted. This
approach is recommended by many classification societies [114-120], and it is also
widely used in many practical ships and offshore structure analyses [121-125]. By
using the stochastic approach, the total lifetime accumulated fatigue damage (in the
long-term fatigue analysis) and the probability of failure (in the reliability fatigue
damage analysis) are common outputs. Meanwhile, the details of damage initiation
and propagation are still infrequently investigated.

To predict fatigue crack growth, the traditional finite element method (FEM) by
using the remeshing techniques [126, 127], or various modified versions of the
FEM such as the extended finite element method [128, 129], have been used.
However, as mentioned in the previous Chapters, one conceptual problem for
classical continuum mechanics (CCM) is that it uses the partial differential
equations to represent structural behaviours. Therefore, additional criteria are
needed to predict crack growth speed and direction or the branching of cracks [130-
133].

In Peridynamics, the first PD model for fatigue cracking is proposed by Silling and
Askari [60]. Further validations for the PD model were studied by Zhang, et al.
[134], Jung and Seok [135]. As proposed by Silling and Askari [60], during the
cyclic loading processes, the reduction of the remaining life of each interaction is
updated by using the cyclic bond strain range. However, in some special cases, the
bond strain can consist of different components. For instance, in beam and shell
structures, the bond strain consists of in-plane, shear, and bending components [61,
62]. Therefore, deciding which strain will be used for the PD fatigue equation can
be a challenge. By contrast, as presented in previous Chapters, the energy release
rate for a bond is unique and it can be calculated by summing all components of the
energy release rate. Therefore, this chapter proposes a novel energy-based PD
model for fatigue cracking. The definition of the cyclic bond energy release rate
range is introduced for the first time in the PD literature. The PD fatigue equations
based on the cyclic bond energy release rate range are proposed. For simplification,
this chapter focuses on the formulations for 2D structures. The proposed PD model
is verified by considering both mode-I and mixed-mode fatigue crack growth
problems.

4.2. Peridynamics for fatigue cracking based on cyclic bond strain range

In this section, a brief review of the existing PD model for fatigue cracking
developed by Silling and Askari [60] is presented. In the model developed by
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Silling and Askari [60], a bond can be defined in either the crack nucleation phase
(phase 1) or the crack growth phase (phase Il). Rapid crack growth (Phase I11) can
also be incorporated with the PD fatigue model when some interactions in the PD
model have stretches exceeding the critical value [134]. The fatigue life of each
bond is represented by its remaining life, A(x, &, N) that is defined as [60]

d;t(N)_ _
Aoy =1 ﬁ = —Ai(g((k“;zj))ml with A >0, m >0 for phase (I) (4.1)
(N=0) d’I((kN)()j) N) \™ i
AN =, = A, (£fy;)) " with A, >0, m, >0 for phase (Il)  (4.1b)

where (4,,m;) and (4,, m,) represent the positive fatigue parameters for phase (1)

and phase (I1), respectively. The parameter AE’,Z))U) represents the remaining life of

the interaction between material points k and j at the N*" cycle of loading. The
parameter e((,lcv))( 7 represents the cyclic bond strain range between material points k
and j at N cycle of loading which can be defined as [60]

o S:kxn (l_ R)‘ (4.2)

ooty =
where sg}{)( j) represents the bond stretch corresponding to the maximum load By,
S represents the bond stretch corresponding to the minimum load Pp,;;,. The
term R represents the load ratio that can be defined as

+

s |-
(K)(i) (k)(i)

R=P /P = S;kxn /S(t)(j) 3
If the fatigue limit is considered, Eq. (4.1a) can be rewritten for phase (I) as [60]
(N) ™
200 _q d 0 _ ~A (ot —e.) o i ey > e (4.4)
()(3) ! dN i |
0 otherwise

where &, > 0 represents the fatigue limit which is the lowest cyclic bond strain
range that still results in fatigue damages. The fatigue limit, €,, can be determined
from the experiment. Note that €., can be set equal to zero if the fatigue limit is not
considered [60].

By using the relations given in Eq. (4.4), the remaining life of a bond in phase (1)
can be calculated as

(N-1) (N) ™o (N
QN0 _q ) Aoy Al(g(k)(j) —800) LR

(G~ A3 (N-1)

(k)(3)
By using the relations given in Eq. (4.1b), the remaining life of a bond in phase (1)
can be calculated as

(N=0) _ (N) _ 2(N-D) _ (N) \™
Ao =L Aioch = Aoy AZ(g(ka')) (4.6)

Beyond the crack growth phase (phase I1), the structures can experience rapid crack
growth (phase I11). In this case, the traditional PD model [21, 43, 44, 46] for damage
prediction can be used. Therefore, the interaction state of a bond can be defined as

(N) _
{i(k)(ngo OF  Suyj 28 = Yoy =0

(N) _
Aiocy >0 and Sy <S¢ > Wiy =1

(4.5)
otherwise

4.7)
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4.2.1. Fatigue parameters for phase (1)

Assuming that & is the bond that has the largest cyclic bond strain in the structure,
according to Silling and Askari [60], crack nucleation occurs when

1
N, =——+ 4.8
1 Alglm1 ( )
where g; represents the largest cyclic bond strain in the PD model.
If the fatigue limit, €, is considered, Eq. (4.8) can be rewritten as
1
N. = (4.9)
' A&. (81 - goo )m1
The relations in Egs. (4.8-7.9) can be rewritten as
|
Iog(gl):—ilog(Nl)—M (4.10a)
m, m,
and
I
Iog(gl—gw):—ilog(Nl)—M (4.10b)
m, m,

By using the relations in Eq. (4.10), the parameters A, and m, can be obtained from
€ — N test data for material as shown in Fig. 4.1.

log(e—€,.)
loge

logN logN
-log 4 N
ny =4

-log 4, — X
m =4

o Experimental data o Experimental data

___ Curve fitting for
experimental data

___ Curve fitting for
experimental data

%ﬁﬂ-ﬂ ‘E‘D-nﬂﬁg-ﬁ

slope = -1/my slope = -1/m,

(a) (b)
Fig. 4.1. Calibration phase (1) parameters A, and m, (a) without fatigue limit, (b)

with fatigue limit

As shown in Fig. 4.1, the experimental results for loge versus log N or
log(e — €,) versus log N are often represented with scatter data, shown in blue.
Based on these scatter data, the fitted curves, shown in red, can be obtained. The
slopes of the fitted curves are equal to —1/m,. Meanwhile, the intersections of the
slopes with the loge or log(e —¢€,) axis (the vertical axis) are equal to
—log(A;) /m,. Therefore, the fatigue parameters, (4,, m,), for phase (I) can be
obtained from the fitted curve.

4.2.2. Fatigue parameters for phase (1)
In phase (1), the fatigue crack growth follows the well-known Paris law that can be
represented as

9 _ g (4.11)
dN
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where g represents the crack length and N represents the number of loading cycles,
¢ and Mare material constants, AK represents the stress intensity factor range.
According to Silling and Askari [60], the parameter m, in Eq. (4.6) can be obtained
directly from the material constant M as

m, =M (412)
Meanwhile, the parameter A, in Eq. (4.6) needs to be calibrated by conducting a

trial PD fatigue simulation. Details of the calibration for the parameter A, is
presented in the appendix G1 which can be described as follows;

Step 1: Assume an arbitrary value for A, Az as: Ay = Ay (trial

Step 2: Conduct a PD fatigue simulation with the trial value A, = Ay and
calculate the crack growth rate and stress intensity (SIF) range for this trial case:
(dq/dN) riary and AK riapy.-

Step 3: Plot the scatter data of (AK — dq/dN) a1y in the logarithmic scale and find
the best-fit equation: (dq/dN)(trial) = C(trial)AKM

Step 4: Calibrate the value for A, as [60]

Ag _ AZ (dq / dN )(experiment) (4 138.)
= T2(trial) :
(dq / dN )(trial)
or
C oroerimenn AK " Crooni

— ) (experiment) — ) (experiment) 4 13b
AZ A2(tr|al) C(maDAK M Az(trlal) C(mal) ( )
where
(dq /dN )(experiment) - C(eXPe"imem)AK ) (4130)

Here Eq. (4.13c) is the Paris law equation obtained from the experimental data.

Note that m;, A; and m, are material constants which are independent of the
horizon size. However, the parameter A, is dependent on the horizon size [60].
According to Silling and Askari [60], the relationship between the parameter A,
and the horizon size § can be presented as

A, (8) = Astm2re (4.14)
where 4, is a constant and it is independent of §.

Therefore, the value of the parameter A, can be scaled due to the change of horizon
size as follows:

Assuming that Agl) is the calibrated value for the parameter A, obtained from a trial
PD simulation (see Appendix G1 for the calibration procedure) by using the horizon
size of §, for example 5 = 34x, in which Ax; represents the mesh size used
in the trial PD simulation.

By substituting Agl) and 5O into Eq. (4.14), the value for the parameter A, can be
calculated as

S AW
Ay = W (4.15)

Now, assuming that a PD fatigue simulation with a different mesh size Ax, # Ax;
and a horizon size of 6§ = 3Ax, is needed. Therefore, by substituting Eq. (4.15)
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into Eq. (4.14) and by putting § = §®, a new value of the parameter A, for the PD
fatigue simulation with a mesh size of Ax, # Ax; and a horizon size of §® =
3Ax, can be obtained as

Aéz) Az( )(mz 2)I2 (5(1),;2%(5(2) )(m2—2)/2 (4.16)

4.3. An energy-based PD model for fatigue cracking

In this section, a novel PD model for fatigue damage prediction based on the cyclic
bond energy release rate range for 2D structures is proposed. The fatigue equation
in Eq. (4.1) is rewritten in the energy-based form. New fatigue parameters for the
proposed model are also presented.

By considering only in-plane deformations in the PD shell model given in Chapter
2, the PD equations of motion for 2D structures can be found in Eq. (2.77a, b) in
Chapter 2 as

N

phy, =Zl:1//(k)(j{2ad 5(‘9(10+‘9(1))+4b5(k)(1)}05¢’ 0 0o (4.17a)
J:
N

WV =D Vi {Zad Cf(l9(k) +19(J))+4bs(k)(j)}sm N +b, 0 (4.17b)
=1

where 9y and 9 represent the dilatations at material points k and j, respectively.
The terms, a, b, d are the PD constants for in-plane deformations, s, represents
the linear bond stretch for in-plane deformations which is given in Eq. (2.65) in
chapter 2. The terms, bx(k) and by(k) represent the external forces per unit area.
Details of these parameters can be found in Chapter 2.

Similarly, by substituting the micro-potentials of in-plane deformations given in
Eq. (2.91) in Chapter 2 into Eqg. (1.9) in Chapter 1, the energy release rate for
interaction between material points k and j in 2D structures can be represented as

_ 1( 2ad Voo
i) :E(?(‘g(k) +‘9(i))+4bs(k)(1)j§ () 2(Ax);12 (4.18)
The energy release rate in Eq. (4.18) can be rewritten as
9 9. V.V

T = Al 2w + 4 2h | Do et (4.193)

S Swm) St 2(Ax)h
or
= 2
Ty = Coaii St (4.19D)
with

9 9 . V.,V
Copors) = ad| Sy MO P IMOMO (4.190)
S WSwm  Swm 2(Ax)h

For the bond-based PD model, the term a = 0 in Eq. (4.19) [44]. Therefore, Eq.
(4.19c¢) can be simplified as

V V
(M0
Comi = ( Ax)hlz 4 (4.20)
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As can be observed from Eq. (4.20) for the bond-based PD model, the parameter
Cow)(j) Is independent of loading conditions. However, for the ordinary state-based
PD model, the dilatation terms exist. Therefore, as given in Eq. (4.19¢), Coqc)(jy 1S
loading dependent and it can be updated during the PD fatigue prediction.

4.3.1. The cyclic bond energy release rate range

Similar to the definition of the cyclic bond strain range proposed by Silling and
Askari [60], the cyclic bond energy release rate range at N cycle of loading can
be defined as

3 R

=T _ﬁ T (4.21)

(k)(J)

where ngk)( i) and 8 () represent the energy release rates for interaction between

material points k and j in maximum and minimum loading conditions, respectively.
These energy release rates can be calculated by using Eq. (4.19). The loading ratio
R is defined in Eq. (4.3).

By using the relationship given in Eq. (4.19b), the cyclic bond energy release rate
range in Eq. (4.21) can be rewritten as

. R/
g((:\)l()n - ‘Cowxj)‘ (S(kxn )2 _W(S(k)( i )2 (4.22a)
or
R +
gf:i)n - ‘Co(kxn‘ (1_ﬁ Rz} (S(kxj) )2 (4.22b)

By using the relation given in Eq. (4.2), the cyclic bond energy release rate range
in Eq. (4.22b) can be rewritten as

R s Y
[1—WR2J( <k><”J (4.23a)

i-R)

() _ N Y
95 = Cuep (6t (4.23b)

| |

4.3.2. The energy-based PD fatigue model

(N)
9

) :‘ O(k)(i)‘

or

1

C1(‘<)(J') :‘Co(k)(j)‘

Similar to the original PD fatigue model [60], in this energy-based model, the
remaining life of the interaction between material points k and j can be represented
in terms of the cyclic bond energy release rate range as

For phase (1I):
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o dA -
Aoy =1 d(l\im =By (Glotp) With By >0, >0 (4.24a)

For phase (1l):
(N)
d i) __ (
dN 2(k)(J)

Aoy =1 gék”ﬁn) © with By, ;) >0, n,>0 (4.24b)

where (By k) j), 11) and (Byiy(j), n2) represent the fatigue parameters used in the
energy-based PD fatigue model for phase (I) and phase (1), respectively. The
parameter g(N) represents the cyclic bond energy release rate range of the

GI10)]
interaction between material points k and j at the N loading cycle.

If a fatigue limit is considered, the fatigue equation in Eq. (4.24a) for phase (I) can
be rewritten as

(N) (N) " g
9ot _ | Buoy (90 =9-) I 980, > 9. (4.25a)
dN 0 otherwise
with
9. = Cl(k)(j)gi (4.25b)

where g, represents the cyclic bond energy release rate range corresponding to the
fatigue limit .

By integrating Eq. (4.25a), the remaining life of a bond in phase (1) can be
calculated as

(N-1) (N) hoo (N)
G0N0 _q ) l(k,(j)—Bl(k)(,-)(g(k)(j)—gm) » 1F 90y > 9.
(10 B O T6) B I
(K)(i)
By integrating Eq. (4.24b), the remaining life of a bond in phase (Il) can be
calculated as
Aoy =1 Aoty = Ao Bz<k)<j>(9§321>)nz (4.27)

(4.26)
otherwise

(k)(1) (k)(1) ()0
Similar to the damage criteria given in Eq. (4.7), the state of interaction in the
energy-based model can be defined as

(N) - _
{i(k)(j) <O or Guyi29. = Wiy =0

(N) 3 (4.28)
Aioin >0 and Gy <9e = Wy =1

4.3.3. Fatigue parameters (B 1)y, 1), (B2a)(j), M2)

In this section, the relationships between the fatigue parameters in the proposed
energy-based PD model, (B; ;. ;) and the fatigue parameters in the cyclic bond
strain model, (4;, m;) are presented. The values of (B;((;), n;) can be obtained
indirectly from the experimental data through the calibrations for (4;, m;). Note
that, in this section, i = 1 denotes phase (1) and i = 2 denotes phase (I1).
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By comparing Eq. (4.24) with Eqg. (4.1), the relationships between fatigue
parameters in the energy-based model, (B;)j),» n:) and the cyclic bond strain

model, (4;, m;) can be obtained as

A&y = Bigo I (4.292)
or

log (A)+mlog (24 ) =109 By )+ 1 109 (o) (4.29b)
On the other hand, the relation given in Eq. (4.23b) can be rewritten as

109 (9o ) =109 (Cugoiry ) + 2109 (£ ) (4.30)

Therefore, by using the relation given in Eq. (4.30), the relations in Eq. (4.29b) can
be rewritten as

log (A )+m;10g( 24y ) =109 (Bigeyjy )+ 1 109 (Cogeyjy ) + 2 l0g (24ysy)  (4.310)
or

Lﬂi +m log (g(k)(J) ) - Iog(Bi(k)(j) ) +2n, Iog(g(k)(j)) (4.31b)

(Cl(k)(i))
To ensure Eq. (4.31b) is correct for every interaction, the following relations
between fatigue parameters in the energy-based PD model, (B;()(jy, n;) and the
cyclic bond strain PD model, (4;, m;) can be obtained as

log

n=m/2 (4.32a)

By = — (4.32b)
(Cl(k)(j))

which can be written for phase (1) and (I1) as

n=m/2 (4.33a)

B = m /2 (4.33b)
( l(k)(j))

and

n,=m,/2 (4.34)

By = 2y (4.34b)

20)(J) — my/2
(Cl(k)(i))

4.3.4. Phase transition

According to Silling and Askari [60], the PD bond strains in the nucleation phase
can agree with the measured strain data. However, in the growth phase, the actual
process zone at a crack tip is usually smaller than the PD continuum-level model.
Therefore, bond strains in phase (1) could be fictitious. As a result, the transition
between phase (I) and phase (I11) might not be smooth.

To have a smooth transition between two phases for a material point, Silling and
Askari [60] proposed a method for phase transition, which is based on the
information of the damage index ¢ (given in Chapter 1) at that material point and
its family members. Specifically, phase (I) fatigue equation given in Eq. (4.5) or
Eq. (4.26) for a given material point k is valid, if all material points within its
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horizon (including itself) has the damage index ¢ < ¢,. By contrast, the phase (1)
fatigue equation given in Eq. (4.6) or Eq. (4.27) is valid when material point k or
at least one of its family members have ¢ > ¢,. According to Silling and Askari
[60], ¢, can be chosen as ¢, = 0.5. In this study, the same approach is used.
However, ¢, = 0.398 is used for two-dimensional models for considering damage
at each material point.

If some interactions have energy release rates exceeding the critical value, gy =

g., the fatigue simulation is stopped and the conventional PD model for damage
prediction (phase I11) [21, 43, 44, 46] can be used.

4.4. Numerical results

In this section, mode-1 and mixed-mode fatigue damages on 2D structures are
predicted by using the proposed energy-based PD fatigue model as shown in Fig.
4.3 and Fig. 4.6. The structures are made of aluminum 6061-T6 with an elastic
modulus of E = 68 x 10° N/m?, Poisson’s ratio of v = 0.33 [136], and fracture
toughness of K;.= 48.7 x 10® MPay/m[137]. For simplification, the critical energy
release rate of the material is calculated as G, = G;. = K2 /E = 34878 ]/m?2.

The fatigue parameters for phase (1) can be calibrated by using the experimental
results (¢ — N curve) provided in [138]. In this study, the e — N data provided in
[138] is reconstructed and plotted on a log-log scale as shown in Fig. 4.2. Based on
the calibration shown in Fig. 4.2, the fatigue parameters for phase (I) (without the
consideration of fatigue limit) are obtained as

m, = 2.29153 (4.352)

_mr?q_/s& —~0.87975 (4.35b)
1

or

A =103.7465 (4.350)

Therefore, the fatigue parameters for phase (1) in the energy-based PD model can
be obtained by using Eq. (4.33) as

n, = % —1.145765 (4.36a)

B A (4.36b)

1)) m /2
(Cl(kxj))

where C; ;) is obtained by using Eq. (4.23c).
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Fig. 4.2. Calibration for phase (1) parameters for aluminum 6061-T6 ((*): the
experimental data is reproduced from [138])

4.4.1. Mode | fatigue crack propagation

In this section, the mode-I fatigue problem is investigated as shown in Fig. 4.3(a).
The dimensions of the plate are shown in Fig. 4.3(a) and the PD discretized model
is shown in Fig. 4.3(b). The plate is subjected to cyclic loading with the maximum
loading P4, = 14 kN, load ratio R = 0.1, and loading frequency of 10 Hz [136].

In PD, the model is uniformly discretized with mesh size Ax = 6 x 10™* mm, and
the horizon size § = 3.015Ax is used. Since the problem is symmetric, the fixed
boundary conditions at two material points located at (1.25W,Ax/2) and
(1.25W, —Ax/2), shown in black in Fig. 4.3(b), are assumed.

To apply loading conditions, first, material points located inside the cut-outs, shown
in red in Fig. 4.3(b), are assumed as rigid with the elastic modulus of E,;4;q =
200E. Next, the extreme load P = 14 x 103 N is applied to the material points
located at the centres of the cut-outs as shown in Fig. 4.3(b).

The fatigue parameter m, = 2.6183 is obtained from the experimental results
given by Sajith, et al. [136]. Therefore, the phase (Il) fatigue parameter for the
energy-based PD model n, = 1.3092 is used.

To obtain values for parameters A, and By, a trial value A,y = 1174 is
assumed and the corresponding value Bz(t&‘;‘?]) is obtained for each interaction by
using Eq. (4.34b). Next, A trial fatigue simulation using (Byy(j),n,) obtained

from Eq. (4.37) for phase (I) and (Bz(tﬁc‘;’?,) n, = 1.3092) for phase (1) is conducted
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to calculate the fatigue crack growth rate (dq/dN) sy and the SIF range AK i,
(see appendix G1). The best-fit equation with the form of (dq/dN) iy =
Cierian)AK M is obtained by using (dq/dN)ia and AK.p Vvalues. Finally, by
comparing (dq/dN)iay With the experimental values (dq/dN) experiment), the

calibrated value of the parameter A, = 1055 is obtained by using Eq. (4.13b) and
the parameter B, (; is obtained for each interaction by using Eq. (4.34b).

1.25W
w
q
QM
p e=0275W | 0.03 20
. r=0.125W ;
s | an=02W 0.02 -
p ,77\,&;, . W = 60 mm :
v \}—/ h=22mm 0.01
' n A Fixed
v |
/1 -0.01 I
Ly ;
S s I/ 002/
(=]
p -0.03 1
‘“\ OC (!{‘ BYe] |
0 0.02 0.04 0.06 0.08
(@) (b)

Fig. 4.3. Mode I fatigue problem (a) geometry (b) PD discretized model

Fig. 4.4 shows the fatigue damage evolution on the plate under the mode-I loading
condition. After 2000 loading cycles, the crack starts propagating as shown in Fig.
4.4(a). As expected, the crack propagates along its initial direction toward the right
edge of the plate as shown in Fig. 4.4(b-d). After 40850 loading cycles, the crack
reaches the location at x = 0.0522 mas shown in Fig. 4.4(d). Fig. 4.5 shows crack
length, g versus load cycle, N for fatigue crack growth of the plate. As can be
observed from the figure, the PD prediction results have good agreement with the
experimental results [136]. The crack length, g versus load cycle, N predicted by
the PD model agrees very well with the experimental curve for the first 30000
cycles. Later, the predicted crack growth is slightly quicker than the experimental
results. The final predicted fatigue life is N}’D = 40850 (cycles), meanwhile, the

experimental value is N]f"pe“me“tal = 42600 (cycles). Therefore, the relative error
in terms of the final fatigue life can be estimated as

PD _ pJexperimental

N
error (%) = —. ! %100 = —4.108% (4.37)

N ex perimental
f
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Fig. 4.4. Fatigue damage evolution at (a) 2000 cycles, (b) 15000 cycles, (c) 30000
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Fig. 4.5. Fatigue crack length, g versus load cycle, N (the experimental data is
obtained from [136])
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4.4.2. Mixed-mode fatigue crack propagation

After verifying the energy-based PD fatigue model for mode-I fatigue crack
evolution, the proposed PD model is further used to predict fatigue damages in the
mixed-mode loading conditions as shown in Fig. 4.6. The dimensions for the
specimen are in mm as shown in Fig. 4.6(b). The plate has an initial notch with a
length of 40 mm and a 5 mm initial fatigue crack is created [136]. The material
properties are the same as in Section 7.5.1. The loading is defined by the extreme
load P = 16 kN, load ratio R = 0.1, and the loading angle a as shown in Fig. 4.6(a)
and Fig. 4.7(a).

The boundary and loading conditions for the numerical models suggested by Sajith,
et al. [136] are shown in Fig. 4.7(a). In PD, the model is uniformly discretized with
amesh size of Ax = 6 x 10™* mm. As shown in Fig. 4.7(b), material points, shown
in blue, green, black, and red, which are associated with 6 cut-outs, are defined as
rigid with the elastic modulus of E,;;;; = 200E. Material points, shown in black
in Fig. 4.7(b), located at the centres of the lower cut-outs are fixed. Meanwhile,
material points, shown in red in Fig. 4.7(b), located at the centres of the upper cut-
outs are subjected to applied forces as [136]

F,=P(0.5cosa+(e/ f)sina) (4.38a)
F, =—Psina (4.38D)
F,=P(0.5cosa—(e/ f)sina) (4.38c)
(T — Dimensions are in mm
i 2 P 90
b <
= 18] 27 27 118
S Initial fatigue
/crack -
T a0 =
S Thickness: =15
A
(a) (b)

Fig. 4.6. Mixed-mode fatigue problem (a) experimental configuration in [136], (b)
specimen’s dimensions
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used in the PD model

7.5.2.1. Crack path prediction

Fig. 4.8 shows the fatigue crack propagation in the mixed-mode loading in the case
of @ = 45°. As shown in Fig. 4.8(a), the crack starts propagating upward at 10000
loading cycles. The angle of crack propagation with respect to the horizontal axis
is measured numerically as Bpp = 38.66° at 30000 loading cycles as shown in Fig.
4.8(c). This observation has good agreement with the experimental results which is
Bexp eriment = 40.263°. Later, the crack propagates with a slightly smaller angle
and reaches the final fatigue crack growth state (before phase I11) at 42768 loading
cycles as shown in Fig. 4.8(d). The slight reduction of crack propagation angles is
also observed in the experiment by Sajith, et al. [136], Chung and Yang [139],
Borrego, et al. [140].
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Fig. 4.8. Fatigue crack evolution in mixed-mode loading with @ = 45° at (a)
10000 (b) 20000, (c) 30000, (d) 42768 cycles

Fig. 4.9 shows the prediction results for the mixed-mode fatigue crack propagation
in the case of @ = 60°. Fig. 4.9(a-c) shows the crack evolution at 20000, 35000
and 44500 loading cycles, respectively. Similar to the previous loading condition,
the fatigue crack also propagates upward but with a larger angle Spp, = 50.19°.
This observation has very good agreement with the experimental results
Bex periment = 51.33°[136]. Similar to the previous loading condition, after 44500
loading cycles, the crack starts propagating with a slightly smaller angle and reaches
the final fatigue crack growth state (before phase I11) at 53727 loading cycles as
shown in Fig. 4.9(d). This observation has good agreement with the experimental
results studied by Sajith, et al. [136], Chung and Yang [139], Borrego, et al. [140].
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Fig. 4.9. Fatigue crack evolution in mixed-mode loading with @ = 60° at (a)

20000 (b) 35000, (c) 44500, (d) 53727 cycles

Fig. 4.10 shows the crack tip positions in the two loading conditions predicted by
the proposed energy-based PD fatigue model. As can be seen from the figure, the
PD results have good agreement with the experimental results studied by Sajith, et
al. [136] which shows the accuracy of the proposed PD model in terms of crack
path prediction.

121
PD 45° -
10+ Experiment 45° =
PD 60° -
81 Experiment 60° - > 7 R ¢
y T
6 » A ¢
>
L > ¢
4 .
|
2 My >
>
Om
) - ‘
0 10 15
X (mm)

Fig. 4.10. Crack tip locations (the experimental data is obtained from [136])

7.5.2.2. Fatigue life prediction

Fig. 4.11 shows the fatigue crack length, g versus load cycle, N in two loading
conditions. As can be seen from Fig. 4.11(a) for the loading condition with a =
459, the predicted results have very good agreement with experimental results in
the first 28000 loading cycles. Later, there is a small difference between the two
results. The predicted results show a slightly slower crack growth compared to the
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observation from the experiment [136]. As can be seen from Fig. 4.11(b), the
predicted crack growth in case of @ = 60° has very good agreement with the
experimental results which shows the accuracy of the proposed PD fatigue model
in terms of fatigue life prediction.

80 PD prediction 07

PD prediction

e Experiment . srime:
80 | Experiment

N (cycles) <10 N (cycles) x10*
(a) (b)
Fig. 4.11. Crack length, g versus load cycle, N for mixed-mode fatigue crack
growth with load angle (a) @ = 45°, (b) a = 60° (the experimental data is
obtained from [136])

4.5. Concluding remarks

In this Chapter, a novel energy-based PD model for fatigue damage prediction is
proposed. The definition of cyclic bond energy release rate range is proposed and
used for fatigue equations for the first time in the PD literature. The numerical
procedure to predict fatigue cracking by using the proposed PD model is presented.
The capability of the proposed PD model is verified by considering mode-1 and
mixed-mode fatigue crack propagations. The results predicted by the proposed PD
model show a good agreement with the experimental results in terms of the crack
paths as well as the crack growth rates. The developed PD model can be further
extended to the 3D formulation and it can also be used to predict fatigue damage
for structures during the operation process.
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5. COUPLING PERIDYNAMICS WITH MACHINE LEARNING
5.1. Introduction

In peridynamics, due to nonlocal interactions, solving equations of motion could be
time-consuming. By contrast, with the support of computer resources as well as the
rapid growth of available data, artificial intelligence (Al), machine learning (ML),
and data analytics are providing an alternative solution for physics-based models.
These data-driven models can be applicable for many scientific disciplines such as
image recognition [141], natural language processing [142], cognitive science
[143], and genomics [144]. In engineering, machine learning and artificial
intelligence also show potential applications in many areas, including material
science [145], fluid dynamics [146, 147], structural health monitoring [148],
additive manufacturing [149], fracture mechanics, and failure analysis [150-152].

As proposed in [150, 152] for failure analysis, the neural networks are trained by
using the crack propagation data that is generated in trial numerical predictions,
which can be very computationally expensive and limited. On the other hand, when
available data are limited, the vast majority of recent machine learning techniques
are lacking robustness and accuracy [153]. Therefore, a hybrid approach of
combining machine learning and physics-based modeling becomes highly
beneficial. Therefore, in this chapter, a PD-based machine learning model or
fracture prediction is developed. Moreover, a hybrid approach of coupling machine
learning and peridynamic models for fracture prediction of structures is presented.
Specifically, the PD model is applied for special regions in structures such as near
crack surfaces or near boundary areas. Meanwhile, the ML model is used for the
remaining regions to reduce the computational cost.

The machine learning models to find displacements of a material point based on
displacements of its family members and its external body forces in one-
dimensional (1D) and two-dimensional (2D) structures are presented. The
capability of the hybrid approach is verified by considering various examples for
1D and 2D structures. The results predicted by the coupled models are compared
with FEA and conventional PD results. For further verifying the capability of the
coupling model, progressive damages in a plate with a pre-existing crack subjected
to tension, on a 2D representation of a three-point bending test, on a plate subjected
to dynamic loads are presented.

5.2. Multiple linear regression

In this section, the basic concept of multiple linear regression is presented.
According to Montgomery et al. [154] and Alpaydin [155], in the multiple linear
regression, the numeric output Y is assumed to be written as a function of several

input variables, x4, x,, ..., xy and noise as
Y =Wy WX, + WX, +--+ Wy X +€ (5.1)

where x4, x5, ..., xy represent the input variables that can be called the regressors.
The parameters wy, wy, ..., wy represent regression coefficients that need to be
determined. The parameter ¢ represents the noise of the model.
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The coefficients in Eq. (5.1) can be determined based on the least square criterion
[154, 155]. The sum of the squares of the differences between the predicted values
and the correct outputs are minimized. The minimization of the squared errors can
be expressed as follows;

Let’s assume that we have training data as (xl(i), X2(i)r = XN (i) y(i)), i=1,.., M.
Therefore, Eq. (5.1) can be rewritten for every single data as

Vi = Wo WXy +WoXogy oo+ Wy Xy +8), 1=12,...,M (5.2)

The sum of squared errors can be calculated as
M 2

S(Wy, Wy, -+, Wy ) = Z(yi _(Wo WXy +WoXoiy + 0+ Wy XN(i))) (5.3)
i=1

To minimize the squared errors given in Eq. (5.3), the coefficients w;, j =
1,2, ..., N must satisfy the following conditions

0S .
—=0, j=0,1,2,...,N 5.4
OW. J ®4)

]

By substituting Eq. (5.3) into Eq. (5.4), the following relations are obtained
M M M M

Z Yi = MWo +lexl(i) +WZZX2(i) ot Wy ZXN(i)
i=1 i=1 i=1 i=1

M M M 2 M M
D X Yi = Wo D Xygy + WlZ(Xl(i)) W, D Xy Xogry o Wy D Xy X (5.5)
i=1 i=1 i=1 i=1 i=1 .

M M M M M

2
ZXN(i)yi = WOZXN(i) +WlZXN(i)X1(i) +WZZXN(i)X2(i) ot Wy Z(XN(i))
i=1 i=1 i=1 i=1 i=1

The relations in Eq. (5.5) can be rewritten in a matrix form as

X" Xw=X"y (5.6a)
with
1 Xy Xyt Xy | Wl [ Yo |
X - 1 Yo %@ 7 X w- Vi’l - y(:z) (5.6b)
1 Xy Xy Kwowy | W] [Yow

Therefore, the vector of coefficients, w, can be obtained as
w:(xTx)‘l X"y (5.7)

5.3. Peridynamic models for 1D and 2D structures
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In this section, the PD models for 1D and 2D structures are summarized. The PD
equation of motion for 1D structures can be found in Eg. (2.28a) in Chapter 2 as
[20, 43, 62, 75]

y YU, —u
PUyy = Cw;%v(j) +bx(k) (5.9a)
J:
with
F
b = 5.9b
"0 = Ay (5.9b)
and
2E
Co= A52 (5.9¢)

where b, represents the axial body force applied on the material point k, &

represents the distance between material points k and j. The term C,, represents
the PD bond constant for axial deformations.

For a static state with i, = 0, Eq. (5.9a) can be rewritten as

W ol TR (5.10)
x(k) — alel § () !
j=

The bond-based PD equations of motion for 2D structures can be found in Eq. (4.17)
by ignoring dilatation terms as [20, 43, 61, 75]

N ju—
Phiiy =D C i Sy €SP, + by (5.11a)
i1
N —
PV, = Z;C/‘(k)(j)s(k)(j) singVi;, +by, (5.11b)
j=
with
_F
X(k)
0, = A (5.11c)
_ F
(x)
by = Ayxz (5.11d)
+v) 7

where Bx(k) and By(k) represent applied force per unit area as given in Chapter 2
[61], Ax represents uniform mesh size in the PD discretized model. The term s
represents linearized bond stretch for in-plane deformations as given in Eq. (2.65),
h represents the thickness of the plate, C represents bond constant for in-plane
deformation. Note that, C = 4b;,, where b, is given in Eq. (2.62d) in chapter 2.
If a static condition with iy = ¥,y = 0 is considered, Egs. (5.11a-b) can be
rewritten as
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_ N
by = _(Zcﬂm(nsmm COS(DV(J')} (5.129)

=l
N

by ) Z_[Z;Cﬂ(k)(nswxnSin‘pv(j)J (5.12b)
j=

5.4. PD-based machine learning model

In this section, the PD-based machine learning models for 1D and 2D structures are
presented. The displacement of one material point is expressed as a linear function
of displacements of its family members in the horizon size of § = 3.015Ax and the
external forces applied to it. The training data are generated by using modal analysis
in ANSYS. The PD-based machine learning model is obtained from the data set by
using linear regression.

5.4.1. PD based machine learning model for one-dimensional structures

As presented in Eqg. (5.10), within the linear elasticity, the relation between applied
body force and displacements of material points is linear. Moreover, the
relationship between the displacement of a material point and its family members
can also be linear. Therefore, the displacement value for a material point can be
expressed as a linear function of displacements of its family members and the
external force applied to it as

Uy = Mgy +MyUG o) + MUy gy + MU o

FoAX (5.13a)
+ Myl ) + Mg,z + M, [T}
or
Ugy =My U +My (%) (5.13b)
with
mg,=[m m, m m, m m] (5.13c)
u(J’):[u(ka) Uk-2) Uiy Ywsny U u(k+3):| (5.13d)

where m;, i = 1,...,7 represent coefficients that need to be determined for the ML
model. The term F,,, represents the axial force applied on the material point k, Ax
represents mesh size in the discretized model, A represents the cross-sectional area
of the 1D bar, and E represents material elastic modulus. In Eq. (5.13), (k —
3),..., (k + 3) represent family members of the material point k as shown in Fig.
5.1.
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Fig. 5.1. A material point with its family members, § = 3Ax

Note that with the mesh size, elastic modulus, and cross-sectional area presented in
the last term of Eq. (5.13a), the coefficient m, is expected to be independent of
these geometrical and material properties. As a result, the expected ML model can
be applied for any cross-sectional area, mesh size, and elastic modulus.

Generating the training and testing data set

In this section, the training and testing data for Eq. (5.13a) is obtained from the
modal analysis. The data set includes seven input variables
(U(r-3) Wk—2)r U(k—1) Uk+1)r U(k+2) Uie+3), Fro4x/AE) and one output variable

u(k)

By using Eg. (5.9¢), the last input variable in Eq. (5.13a) can be represented as

Fo®X b, (Ax)2

= 5.14
AE E (-14)

By utilizing the PD relation given in Eq. (5.10), the input variable in Eqg. (5.14) can
be calculated as

N _
Ui =Yg

-C 20Oy (A
[

X = 5.15
AE E (.15)

To generate the data set for 1D structures, a bar with a length of L = 6 m, a cross-
sectional area of A = 0.01 m? and the elastic modulus of E = 2 x 10! N/m? is
chosen. The bar is discretized with 6 elements (7 material points) with a uniform
mesh size of Ax = 1 m and the link180 element is used by allowing only axial
deformations. The bar is considered for 10 basic boundary conditions as shown in
Fig. 5.2.
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Fig. 5.2. Boundary conditions in modal analyses for 1D structure

By considering all possible vibration modes of the bar for 10 boundary conditions
as shown in Fig. 5.2, 50 data sets are obtained. The data sets are arranged as shown
in Table 5.1. Specifically, for each vibration mode of the bar, the displacements of
all nodes are obtained. The displacement of node k is added into the output variable
column in Table 5.1. The displacements of the remaining nodes (-3, Uk-2),
WUk-1)) Uk+1)r U(k+2)r Ugk+3)) are added into the first 6 columns in Table 5.1. The

input variable in 7% column is calculated by using Eq. (5.15).

Table 5.1. Arrangement for the dataset for 1D machine learning model

Output variable
Input variables

dataset

Uk-3) | Uk-2) Uk-1) | Uk+1) | Uk+2) | Uk+3) FX(k)Ax Uk)
AE
1 0 0.0817 | 0.1414 | 0.1414 | 0.0817 0 0.0399 0.16331
2 0 -0.1514 | -0.1514 | 0.1514 | 0.1514 0 0 0

ol-

49 0.2957 | -0.2812 | 0.2392 | 0.0914 0 -0.1808 -0.1738
50 0.2719 | -0.2626 | 0.2355 | 0.1359 | -0.0704 0 -0.1968 -0.1922

Finding the coefficients for the ML model

The data are split into two parts for training and testing purposes. The first 45 data
sets are used for training and the remainders are used for testing the accuracy of the
ML model. By using linear regression, the coefficients for the relation given in Eq.
(5.13a) are obtained as

m, =m, =0.05134596 (5.16a)
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m, =m, =0.14955135 (5.16b)
m, =m, =0.29910269 (5.16¢)

m, =1.35942174 (5.160)

To evaluate the accuracy of the regression model, the obtained regression model is
used to predict output for the test data. By using Eq. (5.3), the mean squared error
between the predicted values and the original output values in the testing data is
calculated as 9.09 x 10720,

Extending the PD based ML model for dynamic problems

The machine learning model provided in Eq. (5.13a) can be used for static
problems. The model can also be further developed by adding the inertia term for
dynamic problems.

The relationship provided in Eq. (5.13a) can be rewritten as

E 1 {mlu(k?ﬁ) T MUy + MUy gy

+b,,,=0 (5.17)
2 x(k) '
AX m; +m4u(k+1) + msu(k+2) + m6u(k+3) - u(k)]

Next, by adding the inertia term, Eq. (5.17) can be extended for dynamic problems
as

.. E 1 MUu_g MUy 5 +MUy o
Pl = AXC M. +B,4 (5.18a)
X-m, +m4u(k+1) + msu(k+2) + m6u(k+3) _u(k)
or
.. E 1
Pl = _(mj Ui _u(k))+bx(k) (5.18b)

2
AX* m,

where the linear regression coefficients are presented in Eq. (5.16).

5.4.2. PD based machine learning model for two-dimensional structures

In this section, first, the machine learning model for 2D is presented. Next, training
and testing data set are obtained from modal analyses by using ANSYS. The data
set is then used for linear regression analysis to obtain the regression coefficients
for the machine learning model.

The displacement of the material point k can be determined based on the
displacements of its family members and the applied forces. In the discretized
model, the material point k with a horizon size of § = 3.015Ax has 28 family
members that can be numbered in the order as shown in Fig. 5.3.
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Fig. 5.3. PD horizon in the 2D model

Similar to the 1D structure, the displacement of a material point k can be assumed
as a linear function of the displacements of its family members and the applied
forces as

< 2(1+v) 2(1+v)
Uy = Z;(ajuj +byv, )“{ En Fx(k)J“Ld[ cn Py (5.192)

-

2 2(1+v) 2(1+v)
Voo = 2 (MU +nyv; )+ p( - Fx(k)]m[ = Fyu0 (5.19b)

j=1
or

2(1+ 2(1+
u(k)zaj.uj+bj.vj+c( (Eh‘/) Fx(k)}rd[%':y(k)j (5.19c)
2(1+v 2(1+v

V(k):mj'uj+nj'vj+p(%ﬁmj-”}( (Eh )Fy(k)] (5.19d)
with
8 =[a,8, 8] (5.19%)
b, :[bl’bz""’bzs] (5.19f)
m; :[ml’mzf"imzs] (5.199)
U LTSN (5.19h)
Uy ={uy, Uy, U (5.199)
Vy = [V Ve Vag (5.19h)

where a;, b;, m;, n;, ¢, d, p, q are coefficients that need to be determined for the
ML model. The terms Fy ), Fy ) represent external forces in x, y directions that
are applied to the material point k.

Note that the vectors a;, bj, m;, n; store the coefficients a;, bj, mj, n; which are
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associated with 15¢, ...,28%" family members of the material point k. Similarly,
vectors u; and v; store displacement components of 1°, ...,28 family members
of the material point k as shown in Fig. 5.3.

Generating the training and testing data set

In this section, the training and testing data for Eq. (5.19) is obtained from the modal
analysis. The data set includes 58 input variables and two output variables
(u(k)' U(k))-

By using Eq. (5.11c, d, g) the last two terms on the right-hand side of Eq. (5.19c-d)
can be represented as

2(1-|—v) by, 24 20
Eh  *®  Chax 7;(33) (5.202)
b,
2(1+ V) F y(K) 24 (520b)

Eh  '®  ChAx 7(3)

where C represent the bond constant given in Eq. (5.119).
By using the PD relationships given in Eq. (5.12), the input variables in Eq. (5.20)
can be calculated as

N
2(1+v) {Z}Cﬂ(k)(j)s(k)(j) cos gV, 24
Foo = = 3 (5.21a)
Eh ChAx 7;(3 )
N
2(1+v) _{Z;Cﬂm(j)s(kxj) singV, ”
Floo=—— 5.21h
Eh ® ChAx (%) (5.210)

To generate data set for 2D structures, a 6 X 6 m? square plate is chosen as shown
in Fig. 5.3. The plate has a thickness of 0.1 m, the elastic modulus of E =
2 x 10! N/m? and Poisson’s ratio of v = 1/3. The plate is discretized with a mesh
size of Ax = 1 m. The material point k located at (x = 3 m,y = 3 m), shown in
blue, and its 28 family members, shown in red, are considered for the data set.

Note that, the dimensions of the plate, as well as the elastic modulus, are chosen
arbitrarily for obtaining the data set. The ML model is expected to be applicable for
any geometry and linear elastic material.

The data set is obtained from modal analyses for the plate by using the PLANE182
element in ANSYS. The plate is considered in 16 basic boundary conditions as
shown in Fig. 5.4. In each boundary condition, the 20 possible vibration modes of
the plate are considered. The displacements of the material point k and its 28 family
members are obtained and added into the data set. Therefore, the data set includes
320 deformation states and it is arranged as shown in Table 5.2. Specifically, in
each vibration mode of the plate, the displacements of all nodes are obtained. The
displacements of node k (see Fig. 5.3), (wx), V)), are added into the two last
columns in Table 5.2 for the output variables. The displacements of the remaining
nodes (uy, Uy, *** Uyg, V1, Vg, -+ Vyg) are added for the first 56 columns in Table 5.2.
The input variables in 57 and 58" columns are calculated by using Eq. (5.21).
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Fig. 5.4. Boundary conditions in modal analyses for the training model for 2D
structures

Table 5.2. Arrangement for the dataset for 2D machine learning model

Input variables Output
Dataset variables
Uy Usyg 2 vy | 2(1+V) 2(1+v) Uy | Y
Eh x(k) Eh y(k)
1 |-0.0014 -0.0014|0.0012 0.0012 -3.4E-05 3.4E-05 -0.0015] 0.0015
2 0.0014 0.0014 |0.0012 0.0012 3.4E-05 3.4E-05 0.0015 | 0.0015
319 |-0.0023 0.0023 |0.0011 -0.0011 0 0 0 0
320 |-0.0024 -0.0024[0.0004 0.0004 -0.0006 -0.0008 -0.0005]-0.0007

Finding the coefficients for the ML model

To obtain the coefficients for the ML model, the obtained data set is split into two
parts in which the 310 deformation states are used for training purposes and the
remainders are used for testing the accuracy of the ML model. By using the training
data, the coefficients of the linear relation given in Eqg. (5.19) are obtained by using
linear regression as
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a‘j :[awaz"”’aza]

:[2.44126487><10’2, 1.72599524x1072, 5.08783725x107%, 7.11047181x1072,
5.08783714x1072, 1.72599441x1072, 1.27196452x1072, 5.02786632x107?,
1.42209416x107*, 5.02786703x107%, 1.27196600x107%, -1.46844059%107¢, (5.22a)
—4.0248502x107%, 3.72502411x107%, -3.46583395x107°, -4.29021655x107®, '
—1.4904684x107%, 1.27196564x1072, 5.02786706x1072, 1.42209409x107?,
5.02786670x1072, 1.27196465x1072%, 1.72599458x1072, 5.08783714x107?,
7.11047206x107%, 5.08783737x1072, 1.72599507 x107?, 2.44126477><10’2J

bj =[b1’b21""bzs]

= [-5.00827301><10’9, -1.72599315x107%, -2.54392470x107%, 8.08215284x10°,
2.54392437x107%, 1.72599372x107%, -2.54391797x1072, -5.02786804 x1072,
-9.15180233x10°°, 5.02786809x107%, 2.54391712x107%, 7.52227191x107°, (5.22b)
1.07005713x107°, 3.63822413x10°°, 4.78426226x107°, -1.99145690x107°, '
9.09132078x10°°, 2.54391711x107%, 5.02786812x1072, -1.08530537 x10°®,
-5.02786775x1072, -2.54391817 x1072, 1.72599362x1072, 2.54392469x107?,
5.87137186x107°, -2.54392448x1072, -1.72599313x107, -6.71179578x10’9]

[c d]=]4.42141045x10™, 3.40539888x 10" | (5.22c)

m, =[m,m,,---,my]
= [-1.01969796x10’9, -1.72599441x1072, -2.54391664 x1072, -3.12205277 x10°®,
2.54391866x107%, 1.72599234x1072, -2.54392424 %1072, -5.02786808x 1072,
3.25989664 x10°%, 5.02786841x107?, 2.54392514x1072, -5.28682972x107%°, 5.22d)
-4.53987184x10°, -9.22966016x10°°, -1.53501892x10°¢, -8.77134865x10°, =
-8.79935283x107%°, 2.54392457x1072, 5.02786845x1072, 2.19821744x10°®,
-5.02786748x107?, -2.54392403x 1072, 1.72599262x107?, 2.54391866x1072,
-2.71851724x10°%, -2.54391645x 1072, -1.72599468x1072, -2.58653592x10°° ]
n; :[nlan'...,nza]
=[-1.14255206><10’8, 1.72599501x1072, 1.27196621x1072, -2.96128749x10°%,
1.27196573x1072, 1.72599359x1072, 5.08783489x1072, 5.02787379x107?,
-1.67365554x107, 5.02787515x107%, 5.08783560x1072, 2.44126537x1072, (5.22¢)
7.11046716x1072, 1.42209499x107%, 1.42209501x107*, 7.11046683x1072, '
2.44126562x1072, 5.08783559x107%, 5.02787519x1072, -1.70078338x1077,
5.02787426x107%, 5.08783456x1072, 1.72599343x1072, 1.27196623x1072,
-3.31381429x10°%, 1.27196654x1072, 1.72599505x1072, -1.41419238x10-8]

[p q]=[-254221850x10"°, 4.42141016x10™" | (5.22f)

Similar to the 1D model, by using the testing data, the mean squared error between
the predicted values and the original values from testing data is 6.42 x 10723,

Extending the PD based ML model for dynamic problems
As given in Eq. (5.22), the coefficients d and p are very small which can be ignored

as
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d~0;p=0 (523)
Therefore, Eq. (5.19) can be rewritten as

2(1+
Ugy =a;-Uj+Db;-v, +C[% Fx(k)J (5.24a)
2(1+v
v(k):mj-uj+nj-vj+q(%ﬁ(k)} (5.24b)
or
— 2(1+v
_[ai'uj+bj'Vj_u(k)}+bx(k) ( )AXZZO (5.24c)
c Eh
1 —  2(1+v
—[mj SRR ”(k)}%(k)%mz =0 (5.24d)
q
or
Eh 1 _
2(1+v) AX oLauy+b; v —ug J+b =0 (5.24e)
Eh 1 _

ma[mj ‘U;+n; -vj—v(k)}b

Therefore, by reintroducing the inertia forces on the left-hand side of Eqgs. (5.24e-

f), the machine learning model can be extended for dynamic problems as

. Eh 1 _
Py = 2(1+v)Ax? E[ai Uy by vy =g ] +b, (5.253)

. Eh 1 _
P = 2(1+v)AX* a[m,— U0V =V [+ (5.25b)

0 (5.24f)

y(k) ~

5.5. Numerical implementation

As given in Section 5.4, the PD based ML models for 1D and 2D structures are
obtained for material points with full interactions with their family members.
Specifically, the 1D ML model is applicable for material points with 6 interactions
and the 2D ML model is applicable for material points with 28 interactions.
However, for material points that have some missing family members or broken
interactions such as material points near boundary surfaces or near crack surfaces,
the developed ML models can produce significant errors. Moreover, generating
training data for all of these special cases can be very time-consuming. Therefore,
a hybrid approach that couples the ML model with the PD model is used. The
behaviours of the material points with full interactions are predicted by using the
ML model. Meanwhile, all other material points are predicted using the PD model.

Similar to the conventional PD solution, the deformations of structures can be
obtained by using a meshless scheme. The domain is divided into a uniform mesh.
In this study, for static and quasi-static loading conditions, the adaptive dynamic
relaxation (ADR) method [76, 77] is used (Appendix Al). For dynamic problems,
the explicit time integration scheme [44] is used.
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For 1D problems, the PD region is defined by material points with less than 6
interactions (near boundary regions). Meanwhile, the ML region is defined by
material points with 6 interactions (regions that are far from boundaries). For 1D
static problems, the displacements of PD material points are obtained by solving
the PD equations of motion given in Eq. (5.9). Then based on the displacements of
PD material points, the displacements of ML points are obtained by using Eqg.
(5.13). For 1D dynamic problems, the force densities for all material points,
including PD and ML regions, are calculated. If a material point belongs to the PD
regions, the PD force densities for that material point are obtained by using Eqg.
(5.9). Meanwhile, the force densities of material points belong to ML regions are
calculated by using Eq. (5.18). After that, the equations of motion are solved by
using the time explicit integration scheme.

For 2D problems, the PD region is defined by material points with less than 28
intact interactions (near boundaries and crack surfaces). Meanwhile, the ML region
is defined by material points with 28 intact interactions (regions that are far from
boundaries and crack surfaces). For 2D static problems, the displacements of
material points in PD regions are obtained by solving the PD equations of motion
given in Eq. (5.11) and the displacements of material points in ML regions are
obtained by using the linear relations given in Eq. (5.19). For 2D dynamic problems,
the force densities for all material points, including PD and ML regions, are
calculated according to Eq. (5.11) or Eq. (5.25). After that, the equations of motion
are solved by using the time explicit integration scheme.

5.6. Numerical results

In this section, first, the PD based machine learning models are verified by
considering various examples of 1D, 2D structures. As presented in Section 5.5, a
hybrid approach for coupling the machine learning models and bond-based PD
models are used. The results obtained by the coupled approach is compared to PD
and finite element analysis (FEA) solutions. The FEA solutions are conducted by
using ANSYS commercial software with the LINK180 element for the 1D bar and
PLANE182 element for the 2D plate. To further verify the capabilities of the
coupled approach, damage predictions on a plate with pre-existing crack subjected
to tension, on a 2D representation of a three-point bending test, and a plate subjected
to dynamic loading is performed.

5.6.1. Verification for 1D model

In this section, a 1D structure subjected to different loading conditions is
investigated. The displacements of 4 material points on the left end and 4 material
points on the right end of the bar are obtained by solving the PD equation of motion.
On the other hand, the displacements of the remaining material points are obtained
by using the machine learning model.

Bar subjected to simple axial loading

A bar with a cross-sectional area A = 0.2 X 0.2 m? and a length of L = 1 m is
investigated as shown in Fig. 5.5. The bar has an elastic modulus of E =
69 x 10° N/m?. The bar is fixed on the left end and it is subjected to two different
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loading conditions which are the tensile load of E, =5x 107 N and the
compressive load of F, = =5 x 107 N.

y 0.2m
/ % 0.2m
________________________ _’_7_;
I=1m ‘
(@)
x=0 x=1L

oo o L+o4-+o-+-+‘ ----- ~
;\ZH_/ .
(b)

Fig. 5.5. Bar subjected to axial loading (a): geometry, (b): model discretization

The bar is discretized with uniform 100 integration points. To implement the
boundary condition, three fictitious points [26, 95] are added on the left end of the
bar as shown in Fig. 5.5(b). Displacements of three fictitious points as well as the
displacement of the material point located at x =0 are set equal to zero. Therefore,
as shown in Fig. 5.5(b), the first four material points on the left end of the bar are
subjected to the zero displacement condition. In Fig. 5.5(b), the red points represent
the material points in the real region, and black points represent the material points
in the fictitious region. In the FEA model, the bar is discretized with 100 elements
by using the 1link180 element.

Fig. 5.6 shows the displacement variations along the bar for two loading conditions.
As can be seen from the figures, the results captured by the coupled machine
learning and PD models match very well with the results from FEA.
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Fig. 5.6. Displacement variation along the bar subjected to an axial force (a): F, =
5x 107N, (b): £, = =5x 10’ N

Bar subjected multiple axial loading

For further verification, another bar with different geometrical and material
properties is investigated as shown in Fig. 5.7. The bar has a cross-sectional area of
A=0.02m? and length of L=2m and the elastic modulus of E =
3.8 x 10° N/m?. The bar is subjected to forces F; = 5 x 10° N at the right end,
F, =04F;atx; =0.6mandF, = 0.5F; at x, = 1.4 m.

y X % 0.1m

i F, F, / 0.2m
x=0 ¥
oo o L+o4-+o+-+k ————— —~

L,V_\_/ X

u=>0

=L

Fig. 5.7. Bar subjected to multiple axial loading

The bar is discretized with uniform 200 integration points. Fig. 5.8 shows the
displacement variation along the bar. As can be seen from the figure, the results
captured by the coupled model match very well with the FEA results.
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Fig. 5.8. Displacement variation along the bar length

Bar vibration

In this example, the vibration of a bar with a length of L = 1 m, a cross-sectional
area of A = 0.05m? is investigated. The bar has an elastic modulus of E =
2 x 10 N/m? and it is discretized with a mesh size of Ax = 0.005 m. Initially,
the bar is subjected to a displacement gradient of du/dx = 0.1. Later, the bar is left
to freely vibrate meanwhile the left end is fixed [44].

Fig. 5.9 shows the displacement variation of a material point located at x = L/2.
As can be seen from the figure, the results captured by the coupled model match
very well with the results in both PD and FEA. Therefore, the accuracy of the
coupled ML and PD models is verified.
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Fig. 5.9. Variation of displacement u (m) of the material located at x = L/2

5.6.2. Verification for 2D model

In this section, the coupled 2D model is verified by considering various examples
of 2D structures with different geometrical and material properties.

Plate subjected to tension

A square plate with dimensions of L = W = 1 m and thickness of 2 = 0.01 m is
investigated as shown in Fig. 5.10(a). The plate has an elastic modulus of E =
69 x 10° N/m? and Poisson’s ratio of v = 1/3 and it is subjected to tensional force
per unit length of f, = 2 x 108 N/m.

The plate is discretized uniformly with a mesh size of 4x = L/100. Similar to 1D
problems, the plate is discretized with two regions as shown in Fig. 5.10(b). The
PD regions, shown in red, include 3 layers of material points on 4 edges of the plate.
The displacements of these points are obtained by solving the PD equations of
motion. Since the effects of near-surface boundaries are significant in the PD
models, the surface correction [44] is adopted for the PD regions. The remaining
material points, shown in blue, belong to the ML region. The displacements of these
material points are obtained by using the machine learning model.
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Fig. 5.10. Plate subjected to axial loading (a): geometry, (b) Model discretization
(PD regions are shown in red, ML regions are shown in blue)

Fig. 5.11 and Fig. 5.12 present the variations of displacement components of the
plate. Fig. 5.13 shows variations of displacement components along two centrelines
x =L/2andy = W /2. As can be seen from the figures, the results captured by the

coupled model match very well with FEA results.
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Fig. 5.11. Variation of displacement u (m) on the plate captured by (a): FEA, (b):
coupled ML and PD models
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Fig. 5.12. Variation of displacement v (m) on the plate captured by (a): FEA, (b):
coupled ML and PD models
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Fig. 5.13. Variations of displacements (a) u along y = W /2; (b) v along x = L/2

(ML-PD: coupled ML and PD models)

Fig. 5.14 shows the comparison of the computational time for the bond-based PD
model and the coupled approach. The relationships between run-time per time step
and the total number of material points in the discretized models are considered. In
the PD solution, the adaptive dynamic relaxation (ADR) method presented in
Appendix Al is used [76, 77]. In the coupled solution, the ADR method is also used
for the PD region. As can be seen from the figure, the solution by using coupled
ML and PD models requires less computational time for each time step than the
conventional PD solution. Therefore, by using the coupled ML and PD models, the
computational cost can be reduced.

0.16 . . : :
——ML-PD ul

0.14

0.12

c o <
o o o °
BN 0 =

Run time per time step (s)

0.02

0 1 1 1 I
0 | 2 3 4 5

Number of material points %<10?
Fig. 5.14. Run time (s) per time step vs. the number of material points

Plate with square cut-out subjected to tension

In this section, a square plate with dimensions of L = W = 0.05 m and thickness
of »=0.0005m is investigated as shown in Fig. 5.15(a). The plate has a
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0.01 x 0.01 m? square cut-out in the middle and it is subjected to loading condition
of uy,=10.005m at two ends. The plate has an elastic modulus of E =
192 x 10° N/m? and Poisson’s ratio of v = 1/3. The plate is discretized uniformly
with a mesh size of 4x = L/100. As shown in Fig. 5.15(b), the PD regions are
shown in red and the ML regions are shown in blue. Similar to the previous
example, the surface correction [44] is adopted for the PD regions.

L
Uy | < /4 - U
(a)
0.05
0.04
A0.03
)
-
0.02
0.01
O T T I I I I
0 0.01 0.02 0.03 0.04 0.05
X (m)
(b)

Fig. 5.15. Plate with square cutout subjected to axial loading (a): geometry, (b):
model discretization (PD regions are shown in red, ML regions are shown in blue)

Fig. 5.16 and Fig. 5.17 show the displacement fields on the plate. Fig. 5.18 shows
variations of displacement components along two centrelines x = L/2 and y =
W /2. As can be seen from the figures, the results captured by using coupled ML
and PD models and the FEA have a good agreement which shows the accuracy of
the coupled model for 2D.
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(ML-PD: coupled ML and PD models)
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5.6.3. Damage predictions

After verifying the accuracy of the hybrid approach by coupling of ML and PD
models, in this section, damage predictions for 2D plates are presented. To properly
capture the behaviours of the structures with progressive damages, the PD regions
and ML regions are updated adaptively. At each time step, material points with 28
intact interactions are updated and the behaviours of these material points are
obtained by using the 2D ML model. On the other hand, the behaviours of material
points with less than 28 intact interactions, which are either near boundary surfaces
or near crack surfaces, are obtained by using PD solution. Similar to the previous
examples, the surface correction [44] is adopted for the PD regions near boundary
surfaces.

5.6.3.1. Plate with pre-existing crack subjected to tension

In this example, a plate with dimensions of L x W = 0.5 x 0.806 m? and thickness
of ~ =0.01 m is investigated as shown in Fig. 5.19 [156]. The plate has a pre-
existing crack with a length of 2a = 0.1 m in the middle. The material properties
are represented by the elastic modulus of E = 2.16 x 10! N/m?, Poisson’s ratio
of v = 1/3, fracture toughness K;. = 70 x 10 Nm~—3/2[91]. For simplification,
the critical energy release rate of the material is calculated as G, = G;. = K2/E =
21233 ]/m?. The critical stretch can be calculated by using the relation given in
Eq. (1.7b) as s, = 0.0021.

The plate is subjected to incremental displacements on top and bottom by |Av| =
1078 m per each time step as shown in Fig. 5.19. In the numerical model, the plate
is discretized with a mesh size of Ax = L/150. As shown in Fig. 5.19(b), to apply
loading conditions, three layers of material points, shown in red, are added on top
and bottom of the plate and incremental displacements are applied to these material
points as

Viop) = Viggp +107dt (M) (5.33a)
Viooy = " Vipary ~ 107t (M) (5.33b)
Ov(bot) = OV(top) =0 (5.33c)

where vy and "vg,ey represent displacements at the current time step of
material points on the top and bottom boundaries, respectively. The terms "‘1v(top)
and "‘1v(bot) represent displacements at the previous time step of material points

on the top and bottom boundaries, respectively. The time step size is chosen as dt =
1s.
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Fig. 5.19. Plate with pre-existing crack subjected to tensional loading

Fig. 5.20 shows the damage evolution on the plate. As shown in Fig. 5.20(a), the
crack starts propagating when the applied displacements equal to 3.5 X 107 m. As
the applied displacements increase, the crack propagates horizontally as expected
and it nearly reaches two sides of the plate when applied displacements are
5.3 x 10~* m. This observation has good agreement with the experimental results
captured by Simonsen and Tornqvist [156].

Fig. 5.21 shows the machine learning and PD regions at different load steps. As can
be seen from the figure, the PD and ML regions are adaptively updated as damage
progresses. All material points with less than 28 intact interactions are determined
at each load step and they are defined as PD region. The remaining material points,
shown in blue, are defined as the ML region. As shown in Fig. 5.21, there are a
small number of material points, shown in red, that need to use PD solution. As
shown in Fig. 5.21(d), when the applied displacement equals to 5.3 x 10™* m, the
PD region includes 1602 material points, meanwhile, the total number of material
points is 37750. Therefore, the computational cost for the simulation can be reduced

by using this coupled approach.
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Fig. 5.20. Damage evolution on the plate when the applied displacement equals to
(@):3.5x107*m, (b): 45x 10"*m, (¢): 5x 10™* m, (d): 5.3 X 10™* m
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Fig. 5.21. Adaptive machine learning and PD regions when the applied
displacement equals to (a): 3.5 x 10™* m, (b): 4.5 X 10™* m, (c): 5 X 10™* m,
(d): 5.3 x 10~* m (PD regions are shown in red and ML regions are shown in

blue)

5.6.3.2. Three-point-bending test

In this example, a 2D representation of a three-point-bending test for a concrete
beam conducted by Jeng and Shah [93] is investigated as shown in Fig. 5.22. The
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dimensions of the plate are defined by S = 0.3048 mand H = 0.0702 m. The plate
has an initial crack located at X = 0.25S with a crack length of a = 0.5H. The
material properties are represented by the elastic modulus of E = 30 x 10 N/m?,
Poisson’s ratio of v = 1/4. For simplification, the critical energy release rate of the
material is chosen as G, = G;. = 20.7368 ]/m?[93]. The critical stretch can be
calculated by using the relation given in Eq. (1.7b) as s, = 4.4376 x 107%,

0.18

% 0.58 - . J

Fig. 5.22. Three-point bending problem

The plate is discretized with uniform 301 x 58 material points. The quasi-static
loading is applied by increasing the displacementby Aw = —107% atx = 0.6S,y =
H for each load step. A zero vertical displacement v = 0 is applied at x = 0.1S,
y=0andx =1.1S5,y = 0.

Fig. 5.23 shows the damage evolution on the plate. As expected, the crack
propagates towards the middle position of the specimen. As shown in Fig. 5.23(b),
the angle between the crack path and vertical axis is approximate 35° which shows
good agreement with the experimental result [93]. Fig. 5.24 shows the adaptive PD
and ML regions at different load steps. Similar to the previous example, the PD and
ML regions are automatically updated based on the progressive damages in the
structure. As shown in Fig. 5.24(c), when the applied displacement equals to
14 x 10~° m, the number of material points in the PD region is 2523, which is
14.5% of the total number of material points in the discretized model, 17458.
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Fig. 5.23. Damage evolution on the beam when the applied displacement equals
to(a): 8x 10™°m, (b): 11 x 105 m, (c): 14 X 10> m
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Fig. 5.24. Adaptive machine learning and PD regions when the applied
displacement equals to (a): 8 X 107> m, (b): 11 x 10™>m, (c): 14 x 10~> m (PD
regions are shown in red and ML regions are shown in blue)

5.6.3.3. Kalthoff experiment

In this section, the experiment presented by Kalthoff and Winkler [92], Kalthoff
[87, 91] for a pre-notched plate subjected to dynamic load is simulated by using the
coupled ML and PD models. Since the problem is symmetric, only the upper half
plate with dimensions of L = W = 0.1 m and thickness of 2z = 0.009 m is modeled
as shown in Fig. 5.25. The plate is made of steel with the elastic modulus of E =
2 x 10*XN/m?, Poisson’s ratio of v = 1/3. The fracture toughness of steel is ;. =
70 x 10° Nm~3/2[87]. For simplification, the critical energy release rate of the
material is calculated as G, = G;. = K2/E = 22714 ]/m?. The critical stretch can
be calculated by using the relation given in Eq. (1.7b) as s, = 0.0089. The left edge
which is under the crack surface is subjected to velocity conditions as [96]

lvO fort<t,
V=1t

v, fort>t,

(5.34)

with vy = 16.5m/s, t, = 1us.

The plate is discretized into 150 x 150 material points and the solution results are
obtained by using a dynamic explicit time integration scheme with a time step of
0.01us and the total simulation time of 80us. Similar to the previous examples, the
solution results are obtained by solving Eq. (5.11) for the PD region and by using
Eq. (5.25) for the ML region.
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Fig. 5.25. The geometry and symmetrical boundary conditions for the Kalthoff
experiment

Fig. 5.26 presents the damage evolution on the plate. As can be seen from the figure,
under dynamic loading conditions, the crack propagates up 67.3° orientation with
respect to the horizontal axis. After 80us, the crack propagates nearly to the top
edge of the plate as shown in Fig. 5.26(d). As can be seen from the figure, the crack
paths captured by coupled ML and PD models match very well with the
experimental results in [87, 91, 92]. Fig. 5.27 shows the PD and ML regions at
different time steps. As shown in Fig. 5.27(d) for the coupling model at 80us,
12.68% of the total number of material points (2909 per 22950 material points)
belong to the PD region.
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Fig. 5.26. Damage evolution on the plate at (a): 20us, (b): 40us, (c): 60us, (d):
80us (displacements are magnified by 5 times for deformed configurations)
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Fig. 5.27. Adaptive machine learning and PD regions at (a): 20us, (b): 40us, (c):
60us, (d): 80us (PD regions are shown in red and ML regions are shown in blue
in the undeformed configuration)

5.7. Concluding remarks

In this chapter, the PD based machine learning models for 1D and 2D structures are
presented and verified by conducting various problems. The main conclusions
arising from the present study are listed below:

(1) The PD based machine learning models are obtained for linear elastic
material for the first time in the PD literature by using linear regression. The
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linear relationships between displacements of a material point with
displacements of its family members and its applied forces are presented in
the analytical form which can be used straightforward.

(2) The machine learning models for both 1D and 2D structures can be coupled
with the traditional PD solutions. The results captured by the coupling
models show good agreements with both PD and FEA results.

(3) The capability of the coupled model is also further verified by considering
various fracture problems. The results captured by the coupled model have
very good agreement with the experimental results.

(4) The PD and ML regions can be updated adaptively at each time step.
Therefore, the coupled ML and PD model can use the advantage of the PD
model in terms of capturing complex fracture problems, and the advantages
of the machine learning model in terms of saving computational cost.

(5) The hybrid approach proposed in this study can be further applied in the PD
literature for other types of structures.
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6. DISCUSSION
6.1. Novelty of the research

The biggest novelty of the research in this thesis lies in successfully applying a new
method “Peridynamics” to predict progressive damages in ship and offshore
structures. Unlike other methods, peridynamics can predict complex fracture
phenomena in ship and offshore structures without any special treatment.
Therefore, the structural behaviours during the damage process can be fully
understood.

To apply peridynamics for damage prediction in ship and offshore structures, a
crucially important task is the development of PD models that can analyse complex
beam and shell structures. This work is done by the research presented in Chapter
2. Specifically, novel PD models for predicting damages in 3D complex beams, 3D
shells, and complex stiffened structures were developed. These PD beam and shell
models were the first studies that extended the applications of PD for ship and
offshore structures. These PD beam and shell models can also be used for any type
of beam and shell structures to predict possible damages that may occur during the
operation process.

Moreover, to improve the capability of the developed PD models in Chapter 2 for
large deformation problems, novel PD models for geometrically nonlinear analyses
of 1D, 2D, and 3D structures, 3D beams, and plates were developed in Chapter 3.
Therefore, PD can be further used to predict damages in ship and offshore structures
for large deformation problems.

As also discussed in Chapter 1, due to the repetition of the sea loads, fatigue
damages are very common problems for ship and offshore structures. Therefore, in
Chapter 4, a novel energy-based PD fatigue model, which is more suitable for
complex shell structures such as ship and offshore units, was developed.

Finally, due to nonlocal interactions, the PD simulations are often more expensive
than FEA. Moreover, a relatively fine mesh is often used in PD simulations to
ensure well-predicted crack paths. As a result, PD simulations are often expensive.
On the other hand, data-driven models are becoming an alternative solution for
many physics-based models in engineering and solid mechanics. Therefore, to
reduce the computational cost for the simulations, this thesis proposed a novel idea
to couple PD with machine learning for damage prediction. The rightness of the
proposed idea is proven by the successful development of a novel PD-based
machine learning model for fracture prediction was developed. The PD-based
machine learning model can be adaptively coupled with the traditional PD model
to predict complex fracture problems. By coupling PD-based machine learning and
the traditional PD models, the hybrid models can take advantage of both data-driven
and physics-based models. The data-driven models can help to reduce the
computational cost. Meanwhile, the physics-based model can help to maintain the
accuracy of the predictions for highly complex phenomena.
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6.2. Contributions of the research findings
6.2.1. Contributions to the peridynamic literature

The biggest contribution of this research to the PD literature lies in expanding the
applications of peridynamics to ship and offshore structures as well as any other
types of beams and shell structures in the industry. To the best of the author’s
knowledge, this is the first time in the PD literature that the progressive damages of
ships and offshore structures can be predicted by using Peridynamics.

Throughout the thesis, various novel PD models were developed with verified
accuracy and proven capabilities. In summary, there are four main contributions to
the peridynamic literature achieved in this thesis as follows

e Developed linear and nonlinear PD models for linear and geometrically
nonlinear analyses of complex 3D beam and shell structures. These works
expanded applications of the PD theory to slender, thin-wall, and stiffened
structures which are the majority of offshore and onshore units in many
industries.

e Developed nonlinear PD models for geometrically nonlinear analysis of 1D,
2D, and 3D structures. As discussed in Chapter 1, within the elasticity, the
simplified 2D and 1D PD models in the PD literature are based on small
deformations assumption which can be applicable only for linear elastic
deformations. Therefore, by developing PD models for geometrically
nonlinear analyses of 1D, 2D, and 3D structures, PD theory now becomes
fully applicable for linear elastic, geometrically nonlinear, and material
nonlinear problems.

¢ Developed a novel energy-based PD fatigue model that is suitable for shell
and stiffened structures.

e Proposed and proved a novel approach to reduce the computational cost for
PD simulations by coupling the traditional PD model with a PD-based
machine learning model. This work can also open a new research direction
for the PD community since the idea can apply to many PD models in many
fields.

6.2.2. Contributions to the industry

This thesis proposed and successfully applied a new method, namely
“Peridynamics”, for damage prediction in ship and offshore structures. The
developed PD models in this thesis can be used to predict brittle damages in ships
and offshore structures which may be due to high cycle fatigue loading, low-
temperature conditions, high-loading rate, multi-axial stress constraint, or low
weldability of steel etc. As a mesh-free method based on the nonlocal theory,
peridynamics can predict complex fracture problems without any special treatment.
This method overcomes the limitations of the traditional FEA and modified
versions of FEA that are currently used in the marine industry for structural design
and assessment. Therefore, peridynamics can be a new powerful method for
structural design and damage prediction in the shipbuilding and offshore industry.

238



By using such a new method, the behaviours of ship and offshore structures with
progressive damages can be clearly understood and further actions can be
announced to enhance the safety of the structures.

6.3. Recommendations for the industry

As demonstrated in this thesis, PD is suitable for damage prediction and it is also
applicable for complex ship and offshore structures. Therefore, the following future
applications of PD are recommended:

e The use of peridynamics for design stages

In the design stages, to ensure the safety of ship and offshore structures, many
structural assessment processes including structural analysis for critical loading
conditions as well as fatigue design assessments are conducted. For this purpose,
PD can be a powerful tool that can predict possible damages on the structures as
well as help to clearly understanding structural responses during the damage
process. Peridynamic models can be coupled with FEM models for dealing with
large complex structures. Specifically, FEM models can be used for global analyses
to determine hotspot locations. Meanwhile, PD models can be used for local
analyses for hotspot locations to answer whether there are possible damages or not.
If there are some possible damages, the PD analyses can answer important questions
such as where the exact locations are, when the damages happen, and how the
damages will propagate. As the result, further action can be made to strengthen the
structures to avoid the damages.

e The use of peridynamics for structural assessments

During the operational process, structures can subject to some unexpected critical
conditions or they can have some small damages due to corrosion, fatigue, or
collision. In these cases, the couple PD and FEM models can be used to investigate
the structural safety. FEM model can be used for global analysis meanwhile PD
model can be used for local analysis and damage prediction. Fundamental questions
such as are there any new damages, how (how big, how fast, which direction) the
damage will develop, what is the structural remaining strength, can be answered.
As the result, the safety of structures can be carefully estimated, and further actions
can be made if it is necessary.

6.4. Limitations

In Chapters 2-3, the novel PD models for linear and geometrically nonlinear
analyses of 1D, 2D, 3D structures, 3D beams, and shell structures were developed.
However, the developed PD formulations for beams and shells are based on a small
strain assumption. For large strain problems, the change of the beam’s cross-
sectional area and the change of the shell’s thickness need to be considered.
Moreover, the material nonlinearity was not included in the formulations of the
developed PD models. Therefore, the currently developed PD models are only
applicable for brittle materials. For ductile materials, further studies that include
material nonlinearity are needed.
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In Chapter 4, a novel energy-based PD fatigue model was developed. The PD
fatigue model is presented for 2D formulations. Also, both the energy-based PD
fatigue model developed in this thesis and the original PD fatigue model in [60]
were developed for elastic deformations which are mainly used for high cycle
fatigue problems. For low cycle fatigue problems, in which the plastic deformations
of the region surrounding the crack tip may become important, new PD fatigue
models need to be proposed.

In Chapter 5, a PD-based machine learning model was developed. The bond-based
PD formulations for 1D and 2D structures were considered. Therefore, the proposed
idea in Chapter 5 can be further extended to 3D structures, beams, and shells, as
well as other state-based PD models.

6.5. Future study

As a future study, first, the current nonlinear PD models for beams and shells
presented in chapter 3 will be further developed by considering material
nonlinearity. Second, the energy-based PD fatigue model presented in chapter 4
will be further developed for 3D structures, shells, and composite structures.
Moreover, both the energy-based PD fatigue model developed in this thesis and the
original PD fatigue model in [60] can be further extended for low cycle fatigue
problems by considering plastic deformations. Finally, the idea of the PD-based
machine learning model will be further extended to state-based PD models, 3D
structures, beams, and shell structures.
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7. CONCLUSION

Based on the research work discussed in this thesis, the following conclusions can
be drawn:

1)

2)

3)

4)

5)

The prediction of progressive damages in ship and offshore structures is
very important but challenging work. Many approaches including FEA and
modified versions of FEA have been proposed still face difficulties in terms
of predicting complex fracture problems such as crack branching and
multiple crack paths. By contrast, peridynamics is very suitable for damage
prediction even for complex fracture phenomena. However, since the
peridynamics is still in development, the applications of PD for ship and
offshore structures are very limited. Therefore, the study in this thesis to
make PD becomes applicable to ship and offshore structures are crucially
important. This will help to propose a new method for structural analysis of
ship and offshore structures which can improve structural safety.

In the literature, the PD formulations for beams and shells are still
incomplete. Therefore, a crucially important task to apply peridynamics for
damage prediction in ship and offshore structures is the development of
linear and nonlinear PD models for complex beam and shell structures. This
work is done in this thesis with the development of novel PD models for
linear and geometrically nonlinear analyses of 1D, 2D, and 3D structures,
3D beams, and plates and shells.

Fatigue design assessment is also one of the design drivers for ship and
offshore structures. Therefore, the development of a PD fatigue model that
can apply for beam and shell structures is important. This work is done in
this thesis by developing a novel energy-based PD fatigue model to predict
fatigue crack initiation and propagation.

Another important task to make peridynamics becomes applicable to
damage prediction in ship and offshore structures is reducing the
computational cost for PD simulations. As point out in this thesis, due to
nonlocal interactions, the PD simulations are often more expensive than
FEA. Besides existing approaches such as coupling with FEA, using CPU
and GPU techniques, this thesis proposed a novel method for computational
cost reduction. That is coupling the traditional PD model with the PD-based
machine learning model. The PD-based machine learning model help to
speed up the simulations while the traditional PD model help to maintain
the accuracy of the predictions for complex parts such as near boundary
surfaces or near crack surfaces.

Through this research project, a new powerful method for damage
prediction in ship and offshore structures, “peridynamics”, was successfully
developed. Although there are still some limitations that require some future
works, this thesis demonstrated the potential development of a powerful tool
for structural analysis and damage prediction which can help to improve and
ensure the safety of ship and offshore and marine structures.

241



Appendix A. Adaptive Dynamic Relaxation for static and quasi-static linear
and nonlinear analyses

In this section, the adaptive dynamic relaxation method used for static and quasi-
static problems in PD is presented. The procedure for using the explicit time
integration scheme in the ADR method is described by Madenci and Oterkus [44],
Kilic and Madenci [76]. In the ADR method, the calculation of the mass stable
matrix M, decides the stability and speed of the simulation. Too small values of
M, will cause the diverged simulations. Meanwhile, too big value of M, will
cause slowly convergent simulations which increases the simulation time.
Therefore, this section focuses on the calculation of the mass stable matrix M y;.

First, the calculation of the mass stable matrices for 1D, 2D, 3D PD models are
presented in Appendix A.1. Next, the calculation of the mass stable matrices for PD
beam models are presented in Appendix A.2. Finally, the calculation of the mass
stable matrices for PD models for plates and shells are presented in Appendix A.3

Al. ADR method used in PD simulations for 1D, 2D, 3D structures

According to Kilic and Madenci [76], Underwood [77], by using the adaptive
dynamic relaxation, the equation of motion in Eq. (1.4) can be rewritten as

N
MU +Colg = lel;”(k)(j) (t(k)(j) ~Tiio )V(j) +byg (A1)
J:
Similarly, the nonlinear PD equation of motion in Eg. (3.1a) can be rewritten as
N
tes te _ t t t
My g +Co gy = Z(Ot(k)(n - 0t<i>(k>)ov<1) + by (A.2)

j=1

where My represents the mass stable matrix, C, represents the damping matrix
[77].

For one-dimensional PD model (either linear or nonlinear models), the mass stable
matrix can be calculated as [44, 75]
1 dt?AC_0

M, >-—"2 A.3

0= 7 Ax (A3)
where dt = 1 represents the time step for a quasi-static solution [77], A is the beam
cross-section area, & is the horizon size, Ax is the mesh size used in the PD
discretized model. The term C,,, represents the PD bond constant for 1D structures.
This bond constant is given in Eq. (2.14), Eq. (5.9¢) as

2E
Cu= yva (A4)
For 2D PD models (either linear or nonlinear models), the mass stable matrix can
be calculated as [44, 75]
M, = {M‘k’ 0 } (A.53)
0 M

with
Crho?

AX
where C is the bond constant for the 2D bond-based PD model which is given in

u v 1
Mgy =M, 2 Zolt2 (A.5b)
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Eqg. (5.11e). This constant can also be calculated as
C=4b (A.6)
where b is PD constant for 2D nonlinear PD model which is given in Eq. (3.14).

For 3D PD models, the mass stable matrix can be calculated as [44, 75]

My O 0
M=l 0 M} 0 (A7a)
0 0 M
with
1, (4b)(4
MU =M! =MV >=dt? 22| = 760 A.7b
(k) ®) 0= 7% A (3 } (A.7b)

where b is PD constant for 3D nonlinear PD model which is given in Eq. (3.12).

A2. ADR method used in PD simulations for beams

For the linear PD beam model in Chapter 2, to use the ADR method, the PD
equation of motion given in Eq. (2.42) can be rewritten as

.. G -G G G
M(k)u(k) +C(k)u(k) - Z'u(k)(i)f(k)(J)V(J) + b(k) (A8)
i1

Similarly, the equation of motion for the nonlinear PD beam model given in Eq.
(3.71Db) can be rewritten as

t;:G t-G _ t£G tIWG
IVl(k) u(k) +C(k) u(k) _Zw(k)(j)of(k)(j)ov(n + b(k) (A9)
j=1

According to Underwood [77], the right-hand side of Eq. (A.8-9) should be real
physical values, but the left-hand side of Eq. (A.8-9), which includes mass stable
vector and the damping matrix which can be chosen arbitrarily to get a converged
solution. However, the matrix M, is required to be a diagonal matrix. A simple
way for determination of mass stable vectors in global coordinates is described as
follows

M& 0 0 0 0 0

0 M% 0 0 0 O
M, - 0 0 My 0 0 O (A103)

© o 0 0 M% 0 0

0 0 0 0 MZ% 0

0o 0 0 0 0 Mg

with

Mgy = Mg = Mg =max (Mg, My, M, ) (A.10b)
Mg =My =Mg :max(M("kx),M("kV),Msz)) (A.10c)

Ug Uy Uz 61 02 03
where My, May, Mgy, Mgy, Mgy, Mg, represent the components mass stable

vector corresponding to translational and rotational DOFs in the global coordinates.
. 0

Meanwhile, M), M, My, M(e,jf), M(ky), M(ekz) represent the components of a mass

stable vector in the local coordinates. The components of the mass stable vector in

the local coordinates can be calculated based on PD bond constants as
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1 dt?AC_0

O (A.11a)
Mo = Mgy Z%dtzijﬁ (A.11b)
Mg, > % dtszXCtg (A.11c)

&2 %dtzg# (A.11d)
M = %dtzg# (A.1le)

where Cqy, Cs, Cpy, Cpz, and C, are PD bond constants that are given in Eq. (2.14),
Eq. (2.24), Eq. (2.20), and Eq. (2.25) Chapter 2 or Eq. (3.51), Eq. (3.55), Eq. (3.53),
and Eq. (3.57) in Chapter 3.

A3. ADR method used in PD simulations for plates and shells

For the linear PD shell model presented in Chapter 2, to use the ADR method, the
PD equations of motion given in Eq. (2.88) can be rewritten as

+G G G G
M Uy +Cpolgy = Zl:‘/’(k)(j)fw)(j)v(n +by, (A.12)
J:

For the nonlinear PD model for plates presented in Chapter 3, to use the ADR
method, the PD equations of motion given in Eq. (3.114) can be rewritten as

N
tes te 3 tin
M(k) u(k) +C(k) u(k) - lel//(k)(j) Of(k)(j) OV(J') + b(k) (A'l3)
J:

where the mass stable matrix M can be calculated by using the same formulations

given in Eg. (A.10). The components of the mass stable vector in the local
coordinates can be calculated based on PD bond constants as

. sl 4bip7rh§2

M(k) = M(k) 2 Zdt T (Al4)

1 ., C.rho®
MY > dt? = A.15
0 =7 Ax (A.15)

1 ., 4b7hs?

M% =M% > = dt? A.16
(=M 27 A (A.16)

2
Mé > Lgee Grho” 1 (A.17)

=g AX  (AX)?
where b;,, Cs, by, represent PD constants for in-plane, shear, bending deformations
which are given in Eq. (2.62d), Eq. (2.70), Eq. (2.67b) in Chapter 2 or Eq. (3.105c),
Eq. (3.107), Eqg. (3.109c) in Chapter 3. The term C; represents PD constant for
torsional deformations which is given in Eq. (2.73) in Chapter 2.
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Appendix B. Peridynamics constants for linear PD shell model
B1. PD constants for in-plane deformations

B1.1. PD dilatation constant, d;,

By using Taylor’s series expansion and by ignoring the higher-order terms, the
displacements and rotations of material point j can be expressed as

Uiy =Ygy +Uxa (Xu) - X<k>)+“,y<k) (ym - y(k)) (B.1q)
Viiy = Vo Vi (X(j) X ) Vym (y(j) ~ Y ) (B.1b)
Wiy = Wy T W (X(j) ~ X ) Wy (V(J) - y(k)) (B.1c)
iy = O+ Orx (X(J> ~ X ) + 0y (y(,-) =Y ) (B.1d)
9,y = Oy + Oy 00 (X(j) X ) +0y 400 (y(j) ~ Y ) (B.1le)

The relations in Eq. (B.1) can be rewritten as

Uiy —Ug -
T =U ) COSP+U .y SINQ (B.2a)
Vi) Vi -

: =V COSP+V 4,y SINY (B.2b)
Wiy = Wi -

: =W, COSQ+W, ., SINY (B.2¢c)
6. -0
% =0, 140 COSP+0, 4y SINQ (B.2d)
6. ..—6
y(i) y(k) _ ;
T =0, . COSP+0, ,, SINY (B.2e)

Therefore, by using Eq. (B.2a) and (B.2b), the bond stretch for in-plane
deformations given in Eq. (2.65) can be rewritten as

_ 2 . : 02
Sty = Uy COS” @ +U  SINQPCOSQ+V, SINPCOSQ+V , SIN° (B.3)

Therefore, the dilatation for in-plane deformations given in Eq. (2.63) can be
rewritten in an integral form as

2 -
5 p2z[ Uy COS" @+U ) SINQCOS @
‘9<k)=diphj,[
0J0

By performing integrations given in Eq. (B.4), the dilatation for in-plane
deformations can be calculated as

] - dédop+2aAT,, (B.4)
V1) SINQCOSQP+V ) SIN“ @ —a AT )

7hs? 2
Sy = dip T(u’x(k) +Vo0 ) +a AT, (2 - dipﬂ'h5 ) (B.5)
Meanwhile, the classical form of dilatation can be described as
Fo =Uag +Vy00 (B.6)
By comparing Eq. (B.5) and (B.6), the PD dilatation constant diIO can be defined as
2
== B.7
p 7Z'h52 ( )
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B1.2. PD material constants, @1, @;p2, @jpz and by,

By using the stretch definition in Eqg. (B.3) and dilatation term in Eq. (B.6), the
strain energy per unit area for in-plane deformations given in Eq. (2.61) can be
rewritten in an integral form as

PD 2 )
W, = %y (u,x(k) +V,y(k)) &, (u,x(k) Vi )AT +8,,,AT
. 2

cos’ @ +U_ . SinpCcosp (B.8)

inplane(k) — ip3
b h.[ J-fo X(K) ¥ Fdédg
? HV 4 SINPCOS P+ V., SIN* @ — QAT

After performing integrations given in Eq. (B.8), the strain energy per unit area for
the in-plane deformations can be evaluated as

PD 2 2
Wirptane() = anpl(”x(k)+ Vo) =82 (Usio Vi ) AT + 80T

o s (U0 T 3V00 + Uiy + Vi + 20V, + 20y Visg ) (B.9)

+b.

P

h
2ehd” [ O‘ATm( x(k)+V,y(k))+“2AT(i)}

or
2

PD
W, =8y (“,x(k) +V,y(k>)

inplane(k) —
2 2
3(“,x(k) +V,y<k>) =40V 00 +(“,y(k> +V,x<k))
27hs?
_[aip2+bip —3 a (u,x(k) +V,y(k))AT(k)

27ho?
+ (am +b, —3 ¢ jAT(ﬁ)

By comparing Eq. (B.10) and Eqg. (2.58b) following relations can be obtained
7ho® Eh

+b

ip

ho® [

(B.10)

_ = B.1la
P12 4(l+v) (B:112)
ho® Eh
4p 2O B.11b
a'lpl+ ip 4 2(1—V2) ( )
b 27ho? _ Eh
&y, + 0, 3 a—l_va (B.11c)
b 27hs® _Eh ,
3 0, 3 a —1_Va (B.11d)
Therefore, the PD constants for in-plane deformations can be defined as
3E
b =— "~ B.12a
? w8t (1+v) ( )
a,, = m (B.12b)
4(1-v?)
Eha
&, = . ~(3v-1) (B.12c)
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a,, = lEhz (3v-1)a’ (B.12d)

-V

B2. PD constants for bending deformations
B2.1. PD constant, d,,

By using Eq. (B.2d-e), the term s, (;y in Eq. (2.68b) can be rewritten as

2 - - - 2
Sy = Oy €OS" @ =0, 1y SINPCOSP + 6, , SINPCOSP+6, ,(,SIN" ¢ (B.13)

y.x(k
Therefore, the term 9, in Eq. (2.68a) can be rewritten in an integral form as
5 c2x[ =0, 4 COS° @ =6, 4, SINQCOS @
‘gb(k) = dth.O .[o ’ . " . cdéde (B.14)
+0, x4 SINPCOSP+6, SIN" @

By performing integrations in Eq. (B.14), the term ¥, can be written as

7Z'h52(

Sy =0 =0, 00+ Hx,y(k)) (B.15)

On the other hand, the corresponding term in classical form can be described as
cCM
S = Oy Oy (B.16)

By comparing Eq. (B.15) and (B.16), the PD constant, d;,, can be defined as
2
d =——— B.17
* " zhs? ( )

B2.2. PD material constants, a;, and b,

By using Eg. (B.13) and (B.16), the strain energy per unit area for bending
deformations in Eq. (2.66) can be rewritten in an integral form as

A/ PD

2
Wbending(k) =&, (_gy,x(k) + Hx,y(k))

i B.18
gyvx(k) COSZ ¢_ y,y(k) Sin ¢COS¢ ( )

+bbhj06j02”(;0

X

J Eldéde

; 12
(o SINQCOSQY+6, ,SIN" @

After performing integrations given in Eq. (B.18), the strain energy per unit area
for bending deformations can be written as

WP —a(6 ...-0,..)
bending (k) — % \ Yx.y(k) ~ Yy, x(k)

7ho® 2 2
+ bb 12 |i3(exyy(k) - ey,x(k) ) + 4l9yyx(k)9)(yy(k) + (HX,X(k) - eyyy(k) ) }

By comparing Eq. (B.19) and (2.58c), PD constants for bending deformations can
be defined as

b, = Eh? _En*(3v-1)
T (Lv) 48(1-v?)

(B.19)

(B.20)
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B3. PD constant for shear deformations

By assuming material points k and j are very closed to each other, the
approximation 8, ~ 6, is assumed for small deformations. Therefore, the strain
energy per unit area for shear deformations given in Eq. (2.69) becomes

W -53C [ ] &, @21

By using the relations in Eq. (B.2c) and (2.71a), the strain energy per unit area for
shear deformations given in Eq. (B.21) can be rewritten in an integral form as

PD C 2
Wshear(k) I J- W ex(k))3|n¢

By performing mtegratlons given in Eq. (B.22), the strain energy per unit area for
shear deformations can be written as

= 1 3 2
Wopear) = 1 G770 [(Wx<k)+‘9y<k)) +(Wy00 = 0w } (B.23)

By comparing Eq. (B.23) and (2.58d), the PD constants for shear deformations can
be defined as
3k, E

P8t (1+v)

W, + 0,4 ) COS@

} gldede (B.22)

(B.24)

B4. PD constant for torsional deformations

By using strain energy per unit area given in Eq. (2.59b), the potential energy
corresponding to drilling rotation, 8,, can be defined as

~ [ W @A= [ kg =] 6, =2 (v, —u )ZdA (B.25)
torsmnal torsional - AT 2(1+V) z 2 X Y '
The kinetic energy corresponding to drilling rotation can be defined as

T, = %phlzzé’f (B.26)

By using Eq. (B.25) and (B.26), the Lagrangian corresponding to drilling rotation
can be obtained as

L, =T, ~U, == phl .6 [ k E—h[e ~L(v,-u )TdA (B.27)
0, o, 0, 2 227z AT 2(1+V) z 2 X B

As mentioned in section 3.3, since the torsional strain energy is fictitious, the

contribution of drilling rotation into the equation of motion other degrees of

freedom can be neglected [71]. Therefore, the equation of motion for drilling

rotation in classical continuum mechanics can be derived by using the Euler-

Lagrange equation given in Eq. (2.26) in Chapter 2 as

phl Eh [ 1 }
Pag =k —160,-=(v, -u B.2
A "1+ 2( s) (B.28)

Meanwhile, by using relations given in Eq. (B.2a-b), the PD equation of motion for
drilling rotation given in Eq. (2.77f) can be written in an integral form as
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hi .
PN i

2 -
5 27| Oy 0,5y | Vixy COS™ P +V ) SINQCOS @
z(k):CthI j — 5
0 Jo

- - 2
2 —U,, SiNPCOS@—U , Sin° @

J]fzdfdco (B.29)

By assuming material points k and j are very closed to each other, the
approximation 8,y ~ 6, is assumed for small deformations. Therefore, Eq.

(B.29) can be rewritten as

2 -
ehl ) s pon V) COS" @ +V oy SIN 9 COS @
'AY ez(k) = CthJ.O _[0 gz(k) -

Hr:zdfd(p (B.30)

By performing integrations given in Eq. (B.30), the equation of motion for drilling
rotation can be written as

pehl, i 27hs® 1

A{k)(k) gz(k) =C, T['gz(k) _E(V,x(k) _u,y(k))J (8'31)
By comparing Eq. (B.28) and (B.31), the PD constant for drilling rotation can be
defined as

3 E
C - B.32
T 25 1y ( )

- - 2
0 —U 4o SINPCOS@—U ., SiN° @
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Appendix C. Total Lagrangian Formulations For Nonlinear Analysis

In this section, classical formulations for deformation gradient, Green-Lagrange
strain, Second Piola-Kirchhoff stress tensors, and the principle of virtual
displacement are presented. The motions of a structure at different times in the
Cartesian coordinate system are shown in Fig. C1. As shown in Fig. C1, P is a
material point on the structure, and its coordinates at time t = 0 are denoted by
( °x, %y, °2). Meanwhile, the coordinates of this point at time t and t + At are
denoted by ( ‘x, “y, ‘z) and (**4tx, T4y, t*4At2)  respectively. The relationships
between these coordinates can be represented as

tx=%+"'0 (Cla)
ity _ 0y teatg (C1b)
with

ox=[% %y o] (CLo)
x=['x 'y tz]T (C1d)
Gty _ [me vaty A z]T (Cle)
a=la v W] (Caf)
Gty = [t+At0 taty t+AtW]T (Cl1g)
where '0 and "0 represent the displacement vectors for a material point which

is initially located at ( °x, %y, °z) as shown in Fig. C1 at time t and t + At,
respectively. The relationship between these vectors of displacements can be
represented as

0 ='0+0 (C2a)
with
a=[d ¢ W] (C2b)

where U represents the vector of the incremental displacements from time t to t +
At of a material point which is initially located at ( °x, °y, °2).
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Configuration at time 7+At
Surface area “*S
Volume “*V

P( “A’X, l'.,\lv, I—AIZ)

Configuration at time ¢
Surface area ‘S
Volume 'V

P('s.%y,2)

Configuration at time 0
Surface area °S
Volume ¥

Fig. C1. Motions of a structure in the Cartesian coordinate frame

C1. Deformation gradient

The deformation gradient can be defined as [70]

o'x  o'x 0]
% 3% 0%
o'y o'y o'y
X = C3a
0 3% 8% o°z (C3a)
o'z 0'z 0z
10°x 8%y 0%
or
.
X =,V (X)) (C3b)
with
.
0 0 0
V= C3c
° [6°x 3%y 802} (C30)

where ,V represents the gradient operator with respect to the initial configuration
and “xT represents the transposed vector of ‘x.

C2. Green-Lagrange strain

By using the deformation gradient given in Eq. (C3), the Green-Lagrange strain at
time t can be defined as [70]

(‘,é:%(‘xT;X—I) (C4a)

0
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which can be explicitly rewritten as [70]

o&; =%(;ai, i+ 00+ o0, 00, ;) (C4b)
o

o= 0+ 2] (30, + (30, () (c4c)
8, =, +%[(5qy)2 #(30,) ()| (Cad)
S = 4] (20, +(30,) + (0, | (cae)
s =580+ 0, T (0,000, + ()50, )+ (m)(39,)] (con
st =5 [30+ 0w 5[ (30,)(00.) +(9.) (00 )+ (o) (30 )]  (cag
o8, =5 L00+ 0, o300, )(30.)+(39,)(09.)+ (34, ) (o) ] o)

where | represents the identity matrix. The term o0, ; represents the derivative of
the displacement ‘G, (at time t) with respect to the initial configuration, Oxj. The
derivative ,0, ;can be represented as

_o('a)

t/\

G, . =

0™k, j 0
6( XJ)

(C5)

where ‘0, represents the displacement at time t and Oxj represents the initial

(reference) configuration.
The Green-Lagrange strain at time t + At can be calculated as [70, 108]

Mg = o8+ E (Céa)

or

t+At A

06y = Otéij + o0& (C6b)

where "¢ (or ”Aotéij ) represents the Green-Lagrange strain tensor (or components)

attime ¢ + At as provided in Eq. (C4) and & (or ,£;) represents the incremental

Green-Lagrange strain tensor (or components) from time t to time t + At. The
incremental strain, ¢, , can be decomposed as [70]

ij »
Oéij = Ogij + o7 (C7a)
with
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A 1 A A tA A t.A A
0Eij :E[Ogi,j FoUjitoUioUyj+oUy ng,i:l (C7b)

. 1
o’7ij ZE oUgiioUy,j (C7c)
where (€; and .77, represent the linear and nonlinear components of the
incremental Green-Lagrange strain, respectively. The term U, . represents the
derivative of the incremental displacement U, as provided in Eq. (C2b), with
respect to the initial coordinate, 0xj which can be defined as [70]

A ou,

oy = o(°x,) (C8)

On the left-hand side of Eq. (C8), the subscript “0” in U, ; refers to the reference
configuration at time t =0.

Note that, the derivative Otljk'j on the left-hand side of Eq. (C5) has the superscript
“t” because U, ; represents the derivative of the displacement at time t. On the
other hand, the term U, ; in Eqg. (C8) does not have any left superscript since it
represents the derivative of the incremental displacement 4, .

The linear and nonlinear components of the incremental Green-Lagrange strain
given in Egs. (C7b-c) can also be written as [70]

A tA A te - ta,  n
ngx_ou,x+ u XOH,X+OV,XOM,X+0VV,X0V—VX (Cga)
A v th  » th oA tp, R
08y = oV ytoVy oV toly ol y+ oWy oW, (C9b)
A _ tA A th ta oA
ngz OWZ+OUZOHZ+OV,ZOMZ+OWZOV_VZ (C9C)
tA oA tA A th o~ ta A
R 1, . N 1] oUxoly +oUyoU, +oV, oV +toVyoVx
Oexy__(Ou 0 X)+_ (ng)
o2y + oW, oW, + oW, W
oWxoWy T oWy oWy
ta A tA A TN ta A
R 1, . N 1) oU,oUy +oUyoU, +oV, oV, +oV,oV,
o0&y = (OVZ+0 )+_ (C9)
TR0 T2 W, oW, + oW oW
0"y0=—z 0",z0=—y
t tA ~ ty ~ tA A~
A 1 n A 1 U,xogz+ou,zo!x+ovxoyz+ovzo¥x
ngz__(0!z+0_x)+_ (Cgf)
20 2\ + W, W, + W, W
0" x 0=z 0"%z0=x
and
A 1 2 Y Y
ol =5 (08 ) +(o¥) + (oW, ) (C10a)
A 1 RY N2 2
o7_7yy=§((o!,y) +(59,) +(oW,) ) (C10b)
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o =2 (o) + (o2, ) (o, ) (C100)

2
. 1, . . L. P
07_7xy :E(O_ x 0= y+OM,x 0!,y+ov_v,x Ov_v,y) (ClOd)
~ 1, . . P A
07_7xz ZE(O_,X 02z + 0X x 0!, + O\Lv,x O\LV, ) (Cloe)
. 1, . . IO A
07_7yz :E(O_,y (o= z+0¥,y Oy,z+ow,y OV_V,Z) (ClOf)

C3. Second Piola-Kirchhoff stress

In nonlinear analyses, the second Piola-Kirchhoff stress (SPK) tensor, (‘)S , is always

work-conjugate with the Green-Lagrange tensor, ;£ , since they are often used as a
pair [70].

¢ SPK stress for 3D structures

For a generally 3D structure, the SPK stress tensor, ;é , can be calculated by using
the following procedure [70]:

Step 1: Calculate the deformation gradient, ;X by using Eqg. (C3).

Step 2: Using the relation; X = ;R U, find the rotational matrix, ;R and right
stretch tensor, ;U by using polar decomposition [70]

2.1. Find the right Cauchy-Green deformation tensor, ,C
lc=IX"IX (C11)

2.2. Find eigenvalues, ;o and eigenvectors, P of ;C by solving the
following equation

,CP=P A (C12)
2.3. Find rotational matrix, ;R , and right stretch tensor, ;U

- Find the deformation gradient in the principal coordinates, ;X'

JX'=PT XP (C13)

- Find rotational matrix and right stretch tensor

tR=PR'P’ (Cl4a)
JU=PAP’ (C14b)
with
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A=()" (C14c)
R = X(4)" (C14d)

Step 3: Find the Hencky strain tensor, (E" [70]

sE" =P(In(A))P (C15a)
Mean strain:

tEH _ 1 tEH

e —§tr(0E ) (C15b)

Deviatoric strain:

YEM = BN - BN (C15c)
where | represents the identity matrix.

Step 4: Calculate Cauchy stress, ‘6 [70]

- Calculate stress measure, ¢

6=6,+0,1 (C16a)
with

5, =2u( By ) (C16b)
&, =3x(sEr) (C16¢)

where x represents the Bulk modulus of the material, x represents the
Lame’s constant as given in Eq. (3.13).

- Calculate Cauchy stress, '6

t A
0=

m(;R)a(gRT) (C17)

Step 5: Calculate SPK stress [70]
(8= (det X)(1x)('8)(1XT) (C18)
+» SPK stress for beams and shells

For beam and shell structures subjected to large deformations, large rotations, but
small strains, the SPK stress tensor can be simply estimated as [70]

S=!cls (C19)

where ;C represents the elasticity tensor.
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For plates and shells, the SPK stress, SS the Green-Lagrange strain, ,&, and the
elasticity tensor, ,C, can be represented as [70]

A A A A A T

S=[sSu Sy oSy oS oS.] (C20a)

#=[obu o8y oy Bn 0a] (C20b)
1 v 0 0 0 |
v 1 0 0 0

5C=1E2 00 (1-v) 0 0 (C20c)

oo 0o k(@-v) o

00 0 0 k(1-v)

with

k, =5/6 (C20d)

where E and v represent the elastic modulus and Poisson’s ratio of the material,
k, represents shear correction factor [70].

For beam structures, the SPK stress, SS the Green-Lagrange strain, ,&, and the
elasticity tensor, ;C, can be represented as [70]

2Sw e E 0 0
3S=| ¢S, i o8=|0éy|; sC=|0 2kG 0 (C21)
8 e 0 0 2kG

where K, represents the shear correction factor for the beam cross-section [70], G
represents the elastic modulus and shear modulus of the material.

The SPK stress tensor at time t + At can be represented as [70, 108]

tMS— 1S4 S (C22a)
or
t+AotSAij = otSAij + OSij (C22b)

A

where S represents the incremental SPK stress tensor from time ¢ to time ¢ + At.

CA4. Principle of virtual displacement

In this section, the principle of virtual displacement based on Total Lagrange
formulation is presented. In the Total Lagrange formulation, the equation of motion
for a structure is written with respect to the initial configuration as [70]

J‘Ov<t+A0tS‘ij)5(t+Aotéij)d(ov):t+AtiR (C23)
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where “%‘Si and ”Aotéij represent components of SPK stress tensor and Green

Lagrange strain at time t + At as given in Eq. (022) and Eq. (C6), respectively. The

term 5(‘”0‘5 ) represents the virtual value of "’y ;s % represents the volume in

the undeformed configuration, "*'R represents the external virtual work which can
be calculated as

tratep HAtv(tmt.l:B)(é‘O)d (tmtv)_'_J‘MtS(HAtfs )(505)d (t+AtS) (C24)

where “*f® and ""“f° represent external force per unit volume and external force
per unit surface area at time t+ At respectively. 'S represents surface at time
t+ At on which the external force per unit surface area is applied, 60° represents
virtual displacement evaluated on the surface **S .

By using the relations given in Eq. (C6) and Eq. (C22), the principle of virtual
displacements given in Eq. (C23) can be rewritten as

Iw(osii)5(oéii)dov+J-°v(°t§ii) On,])d"\/ TR Iw(o ”)5(0§ij)d°\/(C25)

For dynamic problems, the work caused by the inertia forces can be added on the
left-hand side of Eq. (C25) as [70]

LA s
L5880 = [ (38)o( g, Ja

where the first term on the left-hand side of Eq. (C26) represents the virtual work

of the inertia forces, m represents the time-independent mass matrix, wat

represents the acceleration vector at time t+ At of the material point located at
(°x,°y, °z), G represents the incremental displacement vector of the material point
located at (°x,°y,°z) as given in Eq. (C2b), 0" represents the transpose of the
incremental displacement vector, 0.

(C26)

According to Bathe [70], the equation of motion given in Eq. (C26) is written for
dynamic problems for the implicit time integration scheme. If the explicit time
integration scheme is used, Eq. (C26) can be simplified as [70]

Jyo(@)m(ta)dv ="w-[, (3$,)5(o8,)d*V (c27)

The second term on the right-hand side of Eq. (C27) is the virtual work which is
associated with the element stress at time t. The corresponding strain energy
density (SED) for this virtual work can be written for a 3D structure as [102]

W =3 3(8,)(o8,) (C28a)

i=1 j=1

or

WM =08 08+ 05y 081y 05108, +20S,, 08, +24S,, 08, +24S (C28b)

sz Xz

For 1D and 2D structures, the nonlinear SED in Eq. (C28b) can be simplified as
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wh-= 1S é  foriD (C29a)

NL _ t& A t& A t
W _OSxxngx—i_OSyyogyy+20S

w0,y for2D (C29b)

For plates and shells, the nonlinear SED in Eg. (C28b) can be simplified as

A

WM = 1S 08t 0Sy, 084 +2¢S, 08, +20S,,06,, 205, 06, (C30)
For beam structures, the nonlinear SED in Eq. (C28b) can be simplified as
WM =08 08, +20S,, 08, +24S,, 06, (C31)

By considering the beams with symmetrical cross-sections, the SED for the beam
can be averaged through the cross-section as

_NL_IOAWNLd(OA)_JOA((;éxxO xx+2 SXyO Xy ZIS’\szsz)d(OA)
- OA B °A

(C32)
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Appendix D. PD constants for nonlinear 1D, 2D, and 3D PD models
D1. PD constants for 3D structures

To determine PD constants, two different loading cases resulting in isotropic
expansion and simple shear can be considered [44] by comparing the virtual values
of strain energy density in classical continuum mechanics and their PD
representations. The procedure for PD bond constants for 3D structures can be
summarised as follows:

The virtual values of SED and volumetric strain in classical continuum mechanics
for isotropic expansion is calculated in Section D1.1.1. The PD representation of
SED and volumetric strain for isotropic expansion is represented in Section D1.1.2.
By comparing the PD and the classical continuum mechanics representations, the
relations for PD constants and material constants are provided in Section D1.1.3.

Similarly, the virtual values of SED in classical continuum mechanics and PD for
simple shear loading are presented in Sections D1.2.1 and D1.2.2, respectively. By
comparing the PD and the classical continuum mechanics representations, the
relations for PD constants and material constants are provided in Section D1.2.3.

In this section, to simplify the notations, we write the displacements at time t

4,9, 'W as 'u, 'v, 'w, and incremental displacements U, V,W as u,v,w.

D1.1. Loading 1: Isotropic expansion

D1.1.1. Strain Energy Density and volumetric strain definitions in classical
continuum mechanics

A loading case of isotropic expansion can be obtained by applying the following
conditions

t t

t . _ _ _ _t _t _
Uy =oV,y=oW,= 4 u U,=oVx=oV,=W,=W, =0 (D1)

The corresponding deformation gradient tensor can be calculated as

1+¢4 0 0
X=| 0 1+¢ 0 (D2)
0 0 1+&

By using the procedure in Appendix C3 for the calculation of SPK stress, the right
stretch tensor and rotational tensor can be represented as

tU=!Xand R=I (D3)

Therefore, the Hencky strain tensor and the SPK stress tensor can be obtained as

In(1+¢) 0 0
SEf =l 0 In(1+¢) 0 (D4)
0 0 In(1+¢)
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In(1+¢) 0 0
S _(82+24) 0 In(1+¢ ) 0 (D5)

<) | o 0 In(1+¢)

For the loading case provided in Eq. (D1), virtual strain values can be represented
by using Eqg. (C9) as

S(0€) = (ol )+ (us )8 (ot )+ (ovu)5 (V.0

" (D6a)
+(oW, )8 (0w, ) =(1+¢ )¢
5(0§ ): é(oy,y)+(Otv,y)g(oly)+(éu,y)5(09vy) (D6b)
+(ow, )5 (0w, ) =(1+¢)8s
3(s8.)=0 (o) (30, )00 +(0)3 . o6
+((§Wz)5(o\i\’,z):(1+§)5§
5(08,y)=0(08,)=5(s8)=0 (D6d)
with
S(ou,)=5(ovy)=0(ow,)=0C (D6e)
5(ou,y)=6(ou,)=6(ov.)=0(o¥,)=5(ow,)=5(,w,)=0 (D6f)

By substituting the SPK stress tensor given in Eqg. (D5) and strain components in
Eg. (D6) into Eqg. (C28b), the virtual value of SED in classical continuum
mechanics can be calculated as

SWEM = 3(31+2,u)5—§|n(1+ ¢) (D7)

(1+¢)

The volumetric strain in classical continuum mechanics for isotropic expansion can
be calculated by using the Hencky strain tensor given in Eq. (D4) as

o3 M = JEL + (E}, +4E =3In(1+¢) (D8)

0=z

D1.1.2. Strain Energy Density and volumetric strain definitions in Peridynamic
form

The displacement components of material point j can be expressed in terms of

displacements of material point k by using Taylor’s series expansion by ignoring
the higher-order terms as

t ot t 0 0
Uiy = “(k)+(ou(k),x)( Xi) X(k))

t 0 0 t 0 (Dga)
+(ou(k),y)( Yy — y(k))+(ou(k),z)( Zijy —

0
Z(k))
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t _t t o, _ O
Vi = Voo * oV (% — o) (D9b)
t 0 0 t 0 0
+0V<k),y( Yy~ y(k))+oV<k),z( Zay — Z(k))
t ot t 0 0
Wiy = W(k)+oW<k),x( X(h X(k)) (D)
t 0 0 t 0 0
+0W(k),y( Yy~ y(k))+oW(k),z( Zjy — Z(k))
or
t t
U —'u
Gt~ Yo t t
Oé; - Ou(k),xcx + Ou(k),ycy + Ou(k),zCz (ng)
t t
v, —'v
(i) (k) _t t t
OSE = oVl T oV Gy 1 oVi..C: (D9e)
t t
W, —'w
() ) _ t ¢ t
Oég - OW(k),xCx + OW(k),yCy + OW(k),zCz (Dgf)
with
0 0
X . — X
W~ A0
¢, =—5——=singcosd (D9g)
0 0
Yoir = Y _ i i
¢, = =2 2W _sjngsing (D9h)
0 0
z,..—"z
i~ fw :
C, = 05 = C05¢ (Dgl)

where (&,0,¢) serve as spherical coordinates [44].

Meanwhile, the linear bond stretch, Ots given in Eq. (3.5) can be rewritten as

2

Sszg_zz1=\/(tXU)_tx(k))2+(ty“)0;twk>) +(tz(i>_tz<k>)z 1 (D10a)
or
(Ox(j)_Ox(k))+(t“<j>_t“(k)) 2+ (Oym_oy(k))*(tv(j)_tV(k)) 2
. ° % .
- (°z05 = 209 )+ ("W, = W )2 - (B
\J{ M~ L h~ Wi J
%

By using the relations in Eq. (D9), the linear bond stretch, JS given in Eq. (D10b)
can be rewritten as
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2
t t t
(Cx + Ou(k) xCx + Ou(k),yCy + Ou(k),zcz)
2
t
= [+, + oVguC + 0V €y + oVinle)  —1 (D11)
+(c,

2
t
+0Wk)XCX+ W() C + W() C)

By substituting the conditions given in Eq. (D1) into Eq. (D11), the linear PD bond
stretch can be calculated as

JS = (D12)
Therefore, the logarithmic bond stretch can be calculated by using Eqg. (3.4a) as

oSy =In(1+¢) (D13)

By using the logarithmic bond stretch given in Eqg. (D13), the volumetric strain in
PD given in Eg. (3.7) can be rewritten as

I —dZIn 1+4)V (D14)

By disregarding the PD interactions beyond the horizon of material point k, the
expression for {9, in Eq. (D14) can be recast as

5 27

=0 |
00

where & represents the horizon size on the initial configuration.

o,

In(1+¢) %% singdgdod °¢ = d

4’;53 In(1+¢) (D15)

O ey §

Similarly, by substituting the logarithmic stretch given in Eq. (D13) and volumetric
strain in Eq. (D8) into Eg. (3.3a), the strain energy density in PD for isotropic
expansion can be defined as

WL = 9aln? (1+ cj)+biln2 (1+¢)%¢Y,, (D16)

By disregarding the PD interactions beyond the horizon of material point k, the
expression for W(k)LpD can be rewritten in the integral form as

) 27

!

By performing the integrations in Eq. (D17), the SED in PD for isotropic expansion
state can be defined as

W =9aln? (1+¢ ) +bas* In? (1+¢) (D18)

Wy ° =9aln?(1+¢)+b

o In? (1+¢) °& sin gdgd 6 °¢ (D17)

O e O,
(= ]

Therefore, the virtual value of strain energy density in PD can be calculated as

NLPD ) 4 O
W :18aéln(l+§)+2b7z5 éln(ﬂ;) (D19)
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D1.1.3. PD constants

By comparing volumetric strain given in Eq. (D8) and Eq. (D15), the PD constant,
d , can be determined as

9
=" D20
A75® ( )

By comparing the virtual value of strain energy density definitions in Eg. (D7) and
Eqg. (D19), the relationships between PD constants and engineering material
constants can be obtained as

18a + 2bzs’ :3(3l+2y) (D21)

D1.2. Loading 2: Simple shear

D1.2.1. Strain Energy Density and volumetric strain definitions in classical
continuum mechanics
The simple shear can be obtained by assuming the following conditions

t _t _t _t _t _t _t _t _ Lt _
Ou,x - Ou,z - Ov,x - OV,y - OV,z - OW,X - OW,y - OW,Z - 01 Ou,y - g (D22)

Therefore, the deformation gradient tensor can be defined as
1 £ 0

X=/0 1 0 (D23)
0 01

By using the procedure in Appendix C3 for the calculation of SPK stress, the
Hencky strain tensor and Second Piola-Kirchhoff stress tensor can be obtained as

e - 20
Ef=—Z_|2 ¢ 0 (D24a)
0 2
V&' +4 0 0 0
A ~¢(¢*+3) £*+2 0
"
'S=2u Ezl 242 - 0 (D24b)
ST+ 0 0
with

ElH:%In[§2;2+§V§22+4J (D24c)

For the loading conditions provided in Eq. (D22), the strain components
corresponding to virtual displacements given in Eq. (C9) can be calculated as

5(0§xx):5(0§zz):§(0§xz):é‘(ogyz)zo (D25a)
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(58 ) =0 (oY, )+ oV, 5 (o, )+ou, S(ou, )+ ow, 5(ow, )=, (D25b)
1

5(0§xy)25(5(0gy)+5(ovx))
+%(SU,X5(Og,y)+Otv,xa(oy,y)-i_()tu,yd(og,x)) (D25c)
1'( t t
+§(Ovy5(0yx)+owxé(o_'y)ﬂwyé(o\/_\l‘x)): ¢

with

S( ot)=0(0u,)=08(o¥x)=6(ov,)=0 (D25d)

S(ov,)=0(,w,)=6(w,)=5(,w,)=0 (D25¢)

5(ou,)=00 (D25f)

By using the SPK stress tensor given in Eq. (D24b) and the strain components in
Eq. (D25), the virtual value of strain energy density in classical continuum
mechanics given in Eq. (C28b) can be calculated as

SW M zzy;ln[ugz*gz"gz”]x (D26)

JCi+4

By assuming small shear strain condition, ¢ <1, the virtual value of strain energy
density in classical continuum mechanics given in Eq. (D26) can be simplified as

cem _1 3_} 5_1 6_1 7_1 8 ~ 3
Wt s ¢S g 2202w s v o) oz

where o3(¢) represents third and higher-order terms which can be neglected.

The volumetric strain in classical continuum mechanics for simple shear can be
calculated by using the Hencky strain tensor given in Eq. (D24a) as

%M = JE + 4 Ej +  EL =0 (D28)

D1.2.2. Strain Energy Density strain definition in PD form

By using the relations given in Eq. (D22), the linear bond stretch in Eq. (D11) can
be calculated as

gs=\/1+2§sin2¢sin6’cos€+§zsin2¢sin29—l (D29)
By assuming small shear strain, ¢ <1, Eqg. (D29) can be simplified as

1S~ sin’ gsin@cosd (D30)
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Therefore, the logarithmic bond stretch can be calculated as
oSy ~In(1+¢'sin’ gsin O cos0)

) 2 (D31)
~ ¢ sin? gsin ¢9cos¢9—§(§sin2 #sinOcosO) +---

By using the stretch definition given in Eqg. (D31) and volumetric strain in Eq.
(D28), the strain energy density in PD given in Eq. (3.3a) can be calculated as

N 2
W)™ = bZ[gsin2 gsin ecose—%(gsin%sin 6’0056’)2} %%V, (D32)
=

By disregarding the PD interactions beyond the horizon of material point k , the
strain energy density in Eq. (D32) can be recast as

£sin® gsin @ cos @

S22
Wiy~ ~b 923 sin ¢d gpd O ° (D33a)
" '“;2[ —%(g”sinz(,zﬁsin6?c0549)2 ¢ singdgded’e
or
02w
W™ ~b[ [ [¢?sin® gsin® Ocos® 0°£°dgdod °¢ +O(S°) (D33b)
000

By performing integrations given in Eg. (D33b), the strain energy density in PD for
the simple shear state can be calculated as

1
W™ = bas* ¢ +0%(¢) (D34)
Therefore, the virtual value of the strain energy density in PD can be calculated as

S ~ brs* % L5 +0°%(0) (D35)

D1.2.3. PD constants

By comparing Eq. (D27) and Eq. (D35) and by neglecting third and higher-order
terms, the following relations are obtained

b%w“;a; _uss (D36a)
or
15 u
b==—" D36b
2 7ot ( )

Substituting PD constant, b given in Eq. (D36b) into Eqg. (D21), the PD constant,
a can be determined as

Iy (D37)
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D2. PD constants for 2D structures

Similar to 3D formulations, the PD constants for the 2D case can also be obtained
by comparing the virtual values of strain energy density in classical continuum
mechanics and peridynamics in two basic loading conditions: isotropic expansion
and simple shear. The procedure for PD bond constants for 2D structures can be
summarised as follows:

The virtual values of SED and volumetric strain in classical continuum mechanics
for isotropic expansion is calculated in Section D2.1.1. The PD representation of
SED and volumetric strain for isotropic expansion is represented in Section D2.1.2.
By comparing the PD and the classical continuum mechanics representations, the
relations for PD constants and material constants are provided in Section D2.1.3.

Similarly, the virtual values of SED in classical continuum mechanics and PD for
simple shear loading are presented in Sections D2.2.1 and D2.2.2, respectively. By
comparing the PD and the classical continuum mechanics representations, the
relations for PD constants and material constants are provided in Section D2.2.3.

D2.1. Loading 1: Isotropic expansion

D2.1.1. Strain Energy Density and volumetric strain definitions in classical
continuum mechanics

The isotropic expansion can be obtained by assuming the following conditions
Uy=ov,=¢; gu,=ov,=0 (D38)
Therefore, the deformation gradient tensor in 2D form can be defined as

X = {l+é’ 0 :| (D39)
0 1+¢

By using the procedure in Appendix C3 for the calculation of SPK stress, the
Hencky strain tensor can be obtained as

En 0 0 | [Inl+¢) 0 0
E"=| 0 GE} 0 |5 O In(1+¢) 0 (D40)
0 0o [Ef 0 0 2(a-1)In(1+¢)

where & is defined in Eq. (3.15).

Similarly, by using the procedure given in Appendix C3, the SPK stress tensor can
be obtained as
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2(Aa+ u)n(14¢) , , |
(1+¢)
@ 2(Aa+u)n(1+4)
iS= 0 TS 0 (D41)
2(Aa+2pu(a-1))In(1+¢)
O O 4(a-1)
i (1+¢)

For the loading conditions provided in Eq. (D38), the strain components
corresponding to virtual displacements given in Eq. (C9) can be calculated as

S(08) =6 (ol )+ Uy B (ol )+ oV, 8 (o) =(1+¢) 6% (D422)
808y, ) =50V )+ oV, 8(o¥, )+ ou, 8(ou,)=(1+&)oC (D42b)
5(0€,)=0 (D42c)
with

S(ou,)=6(ov,)=0¢, 5(ou,)=5(ov,)=0 (D42d)

Since S,,5(,€,,)=0 for both plane strain and plane stress conditions, the virtual
value of SED in classical continuum mechanics can be calculated as

WM =S (08, )+ 05,0 (08, ) +205,55 (06, ) (D43)
By substituting the SPK stress tensor given in Eq. (D41) and strain components in

Eq. (D42) into Eqg. (D43), the virtual value of SED can be calculated as

WM = 4( 20+ 1) 25 In(1+) (Dad)

(1+¢)

The 2D volumetric strain in classical continuum mechanics can be calculated from
Eq. (D40) as

T 07xx

M = JEg +E) =2In(1+¢) (D45)

D2.1.2. Strain Energy Density and volumetric strain definitions in PD form

The displacement components of material point j can be expressed in terms of

displacements of material point K by using Taylor’s series expansion by ignoring
the higher-order terms as

t, ot t 0o, _ 0 t 0,, _0
Uiy = Ugy + ou(k),x( Xi) X(k>)+ ou(k),y( Yii y(k)) (D46a)

t ot t 0 0 t 0 0
Vi) = V(k>+oV(k>,x( Xy~ X(k))+ov(k>,y( Yy~ y(k)) (D46b)

267



or

‘U, —'u _
(J)oé; ® = (;u(k),x CoOsSp + otu(k),ysm(0 (D46c)
'V, —'v
(J)Oé © = otV(k),x Cosp+ otV(k),y sing (D46d)
with
0 0
X = "X
cosp=—0— 1 (D46e)
g
0 0
v, =
R R ()
sinp=—+5———= P (D46f)

Meanwhile, the linear bond stretch, OtS given in Eq. (3.5) can be rewritten as

ty _ty 2 ty_ _ty 2
. [ (J)Oé (k)] +[ (1)05 (k)J 1 (D47a)

or

tg _\/{(Oxm =X )+ (U - t“(k))}z J{(Oym =Y )+ (Ve - lV(k))]z 1 (D47b)

0 Oé Oé:

By using the relations in Eqgs. (D46c-f), the linear bond stretch, JS given in Eq.
(D47b) can be rewritten as

2
COS @+ yU,, COS@+ gU,,, . Sin
15— ( P+ ol COS P+ oUgoy,y 9") 1 (D48)

H t t H 2
+(SIN@+ 4V, COSQ+ gV, SiNQ)

By substituting conditions given in Eq. (D38) into Eq. (D48), the PD linear bond
stretch can be calculated as

0$=¢ (D49)
Therefore, the logarithmic bond stretch can be calculated as

oSy =In(1+¢) (D50)

By using the logarithmic bond stretch given in Eq. (D50), the PD volumetric strain
given in Eq. (3.7) can be rewritten as

Gy =02 In(1+4) ;) (D51)
j=1
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By disregarding the PD interactions beyond the horizon of material point k , the
expression for 19(k) in Eg. (D51) can be recast as

S 2rx

Gy =dn[ [ In(1+¢)%¢d edp =drhs® In(1+¢) (D52)
00

where h represents the plate thickness on the initial configuration.

Similarly, by substituting the logarithmic bond stretch given in Eqg. (D50) and
volumetric strain in Eq. (D45) into Eq. (3.3a), the strain energy density in PD in the
isotropic expansion state can also be defined as

W™ =4aln® (1+ §)+biln2 (1+¢) %N, (D53)
j=1

By disregarding the PD interactions beyond the horizon of material point k , the
expression for W™ can be recast in the integral form as

d2rx

W™ =4aln’ (1+¢)+bh| [ In* (1+¢) °¢*ded ° (D54a)

or

27hs°

Wy ™® =4aln®(1+{)+b In®(1+¢) (D54b)

Therefore, the virtual value of strain energy density in PD can be calculated as

47ho®

OW ;7P =8a£In(1+§)+b

R
© e i c In(1+¢) (D55)

D2.1.3. PD constants
By comparing Eg. (D45) and Eq. (D52), the PD constant, d can be determined as

2

d=——
hs?

(D56)

By comparing Eq. (D44) and Eq. (D55), the relationships between PD constants
and engineering material constants can be obtained as

3

2a+b 7ho

=+ (D57)

D2.2. Loading 2: Simple shear

D2.2.1. Strain Energy Density definition in classical continuum mechanics
The simple shear in 2D structures can be obtained by assuming the following
conditions
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U, =gV, =,v,=0; ju =¢ (D58)

g,x:{o J (D59)

By using the procedure in Appendix C3 for the calculation of SPK stress, the
Hencky strain tensor and the SPK stress tensor can be obtained as

.. [-¢ 20
. EH
El=m==|2 ¢ 0 (D60a)
S+41 0 0 0
—¢(¢?+3) £*+2 0
ZH
§=2u—1 42 -0 (D60b)
¢ +4 0 0 o0
where

1

g :%In£§22+2+§\/§22+4J (D60C)

Note that in simple shear loading condition, the component OtEZ'j =0 and
050 (€,,)=0 inboth plane stress and plane strain conditions.

For the loading case provided in Eq. (D58), the strain components corresponding
to virtual displacements can be defined as

5( é )= 5(0!X)+ gu,x 5(0g,x)+ (;(V,x 5(0!,x) =0 (D61a)

0= xx

808, )=6(ov,y )+ oV, S(oV, )+ ou, (U, )=¢5 (D61b)

5(0§Xy)=%(5(ou,y)+5(o¥,x))

. 5 (610
+§($U,x 5(09,y)+ oV 5(Oy,y)+ Otu,v 5(09,X)+ SV,y 5(0!*)) Y
with
5(ou,)=6(o¥,)=0(,v,)=0 (D61d)
5(ou,)=¢ (D61e)

By substituting the SPK stress tensor given in Eq. (D60b) and the strain components
given in Eq. (D61) into Eq. (D43), the virtual value of strain energy density in
classical continuum mechanics can be calculated as
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SW M zzy;ln[ugzwz\'gz”}gg (D62)

JEi+4

Similar to 3D structures, by assuming that ¢ «1, the virtual value of strain energy
density in classical continuum mechanics given in Eq. (D62) can be simplified as

cem _E 3_1 5_1 6_1 7_E 8 ~ 3
W ~ﬂ(: ettt 84]54 WL ON)  (D63)

The volumetric strain in classical continuum mechanics for simple shear can be
calculated by using the Hencky strain tensor given in Eq. (D60a) as

9°M = B + JEl +,Ef =0 (D64)

D2.2.2. Strain Energy Density strain definition in PD form

In peridynamics, by using conditions given in Eq. (D58), the linear stretch given in
Eq. (D48) can be calculated for ¢ «1 as

gs:\/1+2§sin(p003go+§zsin2go—lzcjsingDCOS(p (D65)
Therefore, the logarithmic stretch given in Eq. (3.4a) can be calculated as

; : . 1, . 2

oSy ~In(1+¢ sinpcosp) ~ ¢'sin gacosw—i(;sm pCosQ) (D66)

By using the logarithmic bond stretch given in Eq. (D66) and the volumetric strain
in Eq. (D64), the strain energy density in PD given in Eq. (3.3a) can be calculated
as

N
W™ ~b) ¢2sin® pcos? 6V, +0%() (D67)
j=1

The strain energy density given in Eq. (D67) can be recast as

o 2r

WP =bh j j ¢2sin? pcos? p°%d °cdp + O (&) (D68)
00

By performing integrations given in Eg. (D68), the strain energy density in PD for
the simple shear state can be calculated as

1

LPD 3 2 3

Wy ™ = Ebyzha £C+0°(¢) (D69)
Therefore, the virtual value of the strain energy density in PD can be calculated as

P z%bﬂh53§5§+03(§) (D70)
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D2.2.3. PD constants
By comparing Eqg. (D63) and Eq. (D70), the following relations are obtained

%bﬂh53§5§ = ulo¢ (D71a)
or
61
b= D71b
ho® ( )

Substituting PD constant, b given in Eq. (D71b) into Eq. (D57), the PD constant,
a can be determined as

_Aa—u
2

a

(D72)

D3. PD constants for 1D structures

The procedure for PD bond constants for 1D structures can be summarised as
follows:

The virtual values of SED in classical continuum mechanics for uniform stretch is
calculated in Section D3.1. The PD representation of SED and volumetric strain for
uniform stretch is represented in Section D3.2. By comparing the PD and the
classical continuum mechanics representations, the relations for PD constants and
material constants are provided in Section. D3.3.

D3.1. Strain Energy Density definitions in classical continuum mechanics

To determine the PD constant, a bar can be assumed to be subjected to a uniform
stretch of

U, =¢ (D73)

which results in the deformation gradient as
IX=1+¢ (D74)

By using the procedure as given in Appendix C3, the Hencky strain tensor and the
SPK stress tensor can be

'EM =In(1+¢) (D75a)

S—E In(1+¢) (D75b)

(1+¢)

For the loading case provided in Eq. (D73), virtual strain values can be represented
by using Eqg. (C9) as

(08 ) =6 (o, )+ oU, 8( U, ) =0 + ¢80 =(1+¢) 5 (D76a)
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with
S(ou,)=0¢ (D76h)

Therefore, the virtual value of strain energy density in classical continuum
mechanics can be calculated as

cem _ té A \_ 5_4/
SW _OSXX5(OgXX)—E1+§In(1+§) (D77)

D3.2. Strain Energy Density in Peridynamic form

The relation between the relative coordinate of two material points in the initial and
deformed configurations can be assumed as

0 0 t t H
( Xy~ X(k))( Xy~ X(k))>0 vk # (D78a)
or
0 0 t t
X~ K _ X~ Kw
0
4 ¢

Moreover, the linear bond stretch given in Eg. (3.5) can be rewritten for 1D
structure as

vk # (D78b)

t t t t t t
X — X Xy = Xy Xy — X
:‘ g ‘k)‘—lz W~ M DT M g (D79)

¢ ¢ k3

t
0S

Therefore, by using the relation given in Eq. (D78b), the linear bond stretch given
in Eq. (D79) can be rewritten as

0 0 t t 0 0 t t 0 0
Xioy— X+ Uy —U Xony— X u.,—u Xioy— X
is= §)] (k) )] ) () (k) 1= () & "W (k) (D80)

5 ¢ ¢ 5
Meanwhile, the displacement components of material point j can be expressed in

terms of displacements of material point K by using Taylor’s series expansion by
ignoring the higher-order terms as

t _t t 0 _ 0 .

Ui = Uy + Ou,x(k)( Xi) X(k))+ (D81a)
or

t t 0, _ 0O

Ujp — Us _ ¢ ( Xh X(k))

o = ol o o (D81b)
Therefore, by utilizing the relation given in Eq. (D81b), the linear bond stretch
given in Eq. (D80) can be rewritten as

_0

2
0
X X
ta _  t (i) (k) _t
0S= Ou,x(k)£ Of ] = oUxw) (D82)
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By substituting the relation given in Eq. (D73) into Eq. (D82), the linear PD bond
stretch can be obtained as

0S=¢ (D83)
Therefore, the logarithmic bond stretch can be obtained as
oSy =In(1+¢) (D84)

By utilizing the logarithmic bond stretch given in Eq. (D84), the strain energy
density given in Eqg. (3.3b) can be written as

Wi = bZ In? (1+¢) °¢N,, (D85)
j=1

The SED given in Eq. (D85) can be rewritten in an integral form with respected to
the initial configuration as

Wi = 2b(°A)f|n2 (1+¢)°&d % (D86)

where °A represents the cross-section area on the initial configuration.

By performing integration given in Eq. (D86), the SED for the bar can be calculated
as

W™ =b(°A)8% In* (1+¢) (D87)

Therefore, the virtual value of strain energy density in PD can be calculated as

NLPD 0 2 é‘é’
OW™ =20(°A)s E|n(1+§) (D88)

D3.3. PD constant
By comparing Eq. (D77) and Eq. (D88), the PD bond constant can be defined as

(D89)
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Appendix E. PD constants for nonlinear PD beam model
In this section, the derivations to obtain the PD constants are presented. First, let k

and j be two material points in a beam structure. By using Taylor’s series

expansion, a variable f (Ox(j)) at material point j can be expressed in term of the

variable f(ox(k)) at material point k as

(%)= F(%%0) (% = Koo )2 F (o )+ (E1a)
or

(%)= T ("% )+ o Fago (X = X )+ (E1lb)
with

o Facr = 0 T (o) (Elc)

In Eq. (E1), the parameter f can be any variable. For instance, f can be the
displacements and rotations of material points, (u,v, w,6,,0,,0, ) :

If k and j are two different material points (k # j), the distance between them in the

undeformed configuration is nonzero (°§(k)(j)¢0). Therefore, Eq. (E1b) can be
rewritten as

0 0 0 0
(%)= (%) L ) s (S (E2)
o =0 Txw) 7o
S Sh)

By using the relations given in Eq. (3.50h), Eq. (E2) can be rewritten as

f (%%, )—f(°x
() (k)
( Jozg ( ) = o T "Broy +++- (E3)
()

Replacing f variable in Eq. (E3) by displacements, rotations, and director vectors
at time { of material points k and j results in the following relations

t t
Uiy =Ygy _

0
0 = oYy Booy T (E4a)
SHD
t t
v, —'v
(i) k) _t 0
Tog oV Py ++ (E4b)
w0
‘W, —'w
(J) (k) _t 0
0z = oWy Boon T (E4c)
)
t t
0, -0
W~ %o 0
0 = 00 Boog T (E4d)
S
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‘0 ‘0

y(i) ~ Yy 0
o =09y 0 By +
()
t t
O~ Gy 9 0
0 = 00,000 By T
)
1 1
st(j) - st(k) _ tV 0
o = Voexty Loy ¥
)
1 1
st(j) — VSy(k) _ 0
o = My Loy T
()
1 1
Vsz(j) - Vsz(k) — 0
o = Vaxw Boogy T
G0
1 1
VD((j) - Vtx(k) — 0
0 = Voxty By T
(D)
1y 1y
Vty(j) B Vty(k) _ 0
oz = Ny Buoy T
%)
IV [V

0
éZ(k)(])

z(j) ~ Vi) _ b 0
= Vuxwy Boogy T

(E4e)

(E4f)

(E4g)

(E4h)

(E4i)

(E4j)

(E4K)

(E4])

Similarly, replacing f in Eq. (E3) by incremental displacements and incremental
rotations (from time t to time t+At) of material points k and j results in the

following relations

U .. —u

Ui U 0

—oé; = oU i By +
B0

vV, —V

Vip Y _ 0

—oé: = oV B +
()

W, —W

Wiy =W 0

—og = oWy Loy +
)

Oy =Ou 0. B ..

oz oGk Pt
w0

i) =9y 0. 0B ..

Togp 08y Ao
)

0. oy 0. 08 4.

Tog T 0Caxo P
w0

(E5a)

(E5h)

(E5c)

(E5d)

(E5e)

(E5f)
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Therefore, by using the relation given in Eq. (E4) and Eqg. (E5), the terms, OtafD,

057, sa3” given in Eq. (3.50d-f) can be rewritten as

2
(;aipD = tu,x(k) (oﬂ(k)(j)) = Otu,x(k) (EGa)
2
(;a;D = Otv,x(k) (O:B(k)(j)) = (;V,x(k) (E6b)
2
085 = oWy (Oﬁ(k)m) = oW, (E6e)
with
0 0 2
2 Xy — X
(O'B(k)(j)) z( —((;) ()J =1 (E6d)
é:(k)(i)

Similarly, by using the relation given in Eq. (E4) and Eq. (E5), the terms, OtafD,

sal Al a® i, sag” given in Eq. (3.52f-k) can be rewritten as

t PD _ t . t.PD _ t . t.PD _ t

0y :Ost,x(k)1 085 _OVsy,x(k)1 0% _OVsz,x(k) (E7a)
t,PD _ 1 . t.PD _t . t.PD _t

0y :Ovtx,x(k)' 0% _Ovty,x(k)! 0% _OVtz,x(k) (E7b)

t4PD t,PD t5PD

Therefore, the terms, ,a,,", (&, , (&, given in Eq. (3.50b) and Eq. (3.52b-c)
can be obtained as

salf = o+ ((sa) + (sar®) + (52 ) (E82)
a2 = P 1+ ) (4227 (200 +(12°) (428 (s
oty = (02" )(1+ o)+ (525" ) (025" ) +(5ai” ) (525°) (E8c)

Moreover, by assuming that the beam is discretized with fine mesh, material points
k and j are very close to each other within the horizon size. Therefore, the

following approximation can be assumed

1 1 1 1 1 1
Vo T Vs _ YR Voi T Ve YR Vo T Vaw _ Yy, £9
~ V) V) ~ Vs (E9a)
2 2 2
Voo o+l Voo+\ Voo+ WV
o)V V) _n, y(i) " Vo _ny, . OREMTCINY Eoh
2 ~ tx(k)? 2 ~ ty(k)? 2 ~ tz(k) ( )

Therefore, by using the relations given in Eq. (E9), the terms, JalzD, Jaﬂ) and

Ot af;D given in Eq. (3.54b-c) and Eqg. (3.56b) can be approximated as

c;aiPsD = (1+ éafD ) tst(k) + ( ota;D ) tVsy(k) + ( otaspD ) tVsz(k) (E10a)
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otaiF::D :( (}aiPD) tx(k) +( a PD)tVty(k) (otasz) tz(k) (E10b)

tals ((;[aSPD) sy(k) +( taPD)t sx(k) +(Ota9PD)tVsz(k) (ElOC)

By comparing Eq. (E6-8), Eqg. (E10) to Eq. (3.44e-m), it can be observed that the
terms, @ .8 in PD and the terms @ ,..., o8 in classical continuum

mechanics are equal to each other.

Similarly, by using the relations given in Eq. (E4-5), the terms ,@;,, 025, o5

given in Eq. (3.50c) and Eq. (3.52d-€) can be rewritten as

ngOD:(Og,x(k))( otaiPD) tPD( x(k)) otasPD( x(k)) (Ella)

(JafD)(oQ )) (otaspD)( x(k))+(ta§D)(0v—v,X(k))
+(1+ 0l )i(gy(k) Ve = tVsy(k))

2 = (E11b)
_ 1y 1
T(Qz(k) st(k) _Qx(k) Vsz(k))

)
+( o[aspD )%(Qx(k) IVsy(k) - Qy(k) tst(k) )

(027 ) (04 i) + (6257 ) (0¥ )+ (5257 ) (oW )

(Hy(k) tVtz(k) - Qz(k) tVty(k))
oalpzD = (EllC)
- t 1

T(Qz(k) Vtx(k) _me Vtz(k))

t t
(Qx(k) Vty(k) _Qy(k) Vtx(k))

By using the relations given in Eq. (E4-5) and Eq. (E9), the terms ,a,5 , ,a;, and
Oé_llpf given in Eq. (3.54d-e) and Eq. (3.56¢) can be rewritten as

tst(k) ( x(k) ) + tVsy(k) (o!,x(k) ) + tVsz(k) (oV_V,x(k))
( OtalpD )( y (k) Vsz(k) _Qz(k) tVsy(k))
aj = E12
" +(ota§D)(Qz(k) Vx(k) _Qx(k) tVsz(k)) ( a)

(685 ) (G0 Virto =G tst(k))

tVtx(k)( u x(k))+ Vty(k)( x(k))+ Vtz(k)( ,x<k)>
( (;alpD)( y(k) tVtZ(k) _Qz(k) Vty(k))

a™ = E12b

o "'(()tazF)D)(Qz(k) Vtx(k) _Qx(k) tVtz(k)) ( )

+(585°) (a0 Vit =Gyt Vo)
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(tvty(k) t\/sz(k) - t\/tz(k) t\/sy(k) )( OQx,x(k) )
ngSD = +(tVtZ(k) t\/sx(k) - tvtx(k) t\/sz(k) )(OQy,x(k) ) (ElZC)
+(tVtx(k) tVsy(k) - tVty(k) tst(k) )(on,x(k) )

By comparing Eq. (E11-E12) with Eq. (3.44n-s), it can be observed that the terms,
08105 0811 s+ 085s I PD and the terms 8,9, 9@y, 0845 in classical continuum

mechanics are equal to each other.

E1. PD constant for axial deformations

By disregarding the PD interactions beyond the horizon, the PD strain energy
density for axial deformations given in Eq. (3.50a) can be rewritten in integral form
as

Vvatli:TD = ( OA) Jj Cox ( (;aipoD )( o§1PoD )( oé(k)(j) ) d ( 0§(l<)(j) ) (E13)

By performing the integrations in Eq. (E13), the nonlinear PD strain energy density
for axial deformations can be rewritten as

WP _ %(OA) 5zcax (gaiF(’)D)(ongD) (E14)

axial

As proved in the previous section, the terms ay, , o8;s in PD and 48, ,a, in

classical continuum mechanics are equal to each other. Therefore, by comparing
Eq. (3.50a) and Eq. (E14), the PD bond constant for axial deformations, Cax can
be obtained as

C, - (oi)E5z (E15)

E2. PD constants for bending deformations

By disregarding interactions beyond the horizon of material point k , the PD strain
energy density for bending deformations given in Eq. (3.52a) can be rewritten as

W =, () [ (4282) (022 ) (i )2 (o)
+ be ( OA).‘:( f}aiF;D )( 0§1PZD )( 0g(k)(i) )d (Oé:(k)(j))

By performing the integrations in Eq. (E16), the SED for bending deformations can
be rewritten as

(E16)

WS, = ~C ("A)0? (a2 ) (1817 )+ 5,y (*A) (327 ) (4277 (E17)
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. . . PD PD .
As proved in the previous section, the terms 4, , o211, 081 + 081, in PD and

Otaﬂ, 041 Otalz, 08y, in classical continuum mechanics are equal to each other.
Therefore, by comparing Eq. (3.44b) and Eq. (E17), the PD bond constants for
bending deformations, be and C,, , can be represented as

2El W
be = > (E18a)
(OA) 52
__2El, (E18b)

bz

(OA)Z 52
E3. PD constants for shear deformations

By disregarding interactions beyond the horizon of material point k , the PD strain
energy density for bending deformations given in Eq. (3.54a) can be rewritten as

Wsr’:le:Fr’D =C, ( OA)K[( c}agD )( o@st ) + ( otaiF;D )( o§1P4D )}( Of(k)(j) )d ( Of(k)(j) ) (E19)

By performing the integrations in Eq. (E19), the SED for shear deformations can
be rewritten as

e = Lo, (o) (o) oal?) + (12 ) a2 (E20)

. . . tAPD tAPD -
As proved in the previous section, the terms a5, 0815, 0@ » 0@1s in PD and

Saig, 043, Otam, 08y, in classical continuum mechanics are equal to each other.
Therefore, by comparing Eq. (3.44c¢) and Eq. (E20), the PD bond constants for shear
deformations, Cy,, can be represented as

2k.G
© = a)o

(E21)

E4. PD constants for torsional deformations

By disregarding interactions beyond the horizon of material point k , the PD strain
energy density for bending deformations given in Eq. (3.56a) can be rewritten as

_ 5
Wtc')\:’ls-izlr? = Ct ( OA) J-O ( (;a'lF";')D )( OQTSD )( 0ét(k)(j) ) d ( 0g(k)(j) ) (E22)
By performing the integrations in Eq. (E22), the nonlinear PD strain energy density
for torsional deformations can be rewritten as

e L, (oa)o () ) -

torsion
2
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As proved in the previous section, the terms 8,5, o@fr in PD and ;85 , (a5 in
classical continuum mechanics are equal to each other. Therefore, by comparing

Eq. (3.44d) and Eq. (E23), the PD bond constants for torsional deformations, C,
can be obtained as

2k, G
Ay

(E24)
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Appendix F. PD constants for nonlinear PD model for plates
F1. PD constants for in-plane deformations

In this section, the derivations to obtain the PD constants for in-plane deformations
are presented. First, let k and j be two material points in a two-dimensional

structure. By using Taylor’s series expansion, a variable f (OX( i) Oy( j)) at material

point j can be expressed in term of the variable f (Ox(k), Oy(k)) at material point k

as
f(oX(J)’Oym): f(ox(k)'oy(k))J“[OX(J) X(k)]ao (f( Xky» y(k)))
(Fla)

+[Oy(1)_0y(k)Jao (f( Xiky Y(k)))

or

f (ox(j)v Oym) = f (Oxm' Oy<k>)+ o faco [OX(D - OX(k)] (F1b)
+ 0y [Oy(j) - Oy(k):|+’"

with

o fxao = 6? (f( XKy Y(k))) (Flc)

and

o fy = ? (f( Xk ))) (F1d)

Y a y

In Eq. (F1), the parameter f can be any variable. For instance, f can be the
displacements and rotations of material points.

If k and j are two different material points (k = j), the distance between them in the
undeformed configuration is nonzero (¢ #0). Therefore, Eq. (F1b) can be rewritten
as
f (Ox(jw Oym)_ f (Ox(kw OV(k)) _ ot "Xi ~ X L Yo — Yo 4o (F2)
0 olx) T 0z "o lywk 0
S S 4
By using the relations given in Eq. (3.104), Eqg. (F2) can be rewritten as
F(%0 V) = T ("X Yoo
¢
where the angle ¢ represents the angle between the °x axis in the undeformed
configuration and the line connecting material points k and j.

=of 0 Cos@+,f  sing+-- (F3)

Replacing f variable in Eq. (F3) by displacements and rotations at time { of
material points k and j results in the following relations
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t t
Ui = Yay

t -
05 = oU k) COS@+ U iy SINQ+-+-
t t
V., —V
) (k) _ t t .
05 = 0Vx(k) COSP+ oV iy SIN P+ -+
t t
W, — W,
(i) (k) _ t t .
5 = oW,y COS@+ (W s SINQ+ -+
g
t t
0. . —6
x(j) x(k) _ t t -
0§ = OHX]X(k) CoS o+ OHX'y(k) sinp+---
t t
6,.,— 06
y(j) yk) _ ot t i
°§ = Oeyyx(k) CoSp + 0es’yyy(k)sm o+

(F4a)

(Fab)

(F4c)

(F4d)

(F4e)

Similarly, replacing f in Eq. (F3) by incremental displacements and incremental
rotations (from time t to time t+At) of material points k and j results in the

following relations

U Y _

Of = Ogyx(k) Cosp+ ,U Ssinp+---

Y(K)

Vi) =V

5

Y %o _ v cog W, sin
P = oWy COS@+ Wy SINQ A+

= oV 4 COSO+ VL sing+:--

Qx(j) _Qx(k) -0

05 — 02

Qy(i) _Qy(k) -0

oé; 0= yx(k)

xx(k) COS@ + OQx,y(k) SN +---

COSQ+ 0, 4SNP+

(F5a)

(F5Sb)

(F5c)

(F5d)

(F5e)

Therefore, by using the relations given in Egs. (F4-5), the bond stretches given in

Egs. (3.102b-c) can be rewritten as

t

t t V[t t s\
1] (0U 4 COS@+ gU 4 SINQ) +( 3V, COSP+ 0V siN )

2 t t )2
+( oW, COSQ+ W, SIN )

ot 2 t : t : t s 2
050y = ol COS” @+ gU 4 SINPCOS O+ 0V ) SINPCOS @ + gV, SIN" @

(F6a)
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2 . . ‘2
0S ooy = oY st COS* @+ U 4 SINPCOSP+ V4 SINPCOSP+ oV SiN? @
(0U 40 COSQ+ 5U 4 SINQ) (U 4 COSP+ U 1y SIN)
(0, COSP+ 4V 4 SINQ) (¥ 4 COSP+ 0V SIN0)

; . .
+( oWk COS@+ OW,y(k) sin §0)( oW x() COSP+ oW 4y SIN CD)

(F6b)

Therefore, by using the bond stretches given in Eqg. (F6) and by disregarding the
interactions beyond the horizon size of a material point, the dilatations given in Egs.
(3.102d-e) can be rewritten as

t 2 t H
oU 1) COS* @+ gU ) SIN P COS @

t H t T2
+oV 0 SINPCOS @ + ¢V 1 SIN“ @

27 1 . 2
o =duh], j +E(O‘uyx(k)cos(p+gu,y(k)sm¢) %cd %d g (F7a)

1./, t Ry
+§( 3V i COS@+ gV SiNg)

2

1/, ‘ .
+§(°W’X(k) COSQ+ oWy, SiN Q)

) .

oU 4 COS” @+ ol SINQCOS @
: L2

oY 4o SINPCOS P+ (V  SiN”

Iy =d hj‘hj'ﬁ +( U g COSP+ U SN (4U 4 COSP+ oU y SiNQ) | °d °Ed (F7b)

0% = %l f, I, x(k) Q vy SiNe x(k) 4 e SINe @

+((5V 40 COSQ+ gV 4 SINP) 4V 4 COSP+ oV 1y SiN )

. . : .
i +( oWk COSP+ oWy SIN (")( oW x(k) COS@+ oW 4y SIN ¢)_

By performing the integrations in Eq. (F7), the dilatations can be calculated as

t,,2 t,,2 t,,2
7hé?| ' 1| oUxiy Tolyao +oVixe
( u y( ))J’E t (F8a)
+V2

+W +W

y(k) (k) -y (k)

t t
oY xio T oVyay ol iy oUxay T oYy oYy

_ t t
k) — dip 2 FoV xw oVixay T oy oV, (F8b)

y(k)

+oW ‘W ‘W

) T oW

X(k) 0 2y (k) 07y (k)

By comparing Eqg. (F8) with Egs. (3.95d-e), the PD constant for dilatations can be
obtained as

2

% = ho? (F9)

Similarly, by disregarding the interactions beyond the horizon size of material point
k, the nonlinear strain energy per unit area for the in-plane deformations given in
Eqg. (3.102a) can be rewritten in the integral form as
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W = 2aip(0t3(k))( S(k) +2b|ph'[2”j o in( k)(n)( Sipgo() ) §'d’¢de  (F10)

By utilizing the bond stretches in Eq. (F6) and by performing the integrations given
in Eq. (F10), the nonlinear strain energy per unit area for the in-plane deformations
can be calculated as

NLPD t
Wit =28 0% 0y

'u

t t
oYy T oV || oYyao T oV T oY xwy oYy

t t t t
+oU s oY yk +oU v Ou,x(k) + oV xw) oYy
+30t‘9(k) oJi t+ ) “ ) "

6V oV +,V

y(k) Y (k) 0 x(k)

t t
+iwotw +oW + oW, 4 oW
" 7hs® oWy 0 Wy(k) v oWy y() 0 Wk (F1la)
ip B t,,2 t ]
6 y +1 oU + 0V | 1[ ol ety + ol iy ol
oViy)
2 2 + Wy(k) + VX(k) OVX(k)+ WX(k)OW,X(k)
t
¢ 1{ oUk * 0V ||[ 0¥y + oYy oYUy
+ oo * 3
I oW 0¥ 3010 0V.yt oWy 0o Wyqhy 1
or
3
NLPD ho t
Wi —(Zaierbip 5 ]o‘g(k)og(k)
(o g ly Uogn+ Vo4 U U ]
0+,y(k) 0", x(k) 0=,y(k) 0=,x(k) 0= ,x(k) 0™, y(k)

t t t
Folxw oUya || ol, y(k)ou,x(k)+ 0¥ x0 0V.y(i

+V v +,V

X(k) 0%,y (k) y(k)O X (k)

t F11
rhed I\t oWatg oW )\ +0 W) s Wy 0 Wy 0 Worgg (F11b)
+b 5 _ _

t
oY x0T oY xi oYk
+ W

t—

o€y

oV v va(k) x(k) oW,x(k)

\ +,U u
t= 0=y(k)
+ngx(k)

(k) 07, y(k)

t t
oYy oViywo T oWy oWy ) |

where &, and y¢,, are defined in Egs. (3.95b-c).

By comparing Eq. (F11b) with Eq. (3.96b), the following relations are obtained

7ho® Eh
. - F12
"6 2(Ltv) (F122)
7hs®  Eh
a +h - (F12b)

L T Ty
Therefore, the PD constants for in-plane deformations can be obtained as
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3E

by = (1+v)zs°® (F13a)
Eh

__Eh o b

a, 4(1_V2)(3v 1) (F13b)

F2. PD constant for shear deformations

In this section, the determination of the PD constant, Cy, , for shear deformations

is presented. As shown in Fig. 6.3, 9(k), ‘9 ;) and 0(k), é(j) are rotations and

incremental rotations around the line of interaction between material points k and
j. The relative values of these rotations and incremental rotations represent the

torsional angles (twisting angles) of the bond between material points k and j.

Therefore, by assuming the PD model is discretized with a fine mesh and the
torsional deformations of the bond between material points k and | are

insignificant, the approximation H(k) ‘é(j) and é(k) zém can be assumed [61].

Thus, the nonlinear PD strain energy per unit area for the shear deformations given
in Eq. (3.106a) can be rewritten as

— W —'w A W —W
Wi =2 cz( 0 M te(k)][__<,>0§_< _(k)j £V, (FL4)

By using Egs. (3.106b-c), the nonlinear PD strain energy per unit area for the shear
deformations given in Eq. (F14) can be rewritten as

t t

Wi =W,

) Wiy — W(k)

n +
é:(k)(j) é:(k)(l)

= 1.9 .

NLPD 0
Wi :ECSZ;‘ +(sin ‘0, )cos @ ||+, c0s('0,y JCOS@ | sy Vs (FI5)
J:

—(sin ',y )sing || ~6,4 c0s( ‘0, )sing

By using the relation given in Eq. (F4c) and Eq. (F5c), and by disregarding the
interactions beyond the horizon size of material point k, Eq. (F15) can be rewritten
as

+sin'g,,, )cosp W, +8,.,C08'0 . |cosp

Wi ®) x0Ty ®)

WSE(L{;D_ C,h j j f ) < ' ' ) ~|%d %dg (F16)
2 0 +( oW, —SIN Oy )N || +( oW, ) 0, €08 Oy Jsin g

By performing the integrations in Eq. (F16), the nonlinear PD strain energy per unit
area for the shear deformations can be obtained as

t t
e _ 1o 7hs® (oW,x(k) +sin Hy(k))(ov—",x(k) +0y0 COS( Hy(k)))

sh(k) 2 s t ; t (F17)
3 +(0W,y(k)_s'n ax(k))(o"—",y(k) — s COS( gx(k)))
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By comparing Eq. (F17) with Eq. (3.96¢), the PD constant for shear deformations
can be obtained as

3k E

T (1+v)zs°® (F18)

F3. PD constants for bending deformations

By using the relations given in Egs. (F4d-e) and Eqgs. (F5d-e), the bond stretches
for bending deformations given in Egs. (3.108d-e) can be rewritten as

'Sy = =00, ) COS” @ — 160, .\ SiN P COS P
0 b(k)(J) t yx(k) y.y(k) (F19a)
+ 00, ) SINPCOS P + ¢ H sm @

s =—,0

2 :
0=2b(k)() yCOS" @ — 0, 1) SINPCOS P

y.x(k - y.y(k i (F19b)
+ 08, x40 SINQCOSQ+ (0, SIN" @

By using Eq. (F19) and disregarding the interactions beyond the horizon of material
point k, the terms given in Egs. (3.108b-c) can be expressed as

2z6( g . COST@— 6, . SiNPCOSe

x(k) 0™y,y(k)

0% =dh [ | ( g " L |%ed%ede (F20a)
20l +o xx(k)sm(pCOS(/)"'o wy(k SN @

278 20— i
_q hfj 0, x4 COS" @ — 40, SINQCOS P
b(k) b
+0Gx) SINPCOS P+ ny(k)sm @

] °6d °cd g (F20b)

Performing the integrations given in Eq. (F20) results in

7hs®

0o =0 —— (=00, + 000y ) (F21a)
7hs?

0%y =0, —(_OQy,x(k) + on,y(k)) (F21b)

By comparing Eq. (F21) with Egs. (3.97c-d), the PD constant db can be obtained
as

2
=_c F22
d, ho? (F22)

Similarly, by using Eq. (F19) and by disregarding the interactions beyond the
horizon of material point k , the nonlinear PD strain energy per unit area for bending
formulations given in Eg. (3.108a) can be expressed as

27 0

VVb'?kL)PD =2a, ( Ot'gb(k) )( 0P ) +2b,h J. I AB°£%d °Ed g (F23a)
00

with
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06, 1 COS" @ — 0 . SingCose

A— 0™~y,x(k) - 0™~y,y(k) (F23b)
+ 06,4010 SINPCOS P+ 56, 1 SIN” 0

and
00, 1, COS @ — O, . SinpCOSe

5| 0% - 0Zy,y(k) _ (F23c)
+08yx() SINPCOS P+ 40, sin¢

By performing the integration in Eq. (F23a), the nonlinear PD strain energy per unit
area for bending formulations can be obtained as

va?li-)PD = 2a‘b (Ot‘gb(k) )( O‘Qb(k))
3( t‘9y x(k) o‘9x y(k) )( OQy,x(k) - OQx,y(k))

hs? (F24a)
bb 7[— ( tex x(k) Otgy y(k) )( «9)( x(k) OQy,y(k))

t t
+200, 400 0y xt) T 208y 100 0 Gy )

or
NP _ o
Wb(k) - ( b(k)) b(k))

(s

3( 0o )( b(k))
5| s
+2

t

+ 9)( x(k) 0 y y(k) )( Qx x(k) OQy,y(k))
t
ax y(k) 09

(F24b)

yot0 200y 100 0@yt

Therefore, by comparing Eq. (F24b) with Eq. (3.97b), the following relations
between PD constants for bending deformations and material constants can be
obtained as

hs? Eh®
- F25a
b, 6 24(1+ v) ( )
2a, +b, 710" ___EM (F25a)
2 12(1-v?)
Therefore, the PD constants for bending deformations can be obtained as
Eh*(3v-1)
= (F26a)
48(1-+*)
b EM (F26b)
4(1+v)ns°
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Appendix G. Calibration for the parameter A, in the PD fatigue model and
implicit solution for fatigue simulations

G1. Calibration for parameter A,

In this section, details of the calibration for the parameter A, used in Section 7.5.1
are presented. The calibration for the parameter A, is conducted by the following
steps;

Step 1: Assume a trial value for A, as: Ay =1174

Step 2: Conduct a PD fatigue simulation with the trial value Ay, =1174 and
calculate (dq/dN)(mal) and AK,
Step 2.1. Calculate (dg/dN )

trial) *

(trial)

First, by using the PD results for Ay, =1174, the crack length, Q) Versus load
cycle, N(mal) is obtained as shown in red in Fig. G1. Later, a smoothed curve for
the PD results is obtained as shown in blue in Fig. G1. Finally, (dq/dN)(mal) is
numerically obtained from the smoothed curve as

_ Aq(trial)

(trial) AN (Gl)

(dg/dN)

(trial)
Step 2.2. Calculate AK

By using the data of the crack length, (,, obtained from the trial PD fatigue
simulation and by assuming that the material is linear-elastic, the stress intensity
factor (SIF) range, AK(trial) can be calculated as [157]

AP 2+Q _ _ _ _
M = " (0.886+4.640 —13.32q" +14.72G° ~5.67" ) (G2a)
with
— Cl(trial)
- G2b
7= (G2b)
AP=P_. (1-R) (G2b)

Step 3: Plot the scatter data of (dq/dN) - versus AKy., in the logarithmic scale

(trial)

and find the best it Paris law equation for the scatter data: (dg/dN ) = = C ., AK"

(trial)

First, by using the (dq/dN)__ and AK, calculated in Eq. (G1) and Eq. (G2a),

(trial)

respectively; the scatter data (dq/ dN)(mal) Versus (AK)(mD , shown in blue in Fig.
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G2, is plotted in the logarithmic scale. From this scatter data, the best fit curve,
shown in black in Fig. G2, is obtained as

(dg/dN),,, =4.8295x107 AK?*® (G3)
40 1
——PD data
Smoothed data E
35t ® Experimental data

4
N (cycles) %10

4

Fig. G1. Fatigue crack length, (g, versus load cycle, N(trial) (the experimental
data is obtained from [136])

2
U PD data
I Fitting curve for the PD data:
dg/dN, . =4.8295E-7AK>6183

—_ t (trial)
-

% Fitting curve for the experimental data:
t dq/dN = 4.34E-7AK>0!%3
é 107 F

Z

=

S

o

10-4 1 1 1 | 1 J
10 15 20 25 30 35

AK (MPa.m'’?)

versus (AK) i with

Fig. G2. Fatigue crack growth curve for (dq/dN )(Mal)
Ayiay =1174 (the experimental data is obtained from [136])

Step 4: Calibrate the value for A,
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As can be found in [136], the best fit Paris law equation for the experimental results
is written as

(da/dN) o =4.34x107 AK > (G4)
Therefore, the value of the parameter A, can be estimated as
4.34x1077 AK *%% 4.34x107
=A. =1174—=1055 G5
% = P 1 5268 107 AKZTE 4.8295x107 (65)

G2. Implicit solver for static conditions in ordinary state-based peridynamics

In this section, the implicit solver for ordinary state-based peridynamics for static
conditions is presented. First, the PD equations of motion for static conditions given
in Eq. (4.17) can be rewritten as

N —_—
_Z Wi {Zad £ (S0 + )+ 4bs(k)(j)}cos Ny =Dy (G6a)

Z‘/’(kxn {Zad p ( o + ) ) +4bsy ;) }Si” Ny =byg (Géb)

By using the dilatation given in Eq. (2.63) without consideration of temperature
effects and the bond stretch given in Eg. (2.65), the equations of motion given in
Eq. (G6) can be rewritten jn a [natrix form as

U
N U b,
dila (k) BB () | _ | “xk)
Zk { }kamv —[5 ] (G7a)
] = ) y(k)
B0
with
- 4bV, | cos’ @ —cos’p  singcosg —sin@cose G7b
Koy =V == | o . .2 - (G7b)
& |sinpcosgp —singcose  sing —sin® ¢
and
2ad —CO0S¢p —COS@
I dila _ _ G7c
i) = Yo £ (J)|:_Sin(p —Sinqo} (G7c)

Note that, Eq. (G7) is the equation of motion for material point k . Assuming that
the PD discretized model has M material points. Therefore, the equation of motion
for all material points in the PD model can be written as

(K™)o+(K*®)Uu=B (G8a)
with

U=[Uy Uz - Um Vo Vo - Vimy :'T (G8b)
0= [ P o S (m)] (G8c)
B= [bxa) Byz) b By By - y(m)] (G8d)
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r klk,slB kl‘?f kffm ]

KB — kZB,lB kZB,E k;gm (G8e)
[Koma Komz -+ Koman |
k]

K dila _ ST G e (G8f)
LR,

where B and U represent the vector of applied forces per unit area and the vector
of displacements of the PD discretized model. The term K™ represents the global

stiffness matrix corresponding to the local stiffness k(BkB)( i, K represents the
global stiffness matrix corresponding to the local stiffness k(. Note that, the
matrix K® in Eq. (G8e) has a size of (2mx2m). Meanwhile, K" given in Eq.

(G8f) has a size of (2mxm).

On the other hand, by excluding the effect of temperature, the dilatation given in
Eq. (2.63) can be rewritten as

N (Ugsy —Ugy ) COS @ + (V) =V )sin @
(J) (k) () (k)
‘9<k)=dZ‘/’(kxj) J £ J Vi (G9a)
j=1
or o
Uk
N d . - u(J)
19(k)=Zl:W(k)(j)E[—COS€0 cosp -sing sing] v Vi, (G9b)
J:
Vi
or
Ug)
N .
Re :zkg _ u(J) G9
(0 = LS | (G9c)
i1 (k)
Vi) |
with
d ) )
kY
k(k)(j):l//(k)(j)gv(j)[—COS(D cosp —sing sing] (G9d)

Note that Eq. (G9c) is the dilatation for material point k . By assuming the PD
discretized model has M material points, the global dilatation vector of all material
points in the PD model can be calculated as

0=(K’)U (G10a)
with
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Koy Ko Ko om

Note that, the matrix K in Eq. (G10b) has a size of (mx2m).

Therefore, by substituting Eq. (G10a) into Eqg. (G8a), the PD equation of motion
for static loading conditions can be written as

((Kdila)(K9)+(KBB))U:§ (Glla)
or

KU=B (G11b)
with

K =(K™)(K)+(K*) (Gl1c)

where K represent the total stiffness matrix of the PD model.

By solving Eq. (G11b), the displacement field of the PD model is obtained. In this
chapter, the PD simulation is implemented in MATLAB and the displacement field
is obtained by using the backslash (\) operator.
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