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ABSTRACT

Three new simple beam-shell piping elbow finite elements have been formulated
and programmed as User Elements for the ANSYS finite element program. The
elements share a common beam bending model, based on an exact solution of
Vlasov’s thin-walled beam theory, but adopt different ovalisation interpolation
schemes.

Inthe first element, PB1, ovalisation deformation is assumed constant withrespect
to axial position and interpolated circumferentially by an even Fourier series.
The second element, PB2, extends the PB1 formulation to include linear
interpolation of ovalisation with respect to axial position. In the third element,
PB3, constant ovalisation deformation is interpolated piecewise around the
cross-section by four quintic polynomial functions.

Several sample analyses of single bends were performed, and the results compared
with published theoretical and experimental results. PB1 and PB2 were found
to give good agreement with stresses from alternative solutions for a range of
elbow geometries. The element PB2 solution converged slightly more rapidly
than PB1, but the additional degrees of freedom required for linear interpolation
negatéd the advantage of the higher order scheme. Element PB3 performed
poorly in comparison with the other elements, especially in the analysis of elbows
of low bend parameter. It was concluded that the polynomial interpolation
scheme of element PB3 was less effective than Fourier interpolation of
ovalisation.

Of the three elements presented, element PB1 was chosen in preference to PB2
for general piping analysis as its complete stiffness matrix had been obtained in
closed form, making it computationally less expensive. |

The use of element PB1 in piping system analysis was investigated by performing
- several sample analyses of systems and comparing results with flexibility and finite
element analysis. It was found that the element gave accurate results at low
computing costs, indicating its suitability for general elastic analysis of piping
systems,
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1INTRODUCTION.

Pipework is used extensively in industry for transporting material between items
of plant. In many applications, for éxample in the petro-chemical and power
industries, the material may be intrinsically hazardous or in a hazardous
thermodynamic state. Safety considerations require such piping to have high
structural integrity, whilst economic considerations require minimum structural
redundancy in the design. In practice piping safety and economy are ensured by
designed systems according to a particular design code or specification.

Piping codes generally allow two approaches to system design. In one approach,
a standard design procedure is adopted and the design drawn up according to a
set of rules defined in the code. Alternatively, an analysis of a proposed design
may be carried out in order to demonstrate that the stresses within the pipes and
forces at connections to items of plant are within specified limits. If the code
limits are exceeded, the pipework designer modifies the design and repeats the
analysis until the requirements are met.

The main problem in piping analysis is the size and complexity of piping systems.
Piping components such as elbows, bellows and branch connections are essentially
shell structures. A rigorous analysis of a piping system would therefore be based
on shell theory. However, the size and cost of a full shell analysis of a general
system makes such an approach impracticable at present, and a simplified analysis
must be used.

In contemporary practice, most piping design and analysis is done using computer
pipe stress analysis programs in which the piping system is modelled as a
framework assembled from simple beams. The model is analysed to obtain the
forces on the components, from which the pipe stresses are evaluated.

The engineers theory of bending makes two fundamental assumptions about the
behaviour of long slender straight or curved beams:

i) Plane sections remain plane during bending.

ii)  The cross-section of the beam does not deform during bending,
(Poisson effects being neglected)..

Under these assumptions, only longitudinal stress and strain are induced in beams
under bending. ‘



The beam bending assumptions are generally valid for straight pipes, but are not
applicable in the case of pipe bends. Cross-sectional ovalisation, violating
assumption (ii) above, is a fundamental deformation mode of a piping elbow
under bending. This is called the Von Karman effect; it causes a pipe bend to
be more flexible than a curved beam of the same nominal dimensions and induces
higher and more complex longitudinal and hoop stress in the elbow.

It is not, therefore, possible to directly model pipe bends as curved beams, and
in practice factors correcting elbow flexibility and stress intensification (derived
from shell analyses of bends) are required in the simplified beam analysis. The
" above approach is generally referred to as piping flexibility analysis.

However, a more realistic alternative axialysis method for piping systems has been
available since the early 1970’s. This is finite element analysis using special
purpose pipe bend elements which incorporate elbow ovalisation as a
fundamental deformation mode. Such elements require neither flexibility nor
stress intensification factors, and give more detailed and accurate stress results
for pipe bends. A number of ovalising element formulations have been presented
in the literature, several of which have been incorporated in commercial finite
element programs. However, these elements have not generally been accepted
for elastic piping analysis, as required by the piping design codes. This is mainly
due to two factors:

1)  The flexibility analysis is a tried and tested piping analysis method, which
has been used successfully for many years.

2) Finite element analysis using special piping elements is more expensive,
as the elbow elements are computationally larger and require numerical
integration of the element stiffness matrices.

L1 Scope of Present Study

The object of this present study is to review the elbow element literature, to
present possible formulations for simple elbow elements suitable for the elastic
analysis of piping systems and to investigate the performance of the elements
proposed. The elements are two-node displacement based finite elements, with
axial, bending and torsional deformation modes based on beam theory and elbow
ovalisation modes based on a reduced, 2-dimensional, shell theory.



The proposed elements have been programmed as "user elements” in the
commercial Finite Element system ANSYS. ANSYS is a powerful general
purpose finite element program offering a wide range of analysis capabilities,
including linear and non linear statics, dynamics, heat transfer, fluid flow,
electrostatics and magnetostatics. The program offers a large library of elements
for problems of the above types, and in addition allows the user to define his own
elementwhich interacts with the program in the same way as the standard ANSYS
elements.

Programming the elbow elements as ANSYS user elements has two significant
advantages over using a finite element-program written specifically for element
development. Firstly, the ANSYS pre-processor can be used to create finite
element models interactively and the post-processor used to display analysis
results. Secondly, the elements are accessible to other workers using ANSYS,
facilitating further study and application of the elements.

There is no official ANSYS documentation describing the user element capability,
other than a brief mention in Appendix P of the ANSYS User Manual. The user
element capability is described an ANSYS program called USER.ROUTINES,
which is supplied with main-frame and workstation versions of ANSYS.
USER.ROUTINES includes documented source code for an example user
element: a 3-D spar element.

In order to clarify the user element programming procedure, an extensive "User
Element Programming Manual" was written specifically to accompany this thesis
and is included as Appendix 1. The Appendix is limited to the programming of
linear elastic structural elements. User element source code for the elbow
elements formulated in the thesis are given in Appendix 4.

In the body of the thesis, a discussion of piping analysis methods, including
flexibility analysis and the finite element method, is presented in Chapter 2.

A review of the piping elbow finite element literature to date is presented in
Chapter 3, and salient features of such elements discussed with a view to
formulating simple elements for elastic analysis.

In Chapter 4, a number of elbow ovalisation models are studied by investigating
. the axial deformation of a semi-toroidal bellows expansion joint, which is similar
to the ovalisatibn deformation mode of a piping elbow. Four bellows finite
element formulations are presented.



Three elbow element formulations are presented in Chapter 5. The elements
share a common beam model, based. on an exact curved beam solution. In
elements PB1 and PB2, Fourier interpolation of a two-dimensional ovalisation
strain field (both constant and linear with respect to axial position) is investigated.
In element PB3, piecewise quintic polynomial interpolation of the two
dimensional ovalisation strain field is studied.

In Chapter 6 a number of sample analyses of bellows, elbows and piping systems
are presented, in order to assess the accuracy and applicability of the element
formulations presented in Chapters 4 and S. Results are compared with published
analytical, experimental and finite element results. In addition, a number of
flexibility analyses and finite element analyses using commercial finite elements
were performed for comparison purposes.

Finally, conclusions of the study are presented in Chapter 7, and
recommendations for further investigations in the field of finite element analysis
of piping systems given.






In many industries plant safety and reliability considerations require industrial
piping to retain its structural integrity throughout its operational life. In order
to meet this requirement piping systems are built to a specified piping code which
defines rules for design, materials, construction and inspection of the system.

Codes, standards and regulations covering the design of piping systems are issued
by a number of Standards bodies, including the British Standards Institute (BSI)
in the UK, and the American National Standards Institute (ANSI) and the
American Society of Mechanical Engineers (ASME) in the USA. For example,
three of the most popular codes in the UK petro-chemical and power industries
are:

BS806: Ferrous Pipes and Piping for and in connection with Land Boilers
[2.1].

ANSI/ASME B31.1: Code for Power Piping [2.2].

ASME Pressure Vessel & Boiler Code Section III: Nuclear power plant
components [2.3]

These codes will be used to provide specific examples of some of the general
points discussed in this chapter.

Industrial piping is subject to many different kinds of loading, but for the purposes
of code design three categories are usually considered. These are sustained loads,
occasional loads, and expansion loads.

Sustained loads arise from the mechanical forces present throughout normal
operation of the system, and include self weight, fluid weight, insulation weight
and internal (or external) pressure. |

Occasional loads also arise from mechanical forces, but are expected to occur
during only a small proportion of the plant life. Occasional loads include wind
loading, seismic loading, loads arising from possible plant accidents and
intermittent operational loads such as relief valve discharge.



Expansion loads arise when piping systems experience changes in operating
temperature, causing thermal expansion of the piping material. In an
unconstrained system such expansion is stress-free. However, in a constrained
system, thermal stresses are set up in the piping components and reaction forces
~occur at connections to plant, supports and anchors.

The object of design codes is to guard against failures arising from these loadings.
The codes may identify several failure modes, but most commonly consider three:
excessive plastic deformation or bursting, ratchetting and fatigue.

Excessive plastic deformation is considered to arise from sustained and occasional
loads. These loads give rise to stresses in the wall of the pipe which, if high enough,
may cause the piping material to yield. Ultimately, if the loading is high enough
to cause the yielding to spread through the cross-section of the pipe, failure occurs
due to rupture or burst.

Ratchetting failure may occur when a system subject to sustained and occasional
loading also experiences expansion loads, causing cyclic stresses in the pipe wall.
The magnitude of the stresses in the first loading cycle determines the behaviour
of the system under subsequent cycles. If the maximum combined sustained
occasional and expansion stresses are within the elastic range of the piping
material, the piping system will exhibit wholly elastic behaviour in all loading
cycles. If, however, the stresses occurring during the first cycle cause the piping
to yield, one of two types of behaviour will occur on subsequent cycles. If the
initialyielding sets up astate of residual stress in the pipe wall such that subsequent
cycling causes no further plastic deformation, the system is said to exhibit
shakedown. However, if the residual stresses are not great enough to
accommodate subsequent cycles elastically, successive cycles lead to cumulative
plastic deformation or ratchetting of the piping material, eventually causing local
plastic failure in the wall of the pipe.

Fatigue failure occurs when stress raisers cause peak stresses to arise in the
system. The peak values may be greater than yield, but, as they are by definition
very highly localised, they do not lead to failure due to bursting or yielding.
However, repeated thermal cycling may cause localised damage to occur, leading
to crack formation, propagation and eventually leakage in the system.



At the most basic level design against burst is achieved by ensuring that the piping
is of sufficient wall thickness to ensure that averaged or "membrane" stress in the
wall due to pressure loading is below a specified fraction of the material yield
strength. Failure due to gross yielding is then precluded by restricting stresses
due to other sustained and occasional loads to certain limits.

Protection against failure due to thermal loading is achieved by ensuring that the
proposed design has sufficient flexibility to absorb thermal strains without giving
rise to excessive stresses, deformations or connection forces in the system. In
code design it must be demonstrated that the system has sufficient flexibility to
absorb the design thermal loads safely. To this end a "flexibility analysis" of the
proposed design is carried out, in which the thermal displacements, stresses and

reaction forces are evaluated and compared with allowable limits specified in the
code.

Due to the size and complexity of piping systems, a number of simplified flexibility
analysis methods have been developed over the years. In general these
simplifications are intended to result in a conservative analysis, (although
Carmichael and Edwards have shown that this is not always the case [2.4]).

A more advanced approach to piping assessment is the "design by analysis"
procedure allowed for in the ASME Code Section III. Design by analysis requires
a detailed elastic stress analysis of the piping system to be performed, the results
of which are then compared with specified allowable stress levels etc. Such an
analysis is more complex, time consuming and expensive than a flexibility analysis
of the same system but gives more accurate and detailed stress, force and
displacement results. As computer costs have fallen design by analysis has become
a more viable alternative to flexibility analysis for a wide range of design work.

The size and complexity of piping systems have in the past precluded detailed
stress analysis of such systems, and traditionally a number of simplifying
assumptions have been used in piping analysis in order to reduce the problem to
a manageable size. Most significantly, expansion effects have been investigated
by performing a flexibility analysis of the system.



In flexibility analysis the problem is simplified by considering the piping system
to be an assembly of straight and curved beams. In the Engineer’s theory of
bending it is assumed that straight and curved beams deform such that sections
initially plane and normal to the centroid of the beam remain so after bending,
and that the cross-section of the beam does not deform. Under these conditions
a beam subject to a pure bending moment experiences direct strain in the
longitudinal fibres only, which, neglecting the Poisson effect, gives rise to uniaxial
longitudinal stress in the beam.

In practice beam bending assumptions can be applied in the analysis of straight
pipes with reasonable accuracy. However this is not the case in the analysis of
pipe bends, bellows expansion joints and branch connections, which exhibit more
complex behaviour than simple beams. '

When a piping elbow is subjected to bending loading its cross-section tends to
flatten or ovalise, violating the "rigid section" beam assumption as shown in Figure
2.1. Deformation of the cross-section reduces the bending stiffness of the elbow
and, consequently, the flexibility of a pipe bend can be considerably higher than
that calculated for a rigid section beam of similar geometry. The ovalisation also
causes a more complex state of stress than that predicted by beam theory. The
longitudinal stress is redistributed, and high circumferential bending stress is
introduced into the problem. Bellows and branch connections also violate the
basic beam bending assumptions. Bellows convolutions deform in a manner
similar to bend cross-section ovalisation, and branches exhibit complex local
effects at the pipe intersections.

Inflexibility analysis the true behaviour of elbows, bellows and branch connections
is usually accounted for by the use of correction factors. Correction factors for
flexibility and stress intensification are obtained by comparing the response
predicted by complex analysis of the components to that given by beam theory
and by experimental investigations. In the following section the analysis of piping
elbows is considered in some detail.

2.1.1 Elbow Analysis: Flexibility and Stress Intensification Factors.

The first theoretical analysis of a pipe bend per se was published by Von Karman
in 1911, when hg presented an analysis of an elbow subject to a constant in-plane
bending moment [2.5]. The previous year Bantlin had shown experimentally



that elbows are more flexible than predicted by beam theory but attributed this
behaviour to manufacturing defects [2.6]. Von Karman showed that the enhanced
flexibility was due to cross-sectional deformation of the elbow.

The geometry and co-ordinate system of a general elbow is shown in Figure 2.2.

Von Karman applied the minimum potential enérgy method to a section of elbow
under in-plane bending moment loading, simplifying the analysis by invoking the
following assumptions:

a)  Asinbeam theory, sections initially plane and normal to the centroid of
the elbow remain so upon loading.

b) The applied bending load givesrise toa bending moment which is constant
with reference to position around the axis of the elbow. This results in
constant ovalisation deformation of the cross-section with respect to axial
position and is generally known as the constant bending or constant
ovalisation assumption.

c) The circumferential cross-section of the bend is inextensible: ovalisation
arises solely from transverse bending of the pipe wall.

d)  The elbow geometry is such that the bend radius R is much greater than
the pipe mid-surface radius r.

e) the pipe mid-surface radius r is much greater than the wall thickness t.
f) Stresses normal to the shell mid-surface are negligible.
g)  Shear strains are negligible.

Assumptions (b) and (g) arise from the pure bending of an axisymmetric body.
Assumption (c) gives a coupling condition between the radial and tangential
deformation of the elbow cross-seciion, allowing the deformation of the
cross-section to be defined in terms of a single displacement component.
Assumption (d) limits the solution to long radius bends but simplifies analysis
calculations as the distance of a point on the mid-surface of the pipe wall at angle
O can be assumed to be the bend radius R. That is

R—-rcos9=R



Assumptions (e) and (f) conform with standard thin shell theory assumptions.

In the Von Karman analysis the radial deformation w of the cross-section is
represented by the Fourier series:

N
w= nZl Q,,€0S2n0 | (1)

By invoking the circumferential inextensibility assumption (c) above, the radial
displacementvis also defined in terms of the Fourier coefficients app,. The elbow’s
potential energy expression may therefore be defined in terms of the coefficients
of a single Fourier series and the work done by the applied moment in causing
end rotation of the elbow.

Minimising the potential energy of the elbow with respect to the Fourier
coefficients and end rotation yields an expression relating the rotation and applied
moment. Comparing the rotation values given by this expression to values
obtained by an analysis in which ovalisation is neglected, it is found that the
flexibility is higher by a constant called the flexibility factor of the elbow. Von
Karman found that the flexibility factor and geometry of elbows could be related
through a dimensionless bend parameter A, where:

If one term is taken in the ovalisation displacement series the Von Karman
analysis yields a bend flexibility factor of:

g2 12A%+10
1202+ 1

Taking more terms in the series yields more accurate expressions for flexibility
factor. The variation of flexibility factor with bend parameter for one, two and
three term series is given in Figure 2.3, which shows that the bend flexibility factor
increases as the bend parameter decreases. However, as the bore increases for
a given bend radius the long radius assumption (d) above is violated. In practice

bend behaviour is governed not only by the bend parameter but also by the radius
* ratio of the bend.
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The stress distribution around the circumference of the bend may also be obtained
from the Von Karman analysis. Again, considering a single term solution, the
normalised stress distribution is given by the equations:

09 3 3
o—=v(kcose-kscos e)té-kskcosze

n

Oy _ 3 3.,
i (kcos®-k,cos e)tévks}\cosze

n

where the positive sign refers to the outer surface of the pipe, k is the flexibility
factor as before, and

_ 12
To12A%+1

The normalising stress is the stress occurring at the outer fibres of a straight beam
of the same nominal dimensions subject to the same bending moment. From
bending theory

My M
"I qutre

The longitudinal and circumferential stress distribution at the outer surface of a
general elbow is compared to the beam stress distribution in Figure 2.4. Figure
2.5 shows the stress distribution at the outer and inner surfaces for an elbow of
bend parameter A = 0.5 and Poisson’s ratio v = 0.3. From these plots it is seen
that ovalisation significantly affects the stress levels and distribution in the elbow.
In a beam subject to a closing moment maximum longitudinal stress occurs at the
extrados (tension) and intrados (compression). In an elbow, ovalisation reduces
the stress at these locations and the maximum value occurs in fibres nearer the
neutral axis of the bend. The maximum longitudinal stress may be greater than
that in a similar curved beam, but it is not as high as the circumferential stress
introduced by the ovalisation. The maximum circumferential stress may be up
to four times the maximum equivalent beam longitudinal stress.

Most of the elbow analyses published between 1911 and the late 1940’s concerned
. improvement and refinement of the basic Von Karman model. Probably the most
significant advance during this period was the extension of the Von Karman

11



analysis to out-of-plane bending by Vigness in 1943 [2.7]. In a potential energy
analysis similar to that of Von Karman, Vigness assumed the radial displacement
of the cross-section of a bend subject to an out-of-plane bending moment to be
represented by the series:

N
w= Z b,,8in2no
nel

This is equivalent to the in-plane displacement function of Von Karman rotated
450 about the centroid of the section. For a single term solution the expression
for out-of-plane flexibility factor is identical to the in-plane expression. Stress
intensification is also similar in form to the in-plane case, but with the maxima
rotated through 450, '

The first major departure from the Von Karman approach to bend analysis was
made by Reissner in 1949, when he defined the governing differential equations
for in-plane bending of an elbow based on rotationally symmetric thin shell theory
[2.8]). The first pipe bend solution offering flexibility and stress intensification
factors based on shell analysis was published by Clark and Reissner later that
year [2.9], when the following expressions for flexibility and stress intensification
factors of low bend parameter elbows were presented:

2 . 1
_ In A3 A?

9s_,1.892_0.480

The Clark and Reissner flexibility factor is plotted against A in Figure 2.6, and
shows good agreement with a Von Karman three term Fourier series solution.
The stress intensification factors for the inner and outer surfaces of the elbow
are plotted against A in Figure 2.6.

Although the Clark and Reissner solution offered the first feal alternative to the
Von Karman approach to elbow analysis, many of Von Karman’s original
assumptions were retained. Most notably, the elbow was still considered to exhibit

. constant ovalisation deformation with respect to axial position. However, in the

discussion of a 1945 Beskin paper [2.11], Pardue and Vigness presented
experimental results which indicated that connection to flanges or straight piping
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runs could significantly stiffen the bend. This work was substantiated by Pardue
and Vigness in 1951 when they published the results of an experimental
investigation into the effect of such end constraints on piping elbows [2.12].

In practice attachment to straight pipes and flanges constrains the ovalisation
deformation of the elbow at the ends and the ovalisation varies with respect to
axial position. This reduces the bend flexibility, alters the stress distribution and
reduces the maximum stress in the elbow.

Forsome time the effect of end constraints on flexibility was dealt with empirically.
The first detailed results of a theoretical analysis including end effects was not
published until 1978, when Whatham presented the first in a series of papers on
end effects based on a series solution: of the governing shell equations [2.13].
Since then a number of papers extending the classic Von Karman analysis to
include end constraints have been published by Thomson and Spence, who
reviewed end constraints in piping elbows in reference [2.14].

Elbow flexibility and stress intensification factors which include end effects lead
to smaller displacements and stresses in a flexibility analysis but few of the design
codesactually include such factors. Most are still based on the constant ovalisation
approach.

Another significant factor not considered in most codes is the effect of internal
pressure on bend behaviour. Internal pressurisation of a pipe bend subject to
bending loading‘ tends to force the ovalised cross-section back to its original
circular form, effectively stiffening the bend. In 1957 Rodabaugh and George
published an elbow analysis in which the effect of pressure was included as a
linear work term in a Von Karman type energy analysis [2.15]. However, in [2.16]
Crandall and Dahl showed that the relationship between pressure and ovalisation
is non-linear, even for small cross-section displacements. Thus the linearised
small displacement theory used in analyses such as [2.15] cannot describe the true
nature of pressure-bending coupling. The reduction in bend flexibility due to
pressure-bending coupling is recognised in some codes but, in general, it is
considered too complex for inclusion in flexibility analysis.

The origins and limitations of flexibility and stress intensification factors used in
some specific piping codes are discussed below. Although complex piping models

‘ including_end effects and pressure-bending coupling have been presented in the

literature, most codes are based on constant bending analysis of elbows.
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2.1.2 Flexibility and Stress Intensification Factors in Piping Codes.

The flexibility and stress intensification factors used in the codes are derived from
several sources. ' '

In BS806 a single curve is presented for both in-plane and out-of-plane flexibility
factor. The curve is the average of in-plane values from Turner and Ford [2.17]
and out-of-plane values from Smith [2.18]. Turner and Ford reviewed
contemporary analytical methods for pipe bends in 1957 and provided a detailed
numerical analysis of the problem based on shell theory. Smith obtained flexibility
factors for out-of-plane bending by an extension of the Vigness analysis. The
BS806 stress intensification factors are also drawn from these sources.

The ANSI/ASME B31.1 flexibility factors are based on the Clark and Reissner
shell solution [2.9]; however, the stress intensification factors are derived from
fatigue tests performed by Markl in 1952 [2.19]. These tests defined so-called
"i-factors” which are approximately half the value of the stress intensification
factors given in BS 806. The stresses obtained using these factors are not true
elastic stresses, but an indication of the fatigue strength of the elbow. The reasons
for using these factors are somewhat obscure, but they are retained in the code
as they have been applied successfully in the past. Separate i-factors are specified
for in-plane and out-of-plane loading, and also for flanged bends.

ASME Section ITI for Nuclear Vessels defines three classes of piping. Subsection
NB gives the rules for Class 1 components including piping within the reactor
coolant pressure boundary. Subsection NC concerns Class 2 components
important to safety and designed for emergency core cooling etc. Subsection ND
concerns Class 3 components found in the cooling water and auxiliary feedwater
systems.

Classes 2 and 3 have design rules based on the ANSI B31.1 approach, whereas
two approaches are permitted for Class 1 piping. One method is Design by
Analysis, as discussed below, and the other is a conventional flexibility analysis
based on beam theory. As in the case of ANSI B31.1, flexibility factors based on
Clark and Reissner are available; however, alternative factors taking into account
the effect of end constraints and internal pressure may be used if preferred. These
alternative flexibility factors are based on the work of Rodabaugh et al [2.20].
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Stress intensification for Class 1 piping is accounted for by the use of three types
of stress intensification indices, each related to a particular failure mechanism:
gross yield, shakedown and localised peak stresses. These stress indices are
essentially different to the i-factors used in ANSI B31.1, being based on limit
stresses as opposed to fatigue results.

2.1.3 Computer-Based Flexibility Analysis: The Matrix Displacement Method.

Flexibility analysis is most commonly performed using piping analysis computer
programs based on code assessment procedure. Most of these programs model
the piping system as a three dimensional framework of simple beams, using
standard skeletal structure analysis techniques. In commercial software the most
popular analysis method is the matrix displacement method.

In the matrix displacement method a mathematical model of a complex piping
system is built up by assembling a number of straight and curved beam models
of system components called "members" or "elements". Here the term "element"
is used for cdnsistency with the finite element method which is discussed below.

The behaviour of an element is fully defined in terms of a finite number of degrees
of freedom by the element stiffness equation, the form of which is:

(F}y=[K]{d)}

where {d} is a vector of degrees of freedom, {F} a corresponding vector of forces,
and [K] the stiffness matrix of the element. The element degrees of freedom are
generally translational and rotational displacements at designated "nodal points"
or simply "nodes" located at the ends of the element.

The beam element stiffness matrices are defined by classical beam theory or by
inversion of the flexibility equation obtained by methods such as Castigliano’s
theorem. In the case of elbows, bellows and branch connections, the beam
element stiffness matrices must be modified to represent the actual behaviour of
these components. To this end flexibility factors are introduced into the analysis
at element level to increase the flexibility of the elements. The flexibility factors
are automatically evaluated by the programs according to the element geometry

and the specified design code.
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As the element stiffness matrices are generated, thermal loads arising from the
design temperature variation are evaluated in the form of an element load vector.
The element matrices and load vectors are then assembled to form the system or
global stiffness equation, by enforcing equilibrium and compatibility at nodes
common to adjacent elements. The system anchors, connections to plant, supports
and so on are then applied to the global displacement vector as displacement
boundary conditions. The global stiffness equation is thus generated in the form:

{Fgy=[K,1{d,} 2.1)

which is then solved for the unknown global displacements. Symbolically the
solution may be written:

{dgy=[K,17'{F ) 22)

Once the displacement solution is complete, the vector of element reaction forces
may be evaluated by back-substituting {d} into (2.1). Stress calculations are then
performed in which the element nodal stresses are evaluated from nodal forces
and moments according to bending theory.

Flexibility analysis programs based on the matrix displacement method may
produce large and seemingly detailed amounts of information, generally in a form
required by the piping codes. However, it must be emphasized that these results
are obtained by a simplified analysis and are primarily intended to be conservative
in nature.

As cbmputing costs and limitations have fallen in recent years, finite element
analysis has become more popular in the analysis of piping systems. Finite element
analysis is a powerful numerical analysis technique which, given adequate
computing facilities, may be used to obtain a detailed elastic stress analysis of
piping systems. A significant advantage of finite element analysis over flexibility
analysis is that the need for flexibility and stress correction factors is removed, as

the piping model more fully represents the true behaviour of the piping
components,
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The stresses obtained by finite element analysis are "real" pipe stresses, as
opposed to the beam stresses evaluated in flexibility analysis. However, the stress
results given by the finite element method do not conform to the traditional piping
stresses postulated in the design codes, and cannot be applied directly to such
codes. Inorder to make use of such analysis, it is necessary to specify an alternative
design philosophy to the traditional flexibility analysis approach. Such an
alternative has already been included in some of the more advanced piping codes
in the form of the "design by analysis" procedure. Design by analysis originated
in ASME Section III and Section VIII Division 2, and has subsequently been
adapted by other standards bodies including the BSI in BS 5500 Appendix A
[2.21]. In the design by analysis approach, the detailed elastic stresses given by
finite element analysis are processed and categorised in a form similar to
traditional pipe stresses. These stresses are then compared with allowable limits
specified in the codes.

In the remainder of this chapter the finite element method is discussed first in
general, and then with respect to piping analysis applications.

2.2.1 The Finite Element Method.

The finite element method is a powerful numerical analysis technique which is
used in many areas of science and engineering for the solution of field problems.
The method is defined in a large body of literature, for example references
- [2.22,2.23,2.24,2.25,2.26], but in terms of structural analysis it may be viewed as
a generalisation of standard structural analysis techniques.

The object of finite element analysis is to produce and solve a mathematical model
of a real structure in terms of a finite number of degrees of freedom. This is done
by considering the complex structure to be an assembly of simpler components
or "finite elements", for which general mechanical models can be obtained in
terms of a limited number of degrees of freedom. The elements may represent
real components, such as beams and spars in a frame structure, or they may be
conceptional sub-regions of a continuum, such as a sub-area of plate or shell, or
a sub-volume of a three-dimensional solid.

In the finite element method the behaviour of an element of structure is defined
. by a system of simultaneous linear algebraic equations. This is done by applying
the well known Rayleigh-Ritz and minimum potential energy methods to the
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element. Thus the behaviour of the element is defined in terms of displacement
and displacement derivative degrees of freedom located at specific element
positions called nodes. Nodes are usually located on the boundary of the element,
although some elements include nodes at internal locations.

As in the matrix displacement method, complex structures are modelled by
assembling a number of elements connected together at common nodes so as to
satisfy equilibrium and compatibility requirements, resulting in a global stiffness
equation similar in form to that of the matrix displacement method discussed
above:

{Fgy=[K,1{d,} 2.1)

where {Fg} isavector of applied forces, {dg} a corresponding vector of structural
degrees of freedom (displacements and displacement derivatives) and [Kg] the
global stiffness matrix of the structure.

The form of element stiffness equations is also common to both methods; that is
{F}=[K){d} 22)

where {F} is a vector of forces applied to the element, {d} the corresponding
degree of freedom vector and [K] the element stiffness matrix. However, the
methods differ significantly in how the stiffness matrix of the elements are
obtained. In the displacement-based finite element method, equation (2.2) is
obtained approximately by prescribing the deformation of the element by means
of interpolation functions and applying the principle of minimum potential energy
and the Rayleigh-Ritz method.

Potential Energy.
The potential energy of an general finite element is given by the expression:
n=U-Ww

where U is the strain energy of the element and W the work done by forces acting
onthe element. From elasticity theory, the strain energy of an element of volume
V is given by:
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1 T (23)
U-va(o} {e}dV

where {0} and { €} are vectors of stress and strain respectively at a point within

the element domain; that is within or on the boundaries of the element.

Forces acting on the element arise from three sources: body forces {R}, surface
tractions {T} and point loads {p}. These forces give rise to the work term W in
the potential energy expression:

W= [ @y Ryav s [ @y (ryds+ wiip) @4
|4 S

where V is the element volume, S the surface area and {u} the vector of
displacements at a point in the element.

The Rayleigh-Ritz Procedure: Minimising Potential Energy.

Equations (2.3) and (2.4) represent the strain energy and work contributions to
the potential energy of a continuum. Thus:

2.5
n=_U-W=%fV{o}T{e}dV 23)

- [T gyav - [ (wyT(TydS-u){p)
4 S

As the strains (and hence stresses) at a point in the element are defined in terms
of partial derivatives of displacement, equation (2.5) represents the potential
energy of the element in terms of an infinite number of degrees of freedom. In
the finite element method a Rayleigh-Ritz procedure is invoked to reduce the
problem to one with a finite number of freedoms.

The strain-displacement relationships for the element are defined by the
particular structural theory used in the formulation: for example,
three-dimensional elasticity, beam theory, shell theory etc. In general:

(e}=A({u)) ' (2.6)

19



where Ais a differential operator. The first step in the procedure is to assume a

displacement field which describes the possible deformation patterns of the
element in terms of a finite number of degrees of freedom. Deformation within
the element domain is defined by interpolating displacements and displacement
derivatives at discrete nodal points within the element. The interpolation
equation is of the general form: | |

{u}=[N]{d} 27

" where [N] is a matrix of interpolation or shape functions relating the vector of
displacements at a point, {u}, to the selected nodal degrees of freedom of the
element, {d}. '

[N] is required to meet internal displacement continuity and compatibility
requirements, whilst maintaining inter-element continuity as far as possible. [N]
may be obtained directly from well-known interpolation functions such as
Lagrangian polynomials or by defining a displacement function explicitly. In the
latter case, a.general displacement function is of the form

{uy=[f(x,y,z)l{a) ' (2.8)

where [f(x,y,z)] is a matrix of functions of position and {a} a vector of unknown
constants. By applying the element boundary conditions to (2.8), {a} can be
expressed in terms of {d}, the nodal degrees of freedom. For example, typical
boundary conditions at node i, co-ordinates (x;,y;,z), may be u = uj, v = vj etc.
Thus:

{dy=[4){a}

where [A] is a matrix of constants. This equation may then be inverted to give:

{a}=[A1"'(d)

Substituting for {a} into (2.8):

{uy=[f(x,y.2)][A] " (d}

Thus from (2.7) the shapé function matrix is:

INI=[f(x,y,2)1[A]""

20



In the finite element procedure the strain vector is obtained in terms of the
element degrees of freedom by substituting (2.7) into (2.6):

{e}=A(INI{d})
As {d} is a vector of constants, this may be written
- {ey=A(IN]D{d}
or
{e}=[B]{d} where [B]=A([N]) (29)

[B] is called the strain-displacement matrix of the element and relates strain at
a point in the element to the nodal degrees of freedom.

The stresses at a point in the element are related to strains by the appropriate
constitutive relationship for the element; for example, plane stress, plane strain
etc. Generally:

{0}=[D1{e) (2.10)
where [D] is the element constitutive (or elasticity) matrix.

Equations (2.9) and (2.10) can be substituted into equation (2.3) to define the
element strain energy in terms of the element degrees of freedom:

| 2.11
v=3 [ (& 1erar -1 [ @ 81 (pIB KAV (2.11)

Also, substituting (2.9) into (2.4) defines the work in terms of the element degrees
of freedom: '

W-j:/{d}r[N](R}dV"'L(d)T[N]{T}d3+(d}(P) (2.12)

Note that the vector {P} is not the same vector as {p} in the continuum work
equation (2.4); only point forces {P} applied at the nodes and corresponding to
appropriate degrees of freedom are now admissible. Thus from (2.11) and (2.12)
the total potential energy of the element is given by:
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L eayiay
“‘2fv{d} [BI'[DI[B1{d}adV (2.13)

- [ @y NIRYaY - [ () INUTYAS - (d) (P

The principle of minimum potential energy states that the total potential energy
of a structure meeting all boundary conditions is at a minimum when the structure -
is in static equilibrium. When a structure is in static equilibrium its governing
differential equations are satisfied; thus, by defining the minimum potential
energy state of the structure, the governing equations are satisfied indirectly.

The approximate minimum potential energy state of the element is defined by
systematically minimising (2.13) with respect to each degree of freedom in {d}.
For a total of n degrees of freedom this procedure results in a system of n linear
algebraic equations. The minimisation is written in matrix form: '

L [B]T[D][B]{d}dV—f[N]{R}dV—f[N](T}dS—{P}'{0)
o{d}y Jv v s
or

B1"{D = | INI{R}aV
[ v sy (@3- [ (NGR) 01

« [ INIKTYaS + (P

S

The solution is approximate in nature due to the finite number of degrees of
freedom chosen to describe the element deformation in the -interpolation
equation (2.7). In effect the shape functions constrain the mathematical model

of the structure to deform in a particular way, rather than to respond with the full
freedom of the real structure.

Comparing (2.14) with the general element stiffness equation (2.2), it is found by
inspection that: '

[k]=fV[B]T[D][B]dV (2.15)

~and
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[f]=L[N]{R}dV+‘/;[N]{T}dS+{P} (2.16)

Nodeless Degrees of Freedom, Static Condensation and Recovery.

In the formulation procedure described above, element behaviour is fully defined
in terms of degrees of freedom located at specific nodal points in the element
domain. It is, however, possible to forgnulate elements with degrees of freedom
. which are not associated specifically with particular nodes. Such "nodeless"
degrees of freedom have been used to define the ovalisation deformation of elbow
elements, and are discussed in Chapter 3.

As "nodeless" degrees of freedom are unique to their associated element,
continuity is not required between elements and nodeless degrees of freedom
can be "statically condensed" from the element matrices before assembly. The
resulting element is, therefore, fully defined by its nodal degrees of freedom.

Static condensation is a general finite element technique which may be applied,
if desired, to remove any degree of freedom not required for inter-element
compatibility. In order to apply the process of static condensation the element
stiffness matrix is required in the following partitioned form:

{{Fu} ) [[Kb,,] [Kbo]} {(dn} (2.17)

{F,} [Kop] [Kool ]| \{do} '

where {dp} and {d,} are vectors of nodal and nodeless degrees of freedom, and
[Fp] and [F] are corresponding force vectors. The stiffness sub-matrices are:

[Kbb), relating nodal forces and displacements; [Kqo), relating nodeless degrees
of freedom and forces; and [Kpo] and [Kqp], which are coupling matrices. -

The stiffness sub-matrices may be evaluated by partitioning the [B] matrix as
follows:

[B]=[[Bbb][Boo]]

where the sub-matrix [Bpp] relates strain to nodal displacements, and [Byq]
relates strain to the nodeless degrees of freedom.

- From (2.15), the element stiffness matrix is given by:



[k]=fV[B]T[D][B]dV

Performing the above integration using the partitioned form of [B] gives

{(ﬂ)} _ |:[Kbb] [Kbo]:l {'{db}> _
{Fo} [Kob] [Koo] {do}
where [Kpp] is the beam bending stiffness matrix,

(K] = [ [B,171DI(B,1aV (2.18)

[Kool the ovalisation stiffness matrix,

[Ko] = fV[Bo]T[D][Bo]dV (2.19)

and [Kpo] and [Kyp] bending ovalisation coupling matrices such that

[Kpol=[K, 1" = fB T(D1[B,]dV
bol=[K 4] V[ »] [DI[B,] (2.220)
The element stiffness matrix of (2.17) is of order (m+n)x(m+n), where m and n
are the number of nodal and nodeless degrees of freedom respectively. This "full"
stiffness matrix may be reduced to an mxm matrix by applying the process of static
condensation. From (2.17), two sub-matrix equations may be written:

{Fy} = [Kpl{ds}+[Ky1{d,} (221)

(Fo) = [Kol{dy}+[Kol{d,) (2:22)
From (2.22),

{do} = ~[KoQol ' {[Ku{du}={Fo)) (223)

Which upon substitution into (2.21) gives

(Fo) = [Kpl{dp}+[Kpo]{-[Koo] ' {[Kop1{ds} = {F,}})

“That is

24



(Fp) = [Kw]-[Ka] [Kool ' [Kop 11K} + [Kop 1T [K 0] {F o)
This may be written

{Fr) = [Kpl{dy} (2.24)

where [KR] is the reduced element stiffness mairix given by

[Kel = [[Ku]=[Kop1 [Koo]1 ' [Ko1] (2.25)

and {FR} is the reduced load vector:

{Fp} = { {Fp}=[Kop1 [Kool '{F,} } (2.26)

After the assembled structural equation has been solved, the nodeless degrees
of freedom {d,} may be required for stress evaluation in the reduced element.

Ifso, they can be "recovered" from the nodal degrees of freedom through equation
(2.23).

Element Co-ordinate Transformations. *

Finite elements may be formulated in terms of a local element co-ordinate system
and transformed into a common "global" co-ordinate system before assembly by
use of a rotation or transformation matrix.

Transformation matrices are discussed in some detail in Appendix 2, but
essentially a transformation matrix consists of direction cosines relating the axes
of the local and global co-ordinate systems. Each type of finite element - spar,
beam, plate etc. - has its own form of matrix, depending on the geometry and
degrees of freedom of the element. However, in general, the transformation
matrix is defined implicitly in the expression:

{local vector}=[TR]{global vector}

or conversely

{global vector}=[TR] '{local vector}

where [TR] is the transformation matrix. From this definition it can be shown
' that the element matrices are transformed from the local to global co-ordinate
System according to the general relationship:
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[global matrix]=[TR] '[element matrix][TR]

The transformation matrix has the very useful property of orthogonality; that is,
its inverse is equivalent to its transposé. Thus:

[TR]" = [TR]!

Therefore the local to global transformation equations for the vectors and
matrices of a general finite element may be written:

(d,}=[TRI"{d,)
{F}y=[TRI"{F )}
[K,1=[TRI"[K,][TR]
[M,1=[TRI[M,][TR]

Where d = displacement

F = Force
K = Stiffness
M = Mass

2.2.2 Finite Element Modelling of Piping Systems.

In practice the finite element method may be applied to piping systems in two
ways: standard shell element analysis, in which the piping system is modelled
using general purpose shell finite elements, or piping element analysis, in which
the system is modelled by specific piping finite elements. )

A piping system may be discretized using standard thin shell elements as shown
for a simple example in Figure 2.7. Provided an adequate finite element mesh
is used this is the most accurate piping analysis method currently possible.
Detailed displacement and stress results are obtained throughout the system, and
pipe bends, bellows and branches can be modelled with high_accufacy. At present
the piping design codes do not require this level of detail and, in addition, there

areseveral practical disadvantages in applying such an approach to general piping
analysis:

) Finite element modelling even using state of the art pre-processors is
time-consuming and hence expensive.
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if) Computing costs may be prohibitive.

ili)  Finite element models of complex systems may be too large to run on the
avaiiable computer. '

_iv)  Post-processing of results is time consuming and hence expensive.

Problem (iii) above may be circumvented by adopting a substructuring approach
to the problem. In substructuring, large and complex systems can be analysed on
fairly modest machines by dividing the single structure up into a number of smaller
component structures or substructures. Models of the individual substructures
are created in the usual way, but only a partial solution of the model is carried
out to evaluate the forces and stiffness at nodes lying on the boundaries at which
the substructure will be joined to others. This procedure is repeated for all the
substructures and they are then assembled to form a model of the complete
structure. The size of the substructured model may be a fraction of the size of a
single model with similar finite element meshing; thus very large jobs can be run.

The main disédvantages of the substructuring approach are:

a) The total computing costs are greater than for a single model analysis of
the system.

b)  Additional pre-processing and post-processing is required.

Therefore, although the technique may be used to overcome disadvantage (iii)
above, (i), (ii) and (iv) are worsened. In general, piping systems are simply too
big to be analysed in this way, and an alternative approach is required. To this
end, most finite element analyses of piping systems make use of special elements
formulated specifically for piping analysis. The main requirements of such
elements is that they simplify finite element modelling and post-processing of
results and reduce model size in comparison with general shell element models.

In the discussion of flexibility analysis presented above, it was noted that straight
Pipes can be modelled as beam elements with acceptable accuracy. However
elbows, bellows and branches cannot be modelled adequately using simple beams,
due to their more complex deformation behaviour. In flexibility analysis this was
allowed for by the use of correction factors in the element stiffness and stress
+ calculations. This situation persists for bellows and branch connections in all
~ current commercial finite element systems offering piping elements; however,
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since the early 1970s a number of finite elements formulated specifically for
modelling pipe bends have been presented in the literature. Piping elbow
elements were originally proposed for analysis of material non-linearity, such as
plasticity and creep, which cannot be adequately represented by simplified beam
models. The elements account for ovalisation effects by including shell
deformation modes in the element formulation. To date, two basic types of elbow
element formulations have been proposed: beam-shell elements and shell-ring
elements.

In beam-shell elements the ovalisation behaviour of the elbow is modelled by
superposing shell type ovalisation onto a curved beam element formulation, thus
removing the need for stiffness and stress correction factors. Complete piping
systems are modelled by using straight beams to represent the straight piping runs
and beam-shell elbow elements for bends, as shown in Figure 2.8a. In the case
of large bore small A bends it has been shown that some ovalisation may occur
in straights connected to bends, and in some cases curved elbow elements can
degenerate to straight pipe elements to include this behaviour in the finite element
model.

Shell-ring elements model the behaviour of bends wholly in terms of shell theory.
As the name suggests, the element has a ring type geometry and, depending on
the formulation, may be used either to model entire branchless systems as shown
in Figure 2.8b, or to model elbows only, with straight beams used to represent
straight piping runs.

Although several commercial finite element programs such as MARC, ABAQUS
and ADINA include elbow elements in their element libraries, the use of such
elements has not been universally accepted for general elastic analysis of piping
systems. Most of the elbow elements presented in the literature were intended
for detailed non-linear analysis of piping systems, and in some respects may be
regarded as over-complex and computationally expensive for analysis of general
piping systems. Also, programs such as ABAQUS are not the most "user-friendly"
on the market, and in the main are used only by non-linear analysis specialists.
Commercial flexibility analysis programs have specialist pre-processors which
allow the system geometry, supports, material properties and loading to be
specified in a manner familiar to piping design engineers.
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Taking a broad view, a successful elbow element must offer acceptable accuracy
at acceptable computing costs and be incorporated in a user-friendly, piping
analysis orientated, finite element system. The object of this thesis is to study
simple elbow elements and propose suitable formulations for general elastic
analysis. The first step in the study is to review the elbow element formulations
presented in the literature, and this is done in the next Chapter.
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Several piping elbow finite element formulations have been presented in the
literature since the early 1970’s. Most of these elements were intended for
inelastic analysis of high temperature piping systems and model effects such as
plasticity and creep which can not be adequately represented in simplified
beam-based analyses. Although elbow elements are included in several
commercial finite element programs, their use has not been universally accepted
for general elastic piping analysis. Elbow elements intended for non-linear
analysis are in some respects more complex than required for elastic analysis and
have been regarded as being too expemsive (in terms of computating
requirements) for general use. In this Chapter a review of the piping elbow finite
element literature is presented. The object of the review is to identify possible
formulations for simple elbow elements for elastic analysis of piping systems.

The geometry of a general pipe bend is defined in Figure 2.2. The distance from
the axis of symmetry Z to the centroid is the bend radius R. The bend subtends
abend angle ®. The distance from the centroid of the bend to the wall mid-surface
is the pipe radius r.

A point p(¢, 0, ¢ ) within the shell wall is defined by the angle ¢ along the axis of
the bend, the angle 6around the circumference of the bend and the radial through

thickness position &, positive outwards, such that 3 < < where t is the wall
thickness.

In the literature two conventions are commonly used for the origin of the
circumferential angle 6: 0 is either measured from the intrados (as in Figure 2.2)
or from the crown of the bend (6 = 90 °in Figure 2.2). In the following discussion
of elbow elements the origin of 6 for each element is consistent with that used in
‘the original formulations.

3.1 The MARC Beam-Shell Elements.

The first pipe-bend element was formulated by Hibbitt, Sorensen and Marcal in
the early 1970’s, and installed as Element 17 in the MARC non-linear finite
_element program [3.1,3.2). The element extends a bend analysis technique
developed by Marcal in [3.3].
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A piping elbow may be regarded as an incomplete shell of revolution, obtained
by rotating a circle of radius r an angle ¢ = a around an axis of symmetry distance
R from the centre of the circle. This results in the bend geometry described above
and shown in Figure 2.2. If the circle radius r is rotated through an angle a = 21
radians a complete axisymmetric toroidal shell is obtained. If such a torus is
loaded axisymmetrically it may be modelled by a reduced shell theory, which
takes account of the axisymmetric geometry and loading of the torus.

Axisymmetric shell analysis is considerably simpler than full two-dimensional
shell analysis, but is not directly applicable in the analysis of pipe bends, where
the torus is incomplete and the loading not axisymmetric. Marcal, however,
proposed that the behaviour of an incomplete torus could be approximated by
superposing a beam model, representing the non-axisymmetric modes of bending
and stretch, on an axisymmetric shell finite element model representing
axisymmetric modes such as ovalisation. This assumption is valid if the variation
in strain in the ¢ direction of the bend is negligible and is, effectively, a finite
element approach to the clasic Von Karman constant bending analysis of elbows.

Marcal’s original work was confined to analysis of single elbows, but the technique
was developed by Hibbett et al in the formulation of a piping elbow element
intended for use in the analysis of complete piping systems in which straight pipes
are modelled by straight beam elements. |

“The geometry and co-ordinate system of MARC Element 17 is defined in Figure

3.1. The element has pipe radius r, bend radius R and subtends a bend angle .
Each bend in the finite element model is discretized into a number of elbow
elements over which the constant bending assumption is approximately valid.
The cross-section of each element in the bend is discretized as a ring of
axisymmetric shell elements and an isoparametric coordinate system is used to
define bothshell displacement and position in terms of alocal "parent"” co-ordinate
¢ as shown in Figure 3.1. For an arbitrary element with nodes 1-2, the
isoparametric mapping is defined as

2 d
q= Z(NliQi+N2i(E%) )=[N]{q}
im] i

where q is ug, Vg, I Or z. ug and vg are shell displacements defined in the global

co-ordinate system. N1 and N are complete cubic polynomial functions of ¢
given by
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Nimf(E2-38,+2)  No= 2(1-8)%(1+8,)

where

E,=¢;¢ and =-152g<1

Thus the axisymmetric element interpolation is obtained in the form:

u g
v [~ [N(@I{d}
g
where {d} is the degree of freedom vector consisting of the nodal displacements
and their first derivatives with respect to €.

The axisymmetric shell model is required to describe local ovalisation effects
only, as the element rigid body modes are included in the element’s beam model.
The shell model rigid body modes are suppressed by applying displacement
constraints at discrete degrees of freedom on the cross-section.

The element beam deformation modes are represented by classical curved beam
theory. Three beam modes are included in the element: relative stretch, relative
in-plane rotation and relative out-of-plane rotation of the elbow end planes. No
torsional deformation mode is included. The beam is constrained to deform to
the arc of a circle, and all three deformation modes are assumed to give rise to
longitudinal strain only, constant through the wall of the elbow. The total beam
strain due to in-plane bending, out-of-plane bending and axial stretch is given by
the expression:

1{Au R z
€p=—| —+[ 1-=]Aa+ZA
* a(r+( r)arw)

The complete elbow element is formulated by superposing the ovalisation and
beam models and the stiffness matrix evaluated by numerical integration. Static
condensation is then applied, so that only beam freedoms are retained in what is
effectively a single node element defined in terms of relative displacement and
rotation degrees of freedom {Au Aa Ap)”.




At this stage the element is not directly'compatiblé with straight beam elements,
and kinematic constraint equations are used to relate the single node degrees of
freedom to two additional beam-type nodes A and B, defined at the ends of the
element centroid as shown in Figure 3.2. The kinematic relationships are based
on the assumption that: '

i) The elbow deforms to the arc of a circle.

ii) Stretch is not accompanied by radial motion.

iii)  There is no axial displacement at the mid-span of the element.
iv)  There is no rotation at the mid-span of the element.

V) The element is torsionally rigid. |

From these assumptions the following relationships can be defined:
ur-ul= 2(8111%)%*’ R(cos%—- g(sing—))Aa
—u;=2k(gn3)®:—k(gng)Aa

ul-ut= —R(sing)Aw—ZR(sin%)G,,

2
0;-0)=Ay
0;-07=-Aa
@;-05=0

In piping system finite element analysis. a 900 bend is typically modelled by three
or four elbow elements, with 16 to 32 axisymmetric elements around the
cross-section [3.4]. '

- Although MARC Element 17 has been used in industry for many years, there are
several basic deficiencies in the formulation. The use of constraint equations for
inter-element connection means that end effects cannot be included and a

consistent mass matrix cannot be formulated. The constant bending assumption
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also gives rise to compatibility problems, particularly in out-of-plane bending
where the moment varies rapidly with respect to axial position. The out-of-plane
response of the element is further compromised by the omission of torsion effects,
as, in practice, there is a high degree of coupling between the out-of-plane moment
and twisting of the bend. -

The element provided what Hibbitt termed "a workable tool", but in order to
circumvent the problems arising from the kinematic coupling in particular, an
"improved" element formulation was presented in [3.2]. In the second element
the ovalisation response is superposed on a conventional 12 degrees of freedom
curved beam element, thus dispensing with the need for applying kinematic
coupling. As in the original element the cross-section is modelled using cubic
polynomials; however the ovalisation is interpolated linearly along the axis of
the bend. Ovalisation degrees of freedom are statically condensed from the
element before assembly as in the original element.

Whilst the use of a conventional beam element introduced the effects of torsion
to the elbow element, many of the original limitations such as lack of
inter-element ovalisation compatibility persisted. In practice the element was
never implemented in the MARC program.

~In 1977 Ohtsubo and Watanabe suggested an alternative approach to
beam/beam-shell modelling of piping systems when they presented their "finite
ring element method of analysis", in which an entire branchless piping system is
discretized into straight and curved rings of shell [3.5,3.6]. The element is based

-on a complete shell theory and includes axial variation in strain and interaction
effects between adjoining elements.

In [3.5] a curved ring element as shown in Figure 3.3 was presented. The element
subtends an angle aand bends are modelled by using sufficient ring elements to
give convergence in the usual finite element manner.

The element geometry is a segment of toroidal shell, the behaviour of which is
- defined by Washizu’s linearised small displacement shell theory under the
Love-Kirchhoff hypothesis [3.7]. The deformation of a point p(¢,9,¢)in the
shell is defined by the linearised equations
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U, =u($,0)+¢0,(9,0)
Ue=0(9,0)+80,(9,6)
u,=w(9,0)

where u(¢,0)v(4,0) and w(¢, ) are translational displacements of a point

q(¢,6,0) on the mid-surface of the element as shown in Figure 3.4. ©,and @,
are the rotations of the shell at point ¢ in the © and ¢ directions respectively.

Before invoking the Love-Kirchhoff hypothesis the state of strain at p is defined
by the expressions:

€,= €0t CXyy Y4 = constant
€g=€Eoe* CXoo Yor = cConstant
Yoo = €o¢e":§"<'o¢e

where €,,,€,9, and €,,o are the mid-surface membrane strains,

KoerKop» aNd K,4 are bending strains, and y,, and vy, are transverse shear
strains.

The strains are related to the shell displacements and rotations by the following

equations:
1 ou .. (3.1a)

eoo—m(-a-q-)+vcose+wsxne)

. 1 00, (3.1b)
K°*'1e+rsine( 20 _®*°°S¢)

=l("_”+w \ (3.1¢)
°® r\o0
100, - (31d)
°®  roe
c - 1 (a—u—ucose)+li€)-9 (3.1e)
°*® R+rsino\d¢ r oo
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- 00 100 - (3.1
1, d'+®ecose)+——e (319
R+rsin6\ 2¢ r o6

,_sin® lou 1 l('ég-ucose
R+rsin@roo R+rsm6r od

(2., | (3.1g)

Ko¢>6=

1 ow (3.1h)
= ————| —=-usinb
Yer ®°+R+rsin6(a¢ )
Thus it is seen that the state of strain in the elbow is defined by the translations
u, v, and w, the rotations ®, and ©,, and certain ﬁrst derivatives of these with

respect to the shell angles 6 and ¢.

Under the Love-Kirchhoff hypothesis, plane fibres initially straight and
perpendicular to the mid-surface are constrained to remain so upon deformation.
Such deformation can occur only if the transverse shear strains are zero and
therefore, from'(3.2g) and (3.2h) above, the shell rotations are fully defined in

terms of translation derivatives by the equations:

l(aw ) (3.2a)

o=l =V

r\ o0

e='—'——‘—1. (a——w-usme) . (3.2b)
R+rsin6\o¢

and the state of strain at point p is fully defined in terms of the mid-surface
displacements u, v, and w and derivatives thereof.

In the Ohtsubo and Watanabe formulation the mid-surface displacements u, v
and w are interpolated around the circumferential direction © by a Fourier series
and along the meridinal direction ¢ by second order (cubic) Hermitian
polynomials. The combined interpolation functions are:

M (m) d (m) )
u=mZo(Hl(¢)(§f§)‘ +H (4>)uf""+H3(4>)( ';) +H4<¢)u‘"") G.™(0)

(m) (m)
v=Z(H <¢>( 4,) +Hy(0)0{™ + H, <¢>(°’;) +H4(¢)v$"")cﬁ”"(e)
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w= (H1(¢)(§‘i’)(m)+ Haui™ 1y 2] H4(¢>w$"")cff"(e>
m=0 ¢/ asé/,

The element degrees of freedom are the F ourier coefficients ul, v apnd wm

form=1to 6 and their first derivatives with respect to ¢ at the element end planes

¢=0 and ¢ = a, denoted as sectionsi and respectively. This effectively defines

nodal rings (as opposed to points) at the element end planes, around which the

displacements vary according to the active Fourier modes.

Hy, k=1,2,3,4 are the Hermitian shape functions

2¢% ¢° 362 2¢°

H1(¢)=¢"—a-+;5 Hz,(gl>)=1—7+—0‘3
—Ah2 3 3 2 2 3
Hy@y==2r 2 EROLE S

Gy, Gy and Gy, are trigonometric (Fourier) functions, given for in-plane and
out-of-plane bending by Tables 3.1 and 3.2 respectively.

m ’ 0o | 1]2]3 ’t:t 5 ' 6
™) 1 |sin6|cos26[sin36)cos46[sinS6jcos66

c™e)] 0 |coso [sin26|cos36[sin46]cosS6|sin 66

™) 1 |sin®|cos26|sin36|cos46)sinS6jcos60

c™g) 0 [cosH [sin28|cos36|sin46[cos56|sin66

¢™e) 1 |sin6|cos26[sin30|cos48[sinSbjcos66

¢ ) 0 |cosH |sin26|cos36|sin46|cos56|sin66
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Separate elbow elements were programmed for in-plane and out-of-plane
“ loading, apparently because of limited computer access when the elements were
developed. Each element has 12 x m degrees of freedom, with a maximum of 72
for m=6, and the stiffness matrix is integrated numerically by a Gauss quadrature
rule. 32 points are used around the circumference of the element and 4 in the

axial direction.

The full element stiffness matrix is assembled at global level, enforcing
inter-element continuity of all degrees of freedom. Thus ovalisation is continuous
between adjacent elements and ovalisation constraints can be applied at rigid
connections such as flanges. However, in finite element terminology the Ohtsubo
and Watanabe element is said to have "excessive” continuity, as derivatives of
higher order than theoretically required are continuous between elements.

The continuity requirements of a general finite element can be defined by
considering the potential energy expression of the element. The potential energy
is generally a function of displacement and displacement derivatives up to order
n. Therefore, to adequately represent the element energy, the displacement field
must be such that derivatives up to n are non-zero and continuous throughout
the element. However, the element stiffness equations are obtained by integrating
the potential energy expression and, consequently, the highest order of derivative
which must be continuous between "conforming" elements is #-1. An element -

satisfying this condition is said to be Cp-1 continuous.

If the Love-Kirchhoff hypothesis is not invoked, the highest order of derivative
in the strain displacement relations, (and hence the element strain energy), is
n=1. Therefore C, continuity is required between elements; that is, continuity
of displacements and rotations uyv,w@, and @,  However, under

~ Love-Kirchhoff the rotations and rotation derivatives are defined in terms of '
displacements and displacement derivatives, and from (3.2): '

20, 1 a(aw_v)_l gf‘g_gg)
00 ro6\ae r\oe* 299
- and
.o - 2
®°= L 2 w—é—lfsine)
90 R+rsind\ 92 90
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The highest order of derivative in the strain equations is now n=2 for the
out-of-plane displacement w, and hence C1 continuity of w is required. As only
first derivatives of u and v exist no derivatives of these displacements are required
to be continuous for a conforming element.. However, due to the use of cubic
interpolation of all three displacements in the ¢ direction, first derivatives of u,
v and w are included in the element degrees of freedom in the form of Fourier
coefficients and derivatives. As this is in excess of the theoretical requirements
the element is said to have excessive continuity.

Although the ring element is applicable to general loading problems and can
model interaction effects, it is subject to several disadvantages. In practice, use
of the element has been limited by its size. Convergence studies show that a 900
bend of pipe parameter A = 0.0924 §ubject to constant bending, (in-plane or
out-of-plane), requires six elements around the bend and six ovalisation modes.
Therefore, with up to 72 degrees of freedom per element, an expensive 32x4 point
numerical integration scheme and with a minimum of six elements per 900 bend,
the use of such an element is limited by computing costs and model size.

It has also been found that unless the mesh is sufficiently fine spurious error
stresses arise in the element, due to the inability of the Fourier-Hermitian
displacement field to fully encapsulate the rigid body modes of the curved element
in a global cartesian system. This problem vanishes in the limit as the mesh is
refined. In [3.5] the "error stress" is quantified, and recommendations for

appropriate mesh sub-division to minimise the problem are given.

3.3 The PAMEL Ring Element.
The ring element approach was pursued by Lazzeri in [3.8] in an element called

PAMEL (Plastic Analysis Membrane Elbows), intended principally for
elasto-plastic analysis of Pressurised Water Reactors (PWR) using the PAULA

(Plastic Analysis Using Library and ADINA) finite element program.

The element is based on Vlasov’s thin shell theory under the Love-Kirchhoff
hypothesis, which is similar in form to that of Washizu discussed above. The
element is intended for use with straight beam elements representing straight
runs, as opposed to the complete ring discretization pr oposed by Ohtsubo and

Watanabe. i

51



The element mid-surface displacements u, v and w are interpolated around the
element cross-section by the Fourier series:

. M )
u(P)=u,(o)+ Z (u§™(9)cosmO+ul™ (¢)sinmo)
me=1}
M
v(0)=v,(9)+ ) (v{™(9)cosmb+vi™($)sinmo)
m=1

W(8Y=w,(6)+ Y (wi™ ($)cosmB+w{™(8)sinme)
m=1
As in the earlier ring element this effectively defines nodal rings at the element
end planes. Applying Vlasov’s strain-displacement relationships the ring strains
are defined in terms of the Fourier coefficients, their first derivatives with respect
to ¢, and the second derivative of w with respect to ¢.

The derivatives of the Fourier coefficients in the strain displacement matrix are
obtained by a finite difference technique, in which the axis of the element is
meshedby N difference stations, where the nth derivative of an general coefficient,

say q, at station i is given by the difference equation

N
,,) = ZB?Q:‘ '
i i=1

(5
o0
where the B terms are evaluated from a Lagrangian polynomial.

The complete element has 9xMxN degrees of freedom, where M is the number
of Fourier terms used in the interpolation and N the number of difference stations .
- along the axis of the bend. In practice both M and N are generally taken as 4,
giving 144 degrees of freedom per element. The element stiffness matrix is
evaluated by numerically integrating around the cross-section by a 14 point
Gaussian quadrature rule, and through thickness by a generalised constitutive

matrix.

The element stiffness matrix is statically condensed to a 12 degree of freedom
_matrix compatible with standard beam based formulations. The degrees of
freedom are the Eouiier coefficients which mimic beam bending modes, namely:
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Uq - axial displacement

v1 - displacement parallel to the axis of symmetry
v2 - radial displacement

u1 - in-plane rotation

u) - out-of-plane rotation

Vo - axial rotation

at the end planes of the element.

Although static condensation makes the final element more economically
attractive, it precludes the element from ovalisation compatibility with its
neighbours. Further, the "plane sections remain plane" assumption imposed on
the end planes in order to mimic beam modes effectively suppresses warping at
the element ends. In these respects the element offers no advantage over MARC

Element 17,

The performance of the Lazzeri element is compared with that of Ohtsubo and
Watanabe for a bend with a rigid flange and with MARC for abend free to ovalise

in [3.8]. Good agreement is found in both cases.

In [3.9,3.10,3.11] Takeda et al present formulations for three elbow elements
developed for the Japanese Power Reactor and Nuclear Fuel Development
Corporation finite element program FINAS (FBR Inelastic Structural Analysis
System). The elements are called ELBOW6, ELBOW6R and ELBOW3R.

ELBOW 6 and ELBOW 6R are finite ring elements intended for discretization

of complete branchless piping systems. In fact both could be more accurately -

“described as element rings, as each ring in the model is assembled
Circumferentiauy from doubly curved thin shell elements. The element
formulations are presented for curved (elbow) rings, which degenerate to
cylindrical rings for modelling straight sections of pipe. ELBOW 3R is a constant
bending element similar to MARC Element 17, but allowing axial ovalisation

‘interpolation.

The geometries of ELBOW 6 and ELBOW 6R are identical and shown in Figure
3.4. Elements rings are assembled from a number of doubly curved quadrilateral
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shell elements. Each element in the assembly has seven associated nodes: four
on the mid-surface at the quadrilateral corners, one at each end of the ring
centroid, and one at the centre of curvature of the bend.

ELBOWSG6 is based on Washizu’s shell theory under the Love-Kirchhoff hypothesis
asused by Ohtsubo and Watanabe. The circumferential and radial displacements
v and w are interpolated in terms of the mid-surface node degrees of freedom by
a two dimensional cubic Hermitian polynomial. Axial displacement is
interpolated around the cross-section by a Fourier series, and the Fourier
coefficients are interpolated along the axis in terms of the centroid nodes’ degrees
of freedom by a one-dimensional cubic Hermitian polynomial. The remaining
node defines the orientation of the bend.

Considering the element geometry shown in Figure 3.4, nodes 1,2, 4 and S are
the surface or shell nodes, nodes 3 and 6 the end-plane or beam nodes, and node
7 the orientation node. The mid-surface axial strain is interpolated by the Fourier

series

M
u(s,8)=u,(§)+ ) Upn(£)SINMO+Upp, i (E)cOSME)
m=]

where &is the axial isoparametric variable: -1 <§< 1, as defined in Figure 3.5.

The Fourier coefficients u(i), wherei = 1, 2m etc., are interpolated in terms of
the axial degrees of freedom of the beam nodes,u3 and ub, by a one-dimensional

cubic Hermitian polynomial:

du, ou,

. N 3 6
u(g)= Hao(g)u?‘*Hsl(g)('aE) + Hco(g)u?"'Hm(E)(‘ég)

where

1
H30=%(2’3§+§3) H60=Z(2+3E'§3)

1
Hy=t(l-g-g7+8%)  Hg=3(-1-8+87)
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The ovalisation degrees of freedom vl and wi of the shell nodes i= 1,2,4,5 are
interpolated by complete bicubic expansion of the above Hermitian functions,
extended to two dimensions in the isoparametric system (§,7m). The quadratic
shell ovalisation field is therefore expressed:

. v~ [(ov) 22y !
v(’s‘,.n)= Z (Hzoov"'Hno(;'zé)Hm(S%) +H“I(3§3Un)

i=1,2,4,5

i=1,2,4,5

; ow)! ow\’ 22w \!
w3, o 3 32) 352

where the polynomials Hjjk are products of the one-dimensional functions defined
above, according to the scheme

Hypo=H(8)H (M)

with corresponding values for i, and m as given in Table 3.

i 1 m
1 3 3
2 3 6
4 6 3
5 6 6

"The element degrees of freedom are displacements u, v and w, their first
derivatives with respect to both isoparametric directions, and the twist of the
in-plane displacements, u and v, given by 9/9§9n. The element has excessive
continuity in both shell directions due to the use of bicubic interpolation.

‘In convergence tests it was found that a large number of ELBOW 6 elements are
required to model a single elbow, making it too expensive for general use. In an
attempt to improve the element performance a modified ring element with

relaxed continuity requirements, ELBOW 6R, was formulated.
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ELBOW6R isidentical to ELBOW 6in geometry, and again is based on Washizu’s
shell theory. However the Love-Kirchhoff hypothesis is not invoked, thus
reducing the element continuity requirements to C, as discussed in section 3.2.
Transverse shear effects are included and the mid-surface of the shell has
freedoms u, v, w,®, and O,

Axial displacement is interpolated by the same Fourier series as ELBOW 6, but
the Fourier coefficients are now interpolated along the axis in terms of the beam

nodes 3 and 6 by a Lagrangian scheme, such that

u;,=

(1-5)uf+2(1+5)uf

NI

The shell displacements v and w and rotations @, and ©, are interpolated

bilinearly in the isoparametric system in terms of their nodal values. Thus

v= Z N v w= Z Nw!

“i=1,774,5 - i=1,2:4,5
- i
0,= Z N0, Qy= Z N0,
i=1,2,4,5 i=1,2,4,5

where Nji= 1,2,4,5 is the function
! :
Ni=Z(1+gg)(1+nn)

Convergence tests for ELBOW 6R show that even with the relaxed continuity
requirement a large number of degrees of freedom are required for each bend.
In an attempt to improve performance, reduced integration of the element -
 stiffness matrix was introduced. Both selective (shear terms) and uniform reduced
integration schemes were examined and it was found that, whilst both improved

convergence, the uniform reduction was significantly more effective.

ELBOW 3R is a simplified version of ELBOW 6R, originally programmed to

- study integration requirements around the cross-section of the ring. The state of
strain is assumed to be constant with respect to axial position, thus the element
is effectively a constant bending element similar to MARC Element 17.
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The general formulation is that of ELBOW 6R, but the constant ovalisation
assumption sets ® , = Oand the remaining shell displacements are interpolated in
terms of the co-planar shell nodes 1 and 2. Thus

2
v=) N;v' w=) Nuw' . 9,=) N6}
[ i=1

2 2
i=1

where

1 1
N1=§(1-n) Nz=§(1+ﬂ)

Although ELBOW 6 and ELBOW 6R have been shown to be accurate in
published results, neither is suitable for general piping analysis due to the element
size, where no substantial benefit is gained over elbow modelling using standard
doubly curved shell elements. ELBOW 3R could be used in general applications
provided arrangements were made for joining to straight beam elements, for
example using MARC Element 17 type constraint equations.

- -Sh

The beam-shell element approach proposed by Hibbitt in [3.2] was developed
and extended by Bathe and Almeida in the early 1980’s, when they presented the
formulation of a beam-shell element for the ADINA-P program [3.12,3.13,3.14].

The element geometry and co-ordinate systems are shown in Figure 3.5.

The beam model is a 4 node isoparametric thick beam based on cubic Lagrangian
interpolation. Each node has six degrees of freedom: translations uy, up, and u3
in the global directions X1, X2 and X3 respectively, and corresponding global
rotations®,,®, and ©, The cross-section of the beam is assumed to be rigid,

and sections originally plane and normal to the centroid of the beam are assumed
to remain plane but not necessarily normal upon deformation.

A point in the beam element is defined by an isoparametric co-ordinate system
&.n,& The displacement of a point p(&, M, §)is defined by components of the
global displacement in the local isoparametric directions. Thus p has freedoms
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These freedoms are interpolated in terms of the global degrees of freedom at the
four nodes of the element by the equation

, .l
U 1 [91 [9la [9]s ‘
S sk ~ 1k ok 0,

Uy 7= th 0 [g]y: [9)z [G]a &
u. k=1 -k -k -k ®2
1 0 [g]i; [9)a [9la ok
_ 3

hy, k=1,2,3,4 are the cubic Lagrangian interpolation functions
h,=(-9¢%+9¢?%+¢-1)/16 hy=(27%%-9¢%-27¢+9)/16
h,=(9¢%+9¢2-¢-1)/16 . h,=(-278°-9%%+27%+9)/16

The [g] matrices are local to global co-ordinate rotation matrices, such that

F 0 '91"113 en>
[gl=r, Qnmé 0 9:11

| —emz  em

) -ef3 egp
[(9)=r,| e 0 er

| “ez e O

and
[91]=nlg15+%lg];
_ where eq; and el are components of the unit vectors in the local n and §

directions in the global system.

The global translations are obtained from the above interpolation functions in
terms of the nodal degrees of freedom. The global displacement derivatives are
~obtained by performing the Jacobian transformation
-1 0

Ly
" dx [ ] SE
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where the Jacobian matrix [J] contains the derivatives of the global co-ordinates
with respect to the isoparametric co-ordinates.

The global strains are obtained in terms of the nodal degrees of freedom from
the above interpolation. These are then transformed into the local strain

components €,,Y,, o and Yy, -

The element ovalisation model is an extension of the MARC Element 17 constant
bending analysis. Assuming that the cross-section ovalisation is constant with
respect to axial position, the state of strain is constant around the bend and plane
sections remain plane upon deformation. This allows the shell theory to be
simplified considerably, as all derivatives with respect to axial position can be
neglected. Further, longitudinal strain due to bending and axial stretch and shear
strain due to torsion are omitted from the shell theory and incorporated in the
elbow model as beam bending strains. Von Karman’s long radius assumption
that R > >ris not invoked, and the Washizu shell theory under the Love-Kirchhoff -

hypothesis discussed above reduces to

. (3.3a)
€¢=€o¢=mo—s-é(vsme-wcose)
| ¢ (02w ov | (3:3b)
69=€oe+ckoeseoe—ﬁ S—e—zﬂ'—%
where
1{ov . (3.3¢)
=56 Y :

By invoking the Von Karman inextensibility assumption the circumferential -
membrane strain (3.3c) is equated to zero. This establishes a coupling condition

relating the radial and tangential displacements of the shell:

o (3.4)

20

The circumferential stain is thus due to transverse bending only, and (iii) becomes:

" t[o%w -
B T
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The Von Karman constant ovalisation strains are interpolated cubically around
the axis of the bend in terms of ovalisation degrees of freedom located at the
beam nodes. The ovalisation radial displacement wg is interpolated by the
Fourier series |

w(g,0)= Z Zh a, sm2n6+Z Zh bpcos2n6

n=1m=]l n=lm=1

where hy, (m=1,2,3,4) are the cubic interpolation functions of the beam model.
The tangential displacement is obtained in terms of the same Fourier coefficients
by invoking the displacement coupling equation (3.4).

Up to three in-plane and three out-of-plane even Fourier terms may be included
in the element, giving a maximum of 12 degrees of freedom per node: 6 standard
beam degrees of freedom and up to 6 Fourier coefficients. Thus a single bend

element has up to 48 degrees of freedom.

By including the nodal Fourier coefficients as degrees of freedom at assembly
level, a degree of inter-element ovalisation continuity is achieved. However, as
no account is taken of ovalisation slope with respect to the axial direction,
continuity is limited to ovalisation displacement only.

Inorder to force full ovalisation continuity between elements an improved version
of the element was proposed in [3.13]. "Novozhilov’s thin shell theory [3.15] was
adopted to identify strain terms due to variation of ovalisation not included in
the original formulation. Two strains were added to the formulation: longltudmal

bending of the elbow wall

1___§( 1 ) dcw
€ R-rcost) de

and a shear strain term

w=(r=reoss)
Yoo R-rcos0/do6

where superscript I denotes interaction effect strains.
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A second derivative of the radial displacement now occurs in the strain energy
expression for the elbow, and C1 continuity of displacement w is required for
inter-element compatibility. However, the interpolation scheme cannot
accomodate higher order connectivity directly, as Fourier coefficient gradients
are not available as nodal degrees of freedom.

~ This problem was circumvented by the adoption of a penalty function method,
which modifies the potential energy expression of the element by including
constraint equations relating the degrees of freedom. This is analogous to
including a finite stiffness coupling between elements to force continuity. The
penalty parameter, which may be regarded as the coupling stiffness, must be high
enough to ensure adequate coupling, but not so high as to cause numerical errors
at the solution phase. Suitable parameter values are generally established
empirically, and in this application Bathe and Almeida recommend a value in the
order of the greatest ovalisation term in the element stiffness matrix.

The element stiffness matrix is integrated numerically. Through thickness and
axial integration is by a 3x5 point Newton-Cotes rule, with the composite
trapezoidal rule around the circumference: 12 points for in-plane loading, 24 for

out-of-plane loading.

Although the element extends the MARC idea to include cubic variation of Von
Karman ovalisation, with inter-element ovalisation compatibility, it is, in some
respects, a simpler element than the MARC Element 17. The choice of even
Fourier terms only limits the ovalisation to symmetric and antisymmetric modes
which is valid only if R>>r; an assumption not invoked in the element
formulation. However, published analyses using the ADINAP element have
indicate that the element is "capable of calculating the static modal and transient

~ thermal behaviour .. [of specific pipelines].. adequately” [3.16].

A further beam-shell elbow element was presented by Kanarachos and Koutsides
/in [3.17]. The element geometry is defined in Figure 3.6. The beam model for
the element is an "exact" solution, established from the curved beam theory of

Bickford and Strom [3.18]. The actual beam displacement field is not presented
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in [3.17], but was apparently obtained either analytically, by solution of the
governing differential equations of the beam, or by extracting the shape functions
numerically from a piecewise-linear curved beam finite element solution.

The ovalisation behaviour of the elbow is defined by a linear thin shell theory
under the Love-Kirchhoff hypothesis. The tangential ovalisation displacement
is interpolated by the function

4
v(x,g)= zNiv.-cx)

where the co-ordinate ¢ defines the circumferential position such that ¢ =6/2x.
vi:1=1,2,3,4 are ovalisation degrees of freedom corresponding to discrete values
of v at four positions around the cross-section, stepped at 900 intervals from the
intrados of the bend.

The ovalisation shape functions Nj: i=1,2,3,4 are defined piecewise around the
cross-section from ¢ =0t0 0.5, and ¢ = 0.5 to 1 by cubic splines. N7 is defined
in Figure 3.6. The remaining three ovalisation shape functions, N2, N3, and Ny4
are obtained by considering the rotational symmetry of the cross-section, that is
rotating N1 by 909, 180° and 2700 respectively.

The tangential displacement is interpolated along the axis of the bend by a cubic
Hermitian polynomial -

1 ov ! 2 ov 2
vi(x)=H,vj+H,Ra| == | +Hgvi+H,Ra| 3= i

28 /;
where the functions Hj are
H,=(1-3n%*+2n%) Hy=(3n%-2n%)
H,=(n-n%+n°) Hy=(-n*+1°)

and mis an axial co-ordinate from zero at end 1 to unity at end 2.

The radial ovalisation displacement is defined by invoking the Von Karman
inextensibility assumption (3.4)
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No information concerning how ovalisation rigid body modes are suppressed is
presented in [3.17], nor is the integration rule stated for the element formation.
The element is interesting in that it introduces polynomial interpolation of Von
Karman ovalisation, but insufficient application examples have been published
to assess how effective this interpolation scheme is.

EL Beam-Sh

In 1980 Millard and Hoffman presented the formulation of a beam-shell element
included in the French "Commissarait a L’Energie Atomiqué' non-linear beam
program TEDEL [3.19]. The element is essentially an extension of the classic
Von Karman analysis. The shell behaviour is represented by a thin shell theory
under the Love-Kirchhoff hypothesis, in which the Von Karman assumption of
circumferential mid-surface inextensibility is invoked. The radial ovalisation

displacement is interpolated by the Fourier series
N
w(8,0)=) (a,(¢)cos2nrd+b,(¢)sin2ne)
ne=1

where the Fourier coefficients are chosen to be either constant or linear around
thebend. The tangential displacementv(0, ¢ )is obtained from the inextensibility

condition.

The element beam model includes pure in-plane and out-of-plane bending modes
only; no axial extension or torsion modes are included. This is a simplification
of the MARC Element 17 beam model, which included axial extension as well

as bending modes.

The full element stiffness matrix, including beam and ovalisation modes, is-
statically condensed to produce an element with two degrees of freedom: relative
in-plane and out-of-plane rotations of the elbow ends. Thus ovalisation

compatibility is not enforced between elements.

Exa.niple analyses presented in [3.19] are limited to the study of local effects in
- single bends subject to pure moment and thermal loads. In order to use the
element in general pipeline analysis, kinematic coupling such as that used in

MARC Element 17 would be required.
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3.8 The ABAQUS Elements.

The non-linear finite element program ABAQUS offers a number of elbow
elements, described by the authors as "beams with deforming section". The
elements have been upgraded since the inception of the program and two
generations of element families are considered.

The original ABAQUS pipe bend elements are based on small displacement thin
shell theory ovalisation modes superposed on a thin walled beam formulation
[3.20]. The ovalisation is represented by a small displacement shell theory, again
under the Love-Kirchhoff hypothesis, in which warping of the elbow cross-section
is neglected. The ovalisation displacements v and w are interpolated
independently by Fourier series, as in the Ohtsubo and Watanabe ring element.

The functions are

N M N M
v(0,0)= ) Y H,(0)v',sinmo+) ) H,(¢)v;,cosmo
n=lm=1 ne=lm=2
N N M N M
w(6'¢)= Z Hn(d’)wno Z+ Z Hn(¢)wl‘un3inme+ ZI lHn(q))w:mCOane
n=1l a=l m=2 . =l m=

where v! and w!, are in-plane ovalisation Fourier coefficients, and

v% and w?, are out-of-plane Fourier coefficients. The zero Fourier mode wy,
is included in the radial displacement function, introducing a uniform radial
expansion mode to the element. Other ovalisation rigid body modes are prevented
by omitting zero and first Fourier mode terms as appropriate. Hp, is a polynomial
interpolation function, chosen to be linear, quadratic or cubic.

Several interpolation variations of the formulation were available in the original
issue of ABAQUS, ranging from a linear beam with linear axial variation of
cross-section through to a cubic beam with quadratic cross-section variation. Up

to 16 Fourier terms could be included in these elemex}ts. -

The second generation of ABAQUS elements extend the original formulation to
include warping effects and a non-lineq.r shell theory [3.21,3.22].‘ The behaviour
of the elbow is defined by considering two co-ordinate systems; the reference

(undeformed) system, and the current (deformed) system.
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In the reference system a point on the axis of the elbow is defined in terms of the
axial angle ¢, whilst a point on the mid-surface is defined by both¢ and 6 In
this case 0 is measured from the crown of the bend as shown in Figure 3.7. Points
on the axis and mid-surface have reference co-ordinates X ,(¢) and X (0, ¢)
respectively. Corresponding co-ordinates in the current (deformed) system are

- xa(¢)and x (6, ¢).

The deformation of the bend is defined by considering two sets of right-handed
orthogonal unit vectors, A in the reference system and a in the current system.
The directors A={A,,A,, A3} are defined such that Aj points towards the
crown of the bend, Ap towards the extrados and A3 along the axis of the bend.
After deformation the corresponding directors are a={a,,a,, a3}, where a3 is
approximately tangent to the bend axis, but a and ap are not generally coincident

with A1 and Ap.

The offset of a point on the pipe mid-surface from the bend axis in the current

system is given by

xo=x(e!¢)—x,1(¢)={xol’xoz’xoa}

which is written in terms of a as
x°=(r+UJ)t,.+Ute+xo3a3

where w and v are radial and tangential displacements, and x43 is a warping

freedom. The unit vectors ¢ are:

t,=a,cosb+a,sinb

lg=—-a,sinf+a,cosO

The rotation of the mid-surface of the elbow is obtained by defining a unit vector
normal to the deformed surface, which is related to the current director system
by a rotation denoted y,, The deformed elbow is, therefore, fully defined by the

‘displacements v and w, the warping freedom X3, and the rotation y 5

The beam modes of the element are defined by interpolating the current axial
POSltlon x 4(¢)and a corresponding rotation set 2 4 (¢) between nodal values by

the polynomial functions
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.
X4(0)=) H,(0)x"
nw=]

N
Q.(8)=) H,($)Q"
n=1

where x} and QY are values at node n, and H ,(¢) are polynomials of order
(N-1).

The cross-sectional deformation is interpolated by Fourier series similar to those
used in the earlier elements, but now including warping deformation:

Z Z H (¢)stm(me)un.m+z Z H (¢)Qa3ym(m9)u,m

ne= n=]l m=2

N
= 2 AL (9w, 5 Z B (0)Quyn (MO . O BL(8)Qum(mEIwS,

n=lm=1 a=lm=2

N M

0= ) Aa(8)Quyn (MmO > Z A 1(8)Qaryn (MO,

n=1m=2

a=lm=2

="Z RO Z A (00 (MOIYen* 3. Z A1 (9)Queym(mO) Y2,

a=lm=1

where (¢ ) are polynomials of the same or lower order as the Hy used in the

beam interpolation and

cosmO meven
sym(MO) =
Qeyn(m0) {sinme modd

i O meven
0. (m0)= sinm
asyn (M) {cosme modd

The superscripts i and o denote in-plane and out-of-plane ovalisation
deformation. Again Fourier terms are selected so as to omit rigid body modes.
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The element strain-displacement relationships are evaluated according to a
discrete Kirchoff formulation using the Koiter-Sanders generalised large
displacement section strains at each point on the mid-surface. It is assumed that

the warping deformation is small.

Three elements options are available in the current ABAQUS version.
ELEMENT 31 is based on linear interpolation of strain along the axis of a linear
beam. ELEMENT 31B simplifies the above, and a constant state of strain with
respect to axial position (and no warping of the cross-section) is assumed; ELBOW
31B is in effect a constant bending element. ELEMENT 32 is the most complex
of the elements and is based on quadratic interpolation of both beam and

ovalisation modes.

ABAQUS offers the most complete and best behaved elbow elements currently
available. All elements allow non-symmetric extensional ovalisation and through
thickness effects, and the higher order elements allow inter-element
compatibility. However, it is interesting to note that the most widely used element

is the simplest: the constant bending ELEMENT 31B.

3.9 The See Beam-Shell Element.
In 1984 See presented a constant bending element based on an exact curved beam
solution with superposed Von Karman ovalisation [3.23].

The element was intended for inclusion in a micro-computer piping analysis
program, but the inefﬁciént element formulation and large numerical integration
scheme used in the programming meant that it was computationally too large for
its intended use. The results presented in [3.23] indicate that the element
performed reasonably well for in-plane analysis, but was poor in the case of
out-of-plane loading. An alternative formulation of a similar element, including
closed form integration of the element stiffness matrix, is presented in Chapter

The most recent elbow element to appear in the literature is the semi-membrane
ring element of de Melo and de Castro intended for in-plane linear elastic analysis

only [3.23].

67



Semi-membrane theory is a simplified shell theory which postulates that the
response of certain types of shells can be considered to consist of two parts. The
main part of the response allows full membrane and bending action in one
co-ordinate direction, but membrane actlon only in the other. Thus this part of
the response can be said to be semi-momentless or semi-membrane, as bending
stresses are supported on only one of the two co-ordinate directions. The
remaining part of the response is an edge effect in the membrane direction. This
dies out rapidly away from the edge and is regarded as mostly unimportant.

In the Vpn Karman strain model of an elbow, axial bending of the elbow wall is
assumed to be negligible and, therefore, the Von Karman model may be regarded
as a simple semi-membrane analysis. The Von Karman model introduces the

further assumption that membrane strain is negligable in the circumferential
direction and that all shear strains are also negligible.

In terms of element formulation, the Melo and Castro element can be regarded
as an advanced Von Karman element, as the formulation superposes beam and
shell fesponses. The beam model assumes axial inextensibility and plane sections
remain-plane, so that the beam deformation can be fully defined by polynomial
interpolation of rotational degrees of freedom at nodes located at the beam ends.
Rotation of the beam centroid is interpolated linearly around the bend in terms

of end node rotations.

The ovalisation and warping modes are interpolated around the cross-section by
Fourier series, with linear interpolation of the Fourier coefficients between nodes.

The Von Karman circumferential inextensibility assumption is invoked to relate
radial and tangential ovalisation displacements. .

The element stiffness matrix was integrated by hand for axial integrals and a
trapezoidal rule with up to 50 subintervals used for circumferential integrals.

The element degree of freedom vector consists of nodal rotations and Fourier
coefficients. The complete stiffness matrix is assembled at global level thus
enforcing semi-membrane ovalisation and warping interaction; that is, edge
_effects are neglected. Each element has a total of 2+4n degrees of freedom,
where n is the number of Fourier terms in the ovalisation and warping

interpolations.
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Results of analysis of a number of single bend problems are presented and they
show good agreement with theoretical solutions by Ory and Wilczek [3.27],
Wilczek’s experimental results and semi-loof shell finite element analysis results.

The element is similar to the MARC Element 17 and TEDEL elements but,
unlike these elements, is limited to in-plane bending only. The beam modes are
restricted to pure bending and the elbow element is not directly compatible with
standard straight beam elements.

The consistant adoption of a semi-membrane approach introduces a simplified
way to include consistant interaction effects between elements. From the results
presented in [3.24] this approach appears to be adequate for certain pipe elbow
configurations, however, a more detailed investigation of a wider range of
geometries is required in order to fully ascertain the effectiveness of the

semi-membrane approach.

The above review has shown that a number of piping elbow elements of varying
complexity and capabilities have been presented in the literature. In general, the
more complex elements give more accurate results but, in practice, the use of
many of these elements has been limited by their high computing costs. The ring
elements in particular offer no significant economic advantage over shell finite

element descretisation of elbows.

Possibly the most significant factor to be considered when formulating an elbow
element is treatment of end effects and the continuity of ovalisation between -
adjacent elements. In constant bending elements, such as MARC Element 17
and ABAQUS ELBOW 31B, ovalisation is assumed to be constant with respect
to axial position along the element. This assumption considerably simplifies the
ovalisation shell theory and significantly reduces the number of degrees of
freedom of the element in comparison with more complex formulations.
However, constant bending elements have been shown to give good agreement
with more complex elbow models and experimental results for a range of
geometries and therefore end effects and interelement ovalisation compatibility

will be neglected in the simple elements presented in this thesis.
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If end and interaction effects are neglected, the obvious approach to elbow
element formulation is the simple beam-shell approach, in which the shell type
ovalisation response of an elbow under bending is superposed on a beam bending
model.

Several types of beam models have previously been used as the basis of elbow
elements. A classical curved beam approach has been used in MARC Element
17 and the TEDEL element. This offers the advantage of a very simple beam
model, but leads to compatibility problems and connection to straight beam
elements can only be made by use of constraint equations.

In the ADINAP element an isoparametric beam formulation was used. This
approach allows bends of non-circular geometry to be modelled but at the expense
of greatly added complexity in the element formulation. -

Thin wall beam theory has been used in several element formulations, namely
the ABAQUS elements and See’s element. The ABAQUS elements are based
on an original beam model which, although complex in formulation, has proven
very effective in practice. See’s element is based on Vlasov’s thin wall curved
beam theory. The programmed element had little demontrated success, however
the Vlasov model is attractive as a basis for elbow elements because if approached
properly it is possible to formulate a closed form solution for the beam model.
This dispenses with computationally expensive numerical integration, making the
element financially attractive. For this reason Vlasov’s theory is adopted as the
basic beam model for the simple elements presented in this thesis.

Several ovalisation interpolation functions have been proposed in the literature
but these essentially fall into two camps: Fourier series and polynomial functions.

Fourier series have been used in several formulations, for example the ADINAP,
Ohtsubo and Watanabe, ABAQUS and TEDEL elements. In the ADINAP and
TEDEL elements truncated even Fourier series were used. In the Ohtsubo and
Watanabe and ABAQUS elements truncated complete series were used.

Polynomial functions have been used to interpolate ovalisation implicitly in
MARC Element 17 (in which the cross-section is modelled by polynomial-based
axisymmetric elements) and directly in the Kanarachos and Koutsides element.
MARC Element 17 has been demonstrated to have acceptable accuracy for a
large number of published analyses; however, it requires a larger number of
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ovalisation degrees of freedom than constant bending Fourier ovalisation
elements. Insufficient examples were given in [3.17] to critically assess the
performance of the Kanarachos element.

In order to investigate the relative merits of Fourier and polynomial interpolation
of ovalisation, both approaches will be investigated. This may be done by
formulating a number of elbow elements based on the same beam model but with
different ovalisation interpolation schemes. However, a simpler approach to the
investigation is possible by considering the deformation of expansion bellows.

It was stated in Chapter 2 that the deformation mode of expansion bellows is
essentially similar to the ovalisation deformation of an elbow under bending. It
is therefore possible to investigate intérpolation schemes for elbow ovalisation
by applying such schemes to simple bellows analyses, which are simpler to
formulate and require much less programming than elbow elements.

In the next chapter four semi-toroidal bellows finite element formulations are
presented. The principle objective in formulating these elements is to investigate
ovalisation interpolation. However, a secondary objective is to introduce the
concept of bellows elements per se. Present piping analyses consider bellows to
be straight beams with flexibility and stress correction factors. A bellows element
based on the true bellows deformation mode removes the requirement for such
correction factors and gives a more detailed and accurate stress analysis of the

component.
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Figure 3.1 MARC Element 17 geometry, coordinate system and ovalisation
displacements. | )
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Figure 3.3 Ohtsubo and Watanabe ring element geometry, coordinate system
) ‘and elbow descretisation. (Adapted from [3.5]).
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~ Figure34  FINASELB |
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(Adapted from(3.10]). geometry and coordinate system.
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- Figure 3.5 ADINA-P element geometry, coordinate systems and beam degrees
of freedom. (Adapted from [3.14]).
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4 SEMI-TOROIDAL BELLOWS FINITE ELEMENT
FORMULATIONS.

Bellows expansion joints are often used to absorb thermal expansion in piping
systems when lack of space prohibits the preferred use of expansion loops. Several
- types of expansion bellows are available commercially; however, in this thesis
only bellows of semi-toroidal geometry, as shown in Figure 4.1, are considered. -

When a semi-toroidal bellows is subject to an axial load it deforms by near
inextensional bending of the bellows convolutions, as illustrated in Figure 4.2,
The deformation of the convolution is similar to the ovalisation deformation of
apiping elbowunder bending. Therefore, because of the similarity in deformation
modes, ovalisation models for pipe bends may be investigated by considering the

simpler case of expansion bellows.

In this chapter four bellows finite element formulations are presented, primarily
in order to study suitable ovalisation models for piping elbow elements. However,
a secondary objective is also identified: that is, to formulate a bellows element
capable of accurately modelling true bellows behaviour. In flexibility analysis,
bellows are modelled using straight beam elements. As in the case of flexibility
analysis elbow elements, such "bellows elements" do not represent the true
behaviour of the component and, consequently, flexibility and stress
intensification factors are required in order to evaluate approximately the bellows
stiffness and stresses. An element based on the true bellows deformation would

not require the use of such correction factors.

The bellows geometry and sign conventions used in this chapter are defined in
Figure 4.1. Like a piping elbow, semi-toroidal bellows are shells of revolution.
The radius from the bellows axis of symmetry to the shell mid-surface is a. The
mean axisymmetric radius of the bellows is R, and the convolution mid-surface
radius is r. The (hoop) angle about the axis of symmetry is ¢. The position along
the convolution in the axial direction is defined for each 900 arc of by 6.

In [4.1], Laupa and Weil published an analysis of U-shaped bellows subject to
axial force and internal pressure loading based on the potential energy method.
“Semi-toroidal geometry was considered as a special case of U-shape bellows in
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[4.1], and a simplified version of this analysis (in which only axial force loading
was considered) was later presented by Findlay and Spence in [4.2]. Bellows
element BEL1 is based on this simplified semi-toroidal bellows analysis.

4.1.1 Bellows Deformation and Displacement Interpolation.

The co-ordinate system and boundary conditions of an outer quadrant of bellows
is shown in Figure 4.3. The position of a point on the wall mid-surface is defined
byanglen = -2’5 - 6. Mid-surface deformation is described by displacement y parallel
to the axis of symmetry, displacement z perpendicular to the axis in an outward
diregtion and rotation .

The boundary conditions of an outer 900 section of bellows are:

y=9=0 at n=0 (4.1)

4.2)

nNa

z=0 at n=

The normalised displacements of an arbitrary point P on the section are given
by:

y n (4.3)

== f vsinndn
r 0

x ' (4.4)
z 2
—==/ wcosndn
r n
where v is the tangent angle of the mid-surface. ¥ is interpolated around the
section of convolution by the Fourier series:

4.5)
Y=C,sinn+ iczpsiann
1

The axial displacement Y1 at 1) = n/2 may be found from (4.3) by substituting
(4.5) for y:

n
2

Yl‘f
r— ]

{Clsinzn + iczpsinnsiann>dn
1

83



which may be written:

Yl_ B c : .
—={(B,}{C,} ._ “6)

that is

H
{B,,}=f (sinzn, }E_: sinnsin2pn)dn
0 1

and

T
ool

Integrating {Bp} gives:'
_jno2 4 6 }
{Ba)= {Z .3 15 33T

4.1.2 Formulation of the stiffness matrix.

The values of the coefficients Cy, in the shape function are found by applying the
principle of minimum potential energy to the bellows.

The potential energy, V, of the bellows is defined by the expression:
V=U-W
where U is the strain energy and W the work done by the axial load.

The state of strain in the bellows is assumed to be direct strain in the axisymmetric
(hoop) direction and inextensional bending of the convolution wall in the axial

direction. Thus the total strain energy in a quarter section of bellows consists of
two components: membrane energy due to the direct hoop strain and bending

energy due to the bending of the convolution wall. Thatis:

The membrane strain energy of a differential element of shell is given by the

_expression [4.3]:
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al,=sN,e,radodn

N~

where the circumferential stress resultant N, is given by:

The membrane strain energy is obtained by integrating the elemental energy
equation through the volume. From the long radius assumption R> >r, radius a
is assumed constant such that a=R. Noting that € ,is constant with respect to ¢,
integration with respect to ¢ results in the following expression for membrane
strain energy:

zZ zr r 2
€, =—= = - cos d :
a ra R nW nen (4.7)

Substituting for (z/r) from (4.4), Uy becomes:

Et (r zfg-z
U, = - d .
m l—vanr(R) oe¢ n (4.8)
where
.1 . cos(2p+l)n+0032(P"1)ﬂ>
€,= §<Clcos n+iczp oprl 2p-1
Adopting the identities:
Rt ~nRt®
_7\—-’_—2- and 1 %

equation (4.8) may be written:

- 8 2 )
__GOEL [*[€ 4.
U"'—(l—vz)r-f;(K) “n )

>
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An expression for bending strain energy is obtained in a similar manner from the
differential bending energy equation:

Et3

1 .
AU, = ~M.k.radod N L
v =z Mokoradedn Mo= 1515

and

-’

Pl '
ke'T-’—_<CICOSn+ 2C2p2pC082pn} (410)

Thus the bending strain energy is:

__GEl 5’55) o 4.11
Ye (l—vz)rj; (Té an (4.11)

where

ko=C,cosn+ ) C,,2ncos2nn
1

The total work done on the section of bellows by the axial force is this force P
multiplied by the displacement Y1. Thus the potential energy equation of the

quarter section is:
V = U m + U b P Y 1
which, upon substituting (4.9) and (4.11) becomes:

6F1

=22 p-PY
(1-v3)r ' . | (4.12)

where;

o ()5 w

Equatlon (4.13) was obtamed in a closed form using the symbolic algebra
computer program SMP (Symbohc Manipulation Program) [4 4].
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In equation (4.6), Y7 is expressed in terms of the interpolation function
coefficients Cp,. The values of these coefficients are obtained by minimising the
potential energy of the section with respect to each coefficient in turn:

oV o forn=12,4,6,8....
aC,

It is seen from (4.12) that the potential energy is a function of D and also of Y1,
both of which are functions of the coefficients Cy. Therefore, partial

differentiation of (4.13) with respect to Cp gives:

oV _ _6EI 3D _ Y1 _ g
oC, (1-v3r oC, oC,

or:
2D _ P(1-v®r oY, (4.14)
oC, 6E1 oC,

The relationship bémeen Y1 and {Cp} is defined by (4.6) which, upon

differentiating with respect Cp, gives:

37, (4.15)

oC,

={B,}'r

The relationship between the energy term D and {Cp} is more complex, and is
defined in equation (4.14). Integrating this equation and subsequently
differentiating with respect to the coefficients yields a system of equations of the -

form:
(4.16)

oD
aC”-—[A]{Cn}

where [A] is a symmetric matrix of constants for a given value of A, the upper

triangle of which is:

87



1.178097 2.871682
Ay =0, =L -
" 01309+( e ) Az 0'523599+(T)
AL=0.111111+ (1659685) Am_o.zlssao
472
2 .
Aa=-0.044444+ (o 5418 AH_00162327
4n
414 0.023571 - 2.201814) e - 2012109
: 4n
: 0.000641 -0.012489
A,s-—0.021164( an? ) Ae=— 7
Au--o.016835+(9;°—°9.23§3.)
an
' 0.173873 0.070646
A33-2.O9439S+( el ) A“-4.712389+(——;¥—)\—2——)
_ 0.059259 0.028132
. 0.017316 0.011005
A“-0.0
0.38751 0.024577
Assk=8,37758+( e ) | A,6-13.089969+(T
0.0164
Ass=—_“———33

402

The vector {Cp} is as previously defined.

Substituting (4.15) and (4.16) into (4.14) and rearranging gives:

o (d-=vAHr? -1 T
{€Cr) = Y [A]7 {B,} F 4.17)

which defines {Cp} in terms of [A] and {Bp}. On obtained {Cp} from (4.17),
the axial displacement Y1 of the section of bellows due to load P is given by

€quation (4.6):
Yy =r{BMC.) (4.18)

Substituting for {Cp} from (4.17):
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C(1-v?)rs ‘U yTp
L= e (Ba) [417 (Ba)TP | (4.19)

Comparing (4.19) with the general structural stiffness equation F=Kd, it is seen
that the axial stiffness of the quarter toroidal section is given by:

_ 6El
T (1-v3)rd {B,) [A]! {B.)T (4.20)

K

From the long radius assumption, it may be assumed that a similar inner quadrant
of bellows has the same axial stiffness as an outer quadrant [4.1]. It is therefore
Possible to define the complete bellows stiffness from (4.20). The stiffness of one
convolution of bellows, that is four quarter sections, is the series sum of four such

stiffnesses:
Kq
Keorr =7~

Similarly, the stiffness of a bellows comprising of N convolutions is:

K, (4.21)

Keman

Thus the stiffness equation of a one dimensional bellows element is:

Tk -,
[K] [—Kb KbJ

Expanding into three dimensions gives:
K, 0 0 -K, 0 O] |
O oo O 00O (4.22)
o 00 O 00
K1l =
(K] -k, 0 0 kK, 0 O
o oo O 00O
| o 0 0. 0 O O]
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4.1.3 Bellows flexibility factor.

Bellows flexibility is generally discussed in terms of a flexibility factor, which is
defined as the ratio of bellows displacement to comparable pipe displacement
for a given load P. The straight pipe is considered to be of length r, the bellows

radius.

The flexibility factor is defined mathematically by the expression:

3EI Y,

Flex-’-m'];‘

Comparing this expression with (4.21), it is found that the flexibility factor may
also be expressed as:

_{BAIT' (BT
- 2

Flex (4.23)

4,1.4 Stress and Strain.

Insection 2.1.2 the state of strain in the bellows was assumed to be circumferential

direct strain and meridional bending.

From (4.10) the axial strain (due to bending) at positiong, positive outwards from

the wall mid-surface, is given by
€p = %{ C,cosn + fcz,, 2pc032pn>
1
The hoop strain is obtained by integrating (4.7), and is given by

- | 1)n cos2(p-1)n
r ) +ic cos(2p+1)n o
e¢=—§ C,cos™n 1 2p” op+1l P

These equations are expanded and arranged into the matrix equation:

o . (4.24)
{e}=[BI{C,}

where

('€}={€. €,}T {C.r={C: C: Cy
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(4.24) is the element strain displacement equation and the coefficients Cy are
effectively nodeless degrees of freedom. The element stresses are defined by the

stress strain relationship:

{0} =[D]{e}

where [D] is the constitutive matrix

o EFE [l v
[D]—(l—vz)[v 1]

4.1.5 BEL1 Programming.

The BELL1 theory was programmed to evaluate bellows flexibility factor and
normalised stress distribution in the FORTRAN routine BELIPROG.FOR,

given in Appendix 3.1. Bellows geometry and material properties are entered
interactively in response to screen prompts. Results are written to the screen.

The BEL1 formulation was programmed as a "user element" for the ANSYS finite
element program [4.5]. ANSYS is a powerful general purpose finite element
package which allows the user to define elements which will interact with the

program pre-processing, solution and post-processing routines in a manner
similar to standard ANSYS elements. ANSYS user element programming is

discussed in detail in Appendix 1. The BEL1 user element is based on the
BEL1PROG routine. The user element source code is given in Appendix 4.1.

The element has the following parameters:

i).  2node straight line element.
i) 6 degrees of freedom: three translations per node.

4 input constants: mean axisymmetric radius R, convolution radius r,
thickness t, and number of complete corrugations N (integer).

Inp;lt material properties : Elastic modulus, Poisson’s ratio, density.
‘The geonietry of the bellows is valid on condition:

a)  Length > 0.0
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b) Length is an integer multiple of 4 x convolution radius. (An error of 1%
is allowed).

4.2 An A&'m metric Shell Bellows Formulation.

In the remainder of this chapter three elements based on an axisymmetric shell
bellows model are presented. The common formulation procedure is defined in
section 4.2, and specific formulations for three elements based on the procedure
developed in sections 4.3, 4.4 and 4.5. '

4.2.1 Shell Theory: Strain-Displacement Equations.

An outer quarter section Qf}axisymmetric bellows shell, as shown in Figure 4.4,
is considered. The position of a point along the convolution is defined by the
angle 6. The displacement of the mid-surface of the section is described by

tangential displacement v, radial displacement w, and rotation .

In Chapter 3 the thin shell theory of Washizu was discussed in relation to elbow
element formulation, with the strain-displacement equations for an axisymmetric
shell under the Love-Kirchhoff hypothesis defined in equations (3.3 a-c).
'ASSuming that the axial deformation of the bellows is inextensional bending of

the convolution wall the axisymmetric strain displacement equations are obtained

from equations (3.3) as:

-t(d%w (4.25)
e r_z( TR w)
1 (4.26)
€= E(wsine+ vcos)
The inextensibility coupling condition is:
dv (4.27)
ao

~?;Jld, under the Love-Kifchhoff hypothesis, the shell mid-surface rotation and

displacements are related as in (3.22):

o 4.28
w:l(d—w.—v) ( )
r\de
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The above shell strain-displacement equations have previously been used for
bellows analysis by Findlay and Spence in [4.2].

4.2.2 Interpolation.

The quarter section degrees of freedom are displacements w and v and rotation
¥ at nodes located at the ends of the arc as shown in Figure 4.4. The element

degree of freedom vector { A }is therefore:

(By={v, w, v, v, w, V)T

Displacements w,v and v at a point 8 around the element are defined in terms of

avector of unknown constants {a}. Asw,vand yare related by (4.27) and (4.28),
assuming a distribution for one intrinsically defines the distribution of the others
in terms of the same constants. In general the displacement field is written:

(uy=[e1{a} (429)

where

T
a, az; a, Qs Qg}

{uy={v w v}’ {a}=Aa,
and [ ©]is a matrix of functions of position 6.

{a} is defined in ferms of the nodal displacements A by applying the boundary

conditions to (4.29): that is

ato=0:v=v,, w=w,, V=Y,
o -
atd=5iv=v,, w=w,, V=V,

which 'yivelds the equation
. (4.30)
{Ay=[CHa)

'where [C] is a 6x6 matrix of constants. The unknown coefficients {a} are defined
in terms of the element degrees of freedom by inverting (4. 30)

' (4.31)
<a>=[cr‘<A>
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Displacement at a point 6 on the mid-surface is obtained in terms of the degrees

of freedom by substituting {a} from (4.31) into (4.29). However, it is possible to
reduce the size of the element matrices by invoking the specific boundary

conditions of the element for the bellows application. In order to construct a
complete bellows from a single element stiffness matrix by series stiffness

addition, the same boundary conditions as used in BEL1 are invoked:
Ul = O U2 = O u) 2= O

Thus (4.31) is reduced to

{a}=[G1{d) (4.32)

where {a} is as before, {d} is the reduced degree of freedom vector:

{d}Y={w, v, w;}
and [G] is a 6x3 matrix of constants comprising of columns 2,3 and 5 of [C]-1.

The local and nodal displacements are now related by substituting {a} from (4.32)
into (4.29) to give:

{uy=[01[6]1{d) (4.33)

or

4.34
[N1=[0][C] (4.34)

where [N] is the element shape function matrix.

4.2.3 Strain Displacement.

The interpolation eqliaﬁon (4.33) may be written as three separate equations by

Partitioning the [ © ] matrix as follows:

e [0} :
w>= (0,) |[61¢d)
v) | (85)

Thus the displacements can be defined as:

(4.352)
v={0,}[G]{d}
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(4.35b)

w={0,}[G]{d}
(4.35¢)

¥ ={0,}[G]{d} |
The element strain displacement equation is

{€}=[B]{d) (4.36)

where
{e}={e; €)' (dy={v w w}’

and [B]is the strain-displacement matrix obtained by substituting equations (4.35)
into (4.25) and (4.26). Noting that [G] and {d} are arrays of constants, (4.35b)

gives

dzu/ az (4.37)
G d
Thus the axial strain is:
| (4.38)
ee=—§{ =(0,)+ <®2>}[G]<d>
and the hoop strain is
(4.39)

€, =2 {{8,)sin0+(0,)cos0}[C1{d)

where ¢ is the element through thickness co-ordinate, positive radially outwards
from mid-surface of the shell.

Arranging the strain equations (4.38) and (4.39) into the form of (4.36), the strain

displacement vector is given by:

(4.40)
[B]=[A][C]
where
c(E-l—e--z-+ 1){@2}
[A]l=

2((8;)sin0+(8,)c050)
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4.2.4 Quarter Section Stiffness matrix.

In Chapter 2 it was shown that the stiffness matrix of an element is given by the
equation

[K]=fy[B]T[DJ[B]dV (441)

where [B] is the strain displacement matrix and [D] is the element constitutive
matrix; ‘

E [1 v] E . (4.42)

= =—=_TID
1-vilv 1 l—vz[

Therefore (4.41) may be written

[K]1= fznflf [B]T[DI[BlrRd¢dgde

N

However, it is possible to simplify the above equation by considering the

integration limits more closely. As [B]is constant with respect to ¢, this simplifies
to

2nErR

f./ng]T[DIJ[B]dcde

where 1
[DIJ{V ‘{J

[K]=

N

Further, as the circumferential strain is constant through-thickness, the mtegf al
of products of axial and hoop strains with respect to ¢ is zero, as

N~

,cdc [6°]

Y
2

Such terms can therefore be omitted from stiffness calculations and the stiffness

matrix equation reduces to
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(4.43)

_2nErR (P (5
[K] e f fow] [B]ldcde

!
2

4.2.5 The Element Stiffness Matrix.

In order to assemble a bellows element by series stiffness addition of single 900
convolutions, only the axial stiffness of a single convolution is required. This is
obtained by applying the static condensation procedure defined in Chapter 2 to

the quarter section stiffness matrix. The stiffness matrix is partitioned as follows,
w, } statically condensed from the equation:

and degrees of freedom { v,
F Kiw | Ky Ky w (4.44)
- - + - - -
O K21 l K22 K23 wl
O K31 , K32 K33 w2

The axial stiffness equation is thus obtained in the form
F=K,w,

where Kq is the axial stiffness of the quarter section of bellows. The element
stiffness matrix is obtained from the axial stiffness as in element BEL1. The

stiffness of a single convolution is giyen by
K q
K corr T

and the stiffness of a bellows of N convolutions is:

Kq

Koman

In finite element form, the stiffness equation of a one dimensional bellows

ele_ment is therefore

0 K, -K,
L4 = [-Kb Kb:l

which is expanded into three dimensions as in BEL1.
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4.2.6 Stress and Strain.
The state of strain at a point in the section of bellows is defined by the strain
displacement equation, (4.36):

{e}=[B]{d}

The stresses are evaluated from the constitutive relationship of the section:

{0}=[D){e}=[D][BI{d)
where {0} = {0, 0,)"and [D] is the constitutive matrix (4.42).
4.3 Element BEL2; Tri metric In lation.

Element BEI2 is the first of three bellows elements based on the above
formulation. The element interpolates radial displacement in terms of the five

term complete Fourier series:

S
w=a,- Zansinne
n=2

A similar interpolation function has previously been used by Findlay and Spence
in[4.2], in conjunction with the strain-displacement equations defined in section
4.2, although the series was not limited to a set number of terms as it is here.

The radial displacement, v, is obtained by integrating the inextensibility equation

(4.27) to give

S
a
v=—fwde=—ale—- Z-—ECOSRG‘*’aé
n-2n

Wwhere ag is a constant of integration.

The rotation v of the mid-surface is related to v and w by the Love-Kirchhoff
hypothesis as defined in (4.28). Thus the displacement field of the element is

defined by the equation

{uy=[0]{a)

where
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{@}={wa}7 {a}=‘{a1a2a3a4a5a6}7

and
’_—9 —co0so --1—c0829 —100336 —lco 40 ]
> 3 4°°8 1
[6]=) 1 -sin® -sin20 -sin30 -sin46 0
o 3 8 1S
7 0 —é?-cosZe 57C0839 4’_00349 —1J

applying the boundary conditions yields

{A}=[C){a}
which is solved for {a} by inverting the equation. Applying the specific bellows

boundary conditions gives

{a}y=[G){d}

where {a} is as before, {d} is the reduced degree of freedom vector and [G] is a
6x3 matrix of constants comprising of columns 2,3 and 5 of [C]"1:

[ 1 o}
3 .
3.46238898 1

-2.7T1238898 -r

|
B0 L os0l ©

3
[G]1=| 2.46238898 Zr

-1.35619449 %r -1

1w

2.587942194 gr

|

Thus the shapé function matrix [N] of the element is fully defined:

[N]=[e][C]
~ Applying tﬁe suam-displaéement procedure of section 4.2.3 defines the
strain-displacement matrix:

[BI=[AllC]

where the.elements of the [A] matrix are:
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- |
AL =— A, ==(sin6-0 0
1= 21 R( cos6)
A,=0 1
12 A22=—]—e(sin26+cosze)
g W]
A;3=-3-=sin26 Ay3=—| sin20sin6+ =cos20cosO
r R 2
& 1/ . . 1
Ay, =-8-sin40 Ayy=—|sin30sin0+ =cos36cosO
r R 3
(S 1( . : 1
As=-15-=;sin40 Ays=—| sin40sin®+-cos46cosb
r R 4
Alg=0 . 1
te A26=Ecose
4.3.1 BEL2 Programming

Two FORTRAN programs based on the above theory have been programmed.
BEL2FLEX.FOR evaluates the bellows flexibility factor and BEL2STR.FOR
evaluates the normalised stress distribution over a 900 section of bellows. The
FORTRAN code of these programs is given in Appendix 3.2

The 3x3 stiffness matrix of the bellows is obtained by integrating (4.43). This is
done numerically, using a 5x3x3 Gaussian quadrature rule. The axial stiffness of
the bellows is obtained by static condensation of the 3x3 matrix and the belows
flexibility factor is evaluated according to the definition of Chapter 4.1.

4.4 Element BEL3; Polynomial In lation

Polynomials are the most popular interpolation functions used in finite element
formulations. Many polynomial interpolation schemes have been proposed for
shell elements in the literature. These have often been assessed by investigating
the behaviour of simpler two dimensional arch or curved beam elements, which
may be regarded as the limiting case of a shell in which one of the area dimensions
reduces to the order of the shell thickness.
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Early investigation into polynomial interpolation in arch elements was carried
out by Ashwell et al {4.6,4.7,4.8]. Combinations of polynomials up to cubics were
investigated, however these elements generally proved to be ineffective. Similar
work by Dawe based on higher order polynomials (up to quintics) [4.9,4.10]
indicated that independent quintic interpolation for both radial and tangential
displacement gave the most effective element, however, as noted in [4.9], such
elements introduce "....some waviness in the [axial] force distribution ... in deep,
thin, nearly inextensional applications”. In[4.11] Meck presented the formulation
of a curved beam based on coupled polynomial interpolation for tangential and
radial displacement. This produced a well behaved element inwhich the specified
coupling between the radial and tangential displacement explicitly ensured that
the element could represent inextensible strain modes.

In this section Meck’s quintic polynomial interpolation scheme is adopted as the
basis of bellows element BEL3. The tangential displacement v is interpolated
along the section by a quintic polynomial in terms of angle 3, where 6 =3 + g as
defined in Figure 4.5. Thus,

3 4 5
U=a1+a2[3+a3[52+a4[3 +agR +af

The radial displacement is coupled to the tangential displacement by the
inextensibility condition (4.27). Noting that

a_4a
de dp

it follows from (4.27) and (4.28) that -

w=-3Y =l(d_“’_v)
dp and v=rlas

Thus the displacement field function matrix [ © ] of (4.29) is found to be:

I B B’ B’ B’ B’
o1-| ¢ "L 2B -3B* -4p° -5p*
1B _(2+B) _(6B+B’) _(12p*+B*) _(20R°+B°)
r r r r r r

Considering the definition of the angle B, the general boundary conditions for

element BEL3 are:
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=—: v=v,, w=w,, Y=Yy,

T
B:I: U=U1, w:wl’ w:wl

The boundary conditions are applied and {a} obtained as before. Subsequently
applying the specific boundary conditions, the matrix [G] of (4.31) is found to be:

[[-0.2454369261 -0.03855314219r 0.2454369261 ]
% 0.04908738321r 17_6
[G]=] 0.4774648293 ér -0.4774648293
~1.013211836 -0.1591549431r -1.013211836

-0.1290061377 -0.1013211836r 0.1290061377
| -0.4984044817 0.1290061377r 0.4984044817

Thus the shape function matrix [N] of (4.34) is fully defined:

[N]=([0][C]

Applying the strain-displacement procedure of Section 4.2 defines the quarter

section strain-displacement matrix

[B]=[A][C]

where the elements of [A] are:

A, =0 1
u A21=Ecose

4 1 n i
A"-fj AZZ-E((B—Z)cose—sme

4 n ] n\? ny

,1,_1-—2;—2 G—Z A”:I_?( B-Z cos9-2 9—1 siné

-g n)? 1 ny? n)? .
A“=r—(6+3(e_1) A2,=—R;( 9-; cos6-3 e—a sin®

FCCHRCH) 7o) eoso-o(o-5)
Als'r (24(9 2 +4(8 7 Aas R( 0 3 cos©-4{0 3 sin6
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-t I A ! n)® )*
A;e=r—z(60(e—1> «5(9—;) A“:E((e«;) cosG—S(G—a) sin®

The element stiffness matrix is obtained as in BEL2.

4.4.1 BEL3 Programming.

Two FORTRAN programs based on the above theory have been programmed.
BEL3FLEX.FOR evaluates the bellows flexibility factor and BEL3STR.FOR
evaluates the normalised stress distribution over a 900 section of bellows. The
FORTRAN code for these programs is given in Appendix 3.3.

As for BEL2, the 3x3 stiffness matrix of the bellows is obtained by integrating
(4.43). This is done numerically, using a 5x3x3 Gaussian quadrature rule. The
axial stiffness of the bellows is obtained by static condensation of the 3x3 matrix,
and the bellows flexibility factor evaluated according to the definition of Chapter

4.1.3.

Element BELA4 is an extension of BEL3 which allows for constant direct axial
strain in the bellows. Removing the inextensibility assumption uncouples the
radial and tangential displacements, as:

However, a coupling condition between w and v can be defined by considering
the differential equations of extensional deformation. In [4.11] Meck extended
his inextensional beam to include constant extensional strain based on a simple
relationship derived by Cheng and Hoff for the bending of thin circular rings
[4.12]. The radial and tangential displacements are coupled according to the

equation

i(@-+w)=0
dp\dp

Rearranging and differentiating the axial membrane strain gives
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L e L&) w00e, e,
ap 6o aplap €4, = E,=constant

Therefore the displacements are coupled according to the equation

dv (4.45)

where € ,is a constant, and the rotation of the mid-surface is again given by (4.28):

=l(d_be_,,>
v rydfp

The tangential displacement v is again interpolated by the quintic polynomial:

v=a,+a,p+aldg+aB’raspt+ap’

from which w and y are obtained according to (4.45) and (4.28) respectively. Thus
the relationship between mid-surface displacement and unknown coefficients {a}

{uy=[@{a}

isobtained. This equationisidentical to the corresponding BEL3 equation, except
that {u} is now defined as

(uy={v (w-re,)) v}’ (4.46)

The constant membrane strain has been introduced into the formulation as an
additional degree of freedom. Applying the general boundary conditions to (4.46)
yields an equation equivalent to (4.30), of the form

{AY=[C){a} (4.47)
where in this case
(Ay={v, (w,-re,) W, v, (W~re,) W}’

Solving (4.47) for {a} and applying the specific boundary conditions of the quarter
section yields the [G] matrix of (4.31). Again, this is identical to that obtained
for BEL3 but in this case the reduced degree of freedom vector {6} is

{(6y={(w,-re,) Vv, (wp,-Te,)}
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In order to consider € ,as a degree of freedom of the element, it must be included

in the {d} vector. This is done by partitioning the matrix equation

{a}y=[G]1{06}
in the form
(w,—re,)
{a)y=[{G }{G2}{G3}] v,
(wy,=re,)
This is rearranged as:
{a}y=[J]}{d} (4.48)

where

(dy={w, w, w, re,}
and
[J1=[{G }{(G,}{G3)~-{C,+C;3}]

Substituting (4.48) into (4.29), the displacement vector {u} is given in terms of
the four degrees of freedom {d} by:

{©,) (4.49)
{uy=[01[Jd}=| {Oz} |[JI{d}
{03}

The element strain-displacement matrix equation may now be obtained by
considering (4.25) and (4.26).

From (4.49), the radial displacement niay be expressed:
w={0,y[J{ad}r+re,={{0,}[J]+{0 O O 1}}{d}

As this introduces only constant terms into the radial displacement equations,
differentials are as in the BEL3 formulation. Thus:

d’w {L

dez(®z)>{d}
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However, the axial strain now contains a membrane contribution and is given by:

¢ d?w
Ee=€o‘——2 2+w
rendo

Noting that

eo=<0 0 0 l}{d}
r
this may be written
€ =<[A][J]+<O 0O O (l-ﬁ—)}}(d}
[} r ',.2
The circumferential strain
1 .
e°=E(wsm6+ucose)

here becomes

co={14191+{0 0 o 229 )¢y

Thus the strain displacement equation is fully defined as
{e}y=[B1{d}
where

(€} ={€e€,}'

and

000 (r—zh)
-

0O 0 O

[(B]=[[Al[J]+
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4.5.1 BELA Programming.

Two FORTRAN programs based on the above theory have been programmed.
BEIAFLEX.FOR evaluates the bellows flexibility factor and BEL4STR.FOR
evaluates the normalised stress distribution over a 909 section of bellows. The
FORTRAN code of these programs is given in Appendix 3.4.

The 3x3 stiffness matrix of the bellows is obtained by integrating (4.43). This is
done numerically, using a 5x3x3 Gaussian quadrature rule. The axial stiffness of
the bellows is obtained by static condensation of the 3x3 matrix and the bellows
flexibility factor evaluated according to the definition of Chapter 4.1.3.

4.6 Di .

Sample analyses using the above bellows element formulations will be presented
in Chapter 6, where it will be shown that the even Fourier series approach of
BEL1 gives the best results when compared to alternative analyses. The
polynomial based elements BEL3 and BELA will also be shown to give reasonably
good results, although nosignificant improvement over BEL3 is made by including
the constant extension term in BELA4. BEL2 will be shown to give relatively poor

results.

In the next chapter formulations are presented for three elbow elements in which
the interpolation schemes of BEL1 and BEL3 are developed for pipe bend
applications. The first element adopts even Fourier series interpolation of
ovalisation displacement in a constant bending element. The second element
extends the first to include linear interpolation of ovalisation with respect to axial
position, in order to investigate the relative convergence characteristics of the
two approaches. The third element ovalisation model is based on the polynomial
interpolation scheme of BEL3.
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Bellows element BEL1 coordinate systems, shell mid surface

Figure 4.3
displacements and nodal degrees of freedom.
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Figure 4.4 Bellows elements BEL2, BEL3 and BELA4 shell displacements
and nodal degrees of freedom.
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Figure 4.5 BEL3 and BEL 4 interpolation coordinate system.
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THREE SIMPLE PIPING ELBOW FINITE ELEMENT



IPING EL
FORMULATIONS.,

The basic requirements for simple piping elbow elements were discussed in
Chapter 3 and elbow ovalisation investigated in Chapter 4 by considering the
deformation of semi-toroidal bellows. In this chapter three simple elbow element
formulations are presented. The proposed elements are based on the beam-shell
(or beam with deforming section) approach, and share a common beam-bending
model based on the exact solution of Vlasov’s thin-wall curved beam theory [5.1].

In the first element, PB1, the ovalisation behaviour of the element is based on
the classic Von Karman analysis discussed in Chapter 2. The ovalisation
displacement is constant with respect to axial position and interpolated around
the cross-section of the elbow by a three even term Fourier series similar to that
used in the bellows element BEL1 of Chapter 4.

The second, PB2, extends the PB1 formulation is to include linear variation of
ovalisation in the axial direction. This allows the convergence characteristics of
a simple element with linear ovalisation to be investigated.

The third element, PB3, was formulated in order to asses the performance of
polynomial interpolation of ovalisation. As in PB1, the ovalisation is constant
with respect to axial position. Four quintic polynomials are used to interpolate
the ovalisation displacements piecewise around the cross-section of the bend.
The interpolation scheme is similar to that of the bellows element BEL3.

All three elements have been programmed as user elements for the ANSYS finite
element program. In order to minimise the computing time required in element
formulation, the common beam bending stiffness matrix has been obtained in
closed form by analytical integration. The ovalisation stiffness of element PB1
is also given in closed form, but in PB2 and PB3 the ovalisation stiffness matrices

are integrated numerically.

. An Elbow El ith C . Fourier Ovalisati

In this chapter a constant ovalisation beam-shell element, referred to as element
PB1, is presented. The element is based on an exact solution of Vlasov’s thin
wall curved beam theory, upon which classic Von Karman ovalisation is

superposed.
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An element based on similar beam and ovalisation models has previously been
presented by See in [3.23]. See’s element was shown to give good agreement with
comparable analyses for in-plane bending of elbows, but poor agreement for
out-of-plane bending. The poor out-of-plane performance was not adequately
accounted for in [3.23], where it was concluded that the difference between results
given by the element and ANSYS STIF18 (a conventional flexibility analysis
curved beam element) was due to the limitations of flexibility analysis and not
the element formulation. However, comparison with results given by other
analyses indicate that the out-of-plane results given by the element were in fact

poor.

In Chapter 6 it will be shown that the actual reason for the poor out-of-plane
performance was that See failed to consider the element convergence
requirements for out-of-plane bending.

In the formulation of a Vlasov-Karman element proposed by See, the element
stiffness matrix was evaluated by numerical integration. In practice 24x12x3 point
Gaussian quadrature was used, making the element expensive in comparison with
flexibility analysis elements. However, the basic Vlasov and Von Karman models
offer potential for programming an inexpensive element. In the formulation
presented below, the total number of integrals required to evaluate the 12x12
stiffness matrix is 21, of which 16 are double integrals and S triple integrals. The
integrals are given in closed form, dispensing with the need for numerical
integration. The integration was performed using the symbolic algebra program

SMP [4.4].

5.1.1 Overview of Element PB1 Formuiation.

The element beam bending model is based on Vlasov’s thin wall curved beam
theory as defined in reference [5.1]. Beam elements based on the exact solution
of Vlasov's differential equations have been presented in the literature by
Chaundhuri and Shore [5.2] and by Yoo [5.3, 5.4]. In element PB1, (and
subsequently elements PB2 and PB3), the Chaundhuri and Shore solution has
been modified and adopted as the beam bending model for the elbow element.
The elbow ovalisation deformation, which is superposed on the beam model, is
represented by an extension of the classic Von Karman model.
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In both Vlasov’s beam theory and Von Karman’s ovalisation analysis the in-plane
and out-of-plane responses are uncoupled. Thus the element may be formulated
by developing independent in-plane and out-of-plane models, which are then
superposed to give a fully representative elbow element. In the proposed element
formulation in-plane and out-of-plane stiffness equations are obtained in the form

(FYy=[K1{d} (5.1)

where {F} is the load vector, {d} the generalised displacement vector, and [K]
the stiffness matrix, given by the equation

[k]=fV[B]T[D][B]dV (5.2)

[B] is the element strain-displacement matrix and [D] the constitutive matrix.

By partitioning the in-plane and out-of-plane strain-displacement matrices [B]
into nodal and nodeless degree of freedom sub-matrices, the stiffness matrix is
obtained in the form:

{(Fb)} _ [[Kbb] [Kbo]:| <{db}> (5.3)

(Fo} [Kob] [Koo] <do}

where {dp} and {do} are vectors of bending and ovalisation displacements, [Fp]
and [F,] bending and ovalisation forces and [Kbb]}, [Koo]}, [Kbo] and [Kob] are

stiffness sub-matrices given by the equations:

[Ke] = fV[Bb]T[D][Bb]dV (5.4)
[(Ko] = fV[BO]T[D][Bo]dV (5.5)
[Kyl = [Kol'= fV[Bb]T[D][Bo]dV (5.6)

for bending, ovalisation and coupling respectively.
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In-plane and out-of-plane elbow stiffness matrices are obtained according to (5.3),
and then assembled to give a single, fully representative, elbow element stiffness
matrix. The full matrix is of order (12+ m)x(12+ m), where m is the total number
of ovalisation degrees of freedom. The full stiffness matrix is reduced to a 12x12
matrix compatible with standard beam elements by applying the process of static
condensation as described in Chapter 2.2.1. In this case the ovalisation force
vector is zero and static condensation results in the equation:

{Fyy = [Kgl{dy} (5-9)

where [KR] is the reduced element stiffness matrix given by

[Kel = (Ko [Kopl [Kool '[Kop1] (5.10)

5.1.2 In-plane Bending.

The elbow element’s beam bending modes are represented by modifying the
Chaundhuri and Shore curved beam element formulation [5.2]. In the
Chaundhuri beam element it is assumed that:

i) Beam deformations are small with respect to the dimensions of the
cross-section.

ii)  Thebeamisthinwalled and through-thickness stresses assumed negligible.
iii)  Shearing deformation vanishes at the middle surface.

iv)  The cross-section is open and symmetric about the beam’s depth axis,
(normal to the plane of curvature).

v) The cross-section remains undeformed; that is, the cross-section is
constrained to be rigid.

In addition to the standard beam deformation modes of axial stretch, in-plane
bending, out-of-plane bending, transverse shears, and torsional shear,
assumptions (iv) and (v) give rise to longitudinal warping of the beam’s
cross-section, such that plane sections do not remain plane upon deformation.

In the Chaundhuri and Shore beam cross-sectional warping is represented by
including beam degrees of freedom to define this behaviour. In the case of a
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beam symmetric about its depth axis there are 7 stress resultants: 1 normal, 2
transverse, 3 bending and 1 warping. Hence 7 degrees of freedom are required
to describe the beam behaviour.

However, in a beam of closed circular section warping of the cross-section is
suppressed due to the higher torsional rigidity of the cross-section, as noted by
Yoo in [5.4]. It is, therefore, possible to simplify the analysis of such beams by
assuming cross-sectional warping to be negligible. Thus, in considering the beam
bending behaviour of a pipe bend, the following assumption is added to the above

vi)  Plane sections remain plane upon deformation: that is, warping
deformation is negligible.

In the beam model proposed below, the Chaundhuri and Shore formulation is
simplified by invoking assumption (vi) above.

Degrees of Freedom.

The basic beam model is a two-noded circularly curved beam of closed circular
cross-section, as shown in Figure 5.1. The local X axis is along the beam’s length,
Y is perpendicular to the plane of the beam, and Z is radially inward to the centre
of curvature, completing a right handed triad. The deformation of an arbitrary
point on the axis of such a beam is defined by three translational degrees of
freedom and a single rotation: displacements u in the X direction, v in the Y
direction and w in the Z direction, and rotation v, about the Y axis.

The in-plane bending nodal degrees of freedom {dp;}, shown in Figure 5.2, are:

{dy}=A{u, w, Wy, U, w, WYZ}T

Governing differential equations.

Neglecting the effects of warping, the in-plane governing differential equations
of the beam are given in [5.2] simplify to:

du w (1)(d4w ldzw)
__=—+R — 4+ —
ds R A)\ ds* R?ds? (5.11)
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dw 2 d’w | dw _

dsS R2?ds® R*ds (5.12)

where s is the sole independent variable, denoting the position along the bend
axis: s = R ¢ Here the dependant variable is taken instead to be angular position
¢, where $ =s/R

Displacement Field and Shape Function Matrix.

The displacement field for in-plane deformation is found by solving equations
(5.11) and (5.12) for u and w. Neglecting cross-sectional warping (assumption
(vi) above) the solution of Chaundhuri and Shore reduces to:

u(o.n)=B1, ,[0]1+Bl; [sin¢] (5.13)
+Bl, [¢sind+(1-2d)cos¢]+Bl, ,[cosd]

+Blg [0cosd-(1-2d)sindl+Bls ,[1]
w(o,n)=B1, ,[1]1+Bl; [cos¢]+Bl; [dcos¢] (5.14)

+Bl,4 [sin¢]+Bls [¢sine]+ Bl ,[0]

where

/ andn = 1to06.

In matrix notation, the displacement field equations may be written

Uepmy={M}B! (5.15)

W, my={M2}B! (5.16)

where [B1] is a matrix of unknown in-plane constants and

(M y=(6 sin¢ [osiné+(l-2d)cos]
cos¢ [dcosd-(1-2d)sing] 1)

{n,}>={1 cos¢ ¢cosd sind ¢sineg O}
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The in-plane rotation, ¥y, is given by:

__Ljaw,
Yy~ Rldo u

As [B1] is constant, this may be written:

-1 /d{n;}
wY(¢.n)=—R_< dq)z +(T]1}}B]
or
Wy o= {N3}[B1] (53.17)
where

-1
{n3}=—R— {6 O [2(1-d)cosd] O [2(l-d)sine] 1)

Equations (5.15), (5.16) and (5.17) fully define the in-plane displacement field of
the beam model. The subscript ¢ defines the position of a point along the axis
and subscript ndefines aspecific degree of freedom from 1to 6. The displacement
U (o, fOr example, is the u displacement at a point ¢ along the axis due to degree
of freedom n being given a unit displacement when all other degrees of freedom

are fixed at zero.

The in-plane degrees of freedom correspond to the integers n as follows:

n 1 2 3 4 5 6

dof | ujp Wil | Uy | U2 w2 | Wy,

The shape of the displacement field is defined by the vectors {n}. The magnitude
of displacement is determined by the matrix of constants [B1].

In order to use this displacement field to formulate an element, we require it in
the form of the interpolation equation given in (4.7):

{uy=[NI{d}
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That is, the displacements at an arbitrary point are interpolated in terms of the
nodal degrees of freedom by the shape function matrix [N]. [N] is obtained as
follows.

Degree of freedom n s displaced by a given amount, which for simplicity is chosen
to be unity. The displacement at an arbitrary point on the centroid of the beam
due to this prescribed displacement is given by equations (5.15), (5.16) and (5.17).
By choosing the arbitrary point to be at one of the nodes of the beam, the
displacement at the point is defined by the boundary conditions: unity for degree
of freedom n, and zero for the remaining five degrees of freedom. Repeating
this procedure for all six n, a system of 36 simultaneous equations is obtained,
which may be solved for the unknown constants [B1].

For example, consider n=1. uj is given a value of 1 and the remaining degrees
of freedom fixed at zero. Considering equations (5.15) to (5.17):

atnode 1,¢ =0, and forn=1:

u(o.1)={m)‘,_o[81]= 1
Wo, 1y = N2}, [B11=0
WY(O’1)=(n3}o_0[BI]=O

at node 2, ¢ = a, and forn=1:

U, y={M},..[BI]=0
w(a.l)_"{nz}‘_a[B/]:O

‘U)Y(u_l)_——{nB}o_a[BI]:O

Hence six simultaneous equations are obtained. Repeating this procedure for
all six n, a system of 36 simultaneous equations may be obtained in the form:

[C11[BI]=[]] (5.18)

where [I] is the 6x6 identity matrix, [B1] is a 6x6 matrix of constants and [C1] is
the matrix:
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’—<n1>o_oﬁ
{n2}°_0
Cl]=
(o=l iy
{N2},nq
_<n3}o-<x_J
That is,
0 0 (1-2d) -1 O 1]
1 1 0 0 0 0
0 0 - B o o -1
cl]= R
[ Qa S C -c D 1
1 ac S as 0
% o -Bc 0 -Bs -+
| R R |
where
s=sina c=cosa
2
=E(l-d) C=as+(l—2d)c D=(xc+(1__2d)

By definition, equation (5.18) gives
[B1]=[(CI]"

Therefore the displacement field is fully defined by inverting the {C1] matrix to
evaluate [B1] and substituting into equations (5.15), (5.16) and (5.17). Hence the
displacement interpolation equation for in-plane bending is:

{uy=[NIJ{dy} (5.19)
where

(uy={u w Wy

and
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{n,}
[NI]1=| {n2} |{[B!] = [nl] [BI]
{nz}

[N1] is the in-plane shape function matrix of the beam model.

Strain-Displacement.

From Vlasov [5.1], the state of strain for in-plane bending is uniaxial meridional
strain, given by the equation:

Eobi=€¢bzo+2k¢bio (5.20)

where z denotes distance from the centroid in the element Z direction, as shown
in Figure 5.3.

From Vlasov’s small displacement theory of [S.1], neglecting all second order
terms and noting the change in direction of the out-of-plane axis made here, the
extension and bending terms are defined:

_1((12_w>
€obz o R d¢

1 (d?w
k&bi o=—_R§ d¢2+w

Hence (5.20) becomes

1{du rcos6(d?w rcos®
€pi =5\ T2~ > |- ¥ Jw
R\do R \do R

From (5.19):

u={nY[BI]{d.)}

w={ny[B1]{du}

hence
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du=d{ﬂ1}

a0 do [Bl]{d}
d?w _d®{n;)
FTCPTS [B1]{d7}

as [B1] and {dp;} are constant.

Thus

_1[d{n;} rcosed®{n,} rcoso
Eobi_E - -\ I+

T PTY 5 )<n2>>[811<dm>

or

5.21
{ALY[BI]{dy} (5:21)

x| -

€obi =

Differentiating and collecting the vector terms gives:

- 0
rcos® 2<d+rczse)sm¢ 0

R

{Al}y=A

—2(d+m;se)cos¢ 0} (5.22)

Thus the in-plane beam strain-displacement equation is:
€gpi = [ Boil {dy}

where the strain-displacement matrix is given by:

5.23
[By)= 5 {AI(BI] 62

Bending Stiffness Matrix.

The in-plane bending stiffness matrix is given by equation (5.4):

[Kel= [ (8,1 IDIB, 1AV
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Noting that only axial strain is involved in the in-plane bending stiffness equation,
the [D] matrix reduces to a single element:

E
(1-v?)

[D]= (1]
Thus, substituting for [D] and given [Bb] from (5.23):

E 1
VR ANENY

1 T T
[Kbm‘]=fVE[BI] {Al}

Taking the constant terms out-with the integral and noting that the strain is
constant through the thickness of the beam wall, the in-plane bending stiffness
equation is given by:

_ Etr T
[Kep:] (1-v2)R —vz)R[BI] [7e10B1]

where

a 2n
[Ib,]=fof0 {AIYT{Al}ydedo

Integrating:
El (5.24)
[Kpeil= (I-vHR® —vz)Ra[Bl 17 [J4][B1]
where
[ a 0 2(cosa-1) 0 2sina 0]
0 0 0] 0 0
J H(2a-sin2a) 0 H(cos2a-1) O
(] symm. 0 0 0
H(2a+sin2a) O
L O—
and

126



5.1.3 In-Plane Ovalisation

Elbow ovalisation is represented by the Von Karman constant bending or constant
ovalisation model, as discussed in Chapters 2 and 3. The axial strain is assumed
to be uniform through the wall thickness and the hoop strain is assumed to arise
from inextensional bending of the pipe cross-section. Assuming R> >r and
applying the Von Karman assumptions, the axisymmetric shell equations (3.3a-c)

reduce to:
€¢m=%(wocose—uosine) (5.25)
¢ (4w, (5.26)
600i=_;§ 402 +w,

under the inextensibility condition

where w, and v, are ovalisation radial and tangential displacements of the elbow
mid-surface, as shown in Figure 5.3.

The ovalisation displacements are interpolated by an even Fourier series as in
the original Von Karman analysis. The radial displacement is interpolated by

the series

N
w, = Z a,cos2Znb
n=1

The radial and tangential displacements are coupled by the inextensibility
equation; thus the tangential displacement is:

N
1 .
Vo=~ }.:1 Eza,,sm 2no

Substituting the interpolation functions into the strain displacement equations
(5.25) and (5.26) gives

€ .=1/RZa,, cosec032n6+Lsinesin2ne (5.27a)
b 2n
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(5.27b)

€goi =~ —%}:an( 1- 4n2)c082n6)
r

The number of terms N taken in the Fourier series determines the accuracy and

applicability of the element. It has been suggested that for elbows of parameter

A 2 0.1, such as those encountered in general piping analysis, three terms are

sufficient [3.12]. (5.27a) and (5.27b) are thus expanded and arranged in the form:

{€ur=[B.l{a} (5.28)
where

(€} ={€4a Eou) {a}={a, a, a; )}’
In-plane Ovalisation Stiffness.

The in-plane ovalisation stiffness matrix is defined by (5.5):
(Koo)= | (BITIDIB, 1AV

In this case the constitutive matrix is

E 1 £
(D]- 2[ V}—Z[Dl]

1-v?lv 1 1-v

As the ovalisation is constant with respect to axial position the integral reduces

to:

_EFR(I % 2n T .
(Kud= 2z [ BT DB

N~

However, as in the case of the bellows elements, the product of longitudinal and
hoop strains integrate through-thickness to zero. Thus the stiffness integral

reduces to:

_ErRa : ren T
(Ked= 5 [ [ 1B TB,1 0L

N~

128



or

EFrRa
=—[1,]
v

[Kooi] 1_

Integrating and collecting terms gives the in-plane ovalisation stiffness matrix in

closed form:
El .
[K gl = ———a—[J o] (5:29)
(l-v°)R
where
_(313‘%2 5132) (Skz) ]
+ 0
4r® 32r? 3212
4,2 2 2
(.- (7513 t? 17R ) (71?
4r®  32r? 32r?
symm (1225R4t2+371€2)
L 12r¢ 72r? )

5.1.4 In-plane Bending-Ovalisation Coupling.

The bending-ovalisation stiffness matrix is defined by (5.6):
(Kl = [ (B1IDIB 1AV

As a 2-D constitutive matrix is required, {A1} is expanded by adding a row of
zeros to give the matrix [Al]:

e[ 0 A 0 As 0
(A=l 5 0 0 0 0 o

Thus, substituting for [Bp] from (5.23),
[K,,m.]=fVR%[31]T[AJ]T[D][BN.]dV

As before, [B1]T may be taken outside the integral to give
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1
(Kol = 518077 [ (41110108, 0aV

which upon integration yields the in-plane bending-ovalisation coupling matrices

_ T_ E] T
[K o] =K obi] —m‘gw” [/ 50 ]
where:
-3Ra ]
ar 00
0 0O O
3R
J. . = —(1- 0
[ bot] 2’_( COSG‘) O
0 0O O
R
_:—;—F(l—cosa) 0 O~

5.1.5 Out-of-Plane Bending.

The procedure for evaluating the out-of-plane bending stiffness matrix is identical
to that for the in-plane case detailed in section 5.2.2. The principal equations are

as follows:

Degrees of Freedom.

The out-of-plane beam degrees of freedom are shown in Figure 5.2.

{dpy=Av, Vg, Wz, V2 Wy, wzz)T

Governing differential equations.

d*v_ -GJ _d°Wyx EI Yy (5.30)
ds? EI+GJ ds? FEI+GJ R
at d? 5.31
W4x+2 wx+wx=0 (5.31)
ad d¢?
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Displacement Field and Shape Function Matrix.

Uio.ny = {Ma}[B2] (5.32)
Yy m = {Ns}[B2] (5.33)
V70 n = {Ms}[B2] ' (5.34)

{nyy={cos¢ (¢cos¢-bsingd) sin¢ (¢sind+bcos¢) -1 -¢)
{ng}y={cos¢ ¢cosd sind ¢sing O O}

=d(n4}
ds

ure;

{n6}=[%(—sin¢ (-¢sing+(1-b)cosd) coso

(bcoso+(l-b)sinp)0-1}

Applying unit nodal displacements, the [C2] matrix corresponding to [C1] for

in-plane bending is '
[ 1 0 0 b -1 0]
l 0 0 0 0 0
R
(1-b) 1 1
— 0 0O -=
ca]= i ) K R
[c2] ¢ (ac-sb) s (as+cdb) -1 -a
¢ e soes 4
R R R R
s F < o 1L
| R R R |
where

F=%(—as+c(l—b)) G=1le(ac+s(l—b))

The out-of-plane coefficient matrix [B2] is obtained by inverting [C2] as in the
in-plane case. The out-of-plane displacement interpolation equation is thus:
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{Upor=[N2Z2]{d}
where
(Uped={v Wy wz)'
{n,)

[N2] = {nsy | [B2] = [n2] [B2]
{ne}

[N2] is the out-of-plane bending shape function matrix.

Strain-Displacement
The out-of-plane bending strains are

i) A contribution to € ,due to bending.

ii)  Shear strain .

from Vlasov [5.1]:
y[1d%v
€ooo = 5 Edq)z*lpx

=£<dwx_i_o_f£>
YR

d¢ Rd¢
where
y=rsin0
as shown in Figure 5.3.

Differentiating and collecting the vector terms as before gives:
-2 (0 -(2-b)sing 0 (2-b)cos¢p O 0)}[B2]{d,,)

Eobo RZ

Y=;r:-2-(o bCOSd) 0 bSinq) 0 l}[82]<d0p}
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Thus the strain-displacement equation may be written
_r
{€,)= F[AZ][BZ]{dbo)

where

(ey={(e, V)7
and substituting fory

[,42]-[ (-(2-0)sin¢siné] 0 [(2-b)cososinb] 0 0
0 bcoso 0 bsiné 0 l]

The out-of-plane bending strain displacement matrix is

[B,,o]=#[/12][32] (5.35)

Bending Stiffness Matrix.

The out-of-plane bending stiffness matrix is given by (5.4):
(Kol = [ [B)DI(B,]AV

Therefore:

[Kuwa)= [ S(BIVTLA2)(DI5AR)(BI1QV

In this case shear strain is present and the constitutive matrix reduces to:

10 .
E E ,
[D]'(_f:—/z_){o (lzv)}_(l—vz)w ]

Substituting in equation (5.35), taking the constant terms out-with the integral
and noting that the strain is constant through the wall thickness, the out-of-plane

bending stiffness equation is given by:
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Etr?3
[Kbbol=m[8217[1b01[321

where

a 2n
[/bo]=fofo [A2]7[D ][ A2]d0d o

Integrating and collecting terms gives:

El

_ T
[Kbbo]_(_l_vz)kg[BZ] [V 1[B2]
where
[ O 0 0 O O 0
J22 0 ‘j24 0 J26
7= 0 0 0 0
[Jeo]= symin. Jas O Jye
0 0
B ‘jéé4
and
1 2 . 1 .
J2=Z(2—b)(2a—9n2a+§b\42a+mn2a)

1 1
J24=(§b2v—2(2~b)2)(1—cosZa)

Jo=2bvsina

(2-b)*(2a+sin 2a)+%b2v(2a—sin 2a)

NP

J4a=

J4=2bv(l-cosa)

Jes =2Vvsina
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5.1.6 Out-of-Plane Ovalisation

The out-of-plane ovalisation stiffness matrix is obtained in a similar way to the
in-plane matrix. The Von Karman ovalisation strains are again longitudinal
extension and inextensional circumferential bending, as given by (5.25) and (5.26);
however in the out-of-plane case, the radial displacement is represented by the

Fourier series:

N
W, = Z b,sin2nb

n=1
and the tangential displacement is obtained from the inextensibility condition as:

N
U =Zb,, Z'Ln cos2nb

[
n=1

Substituting into the ovalisation strain-displacement equations:

(5.37)

1 _ l
€¢oo=]§zbn (cosesm 2n0+ ﬁsin 6c032n0)

(5.38)

h
€000 = ;—ZZan (1-4nr%) sin2n6

As in the case of in-plane bending, N is chosen to be three and (5.27) and (5.28)
are expanded and arranged in the form:

(€00} = [Boo1{b} ' (5.39)
where

(€00} ={€400 €o0o)' (by={b, b, b3}’
Out-of-plane Ovalisation Stiffness.

The out-of-plane ovalisation stiffness matrix is defined by (5.5):
[Ko]= [ [BITIDIB, 1AV

However, as in the in-plane case, this reduces to the integral
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_ErRa : ron T
[Koog]_ l_vz'f_ ’/; [Boo] [Boo]dedc

NI~

which uponintegrationyields an out-of-plane ovalisation stiffness matrix identical
to the in-plane matrix of equation (5.29).

5.1.7 Out-of-plane Bending-Ovalisation Coupling.

The bending-ovalisation stiffness matrix is defined by equation (5.6). However,
in this case, the constitutive matrix includes torsional shear. As shear and
ovalisation are not coupled in the Von Karman analysis, consideration of shear
is omitted from (5.6). Thus the pertinent strain-displacement matrices are [Bg ]
from equation (5.39) and a reduced [Bpg] from equation (5.35), with [A2] now

given by:
_ -(2-b)sinésinb 0 (2-b)cosdsind 0 0
(42] [o 0 0 0 0 o}
Thus
Kool = 5= 551821 [ (4217 (DI[B,,1aV
[ boo (l_vz)Rz v 00

Integrating and rearranging gives

El  3R(2-b)

T
TENOY R LU

[Kboo]=

where:

0
(cosa-1)
0
boo = sina

0
0

© OO ©C O O
C OO O OO
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5.1.8 Static Condensation and Stiffness Matrix Assembly.

In order to reduce the element degrees of freedom to beam freedoms only, static
condensation is applied to the in-plane and out-of-plane matrices. The procedure
for both cases is identical, according.to (5.9) and (5.10), where the stiffness
matrices are in-plane or out-of-plane as appropriate.

Once the reduced 6x6 matrices are obtained they are assembled to give the fully
representative 12x12 stiffness matrix, such that

(Fy=[K)Kd) (5.40)
where

{(FYy=AFyx, Fy, Fy My, My, Mz Fyy ..., Mzz)T

{dy={u, v, wW; Yy, WYy, Wz Uz ...... wZZ}T

5.1.9 Stress and Strain Evaluation.
Element strain and stress are obtained from the equations
{ey=[BI{d} (5.41)
and
{0y=[D]{e} (5.42)

upon solution for the global degree of freedom vector. As in-plane and
out-of-plane modes are uncoupled, corresponding states of stress may be
evaluated independently and summed.

The element displacement vector {d} in the stress and strain calculations is the
full degree of freedom vector. The ovalisation degrees of freedom are recovered
as described in Chapter 2 and the strain-displacement matrix of (5.41) is:

[(B1=([B,][B,]]
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5.1.10 PB1 ANSYS User Element Programming.

Element PB1 was programmed as a user element for the ANSYS finite element
package. ANSYS user elements are discussed in detail in Appendix 1.

The element position and orientation in three dimensional space is defined by
two end nodes and an orientation angle ¢, where ¢ defines the angle between the
elbow local y axis and the global Y direction. The nodes are defined by standard
ANSYS procedures. The element geometry definition is completed by defining
bend radius, bend angle, cross-section mid-surface radius, wall thickness and
orientationangle. Values are entered by the ANSYS R (Real constant) command.
The ANSYS R input fields are as follows:

R, element group number, bend radius R, bend angle o, mid-wall radius r,

thickness t, orientation angle ¢

The required element material properties are Young’s modulus EX and Poisson
ratio NUXY. For thermal loading the coefficient of thermal expansion ALPX is

also required.

The element thermal load vector is evaluated according to a matrix displacement
method approach as follows. The original elbow length Lis L = Ra. An applied
temperature difference of AT gives rise to a thermal strain of

el =a;AT

where a ; is the elbow material coefficient of thermal expansion. Consequently,

the elbow experiences a change in length of uT, where
u'=Le"=Rae’

This is equivalent to a change in bend radius of & The new length of the bend L *

may therefore be written
L'=(R+d8)a=L+u’

Therefore

Ra+ba=L+u’=Ra+Rae’
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Hence the change in radius is given by the expression
6=Re ' =Ra,AT

For an unrestrained bend, the thermal expansion is equivalent to displacements
of the bend radial degrees of freedom w1 and wp, and the local element degree
of freedom vector is:

{(dy = {0 O -Ra,AT 0 O -Ra,AT 0 0 0)F
Converting to global co-ordinates,
{d,)y=[TR]"{d}

In a constrained bend such thermal displacements give rise to a thermal load
vector, which, from the standard stiffness equation, is given by the expression

{Fgy=[Ky,{dg)

BELL1 displacement results may be printed and plotted in the usual ANSYS
manner. Stress results for each element are evaluated at both nodes and written
to a file PBIRES.DAT. In order to evaluate mechanical stress and strain in the
element stress run, thermal displacements are subtracted from the total

displacement vector.

The PB1 ANSYS user element source code is given in Appendix 4.1.

2 PB2: An Elbow EJ ith Linear Fourier Ovalisati

In element PB1 the elbow ovalisation is constant with respect to axial position.
However, under general loading, ovalisation varies with axial position and a
number of elements (over which the constant ovalisation assumption is
approximately valid) are required to give a converged solution. It is possible to
reduce the number of elements required for convergence by increasing the order
of axial interpolation of the element.

Element PB2 extends the PB1 formulation to include linear interpolation of
ovalisation displacement in order to allow investigation of the relative
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performance of the constant and linear assumptions. The beam bending stiffness
matrix is identical to that of PB1 and the ovalisation and coupling stiffness matrices
are defined in the following sections.

5.2.1 Ovalisation Stiffness.

The constant ovalisation strain-displacement equation for both in-plane and
out-of-plane ovalisation may be written:

{€,}=[Bocon]{Ccon?

where {acon} is the vector of constant Fourier coefficients a1, ap and a3 for
in-plane bending and b1, bp and b3 for out-of-plane bending.

In element PB2 linear interpolation of the ovalisation deformation with respect
to axial position is introduced. In the following derivation in-plane ovalisation is
considered and the argument is applied to out-of-plane ovalisation in an identical
fashion.

Choosing linear Lagrangian interpolation, ap, is written:

an=(l—9)anl +(9)an2
a Qa

or
an=Nlan1+N2an2

where ap1 is the value of coefficient ap at node 1, and ap) the value of aj at node
2. Thus {acon} becomes

a, Nya, +N,a,
a, y)={ Nyay +Nz.ay,
asg N,as +Nyas,

Defining the linear ovalisation degree of freedom vector {a} to be

T
{ay={a,, a,; Qaz a;; QaAz Az}

{acon} may be written

140



al\ ‘Vl O 0] 1‘V2 O 0
a,y=| 0 N, 0 0 N, 0 |{a)=[NI{a}
0 N 0

v 0 N

The linear ovalisation strain-displacement equation may therefore be obtained
by substituting the above relationship into (5.28):

{€,}=[Bocon {Qcon) = [ Boconl[N]{a} =B, }{a}

so the linear ovalisation strain-displacement matrix is:

[Bol]=[Bocon][N] (5.43)

The in-plane ovalisation stiffness matrix defined by (5.5) is
[Kool= [ (BT (DB NV
Substituting (5.43) into (5.5) and applying the integration limits gives

ErR
1-v?

a % 2R
_ T T
[K..]- fffo (N1 [Boeon] [D1[Boun] [N 1dOdRdS

NI~

In the case of in-plane ovalisation, the stiffness matrix is obtained by substituting
the matrix [Bgj] of (5.28) for [Bg con]- The out-of-plane ovalisation matrix is
obtained in a similar manner and is found to be identical to the in-plane matrix.

5.2.2 Coupling Stiffness

The bending-ovalisation stiffness matrix is defined by equation (5.6):
[Kpo)= [ [B,1[DI(B,JaV

which becomes:

[Koad= [ (B DB ounlIN 1AV

141



In-plane and out-of-plane ovalisation and coupling matrices are obtained by
substituting for the in-plane and out-of-plane bending and ovalisation matrices

as appropriate.

§.2.3 Static Condensation.

Element PB2 has two nodes, each of which has 6 beam and 3 ovalisation degrees
of freedom. In order to reduce the element degrees of freedom to beam freedoms
only, static condensation is applied to the in-plane and out-of-plane matrices as
in the case of element PB1. Once the reduced 6x6 matrices are obtained they
are assembled to give the fully representative 12x12 stiffness matrix.

If the static condensation procedure were not applied and the full 18x18 element
stiffness matrices assembled, a degree of ovalisation continuity similar to that of
the original ADINAP element formulation [3.12] would be enforced between
adjacent elements. However, it is not possible to program such a formulation as
an ANSYS user element as ANSYS cannot accommodate such a nodal degree
of freedom set, (see Appendix A1.3.4).

5.2.4 PB2 ANSYS User Element Programming,

The PB2 ANSYS user element source code is given in Appendix 4.2. The element
modelling input requirements are identical to PB1, as described in Chapter 5.1.10.
No thermal load vector has been programmed.

In element PB2 the ovalisation and coupling stiffness matrices are evaluated by
numerical integration, using a 20x3x3 point Gaussian quadrature rule.

The majority of the beam-shell elbow elements reviewed in Chapter 3 employ
Fourier interpolation of ovalisation displacement. The exceptions to this are the
MARC element [3.1,3.2], and the Kanarachos and Koutsides element [3.23]

In the MARC element the elbow cross-section is modelled as a ring of
axisymmetric shell elements, with discrete degrees of freedom at a variable
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number of nodes around the circumference. Kanarachos and Koutsides used
polynomial interpolation around the circumference, with discrete degrees of
freedom at a set four nodes, stepped at 900 around the circumference.

In order to investigate the relative performance of Fourier and Polynomial
interpolation of elbow ovalisation, element PB3 is proposed.

Element PB3 is a constant ovalisation element in which polynomial interpolation
of ovalisation displacement is superposed on the beam model defined in Chapter
5.1. The ovalisationinterpolation scheme is similar to that used in the formulation
of the bellows element BEL3, as presented in Chapter 4. It is understood that
Koutsides has formulated an elbow element using a similar interpolation scheme
in [5.5]; however the writer was unable to obtain this referencel. As in the case
of PB1, in-plane and out-of-plane responses are formulated independently and
superposed to give a fully representative element. Ovalisation degrees of freedom
are then statically condensed, resulting in a 12x12 element stiffness matrix.

§.3.1 In-Plane Ovalisation.

The ovalisation displacement is interpolated piecewise around the cross-section
of the element by dividing it into four 900 arcs. Each arc has two associated end
nodes, at which ovalisation degrees of freedom are defined. The ovalisation
freedoms are tangential displacement v, radial displacement wg, and rotation v

as shown in Figure 5.4.

The tangential displacement vy is interpolated along each arc by quintic
polynomial. (The choice of quintic polynomial interpolation is discussed in
Chapter 4.4). Hence:

vo=a1+a2[3+a3[32+a4[33+a5|34+a6[35 (5.44)

The radial displacement wg is coupled to the tangential displacement by the
inextensibility condition

dv, (5.45)
ap

W,=—

1 Several letters to Dr. Koutsides remain unanswered.
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and the rotation of the midsurface is defined under the Love-Kirchhoff hypothesis

as:

v, =

_%(dwo_%) (5.46)

dap

The ovalisation displacements are, therefore, defined in terms of the polynomial
coefficients by the equation

(uy=[BI{a) (5.47)

where

{a}y={a, a, ..... aé}T
and (5.48):
1 B B? B® B* B®
(3]~ 0o -1 -2B - 3p? -4p° -5p*
1B _(2+B%) _(6B+B3) _(12B%+B*) (20B°+R°)
r r r r r - r

The boundary conditions for a 900 arc with associated nodes i and j are

at B=—Z Uy =Uy Wo,=W, Y,=Y,,
+T
at B=T Ug=U, Wo=W, Y=Y,

Thus the arc degrees of freedom { A }are defined in terms of the coefficients {a}
by substituting the boundary conditions into (5.47)

{a}=[C){a} (5.49)

where [C] is a 6x6 matrix of constants and

{AY={vy Wy Vo Vo; Wy woj}T
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The coefficients are defined in terms of the degrees of freedom by inverting (5.49)

to give

(ay=[CT'{Aa) (5.50)

The ovalisation displacements are then obtained in terms of the degrees of
freedom by substituting for {a} in (5.47) to give:

(uy=[BICI ' {A)=[BI[EI{A} (5.51)
where [E] is the inverse of [C].
Thus, by definition, the shape function matrix for the 909 arc, [Ng], is given by:

[N I1=[BI[£]

However, this shape function is valid only for a single 900 arc i-j. To interpolate
around the section by four such arcs, continuity must be enforced at the
cross-section nodes. This is done by creating a piecewise shape function for the
entire cross-section of the bend in terms of one of displacement w,.

By definition

"A shape function Nj defines displacements within an element when
the ith degree of freedom has unit value and all other element degrees
of freedom are zero" [2.23].

Assembling four 909 arcs as in Figure 5.3, a ring element with degrees of freedom
{d;} is formed, where:

(dr}=(vol wol wol U°2 ....... wo4}

Choosing wg as the displacement to be interpolated around the circumference,
the shape function N1 for the ring is obtained by applying the nodal displacements:

wol =1 W02 = Wo3 = Wo4 = 0

By inspection, noting the symmetry of the deformation, the ring degree of freedom
vector corresponding to N1 is:

1 1 T
{d,}y, <o 5 0 O 5 0 o}
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The corresponding ovalisation displacements {u} at a point between nodes 1 and
2 on the cross-section may be obtained by application of (5.51).

{uy=[BI[FI{A}

where

T
OO>

N~

(A12)=<O 1 0 -

Letting
{Gr2}y=[FI{A)
this may be rewritten
{u2}=[BI{C 2}
Similarly, in general
{uyy=[RHCy)
(G,y=[E]{A;}
where { A, } is a vector of degrees of freedom for nodes i and j.

Thus the piecewise displacement interpolation equations for shape function N
are obtained:

{u2}=[BI{C 2} (5.52 a-d)
{uz3)=[B1{C2)
{uzs} =[BI{C34)
{un y=[BIH{C4)

Hence, for a general value of w1, the corresponding displacements are given by
{u;}= (BH{G,}w,,

Shape functions N2, N3 and N4 may be obtained as above, or more simply by
considering the rotational symmetry of the cross-section. For example, the
displacements corresponding to N are given by:
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{uy=[Bl{Calwe
{Uuzs} =[BIH{G 12} W,
{us4} =[BI{Cas}Wo
{ug y=[BI{Cas}wW,;

N3 and N4 are obtained in a similar manner.

Considering the displacement contributions from all four selected degrees of
freedom, the piecewise interpolation equations are:

(U2} =[BI{G 123 {C a1 }{C 343 {C 2} {w,}
{Uz )} =[BI{G233{C 123 {C s }{Casy {W, }
{u34) =[BI{GC 343 {C 23} {C12}3{C a1 }{w,}
{(Uusn Y =[BI{G 1 1{C3: 3 {C 3} {C 12} {w,}

where

]
]
]
}

T
{wy=A{w,, W, W, Wy}

These equations are written more briefly as:

(U2 =[B1[C,1{w,) (5.53a)
(U5} =[BI[G,]1{w,) | (5.53b)
{34} =[BI[C31{w,) (5.53¢)
{(wq) =[BI[C.1{w,) (5.53d)

5.3.2 Ovalisation Strain-Displacement.
By partitioning 3 as:

(B
[B]1=| {B2}
{B3}

the tangential and radial displacements between nodesi and j on the cross-section

may be written

Uoij={|31}[Gi]{w} : (5.54)
Wiy = (B2} {w) (5.55)
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The general form of the element strain displacement equation is
{€,y=[B{w}
where:

{€o0r={€qui eaot}T {dy={v w y)T

As in PB1, the Von Karman ovalisation strains are :

C d?w,
Eeoi=— dez wo

(w,cos6-v,sin )

v

EOOL

Noting that [ G, ]and {w} are constant, substitution of (5.54) and (5.55) into the

strain equations gives:
€ C( LB+ (B, >)[G-1<w>
foi z/ dez ot

Crus = 5 ({B2) 050+ (B, }sin0}[C,1 (w)

Thus the in-plane ovalisation [B] matrix is:
[Bol=[Al[G]{w} (5.56)

where

{ 2}
d92
[‘1]

%((Bgsinewrsl}cose)

§.3.3 In-Plane Ovalisation and Coupling Stiffness Matrices.

Having thus defined the ovalisation strain-displacement behaviour of an
axisymmetric shell ring, the ovalisation stiffness matrix is given by:
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(K1- [ 1B,IT(DI(B,1aV

where [D] is the constitutive matrix:

E 1
(D= 2[ VJ= Ez[Dl]
-V

1-viLlv 1] 1

In effect the above formulation defines an axisymmetric shell ring, which includes
both elastic and rigid body deformation modes. The rigid body modes are shown
in Figure 5.5; the first is strain-free mode parallel to the axisymmetric axis, the
second a straining mode perpendicular to the axisymmetric axis. However, in
beam shell elbow elements the ovalisation model is required to include local shell
deformation modes only, as rigid body modes are included in the element’s beam
model.

This problem is overcome in MARC Element 17 [3.1], by suppressing ovalisation
rigid body modes at element level. However, here a different approach is taken.
Rather than suppress the rigid body modes in the ring stiffness matrix, an elastic
ovalisation mode is extracted from the stiffness equation.

The elastic ovalisation mode is illustrated in Figure 5.5. This constrains the ring
degree of freedom vector of (5.53) to the form

{w,}={-b, b, -b, bz}T

which is symmetric about the centroid of the beam. The ovalisation behaviour
is therefore defined in terms of two nodeless degrees of freedom, bj and bp. The
general displacement interpolation equations (5.53) can now be rewritten in terms
of these two degrees of freedom to give:

{u;y=[BI[H {6} (5.58)

where

(G 1,+G13) (G12+Gyy)
[H]1= (G +Ga3) (G2t Gyy)
elc. etc.

and
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b,
(2]

Substituting (5.58) into the strain-displacement equations gives
[Bu1=[A1[H {0}

where [A] is defined in (5.56).

The in-plane ovalisation and coupling stiffness matrices are obtained by
evaluating the integrals

[Kud= [ [BT(DIB, 1V

1
(Kol = 518117 [ (A1 [DI(B 1AV
as in the PB1 procedure.

5.3.4 Out-of-Plane Ovalisation and Coupling Stiffness Matrices.

The out-of-plane ovalisation and coupling matrices may be obtained in the
manner given above for the in-plane case. The out-of-plane bending ovalisation
behaviour of the cross-section is equivalent to a rotation of the in-plane mode
around the centroid of the elbow. In Fourier ovalisation models, the rotation
angle is 450, and this value has been verified experimentally. It is therefore
possible to evaluate the out-of-plane ovalisation stiffness and coupling matrices
by rotating the in-plane model through 459. This is done simply by re-defining 6
in the in-plane solution as © + 1t/ 4in the out-of-plane analysis.

The resulting out-of-plane ovalisation stiffness matrix is identical to the in-plane
matrix. The coupling matrix is given by

[Kyed= [ [Boo] [DI[B 1AV

where [Bpo] is the out-of-plane bending [B] matrix of (5.35) and [Byo] the two
mode ovalisation matrix. Thus

150



=L T T
(Kool = 25081] fV[AeJ [D][B,,]aV

5.3.5 Static Condensation

The 8x8 in-plane and out-of-plane stiffness matrices are statically condensed to
remove the ovalisation degrees of freedom, as described in Chapter 4.1.2, before
the fully representative 12x12 elbow stiffness matrix is assembled.

5.3.6 PB3 ANSYS User Element Programming,

The PB3 ANSYS user element source code is given in Appendix 4.3. The element
is defined in a similar manner to PB1, as described in Chapter 5.1.10, however
no thermal load vector has been programmed at this time.

The element ovalisation and coupling stiffness matrices are integrated piecewise
through the volume of the elbow, by applying a 5x3x3 point Gaussian quadrature
rule to each of the four arcs making up the cross-section. Considering the in-plane
matrices, it is seen from (5.14) that the circumferential position of a point in the
element is defined by two angles; 3 and 6. In order to evaluate the element stiffness
it is necessary to consider only one angle in the integration. For computing
considerations it is chosen to substitute © in terms of 3 for each section of
circumference as follows:

]
1-2  0=p+=
B3

3n
2-3 6—[3‘*'—4—
Sn
- e= + —
3-4 B 3
71
4-1 9—B+—4'-

Hence the integration limits for each arc in the cross-section are from
-n/4 to n/4around each arc, -t/2 to t/2 through-thickness and 0 to B along
the axis of the bend.
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For the out-of-plane matrices 0 of the in-plane solution is re-defined as 8 + n/ 4,

and the matrices integrated as above.

5.4 Discussion

Inthis chapter formulations for three simple elbow elements have beenpresented.
The elements have been programmed as user elements for the ANSYS finite
element program. The user element source code is given in Appendix 4.

The stiffness matrix of element PB1 was integrated analytically using a symbolic
algebra program. This dispenses with the need for computationally expensive
numerical integration. In the case of elements PB2 and PB3, the integrated beam
stiffness matrix of PB1 was used but the ovalisation and ovalisation-bending
coupling matrices are integrated numerically at element formation.

A number of piping elbow and piping system analyses using the above elements
are presented in Chapter 6, where performance is assessed in comparison with
flexibility analysis, finite element analysis and published theoretical and
experimental solutions.
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Elbow element beam model geometry and coordinate systems.

Figure 3.1
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Figure 5.2 Elbow element beam model degrees of freedom.
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Figure 5.3 Element PB1/PB2 cross-section coordinate system and
ovalisation degrees of freedom.
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6 SAMPLE ANALYSES OF BELLOWS, ELBOWS AND PIPING
SYSTEMS.

In this chapter the accuracy, applicability and effectiveness of the bellows
formulations of Chapter 4 and the elbow elements of Chapter 5 are assessed by
presenting and discussing the results of sample analyses of bellows, elbows and
piping systems.

In Section 6.1 several bellows of geometry parameter range 0.S <\ <5.0 are
analysed using elements BEL1, BEL2, BEL3 and BELA. Flexibility and stress
results are compared with published solutions and solutions obtained by
axisymmetric thin shell finite element analysis. The relative performance of the
elements is discussed and it is argued that element BEL1 gives the best
performance of the four bellows elements.

In section 6.2 the performance of the curved beam model used in elbow elements
PB1, PB2 and PB3 is verified by presenting two sample analyses of canti levered
900 curved beams and comparing the results with ANSYS curved beam solutions.

In Section 6.3 several analyses of single 900 pipe bends under moment loading
are presented. Four bends under in-plane bending and three under out-of-plane
bending are analysed. Displacements and stresses are compared with flexibility
analysis and published experimental and theoretical results. The performance
of the elbow elements is discussed and it is argued that element PB1 is the most

effective element.

In Section 6.4 analyses of nine piping systems are presented. The first eight
systems include at least two bends. Results obtained by analyses using elbow
element PB1 in the ANSYS finite element program are compared with standard
ANSYS flexibility analysis, ABAQUS elbow element analysis or thin shell finite
element analysis results. The remaining system is a straight piping run which
incorporates a semi-toroidal bellows unit. Results obtained using the bellows
element BEL1 are compared with two ANSY'S flexibility analyses; the first taking
default values for bellows flexibility and stress intensification factors and the
second based on axial stiffness and stress intensification factors derived from the
bellows element BEL3 formulation.
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6.1 Bellows Analyses.

The object of studying bellows under axial force loading is to establish the accuracy
and applicability of the bellows element formulations BEL1, BEL.2, BEL3 and
BELA presented in Chapter 4.

Bellows of geometric parameter 0.5 <A <S5.0 and fixed radius ratio R/r=10

were examined. Flexibility and stress results given by the bellows formulations
are compared with published and axisymmetric finite element analysis results.

The axisymmetric models were created in the ANSYS finite element program.
18 STIF61 axisymmetric conical thin shell elements [4.5,6.1] were used to model
a 900 section of bellows and boundary conditions conforming to the element
formulations applied. The axisymmetric bellows model is shown in Figure 6.1.
In the remainder of this Chapter, results obtained by axisymmetric analysis are
denoted FE(Axi).

6.1.1 Flexibility results.

In the literature, bellows deformation results are generally presented in the form
of flexibility factors evaluated for particular values of . In order to allow direct
comparison with such results, the bellows deformation results presented in this

Chapter are given in this form.

Flexibility factors given by the bellows element formulations for a range of bellows
parameters A are presented in Figure 6.2.

In Figure 6.2a, flexibility factors from elements BEL1 and BEL2 are compared
with axisymmetric shell finite element analysis FE(Axi) results and two solutions
of Findlay and Spence.

The Findlay and Spence curves FS(1) and FS(2) were obtained by a minimum
potential energy analysis of a semi-toroidal bellows [4.2]. FS(1) is based on the
same strain-displacement relationships and displacement interpolation as the
element BEL1. FS(2) is similar to the element BEL2 formulation in terms of
shell theory and displacement function, but with more terms in the interpolation

series.
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Element BEL1 flexibility factors are in good agreement with both the FS(1) and
FE(Axi) results. However, BEL2 gives lower flexibility factors more consistent
with the FS(2) solution.

The flexibility factors given by the polynomial based elements BEL3 and BEL4
are shown in Figure 6.2b. The two elements give an almost identical solution,
which shows good agreement with the BEL1 solution.

6.1.2 Stress results.

In practice, the largest stress occurring in an axially loaded bellows is the axial
stress arising from transverse bending of the bellows convolution. For
conciseness, stress results presented in this section are limited to such axial

stresses.

Stress results given by the element formulations are presented in two forms:
normalised maximum axial stresses and normalised axial stress distributions for
given A. The stresses are normalised according to the equation:

0,_0t2Rn
3r P

where P is the applied axial force.

Maximum axial stresses are compared with solutions of Boyle and Spence,
Hamada et al and FE(Axi) in Figure 6.3. The solutions of Boyle [6.2] and Hamada
[6.3] are based on numerical analysis of thin shells of revolution.

Elements BEL3 and BELA were found to give almost identical maximum stress
values and, for clarity, only BEL3 stresses are shown in Figure 6.3.

The best overall agreement with the FE(Axi) maximum stresses is given by BEL2,
which also compares well with Boyle’s solution. Elements BEL1, BEL3 and BEL4
give reasonable agreement with these solutions, although the stresses are slightly
higher. Hamada’s solution differs from the rest of the results, especially for low

values of A

The axial stress distribution curves given by FE(Axi) and the bellows elements
are shown in Figures 6.4 to 6.8.
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The most consistent agreement with the FE(Axi) stress distribution is given by
BEL1. Although BEL2 has been shown to give good maximum stress values, it
clearly gives very poor agreement with FE(Axi) and BEL1 for stress distribution.
The polynomial elements BEL3 and BELA give a slightly different form of stress
distribution to FE(Axi), but there is reasonable agreement for stress magnitude.
Finally, it is noted that in all cases the elements showed a marked deterioration
in performance for values of bellows parameter A < 0.5,

6.1.3 Discussion of Bellows Analyses.

From the above results it is concluded that element BEL1 gives the best overall
performance in terms of flexibility and stress evaluation. At present, the element
is limited to analysis of bellows of parameter A greater than 0.5 but the range of
geometries could be extended to include lower values of A by increasing the
number of terms taken in the interpolation series.

Element BEL2 performs poorly in terms of flexibility and stress distribution. As
in BEL1, the element could be improved by taking more terms in the interpolation
series, however, the Findlay and Spence solution FS(2) of [4.2] indicates that
solution convergence will occur before the BEL1 flexibility is reached. In the
limit, the full series of PB2 will contain all the terms in the even series used in
PB1. Therefore, the poor performance is due to either the strain-displacement
equations or the choice of radial displacement w as the interpolated variable,
from which the tangential displacement v and rotation y are derived according

to (4.27) and (4.28) respectively.

The polynomially interpolated elements, BEL3 and BELA, are based on the same
strain-displacement model as BEL2 but give better flexibility factors and stress
distribution curves than the Fourier based element. This indicates that the
strain-displacement model can adequately describe the bellows behaviour.
However, unlike BEL2, in which radial displacement w was the interpolated
variable, BEL2 and BEL3 are based on interpolation of tangential displacement
v. This indicates that the choice of w as the interpolated variable was the cause
of the poor performance of BEL2.
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In considering the relative performance of BEL3 and BELA, it is clear that the
inclusion of constant axial extension in BELA4 gives little improvement over the
inextensible element BEL3, indicating that constant membrane strain is negligible
in the deformation of bellows of the geometries considered here.

The form of stress distribution given by the polynomially interpolated elements
is smoother than the axisymmetric shell finite element distribution and, as with
the other elements, performance deteriorates rapidly for values of A less than
0.5. It would be possible to improve the performance of these elements by using
more quintic polynomial "elements" in the 900 section. Adopting this approach,
degrees of freedom could be defined at internal nodes (that is 0 < 6 < 90) and
statically condensed at element level.

) Curved Beam Verificati

In order to verify the curved beam element formulation used in elbow elements
PB1, PB2 and PB3, in-plane and out-of-plane loading of two cantilevered 900
curved beams was examined. The curved beam formulation was programmed as
an ANSYS user element. (The user element code is incorporated in the elbow
user element routines given in Appendix 4. These elements may be used for
simple beam analyses by suppressing the Fourier ovalisation modes).

As the beam is based on an exact solution of Vlasov’s curved beam theory, only
a single element was required to model the beam. Results are compared with
the ANSYS elbow element STIF18 with a unit flexibility factor [4.5,6.1]. The
ANSYS STIF18 element stiffness matrix is evaluated by inverting a curved beam
flexibility matrix, obtained by application of Castigliano’s theorem [6.1,6.4].

The first beam examined was a slender member with dimensions R =5000 mm,
r=100 mm, t=10 mm and material properties E=210E3 and v=0.3. The beam
radius ratio and geometric parameter are

E =50 A= - =5
r r
The beam was loaded by in-plane and out-of-plane shear forces of 100 N applied
at the free end. The corresponding displacements 6 evaluated using single
element PB1 (no ovalisation) and STIF18 (flexibility factor = 1) models are given
in Table 6.1.
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Element b/ p 84/p
PB1 (no ov.) 1.488 2.365
STIF18 (FF=1) 1.486 2.363
(_EEL__I)% 0.1 0.1
STIF18

Table 6.1 Curved Beam 1 displ l hear loadi

The second beam examined was less slender, with dimensions R =1000 mm,
r=100 mm, t=10 mm and material properties E=210E3 and v=0.3. The beam
radius ratio and geometric parameter are

>
V)

=10 A=—=1

Two types of loading were applied to the beam; in-plane and out-of-plane shear
forces of 1000 N and in-plane and out-of-plane moments of 1E6 Nmm applied
at the free end. The corresponding displacements & and rotations y given by
single element PB1 (no ovalisation) and STIF18 (flexibility factor = 1) models

are given in Tables 6.2 and 6.3.

Element 6isp 8./
PB1 (noov.) 0.1196 0.1892
STIF18 (FF=1) 0.1224 0.1950
PBI -2.3 -2.97

( STIF!8 ! )%

Table 6.2 Curved Beam 2 disp] l hear loadi

Element Yy Yorp
PB1 (noov.) 0.1511 0.1743
STIF18 (FF=1) 0.1512 0.1739
PBI 0.0 0.2
(srliza'l)%

Table 6.3 Curved Beam 2 displ I loadi
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Tables 6.1, 6.2 and 6.3 show that the Vlasov curved beam element is slightly stiffer
than the ANSYS curved beam element for shear loading of beam 2. However
the beam 1 results and beam 2 rotations closely agree with the ANSYS curved
beam solution.

6.3 Elbow Analyses.

In order to investigate the accuracy and applicability of the elbow elements
formulated in Chapter S, several single 900 pipe bends under pure in-plane and
out-of-plane moment loading were analysed.

The elbow elements presented in Chapter S are based on the assumption that the
ovalisation is constant (PB1, PB3) or linear (PB2) over the length of the element.
Therefore, under general loading, each bend must be discretized into several
elements over which the assumption is approximately satisfied. The first stage
in the study of the behaviour of the pipe bends is to determine the number of
elements required to meet this condition for different bend geometries; that is,
to determine the convergence requirements of the elements.

6.3.1 Element Convergence.

Two sets of convergence tests were carried out on 900 bends of different bend
parameter A. In one set the long radius assumption R > >r made in the element
formulations was observed and aradius ratio of R /r= 10 considered. Inthe second
set a less rigorous application of the assumption was made and a radius ratio of

R/r=3 used.

The applied loading in the convergence tests was in-plane or out-of-plane shear
force. Shear loading sets up a more complex state of strain in the elbows than
pure bending and is more representative of general loading conditions.

Typical in-plane and out-of-plane convergence test finite element models are
shown in Figure 6.9. The models were fully fixed at one end and loaded by an
applied shear force at the other, in-plane or out-of-plane as appropriate. Starting
with a mesh of one element per bend, the number of elements was increased until
convergence occurred. The convergence criteria was that the difference in the
shear translational displacement (corresponding to the applied force) on
increasing the number of elements was <0.5%.
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Convergence plots for in-plane shear force loading of 900 bends of different A

for elements PB1, PB2 and PB3 are shown in Figures 6.10 to 6.12 respectively.
Corresponding plots for out-of-plane shear force loading are shown in Figures
6.13 to 6.15. Convergence is represented as displacement for a given number of
elements, d, over converged displacement, dc.

6.3.2 Sample Analyses: In-Plane Bending of 90° Bends

In order to study the accuracy and applicability of elements PB1, PB2 and PB3
under in-plane bending, four 900 bends were analysed. The bends are identified
by the names IP1, IP2, IP3 and IP4. Bend dimensions, material properties and
applied moments used in the finite element analyses are given in Table 6.4.

BE E v MY R r t A &
IP1 || 282E7 (1bt/ind) | 0.3 |-1E4 (Ibfin)| 45 (in) | 14.74 (in) | 0515 (in) Ho.m 3.05
1P2 || 210E3 (N/mm2) | 0.3 [-1E8 (Nmm)[ 1000 (mm) [173.01 (mm)[13.35 (mm)f[o.446 5.78
IP3 || 210E3 (N/mm2) | 0.3 |-1E8 (Nmm)| 1000 (mm) [325.73 (mm)15.66 (mm)[0.147] 3.07
1P4 |[210E3 (N/mm?) | 03 |-1E8 (Nmm){ 1000 (mm)[347.22 (mm)[13.02 (mmm)[|0-108 2.88

Table 6.4. Elbow m for in-pl ndin

Experimental and theoretical analyses of a bend similar to bend IP1 were
presented by Rodabaugh and George in [2.10}. Bend IP2 has been investigated
experimentally by Smith and Ford in [6.5], where a theoretical solution according
to Smith’s in-plane bending theory [2.16] is also presented. Further analysis of
bend IP2 was performed by Bathe and Almeida using the ADINAP elbow
element in [3.12]. In [3.12] Bathe and Almeida analysed a bend similar to IP3
using the ADINAP element and compared the results with an earlier MARC
Element 17 analysis of Sobel [3.4] and a solution obtained the Clark and Reissner
shell theory solution [2.9]. A ring element analysis of a bend similar to IP4 was
presented by Ohtsubo and Watanabe in [3.5], where the results were compared
with experimental values from the Japan Welding Engineering Society.

In the following analyses, bend stress results are presented in normalised form.
For consistency with published results, two different normalising equations have

been used.
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Stress results for bends [P1 and IP4 are expressed in terms of a stress factor ¢

the ratio of the elbow stress to the stress at radius r in a straight pipe of equivalent
nominal dimensions under the similar moment loading. The stress factor is
therefore defined as

o'—o(L)
Mr

where I is the second moment of area of the pipe and M the moment at the section
at which the stress is measured or calculated; M=My for in-plane bending.

Stress results for bends [P2 and IP3 are also presented in a normalised form but,
for consistency with the Bathe and Almeida published results, a slightly different
definition of stress factor is used:

. I/
G,=0 Mr,

where r is the outer radius of the elbow cross-section.

Convergence requirements.

Convergence plots for 900 bends loaded by in-plane shear force are given in
Figures 6.10 to 6.12. The number of elements required for a converged solution
for bend parameters of A =0.1,0.2,0.5 are summarised in Table 6.5.

Elemcnt" Number of Elements
" A=0.1 A=0.2 A=0.5
[R/r=10] R/r=3 |R/r=10] R/r=3 |R/r=10] R/r=3
PB1 ir 5 5 4 4 3 4
pB2 || 3 3 3 3 2 3
PB3 [ s 4 4 4 4 4

Considering the bend geometry given in Table 6.4, it is seen that between three
and five elements of types PB1, PB2 and PB3 are required to give converged
solutions for bends IP1, IP2, IP3 and IP4 under in-plane shear force. However,
fewer elements are required under the simpler in-plane bending load case and
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further tests indicated that three elements per bend are sufficient for all the above
geometries. The three element model is shown in Figure 6.16, which defines the
model co-ordinate system, applied force and displacement boundary conditions.

Displacement Results: Comparison with ANSYS STIF18.

Analysis results presented in the elbow element literature are in the main confined
to stress distribution: displacements are not generally presented. It is not,
therefore, possible to assess the displacement results given by elements PB1, PB2
and PB3 by comparison with alternative elbow element solutions from the
literature. However, it is necessary to verify the element performance and this
was done by comparing displacement results given by the elements with results
obtained by flexibility analysis of the bends defined above.

The free-end rotations of the bends were evaluated using elements PB1, PB2 and
PB3 and compared to results given by the ANSYS STIF18 flexibility analysis
elbow element [4.5,6.1]. The basic STIF18 stiffness matrix is evaluated by
inverting a curved beam flexibility matrix obtained by application of Castigliano’s
theorem. The resulting curved beam stiffness matrix is then modified by flexibility
factors to account for the effect of elbow ovalisation. The default STIF18
flexibility factors are evaluated according to the ANSI B31.1 definition, as

discussed in Chapter 2.1.2.

The elbow element and flexibility analysis results are given in Tables 6.6. It is
found that for a converged solution elements PB1 and PB2 yield virtually identical
results and for clarity a single rotation value is given for both these elements. The
percentage difference between the elbow elements and ANSYS STIF18 results

are also given in Table 6.6.
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Element IP1 ROTY x 105 | IP2 ROTY x 102 | IP3 ROTY x 102 | IP4 ROTY x 102

PB1/PB2 717 -1.17 472 640

PB3 696 -1.16 -4.64 621

STIF18 -7.48 -1.27 -4.91 -6.67

( PBI 1)% 42% 7.9% -3.9% 4.0%
STIFI8

( PB3 ) -7.0% -8.7% -5.5% -6.9%
STIFI8

Considering the results given in Table 6.6, it is seen that the elements PB1, PB2
and PB3 give slightly lower rotations than ANSYS element STIF18. Considering
the elbow element results alone, it is seen that PB1 and PB2 give greater rotations
than PB3, indicating that the polynomial ovalisation formulation gives a stiffer
element than the Fourier interpolation.

Stress Distribution

Normalised stress distributions for bends IP1, IP2, IP3 and IP4 given by the elbow
elements PB1, PB2 and PB3 are compared with published results in Figures 6.17
to 6.21. For a converged solution elements PB1 and PB2 give virtually identical
results and, for clarity, a single curve representing both of these elements is given

in the Figures.

In Figure 6.17 the longitudinal and circumferential stress factors o " at the outside

surface of bend IP1 are compared with the theoretical and experimental values
of Rodabaugh and George.

Good general agreement is seen between the finite element solutions of PB1,
PB2 and the Rodabaugh and George theoretical solution. There is some
difference between the PB1/PB2 solution and the experimental results for
longitudinal stress towards the intrados of the bend, but the circumferential
stresses are similar throughout. Element PB3, however, is seen to give a high
peak circumferential stress and the form of both longitudinal and circumferential
distribution is different to both the theoretical and experimental distributions of

Rodabaugh and George.
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The outer surface longitudinal and circumferential stress factors o, for bend IP2

are compared with the ADINAP results and Smith and Ford experimental results
in Figure 6.18. Three ADINAP elements were used to model the bend, with two
Fourier terms in the ovalisation interpolation function.

PB1 and PB2 give slightly lower longitudinal stresses than the ADINAP solution,
which is in better agreement with the Smith and Ford experimental results;
however, the circumferential stresses are very similar and show good agreement
with the experimental results. As in the case of IP1, PB3 again gives a high peak
circumferential stress and the form of the stress distribution curve differs from

the other solutions.

In Figure 6.19 the outer surface longitudinal and circumferential stress factors
given by the elbow elements for bend IP3 are compared with results presented
by Bathe and Almeida, in which the bend was modelled by four ADINAP elements
with three Fourier ovalisation terms. MARC Element 17 results (using three
elements around the bend and 16 axisymmetric elements around the
cross-section) and a Clark and Reissner shell solution are also given. Mid-surface
longitudinal stress results for bend IP3 are shown in Figure 6.20.

The performance of elements PB1, PB2 and PB3 for bend IP3 is similar to that
observed for bends IP1 and IP2. In general, PB1 and PB2 are in good agreement
with the ADINAPand MARC solutions, but PB3 gives a high peak circumferential
stress and a different form of stress distribution curve.

In Figure 6.21, bend IP4 outer surface longitudinal and circumferential stress
distributions are compared with ring element and experimental results given by
Ohtsubo and Watanabe. Six ring elements with six Fourier terms in the ovalisation
interpolation function were used to model the bend. PB1 and PB2 show good
agreement with the Ohtsubo and Watanabe ring element, but PB3 again gives
markedly different stress distribution.

Discussion of In-Plane Analyses Results

The displacement results presented in Table 6.6 show that the elbow element
solutions are stiffer than the ANSYS Castigliano based element STIF18 solutions
for in-plane bending. It should be emphasised that the ANSYS solution is not
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an ideal solution and the difference may be accounted for in part, at least, by
inadequacies in the flexibility analysis approach. However, high stiffness may
also arise in the finite element solution due to one or more of the following factors:

a) Poor representation of elbow ovalisation.
b) Inadequacies in the beam model.
c) Beam-ovalisation interaction in the elbow elements.

In order to establish the most likely cause of the high stiffness of the elements,
consider first element PB1.

The ovalisation model of PB1 is essentially the Von Karman model, whereas, in
the ANSYS STIF18 element, ovalisation is accounted for by using Clark and
Reissner flexibility factors. In Figure 2.6 Von Karman flexibility factors based
onathree even term Fourier series solution (asused in the element formulations)
are compared with Clark and Reissner values, and show very similar values for
the range of A examined in the above tests (Von Karman factors being slightly
higher). Thus both models would be expected to give similar representation of

ovalisation.

The beam model used in PB1 was examined in a number of beam verification
tests. Good agreement was found between the PB1 beam model and STIF18
beam model (unit flexibility factor) for in-plane bending. Therefore, the two
beam models could be expected to give similar representation of beam bending
deformation in the elbows considered above.

However, PB1 differs significantly from STIF18 in the way in which the ovalisation
and bending models are combined to form an elbow element. In STIF18 the
beam stiffness matrix is factored by dividing the second moment of area of the
beam bending stiffness coefficients by the Clark and Reissner flexibility factor.
In PB1 the ovalisation deformation is coupled to the beam deformation through
the coupling matrices defined in Chapter 5; thus there is a direct interaction
between the two models. A consequence of this coupling is that the exact beam
solution, based on Vlasov’s curved beam theory, is no longer completely valid.
From the results presented above, it appears that the shape functions derived
from the exact solution may be unable to adequately represent the elbow
deformation, causing the element to be over-stiff.

171



As the ovalisation model used in PB2 is essentially an extension of that of PB1
the above arguments apply to both elements. However, the ovalisation model of
PB3 is fundamentally different from that used in the other two elements and the
element performance is poorer due to a combination of (a) and (c) above.

The magnitude and distribution of stresses for bends under in-plane bending
given by elements PB1 and PB2 shows good agreement with published solutions,
but PB3 gives stress distribution curves of significantly different form. In
particular, the circumferential stress distribution curves for bends IP1, IP3 and
IP4 given by PB3 show very sharp peak stresses at around © = 90 °, and local peaks
at 0=0° and 6=180°. The best agreement between PB3 and alternative
analyses was found for the higher A bend IP2.

It should be noted that most of the theoretical solutions presented in Figures 6.17
to 6.21 are based on trigonometric interpolation of ovalisation displacement. In
such cases a trigonometric form of stress distribution is expected and is seen to
occur. However, the MARC Element 17 and Clark and Reissner solutions shown
for bend IP3 in Figures 6.17 and 6.18 are not based on trigonometric functions,
but give a stress distribution form similar to the Fourier based solutions. It would
therefore appear that element PB3 is not able to represent the true stress
distribution as well as elements PB1 and PB2.

In assessing the above results, it is of interest to compare the computing
requirements of the various finite element solutions presented. This is most
simply done by considering the number of degrees of freedom required by the
alternative elements to model the bend in each case.

All four bends were modelled using three PB1, PB2 and PB3 elements, with the
element matrices statically condensed to 12x12 matrices before assembly.
However, it is of interest to consider the total number of degrees of freedom at
element level as well as in the global stiffness matrix, as this allows a more
complete comparison of element effectiveness.

In IP2 Bathe and Almeida used three ADINAP elements with two active Fourier
modes to model the bend. Three ADINAP elements were also used to model
[P3, butin this case three Fourier modes were active. Results were also presented
for IP3 using the MARC Element 17, in which three elbow elements with sixteen
axisymmetric elements around the circumference were used. Ohtsubo and
Watanabe analysed bend IP4 using six ring elements with six Fourier ovalisation
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modes. Thus the degrees of freedom per bend model, assuming a fully
representative element with equivalent in-plane and out-of-plane freedoms, are

given in Table 6.7.
Element Bend element level global dof
dof
PB1 All 42 24
PB2 All 48 24
PB3 All 96 24
ADINAP 2 P2 100 100
ADINAP 3 1P3 120 120
MARCEI 17 IP3 268 30
O/W Ring 1P4 432 432
In-pl

Considering Figures 6.13 to 6.17 and Table 6.7, it is seen that elements PB1 and
PB2 give accurate stress results for significantly fewer degrees of freedom than
the alternative analyses presented. The polynomial ovalisation element PB3 is
less accurate in both displacement and stress evaluation and is significantly larger
than PB1 and PB2 at element level. MARC Element 17 is also a polynomial
based ovalisation element but is able to accurately evaluate stress distribution.
However, the MARC element requires a large number of degrees of freedom at
element level to achieve this. The in-plane tests therefore indicate that Fourier
based elements give greater accuracy per degree of freedom than polynomial
based elements. It is also noted that although the linearly varying element PB2
converges on average one element quicker than the constant ovalisation element
PB1 it offers no significant advantage over PB1 in terms of degrees of freedom
at element level.

6.3.3 Sample Analyses: Out-of-Plane Bending of 900 Bends

In order to investigate the accuracy and applicability of the elements PB1, PB2
and PB3 under out-of-plane bending, three 900 bends were analysed . The bends
are identified by the names OP1, OP2 and OP3 and dimensions, material
properties and applied moments used in the finite element analyses are given in
Table 6.8.
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Bend E v MX R r t  fLa IRy
oP1[210E3 (N/mm2) | 0.3 | -1E8 (Nmm) [1000 (mm)[173.01 (mm){13.35 (mm)|[0.446] 5.78
or2][210E3 (N/mm2) [ 0.3 | -1E8 (Nmm) [1000 (mm)]347.22 (mm)|13.02 (mm)[[o.108] 2.88
OP3 | 2.82E7 (ibf/in?) | 03 | -1E4 (ibfin) | 6.06 (in) | 199 (in) | 0.555 (in) [Jo.849] 3.04

Analysis of a bend similar to OP1 using the ADINAP element was presented by
Bathe and Almeida in [3.12], where results were compared with Smith and Ford
Experimental values [6.5]. Bend OP1 has the same geometry as IP2. Stress results
are presented in terms of a stress factor which is the ratio of the elbow stress to

the stress occurring in a straight pipe of equivalent nominal dimensions under
the same moment loading. However, in the case of out-of-plane bending, the
moment varies with axial position according to the equation

M=MXsing¢

Taking this into account, the out-of-plane stress factor as used by Bathe and
Almeida is given by

. / I/
o= (Mro)_o(MXsincb'rO)

where ¢ “is the axial position at which the stress is evaluated. In all the analyses

presented in this section ¢ "=450.

A bend similar to OP2 was analysed by Ohtsubo and Watanabe in [3.5]. OP2is,
in fact, out-of-plane bending of a pipe of geometry IP4. For consistency with
Ohtsubo and Watanabe, the stress factor in this case is given by the equation

. {
¢ = o(MXsincb'r)
Bend OP3 is a thick-walled welding elbow (forged 900 bend) which was

investigated experimentally and theoretically by Smith and Ford in [6.1]. The
stress factor for OP3 is given by the same equation as for IP2.
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Convergence Requirements.

Out-of-plane convergence plots for 900 bends loaded by an out-of-plane shear
force are given in Figures 6.13 to 6.15. The number of elements required to give
a converged solution for bend parameters of A =0.1, 0.2, 0.3 are summarised
in Table 6.9.

Element Number of Elements
A=0.1 A=0.2 A=0.5
R/r=10| R/r=3 |R/r=10] R/r=3 |R/r=10} R/r=3
PB1 11 16 8 12 7 8
PB2 10 14 8 8 7 7
PB3 10 14 8 12 7 8

The element convergence studies show that many more elements are required
for out-of-plane bending than for in-plane bending. Also, further investigation
has shown that there is little difference in convergence rates between out-of-plane
shear force and moment loading. Considering Table 6.9, two different bend
discretizations were required for the above bends. Bends OP1 and OP3 were
modelled by 6 elements, and bend OP2 by 14 elements. These models and the
applied force and displacement boundary conditions are shown in Figure 6.22.

Displacement Results: Comparison with ANSYS STIF18.

In order to verify the performance of elements PB1, PB2 and PB3 under
out-of-plane loading, displacements calculated using elements are compared with
results given by the ANSYS STIF18 element under ANSI B31.1 flexibility factors
in Table 6.10. For a converged solution, elements PB1 and PB3 yield very similar
results and a single row is given for both these elements. The percentage
difference between the elements and ANSYS STIF18 results are also given in

the tables.

175



Element OP1 ROTZ x 102 | OP2 ROTZ x 102 | OP3 ROTZ x 104
PB1/PB2 239 1.82 451
PB3 227 0.94 4.35
STIF18 2.63 1.94 4.93
( P8I )% 9.1% 62% 85%
STIF!8
( PB3 )% -13.7% 51.7% -11.8%
STIF1!8

As for in-plane bending, the elbow elements give a stiffer solution than ANSYS
STIF18 for out-of-plane bending. In particular, the PB3 rotation for the low A
bend OP2 is much lower than the other solutions.

Stress Distribution

Normalised stress distributions for bends OP1, OP2 and OP3 given by the elbow
elements PB1, PB2 and PB3 are compared with published results in Figures 6.23
to 6.27. As for in-plane loading, elements PB1 and PB2 give virtually identical
results and, for clarity, a single curve representing both is given in the Figures.

The outer surface longitudinal and circumferential stress distributions for OP1
are compared with ADINAP results and experimental results of Smith and Ford
in Figure 6.23. Three ADINAP elements were used to model the bend, with two
Fourier terms used in the ovalisation interpolation series.

Elements PB1 and PB2 give good agreement with the ADINAP results. There
is also good agreement with experimental circumferential stresses, but
longitudinal stresses are slightly low towards the intrados of the bend. The PB3
results show reasonable agreement for longitudinal stress, but the form of the
curve for circumferential stress is markedly different to the other solutions.

The longitudinal and circumferential stress distributions for bend OP2 at the
outside and inside surfaces respectively are compared with the experimental and
theoretical results given by Ohtsubo and Watanabe in Figures 6.24 and 6.25. Six
ring elements with six Fourier ovalisation modes were used in the ring element

model of the bend.
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The PB1 and PB2 stress distributions for bend OP2 are slightly conservative in
comparison with the ring element and experimental results, but show reasonable
correlation in terms of stress distribution. However, the performance of PB3 is
extremely poor, especially for circumferential stress distribution, where both the
magnitude and form of the stress distribution is seen to differ significantly from
the other theoretical and experimental results.

The longitudinal and circumferential stress distributions at the outside and inside
surfaces for bend OP3 are compared with experimental and theoretical results
given by Smith and Ford in Figures 6.26 and 6.27 respectively.

PB1 and PB2 show good agreement with the Smith and Ford theoretical and
experimental solution, but again the PB3 differs from the other solutions.

Discussion of out-of-plane bending results.

The results of the out-of-plane analyses emphasise the points discussed for
in-plane analysis: PB1 and PB2 show reasonable agreement with published
results, but PB3 gives a poorer solution. The most significant result to emerge
from the out-of-plane analyses is the vefy poor performance of PB3 for bend OP2,
which was the lowest A bend examined for out-of-plane bending. Inorder to study
the behaviour of PB3 with varying A, a further series of out-of-plane analyses (of
radius ratio R/r=3) were carried out.

Out-of-plane displacements given by PB3 are compared with PB1 results in Figure
6.28. It is seen that there is a accelerated degradation in performance of PB3 in
comparison with PB1 for values of A less than 0.4.

As in the case of the in-plane analyses, it is of interest to examine the size of the
models used in the out-of-plane analyses. The model degrees of freedom at
element and global level are compared with the ADINAP and ring models

described in the literature in Table 6.11.
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Element Bend OP1 Bend OP2
Element level dof. Global dof. Element level dof. Global dof.
PB1 78 42 174 90
PB2 84 42 180 90
PB3 186 42 426 90
ADINAP 2 100 100 —_ —_—
O/W RING — — 432 432
-01- n

Elements PB1 and PB2 require fewer degrees of freedom than alternative
elements for comparable accuracy, although the difference is not as great as for
in-plane analysis. Element PB3 required more degrees of freedom at element
level than the ADINAP element to give a (poor) converged model of OP1. In
the case of OP2, the converged PB3 model was similar in size to the Ohtsubo and
Watanabe ring model and gave very poor results.

6.3.4 Discussion of Single Bend Analyses.

The sample analyses of single bends presented above indicate that the polynomial
ovalisation element PB3 is inferior to the Fourier ovalisation elements PB1 and
PB2. It would be possible to improve the performance of element PB3 by
modelling the cross-section with more quintic polynomials, but Tables 6.7 and
6.11 show that it is already much "larger” than PB1 or PB2 at element level and
increasing the number of polynomials would defeat the objective of formulating
a simple and efficient elbow element.

Elements PB1 and PB2 have been shown to perform well in the above analyses,
especially when the model sizes are taken into account. The linear interpolation
of ovalisation in PB2 leads to an element which converges about one element
sooner than PB1; however, this advantage is negated by the additional calculations
required at element level due to the increased uncondensed element matrix size.

Considering accuracy, programming simplicity and computing requirements, the
most effective of the three elbow elements proposed in Chapter S is element PB1.
In order to investigate the accuracy, applicability and computing costs of using
element PB1 in general piping analysis, sample analyses of a number of piping
systems are presented in the next section.
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s 4 Analvsis of Piping S

In order to assess the applicability and performance of element PB1 in general
piping system analysis, analyses of eight piping systems denoted (SYS1 to SYS8)
are presented. Finite element models of the systems were created in the ANSYS
finite element package: bends were discretized by sufficient PB1 elbow elements
togive convergence and straight pipes were modelled by ANSYS STIF16 elements
[4.5,6.1]. The PB1/STIF16 models will be referred to as PB1 models in the
remainder of this Chapter.

For conciseness, only outer surface stress results are presented in the analyses

presented in this section.

In order to compare results obtained using elbow element PB1 with the simpler
flexibility analysis approach, the PB1 model results for systems SYS1 to SYS4 are
compared with ANSYS flexibility analysis results. The results of two flexibility
analyses are presented for each system, one based on ANSI B31.1 correction
factors and the other based on Clark and Reissner correction factors.

In ANSYS flexibility analysis, the STIF18 elbow flexibility factor FF and stress
intensification factor SI may be input directly or default values taken. The
definition of flexibility and stress intensification factors chosen for the analysis
can significantly effect the analysis results. Unless specified otherwise, ANSYS
STIF18 flexibility and stress intensification factors default to the ANSI B31.1
definitions discussed in Chapter 2, which are based on the work of Clark and
Reissner and of Markl respectively. These factors are given by the equations :

1.6S

FF—T
0.9
Sl=—
}\5

It is emphasised that Markl’s stress intensification factors are based on the results
of fatigue tests and do not correct the beam stress to give the elastic stress in the elbow.
In the following sections, stresses denoted as STIF18 (B31.1) are the values
obtained by flexibility analysis using the default B31.1 stress intensification factor
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and have not been further corrected to give elastic stress. These results are
presented in order to demonstrate the importance of the definition of stress
intensification used in flexibility analysis.

The Clark and Reissner stress intensification factor is based on elastic stress
analysis and, ideally, when used in a flexibility analysis yields the maximum elastic
stress in the elbow. The Clark and Reissner SI factor is given by the equation:

1.892 0.480
Sl== -

A ¥

where the positive sign denotes the outer surface. In the following sections, stress
results denoted STIF18 (C/R) are values obtained by flexibility analysis using
the Clark and Reissner definition of stress intensification factor.

In systems SYSS to SYS7 the PB1 model results are compared with ABAQUS
finite element analysis, in which elbows were modelled by ELBOW 31B elements
and straight beam elements modelled by beam elements B31 [3.22].

In system SYS8 the PB1 model results are compared with an ANSYS thin shell
analysis, using the doubly curved isoparametric thin shell finite elements STIF93

[4.5,6.1].

System SYS9 is a straight piping run which incorporates a semi-toroidal bellows
unit. Analysis of SYS9 is included to demonstrate the use of a bellows element,

BELY], in a piping system analysis.

6.4.1 SYS1

System SYS1 consists of three straight piping runs and two 900 elbows in a
configuration commonly referred to as a Hovgaard bend. The system geometry,
material properties and constraints are shown in Figure 6.29.

The pipework is anchored (fully fixed) at end 1, and subject to a prescribed
displacement simulating a thermal expansion load of UZ=0.8 in. atend 2. All
other degrees of freedom at end 2 are constrained to zero. The applied
~ displacement effectively loads bend A of the system in-plane and bend B
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out-of-plane. The object of the analysis is to obtain the displacements and stresses
at the mid-sections of bends A and B. Results obtained using elbow element PB1
are compared with ANSYS flexibility analysis results.

Both bends in SYS1 have bend parameter and radius ratio:
A=0.110 §=2.719

The number of PB1 elements required for a converged solution of such a bend
under general loading is obtained by considering Figure 6.13, which indicates that
14 elements are required per bend for general three-dimensional loading. For
the particular load case considered here bend A is subject to in-plane loading
only which, according to Figure 6.10, requires only 6 elements for convergence.
However, in order to assess the computing costs for a more general load case,
both bends are modelled by 14 elements.

The flexibility and stress intensification factors of the SYS1 bends according to
B31.1 and the Clark and Reissner equations are:

FF SI
B31.1 15.0 3.920
C/R 150 7.239

The stiffness matrix of ANSYS element STIF18 is basically evaluated by inverting
a flexibility matrix obtained by application of Castigliano’s theorem.
Consequently, the stiffness of a bend modelled by STIF18 elements is the same
regardless of the number of elements used in the model; that is, the solution does
not converge. However, in order to obtain the mid-bend stresses, a node must
be located at the middle of the bends. Therefore two STIF18 elements were used
for each elbow in the flexibility analysis model of the system.

Deformed geometry plots given by the ANSYS and PB1 models are shown in
Figure 6.30. The displacements at the middle of the bends are given in Table

6.12.
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Model || Bend | UX (in) | UY (in) | UZ (in) | ROTX (rad) | ROTY (rad) | ROTZ (rad)
ANSYS|| A 1.277E-3 | -5.999E-2] 0.1347 3.739E-3 -1.816E-3 -3.474E4
model B |-2.047E-2| 4.957E-2] 0.7928 3.410E-3 -1.080E-3 2.427E4
PB1 || A 1.312E-3 | -6.145E-2| 0.1380 3.772E-3 -1.851E-3 -3.579E4
model I B {-2.053E-2]-5.109E-2| 0.7928 3.404E-3 -1.081E-3 2.490E4

Table 6,12, Displacement at the centre of SYS1 bends.

The bend middle section longitudinal and circumferential stress distributions
given by PB1 and the maximum elastic longitudinal stress values given by STIF18
(C/R) are shown in Figure 6.31. The maximum longitudinal, circumferential and
Von Mises stresses occurring in the mid-bends are given in Table 6.13.

Blemest | 91010 G) | 9erus ) | (SR | Semns O |, (SR,
Bend A||STIFI8 (B31.1)| 4725 — — 141 =
(STIF18) (C/R)| 8769 — %016
D 6150 8664 +42.6% 8382 +7%
Bend B |[sm*18 @311 8217 — — 3576 —
[ stims (c/R) | 15241 — 15391
PB1 10464 13651 +457% 12744 +208%

Table 6.13 shows that the solution based on ASME B31.1 stress intensification
factors indicates much lower stress levels than the other solutions. This is because
ASME B31.1 SI factors are based on fatigue test data, as discussed in Chapter 2,
and do not correct the beam analysis to give elastic elbow stresses. The flexibility
analysis stresses based on the Clark and Reissner definition of stress
intensification factor are higher than the PB1 results for both bends.

The total computing times required by the analyses, given in standard VAX CP
units, were:

ANSYS model, 11 VAX CP units.
PB1 model, 64 VAX CP units.

The PB1 model took approximately six times longer than the ANSYS model to
run. PB1 actually took less time than STIF18 to form the element matrices but
the larger number of elements required for convergence and the detailed stress
pass led to a more expensive system model.
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6.4.2 SYS2.

SYS2isasecond Hovgaard bend arrangement, fully fixed at both ends and subject
to a uniform temperature change of 1000C. The object of the analysis is to obtain
the displacements and stresses at the mid-sections of bends A and B. Results
obtained using elbow element PB1 are compared with ANSYS flexibility analysis

results.

The system geometry and material properties are given in Figure 6.32. Bends
A and B are identical, with bend parameter and radius ratio:

A=0.446 §=5.78
Figure 6.13 indicates that 8 PB1 elements are required per bend for general

loading. The flexibility and stress intensification factors of the bends given by the
B31.1 and Clark and Reissner equations are:

SI

3.70

C/R 3.70 2,613

Deformed geometry plots given by the flexibility and PB1 model analyses of the
system are shown in Figure 6.33. The displacements at the middle of bends A
and B are given in Table 6.14.

Model " Bend |UX (mm)|UY (mm)|UZ (mm)] ROTX (rad) | ROTY (rad) | ROTZ (rad)
[ANSYS || A | 4112 [ -1881 | 1730 | 8211E4 | <4.012B4 | -1336E4
modet | B 1730 | 1881 | 4112 | -1.336B4 | 4.012B4 | 8211E4
PBL || A | 4110 | -1886 | 1784 | B265E4 | 4172B4 | -1.386E4
model | B | 1776 | 1876 | 4109 | -136984 | 412884 [ 82824

Table 6.14. SYS2 mid-bend displ

The longitudinal and circumferential stress distributions and the STIF18 (C/R)
maximum longitudinal elastic stress at the mid-points of bends A and B are shown
in Figure 6.34. The maximum longitudinal, circumferential and Von Mises
stresses occurring at the mid-bends are given in Table 6.15.
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Element O ymax Ogmax C/R a C/R
(N/mm2) | (N/mm2) o (a1 ) oy | o1 )
Bend Al[ STIF18 (B31.1) 15.3 — — 182 —
STIF18 (C/R) 266 _ 29.0
PB1 18.9 32.1 +41.7% 274 +5.8%
Bend Bj| STIF18 (B31.1) 153 —_ _ 182 __
STIF18 (C/R) 26.6 — 290
PB1 20.1 27.7 +32.3% 26.3 +10.3%

The reaction forces occurring at fixed ends 1 and 2 of SYS2 due to the thermal
loading are given in Table 6.16. It is seen that the PB1 model reaction forces are
slightly higher than those given by the ANSYS model, indicating that the PB1
model is stiffer than the ANSYS model.

Model || Bend | FX () | FY () | FZ (N) | MX (Nmm) | MY (Nmm) | MZ (Nmm)
ansYS|[ A | o496 [ 119215 | 64696 | -7762B6 | 1.773E7 | 2.957E7
model || B | 64696 | -11921.5 | 64696 | 295787 | 177137 | -7.762E8
PB1 || A | 6751 [ 123169 | 68008 | -7.975B6 | 18S1E7 [ 3.012E7
modet | B [ 67851 [-123169 | 68000 | 3004E7 | -1844B7 | -7.904E6

Table 6.16. SYS2 end reaction forces.
The total computing times required by the two analyses were:

ANSYS model, 11 VAX CP units.
PB1 model, 42 VAX CP units.

6.4.3 SYS3

SYS3 is a 4 bend branchless piping system fixed at one end and subject to a
prescribed displacement of 12mm at the other. The object of the analysis is to
obtain the displacements and stresses at the mid-sections of bends A, B, C and
D. Results obtained using elbow element PB1 are compared with ANSYS

flexibility analysis results.

The system is defined in Figure 6.35. The bends have parameter and radius ratio:

A =0.446 §=5.78
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Figure 6.13 indicates that 8 elements are required per bend for general loading.

Flexibility and stress intensification factors of the SYS1 bends given by the B31.1
and Clark and Reissner equations are:

FF SI
B31.1 3.70 1542
C/R 3.70 2.613

Deformed geometry plots given by the ANSYS and PB1 models of the system
are shown in Figure 6.36. The displacements at the middle of the four bends A,
B, C and D are given in Table 6.17.

Model || Bend (UX (mm)|UY (mm)|UZ (mm){ROTX (rad){ROTY (rad)| ROTZ (rad)
I A -4.882E-2| 0.2049 1.861 3.179E-3 -1.90SE-2 4.225E4

ANsys|[ B | 06376 | 07628 | 8157 | 308883 | -1125B3 | 4811B4
model | C | 01691 | 1642 | 8624 | -154E-3 | -3332B4 | 1.200E4
[ D [s3ue2] 1001 | 11734 | -2303E-3 | -700E6 | -1537R4
={| A |488B-2] 02098 | 1937 | 3243B3 | -1959E-3 | 4.265E4
pB1 || B | 06313 | 07653 | 8232 | 30%E-3 | -1.259E3 | 4.839E4
modet | ¢ [ 0170 | 1661 | 8690 | 151583 | 3321E4 [ 1169E4
| D |sssE2| 1032 | 1173 | 2301B3 | 6653E<6 | -1.607E4

Table 6.17. SYS3 mid-bend displacements,

The longitudinal and circumferential stress distributions given by PB1 and the
maximum longitudinal stress given by STIF18 (C/R) at the mid-points of bends
A, B, C and D are shown in Figure 6.37. The maximum longitudinal,
circumferential and Von Mises stresses at the mid-bend sections are given in
Table 6.18.
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Element T ymax Oymax C/R Oumax C/R
N/mm2) | (N/mm2) "‘(ﬁ - )"" (N/mm2) "'( PBI )""
Bend A|| STIF18 (B31.1) 20.5 —_ —_— 262 —
STIF18 (C/R) 348 — 385
PB1 25.4 354 +37.0% 359 +7.2%
Bend B|[STIF18 (B31.)) [ 31.0 — — 83 -
STIF18 (C/R) 53.1 — 55.1
PB1 415 58.2 +30.0% 49.6 +10.1
Bend C|[ STIF18 (B31.1) 318 — — 335 —
STIF18 (C/R) 555 —_ 56.2
PB1 424 57.6 +30.9% 55.0 +02%
Bend DI} STIF18 (B31.1) 18.2 — —_— 21.0 —_
STIF18 (C/R) 3.2 — 35.0
PB1 223 31.7 +48.9% 28.0 +25.0

The total computing time required to analyse the system by the two methods was

ANSYS model, 16 VAX CP units.
PB1 model, 66 VAX CP units.

6.4.4 SYS4

SYS4 is a complex 7 bend branchless piping system subject to a uniform
temperature loading of 2000C. The system is defined in Figure 6.38. It anchored
at both ends, denoted points 1 and 6, and has rigid translation supports at points
2.3,4and 5. The object of the analysis is to obtain the displacements and maximum
stresses at the mid-sections of all 7 bends. Results obtained using elbow element

PB1 are compared with ANSYS flexibility analysis results.

The bends have parameter and radius ratio

A=0.6667

Figure 6.13 indicates that 6 elements are required per bend for general loading.

Flexibility and stress intensification factors of the SYS1 bends given by the B31.1

k. 6.6667
r

and Clark and Reissner equations are:
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B31.1 2475 1.18

C/R 2475 1.93

Deformed geometry plots given by the ANSYS and PB1 models of the system
are shown in Figure 6.39. The displacements at the middle of all seven bends are
given in Table 6.19.

Bend ANSYS model PB1 modei
UX (mm) j UY (mm) | UZ (mm)|{UX (mm) | UY (mm) | UZ (mm)
A 9.161 -9.493 -0.613 9.151 9.54 -0.647
B 15.016 4.646 2.620 15.034 -4.672 2.694
C -1.405 5579 -5.270 -1.396 5516 -5.161
D -10.863 -5.112 0517 -10530 -5.162 0521
E 6.323 -11.374 -1.193 6.650 -11533 -1.206
F 27.224 -1.695 -18.840 28.176 -1.831 -19.089
G 10473 8587 -9.430 11.028 8.593 -9.774

Table 6.19. SYS4 mid-bend disol

The maximum stresses occurring at the middle of the bends are given in Table
6.20.
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Element Oymax Oomax C/R Oemax C/R
/mm2) | (N/mm2) 551 1) (N/mm2) "'(m‘ 1)
Bend Al|[ STIF18 (B31.1) 138 — — %2 —
STIF18 (C/R) 23.6 — 31.9
PB1 20.7 28.7 +14.0% 28.0 +13.5%
Bend B[ STIF18 (B31.1) 11.0 — 19.3 —
STIF18 (C/R) 18.9 — 256
PB1 10.5 18.2 +80.0% 22.6 +13.2%
Bend C|| STIF18 (B31.1) 313 —_ 37.6 —
STIF18 (C/R) 533 —_ 58.5
PB1 355 51.2 +50.1% 47.6 +23.5%
Bend DJ| STIF18 (B31.1) 385 — 44.1 -
STIF18 (C/R) 654 — 705
PB1 53.1 71.6 +23.2% 71.1 -1.6%
Bend E|[ STIF18 (B31.1) 206 — 318 -
STIF18 (C/R) 3638 — 474
PB1 17.7 32.4 +7.9% 294 +61.2%
Bend F|[ STIF18 (B31.1) 19.1 — 30.1 —
STIF18 (C/R) 353 — 448
PB1 39.8 52.6 -11.3% 535 -16.3%
Bend G|[ STIF18 (B31.1) 258 — 37.6 —
STIF18 (C/R) 45.1 — 56.5
PB1 18.0 320 +150.5% 36.2 +56.1%

Table 6.20 shows that in SYS4 the ANSYS flexibility analysis stresses based on
the Clark and Reissner SI factors are not conservative for all the bends. Bend F
shows lower longitudinal stress in the ANSYS (C/R) model than in the PB1
model, and both bends D and F show lower Von Mises stresses.

The SYS4 thermal reaction forces at the ends, point 1 and 6, and at internal
supports are given in Table 6.21. As in SYS2, the PB1 model reaction forces are
slightly higher than the ANSYS model forces, indicating that the PB1 model is

stiffer.
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Model || Support | FX () | FY () | FZ (N) | MX (Nmm) | MY (Nmm) | MZ (Nmm)
1 8925.0 23596.0 -6163.3 -10.97E6 3.44E6 73.81E6
2 —_ -64665.6 [ —_ —_— —_
AngY 3 — 11329.4 4916.2 — J— —_—
model 4 — 115964.3 | 9961.8 —— J— —_—
5 — | -1755156| — — . _
6 -8925.0 89291.5 -8714.8 9.36E6 19.85E6 39.51E6
1 9441.8 24219.8 | -6538.5 -11.49E6 3.59E6 74.92E6
2 —_ -66918.5 —_— f— J— —_—
PB1 3 — 11844 .8 5291.0 J— — —_
model 4 —_ 120304.0 | 10493.5 J— — —
5 — -182096.8 —_ —_— — —
6 94418 92646.6 -9246.0 9.78E6 20.88E6 41.79E6
Table 6.21. SYS4 reaction forces,

The total computing time required to analyse the system by the above methods

was:

ANSYS model, 29 VAX CP units.
PB1 model, 91 VAX CP units.

6.4.5 SYSS

Piping system SYS5is atwo bend symmetric expansionloop subject to a prescribed
displacement of 10mm, as shown in Figure 6.40. Two finite element analyses of
the system were performed: a PB1 model in the ANSYS program and an
ABAQUS model using ABAQUS B31 (straight beam) and ELBOW 31B (elbow)
elements [3.22]. ABAQUS ELLBOW 31B is a constant bending elbow element,
discussed in Chapter 3.

The object of the analysis was to obtain the displacement at the elbow ends Al
and B1 (as shown in Figure 6.40) and the stress distributions at the middle of the
bends A and B.

End 1 of the system is pinned and has an applied displacement of UX =10mm,
and symmetry boundary conditions are applied at end 2. The bends have

parameter and radius ratio

A=0.152 R_5 o7

r
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As the system lies in the X-Y plane, and loading is also planar, the elbows are
subject to in-plane loading only. The number of PB1 elements required for a
converged solution is therefore given by Figure 6.10, and is found to be 6. In the
ABAQUS model each elbow was modelled by 3 ELBOW 31B elements.

Deformed system geometry plots given by the PB1 and ABAQUS models are
shown in Figure 6.41. The displacements at positions at elbow ends A1 and B1,
as indicated in Figure 6.40, are given in Table 6.22.

Model Position UX (mm) UY (mm) ROTZ (rad)
PB1 Al 9.999 4.123 6.763E-3
model Bl 0.909 5.662 5.680E-3
ABAQUS Al 9.999 4.114 6.748E-3
B1 0.8977 5.664 5.675E-3

Table 622. SYSS displ locations Al and B

The longitudinal and circumferential stresses at the middle of bends A and B
given by the two analyses are shown in Figure 6.42, which shows that the stress
magnitudes and distribution given by the two models are very similar, particularly
in the case of circumferential stress.

The reaction forces at ends 1 and 2 given by the analyses are given in Table 6.23.
The higher PB1 model reaction forces indicate that the PB1 model is slightly
stiffer than the ABAQUS model.

Model || End FX(N) FY (N) MZ (Nmm)
PB1 || 1 550.9 00 —
model 2 .550.9 — .9.23E5

ABAQUS 1 5316 0.0 —
2 5316 — 8.94ES
Table 6.23. SYSS reaction forces,

It was not possible to obtain a quantitative comparison of solution time
requirements as the finite element models were run on different computers. The
ANSYS model took approximately 10 seconds interactive user time to run on a
VAX 11/750, whilst the ABAQUS model took approximately 2 minutes to
compile and run on a Hewlett Packard 350 work station. (It should be noted that
the actual solution time for the ABAQUS model was much less than the total

' run time).
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6.4.6 SYS6

Piping system SYS6 is a two bend asymmetric expansion loop subject to a
prescribed displacement of 4.32 in., as shown in Figure 6.43. The system was
analysed using ANSYS STIF16 and PB1 elements in the ANSYS program, and
ABAQUS B31 and ELBOW 31B elements in the ABAQUS program.

End 1 of the system is fully fixed, whilst end 2 is pinned and subject to an applied
displacement of -4.23 in. applied in the x direction. The bends have parameter
and radius ratio

A=0.11 PR

R

As in the case of SYSS, bends A and B are subject to in-plane loading only. Thus
the number of PB1 elements required for a converged solution is indicated by
Figure 6.10 to be 6.

Deformed deformed geometry plots given by the ANSYS PB1 and ABAQUS
models are shown in Figure 6.44. The displacements at elbow end positions Al,
B1 and C1 as indicated in Figure 6.43 are given in Table 6.24.

Model ILP osition UX (in) UY (in) ROTZ (rad)
PB1 Al 0911 7.64E4 1.18E-2

model Bl -1.002 0277 1.03E~4
1 4.059 0.191 -2.70B-2

ABAQUS][ A1 0871 6.10E-4 1.04E-2
Bl 0.9430 5.66B-2 2.22B-3

c1 4.151 -5.68E-2 2776B-2

The longitudinal and circumferential stresses at the middle of bends A, B and C
given by the two analyses are shown in Figures 6.45 and 6.46, and the reaction
forces at ends 1 and 2 given in Table 6.25.

Model || End FX (N) FY (N) MZ (Nmm)
PB1 || 1 593.3 -358.1 6.20E4
model | 2 -593.3 358.1 _
ABAQUS| 1 5719 -286.1 -5.2EA
B -571.9 286.1 —
Table 6.25. SYS6 reaction forces
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Again, the PB1 model is slightly stiffer than the ABAQUS model, but Figures
6.45 and 6.46 show very good agreement between the PB1 and ELBOW 31B

stresses for the SYS6 bends.

6.4.7 SYS7

Piping system SYS7 is a Hovgaard bend arrangement, fixed at end 1 and subject
to prescribed horizontal and vertical displacements of UY = 1 in. and UZ = -2
in. at end 2, as shown in Figure 6.47. The system was analysed using PB1 and
ABAQUS models. The bends have parameter and radius ratio:

A=0.705 R_ o3
-

Both bends experience three-dimensional loading. The number of elements

required for convergence given by Figure 6.13 is 6.

The deformed geometry given by both the models are shown in Figure 6.48. The
displacements at elbow ends Al and B1 (as shown in Figure 6.47) are given in

Table 6.26.

[ Model || Position | UX (in) | UY (in) [ UZ (in) |ROTX (rad)| ROTY (rad) | ROTZ (rad)
PBl || A1 [ 013 [7.02E4] 0605 | 877E3 | 765B-3 | 3.09E3

model || Bt | 0317 | os2 | 1687 | 7mE3 | 10682 | 75E3
ABAQUY[ A1 | 013 [678B4| 0600 | 868E3 | 7543 | 308E3

model " B1 0321 | 0502 -1.688 -7.053B-3 9.046E-3 6.297E-3

The longitudinal and circumferential stresses at the middle of bends A and B are
shown in Figure 6.49. Very good agreement is found between the solutions. The
system reaction forces at ends 1 and 2 given in Table 6.27.

Model I End | FX FY(N) | FZ(N) |MX (Nmm)IMY (Nmm)|MZ (Nmm)
PBL || 1 | 2745 | 978 | 10760 | 1MES | -507B4 | -1.17E#
model | 2 | 2745 | om8 | -10760 | 9734 | 870E4 | 5.39E4

ABAQUY[ 1 | 2618 | 9398 | 10500 | 131ES | -5.00B4 | -1.22E4
| 2 | 2618 | 9398 | -10500 | 941B4 | 8S0E4 | -5.22E4

Table 6.27. SYS7 reaction forces.

192



6.4.8 SYS8

SYS8 is a Hovgaard bend arrangement, as detailed in Figure 6.50. The system
was analysed using elbow element PB1 and ANSYS STIF16 and the results
compared with a three dimensional ANSYS thin shell analysis.

The ANSYS shell model is shown in Figure 6.51. The system was modelled using
the eight node isoparametric shell element STIF93 [4.5,6.1]. The system was fully
fixed at both ends and a displacement of UX = 10mm applied to end 1. The bends
have parameter and radius ratio:

A=0.194 R_500
-

The number of PB1 elements required for convergence is indicated by Figure

6.13 to be 6.

The PB1 and shell model deformed geometry plots are shown in Figure 6.52. The
longitudinal and circumferential stress distributions at the middle of bends A and
B given by the two analyses are shown in Figures 6.53 and 6.54.

The PB1 stress distribution in bend A is very similar to that in the complex shell
analysis model. In bend B a similar form stress distribution is seen in both the
PB1 and shell model curves but there is a shift in location of maxima and minima
between the two models. The solutions appear to be "out of phase".

The computing times required for the PB1 and shell models were:
PB1 model: 21 VAX CP units.
Shell model: 4255 VAX CP units.

6.4.9 SYS9

SYS9 demonstrates the use of the bellows element BELL1 in a piping system
analysis. SYS9 is a straight piping run in which a bellows unit has been fitted to
absorb expansion loads, as shown in Figure 6.55. The bellows parameter and

radius ratio are:

A=0.995 R
-
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In ANSYS piping analysis, bellows are represented by modified straight beam
elements STIF16. The user may specify a bellows flexibility factor and an axial
stiffness to account for the enhanced flexibility of the unit. A stress intensification
factor may also be defined, however, this modifies the beam bending stresses only:
it has no effect on the beam axial stress. Thus no stress intensification is evaluated
for a bellows subject to pure axial loading, as in SYS9.

Three analyses of system SYS9 were performed. The first was an ANSYS model
in which default values were taken for the bellows element. In practice the
element defaulted to a straight beam.

In the second model the bellows axial stiffness was obtained from the BEL3
element formulation presented in Chapter 4, by modifying the FORTRAN
program BEL3FLEX given in Appendix 3. Stress concentration factors were
obtained by modifying the BEL3 program BEL3STR.FOR of Appendix 3. The
stress factors are defined as:

where 0, is direct axial stress in a straight pipe of the same nominal dimensions.

The PB3 axial stiffness and stress intensification factors given by the programs:

Surface || K axial (N/mm) o} o)
inside 61924 -740 -6.78
outside 529 -4.82

In the third model the bellows unit was represented by the BEL1 ANSYS user
element formulated in chapter 4. The ANSYS user element source code of BEL1

is given in Appendix 4.

The reaction Forces calculated by the three models are given in Table 6.28.

Model Fx (KN)
ANSYS (Default) 928

ANSYS (PB3 factors) | 158
Element BEL1 I 150

194



The maximum longitudinal and circumferential stress at the inside and outside
surfaces of the bellows are given in Table 6.29. The model 2 results have been
modified by the BEL3 stress intensification factors given above.

Stress ANSYS (Default) ANSYS (PB3 factors) Element BEL1
Outside | Inside Outside Inside Outside Inside
0 ,(N/mm?) -120.82 1089 -152.3 1382 -168.0
a4 (N/mm2) — 99.19 139.3 909 -133.8

The BEL2 longitudinal and circumferential stress distributions are shown in
Figure 6.56.

6.4.10 Discussion of System Analyses.

Analyses SYS1 to SYS8 demonstrate the applicability of element PB1 in piping
system analysis.

In SYS1 to SYS4 the PB1 results were compared with ANSYS flexibility analysis
results. Two flexibility analyses were performed for each system; one using
ANSYS default flexibility and stress intensification factors based on ASME B31.1,
and the other using Clark and Reissner factors. (The definition of flexibility factor

is the same in both cases).

In all four systems, the stresses evaluated according to B31.1 were significantly
lower than the stresses evaluated using the Clark and Reissner factors and the
PB1 element. These results highlight the fact that the B31.1 factors do not correct

for elastic stresses in elbows.

In SYS1 to SYS3, the PB1 stresses proved to be lower than the ANSYS flexibility
analysis results based on the Clark and Reissner definition of stress intensification
factor. However, in SYS4 the ANSYS stresses for two of the bends in the system
were lower than the PB1 stresses. This does not necessarily mean that the results
are not conservative, as PB1 itself is based on a number of conservative
assumptions, but does bring in to question the applicability of flexibility analysis

 under certain conditions.
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Comparisons of computing requirements for flexibility analysis and PB1 models
were given for systems SYS1 to SYS4. The PB1 models proved to require more
processing time, mainly due to the element’s detailed stress pass and the larger
number of elbow elements required for convergence for certain geometries
(especially for out-of-plane bending). However, the difference was not so great
as to preclude the use of the element in general piping analysis.

In analyses SYS5 to SYS7 the performance of ANSYS/PB1 analysis was
compared with ABAQUS analysis using the ELBOW 31B element. Stress results
showed very good agreement, but the PB1 model reaction forces were slightly
higher than those given by ABAQUS (3% - 4%), indicating that PB1 is slightly
stiffer than with the ABAQUS elbow element. No direct comparison of
computing requirements was possible, as the ANSYS/PB1and ABAQUS models
were run on different computers. However, the use of PB1 analyses may be
preferred by piping designers as ANSYS modelling is relatively simple in
comparison with ABAQUS modelling. The use of ANSYS is already well
established in piping design and analysis; for example, in the offshore oil industry.

In system SYS8, the PB1 model results were compared with a doubly curved thin
shell finite element analysis of a Hovgaard bend. It was found that the simple
PB1 analysis showed good agreement with the complex shell model for the system
bend under in-plane loading. Under out-of-plane loading the PB1 stress
magnitudes were in general agreement with the shell results but the stress
distribution appeared to be slightly "out of phase”. The shell model took
approximately 200 longer to run than the PB1 model.

In SYS9 the bellows element BEL1 was used in the analysis of a straight piping
run with an in-line bellows expansion joint under axial loading. The results were
compared with two flexibility analyses: a standard analysis using default flexibility
and stress intensification factors and an analysis using axial stiffness and stress
intensification factors given by the bellows element formulation BEL3. The
analysis of SYS9 highlighted two important deficiencies in the treatment of
bellows in flexibility analysis:

i) The bellows flexibility factor modifies bending stiffness only.

ii) The bellows stress intensification factor modifies bending strains only.
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Hence, in an analysis of an axially loaded bellows the ANSYS bellows element
is effectively a straight beam with no enhanced flexibility or stress intensification.
Consequently, an analysis of an axially loaded bellows using the ANSYS element
gives low stresses and high reaction forces.

In the next Chapter a number of conclusions based on the results presented above
are made and proposals for further work on elbow elements given.
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Figure 6.1 ANSYS STIF61 axisymmetric conical shell 900 bellows section finite
element model plot, showing element numbers and boundary
conditions.
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Bellows Flexibility Factor
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Figure 6.2 Bellows flexibility factor versus bellows parameter \. Comparison of

bellows element flexibility factors with Findlay and Spence (F/S) and
axisymmetric finite element (FE(Axi)) solutions.
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Bellows Axial Stress
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Figure 6.3 Bellows maximum axial stress versus bend parameter . Comparison

of bellows element maximum stresses with Boyle, Hamada and
axisymmetric finite element analysis (FE(Axi)) solutions.
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Axial Stress Distribution
Axisymmetric Finite Element Analysis
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Figure 6.4 Axisymmetric shell model FE(Axi) inner surface axial stress
distribution.
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Axial Stress Distribution
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Bellows element BEL1 inner surface axial stress distribution.
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Axial Stress Distribution
Element BEL2
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Figure 6.6 Bellows element BEL2 inner surface axial stress distribution.
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Axial Stress Distribution
Element BEL3
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Figure 6.7 Bellows element BEL3 inner surface axial stress distribution.
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Axial Stress Distribution
Element BEL4
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Figure 6.8 Bellows element BEL4 inner surface axial stress distribution.
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PB1 Convergence:. In-Plane Force.
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Figure 6.10  Elbow element PB1 in-plane shear force loading convergence plots.
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PB2 Convergence: In-Plane Force.
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Figure 6.11  Elbow element PB2 in-plane shear force loading convergence plots.
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PB3 Convergence: In-Plane Force.
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Figure 6.12  Elbow element PB3 in-;;lane shear force loading convergence plots.
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PB1 Convergence: Out-of-Plane Force.
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Figure 6.17  Bend IP1 stress distribution, outside surface. Comparison of elbow
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experimental results.
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Figure 6.19  Bend IP3 stress distribution, inside surface. Comparison of elbow
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and Watanabe (O+W) ring element solution and Japan Welding
Engineering Society experimental results.
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Figure 6.23 Bend OP1 stress distribution, outside surface. Comparison of elbow
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solution and Smith and Ford (S/F) experimental results.
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7 CONCLUSIONS.

Three simple piping elbow elements have been formulated and their suitability
for linear elastic analysis of general piping systems investigated. The elements
are based on the beam-shell approach, in which a cross-section ovalisation model
is superposed on a curved beam element formulation.

The elements share a common beam model, based on an exact solution of Vlasov’s
thin wall curved beam theory. The ovalisation models were based on
two-dimensional shell theory, which precluded representation of end effects and
inter-element ovalisation compatibility, but considerably simplified the
formulations and reduced computing requirements.

In the first elbow element presented, element PB1, the ovalisation was assumed
to be constant with respect to axial position and interpolated around the
cross-section by a truncated three even term Fourier series. The second element,
PB2, extended the PB1 formulation to include linear interpolation of the constant
ovalisation model along the axis of the elbow. In the third element, PB3, the
ovalisation was assumed to be constant with respect to axial position, as in the
case of PB1. However, PB3 differed from the other elements in that it employed
polynomial interpolation of ovalisation. The element cross-section was divided
into four 90° arcs (for both in-plane and out-of-plane ovalisation models), over
which the ovalisation displacements were interpolated by quintic polynomial

functions.

As the above beam and ovalisation models have uncoupled in-plane and
out-of-plane responses it was possible to simplify element formulation and
subsequently reduce computing calculations by formulating uncoupled in-plane
and out-of-plane elbow models, which are assembled at element level to form a
fullyrepresentative elbow element. The in-plane and out-of-plane models include
both beam and ovalisation degrees of freedom. The ovalisation degrees of
freedom are statically condensed from the elements to leave only beam degrees
of freedom before the complete element is assembled. (Condensed degrees of
freedom are recovered for stress calculations in the element stress pass).

The beam stiffness matrix common to all three elements and the ovalisation and
bending-ovalisation coupling stiffness matrices of PB1 were integrated
analytically, using a symbolic algebra computer program, removing the need for
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computationally expensive numerical integration of these matrices. In elements
PB2 and PB3 the ovalisation and coupling stiffness matrices are integrated
numerically using Gaussian quadrature.

The elbow elements were programmed as user elements for the ANSYS finite
element program. This allowed the ANSYS pre-processor to be used to create
finite element models of single bends and piping systems interactively, (with
straight piping runs modelled by ANSYS STIF16 straight pipe elements where
required). The resulting ANSYS finite element models were solved using the
ANSYS solution routines, and the ANSYS post-processor used to display the
results of the analysis in graphical and numerical form. An extensive "User
Element Programming Manual", detailing ANSYS user element programming
requirements for linear elastic structural elements, was written specifically to
accompany this thesis (Appendix 1).

By basing the elements on a common beam model, it was possible to make direct
comparison between the three ovalisation models used and to determine which
was the best option for a simple elbow element. Comparison between PB1 and
PB3 allowed the relative performance of the Fourier and Polynomial schemes to
be assessed. Comparison between PB1 and PB2 allowed the convergence
characteristics of axially constant and linearly varying ovalisation to be

investigated.

The convergence requirements of the elbow elements were studied for a range
of bend geometries. It was found that the linear element PB2 converged most
rapidly. PB1 and PB3 showed similar convergence rates, however, element PB3
required many more degrees of freedom (at uncondensed element level) than
either PB1 or PB2. In all three elements, out-of-plane loading required many
more elements for convergence than in-plane loading.

Although PB2 converged on average one element more quickly than PB1, no
significant computational advantage was found in using it in preference to PB1
because of its greater number of degrees of freedom at uncondensed element

level.

In order to assess the accuracy, applicability and effectiveness of the three elbow
elements, several sample analyses of 900 bends under in-plane and out-of-plane
bending were presented and results compared with published and flexibility

analysis results.
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PB1 and PB2 were found to give almost identical stress and displacement results
for a converged solution. The element stress distributions compared well with
results presented in the literature, but the displacement results indicated that the
elements were slightly stiffer than the ANSYS flexibility analysis elbow element.
It was proposed that the higher stiffness was due, in part at least, to the use of an
exact beam solution in the element formulation.

Element PB3 gave relatively poor results for both stress and displacement. In
particular, it was found that an accelerated degradation of performance occurred
for out-of-plane bending of elbows of parameter A less than 0.4. It was noted that
itwould be possible toimprove the performance of PB3 by using more polynomials
to interpolate around the cross-section of the elbow, however, this refinement
would increase the computing cost of the element which is already greater than

PB1 and PB2.

From the single bend sample analyses results, it was concluded that the piecewise
quintic polynomial interpolation scheme used in PB3 was less effective in
modelling ovalisation behaviour than the Fourier interpolation schemes used in

PB1 and PB2.

As PB1and PB2 give virtually identical results for a converged solution, the choice
of which was the better simple elbow element was made by considering the
computing requirements of the elements. For a converged solution, there was
little difference in bend model size between the elements in terms of degrees of
freedom required at uncondensed element level: the linear element offered no
significant advantage over the simpler-constant ovalisation element. However,
as all the element stiffness matrix integrals of PB1 had been obtained analytically
it was more economical than PB2, which required numerical integration of the
ovalisation and coupling stiffness matrices. It was therefore concluded that
element PB1 was the better option for general analysis of piping systems.

In order to investigate the performance of element PB1 in the analysis of piping
systems, a number of sample analyses of branchless systems of varying complexity
were performed. Results obtained using elbow element PB1 were compared with
ANSYS flexibility analysis, ABAQUS piping finite element analysis and ANSYS
thin shell finite element analysis results. From these analyses it was observed

- that:
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iii)

iv)

Flexibility analysis based on Clark and Reissner stress intensification
factors is not consistently conservative in comparison with finite element
analysis using element PB1.

Stress results given by element PB1 compare well with results given by the
ABAQUS program using the ABAQUS elbow element Elbow 31B.
However, PB1 gives a slightly stiffer solution than ABAQUS, resulting in
reaction forces typically of the order of 3% to 4% higher.

In an analysis of a Hovgaard bend, PB1 stresses were found to compare
well with thin shell finite element analysis results. This was especially true
for the system bend which was primarily loaded in-plane. The second
bend in the system was primarily loaded out-of-plane and in this case,
although the stress magnitudes given by the analyses were similar, the
stress distribution curve of PB1 appeared to "lag" the thin shell element
analysis curve by approximately 15.

The computing costs of element PB1 are greater than those incurred in
flexibility analysis but not prohibitively so.

In conclusion, it may be said that finite element analysis of piping systems using
element PB1 gives stress results comparable with more complex and expensive

analyses at acceptable computing costs.

7.1 Recommendations for Future Work.
This thesis detailed a study on simple piping elbow elements for elastic analysis
of piping systems. From this study, a number of areas requiring further work can

be identified.

1)

The elements developed in this thesis have been shown to give stiffer
solutions than alternative analyses. It has been proposed that this is due,
at least in part, to the exact beam solution used in the element formulation.
A consequence of this high stiffness is that system reaction forces evaluated
by the element are high. Animproved simple element could be formulated
by superposing the ovalisation model of PB1 onan alternative beam model.
It would be of interest to examine other beam formulations in order to
determine the most suitable for use in an elbow element.
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2)

3)

The results of several sample analyses, in which results given by the elbow
elements presented in this thesis were compared with alternative solutions,
were presented in Chapter 6. However there is, in fact, a limited amount
of published work with which new elbow elements can be compared. This
is especially true for out-of-plane bending of elbows, which has been the
subject of much less research effort than the simpler case of in-plane
bending. It would therefore be useful to investigate bend behaviour using
complex thin shell finite element models of bends and piping systems. A
range of analyses could be performed and results used as bench-marks
against which elbow element performance could be gauged.

Neglecting end effects and ovalisation continuity in elbow element
formulations leads to conservative elements. Including these effects in an
elbow element could help to reduce structural redundancy in the piping
system but would increase the analysis computing requirements. However,
more powerful computers are now becoming available to piping analysts
at lower costs. It is therefore envisaged that within the next few years
computing restrictions on piping analysis will decrease significantly,
allowing the use of more complex analyses. In view of this it would be
appropriate to investigate more complex elbow element formulations in
order to assess the most suitable for general elastic analysis.
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MANUAL.

ANSYS is a powerful commercial finite element package, offering a wide range
of applications and powerful preprocessing and postprocessing features with
interactive graphics. The package incorporates a large number of structural finite
elements, as well as elements for thermodynamic, fluid mechanics and electostatic
applications. In addition to standard predefined elements, ANSYS incorporates
auser-defined element capability. ANSYSuser elements are defined by anumber
of FORTRAN subroutines, which when linked to the ANSYS program interact
with the preprocessing, solution and postprocessing routines as a standard ANSYS
element. (There are limitations to such interaction. Automatic mesh generation
is precluded, and there are some restrictions in defining curved lines on plots

etc.).

In this Appendix the ANSYS user element programming of linear elastic
structural elements is described in detail. There are no ANSYS publications
dealing with the User Element capability, although the ANSYS User’s Manual
Appendix U contains a brief summary of the user routines available [4.5]. The
capability is defined for the user in an example user element program for a three
dimensional spar element called USER.ROUTINES, supplied with mainframe
and workstation versions of ANSYS. It is intended that USER.ROUTINES
should be self-explanatory, however in practice this may not prove to be the case.
The object of this Appendix is to guide the reader through the code and comments
of the linear elastic user routines in order that the programming of elements
developed in the thesis, as given in subsequent Appendices, may be fully

understood.

Jverview of the User El Canabili

The format of the user element ST100 must be such that it is able to communicate
with the rest of ANSYS. The element must be programmed in FORTRAN 77,
and the required code format is demonstated in an ANSYS subroutine called

USER.ROUTINES.

USER.ROUTINES consists of a number of subroutines which fully define a 3-D
spar type element with non-linear capabilities. The code is heavily documented,
detailing how a user element must be programmed.



In this Appendix only small displacement structural analysis as required in the
body of the thesis is considered. To program such elements in ANSYS four
subroutines from USER.ROUTINES are required. These are:

i) USEREL, in which the parameters of the element are defined: eg
number of nodes, number of degrees of freedom per node, dimensions
of element matrices, types of loading etc.

ii) USERPT, in which the geometry of the element is defined for ANSYS
plotting routines.

iii) ST100, in which the element matrices and vectors are generated: eg
stiffness matrix, loading vector etc.

iv) SR 100, in which stresses, strains, forces etc. are evaluated from the
results of the stiffness analysis.

Figure Al.1 is a flowchart showing how these subroutines fit into the overall
ANSYS Finite Element Analysis procedure.

The first step in an analysis is model creation, or pre-processing, in the ANSYS
PREP7 module. In order to create a finite element model various element
parameters are required; for example, the number and configuration of nodes,
loading arrangements etc. In the case of the user element ST100 this information
is defined in the USEREL and USERPT subroutines.

The second step in the procedure is element formation, in which the user element
matrices and vectors are defined in the ST100 subroutine. This is often referred
to as the "stiffness pass" of the procedure. Individual element matrices are then
assembled to form the global stiffness equation, which is solved for the global
displacement vector, U. Once the stiffness solution is complete, the results are
processed in subroutine SR100, where element stress, strain, nodal forces etc. are
evaluated. This is referred to as the "stress pass” of the procedure.

The final stage in the analysis is post processing in the POST1 module, where the
results may be printed or plotted in a number of forms.



AL1L2 Structure of Appendix 1.

This section describes the structure of this Appendix. The content is based on
the ANSYS USER.ROUTINES code, which defines the required user element
format by means of a worked example: ANSYS element STIF8, a three
dimensional spar element. An edited version of USER.ROUTINES, in which
most of the comments have been deleted, is given in the next section. Subsequent
sections document the code in detail.

The first two USER.ROUTINE subroutines of interest are USEREL and
USERPT. These are simple routines and are described simply by discussing the
USER.ROUTINES code for the spar element.

Subroutines ST100 and SR 100 are complicated routines, and discussion is broken
into two sections. The first section examines the routines in general, whilst the
second considers the specific example given in USER.ROUTINES.

Several types of text formats have been used in order to differentiate between
text and source code, and between certain types of coding.

All explanatory and descriptive text is written in lower case except where
convention demands capitals: FORTRAN, ANSYS etc.

FORTRAN CODE IS WRITTEN IN SMALL, UPPER CASE TYPE.

FORTRAN CODE NOT OF INTEREST TO THE USER ELEMENT
PROGRAMMER (DESIGNATED "NOITEUP" IN USER.ROUTINES) IS
WRITTEN IN ITALIC UPPER CASE TYPE.

It is acknowledged that some of the descriptions of user element facilities given
in this manual is quoted verbatum from USER.ROUTINES.
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Al.2 USER.ROUTINES: Edited Source Code,

In this section an edited version of the ANSYS program USER.ROUTINES is
give. Only routines required for linear elastic structural analysis are included,
and the bulk of the program comments have been deleted.

c
c
c
c

s X g]

o0 oo a0

(e X x] a0 oo

oo (s X 2] oo (g N »]

o0 an

100

c
c

PROGRAM ANSYS

ANSYS VERSION 4.3A

IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL MAIN,STOPER

EXTERNAL ELSHFN

CALL NNDIM

CALL MAIN

CALL STOPER

END

SUBROUTINE USEREL (ITYP, IPARM,KYSUB,KEY3D,KDOF ,KUNSYM, KTRANS)

wkwkddd® DEFINE PARAMETERS FOR ANSYS USER ELEMENT *wh#swdatdw

INTEGER IPARM(20,12),KYSUB(9),I1TYP,JTYPE,KEY3D,KDOF ,KUNSYM, KTRANS

#kita® DETERMINE TYPE OF ELEMENT AND THEN BYPASS IF NOT USER ELEMENT www*w
JTYPE = IPARM(ITYP,3) M
IF (JTYPE .NE. 100) GO TO 100
AREEAEEREY SET 3-D KEY ”**'****‘;’
KEY3D = 1t
whwnwktwkd  DEFINE DOF SET AT EACH NODE  **¥wkwddw
KDOF = 14
dkkAAArAt®  SET UNSYMMETRIC MATRIX KEY ¥dkadwkas
KUNSYM = 0

wkdd®  DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION **+
KTRANS = 3

*xnaknxat®  DEFINE NUMBER OF NODES W¥*wwkwaws
IPARM(ITYP,8) = 2

wwdd® DEFINE NUMBER OF TEMPERATURES (DELTEM,TEMPER) %¥#wa%
IPARM(ITYP,11) = 2

*kw%® DEFINE NUMBER OF PRESSURES (PRESS) *#¥tdas
IPARMCITYP,6) = 3

##ka® SET Z2EROED VARIABLES (NOITUEP)
IPARMCITYP,12) = O

wada® DEFINE NUMBER OF REAL CONSTANTS FOR ELEMENT (RVR) *¥#wwias
IPARMCITYP,10) = 2

**%*® DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR) *¥i#»
IPARMCITYP,7) = 11

#4%%® DEFINE NUMBER OF ROWS IN ELEMENT MATRICES (KTIK) ##wak
IPARM(ITYP,9) = 6 :

wkadkkad®  SET KEY TO IDENTIFY NON-LINEAR ELEMENT *¥#*radiraw
IPARMCITYP,4) = O

sawntaatw®  SET KEY FOR THERMAL ELEMENT (KAN,-1) W*easdavans

IPARM(ITYP,1) = 0
RETURN
END

SUBROUTINE USERPT (INODE,JTYPE,KSHAPE,NNODE)

C *wwwddwas®  SER SUBROUTINE FOR ANSYS PLOT SHAPE **wwikwwaw
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c DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING
INTEGER INODE(20),JTYPE,KSHAPE , NNODE

¢ wwwwwrexagYPASS [F NOT USER ELEMENT (JTYPE = 100) *#wwstwsx
IF CJTYPE .NE. 100) GO TO 100

¢ #waa** SELECT SHAPE TO BE PLOTTED BY SETTING KSHAPE wwwwax
KSHAPE = 2

c #ewwartean  SET NUMBER OF ACTUAL NODES *Hiawwiww
NNODE = 2

100 RETURN

END

c

c

SUBROUTINE ST100 (IELNUM,ITYP KELIN,KELOUT,NR,KTIK,ZS,ZASS,DAMP,
1 GSTIF,Z2SC)

C *#esxxs STIFFNESS PASS FOR 3-D SPAR DEMO ELEMENT **adawiw

c

0o 0 o O

o

EXTERNAL TRACK,GETELD,PUTELD,PROPEV, NONTBL ,VZERO,MHTCH,USEERR
INTEGER 1,4,K,13,43,NSTR,NUM,KDEMO, NFKEY

INTEGER IELNUM, ITYP,KELIN(&) ,KELOUT(6) ,NR KTIK,
1 KEYERR, 1OUT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT,KRSTRT, ISPARE,
2 K13, NPRPVL ,MATST ,K5,K16, IPROP,KCPDS,
3 K20, KAY,MODE, ISYM,KAHD, IDEBUG, IXXX,
4 1TYPE,MAT, IELEM,NROW,JTYPE, IPLOT, IPRINT ,KTEMTP ,KCONCV,KBICNV,
5 KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50)
REAL ERRVAR(5)
DOUBLE PRECISION
1 DPZERO, DPHALF , DPONE , DPTWO, DPTEN, DTORAD, RADTOD,
2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD, TIME2, TIME3,DELT2,
3 ACEL,OMEGA, CGOMEG ,CGLOC, DXXX,
4 ELMASS,XCENTR,YCENTR,ZCENTR,TFCP,SUBEX, ERPAR(20),
S XYZEQ(20,3),X(20),Y(20),2(20), ELVOL
COMMON /STCOM/ DPZERO,DPHALF,DPONE ,DPTWO, DPTEN, DTORAD,RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD, TIME2, TIME3,DELT2,
2 ACEL(3),OMEGA(6),CGOMEG(6),CGLOC(3), DXXX(16),
3 KEYERR, IOUT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT ,KRSTRT, ISPARE,
4 K13,NPRPVL,MATST,K5,K16, IPROP(20) ,KCPDS,
5 K20, KAY(10),MODE, ISYM, KAHD, IDEBUG( 10), IXXX(41)
EQUIVALENCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(S)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11)), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,EPAR(16)),
& (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
S (KEYSWL,EPAR(20)), (KYSUB(1),EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))
EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (ZCENTR,ERPAR(4)), (TFCP,ERPAR(S)),
2 (SUBEX,ERPAR(6))
EQUIVALENCE (X(1),XYZEQC1,1)),(Y(1),XYZEQ(1,2)),(Z(1),XYZEQ(1,3))

DOUBLE PRECISION
1 2S(KTIK,KTIK),6ZASS(KTIK,KTIK),DAMP(KTIK,KTIK),GSTIF(KTIK,KTIK),

2 ZSC(KTIK),

3 AREA,EPORG,
%4 PROP(3),ALEN2,ALENG,DX,DY,DZ, AVETEM, FORCE,, EPEL,
5 EX,ALPX,DENS,
6 DPSIX

DOUBLE PRECISION

1 DELTEH(Z),TEHPER(Z),PRESS(3),

2 RVR(2),5VR(11),
3 TR(3,3),DFORL(6),CON,ALENNT, SALP1,CALP1,SALP2,CALP2,

4 WJTO6,EPTHT, TABLE(48),U(240)

EQUIVALENCE (RVR(1),AREA), (RVR(2),EPORG)

EQUIVALENCE (SVR(1),PROP(1)), (SVR(4),ALEN2),

1 (SVR(5),ALENG), (SVR(6),DX), (SVR(7),DY), (SWR(8),02),
2 (SVR(9),AVETEM), (SVR(10),FORCE), (SVR(11),EPEL)

EQUIVALENCE (KDEMO,KYSUB(2))
EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),DENS)
DATA OPSIX /6.000/

CALL TRACK(5,'ST100 ')
CALL GETELD CIELNUM,ITYP,EPAR(1),ERPARC1),DELTEM(1), TEMPER(1),
1 PRESS(1),CON,RVR(1),SVR(1),XYZEQ(1,1),U(1))

saadx [NITIALIZE VARIABLES FIRST TIME THRU IF NEEDED **+*
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100

IF (KFSTLD .EQ. 0) GO TO 100
FORCE = DPZERO
EPEL = DPZERO

CONTINUE
AVETEM = DPHALF*(TEMPER(1) + TEMPER(2))

CALL PROPEV (I1ELEM,MAT,JTYPE, 1,AVETEM,EX ,1) PROPEV
CALL PROPEV (I1ELEM,MAT,JTYPE, 2,AVETEM,ALPX,1) PROPEV
CALL PROPEV (I1ELEM,MAT,JTYPE,10,AVETEM,DENS,1) PROPEV

c .
¢ *%*%*x DEMONSTRATE ACCESS DATA FROM NON-LINEAR TABLE (NL COMMANDS) ¥*¥#*

o

120

2000

IF (K13 .EQ. 0) GO TO 120

NSTR = 1

NUM = 48

CALL NONTBL (MAT,TABLE(1),NSTR,NUM)

CONTINUE NONTBL
bl 2212222 VERIFY GEWETRY hRRRRRAEd

DX = X(2) - X(1)

DY = Y(2) - Y(1)

DZ = 2(2) - (M

CON = DX**2 + DY**2

ALEN2 = CON + DZ**2

IF CALEN2 .GT. DPZERO) GO TO 150

WRITE (IOUT,2000) IELEM WRITE
FORMAT(/' *** ERROR ***'/ ' ZERO LENGTH ELEMENT ',I5)

KEYERR = 1

c
C*%%#* THIS SUBROUTINE CALL IS USED TO PASS KEYERR TO COM2 FOR NORMAL ABORTS

c

150

200
250

oonoon (2]

o0 O

(s N x]

NFKEY = 1

CALL USEERR (NFKEY)

60 TO 990 USEERR
ALENG = DSQRT(ALEN2)

ALENN1 = DSQRT(CON) gggg¥

SrkaAREraaAAREE CALCULATE MASS AND CENTROID ***wwwws

XCENTR = (X(1) + X(2))*DPHALF
YCENTR = (Y(1) + Y(2))*DPHALF
2CENTR = (2(1) + 2(2))*DPHALF
ELMASS = DENS*AREA*ALENG*(DPONE - EPORG)

swwawsewwr RETURN IF ERROR(S) OR CHECK RUN *#wwiawwws

IF ((NSTEPS .EQ. 0) .OR. (KEYERR.EQ.1)) GO TO 990
*hhakdnrk® FORM TR MATRIX *htsdwidss

THE TR MATRIX IS THE LOCAL TO GLOBAL CONVERSION MATRIX
IF (ALENN1 .GT. .D001*ALENG) GO TO 200
SALP1 = DPZERO
CALP1 = DPONE

Go TO 250

SALP1 = DY/ALENN1
CALP1 = DX/ALENN1
SALP2 = DZ/ALENG

CALP2 = ALENN1/ALENG
TR(1,1) = CALP1*CALP2
TR(2,1) = -SALP1
TR(3,1) = -CALP1*SALP2
TR(1,2) = SALP1*CALP2
TR(2,2) = CALP1
TR(3,2) = - SALP1*SALP2
TR(1,3) = SALP2
TR(2,3) = DPZERO
TR(3,3) = CALP2

#wiwkwe STIFFNESS MATRIX *eawwtww
IF (KELINC1) .NE. 1) GO TO 400

SET UP STIFFNESS MATRIX AT END 1 IN ELEMENT COORDINATES
CALL VZERO (2S(1,1),36) VZERO

25¢1,1) = EX*AREA/ALENG
CONVERT 3 BY 3 MATRIX FROM ELEMENT TO GLOBAL CARTESIAN COORDINATES.

CALL MHTCH (TR(1,1),28(1,1), 3,KTIK, 3). MHTCH

FILL OUT THE COMPLETE 6 X 6 MATRIX FROM THE COMPUTED 3X3
po3001=1,3 MATRIX



300

400

450

500

(s Xz NN eKy]

600

700

800

o0

900
990

o0 an

Zs(13,4) = -28(1,d)

2s(1,J43) = -28(1,d)

Z8(13,43) = Z8(1,Jd)

CONTINUE
SET KEY THAT MATRIX WAS INDEED COMPUTED.
KELOUT(1) =

ERERRNRER MASS MATRIX *raww
IF (KELIN(2) .NE. 1) GO TO 600
IF (DENS .EQ. DPZERO) GO TO 600
WT06 = DENS*ALENG*(DPONE - EPORG)*AREA/DPSIX
CON = DPTWO * WTO6

CALL VZERC (ZAsS(1,1),36)
DO 450 1 =1, 6 VZERO
ZASS(1,1) = CON
pos500t1 =1,3
I3=1+ 3
ZASS(1,13) = WT06
ZASS(13,1) = WT06
KELOUT(2) = 1

whawhk DAMPING MATRIX NORMALLY PUT IN HERE, BUT NOT INCLUDED IN
THIS EXAMPLE ##*¥¥*%

wharkaxk STRESS STIFFNESS MATRIX *#¥wwww
IF (KELIN(4) .NE. 1) GO TO 800
IF (KFSTLD .EQ. 1) FORCE = AREA*EX*EPORG
IF (FORCE .EQ. DPZERG) GO TO 800
CALL VZERO (GSTIF(1,1),36) : VZERO
GSTIF(2,2) = FORCE/ALENG
GSTIF(3,3) = GSTIF(2,2)

CALL MHTCH (TR(1,1), GSTIF(1 1, 3,KTIK, 3)
po7001 =1, 3 MHTCH
1I3=1+ 3
DO 700 J =1, 3
J3=J+3
GSTIF(13,J) -GSTIF(CI, )

GSTIF(I,J3) = -GSTIF(I,d)
GSTIF(13,43) = GSTIF(I,d)
KELOUT(4) =

xkkkhEk® | OAD VECTOR wdehkdhd

IF (KELINC(5) .NE. 1) GO TO 990
CALL VZERO (DFORL(1),6) VZERO
FIRST COMPUTE LOAD VECTOR DUE TO THERMAL AND PRESTRAIN EFFECTS
IN ELEMENT COORDINATES.
EPTHT = ALPX*(AVETEM - TREF) - EPORG
TREF = REFERENCE TEMPERATURE (INPUT QUANTITY VALUE, TREF COMMAND)
DFORL(1) = -AREA*EX*EPTHT
DFORL(4) = -DFORL(1)
NEXT, COMPUTE LOAD VECTOR DUE TO LATERAL PRESSURES IN ELEMENT
COORDINATES.
CON = PRESS(1)*ALENG*DPHALF
DFORL(2) = - CON
DFORL(S) = DFORL(2)
CON = PRESS(2)*ALENG*DPHALF
DFORL(3) = -CON
DFORL(6) = DFORL(3)
FINALLY, CONVERT TO GLOBAL CARTESIAN COORDINATES, PUTTING
RESULT IN THE ZSC VECTOR.
CALL VZERO (2SC(1),6) VZERO
D0 900 I = 1,4,3

DO 900 J 1,3

J3 = 1 -1
) 900 x = 1.3
1I3=K+1 -
ZSC(JS) ZSC(J3) + TR(K,J)*DFORL(I3)
KELOUT(S) = 1
CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1)) PUTELD
PUTELD RESTORES DATA BACK TO FILE2
CALL TRACK( 15,'ST100 ') TRACK
RETURN

END

SUBROUTINE SR100 (IELNUM,ITYP, KELOUT, ELVOL,KTIK,ZS,2ASS,ZSC)

wwxaswnsw  STRESS PASS FOR 3-D SPAR DEMO ELEMENT o

EXTERNAL TRACK,GETELD,PUTELD, SRPLT EXTER
INTEGER KDEMO, IPLTAY(6),1 NAL
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INTEGER IELNUM,ITYP,KELIN(6) ,KELOUT(6) NR KTIK,
1 KEYERR, |OUT ,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT KRSTRT, ISPARE,
2 K13,NPRPVL,MATST,K5,K16, IPROP,KCPDS,
3 K20,KAY,MODE, ISYM,KAHD, IDEBUG, I XXX,
4 ITYPE,MAT,1ELEM,NROW, JTYPE, IPLOT, IPRINT ,KTEMTP,KCONCV,KBICNV,
5 KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50)
REAL ERRVAR(S)
DOUBLE PRECISION
1 DPZERO,DPHALF ,DPONE , DPTWO,DPTEN, DTORAD, RADTOD,
2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2, TIME3,DELT2,
3 ACEL,OMEGA,CGOMEG,CGLOC,DXXX,
4 ELMASS,XCENTR,YCENTR,2CENTR,TFCP,SUBEX, ERPAR(20),
5 XYZEQ(20,3),X(20),Y(20),2(20), ELVOL
COMMON /STCOM/ DPZERO,DPHALF ,DPONE,DPTWO, DPTEN, DTORAD,RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2, TIME3,DELT2,
2 ACEL(3),0OMEGA(6),CGOMEG(6),CGLOC(3), DXXX(16),
3 KEYERR, 1OUT,NSTEPS,KFSTLD, [ TTER, ITIME,NCUMIT,KRSTRT, ISPARE,
4 K13,NPRPVL,MATST,K5,K16, IPROP(20),KCPDS,
5 K20,KAY(10),MODE, ISYM, KAHD, IDEBUG(10), IXXX(41)
EQUIVALENCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(5)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11}), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,EPAR(16)),
4 (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
5 (KEYSWL,EPAR(20)), (KYSUB(1),EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))
EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (ZCENTR,ERPAR(4)), (TFCP,ERPAR(S)),
2 (SUBEX,ERPAR(6))
EQUIVALENCE (X(1),XYZEQ(1,1)),(Y(1),XYZEQ(1,2)),(2(1),XYZEQ(1,3))

DOUBLE PRECISION
1 ZSCKTIK,KTIK),ZASS(KTIK,KTIK),ZSC(KTIK),
2 AREA,EPCRG,
3 PROP(3),ALEN2,ALENG,DX,DY,DZ, AVETEM,FORCE,EPEL,
4 EX,ALPX,DENS

DOUBLE PRECISION
1 DELTEM(2), TEMPER(2),PRESS(3),

2 RVR(2),SVR(11),
3 EPTOT,EPTH, SIG,U(24),POSTD(19),CON

EQUIVALENCE (RVR(1),AREA), (RVR(2),EPORG)

EQUIVALENCE (SVR(1),PROP(1)), (SVR(4),ALEN2),

1 (SVR(5),ALENG), (SVR(6),DX), (SVR(7),DY), (SVR(8),02),
2 (SVR(9),AVETEM), (SVR(10),FORCE), (SVR(11),EPEL)

EQUIVALENCE (KDEMO,KYSUB(2))
EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),DENS)

CALL TRACK (5,'SR100 ")
CALL GETELD (IELNUM,ITYP,EPAR(1),ERPAR(1),DELTEM(1), TEMPER(1),
1 PRESS(1),CON,RVR(1),SVR(1),XYZEQ(1,1),U(1))
c *xnadk®  CALCULATE STRAINS *irkiwiaw
EPTOT = (DX*(U(4)-UC1)) + DY*(U(5)-U(2)) + DZ*(U(6)-U(3)))/ALEN2
EPEL = EPTOT
EPTH =DPZERO
c seawetew  CHECK FOR LOAD VECTOR #wwiws
IF (KELOUT(5) .EQ. 0) GO TO 100
EPTH = ALPX*(AVETEM - TREF)
EPEL = EPTOT - EPTH + EPORG

o0

ThAAR STRESSES  **¥w%+
100 SIG = EX*EPEL
FORCE = SIG*AREA

swwaws  URITE OUT RESULTS #whww
IF CIPRINT .NE. 1) GO TO 200
WRITE (10UT,2000) IELEM, (NODES(I),I=1,2) ,MAT,(TEMPER(I),1=1,2),
1 EPEL,EPTH,SIG, FORCE
2000 FORMAT(/4H EL=,15, 7H NODES=,215,1X,4HMAT=,12,7H TEMPS=,2F7.1,
1 4N EP=,F9.6,6H EPTH=,F9.6,5H S1G=,G12.5,5H FOR=,G612.5,

2 14H 3-D DEMO 100 )

o0

#xkek® URITE POSTDATA FILE *¥¥viww

200 IF CIPLOT .NE. 1) GO TO 900
#%%*® NUMBER OF FORCES (LEVEL 1) whwis

IPLTAY(2) = 2
#waw®  NUMBER OF STRESSES (LEVEL 2) ¥wwaw

IPLTAY(3) = 1 .
c *#wd%  NUMBER OF TOTAL SAVED (LEVELS 1, 2, AND 3) wrwws

0o o oo
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*Upp*

*UPD*

TRACK
GETELD

WRITE



o0

o

o

400

900

IPLTAY(4) =5 :
*kkd*  SAVE GEOMETRY FOR CONTOURS (O,NO 1,YES) *dwaw

IPLTAY(6) = O
*kkdd® pYT POSTDATA INFORMATION INTO POSTD *wdkawn

POSTD(1) = -FORCE
POSTD(2) = FORCE
POSTD(3) = SIG

POSTD(4) = TEMPER(1)
POSTD(5) = TEMPER(2)

IF (K21 .LE. 4) GO TO 400
IPLTAY(4) = 7

POSTD(6) = EPEL

POSTD(7) = EPTH

CONTINUE

*kdk%® PUT PLTARY INFORMATION ONTO FILE 12 *¥w#xax

CALL SRPLT (IELEM,ITYP,NROW,MAT,100,2,U(1),NODES(1),XYZEQ(1,1), SRPLT
1 IPLTAY(1),POSTD(1))
*%&%%% COMPUTE VOLUME FOR OPTIMIZATION STUDIES ¥*ww

ELVOL = ALENG*(DPONE - EPORG)*AREA

CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1)) PUTELD
PUTELD RESTORES DATA BACK TO FILE3

CALL TRACK( 15,'SR100 ') TRACK
RETURN

END



AL.3 Subroutine USEREL.

This subroutine defines the parameters of the STIF100 user element. These
include number of nodes, number of real constants, number of possible pressure

loads etc.

Programming this routine is simple, as all that is required is to assign appropriate
values to a number of "keys".

Al.3.1 Calling Arguments.
SUBROUTINE USEREL(ITYP, IPARM,KYSUB,KEY3D,KDOF,KUNSYM,KTRANS)

The calling arguments of the subroutine are ITYP,JPARM(20,12), KYSUB(9),
JTYPE, KEY3D, KDOF, KUNSYM and KTRANS.

ITYP is the element type number assighed to a particular type of element by the
user when modelling in PREP7. ITYP is defined in PREP7 by the ET command:
ET,ITYPE(=1 to 20).

IPARM is a 2-d array containing input/output information about all the elements
in the model. Each ITYP has a row of integers in the array representing the
number of nodes, real constants etc. for that ITYP.

KYSUB is a 1-D array containing a list of element option settings KEYOPT(n).
Element options are declared in the PREP7 ET and KEYOPT commands.

KEY3D is a key specifying whether the element has 2-D OR 3-D geometry.
KDOF specifies the degrees of freedom selected at each node.
KUNSY M specifies whether the element matrices are symmetric or unsymmetric.

KTRANS specifies the type of element transformation required when converting
from element to global coordinates.

These variables are declared in the following INTEGER statement:

INTEGER IPARM(20,12),KYSUB(9),ITYP,JTYPE,KEY3D,KDOF ,KUNSYM, KTRANS
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\1.3.2 Subrouti Il verificati

The first step in the program is to verify that STIF100 is being called in the FE
model. If this is not the case the rest of the routine is bypassed.

JTYPE = IPARM(CITYP,3)
IF (JTYPE .NE. 100) GO TO 100

This procedure is repeated at the start of all the other user routines.

AL3.3 IMPCOM.CDK.

The line

INCLUDE IMPCOM.CDK

is not required for machines other than the microVAX, and should be deleted in
this and the other subroutines.

Al.3.4 Set parameters for STIF100 to STIF8 (3-D spar).

In this example the element is programmed as a STIF8 3-D spar element. It has
two nodes, with three translational degrees of freedom at each node. For further
information see ANSYS user and theory manuals.

Set the 3-D key.

If the element geometry is defined in 2-D, KEY3D = 0
If the element geometry is defined in 3-D, KEY3D = 1

KEY3D = 1
Define the degrees of freedom at each node,

KDOF=0-UX,UY,UZ,ROTX,ROTY ,ROTZ

1-UX 7-PRES 13-UZ,ROTX,ROTY

2-UY 8-TEMP 14-UX,UY,UZ

3-UZ 9-VOLT 15-PRES, TEMP

4-ROTX 10-MAG 16-ROTX,ROTY,ROTZ

5-ROTY 11-UX,UY 17-UX,UZ

6-ROTZ 12-UX,UY,ROTZ 19-TEMP,VOLT,MAG
20-UX,UY,PRES

21-UX,UY,UZ, TEMP,VOLT,MAG

A-11



KDOF = 14
Set the unsymmetric matrix key.

KUNSYM = 0 presumes symmetric matrices
KUNSYM = 1 presumes unsymmetric matrices

If the user element matrices are unsymmetric for, KEYOPT(8) must also be set
to 1. It has been reserved for this purpose.

KUNSYM = 0
Define the pattern for element to global transformation,
All elements must be generated in the global cartesian system. However, the
user may be using a nodal system which is different from the global cartesian

system (eg NROTATE command). KTRANS permits the program to properly
rotate the degrees of freedom.

0-NO NODE ROTATION

1-UX,UY

2-UX,UY,UZ,ROTX,ROTY,ROTZ

3-UX,UY,UZ

4-UZ,ROTX,ROTY

5-UX,UY,UZ,ROTZ

7-UX,UY,UZ.-.-,-(3 DOF NOT TRANSFORMED)

KTRANS = 3
Define the number of nodes,
IPARM(ITYP,8) = 2

Define the number of temperatures (DELTEM, TEMPER),

Fluences may be included with the temperatures.
Use maximum of either element temperatures or nodal temperatures

IPARMCITYP,11) = 2
Define the number of pressures (PRESS),
If thermal analysis, two times number of convection surface.

IPARM(ITYP,6) = 3
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Set zeroed variables (not applicable).

IPARM(ITYP,12) = 0

Define the number of real constants for the element (RVR),

The element real variables are defined in the PREP7 R command. In the case
of STIF8 element there are two real variables: R, AREA ,EPORG - area and initial

strain respectively.

IPARM(ITYP,10) = 2

Define the number of variables to be saved (SVR),

"Saved variables" are those which will be passed out of ST100 for post processing
in the stiffness pass or for results output data.

IPARM(ITYP,7) = 11

Define the number of rows in the element matrices (KTIK),

This value is determined by multiplying the number of nodes by the number of
degrees of freedom per nodes (=NUMROW(ITYP)).

IPARM(CITYP,9) = 6
Set key to identify non-linear ¢lement,

This is used to identify inherently nonlinear elements, such as the gap or radiation
link. For such elements the matrices will be reformed every iteration, regardless

of other information.
0-LINEAR ELEMENT 1-NONLINEAR ELEMENT

IPARM(ITYP,4) = O
Set key for thermal element (KAN.-1),

IPARMCITYP,1) = 0 Element may only be used in a stress analysis.
IPARMCITYP,1) = 1 Element may only be used in a thermal analysis.

Thermal analysis is defined as KAN,-1 or thermal substructure analyses. Stress
analyses are defined as all other analyses.

IPARMCITYP, 1)=0

100 RETURN
END
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Al.4 Subroutine USERPT.

This subroutine defines the geometry and configuration of the element for the
ANSYS preprocessing and postprocessing routines. It is a short subroutine, and
as with USEREL simply requires values to be set for integer variables.

\1.4.1 Subrouti Il verificati

As in the USEREL routine, the first step is to check that the user element was
called:

<delete from program>
INTEGER INODE(20),JTYPE,KSHAPE ,NNODE
IF (JTYPE .NE. 100) GO TO 100

The shape of the element for plotted is selected by setting the key KSHAPE,
which can have the following values.

KSHAPE = 0 -NOPLOT

KSHAPE = 2 - 2NODE LINE

KSHAPE = 3 - 3 NODE TRIANGLE
KSHAPE = 4 - 4 NODE QUADRILATERAL
KSHAPE = 5 - 8§ NODE 3-D

KSHAPE = 6 - 8§ NODE
KSHAPE = 7 -20NODE 3-D
KSHAPE = 10 - 16 NODE 3-D
KSH -PE = 11 - 4 NODE
KSHAPE = 12 - 10 NODE
KSHAPE = 13 - 6 NODE

KSHAPE = 2

Set the number of nodes.

NNODE = 2

100 CONTINUE
END
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\L.S Subroutine ST100: An Overvi

This routine generates the element matrices: stiffness, mass, damping,stress
stiffening and force. There are three main steps carried out in ST100:

1) Read in the required data from ANSYS.

2) Process the data to form the element matrices and other required
information

3) Output the evaluated information.

Al.5.1 Data transfer to ST100.

Data is transferred into ST100 by:

SUBROUTINE CALL
COMMON / STCOM /
CALL GETELD
CALL PROPEV

CALL NONTBL

wm S W N =

The calling arguments of the ST100 subroutine accesses the element number,
type of matrices required and matrice sizes.

The common block STCOM allows access to a great deal of information relevant
to not only the element being generated but also the rest of the model. The
information transferred includes analysis control integers, (such as analysis type,
number of iterations etc), real constants and variables,(eg commonly used
numbers in Double Precision, element co-ordinates, accelerations etc).

GETELD accesses element data from the ANSYS element data file FILE3.
PROPEY reads in the element material properties for linear elastic analysis.

NONTBL reads in non-linear material properties from the non linear property
table. Non linear analysis is not covered in this manual.
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Al i ion

ST100 generates the following element matrices:

THE STIFFNESS MATRIX =ZS
THE MASS MATRIX = ZASS
THE DAMPING MATRIX = DAMP
THE STRESS STIFFENING MATRIX = GSTIF
THE FORCE VECTOR = ZSC

ZS,ZASS,DAMP and GSTIF are all square matrices. If they are not required
for the User Element then they may be omitted. However, if they are required
then they must be completely defined, whether they are symmetric or not.

Most of the calculations carried out in ST100 are in double precision. This is
declared by an IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (A-H,0-2)

In ANSYS all explicit real numbers are defined as FORTRAN variables in a few
concise locations. STCOM has several such constants, as described in section
4.6.1. (Such definition facilitates conversion between machines and is not usually
of interest to the user element programmer).

All matrices must be defined in the global co-ordinate system. Therefore, if they
are generated in a local element system, they must be operated on by an
appropriate transformation matrix:

[MATRIX]global = [TRANSJ[MATRIX]local [TRANS]

In ST100 the local to global coordinate transformation matrix is named TR.

Al.5.3 Transferring data out of ST100,
Data is transferred out of ST100 by:

1 SUBROUTINE CALL
(KELOUT,ZS,ZASS, DAMP,GSTIF,ZSC).
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2 CALL PUTELD
(ERPAR,ELMASS, XCENTR,YCENTR,ZCENTR,SVR).

3 Printed error messages.
The subroutine call transfers all the matrices generated in ST100.

PUTELD outputs the element mass, centroid and other (saved) variables of
interest.

Error messages such as "zero length element" are written directly to the output

device.

Al.5.4 EXTERNAL subroutines.

The previous sections described the subroutines GETELD, PUTELD, PROPEYV,
and NONTBL. However, there are many other subroutines which can be
referenced by ST100. Most of these are standard ANSYS vector and matrix
handling routines which, for example, can zero, add, multiply and transpose
vectors and matrices. ANSYS routines used in the user elements developed in

this thesis are given below. The descriptions are brief as SASI do not release any
detailed information on the algorithms used in the routines.

Subroutine VZERO
CALL VZERO (V,N) {V} = 0.0D0

Sets a vector or a full matrix to zero.

{V()} =0.0D0 ; J=1N
or
[VM(LJ)] = 0.0D0 ; I=1,p,J=1q

Where p and q are the dimensions of matrix VM. Alsop*q =N

Subroutine MAXV

CALL MAXV (A,V1L,V2,N1,N2)
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(V2} = [A]x {V1}
N NIxN2 N2

N1, N2 are the ranges within the vectors {V2} and {V1}, and matrix [A]
must be dimensioned N1 x N2,

Multiplies matrix [A] with {V1} to get {V2}.

Subroutine MATXV
CALL MATXYV (A,V1,V2N1,N2)

(v2} = (AT x {V1}
N N1xN2 N2

N1, N2 are the ranges within the vectors {V2} and {V1}, and matrix [A]
must be dimensioned N1 x N2.

Multiplies matrix [A]T with {V1} to get {V2}.

Subroutine MAXB
CALL MAXB (A,B,C,NANB,NC,N1,N2,N3)

[C]= [A] x [B]
N1xN2 NIxN3  N3xN2

NA, NB, NC are the row dimensions of matrices [A], [B] and [C].
N1, N2, N3 are the dimensions to be operated on.

Multiplies matrix [A] and [B] to get [C].

Subroutine MATXB
CALL MATXB (A,B,C,NA,NB,NC,N1,N2,N3)

[C1= [A]T x [B]
N1xN2 N1xN3 N3xN2

NA, NB, NC are the row dimensions of matrices [A}, [B] and [C].
N1, N2, N3 are the dimensions to be operated on.
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Multiplies matrix [A]T and [B] to get [C].

Subroutine MHTCH
CALL MHTCH (H,C,NH,NC,N)

[C] = HITx[C]x[H]
NxN NxN NxN NxN

[C] and [H] are square matrices of dimensions NxN.

Premultiplies matrix [C] with [H]T, postmultiplies by [H] to get new [C].

ST100 is called by:
SUBROUTINE ST100 (IELNUM,ITYP,KELIN,KELOUT,NR,KTIK,2ZS,6ZASS,DAMP,GSTIF,2SC)

where:

IELNUM = Element number being processed

ITYP = ITYP, see section 2.

KELIN = Vector of keys if matrices are to be computed
= (0 do not compute
= 1 compute

KELIN has been defined before ST100 is called. ST100 should not change the
settings.

KELOUT = Vector of keys if matrices have been computed
= 0 has not been computed
= 1 has been computed

KELOUT has been initialized to zero before ST100 is called.

KELIN(n) and KELOUT(n) refer to the following matrices:
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ZS
ZASS
DAMP
GSTIF
ZSC

52 8 B B 3
I
N & W N =

There is in fact another n, n = 6, however that is not relevant to user element
programming.

NR = Final matrix size (number of non-zero rows).
In general, NR is less than or equal to KTIK.

KTIK = Dimensioned matrix size (max = 60)
= JPARM(ITYP,9), NUMROW(ITYP) (see USEREL)

ALS5.6 The ST100 COMMON block: STCOM.

The ST100 COMMON block is called STCOM. The variables defined in this
block are essential for the routine to run, but need not trouble the user element
programmer as they do not require modification.

In USER.ROUTINES the line INCLUDE 'STCOM.CDK’ concerns use on a
microVAX and should be deleted.

The C (comment) at the beginning of each line of STCOM must also be deleted
before compiling USER.ROUTINES.

The following variables are declared in STCOM:

INTEGER

[ELNUM, ITYP, KELIN(6), KELOUT(6), NR, KTIK, KEYERR, IOUT,
NSTEPS, KFSTLD, ITTER, ITIME, NCUMIT, KRSTRT, KNLRST, K13,
NPRPVL, MATST, K5, K16, IPROP, KCPDS, K20, KAY, MODE, ISYM,
KAHD, IDEBUG, IXXX, ITYPE, MAT, IELEM, NROW, JTYPE, IPLOT,
[PRINT, KTEMTP, KCONCV, KBICNV, KS KEYPLS, KEYCRP, KEYSWL,
KYSUB(9), K21, NODES(20), EPAR(50).

REAL

ERRVARG(S).
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DOUBLE PRECISION

DPZERO, DPHALF, DPONE, DPTWO, DPTEN, DTORAD, RADTOD,
TREF, TUNIF, TOFSET, DELTIM, TIME, TIMOLD, TIME2, TIME3, DELT?,
ACEL, OMEGA, CGOMEG, CGLOC, DXXX, ELMASS, XCENTR,
YCENTR, ZCENTR, TFCP, SUBEX, ERPAR(20), XYZEQ(20,3), X(20),
Y(20), Z(20), ELVOL.

The variables declared in STCOM fall into two categories: those which pertain
to the whole ANSYS program, and those which occur in this subroutine only.
They are described in the following sub-sections.

Real Numbers for the entire model.

These numbers concern the entire model and not just the ST100 element. These
numbers may not all be needed for the particular element being programmed,
but they are available if required. (For example, in STIF8 DPTEN, DTORAD
are not used). With the exception of ERRVAR, they are all defined in double

precision.

ERRVAR = ARRAY FOR PASSING LABELS TO ERROR SUBROUTINE

DPZERO
DPHALF
DPONE
DPTWO
DPTEN
DTORAD
RADTOD

TREF

TUNIF

TOFSET

DELTIM

(NOITUEP)

= 0.0D0
= 0.5D0
= 1.0D0
= 2.0D0
= 10.D0
= 3.1415926535/180.
= 180./3.1415926535

the model

COMMAND)

reference

temperature (VALUE, TREF

= the model uniform temperature (TEMP, TUNIF COMMAND)

the model

COMMAND)

offset

temperature (VALUE, TOFSET

= the time increment ( = TIME - TIMOLD)
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TIME
TIMOLD
TIME2
TIME3

DELT2

ACEL

OMEGA

CGOMEG

CGLOC

DXXX

= the time at the present iteration

= the time at the previous iteration

= the time at the iteration before TIMOLD
=the time at iteration before TIME2

= the time increment to the next iteration for time step
optimization during KAN,4 analysis with plasticity and time step
extrapolation.

= an array of three accelerations (ACEL COMMAND)

= an array of six values, the first three being the angular velocities
about the origin, (OMEGA COMMAND) and the second second
three the angular accelerations about the origin (DOMEGA
COMMAND).

= an array of six values, the first three being the angular velocities
about CGLOC, (CGOMEG COMMAND) and the second three
are the angular accelerations about CGLOC (DCGOMG
COMMAND).

= an array of X, Y, and Z locations of the second axis of spin
(CGLOC COMMAND)

= spares (NOITUEP)

Integer numbers used for the entire model.

As above, these integers concern the entire model, not just ST100.

KEYERR

IOUT

'NSTEPS

= error indication key.
= ( all is reasonably okay, so keep going
= 1 terminate as quickly as possible, because of serious error

= output file number

= ( if check run
> 0 if execution run
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KFSTLD

ITTER
ITIME
NCUMIT
KRSTRT
KNLRST
K13

NPRPVL

MATST

K16

IPROP

KCPDS

K20

MODE

ISYM

= ( if after first cumulative iteration
= 1 if at first cumulative iteration

= the Iteration number in the current load step

= the load step number

= the cumulative iteration number

= the key for KRSTRT command (options module)
= the nonlinear restart key (NOITUEP)

= the key for the KNL command

= twice the largest number of temperature points of material property
tables ‘

= the start of the material property tables

= the maximum number of linear material properties
per material

= the maximum size of the nonlinear material
property table

= an array of 20 keys to linear material property
storage

= 0 no C (material property specific heat) has a discontinuity
= | a C discontinuity exists in the system

= analysis type (key on KAN command, ETYPE module)
= input on KAY commands, OPTIONS module

= mode on MODE command, LOPTION module

= [SYM on MODE command, LOPTION module



KAHD = extrapolation key used when K20(KAN) = 4 and plasticity are
present:
= 0 no extrapolation
= 1 has extrapolation

When there is extrapolation the displacements, pressures, and temperatures are
extrapolated. This extrapolation is done only in the stress pass.

IDEBUG = an array of 10 keys for the /DEBUG option
as described in section 4.16.

IXXX = SPARES (NOITUEP)

Integers specifically relating to the STIF100 element.

These integers are used in the ST100 routine only.

IELNUM = defined above.

ITYP = defined above.

KELIN = defined above.

KELOUT = defined above.

NR = defined above.

KTIK = defined above.

ITYPE = ITYP

MAT = the material number for this element (MAT on MAT command)
IELEM = the element number

NROW = NR (NROW should not be referenced, except in the stress pass,

only because NR is not available. Any modified value of NROW
is not preserved, whereas a changed value of NR is).

JTYPE = the element type (JSTIF, ET command), ( = 100 for user
element)

IPLOT = 0 if no post data to be defined
= 1 if post data is to be defined

IPRINT = 0 suppress printout .

= 1 permit printout
KTEMP = 0 if element temperature input (TE command)
= 1 if nodal temperature input (T command)
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KCONCV

KBINCV

KEYPLS

KEYCRP

KEYSWL

KYSUB
K21

NODES
EPAR

= 1 concrete crack has changed status
= 2 no concrete crack has changed status

= (0 not a gap element

= 1 gap element is not converged this iteration
= 2 gap element is converged this iteration

= 0 no plasticity for this material property

> 0 plasticity exists for this material property

= 0 no creep for this material property
> 0 creep exists for this material property

= 0 no swelling for this material property
> 0 swelling exists for this material property

= array of 9 KEYOPT values (see USEREL)

= level of post data to be generated
(KED on POSTR command)

= array of up to 20 nodes (I-B on E command)

= array of convenience to pass integers

Real numbers specifically relating to the ST100 element.

ELMASS

XCENTR
YCENTR
ZCENTR

TFCP

= the element mass, used by both check run and execution cases
in ST100

= X-coordinate of centroid
= Y-coordinate of centroid
= Z-coordinate of centroid

= the time at the start of processing this element: needed for
multiprocessing.

= the substructure stress pass scale factor (default = 1.0). May be
used for scaling of extra shapes.

= array of convenience to pass other real values

= array of convenience to pass coordinates

= array of up to 20 X-coordinates

= array of up to 20 Y-coordinates

= array of up to 20 Z-coordinates

= the element volume, computed in stress pass for optimization



NOTE: ELMASS, ELVOL, X, Y, and Z are computed at element level, and can
therefore change.

A ivalencin iabl
Due to data transfer concepts a good deal of equivalencing of variables is carried

out in USER.ROUTINES, (see section 1.4).

Integer constants in STCOM are equivalenced to the array EPAR. Real and
Double Precision constants are equivalenced to ERPAR.

EPAR and ERPAR are simply arrays which are useful for passing information
between ST100 and other ANSYS routines.

AlL5.8 DPCOM and STKCOM.

In the USER.ROUTINES comments for ST100 it states:

"Two storage regions, called DPCOM and STKCOM and labelled with *CALL
DPCOM and *CALL STKCOM ... etc". This is followed by instructions to replace
these *CALL commands with DOUBLE PRECISION statements.

In the case of VAX mainframe versions of ANSYS, this replacement has in fact
already been done. As in the case of *CALL STCOM, these storage regions were
required only for using the user element capability on a microVAX. They are
not required for bigger machines. Consequently, instructions starting "Put all
non-integer variables in STKCOM" etc. are not applicable and can be ignored.

AL.5.9 User defined DOUBLE PRECISION variables,
As stated above, DPCOM and STCOM are replaced by a DOUBLE PRECISION
statement. The following variables are declared in this statement:

The element matrices and load vector.

All other variables and arrays required to program the element and not
declared elsewhere. This includes any names used in EQUIVALENCE

commands.

The U (displacement) vector.
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The U vector is declared as an array of dimension U(240). This may be greater
than necessary (depending on the actaul number of element degrees of freedom),
but has been adopted by ANSYS simplicity. The order of the U vector, in the
case of six degrees of freedom per node, is:

UX(1), UY(1), UZ(1), ROTX(1), ROTY(1), ROTZ(1),
UX(2), UY(2), etc.

ALS5.10 Element Real Variables: RVR,

Element Real variables, defined by the REAL or R command in PREP7, are
transferred into ST100 from FILE3 by the GETELD subroutine. The argument
used in GETELD is the array RVR. RVR(n) corresponds to the real constant
in field n of the PREP7 R command, or RMORE if n> 6.

When the real constants have been read into ST100, the programmer may wish
to assign them more obvious names rather than RVR(1) etc. This can be done
by use of the equivalence statement. For example:

EQUIVALENCE (RVR(1),ARER)

allows RVR(1) to be referred to by the more obvious name AREA.

The RVR array must be declared by the DOUBLE PRECISION command
described insection 4.9. Clearly, if the RVR array is equivalenced, the equivalent
names must also be declared.

Al.5.11 Element Stored Variables: SVR.,

Some of the variables calculated or read into ST100 are required at later stages
of the Finite Element analysis: either for further calculations, (eg stress
evaluation), or for printout as results of the analysis. Such variables are stored
in an array called SVR and passed out of ST100 to FILE2 by the PUTELD

subroutine.

The SVR variables are usually calculated or read into ST100 under other more
familiar variable names, such as LENGTH etc. These must therefore be
“equivalenced to SVR(n) before they can be transferred by PUTELD.
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L5.12 . ial ies: PROPEV and NONLTE

Material properties are transferred into ST100 by the subroutine PROPEV.

Subroutine PROPEY,

PROPEYV accesses the material properties selected, and will, if required, evaluate
temperature dependent material properties. The arguments are defined as:

PROPEV (IELEM,MAT,JTYPE,LP,AVETEM, PROP(1),#).

IELEM = the element number.
MAT = material number (input quantity MAT, MATER module).
JTYPE = element type (JSTIF, ET command)
( = 100 for user element).
LP = an integer key representing the required property
as given in Table 1.
AVETEM = temperature at which the materials are to be
evaluated. '
PROP = Array in which the material properties are stored.
# = The number of properties PROP being called.
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MATERIAL SYMBOL KEY NUMBER

EX 1 |

ALPX (RSVX if thermal) 2

NUXY 3

EY 4

ALPY (RSVY if thermal) 5

EZ 6

ALPZ (RSVZ if thermal) 7

NUYZ 8

NUXZ 9

DENS 10

MU 1

GXY (KXX if thermal) 12

GYZ (KYY if thermal) 13

GXZ (K2Z if thermal) 14

C 15

HF 16

VISC 17

DAMP (Constant stiffness matrix
multiplier for material mat, dynamic 18
analyses only)
NOT USED 19
EMIS 20

Table 1. Material Properties and associated LP keys

If temperature dependant properties are required AVETEM must be evaluated
in ST100.

Using the above procedure PROPEYV is called once for each individual property
required: if four properties are four calls are made, each with a different LP key.
However, it is possible to access all the required properties by a single PROPEV
call.

This is done by setting up LP as an integer array. Integer values are assigned to
elements of LP by a DATA statement. The keying of the array is as in Table 1.

For example:

INTEGER LP(4)
DATA LP 7 1, 2, 3, 10/
PROPEV (IELEM,MAT,JTYPE,LP(1),AVETEM,PROP(1),4).

reads in four material properties, (EX, ALPX, NUXY, and DENS), with a single
subroutine call.
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Note the following changes to the subroutine calling arguments when using this

second procedure:
LP is now a declared integer array defined in an INTEGER statement.

The final argument on the list specifies the number of properties to be read
in by PROPEV. Even if the LP array has more elements than the N, say,
specified here, only the first N will be selected by PROPEV.

Material property names: equivalencing.

The material properties accessed by PROPEV are called PROP(1), PROP(2)
etc. The position of the properties in the PROP array corresponds with the order
in which they are selected: either by multiple PROPEYV calls or position of the
property key in the LP array.

To allow the use of more familiar material property names than PROP(1) etc,
(the PREP7 names for example), the PROP array can be equivalenced: eg
EQUIVALENCE (PROP(1),EX) allows PROP(1) to be referred to as the more

familiar EX.

Material properties as saved variables, SVR.

It is important to note that if the material properties are required as saved
variables in the SVR array, the command:

EQUIVALENCE (SVR(1),PROP(1))

will equivalence all M, say, material properties declared to the first M elements
of the SVR array.

For example, if the PROP array is declared to be of size PROP(4) ina DOUBLE
PRECISION statement, the above equivalence would relate:

SVR(1) and PROP(1)
SVR(2) and PROP(2)
SVR(3) and PROP(3)
SVR(4) and PROP(4)

even if some or all of the PROP elements are unused, (ie less than four properties
actually called in by PROPEV).
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Elements with no material properties.

If an element does not need any material properties, and the call to PROPEV
has been removed, EX (KXX if KAN = -1) should nevertheless be included in
the input data. '

A i fi E3:

All the element data required for the solution phase is stored in the ANSYS file
FILE3.DAT. Data is transferred into ST100 from FILE3 by the subroutine
GETELD. The GETELD arguments are as follows:

GETELD(IELNUM, ITYP, EPAR(1), ERPAR(1), DELTEM(1), TEMPER(1), PRESS(1), CON, RVR(1), SVR(1),
XYZEQ(1,1), U1

EPAR = Vector defined by equivalences in STCOM above. It represents
the integer quantities relating o this element

ERPAR = Vector defined by equivalences in STCOM above. It represents
the real quantities relating to this element

DELTEM = Temperature (heat generation for thermal) changes between
current iteration and previous iteration.

TEMPER = Temperature (heat generation for thermal) values for current
iteration Note - temperatures may include fluence information

PRESS = Pressures for current iteration.
For thermal analysis, the pressure vector is ordered as
BULK TEMP(1), FILM COEF(1), BULK TEMP(2), FILM

COEF(2),etc.
CON = NOT USED (NOITUEP)
RVR = Element real constants (R command)
SVR = Variables to be stored.

These variables can be defined or modified in either the stiffness pass or the stress
pass, for use in any later calculation.

IF DELTEM, TEMPER, PRESS, RVR, or SVR are not used (appropriate value
settozeroin USEREL), the variable should be set to CON in the call to GETELD.
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L5.14 P ing the el .

Obviously the element matrix generation programming will be different for every
different element. However the following subsections highlight some useful
general points.

The Transformation matrix.

For ease of calculation, element matrices are usually formulated and generated
in a local element co-ordinate system. However, before the individual element
matrices can be assembled to form the complete model, the element matrices
must be defined in global co-ordinates.

Local element co-ordinates are transformed to global co-ordinates by operating
upon the element matrix with a Transformation matrix, TR:

[MATRIX]global = [TR]T [MATRIX]local [TR]

The User Element programmer may write his own code to perform the above
matrix manipulation, however, an ANSYS subroutine called MHTCH may be
used if both the matrices are square.

MHTCH is a service subroutine which pre and post multiplies a matrix by a second
matrix. The pre-multiplication is done with the transpose of the multiplying
matrix. Consider, for example, the transformation of the stiffness matrix, ZS:

[ZS]global = [TR]T [ZS]local [TR]

To perform the above calculation using MHTCH, the following command would

be given:
CALL MHTCH (TR¢1,1),2S(1,1), #1 ,KTIK, #2)
#1 is the first dimension of TR.

KTIK is the first dimension of ZS.
#2 is the size of the matrices being operated on.
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Check run: element mass and centroid.

ST100 s called if a checking run of the ANSYS model is made prior to complete
analysis. No element matrices are generated, but the mass and centroid are
calculated.

Element geometryis also checked to ensure that there are no zero length elements
etc. At this point the condition of the check run and error indication integers is
examined. A RETURN to the main program is made if error(s) or a check run

is indicated.

Matrices required/Generated matrices keying.

Before any element matrix calculations are performed, ST100 checks that the
matrix is in fact required. This is done by examining the KELIN array keys. If
KELIN(n) is O the matrix is generated, if it is 1 it is not.

KELIN has been defined before ST100 is called, and ST100 should not change
the settings.

Once a required matrix has been generated the appropriate KELOUT key is set
to 1. KELOUT has been initialized to zero before ST100 is called.

KELIN(n) and KELOUT(n) refer to the following matrices:

n=1-7S

n = 2-ZASS
n = 3-DAMP
n = 4 - GSTIF
n=5-7ZSC

There is also another n, n=6, but tha_lt is not of interest to the user element
programmer.

Zeroing element matrices.

Before the element matrices are generated they are first of all set to zero. As in
the case of MHTCH the user programmer may write his own code to do this, or
he may use an ANSYS subroutine called VZERO. For example, a 12x12 stiffness
matrix ZS is zeroed by the following subroutine call:
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CALL VZERO (ZS(1,1),144)

VZERO zeroes out ZS starting at location (1,1) and going on for 144 items.

Al.5.15 Load vector,

The ST100 load vector contains loading generated at element level only; eg
thermal loads, specified element prestrain and element pressure loads. Nodal
forces and moments and body forces such as accelerations are not added at
element level, but applied to thee assembled model.

As in the case of the element matrices, the load vector must be converted to global
coordinates. The transformation in this case is:

[ZSClglobal = [TR]T [ZSCJlocal

ALS.16 Debugging ST100.
Two ANSYS debugging tools are available to the user element programmer,

called DEBUG and TRACK.

DEBUG consists of an array of 10 debug keys, of which only two are documented,
(the others are not of interest to the user element programmer). These keys are
actually available for all ANSYS elements, not just ST100. DEBUG is accessed
by issuing the command:

/DEBUG,,,ID3,,ID5
(before)
JINPUT,27

IDX = 0 no debug printout
IDX = 1 include debug printout

ID3 = 1 will print out all computed element matrices and the load vector.

IDS = 1 will print out other element debug, including the KELIN values, the
arguments of GETELD, and input and output of PROPEV.

TRACK is used find where the program is for running time studies and in case
of aborts. It is accessed by issuing the command:

A-34



/TRACK,S,5
(before)
JINPUT,27
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AL.6 Subroutine ST100: USER.ROUTINES.

This section examines in detail the USER.ROUTINES example of programming
ST100 as a STIFS8 type 3-D spar element.

The following FORTRAN names have been assigned to the matrices:

THE STIFFNESS MATRIX =ZS
THE MASS MATRIX = ZASS
THE DAMPING MATRIX = DAMP
THE STRESS STIFFENING MATRIX = GSTIF
THE FORCE VECTOR = ZSC
AL6.1 The ST100 subroutine call,

SUBROUTINE ST100 (IELNUM, ITYP, KELIN, KELOUT, NR, KTIK, 2S, ZASS, DAMP, GSTIF, 2SC)

.62 Doubl -

Most of the calculations carried out in ST100 are in double precision. This is
declared in the IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (A-H,0-2)

In USER.ROUTINES this command has a comment C in the first line, which
must be removed before compiling.
\1.6.3 EXTERNAL subrouti 1 functi

External subroutines and functions used in ST100 are declared in the following
EXTERNAL statement.

EXTERNAL TRACK, GETELD, PUTELD, PROPEV, NONTBL, VZERO, MHTCH, USEERR
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Al.6.4 Integers.

Integers used in the ST100 routine are declared in the following INTEGER

statement:

INTEGER 1,J,K,13,J3,NSTR,NUM, KDEMO,NFKEY

These integers are used as loop counters, matrix element positioning integers,
non-linear property specifiers,a demonstration integer variable, and an abort key.

AL6.S The ST100 COMMON block: STCOM.

The INCLUDE STCOM.CDK command should be deleted, as should the
comment C at the start of each line of STCOM:

INTEGER IELNUM, ITYP,KELIN(6),KELOUT(6),NR KTIK,
1 KEYERR, 10UT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT,KRSTRT, I SPARE,
2 K13,NPRPVL ,MATST,K5,K16, IPROP,KCPDS,
3 K20,KAY,MODE, ISYM, KAHD, IDEBUG, IXXX,
& ITYPE,MAT, IELEM,NROW,JTYPE, IPLOT,, IPRINT,KTEMTP,KCONCV,KBICNV,
5 KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50)

REAL ERRVAR(S)

DOUBLE PRECISION
1 DPZERO,DPHALF ,DPONE,DPTWO, DPTEN, DTORAD, RADTOD,

2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2, TIME3,DELT2,
3 ACEL,OMEGA, CGOMEG, CGLOC, DXXX,
& ELMASS,XCENTR,YCENTR,ZCENTR,TFCP,SUBEX, ERPAR(20),

5 XYZEQ(20,3),X(20),Y(20),2(20), ELVOL

COMMON /STCOM/ DPZERO,DPHALF,DPONE,DPTWO,DPTEN,DTORAD,RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIMEZ2, TIME3,DELTZ,
2 ACEL(3),0MEGA(6),CGOMEG(6),CGLOC(3), DXXX(16),
3 KEYERR, IOUT ,NSTEPS,KFSTLD, ITTER, ITIME NCUMIT,KRSTRT, ISPARE,
4 K13,NPRPVL ,MATST K5,K16, IPROP(20),KCPDS,
5 K20,KAY(10) ,MODE, ISYM, KAHD, IDEBUG(10), IXXX(41)

1.6.6 Equivalenci

In order to pass data between ANSYS routines STCOM variables are
equivalenced to the arrays EPAR for integer variables, and ERPAR for real and

double precision variables.

EQUIVALENCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(5)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11)), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,EPAR(16)),
4 (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
5 (KEYSWL,EPAR(20)), (KYSUB(1),EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))

EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (2CENTR,ERPAR(4)), (TFCP,ERPAR(S5)),
2 (SUBEX,ERPAR(6))

EQUIVALENCE (X(1),XYZEQ(1,1)),(Y(1),XYZEQ(1,2)),(Z(1),XYZEQ(1,3))
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The storage regions DPCOM and STKCOM referred to in USER.ROUTINES
are replaced by the following DOUBLE PRECISION statements.

DOUBLE PRECISION

1 2S(KTIK,KTIK), ZASS(KTIK,KTIK),6 DAMP(KTIK,KTIK),

& GSTIF(KTIK,KTIK),ZSC(KTIK),

2 AREA,EPORG,

3 PROP(3),ALEN2,ALENG,DX,DY,DZ,AVETEM, FORCE, EPEL,

4 EX,ALPX,DENS,

5 DPSIX

DOUBLE PRECISION

1 DELTEM(2),TEMPER(2),PRESS(3),

2 RVR(2),SVR(11),
3 TR(3,3),DFORL(6),CON,ALENNT,SALP1,CALP1,SALP2,CALP2,

4 WTO6,EPTHT, TABLE(48),U(240)

.68 RVR: equivalenci

The 3-D spar element has two real constants defined in the PREP7 R command:
area AREA, and initial strain EPORG. Values for AREA and EPORG are read
into ST100 from FILE3 by the subroutine GETELD. GETELD reads in this
data under the array name RVR. In order to use the more familiar names of
AREA and EPORG these are equivalenced to the corresponding RVR elements

as follows:

EQUIVALENCE (RVR(1),AREA), (RVR(2),EPORG)

Variables which will be required by other ANSYS routines are passed out
of ST100 by the subroutine PUTELD. PUTELD requires this information

in the form of the array SVR. Therefore the required element values are
equivalenced to SVR as follows:

EQUIVALENCE (SVR(1),PROP(1)), (SVR(4),ALEN2),
1 (SVR(5),ALENG), (SVR(6),DX), (SVR(7),DY), (SWR(8),D2),
2 (SVR(9),AVETEN), (SVR(10),FORCE), (SVR(11),EPEL)

Note that SVR(2) and SVR(3) are implicitly equivalenced to PROP(2) and
PROP(3) by the above command. (See sections 1.4 and 4.12.3).
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A1.6.10 KEYOPT equivalencing.

The next equivalence demonstrates accessing KEYOPT(2) and and calling it
KDEMO. This is done purely as a demonstration of equivalencing KEYOPT
and is not in fact used in ST100.

EQUIVALENCE (KDEMO,KYSUB(2))

1.6.11 Equivalenci ial .

The next equivalence is to make the output from PROPEYV (the material property
evaluation subroutine) more convenient.

EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),DENS)

. 12 Defining t} ber six in doubl -

The number six is used in generating the mass matrix. In the matrix generating
procedures all calculations are done in double precision. DPSIX has been
declared as a variable in the DOUBLE PRECISION statement described in
section 5.7. It is assigned the value of six in the following DATA statement:

DATA DPSIX /6.0D0/

Several other useful constants are defined in STCOM: see section 4.6.1.

Al.6.13 Call the external subroutine TRACK.,
Track is used to monitor the progress of the run. See section 4.16.

CALL TRACK(S,'ST100 *)

Al.6.14 Accessing data from FILEJ3: GETELD call.
GETELD takes needed data from FILE3 and makes it available to the element.

CALL GETELD (IELNUM, ITYP,EPAR(1),ERPAR(1),DELTEM(1),TEMPER(1),
1 PRESS(1),CON,RVR(1),SVR(1),XYZEQ(1,1),U(1))
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1.6.15 Initialising t} iabl
Initialize variables first time through if needed:

IF (KFSTLD .EQ. 0) GO TO 100
FORCE = DPZERO
EPEL = DPZERO

100 CONTINUE

A i i ies i

The element material properties are read into ST100 by the subroutine PROPEV.
If the element has temperature dependant properties, these are evaluated by
PROPEYV at the average element temperature AVETEM. AVETEM must
therefore be evaluated before PROPEYV is called.

AVETEM = DPHALF*(TEMPER(1) + TEMPER(2))

The arguments of the PROPEYV routines are detailed in section 4.12. In this case
three properties are required: EX, ALPX and DENS. Therefore, considering
the keying options described in 4.12.1, LP is assigned the values 1, 2 and 10.

CALL PROPEV (IELEM,MAT,JTYPE,1,AVETEM,PROP(1),1)
CALL PROPEV (IELEM,MAT,JTYPE,2,AVETEM,PROP(1),1)
CALL PROPEV (IELEM,MAT,JTYPE,10,AVETEM,PROP(1),1)

An alternative procedure for reading in all the required properties with a single
subroutine call is outlined in section 4.12.1.

The required material properties are declared in an integer array, LP. The same
property keying as above is used, and the alternative code to the three calls is:
INTEGER LP(4)

DATA LP / 1, 2, 10/
PROPEV (1ELEM,MAT,JTYPE,LP(1),AVETEM,PROP(1),3).

Note the final PROPEYV calling argument, the number 3. This is the number of
material properties to be read, and must be changed accordingly if more or less
than three properties are required.
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\1.6.17 A ino data f 1A ble (NI

This entry is simply to demonstrate how data is accessed from a non-linear table
(NL commands). It is not actually used in this example.
IF (K13 .EQ. 0) GO TO 120
NSTR = 1
NUM = 48

CALL NONTBL (MAT,TABLE(1),NSTR,NUM)
120 CONTINUE

1.6.18 Verifving the el I I
The input element geometry is checked to ensure there are no zero length

elements.

In the case of zero length elements a suitable message is written to the output
device, and in the case of a fatal error the run is aborted by the subroutine

USEERR.

DX = X(2) - X(1)
DY = Y(2) - Y(1)
DZ = 2(2) - Z(N)

CON = DX**2 + DY**2
ALEN2 = CON + DZ**2
IF (ALEN2 .GT. DPZERO) GO TO 150
WRITE (10UT,2000) IELEM
2000 FORMAT ('ZERO LENGTH ELEMENT' ,I5)
KEYERR = 1
NFKEY = 1
CALL USEERR (NFKEY)
GO TO 990
150 ALENG = DSQRT(ALEN2)
ALENN1 = DSQRT(CON)

L6.19 Forming the TR .
The TR matrix is the element local to global coordinate conversion matrix.

IF (ALENN1 .GT. .0001*ALENG) GO TO 200
SALP1 = DPZERO

CALP1 = DPONE

GO TO 250

200 SALP1 = DY/ALENN1

CALP1 = DX/ALENN1

250 SALP2 = DZ/ALENG

CALP2 = ALENN1/ALENG

TR(1,1) = CALPI*CALP2
TR(2,1) = -SALP1
TR(3,1) = -CALP1*SALP2
TR(1,2) = SALP1*CALP2
TR(2,2) = CALP1

TR(3,2) = - SALP1%SALP2
TR(1,3) = SALP2

TR(2,3) = DPZERO
TR(3,3) = CALP2
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XCENTR = (X(1) + X(2))*DPHALF

YCENTR = (Y(1) + Y(2))*DPHALF

ZCENTR = (2(¢1) + Z(2))*DPHALF

ELMASS = DENS*AREA*ALENG*(DPONE - EPORG)
Al.6.2 k rch

At this point the condition of the check run and error indication integers is
examined. A RETURN to the main program is made if error(s) or a check run
is indicated.

IF ((NSTEPS .EQ. 0) .OR. (KEYERR.EQ.1)) GO TO 990

Al1,6.22 Generating the stiffness matrix,

Check that the stiffness matrix is required to be calculated. If KELIN(1) is 0 it
does, if 1 it does not.

IF (KELINC1) .NE. 1) GO TO 400
Set up stiffness matrix at end 1.

The first step is to generate a 3x3 stiffness matrix for end I of the element. This
is done in local element co-ordinates.

CALL VZERO (28(1,1),36)

VZERO is a service subroutine that zeroes out the stiffness matrix ZS.
ZS(1,1) = EX*AREA/ALENG
Convert matrix to global cartesian coordinates.

The 3x3 stiffness matrix, (all elements are zero except ZS(1,1) which is AE/L),
is converted from local element co-ordinates to global co-ordinates.

CALL MHTCH (TR(1,1),28¢1,1), 3,KTIK, 3)

MHTCH is a service subroutine which pre and post multiplies ZS by TR.

Fill out the complete 6x6 matrix.

Finally, the full 6x6 matrix is generated from the 3x3.
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po301=1,3
13=1+3

D030 s =1,3
J3=4+3

2S(13,d) = -2s8(1,0)
ZsC1,d3) = -28(1,d)

28(13,43) = 2s(1,J)
300 CONTINUE

Set key that matrix was indeed computed.

KELOUT(1) =1

400 IF (KELIN(2) .NE. 1) GO TO 600
IF (DENS .EQ. DPZERO) GO TO 600
WT06 = DENS™ALENG*(DPONE - EPORG)™AREA/DPSIX
CON = DPTWO * WTO6
CALL VZERO (ZASS(1,1),36) VZERO
DO4501 =1, 6
450 ZASS(I,1) = CON

pos001!=1,3
13=1+3
ZASS(I,13) = WT06
500 2ASS(13,1) = WT06
KELOUT(2) = 1

\1.6.24 Dampi ri

The damping matrix is normally put in here, but not included in this example

\ 1.6.25 St iff .

600 IF (KELIN(4) .NE. 1) GO TO 800
IF (KFSTLD .EQ. 1) FORCE = AREA*EX*EPORG
IF (FORCE .EQ. DPZERO) GO TO 800
CALL VZERO (GSTIF(1,1),36)
GSTIF(2,2) = FORCE/ALENG
GSTIF(3,3) = GSTIF(2,2)
CALL MHTCH (TR(1,1),GSTIF(1,1), 3,KTIK, 3)
DO 7001 =1, 3

13=1+3
DOT700 4 =1,3
J3=J+3
GSTIF(13,d) = -GSTIF(I,J)
GSTIF(I,J3) = -GSTIF(I,J)
700 GSTIF(13,43) = GSTIF(I, )
KELOUT(4) = 1
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Al.6.26 Load vector,

800 IF (KELIN(S5) .NE. 1) GO TO 990
CALL VZERO (DFORL(1),6)
VZERO

There are three possible types of loading evaluated at element level: thermal,
prestrain and pressure loading. Nodal loads, (such as forces and moments), and
body forces, (such as accelerations), are added by ANSYS later in the solution

procedure.

Thermal and Prestrain effects.

The first step is to compute the load vector due to thermal and prestrain effects
in element coordinates.

EPTHT = ALPX*(AVETEM - TREF) - EPORG

TREF = Reference temperature (input quantity value, TREF command)

-AREA*EX*EPTHT
-DFORL(1)

DFORL(1)
DFORL (4)

Lateral pressures.
Next, the load vector due to lateral pressures is computed in element coordinates.

CON = PRESS(1)*ALENG*DPHALF
DFORL(2) = - CON

DFORL(5) = DFORL(2)

CON = PRESS(2)*ALENG*DPHALF

DFORL(3) = -CON
DFORL(6) = DFORL(3)
Z.SC vector.

The final step is to convert the above to the global cartesian coordinate system
and put the result in the ZSC vector.

CALL VZERO (2SC(1),6)
D0 900 I = 1,4,3
DO 900 4 = 1,3
=g+l -1
DO 900 K = 1,3
3=K+1-1
900 2SC(J3) = ZSC(J3) + TR(K,J)*DFORL(13)
KELOUT(5) =

990 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1))
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Call subroutine PUTELD

PUTELD Restores data back to FILE2

CALL TRACK( 15,'ST100 ')
RETURN
END
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\1.7 Subroutine SR100: An Overvi

The subroutine SR100 performs the stress pass for the STIF100 element. It takes
the displacement results from the stiffness pass and evaluates element strains,
stresses, nodal forces etc. There are three main steps in the SR100 routine:

1) Read in the required data from ANSYS.
2) Process that data to evaluate stresses etc.
3) Output the required information.

SR100 is similar in structure to ST100. The following topics are common to both
subroutines, and have been described in section 4:

Data transfer

PUTELD

EXTERNAL subroutines and functions
COMMON block STCOM
EQUIVALENCING of variables
DPCOM and STKCOM

RVR and SVR

TRACK

GETELD.

To avoid repetition these topics are not covered in this section.

AL71 Results evaluation.
SR 100 processes the results of the stiffness analysis - the U vector - to evaluate
element stresses and strains, nodal forces etc.

As in ST100, the calculations are performed in double precision.

Al7.2 Data is transferred out of SR100 by:

1 CALL PUTELD (SVR only).

2 Printed output.
3 Writing a Post data file: Subroutine SRPLT.
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Al.7.3 Calling arguments of the SR100 routine,
The SR100 calling arguments are similar to those of ST100:

SUBROUTINE SR100 (IELNUM,ITYP,KELOUT,ELVOL,KTIK,ZS,ZASS, 2SC)

The calling arguments are similar to those of ST100, (see section 4.5), with the
following differences:

KELIN is not a calling argument here as SR100 does not evaluate matrices.
ELVOL, the element volume, is added to the list of arguments.

A1.7.4 User defined DOUBLE PRECISION variables.
As stated above, DPCOM and STKCOM are replaced by a DOUBLE
PRECISION statement. The following variables are declared:

i) Any element matrices required. Most element stress passes do not use
the element matrices, but they are made available if needed.

ii) The element displacement vector U.

iii)  All other variables and arrays required to calculate the element stresses
etc. This includes any names used in EQUIVALENCE statements and
not declared elsewhere.

iv) ~ The POSTD array. This is added for plot file item numbering. There is
a one to one correspondence between the item number on the plot file
and the position in the array. The size is determined by the number of
items put on the plot file.

7.5 Material P .

Material properties required in SR100 are read in by GETELD as saved variables
SVR. In the USER.ROUTINES program the appropriate SVR() are
equivalenced to PROP() then further equivalenced to their familiar ANSYS
names; EX,NUXY etc.
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Al.7.6 Calculating stresses etc.

Element stresses etc are evaluated from the element nodal displacement vector,
U. The standard finite element approach is:

i) Calculate the strains from U: Strain-Displacement relationships.
ii) Calculate the stresses from the strains: Stress-Strain relationship.
iii)  Calculate the nodal forces and moments from the element stresses.

This method does not require the element matrices in order to evaluate stresses,
but others do. For example, in traditional engineering matrix-methods the U
vector is operated on by the stiffness matrix to give the reaction forces, from which
nodal stresses are evaluated.

In order to facilitate such an approach, the element matrices formed in ST100
are made available in SR100. (Via the subroutine call).

\1.7.7 Writi 1l I

The results of the stress run are written to the output device by a WRITE
command. Results written out in this way include element type number, node
numbers, material type, nodal temperatures, mechanical strain, thermal strain,
stresses, nodal forces etc. The format of the output is defined by the user element
programmer. Element printout is suppressed during interactive runs.

Al.7Z.8 The post data file: FILE12,
Element data for post processing is stored in the post data file, FILE12. The
information is stored in FILE12 in six different "levels", as follows:

Level 1. Force components.

Level 2. Basic stress components: ie centroidal and nodal stresses.
Level 3. Principal stresses (centroidal and nodal), temperatures etc.
Level 4. Additional surface data.

Level 5. Nonlinear centroidal data.
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Level 6. Linear integration point data.

The first three levels are evaluated and stored by default. Further levels must be
specified by the KYPOST or the POSTR commands in PREP7.

The post data file, FILE12, is set up according to the elements in the integer array
IPLTARY. IPLTARY defines the number of data to be stored in each level of
FILE12. The array elements contain the following information:

IPLTAY(1)
IPLTAY(2) number of forces in level 1.
IPLTAY(3) number of basic stresses in level 2.

IPLTAY(4) total number of items stored in the first three (default) levels. This
of course implies the number of principal stresses etc in level 3.

IPLTAY(S) Element type.

IPLTAY(6) Key for saving geometry for elements requiring contour plots of
results.
= 1, save geometry.
= 0 do not save geometry.

The double precision array POSTD is used to pass the results of the analysis to
the post data file. The size of POSTD is determined by the number of items to
be output to FILE12, calculated as follows:

11 + Number of nodes in element + number of results to be stored.

AL.7.9 Using other ANSYS element PLOT file formats.
It is possible to use existing ANSYS element graphics capabilities by "fooling"
ANSYS into thinking it is dealing with a standard element.

For example, if it is desired to put the plot file in the format of another element
type(eg STIF(45), JELTYP(ITYP) must be temporarily reset from 100 to 45.
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This variable is not in the labelled common region STCOM. Rather it is in the
labelled common region COM1. therefore, the following statements would need
to be put at the beginning of this subroutine(SR100):

INTEGER TUXX, JELTYP

REAL RUXX
DOUBLE PRECISION DPUXX

COMMON / COM1 / TUXX(975),RUXX(51),0PUXX(124),JELTYP(20)

The following statement would need to be placed just before the call to SRPLT:

JELTYP(ITYP) = 45
Finally, the following statement would need to be placed just after the call to
SRPLT:

JELTYP(ITYP) = 100
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Al.8 Subroutine SR100: USER.ROUTINES,

This section examines in detail the USER.ROUTINES example of programming
SR100 for a STIF8 type 3-D spar element.

Al.8.1 The SR100 subroutine call.

SUBROUTINE SR100 (IELNUM,ITYP, KELOUT,ELVOL,KTIK,2S,ZASS,ZSC)

\1.8.2 Doubl -
The SR100 calculations are performed in double precision. This is implied by
the following statement:

IMPLICIT DOUBLE PRECISION (A-H,0-2)

USER.ROUTINES has a comment C in the first line of this command, which
should be removed.

ALS8.3 External subroutines
The external functions required by SR100 in this (STIF8) application are:

EXTERNAL TRACK,GETELD,PUTELD,SRPLT

Al.8.4 Integers

INTEGER KDEMO, IPLTAY(6),1

ALS.5 STCOM storage.

A full description of the STCOM region is given in section 4.6. Again it should
be noted that the line:

INCLUDE 'STCOM.CDK'

should be removed, along with the C in column 1, from this point down to the
end of the STCOM block:

INTEGER [ELNUM, ITYP,KELIN(6) ,KELOUT(6) ,NR,KTIK,
1 KEYERR, I0UT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT ,KRSTRT , KNLRST
2 K13, NPRPVL ,MATST K5,K16, IPROP, KCPDS, ’
3 K20, KAY,MODE, ISYM, KAHD, IDEBUG, IXXX,
4 1TYPE,MAT, 1ELEM,NROW, JTYPE, IPLOT, IPRINT ,KTEMTP,KCONCV, KBICNV
5 KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50) '
REAL ERRVAR(S)
DOUBLE PRECISION
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1 DPZERO,DPHALF ,DPONE,DPTWO,DPTEN, DTORAD,RADTOD,
2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD, TIME2,TIME3,DELT2,
3 ACEL,OMEGA,CGOMEG, CGLOC, DXXX,
4 ELMASS,XCENTR,YCENTR,ZCENTR, TFCP,SUBEX, ERPAR(20),
5 XYZEQ(20,3),X(20),Y(20),2¢20), ELVOL
COMMON /STCOM/ DPZERO,DPHALF ,DPONE,DPTWO,DPTEN, DTORAD, RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD, TIME2, TIME3,DELT2,
2 ACEL(3),OMEGA(6),CGOMEG(6),CGLOC(3), DXXX(16),
3 KEYERR, 10UT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT,KRSTRT,KNLRST,
4 K13,NPRPVL,MATST,K5,K16, IPROP(20),KCPDS,
5 K20, KAY(10) ,MODE, ISYM,KAHD, IDEBUG(10), IXXX(41)

A1.8.6 STCOM equivalencing,

For parameter passing, STCOM variables are equivalenced to the
(integer) and ERPAR (double precision) arrays.

EQUIVALENCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(5)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11)), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,6EPAR(16)),
4 (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
5 (KEYSWL,EPAR(20)), (KYSUB(1),EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))

EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (ZCENTR,ERPAR(4)), (TFCP,ERPAR(5)),
2 (SUBEX,ERPAR(6))

EQUIVALENCE (X(1),XYZEQ(1,1)),(Y(1),XYZEQ(1,2)),(2¢1),XYZEQ(1,3))

. % ]

EPAR

As in ST100, DPCOM and STKCOM have been replaced by DOUBLE

PRECISION statements.

DOUBLE PRECISION

1 ZS(KTIK,1),ZASS(KTIK,1),2SC(KTIK),

2 AREA,EPORG, '

3 PROP(3),ALEN2,ALENG,DX,DY,DZ ,AVETEM,FORCE ,EPEL,
4 EX,ALPX,DENS

DOUBLE PRECISION

1 DELTEM(2),TEMPER(Z2),PRESS(3),

2 RVR(2),SWR(11),

3 EPTOT,EPTH,SIG,U(24),POST(19),CON

The POSTD array is added for plot file item numbering,.

The equivalent variable names used for RVR and SVR must agree with those

used in ST100. See sections 5.8 and 5.9.

EQUIVALENCE (RVR(1),AREA), (RVR(2),EPORG)

EQUIVALENCE (SVR(1),PROP(1)), (SVR(4),ALEN2),
1 (SVR(5),ALENG), (SVR(6),DX), (SVR(7),DY), (SVR(8),02),
2 (SVR(9),AVETEM), (SVR(10),FORCE), (SVR(11),EPEL)
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AL8.9 KEYOPT equivalencing.

This equivalence is for demonstration purposes only.
EQUIVALENCE (KDEMO,KYSUB(2))

Al M i ival

The material properties are read in as saved variables SVR and equivalenced to
the PROP array as described in section 7.8 above. They are now equivalenced
to their more familiar ANSYS names.

EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),DENS)

L.8.11 Calling t} I I subroutine TRACK
TRACK is used to monitor the progress of the run. See section 4.16.

CALL TRACK (5,'SR100 ')

Al.8.12 Accessing data from FILE3: GETELD call

GETELD takes the required element information from FILE3 and makes it
available to the element. See section 4.13.

CALL GETELD (IELNUM, ITYP, EPAR(1), ERPAR(1), DELTEM(1), TEMPER(1), PRESS(1), CON, RVR(1),
SVR(1), XYZEQ(1,1), U(1))

8,13 Calculating tt .

EPTOT is the total element strain .

EPEL is the mechanical strain.

EPTH is the thermal strain.

EPORG is the initial strain, and is a PREP7 Real variable.

If there is no load vector then there will be no strain due to thermal and prestrain
effects. If that is the case the mechanical strain EPEL will be equal to the total
strain EPTOT. If there is a load vector then the thermal strain must be evaluated,
if not go on to the stress calculations.

EPTOT = (DX*(UC4)-U(1)) + DY*(U(5)-U(2)) + DZ*(U(6)-U(3)))/ALEN2

EPEL = EPTOT
EPTH = DPZERO
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IF (KELOUT(5) .EQ. 0) GO TO 100
EPTH = ALPX*(AVETEM - TREF)
EPEL = EPTOT - EPTH + EPORG

AL.8.14 Calculating the stresses,

100 SIG = EX*EPEL
FORCE = SIG*AREA

A1.8.15 Writing out the results.

IF CIPRINT .NE. 1) GO TO 200
WRITE (IOUT,2000) IELEM, (NODES(I),I=1,2), MAT, (TEMPER(1),1=1,2), EPEL, EPTH, SIG, FORCE

2000 FORMAT(/4H EL=,15, 7H NODES=,2I5,1X,4HMAT=,12,7H TEMPS=,2F7.1,
1 4H EP=,F9.6,6H EPTH=,F9.6,5H SIG=,G12.5,5H FOR=,G12.5,
2 14H 3-D DEMO 100 )

L.8.16 Writi (data fil
The STIF8 post data file is written on FILE12 as shown below.

1. FX(I) levell
2. FX(J)

3. SIG  level 2
4. TEMP(I) level 3
5. TEMP(J)

. EPPL
9. EPOR
10. EPCR
11. SIGEPL
12. EPSW
13. FLS(I)
14. FLS(J) level S

6.
7. EPTH
8

200 IF (IPLOT .NE. 1) GO TO 900

Number of forces (LEVEL 1)

IPLTAY(2) = 2

Number of stresses (LEVEL 2)

IPLTAY(3) =1
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Number of total saved (LEVELS 1,2, AND 3)

IPLTAY(4) = 5

Save geometry for contours (,NO 1,YES)

IPLTAY(6) = 0

Put postdata information into POSTD

POSTD(1) = -FORCE
POSTD(2) = FORCE
POSTD(3) = SIG
POSTD(4) = TEMPER(D)
POSTD(5) = TEMPER(2)

If more than the default level of postdata information is desired, it should be
added here. KED(K21) was set > 3. IPLTAY(4) must be set to the total of all

levels.

IF (K21 .LE. 4) GO TO 400
IPLTAY(4) = 7
POSTD(6) = EPEL
POSTD(7) = EPTH
400 CONTINUE

Put PLTARY information onto FILE 12

CALL SRPLT (IELEM, ITYP, NROW, MAT, U(1), NODES(1), XYZEQ(1,1), IPLTAY(1), PLTARY(1))

The element volume is evaluated for possible use in an optimization analysis .

ELVOL = ALENG*(DPONE - EPORG)*AREA
900 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1))

ALS8.19 Restoring the data to FILE3: PUTELD,
PUTELD restores data back to FILE3.

CALL TRACK( 15,'SR100 *)
RETURN
END
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\1.9 E le: Straight Cylindrical B p;

This section details the programming of an ANSYS straight cylindrical beam user
element. The beam stiffness matrix is a simplified version of the ANSYS straight
beam element STIF4 [6.1].

The element is a 2 noded line element, with 6 degrees of freedom per node: three
translations and three rotations. No mass or stress stiffening effects are

considered.

\19.11 inf .

Real constants.

The beam formulation requires the following input values: elastic modulus,
Poisson’s ratio, mid-wall radius and wall thickness.

From these it evaluates

c- £
i) Modulus of rigidity l+v
ii) Second moment of area I=1r3hn
iii) Polar moment of area J =2nr3n=2i
iv) Cross sectional area A=2nrh

Variable names

The following variable names are used in ST100 and SR100:

RAD mid surface radius
THICK wall thickness
AREA cross sectional area
RAD3 radius cubed

SECMOM second moment of area

POLMOM polar moment of area
EI elastic mod. x SECMOM
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EA " " x AREA
ALEN2 rigidity mod x POLMOM
ALENG3  element length cubed

Al9.2 ANSY E R FOR I

The element source code is given in the following sections. Additional comments
are written in lower case large text.

ANSYS USER ELEMENT CODE FOR STRAIGHT CYLINDRICAL BEAM ELEMENT

DONALD MACKENZIE OCT/NOV 1987

OO0 0

ANSYS VERSION 4.3A

PROGRAM ANSYS
c ANSYS VERSION 4.3A
IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL MAIN,STOPER
EXTERNAL ELSHFN
CALL NNDIM
CALL MAIN
CALL STOPER
END

Subroutine USEREL.

SUBROUTINE USEREL (ITYP,IPARM,KYSUB,KEY3D,KDOF ,KUNSYM,KTRANS)

INTEGER 1PARM(20,12),KYSUB(9),ITYP, JTYPE,KEY3D,KDOF ,KUNSYM, KTRANS

c

c #®wwddk DETERMINE TYPE OF ELEMENT AND THEN BYPASS IF NOT USER ELEMENT
JTYPE = IPARMCITYP,3)
IF (JTYPE .NE. 100) GO TO 100

c AREREREEAE  GET 3-D KEY HHAAAEAAAS
KEY3D =

c

c whwhdwddds DEFINE DOF SET AT EACH NODE ‘*¥dwwddrids
KDOF = 0

c

c waRkAeRAAr SET UNSYMMETRIC MATRIX KEY *¥*kdiatds
KUNSYM = 0

c

c w**%%  DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION
KTRANS = 2

c

c *xkartddst DEFINE NUMBER OF NODES #¥¥twtataw
IPARMCITYP,8) = 2

c

c hdadedded DEF!NE NUMBER OF TEHPERATURES (DELTEM, TEMPER)
IPARM(ITYP,11) =

c

c w=eewk DEFINE NUMBER OF PRESSURES (PRESS) *W¥iwsw

c IF THERMAL ANALYSIS, TWO TIMES NUMBER OF CONVECTION SURFACES
IPARM(ITYP,6) =

c

c *xa% SET ZEROED VARIABLES (NOITUEP)
IPARM(ITYP,12) = O

c

c #xx#% DEFINE NUMBER OF REAL CONSTANTS FOR ELEMENT (RWR)

IPARMCITYP,10) = 2
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c *%x%* DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR)
IPARMCITYP,7) = 24

c

c *xwx% DEFINE NUMBER OF ROWS IN ELEMENT MATRICES (KTIK)
IPARMCITYP,9) = 12

c

c #wxexwuds  SET KEY TO IDENTIFY NON-LINEAR ELEMENT
IPARM(ITYP,4) = 0 .

c

c #awerwnsss  SET KEY FOR THERMAL ELEMENT (KAN,-1)
IPARMCITYP,1) = 0O

¢

100 RETURN

END

Subroutine USERPT.

SUBROUTINE USERPT (INODE, JTYPE,KSHAPE,NNODE)

¢

C wrkkakawd*®t | ISER SUBROUTINE FOR ANSYS PLOT SHAPE *wirkwasdiw

(o}

Cc DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING

C
INTEGER INODE(20),JTYPE,KSHAPE ,NNODE

c RARARAAARBYPASS [F NOT USER ELEMENT (JTYPE = 100) *watderwsn
1F (JTYPE .NE. 100) GO TO 100

€ wwwww® SELECT SHAPE TO BE PLOTTED BY SETTING KSHAPE *wwwwas
KSHAPE = 2

c *ARANAAAAY  SET NUMBER OF ACTUAL NODES woswaanasd
NNODE = 2

100 RETURN
END

[

Subroutine ST100.

SUBROUTINE ST100 (IELNUM,ITYP,KELIN,KELOUT,NR,KTIK,2S,2ASS,DAMP,
1 GSTIF,ZSC)

Subroutine ST100 evaluates the element stiffness matrix, ZS. No mass, stress
stiffening or damping matrices are evaluated, nor is a load vector.

C wew#ax* STIFFNESS PASS FOR 3-D CYL BEAM ELEMENT *wwwwwws

IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL TRACK,GETELD,PUTELD,PROPEV,NONTBL ,VZERO,MHTCH,USEERR
INTEGER I,J,K,13,43,16,J6,19,J9,LP(4),NSTR,NUM,KDEMO, NFKEY

C  ***%* START STCOM STORAGE **#wiwwe
INTEGER IELNUM, ITYP,KELIN(6) ,KELOUT(6) ,NR,KTIK,
1 KEYERR, I0UT,NSTEPS,KFSTLD, ITTER, ITIME, NCUMIT,KRSTRT, ISPARE,
2 K13,NPRPVL,MATST,K5,K16, IPROP,KCPDS,
3 K20, KAY,MODE, ISYM, KAHD, IDEBUG, IXXX,
4 ITYPE,MAT, IELEM,NROW, JTYPE, IPLOT, IPRINT ,KTEMTP,KCONCV, KBICNV,
S KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50)
REAL ERRVAR(S)

DOUBLE PRECISION

1 DPZERO,DPHALF,DPONE,DPTWO,DPTEN,DTORAD ,RADTOD,

2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2, TIME3,DELT2,
3 ACEL,OMEGA,CGOMEG,CGLOC, DXXX,

4 ELMASS,XCENTR,YCENTR,ZCENTR,TFCP,SUBEX, ERPAR(20),

5 XYZEQ(20,3),X(20),Y(20),2¢20), ELVOL

COMMON /STCOM/ DPZERO,DPHALF ,DPONE,DPTWO,DPTEN, DTORAD,RADTOD,

1 TREF,TUNIF,TOFSET, DELTIM,TIME, TIMOLD,TIME2, TIME3, DELT2,
2 ACEL(3),0OMEGA(6),CGOMEG(6),C6LOC(3), DXXX(16),

A-58



3 KEYERR, IOUT ,NSTEPS,KFSTLD,ITTER, ITIME ,NCUMIT,KRSTRT, ISPARE,
4 K13,NPRPVL,MATST ,K5,K16,1PROP(20),KCPDS,
S K20,KAY(10),MODE, 1SYM, KAHD, IDEBUG(10), IXXX(41)

EQUIVALEMCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(S)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11)), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,EPAR(16)),
4 (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
S (KEYSWL,EPAR(20)), (KYSUB(1),EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))

EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (ZCENTR,ERPAR(4)), (TFCP,ERPAR(5)),
2 (SUBEX,ERPAR(6))

EQUIVALENCE (X(1),XYZEQ(1,1)),(Y(1),XYZEQ(1,2)),(2(1),XYZEQ(1,3))
c

The following DOUBLE PRECISION statements replace the *CALL DPCOM
and STKCOM commands in USER.ROUTINES.

DOUBLE PRECISION
1 2S(KTIK,KTIK),

2 RAD, THICK,AREA,SECMOM,POLMOM,E1 ,EA,GJ,ALENG3,

3 PROP(4),ALEN2,ALENG,DX,DY,DZ, AVETEM, FORCE, EPEL,
4 EX,ALPX,NUXY,DENS,

5 DPPI
c
DOUBLE PRECISION
1 RVR(2),SVR(24),
2 TR(12,12),DFORL(6),CON,ALENNT,SALP1,CALP1,SALP2,CALP2,
3 U(240)
C
EQUIVALENCE (RVR(1),RAD), (RVR(2),THICK)
c
EQUIVALENCE (SVR(1),PROP(1)), (SVR(5),ALEN2),
1 (SVR(6),ALENG), (SVR(7),DX), (SVR(8),0Y), (SVR(9),D2),
2 (SVR(10),AVETEM), (SVR(11),FORCE), (SVR(12),EPEL),
3 (SVR(13),AREA), (SVR(14),SECMOM), (SVR(15),POLMOM)
c A FURTHER 9 SAVED VARIABLES SVR ARE DEFINED LATER AS THE
c 3x3 TRANSFORMATION MATRIX.
o
EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),NUXY),
1 (PROP(4),DENS)
c
DATA DPPI / 3.14159265358979300 /
SET UP INTEGER ARRAY FOR ACCESSING MATERIAL PROPERTIES
DATA LP / 1, 2, 3,10/
c
CALL TRACK(S,'ST100 ')
c
C ***** NOTE CHANGE OF DELTEM(1) ETC TO CON AS THEY ARE SET TO
c ZERO IN USEREL
c

Element data is accessed from FILE3 by GETELD. Note the CON arguments
replacing the unused pressure .and temperature arguments from
USER.ROUTINES.

CALL GETELD (IELNUM,ITYP,EPAR(1),ERPAR(1),CON,CON,
1 CON,CON,RVR(1),SVR(1),XYZEQ(1,1),U(1))
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c **%¥x [NJTIALIZE VARIABLES FIRST TIME THROUGH IF NEEDED *%w*
IF (KFSTLD .EQ. 0) GO TO 100
FORCE = DPZERO
EPEL = DPZERO

100 CONTINUE

Material properties are accessed by PROPEV. A single subroutine call is made,
utilising a LP array, rather than one call per property required.

CALL PROPEV (IELEM,MAT,JTYPE,LP(1),AVETEM, PROP(1),4)

C *arkRARRR®  VERIFY GEOMETRY Mh*sniwads
DX = X(2) - X(h
DY = Y(2) - Y(1)
Dz = 2(2) - Z(N)

CON = DX**2 + DY**2
ALEN2 = CON + DZ**2
IF (ALEN2 .GT. DPZERO) GO TO 150
WRITE (10UT,2000) IELEM
2000 FORMAT ('ZERO LENGTH ELEMENT' ,I5)
KEYERR = 1
NFKEY = 1
CALL USEERR (NFKEY)
GO TO 990
150 ALENG = DSQRT(ALEN2)
ALENN1 = DSQRT(CON)

Asthe cylindrical beam is symmetric about its longitudinal axis the transformation
matrix is identical to the USER.ROUTINES spar TR matrix. For non-circular
beams the orientation of the beams ’depth’ axis would have to be accounted for.

c *khhRRkRE FORM TR MATRIX *edhdasdd
c THE TR MATRIX IS THE LOCAL TO GLOBAL CONVERSION MATRIX
C ZERO TR MATRIX

CALL VZERO(TR(1,1),144)

IF (ALENN1 .GT. .0O0O01*ALENG) GO TO 200

SALP1 = DPZERO

CALP1 = DPONE

Go TO 250

200 SALP1 = DY/ALENN1
CALP1 = DX/ALENN1

250 SALP2 = DZ/ALENG
CALP2 = ALENN1/ALENG
TR(1,1) = CALP1*CALP2
TR(2,1) = -SALP1
TR(3,1) = -CALP1*SALP2
TR(1,2) = SALP1*CALP2
TR(2,2) = CALP1
TR(3,2) = -SALP1*SALP2
TR(1,3) = SALP2
TR(2,3) = DPZERO
TR(3,3) = CALP2

In order to re-define the TR matrix in SR100, the 3x3 TR matrix elements are
stored as saved variables and thus passed out of ST100 by PUTELD.

THE 3x3 TRANSFORMATION MATRIX IS STORED IN THE SAVED
VARIABLES ARRAY IT IS THUS PASSED TO SR100,
WHERE IT 1S REQUIRED FOR STRESS EVALUATION.
SVR(16)=TR(1,1)

SVR(17)=TR(1,2)

SVR(18)=TR(1,3)

SVR(19)=TR(2,1)

SVR(20)=TR(2,2)

SVR(21)=TR(2,3)

SVR(22)=TR(3,1)

SVR(23)=TR(3,2)

SVR(24)=TR(3,3)

oon
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As the stiffness matrix is to be fully defined as a 12x12 matrix, so must the TR
matrix.

C FILL OUT 12x72 MATRIX FROM THE 3x3
c

Do 270 1=1,3
13=1+3
16=1+6
19=1+9
po 270 J=1,3

J3=J+3

Jé=J+6

J9=J+9

TR(13,43)

TR(16,46)

TRCI9,J9)
270  CONTINUE

TR(I,d)
TR(I,J)
TR(I,J)

c KRAREAKRREAXENE CAL CULATE MASS AND CENTROID **#*wtwww
XCENTR = (X(1) + X(2))*DPHALF
YCENTR = (Y(1) + Y(2))*DPHALF
ZCENTR = (2¢1) + Z(2))*DPHALF

c #wwkkunssr RETURN IF ERROR(S) OR CHECK RUN ##wikswas
IF ((NSTEPS .EQ. 0) .OR. (KEYERR.EQ.1)) GO TO 990

c *hhhkvk STIFFNESS MATRIXN *kwidnk
IF (KELINC1) .NE. 1) GO TO 400

The stiffness matrix is essentially the ANSYS STIF4 matrix, with simplifications
as the beam is axisymmetric.

c STRAIGHT CYLINDRICAL THIN WALLED BEAM ELEMENT STIFFNESS MATRIX
c BASED ON ANSYS STIF4 WITH SIMPLIFICATIONS FOR SYMMETRY ETC.

Initially, constants useful in the matrix calculations are evaluated.

c EVALUATE SECMOM (ie 1), POLMOM (ie J)
AREA = 2*DPPI*RAD*THICK
SECMOM = DPPI*RAD**3*THICK
POLMOM = SECMOM*2

EVALUATE USEFUL COMBINATIONS OF THE ABOVE

o000

EX*SECMOM

EA = EX*AREA

GJ = (EX/(1+NUXY))*POLMOM
c LENGTH CUBED:

ALENG3 = ALENZ®ALENG

El

c ZERO THE STIFFNESS MATRIX
CALL VZERO(ZS(1,1),144)

c EVALUATE ELEMENTS OF STIFFNESS MATRIX

25(1,1) = EA/ALENG
28¢1,7) = -28(1,1)
28(7,1) = -2s(1,1)
28(7,7) = 281, 1)
28(2,2) = 12*EI/ALENG3
25(2,8) = -28(2,2)
25(8,2) = 25(2,8)
28(3,3) = 28(2,2)
28(3,9) = 25(2,8)
28(9,3) = 7s(2,8)
25(8,8) = 25(2,2)
25¢9,9) = 2S(2,2)
25(2,6) = 6*E1/ALEN2
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25(6,2) = 28(2,6)
25¢2,12) = 25(2,6)
28¢12,2) = 28(2,6)
28(3,5) = -25(2,6)
25(5,3) = 25(3,5)
75(3,11) = 25(3,5
25(11,3) = 28(3,5)
25¢5,9) = 25(2,6)
28(9,5) = 25(2,6)
25(6,8) = 75(3,5)
2S(8,6) = 25(3,5)
25(8,12) = 28(3,5)
25(12,8) = 25(3,5)
25(9,11) = 25(2,6)
zs(11,9) = 28(2,6)
2S¢4,4) = GJ/ALENG
25(4,10) = -25(4,4)
78010,4) = -2S(4,4)
25¢10,10) = Z5(4,4)
25(5,5) = 4*E1/ALENG
28(6,6) = 25(5,5)
25¢11,11) = 28(5,%)
zs(¢5,11) = 28(5,5)/2
25(11,5) = 28¢5,11)
25(6,12) = 28(5,11)
25¢12,6) = 28(5,11)

28(12,12) = 28(5,5)

The element stiffness matrix is transformed to global co-ordinates by evaluating:

[ZS)global = [TRIT [ZS]ipcal [TR]
This is done by the ANSYS routine MHTCH.

c CONVERT TO GLOBAL COORDINATES
CALL MHTCH(TR(1,1),2S¢1,1),12,KTIK,12) |

c SET KEY THAT MATRIX WAS INDEED COMPUTED.
KELOUT(1) = 1
400 CONTINUE

990 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1))
C PUTELD RESTORES DATA BACK TO FILE2

CALL TRACK( 15,°'ST100 ")

RETURN

END

Subroutine SR100.

SUBROUTINE SR100 (TIELNUM,ITYP,KELOUT,ELVOL,KTIK,2ZS,2ASS,2SC)

SR 100 evaluates direct and bending stresses at the nodes, and combines these to
give maximum and minimum nodal stresses.

Stresses are evaluated from the nodal forces and moments:

_Fx Myl‘o Mzro

Odir—7 Opendz = 7 ) Obendy = 7
y 4
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The nodal forces and moments are evaluated by a matrix-displacement method.
The displacement vector d from the stiffness pass is back substituted into the
force-displacement relationship to yield nodal forces.

Forces are evaluated in the local elemént co-ordinate system. Thus:
F| = K1 d)

where
K; = TRKg TRT  d) = TRdg

Thus
F| = TR Kg Dg

C ww*awdadd  GTRESS PASS FOR 3-D CYL BEAM ELEMENT ###wsiws

C
IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL TRACK,GETELD,PUTELD,SRPLT,MAXV, VZERQ
INTEGER KDEMO, IPLTAY(6),1,J,13,43,16,46,19,49
c

C  %w%** START STCOM STORAGE **#w#wws

INTEGER IELNUM, ITYP,KELIN(6),KELOUT(6),NR,KTIK,

1 KEYERR, 10UT,NSTEPS,KFSTLD, ITTER, ITIME,NCUMIT ,KRSTRT, I SPARE,

2 K13,NPRPVL ,MATST,K5,K16, IPROP,KCPDS,

3 K20, KAY,MODE, 1SYM, KAHD, IDEBUG, IXXX,

&4 ITYPE,MAT, IELEM,NROW, JTYPE, IPLOT, IPRINT,,KTEMTP, KCONCV, KBICNV,
S KEYPLS,KEYCRP,KEYSWL,KYSUB(9),K21,NODES(20),  EPAR(50)

REAL ERRVAR(S)

DOUBLE PRECISION
1 DPZERO,DPHALF ,DPONE , DPTWO,DPTEN, DTORAD, RADTOD,

2 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2, TIME3,DELT2,
3 ACEL,OMEGA, CGOMEG, CGLOC, DXXX,

4 ELMASS,XCENTR,YCENTR,ZCENTR, TFCP,SUBEX, ERPAR(20),

5 XYZEQ(20,3),X(20),Y(20),2¢20), ELVOL

COMMON /STCOM/ DPZERO,DPHALF ,DPONE,DPTWO,DPTEN,DTORAD,RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD,TIME2,TIME3, DELTZ,

2 ACEL(3),0MEGA(6),CGOMEG(6),CGLOC(3), DXXX(16),
3 KEYERR, IOUT ,NSTEPS,KFSTLD, ITTER, ITIME ,NCUMIT, KRSTRT, ISPARE,
4 K13,NPRPVL,MATST,K5,K16, IPROP(20) ,KCPDS,

5 K20,KAY(10),MODE, ISYM,KAHD, IDEBUG(10), IXXX(41)

EQUIVALENCE (ITYPE,EPAR(1)), (MAT,EPAR(2)), (IELEM,EPAR(S)),
1 (NROW,EPAR(7)), (JTYPE,EPAR(11)), (IPLOT,EPAR(12)),
2 (IPRINT,EPAR(13)), (KTEMTP,EPAR(14)), (KCONCV,EPAR(16)),
4 (KBICNV,EPAR(17)), (KEYPLS,EPAR(18)), (KEYCRP,EPAR(19)),
5 (KEYSWL,EPAR(20)), (KYSUB(1),6EPAR(21)), (K21,EPAR(30)),
6 (NODES(1),EPAR(31))

EQUIVALENCE (ELMASS,ERPAR(1)), (XCENTR,ERPAR(2)),
1 (YCENTR,ERPAR(3)), (ZCENTR,ERPAR(4)), (TFCP,ERPAR(S)),

2 (SUBEX,ERPAR(6)) ’
EQUIVALENCE (X(1),XYZEQ(1,1)),(Y(1),XYZEQ(1,2)),(2(1),XYZEQ(1,3))
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DOUBLE PRECISION

ZSCKTIK,KTIK),

RAD,THICK,AREA,SECMOM, POLMOM,

PROP(4) ,ALEN2,ALENG,DX,DY,DZ,AVETEM, FORCE , EPEL,
EX,ALPX,NUXY,DENS,ALENNT,
TR(12,12),SALP1,CALP1,SALP2,CALP2,
FELEM(12),DUMMY(12),SDIRI,SBENDI,SDIRJ,SBENDJ,
SMAX1,SMINI, SMAXJ,SMINJ

NOUVPWN =

DOUBLE PRECISION
1 RVR(2),SVR(24),
2 EPTOT,EPTH,SIG,U(24),POSTD(20),CON

EQUIVALENCE (RVR(1),RAD), (RVR(2),THICK)

EQUIVALENCE (SVR(1),PROP(1)), (SVR(5),ALEN2),
1 (SVR(5),ALENG), (SVR(7),DX), (SVR(8),DY), (SWR(9),D2),
2 (SVR(10),AVETEM), (SVR(11),FORCE), (SVR(12),EPEL),
3 (SVR(13),AREA), (SVR(14),SECMOM), (SVR(15),POLMOM)
c THE 3x3 TR MATRIX IS DEFINED FROM THE OTHER 9 SVR FURTHER ON.

c
EQUIVALENCE (KDEMO,KYSUB(2))
EQUIVALENCE (PROP(1),EX), (PROP(2),ALPX), (PROP(3),NUXY),
1 (PROP(4),DENS)

c
CALL TRACK (5,'SR100 *)
CALL GETELD (IELNUM,ITYP,EPAR(C1),ERPAR(1),CON,CON,
1 CON,CON,RVR(1),SVR(1),XYZEQ(1,1),U(1))

c

The full 12x12 TR matrix is required in order to evaluate the nodal forces. The
3x3 matrix passed out from ST100 as saved variables is redefined and expanded

to 12x12.

[ RE-EVALUATE TRANSFORMATION MATRIX: REQD. FOR EVALUATION OF

c NODAL FORCES.
TR(1,1)= SVR(16)
TR(1,2)= SWR(17)
TR(1,3)= SVR(18)
TR(2,1)= SVR(19)
TR(2,2)= SVR(20)
TR(2,3)= SWR(2H
TR(3,1)= SVR(22)
TR(3,2)= SVR(23)
TR(3,3)= SVR(264)

c
C FILL OUT 12X12 MATRIX FROM THE 3x3
c
po 80 1I=1,3
13=1+3
16=1+6
19=1+9
DO 80 J=1,3
J3=y+3
Jé=J+6
J9=4+9
TR(13,43)
TR(16,46)
TR(19,49)
80 CONTINUE

TRCI, d)
TRCI, )
TR(I, J)

c wwansakn EVALUATE NODAL FORCES #iéwaidd

The nodal force evaluation procedure is described at the beginning of this section.



THE NODAL FORCES IN ELEMENT CO-ORDS ARE EVALUATED FROM THE EQUATION
{FELEM} = [TR) (ZS] (U} .
THE MATRIX/VECTOR MULTIPLICATION IS PERFORMED BY THE ANSYS ROUTINE
MAXV, WHICH MULTS. MATRIX A AND VECTOR V.

[z e NeNgN ]

CALL MAXV(2S(1,1),U(1),DUMMY(1) KTIK,KTIK)
CALL MAXV(TR(1,1),DUMMY(1),FELEM(1) ,KTIK,KTIK)

c EVALUATE NODAL STRESSES.

The nodal direct and bending stresses are calculated from the equations given at
the beginning of this section. Note that the direct stress at node i must be negated.
This is a consequence of the force evaluation procedure.

The bending stress evaluated is due to the combined y and z moments: ie

_ [z 2
O0p=V0pz*0py

The maximum stress is the direct plus bending, and the minimum stress the direct
minus bending.

c THE STRESSES ARE EVALUATED AT THE NODES -ONLY.
c
AREA=2*3.14159*RAD*THICK
SDIRI = -FELEM(1)/AREA
SBENDI = ((RAD+THICK/2)/SECMOM)*DSQRT(FELEM(5)**2+FELEN(6)**2)
SMAX] = SDIRI+SBENDI
SMINI = SDIRI-SBENDI
c
SDIRJ = FELEM(7)/AREA
SBENDJ = ((RAD+THICK/2)/SECMOM)*DSQRT(FELEM(11)**2+FELEM(12)**2)
SMAXJ = SDIRJ+SBENDJ
SMINJ = SDIRJ-SBENDJ
c

The results of the stress run are written to FILE12 by SRPLT. In order to do this
the ’structure’ of FILE12 must be defined, and the required results set equal to
elements of the POSTD array.

C whkkd¥ URITE POSTDATA FILE *##weww
200 IF (IPLOT .NE. 1) GO TO 900
C **xk%  NUMBER OF FORCES (LEVEL 1) *#eee
IPLTAY(2) = 12
#®xee®  NUMBER OF STRESSES (LEVEL 2) Wwwaw
IPLTAY(3) = 4
c *axe% NUMBER OF TOTAL SAVED (LEVELS 1, 2, AND 3)
IPLTAY(4) = 20
Cc *#*#%%* SAVE GEOMETRY FOR CONTOURS (0,NO 1,YES)
IPLTAY(6) = 0 .

c

c

c *wxas® DT POSTDATA INFORMATION INTO POSTD *iiwas
po 395 1=1,12
POSTD(1) = FELEM(ID)

395 CONTINUE
POSTD(13) = SDIRI
POSTD(14) = SBENDI
POSTD(15) = SDIRJ
POSTD(16) = SBENDJ
POSTD(17) = SMAXI
POSTD(18) = SMINI
POSTD(19) = SMAXJ
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POSTD(20) = SMINJ
c
400 CONTINUE

*ak¥® DUT PLTARY INFORMATION ONTO FILE 12 **dkwww
CALL SRPLT (1ELEM,ITYP NROW,MAT,L100,2,UC1),NODES(1),XYZEQ(1,1),
1 IPLTAY(1),POSTD(1))

o0

900 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1))

C PUTELD RESTORES DATA BACK TO FILE3
CALL TRACK( 15,'SR100 ')
RETURN
END
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PREPROCESSING | PREP /| number of nodes, etc.

read in from
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STRESS PASS

(User element stresses,
strains etc. evaluated
in SR100)

POST PROCESSING| POST

Figure Al.1. ANSYS finite element analysis procedure.
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A2.1 TRANSFORMATION OF ELEMENT CO-ORDINATE
SYSTEMS.

Finite element matrices may be defined in terms of a local element co-ordinate
system, however prior to assembly the individual element matrices and load
vectors are required in a single global co-ordinate system. This is achieved by
converting the element matrices from the local to the global system by use of a
transformation matrix.

The transformation matrix is a matrix of direction cosines relating the axes of the
local and global co-ordinate systems. Each type of finite element - spar, beam,
plate etc. - has its own specific form of matrix, depending on the geometry and
degrees of freedom of the element. The transformation matrix is defined in
general by the equation:

{local vector}=TR{global vector) (A2.1a)
or conversely

{global vector}=TR '(local vector} (A2.1b)
Thus the local displacement vector is related to the global system by:

{d,}y=[TR]{dy} (A2.2)
and similarly the local force vector by:

{F}=[TR]{Fg4} (A2.3)

Local element matrices are also transformed into a global system by the use of
the same transformation matrix. Consider, for example, the stiffness matrix. The
element and global stiffness equations are

{F . y=[KI{d;} (A2.4)
{Fgoy=[K,1{d,} (A2.5)

Inverting (A2.2), the global force vector in (A2.5) may be expressed as:

(Fy=[TRI'{F)

Substituting for F| from (A2.2) gives:
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(Fy=[TRI'[K,]{d}
and equating with (A2.5):
(K {d,»=[TRI'[K,]{d,}

Substituting for d, from (A2.2):

[K,1{d,y=[TRI'[K,J[TRI{d,)
and equating coefficients of d ,, the global stiffness matrix is defined in terms of
the local stiffness by:

[Kg)=[TR]'[KTR]

This argument may be extended to include the other element and global matrices.
Thus, in general:

[global matrix]=[TR] '[element matrix][TR] (A2.6)

) 1.1 The G [ Rotation Matri

The transformation matrix is defined by examining the relationship between two
general arbitrarily orientated co-ordinate systems.

Consider the systems, X,Y,Z and X", Y"Z’, which are initially coincident. Now

let X", Y",Z be rotated about the origin O into a new orientation. The relationship
between the systems may be defined in terms of the angles through which system
X°,Y",Z" was rotated, but in practice it is simpler to use the direction cosines of

the angles.

Let the first system have unit direction vectors i,j,k, and the second system unit
direction vectors u,v,w, as shown in Figure A2.1. A typical direction cosine A ,; is
defined as the cosine of the angle between v and i (¢, in Figure A2.1).

It can be shown that the unit vectors i,j,k, have components with respect to u,v,w
given by the equations:

is}"uiu-‘-x'uiv-‘.xwiw (A2.7a)

j=xu,u+}\0,v+)\ww (A27b)
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K=A U+rA VEN W (A2.7¢)

These equations can be used to establish the general relationship between the
two systems by considering the co-ordinates of a point P in space.

Let P have co-ordinates (x,y,z) in the original system, and (x",y’,z") in the rotated

system. The position vector O P is thus

OP=xi+yj+z In system XYZ

l

o

P=x"u+y v+z'w In system X"|)Y",Z".
Equating these definition of 5 F
gives:

x‘u+y ' v+z'w= xi+yj+rzk (A2.8)

Substituting the equations for i, j and k given in (A2.7) into (A2.8) and rearranging
gives:
Xu+y vz Tws(A XA, Y +FA,2)U
FNXFN Y ARV

FALX TN, YA RR)W

Thus equating the coefficients of u, v and w defines the relationship between the
two co-ordinate systems in the equations:

x‘=}\'uix+)\ujy+>\’ukz (A2.93.)
y’zxuix-*)\'juy*-)\‘/wz (A2'9b)
Z’=xkux+xkuy+>\‘sz (A2.9C)

This may be written in matrix form:
(X y=[THHX) (A2.10)

where:
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ui uj uk

}\uk (A2.11)
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This relationship is valid for any vector quantity, and thus [T) is defined as the
general vector rotation matrix between co-ordinate systems X" and X.

For clarity the direction cosines are henceforth defined by axes labels x,y and z,
such that, typically, A ., is the direction vector of the local x axis to the global y

axis etc.

Thus the general rotation matrix is defined:

}\xx }\xy sz
(A2.12
[T]= xyx }\yy Kyz )
}\zx }\zy 7\22
1.2 Ortl lity of Transf ion Matri

The vector rotation matrix has the very useful property of orthogonality: its
transpose is also its inverse. This is due to the relationship between the direction
cosines of the mutually perpendicular axes. Typically:

Aoy *ANA,,=0

xz'Vyz

>\‘:2:x+}\:2ry+7\‘2 =1 and x’xxkyx*—)\'

Xz Xy yy

It can be shown that

[TIT] =[1]
and thus, by definition,

[r)" = [T}

Similarly, as the general element transformation matrix [TR] relates vector
quantities, it may also be shown to be orthogonal. Thus:

(TR]T = [TR]' (A2.13)
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\2.1.3El Global Transf tion Equati

The orthogonality of the general transformation matrix simplifies the general
element-global vector and matrix relationships given in equations (A2.1) and
(A2.6). From these equations and (A2.13) above we may define the following
relationships:

{(d,y=[T17{d,} . (A2.14a)
(Fy=[T1{F (A2.14b)
(K,)=[T1[KIT] (A2.14¢)
(M 1=[T1 [M,][T] (A2.14d)
Where d = displacement

F = Force

K = Stiffness

M = Mass

;1.4 Cylindrical Straight Beam Transformation Matri

Consider a 2-node cylindrical straight beam element, as shown in Figure A2.2.
Each node has 6 degrees of freedom: 3 translations and 3 rotations.

The general rotation matrix [T] for a vector in three dimensional space is defined
in (A2.12). In this case each point in space has 6 degrees of freedom. However,
as the translations and rotations are independent orthogonal vector quantities,
the 6 degree of freedom transformation matrix for an arbitrary point, or node, i
is simply:

[(T]1 [0O] }
T.1=
o= {61 i
Applying the same argument to node j, the full 12x12 element transformation is:

(T.] [0]
[TR]’[[O] [T,]}

In the case of a straight beam the orientation of nodes i and j are the same. Thus
the transformation matrix for node j is.the same as that for i.
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Therefore [TR] becomes:

T,] [O]} (A2.15)

(

TR]=
TR [ (0] I(T.]
Hence, in order to fully define [TR] only the 3x3 [T] matrix is required.

To define [T] nine direction cosines, as defined in (A2.12), are required. The
simplest way to evaluate these is to consider the element originating from the
origin of a system parallel to the global axes, as shown in Figure A2.3a.

The local x axis, x] is along the length of the element from node i to node j. Thus
the direction cosines relating it to the global axes are:

A, =Cosa A, =cosf A, ,,=COSY

The length of the element is

L=\ﬁdx2+dy2+dzz) where dx=X,-X,,
dy =Y g=Y
dz=2,,-72Z,

and therefore:

}\xx=cosa=—d—x ny=cos[3=d—y A =cosy=d—z (A2.16)

L L xz L
Thus the orientation of the local x axis with respect to the global system is fully
defined. Now consider the local y axis.

As the element is cylindrical the angle at which it is orientated about its x axis
does not affect its behaviour. Therefore the local y axis, (or z if preferred), can
be assigned an arbitrary orientation. To simplify the calculations let y] lie parallel
to the global X-Y plane. Thus at node i y is perpendicular to Zg. Considering

Figure A2.3(b):

A, =cosa’ A,y =cosP’
_ ‘20 L_n
A,,=COSY = as vy =5
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Viewing along the global Z axis shows
(msa’=um(g+ﬁ'>=—MnB

Therefore

A, . =-sinf3’ A, =cosf3’ A,,=0

rx

As dz=0, the projected length of the element in the Xg-Yg plane is

Q=y(dx?+dy?)

Thus the direction cosines of the local y axis can be defined:

=—d_{

— dy
A, =— A A 0
Q 7 * (A2.17)

yx

Finally, as the 3 local axes are orthogonal, the direction cosines of the local z axis
may be defined by considering the vector product of the local x and y axes direction

cosines. Thus:

dxdz
S N T TV LQ

d
NS WS YD W WL Zgz

dx?+dz? Q as dx2+dz?%=02
KZZ:XXZKYY_KXYA'YX:_TQ—:Z Q

Substituting the direction cosines into (A2.12), the circular beam 3x3

transformation equation is:

[ dx  dy  dz
L L L
-dy dx
1| 2% ax 5 (A2.18)
(7] 0 0
-dxdz -dydz Q
| LOQ LQ L ]
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\2.1L5G | Straight Beam Transf . i

In the case of the circular beam the orientation of the local y axis to the global
system was assigned an arbitrary value. However in the general case of a non
axisymmetric beam, the beam properties are dependant on the orientation of the
beam’s y1 axis. Therefore orientation of y] must be accounted for in the
transformation of element matrices. Thus the transformation matrix must rotate

the local y onto the global Y.

Consider the transformation of node i of a general beam as shown in Figure A2.4a.

The transformation matrix defined in equation (A2.18) rotates the local system
onto the global system as shown in Figure A2.4b, (viewing from along the -X axis).
The local x axis has been rotated onto the global X, but y] and z] lie at an angle
¢ to their global counterparts. Therefore, in order to align these axes, a further
rotation is required. This is performed by a second rotation matrix [ ¢ ] defined
from the general matrix (A2.12):

Kxx ny xxz
[¢] = >\yx )\yy Kyz (A2.19)
}\zx }\zy 7\22
where:
A ., ,=cosO=1 A.=A_=\ =cosI—l=O
xx xy xz yx 2
= n .
}\'Y)‘—COS¢ }\'yz=cos(é——¢)=81n¢

A=A A~ M), =0
Ny =Ayehye A A, =sing

UL NV U S, S e Y

The general straight beam transformation matrix is obtained by applying ¢ to the

cylindrical beam transformation matrix:

[T]=[¢][Tcyl beam]

Thus the 3x3 general straight beam equation is found to be:
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-d; dxdz d 3
[T]= ( Q/COSO- ZQ Sln@) (Fxcosm- ZSZSUW) (%sintb) ” (A2.20)

Unlike a straight beam, the end nodes of a curved member do not share a common
orientation with respect to the global axes. Therefore the general form of a curved
beam transformation matrix is:

[TR]=[[ (] [O]J
(0] I[T,] where [T ;1#([T,)]

The nodal transformation matrices [Tj] and [Tj] may be derived from the straight
beam equations by considering the end nodes to be joined by a general straight

beam.

Consider node i of the curved beam shown in Figure A2.5.

The bend lies in the local x| z] plane. Due to the curvature of the beam, its local
x and z axes lie at an angle gto the local axes of an imaginary straight beam joining
itoj. By applying a rotation matrix [ © ] to the real local axes, they can be aligned
with the imaginary system. Consequently the transformation from local to global
co-ordinates is completed by applying the general straight beam transformation
matrix to the © rotated matrix.

Applying the general rotation matrix equation (A2.12) to node , the node i curved
to straight beam rotation matrix 9, is found to be:

>\xx ny )\xz
[Gz]= ny Kyy xyz
>\zx )\’zy }\zz

where:
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= — = n—
A .. =CO0S ny—cosé——o
N - n+9 L 0 n

xz"‘COS '2‘ 2 - Slné ny=cos§=o
A..=cos0=1 A =cosI—[-O
vy yz 2_

~ 6
xu—}\w}\ﬂ—)\”}\yy—smé }\zy=}\yz)\yx_;\xx)\yz=o

0
>\”=>\xz>\yy—>\w>\“=cos§

Thus:

(c0s2) 0 (-om)

[0,]1= 0 | 0
0 0
h(sm§> 0] (cosé) |

As the beam is circularly curved, repeating the procedure for node j shows:

[0,1=[0,]"

Therefore the nodal transformation equations are:

[T|]=[®][TtS] (A2.2].a)
[T,1=[017[Ts] (A2.21b)
Where

[T,s] = Straight beam node i 6x6 TR matrix

and

(0,1 [0]
[9]'[[01 [&]J
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Figure A2.1

YA

Coordinate systems X,Y,Z and X,Y’,Z’.
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A22 Cylindrical straight beam element coordinate system.
Figure A2. ]
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AUt Y
v NN N8 !,X

dx

(b)

Z

Figure A2.3 Cylindrical straight beam element orientation with respect to
the global system.
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Figure A2.4 General straight beam coordinate system.
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Figure A2.5 Curved beam to straight beam coordinate system
transformation.
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Al.1 PROGRAM BEL1PROG.FOR

PROGRAM BELIPROG

FLEXIBILITY AND STRESS FACTOR PROGRAM FOR
SEMI-TOROIDAL BELLOWS

WRITTEN BY DONALD MACKENZIE, MARCH 1989

This program evaluates the fiexibility and stress factors of

semi-toroidal bellows based on the Laupa and Weil /Findlay

lﬁl:depencemlyu Six Fourier terms used in the shape
n.

INTEGER INEQJ K.LKIN

DOUBLE PRECISION AMA 6.6).BVEC(6). e Gé ;,cvu,u 6),

& LAMBDA LS4, FLEX DPPI,BMAT(2,6),D(2,2)
Input routine: Interactive.
PRINT ','I.NPUT PIPE RADIUS'

READ &6. ;TORR

PRINT *PIPE RAD. ="TORR

PRINT ¢ 1NI;{UT OONVOLUTION RADIUS’
l’RlN’l‘g '(QONV RAD =' R

PRINT ¢, INPUT THICKNESS'

READ gﬂ.' THICK

PRINT ¢, THICK. =", THICK

PRINT *INPUT ELASTIC MOD.’

READ Sﬁ.‘ E(

RINT * INPUT POISSON RATIO"
R
ZETA =~ THICK/2
~TORRTHICK/R**2
154=(LAMBDA?*2.0)°4.0
PRINT */LAMBDA ='LAMBDA

SEPQN

5

é

2)= 0.111111D0+(1 [Li

.0D0
= 4 T1OD0+ (onma)o/m)
~ 0.028132D0/LS4
= 0.011005D0/L.S4
~ 837758+ (038751 /1.54)
~ 0.016433D0,
~ 130699690+ (0.02457TDO/L.S4)

C
DPPI =3.141.926535803D0

BVEC(1) = DPP1/4
BVEC(2) = 20D0/3.0D0

BVEC(3) - -4.0D4/15.0D0
BVEC(4) = 6.0D0/35.0D0
BVEC(S) = -8.0D0/63.0D0
BVEC(6) ~ 10.0D0/99.0D0

C SOLVEEQN |A}{C) -L)FOR C)
C SOLUTION BY THE GA . METHOD.

C
C INITIALLY EQUATE BVEC TO CVEC
C

PO1I=16
1 CVEC(l)=BVEC(l)

NEQ=6
C

NEQI1 =NEQ-1
DO 100 K =1 NEQ1
CVAL = AMAT(K K)
K1=K+1
DO 11 J=K] NEQ

11 AMATY(.

) IF SABS(('ZQAL) 1B-6 47

5 FORMA’ f)"“ SINGULARITY IN ROW' 15}
GO TO 300

€ DIVROW BY DIAG COEFF

c

7 DOB81-KINEQ

8 AMAT%(J) =AMAT(KJ)/CVAL
CVEC(K)~CVEC(K)/CVAL

< ELIMINATE ROW UNKNOWN X(K) FROM ROW |
DO 10 1=KI NEQ

CVAL = AMAT(TK)

DO 9 )=INEQ
9 AMAT(LY) =AMAT(LJ AL'AMAT(KJ)
lo %\éac 1) =CVEC(T CVEC(K)

C
((:? COMPUTE LAST UK

iy AMAT(NEQNEQ))-1E-6)1,1,101
ém évacﬁ NEQ) = CVBC(NEB)/AMAT(NBQ,NEQ)
C APPLY BACKSUB TO COMPUTE REMAINING UKS
C

DO 200 L=1,NEQ1

K=NBQ-L

Ki=K+1

DO 200 J=Ki NEQ
200 CVEC(K) =CVEC(K)-AMAT(KJ)*CVEC(J)

C
g EVALUATE FLEXIBILITY FACTOR

FLEX= *CVEC(1)+ BVEC(2 (2
c 1+1Maé(l:‘)/~"ZJC (A)w( ¢ (synv&&s) C\@c(s))/z

PRINT *'FLEX ='FLEX
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a0

PRINT ¢, OUTER SURFACE’
PRINT *;’ POSN. SIG AXIAL SIG HOOP'

= -50
DO 250 ILOC=1,19
= POS+50
POS*2.1415927/180.
POS’

2

33333333353

YR BL R
A
.

BMAT(LS) - -ZETA'SPCR/R

BMA’ = -ZETA*10.2PC10

BMAT(Z | --rcrrcra's
R

gm - ;‘57+ /3 o5/ m

MA’ - +PC4/5.)*R*5/TORR

BMA’ = {PO(5.+PCS/1) RS/ TO

BMA' - 1+ )‘R‘S/'IORR

= NU*DCON
2,1) = NU*DCON
= DCON

B - By
-

LETARBI'H!ARYAX]ALFORCE = 1000
DO 2401~

91000.*({1.-NU**2)*R**2
&-ﬁ‘%&% cxeegy

1) = 'l%l 1 +BMAT(I,2 *U(2) + BMAT(1,3)°U(3)
e L R R
! +&A1‘(2,4)T|S(4 +B&IA‘I’(2.S) *U( T(2,6)*Uf
{D
zz?z B ey
NORMALISE STRESSES BY DIVIDING BY SIGBO
SIGBO - 30°R*1000/(3.141927"TORR"THICK"*2)
ﬂa lg 1)/SIGBO
2) = Sle

POS ~ POS* 1

mwnmz 6,'(9F10 )') POSSIG(l).SlG(2)

C
300 CONTINUE

END

nananNnaOnNOOONNn

00000000

an 00

noa

BEI2FLEX.F

PROGRAM BEL2FLEX
This program evaluates the flexibility factor of a
semi-toroidal bellows using a finite e(lemcm )
approach. Based on nometric (Fourier) interpolation
- Trigo! pol
’l‘hcbello“mmaesmnmscvaluawd usmalg
quadrature, 3 points through thickness and 5 along the arc.

Donald Mackenzie, March 1989,
NOTE. Ia this
THETA = &%lo AXIAL DIRECTY
PHI = CIRCUM )DIREL‘HON

mrucrr DOUBLE PRECISION (A-H,0-
UBLE PRECISION WI(3),AK(3 WJ(S) (5).A26),

S%'BI!L( 33} NUXY 6.33

BT BT 2] D2 DB(23)

INPUT ROUTINE: Interactive.

MATERIAL PROPERTIES: Young'’s modulus, Poisson's ratio.

BELLOWS GEOMETRY: R = convolution radius, TORR = mean
radius from symmetric axis, THICK = wall thickness.

PRINT ¢ '[NPUPRE[PE RADIUS’

I’RIN'I'g }PE RAD. =" TORR
PRINI‘ . 'INPUT CONVOLUTION RADIUS*

PRINT *INPUT POISSON RATIO'
READ gs,_;)uwxv
RINT *NU =*NUXY
STIFFNESS MATRIX ¢ CONSTANT
PA ~ 3.1415927D0/4
CONST = 20D0* 'PA'A.DDO'R“I‘ORR/(l-NlD(Y"z)
c?;qsm‘unva MATRIX [D]*(1-NUXY**2)/EX
) =10
1.2) = NUXY
21} = NUXY
2.
NUMERICAL INTEGRATION PARAMETERS.
WEIG]
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an

ann

STIFF(LD)
wrgg-omo

an

anono

Bl = 090617984 5938664
B2 = 0.538449310105683
B3 = 00DO
B4 = -B2
BS = -Bl
APPLY ACTUAL INTEGRATION LIMITS:
SUBSCRIPT [ REFERS TO H, ] TO THETA
T= 'l"HlCK 2

Wl i WI(l)
Ve

WI(1) = P4*WT1
WI(2) = P4*WT2
WI(3) = P4*WT3
WI{4) = W1(2
WI(S) = WI(1
AJ(1) = P4*(1.0D0+B1
Al(2) = P4*{1.0D0+B2
AJ(3) = P4*(1.0D0+B3
AJ(4) = P4*(1.0D0O+B4
AJ(S) = P4*(1.0D0+

ZERO STIFFNESS AND P (ATDA) MATRICES
DOW1=16
DOJ=16
=0.0D0

START OF NUMERICAL INTEGRATION (DOUBLE) LOOP
DO1001=13
DO 100J)=15

EVALUATE B MATRIX

MATRIX [A]: in-dispiscement “shape®.
A S

- e

THETA = A}R
ST = SIN| A
CT -

12) = 0.

13) = 30°HR*ST2

- B0*HR*STT3

- SOHROSTA

= (ST-THETA*CT)/TORR

z Stoarese mmﬂom

= . +

- ST+ ma:gzgwmwnnom
= {ST4*ST+ 75*CT4*CT)/TORR

= CT/TORR

o 2 o e

MATRIX [G]: Strain displacement “magnitude®, with actual
boundary conditions applied.

1,1) = 1.0

G{1.2) = 00

13) = 00

2,1) = 346238898
22) = 30/40°R
G(23) = 50/40
G(31) = 271238808
32) = -R

nnnon

6,2) = 30/80°R
63) = 3.0/4.0

EVALUATE [BMAT] =
(EVALUATE (BMAT] - (A} (G}

DO 40 JT=13
BMAT .n') = 0.0D0
DO 40
40 awm(rrm BMAT(ITIT) + A(ITKT)*G(KTJT)

¢ EVALUATE [BT] = TRANSPOSE OF [B]
DO4TIT=12
DO47JT=13

37 BT(ITIT) = BMAT(IT.IT)

g EVALUATE [P] = [B]T [D] [B] MATRIX

an

& ranm - = Krmmy « Bromanpeaerm)

Tt ——
NK=-1

DOML=-13
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STIFF(K,L) = STIFF(K,L) + CONST*WI(I)*WI(J)*P(K.L)

%%EUCAL INTEGRATION LOOP

APPLY STATIC CONDENSATION: Evaluate the beliows sxial stiffness.
CALL REDUCE (STIFF STBEL)

EVALUATE FLEXIBILITY FACTOR

DISPLACEMENT/ UNIT FORCE OF BQUIVALENT STRAIGHT PIPE.
DELTA = R/(2°3.141937*TORR*THI

DELTA = D (THICK/2 o
Dmn-nmxuixﬁ Nuxv/ )3
C FLEXIBILITY ;
C Rgm ﬂ(m)sgkm)
'10RR‘THICK/R"2
PRINT“S‘HFF smm K})
*’FLEX =

nnoo nnnngna

END

Q

AJd.2.1 SUBROUTINE REDUCE

SUBROUTINE REDUCE (SE,RED)

This routine applies the static condensation procedure
to reduce the 434 bellows stiffness matrix to the single
value of axial stiffness.

FULL, SYMMETRIC STIFFNESS MATRIX SE.

CONDENSATION OPERATIONS ON LOWER TRIANGLE OF SE.

SIZE OF FULL MATRIX = NSIZE

NUMBER OF DOF TO BE REDUCED = NUM. DOF TO BE REDUCED
STORED IN LAST NUM DOF.

annnnannNnNan

UBLE PRECISION (A-H 07)
Dounuzrmaas:on SE(33) 1L1)

NSIZE = 3
NUM =2
C OONDENSATION OF LOWER TRIANGLE OF SE.
DO 30 K=1NUM
LL = NSIZE -K
KK=LL+1
DO2WL=1LL

I:O 10 “S-I%(ijl, Smm

10 ='SE(L,M) - SE(KK.M)*DUM
20 00

30 OCONTINUE

C FILL IN THE UPPER TRIANGLE BY SYMMETRY.
DO4K-1LL

DO4L=1K

[¢]

40
[
C BQUATE FIRST SE(1,1) TO RED
C REDISTHE MATRIX
RED(L1) = SE(1,))

aannanannnnn

000000000

an

END

A3.3 PROGRAM BEI2STR.FOR

PROGRAM BEL2STR

This p ] the normalised stress distribution
in a semitoroidal bellows using a finite element approach.
Radial adisplacement interpoiated by trig series.

The bellows stiffness matrix is evaluated using

quadrature, 3pommhroughthﬂnmnnds£ the arc.

Written by Donald Mackenzie, March 1989.

NOTHETA = MERIDIONAL IRECTION
O AXIAL) D
PHl - CIRCUMFERENTIXL A)JSYMM ) DIRECTION.
IMPLICIT DOUBLE PRECISION (A -H, O-.A}
DOUBLE PRECISION Wi S)Al(

2
1 P(60) STIFF )N, gmz ?‘n%ﬁ
63),GT(3,6).STBEL(1,1},U T(?.S) () 516G(2)

Input routine: Interactive.

MATERIAL PROPERTIES: Young’s modulus, Poisson’s ratio.
BELLOWS GEOMETRY: R = convolution radius, 'IORR = mean
radius from symmetric axis, THICK = wall thickness.

Here set values of geometry parameters are given.

Alternatively an input procedure or loop could be used.

PRINT *INPUT PIPE RADIUS'
*) TORR

6,
RlN'l‘S.'PgPE RAD. -’ TORR
PRINT *INPUT CONVOLUTION RADIUS'

PRINT ,'INPUT POISSON RATIO’
READ 6.T)UNUXY
PRINT ¢, NUXY

MAT PROPS
EX = 2100E3
NUXY = 03D0
V = NUXY
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anna

an 0o

30

o}

(o}

WT1 = 0.236926885056189

Bl = -09061 9845938664
g -osummlm

N LIMITS:
THRO'THICKNBSH -'I'HICK/Z'I‘O'I‘HICK/Z.
ALONG MERIDIAN THETA = 0TO Pl

SUBSCRI]’I’IRE?BRS'IOH.J'IOTH A
T = THI
W'l i =T

R

Wl(l)
P4 = 3.1415927D0/4.0D0
WI(1) = PA*WT1

WI(1
AJ(1) = P4*(1.0D0 + Bl
AJ(2) = P4*(1.0D0+
AJ(3} = P4*(1.0D0+B3
Al(4) = P4*(1.0D0+ B4
AJ(5) = P4*(1.0D0+

STIFFNESS MATRIX CO!
CONST = ZDDO‘E(‘P"4.0DO‘R‘108R/(I-NUXY"2)

AND P (ATDA) MATRICES

SET UP INTEGRATION DOUBLE LOOP
DO 1001=13
DO100J=15

EVALUA’

HR - AL/
THET.

%Ji'lﬁm

= 80°*HR*STT3
-IS,O‘HR‘SN

2.1 = ST'IHETA'C'I )/TORR
-Sl“Sl‘-CP /TORR
= SI‘2'ST+5‘ RR
STT3*ST + *CT3*CT)/TORR
sn%n+5%nrcnnonk

ana
§c
3

'ALUATE UPPER TRIANGHLE OF INTEGRAL MATRIX
MULTIPLYING BY WEIGHTS

R R R R R R
PRPE P>

£
:
§
3
:
:

o ch.L&E STIFF(K.L) + CONST*WI(1) *WI(J)*P(K.L)
éoo CONTINUE

C FILL IN LOWER TRIANGLE BY SYMMETRY
DO300I=16
J=61
K=171
DO300L=1)
STIFF = STIFF(LX)
300 CO!

c

C GMATRIX

=10

=00

=00

= 346238898
= 30/40°R
= 50/40

- -271238898

24603888
= 30/40°R

“ﬁﬁﬁubhﬁﬁgﬁﬁi

19449
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52) = -1.0/20°R

C
¢ Bl
DO40I~13
SG(LJ) = 0.0D0
DO4S0K=16
350 SGQJ) = SG(U) + STIFF(LK)*G(KJ)
C RV,
DO 47 1oha
DO4N =16
670 GT(1J) = GU.I)

M E o e
DO 5003=13

= 0.0D0
K=16

g0 S0 S o

SOLVE THE EQUATION (F} = (K] {U} FOR U
STORE FORCES IN U \
LET F=1000 FOR NOW

g

CALLSOLVE (SBU)
PRINT *’LAMBDA ='TORR*THICK/R**2
PRINT *,'DISPLACEMENTS =",U(1),U(2),U(3)

EVALUATE THE STRESSES
PORM THE B MATRIX AT POSITION ANGLE PTHETA

(9] anno

anane

15) = -150°HR*PST4
16) = 0.
21) = (PST-PTHETA® RR
22) = (-PST*PST-PCT® RR
A(23) = - PST+ 5 PCT)/TORR
u - Pg?‘T.B‘PCN‘PC'l'). RR [TORR
- 4°PST+
{man 1o
Al
DO 640 JT=13
BMAT(!TJT) = 0.0D0
DO 640 KT

0 nmr(rrm BMAT(ITJT) + A(ITKT)*G(KTJT)

c EVALUATE STRAINS {EP} = [B)[U}
EP(1) = BMAT(1,1)°U(1)+ BMAT(1,2)°U(2) + BMAT\
m’sz; = BMAT| Ll;‘UE1§+BMAT{ZJ;'U&;H!MATé

EVALUATE STRESSES ‘SIG) - [D] {EP}

§f°§‘; ~ S ‘-’i"m”{f;Nm-m»ﬁzR

a0

SIG{2) = SCON*{EP(1)*NUXY +EP(2

an

IORMALISE STRESSES BY DIVIDING BY SIGBO
SlGBO 3 O‘R‘I(XI).O/(S 1415927°TORR*THICK**2)

SIG(1) = SI /scho
SIG(2 -sxez
A'lao/31415927

POS = 900~
WRITE (6, '(9n03)') POS SIG(1),SIG(2)
c
900 CONTINUE
1000 CONTINUE
END
c
SUBROUTINE SOLVE (AMAT,CVEC)
C PROG TO SOLVE MATRICES BY THE GAUSS ELIM. METHOD.
g REF. BREBBIA/FERRANTE PROG13
g SOLVES EQUN. {A] {C} = {B} FOR {C}
c
INTEGER I,NEQJ,K,L X1 NEQ1,LOOP
c DOUBLE PRECISION AMAT(3,3),CVEC(3)
NEQ = 3
NEQI =NEQ-1
DO 100 K= 1.NEQI
CVAL=AMAT(K.X)
Ki=K+1

DO 11 J =K1 NEQ
11 AMAT(},K) =AMAT(KJ
IF (ABS( AL)-IE6)4,47

R
5 FORMAT (‘**** SINGULARITY IN ROWI5)
GO TO 300

C
C DIV ROW BY DIAG COEFF
[

13
23

e
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DO 8J~KI,NEQ
AMA' « AMAT(K J)/CVAL
=CVBC(K)/CVAL
ELIMINATE ROW UNKNOWN X(K) FROM ROW [
DO 10 1-K1 NBQ

9 AMA’ :} EJ) é bCVAL‘AMAT(KJ)

C
C COMPUTR LAST UK

Q00 w=

(NEQ,NEQ))-1E-6)44,101

101 ENEQ) = CVEC(NEQ)/AMAT(NEQ NEQ)
APPLY BACKSUB TO COMPUTE REMAINING UKS
DO 200 L=1,NEQ1
K=NEQ-L
Ki=K+1
DO 200 =K1 NEQ

C?m CVEC(K) CVEC(K)‘AMAT(KJ)‘CVFC(J)

300 RETURN
END

C

A3.4 PROGRAM BELJ3FLEX.

PROGRAM BEL3FLEX
This program evaluates the flexibility factor of a
semi-toroidal

bellows a finite element approach.

%mmﬂmbyqﬂn&powm
matrix is evaluated using

quadrature, 3 points through thickness and 5 the arc.

WmenbyDomldMnckm,Mm:hlw.

SAX.IAL DIRECTION
) DIRECTION.
IMPLICI'I‘ DOUBLE PRBCISION( -H,O- 2
1 3 Wl(S) (5)A(25),
l.l) 1‘(23) -D(2-2)-DB(23)
Input routine: Interactive.

ananannOOnannn

MATERIAL PROPERTIES: Young’s modulus, Poisson’s ratio.
BELLOWS GBOMETRY: R = convolution radius, TORR = mean
radivs from qmmun‘c axis, THICK = wall thickness.
READ 6, i

ivlmm -

PRINT *; 00Nvoum0N RADIUS'
READ (6°) R

0000000

o0

an

ano

an

PRINT *'CONV.RAD =
PRINT * 'INPUT mlCKNBSS

='EX
PRINT * 'lNPUT POISSON RATIO®
BeAD
PRINT ¥/ ="' NUXY

STIFFNESS MATRIX CONSTANT
P4 = 3.1415927D0/4.0D0
CONST = 2.0D0°EX*P4°4.0D0*R*TORR/(1-NUXY**2)

CONSTITUTIVE MATRIX {D]*(1-NUXY**2)/E

D(1,1) = 1.0
D(12) = NUXY
D(2.1) = NUXY
22

NUMERICAL INTEGRATION PARAMETERS.
WEIGHTS

W1 = 0.555555555555556D0

W2 = (.888888888888880D0

W3 = Wl

ABSCISSA

A3 = 0.774596669241483D0
A2 = 00D0

Al = -A3

WT1 = 0.236926885056180
WT2 = 04

Bl = -0906179845938664
B2 = 0.538469310105683
B3 = 0.0D0
B4 = -B2
BS = -Bl
APPLY ACTUAL INTEGRATION LIMITS:
SUBSCRIPT I REFERS TO H, ] TO THETA
T= 'IHICK 2

wI
=TwW2
é ; Wl(l)

= PA*WT1

2 = P4*WT2

WI(3) = Pl‘WB
W.l 4) =

- P4‘ LOD0+BI
= P4*(1.0D0+B2
= P4*(1.0D0+B3

4 = P4*(1.0D0+B4
= P4*(1.0DO+
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C  ZERO STIFFNESS AND P (ATDA) MATRICES C EVALUATE [BT] = TRANSPOSE OF (B]
DO301=16 DO47IT= 1.2
DOJ=16 DO47JT=13
STIFF(1)) =0.0D0 47 s'r(rr,n') =BMAT(ITJT)
= 0.0D0 C
go é‘é?rmluu g EVALUATE {P] = [BT [D] [B] MATRIX
C START OF NUMERICAL INTEGRATION (DOUBLE) LOOP DOS0IT=12
DO100I=13 DO SO JT=13
DO 1003=15 DB(ITJT) =0.0
C DO =12
(c: EVALUATE B MATRIX go DB(IT,IT) = DB(IT,JT) + D(IT.KT)*BMAT(KT IT)
(o] rain-displacement *shape”. DOWIT=13
(';3“"’) DO 60 JT=13
P(IT, on
DO 60
C'r - 6 P(ITJT) = r(rr,rr)+ BT(IT KT)*DB(KTJT)
B ~ THEL (o
g - g;‘BB (C: EVALUATE STIFFNESS MATRIX.
- = {STIFF) PREVIOUS + CONST*WEIGHTS * [P
B4 = B3°B lgo E- l,l‘s !
BS = B4*B DONL=13
- 23?0 go STIFF(K,L) = STIFF(K,L)+CONST*WI(I)*WJ(J)*P(K.L)
= 20D0*HR*B 100 CONTINUE
= HR*(6.0D0+3.0D0*B2 C END OF NUMERICAL INTEGRATION LOOP
= HR*{4.0D0*B3 + 24,0D0*B) c
- g S%I?RO‘BH-&.ODO‘M) g APPLY STATIC CONDENSATION: Evaluate the axial stiffness.
- CT- RR CALL REDUCE (STIFFSTBEL)
- - B RR C .
- *CT-3.0D0* RR C EVALUATE FLEXIBILITY FACTOR
- *CT-4.0D0*B3* C
=- *CT-5.0D0* /TORR C  DISPLACEMENT/ UNIT FORCE OF EQUIVALENT STRAIGHT PIPE.
g MATRIX (G} with actual gg:;A R 2‘3 l4l$37"IORR' THICK*EX)
{G]: Strain displacement “magnitude®, with act A = D 32 (THICK/2))**2
C mm% DE.TA-DELTA‘ Lé Nl%‘)z
2 o Dassaratoonee © Me) T
-0, 1421 R = 1/(STB| *DELTA’
= 0.24543692610D0 C WRIME R&UL%{I‘O)SCREB)
= 70D0/16.0D0 PRINT */LAMBDA ='TORR'THICK/R**2
= 0.04908738520D0*R PRINT *,'FLEX ='FLEX
- G(21 C
- 0, END
= 1.0D0/380D0*R (o4
- 053 SUBROUTINE REDUCE (SE,RED)
-1 18360D0 C  ***SEE APPENDIX 321 ***
- &Jﬁ;smlom'k
= -0.12900613770D0 BE F
= 0.10132118360D0*R
- % PROGRAM STRPOLY
- 4820D0 C  Program to evaluate the normalised stress. distribution in
= 0.1290061370D0*R (o} idal bell Based on poly } interpolation
= G(6,1) ((:_‘ of tangential displacement. Casi L
C EVALUATE [BMAT] = [A] [G} C 3 points thro* thickness, 5 along arc.
DO4WIT=12 C
DO40JT=13 C  Written by Donald Mackenzie, March 1989.
BMAT(ITJT) = 0.0D0 Cc
40 mﬂl’f-}g BMAT(ITJT) + A(ITKT)*G(KTJT) DOUB(I:E. Ql?s%?s[i%: wi(3 )321’(‘3(%{(03 A
- + 1 Pl N
c THE6) STIE (0 MUY ) ey DR,
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nnaONna 0000

0ann

25G(63),GT(36).STBEL(1,1),U(3) BMAT(2.3),EP(2) SI1G(2)

NOTHETA = MERIDIONAL (AXIAL) DIRECTION
ONAL
PHl - AXISYMM
Input routine: Interactive.
MATERIAL PROPERTIES: Young's modulus, Poisson's ratio.
BELLOWS GEOMETRY: R = convolution radius, TORR = mean
radius from
symmetric axis, THICK = wall thickness.
PRINT * 'lNPU’l‘ l’lPE RADIUS’
READ (6,

PR.INTK.'P E RAD ="TORR
PRINT *,'INPUT OCONVOLUTION RADIUS’

(ON LIMITS:;
THRO’ THICKNESS H = -THICK/2 TO THICK/2,
ALONG MERIDIAN THETA = 0TO P1/4
SUBSCRIPT 1 REFERS TO H, ] TO

WI(3) = P4A*WT3
WI(4) = WI(2

WwI(S) = Wi(1

AJ(1) = P4*(1.0D0+B1
AJ(2) = P4°(1.0D0+B2
AJ(3) = P4*(10D0+B3
AJ(4) = P4*(1.0D0 + B4
AJ(S) = P4*(1.0DO+

STIFFNESS MATRIX CONSTANT
CONST = 20D0*EX*P4*4.0D0*R*TORR /(1-NUXY**2)

ZEROQ STIFFNESS AND P (ATDA) MATRICES

DO I-1,6

DO J=16

STIFF(LJ) 120 0D0

P 00

éOZJTlNUE

& SBT UP INTEGRATION DOUBLE LOOP
DO 1001=13
DO 100J=15

C  EVALUATE ELEMENTS OF [A)
HR = AI{T)/(R**2)

THETA = AJ(J

ST = SIN 'A)
CT - ETA)
B ~ THETA - P4
B2 ~ B'B
B3 - B2'B
B4 = B3'B
BS = B4*B . .
1,1) = 0.0D0
A12) = HR
~ 20D0*HR*B
= HR*(6.0D0+3.0D0*B2)
= HR*(4.0D0*B3 + 24.0D0°B)
= HR*(5.0D0*B4+60.0D0*B2)

=CT,

CT-ST)/TORR
= (B2°CT-20D0°B RR
= (B3°CT-3.0D0*B2*ST)/TORR
= {B4°CT-4.0D0°B3*ST)/TORR
= (BS*CT-5.0D0*B4*ST)/TORR

EVALUATE UPPER TRIANGHLE OF INTEGRAL MATRIX
WITHOUT MULTIPLYING BY WEIGHTS

WJ 3 = P4*WT2

o0 00

>
&L

0aan

P(1,1) = A(2,1)°A(2,]1
= A2,1)*
= A(2,1)*
= A(2,1)*
= A(2.1)*
= A(2,1)*
= A(12)* +A(2.2)°(A(22)+V*A{12
= A(12)* +A(22)*(A(23)+ V°A(13
= A12)° +A(22)(A(24) + V*A(1 4
= A{1,2)* +A(22)* +V*A(l
= A{12)* +A{22)* +VeA[l
= A(13)* +A(23)*(A(23)+ VSA(13
= A(13)* +A(2,3)*(A(24) + V*A(1A
= A(13)* +A(2,3)* +V*A(l
= A(13)* +A(23)* +V*A(16
= A(14)° +A(24)*(A(24) + V°A(14
= A(14)* +A24)* +VeA(L
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>

SET [STIFF] = [STIFF] PREVIOUS + OONSI‘\VE!GH’IS “(p]
DO SOK=1

DO SOL~K6

STIFF = STIFF(K.L) + CONST*WI(I)* WI(J)*P(K.L)

Clw CONTINUE
C FILL IN LOWER TRIANGLE BY SYMMETRY

anon

1,1) = -024543692610D0
12) - 0038533142190D0'R
13) = 0.24543692610D0
21} = 7.0D0/16.0D0
22) = 0.04908738520D0°R
e

1) = 0.

32} = 1.0D0/8.0D0R

33) = -G(3,1

41) = -1 ugumoo
42) = -01915494310D0°R

c
€ fos1'7g e
DO S0 J=13
- 00D0
DO 506 K=1,6
STX{1J) = ST3(1)) + GT(LK)*SG(K.J)

EVALUATE THE DISPLACEMENTS
SOLVE THE mUATIOANRﬂ = [K] {U} FORU
STORE FORCES IN U Y

LET F=1000 FOR NOW

00000§

U(1) = 10000
U(2) = 00
u@3) =00

CALL SOLVE (ST3,U)
PRINT *'— oo
PRINTN';’IAMBDA "l‘Oll%R"l'HlCK/R“Z

w1 oTl
WRITE (6,(9E14.3))) U(1),U(2),U(3)

EVALUATE THE STRESSES
FORM THE B MATRIX AT POSITION ANGLE PTHETA

PRINT*,' POS SIGTH SIG PH'

H = 15°THICK
DO 1000 IPOSN = 1.2
H=H-THICK
PRINT ¢’ SURFACE ='H
PTHETA = -50
DO 900 [THETA = 1,19
PTHETA = PTHETA + 5.0
PTHETA = PTHETA*3.1415927/180.
PST = SIN(PTHETA)

A

o anon o

= 20D0*HR*B

= HR*(6.0D0 +3.0D0*B2)

= HR*(4.0D0*B3 + 24.0D0°B)

= HR*(5.0D0°B4 + 60.0D0*B2)

= PCT/TORR

B*PCT- /TORR

= (B2*PCT-2.0D0°B* RR
= (B3*PCT-3.0D0*B2° /TORR
= (B4°PCT4.0D0*B3* /TORR
= (BS*PCT-5.0D0*B4* /TORR

ao BMAT(l'l‘JT) BMAT(ITJT) + A(ITKT)*G(KTJT)

€ EVALUATE STRAINS B
m'?; = BMAT(1,1 'u§ §+BMA {ugtuE ;+BMAT 13;:[1
EP(2) = BMAT(21)*U(1) + BMAT 2)+ BMAT(23)*U

EVALUATE S’!‘RBSB ‘SIG) = [D] {EP}
SCON = EX/

i eEladey

E STRESSES BY DIVIDING BY SIGBO
SlGBO 3.0°R*1000.0/(3.141927*TORR*THICK**2)

By - spsces

C
C

an

&
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PTHETA = PTHETA * 180/3.141579

:losﬁnrsgoo." 9Flo.3)é) POS SIG(1),SIG(2
900 corm(mjn )
1000 CONTINUE

END

SUBROUTINE SOLVE (AMAT,CVEC)
C  ***SEE APPENDIX 33.1***

Al.6 PROGRAM BEIAFLEX.FOR

PROGRAM BEIAFLEX

This program evaluates the flexbility factor of a
semi-toroidal bellows using a finite element approach.
T-ngcntnl displacement interpolated by quintic polynomial
n in axial direction.
The bellows stiffness matrix is evaluated using gaussian
quadrature, 3 points through thickness and 5 along the arc.

Written by Donald Mackenzie, March 1989.
NOTE. In this :
THETA = MERIDIONAL (AXIAL) DIRECTION
PHI = ML( M.) DIRECTION.
IMPLICIT DOUBLE PRECISION (A-H,0-Z
DOUBLE PRECISION WI(3) AI(3),WJ(5),AJ(5),A(26),

1 STIFF(44 éve
sﬁ&ua)m?u).nmuz))m«z)p(u)mw
Input routine: Interactive.
MATERIAL PROPERTIES: Young's modulus, Poisson's ratio.
WS GEOMETRY: R = convolution radius, TORR = mecan
radius from symmetric axis, THICK = wail thickness.
Hm:e(vnhuotpommypanmemm given. Alternatively
an input procedure or loop could be used.
PRINT *,'INPUT PIPE RADIUS’
6. TORR
PRINT ¢,'PIPE RAD. =".TORR

aanNOOnANANON

000000000

READ gé.‘

PRIN'I‘ ° 'lNPUl‘ POISSON RATIO'
READ ga’?)ll

PRINT ¢/ = NUXY

CONSTITUTIVE MATRIX

(ele}

anaa

a0 an

008

(vlelels]

W2 = (.88888R888883880D0
w3 = W1

ABSCISSA

A3 = 0.774596669241483D0
A2 = 00D0

Al = -A3

WT1 = 0.236926885056189
WT2 = 0A78628670499366
WT3 =0S568838888R88880
WT4 = WT2
WTS = WT1

Bl = -0.9061 79845936664

B2 = 0.538469310105683

B3 = 0.0D0

B4 « -B2

BS = -Bl

ACTUAL INTEGRATION LIMITS

THRO' THICKNESS H = “THICK/2 TO THICK/2.
ALONG MERIDIAN THETA = 0TO Pl/4
SUBSCRIPT I REFERS TO H, J TO THETA

T = THICK/2

wI(1) = T*
WI(2) = T*W2
wI(3) = WI(1)
AI()) = T*Al
Al(2) = T°A2
Al(3) = T°A3

P4 = 3.1415927D0/4.0D0
WI(1) = P4*WT1
WI(2) = P4*WT2
WI(3) = PA*WT3
Wi(4) = Wi(2

WI(5) = WI(1

AJ(1) = P4*(1.0D0+B1
AJ(2) = P4*(1.0D0+B2
AJ(3) = P4%(1.0D0+B3
AJ(4) = P4*(1.0D0+B4
AJ(S) = P4*(1.0DO+

STIFFNESS MATRIX CONSTANT
CONST = 20D0°EX*P4*4.0D0*R*TORR /(1-NUXY**2)

ZERO STIFFNESS AND P (ATDA) MATRICES
DO301=14

SET UP INTEGRATION DOUBLE LOOP
DO1001=13
DO100J=15
EVALUATE B MATRIX
OF
il (Al
HR = AI(T)/(R**2)

-,
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)
= HR*(40DO0°B3 + 24 0D0°*B)

16) = HR‘ 5.000'B4+60.0DO‘82)
2,1 : A
- CT?.ODO"B‘ RR
2A4) = (B3*CT-3.0D0*B2* /'IDRR
- B4‘Cl'-4.0DO'm

BS*CT-5.0D0*B4* /'IORR
R 345439261000
- 0.B8553142190D0'R

= 70D0/16.0D0
OMMZIDO‘R
2,1
= 0A77. DO
= 1.0D0/8.0DO*R

- %)
-1 uzumoo
= <0.159915494310D0*R

DN:E

N
e

-Stit:

sest

35 (ggAF = :ﬁG(n 1) +G(IT3))

=16
40 AGETT) < AG(TIT) + AGTXT)*G(KT.)
c PU’:‘!AG] INTO (B}

DO 45 IT=14
& BMAT(“’-"') AG(ITIT)

¢ ADD'I‘ERMTOLASI‘COLO
14) = + g} ‘R
u BMA
POSEO

Donrr-u

DO 47 IT=14
& BT(ITIT) = BMAT(IT,JT)
C EVALUATE THE [P] = [B]T [D] [B] MATRIX
C (DB} ~ [D][B]

[of

DOSOIT=12
DO 50 JT=14

DO =12
Cso DB(ITJT) = DB(ITST)+ D(IT.KT)*BMAT(KTJT)

< doaht e

DO 60 JT=14
P(ITJT) =00
DO 60 KT =12

& PATIT) - r(rrmm'r(rrxr)'ba(lcrm

C  BVALUATE STIFFNESS MATRIX.

C SET 7&9{1 = [STIFF] PREVIOUS + CONST*WEIGHTS * [P]
DO 70 K=1
DOL=14
STIFF| K.L) = STIFF(K.L)+ CONST*WI(1)*WJ(J)*P(K.L)

70 COl

c
100 CONTINUE
WRITE (6,(4E12.4)) ((STIFF(ITJT) JT =1,4)0T= 1,4)

[s]e]

STATIC COND TO GET BELLOWS STIFFNESS
CALL REDUCE (STIFF STBEL)

PRINT *'LAMBDA ='TORR*THICK/R**2
STIFFNESS OF ST PIPE

DELTA = R/(2°3.1415937*TORR *THICK*EX)

DELTA = DELTA * SR/gTHlCK/Z))"Z

DELTA = DELTA ¢

C FLEXIBILITY FACTOR

o

llXX) CONTINUE
END

[
C
C

SUBROUTINE REDUCE (SE,RED)
C  *** SEE APPENDIX 321 ***

PROGRAM BELASTR
gram to eval the normalised stress distribution in
idal belk Based on poly ial interpolation of
ial displ: with d axial
extension.
Bellows stifiness cvaluated by Gaussian quadrature. 3 points

thro’ thickness, 5 along arc.
Written by Donald Mackenzie, March 1989.

IMPLICIT DOUBLE PRECISION (A-H,O-

DOUBLE PRECISION WI| ,A.l 3%193 .A(Z,CZ(

1 P(44) STIFF(44) NUXY, ’F} 24),
2 BMAT(24)BT(4,2),D(2.2), B 24),U(4) SIG(2),EP(2)
NOI‘E. ln this

ClRCUMFgﬂanL " R
l’Hl = ) DIRECTION.

[elelelelolelole)e]

0000

K

R
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anonn

noao

Input routine: Interactive.

MATERIAL PROPERTIES: Young's modulus, Poisson’s ratio.
BELLOWS GEOMETRY: R = convolution radius, TORR = mean
radius from symmetric axis, THICK = wall thickness.

PRINT *,'INPUT PIPE RADIUS’
READ (6,*) TORR

PRINT $,’PIPE RAD. =" TORR

PRINT b 1NPUT CONVOLUTION RADIUS’

+ THICK. ='THICK
PRINT * 'lNPUT ELASTIC MOD.’

READ (6,*) EX

PRINT *'E ='EX

PRINT *INPUT POISSON RATIO"

READ NUXY
PRINT S?"IJU ='NUXY

D(1,1) = 10

ABSCISSA

A3 = 0.774596669241483D0 .
A2 = 00D0

Al = -A3

WT1 = 0.236926885056189
WT2 = 0A78628670499366
WT3 =0.568888888888889
WT4 = WT2
WTS = WT1

Bl = -0.906179845938664
B2 = -0538469310105683
B3 = 00D0
B4 = .B2
BS = -B1
ACTUAL INTEGRATION LIMITS:
THRO’ THICKNESS H = -THICK/2 TO THICI(/?.
ALONG MERIDIAN THETA = 0 TO P}
SUBSCRIPT I REFERS TO H, ] TO

w,ém%

; Wi(1)

P4 = 3.1415927D0/4.0D0
WI(1) = P4*WT1

WI(2) = P4°WT2

WI(3) = PA*WT3

Wi4) = wxiz;

WI(3) - 1

Al

an ann

30

anana

AJ(1) = P4*(1.0D0+B1
AJ(2) = P4*(10DO0+B2
AJ(3) = P4*(1.0D0O+B3
AJ(4) = P4¢(10D0+B4
AJ(5) = P4*(1.0D0+

STIFFNESS MATRIX CONSTANT
DO 1000 NTIME =120
QONST =~ 2.0D0*EX*P4*4.0DO*R*TORR/(1-NUXY**2)

ZERO STIFFNESS AND P (ATDA) MATRICES
DO301=14
DO =14
STIFF(1J) =0.0D0
P(1J) = 0.0D0
NTINUE

SET UP INTEGRATION DOUBLE LOOP
DO1001=13
DO 100J=15

EVALUATE B MATRIX
ELEMENTS OF [A]
AI(T

H=

HR = AI(I)/(R**2)
THET. J

= 20D0°HR*B
= HR*(6.0D0+3.0D0*B2)
= HR*(4.0D0*B3+ 24.0D0°B)
= HR*(5.0D0°B4 + 60.0D0*B2)
= CT/TORR
*CT.ST)/TORR
2°CT-20D0°B* RR
RI*CT-30D0°B2°ST)/TORR
*CT-4.0D0*B3°ST)/TORR
CT-5.0D0°B4°ST)/ TORR

= 024543692610

iy reiprivets i
= 0.24543692610D0

= 7.0D0/16.0D0

= 0.04908738520)

= 1.olgo/smo'n
Xy
= -1.0132118360D0
= -0.15915494310D0°R

R
L]
g
o

Y
L

it
ok
3
g

- 0.10132118360D0R

6,1) = -%27671481)00

1‘2&
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G(G.l)
G(“' 1)+ G(IT3))

a = 0.12900613770D0*R

0Nty

ia%i‘;‘.f?}'i‘ﬁl
DO 40JT=14

Jl'cl?-OODO

‘0 AG("'JT) AC'(l'l'-l'l') + A(ITKT)*G(KTJT)
¢ PU’HAG] INTO [B}

DO 45 JT=
5 BMAT(IT,!T) AG(ITJT)
¢ AD LASI‘COLOFB
u g_l_ RR
nwnz.c
C EVAL E
DO47n‘-1,2

DO47IT=14
& BTUTI -BMAT(T.T)

€ EVALUATETHE {P] = {BIT [D} [B] MATRIX

¢ o1t

éo TOBATST) < DB(ITIT) + DT.KT) BMAT(KT.T)

¢ Boimay

poursis

20 &% Kol
& P(TIT) = F(ITIT)+ BTUT.KT)*DB(KTT)
C EVALUATE STIFFNESS

C SE[‘_,J
K=1
DO7OL=14
STIFF

= STIFF(K,L)+ CONSTSWI(I)*WI(J)*P(K,L)
7 OOl

C
100 CONTINUE
C

U(1) = 1000.0
U(2) = 00
U(3) = 00
Ud4) = 00
SOLVE SI‘[FF.%
PRINT * LAMBDA ='TORR'THICK/(R**2)

EVALUATE THE STRESSES
FORM THE B MATRIX AT POSITION ANGLE PTHETA
PTHETA = -50

PRINT *,'TOP SURFACE’
PRINT*’' POS SIGTH SIGPH

a ano

MATRIX.
= [STIFF] PREVIOUS + CONST*WEIGHTS * [P]

PRINT *'H ='H
DO 900 ITHETA =1,19
PTHETA = PTHETA + 5
PTHETA = l’mE'TA‘3 1415927/1&

PSTSCO&PTH

HR = H R“Z)

= 20D0*HR*B

= HR*(6.0D0 + 3.0D0*B2)

= HR*(4.0D0°B3 + 24.0D0*B)
= HR* S.Oll)l.;Bd +60.0D0*B2)

 (B¥er /TO
*PCT- RR
B2*PCT-2000°B* RR

B3*PCT-3.0D0*B2* /TORR
B4*PCT-4.0D0*B3* /TORR
BS*PCT-50D0*B4* /TORR

(RN

ann

&0 AG(ITJT) AG(lTJT) + A(ITKT)*G(KT,JT)

€ PUT{AG] INTO
DO6sTTelz L)
DO 645 IT=14
8‘55MAT(TTJT) AG(ITIT)

C ADDTERM'[OIASTCOLOF
BMAT 1,4; 1,4 + R- ‘R
BMAT(24) =

C

[

EVALUA
ORI A:smT U R

EVALUATE STRESSES ssm) = (D) {EP}
SOON EX/(1.0-NUXY*

2 ety

IORMALISE STRESSES BY DIVIDING BY SIGBO
SlGBO 3.0‘R‘l(!l).0/(3 1415927*TORR*THICK**2)

si 1)/SIGBO
Sk =Sl 2)/SIGBO
A‘ 180/3.141579

POS =~ W -
WRITE (6.'(9"'103)') POS SIG(1)SIG(2)

an

an
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Ad.1 ANSYS USER ELEMENT BEL1 SOURCE

CODE.

PROGRAM ANSYS
C
C  ANSYS VERSION 43A

g ssesevecess ANCYS USER MNCODE ssesscecsrsens
C  **seser | INEAR ELASTIC BELLOWS ELEMENT se¢eesesoce
C DONALD MACKENZIE, JAN 1969.

C SOURCE CODE FOR A LINEAR ELASTIC 3-D BELLOWS ELEMENT
C SUBIJECT TO AXIAL FORCE LOADING.

C
g BASED ON 6 FOURRIER TERM COEFFICIENT SOLUTION.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
MAIN STOPER

CALL NNDIM
CALL MAIN
CALL STOPER
END

A4.1.1 SUBROUTINE USEREL

SUBROUTINE USEREL (ITYP,IPARM KYSUB KEY3D KDOF, KUNSYM,KTRANS)
C ##sevsvs DEFINE PARAMI FOR ANSYS USER ELEMENT **++eseesse
INTEGER IPARM(20,12), KYSUB(9),ITYP STYPEKEY3D,KDOF KUNSYM KTRANS
c
C DETERMINE TYPE OF ELEMENT AND THEN BYPASS IF NOT USER ELEMENT
JTYPE = IPARM(ITYP3
IF JTYPE NE. 100) GO T0 100

sessscecss SHT 3D KEY *900ssesss
KEY3D =1

ssssesssse DERINE DOF SET AT EACH NODE **¢¢s¢sees
KDOF = 14

svssvesses SET UNSYMMETRIC MATRIX KEY **teteress
KUNSYM = 0

DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION
KTRANS =13
sssessesse DEEINE NUMBER OF NODES ¢¢¢¢sseses
IPARM(ITYPS) = 2

essss DEFINE NUMBER OF TEMPERATURES (DELTEM,TEMPER)
IPARM(ITYP,11) = 0

ss+++ DEFINE NUMBER OF PRESSURES (PRESS) **0¢++
IPARM(TTYP ) = 0

ssess SET ZEROED VARIABLES (NOITUEP)
IPARM(ITYP,12) = 0

ss+e* DEFINE NUMBER OF REAL CONSTANTS FOR ELEMENT (RVR)
IPARM(ITYP,10) = 4

esese DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR) ****
IPARM(ITYP,T) = 15

eses¢ DEFINE NUMBER OF ROWS IN ELEMENT MATRICES (KTIK)
[PARM(ITYPS) = 6

essoorssss SET KEY TO IDENTIFY NON-LINEAR ELEMENT ***

an a0 a0 an a6 00 an an oo oo 00 Ao

c TPARM(ITYPA) = 0

C

sesseseess SHT KEY FOR THERMAL ELEMENT (KAN,-1) *+**¢

IPARM(ITYP,1) = 0
W)REI'U&N )
END

C
(o}
C
C
C

100

C

A4.1.2 SUBROUTINE USERPT

SUBROUTINE USERPT (INODEJTYPEKSHAPE NNODE

sssssssess USER SUBROUTINE FOR ANSYS PLOT SHAPE *20020sese

DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING

INTEGER INODE(20) JTYPE, KSHAPENNODE
sesesecesBYPASS IF NOT USER ELEMENT (JTYPE = 100) ¢*eteeeee
IF (JTYPE NE. 100) GO TO 100
sesees SE1 ECT SHAPE TO BE PLOTTED BY SETTING KSHAPE *******
KSHAPE - 2
LA LIIT T L] SEr NUMBER OF AmJAI‘ NOI)[S LEXEA LTI A
NNODE = 2

RETURN

1 R E ST

SUBROUTINE ST100 (IELNUM ITYP KELIN KELOUT NR,KTIK,ZS ZASS DAMP,
1 GSTIF,ZS

C +#+»++¢ STIFFNESS PASS FOR 3-D BELLOWS ELEMENT *+*+2+2+

C

Cc

EXTERNAL TRACK.GETELD, PUTELD PROPEV NONTBL,VZERO MHTCH,USEERR
INTEGER 1) K.I3,J3,NFKEY

INTEGER IELNUM ITYP KELIN(6) KELOUT(6),NR KTIK,

1| KEYERR IOUT,NSTEPS KFSTLD JTIME NCUMITKRSTRTISPARE,

2 K13,NPRPVL MATST K5 K16,IPROP KCPDS,

3 K20,KAY MODE,ISYM KAHD IDEBUG XXX,

4 ITYPEMAT JELEM NROW JTYPE,IPLOT,IPRINT KTEMTP KCONCV KBICNV,
5 KEYPLS KEYCRP KEYSWLKYSUB(9) K21 NODES(20), EPAR(50)

REAL ERRVAR(S)

DOUBLE PRECISION
1 DPZERO DPHALF DPONE,DPTWO DPTEN, DTORAD,RADTOD,

2 TREF,TUNIF,TOFSET, DELTIM,TIME.TIMOLD, TIME2, TIME3 DELT?,
3 Acmqouam,cooum CGLOC DXXX,
SUBEX, ERPAR(20),

XCENTR,YCENTR ZCENTR,TFCP
sxvmo(zo;s)x(zo)v(zo),z(zo) ELVOL

COMMON STCOM/ DPZERO,DPHALF DPONE,DPTWO,DPTEN, DTORAD RADTOD,
IF,TOFSET, DELTIM, TIME, TIMOLD,TIME2, TIME3,DEL T2,

3) OMEGA(6),CGO 6),CGLOC(3),  DXXX(16),
K!%&.l g)msu'gﬁ) J’I'EME,N CUMIT, ! TISPARE,
3,NPRPVL,MA K5, K16,IPROP,

sxzo,mv(mwona,lsvmmn UG(lO), IXXX(41)
EQU]VALENCE (MAT,EPAR )) (IELEM,EPAR(S)),

1 (11))( PLOT,

2 (KCONCV AR(16

4 lCNV,EP KEYPLS,EP CRP,EPAR(19)),

5 (KEYSWLEP. KYSUB(I),EP (xzx.amk(so))

6 DB(I).E’

EQUIVALENCE gu.mss CENTR_ERPAR( ),
ngB 3)). (ZCEN'm,élpAg(U)). SN,
EQUIVALENCE 1).xvzso(1 1)).0Y(1) XYZEQ(1,2)).(Z{1) XY ZEQ(13))
DOUBLE PRECISION

2 AT ALENG DX DY DZEX DENSNUKY



66V

1K

4).SVR(
o2 )mNAu)L'ENNlSALPI,CM,Pl,SALPz.CALn,U(M)

DOUBLE PRECISION RAD,TORAD THKNCOR,LAMBDA BELEN DPP1,LS4,
c 1 AMAT(6,6) BVEC(6),CVEC(6) FLEX SBCMOM,VAL,D1, TORAD2

UIVALENCE (RVR(1),RAD), (RVR(2),TORAD), (RVR(3),THK),

c 1 (RVR(‘).NCOR

BQUIVALENCE 2) NUXY), 4) ALEN2),
AR R SR

DPP] «3.1419265358793D0
CALL TRACK(S,'ST100 ")
C

CALL GETELD (lm.NUMJ’I'Y?.EPARil),ERPAR(l),CON.CON.
1 CON,CONRVR(1) SVR(1) XYZBEQ(1,1),U(1))

C  ***** INITIALIZE VARIABLES FIRST TIME THRU IF NEEDED °****

IF (KFSTLD .EQ. 0) GO TO 100
CE = DPZERO

CALL PROPEV (IELEM MATJTYPE, 1,0,EX ,1
CALL PROPEV (IELEM MATJTYPE 10,0, DEN ,1;
CALL PROPEV (IELEM MATJTYPE, 30NUXY,1

c
120 CONTINUE
g 088000000 WGmMmY sosssnsGs

DX = X(2)- X(1
DY = Y(2)- Y(1
DZ = Z(2) - Z(1
CON = **2 + DY**2

AuzNz = CON + DZ**2
s 2GI‘DI’ZERO}GO’K)ISO-

2000 FORD&T(/' hadd gRROR ¢s¢*/ ' ZERO LENGTH ELEMENT ’I5)

CTI{lSSUBROlmNECALLIS USED TO PASS KEYERR TO COM2 FOR NORMAL ABORTS
C

NFKEY = 1
CALL USEERR (NFKEY)
GO TO 990
150 ALENG = DSQRT(ALEN2)
ALENN1 = DSQRT(CON)

C  sesessess CHECK BELLOWS LENGTH AGAINST TORAD AND NCOR
C BELLOWS LENGTH SHOULD BE ALENG ~ 4*TORAD*NCOR
C ACCEPT 1% ERROR
BELEN =4°TORAD*NCOR
C *+*¢ CHECK LENGTH,TORAD AND NCOR ARE VALID ¢¢*¢
IF (BELEN LT. 099*ALENG) GO TO 160
ELEN .GT. 1.01*ALENG) GO TO 160

C
GO TO 180

160 wngmﬁﬂur.zoox) IELEM
2001 FORMAT(/" *** ERROR ***'/ ' INVALID LENGTH,TORAD OR NCOR " 5)
KEYERR = 1
NFKEY = 1
CALL USEERR (NFKEY)
GO TO 990

C
180 CONTINUE

SECMOM = (4*DPPI*RAD*(THK/2)**3)/3

sesseverssesers CATCULATE MASS AND CENTROID **%¢*¢¢s
XCENTR = 1) + X(2))*DPHALF

YCENTR = 1) + Y(2))*DPHALF

ZCENTR

[]g]

- + Z(2))*DPHALF
= (4*(DPPI*$2) TORAD*RAD*THK*NCOR*DENS)
sesssensis RN IF ERROR(S) OR CHECK RUN *¢ssssseas
IF ((NSTEPS BQ. 0) OR 1)) GO TO 990

sesssscnss DORM TR MATRLX *¢eessecse

()

nnnn 0

THE TR MATRIX IS THE LOCAL TO GLOBAL CONVERSION MATRIX
IF (ALENN] .GT. 0001*ALENG) GO TO 200
1 = DPZERO
CALP1 = DPONE
TO

GO 0

200 SALP1 « DY/ALENN]
CALP] = DX/ALENNI

250 SALP2 ~ DZ/ALENG
CALP2 « NI/ALENG
TR(1,1} = CALP1°CALP2
TR(2,1) = -SALP1

TR(3.1) = -CAIP1*SALP2
TR(1,2) = SALPI*CALP2
TR(2.2) = CALP!}
TR(32) = - SALP1*SALP2
TR(13) = SALP2

23) = DPZERO

33) = CALP2

c IF (KELIN(1) NE. 1) GO TO 400

LAMBDA = THK*RAD/TORAD**2
LS4 =(LAMBDA**2)*4

m_l?u = 0.1309D0 +(1.1781D0
AMAT 0

BVEC(1)= 3.14159D0/4
BVEC(2)= 2.0D0/3.0
BVEC(3)= 4.0D0/15.0D0

BVEC(6) = 10.0D0/99.0D0

C

C SOLVE SIM EQUNS USING SUBROUTINE CVECSOL

C Dl‘gnn{.w EQUATE CVEC TO BVEC FOR SUB CALL
1901=14

50 CVEC() -BVEC()
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cuLWMﬂxJ).wm(l))

C
C EVALUATE VAL: VAL -

VAL - 1)*CVEC(1 + *CVEC(3)
c 1+ 4) 4)+ (5)+ (6))
< SET UP STIFFNESS MATRIX AT END I IN ELEMENT COORDINATES
c EVALUATB THE MATERIAL CONST D1

DI~ NUXY+2)TO! 6 EX*SBCMOM

-1 (g&ﬂl‘“Dl‘J( )

c vm4 (25(1.1).36)

Zs(1,1) » STOON
C
C CONVERT 3 BY 3 MATRIX FROM ELEMENT TO GLOBAL COORDINATES.
c
o CALL MHTCH (TR(L1ZS(11), 3KTIK. 3
c

FILL OUT THE COMPLETE 6 X 6 MATRIX FROM THE COMPUTED 3X3 MATRIX
DO 3001 - 1,3
B=1+3
DO300) - 1,3
JB=1+3

13,J) = -zssu
% 18 - 750
N'l'?NUE
C SET KEY THAT MATRIX WAS INDEED COMPUTED.

KELOUT(1) = 1

C ssseesses NMASS MATRIX *o**¢
C SIMPLE LUMPED MASS MATRIX
C

400 IF (KELIN(2) NE. 1) GO TO 800
lF! ENS EQ. DI 0) GO TO 800

gg{{:t:
[N |
[l ool a4
Yot Bt St e S

CALL MHTCH(ZASS(1,1),25(1,1).6,KTIK6)
KELOUT(2) =
- GOl

990 lg.u_[.rum.b YUMEPAR ()ERPAR(1).CON SVR(1)

CALL TRACK( 15,ST1
CK(
END

SUBROUTINE CVECSOL

SUBROUTINE h
PROG TO SOLVE MATRICES 'Y THE GAUSS ELIM. METHOD.
REF. BREBBIA/FERRANTE PROG13

annnn

SOLVES EQUN. [A] (C} - {B} FOR {C)

INTEGER INEQJ K,LK1,NEQ1
DOUBLE PRECISION AMAT(6,6),BVEC(6),CVEC(6),CVAL

INITIALLY BQUATE BVEC TO CVEC
NNé())OgmlNARRAY =NEQ

a onn

DO 11=1NEQ
BVEC(T) -CVEC()

NEQ1 =NEQ-1
CVAL=AMA’

Kl=K+1 K
DO 11 J=KINEQ
ngABS(élSALHBoy.A

FORMAT (* ***¢ SINGULARITY IN ROW" I5)
GO TO 300

O

—
—

DIV ROW BY DIAG COEFF

DO 83 =K1 NEQ
AMAT(KJ) = AMAT(KJ)/CVAL
CVEC(K) = CVEC(K)/CVAL

ELIMINATE ROW UNKNOWN X(K) FROM ROW 1

Dol e
= AMAT(I,
DO9J lmsg 0 vm
AMAT(1J AMAT
10 cvecxilx)- (1)(472/ e

0NO0 a0 wua

C
C COMPUTE LAST UK

IFi AMAT(NEQ,NEQ))-1E-6)1,1,101
m évaci (CVEC(N ) )/A&AT(NEQNEQ)

C APPLY BACKSUB TO COMPUTE REMAINING UKS
C

DO 200 I.=1NEQ1
K=NEQ-L
Ki=K+1
DOZ)OJ KINI

m{ﬁ; CVEC(K}AMAT(KJ)‘CVEC(J)

4.14 R 1 1

SUBROUTINE SR100 (IELNUMJTYP KELOUT ELVOL,KTIK,ZS,ZASS,2SC
C oesreoss GTRESS PASS FOR 3 BELLOWS ELEMENT vorsasias )
C

EXTERNAL TRACK,GETELD PUTELD SRPLTMAXV
INTEGER IPLTAY(6),1,JIF3JP3NEQ

lNTBGER lELNUM  KELIN(6) KELO
nmzmuo .ITYP (}rmmhs&';l‘ UMrl‘,KRSI‘RT,lSPARE,
NPRPVL ,MAm,KS,Kls,IPROP.KCPDs

3 KZ),KAY.MODEJSY'M.KAHD UG, IXXX,
E,MATMEM.NROWJTY'PEJPLOT,IPRINT KTEMTP KCONCV KBICNV,
S KEYPLS XEYCRP KEYSWL KYSUB(9) K21 NODES(20), B’AR( )

C
o REAL ERRVAR(5)

DOUBLE PRECISION
1 DPZERO,DPHALF,DPONE,DPTWO,DPTEN,DTORAD,RADTOD,
2 TREF.TUNIF,TOFSET, DELTIM,TIME.TIMOLD, TIMEZ TIME3 DELT?,
3 Acm.,ouacA.ccoum.cc{.oc
TFCPSUBEX, ERPAR(20),

XCENTR,YCENTR ZCENTR/
s xvmo(zo.3)x(zo) ,Y(20),Z(20), ELVOL
COMMON s‘lCOMé})PZERO.DPHALF,DPONE,DH‘WODFFEN.DI‘ORADWPOD

1 TREF,TUNIF,TOFSET, DELTIM,TIME, TIMOLD, TIME2 TIME3 DEL’
2 ACEL(3),OMEGA(6),CGOMEG{6),CGLOC(3), Dxxxae)'D ™
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JTTER JTIMENCUMIT, KRSTRT,ISPARE,

4 K13 NPRPVLMATST, mmwm:&)
smxAv(m)MODmumm 10). DOCK(41)

BOUI(‘)IVAIL‘SJCE (z;—;’rM.EPAR(S)).
2 nuN'r 14 (mecv 1%
: DES(:).EPA&G %(KYSUB(I)E’ .EPAR(N)).

1 (YCENTR ERF A% S CCENTRERPAR (0, (P ERPARE)

2 SUBEX ERPAR(

o]
c BQUIVALENCE (X(1)XYZEQ(1,1)),(Y(1),XYZEQ(1 2)){Z(1) XYZEQ(1 3))

DOUBLE PRECISION

2 ATENOALENG X.DYDZEXNUY DENS
DOUBLE PRECISION

2 U(u);zosm(‘?) CON

DOUBLE PRECISION RAD,TORAD,THKNCOR LAMBDA DPPI,LS4,
1 CVE‘C(62.CONSI'I.CONST‘Z,CONSB,S[GI‘I'I,SIGPHO.SIGPH9.TR(6,6),
2 FELEM(6) DUMMY| 2) 11) ANGLE,

c 3 BMAT(26),UC(6),EP

EQUIVALENCE (RVR(1),TORR), (RVR(2),R), (RVR(3),THICK),

! (RVR(4),NCOR)

aouxv.sumca SVR 1 SVR(2)N! 4).4\1.&»42)
gmg % _séoo (7).DY). ).DZ),
CVEC(1 )(SVR(

DPPI =3.141592653589793D0

CALL TRACK (5,SR100
CALL VZERS 1,1),

IH..NUM,ITYP,EPARSI),ERPARO) ,CON,CON,

CALL GETELD (]
c 1 CON,CON,RVR(1) SVR(1), XYZEQ(1,1),Ui(1))

ann 0

OPEN (UNIT =40,FILE ='BELRES' STATUS ='NEW")
EVALUATE BB_I.DWS FORCE FROM DISPLACEMENT RESULTS

U 4
DELY -3 2
DH.'I‘A ELX‘ *2+DELY**2+DELZ**2)

SICON‘DE.TA
WRIH! 40,°) 'FORCE’
WRITE (40,*) FORCE

PRINT ¢’ POSN. SIG AXIAL SIG HOOP’
FOR INSIDE SURF, ZETA = T/2
FOR OUTSIDE, ZEIA = -T/2
ZETA--TH]CK/Z.
DO m IIDC-J; ,19

= POS*3.1415927/180.
COS(POS

an

C

O o o0 a0n

POS*7.
POS*8,

)

+10,

o11,
-ZETA*PC1/R
-ZETA*2°PC2/R
ZETA*4*PCA/R
-ZETA*6.*PC6/R
-ZETA*8.*PC8/R
-ZETA*10.*PC10/R
-PCI*PCI*R* S
(PC3/3.+ 1)*R* 5/TORR
{PCS/5.+PC2/3)*R* S/TORR
.m/um/s *R*5/TORR
{PC9/9.+PC6/7.)*R* S/TORR
{PC11/11.+ PC8/9.)*R* S/TORR

RN

D(1.2) = NUXY*DCON
D21} = NUXY*DCON
22) = DCON
Douon-x
= CVEC(I)*FORCE*(1-NUXY**2)*R**2/
& éo *3.1419°*TORR*THICK**3)
NTINUE

3‘ l% - Dcé(l -NUXY**2)

1 +BMAT(14)° UC(4) + *UC(5) + BMAT(1,6)* UC(6)
z) = BMAT(2,1 m T(22)*UC(2) + BMAT(2,3)* UC(3)
T(u)‘uc 4) + BMAT(2.5)* UC(5) + BMAT(2,6)*UC(6)

EVALUATESTI}BSB SIG Dj {
S50 - R EE ™
POS = POS * 180/3.1415729

WRITE ao,'gnu)') POS SIG() SIG(2)
250 CO

C}
; LMXT(] IS‘UC BMAT(12§'U(‘ +HMAT(13§‘UC(3)

C
goo CONTINUE

#es94¢ WRITE POSTDATA FILE *+*++++
IF (IPLOT NE. 1) GO TO 900
+e -+ NUMBER OF FORCES (LEVEL 1) *+***

IPLTAY(2) =
o NUMBER OF STRESSES (LEVEL 2) *****
IPLTAY(3

"‘)‘ NUMBER OF TOTAL SAVED (LEVEILS 1, 2, AND 3) *****
lPLTAYS

IPLTAY|
“""ﬂ’t)’l‘ POSTDATA INFORMATION INTO POSTD *+¢+¢¢

POSTD(1) = SIGTH
2) = SIGPHO
3) = SIGPH9

IF (K21 LE. 4) GO TO 400
IPLTAY(4) -

soe SAVE GEOMETRY FOR CONTOURS (0NO 1,YES) ¢4

= BEPTH

400 CO! UE
C
C  **¢*¢ PUT PLTARY INFORMATION ONTO FILE ]2 ¢*s¢¢s+

CALL SRPLT mem,unow,m:r 100,2,U(1),NODES(1)XYZEQ(1,1),

) mﬂy&'m) UM.EPA%(),ERPHAL%I) CONSVR(1))

C PUTELD RESTO! DATA BA
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A4.2 ANSYS USER ELEMENT PB1

PROGRAM ANSYS

ssssersseses

ANSYS USER ELEMENT CODE FOR PIPE BEND ELEMENT ELEMENT

BASED ON VLASOV THIN WALL CIRC CURVED BEAM SOLUTIO!
'WITH SUPERPOSED VON KARMAN OVALISATION: 31/P ANS3 O/P MODES.

CLOSED FORM INTEGRATION FOR STIFFNESS MATRIX.
MATRIX STATICALLY CONDENSED TO GIVE FINAL 12x12 STIFFNESS MATRIX.

DONALD MACKENZIE JAN 1989

ANSYS VERSION 43A
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL MAIN STOPER

EXTERNAL
CALL NNDIM
CALL MAIN
CALL STOPER
END

A4.2.1 SUBROUTINE USEREL

SUBROUTINE USEREL (ITYP JPARM KYSUB KEY3D KDOF KUNSYM KTRANS)

INTEGER IPARM(2012) KYSUB(O) ITYP ATYPITYPEKEY3D KDOFKUNSYMKTRANS

*+s¢ DETERMINE TYP D THEN BYPASS IF NOT USER ELEMENT™**
JTYPE = IPARM(ITYP

IF (JTYPE NE. 100) 6640 100

ssosesssee GOT 3D KEY *¢tteesese
"l..).:..l“. DEFINE DOF SET AT EACH NODE *tesvesces
'3

Stese SET UNSYMMETRIC MATRIX KEY *sevossses
KUNSYM = 0

es¢*¢ DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION ***
KTRANS =2

+++ DEFINE NUMBER OF NODES ****sseses
AR 2

. NUMBER OF TEMPERATURES (DELTEM,TEMPER) ******
IPARM(TTYP,11) = 2

ss+s+ DEFINE NUMBER OF PRESSURES (PRESS) *******
IF THERMAL ANALYSIS, TWO TIMES NU OF CONVECTION SURFACES

IPARM(ITYP ,6‘2 =1
seses SET OED VARIABLES (NOITUEP)
P
bt NUMBER OF REAL CONSTANTS FOR ELEMENT (RVR) *ssseoee
IPARM(ITYP,10) = §

seses DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR) *****
(ITYP,7) = 254
mzr-%m NUMBER OF ROWS IN ELEMENT MATRICES (KTIK) *****

ITYPS) = 12
=* SETKEY TO IDENTIFY NON-LINEAR ELEMENT sosecese*

A4.2.2 SUBROUTINE USERPT

SUBROUTINE USERPT (INODEJTYPE,KSHAPE,NNOD!

C +sssss3ess USER SUBRO! FOR ANSYS PLOT SHAPE *es+eesess

C
C

DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING
INTEGER INODE(20) JTYPE KSHAPE,NNODE

++:93444+BYPASS IF NOT USER ELEMENT (JTYPE = 100) **e¢%2¢%+
IF (JTYPE NE. 100) GO TO 100

C  **¢*¢* SELECT S| E TO BE PLOTTED BY SETTING KSHAPE *¢****¢

C KSH&POE‘.‘.‘%. sErN'UMBmOFACn ALNODE LI AT LT ]
NNODE = 2

100 RETURN

oan an anon aon 00000

(o9}

an

A4.2.3 SUBROUTINE ST100

SUBROUTINE ST100 (IELNUM,ITYP KELIN KELOUT NR KTIK,ZS,
1 ZASS DAMP GSTIF,

¢es4se STIFFNESS PASS FOR PIPE BEND ELEMENT ELEMENT ¢o*¢sss¢e

CLOSED FORM STIFFNESS MATRIX

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DECLARE EXTERNAL SUBROUTINES AND FUNCTIONS -
EXTERNAL TRACK,GETELD,PUTELD, ,PROPEV NONTBL,VZERO MHTCH,USEERR,
1 MATXV MAXV TRSUB,MAXB MATXB INVM,REDUCE

-meeeteme—e COMMON BLOCK DECLARATIONS —
STANDARD ST100 INTEGER VARIABLES ASSOCIATED WITH COMMON:
INTEGER lmuu,mr.m_mm}'mm KELOUT(6)NR KTIK,

1 KEYERR JOUT,NSTEPS KFSTLD, CUMIT KRSTRT,ISPARE,
2 K13NPRPVL MATSTK5.K16JPROP KCPDS,
3 K20 KAY, MODE,ISYMKAHD IDEBUG XXX,
4 ITYPEMAT IELEM ,NROW JTYPEJPLOT,JPRINT KTEMTP KCONCV KBICNV,
5 KEYPLS KEYCRP KEYSWIKYSUB(9),K21 NODES(20), EPAR(S0)

REAL ERRVAR(S) :

STANDARD ST100 DOUBLE PRECISION VARIABLES ASSOCIATED WITH COMMON:
DOUBLE PRECISION

1 DPZERO,DPHALF DPONE,DPTWO,DPTEN,DTORAD RADTOD,

2 TREF,TUNIF,TOFSET, DELTIM, TIME,TIMOLD, TIME2, TIME3,DELT2,

3 ACELOMEGA.CGOM&} CGLOC,DXXX,

XCENTR,YCENTR, ZCENTR,TFC
sxvmo(m),x(zn)v(m),zm) ELVOL

ST100 COMMON BLOCK: STCOM
COMMON /STCOM/ DPZERO,DPHALF DPONE,DPTWO,DPTEN, DTORAD ,RADTOD,
1 TREF,TUNIF,TOFSET, DELTIM,TIME,TIMOLD, TIME2,TIME3, DELT2,
ZWMEGA 6),CGO! 6),CGLOC(3), DXXX(16

MEN

P SUBEX, ERPAR(20),

3 CUMIT, TiSPARE,
4 K13 NPRPVL MATST K5 K16,1PROP(20),KCPDS,
5 K20,KAY(10) MODEJISYM,KAHD IDEBUG(10),  IXXX(41)
FQUIVALENC[NG OF smom VARIABLES
urvmcs M{ TEPAR(Z)). (IELEMEPAR(S)).
N‘ROW (rnrrw (1 (ler AR(12
, (KCONCV EFAR(16)),
; (K]:YP[S.EP KEYCRPEPAR(19)),
(KYS B(l)ﬂ’ l) (K21,EPAR(30)),
6 NOD 3]
f)l;_rrmwm( )
z?{usm(m (
BQUIVALENCE (X(1)XYZEQ(1,1)).(Y{(1).XYZEQ(1 2)).(Z(1),XYZEQ(1 3))
USER DEFINED V.

e 'ARIABLES
INTEGER, REAL AND DOUBLE PRECISION VAR!ABLES DEFINED HERE BY USER.
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an

DECLARE INTEGER VARIABLES:
INTEGER LJ X313 16,J6 L P(4) NSTR NUM , KDEMO,NFKEY,
1K1XOL11LO

BCMRE DOUBLE PRECISION VARIABLB

Do m(mz)%ﬂzm; ’

l U(240),PR¢ .ALE’IZ.ALENG X,DY DZ,
3 A ,TEMPER(2),! CON.AVBI‘EM ,TRPROP(7), MPROP(1),LDPROP(1),DPPI,

2nounuz PRECISION g}%«%%“}(sum) Bl 26,6) B2A(65),
3 ARE\.POLM

OM.SEMOME.GJ,RATIO.D,B.DMI,DMZ,
4 DTERM1 V. BTERM1,BTERM2,BB BM1 BTERM3,
5 BTERM4,H,CO! ‘2

DOUBLE PRECISION CONOV,PR4 BRT2,ZSOV(3, P(6,3),
1 CUPMATY(6,3),ZSFULL(9 8),VALI(11),VALO(11), n);m(xz

— USER EQUIVALENCING OF REAL AND SAVED VARIABLES (RVR, SVR) ——

EQUIVALENCE REAL VARIABLES RVR():
BRAD=BEND RAD, ALPHA =BEND ANGLE, PRAD =PIPE RAD, THICK=WALL THK.
PHI - ~ORIENTATION ANGLE

IVALENCE (RVR| ),BRAD) (RVR(2)ALPHA), (RVR(3),PRAD),
L (RVR($) THICK), (RVR(3) FHID)

FQUIVALB‘CE SAVED VARIAB!
(SVR(1)B1(1,1 é

ALENCE
2%73) vm(l)l)g'( 38{5)11-1“ g:);)vn(ss; TR(1,1)),

EQUIVALENCING OF MATERIAL PROPERTIES ————

UIVALENCE (PROP(1),EX), (PROP(2), ALPX), (PROP(3)NUXY),
1 (PROP(O),DENS)

CALL TRACK(S,'ST100")

a0

00 an annann

ann 0

-— READING IN ELEMENT INFORMATION: SUBROUTINE GETELD -—

CALL GETELD (IELNUM,ITYP EPAR(1),ERPAR(1),CON,TEMPER(}),
1 CON,CONRVR(1).SVR(1) XYZEQ]1, ))U( )AR( " ERO

CONVERT BEND AND ORIENTATION ANGLES TO RADIANS.
DATA DPPI / 3.14L59265358793D0

PHI = PHI*DPPI/1800D0

ALPHA = ALPHA*DPPI/180.0D0

[e]9]

— READING IN ELEMENT MATERIAL PROPERTIES: SUBROUTINE PROPEV —

SET UP INTEGER ARRAY FOR ACCESSING MATERIAL PROPERTIES
DATALP / 1,2,3,10/

AVETEM = DPHALF*(TEMPER(1) + TEMPER(2))
CALL PROPEV (IELEM MATJTYPE,LP(1),AVETEM PROP(1)4)
GBOMETRY VALIDITY CHECK

DX = X(2) - X(1
DY = Y(2) - ¥(1

DZ = Z(2)- Z(1
CON =« DX**2 + DY**2
ALEN2 =

ana o o Nnon

IELEM WRITE
2000 T LENGTH ELEMENT [IS5)
KEYERR =
NFKEY =1
CALL USEERR (NFKEY) USEERR
GO TO 990

150 CONTINUE

C

C —--————— CALCULATE MASS AND CENTROID
C

C Sl'lLL '10 BE DONE. EXISTING IS FOR STRAIGHT BEAM
+ X 2 ‘DPHALF
+ Y 2 ‘DPHA.LF
‘DPHALF

ARE\ 2‘

AFLU = DPPI‘ l é}g
ELMASS = (D S'ARE\+D FL*AFLU)*BRAD*ALPHA

END OF CHECK RUN OR ERROR DETECTED ——-——
IF ((NSTEPS .EQ. 0) .OR. (KEYERREQ.1)) GO TO 990

EVALUATE THE ELEMENT TRANSFORMATION MATRIX —-----—
TRANSFORMATION MATRIX TR IS EVALUATED IN THE USER DEFINED
SUBROUTINE TRSUB. INFORMATION REQUIRED TO CALCULATE MATRIX VALUES
IS PASSED IN BY ARRAY TRPROP.

TRPROP(1)=DX
TRPROP(2) =DY
TRPROP(3)=DZ
TRPROP(4) =PHI
TRPROP(5) =ALPHA
TRPROP(6) =CON
TRPROP(7) =ALEN2

ZERO THE TR MATRIX.
CALL VZERO (TR(1,1),144)

CALL TRSUB (TR,TRPROP)

annnnn 00n

EVALUATE THE ELEMENT STIFFNESS MATRIX ~-——-
ELEMENT CB2.
CURVED CYLINDRICAL THIN WALLED BEAM ELEMENT STIFFNESS MATRIX
CLOSED FORM STIFFNESS MATRIX

Pk nesep
N GO
c o\?im 0 (Z5(1,1),144)

C  EVALUATE CONSTANTS AND TRIG FUNCTIONS.

annannn 0o 00

CA = COS(Z.O‘ALI’HA)
S2A = SIN(20°ALPHA)
C2M1 = C2A-1.0

TRIG] = 20°ALPHA-S2A
TRIG2 = 20°AIPHA +S2A

AREA = 2.0°DPPI*PRAD*THICK
POLMOM = AREA*PRAD**2
SECMOM = POLMOM/20

El = EX*SECMOM

GJ = EX*POLMOM/(2.0 + Z0°NUXY)

m/sm)--z
D RA11
B = 20°El/ +G.|)
DM1 = 1.0-D
DM2 = 10-20°D
DTERM3 = -ALPHA*CA + DM2*SA

NRINV = -10/BRAD
V = 1/(20°(1.0 + NUXY))



S01-v

BB = B**2

BM1 = 10-B

BTERM! = (20-B)**2

BTERM3 = (-ALPHA*SA + CA*BM1)/BRAD
BTERM4 = (ALPHA®CA +SA*BM]1)/BRAD

= 1.0+RATIO,
CONSI’ BI{AD"J
CONST = IST/(1.0-NUXY*+2
CONOV = G) ALPHA /RATIO

C .
C *** IN PLANE STIFFNESS MATRIX ***

C
¢ SRR

INVERT BI
CALL INVM(BI,DET1 66,12)

C
C EQUATE FIRST 6X6 OF Bl WITH Bl
DO321=16
323=16

= BI{1J
gON.DAT FOR STORING STRESS RESULTS
OPEN (UNIT =40 FILE = PB2RES' STATUS ~'NEW")

EVALUATE ZSI = IN-PLANE INTEGRAL MATRIX
CALL VZERO(ZSI(1,1)36)

EVALUATE I/P STIFRNESS (2S1) < (811251 (B1]
(B1(1,1),2SX(1,1).665)

EVALUATE OVALISATION MATRIX ZSOV
CALL VZERO(ZSOV(1,1)9)

PRA - PRAD"4 v
{ ; couov' o'nm/(m-rm)osn/&n)
0/32.0

O 060 an

ZSOV(22) = CONOV*(750*BRT2/(40°PR4) + 17.0/32.0)
ZSOV(23) = CONOV*7.0/320

ZS0V(3.2) = ZSOV| 2,32

ZS0V(33) = CONOV*{1225.0°BRT2/(12.0°PR4) + 37.0/72.0)

EVALUATE THE IN PLANE COUPLING MATRIX ZSCUP
CALL VZER! ZSCUP(I 1 ,18)

CALLVDZR CUPMAT
CONIPC - CONST + 3.0¢ p.A)xDZzo'PRAD
CUPMAT 2 com?c~§ HA /2.0)

ZSOV(2,1) = ZSOV 1.375

[ele}

CUPMAT{3,1} = CONIPC*(1.0-CA)
CUPMA' CONIPC*(-SA)

CALL MATXB (B1(1,1),CUPMAT(1,1),ZSCUP,6,6,6,636)

FILL IN 9X9 /P MATRIX ZSFULL
DO3251=16
DO325J=16
325 ZSFULL(L]) = ZSI(1J)
DO 3261=16
DO3261=13
JP6 = J+6
3% zsmu(x.rm = ZSCUP(LJ)
DO 3271=13
IP6 = l+6
DO 327)=
327 zsmu,(m,‘) = ZSCUP(J))
DO 328
IP6 = H6
DO 328J=13

JP6 = J+6
é?ﬁ ZSFULL(IP6,JPG) = ZSOV(LJ)

A

EQUATE NON-ZERO TERMS FROM LAST 3 ROWS OF ZSFULL AFTER
REDUCTION TO THE ARRAY VALI |

C
C

non
:
™
[}
B
d
Bl

:
S
s

VALII;-ISFU ;
VALI(11) = ZSFULL(99

*** OUT OF PLANE STIFFNESS ***
EVALUATEBI ~ C2

CALL VZERO(BI(1,1},72)

0O onaonnn
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a 0nn

00

(¢]

nea 0o

o]

an

DO3SI=16
1s

nn

C

n

Bieg: s
3)=
BI(54)= AL‘HA'SA/BRAD
BI(6,1) = SA*NRINV
B T
- s
BI = NRINV
INVERT Bl
CALL INVM l,DEl'lMlZ
TE 6X6 O

BQUA’
D0332! {ﬁ
B2(lJ) BI(LY)

EVALUATE ZSO = Ogl> INTEGRAL MATRIX
CALL VZERO(ZSO0(1,1),36)

22) = QONST* 1°0.25*TRIG1 + BB*V*0.5°TRIG2)
24} = CONST*(BB*V*0.5-BTERM1°0.25)*(1-C2A)
= CONST*20*B*V*SA

24
44) = %r) BTERM1°025°TRIG2+ BB*V*0.5°TRIG])
4,6) = CONST*2°B*V*(1-CA)
62) = 16;
6A) = 4,6,
= CONST¥20°ALPHA®V

CATL T2 2800 DAy 25Ol Bl

EVALUATE THE OUT OF PLANE COUPLING MATRIX ZSCUP
zscur(x ) 1

conorc Nsr . 3.0‘BRAD{S4.0‘PRA.D) (20-B)
= CONOPC*
% oomwiw
CALL MATXB (B2(1,1),CUPMAT(1,1).ZSCUP 6,66,6,3.6)

FILL IN 9X9 I/P MATRIX ZSFULL
DO3S5i=16

TOB2

BQUATE NON-ZERO TERMS FROM IASI‘S ROWS OF 9X9 ZSFULL
AFTER REDUCTION TO THE ARRAY V,
&)

3
A

<<<<<<

)
RA kB

8 =7$FU 748
9=ZSFU

ASSEMBLE FULL 12x12 REDUCED STIFFNESS MATRIX
I/P TERMS IN [-J ODD LOCATIONS, O/P TERMS IN EVEN

<L

[sYe1s]ele]

0 2§
CALLVZ‘ERO (ZS(1,1),144)

LE =
BCg(O,LO) ZSl(l,y
360 NTISEIE
C
C STIFFNESS MATRIX TRANSFORMATION ---rereee
C ELEMENT MATRICES ARE TRANSFORMED TO THE GLORAL CO-ORD.

C SYSTEM BY THE ANSYS SUBROUTINE MHTCH.
CALL MHTCH (TR(1,1),Z5(1,1), KTIK KTIK, KTIK)

c

€ SET KEY THAT MATRIX WAS COMPUTED.
KELOUT(1) = 1

c

400 CONTINUE

C
C —— EVALUATE ELEMENT LOAD VECTOR
c

C CHECK MATRIX IS REQUIRED.
800 IF (KELIN(5) NE. 1) GO TO 990
c

CALL VZERQ P(1),12)
CALL VZERO (ZSC(1),{2)

ZSC? = BRAD*ALPX*(AVETEM-TREF)
= ZSC(3)

CALL VZERO (TEMP(1),12)
CALL MATXV(TR(1,1),ZSC(1),TEMP,12,12)
DO 8031=1,12

gm“%%'-%?n

CALL VZERO (ZSC(1),12)

CALL MAXV(ZS(1,1),TEMP(1),ZSC,12,12)

SET KEY THAT MATRIX WAS COMPUTED.
KELOUT(S) = 1
OUTPUT ELEMENT DATA TO FILE 12

g s_E:‘.EMEﬂ‘ DATA IS OUTPUT TO FILE 12 BY 'IHE SUBROU’I‘INE PUTELD.

20 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON,SVR(1))
CALL TRACK( 15,ST100 )
RETURN

END
C

no o 0
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SUBROUTINE REDUCE

SUBROUTINE REDUCE (SE,RED)

STATIC CONDENSATION OF STIFFNESS MATRICES
REDUCES 1/P AND O/P 9x9 MATRICES TO 6.
BASED ON GAUSSIAN ELIMINATION: REF. COOK.

NO REDUCTION OF FORCE VECTOR REQUIRED AS NODELESS
DOF HAVE ZERO CORRESPONDING GENERALISED FORCES.

FULL, SYMMETRIC STIFFNESS MATRIX SE.

CONDENSATION OPERATIONS ON LOWER TRIANGLE OF SE.

SIZE OF FULL MATRIX = NSIZE

NUMBE( OF DOF TO BE REDUCED = NUM. DOF TO BE REDUCED
IN LAST NUM DOF.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
c DOUBLE PRECISION SE(99),RED(6.,6)

NSIZE = 9
NUM =3
CONDENSATION OF LOWER TRIANGLE OF SE.
DO 30K =1,NUM
LL = NSIZE -K
KK LL +1
DO2WL=}1LL
u= E(lﬂ(é[(. )on GOTO 20
- §
DSO Y, SE(LM) - SE(KKM)*DUM
10 - *
2 o%%‘&ua )
30 CONTINUE
C FILL IN THE UPPER TRIANGLE BY SYMMETRY.
DO40K=1LL
DO4OL~1K
40 SE(LK) = SE(K.L)

C EBQUATE FIRST 6 ROWS AND COLUMNS OF SE TO RED
C RED IS THE REDUCED IN-PLANE MATRIX

DOS0I=1,6

DOS0J=16

g e

aAnNaNaNONAONNNn

0

¢}

SUBROUTINE TRSUB

SUBROUTINE TRSUB (TR,TRPROP)
IMPLICTT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL VZEROMAXBMATXB

DOUBLE PRECISION 'I‘(3,3 9,3) T‘l&ﬁ:«)) TR(12,12),
1 THET 3,3),TRPROP!

(¢]

NALEN2,

DX =TRPROP %

°§§zn¥"” 19)
CALL VZERO AS

CALL VZERO (TJ(1,1)9)

ALENG = SQRT(ALEN2)
ALENNI1 = SQRT(CON)

IF 1ALENN1 GT. 0001*ALENG) GO TO 200
1 =00

CALPl =10
GO TO 250

200 SALP1 = DY/ALENN]
CALP] = DX/ALENN1

NE CURVE-S'I‘RA]GHT BEAM NODE ROTATION MATRIX THETA
THETA(1,1) = COS(ALPHA/2
THETAQ) = SlN(&LPHA

EgA 13 - (THETAG1)
Al A(3,1
THETA(33 1Q~;HA1(

NODAL TR MATRICES TI AN
SUBROUTINES ATIMB AND ATlMB USED FOR MULT.

MAXB AND MATXB ARE ANSYS IN-HOUSE MATRIX ROUTINES,
CALL MAXB A(1L1).T(1,1),TI(1,1),333,333)
CALL MA' ETA(L1),T(1.1).13(1,1)333333)

C FILL OUT 12X12 TR MATRIX FROM TI AND TI
DO 260 I=13 .
B=1+3
DO260J=13

Sﬂtl?l 1J
T
260 COl B

DO2Z01=13
16 = 1+6

anona

9]

SUBROUTINE INVM(A, DN NXMX)

THIS PROGRAM COMPUTE THE INVERSE OF A MATRIX
USING THE GAUSS ELIMINATION METHOD

A : RECTANGULAR ARRAY OF SIZE N X 2N
D : DETERMINANT

N : ORDER OF A

NX: ROW

MX: COLUMN

aanannaaon

MULTIPLY T MA' BY THEI‘A AND THETA TRANSPOSE RESP TO GET 3X3
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(NXMX)
NM1=N-1
NPl=N+1
NX2=N*2
PUT A UNIT MATRIX IN THE ARGUMENTED PART OF A
DO21=1IN
IPN=1+N
PO1J=1IN
ki
1 JPN)=
o2 AN
C APPLY THE ELIMINATION PROCESS
C

DO 10 K=1,NM1
KP1=K+1

C=
IF :%:%};ma-lo 3,

3 Désl- IN )33
lll;(()ABS(A(J 1.0E-10) 6,64

ann

DO1 fc-)lCPl.NX2

AL =A(1]
u 122&»;%.0&10)')711

Cl2 AN =ANTD)/ANN)

g APPLY THE BACKSUBSTITUTION PROCESS
DO 13L=-1NM1
K~N-L
KP1=K+1

13 AKD- A(KJ)-A(KJ)‘A(-'J)
C PUT THE INVERSE IN THE FIRST N X N POSITIONS
C
DO 141=1N
DO 14J=1N
JPN=J +:(IJPN)
14 =
13 il
6999 FORMAT(24H **** SINGULARITY IN ROW 12}
END

4 1 1

SUBROUTINE SR100 (IELNUM,ITYP KELOUT ,ELVOL KTIK,ZS,ZASS,ZSC)
E sescesses STRESS PASS FOR 3-D ELBOW ELEMENT ¢¢¢essee
C
IMPLICIT DOUBLE PRECISION (A-H,0-Z
l}lﬂ.D,S

EXTERNAL
INTEGER IPLTAY(6)JEP

9]

LT MAXV,VZERO

a0

ananon

2008 s'rAR'l‘ srcoM SmRAGE LITIITT T

INTEGER lmuu,rm,mm(e U{S gﬁ

1 KEYERRJOUTN: }rrER Ml'I‘,ICRSI‘RT.ISPARE
mnmmmmms,xmormos

3 K20 KAY MODE ISYM KAHD IDEBUG IXXX,

4 ITYPE,MAT JELEM NROW JTYPE,IPLOT JPRINT KTEMTP KCONCV KBICNV,

S KEYPLS XEYCRP KEYSWLKYSUB(9),K21 NODES(20), EPAR(50)

REAL ERRVAR(5)

DOUBLE PRECISION

1 DPZERO,DPHALF DPONE,DPTWO DPTEN DTORAD RADTOD,

2 TREF,TUNIF, TOFSET, DELTIM, TIME,TIMOLD, TIME2 IME3,DELT2,

3 Acm..ouem CGOMEG CGLOC DXXX,
XCENTR,YCENTR ZCENTR, TFCP SUBEX, ERPAR(20),

5 xvzm(zo;a)x(zo) Y(20),2(20), ELVOL

COMMON /STCOM/ DPZERO,DPHALF,DPONE,DPTWO,DPTEN DTORAD,RADTOD,

1 TREF, 1F,TOFSET, DELTIM,TIME,TIMOLD, HMEI.’I'IMB,DELT).,

2A L.OMEGA (6),CGOMEG{6).CGLOC; 3) [‘.

3 JOUTN! ,l'lTER UMlT TISPARE,
NPRPVLMATST K5 K16,IPROP(20

5 KZD.KAY(ID),MODFJSYM,KAHDJD UG(IO). IXXX(41)

EQUIVALENCE SITYPE,F_PAR M{( (MAT,EPAR(Z)) (IF_LEM,EPAR(S)),

1 (NROW,EP. ), (IPLOT,EPAR(12
2 wmm‘ {14)), (KCONCV,EPAR(16)),
4 KBICNV.EP (KEYPLS.E‘AR(I 21 KEYCRP,EPAREIS) ),
s mswx,smn (KYSUB(I),E’AR ). (K21,EPAR(30)),
6 (NODES(1),EP
EQUIVA]JZN CENTR,ERPAR(2)),
3)) (zcmm 4)), (TFCP,ERPAR(5)),
3 UBEX,ERPAR
EQUIVALENCE (1)wio(1 1).0Y (1) XYZEQ(1,2)),(Z(1) XYZEQ(1,3))
DOUBLE PRECISION *UPD*

1 ZS(KTIK KTIK),ZASS(KTIK XTIK),ZSC(KTIK),
2 BR(AD.ALPHA PRAD ICK,PHI B(,As_l’xﬁUXY,DENS,DPPl,PROP(d),

vng~ 1),Bl(66.B 66
4T‘R 12.12) U § 98! 2,9).DMATI(2,2)
e e T
),EPO(3)SIGO(3) nimsm '
EQUIVALENCE (R ).BRAD) (RVR(Z),ALPHA) (RVR(3).PRAD),
1 (RVR(4) THICK), (RVR(5),PH
JEQUIVALENCE (SVR(D.BI(L ) ésvn(s‘r)m(l 1;

BB

EQUIVALENCE MATERIAL PROPERTIES PRO

EQUIVALENCE (PROP(1),EX), (PROP(Z)J\LPX). (PROP(B),NUXY)
1 (PROP(4),DENS)

DATA DPPI / 3.141592653589793D0 /
CALL TRACK (5,SR100 ")
GETELD

CALL 51 UM,ITYP EPAR(1),ERP. 1) ,CON,CON,
1 PRESS(1),CON,RVR(1) SVR(1) XYZEQ(1,1),U(1

STRESS PASS
STRESSES ARE EVALUATED AROUND CIRC AT BOTH NODES
EVALUATE I/P consn’nmva MATRIX [DMATI]
7 (Dnux§ 3
DCON = E(/(U)—

12) = DCON'NUXY

DMATI(2,1) = DMATI(1.2)



601-V

DMATI(22) = DOON

c
CALL VZERO (DMATO(1,1)9)
DMATO(1,1) = DCON
DMATO(1.2) = DCON*NUXY
DMATO(2.1) = DMATO(1,2)
DMATO(22) = DCON
c DMATO(33) = DOON*(1-NUXY)/2
< EVALUATE LOCAL DISPLACEMENT VECTOR ULOC (IN LOCAL CSYS)
C  SUBTRACT THERMAL DISPLACEMENTS AS OBTAINED FROM DIRECT
g STIFFNESS PROCEDURE IN ST100

EOIOIUIK z“{msm
- +
é° N’m&?ﬂ

CALL MAXV (TR(1,1),U(1),ULOC,12,12)

G swssess RECOVER NODELESS DOF, *+s+s+s

C  IN-PLANE DOF

C  SMI CONTAINS LAST 3 ROWS OF I/P ZSFULL AFTER CONDENSATION
CALL VZERO (SMI(11)27)

SMI(1.3) = VALI(3

SMI(39) = VALI(11
SMI(2,7) = SMI 1.8;
SMI(3,8) = SMI{29

[
C DOFI = I/P DOF IN LOCAL CSYS.
C THE KNOWN (BEAM) DOF STORED IN FIRST 6 ROWS.
c Nomzuass DOF (1),9m) AND STORED IN LAST 3.
DOFl 1) = Uuégon
DOFI{2) =
DOFI(3) = uuoc
DOFI1(4) = ULOC(
DOFI(5) = ULOC(9
DOFI(6) = ULOC(11)
c
DO30J=13
I =6+1
DUM = 0.0
K=13-1
DOWL=1XK
2 DUM =~ DUM + SMI(J,L)*DOFI(L)
go DOFI(JJ) = (00 - DUM)/SMI(J
C OUT OF PLANE DEGREES OF FREEDOM
c
CALL VZERO (SMO(1,1).27)
C SMO oorrmms usr 3ROWS OF O/P ZSFULL AFTER CONDENSATION
SMi
SMi
SMi
SMi
SMi
SM
SMi
SMi
SM
SMi
SMI

annn

SMO(18
SM8§2,9

DOFO = O/P DOF IN LOCAL CSYS.

THE KNOWN (BEAM) DOF STORED IN FIRST 6 ROWS.

NODELESS DOF RECOVERED AND STORED IN LAST 3.
1) = ULOC(2

gRRREY
:

DO4L=1X

40 DUM = DUM + SMO(J,L) 'DOFOSL
50 DOFO(J) = (0.0 - DUM)/SMO(J,1})

nan

[e]e]

a o o600 o

nonoo

anon

< < < << << SET UP LOOP FOR STRESS AND STRAIN EVALUATION > >>>> > >
RATIO = g’RAD/BRAD)'Q
D = RATIO/20

= (2*(1+N /2+NUXY)
(o] N = PRAD **2)

PHIB IS THE MERIDIONAL ANGLE FOR STRESS EVALUATION
PHIB = -ALPHA
DO 2000 JINODE = 1,2
PHIB = PHIB+ALPHA
WRITE (40,°) TELEMENT"
WRITE IELNUM
WRITE "NODE’
WRITE JINODE

SURF = -1 INNER, 0 MIDDLE, +1OUTER
SURF =10
SFACT = 10
&P éleEIA SIG{PHI ETA) TAU SIGE’
'ALUATES STRAI AT LOCATIONS AROUND CIRC

AT CURRBJT NODAL IDCATION
THETA = -100
DO 100 IEP =136
THETA = THETA + 100
THETA = THETA * DPP1/180.0

PHIB = PHIB * DPP1/180.0

198808000 IN PI‘ANE s'mBs AND grRAlN "e0800000s

EVALUATE IN PIANE B MATRIX

SP = SIN(PHIB,
CONST = P ‘CI'/BRAD
AL(1) - -CONST
Al 3} = (D+CO! ~2.o-sp BRAD
D+ CONST)*-2.0°CP/BRAD
0o (Bl(l 1),18)

EVALUATE I/ mlm
BENDING CO! u'nonsnnsr 6 COLUMNS. : [BI] = 1/R [Al] [B1}
ONLY ROW 1 IS POPULATED:

DOMWI=16



011-v

0 00 aon (o]

nanan

Bé%.l? - /ugx)'m(u) +A1(3)*B1(3,)) +A1{5)*B1(5,])

PUI‘ I/P OV.MATRIX IN LAST THREE COLUMNS OF BI

20°THETA) + 0.5*ST*SIN(2.0°THETA’ ;;BRAD
g{i 4D"I‘HETA + 0.25*ST*SIN(4.0°THETA))/BRAD

1 + *ST*SI! ao'nuzr )
onn) ( .2 AUTER SURFACE FOR STRESS EVALUATION

SURF‘-S.D'I'HIC(I:% 2.0"l1-lEI‘A PRAD**2
2;§ SURF*-15.0*THI 2 /PRAD**2
SURF*- 35.0‘1'HICK/2.0‘(I)S 6.0°THETA)/PRAD**2

EVALUATE STRAI Dgzrx&) Epa%mn) = (EPI(PHI) EPI(THETA))

EVALUATE STRESSES SIG?S);D& (ﬂ’l) = {SIGI(PHI) SIGI(THETA)}

CALL %&‘v A SlGl/

218{8 3

*se+42¢ QUT OF PLANE STRESS AND STRAIN #+++2s¢

EVALUATE O/P B MATRIX BO
O/P AMA A2. MULT BY PRAD/(BRAD**2) USUALLY OUTSIDE BRACKETS

1,2 - %aé)'srg-r&mon
= (20-B)’CP-ST:OPCON
3.4 = B*SP*OPCON
= OPCON

CALL VZERO (BOBS Bg(
CALL MAXE (AX1.1) B2(1 y80B3.6336.)
CALL VZERO (BO(1, 1),27)
DO 801=123

DO&I=16
BO(I nos(u)

80 CO

(o]

O o0 0

aan o0

an

EVALUATE OVALISATION B MATRIX IN LAST 3 COLS. OF BO
crsm z.ovmgm - 0.5°ST*COS(2.0°THETA. ;‘BRAD
ggm ggmm‘.« - 025*ST*COS(4.0°THETA))/BRAD
mo) ST*COS(6.0°THETA))/BRAD

= SURF*-3.0°THI rsm 2.0"I‘HETA PRAD**2

=~ SURF*-15.0°THI! i /PRAD**2

= SURF-: as.o'nncx/z‘s 'A)/PRAD**2
UATE STRAINS {EPO gg} {DOFO} = (EPO(PHI) EPO(THETA) GAMMA}
CALL MAXV (BO(1, 1).0050(1)

EVALUATE smhﬁsml(iﬂco g Lgpoy =~ (SIGI(PHI) SIGITHETA) TAU}
CALL MAXV s 1
EVALUATE gmas’soé.x&mk - sxco/(n&\
SIGO(1) = SIGO(1)*SFACT
s1§§§§ - g%g%%mcr
sl - *SFACT
THETA ~ THETA*180.0/DPPI
WRITE (40,'(6£102)") A SIGO(1),SIGO(2) SIGO(3)
EVALUATE TOTAL (SUMMED) STRESSES
SIG(1) = SIGI(1) + SIGO(1
s1§§z§ - smlizi + SI z;
SIG(3) = SIGO(3)
VON MIS

SIGE = 2 + SIG(1)**2 +SIG(2)**2) / 20
R
WRITE (40,(5F163)") THET. 1),SIG(2)SIG(3) SIGE

100 CONTINUE

C
PHIB = PHIB*180.0/DPP1
2000 CONTINUE

IF (IPLOT NE. 1) GO TO 900
sssss NUMBER OF FORCES (LEVEL 1) *****

IPLTAY(2) = 12

i+ NUMBER OF STRESSES (LEVEL 2) seses
IPLTAY( ),= 4
oo’ NUMBER OF TOTAL SAVED (LEVELS 1, 2, AND 3)
IPLTAY(4) =

hidd SAVE GEOMETRY FOR CONTOURS (0NO 1,YES)
IPLTAY(6) = 0

sssees PUT POSTDATA INFORMATION INTO POSTD ******

anan 0O o 0o 060

sss*s PUT PLTARY INFORMATION ONTO FILE 12 *#¢+¢++
CALL SRPLT glELEM,JTYP,NROW.MAT ,100,2,U(1),NODES(1) XYZEQ(1,1),

HPLTAY
UM.EPARC%(),ERPAR 1),CONSVR(1))
C PUTE_D mm‘o DATA BA Flu-:('a

CALL TRACK( 15,SR100 )

RETURN

END
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A4.3 ELEMENT PB2 ANSYS USER ELEMENT

SQURCE CODE

B2

sesessesssee

ANSYS USER ELEMENT CODE FOR PIPE BEND ELEMENT ELEMENT

BASED ON VLASOV THIN WALL CIRC CURVED BEAM SOLUTION
WITH SUPERPOSED LINEAR OVALISATION: 3 /P AND 3 O/P MODES.

CLOSED FORM INTEGRATION FOR BEAM STIFFNESS MATRIX.
NUMERICAL INTEGRATION OF OVALISATION AND COUPLING MATRICES.
MATRIX STATICALLY OONDENSED TO GIVE FINAL 12x12 STIFFNESS MATRIX.

DONALD MACKENZIE OCT 198%

ANSYS VERSION 43A
IMPLICTT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL MAIN STOPER
EXTERNAL ELSHFN
CALL NNDIM

CALL MAIN
CALL STOPER
END

A4.3.1 SUBROUTINE USEREL

SUBROUTINE USEREL (ITYP,IPARM KYSUB KEY3D KDOF KUNSYM KTRANS)

INTEGER [PARMéZO 1zé,xvsu3 9)ITYP JTYPEKEY3D KDOF KUNSYM KTRANS

sses DETERMIN ENT AND THEN BYPASS IF NOT USER ELEMENT
JTYPE = IPARM(ITYP %o

IF (JTYPE NE. 100) GO TO 100

csense

SET 3-D KEY #*tsecoses

D = 1

sevesssses DEFINE DOF SET AT EACH NODE **se+esees

esssssesse SET UNSYMMETRIC MATRIX KEY ttessssse
KUNSYM =0

seess DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION ***
Y iet s DEFINE NUMBER OF NODES ++esossss

IPARM(ITYPS) = 2
* DEF&JE NUMBER OF TEMPERATURES (DELTEM,TEMPER) ******
IPARM(ITYP,11) = 2

+ese DEFINE NUMBER OF PRESSURES (PRESS) **+++++
IF THERMAL ANALYSIS, TWO TIMES NUMBER OF CONVECTION SURFACES
A o JEROED VARIABLES (NOITUEP)
A DEE N
seese NUMBER OF REAL CONSTANTS FOR ELEMENT (RVR) *
IPARM(ITYP,10) = 5

<<+ DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR) **+*
IPARM(ITYP.
NUMBER OF ROWS IN ELEMENT MATRICES (KTIK) **
[PARM(ITYP,O) = 12
*s¢ SET KEY TO IDENTIFY NON-LINEAR ELEMENT *¢*¢*

0
oo SET KEY FOR THERMAL ELEMENT (KAN,-1) ****¢**
IPARM(ITYP,1) = 0

A4.3.2 SUBROUTINE USERPT

SUBROUTINE USERPT (INODEJTYPEKSHAPENNODE

C s+++++2+s+ USER SUBROUTINE FOR ANSYS PLOT SHAPE e+seseseee

C

DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING
lN’lEGEl INODE(20) JTYPE,KSHAPENNODE

****BYPASS IF NOT USER ELEMENT (JTYPE = 100) ****s****

lF ( E NE. 100) GO TO 100

sesess SEIECT S E TO BE PLOTTED BY SETTING KSHAPE ****¢*¢

".‘E.:“z" SET NUMBER OF ACTUAL NODES *+¢¢%¢eess
NNODE = 2

100 RETURN
END

4 BR 1 T1

SUBROUTINE ST100 (IELNUMITYP KELIN KELOUT NR,KTIK,ZS,
1 ZASS DAMP GSTIF, )

C
C ******+ STIFFNESS PASS FOR PIPE BEND ELEMENT EL EMENT ¢*t¢sse®

C
C

(o]

a0

(21e]e]

an nn

a0

[o]¢]

CLOSED FORM BEAM STIFFNESS MATRIX
NUMERICAL INTEGRATION OF OVALISATION AND COUPLING MATRICES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

—-~—— DECLARE EXTERNAL SUBROUTINES AND FUNCTIONS ——-—-
EXTERNAL TRACK,GETELD PUTELD,PROPEV NONTBL,VZERO MHTCH, USEERR,
1 MAXV TRSUBMAXB MATXB,INVM REDUCE,INTEG

——- COMMON BLOCK DECLARATIONS -——--ocomeeee
STANDARD ST100 INTEGER VARIABLES ASSOCIATED WITH COMMON:
INTEGER IELNUM,ITYP,KELIN(6), KELOUT(6) NR KTIK,

1 KEYERR JOUT,NSTEPS KFSTLD, CUMIT XRSTRT,ISPARE,
2 K13 NPRPVL MATST K5,K16,JPROP KCPDS,

3 K20,KAY MODE,ISYM KAHD,IDEBUG,IXXX,
4 ITYPEMAT,JELEM,NROW, EJPLOT JPRINT XYEMTP KCONCV KBICNV,
5 KEYPLS KEYCRP, UB(9). K21 NODES(20), EPAR(50)

STANDARD ST100 DOUBLE PRECISION VARIABLES ASSOCIATED WITH COMMON:
DOUBLE PRECISION
1 DPZERO,DPHALF, DPONE,DPTWO,DFTEN,DTORAD RADTOD,
2 TREF TUNIF ,TOFSET, DELTIM, TIME,TIMOLD, TIMEZ,TIME3 DELT2,
3 ACE_.OM%A,CGOMBG CGLOC,DXXX,
TFCP.SUBEX, ERPAR(20),

 XCENTR,YCENTR ZCENTR,
5 xvzm(zo,s)x(zo) ,Y(20),Z(20), ELVOL

ST100 COMMON BLOCK: STCOM

COMMON /STCOM/ DPZERO,DPHALF,DPONE,DPTWO,DPTEN, DTORAD,RADTOD,
1 I%:&JXREFTUOIF ,TOFS! (l})(l)i{."l‘lM TlMg.TlMOI)D ’IIM%’(I}'I(ME.DE.’[‘Z,

2 Al MEG. ,Cl 6;,C LOC(3), D 1

3 OUTN MB.Ncumr TRTISPARE,
4 K13,NPRPVL MATST K5,K161PROP(20

5 K20 KAY(10) MODE ISYM KAHD ID| UG(lO) DOX(a1)
EQUIVALENCING OF STCOM V.

ARIABLES
BQUIVALENCE (ITYPEEPAR( MAT EPAR 2, (lElm,FJ’AR(S))

1 NROW EP, , JTYPE.EP,
"EF. ,(lcmm/\n 14) (KCONCV AR?%{.
KBICNV.FJ’ ; 2 S
( (KYSUB(I).EP 1)), (K21,EPAR(30)),
'AR(2)),
1) XYZEQ(1.1)){Y (1), XYZEQ(1,2)).(Z(1) XYZEQ(1 3))
USER DEFINED V.

CRP EPAR(19
SRR o
can’mm».}gs)). ( Ag(( 4)), (TFCP ERPAR(S)),
—— ARIABLES ~—— oo
INTEGER, REAL AND DOUBLE PRECISION VARIABLES DEFINED HERE BY USER.
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[ele]

DECLARE INTEG!
INTEGER 1) K.DBJGJ&I)(4)NSIR,NUMJG)EMO.NFKEY
1 KIKOLLLO

DECLARE DOUBLE PRECISION VARIABLES:
DOUBLE PRECISION ZS(KTIK.KTIK),ZASS(KTIK,KTIK),
& ZSC :m(lz.u),
1uuo_v 4),EX ALPX.NUXY DENS ALEN2 ALENG DX, DY DZ,
.rm 2),OON AVETEM,TRPROP(7) MPROF(1) LDPROP(1), DPP1,
3Dlz)unm PRECISION 1“116,6 5 X,E(,g)l(é.lz).mzaa),sxa,s)
mszn,czvi .zsow G2,

(p1e]

2CA.SA,CM1 Gl
ARFA,POWOM,SBCMOM.E,GJ,RA‘HO,D.B.DMLDMZ,
s mm.ﬂ, BAML '

lDOUBLE PRECISION (J()NOV.Pl‘l;,BR‘D.,ZSOVl(é,s),CPan(sﬁ),
2 CPINTO(G.G).SUBDA&A(GS) 'SMI1(6,12) SMO(6,12)

C
-~ USER EQUIVALENCING OF REAL AND SAVED VARIABLES (RVR, SVR) —-

BRAD=BEND RAD, ALPHA ~BEND AN
%ﬁ.‘&“ﬂé&%” anm) (RVR(2) ALPHA), (RVR(3),PRAD)
1 (RVR(4),THICK), (RVR(5).PHI) '

AIEJCE SAVED VARIAB

gx&fﬂ)-sm& ), ( i7)3)R°l’( 18 (S‘%l( l‘29) LTR(L,1),

C
C
g EQUIVALENCE REAL VARIABLES RVR((’
C

oo

00

———— BQUIVALENCING OF MATERIAL PROPERTIES ————-
1%30 PI(A‘I).%QECNE )(PROP(I),EC) , (PROP(2),ALFX), (PROP(3),NUXY),
CALL TRACK(S,'ST100')
~—- READING IN ELEMENT INFORMATION: SUBROUTINE GETELD ~—

CALL GETELD (IELNUM, 1),ERPAR(1),CON,TEMPER(1),
100N.00NRVR(1)SVR(I)XYZBO(1 )?U(l))AR() R

CONVERT BEND AND ORIENTA}HON ANGLES TO RADIANS.

ano o

an

DATA DPPI / 3.14159265358793D0

PHI = PHI*DPPI/180.0D0

ALPHA = ALPHA°DPP1/180.0D0

— READING IN ELEMENT MATERIAL PROPERTIES: SUBROUTINE PROPEV —

SET UP INTEGER ARRAY FOR ACCESSING MATERIAL PROPERTIES
DATA LP /1,2,3,00/

AVETEM = DPHALF*(TEMPER(1) + TEMPER(2))
CALL PROPEV (IELEMMAT JTYPE,LP(1)AVETEM,PROP(1)A4)
GEOMETRY VALIDITY CHECK

DX =

DY = Y 1

DZ = -Z(1

CON = "2 + DY**2

ALEN2 = CON + DZ**2

4 21}1‘0.0 001‘0150

RMATSZB! LBNGIHE.EMEN’!"JS)

ana 0O 0 anonon

CALLUSMR(NFKEY)
GO TO 990

PRAD=PIPE RAD, THICK=WALL THK.

C
150 CONTINUE

C
C
C
C

000(‘){‘)0 nen

non (el O oAOOOOGANO O N0

nn

CALCULATE MASS AND CENTROID ——--—-m--—
STILL TO BE DONE EXISTING IS FOR STRAIGHT BEAM

XCENTR = X 2 *DPHALF
= *DPHALF
= DPHALF

ARE\ 2*DP! l’P

AFLU DPP[' "2
= (D S'ARE\+D FL‘AFLU)‘BRAD‘ALPHA

END OF CHECK RUN OR ERROR DETECTED ----nn—
IF ((NSTEPS .EQ. 0) OR. (KEYERR EQ.1)) GO TO 990

EVALUATE THE ELEMENT TRANSFORMATION MATRIX --oeooeo-
TRANSFORMATION MATRIX TR IS EVALUATED IN THE USER DEFINED
SUBROUTINE TRSUB. INFORMATION REQUIRED TO CALCULATE MATRIX VALUES
IS PASSED IN BY ARRAY TRPROP.

TRPROP(1)=DX
TRPROP(2)=DY
TRPROP(3)=DZ
TRPROP(4) =PHI
TRPROP(5) =ALPHA
TRPROP(6) =CON
TRPROP(7) =ALEN2

ZERO THE TR MATRIX.
CALL VZERO (TR(1,1),144)

CALL TRSUB (TR,TRPROP)

———— EVALUATE THE ELEMENT STIFFNESS MATRIX ———-—
ELEMENT CB2.
CURVED CYLINDRICAL THIN WALLED BEAM ELEMENT STIFFNESS MATRIX
CLOSED FORM. .
OVALISATION AND COUPLING MATRICES NUMERICALLY INTEGRATED
IN SUBROUTINE INTEGRATE.

OPEN FILE MAT.DAT FOR MATRIX PRINTOUT
OPEN ( UNIT =40.FILE = "P}MRB’SI’ATUS ='NEW’)

IS REQ
chu .NEl GO TO 400
(zs(1 1),144)
SET UP ARRAY SUBDATA WITH REQD. SUBROUTINE INFO
SUBDATA(1) = BRAD
SUBDATA(2) = ALPHA
SUBDATA(3) = PRAD
SUBDATA(4) = THICK

SUBDALT. = EX
SUBDAT. = NUXY

*INTEG* EVALUATES 1/P AND OUT O/P OVALISATION STIFFNESS

CALL INTEG (ZSOV1,ZSOVO,CPINTL,CPINTO,SUBDATA)
EVALUATE CONSTANTS AND TRIG FUNCTIONS.

SIN ALPHA)
cm = CA-10

20°ALPHA)
szs SlN(Z.O‘ALPHA)
C2M1 ~ C2A-10
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TRIGI = 20°ALPHA-S2A
TRIG2 = 20°ALPHA +S2A

c
AREA = 20°DPPI*PRAD*THICK
POLMOM = AREA°PRAD**2
SECMOM = POLMOM/2.0
El = EX*SECMOM

c GI = EX*POLMOM/(2.0+ 20°NUXY)

RATIO = gRAD/BRAD)“Z
D = RATIO[20
c B = 20°HI/(E1+GJ)

DM1 = 10D
DM2 = 1.020°D
DTERM]1 = 2.0°DM1/BRAD
DTERM2 = ALPHA*SA + DM2°CA
DTERMS3 = -ALPHA*CA + DM2°SA
c
NRINY - -10/BRAD
= 1/(20°(1.0+NUXY))

BB = B**2

BM1 = 1.0-B

BTERM = (2.0-B)**2

BTERM3 = {-ALPHA*SA +CA*BM1)/BRAD
c BTERM4 = (ALPHA®CA +SA*BM1)/BRAD

H = 10+ RATIO[20

CONST = BRAD**3

CONST = CONST/(1.0-NUXY**2

CONOV = CONST*ALPHA/RATIO

C
C *** IN PLANE STIFFNESS MATRIX ***

(; EVALUATE (ngx(l Sl )

C

C BQUATE FIRST 6X6 OF BI WITH B1
DO 321=16
DO32ZI=15

322 BI1(1J) = BI(L))

CALL VZERO(ZSI(1,1),36)

C
C EVALUATE ZSI = IN-PLANE INTEGRAL MATRIX
C

ZSK1,1) = CONST*ALPHA
ZSI(13) = CONST*20°CM1
ZS)(1,5) = CONST*2.0°SA
ZSI(3,1) = ZSK(13

ZSI(33) = CONST*H*TRIG1
A = CONST*H*C2M1

ZSI(s,1) = ZSi(1
ZSI(s3) = Zsl
ZSI(5,5) = CONST*H*TRIG2

(o)
C EVALUA’IEI‘/P STIFFNESS (ZSI) =[B1]ZSI] {B]
c CALL MHTCH(B1(1,1),ZSI(1, 15 6,6,6)
C EVALUATE I/P COUPLING STIFFNESS
CALL VZERO(BCUP(LIR%
c CALL MATXB (B1(1,1),CPINTI(1,1),ZSCUP,6,6,6,6,6,6)
C FILL IN 12X12 /P MATRIX ZSFULL
CALL VZERO(ZSFULL(1,1),144)
DO32S1= 1;6
DO325)=1
éﬁ ISFULL(U) = ZSI(11)
DO3261=16
DO326J)=16
JP6 = J+6
326 ZSFULL(1JP6) = ZSCUP(LJ)
DO3271=16
IP6 = [+6
DO3271=16
827 ZSFULL(IP6J) = ZSCUP(J,1)
DO32381=16
IP6 = 1+6
DO 3281=1,6
JP6 =
Cszs stu(xmm = ZSOVI(LJ)
C
CALLVZERO zs 11)36)
C 2D
C EQUATE LAST 6 ROWS OF ZSFULL AFTER
C REDUCTION TO THE ARRAY SMI
CALL VZERO (SMI(1,1),72)
DO3W0I=16
IP6 = [+6

DO 330 J=1,12
éso SMI(1,]) = ZSFULL(IP6,J)

C *** OUT OF PLANE STIFFNESS ***
C
C EVALUATEBI = C2
c
CALL VZERO(BI(1,1),72)

[of
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BI(53) = SA/BRAD
BI(54) = HA*SA /BRAD
BI(6,1) = SA*NRINV

g{g-mm

Bl“-m‘é\m
= NRINV

INVERT Bl

CALL INVM BIDEH,MIBZ)
BQUATE OF BITO B2
DO 3321=16

DO :2J=16
éaz B2(1J) = BI(1J)
€ EVALUATE ZSO = 041’ INTEGRAL MATRIX
c CALL VZERO(ZS0(1,1)36)

2,2) = CONST* 1*0.25°TRIG1 + BB*V*0.5°TRIG2)
2A) = CONST* B‘V‘OS—B’I‘ERM!‘O.S)'(IQA)
= CONST* VSA
4% = CONGP(BTERM
44 BTERM1°*025*TRIG2 + BB*V*05*TRIG1)
4,6) = CONQT‘ *B*V*(1-CA)
6,2) =
64
=- CON 20°ALPHA*V

EVALUATE O/P STIFFNESS (ZSO)] = [BI]'[ZSO] B}
CALL MHTCH(BX(1,1),2SO(1,1),6,6,6)

a aon

an ao

CALL VZERO(ZSCUP(1,1)36
CALL MATXB (B2(1,1),CP 1,1),ZSCUP,6,6,6,6/6,6)

FILL IN 9X9 I/P MATRIX ZSFULL
CALL VZERO(ZSFULL(1,1),144)
Bsi=1,6
35I=16
eSS ZSFULL(LJ) = ZSO(1J) .

(oe}

DO 337)=1,6
Zs|

gas ZSFULL(IPo,.IPtS) ZSOVO(LT)
CALL o] 1,1
REDUCS! (zs )
BQUATE LAST 6 ROWS OF ZSFULL
AFTER REDUCTION TO THE ARRAY SMO

cy\u.vmosu 11),72
A (SMO(1.1).72)

[eIelele]

P6,J
C ASS FULL 12x12 RE)UCED STIFFNESS MATRIX
(é I/P TERMS IN 1-J ODD LOCATIONS, O/P TERMS IN EVEN

EVALUATE THE OUT OF PLANE COUPLING MATRIX ZSCUP

C ZEROZS
CALL VZERO (ZS(1,1),144)
DO 3601=1,6
KO = 211
KE = 2°1
DO360J=16
LO = 2)-1
A

=24

ZS(KOLO) = 251(1,?
= 2SO(LJ)
260 CONTIN E

c STIFFNESS MATRIX TRANSFORMATION ——--eer
C ELEMENT MATRICES ARE TRANSFORMED TO THE GLOBAL CO-ORD.
C SYSTEM BY THE ANSYS SUBROUTINE MHTCH.

CALL MHTCH (TR(1,1),25(1,1), KTIKKTIK, KTIK)

C

€ SET KEY THAT MATRIX WAS COMPUTED.
KELOUT(1) = 1

C

400 CONTINUE
CBM CONTINUE

C --——-—-- OUTPUT ELEMENT DATA TO FILE 12 ---——----oo--
C ELEMENT DATA IS OUTPUT TO FILE 12 BY THE SUBROUTINE PUTELD.

C

390 CALL PUTELD (IELNUM EPAR(1),ERPAR(1),CON SVR(1))
CALL TRACK( 15,'ST100 %)
RETURN
END

R INE 1 G

SUBROUTINE INTEG (STO1STOO STCUPLSTCUPO SUBDATA)

NUMERICAL INTEGRATION ROUTINE FOR IN PLANE AND
OUT OF PLANE OVALISATION AND COUPLING STIFFNESS MATRICES.

INTEGRATE THRO' THICKNESS: 3 POINT RULE
INTEGRATE AROUND CIRC.: 4 POINT RULE
INTEGRATE ALONG AXIS: 5 POINT

IMPLICIT DOUBLE PRECISION A-H0-Z)
B(TBINAL MAXBMA (o]

& Al 3) AJ(24), WI( 2.2)DBI(2,6)
o,

e —
6N(3m~§ NINZBORGS ¢

READ IN ELEMENT PROPERTIES
BRAD =~ SUBDATA([%)
)

[oelelelelsIole]

an

ALPHA = SUBDATAS
PRAD = SUBDAT.
THICK = SUBDATA(
EX = SUBDATA(I_
NUXY = SUBDA’ A.é%
WEIGHTS AND

3 POINT RULE. INTEGRATION LIMITS +/-1
T14596669241483

ano

B e

WI(1) = 0.555555555555553
WI(2) = 0.88838888888888
WI(3) = 0.555555555555553
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c C  AI(l) = THRO’ THICK LOCATION H
C 24 POINT RULE: INTEGRATION LIMITS 0 TO 2 P C  AJ{J) = ROUND CIRC POSN. THETA
C ABSCISSA C = AXIAL POSN PHIB
DATA (A.l(l .l-l.M)/ H = Al(
10015 0.079392582916506 , 0.193916213993074, THETA = AJ(J)
zoamwmms 0.565480438598976 . 0.816423930689125, PHIB = AK(]
3 1.105546397970765 , uzsmmeslsmﬂ 1m'nomom 2, c
4 21518568R5770058 , 2.541175023904087 , 2940351980544773, C LINEAR SHAPE FUNCTION MATRIX
S 3342833318055227 , 3.74201028400913 | 4.131328422229942, Nl =10- Pwmm
6 4.504395150910876 , 4.855084741849049 , 5.177638910029235, N2 = PHIB
7 SAGSIG13TTII087S . 5.71 7704869401024 , 592634916202856S, CALL VZERO (N(1,1),18)
aoaozmosum 6.203792725083494 , 6.26806551369T324 N(L1} = N1
C N(14) = N2
24 N(22) = N1
Mw;w; g&m& 3mooooum 0.139101676526740, N(25) = N2
2 0.186291998762931 , 0.230424767197760 , 0.2N0714378315854, N(33) = NI
3 0.306678040343665 |, 03375461 29710700 |, 0.362871758252947, N(36) = N2
403822399063958693 , 0.395330028457241 , 040192969466T3 74, c
5 0.401929694667374 , 0.395330028457241 , 0.382239063958973, CT =
6 0362871758252947 , 0.337546129710709 , 0.306678040343665, CT2 = zomﬁzm
7 0270T74378315854 , 0.230424767197769 , 0.186291998762931, CT4 = COS{4.0*THETA
80.139101676526740 , 0.089634000925077 , 0.038771116880962/ CT6 = COS(60°THETA
c ST = SINCTHETA
C 5 POINT RULE: INTEGRATION LIMITS +/- 1 ST2 = SIN(20°THETA)
C  ABSCISSA ST4 = SIN(40°THETA
1) = -0.906179845938664 ST6 = SIN{6.O*THETA.
2) = -0.538469310105683 c
3) = 0.000000000000000 C  **** IN PLANE OVALISATION ****
4) = 0.538469310105683 C  EVALUATE [NJT{BT[D}[B]{N], MULT BY (WI(I)*WJ(J)) AND ADD TO LAST
= 0.906179845938664 C VALUE: [ = + [BTDB] W1 WJ
c GHTS C
1) = 0.236926885056181 CALL VZERO (BI(1,1),6)
2) = 0ATB628670499366 C (Bl
= 0.5688888RRRRAIAD BI(1,1) = (CT*CT2+05*ST*ST2) /BRAD
4) = 0A47BG2B6TO499366 BI(12) = (CT*CT4 +025°ST*ST4) /BRAD
c = 0.236926885056181 BI(13) = {CT*CT6+(1.0/6.0)*ST*ST6)/BRAD
c
C CONVERT ALPHA TO RADIANS R2 = PRAD**2
C . BI(2.1) = -3.0°H*CT2/R2
c ooNVERT'rHRo THICKNESS POINTS TO ACTUAL INTEGRATION LIMITS BI(2.2) = -150°H*CT4/R2
T = THI BI(23) = -35.0°H*CF6/R2
DO10I= c v
AI(I) = AKI)°T c ALUA
10 %5 v%)«r VZERO (BN (1
C CALL MAXB (BI(1, ),N(l 1),BN,2;4,2,2,63)
C CONVERT AXIAL POINTS TO ACTUAL INTEGRATION LIMITS c
ALP = ALPHA/20 C EVALUATE BN’:]; TRANSPOSE OF [BN]
DO NI=15 CALL \mmé (BNT(1,1),12)
% ALP‘(I +AK(D) =12
BN':;‘?IJIT,I:I%'sBN(H‘J'I')
c 30 =
DCON = EX/(1L0-NUXY**2) c
c oonsnnr{l"xs MATRIX - LEAVE OUT DCON c EVALUA 3 i s[BN]
1,1) = 10 DBI(1,1),12)
1,2) = NUXY 11),BN(1,1).DBI1.222.26,2)
21) = NUXY o)
22) = 1.0 C EVALUATE BH = {BNJT [DBI)
C 'ANTS FOR OV AND CUP STIFFNESS CALL Sm) | &
CONOV = DCON*BRAD*PRAD CALL MAXB (BNT(1,1),D8i(1,1),BTDBI6,2,6,6,6.2)
CCUPI = DCON*PRAD c
CCUPO = DCON*PRAD**2/BRAD C  EVALUATE STIFFNESS MATRIX.
C SET UP INTEGRATION DOUBLE LOOP THRO' THICK & ROUND CIRC c 1;0 l]cr {STOI] PREVIOUS + CONOV*WEIGHTS * [P}
c ) -1,5
CALL VZERg S 1}36)
CALL vzmo sncusl(x f‘)?s) r§ (l)‘WJiJ)‘\JK(K)'B’l‘DBl(ICl‘,L)
CALL VZERO (STCUPO(1,1),36)
c c ss+¢ QUT OF PLANE OVALISATION ****
DO3001=13 C
DO 300 J =124 VZERO (BO 1.1)#
DO300K~15 1,1) = (CT*ST2-0.5°ST*CT2 gam
c 12) = (CT*ST4-0.25*ST*CT4) /BRAD
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BO(13) = (CT*ST6-(1.0/6.0)*ST*CT6)/BRAD
R2 = PRAD**2
BO(2,1) = -3.0°H*ST2/R2

2,2) = -150°HST4/R2

2.32 = -250°H*ST6/R2

EVALUA (é}]?(
1.1) '(1 1).BN.23,22,63)

EVALU TE B"r?r TRANSPOSE OF {BN]}
(11)12)

Doxao rr-1.2

o nN'r(rr.rr)-BN(rrm

C
C BVALUATE [BN]
J)EIN(I 1),0B0222262)

EVALUATE [BTDBO] - [BI BO)]
CALLVZ.EIC‘ (é sI) (5D (pBO]

CALL MAXB (BNT(1,1), 30(1 1),BTDBO,6,2,6,662)
EVALUATE STIFFNESS MATRIX.

Jg‘?’gg [STOO] PREVIOUS + CONOV*WEIGHTS * [BTDBO]

=16
DO10L=16

') = STOO(KT,
acongv - (n'WJ(J)-M'%ZIE)-MDBO(xT.L)

" EVALUATE| °°”'}.‘»‘4'1°' T BY (WI(T) WI(1)*WK(K)
D] [BI] [N], MUIL

AND ADD TO TAST VAL UR! M ] [STIFF] + | %8 i)
EVALUATE B

SP = SIN T (OBl

CP~ )

TRANSPOSE OF IN PLANE AMAT: AMATI

SMALLD = (PRAD/BRAD)**2/20

ROTOR = PRAD-CKBRAD, 2/

CALL VZERO (AMATI(1,1)12)

Amnzl.li = -RCTOR

[o3¢]

an

an

ann

annonnn

ano

AMATI(3,1) = 20°(SMALLD + RCTOR)*SP
AMATI(S,1) = -20*(SMALLD + RCTOR)*CP

ALUA'IEA(AIE)

CALL MAXB (AMA‘l'lzl.lg.D&l(l.l).A'lDBl,a,z,ﬁm,z)

no

ano

TE INTBGRAL MATRIX.

mﬂ [STCUPI) PREVIOUS + CCUPI*WEIGHTS ° (P}
"o L'r-us } ne

! ocum-%r(l)&x(n'wxugamm(m,m

C  +*s+ QUT OF PLANE COUPLING INTEGRAL MATRIX ****

C THE O/P MATRICES ARE LARGER THAN I/F DUE TO TORSION
C  O/P CONSTITUTIVE MATRIX

22) = 10
= (1-NUXY)/20

C — O/P COUPLING [B}] IS 3X3,

C O/P [B] FOR COUP SBCUP]
CALL\)zmzo (BCUP(1,1)9
DO2I0IT = 12
DO210JT = 13

210 BCUP(ITST) = BO(ITAT)

C |[AMATOIT

OEAMA’POH 18)

c SMALLB = (2*(1+N )/(2+NUXY)
AMATO(21) = -(20-SMALLB)*SP*ST
AMATO{4.1 -g MALLB)‘CP'SI‘
AMATO(23
AMATO{43 =SMALLB‘SP

c AMATO(63) = 1.0

c EVALUATE

CALL MAXE (éCUP(lJ{-N(l 1§,BCUPN,3.33.3M)

¢ [po
L ]{’ZER BCUPN(1,1),18)
CALL MAXB (DO(1,1).BCUPN(1,1),DBCUPN 3,33,3,63)

EVALUATE A H)‘)OBSCUP;O%

CAIJ. MAXB (AMA’IO( 1),DBCUPN(1,1),ATDBO,6,3,6,6,6,3)

EVALUATE INTEGRAL MATRIX.

STCUPO) = [STCLPO) PREVIOUS + CCUPO*WEIGHTS * [P}
240 KT'=1,

DO240LT=16

20 STCUPO(KT.LT) = STCUPO(KT.

o 16cupo @Dy wIg)y* WK(K)‘A’I‘D (K'I‘,LT)

300 CONTINUE
C END OF NUMERICAL INTEGRATION LOOP

END

nn

noo

ROUTINE REDUCE

SUBROUTINE REDUCE (SE,RED}

STATIC CONDENSATION OF STIFENESS MATRICES
REDUCES 1/P AND O/P 12x12 MATRICES TO 6.
BASED ON GAUSSIAN ELIMINATION: REF. COOK.

NO REDUCTION OF FORCE VECTOR REQUIRED AS NODELESS
DOF HAVE ZERO CORRESPONDING GENERALISED FORCES.

FULL, SYMMETRIC STIFFNESS MATRIX SE.

CONDENSATION OPERATIONS ON LOWER TRIANGLE OF SE.

SIZE OF FULL MATRIX = NSIZE

NUMBER OF DOF TO BE RE)UCED NUM. DOF TO BE REDUCED
STORED IN LAST NUM DO!

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION SE(12,12),RED(6,6)

CALL VZERO (RED(1,1),36)
NSIZE = 12
NUM =6
C  CONDENSATION OF LOWER TRIANGLE OF SE.
DO 30 K=1NUM
LL - NSIZE-K

1F (SE(KK,L) .EQ. 0.0) GO TO 20
DU(M-ss(gac.L)/s KK KK)
DOI1OM~=1L

anaaannanNnnnnn
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10 SE(LM) - SE(KK.M)*DUM

2 CoNTUE S

30 CONTINUE

C FILL IN THE UPPER TRIANGLE BY SYMMETRY.

c
C  BQUATE FIRST 6 ROWS AND COLUMNS OF SE TO RED
C RED IS THE REDUCED IN-PLANE MATRIX

DO S01=16

DO S0J=16
50 = SE(L))

.

SUBROUTINE TRSUB

SUBROUTINE TRSUB (TR,TRPROP)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL VZEROMAXB MATXB

P AR AR o
N
2 SALPI.S’ALPLSALPS

DX =TRPROP(1
DY =TRPROP(2

ALPHA =TRPROP(S)
con-mnor(9
ALEN2=TRPRO (7)

VZRo
W1)9)
CALLVD!RO 11 .
11
ALENG = SQRT(ALEN2)
ALENN] = SQRT{CON)
IF (ALENNI1 .GT. 0001*ALENG) GO TO 200

1 = 0.0
CALP1 = 10

ALENG
N1/ALENG

C DB-'INE Iélﬂl’l‘Sl'RAlGl'l'l'BEAM3)(3'[‘RMA'I‘RD(

o
;

v&sm BEAM NODE ROTATION MATRIX THETA
1) = gr’iﬁum )

=10
= 3,
3 Sy

MULTIPLY T MATRIX BY THEI‘A AND THETA TRANSPOSE RESP TO GET 3X3
NODAL TR MATRICESTIAND T.
SUBROUTINES ATIMB AND ATIMB USED FOR MULT.

aanonn

MAXB AND MATXB ARE ANSYS IN-HOUSE MATRIX ROUTINES.
CALL MAXB A(L1), ¥ 1),TI(1,1)333.333)
o calLma ETA(L1),T(1,1),T3(1,1)333333)
C FILL OUT 12X12 TR MATRIX FROM TI AND TJ
DO 260 1=13
B=1+3
Do zso oy =13

"o mm‘}“%b)

DO2M0I=13
16 =146
9 =149
DO210J=13
J6=J+6
19=1+9

TR(16,) T l,l
B

R INE I

SUBROUTINE INVM(A,D N,NX,MX)

THIS PROGRAM COMPUTE THE INVERSE OF A MATRIX
USING THE GAUSS ELIMINATION METHOD

A : RECTANGULAR ARRAY OF SIZE N X 2N

NX: RO

MX: COLUMN
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(NX,MX)
NM1 =N-1
NP1=N+1
NX2=N*2

PUT A UNIT MATRIX IN THE ARGUMENTED PART OF A
DO 21=1N

IPN=I1+N

DO1J=1N

JPN=J+N

1 LJPN)=0.0
b

g APPLY THE ELIMINATION PROCESS

DO 10 K=1NM1
KPi=K+1

C
%KSJ%’-LOE-IO) 338

IF (ABS(A( 1.0E-10) 6,64
DO

.ZK) JL)

6 CONTINUE
7 WRITE(6,899) K

anNOOaaOOOnOn
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]

=00
8 DO9 J-KPI,NXZC
DOlo ?-KPl,N

DOASIJ KP1 NX2
A

o2 AND=AND/ANN)
C  APPLY THE BACKSUBSTITUTION PROCESS

[p]

DO 13) 1N
C13 AKI) =AKI-AKI) A(T)
(C: PUT THE INVERSE IN THE FIRST N XN POSITIONS
DO M4 I=1N
DO 14J=1N

1 IPN;.HRI 1JPN)

4 =

13 RETURN

@92“ FgRMAT(?AH ¢se¢ SINGULARITY IN ROW,12)

SUBROUTINE SR100 (FELNUM,ITYP KELOUT,ELVOL KTIK.ZS,ZASS,ZSC)
Ceeseesee* STRESS PASS FOR 3D CYL BEAM ELEMENT *ertcves
IMPLICTT DOUBLE PRECISION
EXTERNAL TRA US'ELD.SR}’LT,MAXV VZERO
INTEGER lPLTAY(6).lE’
s+e2¢ START STOOM STORAGE **#*¢+e+

a0

UG, IXXX,
TJELEM OWJTYPE.IP JPRINT KTEMTP KCONCV KBICNV,

5 KEYPLS KEY 9),K21 NODES(20), EPAR(S0
BRRVAR(S)MUB()JQ'N ES(20), EPAR(S0)

DOUBLE PRECISION
1 DPZERO,DPHALF DPONE,DPTWO,DPTEN, DTORAD,RADTOD,
2 TREF.TUNIFTOFSEY, DELTIM,TIME.TIMOLD . TIME2 TIME3,DELT?,
3 ACEL OMEGA CGOMEG,CGLOCDXXX,

ELMASS XCENTR,YCENTR,ZCENTRTFCPSUBEX, ERPAR(20),
5 XYZBQ(203),X(20),Y(20),2(20), ELVOL

COMMO STOOM/ DPZERO,DPHALF, DPONE,DPTWO,DPTEN, DTORAD,RADTOD,

Dahm nkéga.nuow nnll)m.m{mpm:rz,

% %MMMW%TBPM
 NPRFVLMATST,K5X16,JPROP(20) KCPDS,

sxmxAY(m).MODusmmm UG(10), DOXK(s1)

EQUIVALENCE MAT,EPAR(2 uzuzM ,
1 .(ﬂm l"?ﬁ‘ ((12 ), EPARED

e

ole}

(o]e]

IEQUCEN'N IR.ERPCE 3)) ( & 4)). -ERP )5))
SUBEX,ERP (TFCe
EQUIVALENCE l)XYZPD(l,l)).(Y(l)XYZED(l.2)).(Z(l).XYZEQ(l3))
DOUBLE PRECISION
zsmnxxnx),ussgm zsc KTIK),
2 BRAD ICK, UXY,DENS,DPPLPROP(4),
s? 364) PRESS 1),31(
12. 2 Ds) r-)l & CON.A 6) 2,12)DMAT1(2,2),
(12),EPI 2),sm|§ g
,suo«u DMATO( A1) BOBG.S)
S5O SIGH) BN BOVOEHNES).

EQUIVALENCE (RVR ),BRAD) (RVR(2),ALPHA), (RVR(3), PRAD),
1 (RVR(4),THICK), (R

EQUIVALENCE SAVED VARIABLES SVR

EQUIVALENCE (SVR(1),B1(1,1 .(SVRS37)

1 §mﬂ)sma, Y (é‘)R(lAS) ROP(1)) (S\%l(uo) TR(L1)),
2 203) SMO(1

EQUIVALENCE MATERIAL PROPERTIES PROP(
EQUIVALENCE (PROP(1) EX), (PROP(Z)ALPX) (PROP(3),NUXY)
1 (PROP(4),DENS)

C
DATA DPPI / 3.141592653589793D0 /

acnaa 0o

annnnOnn O6o

CALL TRACK (5 *SR100 %)
'(R UMJTYP,EPAR(I),ERPARSI),CON,CON,
i rnmsmcou VR(1) SVR(1) XYZEQ(1,1),U(1)

CONVERT ALPHA TO RADIANS
ALPHA = ALPHA*DPPI/180.0

STRESS PASS
STRESSES ARE EVALUATED AROUND CIRC AT BOTH NODES

EVALUATE I/B CONSI‘ITUT[VE MATRIX [DMATI|
CAIL VZERO (DMA
mc/(um i )
DMATI

1,1
DMATI(1.2} ~
DMATI(2,1}) = DMATI(1,2)
DMATI(2,2) = DCON

CALL VZERO (DMATO(1,1)9)
DMATO(1,1) = DCON
DMATO{12) = DOON*NUXY
DMA' 2.1 -DMA’IO(].Z)

DMA' ,3 DOON‘(I -NUXY)/2

EVALUATE LOCAL DISPLACEMENT VECTOR ULOC (IN LOCAL CSYS)
FROM GLOBAL DISP. VECTOR U.
CALL MAXV (TR(1,1),U(1),ULOC,12,12)

ssesses RECOVER NODELESS DOF. *+#4¢++¢
IN-PLANE DOF
SMI CONTAINS LAST 6 ROWS OF I/P ZSFULL AFTER CONDENSATION

DOFI = I/P DOF IN LOCAL CSYS.
THE KNOWN (BEAM) DOF STORED IN FIRST 6 ROWS.
NODELESS DOF RECOVERED AND STORED IN LAST 6.
CALL VZERO (DOFI(1)9)
DOFI(1) = ULOC(1
DOFI(2) = ULOC(3,
DOFI(3) = ULOC|
DOFI(4) = ULOC
DOFI(5) = ULOC(9
DOFI{6) = ULOC(11)

N'NUXY
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C
[o

[p]p] 000000088

OOOOOOOOSS

[s]

0 anaa

afcann

RECOVERY ALGORITHM
DO30J=16

3 =6+

DUM = 00

K=1-1

DOWL=1K
DUM = DUM + SMI(J.L)*DOFI(L)
DOFI(}J) = (0.0 - DUM}/SMI(J

OUT OF PLANE DEGREES OF FREEDOM

SMO CONTAINS LAST 6 ROWS OF O/P ZSFULL AFTER CONDENSATION
DOFO = O/P DOF IN LOCAL CSYS.

THE KNOWN (BEAM) DOF STORED IN FIRST 6 ROWS.
NODmUD.lj)C(mz 'VERED AND STORED IN LAST 6.

gERREE
§,§§§§

DO40L=1K
DUM = DUM + SMO@J,L -DopoSL
DOFO(J]) = (0.0 - DUM)/SMO(J }

ALL NODAL AND NODELESS DOF NOW EVALUATED.
< < << < << SET UP LOOP FOR STRESS AND STRAIN EVALUATION > >>>>>>

LOCATION: NODE 1
PHIB IS THE MERIDIONAL ANGLE FOR STRESS EVALUATION

RATIO = gRAD/BRAD)"Z

B B o aemuncn

PRINT *,'INPUT SURFACE FOR STRESS CALCS'
PRINT * ’-l = INNER'

PRINT *,0 = MIDDLE'

PRINT *, 1 = OUTER'

READ (5.') SURF

PRINT *,INPUT STRESS NORMALISATION FACTOR'
READ (5,) SFACT

LOOP IEP EVALUATES STRAIN/STRESS AT LOCATIONS AROUND CIRC
AT NODE §, IN STEPS OF 10 D!
IN-PLANE STRESSES EVALUATED.

HERE, FOR DEVELOPMENT TESTS,
WR]TB(40‘ THETA SIGPHI SIGTH TAU

THETA = THETA + 100
THETA = THETA * DPP1/180.0

ssesessce [N PLANE STRESS AND STRAIN #ee0¢scscse

EVALUATE IN PLANE B MATRIX
I/P A MATRIX, Al. (MULT BY THE 1/R USUALLY OUTSIDE THE BRACKETS)
%‘Lvmo A1(1),6)
ST = SIN A)
CP=10
SP = 00

CONST = PRAD*CT/BRAD

Al(1) = -CONST/BRAD

Al = (D+CONST)*2.0*SP/BRAD

A1{5) = (D + CONST*-2.0°CP/BRAD
O (BI(1,1),24)

EVALUATE I/ Ngﬂs
BENDING CO UTIONS-FIRST 6 COLUMNS. : {BI] = 1/R [A1] [B1]
ONLY Row 11S POPULATED:

DO
Bl(l.l’)!{NAgl)‘Bl(l,l) +A1(3)*B1(3,]) +A1(5)*B1(5 1)

anno

c PU'r 1/P OV MATRIX IN LAST SIX COLUMNS OF BI
CT*COS(20°THETA) + 0.5*ST*SIN(20°THETA %BRAD
Bl 1,8 CI“OOS 40'1‘HETA + 025°ST*SIN(4.0°THETA))/BRAD
BI 1,9 *THETA
1+ (1.0/ )°sr~s (6.0'I‘HEI'A))/BRAD

= SURF*-3.0°THICK /2.0°COS(2.0°THETA) / PRAD**2
2,8 = SURF*-150°THICK/2.0°COS(4.0°THETA) /PRAD**2
= SURF*-350°THICK/2.0*COS(6.0°THETA) /PRAD"*2

EVALUATE STRAINS {EPI} ELBI {DOF1} = {EPI(PHI) EPI(THETA)}
CALL MAXYV (BI(1,1) M

EVALUATE STRESSES {SIGI} Al%]'(EPl) = {SIGI(PHI) SIGKTHETA)}
CALLMAXV(DMATI(I 1),EPK(1),81G1

SIGI(1) = SIGI(1)/SFACT

SIGI(2) = SIGI(2)/SFACT

¢sses%¢ OUT OF PLANE STRESS AND STRAIN s¢+¢¢ss

a0 00

EVALUATE O/P B MATRIX BO
O/P A MATRIX A2 MULT BY PRAD/(BRAD**2) USUALLY OUTSIDE BRACKETS

A1) ~ (20 86 ST OPCON

14) = g 0-B2'CP’S’I‘OPCON
32) = PCON
34) = B‘SP‘OPCON
3,6) = OPCON .

CALL VZERO (BOB
CALL MAXB (A2(1, 18,32(1 }BOB3,6336,6)

PUT BOB IN FIRST 6 COLUMNS OF BO
CALL VZERO (BO(1,1)36)
DO & I-13

gg(m J=16

1)) = BOB(1J

80 CON’)’INUE )

C NODEI

C EVALUATE OVALISATION B MATRIX IN LAST SIX COLS. OF BO

1.7) = (CT*SIN(2.0°THETA) - 0.5°ST*COS(20°THETA))/BRAD
BO(18) = (CT*SIN(4.0°THETA) - 025°ST*COS(4.0°THET. ; /BRAD
19) = (CT*SIN(6.0°THETA'

1- (1.0/6.0)*ST*COS(6.0°THETA))/BRAD

= SURF*-3.0°THICK/2.0°SIN(2.0°THETA) /PRAD**2
2.8 = SURF*-15.0°THICK/2.0*SI &41)"“!1?1’ /PRAD**2
= SURF*-35.0*THICK/2.0*SIN(6.0*THETA)/PRAD**2

EVALUATE STRAINS {EPO} DOFO} = {EPO(PHI) EPO;
CALTMAXY (BOGLY) ORI Fpozy ) (EPO(PHD EFO(THETA) GAMMA)

EVALUATE STRESSES {SIGO} = [D] {EPO) = {SIGI(PHI) SIGI(THETA) TAU}
CALL MAXV MA'[O(I 1 1),SIGO,
REMOVE ‘C’

SI SFACI‘
s%zi %zz/smcr
SIGO{3 /SFACT

anann

an
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THETA = THETA*180.0/DPPI

C
C IN-PLANE STRESSES:

WRITE EAOL.;SFI&S)') THETA SIGI(1) SIG1(2),SIG(3)
100 CO!

C
IF (IPLOT NE. ll}}%)mooo

esess NUMBER OF FORCES (LEVEL 1) *****
IPLTAY(2) - 12

eéess NUMBER OF STRESSES (LEVEL 2) *****
IPLTAY(3) = 4

essée NUMBER OF TOTAL SAVED (LEVELS 1, 2, AND 3)
IPLTAY(4) = 20

+é4s¢ SAVE GEOMETRY FOR CONTOURS (ONO 1,YES)
IPLTAY(S) = O

sesees PUT POSTDATA INFORMATION INTO POSTD **¢¢4

aoan 0 0 00

sssee PUT PLTARY INFORMATION ONTO FILE 12 #+¢+e+
CALL SRPLT (IELEM [TYP,NROW,MAT,100,2,U(1),NODES(1),XYZEQ(1,1),

1 IPLTAY(1 1
900 CALL PSJ%'ELD 2 UM,

JEPAR(1) ERPAR(1),CON,SVR(1))
C PUTELD DATA m TO Fﬁ%

CALL TRACK( 15,SR100 )

RETURN

END
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A4.4 ANSYS USER ELEMENT PB3
PROGRAM ANSYS

Sseesssssese

ANSYS USER ELEMENT CODE FOR PIPE BEND ELEMENT

BASED ON VLASOV THIN WALL CIRC CURVED BEAM SOLUTION
AND PIECEWISE QUINTIC POLYNOMIAL OVALISATION.

MATRIX STATICALLY CONDENSED TO GIVE FINAL 12x12 STIFFNESS MATRIX.
DONALD MACKENZIE OCT 1989

ANSYS VERSION 4.3A
IMPLICTT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL MAIN,STOPER

EXTERNAL
CALL NNDIM
CALL MAIN
CALL STOPER
END
A4.4.1 SUBROUTINE USEREL

SUBROUTINE USEREL (ITYP JPARM KYSUB XEY3D XDOF KUNSYM KTRANS)
INTEGER IPARM gzo ,12 UBé9 F, SYM S
NTEG E,KYS ),ITYP,.ITYPE,KEYBD,KDO XUN LKTRAN:

AND THEN BYPASS IF NOT USER ELEMENT*

JTYPE = IPARM %0
IF (JTYPE NE. 100) GO TO 100
ssccessess QT 1D KEY *t0ereeves
00‘0)0:.0.0. DEFINE DOF SET AT EACH NODE ¢¢¢vsseeee

onu.ou" SET UNSYMMETRIC MATRIX KEY ***s**o+**
KUNSYM = 0

*+++¢ DEFINE PATTERN FOR ELEMENT TO GLOBAL TRANSFORMATION ***
.ooosoc:oeo DEFINE NUMBER OF NODES *¢¢9s¢00es

““‘ Dﬂ’g&dﬁ NUMBER OF TEMPERATURES (DELTEM,TEMPER) ******
IPARM(ITYP,11) =

seevs DEFINE NUMBER OF PRESSURES (PRESS) *#++5+*
IF THERMAL ANALYSIS, TWO TIMES NUMBER OF CONVECTION SURFACES

IPARM(ITYP,
suncs ssr%mom VARIABLES (NOITUEP)

“"‘ EFD;E NUMBER OF REAL CONSTANTS FOR ELEMENT (RVR) ***
IPARM(TTYP,10) =

++s+s DEFINE NUMBER OF VARIABLES TO BE SAVED (SVR) *****
At DEHNE NUMBER OF ROWS IN ELEMENT MATRICES (KTIK) *++
IPARM(ITYP,9) = 12
sseseseve’s SET KRY TO IDENTIFY NON-LINEAR ELEMENT #¢+eee*
P,

A ST KEY FOR THERMAL ELEMENT (KAN, 1) svesesees

T -
END

A4 R INE USERPT

SUBROUTINE USERPT (INODEJTYPE,KSHAPENNODE

C sonsessess USER SUBROUTINE FOR ANSYS PLOT SHAPE teseoee®ee

C

DEFINE ELEMENT SHAPE AND NUMBER OF NODES, FOR PLOTTING
INI'EGER INODE(20) JTYPE,KSHAPENNODE
**¢*BYPASS IF NOT USER ELEMENT (JTYPE = 100} ***e¢****

IF(JTYPE NE. 100) GO TO 100
sesess SETECT S| E TO BE PLOTTED BY SETTING KSHAPE *******
KSHAPE = 2

sssetennne sEr NUMBm OFACIUAL NODB 004000000
NNODE = 2

100 RETURN
END

a0 onn

(a1} an [1s1e]

a0

44 R INE ST1

SUBROUTINE ST100 (IELNUM_ITYP KELIN, KELOUT NR KTIK,ZS,
1 ZASS,DAMP,GSTIF

esssess STIFFNESS PASS FOR PIPE BEND ELEMENT PH3 #¢¢¢0esss

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DECLARE EXTERNAL SUBROUTINES AND FUNCTIONS —-~----
EXTERNAL TRACK,GETELD,PUTELD PROPEV NONTBL VZERO MHTCH,USEERR,
1 MATXV MAXV, TRSUBMAXB MATXB INVM,REDUCE

--———— COMMON BLOCK DECLARATIONS ---evero——ereeee
STANDARD ST100 INTEGER VARIABLES ASSOCIATED WITH COMMON:

m&uﬂ%?rrm U{S!z;l‘ Ml'I‘,KRSTRT,lSPARE.

4 ITYPE,MAT IELEM NROW JTYPE,JPLOT,IP ,KTEMTP,KCONCV KBICNV,
S KEYPLS KEYCRP, mswx_,xvsun(o)xzwoom(m), EPAR(50
REAL ERRVAR(5) .

STANDARD ST100 DOUBLE PRECISION VARIABLES ASSOCIATED WITH COMMON:
DOUBLE PRECISION
1 DPZERO,DPHALF DPONE,DPTWO,DPTEN, DTORAD,RADTOD,
2 TREF,TUNIF,TOFSET, DELTIM,TIME, TIMOLD, TIME2,TIME3, DELT2,
3 ACEL.OMBGA,CGOMEG CGLOC,DXXX,
SUBEX, ERPAR(20),

CENTR,YCENTR ZCENTR TFCP
s xvzm(zua)x(zo) ,Y(20),Z(20), ELVOL

$T100 COMMON BLOCK: STCOM

COMMON STCOM/ DPZERO,DPHALY , DPONE,DPTWO,DPTEN, DTORAD RADTOD,
2 MEGA(S) COOMBG(6).LCLOCR), - DI,

Al Ol 6 5 XXX (16),

JKI%QUOUT %ﬂﬁé&;’(’mﬂ&& ICUMIT, TISPARE,

KAY(10) MODE ERUGC
SI(ZO.KAY(IO),MODE.ISYM,KAHDJD UG(10), DOOK(41)

EQUIVALENCING OF STCOM VARMBLB

BQUIVALENCE rl'YPF..EPAR MAT,FJ’AR(Z)) (lELEM,EPAR(S))
1 (NROW,EP, )(morr AR(

2 (IPRINTEP. ) 14 (xcoucv AR(16)),

4 (KBICNV, EPAR() g CRP,EPAR(19)),

s (KYSUB(]).EP 1)), (K21 EPAR(30)),

6 (NOD!

EQUIV. (),

). CENTRERPAR(S), (TFCP ERPARLS),
BQUIVALENCE (X(1)XYZEQ(L1)),(Y (1) XYZEQ(1,2)) (Z{1) XYZEQ(13))




-V

annn

a0

aon annat a

ann o [o]e]

a 000 on

ann 0O 0 0006

USER DEFINED V.

— 'ARIABLES ————
INTEGER, REAL AND DOUBLE PRECISION VARIABLB DEFINED HERE BY USER.

DECLARE INTEGER VARIABLES
1%3 IJ.I(.BJ316J6J-P(4).N$I‘R.NUM.ICDWO.NFKEY

BC[AREPDOUB% PRECISION VARIABLES:
RBCIS.TR(IZ,XZ) x,lcg&:«mmx),
1 U= ,PR P(4 ,D ALEN2ALENG,DX,DY DZ,
2),CON.AVEI‘EMTRP’ROP .)gROP(l).LDPROP(l).DPPl

THICK PHLRVR(S) )
DOUBLE £ PRECISION zsxsop .uo*on?,m(mz)m 6,6).B2(6,6),

2 CASA,CM1,
AREA,POLMOM,SECMOM,EI GJ,RATIO,D,B,DMI,DMz,
,UI‘ERMZ,Dm,NRINV V. BTERM1 BTERM2,BB,BM1 BTERM3,
5 BTERM4,H,CONST

DOUBLE PRECISION CONOV,PRA,BRTZJSOV(Z.Z) ZSCUP(6.2),
1 CUPMAT(6,2),ZSFULL{88),SM1(2,8),SMO(28)

- USER EQUIVALENCING OF REAL AND SAVED VARIABLES (RVR, SVR) —-
EBQUIVALENCE REAL VARIABLES RVR(

)
BRAD=BEND RAD, ALPHA:BENDANGLE PRAD =PIPE RAD, THICK =WALL THK.

3 2 , (RVR(3),P]

UIVALENCE SAVED VARIAB gz( y
1,1)),

?ﬁm—%&mwm

2¢( ).SMI(1,1 1))

BQUIVALENCING OF MATERIAL PROPERTIES -————
] (ng{, AL gz;s )(moru)gx) , (PROP(2) ALPX), (PROP(3),NUXY),
CALL TRACK(S,'ST100°)’

—— READING IN ELEMENT INFORMATION: SUBROUTINE GETELD -—

CALL GETELD (IELNUM_ITYP,EP. ),ERPAR(I) CON,TEMPER(1),
1 CON,CON,RVR(1) SVR(1) XYZBQ(1,1),U(1))

OPEN FILE PB3RES.DAT FOR OUTPUT OF ELEMENT INFORMATION

REQUIRED AT DEVELOPMENT STAGE. (IN THIS FINAL DEVELOPMENT

VERSION ONLY STRESS DISTRIBUTIONS AT NODE I WRITTEN TO FILE).
OPEN (UNIT =40, FILE = PB3RES' STATUS ="NEW")C

AND ORIEXTA/TION ANGLES TO RADIANS.

CONVERT BEND
DATA DPPI / 3.141592653589793D0
PHI = PHI*DPP1/1800D0
ALPHA = ALPHA*DPPI1/180.0D0
— READING IN ELEMENT MATERIAL PROPERTIES: SUBROUTINE PROPEV —

P INTEGER ARRAY FOR ACCESSING MATERIAL PROPERTIES
DATALP /1.2,3,10/

AVETEM = DPHALF*(TEMPER(1) + TEMPER(2))
CALL PROPEV (IELEMMAT JTYPE,LP(1) AVETEM,PROP(1) 4)
GBOMETRY VALIDITY CHECK

DX = 1
DY = Y 1
DZ = 2 -Z{1
CON = **2 + DY**2

ALEN?2 = CON + DZ**2

S ~———swem CALCULATE MASS AND APPROX. CENTROID ---eeeerm v
XCENTR = 'DPHALF
= + Y 2 *DPHALF
= ‘DPHALF

ARE\ 2*DP! I‘P
AFLU DPPI‘ é“)g"z
= (D S‘ARIL\+D FL*AFLU)*BRAD*AI PHA

END OF CHECK RUN OR ERROR DETECTED ~————
IF ((NSTEPS EQ. 0) .OR. (KEYERR.EQ.1)) GO TO 90

——— EVALUATE THE EL EMENT TRANSFORMATION MATRIX ---——
TRANSFORMATION MATRIX TR IS EVALUATED IN THE SUBROUTINE TRSUB.
C INFORMATION REQUIRED TO CALCULATE MATRIX VALUES IS PASSED IN
g BY ARRAY TRPROP.

TRPROP(1)=DX

TRPROP(2) =DY

TRPROP(3) =-DZ

TRPROP(4) =PHI

TRPROP(S) =ALPHA

TRPROP(6) =CON

TRPROP(7)=ALEN2

ZERO THE TR MATRIX,
CALL VZERO (TR(1,1),144)

CALL TRSUB (TR,TRPROP)

ann 060

EVALUATE THE ELEMENT STIFFNESS MATRIX ——---menx
essssse BEAM BENDING $*¢¢eree
CLOSED FORM STIFFNESS MATRIX

CHECK MATRIX IS REQUIRED.

IF y NE. 1) GO TO 400
CA?P\?lLéRo (ZS(1.1),144)

c EVALUATE CONSTANTS AND TRIG FUNCTIONS.
CA = COS(ALPHA)
SA = SIN(ALPHA)

cm = CA-10
COS(20°ALPHA)

20°ALPHA
CZMl = éA )
TRIG] = 2.0‘ALPHA-SZA

TRIG2 = 20°ALPHA +S2A

AREA = 20°DPPI*'PRAD*THICK
POLMOM = AREA*PRAD**2
sacmom romowzn

= EX*SECMO!
P B(‘POLMOM/(Z.O+2.0'NUXY)
RATIO = g’RAD/BRAD)"Z
D = RATIO/20
B = 20°E1/(E1+GJ)

DM1 = 1.0-D

QOOO0NN0O O 00
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DM2 = 1.0-20°D
mmm = 20°DM1/BRAD

= ALPHA*SA + DM2°CA
mmm -ALPHA*CA + DM2°SA

mqu -10/B
= 1/(20°(L. omuxv))

BB = B**2
BM1 = 10-B

BTERMI1 = z(yaroz
BTERM3 = z- *SA +CA*BM1) /BRAD
BTERM4 = (ALPHACA +SA*BM1)/BRAD

H = 10+RATIO/20

CONST = EI/BRAD**3

CONST = CONST/(1.0-NUXY**2
CONOV = CONST*ALPHA/RATIO

C
g **+ IN PLANE STIFFNESS MATRIX **¢
C EVALUATE IN-PLANE DISPLACEMENT FIELD CONSTANTS,

z CALLVZERG (Bl(13)72)
C PUT|C1]IN [B])
M2

Bi(13

INVERT BI
CALL INVM(BI,DET1 6,6,12)

BOQUATE FIRST 6X6 OF Bl WITH B!
EARD
m m(U) Bl(I.J)

€  BVALUATE ZS1 - MATRIX OF IN-PLANE INTEGRALS
o CALLVZERO(ZSI(L1)36)

ZSK(1,1) = CONST*ALPHA

an oo

= CD H'TRIG2

EVALUATE I/P STIFFNESS (ZSI] = [B1]{ZS]] [B1)
CALL 1(1,1),ZS1(1,1).666)

an

(eI elele!

EVALUATE OVALISATION MATRIX ZSOV AND IN PLANE COUPLING

INTEGRALS [{ZSCUP] IN SUBROUTINE OVAL
CALL OVAL (PRAD B! . THICK ALPHA ,EX,NUXY , ZSOV,CUPMAT)

EVALUATE COUPLING STIFFNESS

c CALL MATXB (B1(1,1),CUPMAT(1,1),ZSCUP,6,6,6,6,2,6)

Cc

ASSEMBLE 99 IN-PLANE STIFFNESS MATRIX
DO3251= 1,6
DO 325

325 ZSFULL(IJ) = ZSI(1,J)

DO 3;
DOB%J 1,2
JP6 = J+6

ém ZSFULL(LIP6) = ZSCUP(1J)

DO 3271=12
IP6 = 1+6
DO 32731=16

327 ZSFULL(IP6J) = ZSCUP(I)

DO 3281=12

DO3281=12

IP6 = [+6

JP6 = J+6
ZSFUI_L(IPGJPé) ZSOV(iJ3)

328 CONTIN

ann

smncu;y CONDENSE 1/P STIFFNESS TO 6x6 MATRIX ZSI
28]
CALL RE)UCC)% FULL,ZSI)

STORE ELEMENTS OF REDUCED ZSFULL REQUIRED FOR D.OF
RECOVERY IN SR100

DO3301=12

1P6 = l+6

DO 330

330 sm(u) ‘stwu.(m,l)

annnonnn

*#* OUT OF PLANE STIFFNESS MATRIX ***
EVALUATE O/P DISPLACEMENT FIELD CONSTANTS,
MATRIX (B2] - INV. [C2)

PUT [C2] IN (BI]
CALL VZERO(BI(1.1)72)
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CALL INVM Bl,DBTl,6.6,l22
C EQUATE 6X6 OF Bl TO B2
DO3321=16

DO321=16

332 B2(13) = BI(1L)

€ EVALUATEZSO - MATRIX OF O/P INTEGRALS
o CALLVZERO(ZSO(L1)36)

22) = CONST*(BTERM1°0.25°TRIG1 + BB*V*0.5°TRIG2)
24) = CONST*(BB*V*05-BTERM1*0.25)*(1-C2A)

= CONST*20°B*V*SA
TR
44) = CON: BTERM1*0.25*°TRIG2 + BB*V*0.5*TRIG1)
4,6) = CONST*2°B*V*(1-CA)
o - 4
= CONST“20°ALPHA*V

EVALUATE O/P STIFFNESS MATRIX [ZSO] = {BI}{ZSO] {BI}
CALL MHTCH(B2(1,1),ZSO(1,1).6,6.6)

EVALUATE THE OUT OF PLANE OVALISATION STIFFNESS
OOUPLING m'mc;ms [ZSCUP} IN SUBROUTINE OVALO
ZSCUP(1,1),4
CUPMATY( 1),24)
ZSOV(1,1)A)

CALL OVALO (PRAD BRAD, THICK,ALPHA,EX,NUXY.ZSOV,CUPMAT)
EVALUATE COUPLING STIFFNESS MA’
CALL MATXS (B2(1,1),CUPMAT(], l),BCUP,G.OAé,Z,é)

ASSEMBLE 9X9 O/P MATRIX ZSFULL
DO 33S5I=16
335D03351-1,}) r

DO 3361=16 )

DO 336J~12
JP6 =16 . .

6 = ZSCUP(l
&NEUU{[ L lU'zl"‘) (1)

=J+6
DO 337J)=16

ann an

an o 0

= ZSCUP(J.I)

C REDUCE O/P STIFFNESS TO &6 MATRIX ZSO
CALL 1,1
CALL )
SAVE REDUCED ZSFULL TERMS REQUIRED FOR D.OF. RECOVERY

an
2
&
8

ASSEMBLE FULL 1/P-O/P 12x12 STIFFNESS MATRIX
1/P TERMS IN 1-J ODD LOCATIONS, O/P TERMS IN EVEN

anann

ZERO ZS
CALL vzano (ZS(1,1),144)
DO301=
et
KE =21
DO 360 1=1,6
LO = 2°3-1
LE = 2]

zsgxo ZSI(I,?

———— STIFFNESS MATRIX TRANSFORMATION
€ ELEMENT MATRICES ARE TRANSFORMED TO THE GLOBAL CO-ORD.
C SYSTEM BY THE ANSYS SUBROUTINE MHTCH.

CALL MHTCH (TR(1,1),Z5(1,1), KTIK KTIK, KTIK)

c

C  SET KEY THAT MATRIX WAS COMPUTED.
KELOUT(1) = 1

C

400 CONTINUE

C
C OUTPUT ELEMENT DATA TO FILE 12

C ELEMENT DATA IS OUTPUT TO FILE 12 BY THE SUBROUTINE PUTELD.
C
990 CALL PUTELD (IELNUM,EPAR(1),ERPAR(1),CON SVR(1))
C
CALL TRACK( 15,ST100 ")
RETURN
END

O

C

R INE REDUCE

SUBROUTINE REDUCE (SE,RED)

STATIC CONDENSATION OF STIFFNESS MATRICES

REDUCES I/P AND O/P 7x7 MATRICES TO 6x6.

BASED ON GAUSSIAN ELIMINATION: REF.,

COOK R.D. CONCEPTS AND APPLICATIONS OF FINITE ELEMENT ANALYSIS
JOHN WILEY & SONS

NO REDUCTION OF FORCE VECTOR REQUIRED AS NODELESS
DOF HAVE ZERO CORRESPONDING GENERALISED FORCES.

FULL, SYMMETRIC STIFFNESS MATRIX SE.

CONDENSATION OPERATIONS ON LOWER TRIANGLE OF SE.

SIZE OF FULL MATRIX = NSIZE

NUMBER OF DOF TO BE REDUCED = NUM. DOF TO BE REDUCED
STORED IN LAST NUM DOF.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION SE(3,8),RED(6,6)

NSIZE = 8
NUM =2
CONDENSATION OF LOWER TRIANGLE OF SE.
DO 30 K=1NUM
LL = NSIZE-K
lﬂ( LL +1
DO20L=1LL

IF E(‘Ké(.l.z )/ fg(GO’I‘OZD

10 DSOIOM- SE(L,M) - SE(KKM)*DUM
2 CONTINUE B

30 CONTINUE
C  FILL IN THE UPPER TRIANGLE BY SYMMETRY.

[e1e]lele]elnioleisinieieielieiele!

0

C  EQUATE FIRST 6 ROWS AND COLUMNS OF SE TO RED
C RED IS THE REDUCED IN-PLANE MATRIX

DO S01=1,6

DO30I=16
S0 RED(LJ) = SE(LJ)
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SUBROUTINE TRSUB

SUBROUTINE TRSUB (TR,TRPROP)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL VZEROMAXBMATXB
DOUBLE PRECISION Teskoes) TIG3) mgwxz)

1 THEI‘A'SJ) maor%

DX =TRPROP(1
DY =TRPROP(2

a a0 oo

CON,ALEN2,

DZ~TRPROP(3
PHI=TRPROP(
ALPHA =TRPROP(S)
CON =TRPROP(6)
ALEN2 -'mmorm

o
gﬁ.\?l)m

CALLVZERO 1,1

CALL VZERO 1 11

ALENG = SQRT|
ALENN1 = SQ N)

IF AIIEN‘Y:‘; .GT. 0001*ALENG) GO TO 200
CALP] = 10

STRAIGHT BEAM 3X3 TR MATRIX
2,1) = -CALP1*SALP2*SALP3-SALP1*CALP3
L1

Bm NODE ROTATION MATRIX THETA
sm( PHAS
nnzm 13 AG, ))

MUL'I"P'L Tllé( JY ’l‘HETA AND THETA TRANSPOSE RESP TO GET 3X3
NODAL TR MATRICE TIANDT.
SUBROUTINES ATIMB AND A’HMB USED FOR MULT.

MAXB AND MATXB ARE ANSYS IN-HOUSE MATRIX ROUTINES.
AQLDTODTIAD333333)
CALL MA AL, 333333)

C
C FILL OUT 12X12 TR MATRIX FROM TI AND TJ
DO 260 1=13
B=1+3
DO200J=13

00000

ROUTINE TO EVALUATE 12x12 TRANSFORMATION MATRIX OF A CURVED BEAM.

J3=3+3

miih
CONTINUE

DOZN1=13
16 =1+6
0 =149
DO210J=13
J6=J+6
J9=J+9
TR(16,J6) = TI(1J
TR(1919) = TI(1J
COl

END

R INE INVM

SUBROUTINE INVM(A,D.N NX.MX)

THIS PROGRAM COMPUTE THE INVERSE OF A MATRIX

USING THE GAUSS ELIMINATION METHOD. REF:

BREBBIA CA & FERRANTE AJ COMPUTATIONAL METHODS FOR
THE SOLUTION OF ENGINEERING PROBLEMS PENTECH PRESS.

A : RECTANGULAR ARRAY OF SIZE NX 2N
NANT

(slslsielelsisinielolele]

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(NX,MX)

NM1 =N-1

NP1=N+1

NX2=N*2

PUT A UNIT MATRIX IN THE ARGUMENTED PART OF A

DO21=1N
IPN=I+N
DO1J=1N
JPN=J+N
1 A(LJPN)=00
c 2 A(LIPN)=1
C APPLY THE ELIMINATION PROCESS
DO 10 K=1 NM1
KP1=K+1
C=A|
lF( %-ms-w) 338

Démw-wam) 6,64

s A(IJ(,.II_- -C(J.L)
coA
8

anon

W

:‘: ABS}J)\(N,N}&:nmo) ) 711
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12 A(NJ)=A(NJ)/A(NN) BA1 = 0.906179845938664
C BA2 = 0.538469310105683
C  APPLY THE BACKSUBSTITUTION PROCESS BA3 = 0.0D0
C BA4 = -BA2

DO 13 L=1,NM1 BAS = -BAl
K=N-L C  ACTUAL INTEGRATION LIMITS;
KP1=K+1 C THRO'THICKNESSH = -THICK/Z TO THICK/2.
DO 13 1=NP1,NX2 C AROUNDCIRCA = -P%Am Pi/4
DO 13 J=KPLN C ALONG AXIS,0TO
Cu AKD =AKD-AQCI AL T= 111.11c1(/1"w1
C PUT THE INVERSE IN THE FIRST N X N POSITIONS
C 3 = W[‘HK(I)
DO 141=1N = T‘ABI
DO 4 J=1N ATH
JPN=J+N ") = T‘AB3
“ =A(LJ C
15 RMN = ALPHA /2°W1
699 FORMAT(MH **** SINGULARITY IN ROW,2) WALP z = ALPHA/2.'W2
END WALP(3) = ALPHA/2°W3
c = ALPHA/2.%(1.+ AB1
C = ALPHA/2.°(1.+ AB2
AALP(3) = ALPHA/2.*(1.+ AB3
C
SUBROUTINE OVAL P4 - 3141977D0/4.0D0
WCIRC(1) = P4*
SUBROUTINE OVAL (PR,BR,THICK,ALPHA EX NUXY STIFF,CUPMAT) WCIRC(2) = P4*WT2
c WCIRC(3) = P4*WT3
C  ROUTINE TO EVALUATE IN-PLANE OVALISATION STIFFNESS MATRIX WCIRC(4) = WCIRC 2;
C  AND COUPLING INTEGRAL MATRIX. WCIRC(S) = WCIRC(1
C ACIRC(]) = P4°BA1
IMPLICIT DOUBLE PRECISION A H ,0-Z) ACIRC(2) = P4*BA2
D(_th‘J{!l!qLB) rmactsxac)m Nuxvmp(,sa ¢ WCIRC(S), :cmc 3) = w&
ATHK(3), 22),DB1(22),DB(2,2), CIRC(4) = P4*BA4
DB3(2,2),DB4(2,2), Al ) )DB ACIRC(S) = P4*BAS
3 B1(2,2),82(2.2 u,’(:u#s( &zwmse cug’ C
1(6,2) 6.2) 6.222 C INITIALISE ARRAYS
6 CUP! 6,2), HM1 W g ), DOM1=12
7 BDBl(u)) 2.2, ) 54(2.2) DB(Z-Z). . : DO24J=12
(2,2, 24 STIFF(LJ) = 0
C DO 5 1=16
PR2 = PR**2 DO251=12
OONST = Ex'PRmR“&wNUXY"Z) CUP1(L)) = 0.
ggncqal;1 7 oc))Ng/r 25 COl 1 UE
- BR)**" DO 271=1,6
(o DO27)=12
CALL HMAT (HM1,HM2,HM3 HM4,PR) 27 CU ,I} =0.
C Do28l-16
L1) = 1. DO28J=12
1,2) = NUXY 28 ,? - 0.
2,]1) = NUXY DO®1I={ps
2.2) = 1. DOXI-12
c 29 CUP uz =0,
DO 21 1=16 DO301=16
DO211=1.2 DO30J=12
21 CUPMAT(L)) = 0. éo CUP(LJ) = 0.
C
C WEIGHTS C  START NUMERICAL INTEGRATION LOOP
W1 = 0.555555555555556 Cc
W2 = 0.8888838888R888) DO 100 ITHK =173
wi=wl H=A
c DO 100 K =15
AB3 = 07660241483 AL = ACIRC(ICIRC)
AB2 = 0.0 DO 100 IALP=13
AB] = -AB3 c AALFP = AALP(IALP)
c
WT1 = 0.236926885056189 AL2 = AL**2
WT2 = 0A78628670499366 AL3 = AL*AL2
WT3 =0.568888888888880 ALA = AL*AL3
WT4 = WT2 ALS = AL°AL4
WIS = WI c
c A1) =0.
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1,.2) = H/PR2 CUP3(1,2) = BM1*DB3(2,2;
13) = 2°H*AL/PR2 CUP3(3,1) = BM2*DB3(2,1
14) = H*(3.°AL2+6.)/PR2 CUP3{32) =~ BM2°DB3(22
15) = H*(4.°AL3+24.*AL)/PR2 CUP3(5,1) = BM3*DB3(2,1
1,6) = H*(S5."ALA+60.°AL2)/PR2 c CUP3(5,2) = BM3*DB3(2,2
TH = AL+P4 TH = AL+7.°P4
ST = SIN ST = SIN(TH)
CT = CrT = )
2,1) = A{. A1) = A{,BR
22) = *ST + A(2.2) = - ’Sl'ﬂ-CQ/BR
23) = (AL2'ST + 2. BR A(23) = -(AL2°ST + 2°AL* BR
24) = (AL3'ST + 3‘AIJ /BR A{24) = -(AL3*ST + 3.°AL2*CT)/BR
= {ALA*ST + 4.*Al 3* /BR Al = {ALA°ST + 4.°AL3" /BR
= -(ALS*ST + 5.*AL4*CT)/BR A = -(ALS*ST + 5.*AL4*CT)/BR
o
BM1 = -PR/BR*CT BM1= -PR/BR*CT
BM2 = 2.°(DD+PR/BR*CT)*SIN(AALPP) BM2= 2.*(DD +PR/BR*CT)*SIN(AALPP)
BM3 = -2.°(DD+PR/BR*CT)*COS(AALPP) BM3 = -2.°(DD+PR/BR*CT)*COS(AALPP)
C
CALL MULT (B1,A HM1) CALL MULT (B4,A HM4)
CALL BTDB (BDB1,B1,D CALL BTDB DB4,B4,D£4
CALL MULTDB (DB1,D B1) CALL MULTDB (DB4,D,B4)
CUP1(1,1) = BMI*DB1(2,1 CUP4(1,1) = BM1*DB4(2,1
CUP1{1.2} = BM1°*DB1(2.2 CUP4(1.2) = BM1*DB4(2,2
CUPI1(3,1) =~ BM2°DB1(2,1 CUP4(3,1) = BM2°DB4(2,1
CUP1(3,2) = BM2*°DB1(2.2 CUP4(3,2) = BM2°DB4(2.,2
CUP1(S,1) = BM3*DBI1({2,1 CUP4(5,1) = BM3°DB4(2,1
CUPI(5.2) = BM3*DB1(2.2! CUP4(5,2) = BM3*DB4(2,2
C
TH = AL+3.°P4 DO401=12
ST = SIN| DO40J=12
CT = B) 40 BDB(1J) = BDBI(1}) + BDB2(1J) + BDB3(1,J) + BDB4(1,J)
21) = R DO#M41=16
22) = *ST + /BR DO#M4J=12
23) = {AL2*ST + 2.5AL*CT)/BR . cursl[,% = (CUPL(L) + CUP(1))+ CUP3(1)+ CUP4(1I))/BR
24) = {AL3°ST + 3.°AL2°CT)/BR 44 OO|
= {ALA*ST + 4.°AI3°CT)/BR C
= {ALS*ST + 5.°AL4*CT)/BR . DO S0I=12
DOSJ=12
BM1 = -PR/BR*CT 50 STIFF(1J)= STIFF(LJ) +
BM2= 2.4(DD + PR/BR*CT)*SIN(AALPP) 1 BDB(1J)*CONST* TTHK)*WCIRC(ICIRC)*WALP(IALP)
BM3= -2.5(DD+PR/BR*CT)*COS(AALFP) c
DOGI=16
CALL MULT ) DO m Tl cu
CALL mut1 (‘DBZ.D 2) 1 CUMSC& WIHMK)‘WCIRC(ICIRC)‘WAU([ALP)
1,1) = BM1°D]
1,2 BMI‘D 2.2 100 CONTINUE
2,1 RETURN
- BMZ'D 22 END
= BM3°DB2(2,1
- BheDaste2 ROUTINE
TH = AL+5.°P4
‘S:rr = SIN SUBROUTINE OVALO (PR,BR,THICK ALPHA EX, NUXY STIFF, ,CUPMAT)
= C
2,1) = A{BR C  ROUTINE TO EVALUATE O/P OVALISATION STIFFNESS MATRIX
22) = CQ/BR g AND COUPLING INTEGRAL MATRIX.
23) -
24) = AB’SI‘ +3. ‘AL'Z /BR IMPLICIT DOUBLE PRECISION (A-H,0-Z)
= -(ALA*ST + 4.°AL3*CT)/BR DOUBLE PRECISION NUXY ACIRC(S),WCIRC(S),
= {ALS'ST + 5.*ALA*CT)/BR zAmK(s), 3).A(2.6),D(2.2),Dm( ).DB2(2.2),
BM1 ~ -PR/BR*CT '2,2),B4(2.2) WALP, AALPG
BM2= z.°({>o+m BR* EMLPP) &A chg(’é.z ml%(&z)mﬁ(e.z) cul 6’22,'2
BM3= -2°(DD+PR/BR* AAIPP) 6 CUP ,HM1 GJL,HMﬁ g 6»2&
73031 2.2 ,B 2,2).B| ).BDB4(2.2) BDB(2,2),
CALL MULT (B3,A HM3)
CALL BTDB Dm,m.o&s C
CALL MUL (DB3, ) PR2 = PR**2
CUP3(1,1) = BMI*DB3(21) CONST = EX*PR*BR/(1.0-NUXY**2)
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Sgncur =B%o§§r BR
B = (li-/NlJ;CY)‘/(z«leD(Y)

c CALL HMAT (HM1,HM2,HM3 HM4,PR)

00

(o]

annn

1,1) =1,
12) = NUXY
2,1) = NUXY
22) = 1.

DO211-16
DO211=12
CUPMAT{LJ) = 0.

BAl = -0.906179845938664

BA2 = -0.538469310105683

BA3 = 0.0D0

BAY - -BA2

BAS = -BA1

ACTUAL INTEGRATION LIMITS:

THRO' THICKNESS H = -THICK/2 TO THICK/2.
AROUND CIRC A ~ - PL/4TO Pi/4

ALONG AXIS, 0 TO ALP

T = THICK/20

1) = T*W1
zglgzi = T*W2
ﬁz - T‘A.Bl
= T*AB2

= T*ABR3

= ALPHA /2.'W1
ALPHA/z.'WZ
- ALPHA
APhAfav s ABL
= ALPHA/2°(1.+ AB2
= ALPHA/2*(1.+ AB3
P4 = 3141592700 /40
WClI - P4*
z = PAWT2

ACIRC(2} = P4*BA2
ACIRC(3) = P4*BA3

4) = P4*BA4
A = P4*BAS
DO M1=12
Doulax).z .
DO 251-1,6
DO 25J=12
CUPL(LJ) = 0.

28 CUP3 J?‘O
DOXW1=16
DO29J=12

2 CUP4$IJ2-0.
DO301=16
DO30J=12

ASJL'U {

START NUMERICAL INTEGRATION LOOP
DO 100 ITHK =13

H = ATHK(ITHK)

DO 100 ICIRC =15

AL = ACIRC(ICIRC)

DO 100 IALP =13

0.
H/PR2

2°H*AL/PR2
H*(3.°AL2+6.)/PR2
H*(4.°AL3+ 24.°AL)/PR2
He(5.°ALA + 60.°AL2) /PR2

A
LI

> >

=)

= AL+P4+P4
= SIN

)
21) = -ST/BR
A(22) = {(AL*ST + CT)/BR
A(23) = {AL2°ST + 2*AL*CT)/BR
A(24) = (AL3'ST + 3:AL2CT)/BR
= (ALA*ST + 4.°AL3*CT)/BR
z = -{ALS*ST + 5.°AL4*CT)/BR

944

an

CALL MULT (B1,A,HM1)
CALL BTDB (BDB1,B1,D
CALL MULTDB (DB1,D,B1)

BMI1 = (2-B)*SIN(AALPP)*ST
BM2 = (2-B)* AALPP;‘ST
CUP1(2,1) = BM1°DB1
CUP1(2,2) = BM1°DB1
CUP1(4,1) = BM2°DB1
CUP1(4.2) = BM2°DB1

TH = AL+3.°P4+P4
SIN

2,1
2,2
2,1
22

BMI = zsys‘i
BM2 = (2B)* ;-s'r
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c
CUP2{22) = BM1°DB2{22
CUP241) = BM2°DB2(211 SUBROUTINE HMAT (HM1,HM2,HM3 HM4 PR)
42) = BM2*DB2{22/ C
C C  ROUTINE TO EVALUATE OVALISATION SHAPE FUNCTION MATRICES {H]
TH = AL+5.°P4+ P4 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
ST = SIN DOUBLE PRECISION F(6,6),G1(6),G2(6).G3(6).G4(6),
CT = ) lGMlEM; 64).G! e,c;,omi ),
2) - ST/BR 2 HM1{6.2).HM2{6.2 6.2) HM4{6,2) PR
2.2) = (ALSST + CT)/BR c
23) = {AL2°ST + 2.5AL*CT)/BR C FMATRIX
A(24) = {AL3ST + 3.°AL2°CT)/BR F(1,1) = 04614468578
= {ALAST + 4*AL3*CT)/BR F(12§ = 02454369261
= {ALS*ST + 5.*AL4*CT)/BR F{13) - -0.03855314219*PR
c E(14) = F(1 2
c Fi S
CALL MULT (B3,A HM3) K1) = F( o
CALL BTDB (BDB3 3.0 F(21) = -1.144574688
B (DD F(22) = 7.0/160
nm - Z-B)' ST F(23) = 0.04908738521°PR
c (B)*COS(AALPP)*ST EG4) - E1)
= F2
2,1) = BMI*DB3(2,1 F26) = (233
& 22) = BM1*DB3(22 F(3. = 1.0/&
41) = BM2*DB3(2)1 F(32) = AT14648293
CUP3{42) = BM2°DB3{22 F(33) = 1./8PR
c F(34) = F(31
TH = AL+7.P4+P4 F(3.5) = -F(3.3)
- SIN FB38) - FO3
CT = Fi =1 34
A1) = ST/BR Fl4.2) - -LO13211836
22) = (ALSST + cT)/BR F(43 = -19156431*PR
23) = {AL2°ST + 2*AL*CT)/BR F{44$ = -F(4,1)
24} = {AL3'ST + 32AL2°CT)/BR F45 - )
= JALA*ST + 4*AL3*CT{/BR (4,6} = -F(4,3)
= {ALS'ST + S*AL4*CT}/BR F{5.1 = -1013211836
c F{5:2) = 1290061
CALL MULT .A,Hm F(53) = F(5,1)*PR
CALL BTDB ,&4 F(54) = F(51
Bl M{L ﬁuﬂf FS8 = B¢ saa)
B)* Fi =- 17
c F(62) = 4927671482
CUPA(2,1) = BM1+DBA(2,1 F(63) = 1290061377*PR
CUPA(222) = BM1DBA4{22 Fl6A4) = -F(6,))
CUPA{41} = BM2°DB4{2] Fl63) = F(62
c 42) = BM2°DB4(22 o F69 = K&
DO4OI=12 C G VECTORS
DO40J-12 DO101-16
© BD%U) BDBI(1J) + BDB2(1,J) + BDB3(1J) + BDBA(LJ) Gl F_guy.s;ﬁ(u)
cuvgmm'1 )+ CUP3(1L)+ CUPA(LY) & '65"7(1)) b
(CUP1(LJ)+ CUP2(1,])+ 1))+ CUP4 = 0.5*F(L1)+F(l
alt "n?n"z) ah 10
e C
€ GMATRICES
DOSO1=12 DO201-15
DOS0J=12 GMI(L]) = G1
50 STIFF(LJ) = STIFF(1)) + GMI(12) = G4
1 BDB(LJ)*CONST* TTHK)*WCIRC(ICIRC)* WALP(IALP) GMI(13] = G:
[ GMI(IA) = G
PO&I-16 c
DO 60 J-12 GMXL1) = G
T& 62 CUPMAT(1J) + GM2{12) = G1
*WCIRC(ICIRC)*WALP(IALP) ML) - GAI
A} = I
s commun c
RETURN GM3(11) = G:
END M) - GAl
-Gl
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GM3(14) = G4(D)
C

-GM1L s 3)
+ GMI(14)
- GM2(1.3)
+ A)
- GM3(1.3)
+ GM3(14)
- Gl )
+ GM4(14)

SUBROUTINE MULT

SUBROUTINE MULT (C,A,B)

ROUTINE TO EVALUATE (C] = [A] [B]
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION A(2,6),8(6.2),C(2.2)

DO101=12
DOlOl o1.2
10K=1

10 can - i + AaxeE)
END

SUBROUTINE BTDB(BDB,B,D)

[o]e}

C
C  ROUTINETO EVALUATE ETDB MATRICES
c DOUBLE PRECISION BDB(2.2),8(2,2).0(2.2),.BB(2,2)
DO101=12
DO10J=12
Bl - 0.
DO10K=12
1° BB(LJ) = BB(U)+D(1-K)‘B(KJ)
DO201=12
DO20J=12
BDB(L)) = 0
DO 20K=12
20 w = BDB(LY) + B(K.)*BB(K.5)
END
SUBROUTINE MULTDB
c SUBROUTINE MULTDB (CA.B)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
c DOUBLE PRECISION A(2,2),8(2.2),C(2.2)
DO101=12
DO10J=12

Q) = o.

PO 10K=
10 cgu? - C(l,l) + A(LK)*B(K.J)

END

SUBROUTINE CMULT

SUBROUTINE CMULT (C A B)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION A(62),B(2.2),C(62)

DO101=16
DO10J=12
C(iJ) = 0.
DO 10K=12

10 cgu? = C{LJ) + A(LK)*B(K.J)

END
C

444 R INE SR1

SUBROUTINE SR100 (IELNUM,ITYP KELOUT ELVOLKTIK ZS ZASS,ZSC)
€ ssssessss STRESS PASS FOR ELEMENT PB3 +++++++*

c
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
EXTERNAL TRACK,GETELD P SRPLTMAXV,VZERO
INTEGER IPLTAY(6) [EP

C
C **+9* START STCOM STORAGE #+*+#4++
INTEGER Im_NUM.rrYPm.lN(?nm,m.ou“ gﬁn
| KEYERRIOUTNSTEPS KFSTLD Mrr,KRST‘RT,lSPARh,
TSTK5K16,IPROPKCPDS,
H KZ),KAY,MODEJSYM,KAHD.IDUG,D(XX,
. 4 ITYPE,MAT,JELEM NROW,JTYPE,IPFLOT,IPRINT,KTEMTP KCONCV KBICNV,
5 KEYPLS KEYCRP KEYSWL,KYSUB(9) K21 NODES(20), EPAR(50)
REAL ERRVAR(S)

DOUBLE PRECISION
1 DPZERO,DPHALF DPONE,DPTWO,DPTEN, DTORAD RADTOD,
2 TREF,TUNIF,TOFSET, DELTIM TIME,TIMOLD ,TIME2,TIME3,DELT2,
3 ACE..OMEGA,(X}OMFﬁ CGLOC
SUBEX, ERPAR(20),

XCENTR,YCENTR ZCENTR,TFCP
sxvmo(zos)X(zo) ,Y(20),Z(20), ELVOL

cop.m STCOM/ DPZERO,DPHALF, DPONE.DPTWO, DPTEN, DTORAD,RADTOD,
m'nom , DELTIM, TIME,TIMOLD ’I'IMFJ,'I‘IMB,DF_LTZ,
K%ﬁm CGOMEG(6),CGLOC(3),  DXX(l
3 OUTN: E.NCUMIT TISPARE,
4 K13,NPRPVL MATST K5 K16,JPROP(20
c 5 K20,KAY(10) MODE,ISYM,KAHD ID! UG(IO) XXX(41)

EQUIVALENCE (TYPE.EPAR(L)). (MATEPAR(2)), (IB_EM,F_PAR(S))

1 (NROW EP. , JTYPEEP, ) (IPLOT.EPARG

2 lrmN'r,ar 13)), (mmm (KCONCV AR(16

4 (KBICNV 1 g KEYCRP EPAR(19
;(KYSUB(I),EP 1)), (Kzl,EPAn(ao))

5 (KEYSWL,EP.
c 6 ODB(I).EP

BQUW ) ZCE‘m-élpAgi hHA (WCPRP )5))

2 S
c BQUIVALENCE (X(1) XYZEQ(,1))AY (1) XYZEQ(! 2)) (1) XYZEQ( 3)

DOUBLEPRECISION 2sc
2%&%@ mf.rxﬁbxv,nenspmmom),
3 RVR(5),SVR(253),PRESS(1),B1(6.5) B26+),
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Ms 2,12), U(u),rosm(zo LCONAI(6 m ) DMA
I;o(gpom(a)m’lm Gl(? WUl A(M).Bﬂsg{.g

sm&z) o) 3)'8 4(6A8233Ac1y .

EQUIVALENCE (RVR(1),BRAD), (RVR(2),ALPHA), (RVR(3),PRAD),
l(RVR(4)'lHlCK§ (R S)-PHI)) RVRE) ) ‘

pS umumca SAVED V.
m%&(m 1)
),PROP

2 JSia.) Yy
¢ mmmce’(‘?nor(l),mc? ?#’n%?}i“m (PROP(3).NUXY),
1 (PROP(4),DENS) ) @
o DATA DPPI / 31415026S35879300 |
CALL TRACK (5,SR100 ")
CALL GETELD
1 PRESS(1),C0N, vm),svm)x%o(x 1)U

C CONVERT ALPHA TO RADIANS
ALPHA = ALPHA'DPPI/180.0

STRESS PASS

l),CON,CON.

C
c
c
C EVALUATEI/P couslmmva MATRIX [DMATI]
CALL VZERO (DMA’
DOON = EX/(1.0- e )
DMATI(1,1) = DCON
DMATI(1,2) = DCON*NUXY
DMATI{21} = DMATI(1,2)
DMATI(22) = DCON

EVALUATE O

o0

DMA’ ,3 D(X)N‘(l NUXY)/2

EVALUATE LOCAL DISPLACEMENT VECTOR ULOC {IN LOCAL CSYS)
FROM GLOBAL DISP. VECTOR U.
CALL MAXV ('l‘R(l.l).U(l),UIDC,lz.lz)

ss4s4e¢ RECOVER NODELESS DOF. #+%¢s30¢
~— IN-PLANE DOF -
SMI CONTAINS LAST 2 ROWS OF I/P ZSFULL AFTER CONDENSATION

Dor1 - l/PDOFlNlDCALCSYS
mmmmwmmmpmsrmom
RFxl;covaD STORED IN LAST 2.

L e

UIDQ
ULOC{

DOF1
UEoSt)

DO
DOF1
Y ALGORITHM: REF COOK

RBCOVER
DO0J=12
1= 6+)
DUM = 00
K=lj-1
» DOBL-LK

» Dom(u)w?"tm+ b Hy vk

oananann 000

=

DOFI(
DOF}

u

Auruu-
IIIIII

a6

na ananan OOOOOOOgg 0o aananan

ann

OUT OF PLANE DEGREES OF FREEDOM

SMO CONTAINS LAST 6 ROWS OF O/P ZSFULL AFTER CONDENSATION
DOFO = O/P DOF IN LOCAL CSYS.
THE KNOWN (BEAM) DOF STORED IN FIRST 6 ROWS.
NODELESS DOF RECOVERED AND STORED IN LAST 2.
DOFO(1) = ULOC(2,
DOFO(2) = U 4
DOFO(3) = ULOC(6
DOFO(4) = ULOC(8
DO = Ul 10
DO = ULOC(12

RECOVERY ALGORITHM

DOs01I=12
1) =64]

DO4L=1K

DUM = DUM + SMO(J,L’ 'DOFOSL)

DOFO(JI) = (00 - DUM)/SMO(J JJ)

ALL NODAL AND NODELESS DOF NOW EVALUATED.

< < < << << SET UP LOOP FOR STRESS AND STRAIN EVALUATION > >>>>>>
FOR DEVELOPMENT ONLY STRESSES AT NODE | WERE EVALUATED: PHI=0
RATIO = (PRAD/BRAD)**2
PR2 = PRXD"Z /
D = RATIO/2.0

= (2*(1+N / 2+ NUXY)

OPCON = PRAD **2)
P4 = 3,1415927/4.

AN INTERACTIVE SURFACE AND STRESS NORMALISATION FACTOR
INPUT WAS INCLUDED.

CHOOSEH = INNER MlD/ounm SURFACE
= -THICK/2,0,THICK/2
PRINT *,

PRINT * 'lNPUT SERBFACE FOR STRESS CALCS’

READ (5,*) SURF
PRINT ¥, INPUT STRESS NORMALISATION FACTOR’
READ (5,*) SFACT

8) [ELNUM
RWO%E ELOW C IF I/P OUTPUT REQD. IN FILE PB2RES.DAT
WRITE (40 ¢y’ ALPHA SIGPTH SIGPHI POSN’
POSITN = -5.
POSN = 40.
STRESSES EVALUATED AT NODE | IN STEPS OF 5 DEGREES
DO 1000 IQRT =14
AL = -50.
DO 100 IALP = 1,18

AL =
AL = AL‘DPPI(Tﬁ
POSITN =

LTI 2] lN PMNESI’RBSAND grRAlN SEsedtseins
EVALUATE I /P {B] MATRIX

AL2 = AL**2

AL3 = AL*AL2

ALA = AL*AL3

ALS = AL*ALA

H = -THICK/2*SURF
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A(LL) = 0.

1.2) = H/PR2

13) = 2.°H*AL/PR2

14) = H*(3.°A12+6.)/PR2

15) = He(d*AL3+24 *AL) (PR3
AQlS) = H*(5.*AL4+60.°AL2)/PR2
iF (IQRT.EQ.1) TH =AL +P4
IF (IQRTEQ2) TH=AL +3.°P4

IF (IORTEQ3) TH=AL +5.°P4
IF BQA) TH=AL+7.°P4

ST = SIN
CT = )
21) = RAD
= {AL'ST + CT)/BRAD
= {AL2°ST + 2°AL°CT)/BRAD
24) = {AL3'ST + 3AL2*CI)/BRAD
= -{ALA*ST + 4.°AL3*CT)/BRAD
~ {ALS*ST + 5.*AL4*CT)/BRAD

GO TO 52

IF §QRT.EQ.1

c QRTBQA) GO TO 58

52 CALL MULT (BBI,A HM1)
GOTO

54 CALL MULT (BBIA HM2)
GOTO %

56 CALL MULT (BBIA HM3)
GOTO »

58 CALL MULT (BBI,A,HM4) .

o OO

% CONTINUE
DO 60 1=12
DOGJ-18

& BIQ) - 0

C LOCATION AT PHI = 0, SIN PHI = 0, COS PHI = 1
C BEAM BENDING STRAIN DISP IN FIRST 6 COLUMNS.

Al(1) - /BRAD

c MA:15§3) 2 +00Nsn PHI)/BRAD = 0 FOR PHI =0

c FOR PHI NOT 0
CA%YZIBRO (BI(1,2),1

=16

g" mgﬂ - msl) B1(1,1) +A1(3)*B1(3.1) + A1(S)*B1(5.])
BI(1,7) = BBI(1,1
a:%u - nmgl.zi
BI(27) - BBI(2,1
BI(28) = BBI{2.2

&VﬁwAW Wﬁa»&&wn) = {EPI(PHI) EPI(THETA)}

EVALUATE MB()SI(HI)S ; ,sllﬂ {EPI} = (SlGl(PHl) SIGI(THETA)}

CALL MAXV %S}J
R

a6 00 an

AL = AL*180.0/DPP1

REMOVE BELOW C IF I/P STRESS OUTPUT TO PB3RES.DAT REQD
WRITE %o,‘(mos)') AL SIGI(1)SIGI(2) POSITN
00 CONTINUE

=000 O

ssse+4+ OUT OF PLANE STRESS AND STRAIN *¢**¢*=

anann

WRITE (40,*) * POSN SIGTH SIGPHI TAU’
AL = -50.
DO 200 IALP = 1,18

(o]

AL = AL+S,
AL = AL*DPPI/180.
POSN = POSN + 5

AL2 = AL**2

AL3 = AL*AL2
AlA = AL°AL3
ALS ~ AL*AIA

ik o SURE

>

4) = HY(3.°AL2+6.)/PR2

= He(4.°AL3+24.°AL)/PR2
) = HY 5.‘AU+60.'A12§/PR2
IF (IQRTEQ.1) TH=AL+P4+P4
IF (IQRT.EQ.2) TH=AL+3.°P4+P4
IF (IQRT.EQ3) TH=AL+5.°P4 + P4
IF (IQRTBQ4) TH=AL+7.P4 + P4

ST = SIN .
cr-cogsﬁ
A(2)]) = -

/

CALL HMAT (
CALL VZERO (BBI%)A)
IF (IQRT.EQ.1) GO TO 152
IF (IQRT.EQ2} GO TO 154
IF (IQRT.EQ.3) GO TO 156
IF (IQRT.EQ4) GO TO 158
c
152 CALL MULT (BBLA HMI)
GO TO 19
154 CALL MULT (BBIA,HM2)
GO TO 19
156 CALL MULT (BBIA,HM3)
GO TO 19
158 CALL MULT (BBLA HM4)
GO TO 19

C
159 CONTINUE
C
C PUT OV TERMS IN LAST 2 COLS OF BO
C
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CALL VZERO (BO(1,1),4)

= BBI(1,1
1.8 = BBI 1.2
= BBI(2,1

= BBI(2,2

EVALUATE O/P B MATRIX BO
O/P AMA A2. MULT BY PRAD/(BRAD**2) USUALLY OUTSIDE BRACKETS
CALL VZERO (A2(1,1),18)

ATNODE I
CP=10
SP=00
1,2) = -&0_ B)*SP*ST*OPCON
lA = B)*CP*ST*OPCON
OPCON

3A = B‘SP'OPCON
3,6) = OPCON

CALL VZERO (BOB(1,1),18
CALL MAXB 1,318.82(1,'2},305,3,633,6,6)
PUT BOB IN 6 COLUMNS OF BO

NOTE THAT FIRST TWO ROWS ARE SWAPPED ROUND FOR CONSISTANCY WITH
OVALISATION STRAIN-DISP MATRIX

DO 160J=16

EVALUATE STRAINS {EPO DOFO} = PHI) EPO(THETA) TAU
CALL MAXV (BO(1 1).!)‘0?0%1),&33.8) } = {BPOLPHD ) '

EVALUATESTRBSB(SIGO (D] {EPI} = {SIGO(PHI) SIGO(THETA) GAMMA}
DMATO(1,1 m&x 1
IS énon )éslGl/(Mgll/l)

Sl ; Slg};‘SFACT
*SFACT
*SFACT

@m@:g?f lggrl POSN SIGO(1),SIGO(2) SIGO(3
20 a E 3] ) ). )

1000 CONTINUR

DUMMY WRITE TO FILE12. ALL STRESSES ACTUALLY WRITTEN TO
PB3RESDAT

IF (IPLOT NE. 1) GO TO 900
e NUMBER OF FORCES (LEVEL 1) **ses
IPLTAY(2) - 12
At NUMBEROFSTRESSES(LEVELZ haaddd
lPLTAY(3
NUMBEROF'IUTALSAVE) (LEVELS 1,2, AND 3)

IPLTAY(4)
iy SAVE GEOMETRY FOR CONTOURS (ONO 1,YES)
IPLTAY(6) = 0

sesses PUT POSTDATA INFORMATION INTO POSTD *¢¢***
s*¢¢+ PUT PLTARY INFORMATION ONTO FILE 12 #**¢se¢

a0 nonn

0 a0 a0 ann

an

anna 0 0 6 0 0o

S S ITYE NROWMAT00.2i(1), NODES(I) XYZBEQ(LY).
900 CALLP! dum 1. CONSVR(1
& Eei D e pATA BACK IO T

RETURN

END




