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Abstract

Deep learning has revolutionised the field of image processing, enabling significant advance-

ments in tasks such as classification, object detection, and image enhancement. However,

several critical challenges persist, hindering its broader applicability and efficiency. This the-

sis investigates solutions to key issues, including the generalisation of models to new classes,

the scalability of deep learning systems constrained by their substantial size, and the limi-

tations of supervised learning in acquiring labelled data at scale. Additionally, it explores

innovative approaches to improve image enhancement, with a focus on reconstruction fidelity

and computational efficiency. This research contributes novel model architectures, training

techniques and insights to the development of robust, efficient, and versatile deep learning

frameworks for image processing.

One such field where the generalisation of models is critical is the dairy industry. Auto-

mated identification of individual cattle is a valuable tool for modern dairy farming, enabling

increased operational scale and the potential for advanced health and welfare monitoring sys-

tems. Existing identification methods, such as Radio Frequency Identification tags, achieve

only around 90% accuracy, are prone to detachment, and require specific scanning locations.

Recently, deep learning-based identification systems have gained attention for their ability

to overcome these limitations. This thesis explores deep learning techniques for training

cattle identification models using data acquired in a controlled milking parlour environment,

aiming to enhance existing Radio Frequency Identification systems. Through similarity

learning, models are trained to produce embeddings that enable identification of cows not

present in the training set. Novel new class analysis is conducted to evaluate model perfor-

mance in realistic scenarios where herd composition changes over time, demonstrating the

generalisation capacity of this technique. Furthermore, cattle identification models trained

on controlled milking parlour data excel in similar domains but struggle to generalise to

free-moving barn environments, where labelling data at scale is impractical. To address

this, novel self-supervised learning techniques are proposed in this thesis to facilitate domain
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adaptation. These techniques leverage detection and tracking models to generate weak labels

from unlabelled barn data, which are then utilised in triplet loss functions during training,

achieving significant performance improvements over existing self-supervised approaches.

Another field which has seen massive advancements due to breakthroughs in deep learn-

ing is Hyperspectral imaging. Hyperspectral imaging is a valuable tool in remote sensing

applications as its spectral properties offer rich insights into the materials present within

each captured hyperspectral image. However, this spectral detail typically comes at the cost

of reduced spatial resolution. To address this, Super-Resolution techniques are often used to

recover lost spatial detail and improve the overall quality of hyperspectral images. Despite

their potential, several challenges persist in this domain, including issues related to data qual-

ity caused by sensor noise and the spectral response of sensors. However, the most critical

challenge specific to Super-Resolution, is the lack of paired high- and low-resolution training

data. As a result, existing methods often rely on artificially generating low-resolution image

pairs, leading to suboptimal performance in real-world scenarios. To address these limita-

tions, this thesis introduces several key contributions to the field of Hyperspectral Image

Super-Resolution, including a novel paired high- and low-resolution dataset, novel prepro-

cessing techniques, and a novel analysis of models trained using synthetic downsampling

methods and evaluated on the proposed datasets.

The power of deep learning models comes from their ability to learn highly complex

non-linear functions. However, the non-linear components of a deep neural network come

from the activation functions used between layers, meaning that to achieve the necessary

non-linear complexity, networks have to be sufficiently deep, resulting in large computa-

tional demands. Self-Organised Operational Neural Networks (Self-ONNs) have recently

been proposed, which tackle this issue by making the linear filters of traditional Convo-

lutional Neural Networks (CNNs) learnable non-linear functions, meaning that the same

theoretical non-linear complexity can be achieved in a much shallower network. To address

computational challenges, novel Self-ONN architectures are proposed. Architectures are pro-
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posed for both cattle identification tasks as well as Hyperspectral Image Super-Resolution

to demonstrate both the power and versatility of such models. The results presented in this

thesis show that more parameter-efficient Self-ONN models can achieve performance on par

with larger CNN models and in certain cases, even outperform them.

This thesis presents a comprehensive exploration of deep learning methodologies tailored

for practical applications in image processing, offering contributions that span cattle iden-

tification, Hyperspectral Image Super-Resolution, and self-supervised learning for domain

adaptation, paving the way for more robust and scalable solutions.
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GAN Generative Adversarial Network. 62–64

GPU Graphics Processing Unit. 55, 87

HR high-resolution. 24, 62, 95–97, 100, 106, 107, 129, 133, 135

HSI Hyperspectral Image. 2, 3, 9, 10, 13, 15, 21–26, 29, 49, 62–64, 89–91, 94, 95, 98, 99,

106–109, 116–118, 122, 124, 125, 128, 129, 132, 138, 139, 162, 164, 165, 168, 169

KNN K-Nearest Neighbours. 41, 45, 58, 59, 81, 82, 86, 87, 140, 149, 158

LR low-resolution. 22, 24, 25, 61–63, 94–97, 99, 100, 106, 107, 120, 122, 124, 128–133, 135,

139

MAE Mean Absolute Error. 131

MSE Mean Squared Error. 48, 91, 100

ONN Operational Neural Network. 2, 24, 64, 65

OOD out-of-distribution. 68, 70, 71

11



PSNR Peak Signal-to-Noise Ratio. 14, 48, 115, 125, 131–133, 193

ReLU Rectified Linear Unit. 35, 36, 57, 98, 99

RFID Radio Frequency Identification. 8, 18, 19, 73–77, 84, 140, 142, 143, 146, 147, 151,

156, 166

RGB Red, Green and Blue. 51, 54, 63, 98, 116, 165

RMSE Root Mean Squared Error. 50

SAM Spectral Angle Mapper. 14, 49, 115, 125, 131, 132, 194

Self-ONN Self-Organised Operational Neural Network. 1, 9, 10, 17, 20, 23, 24, 26, 38–40,

65, 72, 73, 83, 85, 87–89, 98, 99, 101–104, 114, 121, 122, 129, 138, 139, 157, 160,

162–164, 166–169

SGD Stochastic Gradient Descent. 34

SISR Single-Image Super-Resolution. 22

SNV Standard Normal Variate. 118–121, 125–128, 139

SR Super-Resolution. 2, 3, 9, 10, 14, 15, 17, 23–26, 29, 49, 61–64, 89, 90, 95, 98, 100, 103,

108, 109, 116, 117, 121, 124–126, 128, 129, 132, 138, 139, 162, 164, 165, 168, 169

SSIM Structural Similarity Index Measure. 14, 48, 49, 100, 115, 125, 131–133, 194

Tanh Hyperbolic Tangent. 35, 36, 99, 122

YOLO You Only Look Once. 151, 156

12



List of Figures

1.1 Cow Barn Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Neural Network Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Activation Function Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Max and Average Pooling Examples . . . . . . . . . . . . . . . . . . . . . . 39

2.5 CNN Filter (left) vs Self-ONN Filter (right). . . . . . . . . . . . . . . . . . . 39

2.6 Triplet Loss Function Objective . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 KNN Classifier Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Milking Parlour Data Capture Setup . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Data Cropping with YOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 CowID-537 Dataset Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Dirty Cow Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 CowID-1785 Dataset Examples . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 CowID-537 Dataset Split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Training Cows vs New Cows Example. . . . . . . . . . . . . . . . . . . . . . 80

4.8 Training Augmentation Examples. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Cow Identification Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Small HSI Datasets False Colour Images. . . . . . . . . . . . . . . . . . . . . 91

5.2 ICONES Dataset False-Colour Examples [1]. . . . . . . . . . . . . . . . . . . 92

5.3 Clean and Noisy Band Examples. . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Indian Pines Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Lens Dataset Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Sensor Dataset Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 SRCNN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 SRONN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 General Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13



5.10 No Residual Connection Pavia University Results . . . . . . . . . . . . . . . 106

5.11 Residual Connection Pavia University Results . . . . . . . . . . . . . . . . . 107

5.12 No Residual Connection Pavia University True SR Results . . . . . . . . . . 108

5.13 Residual Connection Pavia University True SR Results . . . . . . . . . . . . 109

5.14 ICONES Dataset Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.15 ICONES Training Patch Examples . . . . . . . . . . . . . . . . . . . . . . . 120

5.16 Normalisation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.17 Box Plot of Model Results by Preprocessing Method. . . . . . . . . . . . . . 126

5.18 Training Image Pairs (not to scale) . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 Lens Dataset SRONN Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.20 Sensor Dataset BAGAN Outputs. . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Barn Identification Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Barn Dataset Example Images . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Example Labelled Barn Captures . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Supervised Model Embeddings Plot . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Proposed Self-Supervised Algorithm . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Barn Dataset Performance Trend . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Proposed Self-Supervised Track Algorithm . . . . . . . . . . . . . . . . . . . 156

7.1 Training Loss Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2 Validation PSNR Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.3 Validation SSIM Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.4 Validation SAM Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.5 Validation ERGAS Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14



List of Tables

4.1 Cow Identification Datasets Overview. . . . . . . . . . . . . . . . . . . . . . 73

4.2 Augmentation parameters used during cow identification training. . . . . . . 81

4.3 CowID-537 Hyperparameter Optimisation Results. . . . . . . . . . . . . . . . 82

4.4 Cow Identification Model Parameters . . . . . . . . . . . . . . . . . . . . . . 85

4.5 CowID-1785 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Small HSI Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 ICONES Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Indian Pines Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Paired HSI Dataset Information . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Results from Standard Models with no Normalisation. . . . . . . . . . . . . . 105

5.6 Normalisation Results on Cuprite Dataset. . . . . . . . . . . . . . . . . . . . 110

5.7 Normalisation Results on Pavia University Dataset. . . . . . . . . . . . . . . 111

5.8 Normalisation Results on Salinas Dataset. . . . . . . . . . . . . . . . . . . . 112

5.9 Normalisation Results on Urban Dataset. . . . . . . . . . . . . . . . . . . . . 113

5.10 Training Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.11 HSI-SR Data Normalisation Techniques Results . . . . . . . . . . . . . . . . 125

5.12 Target Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.13 Training Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 Lens Dataset Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.15 Sensor Dataset Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Supervised SE ResNeXt e32 Model Performance on Labelled Barn Data . . . 150

6.2 Self-Supervised Algorithm Training Parameters . . . . . . . . . . . . . . . . 152

6.3 Self-Supervised Training Algorithm Results . . . . . . . . . . . . . . . . . . . 153

6.4 Self-Supervised Method Test Accuracies on the CowID-1785 Dataset . . . . . 154

6.5 Self-Supervised Track Model Performance on Labelled Barn Data. . . . . . . 158

7.1 Fold 1 Full Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

15



7.2 Fold 2 Full Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3 Fold 3 Full Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

16



1 Introduction

In recent years, deep learning has revolutionised the field of image processing, enabling signif-

icant advancements in tasks such as classification, object detection, and image enhancement.

Despite these breakthroughs, several challenges remain that limit the broader applicability

and efficiency of these methods. This PhD thesis investigates innovative approaches to ad-

dress some of these key challenges, including the generalisation of models to new classes, the

scalability of deep learning systems constrained by their substantial computational demands,

and the limitations imposed by supervised learning in acquiring labelled data at scale. The

thesis also focuses on improving image enhancement techniques, particularly in terms of

reconstruction fidelity and computational efficiency.

This research aims to develop robust, efficient, and versatile deep learning frameworks

by introducing novel contributions to data preprocessing, neural network architectures, and

unsupervised training algorithms, alongside the creation of a new dataset. The work fo-

cuses on practical applications, including the automated identification of individual cattle

in the dairy industry and Super-Resolution techniques for Hyperspectral Imaging. These

applications present significant challenges, such as dynamic class variations, data quality

issues, and difficulties in acquiring labelled data. To address these challenges, this thesis

proposes novel solutions, including generalised models capable of performing effectively on

new classes, advanced preprocessing techniques to mitigate noise within the data, unsuper-

vised training methods that leverage weak labels more effectively, and novel Self-Organised

Operational Neural Network (Self-ONN) architectures which not only enhance performance

but also improve parameter efficiency.

1.1 Application Areas

This thesis applies the proposed models and algorithms to two different application areas:

individual dairy cattle identification in an agricultural technology setting; and resolution en-
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hancement of hyperspectral images. Each of these application areas presents its own unique

challenges in which specific methods have been developed for each. However, both appli-

cation areas have a common theme exploring the utilisation of advanced models containing

non-linear filters, which will be discussed further in Section 2.3.

1.1.1 Dairy Agritech Background

Noninvasive continual monitoring of dairy cattle to assess animal welfare and milk production

is of great value to the dairy industry [2]. The advancement of such technology enables the

effective management of larger herd sizes and consequently greater profits. Furthermore,

such precision dairy technology could provide insight into the health of the animals and

provide early signals for health conditions, consequently improving welfare.

A crucial component of such a system is the identification of individual cattle. Conven-

tional techniques for identifying individual dairy cows have largely relied on physical contact

methods, including ear tags, branding, and embedded Radio Frequency Identification (RFID)

technology [3]. The ear tag and branding methods require manual identification, which pro-

vides little value to precision dairy technology in modern farming practices and often causes

stress in cows [4]. Livestock farming frequently employs embedded RFID technology for

individual identification [5]. Although a significant improvement over manual identification

methods, it still has limitations as it requires the cows to wear electronic devices that can

be lost. Furthermore, it requires the use of specific RFID readers, meaning that identifica-

tion can only be performed at specific locations. These devices are typically around £2,500

per unit, so having several units to perform identification at many locations is very costly.

Furthermore, it is not physically possible to use them for full identification coverage in a

barn.

The advancement of artificial intelligence and deep neural networks in recent years has

made the development of such a system theoretically possible through the use of non-invasive

cameras and vision systems. Such a system not only eliminates the need for any artificial
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physical markings or identifiers to be attached to the cow but also greatly increases the

effectiveness of the identification system as the process can be automated and allows for

identification at any location where there is camera coverage. In an indoor barn, multiple

cameras can be installed on the ceiling looking down, which can provide video, and thus

identification coverage of the entire barn. Each individual camera not only provides a far

greater identification radius than an RFID scanner, but is also significantly cheaper and

provides far more information, which can also be used for other downstream tasks such as

behaviour monitoring.

Each individual cow has unique biological characteristics that a machine learning model

can exploit to perform identification [6]. Like human beings, cattle have unique faces and

identification can easily be performed on close-up images of the cow’s face [7]. Much like

a human fingerprint, cow muzzles are unique and additionally remain consistent over time

[8], making them a good region for visual identification. However, the issue with performing

identification on the face or the muzzle is that it is challenging to acquire the images for

identification as the cow has to be sufficiently close to the camera while also not being

occluded by other objects, which is common in side-on view images in a barn setting. Holstein

cows are the most common breed of dairy cows in UK and many other countries [9]. Holstein

cows have distinct black and white patterns on their bodies that are unique to each individual

cow, making it possible to perform identification on these patterns from a top-down view

such as the one shown in Figure 1.1. Furthermore, identification can be performed from

a much greater distance from the camera since the body is much larger than the face or

muzzle, and occlusion is also much less likely to occur in a top-down view, greatly improving

the frequency at which identification can be performed.

The ability to continually identify individual cattle from any location accurately has

significant implications for the dairy industry. By enabling the continual monitoring of

individual cows, such systems can provide crucial insights into health, behavior, feed intake

and milk production metrics, which are essential for precision dairy farming. This not only
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Figure 1.1: Cow Barn Image

enhances animal welfare through early detection and intervention of health conditions but

also improves operational efficiency and profitability. In addition, noninvasive identification

eliminates the need for physical contact or wearable devices, reducing stress and minimising

the risk of loss or damage to equipment.

Developing a reliable system for cattle identification poses several challenges, including

variations in environmental conditions, occlusion, and the need for scalability to accommo-

date large herds. This thesis addresses these challenges using top-down view data captured

by cameras covering entire barns, overcoming the limitations of face- or muzzle-based iden-

tification methods and providing a practical, effective solution for real-world applications.

Similarity learning techniques are employed to enable identification of cows not included in

the training dataset, and novel new class analysis is conducted to assess the effectiveness

of these models in practical scenarios where new cows are continuously introduced to the

herd. Additionally, this work proposes novel Self-Organised Operational Neural Network

(Self-ONN) architectures that enhance network parameter efficiency without compromising
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identification performance. To address domain adaptation challenges, self-supervised learn-

ing techniques are introduced, bridging the gap between easily labelled data from milking

parlours and more challenging, unlabelled data from barns. The techniques presented in this

thesis aim to advance precision dairy technology, fostering more sustainable and welfare-

oriented farming practices.

1.1.2 Hyperspectral Imaging

Hyperspectral imaging has emerged as a pivotal technique in remote sensing, offering un-

paralleled insights into material properties. This technology operates by capturing a wide

spectrum of light beyond the visible range, enabling the precise identification and analysis

of materials, chemical compositions, and physical conditions within the captured scene, and

is useful for many applications including agriculture, mining, and environmental monitoring

[10, 11, 12].

The intrinsic value of hyperspectral imaging lies in its capacity to provide detailed spec-

tral information for every pixel in an image. Unlike conventional imaging, which captures

only three colour bands (red, green, and blue), hyperspectral sensors can capture hundreds

of narrow and contiguous spectral bands. This rich spectral information is instrumental

in distinguishing between materials with similar visual appearances but different spectral

signatures, thereby enhancing material classification, environmental monitoring, and other

critical applications [13].

However, the acquisition of high-quality Hyperspectral Images (HSIs) presents significant

technical challenges. A fundamental trade-off exists between spectral and spatial resolution

due to current sensor limitations. While hyperspectral sensors provide extensive spectral

information, they often do so at the cost of spatial resolution. This limitation arises because

increasing the spectral resolution — capturing more spectral bands — typically reduces the

number of photons captured per band, leading to lower spatial resolution [14].

The diminished spatial resolution adversely impacts automated image processing tasks
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such as segmentation, object detection, and classification. These tasks rely on precise spatial

details to accurately identify and analyse objects within the scene. The lack of high spatial

resolution can lead to inaccuracies and reduced performance of these algorithms, limiting

the potential of hyperspectral imaging in various applications.

To address this challenge, Single-Image Super-Resolution (SISR) has been proposed as

a promising solution. SISR is an advanced image processing technique designed to enhance

the spatial resolution of an image using only the available low-resolution (LR) data, with-

out the need for additional auxiliary information. By employing sophisticated algorithms,

SISR reconstructs high-resolution images from their lower-resolution counterparts, effectively

recovering lost spatial details while preserving spectral integrity. This process involves com-

plex modeling and machine learning techniques, including Convolutional Neural Networks

and deep learning, which have shown great potential in learning the intricate mappings

between low and high-resolution images [15, 16, 17].

The development and refinement of SISR techniques are of paramount importance in the

field of hyperspectral imaging. By improving the spatial resolution of HSIs, researchers and

practitioners can significantly enhance the performance of subsequent image processing tasks.

Enhanced spatial details facilitate more accurate material classification, better environmental

monitoring, and improved detection and analysis in a myriad of applications. As such,

advancements in HSI-SISR directly contribute to the broader utilisation and effectiveness of

hyperspectral imaging in tackling complex and diverse challenges across various domains.

State-of-the-art techniques for SISR predominantly leverage deep neural networks, typi-

cally training models in a supervised fashion using paired high- and low-resolution images.

However, obtaining such paired datasets is particularly challenging, and as of this writing and

to the best of the author’s knowledge, no such dataset exists in the hyperspectral space. In

contrast, unpaired single images are relatively easy to acquire, leading most existing meth-

ods to rely on artificial downsampling techniques to generate low-resolution counterparts

from high-resolution images. These approaches, however, make assumptions about the true
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downsampling process, which is inherently unknown. Consequently, models trained on such

synthetic data often suffer from diminished performance in real-world applications.

In this thesis, a novel paired HSI-SR dataset is introduced, comprising real high- and

low-resolution image pairs. Novel analysis of this dataset highlights the advantages of train-

ing on genuine data pairs and the limitations of using synthetically generated downsampled

data. Furthermore, a key challenge in working with HSI data — its susceptibility to noise

and the spectral response characteristics of sensors — is addressed through novel prepro-

cessing techniques. These techniques enhance the quality of the input data and improve SR

performance. Finally, novel Self-ONN architectures are proposed, demonstrating significant

performance improvements over traditional CNN architectures for HSI-SR.

1.2 Original Contributions of the Work

It is believed that the novel contributions of this work are:

• New class evaluation for dairy cattle identification (Chapter 4)

• Self-ONN architectures for classification tasks trained using similarity learning (Chap-

ter 4)

• Self-ONN architectures for HSI-SR tasks (Chapter 5)

• Data normalisation strategies for HSI-SR (Chapter 5)

• Analysis of artificial downsampling techniques for HSI-SR (Chapter 5)

• Self-supervised techniques for real-world cattle identification (Chapter 6)

• Automated data gathering techniques for use in self-supervised training (Chapter 6)

These novel contributions will now be explained further.

In Chapter 4 of this thesis, similarity learning is used to train various classification and

identification models. The first novel contribution is the analysis of how well models trained
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with this technique can identify cattle not contained within the training set, a capability

that models trained with traditional classification techniques do not possess. Analysis is

performed in a small-scale setting to evaluate the robustness of features learned in a limited

data setting. Additionally, analysis is performed in a more realistic larger-scale setting to

simulate the performance in a more practical setting.

The second novel contribution of this thesis is Self-ONN architectures to enhance the non-

linear capacity of popular classification Convolutional Neural Network (CNN) models. Self-

ONNs transform the linear filters of a CNN to non-linear filters, thus the classification models

proposed have more powerful feature extraction capabilities. Other modifications to the

networks are also made including different activation functions and initialisation strategies.

Furthermore, the increased feature extraction capacity allows for a significant reduction in

the number of filters required by the networks, improving the network efficiency.

In Chapter 5, more novel Operational Neural Network architectures are proposed, this

time for the task of Hyperspectral Image Super-Resolution. The non-linear network filters

offer significant performance improvements for this task, offering improved definition, partic-

ularly in object edges, within the recovered images. Various feature normalisation techniques

are investigated to examine the ways in which these affect the performance of the proposed

models.

The fourth novel contribution of this thesis is improved normalisation techniques to pre-

process Hyperspectral Image data for Super-Resolution training. The proposed techniques

involve normalising the data in a band-wise manner and applying a small amount of outlier

removal to more evenly distribute the data. This has several benefits, including allowing the

model to focus more evenly on all components of the input data, while also simplifying the

problem space.

The fifth novel contribution of this thesis is the analysis of artificial downsampling strate-

gies for Hyperspectral Image Super-Resolution training. Ideally, Super-Resolution models

are trained with paired low-resolution and high-resolution data. However, this is difficult
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to acquire, particularly for Hyperspectral Images, so downsampling techniques are often ap-

plied to artificially generate a low-resolution pair for a given Hyperspectral Image. Two

novel datasets were acquired in collaboration with two other researchers that capture real

low- and high-resolution paired images. Analysis is performed on how well models trained on

data generated with popular downsampling techniques perform when applied to real data,

indicating the efficacy of models trained with these techniques in the real world.

In Chapter 6, Self-Supervised techniques are proposed to train individual dairy cattle

identification models on unlabelled data acquired from aerial barn cameras - the desired de-

ployment domain for this application. Standard self-supervised techniques train the model

on individual images at any given training step. The techniques proposed exploit the proper-

ties of the data in this application to allow the model to learn from multiple training images

at a given training step, leading to greatly improved performance.

The self-supervised techniques proposed in Chapter 6 require specific properties to be

present in the training data to exploit these properties within the algorithm. The final

contribution of this thesis is the algorithms used to extract the data for the proposed self-

supervised techniques, allowing for large quantities of training data to be gathered in an

automated fashion.

1.3 Organisation of Thesis

The remainder of this thesis is organised as follows.

Chapter 2 outlines the key techniques and metrics used throughout this thesis. This

chapter is intended to present enough information so that the reader can grasp the content

of this thesis and its contributions without having to consult additional sources.

Chapter 3 provides an extensive literature review on the relevant research background

and context for the techniques proposed in this thesis. It covers the topics of deep learning

for image processing tasks such as classification and SR, the relevant background topics for

this thesis including cow identification and hyperspectral imaging, and finally the two key

25



techniques used in this thesis, which are similarity learning and Self-Organised Operational

Neural Networks (Self-ONNs).

Chapter 4 explores the application of similarity learning to the specific task of supervised

identification of individual dairy cattle. A novel evaluation of how well the developed models

can identify cows that were not included in the training dataset is conducted. In addition,

novel Self-Organised Operational Neural Network models are proposed, in order to enhance

the parameter efficiency of cow identification models.

Chapter 5 delves into the topic of Hyperspectral Image Super-Resolution through the

application of deep learning methods. Novel Self-Organised Operational Neural Network

architectures are introduced, which are designed to improve Super-Resolution performance

across a diverse range of Hyperspectral Image datasets. The chapter also presents novel nor-

malisation strategies aimed at boosting super-resolution effectiveness over multiple images.

Furthermore, a novel and comprehensive analysis of the synthetic downsampling methods

typically used for Hyperspectral Image Super-Resolution is conducted, assessing their per-

formance when applied to a novel real data set.

Chapter 6 examines strategies to close the domain gap between the dairy cattle identifica-

tion models introduced in Chapter 4 and their real-world deployment in barn environments.

Novel innovative self-supervised methods designed to address this challenge are proposed,

along with techniques for the automatic generation of extensive datasets that these methods

can leverage. In addition, the chapter examines the use of Self-Organised Operational Neural

Network architectures to improve model performance.

Chapter 7 offers concluding remarks and recommends directions for future research.
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2 Technical Background

In recent years, the fields of artificial intelligence (AI) and machine learning (ML) have

transformed the landscape of computer vision and image processing, with deep learning

emerging as the dominant paradigm. This chapter provides an overview of the technical

foundations and advancements in deep learning for image processing, giving the reader the

necessary background for the research contributions discussed in later chapters. This chapter

also highlights the trends and breakthroughs that have cemented deep learning’s position at

the forefront of this domain.

AI encompasses a broad spectrum of techniques aimed at creating systems capable of per-

forming tasks traditionally requiring human intelligence, such as decision-making, problem-

solving, and perception. Within AI, machine learning represents a subset focused on enabling

machines to learn from data and improve their performance without being explicitly pro-

grammed. ML methods are traditionally categorised into supervised, unsupervised, and

reinforcement learning, each characterised by the type of data and feedback utilised during

the training process.

Supervised learning relies on labelled datasets, where input-output pairs are used to train

models to make predictions or classifications. Supervised learning is potentially the most

effective form of training as the objective is well defined since the desired output is known for

each individual data point from its label. However, the major drawback with this approach

is that it is often very costly to obtain said labels, making it impractical in many scenarios.

In contrast, unsupervised learning operates without explicit labels, uncovering patterns or

structures within data, such as clustering or dimensionality reduction. This means that data

is much more easily obtained since labels are not required, though the absence of labels makes

the training objective much harder to define and consequently results in difficulty achieving

the desired objective. Self-supervised learning aims to bridge the gap between supervised

and unsupervised learning by by creating its own supervisory signals from the data itself.

Examples of this include predicting masked words in a sentence or completing a missing
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image portion, where the objective is to force the model to learn underlying structures and

features without the need for human-provided labels. Reinforcement learning explores how

agents can learn optimal behaviors by interacting with an environment and receiving rewards

or penalties based on their actions. This technique is potentially very powerful as agents

can learn their own strategies to complete complex tasks without any human intervention.

However, similar to unsupervised learning, the objective in reinforcement learning is often

very challenging to define making it hard to achieve the desired results.

Among the branches of ML, deep learning has achieved unprecedented success, particu-

larly in computer vision tasks. Leveraging neural networks with multiple layers, deep learn-

ing algorithms have demonstrated exceptional capabilities in extracting hierarchical features

from raw data. This has enabled breakthroughs in areas such as object detection, image seg-

mentation, and image classification, far surpassing traditional computer vision techniques.

The advent of large-scale datasets, increased computational power, and advanced neural

network architectures has further accelerated the adoption and dominance of deep learning

in image processing.

Due to this success, almost all state-of-the art techniques for image processing and com-

puter vision tasks leverage deep learning and many notable trends have emerged. One

prominent direction is the focus on more efficient and lightweight models designed to per-

form effectively on resource-constrained devices. Simultaneously, transformer architectures,

initially introduced for natural language processing, have gained traction and popularity

over more traditional Convolutional Neural Networks, particularly for large-scale data tasks.

Additionally, there is a growing emphasis on self-supervised and unsupervised learning ap-

proaches, which reduce the dependency on large labelled datasets by learning meaningful

representations from unlabelled data. Generative models, including Generative Adversarial

Networks (GANs) and diffusion models, have also gained traction, enabling high-quality im-

age synthesis, enhancement, and restoration. Finally, due to the black box nature of neural

networks, there is a huge amount of interest and research being conducted on explainabil-
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ity to better understand how neural networks come to make their decisions. These trends

collectively reflect a shift toward more versatile, scalable, accessible, and transparent deep

learning solutions for complex image processing challenges.

The remainder of this chapter delves into the technical aspects of deep learning, with a

particular focus on its applications to dairy cattle identification and Hyperspectral Image

Super-Resolution. It examines key architectures, training methodologies, and challenges,

while also highlighting emerging trends that are shaping the future of this field. This chapter

aims to provide a foundation for understanding the novel contributions explored in subse-

quent chapters of this thesis.

2.1 Deep Learning

Deep learning is a branch of machine learning that uses artificial neural networks (inspired by

the human brain) with multiple layers to model complex patterns in data. These networks

learn to perform tasks by considering examples, generally without task-specific programming.

The model is composed of many layers of neurons that transform the input data as it passes

through the network as shown in Figure 2.1. The first layer processes the input directly,

and the following layers operate on the output of the previous layer, abstracting higher-level

features of the data. Each neuron in the network’s layers is associated with a set of weights

and a bias. When an input is fed into the network, it is multiplied by these weights, which

essentially determines the strength or importance of the input features in relation to the task

the network is trying to learn.

Mathematically, the pre-activation output z of a layer l, is the matrix multiplication of

the weights W at layer l and the output a of the previous layer l − 1, plus the bias, b at

layer l as defined in Eq. (2.1):

z[l] = W[l]a[l−1] + b[l] (2.1)
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Figure 2.1: Neural Network Diagram

The pre-activation output, z is then passed to an activation function g to get the activa-

tion output a as definded in Eq. (2.2):

a[l] = g[l](z[l]) (2.2)

This process is repeated for each layer iteratively until the final output layer is reached

(l = L). For the first layer (l = 0), a[l−1] is the input to the network. The final network

output y is defined as:

y = a[L] (2.3)

During the training process, the network adjusts these weights based on the feedback it

30



receives in terms of how well it performs (i.e. the loss). This adjustment is done through a

process called backpropagation and is optimised using algorithms based on gradient descent.

The goal of training a neural network is to find the optimal set of weights that minimises

the loss function, meaning the network’s predictions are as close as possible to the actual

desired values. In essence, the weights are learned in such a way that the network is able to

extract meaningful features from the data that the network then uses to make predictions

or decisions based on the input data it receives.

In supervised deep learning, the learning process relies on labelled datasets, where the

correct output for each input is used to compute the loss — a measure of the difference

between the predicted and true labelled values. The effectiveness of a deep learning model

depends significantly on the size and quality of the training dataset, as larger datasets provide

more diverse examples for the model to learn from. This diversity helps mitigate the risk

of overfitting, where a model performs well on training data but fails to generalise to new

unseen data. Achieving generalisation, where the model performs effectively on new data, is

the most important goal in the development of deep learning models and is closely tied to

the quality and comprehensiveness of the training dataset.

2.1.1 Training, Validation, and Testing

When deep learning models are developed using supervised learning, datasets are typically

divided into three distinct portions: training, validation, and testing. Each of these partitions

serves a specific purpose in the model development process. The training set is used to teach

the model and is typically composed of a randomly selected subset of around 70% of the

entire dataset. During this stage, the model ’sees’ and learns from these data samples,

adjusting its weights and biases to minimise the error in its predictions via backpropagation.

The goal is to optimise performance on the training data and learn the underlying patterns

and relationships in the dataset.

The validation set is a separate random subset of data, typically containing around 15% of
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the total data, used to monitor the model’s performance after each full iteration of training,

known as an epoch. Unlike the training set, the model does not learn from the validation set.

Instead, this partition helps assess whether the model is generalising well to unseen data or

overfitting to the training set. Overfitting occurs when the model becomes overly specialised

to the training data, resulting in diminished performance on new data. A clear indicator

of overfitting is when the model’s performance continues to improve on the training set but

stagnates or deteriorates on the validation set. In practice, the validation set is also used to

identify the optimal set of model parameters, often employing techniques like early stopping.

Early stopping ensures that training halts when validation performance ceases to improve,

thereby preventing unnecessary overfitting.

Finally, the test set is reserved for evaluating the performance of the finalised model and

comprises the remaining data not used in the training and validation subsets and is also

typically around 15% of the overall data. Unlike the validation set, the testing set is not

used at any point during the training process. This separation ensures that the evaluation

provides an unbiased estimate of the model’s ability to generalise to entirely new data.

Since the validation set is used throughout training to guide decisions, it cannot offer a

truly independent measure of the model’s performance. Therefore, the testing set acts as a

final benchmark, verifying the model’s effectiveness in real-world scenarios. If the dataset

is sufficiently large, the training, validation, and testing splits are typically fixed. However,

when the dataset is relatively small, cross-validation is often employed: the model is trained

multiple times with different splits, and the results are averaged to reduce bias and improve

statistical reliability.

2.1.2 Loss Functions

Loss functions, also known as cost functions, measure the discrepancy between the model’s

predictions and the actual labels. They guide the training process by indicating how far

off the predictions are from the target labels. Common loss functions in image-based tasks
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include Mean Squared Error (MSE) for image-to-image mapping tasks, Cross-Entropy Loss

for classification tasks, and Intersection over Union (IoU) for segmentation tasks. The choice

of loss function depends on the specific task and has a significant impact on the efficiency

and effectiveness of the learning process.

2.1.3 Backpropagation & Gradient Descent

During the training process, a neural network learns by adjusting its weights based on

feedback regarding its performance. This feedback comes from the loss function, which

measures the difference between the predicted output of the network and the actual target

values. To optimise the weights, the network uses an iterative process called backpropagation,

which involves calculating the gradients of the loss function with respect to each weight.

These gradients indicate how much each weight contributed to the error and are used to

update the weights in a way that minimises overall loss.

The backpropagation algorithm works by applying the chain rule to propagate the error

back through the network, starting from the output layer and moving toward the input layer.

For each weight w, the gradient of the loss L is computed as:

∂L
∂w

=
∂L
∂y
· ∂y
∂w

(2.4)

Where ∂L
∂w

is the gradient of the loss with respect to the weight, ∂L
∂y

is the derivative of

the loss with respect to the network’s output, and ∂y
∂w

is the derivative of the output with

respect to the weight w.

Gradients are calculated for all weights in the network and, once they are determined, the

weights are updated using an optimisation algorithm such as gradient descent. In standard

gradient descent, the weight update rule is as follows:

w ← w − η · ∂L
∂w

(2.5)
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Where w is the weight to be updated, η is the learning rate, a hyperparameter that

controls the step size of the update, and ∂L
∂w

is the gradient of the loss with respect to the

weight. This process is repeated iteratively for each batch (a random subsample) of training

data, gradually reducing the loss function by updating the weights in the direction of steepest

descent (i.e., the negative gradient). Over time, this leads to a more accurate model, as the

weights converge to values that minimise the error between the predicted and actual outputs.

In summary, backpropagation efficiently computes the gradients needed for training, and

gradient descent is the algorithm that uses these gradients to iteratively adjust the weights

of the network, ultimately optimising the model’s performance.

2.1.4 Optimisation Algorithms

Gradient descent, defined in Eq. 2.5, is the foundational optimisation algorithm for neural

networks in which the gradient is calculated using the entire training dataset at each iteration.

However, this method is computationally expensive for large datasets and is slow to converge.

Stochastic Gradient Descent (SGD) is more commonly used in practice, where the gradient is

computed using either a single training example or a mini-batch of training examples. While

this introduces more noise, it greatly speeds up convergence times, though is potentially

more susceptible to converging at non-global minima.

Although basic gradient descent provides a foundation for weight updates, several more

advanced optimisation algorithms have been developed to further improve convergence speed

and stability. These algorithms often incorporate additional techniques such as momentum,

adaptive learning rates, and the use of past gradients. Some examples include:

• Adagrad: Adapts the learning rate for each parameter based on historical gradients,

making it useful for sparse data.

• RMSprop: Addresses the problem of rapidly decaying learning rates in Adagrad by

using a moving average of squared gradients to normalise the updates.

34



• Adam (Adaptive Moment Estimation): Combines the benefits of momentum and adap-

tive learning rates by maintaining both the first and second moments of the gradients.

Adam is one of the most widely used optimisers due to its efficiency and effectiveness

across a wide range of problems.

Although Adam and other advanced algorithms typically perform better in practice, they

build on the core idea of gradient descent and offer optimisations to improve the speed and

accuracy of weight updates, especially for large and complex models.

2.1.5 Activation Functions

An activation function in the context of deep neural networks is a mathematical construct

that introduces non-linearity into the output of a neuron. This function is applied to the

output of each neural network layer, transforming the linear input into a non-linear output.

The use of activation functions is critical in the learning process of a neural network, as it

provides the ability for the network to represent complex non-linear relationships in the data

through its layers.

There are a vast amount of activation functions present in the literature. Three pop-

ular activation functions used in this thesis include Sigmoid, Hyperbolic Tangent (Tanh),

and Rectified Linear Unit (ReLU). Each activation function has specific advantages and

limitations that influence the performance and suitability of the network for various tasks.

Sigmoid Function: The Sigmoid function, defined in Eq. (2.6) maps the input values

into a range between 0 and 1. This characteristic makes it suitable for applications where

the model needs to predict probabilities as outputs, and is thus commonly applied to the

final layer of classification models. However, it is less commonly used in hidden layers in

deep networks because of issues such as vanishing gradients, impeding the network’s learning

process.

σ(x) =
1

1 + e−x
(2.6)
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Hyperbolic Tangent (Tanh) Function: The Tanh function, defined in Eq. (2.7), is

similar to the sigmoid function, but the output values range from -1 to 1. This makes

it more effective than Sigmoid in certain contexts, as it centres the data, improving the

learning efficiency for subsequent layers. However, Tanh also suffers from the vanishing

gradient problem.

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
(2.7)

Rectified Linear Unit (ReLU) Function: ReLU, defined in Eq. (2.8) has become the

most widely used activation function in deep learning models, particularly in convolutional

neural networks. The application directly outputs the input if it is positive; otherwise, it

outputs zero. ReLU is favoured for its computational simplicity and its ability to mitigate

the vanishing gradient problem, thus enabling models to learn faster and perform better.

ReLU(x) = max(0, x) (2.8)

A plot of each activation function can be seen in Figure 2.2.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural networks, which, as the

name suggests, utilises the convolution operation with learnable filter parameters, which is

defined in Eq. (2.9):

(f ∗ g)(i, j) =
M∑

m=−M

N∑
n=−N

f(i + m, j + n) · g(m,n) (2.9)

Where f is the input image or the input feature map. g is the kernel or filter that is
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Figure 2.2: Activation Function Plots

applied to the image, which contains the learnable parameters of the network. i and j are

the coordinates in the output feature map. m and n are the coordinates in the learnable

kernel g.

The use of the convolution operation makes CNNs well suited to image processing tasks,

as they are able to learn complex spatial hierarchies of features from two-dimensional inputs.

Like regular linear neural networks, CNNs are comprised of many layers, where each layer

operates on the outputs of the previous layer, abstracting higher and higher level features

as shown in Figure 2.3. The early layers typically detect low-level features such as edges,

the middle layers abstract these into higher-level patterns like shapes, and the later layers

combine these abstractions to recognise complex, task-specific features. Depending on the

task the model is to be used for, a few linear layers are often added to the end of the

network to produce numerical outputs, though for certain tasks, the direct output of the

final convolutional layers is sometimes used.

CNNs are invariant to the scale and translation of the input, meaning they can recognise

objects regardless of their position or size in the image, a property that standard linear

layers do not possess. However, a known limitation of CNNs is that they are not rotation-

invariant. This limitation can be mitigated for in applications where the object orientation

within the image is unknown, by training the model with a large number of rotated views
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Figure 2.3: Convolutional Neural Network

during training, but this is still an inherent weakness in certain applications. Like standard

linear Neural Networks, CNNs rely on activation functions after each layer to provide non-

linear operations to learn complex features. However, due to the memory constraints that

processing images impose, downsampling techniques are often employed to reduce the size of

feature maps between layers. This downsampling can take the form of a pooling layer, shown

in Figure 2.4, where the feature map is partitioned into a set of non-overlapping rectangles

and, for each such sub-region, outputs a value most commonly determined by the average

or the maximum of the sub-region, which is known as average and max pooling respectively.

Alternatively, a stride parameter S can be introduced to the convolution operation itself,

where the stride determines the number of pixels by which the filter shifts over the input

data after each operation, resulting in an output feature map reduced by a factor S in each

direction.

2.3 Self-Organised Operational Neural Networks

Self-Organised Operational Neural Networks (Self-ONNs) are a superset of CNNs which

extend the linear multiplication operation of each convolutional kernel node to a non-linear

function as represented in Figure 2.5.

The non-linear functions at each node are known as a nodal operator and are approxi-
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Figure 2.4: Max and Average Pooling Examples

Figure 2.5: CNN Filter (left) vs Self-ONN Filter (right).

mated using MacLaurin series expansions defined in Eq. (2.10):

f(x) =
∞∑
n=0

f (n)(0)

n!
xn (2.10)

In practice, the ∞ upper bound of the summation term in Eq. (2.10) is replaced by a

hyperparameter Q which determines the number of terms present in the MacLaurin series

approximation. In the Self-ONN formulation, the standard function symbol f in Eq. (2.10)

is replaced by the nodal operator symbol Ψ. To make Ψ learnable, the f (n)(0)
n!

term in Eq.

(2.10) is replaced by a learnable weight vector w to give:

Ψ(x,w) = w0 + w1x + w2x
2 + · · ·+ wQx

Q (2.11)

In practice, w0 is removed and replaced by the bias for the entire layer. Note that a Q

of 1 would make a self-operational layer identical to a convolutional layer. For practical use
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of Self-ONNs, it is desirable to restrict the data passed to each self-operational layer to the

range [−1, 1] otherwise the data can become exponentially large when passed through the

layer due to the high-order terms present in the nodal operator, causing training instability.

Furthermore, constraining data to this range keeps the data close to 0, which is where the

MacLaurin series function approximations are theoretically most accurate.

To train a Self-ONN, the standard back-propagation algorithm is used, as is the case

with all other deep learning models.

2.3.1 Parametric Analysis

The additional non-linear capacity of Self-ONNs compared to a CNN comes at the cost of

additional network parameters. The introduction of the parameter Q to make the polynomial

in Eq. (2.10) finite gives:

f(x) =

Q∑
n=1

f (n)(0)

n!
xn (2.12)

Higher Q values yield more accurate function approximations, but also increase total

network parameters as the Q value directly equates to the multiplication of parameters

compared to a standard convolutional filter. The number of parameters in the convolutional

layers of a CNN can be calculated using the following equation:

# parameters =
L−1∑
l=0

(nl ×ml × fl + 1)× fl+1 (2.13)

where L is the number of layers, nl, ml is the number of rows and columns in the

convolutional filters at layer l, f is the number of filters and the constant 1 accounts for the

bias for each filter. Note, that on the first layer, i.e. l = 0, the number of filters from the

previous layer (l−1) is given by the number of channels of the input image. To compute the

number of parameters of a Self-ONN, the number of filters in the previous layer, f , in Eq.

(2.13) is simply multiplied by Q to give:
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# parameters =
L−1∑
l=0

(nl ×ml × fl ×Q + 1)× fl+1 (2.14)

2.4 Normalisation

Normalisation is the process of adjusting and scaling data to fit within a certain range to

improve the performance and efficiency of machine learning algorithms. This involves scaling

all the numerical features in a dataset to a common scale without distorting differences in the

range of values. Normalising data ensures that numerical features with different scales do not

affect the given algorithm’s performance. For example, many algorithms, such as support

vector machines (SVMs) and K-Nearest Neighbours (KNN), compute distances between data

points, so having features on the same scale allows the algorithm to learn more effectively. In

addition, algorithms that use gradient descent as an optimisation technique converge faster

with normalised features.

The two most common types of normalisation are:

Min-Max Normalisation (Rescaling): This method scales and transforms the features to

a range between a new minimum and maximum value, typically between [0, 1], or [−1, 1].

The transformation is given in Eq. (2.15):

X ′ =
X −Xmin

Xmax −Xmin

(2.15)

where X is the original data, Xmin is the minimum value of the data, and Xmax is the

maximum value of the data.

Standard Normal Variate (Standardisation or Z-score Normalisation): This method ad-

justs the data to have a 0 mean and unit variance, defined in Eq. (2.16):
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Xnorm =
(X − µ)

σ
(2.16)

Where µ is the mean of the data X and σ is the standard deviation of the data X. This

approach centres the data around a mean of 0 and has a standard deviation of 1. However,

this technique does not bind values to a specific range, which can be a problematic for algo-

rithms expecting input data within bounded intervals.

In addition to normalising the dataset, it is also common to normalise data passed be-

tween layers in DNNs. Some of the commonly used techniques are detailed below.

• L1 Normalisation involves making the sum of absolute values of the data equal to 1.

• L2 Normalisation scales the components of the data so that the sum of the squares

of the components is equal to 1. In the context of machine learning, L1 and L2

normalisation are more often associated with regularisation to prevent overfitting by

penalising large coefficients, although they can also be used for standard normalisation

operations.

• Batch Normalisation normalises data across each neuron or channel individually

using the standard normal variate with the mean and variance of the neuron/channel

across the batch. A running mean and variance are updated with each batch which is

used at inference time. Batch normalisation addresses the issue of internal covariate

shift, where the distribution of each layer’s inputs changes as the parameters of the

previous layers change during training, making the training process faster and more

stable, and has seen use in a broad range of deep learning applications.

• Instance Normalisation normalises data using the standard normal variate on each

individual channel separately with the mean and standard deviation computed across

the channel. It is primarily used in style transfer applications. Since instance norm
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computes the statistics across the channels individually, it can only be applied to CNNs

as linear layers would not provide enough data points to compute statistics with a single

neuron.

• Layer Normalisation normalises data across the feature dimension using the stan-

dard normal variate. It is particularly useful in applications where training must be

performed with a single sample at a time.

• Group Normalisation divides the channels or neurons into groups and normalises

the data with the standard normal variate with mean and variance calculated from each

group. Group normalisation’s performance is less dependent on the batch size, making

it useful in situations where it is desirable to use small batches due to memory con-

straints. It is a compromise between instance normalisation and layer normalisation,

providing benefits in a wide range of network architectures.

Batch, instance, layer, and group normalisation all have the optional addition of learnable

parameters to scale and add a bias term to the normalised data.

2.5 Similarity Learning

Similarity learning, also known as metric learning, refers to a type of learning where the

goal is to learn a representation of the data such that similar items are represented by

close points in the embedding space, and dissimilar items are represented by distant points.

This approach is particularly useful in tasks that involve finding relationships between data

points, such as face recognition, item recommendation, and clustering. This is achieved by

training models on examples of similar (positive pairs) and dissimilar (negative pairs) items,

and optimising a loss function that encourages the model to represent these relationships

correctly in the learned embedding space.

The most common approaches and techniques in similarity learning include:
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Contrastive Loss: This method involves pairs of examples. The loss function is designed to

minimise the distance between embeddings of similar pairs while ensuring that the distance

between embeddings of dissimilar pairs is greater than a margin. This encourages the model

to cluster similar items closer together, while pushing dissimilar items apart. Contrastive

Loss is defined in Eq. (2.17):

L =
1

2

(
(1− Y ) ·D2 + Y ·max(0,m−D)2

)
(2.17)

Where Y is 0 if the embeddings pair are of the same class and 1 if not, D is the euclidean

distance between the embeddings pair, and m is a margin parameter specifying the minimum

separation distance between dissimilar pairs.

Triplet Loss: This method extends the idea of contrastive loss by considering triplets of

examples: an anchor, a positive example (similar to the anchor), and a negative example

(dissimilar to the anchor). The goal is to learn embeddings such that the anchor is closer to

the positive example than to the negative example by some represented by α as demonstrated

in Figure 2.6.

Figure 2.6: Triplet Loss Function Objective

This objective is mathematically expressed in Eq. (2.18):

L =
N∑
i

[
||f(xa

i )− f(xp
i ) ||22 − ||f(xa

i )− f(xn
i ) ||22 + α

]
(2.18)

Where f(xa
i ) is the anchor embedding, f(xp

i ) and f(xn
i ) is the negative embedding
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The effectiveness of similarity learning in deep learning applications relies on the ability

to learn rich, meaningful embeddings that capture the underlying semantics or relationships

in the data which often produce better feature representations than other training methods.

2.6 K-Nearest Neighbours

A K-Nearest Neighbours (KNN) classifier is a simple, yet effective machine learning algorithm

that belongs to the family of instance-based, or lazy, learning algorithms. It operates on the

basic principle of feature similarity, which means that it classifies new cases based on how

closely they resemble existing cases in the training dataset.

The KNN classifier works by identifying the k instances in the training dataset that are

nearest to the new instance, based on a distance metric (such as Euclidean, Manhattan, or

Hamming distance). The classification of the new instance is then determined by a majority

vote among its k nearest neighbours, with the new instance assigned to the most common

class among its nearest neighbours. An example of a KNN classifier can be seen in Figure

2.7.

2.7 Evaluation Metrics

The evaluation metrics that are used throughout this thesis are defined in this section.

2.7.1 Accuracy

Accuracy is a commonly used evaluation metric for classification tasks. It is defined as

the proportion of correct predictions made by the model out of all predictions made and is

defined in Eq. (2.19):

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(2.19)
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Figure 2.7: KNN Classifier Example.
The blue circle represents the embedding representation of the input image to be classified.
All remaining shapes represent the KNN’s reference embeddings of known examples. Since

the input image’s embedding is closest to the blue triangles, then the image would be
classified as this class.

Accuracy is expressed as a percentage, where 0% represents the worst possible model

performance with no correct classifications, and 100% represents perfect model performance

with no incorrect classifications.

2.7.2 F1 Score

The F1 score is another commonly used evaluation metric for classification tasks. The F1

score considers the type of error the model makes, either a false positive or a false negative.

A false positive occurs when the model incorrectly predicts the positive class and a false

negative occurs when the model incorrectly predicts the negative class. True positives and

negatives are where the model correctly predicts the positive or negative class, respectively.

The F1 score is two times the product of the precision and recall divided by the sum of the
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precision and recall as defined in Eq. (2.20):

F1 Score = 2× Precision× Recall

Precision + Recall
(2.20)

Where Precision and Recall are defined in Eq. (2.21) and Eq. (2.22) respectively:

Precision =
True Positives

True Positives + False Positives
(2.21)

Recall =
True Positives

True Positives + False Negatives
(2.22)

The F1 Score is especially useful in situations where there are imbalanced classes or when

the cost of false positives and false negatives is high. The F1 score ranges between a value

of 0 and 1 where the highest possible value is desired.

2.7.3 Silhouette Score

The silhouette score is a metric used to measure how well a clustering algorithm clusters

the data. Its value gives a measure of how similar an object is to its own cluster (cohesion)

compared to other clusters (separation). The silhouette score is defined in Eq. (2.23):

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2.23)

Where s(i) is the silhouette score for a single data point, a(i) is the average distance of

i to the other points in the same cluster, and b(i) is the smallest average distance of i to all

points in any other cluster, of which i is not a member.

The silhouette score ranges from -1 to 1. A high silhouette score indicates that the data

point i is well matched to its own cluster and poorly matched to neighboring clusters. The

silhouette score is typically averaged across all data points in the test set and this is how it

will be used in this thesis.
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2.7.4 Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) is a widely adopted metric in the domain of image

processing for quantifying the quality of reconstructed images in relation to their original

counterparts. Primarily, the PSNR gauges the severity of distortion present within the

reconstructed image. The PSNR for an original image I and its distorted counterpart K is

defined in Eq. (2.24):

PSNR = 10 · log10

(
MAX2

I

MSE

)
(2.24)

Where MAXI is the maximum possible pixel intensity of the image. The Mean Squared

Error (MSE) between the original and distorted images is defined in Eq. (2.25):

MSE =
1

M ×N

M∑
i=1

N∑
j=1

[I(i, j)−K(i, j)]2 (2.25)

Where, I(i, j) and K(i, j) denote the pixel intensities at the position i, j in the original

and distorted images, respectively. In addition, (M) and (N) represent the dimensions of the

images.

A higher PSNR score suggests reduced distortion and a more accurate reconstruction of

the original image. Given its interpretability and relevance, PSNR remains a pivotal measure

in image quality assessment studies across several domains.

2.7.5 Structural Similarity Index Measure

The Structural Similarity Index Measure (SSIM) is an advanced metric designed to assess

image quality similar to human quality perception. Unlike traditional error summation

methods such as MSE, SSIM is designed to evaluate changes in structural information,

luminance, and texture contrast. These three components aim to emulate the human visual

system’s perception, recognizing that humans are particularly sensitive to structural changes

in an image. Given two images, x and y, with their local means µx and µy, local variances
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σ2
x and σ2

y, and cross-covariance σxy, the SSIM index is defined in Eq. (2.26):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.26)

Here, C1 and C2 are small constants introduced to avoid instability when the denomina-

tors are close to zero. They can be expressed as:

C1 = (k1L)2 and C2 = (k2L)2 (2.27)

Where L signifies the dynamic range of pixel intensities (255 for an 8-bit image) and

k1 = 0.01 and k2 = 0.03 are standard constants.

In practice, SSIM is computed within local windows, instead of the entire image, to

account for changes in local patterns and structures. The overall SSIM score is computed

by averaging all individual local window SSIM scores.

2.7.6 Spectral Angle Mapper

The Spectral Angle Mapper (SAM) is a geometric-based approach commonly employed in

hyperspectral remote sensing applications, primarily for identifying and classifying spectra

in hyperspectral images. It works by treating the spectra as vectors in a space with dimen-

sionality equivalent to the number of spectral bands and computes the angle between these

vectors. This angle serves as a measure of spectral similarity and is particularly advanta-

geous due to its insensitivity to vector magnitude, making it suitable for comparing material

reflectance spectra observed under varying illumination conditions. While SAM is tradition-

ally used for spectral identification and classification, it is also useful as an evaluation metric

to quantify the similarity between reconstructed and ground truth spectra in the context of

Hyperspectral Image Super-Resolution. Given two spectra, r and s represented as vectors,

the spectral angle, θ, is defined in Eq. (2.28):
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θ = arccos

(
r · s
∥r∥∥s∥

)
(2.28)

Where r · s represents the dot product of the two vectors, ∥r∥ and ∥s∥ represent the

magnitudes of vectors r and s, respectively.

A smaller spectral angle indicates higher similarity between the two spectra. A zero angle

indicates identical spectra, while an angle of 90 degrees suggests orthogonality or maximum

dissimilarity.

2.7.7 Error Relative Global Adimensional de Synthèse

The Error Relative Global Adimensional de Synthèse (ERGAS) is a widely utilised metric

in the remote sensing domain, primarily for the assessment of the quality of fused satellite

imagery but is also useful for assessing single-image super-resolution performance. This

metric gauges the relative error between original and reconstructed images and offers a

dimensionless score, facilitating interpretability.

The ERGAS metric is defined in Eq. (2.29):

ERGAS = 100× r

X̄
×

√√√√ 1

n

n∑
i=1

(
RMSEi

X̄i

)2

(2.29)

Where, r is the spatial resolution ratio between the coarser and finer resolution images.

n is the number of spectral bands. RMSEi is the root mean square error of the ith band. X̄i

represents the mean intensity of the ith band in the reference image. X̄ is the overall mean

intensity across all bands in the reference image.

A lower ERGAS value indicates superior performance of the reconstruction technique,

with zero representing perfect fusion.
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2.8 Self-Supervised Learning

Self-supervised learning is a machine learning paradigm that leverages unlabeled data to

learn useful feature representations without requiring explicit manual annotations. Unlike

supervised learning, which depends on large volumes of labeled examples, self-supervised

learning defines an auxiliary or pretext task for which supervisory signals can be generated

automatically from the inherent structure of the data. By solving this pretext task, the model

acquires representations that transfer effectively to downstream tasks such as classification,

detection, or segmentation.

Typical pretext tasks vary depending on the data modality. In computer vision, examples

include predicting the relative position of image patches, solving jigsaw-like arrangements,

colourising greyscale images, or learning invariances via contrastive methods. In natural

language processing, the common task is predicting masked tokens or the next word/sentence.

Formally, self-supervised learning optimises an objective function associated with the

pretext task during training. Once trained, the learned encoder or feature extractor can

be fine-tuned or directly applied to target tasks, often achieving competitive or superior

performance compared to fully supervised baselines, particularly when labelled data are

scarce. This paradigm is thus particularly valuable in domains where manual annotation is

expensive, subjective, or infeasible.

2.9 Hyperspectral Imaging

Hyperspectral imaging is a sensing technique that captures images across a large number

of narrow, contiguous spectral bands, extending beyond the three broad channels of visi-

ble Red, Green and Blue (RGB). By recording both the spatial and spectral information

of a scene, hyperspectral imaging enables the identification and quantification of materi-

als based on their unique spectral signatures. The acquisition of hyperspectral data is a

hardware-intensive process that combines optical dispersion, scanning mechanisms, and sen-

sitive detectors to produce three-dimensional data cubes, with two axes representing spatial
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information and the third representing spectral content.

2.9.1 Spectral Separation Mechanisms

At the core of hyperspectral imaging hardware is the ability to separate incoming light into

multiple wavelength channels. This is typically achieved using one of three approaches.

• Dispersive elements: Gratings and prisms are commonly used to diffract or refract

incoming light into constituent wavelengths. Gratings provide high spectral resolu-

tion and can be tuned for specific wavelength ranges, while prisms exploit material

dispersion properties to achieve separation.

• Interference filters: Tunable filters, such as liquid crystal tunable filters (LCTFs)

and acousto-optic tunable filters (AOTFs), selectively transmit narrow wavelength

bands while blocking others. By electronically tuning the filter, sequential images can

be captured at different spectral bands without moving parts.

• Filter mosaics: More recent filter-on-chip technologies integrate narrowband filters

directly on the sensor, with each pixel sensitive to a different wavelength. This al-

lows single-shot hyperspectral capture, though often at reduced spectral resolution

compared to scanning-based systems.

2.9.2 Image Formation Strategies

Different imaging architectures have been developed depending on how spatial and spectral

information are acquired simultaneously.

• Spatial scanning (pushbroom): Being the most widely used in airborne and satel-

lite hyperspectral imaging, pushbroom sensors use a slit to image one spatial line at

a time. A dispersive element separates light into wavelengths, and as the platform

moves, successive lines are recorded to build the data cube. This design provides high

spectral resolution but requires stable motion control.
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• Spectral scanning (tunable filters): In this configuration, a full 2D spatial image is

captured at one wavelength at a time. Sequential tuning produces the full hyperspectral

cube. This is well suited to stationary scenes but may suffer from motion artefacts.

• Snapshot systems: Using filter mosaics, image slicers, or coded apertures, snapshot

systems capture the full cube in a single exposure. These systems are advantageous for

dynamic scenes, such as biomedical imaging, but usually involve trade-offs in spectral

or spatial resolution.

2.9.3 Detectors and Sensor Technology

The detectors used in hyperspectral imaging hardware depend on the spectral range of

interest. Silicon-based CCD and CMOS sensors are commonly used for visible to near-

infrared (VNIR, 400–1000 nm). For short-wave infrared (SWIR, 1000–2500 nm), indium

gallium arsenide (InGaAs) detectors are employed due to their higher quantum efficiency.

Mid-wave and long-wave infrared imaging (MWIR/LWIR) often requires cooled detectors

such as mercury cadmium telluride (MCT), though uncooled microbolometers are also used

for cost-sensitive applications.

2.9.4 Calibration and Image Capture

Once light is dispersed and detected, raw sensor output must undergo calibration to form

usable hyperspectral images. Calibration includes radiometric correction, to account for

sensor sensitivity variations; spectral calibration, to ensure accurate wavelength registration;

and geometric calibration, to correct optical distortions. In practice, imaging sessions include

reference measurements such as white panels (for reflectance normalisation) and dark frames

(to remove sensor noise).
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2.9.5 Data Cube Representation

The final result of hyperspectral image acquisition is the hyperspectral data cube, where two

axes correspond to spatial dimensions (x, y) and the third axis corresponds to the spectral

dimension (λ). Each pixel therefore contains a full spectral profile across potentially hundreds

of contiguous bands, enabling fine-grained material classification, anomaly detection, and

quantitative analysis beyond the capabilities of conventional RGB imaging.
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3 Literature review

3.1 Deep Learning in Image Processing

The Convolutional Neural Network (CNN) was first popularised when the AlexNet model

[18] exceeded the previous state of the art on the ImageNet LSVRC-2010 challenge [19]

by over 10% Top-1 error. The concept of the CNN had been around for some time prior

to this paper but performance was always limited due to the computational cost of such

models. The authors of the AlexNet paper were the first to accelerate deep learning training

by utilising Graphics Processing Units (GPUs), which allowed them to train a large model

containing 60 million parameters and exploit the full power of the CNN which was previously

computationally infeasible. To further exploit the success of AlexNet, the authors of [20]

proposed a much deeper model with 16 and 19 layer variants named VGG. This model uses

smaller 3x3 convolutional kernels, though despite the smaller filter sizes, the model is able

to learn much higher-level features since it is significantly deeper than AlexNet and each

layer builds upon the features from the previous layer, resulting in a significant performance

improvement.

As neural networks grow deeper in size, they become affected by a phenomenon known as

the vanishing gradient problem. This is where the gradients in the early layers become very

small as the gradient is propagated backward from the output layer to the input layer. When

the gradients become very small, or ”vanish”, the weights of the early layers in the network

do not get updated effectively, meaning that those layers learn very slowly, or sometimes

not at all. The authors of [21] propose an even deeper model named ResNet, but alleviate

the vanishing gradient problem by introducing residual connections. This is where the input

of a layer (or a block of layers) is added to its output, effectively allowing the creation

of a skip connection. This means that each layer or block learns the difference between

the input and the desired output rather than the direct input-to-output mapping, making

optimisation smoother and improving gradient flow. The authors of [22] proposed ResNeXt
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which incorporates the idea of ensembles (aggregating outputs from multiple models) into the

ResNet architecture which creates several smaller ResNet-like branches within the model to

improve performance. Drawing inspiration from the success of the attention module within

transformer models [23], the authors of [24] proposed squeeze and excitation networks which

incorporate CNN specific attention modules into popular architectures such as ResNet and

ResNeXt to improve performance.

Vision transformers [25] have recently emerged as a competitor to the more traditional

CNN, outperforming the latter on certain vision tasks. Part of the reason for the success

of CNN models is that they posses many inductive biases that make them well suited to

many image tasks such as local connectivity, translation equivariance, parameter sharing and

hierarchical feature learning [26]. However, these inductive biases many not be favourable

in certain contexts. One of the key components of a transformer is the attention mechanism

which enables the model to focus on relevant parts of the input data when making predictions.

It assigns weights to different input elements (tokens) based on their relevance to a specific

task, enabling the model to capture relationships between input tokens, regardless of their

position in the sequence. Transformers therefore do not possess any of the inductive biases

that CNNs possess as all data relationships have to be learned, allowing them to learn longer-

range dependencies more easily within images and learn these dependencies more flexibly via

self-attention. Consequently, this absence of inductive bias means that transformers require

far greater quantities of training data to converge, typically in the order of millions of images.

Transformers also posses other challenges with computation due to the quadratic nature of

the attention mechanism, meaning that compromises have to be made in terms of the input

dimensions. However, it has been shown that transformers generally outperform CNNs in

situations where there are vast quantities of training data and computational power [27].

The authors of [28] propose ConvNeXt, a CNN-based model that integrates several design

principles inspired by the success of transformers. These include adopting wider layers and

receptive fields, fewer activations and normalisations, inverting dimensions, replacing batch
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normalisation with layer normalisation, and replacing the ReLU activation function with

GeLU [29]. By incorporating these elements, ConvNeXt demonstrates that CNNs can achieve

performance comparable to transformers while retaining the inherent advantages of CNNs,

such as translation invariance and computational efficiency.

The AlexNet paper [18] uses the Stochastic Gradient Descent (SGD) optimiser to opti-

mise their network. One problem with gradient descent optimisation is how best to set the

learning rate. A learning rate too small can take a large amount of time to converge and is

prone to getting stuck in local minima. A learning rate too large may miss the true minima

or take too large a step in the wrong direction and consequently fail to converge. Adaptive

Moment Estimation (Adam) [30] was proposed to adaptively adjust the effective learning rate

for each network parameter based on adaptive estimates of lower-order moments. This opti-

miser has proven to be highly effective and has become the optimiser of choice among most

deep learning researchers and practitioners, along with its variants. Regularisation terms

such as weight decay are often added to optimisers to help mitigate overfitting. However,

weight decay does not work in adaptive optimisers such as Adam due to its inequivalence

to L2 regularisation. The authors of [31] therefore decouple the weight decay term from the

optimisation step w.r.t. the loss for improved generalisation performance in their AdamW

optimiser. More recent optimisers such as Sharpness-aware Minimisation (SAM) [32] have

been proposed to improve generalisation performance by considering the sharpness of the

loss. However, these approaches are computationally expensive since they require two gradi-

ent computations per optimisation step, which also introduces additional hyperparameters,

making it more difficult to tune [33].

3.2 Similarity Learning and Triplet Loss

Image classification is one of the most common applications for CNNs and the standard

approach is to train a neural network with a predefined number of classes represented by the

output layer dimensions. The network is trained by passing images with known class values
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and the network learns to maximise the probability of the output dimension representing the

class, while minimising all other indexes. The network architecture consists of several feature

extraction layers, followed by a classification head consisting of two or more linear layers.

The drawback with this approach is that the classification head parameters are learned in an

indirect and inefficient way, typically requiring very large layer sizes [34]. Furthermore, the

resulting network representations will not necessarily generalise well to new classes, meaning

that if new classes are to be introduced, the entire network will require to be retrained and

not just the final classification layer.

Similarity learning, also referred to as metric learning, addresses these limitations by

shifting the learning objective from predicting class probabilities to mapping images into a

highly discriminative embedding space. An embedding is a dense vector representation that

encapsulates the most relevant features of the data for a specific task. The training process

focuses on clustering embeddings of the same class closely in Euclidean space while ensuring

embeddings of different classes are well separated. This approach enables the model to learn

more robust features and achieve a more direct and effective training process [34].

Contrastive loss [35] was one of the techniques proposed to formulate the training ob-

jective in this way. The loss function aims to minimise the distance between same-class

embeddings and maximise the distance between embeddings of different classes. [34] im-

proved this idea by considering triplets of embeddings through their triplet loss function,

expressed in Eq. (2.18). As the name suggests, this loss function takes three embeddings as

input: an anchor, a positive, and a negative, where the anchor and positive are two different

embeddings of the same class, and the negative is an embedding of a different class. The loss

function is satisfied when the positive is closer to the anchor than the negative in euclidean

space by a margin α. Once the model is trained, the embeddings are typically classified by a

KNN classifier [36], although other forms of classifier, such as a single layer neural network,

can also be used. Since the embeddings produced by the model are just representations

of the input image and not fixed class probability values - as is the case with a standard
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classification network - the model can embed new classes without the need for retraining.

Only the second stage KNN classifier would need to be altered, which requires negligible

computation time compared to retraining an entire classification neural network.

However, triplets can become less informative as training progresses, leading to slow con-

vergence. The authors of [37] proposed N-Pair Loss which computes triplet combinations

between every negative pair for each anchor-positive pair instead of using a single nega-

tive pair for each anchor-positive pair. This improves convergence, however, it is hugely

inefficient to compute all the negative pairs in such a fashion. The authors restrict each

batch to contain only a single anchor-positive pair for each class to ease the computational

burden, though it remains significant. To improve triplet selection while not significantly

increasing the computational burden, the authors of [38] propose to select triplets based

on both their self-similarity but also their relative similarity to multiple points. However,

this introduces additional hyperparameters to tune the selection weights. [39] introduces a

lifted structure loss which introduces a pairwise distance metric and selects samples based

on this distance from both the anchor and the positive pairs to improve performance. This

introduces additional overhead due to the computation of all pairs.

Pair-based methods such as triplet loss and its variants can be slow to converge and diffi-

cult to acquire informative pairs for training. [40] proposes ProxyNCA loss which artificially

creates learnable artificial embeddings representing classes and the model learns to adjust

the anchor image in embedding space based on these proxies to improve convergence times.

ProxyNCA++ loss is proposed in [41] which improves the ProxyNCA loss by considering

a proxy assignment probability score within the loss function. Proxy-based losses address

the issue of having to find informative pairs in pair-based methods. However, they do not

exploit fine-grained semantic relationships between samples in the same way that pair-based

methods do. The authors of [42] therefore proposes Proxy Anchor loss which combines pair-

based and proxy-based losses by forming an anchor proxy and computing pair-wise distances

from all other embeddings in the batch relative to the proxy. The use of proxies improves
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convergence time and robustness to noise while also exploiting fine-grained data relations

due to the pair-based loss of the proxy relative to all other batch embeddings. Another

issue with proxy-based methods is that they do not consider the implicit hierarchy of cate-

gories in real-world datasets. The authors of [43] therefore propose hierarchical proxy-based

loss which forms coarse proxies on top of the fine proxies to form the hierarchy which is

determined using k-means clustering and is continually updated until convergence.

3.3 Cow Identification

Cattle identification plays a crucial role in many agricultural technology applications. Due

to recent advances in deep learning, there has been a great deal of research exploring non-

invasive methods for identifying cattle through visual features. Most methods focus on

distinct anatomical features of the animals, such as their body patterns, facial characteris-

tics, and muzzle prints [44]. Each cow’s face presents a unique set of features, akin to human

faces, providing a reliable means for individual identification. Similarly, a cow’s muzzle, with

its unique and time-invariant patterns, serves as an analogous biometric trait to human fin-

gerprints, offering a robust basis for identification purposes [45]. In addition, the distinctive

black and white patterns found on Holstein cattle further enable their identification through

body patterns.

Several studies have explored these approaches with varying focus and technological ap-

plications. Identification from close-up cameras in feeding areas is a common approach.

Identification has been performed through the localisation and classification of ear tags

[46]. Facial recognition technologies have been applied to cows [47, 48], where the faces are

typically localised via a YOLO [49] detection model before applying a CNN model for iden-

tification. Identification of muzzle images has also been performed both using conventional

image processing techniques such as SURF [50] as well as deep learning [51]. However, the

main problem with the mentioned approaches is the reliance on a close-up image of the area

of interest, limiting the area of which identification can be performed over.
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Identifying cattle in free-moving environments like barns or fields introduces significant

challenges due to variations in lighting, positioning, and camera angles. [52] perform identi-

fication of cattle from various side-on cameras in a field, achieving over 99% accuracy using

CNN models. However, their method performs identification on images containing a sin-

gle cow, so it is unclear how the model would perform with multiple cows present in the

image or with occlusion. Similarly, [53] performs identification from side-on views using

a cascaded approach using DeepOtsu for image binarization and an EfficientNet classifica-

tion model, enhancing training speed and efficiency. Again, it is unclear how this approach

can handle occlusions. The [54] address this issue by performing identification from aerial

barn cameras. Their approach involves classifying features extracted from binary masks of

patterns, segmented by an improved Mask-RCNN model. Though effective under certain

conditions, this method’s performance can falter with less distinct patterns and is hindered

by its non-end-to-end training nature, increasing development costs. Alternatively, [55] ap-

plied a ResNet model trained with deep metric learning for identification in a similar outdoor

environment, revealing the potential for robust identification solutions from a single end-to-

end CNN model. In [56], the authors identify non-Holstein cattle from videos using a joint

CNN and LSTM architecture. However, other studies have shown that Holstein identification

can be performed reliably on image data, making this approach relatively computationally

expensive.

3.4 Super-Resolution Techniques

The vast majority of modern Super-Resolution (SR) methods utilise deep learning in some

capacity. CNNs were initially the most popular choice that started with SRCNN [16]. Since

then, many improved CNNs for SR have been proposed. [57] proposed a model which

performs feature extraction in the LR dimensions before using deconvolution to learn the

interpolation function up to the target resolution. [58] proposed the far deeper VDSR model

to improve performance over SRCNN. The authors also incorporated a global residual con-
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nection to simplify the SR problem and help alleviate the vanishing gradient problem as well

as improve convergence times.

One of the main challenges with SR is that it is particularly challenging to recover the

high-frequency information that produces the fine details which are lost in the LR domain.

Several models using the Generative Adversarial Network (GAN) framework [59] have been

proposed to recover these details by learning the distribution of the high-resolution (HR) im-

ages. SRGAN [60] was the first proposed GAN for SR which produced more detailed images

than previous methods at the time. However, SRGAN was prone to producing aestheti-

cally unappealing artefacts, so ESRGAN [61] made improvements to the model architecture,

adversarial loss, and perceptual loss functions of SRGAN, to further improve visual qual-

ity and reduce artefacts. Due to the synthetic generation of LR pairs during training, this

model’s performance still dropped when applied to real-world data. To alleviate this issue,

Real-ESRGAN [15] was proposed, which introduces a more complex high-order degradation

model to better simulate real-world data and improve performance on real-world data.

In recent years vision transformers [25] have grown in popularity for SR. SwinIR is pro-

posed in [62] which leverages the Swin Transformer architecture to achieve superior SR results

over CNNs. The authors of [63] proposed a hybrid Transformer CNN model named ESRT

which improves long range dependencies between similar local patches within the image. The

authors of [64] propose a Transformer in Transformer Network (TnTViT-G) for the task of

guidance super-resolution. However, the main drawback of using transformer architectures

is that they often require vast amounts of training data to produce good results.

3.4.1 Hyperspectral Image Super-Resolution

Hyperspectral imaging stands as a pivotal technology in remote sensing, playing a critical role

in various domains, including material classification, mineral exploration, and environmental

monitoring [10]. The success of automated post-processing tasks closely depends on the

image’s spatial and spectral resolutions. However, obtaining a high-quality Hyperspectral
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Image (HSI) that boasts high spectral and spatial resolutions is challenging due to sensor

limitations [13]. This often results in a trade-off, where an increase in spectral resolution

comes at the cost of reduced spatial resolution [14]. Enhancing the lost spatial resolution is

thus essential for improving the efficiency of post-processing operations.

In a manner akin to Super-Resolution (SR) in RGB imaging, Hyperspectral Image Super-

Resolution (HSI-SR) aims to construct Hyperspectral Image (HSI) HSIs from low-resolution

(LR) counterparts. This capability becomes particularly important due to the inherent

spectral-spatial resolution trade-off associated with hyperspectral imaging. Through SR,

it is possible to improve spatial resolution without compromising spectral quality. HSI-SR

methodologies can be divided into two primary categories: single-image HSI-SR [65, 66],

and fusion-based HSI-SR [67, 68, 69]. Given that fusion-based approaches necessitate an

additional image from a different modality — a requirement not met by the datasets discussed

in this thesis — this review will exclusively focus on single-image HSI-SR. Herein, the term

single-image HSI-SR will be used synonymously with HSI-SR.

The authors of [70] were the first to introduce CNNs to HSI-SR by applying transfer learn-

ing from a 2D RGB SR CNN model. However, the 2D convolution operations used within

this model do not fully exploit the spectral correlation between spectral bands. Therefore,

the authors of [71] proposed a 3D CNN model to extract spatial and spectral features to-

gether for improved performance and spectral fidelity. Since then, many more 3D models

have been proposed [72, 73]. The authors of [17] proposed a 3D CNN model for HSI-SR

which uses dilated convolution and their proposed non-linear mapping blocks to improve

efficiency. Given the large memory requirements of 3D CNNs, feature extraction is generally

performed in the LR space before being interpolated to the target size by deconvolution

[74] or pixel shuffling [75], reducing memory usage. However, applying deconvolution to ex-

tracted features is more challenging than simply performing SR on an input image already

interpolated to the target resolution.

The GAN approach to SR has also been proposed for HSI-SR. The authors of [72] propose
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a GAN containing band attention modules. The authors of [76] propose a GAN architecture

with an enhanced spatial attention module and a refined spectral attention module along

with an attention-enhanced generative loss to produce more detailed images. However, the

fine-details predicted by GANs are often visually appealing, but not objectively accurate,

meaning the loss functions are often heavily constrained with traditional pixel-wise loss

functions.

Vision Transformers have recently been introduced to HSI-SR. The authors of [77] pro-

pose a hybrid transformer and 3D CNN model which consists of a transformer branch to

improve spatial reconstruction and a 3D CNN branch to enhance spectral reconstruction.

The two branches are connected through several interactive attention units which help to

share learned features between the two branches. Due to the fact that the number of token

multiplications is quadratic relative to the sequence length within transformers, memory

saving tricks generally have to be applied for practical use in the context of HSI-SR. The

authors of [78] propose ESSAformer which is a transformer architecture that uses an efficient

SCC kernel-based self-attention mechanism to relieve the computational burden of perform-

ing self-attention on HSI. The common issue of transformers’ vast data requirements still

applies in the HSI-SR domain, which combined with their large memory requirements, limits

their practicality in this domain.

3.5 Operational Neural Network

Advances in deep learning have resulted in CNNs dominating many computer vision fields.

Part of the reason for their success is their ability to learn complex non-linear operations

which can extract discriminative features from a given image. However, convolution itself

is a linear operation and the non-linear components of the networks are solely provided by

the activation functions used after each convolutional layer in the network. This means that

CNNs often have to be very deep in order to have the necessary non-linear capacity and

diversity to learn the complex function of the learning problem.
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Recently, Operational Neural Networks (ONNs) [79, 80] were proposed to address this

issue by extending the idea of the Generalised Operational Perceptron [81] to convolutional

models by incorporating non-linear nodal and pooling functions that replace the sole convo-

lution operation with any non-linear operator. The addition of these functions incorporates

significantly more non-linear components to the network than a traditional CNN, increasing

its theoretical non-linear capacity. However, these additional non-linear operations are hard

coded and thus cannot be changed during training. This means that the functions need to

be searched for, which is computationally expensive, and the search space is limited to the

function set, which may not contain the optimal function or functions.

The authors of [79] then extended upon their original work to address these limitations

by proposing Self-Organised Operational Neural Network (Self-ONN) [82] which makes the

linear filters of a standard CNN non-linear through the use of MacLaurin series expan-

sions, rather than applying hard-coded functions. Such non-linear filters for each kernel

element are learnable during training, and thus eliminate the need for an exhaustive search

to find the optimal functions. Furthermore, almost any function can theoretically be ap-

proximated using MacLaurin series expansions, which means that a Self-ONN is not limited

to a specified function set, allowing for a comprehensive non-linear search space. These im-

provements mean that Self-ONNs are far more computationally efficient than their standard

ONN counterparts, with greater theoretical non-linear capacity than both their ONN and

CNN counterparts. This additional complexity comes at the cost of each filter requiring

more parameters. However, the network size of a Self-ONN can be much smaller than that

of a CNN to have the same or increased theoretical non-linear capacity, allowing for the

overall model to have fewer parameters than a CNN despite each individual filter containing

more parameters. In many applications [83, 84, 85, 86, 87, 88] Self-ONNs have been shown

to outperform the deeper and more complex CNNs with far fewer parameters.
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3.6 Self-Supervised Learning

Self-supervised learning is a type of machine learning that allows models to learn from the

data itself without relying on labels. This is typically achieved by training the model to

learn one part of any given input from another, turning the unsupervised problem into a

supervised problem by auto-generating the labels. This is particularly useful in situations

where labelled data is scarce or expensive to obtain, which is a common challenge in many

machine learning applications.

The two main methods to perform self-supervised learning are invariance-based meth-

ods and generative methods. Invariance-based methods aim to produce similar embeddings

for two or more views of the same image whereas generative methods aim to predict or

reconstruct removed portions of the input image.

SimCLR [89] is a well known invariance-based method which works by adding a multilayer

perceptron head to the given network architecture to train. The model is then passed

augmented views of data samples and minimises the distance between augmented views from

the same data sample while maximising the distance between these views and a different data

sample via a contrastive loss function. The authors then make several improvements in their

updated SimCLRv2 [90] by introducing deeper models with selective kernel channel-wise

attention, introducing a memory bank for enhanced negative sampling, and using a deeper

head where finetuning is applied to the middle layer of the head. These methods were shown

to be effective, providing ImageNet performance on par with supervised methods at the time.

However, there are several challenges with the proposed approach including sensitivity to

the augmentations and batch size used, and challenges with negative sampling, particularly

when the number of classes in the dataset is small.

To overcome these limitations, Bootstrap Your Own Latent (BYOL) [91] was proposed,

which uses an online and a target network to predict similar representations of two augmented

views of the same image. A predictor module is added to the end of the online network and

the target network’s weights are updated with the exponential moving average of the online
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network’s parameters, in order to prevent representation collapse. Since BYOL does not

rely on negative samples, it is more robust to the selected augmentations and batch size,

providing performance gains over contrastive methods such as SimCLR.

Time contrastive learning [92] is another example of an invariance-based method, which

exploits close and distant frames within videos to produce positive and negative pairs to be

used in a triplet loss function. The obvious weakness with this approach is the reliance on

video data.

DINO [93] builds upon BYOL by training a student (online) network and a teacher

(target) network to produce the same class probabilities for augmented views of a given

image but without using the additional predictor module, as is used in BYOL. The teacher

network is updated using an exponential moving average of the student network’s weights and

the teacher model’s outputs are centred with the exponential moving average of the batches

to avoid representation collapse, and a small temperature term is added to the softmax

layer of both models to also help prevent representation collapse. These improvements offer

faster training speeds and improved performance over BYOL. DINOV2 [94] improves upon

the original DINO method by introducing the patch level objective proposed in iBOT [95]

where the student network is passed masked patches and the teacher is passed the unmasked

patches. Other improvements are also made including the use of KoLeo regularisation to

provide a better masking strategy during training, gradually increasing the resolution to

518x518 towards the end of training and several efficiency improvements to train at scale.

iBOT [95] uses a patch level objective function where a teacher network is passed the original

image and the student network is passed a masked version of the image. The student network

then learns to recover the masked tokens based on the teacher network output where the

models are jointly optimised via momentum updates.

Generative methods aim to reconstruct an image, which is either masked or compressed,

to learn rich feature representation of the training images. This method is particularly well

suited to transformer architectures where input patches can easily be removed which also has
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the added benefit of improving training times. Some of the previously mentioned invariance-

based methods incorporate ideas of generative methods to further enhance performance.

Masked Autoencoding [96] is a prime example of a generative method, which exploits an

encoder-decoder framework to produce an encoding of an image where a large portion of the

image is deleted, before decoding this encoding to reconstruct the full image. This technique

has been proven to be a highly effective feature extractor pretraining step as it does not

rely on negative sampling or careful augmentation strategies and it forces the model to learn

highly general features. However, this method was designed for transformer architectures

and its reliance on positional embeddings means it is not applicable to CNNs.

The authors of [97] proposed an image-based joint-embedding predictive architecture (I-

JEPA), to predict representations of various target blocks from a context block within the

same image. By utilising a predictor model and computing the loss on the image repre-

sentations instead of the pixels directly, the model learns better semantic information and

greatly improves the performance of downstream tasks over other generative methods and is

competitive with invariance-based methods while being far more computationally efficient.

3.7 Domain Shift

Domain shift refers to the phenomenon in which there is a distribution shift between the

training (source) data and the test (target) data. This is a common problem when de-

ploying models in practical settings, as out-of-distribution (OOD) scenarios are commonly

encountered. Since most statistical learning algorithms assume that source and target data

are independent and identically distributed, performance in these practical settings, where

OOD examples are frequently encountered, often deteriorates significantly [98]. Domain

shift is a problem in almost every application, but it has seen a particular focus in the areas

of object recognition, semantic segmentation [99], face recognition, medical imaging [100],

sentiment classification, speech recognition, and reinforcement learning [101].
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3.7.1 Domain Adaptation

The simplest solution to address the domain shift problem is to utilise some of the target

domain data in training. This approach is referred to as domain adaptation, which aims

to create a model capable of performing well in a target domain by training with a readily

available source domain and either a limited amount of labelled target domain data, a large

amount of unlabelled target domain data, or some combination.

To address the challenge of domain adaptation, the authors of [102] propose a classifica-

tion and contrastive semantic alignment (CCSA) loss function to train a model for use on

target domain data by using very limited amount of labelled target domain data combined

with an abundance of source domain data. Their CCSA loss combines a standard classifi-

cation loss to be used on the source domain with a contrastive semantic loss, which brings

feature representations of same-class source and target domain samples close together while

separating opposing-class representations of source and target samples. They showed that

their method greatly outperforms unsupervised domain adaptation techniques in challeng-

ing domains where there is a large covariate shift between the source and target domains.

The authors of [103] utilise multiple classification heads with weights sampled from several

learnable distributions to improve local alignment and offer improved domain adaptation in

an unsupervised manner. In [104], the authors merge target domains to form a more realistic

compound target domain where they leverage both a class encoder and a domain encoder

to help the model learn to ignore factors across domains that are irrelevant to classifica-

tion, which they show improves performance when the model is applied to new challenging

domains.

[105] propose Memory-based Multi-Source Meta-Learning which computes a memory-

based identification loss combined with a triplet loss on the meta-train data before updating

the network and computing the meta-test loss which is enhanced via meta-batch normalisa-

tion. The meta-train and meta-test losses are then combined to update the original weights

of the network.
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However, the main limitation with domain adaptation methods is the reliance on the

target domain data, which is not always available or, indeed, known.

3.7.2 Domain Generalisation

To address the domain shift issue in the scenario where there are no available target domain

data, domain generalisation was introduced. The objective in domain generalisation (DG) is

to train a model using data from one or several related but distinct source domains so that

the model can effectively be applied to any OOD target domain. Depending on whether the

model is trained on data from a single source domain or multiple source domains, domain

generalisation can be categorised as either single-source or multi-source. Approaches to

domain generalisation include using some form of augmentation strategy, aligning source

domain distributions, or meta-learning, in order to produce a domain-invariant model.

DNNs can tend to be vulnerable to texture changes and small perturbations. To help

make models more robust to this and consequently improve the model’s ability to generalise

across domains, the authors of [106] propose a data augmentation technique called Rand-

Conv. This technique applies a single layer CNN with random weights and kernel size to

an input image to alter its texture will retaining the shape of the object(s) within the orig-

inal image. They also propose a mix variant which mixes this augmented image with the

original image by a factor α. Although RandConv reduces the performance slightly on the

original domain, the authors show that the performance on new domains improves signifi-

cantly, especially in more challenging domains. However, as the kernel size in the RandConv

method increases, the semantic information deteriorates. To overcome this issue, Progressive

Random Convolution [107] (ProRandConv) was introduced which uses multiple convolution

layers with small kernel sizes, which better preserves the semantic information while produc-

ing richer texture diversity. Other modifications such as deformable convolution and random

affine transformations are introduced to further enrich the texture diversity.

Research has shown that visual domains can often be characterised by image styles en-
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capsulated within instance-level feature statistics in shallow CNN layers. To exploit this

finding, the authors of [108] proposed MixStyle which probabilistically mixes feature statis-

tics between training instances within the early layers of a CNN to synthesise novel domains

and create more diversity in the training distributions without making any modifications to

the training data itself.

In contrast to domain adaptation, the main challenge with domain generalisation is

the absence of target data, which means that there is no guarantee that the methods will

generalise well to OOD samples. Furthermore, many domain generalisation methods rely on

domain labels for training, limiting their practicality in many applications where such labels

are either unavailable or difficult to define.
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4 Image Classification with Similarity Learning

In this chapter, the challenge of image classification capable of handling dynamically chang-

ing classes is addressed. Traditional classification models are typically trained to recognise

a fixed set of classes, making them unsuitable for scenarios where new classes may emerge

over time or where previously unseen data must be classified without retraining the model.

This limitation is particularly problematic in applications that require real-time adaptabil-

ity and scalability, such as monitoring systems, dynamic inventory tracking, and biometric

identification. To overcome this challenge, novel solutions are proposed based on similarity

learning [34], a technique originally introduced by Google for facial recognition. Unlike tra-

ditional classification approaches, similarity learning projects data into a high-dimensional

embedding space, enabling flexible and scalable classification that is not restricted to a fixed

set of predefined classes as new classes are simply projected into a new position within the

embedding space.

To validate the proposed solution, the real-world application of individual dairy cattle

identification is selected. This application serves as an excellent test case for the generalised

problem of handling changing classes due to the unique characteristics of dairy farming.

Herds are dynamic, with animals being added and removed over time, making it impractical

to rely on fixed-class classifiers. Moreover, accurate individual identification is critical for

various dairy farming tasks, such as tracking health, monitoring productivity, and ensuring

animal welfare, highlighting the research importance of this application. The embeddings

produced by similarity learning enable the model to identify cattle not included in the

training dataset, demonstrating its ability to generalise to new classes. Novel analysis of

this capability is conducted in this chapter.

In addition, this chapter introduces novel Self-Organised Operational Neural Network

(Self-ONN) architectures to improve the parameter efficiency of identification models, ad-

dressing computational constraints often encountered in large-scale deployments. By com-

bining the adaptability of similarity learning with the efficiency of Self-ONNs, the proposed
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approach offers a scalable and practical solution to the broader problem of dynamically

changing classification tasks, while also offering highly accurate cattle identification models.

The novel contributions of this chapter are listed as follows:

• New class evaluation for dairy cattle identification

• Self-ONN architectures for dairy cattle identification trained using similarity learning

4.1 Datasets

Datasets containing top-down views of individual cattle were collected with the industrial

sponsor of this project - Peacock Technology Limited. Initially, a relatively small dataset

containing 8055 images of 537 cows was collected which will be referred to as the CowID-

537 dataset. Then, later in the project, when more resources were available, a much larger

dataset consisting of 1785 cows and 161663 images was collected, which will be referred to

as the CowID-1785 dataset.

A brief overview of all the datasets used in this chapter is shown in Table 4.1.

Dataset Name Number of
Images

Number of
Classes

Images Per
Cow

Labelled

CowID-537 8055 537 15 Yes
CowID-1785 161163 1785 17 - 134 Yes

Table 4.1: Cow Identification Datasets Overview.

4.1.1 CowID-537 Dataset

Cow image data was acquired by positioning an IP camera above the Radio Frequency

Identification (RFID) scanner in the rotary milking parlour within the target farm as shown

in Figure 4.1. Each new RFID detected by the scanner triggered a sequence of three image

captures at fixed time intervals to capture the cow at different angles. In the parlour, the

cows are placed in compact parallel pens; this means that for each image capture there are

up to 3 cows present in the image since the camera was centred around the RFID scanner.

73



Figure 4.1: Milking Parlour Data Capture Setup
Cows are put into rotary milking parlour pens and a single camera and RFID scanner

capture images of the cow from above when the pen passes under.

Since the camera would capture a larger area than just the cow itself, as can be seen

in Figure 4.2, it was necessary to develop an object detection model to isolate the cow

from the entire image. A subset of the data was annotated with bounding boxes and used

to train a YOLOv3 [49] model to detect cows. The developed YOLOv3 model was then

applied to all the acquired images and all detections (including detections of other cows and

erroneous detections), as shown in Figure 4.2, were saved into folders corresponding to the

triggered RFID. Due to the RFID scanners not being 100% accurate and the fact that cows

would occasionally move their heads into adjacent stalls and trigger the scanner, human

verification was then applied to remove all incorrect cows and erroneous detections from

each RFID folder. In cases where it was unclear which cow was the correct cow in any given

folder, the entire RFID folder was discarded. The final dataset consisted of 537 unique cows,

each with 15 unique images.

4.1.2 CowID-1785 Dataset

Another larger cow dataset was acquired from the same farm at a later date to expand and

improve upon the previous dataset. This dataset was acquired with the same camera and
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Figure 4.2: Data Cropping with YOLO

Figure 4.3: CowID-537 Dataset Examples

RFID scanner setup as the CowID-537 dataset but captured images of a total of 1785 cows

with between 17 and 134 images per cow. The capture process for this dataset was more

reliable than the previous process as the previously developed YOLOV3 model was employed

on each image capture as shown in Figure 4.2 and only the centre cow detection was saved

to the folder corresponding to the RFID trigger. Thus reducing the occurrence of erroneous

cows being contained within a capture folder.

Human verification was still required to verify the clean the data as it was still possible

that an incorrect cow could appear in a given capture folder for the same reasons as the

CowID-537 dataset. The human verification process was different for this dataset and a new

verification policy was adopted so as not to exclude cows that were extremely challenging for

humans to distinguish between. This could be more reliably achieved due to the improved
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capture process making it less likely that erroneous cows were contained within each folder

compared to the capture process on the CowID-537 dataset.

The dataset was divided between five separate people to validate, where each person was

assigned a different portion of the cows to validate. Each person would go through each

image for each individual cow and remove images of any obviously wrong cows in a given

RFID folder. Any images that were not obviously wrong were left in, including any images

that were challenging to tell whether it was a different cow or the cow itself was dirty as seen

in Figure 4.4, covering some of its features. This resulted in no single cow being completely

removed from the dataset, keeping all the potentially more challenging cows in. The entire

process took around 8 hours per person.

Figure 4.4: Dirty Cow Example

All the images were passed to an identification model (trained on the CowID-537 dataset)

after each person had gone through and removed all their obvious erroneous cows. The model

provided suggestions for potential mistakes made by the five verifying people. Three of the

people then reviewed these suggestions together and again removed the obvious erroneous

cows that had been missed initially.

This model filtering process also highlighted that some cows had duplicate RFIDs, i.e.

that the same cow would have a certain number of images under one RFID and more under

another. This was likely due to said cow having lost its RFID tag and then having it replaced

with another tag with a separate RFID. On this assumption, all RFID pairs where there

was not at least two days of overlap (as there could be one day of overlap if the RFID tag

was lost and replaced on the same day) between the image captures were highlighted. All
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these potential pairs were manually reviewed and 7 pairs were identified as the same cow.

These pairs were then merged into the folder with the newest RFID for the given cow. Some

examples of the CowID-1785 dataset can be seen in Figure 4.5.

Figure 4.5: CowID-1785 Dataset Examples

4.2 Cow Identification with Similarity Learning and New Class

Evaluation

Similarity learning is a training technique that focuses on producing meaningful embeddings

rather than maximising class probability outputs. In this approach, the model learns to

generate embeddings that are close in Euclidean distance for samples of the same class and

farther apart for different classes. This method enables the model to learn more robust

features by optimising its representation space directly.

A key advantage of similarity learning is that it does not constrain the model to a fixed

number of classes. Since the model produces embeddings rather than class-specific outputs,

it can generate representations for new classes that the model has not been trained on,

making it highly adaptable. In this section, cow identification models are developed using

similarity learning, and a novel analysis of their performance on new classes - classes not

contained within the training dataset - is conducted. This evaluation assesses the real-world

effectiveness of these models in dynamic herd environments where individual cows change
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over time.

4.2.1 Methodology

The CowID-537 dataset was used for the experiments in this section where 500 cows were

used for training and the remaining 37 were reserved for new class evaluation. Due to the

limited size of the dataset, 3 fold cross-validation was applied to prevent selection bias, where

on each fold a different random subset of 37 cows was selected for new class evaluation. Since

this dataset contains 15 images per cow, the images were split into 3 random groups of 5

images where each group would be used in one of the cross validation folds for validation

and testing (where 3 of the 5 images were used for validation and 2 for testing). The split

of the dataset can be seen in Figure 4.6 with some example images shown in Figure 4.7.

In the initial paper where similarity learning was first used for facial recognition [34], the

authors use an Inception ResNet model which has a carefully designed topology for their

facial recognition task, which provides excellent results. However, due to this specific design,

it does not perform as well when applied to other tasks as the more generic models such as

ResNet [21] and VGG [20], which essentially have a stacked block-type architecture designed

for general-purpose classification. One of the reasons that Inception ResNet models can offer

superior performance to their more generic rivals, is because they use a split-transform-merge

strategy, which essentially gives the effect of an ensemble as multiple feature extractors are

applied to the input and the results are combined. The ResNeXt architecture [22] exploits

this technique, but instead of using specially designed, different feature extractors, it uses

a reduced ResNet architecture on each branch, which has been shown to offer performance

improvements while not requiring the network to be specially designed for any given task.

For this reason, the ResNeXt architecture was selected for experiments as it is a general

purpose architecture with the added benefit from split-transform-merging.

The Adam optimiser [30] was used for all experiments as this is a powerful, diverse

and well tested optimiser that is commonly used by many researchers and practitioners.
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Figure 4.6: CowID-537 Dataset Split.
The green portion represents images that were used to train the model. The yellow portion
represents images that were used to validate the model during training. The blues portions

represent images that were reserved from the training process that the model has never
seen before.

The triplet loss function [34] was selected as this is a well tested similarity learning loss

function that can take advantage of fine-grained data relations, is computationally efficient

and contains few hyperparameters. Online triplet mining [34] was applied to select triplet

combinations from each mini-batch fed to the model where each batch contained images

from 25 random cows with 4 random images per cow to ensure that a sufficient quantity

of potential triplet combinations was available for selection. The hard and hardest triplet

selection strategies were explored where the hard triplet selection strategy is defined as

selecting all triplet combinations within the mini batch that satisfy Eq. (2.18) and hardest

triplet selection is defined as the triplet combination producing the largest value from Eq.
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Figure 4.7: Training Cows vs New Cows Example.
Top left are images of cows used in training and also to fit the KNN for evaluation. Bottom
left are images reserved for testing of the cows used in training. Top right are images used
to fit the KNN of cows not used in training. Bottom left are test images for cows not used

in training.

(2.18).

Random augmentations were applied to each image before it was passed to the model

during training, as this is standard practice during deep learning training to improve per-

formance and generalisation capacity. The augmentations used during training can be seen

in Figure 4.8 and the parameters used are shown in Table 4.2 where the probability of any

augmentation being applied to a given training image was 80%.

Figure 4.8: Training Augmentation Examples.

Random search optimisation [109] was used to tune the training parameters as this has

been shown to be far more efficient than grid search while achieving similar results. The
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Table 4.2: Augmentation parameters used during cow identification training.

Augmentation Probability (%) Parameters
Rotation 100 [−10, 10] degrees
Erase 50 [0.02, 0.05] scale, [0.3, 3.3] ratio
Colour Jitter 100 [0.8, 1.2] brightness, [1.8, 1.2] contrast,

[0.85, 1.15] saturation, [−0.1, 0.1] hue
Autocontrast 50 -
Solarize 50 0.95 threshold
Perspective 50 0.15 distortion scale
Greyscale 10 -
Blur 50 5 kernel size, [0.1, 2.0] sigma
Resized Crop 50 [0.8, 1.2] scale, [0.75, 1.33] ratio

parameters that were optimised include the learning rate, learning rate decay, gradient ac-

cumulation frequency (in batches), the triplet margin, and the use of either hard or hardest

triplet selection strategy.

Early stopping was applied to prevent overfitting by selecting the model weights from the

epoch that produced the highest validation accuracy. Testing was then applied by embedding

all 10 training images for each cow and then using these embeddings to fit a KNN classifier

and then perform testing on the reserved test images. A K value of 5 was selected for the

KNN as each cow contained 10 embeddings in the KNN embedding space, so a value of 5

would strike a good balance between reducing the impact of noise on the results, while also

not requiring all 10 embeddings to be used in the prediction. For the new class evaluation,

a similar approach was taken where 10 random images from the reserved new cows/classes

(as no images were used for training) were embedded and used to fit the 5NN classifier. All

5 remaining images were used for testing, as none were used for validation.

The entire training and evaluation framework can be seen in Figure 4.9.

4.2.2 Experimental Results

For each cross-validation fold, 50 random search iterations were applied to tune the hyper-

parameters. The results can be seen in Table 4.3. Since many optimisation iterations did

not yield good results due to the random nature of the optimisation algorithm, only the 3
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Figure 4.9: Cow Identification Framework.

best results for each fold are reported in Table 4.3 for the sake of clarity. The entire set of

results is shown in Appendix 7.5.

Table 4.3: CowID-537 Hyperparameter Optimisation Results.

Learning
Rate

Learning
Rate
Step

Accum
Iter

Triplet
Margin

Hardest
Triplets

Accuracy F1
Score

New
Class
Accuracy

New
Class
F1
Score

Fold 1
0.00018 529 1 0.1 FALSE 98.27 0.982 92.43 0.94
0.000636 568 45 0.2 FALSE 98.2 0.981 90.81 0.922
0.000749 947 3 1 TRUE 97.67 0.975 81.08 0.861

Fold 2
0.000912 490 10 0.2 FALSE 98.6 0.986 94.05 0.955
0.00036 488 4 0.5 TRUE 98.4 0.983 94.05 0.943
0.000794 354 2 0.1 FALSE 97.47 0.973 94.59 0.95

Fold 3
0.00081 641 1 0.1 TRUE 99 0.99 94.05 0.962
0.000611 170 1 0.1 TRUE 98.73 0.987 91.35 0.941
0.000813 215 1 0.1 TRUE 98.33 0.983 93.51 0.952

Results from random search optimisation on each cross-validation fold on the CowID-537 dataset. Only the top three
random search iterations (in terms of accuracy) are reported for each fold where the iterations are ordered top to
bottom in terms of accuracy. Each fold consists of a unique split of 500 training classes and 37 reserved new classes.
Learning Rate, Learning Rate Step, Accum Iter (gradient accumulation frequency in batches), Triplet Margin and
Hardest Triplets are the training hyperparameters used.
Accuracy and F1 Score are calculated on the test images of the 500 cows used during training.
New Class Accuracy and New Class F1 Score are computed on the test images of the reserved 37 cows (Figures 4.6
& 4.7) that are not used during training. All 537 cows are used to fit the KNN so that each of the 37 test cows may
be classified as any of the total 537 cows.
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4.2.3 Discussion

The results from Table 4.3 show that consistent performance is achieved across each of the

cross-validations folds, with test accuracy of up to 99% on the standard test set and up

to 94.05% on the new cow test set. Although there is around a 5% accuracy drop in the

new cow test results compared to the standard test set results, the new cow performance is

still very good considering the model does not have prior information about these cows from

training. This demonstrates the efficacy of this training technique to learn robust and general

features to distinguish between individual cattle even with a very limited amount of training

data present. Another interesting point to note is that there is a great deal of variation in

the hyperparameter values between each of the best optimisation runs, indicating that the

performance of this method has little sensitivity to the training hyperparameters.

4.3 Operational Neural Networks for Parameter Efficient Classi-

fication

A larger cow identification dataset was later acquired from the same target farm as the

CowID-537 dataset, containing a far greater number of cows and images than the previous

version. This newer dataset, referred to as the CowID-1785 dataset and presented in Table

4.1, contains over three times as many cows as the CowID-537 dataset, representing a more

challenging problem. In response, novel Self-ONN extensions of the CNN models used in

the previous section are proposed which are shown to provide on par performance, but with

improved parameter efficiency. These novel models are also trained using similarity learning,

which has not been performed previously. Further new class analysis is also conducted to

examine the generalisation capabilities of the proposed models. The entire training and

evaluation framework remains the same as in Figure 4.9, although in this section novel

contributions are also made to the model.
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4.3.1 Methodology

To train and evaluate each model the CowID-1785 dataset was split into a training, valida-

tion, and test portion where 70% of the images for each cow were used for training, 15% for

validation and the remaining 15% for testing. The same training, validation and testing split

was used for all experiments and in this case cross validation was not used due to the size of

the dataset. To test the model’s ability to perform on new classes in a similar manner to the

experiments conducted on the CowID-537 dataset, the CowID-537 dataset was again utilised.

However, instead of only using 37 of the 537 cows, as previously done, the entire dataset was

used for new class testing in these experiments. Since both the CowID-537 and CowID-1785

datasets were captured from the same barn, there are cows that appear in both datasets.

However, since cows can have their RFIDs changed over time, it is not guaranteed that the

same cow will contain the same RFID in both datasets, meaning that training cannot be

performed on both datasets simultaneously. Hence, the CowID-537 dataset was selected for

new class testing. Although there are cows contained in both datasets, there is still a large

portion of cows in the CowID-537 dataset that are not contained within the CowID-1785

dataset, meaning this evaluation will still provide valuable insights into the trained models’

ability to generalise to new classes. Furthermore, using a mix of cows used and cows not

used in training is more representative of a scenario when such a model would be deployed.

Experiments were conducted using the ResNeXt architecture applied to the CowID-

537 dataset. In addition, the squeeze-and-excitation (SE) extension [24] of the ResNeXt

model [22] was also selected for experiments. SE modules enhance the representational

power of a network by explicitly modeling channel-wise dependencies. They achieve this by

first ”squeezing” global spatial information into a channel descriptor through global average

pooling, and then ”exciting” the channels by learning adaptive weights that recalibrate each

channel’s importance. This mechanism allows the network to emphasise informative features

and suppress less useful ones, leading to improved performance with only a minimal increase

in the number of parameters compared to the standard ResNeXt model. This model will be
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Table 4.4: Cow Identification Model Parameters

Model Embedding Size # Parameters
ResNeXt 32 23045472

128 23242176
SE ResNeXt 32 25576464

128 25773168
SE ResONeXt 32 17894488

128 17992888

referred to as SE ResNeXt. Furthermore, a novel Self-ONN variant the SE ResNeXt archi-

tecture, referred to as SE ResONeXt is proposed which extends the convolutional layers of

this models to more powerful non-linear Self-Operational layers [82]. These layers introduce

additional higher-order terms to each node in each convolutional filter to turn said node

into a learnable MacLaurin series function approximation with Q terms. A Q value of 3

was selected for all proposed Self-ONN as this provided a good balance between function

approximation and parameter increase as each Q term introduces a new parameter to each

node. However, a Q of 3 still nearly triples the number of parameters the network contains

(derived from Eq. (2.14). Therefore, the number of filters in each layer of the proposed

Self-ONN model was halved in order to bring down the number of network parameters to

below what the equivalent CNN architectures contain. The total number of parameters per

model is reported in Table 4.4.

Due to the fact that the MacLaurin series expansions are used within Self-ONN models,

learned function approximations are only accurate close to 0. Therefore, Tanh activation

functions were used instead of ReLU functions within each proposed Self-ONN model to

ensure data passing between layers was bound to the interval [−1, 1]. This also helps stabilise

training as it ensures no large values occur as a result of raising a value greater than 1 to a

large power within the MacLaurin series expansions.

The training parameters for these experiments were selected based on the results from

the CowID-537 dataset experiments presented in Table 4.3. An initial learning rate of 0.001

was selected as this was slightly higher than the average value of the learning rates presented
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in Table 4.3 to encourage faster convergence on the larger dataset. A learning rate decay

of a factor of 10 was applied at epoch 500 as this is approximately the average decay step

from the earlier results. A 0.5 triplet margin was selected as this is slightly above the

average triplet margin in Table 4.3, encouraging more separation between the embeddings

of different classes. The hard triplet mining strategy was selected as there is roughly a

50/50 split between the use of this strategy and the hardest strategy in Table 4.3, so this

strategy was selected as it considers more triplet combinations in each training step. The

more modern AdamW optimiser [31] is used with a weight decay of 0.005 as this has been

shown to provide better generalisation capacity than the standard Adam optimiser.

Hyperparameter optimisation was not applied, as the CowID-1785 dataset takes sig-

nificantly longer to train. Furthermore, the results in Table 4.3 suggest that the training

technique is fairly insensitive to hyperparameters, indicating that hyperparameter optimisa-

tion may not be strictly necessary. The random augmentations from Table 4.2 were applied

again to each raw image before being passed to the model with a probability 80% that any

augmentation would be applied. Note, a fresh random augmentation combination is applied

to the raw image every time it is passed to the model during training.

Each model was trained until the validation accuracy had not improved for 250 epochs,

where the final weights used for testing were selected from the epoch producing the highest

validation accuracy. Training times for each individual model would range between 1 and

11 hours and would on average take around 3.5 hours. Once training had completed, all

training images were embedded and used to fit a KNN classifier which was used to perform

classification on the test images. K values of 3, 5, and 7 were tested and the best result was

reported. New class testing was performed in a similar manner where 10 of the images from

each cow in the CowID-537 dataset were embedded and used to fit a KNN classifier which

then performed classification on all of the remaining images. Again, a K value of 3, 5 and

7 was tested, with the best result being reported. Inference times for an individual image

were near instant and the total inference time for all test images for each model, including
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the time it takes to fit the KNN, was less than a minute.

4.3.2 Experimental Results

The results of the experiments carried out on the CowID-1785 dataset can be seen in Table

4.5.

Table 4.5: CowID-1785 Results.

Model
Training Classes New Classes

NN
Accuracy

(%)
F1

Score
Silhouette

Score
NN

Accuracy
(%)

F1
Score

Silhouette
Score

ResNeXt 128 3 99.693 0.9969 0.7672 3 92.588 0.9235 0.3973
SE ResNeXt 128 3 99.701 0.997 0.774 3 91.62 0.9154 0.3889

SE ResONext 128 q3 7 99.602 0.99602 0.76219 3 88.715 0.8849 0.3009
ResNeXt 32 3 99.689 0.9969 0.7718 3 92.775 0.9258 0.4074

SE ResNeXt 32 7 99.73 0.9973 0.7899 3 92.924 0.9268 0.4036
SE ResONeXt 32 q3 7 99.709 0.9971 0.7691 3 89.013 0.8854 0.3122

Models with O in the middle and q3 at the end are the Self-ONN architectures and all others are CNN.
The numbers 32 and 128 denoted at the end of each model name represent the output embedding size
of the model.

4.3.3 Discussion

The results from Table 4.5 show that all models produce very high accuracy on the train-

ing classes. There is a similar performance drop observed in the experiments conducted

on the CowID-537 dataset in terms of the new class accuracy, though this performance is

still very good all things considered. The Self-ONN models perform only marginally worse

than their CNN counterparts, with a reduction of less than 0.1% in training class accuracy.

However, this slight performance drop is outweighed by an approximately 30% reduction in

parameters. This parameter efficiency also translates into substantially lower GPU memory

requirements, enabling inference on smaller and more cost-effective GPUs - a particularly

valuable advantage for agritech applications, where models are often deployed at the edge.

The Self-ONN models do however produce a larger performance drop on the new classes,

suggesting that the additional non-linear complexity of these models may make them slightly

more prone to overfitting, even with less total parameters.
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It is also observed that using a smaller embedding size improves model performance,

especially on the new classes. This is somewhat counter-intuitive as one would expect that

it is easier to separate embeddings in a larger space. However, the smaller embedding

space may force the model to make more efficient use of the embedding space, consequently

improving performance. Furthermore, the smaller embedding size reduces the overall model

parameters slightly, potentially improving generalisation performance which is evident in the

improved new class performance.

4.4 Summary

In this chapter similarity learning was explored for individual Holstein cow identification.

First, similarity learning experiments were conducted on the CowID-537 dataset where novel

new class analysis was performed. The results showed that models trained in this way can

generalise well to classes the model has not been trained on, though there is a small drop in

performance relative to the classes the model has been trained on.

Experiments were later conducted on the larger CowID-1785 dataset where novel Self-

ONN models were proposed and these models were trained using similarity learning, which

has never before been done. The results demonstrated that the proposed Self-ONNs models

provided similar performance to the CNN models used in experiments, but with a roughly

30% reduction in the number of parameters, greatly improving the per-parameter perfor-

mance, with similar performance to the full-sized comparison CNN models.
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5 Image Enhancement with Non-Linear Filters and Im-

proved Preprocessing

In this chapter, Self-Organised Operational Neural Network (Self-ONN) models are extended

to Hyperspectral Imaging. Several novel Self-ONN models are proposed where traditional

CNN-based Hyperspectral Image (HSI) Super-Resolution (SR) models are enhanced by re-

placing their convolutional filters with more powerful non-linear Self-Operational filters,

offering both performance improvements and overall network parameter savings. Novel im-

provements are also made to the data preprocessing pipeline to handle HSI data more effec-

tively and improve reconstruction performance. The models are first evaluated on a single

HSI, as is commonly done in the literature. Subsequently, performance is then evaluated on

the less commonly used, but substantially larger, ICONES dataset [1]. Finally, a large novel

dataset acquired in collaboration with Thomas De Kerf, University of Antwerp, Belgium, and

David Dunphy, University of Strathclyde, Scotland, is used to evaluate both performance,

and additionally the issues with training using synthetic downsampling techniques.

The novel contributions of this chapter are listed as follows:

• Novel Self-ONNs models are proposed for HSI-SR with analysis on the effects that

normalisation and residual connections have on these networks

• Novel preprocessing techniques using the standard normal variate and noise removal

are proposed for HSI-SR

• Evaluation of how HSI-SR models trained with traditional synthetic downsampling

processes fail to generalise to real-world data

Each contribution is presented in its own sub-section along with the results associated to

the contribution.
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Table 5.1: Small HSI Dataset Information

Dataset Sensor
Image

Dimensions
Channels Resolution Location

Pavia University ROSIS 610× 340 103 1.3m Pavia, Italy
Salinas AVRIS 512× 217 204 3.7m Salinas Vally, California
Cuprite AVRIS 512× 614 224 - Las Vegas, Nevada
Urban - 307× 307 210 2m -

Example images for each dataset can be seen in Figure 5.1.

5.1 Datasets

Several different datasets are used for experiments within this chapter which will be outlined

within this subsection. Four commonly used, publicly available, remote sensing datasets are

first used which are named Pavia University, Salinas, Cuprite, and Urban. Each of these

datasets consist of a single HSI and are commonly used in the HSI-SR literature. Details

for the four small HSI remote sensing datasets [110, 111] used in this chapter can be seen

in Table 5.1. Bands affected by water absorption or sensor noise have already been removed

from each of these datasets.

It is well known that the performance of deep learning models is strongly correlated

with the amount of quality data used to train the model [112]. The much larger ICONES

remote sensing dataset [1] was therefore also used for experiments in this chapter. This is a

large available HSI dataset, consisting of a total of 486 HSIs captured from the NASA Jet

Propulsion Laboratory’s Airborne Visible InfraRed Imaging Spectrometer (AVIRIS). Each

image has spatial dimensions of 300x300 pixels with 224 contiguous spectral channels (bands)

ranging between 365 and 2497 nanometers. The dataset consists of nine categories of capture

scene which can be seen in Table 5.2 along with the breakdown of the number of images

contained within each category.

Certain bands in HSIs are corrupted by water absorption noise and sensor noise. Many

single HSI datasets come with metadata indicating these bands or simply have these bands

already removed. However, such metadata does not exist for the ICONES dataset and

so preprocessing steps had to be performed to detect and remove these bands. To detect
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Figure 5.1: Small HSI Datasets False Colour Images.
(a) Pavia University, (b) Salinas, (c) Urban Datasets and (d) Cuprite.

the noisy bands present in the images, a simplified version of the algorithm proposed in

[113] was used to detect the noisy bands. Since the spectral resolution of the ICONES

dataset is approximately 9.52 nm, there is little difference in features between adjacent

bands. Therefore, a channel was deemed noisy if the MSE between the current channel and

either of the adjacent channels was greater than 0.005 since the clean bands would be similar

and the noisy bands would be very dissimilar. However, it is worth noting that with a lower

spectral resolution, the MSE value would potentially need to be increased, or this approach

may not work at, all due to greater differences in features between bands. To ensure that

the brighter bands were not disproportionately penalised, the minmax norm was applied to

each channel individually before computing the MSE. Example clean and noisy bands can
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Table 5.2: ICONES Dataset Informa-
tion

Category Images Images Used
Agriculture 50 38
Cloud 29 28
Desert 54 53
Dense-Urban 73 73
Forest 69 50
Mountain 53 52
Ocean 68 14
Snow 55 55
Wetland 35 27

Figure 5.2: ICONES Dataset False-Colour Examples [1].

be seen in Figure 5.3.

From this, bands 1-5, 104-116, 152-172, and 221-224 were removed to ensure that there

was minimal noise present in the training data. Therefore, each training image was split into

3 band groups of bands 6-103, 117-151, and 173-220 and random 100x100 pixel patches with

32 bands were extracted. This ensures that training patches are selected with contiguous

bands. For validation and testing images, patches were extracted at all 9 100 × 100 evenly

spaced spatial locations within the 300 × 300 image with contiguous 32 band groupings at

bands 7-39, 39-71, 71-103, 118-150, and 179-211 to ensure that validation and test patches
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Figure 5.3: Clean and Noisy Band Examples.
Left: Clean Band Example at 802nm. Right: Noisy Band Example at 1461nm. Spectra at
the 3 coloured pixel locations are shown on the bottom with the vertical red dotten line

representing the wavelength of the band of the top image.

remained consistent. Therefore, each validation and testing image produced 45 patches. The

spatial dimensions of 100× 100 were selected to ensure maximum data usage for validation

and testing by obtaining patches covering the entire image. The band dimension of 32 was

also selected to maximise the data usage for validation and testing by allowing for as many
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Table 5.3: Indian Pines Dataset Information

Dataset Sensor
Image

Dimensions
Channels Resolution Location

Indian Pines AVRIS 145× 145 200 20m Indiana, USA

consistent large chunks of contiguous bands to be used within each noise-free band grouping.

Furthermore, the patch size of 100×100×32 kept patch sizes consistent to allow for batching

and were also small enough to avoid GPU memory issues during training, particularly with

the 3D models used for experiments. The images heavily corrupted by noise were removed,

which was defined as images with more than 40 detected noisy bands. Of the remaining files,

70% of the images in each category were used for training, 15% for validation, and 15% for

testing.

In addition, the Indian Pines [114] dataset is used in this chapter for a small target

detection experiment. Details of the dataset can be found in Table 5.3 and a true colour

image of the dataset alongside the materials ground truth can be seen in Figure 5.4.

Figure 5.4: Indian Pines Dataset
a) True colour composite image. b) Materials Ground Truth.

All mentioned remote sensing datasets are unpaired, meaning that every LR pair to each

HSI within the datasets must be generated for training. Gaussian downsampling was used

to generate LR image pairs from the given high-resolution targets in all experiments, which
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is defined in Eq. (5.1):

ILR = (IHR ∗ k) ↓s + n (5.1)

where k ∈ R2 is a 2D degradation kernel, * is a spatial convolution, ↓s is a decimation

operation with a stride s, and n is a noise term. No noise was added in any of the experiments,

so the parameter n is ignored.

However, downsampling images to synthetically create LR pairs imposes many assump-

tions on the true low- to high-resolution image relationship, which is known to be detrimental

to performance [115, 116]. To address this issue, a novel dataset was acquired in collabora-

tion with Thomas De Kerf and David Dunphy. This dataset consists of true pairs of low-

and high-resolution HSIs acquired by two different methods. The first method was acquired

by capturing two images of the same scene with the same camera but with different mag-

nification lenses. The data was thus named the lens data. The second method involved

capturing two images of the same scene with two different sensors, which was named the

sensor data. Details for each type of paired data can be seen in Table 5.4 with examples of

the Lens Dataset shown in Figure 5.5 and examples of the Sensor Dataset shown in Figure

5.6.

Table 5.4: Paired HSI Dataset Information

Name Sensor(s) Magnification Scenes
Lens Specim FX17 4x 31

Sensor Headwall Micro-Hyperspec VNIR-E & Hamamatsu C8484-05 CCD 4x 50

For the Lens dataset, HR images (4× magnification) were captured with a 12° lens at 3172 × 640
pixels (0.104 pixel), while LR images used a 38° lens at 793×160 pixels (0.416 mm/pixel).

5.2 Operational Neural Networks for Hyperspectral Single-Image

Super-Resolution

In the literature, HSI-SR models are typically trained on a dataset comprised of a single HSI.

Most recent methods propose deep networks [117, 77, 72]. However, deep networks tend to
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Figure 5.5: Lens Dataset Examples.
Top image are scenes captured with the LR lens and bottom images are the paired scenes

captured with the HR lens.
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Figure 5.6: Sensor Dataset Examples.
Left images are bank note images captured with the LR sensor and right images are the

paired bank note images captured with the HR sensor.
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be prone to overfitting on small datasets, which limits their performance and suitability in

such a scenario. In this section, an alternative approach is proposed where very shallow

models are employed, which use the recently proposed Self-ONN [82] non-linear layers to

improve performance over traditional CNN models even with a reduced number of network

parameters. In this chapter, the popular SR network, SRCNN [16], was extended for use

on HSIs. Then a Self-ONN model based on this architecture is proposed by replacing the

convolutional layers with operational layers. Furthermore, another Self-ONN variant of this

model with a reduced number of filters is proposed to demonstrate the non-linear capacity of

operational layers over convolutional layers. Experiments are conducted on the small Pavia

University, Cuprite, Salinas, and Urban remote sensing datasets [111, 110]. Furthermore, the

effects residual connections and various normalisation types have on Self-ONN performance

are investigated, as this has not been previously explored.

5.2.1 Methodolody

A novel extension of the SRCNN [16] super-resolution model is proposed for application

to HSIs. Specifically, this adaptation modifies the SRCNN architecture to accommodate

hyperspectral data by increasing the number of input and output channels from three (as used

in RGB images) to match the number of wavelength bands in the target HSI. Additionally, a

novel Self-ONN-based variant of this modified SRCNN model, named SRONN, is introduced.

SRCNN, illustrated in Figure 5.7, is a relatively compact architecture consisting of three

convolutional layers, each followed by a ReLU activation function, except for the output layer,

which does not use an activation function. Despite the existence of more advanced models,

SRCNN was chosen for its simplicity and widespread adoption. Its straightforward structure

enables a clear and controlled comparison between CNN and Self-ONN models, ensuring that

any performance improvements can be attributed specifically to the non-linear filters of the

Self-ONN rather than other auxiliary network components. Furthermore, this architecture

provides a suitable foundation for evaluating the impact of additional components, such as
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Figure 5.7: SRCNN Architecture.
SRCNN model representation consisting of 3 convolutional layers with filter sizes f1 x f1, f2

x f2, and f3 x f3.

residual connections and normalisation layers, within Self-ONN models. The shallow nature

of SRCNN also reduces the risk of overfitting, which is particularly advantageous when

working with small single HSI datasets.

The proposed SRONN model retains the same structural configuration as SRCNN, as

shown in Figure 5.8, but replaces the convolutional layers with Self-ONN layers. A key

characteristic of Self-ONNs is the need to restrict the data passed between layers within

the range of −1 to 1 to prevent exponentially large values, a consequence of the inherent

non-linearity of the model. To achieve this, SRONN employs Hyperbolic Tangent (Tanh)

activation functions after the first and second operational layers instead of the ReLU ac-

tivations used in SRCNN. The Tanh function, defined in Eq. (2.7), naturally bounds its

output between −1 and 1, making it an ideal choice to maintain numerical stability within

the SRONN architecture.

Each model was evaluated on four different HSI datasets: Pavia University; Salinas;

Cuprite; Urban. Details for each dataset [111, 110] can be seen in Table 5.1.

Eq. (5.1) was used to generate the LR pairs to each of the training patches with 2×

subsampling, ↓s, and a Gaussian blur with a sigma value of 0.8943 for k as is done in [118].

No noise was added, so the parameter n is ignored. Each generated LR tile was then bilinearly
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Figure 5.8: SRONN Architecture.
SRONN model representation consisting of 3 self-operational layers with filter sizes (f1 x f1

x Q), (f2 x f2 x Q), and (f3 x f3 x Q). Note, each filter element is a learnable non-linear
function, enhancing its theoretical learning capacity over a standard CNN where each filter

element is a learnable linear function.

interpolated back to the size of the original tile so the model could perform Super-Resolution

by recovering the information at the desired output resolution. The model would then be

trained with the LR tile as input and the original HR tile as the target. A scale factor of

2x was selected as the datasets being used are very small in size, making it infeasible to go

beyond this scale factor. Each dataset was preprocessed with min–max normalisation and

then divided into 64×64 pixel tiles, maintaining the entire wavelength spectrum. 70% of the

tiles were utilised for training, 15% for validation and 15% were reserved for testing.

Each model was trained for 50000 epochs to guarantee network convergence, and the

weights from the epoch that produced the highest SSIM validation score were used for

testing. The Adam optimiser [30] with default parameters except for the learning rate was

selected. Each model was initially trained with a learning rate of 10−4, which was decreased

by a factor of 10 at epochs 5000 and 40000. Two following runs were then completed where

the starting learning rate and the epoch milestones — where the learning rate was decreased

by a factor of 10 — were manually adjusted in an attempt to improve the performance. The

MSE loss function was selected as this is a simple and common loss function for SR. The

weights of the models were initialised with a normal distribution with a gain of 0.02. For all
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experiments, the entire training dataset was forward propagated through the model at once,

so there was no need to adjust the batch size.

5.2.2 Parametric Analysis

Self-ONNs gain their additional non-linear complexity through the use of MacLaurin series

expansions as shown in Eq. (2.10).

In practice, the 0th term in the expansion is the bias. Therefore, the 0th term can be

disregarded from the filter approximation. The order of the polynomial should be finite in

practice so the number of terms is supplied to the network by a parameter Q. This makes

the expansion for an ONN as follows:

f(x) =

Q∑
n=1

f (n)(0)

n!
xn (5.2)

Note that when the Q value is 1, it is the exact equivalent of a standard convolutional

layer. Higher Q values yield more accurate function approximations but at the cost of

additional parameters as the Q value directly equates to the multiplication in parameters

over a standard convolutional filter. The number of parameters in the convolutional layers

of a CNN can be calculated using the following equation:

# parameters =
L−1∑
l=0

(nl ×ml × fl + 1)× fl+1 (2.13)

where L is the number of layers, nl, ml is the number of rows and columns in the

convolutional filters at layer l, f is the number of filters and the constant 1 accounts for the

bias for each filter. Note, that on the first layer, i.e. l = 0, the number of filters from the

previous layer (l−1) is given by the number of channels of the input image. To compute the

number of parameters of a Self-ONN, the number of filters of the previous layer is simply

multiplied by Q in Eq. (2.13) to give:
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# parameters =
L−1∑
l=0

(nl ×ml × fl ×Q + 1)× fl+1 (2.14)

The proposed SRONN model will therefore have approximately Q times more parameters

than the SRCNN model. To ensure a fair comparison between CNN and Self-ONN, a low

Q value was selected. The minimum Q value is 2, as a Q value of 1 is the equivalent

of a CNN. However, a Q value of 2 would only add one non-linear term to Eq. (5.2),

limiting the non-linear function approximation capacity. To enhance this capacity, a Q

value of 3 was selected in all experiments, which introduces a second non-linear term to Eq.

(5.2), significantly improving the non-linear function approximation while still keeping the

parameter increase relatively low. It is also worth noting that going much beyond this Q

value will likely have diminishing performance returns relative to the parameter increase and

may even be detrimental to performance due to the increased training difficulty, especially

on small datasets. However, a Q value of 3 still means that each SRONN model has around

three times more parameters than its equivalent SRCNN model. For a fair comparison, a

Self-ONN model with the same number of layers as SRCNN but with four times fewer filters

per layer was proposed. This model has between 26.5% and 28.2% fewer parameters than

SRCNN, depending on the required input and output channels of the dataset. This model

will be referred to as small SRONN or sSRONN.

To implement a Self-ONN layer in practice a standard convolutional layer can simply be

extended by increasing the number of input channels by a factor of Q and passing the input

concatenated with the input raised to the power n up to Q. The convolutional layer will then

apply its weights to all the MacLaurin series terms and perform the required summation of

the terms, providing the non-linear learnable MacLaurin series approximation.

5.2.3 Normalisation and Residual Connections

Due to the recent proposal of Self-ONNs [82], techniques commonly applied to CNNs to

improve results have been studied little on Self-ONNs. Various types of normalisation layer
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are incorporated into the proposed SRONN and sSRONN model, including L1, L2, instance

[119], and batch [120] normalisation, to examine the effects these have on Self-ONN per-

formance. The effects of adding a residual connection to the models is also studied, which

connects the output of the model directly to the input so that the model learns the residual

rather than the direct mapping as performed in [121].

The proposed Self-ONN model with additional normalisation and residual connection

configurations is illustrated in Figure 5.9.

Figure 5.9: General Model Architecture.
C represents the number of channels in the hyperspectral image. Values in brackets

represent the number of filters in the compact sSRONN model. SRCNN and SRONN
variants have Cx128, 128x64, and 64xC filters in each respective layer. sSRONN variant

has Cx32, 32x16, and 16xC filters in each respective layer. The normalisation type depends
on the experiment and in some experiments, there is no normalisation, in which case the
normalisation layers are skipped. The residual connection is also removed in experiments

where it is not applied.

5.2.4 Results

The SRCNN models are first compared against the SRONN and sSRONN models without

normalisation for a direct and fair comparison. The results can be seen in Table 5.5 and

example outputs on the Pavia University dataset from the models with and without residual

connections can be seen in Figures 5.10 and 5.11, respectively. True SR outputs, i.e., where

there is no target image and SR is performed on the original data (no downsampling), on

103



the Pavia University dataset can be seen in Figures 5.12 and 5.13.

Experiments using normalisation layers are only conducted on the Self-ONN models,

since normalisation has been widely studied in CNNs. The results from adding various

normalisation layer types to the Self-ONN models are presented in separate tables for each

dataset. Results for the Cuprite dataset are shown in Table 5.6, Pavia University in Table

5.7, Salinas in Table 5.8, and Urban in Table 5.9.

For the three training iterations of each model on each dataset, the results from the best

iteration are presented in the tables.
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5.2.5 Discussion

The results from Table 5.5 reveal that the base SRONN models without a residual connec-

tion generally offer a slight improvement over the SRCNN model that also lacks a residual

connection. However, an exception to this trend occurs specifically in the Salinas dataset,

where the SRCNN model without a residual connection outperformed the corresponding

SRONN models across all metrics. Note that this improved performance is confined only to

the Salinas dataset and is not representative of the overall trend observed across the other

three experimental datasets. It is hypothesised that this may be due to the Self-ONN models

having a more complex search space to navigate and optimise, owing to the non-linear nature

of the filters, thus causing more difficulty in converging compared to the simpler SRCNN

model.

The results from Table 5.5 also show that adding a residual connection provides significant

improvement to both Self-ONN models, resulting in both the SRONN and sSRONN models

outperforming the SRCNN models across all metrics on all datasets. The addition of a

residual connection improved all metrics across all datasets for both sSRONN and SRONN

except for PSNR on the Urban dataset for the SRONN model, where a slight decrease

was observed. The residual connection has a lesser impact on the results of SRCNN, only

offering improvement in some cases, which is likely due to the model not being complex

enough to see any consistent performance improvement from a residual connection. The

residual connection performance improvement on the spectra can be very clearly observed

in the mean absolute error spectral plots in Figures 5.10 and 5.11. In Figure 5.10, the

SRONN model tends to have better spectral reconstruction at the higher wavelengths while

the SRCNN model is usually better at the lower wavelengths, but from that plot, it is

visually difficult to say which is better overall except that they are both better than the

sSRONN model. However, when a residual connection is added, the mean absolute error

spectral plots in Figure 5.11 quite conclusively show that both ONN models provide superior

spectral reconstruction than the SRCNN model.
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Interestingly, the sSRONN model generally saw greater performance improvements from

the addition of a residual connection than the SRONN model, which is counterintuitive

as the sSRONN optimisation search space is significantly smaller than the search space

of the SRONN model. One explanation for this could be that the sSRONN model might

be slightly under-parameterised for direct image-to-image mapping. However, it may have

sufficient parameters to learn the residual, resulting in a bigger performance improvement

when the residual connection is added to the model. The larger SRONN model, which may be

well-parameterised for image-to-image mapping but slightly over-parameterised for residual

learning, does not see as much of a performance improvement as the smaller sSRONN model.

Since both SRONN and sSRONN outperform SRCNN, this demonstrates the power of

the non-linear filters over the standard linear convolutional filters. The non-linear filters

provide the operational layer with an enhanced ability to produce sharper edges and thus

produce sharper contrast between pixels resulting in a more detailed output image, which is

evident in the resulting images shown in Figures 5.11 and 5.13.

The results in Tables 5.6, 5.7, 5.8, and 5.9 show the effects of incorporating normali-

sation layers into the SRONN and sSRONN models are largely varied and highly dataset

dependent. It appears that normalisation has a greater impact on the datasets with larger

spatial dimensions. L2 normalisation was found to be the most effective, providing a slight

performance boost to the SRONN model across all metrics on the Cuprite, Pavia Univer-

sity and Urban datasets while boosting the SAM on the Salinas dataset. For the sSRONN

model, the performance improvement from adding L2 normalisation is less significant, pro-

viding only a performance boost to SSIM and SAM on the Cuprite dataset, PSNR on the

Pavia University dataset and SSIM on the Urban dataset. No performance improvement

was provided by using L2 normalisation over no normalisation on the Salinas dataset. The

results show that normalisation is generally more effective when utilised in conjunction with

a residual connection. This is likely due to the fact the normalisation layers will normalise

the data around a zero mean which makes it more difficult for the models without a residual
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connection to map the zero mean feature maps to the true mean of the output. However,

when a residual connection is introduced, the model learns the residual between the input

and the target, which should have a mean near zero. Therefore, normalisation may offer a

greater benefit in this scenario as it assists the model in transforming the data to the target

mean, rather than moving it away from the target mean. Interestingly, instance normalisa-

tion was found to be especially detrimental to all results. This could be because instance

normalisation normalises each channel individually which may have an adverse effect on the

channel dependencies.

5.3 Data Normalisation Techniques for Large Hyperspectral Im-

age Datasets

It is well known that the performance of deep learning models is strongly correlated with the

amount of quality data used to train the model [112]. Despite this, most HSI-SR methods

use only a single well-known benchmark HSI for training [77, 72, 76] divided into several

patches for training, testing, and validation. In this section of the chapter, SR experiments

are conducted on the ICONES dataset [1] which contains hundreds of HSIs - far larger than

any other publicly available HSI dataset.

To the best of the author’s knowledge, there have been no studies on how best to pre-

process HSI data for SR model training, despite HSI data being far more complex and noisy

than standard RGB image data [13]. This is potentially due to methods using only a single

HSI for SR training not requiring robust preprocessing methods since these datasets are of-

ten processed manually and the statistics of a single HSI will remain fairly consistent across

patches. However, this is not the case within the ICONES dataset. To address this, novel

data normalisation techniques are proposed to better prepare the challenging HSI data and

to improve feature representation between images.
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5.3.1 Methodology

The ICONES dataset [1] was selected for experiments as this is a large publicly available

HSI dataset. Details for how the data were prepared can be found in Section 5.1.

The signal strength in a HSI varies in the spectral domain, which causes many bands

to be much lower intensity compared to others, as Figure 5.14 demonstrates. Therefore,

passing this data directly to a model for training can be problematic as the model will put

more focus on the brighter bands, that will impose more of a penalty on the loss function

due to their higher pixel ranges.

The majority of HSI-SR papers do not explicitly state the ways in which they preprocess

their data, and therefore in this thesis it is assumed that no preprocessing is applied other

than basic minmax normalisation, which is commonly done in deep learning applications for

image processing tasks.

Figure 5.14: ICONES Dataset Examples
Dataset examples at several wavelengths with spectral plots from the highlighted pixel

regions. The colour of the spectral plot corresponds to the same colour pixel for the images
in the same row.

Therefore, the effects of various preprocessing techniques are examined, and two novel

preprocessing techniques based on the standard normal variate are proposed. The prepro-
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cessing techniques employed are:

• Global Minmax

• Patch Minmax

• Patch Standard Normal Variate (Patch SNV )

• Band Minmax

• Band Standard Normal Variate (Band SNV )

X ′ =
X −Xmin

Xmax −Xmin

(2.15)

Xnorm =
(X − µ)

σ
(2.16)

Global Minmax is the minimal processing approach, where only minmax normalisation,

Eq. (2.15), is applied to each hyperspectral image across the entire image. During training,

100x100x32 patches are extracted from the HSIs to pass to the model. Patch Minmax

is therefore minmax normalisation applied to the extracted patch instead of to the entire

HSI. The Band Minmax algorithm is taken from [122], which applies minmax normalisation

individually to each band in the extracted patch as defined in Eq. (5.3):

X ′
i,j,b =

Xi,j,b −Xmin(b)

Xmax(b) −Xmin(b)

(5.3)

An alternative approach to normalise data is to use the Standard Normal Variate (SNV)

as defined in Eq. (2.16). This normalisation technique has seen widespread adoption for

various feature normalisation techniques [120, 123, 119, 124] and has been shown to greatly

improve performance and convergence times. Two novel normalisation methods based on

the SNV are proposed. For the proposed SNV-based preprocessing algorithms, the data
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are first normalised using Eq. (2.16). This is applied across the patch for Patch SNV and

for each band in the patch for Band SNV. The empirical rule states that 99.7% of the

data in a normal distribution are encapsulated within the first three standard deviations

from the mean. Therefore, data outside this range are clipped to perform denoising by

removing extreme outliers from the data, which helps to prevent any particularly bright

pixels from saturating the data. Finally, the data is rescaled back to the range of 0 to 1 so

that it is consistent with the other preprocessing techniques. The first proposed SNV-based

preprocessing technique which is applied to the extracted patches, named Patch SNV, is

defined in Eq. 5.4:

X ′ = clip

(
(X − µ) 1

3
σ + 1

2

)
(5.4)

Here, µ and σ are the mean and standard deviation across the patch, respectively, and

the clip function is defined in the equation. (5.5):

clip(x) =


a if x < 0

x if 0 ≤ x ≤ 1

b if x > 1

(5.5)

Note that without the clip operation, after the data are rescaled, the data would be

identical to the data processed by the Patch Minmax method. The clip operation is therefore

necessary to retain an approximately consistent mean.

The second proposed SNV-based preprocessing technique is applied individually to each

band of the extracted patches. This technique is named Band SNV and is defined in Eq.

(5.6):

X ′
i,j,b = clip

(
(Xi,j,b − µb)

1
3
σb + 1

2

)
(5.6)

Example false-colour image outputs of the data after each preprocessing technique has
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been applied, along with their respective pixel intensity histograms, can be seen in Figure

5.15. The figure shows that each different preprocessing technique offers different enhance-

ments to the patches. As evidenced by the colourful false colour images they produce, both

the band methods have a more even distribution of values across each band, rather than

having one particularly bright band dominate. Both SNV approaches produce histograms

that are much more similar across different patches, which is hypothesised to improve feature

representation between images.

Figure 5.15: ICONES Training Patch Examples
False colour training patch examples with each experimental normalisation technique.

Each patch image contains wavelengths: 460.61nm, 604.01nm, 756.98nm for blue, green
and red channels respectively.

After the normalisation step, Gaussian downsampling was used to generate the LR pair

for the given patch, which is defined in Eq. (5.1):
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Figure 5.16: Normalisation Examples
Example Image of Global Minmax normalisation and Band SNV preprocessing at 1000nm.

A σ value of 1.6986 was selected for k as is done in [118] with 4× subsampling for ↓s. No

noise was added, so the parameter n was ignored.

5.3.2 Experiments

Experiments were conducted on several popular types of deep learning models for hyperspec-

tral single-image SR, incorporating various different architectures and layer types, including

2D and 3D convolution as well as transformers and Self-ONNs, to produce a representative
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evaluation of the proposed preprocessing techniques. The models selected for experiments

were 3DHSRCNN [17], FSRCNN [57], ESSAformer [78] and the GAN model proposed in

[72], which will be referred to as BAGAN. The deeper Fast Super-Resolution Convolutional

Neural Network (FSRCNN) model was selected instead of SRCNN since the ICONES dataset

is far larger than the individual HSI datasets used in the previous section, allowing for use of

a deeper model. FSRCNN also performs feature extraction directly on the input LR patch,

which is more computationally efficient compared to the SRCNN model, which performs

feature extraction on the interpolated LR patch. Building off of the previously proposed

SRONN model, another novel Self-ONN model is proposed which is based on the FSRCNN

architecture and is named FSRONN. This model was proposed to provide a more complex

architecture than the previous SRONN model, which is more suited to the larger ICONES

dataset. Furthermore, the proposed model would allow for a direct Self-ONN to CNN com-

parison with the FSRCNN architecture. To create the FSRONN model, the FSRCNN archi-

tecture was taken and all 2D convolution layers were replaced with 2D self-operational layers,

and the final deconvolution layer was replaced with a self-operational deconvolution layer,

using a q value of 3 for each layer. The PReLU [125] activation functions were replaced with

Tanh activation functions - a necessary modification to ensure that the data passed to each

self-operational layer are bound between -1 and 1 [82]. Since the FSRCNN architecture does

not use any auxiliary network components, any performance gains observed in FSRONN

over FSRCNN can be solely attributed to the use of the self-operational filters.

Each model was trained on the ICONES dataset [1] a total of five times - once for

each preprocessing method. Separate training parameters specific to each model were used,

where the optimiser and loss function were selected from the papers in which the models were

originally proposed, while tailoring the learning rate and learning rate decay step specific

to the conducted experiments. Each model was trained for 1000 epochs, except for the

ESSAformer model, which was trained for 1250 epochs, as it required slightly more time to

converge. The training parameters used for each model remain consistent throughout the
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five training iterations for each preprocessing method. The training parameters used for each

model can be seen in Table 5.10.

Table 5.10: Training Parameters

Model
Learning
Rate

Learning Rate
Reduction Epoch

Optimiser
Loss

Function
Batch
Size

Augmentation

FSRONN 10−3 500 Adam MAE 128 False
FSRCNN 10−3 500 Adam MAE 128 False
ESSAformer 10−4 200 AdamW (5× 10−3) MAE 16 False
BAGAN 10−3 500 Adam BAGAN 64 False
3DHSRCNN 10−3 - Adam WD (10−4) Charbonnier 64 True

During training, patches containing 100x100 pixels with 32 random contiguous bands

were extracted from the original image. This was done for two reasons. First, to select

bands only at indices between 6-103, 117-151, and 173-220, so as not to select any of the

heavily corrupted bands outside these ranges. Second, to reduce the memory requirements

during training. This means that random subsets of the bands were passed to the model

on each forward pass. This is standard practice for models using 3D convolution, as the

band indices themselves do not matter as long as they are contiguous, since the 3D filter will

scan over all bands in the patch, and training with contiguous patches would allow for all

bands to be passed to the model during inference. However, this is somewhat unconventional

for models using 2D convolution or transformer layers, as the channel indices passed to the

model are usually fixed. Nonetheless, the results show that this approach does not seem to

have a significant impact on performance, as the 2D convolution and transformer models

produce results comparable to the 3D models.

For a fair comparison, the normalisation process was reversed on the model’s predicted

outputs when computing the evaluation metrics. This means that all outputs are being

evaluated in the Global Minmax format and will be evaluated with the same target data

ranges. If the normalisation process were not reversed, normalisation methods using more

distributed data ranges would be penalised more heavily in the evaluation metrics for the

same percentage error as a preprocessing technique using a less distributed data range.

Note that the normalised input is always passed to the model and the loss is computed
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using the direct model prediction and the normalised target image. The reversing process

is only applied to the model outputs on the validation and testing data for the evaluation

computation, and of course, the model was still passed the normalised inputs. For the

Global Minmax case, no reversing process was applied because this represents the minimal

preprocessing scenario to which all other normalisation techniques are ultimately reverted

to.

To evaluate how a post-processing task may benefit from the proposed preprocessing

methods, a simple target detection experiment was also performed on a HSI that was super-

resolved using each preprocessing method with its relevant trained model.

5.3.3 Results

The experimental results are presented in Table 5.11. The results are also presented in four

box plots to more clearly compare the overall performance across all models between the

preprocessing methods for each evaluation metric individually. The box plot of the results

can be seen in Figure 5.17. Training and validation plots are also shown in Appendix 7.5.

Target Detection

A small target detection experiment was performed to validate the effectiveness of the

HSI-SR models trained using the standard and proposed preprocessing techniques in a real-

world application. The Indian Pines [114] dataset, shown in Figure 5.4, was selected as it

contains classification labels and is captured with the same type of sensor as the ICONES

dataset used for SR training. The Modified Spectral Angle Mapper (MSAM) [126] method

was used for classification using the mean of the spectra for each class from the original HSI as

the reference spectra. Applying this method directly to the data (without Super-Resolution)

yields an accuracy of 44.28%. The dataset is downsampled using the same process to generate

the LR image pairs during the SR training. The LR pair was then normalised with each

of the preprocessing algorithms used in the SR experiments and then super-resolved using

the 3DHSRCNN model for the appropriate preprocessing technique and the normalisation
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Table 5.11: HSI-SR Data Normalisation Techniques Results

Model Architecture Data Preprocessing SAM ↓ SSIM ↑ PSNR ↑ ERGAS ↓
Band Minmax 1.6871 0.9153 40.8838 3.0151
Band SNV 1.6033 0.9162 41.3423 2.8379

FSRONN Global Minmax 1.9693 0.9126 40.244 3.1355
(589,644) Patch Minmax 1.9447 0.9132 40.7437 3.1104

Patch SNV 2.2215 0.9112 40.8811 3.0916
Band Minmax 1.792 0.9122 40.6766 3.0927
Band SNV 1.7263 0.9132 41.1015 2.9087

FSRCNN Global Minmax 2.1716 0.909 39.8293 3.2507
(196,685) Patch Minmax 2.1139 0.9099 40.5309 3.2337

Patch SNV 2.2494 0.9101 40.8158 3.1092
Band Minmax 2.1599 0.9095 40.413 3.2123
Band SNV 1.8599 0.9143 41.179 2.8732

ESSAformer Global Minmax 4.455 0.8913 37.4466 4.0431
(11,198,368) Patch Minmax 3.0317 0.9038 39.6962 3.4386

Patch SNV 3.1185 0.904 39.9497 3.3514
Band Minmax 1.6305 0.9156 40.8509 3.0175
Band SNV 1.609 0.9166 41.3888 2.8269

BAGAN Global Minmax 2.675 0.9049 38.2925 3.3909
(628,869) Patch Minmax 1.8557 0.9115 40.2405 3.1368

Patch SNV 1.8878 0.9141 40.8661 2.9562
Band Minmax 2.0695 0.9133 40.6961 3.1819
Band SNV 1.6 0.9182 41.3877 2.8113

3DHSRCNN Global Minmax 2.9889 0.8994 38.5912 3.5893
(110,741) Patch Minmax 2.6713 0.9053 39.6063 3.369

Patch SNV 2.5941 0.9078 39.9237 3.1666

Values in green and bold are the two best values for the given metric for each model.
Values in red and italics are the worst values for the given metric for each model.
Values in parentheses under the model names indicate the total number of network parameters.

process was then reversed. Target detection was then performed on the resulting image and

the results are shown in Table 5.12.

5.3.4 Discussion

The results show that the SR models trained on data preprocessed with the proposed Band

SNV method significantly outperform all other approaches in every metric for each model

tested. The Band Minmax method produces better results than the remaining methods,

suggesting that band-wise normalisation is much more effective for HSI-SR than global or
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Figure 5.17: Box Plot of Model Results by Preprocessing Method.

patch normalisation. Conversely, the Global Minmax approach ranks lowest in performance,

a predictable outcome given that this method applies the least processing out of all five

methods. Additionally, the Patch SNV method generally outperforms the Patch Minmax

method, indicating that applying a small amount of noise/outlier removal is beneficial to SR

performance, since both SNV methods outperform their minmax counterparts.

The efficacy of these preprocessing methods can be attributed, in part, to their ability to

provide more uniformly distributed intensity ranges across each image patch. This distribu-

tion leads to a more effective implementation of pixel-wise loss penalties, facilitating better

model learning, as evidenced by the inverse correlation between the average loss values and

the average validation metric values shown in Appendix 7.5. The Global Minmax technique,

which normalises the entire image to a [0, 1] range before selecting a patch, often results in
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Table 5.12: Target Detection Results

Preprocessing Method Accuracy (%)
Base 44.28

Global Minmax 40.03
Patch Minmax 39.21

Patch SNV 40.18
Band Minmax 41.49

Band SNV 41.15

Overall pixel classification accuracy from
MSAM algorithm on images super-
resolved with each different normalisa-
tion strategy.

patches with poorly distributed intensity ranges. In contrast, the Patch Minmax approach

ensures that each patch has a [0, 1] intensity range, although this method does not miti-

gate the impact of high-intensity outliers that can skew the patch’s average intensity. The

application of the Patch SNV method eliminates such outliers, standardising the average

intensity of patches to 0.5 and ensuring a balanced intensity distribution.

However, due to the varying intensity distributions across different bands resulting from

the spectral response of the hyperspectral camera, global or patch normalisation can lead

to certain bands having narrower intensity ranges. This discrepancy causes the model to

disproportionately focus on brighter bands which impose greater loss penalties. The Band

Minmax normalisation strategy addresses this issue by ensuring that the intensity range for

each band is bound to the range [0, 1], allowing the network to focus more evenly on all bands.

Furthermore, the Band SNV approach not only normalises the band data, but also removes

outliers, setting a mean intensity of 0.5 for each band, further improving the uniformity of

the intensity distribution. These variations in intensity distribution are illustrated in Figure

5.15.

In addition to improving pixel-wise loss function utilisation, it is also hypothesised that

the proposed normalisation techniques simplify the problem space by improving feature

representation between images. Making patches share more similar intensity ranges likely

makes it easier for the model to extract more similar features. Furthermore, when outlier
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removal is applied, as is done with the SNV methods, this distribution is less likely to be

skewed. For the band-wise methods, it also means that there is less likely to be a large

variation in intensities between adjacent bands, making it potentially easier for a 3D CNN

model to extract features by not having to adapt to potentially drastic intensity changes.

Furthermore, employing the Standard Normal Variate for normalisation between model

layers has been shown to be very effective for deep learning applications in general [120].

The proposed SNV methods, which are somewhat similar to the Layer Norm [123] and the

Instance Norm [119] operations, provide similar advantages, such as improved convergence

times, training stability and overall performance.

The superior SR performance from the proposed methods also leads to improved accu-

racy in the target detection post-processing experiment. The proposed band-wise methods

offer an accuracy boost of more than 1% compared to the basic global and Patch Minmax

operations, indicating that these methods not only provide superior SR performance, but

this performance boost is useful in a practical setting.

Finally, the proposed FSRONN model outperforms its CNN model equivalent, FSRCNN,

across all metrics for each individual preprocessing technique. This demonstrates the power

of the self-operational filters over the standard convolutional filters for this task. The FS-

RONN model also provides competitive performance with the other experimental models,

although it is hard to identify if this is due to the self-operational layers due to the different

architectural components of the other models.

5.4 Hyperspectral Image Super-Resolution on Real Data

One of the main challenges with SR is that it is particularly challenging to recover the

high-frequency information lost in the LR domain, which makes SR an ill-posed problem.

This issue is further exacerbated by the difficulty of acquiring paired training data. Due

to the absence of paired HSI-SR data, most researchers in this field resort to synthetic

downsampling methods (including the experiments conducted up to this point within this
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chapter), despite their known limitations [115, 116]. This section of the chapter addresses

this issue by evaluating HSI-SR models on real paired datasets acquired in collaboration

with Thomas De Kerf, University of Antwerp, Belgium, and David Dunphy, University of

Strathclyde, Scotland.

5.4.1 Methodology

To estimate the actual improvements in using the real paired datasets over using common

downsampling methods to generate LR data, a diverse group of super-resolution algorithms

were evaluated. Experiments were conducted on the HSI-SR models 3DHSRCNN [17], the

previously proposed SRONN, and the GAN-based model with a band-attention mechanism

propsed in [72] which is referred to as BAGAN. This encompasses a variety of models in-

cluding both 2D and 3D models, traditional and GAN-based frameworks, and Self-ONN

[82].

The models were trained on the real HR and LR pairings, as well as artificial downsam-

pling methods, including bicubic and Gaussian downsampling, as is commonly done in the

HSI-SR community. Bicubic interpolation is defined in Eq. (5.7):

Pout(x, y) =
2∑

i=−1

2∑
j=−1

Pin(x + i, y + j) · f(i) · f(j) (5.7)

where Pout(x, y) represents the output pixel value at coordinates x, y, Pin(x + i, y + j)

represents the input pixels from the 4x4 grid surrounding the location x, y, and f(i) and f(j)

are the cubic functions that determine how much influence each of the surrounding input

pixels has on the final interpolated value of the output pixel.

Gaussian downsampling is defined in Eq. (5.1), which was used in all previous experi-

ments within this chapter. A σ value of 1.6986 was selected for k, following the approach in

[118], to represent how Gaussian downsampling is commonly applied within the community.

Following the method of T. De Kerf [127], an optimised sigma value of 3.206 was used to

examine whether this would offer improved performance. Downsampling using this value is

129



referred to as Optimal Gaussian. 4× subsampling, ↓s, was selected as this is the scale factor

of the true data that would be used for performance evaluation. No noise was added, so the

parameter n was ignored.

Models were trained by both downsampling the real high-resolution image but also by

downsampling the real LR image and using the real LR as the target for training. The

purpose of this was to simulate how super-resolution models are trained using unpaired

images, and then evaluate the efficacy of such a training pipeline to enhance the target images

themselves by enhancing the real LR image and comparing it to the real high-resolution

image. These experiments were named Gausssian and Bicubic Bootstrap. An illustration of

the training data pairs can be seen in Figure 5.18. For all experiments, testing and validation

was always conducted on the test and validation portions of the real HR and LR image pairs,

even when training on the synthetic downsampling configurations, as this represents the real-

world scenario and is the configuration of interest when it comes to evaluation.

Real Downsampled

HR

LR

Figure 5.18: Training Image Pairs (not to scale)

Each model has its own set of unique training parameters, and these parameters were
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kept the same across all experiments on the different downsampling techniques. The original

optimiser and loss function used to train each model when they were first proposed was

selected. The learning rate and the epoch to reduce the learning rate by a factor of 10

was empirically set for these specific experiments. For the BAGAN and 3DHSRCNN modes,

which both use 3D convolution, image patches containing 32 random channels were extracted

and passed to the model during training. For the SRONN model, patches containing all 224

channels were extracted and passed to the model. All training parameters used for each

model can be seen in Table 5.13.

Table 5.13: Training Parameters

Model Channels
Learning

Rate
Learning Rate

Reduction Epoch
Optimiser Loss Function

SRONN 224 10−4 300 Adam MAE
3DHSRCNN 32 10−3 300 Adam WD (10−4) Charbonnier
BAGAN 32 10−4 300 Adam BAGAN

Model performance was evaluated using the PSNR, SSIM, SAM and ERGAS [128] met-

rics.

5.4.2 Results

Of the 31 scenes available for the Lens Dataset, 23 were used for training, 4 for validation,

and 4 for testing.

The experimental results for the Lens Dataset can be seen in Table 5.14 with example

outputs from the best-performing model shown in Figure 5.19.

The results for the Sensor Dataset can be seen in Table 5.15 with example outputs from

the best-performing model shown in Figure 5.20. Due to the large amount of sensor noise

present in the LR images in this dataset, median filtering with a 3x3x3 kernel in addition to

bicubic interpolation was also performed to form baseline metrics on the test data.
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Table 5.14: Lens Dataset Results

Downsampling Method Architecture PSNR ↑ SSIM ↑ ERGAS ↓ SAM ↓
Real1 Bicubic Interpolation 33.5884 0.8746 2.3708 2.504

Real1
BAGAN 35.5471 0.9099 1.8262 3.0494
3DHSRCNN 34.9113 0.8874 1.9729 3.3485
SRONN 35.5815 0.915 1.8211 2.9236

Bicubic2
BAGAN 33.3865 0.8714 2.4137 2.5112
3DHSRCNN 33.116 0.8641 2.4968 2.5447
SRONN 33.472 0.8731 2.398 2.532

Gaussian3

BAGAN 32.4589 0.8674 2.6675 2.6152
3DHSRCNN 32.6106 0.8644 2.6148 2.7109
SRONN 32.792 0.8715 2.588 2.687

Optimal Gaussian4

BAGAN 32.595 0.8766 2.633 4.109
3DHSRCNN 32.595 0.8647 2.602 3.768
SRONN 33.392 0.8894 2.398 3.553

Bicubic Bootstrap5

BAGAN 33.3167 0.8693 2.4386 2.5347
3DHSRCNN 33.0603 0.8625 2.5185 2.5501
SRONN 33.393 0.8715 2.4 2.606

Gaussian Bootstrap6

BAGAN 32.272 0.8612 2.7284 2.8004
3DHSRCNN 32.4324 0.8604 2.6567 2.7927
SRONN 32.685 0.8735 2.609 2.681

Values in bold indicate superior performance to bicubic interpolation.
All test metrics are from the real HR and LR test set.
Downsampling method refers only to the training data.
1 Real: the real HR and LR pair.
2 Bicubic: the real HR paired with the bicubic downsampled HR image.
3 Gaussian: the real HR paired with the gaussian downsampled HR image.
2 Optimal Gaussian: the real HR paired with the gaussian downsampled HR image with a blur
value optimised for this dataset.
5 Bicubic Bootstrap: the real LR paired with the bicubic downsampled LR image.
6 Gaussian Boostrap: the real LR paired with the gaussian downsampled LR image with standard
blur value.

5.4.3 Discussion

The results from both datasets in Table 5.14 and Table 5.15 clearly show that training HSI-

SR models using real low- and high-resolution data pairs significantly improves performance.

Synthetic Downsampling

In the case of the Lens Dataset, the models trained using the synthetic downsampling
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Figure 5.19: Lens Dataset SRONN Outputs.
Left: False-color image with red box indicating input patch location. Middle-left: LR

patch (top) and difference between model predictions and LR patch, highlighting changes
applied. Middle-right: Ground-truth HR patch (top) and SRONN predictions (trained
on real, bicubic, and Gaussian downsampling); PSNR values shown. Right: Pixel-wise
difference between predictions and ground truth to assess accuracy. Colour bars feature

median (black line), 5th and 95th percentiles (dark red/blue), and range (light red/blue).
Bootstrap experiment outputs are omitted for brevity.

processes consistently underperform simple bicubic interpolation when tested on the real

pairing. The only exceptions to this are that the BAGAN and SRONN models show a very

slight improvement in SSIM when trained using the optimal gaussian filter downsampling

method, which itself depended on the real data pairing to get the optimal filter value. Though
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Figure 5.20: Sensor Dataset BAGAN Outputs.
Top: false-colour image with a red-annotated test patch. Smaller images include the
interpolated LR patch (left), BAGAN predictions from the model trained with each

downsampling method on the real test patch (middle), and the original HR patch (right),
each annotated with PSNR values against the HR reference. Heatmaps above prediction

images highlight model enhancements versus the LR input, while those below assess
accuracy against the HR patch, including an LR and HR comparison at the bottom left.
Colour bars indicate median (black line), 5th and 95th percentiles (dark red/blue), and

extremes (light red/blue).
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Table 5.15: Sensor Dataset Results.

Downsampling Method Architecture PSNR ↑ SSIM ↑ ERGAS ↓ SAM ↓

Real1
Bicubic Interpolation 24.704 0.5813 2.266 3.699
Median Filtering & BI 25.633 0.685 2 3.036

Real1
BAGAN 28.349 0.7558 1.567 2.625
3DHSRCNN 28.263 0.7566 1.611 2.745
SRONN 26.481 0.6249 1.953 3.465

Bicubic2
BAGAN 27.657 0.7071 1.682 2.776
3DHSRCNN 25.19 0.6271 2.128 3.313
SRONN 24.701 0.5813 2.267 3.701

Gaussian3

BAGAN 25.998 0.6407 2.033 3.350
3DHSRCNN 23.9923 0.5983 2.437 3.917
SRONN 24.739 0.5818 2.261 3.713

Values in bold indicate superior performance to bicubic interpolation with median filtering.
All test metrics are from the real HR and LR test set.
Downsampling method refers only to the training data.
1 Real: the real HR and LR pair.
2 Bicubic: the real HR paired with the bicubic downsampled HR image.
3 Gaussian: the real HR paired with the gaussian downsampled HR image.

these models still fail to outperform the bicubic benchmark across the remaining metrics.

All other models trained on the synthetic data failed to outperform the bicubic benchmark

across all metrics. These results confirm that training HSI-SR using synthetic downsampling

techniques does not perform well on real data and thereby revealing the necessity of using

real paired images for super-resolution training.

Similar to the results on the Lens Dataset, the models trained using the synthetic down-

sampling processes on the Sensor Dataset consistently underperform the bicubic interpolation

benchmark. Only the BAGAN model outperforms bicubic interpolation with median filtering

when trained on data synthetically generated low-resolution images. This may well be due

to the adversarial loss function used to train the BAGAN model enabling the model to learn

the low-noise distribution of the target high-resolution data and thus producing smoother

outputs when fed a noisy (real) low-resolution input image, enabling better performance

than bicubic interpolation with median filtering due to its denoising capacity rather than

its super-resolution capacity. This is evident in Figure 5.20 as the output patch from the
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model trained with bicubic interpolation produces a PSNR value significantly better than

the low-resolution image and somewhat close to the output from the model trained on the

real pair, but the patch produced is much more blurry than the true high-resolution image

and the predicted output of the model trained on the real data.

Real Data

Contrary to the synthetic downsampling, the models trained using the real high- and

low-resolution image pairs consistently outperform the bicubic interpoplation benchmark by

a significant margin, demonstrating the value of this data. This improved super-resolution

is also evident in Figure 5.19 where the model trained on real data produces a significantly

shaper and more detailed patch than the output of the two models trained using data down-

sampled with bicubic and gaussian downsampling.

Interestingly, the models trained on the real pairing do not outperform bicubic interpo-

lation in terms of SAM and in fact perform worse than the models trained with artificial

downsampling methods for this metric. This could be due to the fact that artificial down-

sampling methods produce a more detailed synthetic low-resolution image than the true

low-resolution image, reducing the complexity of the low- to high-resolution mapping func-

tion learned by models trained with these data compared to models trained on the real

low-resolution image. Thus, when the models trained on synthetically generated low resolu-

tion images are applied to real low-resolution data, they produce smoother and less detailed

outputs, as shown in Figure 5.19 and evidenced by their low spatial metrics. This smoother

output could also lead to ”cleaner” spectra and may be why they produce better SAM val-

ues than the models trained on the real data that are attempting to recover greater spectral

detail. Though notably, these SAM values are still worse than the bicubic benchmark.

The models trained on the real data pair from the Sensor dataset consistently outperform

the bicubic interpolation with median filtering baseline, and also consistently outperform

the models trained with synthetic downsampling techniques by a significant margin, further

demonstrating the value of training using real data pairs.
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The SRONN model performs significantly worse on this dataset than the two other ex-

perimental models, which is most likely due to the 3D filters in the other models being

better suited to tackling the higher levels of noise within the low-resolution patches of this

dataset than the 2D filters used in the SRONN model. Interestingly, the BAGAN model

trained with bicubic downsampling is able to outperform the SRONN model trained on the

real data pair. This is likely due to a combination of the SRONN model’s 2D filters and

the reasons discussed in the previous sub-section. Despite this, all experimental models see

a significant performance improvement across all metrics when trained using the real data

pair over the synthetic downsampling methods.

Optimised Gaussian downsampling

Although the results from the models trained with the bicubic downsampling method

objectively produce better results than the models trained with Gaussian downsampling on

the Lens dataset, the bicubic downsampling methods produce results that are very similar

to the bicubic interpolation baseline. All experimental models contain residual connections

and in the case of the bicubic downsampling methods, models learn to output predictions

very similar to the input as the blank ”Bicubic - LR” patch of Figure 5.19 shows. While

the Gaussian downsampling method produces objectively worse metrics than the bicubic

downsampling method, the non-blank ”Gaussian - LR” patch in Figure 5.19 shows that the

model is in fact changing the input and learning something, though it lacks accuracy as the

”Gaussian - HR” patch of Figure 5.19 reveals. By optimising the σ value used in the Gaussian

downsampling method, the performance of this method improves in terms of spatial metrics

when the models are applied to real data, slightly outperforming bicubic interpolation in

terms of SSIM. However, even with an optimised σ value, the performance of models trained

on synthetic data remains significantly inferior to those trained on real image pairs. This gap

underscores the limitations of synthetic downsampling methods, as they fail to capture the

complexities and nuances of real-world data. Notably, the SAM metric deteriorates further

with an optimised σ value, mirroring the results seen when models are trained on real data
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pairs. This deterioration highlights that, despite efforts to refine synthetic training data,

only real images provide the necessary detail and variability for models to achieve superior

performance, reinforcing the importance of using authentic datasets for effective training.

Bootstrap experiments

The bootstrap experiments presented in Table 5.14 produce fairly similar results to the

standard artificial downsampling experiments, indicating that super-resolution performance

may be translatable to higher scales. However, given that there are residual connections

present in each experimental model and the models do not outperform bicubic interpolation,

it is not conclusive whether or not the models are actually translatable across scales or if

the models in fact just learn to output an image similar to the image interpolated with

bicubic interpolation, making it appear scale-invariant. A model that offers improvements

over bicubic interpolation would be required to draw any firm conclusions on this. Based on

the results, an even lower-resolution data pair would have to be acquired in order to train

the model on a real lower-scale data pair to outperform bicubic interpolation at this scale

before evaluating on the higher scale. Such an experiment and data gathering are left for

future work.

5.5 Summary

In this chapter, the topic of HSI-SR has been explored in depth using a broad array of

datasets. First, HSI-SR was explored on small well-known datasets, as is commonly done

in the literature, where novel Self-ONN models were proposed to improve both SR perfor-

mance as well as parameter efficiency. Furthermore, a study was conducted to determine

how residual connections and various normalisation layers affected performance within these

models.

To further improve SR performance, experiments were then conducted on the much

larger and less commonly used ICONES dataset, consisting of almost 500 HSIs. Novel pre-
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processing techniques were proposed to better prepare the data for training and improve SR

performance on this dataset especially with the proposed Band SNV method. Furthermore,

it was found that this technique not only improves performance, but additionally improves

convergence time and narrows the performance gap between models, reducing the required

model complexity for such a task. Another novel Self-ONN model was proposed for this task,

and this model provided better performance than all other model types when the data were

preprocessed minimally, even in a situation where the model was somewhat ill suited, as the

channel indices passed to the model were not consistent. However, when the novel Band

SNV preprocessing algorithm was used, this performance dominance was reduced and some

other non-Self-ONN architectures were able to outperform the proposed FSRONN model,

revealing the efficacy of the proposed preprocessing method.

Finally, to address the limitations of training SR algorithms using syntheic downsampling

processes, experiments were carried out on a novel dataset acquired in collaboration with

other researchers. This dataset consisted of real high- and low-resolution HSI pairs that could

be utilised during training instead of having to rely on suboptimal synthetic downsampling

processes. Experiments were carried out using both real data pairs and synthetic downsam-

pling processes to artificially generate LR pairs to evaluate how these models trained on

synthetic downsampling processes perform when evaluated on real data. It was found that

not only do models trained with real image pairs significantly outperform models trained

with synthetic downsampling processes, but models trained with synthetic downsampling

processes often fail to even outperform simple bicubic interpolation when evaluated on real

data.
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6 Self-Supervised Cow Identification

Accurate and continual identification of individual cattle from any location holds great po-

tential for the dairy industry. Such systems would allow for continuous monitoring of each

cow, offering valuable insights into health, behavior, feed consumption, and milk production

- key factors in precision dairy farming. This capability not only promotes animal welfare

by enabling early detection and treatment of health issues but also enhances operational

efficiency and profitability. However, in such a scenario, traditional identification methods

such as RFID tags are not feasible as the cows are free-moving and the scanners can only

identify in fixed locations.

This chapter investigates the ways in which cow identification through non-invasive aerial

cameras can be performed in the real-world target domain of the barn shown in Figure 1.1.

This domain is much more challenging than the milking parlour domain explored in Chapter 4

for two main reasons. Firstly, there is far greater variation among images due to the complete

free movement of the cows, allowing for far greater positional variation and difference in the

perspective of the cow relative to the camera, among other factors. Secondly, acquiring a

large labelled dataset for supervised training is not feasible in this domain. This is due

to the fact that a human labeller would have to look at each individual image within the

dataset and make a correct identification of the presented cow out of the 1785 cows in the

farm without any auxiliary information, which is near impossible and highly error prone.

The proposed method for identification is therefore to use images from the milking parlour

domain, where labels can be generated automatically via RFID scanners - to fit a KNN

classifier to make predictions on barn images as Figure 6.1 demonstrates.

In an ideal scenario, models would simply be trained using the supervised datasets in

the easily acquired milking parlour domain from Chapter 4 and directly applied to the

barn domain. However, as will be shown in this chapter, this does not work, and thus

alternative training strategies are explored to perform identification in this domain. This

issue where training a model on data from a source domain (in this case the milking parlour)
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Figure 6.1: Barn Identification Pipeline

- where labelled data are available in abundance - does not perform well on the desired

target domain (in this case the barn) is a common issue and an active area of research

[98]. The most obvious solution is to train on data from the target domain. However, data

from the labelled target domain are not always available in the quantity required to train

a Deep Neural Network (DNN). Thus, labelled data from a similar (source) domain with

abundant availability can be utilised for training. Domain adaptation aims to tackle this

issue by training with a combination of source domain data with either a small amount of

labelled target domain data (supervised domain adaptation) or a large amount of unlabelled

target domain data (unsupervised domain adaptation). In this chapter, barn domain data is

gathered in an automated fashion with weak labels, and two novel data gathering techniques

combined with two novel self-supervised training techniques are proposed to perform domain

adaptation between the milking parlour and barn domains.

The novel contributions of this chapter are listed as follows:

• Self-supervised techniques for real-world dairy cattle identification
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• Automated data gathering techniques for use in self-supervised dairy cattle identifica-

tion training

6.1 Datasets

In this chapter, datasets are collected from barn videos in an automated fashion, exploiting

various YOLO models and preprocessing algorithms to extract individual cow detections

from barn video footage and create an identification dataset. Since there are no RFID

matches to each detection, and human labelling is practically infeasible in this scenario due

to the difficulty of manually identifying any given cow out of 1785 possible cows, there

are no true labels for these barn identification datasets. However, due to the nature of the

proposed data acquisition processes, there are weak labels available which provide contrastive

information about the captures, which will be discussed in more detail in each relevant

dataset subsection.

Since there are no true labels available for any of the barn domain datasets, the milking

parlour supervised CowID-537 and CowID-1785 datasets from Section 4.1 were used for

validation and testing. All training data used in this chapter is gathered from the barn

domain and does not contain any true labels and can be gathered entirely automatically

without any human intervention whatsoever. Meaning that in theory, training data can

continuously be gathered.

All datasets used in this chapter (both unlabelled barn training data and labelled milking

parlour validation/testing data) were acquired from the same farm. However, since the

datasets were all acquired at different points in time, the cows present in each are not

necessarily the same, though there is likely a great deal of overlap. The barn itself contains

100 fish eye cameras with full coverage of the barn and a slight amount of image overlap

between adjacent cameras.

The objective in this chapter is to make predictions based on detections acquired in the

barn domain and connect them to cow detections acquired from the milking parlour domain
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which have corresponding RFIDs.

6.1.1 Barn Dataset

The barn cameras were set to record and save 5 second clips at 50 minute intervals where

all cameras would be recording simultaneously. In an ideal scenario, the cameras would be

recording 24/7; however, this is not practical due to the vast amounts of data that this would

produce.

A YOLOv8 [129] model developed for the general detection of Holstein cattle was used

to extract individual cow detections from each video. The YOLOv8 model also produced

detections for the shoulder and rear of the cattle as basic keypoints, but these keypoints were

not linked to the cow detections and instead were treated as separate detections. On the

assumption that each detection at a given instance in time is a unique cow, the detections for

each camera were saved into a folder corresponding to the time the video was captured. To

prevent multiple detections of the same cow from being saved in each folder, each video frame

was passed to the YOLO model and the detections from the frame producing the highest

number of detections were saved while the detections from the other frames were discarded.

Note, the detections from each camera video for a given capture time would not necessarily

be obtained from the exact same instance in time. However, due to the slow movement

speed of the cows, it is highly unlikely that a cow would be able to transition between

non-overlapping regions of the camera views within the 5 second window, causing multiple

detections of the same cow for the given capture time. To prevent multiple detections of

the same cow occurring in the camera overlap regions, the outer 5% of each video frame

was discarded. The data gathering algorithm is shown in Algorithm 1. With this particular

detection extraction technique, weak labels are generated as all the detections within a given

capture time folder are unique cows, although the RFIDs of each individual cow/detection

are unknown.

In order to reduce the complexity of the problem space and make the barn domain as
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Algorithm 1 Barn Dataset Extraction Algorithm

for each capture time do
Create Save Folder
for each camera video do

for each video frame do
Cut frames by 5% from each side
Get Detections from YOLOv8 Model
if Frame has Most Detections in Video then

Save Detections to Folder
end if

end for
end for

end for

similar to the milking parlour domain as possible, preprocessing was applied to each cow

detection such that they would have the same orientation as the milking parlour images.

Each cow image in the CowID-1785 dataset was facing leftwards, so the keypoint detections

from the barn frames were used to orient the cow detections leftwards. Since the keypoint

detections were not linked to the cow detections, the algorithm detected if there were keypoint

detections present within the cow detection box and used these keypoints. If there was no

shoulder or rear keypoint present within the cow detection, then the detection was discarded.

If there were multiple shoulder keypoints present, then the central most keypoint was selected

as this would most likely be the keypoint belonging to the detected cow. If there were

multiple rear detections, then the rear detection furthest from the shoulder (still within

the cow detection box) was used. Once the orientation of the cow detection was corrected,

the detection was then resized and cropped so that the resulting detection had a height of

100 pixels and a width of 224 pixels, consistent with the dimensions of the milking parlour

images. The preprocessing algorithm is described in Algorithm 2. with an example output

shown in Figure 6.2

However, this preprocessing algorithm was not perfect as there was no way to be sure

that the rear and shoulder keypoints used for the orientation correction were indeed the

correct keypoints for the given cow detection. Although the majority of corrections were
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Algorithm 2 Detection Preprocessing Algorithm

for each cow detection do
Get All Shoulder and Rear Detections with Cow Detection Box
if No rear or shoulder detections then

Discard Cow Detection
else

if Multiple Shoulder Detections then
Select Central Most Shoulder Detection

end if
if Multiple Rear Detections then

Select Rear Detection Furthest from Shoulder Detection
end if
Use Shoulder and Rear Detections to Correct Orientation
Resize and Crop Detection to 224x100 Pixels

end if
end for

Figure 6.2: Barn Dataset Example Images
Example output of a folder of images acquired using algorithm 1 at a given instance in

time and preprocessed using algorithm 2.
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good, this drawback resulted in a small percentage of poor corrections.

6.1.2 Barn Track Dataset

To improve upon the non-keypoint YOLOv8 model used for the barn dataset that detected

the shoulder and rear of a cow using bounding boxes, a YOLOv8 keypoint model was devel-

oped by the industrial sponsor, Peacock Technology Limited. In addition to cow bounding

box detections, this new model produced proper keypoints for the rear and shoulders which

were associated with the given cow detection instead of being treated as separate, unlinked,

detections. This greatly improved the reliability of the preprocessing algorithm. Further-

more, a DeepSort [130] tracking model was used in conjunction with this YOLOv8 keypoint

model so that cow detections could be tracked between frames to exploit more of the data.

For this dataset, 30 second clips were captured across all cameras at 6 hour intervals,

again with all cameras capturing simultaneously. Each video was processed with the YoloV8

keypoint model and DeepSort track model, where 5% of the video was cropped from each

side to avoid any overlap between videos. For each time instance, a new folder would be

created. Each camera video for said time instance would be processed and a folder for each

cow detection occurring within the first 3 frames would be created. These detections would

be tracked throughout the video and the detections would be saved every 5 frames to its

corresponding folder until the video was complete or the track was lost. Any new tracks

after the first 3 frames would not be saved as there was no way of knowing if the new track

was indeed a new cow, or a previously lost track, meaning that there would potentially be

duplicate track folders for a given cow. Finally, any tracks with less than 4 images were

discarded. The full algorithm is described in Algorithm 3. The detections acquired via this

algorithm were again preprocessed with the algorithm described in Algorithm 2.

Since it is assumed that each track is a different cow for a given time instance, this dataset

also contains weak labels as each track is different, but there are no RFIDs corresponding to

the tracks. However, each track has multiple images which can be exploited during training.
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Algorithm 3 Track Dataset Extraction Algorithm

for each time instance do
Create Save Folder
for each camera video do

for each frame in video do
Get Detections & Keypoints from YOLOv8 Model
Track Detections with DeepSort
Save Tracks Originating from 1st 3 Frames

end for
end for

end for

6.2 Domain Transfer Analysis

The best milking parlour cow identification model developed in Chapter 4, SE ResNeXt 32,

was used to perform embedding analysis. A small portion of data was gathered from the

target farm barn cameras where cow tracking data was collected and extracted from the

footage in a similar manner to way in which the Barn Track Dataset was acquired. The

data were then manually matched to 28 RFIDs from the CowID-1785 dataset where each

RFID contained a varying amount of images. The matching process was extremely difficult

and time consuming, as each barn cow would need to be manually compared to all 1785

milking parlour cows, which combined with the great difference in appearance between the

barn and milking parlour captures, made this process extremely challenging. Therefore, this

small portion of labelled barn data was only used for domain transfer analysis and final

testing of the trained models. Examples of the labelled barn data alongside their milking

parlour captures can be seen in Figure 6.3. The labelled barn data was embedded using the

best performing supervised model from Chapter 4 together with the milking parlour images

for the corresponding RFIDs. These embeddings were reduced to two dimensions using T-

distributed Stochastic Neighbour Embedding [131] and plotted to examine the clustering

capacity of the trained model in both the milking parlour and the barn domains, which can

be seen in Figure 6.4.

The figure shows that model has excellent clustering capacity on the milking parlour
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Figure 6.3: Example Labelled Barn Captures
(left) next to the milking parlour capture for the same cow (right).

images it was trained on and has reasonably good clustering capacity on the barn images,

though not as good as the milking parlour. The key takeaway from the figure, however,

is the poor overlap between the embeddings from the different domains, revealing that the

model performs poorly in terms of producing well-clustered embeddings across domains.

To further analyse this model’s cross-domain performance, the accuracy on the labelled

barn data was computed in the same way accuracy was calculated for the experiments
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Figure 6.4: Supervised Model Embeddings Plot
Milking Parlour and Barn domain image embeddings from the supervised model. Point
shapes represent different classes (though shapes are repeated across classes due to the

limited number of shapes available)

conducted in Chapter 4. The images from the CowID-1785 dataset were embedded and used

to fit a KNN classifier. The embeddings from the labelled barn data were classified using a

K value of 3, 5 and 7 and the results from the best K value are reported in Table 6.1.

The results from Table 6.1 reveal that there is a huge deterioration in identification
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Table 6.1: Supervised SE ResNeXt e32 Model Performance on La-
belled Barn Data

Dataset NN Accuracy (%) F1 Score Silhouette
CowID-1785 7 99.73 0.9973 0.7899

Barn Identification 7 30.09 0.393 0.4514

performance when a model trained on milking parlour data is applied to barn data, falling

from over 99.7% accuracy to less than 30.1%. This performance deterioration highlights the

need for an alternative training strategy if identification is to be performed effectively in the

barn setting.

6.3 Self-Supervised Similarity Learning-Based Training Algorithm

Most self-supervised algorithms learn from different parts or augmented views of the same

image. However, to prevent representation collapse [132], such methods rely on either an

online teacher network or negative sampling. Methods using the latter encounter issues to

do with the negative sampling process and additionally do not guarantee that the negative

samples are, in fact, from a different class. Due to the nature of the acquired barn dataset

where all detections at a given instance in time are assumed to be different cows, negative

examples which are guaranteed to be from a different class can be sampled from this unla-

belled dataset. A novel self-supervised algorithm is proposed that takes advantage of this

property of the barn dataset. The proposed algorithm samples batch images acquired from

the same instance in time, guaranteeing that all samples are of different cows given that a

cow cannot be in more than one location at given time. Positive pairs are generated via aug-

mentation where these samples are utilised in the triplet loss function defined in Eq. (2.18)

as represented in Figure 6.5. The proposed algorithm alleviates the issues encountered with

alternative random negative sampling strategies, while also avoiding reliance on a student

teacher framework. Furthermore, the training objective is similar to the supervised objective

from Chapter 4, allowing for off-the-shelf classification evaluation without finetuning.
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Figure 6.5: Proposed Self-Supervised Algorithm
Barn camera frame passed to YOLO model to detect cows present. Detections then

preprocessed and utilised in training where the anchor detection is augmented to create the
positive pair.

6.3.1 Methodology

To ensure that each image contained within a batch was a unique cow, any given training

batch was formed using data from a single capture time, where 25 detections were randomly

selected. Note, the triplet loss function does not require information on the specific classes;

rather it only requires knowledge about which samples are the same or different in the current

batch, therefore, the specific RFIDs do not matter, only that each cow is different and has a

unique label which can be randomly assigned. Each image was then randomly augmented 3

times using the augmentations from Table 4.2 to create a selection of potential positive pairs

where the augmented images share the same random label as the original. This created

a total batch size of 100 images with four images per cow (original plus three randomly

augmented images). Online triplet mining [34] was then applied to select the most difficult

triplet combinations with a margin greater than 0.5. In every epoch, each time instance

would be iterated over once where a batch would be formed by randomly selecting 25 images

from that time instance and applying the mentioned augmentation strategy.

The training parameters for the self-supervised experiments were selected based on the

experiments conducted on the CowID-1785 dataset from Chapter 4 due to the similarity

between the applications. Most parameters were kept the same including the use of the
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Table 6.2: Self-Supervised Algorithm Training Parameters

Parameter Value
model SE ResNeXt50

triplet margin 0.5
triplet selection strategy hard

optimiser AdamW (lr 0.001, weight decay 0.005)
lr decay step 500

chances 300

hard triplet loss function with a triplet margin of 0.5, the AdamW optimiser with weight

decay 0.005 and an initial learning rate of 0.001 which was decreased by a factor of 10

at epoch 500. Due to the validation set being of a different domain to the training data,

the validation accuracy did not increase as steadily as the validation accuracy from the

experiments in Chapter 4. Therefore, each experiment was given 300 epochs (50 more than

the experiments in Chapter 4) to improve upon the previous best validation accuracy before

termination, to account for this increased variance. The SE ResNeXt50 model was selected

for experiments as this was the best performing model from Chapter 4. Since there were

no previous experiments conducted in this problem space and the best embedding size was

unknown, an embedding size of 128 was used for these experiments, as this is the default

embedding size used in [34]. The parameters used during training are summarised in Table

6.2.

Experiments were carried out on different combinations of data quantity and capture

areas to evaluate the ways in which different portions of the barn affect performance. Data

was captured from the right side of the barn where the cows are both lying down and

standing, the middle of the barn, where the cows are mostly standing but far more congested,

and from the entire barn. Data was captured for varying amounts of time to produce

varying amounts of batches (capture instances) and each batch was processed to produce

the maximum amount of detections possible as defined in Algorithm 1.
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6.3.2 Experimental Results

Given that the acquired barn datasets used for training do not contain labels, portions of

this data could not be used for validation and testing. Therefore, the CowID-1785 dataset

from Chapter 4 was used for validation and testing as this is a fully labelled dataset that

can be used to produce evaluation metrics. The experimental results can be seen in Table

6.3.

Table 6.3: Self-Supervised Training Algorithm Results

Version Area Images Batches Avg Images/Batch Accuracy (%)

1 Right 4373 121 36.14 16.513
2 Right 12968 353 36.74 30.254
3 Middle 613 4 153.25 1.972
4 Middle 9288 78 119.08 30.975
5 Middle 30092 237 126.97 46.16
6 All 15330 58 264.31 39.412
7 All 33811 137 246.8 45.531
8 All 55573 224 248.09 49.785
9 All 79371 312 254.39 51.127
10 All 95726 374 255.95 52.063

Results presented in this table are from models trained on the Self-
Supervised dataset and evaluated on the CowID-1785 dataset. Therefore,
all metrics presented are from the CowID-1785 dataset since there are no
labels for the Self-Supervised dataset.

Experiments were also performed using BYOL [91] - a popular self-supervised training

method which uses two augmented views along with the student teacher network framework

for training. Comparison to other common self-supervised methods could not be done due to

either resource constraints from the extremely large batch sizes required [89, 90] or the algo-

rithm’s inherent design for transformer architectures [94, 95, 96, 97], making it incompatible

with the experimental CNN architectures.

Since BYOL does not take negative samples into consideration random samples were

selected for each minibatch without consideration of the capture time. BYOL produces

two augmented views of each training sample so 50 random samples were passed to the

model at any given time, equating to a total batch size of 100 to remain consistent with the
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Figure 6.6: Barn Dataset Performance Trend

experiments on the proposed self-supervised algorithm. The same augmentation strategy

used on the proposed self-supervised algorithm was also employed to remain consistent. The

results can be seen in Table 6.4.

Table 6.4: Self-Supervised Method Test Accura-
cies on the CowID-1785 Dataset

Version Method Accuracy (%)

BYOL (reg aug)
5 (Middle) BYOL 4.549

Proposed 46.16
10 (All) BYOL 7.397

Proposed 52.063

6.3.3 Discussion

The results in Table 6.3 show that using data extracted from all cameras in the barn produces

the best results, which is somewhat unsurprising as this produces the largest quantity of data.

However, the middle portion of the barn produced the best results relative to the number
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of images captured, as the results from version 5 outperform the results from version 7

with fewer images. This could be due to the fact that the cow detections from the middle

of the barn are more closely related to the milking parlour images used for evaluation, as

the cows are predominantly standing in both domains. Finally, the results from the right

side of the barn produce the worst results, which is likely due to a combination of a low

number of detections per batch and the fact that the cows in this portion of the barn

are predominantly lying down, increasing the domain gap between the target barn domain

and the milking parlour source domain. The results indicate that if there are no storage

constraints, then capturing data from the entire barn is the best strategy, though, if there

are memory constraints, then the middle portion of the barn offers the best performance

relative to the number of images available.

The results from Table 6.3 are plotted in Figure 6.6 which shows the performance of each

capture region relative to the number of batches used. The plot reveals that the performance

begins to plateau as the number of batches increases, indicating that the potential perfor-

mance of this technique is limited. This is likely due to the limited variation that augmented

positive pairings can produce. This means that the models produced by this approach likely

have a strong discriminative ability due to the negative pairings, but likely have limited

clustering ability on real samples due to the absence of true positive pairings.

However, the comparison between the proposed self-supervised algorithm and BYOL

shown in Table 6.4 reveals that the proposed algorithm performs far better than BYOL. This

is likely due to the use of negative samples enhancing the model’s discriminative ability, as the

negative sampling is the key difference between the two algorithms here. BYOL is therefore

likely not able to effectively separate different class clusters, resulting in its exceptionally

poor performance, so the proposed introduction of the negative sampling strategy provides

a remarkable improvement.
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6.4 Self-Supervised Similarity Learning-Based Training with Track-

ing Data

To address the limitations of the initial proposed self-supervised training algorithm’s clus-

tering ability, a tracking model was incorporated into the data extraction process so that

multiple detections for a given cow could be extracted from the video data, allowing for the

use of real positive pairs during training. The use of real positive pairs allows the model to

encapsulate the true variation between samples of the same class and learn their similarities.

Since the extracted track IDs do not correspond to any RFIDs and are not matched between

the capture time instances, individual training batches were again formed using data from a

single capture time as demonstrated in Figure 6.7.

Figure 6.7: Proposed Self-Supervised Track Algorithm
Barn camera frames passed to YOLO model to detect cows present. Detections then

preprocessed and utilised in training. The positive pair is selected from a different frame
using the track ID of the anchor detection.

6.4.1 Methodology

To form a given training batch, 25 tracks were randomly selected from a given capture

time and 4 images from each track were selected, similar to the batch formation done in

Chapter 4. The triplet loss function was again used so that the known difference in classes

associated with each individual track could be exploited to prevent representation collapse
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during training. Since positive pairs are sampled from track IDs, augmentation is not a

necessary step within this algorithm. The less strict augmentation strategy used in Chapter

4 was therefore used again here to enhance training performance, where the augmentations

from Table 4.2 are applied to each batch image with a probability of 80%.

Since the results from Table 6.3 show that using data from the entire barn is most effective,

tracks acquired in all regions of the barn were used during training. The same training

parameters in Table 6.2 were used. To investigate the efficacy of Self-ONN models in this

task, experiments were conducted on the SE ResONeXt50 model proposed in Chapter 4 along

with the regular SE ResNeXt50 model. Embedding sizes of 128 and 32 were also explored

to examine how this affects performance. The standard ResNeXt model was excluded from

experiments as the results from Chapter 4 show that the SE variant was superior.

The AdamW optimiser was again used with an initial learning rate of 0.001. Due to the

self-supervised nature of the initial self-supervised algorithm, it was observed that training

was less stable than the supervised experiments conducted in Chapter 4, making it partic-

ularly challenging to set a good learning rate decay epoch. The learning rate scheduling

technique proposed in [133] was therefore selected since it uses cosine annealing with warm

restarts, eliminating the need to set a decay step. The triplet loss function was of course

used and the margin parameter was again set to 0.5.

6.4.2 Experimental Results

All models are trained on the Barn Track Dataset and evaluated on both the CowID-1785

dataset and the small portion of manually labelled barn data, where the CowID-1785 images

are used as the reference embeddings for classification, therefore matching the barn images

to the milking parlour domain. The experimental results are presented in Table 6.5. While

at first glance these results may appear subpar, especially compared with the results from

the earlier supervised model, it is worth noting that training in a self-supervised manner is

far more challenging than training in a supervised manner, especially when evaluating on a
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supervised objective. Furthermore, the self-supervised models are not trained on any milking

parlour data and therefore have no prior knowledge of this domain, so it is a somewhat unfair

comparison of these models to the supervised model that has been trained in a supervised

manner on data from this domain. Taking this into consideration, the results are much

stronger than they may appear at first glance.

Table 6.5: Self-Supervised Track Model Performance on Labelled Barn Data.

Model
Milking Parlour Identification Barn Identification

NN
Accuracy

(%)
F1

Score
Silhouette NN

Accuracy
(%)

F1
Score

Silhouette

Supervised Model 7 99.73 0.9973 0.7899 7 30.094 0.393 0.4514

SE ResNeXt 32 3 62.938 0.6278 -0.0066 3 22.96 0.2786 0.6747
SE ResONeXt 32 q3 3 53.015 0.5286 -0.0565 5 15.473 0.2097 0.4312

SE ResNeXt 128 3 63.548 0.6342 -0.01172 3 14.122 0.1875 0.6509
SE ResONext 128 q3 3 51.398 0.513 -0.05949 3 17.645 0.214 0.6374

Results presented in this table are from models trained on the Self-Supervised Track dataset and
evaluated on the CowID-1785 dataset along with the small portion of labelled barn data.
The reference embeddings for both evaluation sets are generated from the CowID-1785 dataset. There-
fore, the barn identification data is being compared against embeddings from the milking parlour do-
main.

6.4.3 Discussion

The results show that the performance of the self-supervised models drops considerably

compared to the supervised model on the CowID-1785 dataset. However, this is expected

as the supervised model has been trained specifically for this task and from data within

the same domain, so the performance of the self-supervised models is still fairly good on

this dataset considering the models are not trained with strong labels or data from this

domain. Interestingly, the barn identification performance also drops considerably with the

self-supervised models when compared to the supervised model. This is likely due to the lack

of knowledge of the milking parlour domain since images from the milking parlour are used to

produce the reference embeddings for the KNN classifier and the model struggles to embed

the barn images in regions close to the correct milking parlour images for classification. The

supervised model has the opposite problem, where the lack of knowledge of the barn domain
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also makes it hard to embed the barn images close to the correct milking parlour images.

Though, as the results show, it is slightly more effective at doing so than the self-supervised

methods. This is likely due to the supervised milking parlour dataset containing far greater

positive pair variation since the data is captured across several different days, encapsulating

many different conditional variations such as lighting conditions and cow positions. While the

barn datasets are also captured across several days, positive pairs can only be formed across

a very narrow window of time as they must be formed from the same short video clip which

will not capture much variation in the cow’s position or the lighting conditions. Significantly

extending the clip length would likely improve performance, but would require the additional

capability to be able to track cows between cameras, which is left for future work. However,

the self-supervised methods do improve the clustering performance on the barn domain,

as evidenced by the increase in barn identification silhouette score when compared to the

supervised model (with the exception of the SE ResONeXt 32 q3 model), indicating stronger

discrimination power in this domain, although it still fails to match the embeddings to the

milking parlour domain. The poor silhouette score of the supervised model in the barn

domain compared to the barn models is probably due to the absence of barn data during

supervised training, demonstrating the value of using barn data in training.

Performance on the CowID-1785 dataset improves significantly compared to the first self-

supervised method that does not take the tracking information into account, which demon-

strates the value of using real positive pairs for training instead of relying on augmented

views.

The main weakness with the methods presented is that there is no cross-domain supervi-

sion, meaning that there is no loss constraint to enforce learning of the desired objective to

match embeddings from the barn domain to the milking parlour domain for identification.

This absence of cross-domain supervision makes it very difficult for the model to learn the de-

sired objective and consequently results in no barn identification performance improvement

over models trained in a supervised fashion on only milking parlour domain data, which
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suffer the same problem. To overcome this issue, it is likely necessary to acquire properly

labelled barn data. Despite the lack of improvement in barn identification performance,

the relatively high milking parlour identification performance suggests that the proposed

self-supervised methods may make a good pretraining step for milking parlour identification

models.

Both Self-ONN models perform significantly worse than their CNN equivalents on the

CowID-1785 dataset. This is potentially due to their more complex non-linear filters pro-

ducing a more highly tailored function for the training domain that does not transfer over

to different domains as easily as the simpler linear filters of a CNN. The results between

Self-ONN and CNN are more mixed, where the smaller embedding CNN model performs

best, though both Self-ONN models perform better than the larger embedding CNN model.

However, the small size of this dataset combined with the great difficulty of matching em-

beddings across domains for the evaluation of this dataset likely introduces a lot of variance

into these results. Since the CNN models have a higher average performance on this dataset

than the Self-ONN models, this suggests that the CNN models are better suited to this task,

though performance is still poor across both types of models, again likely due to the absence

of cross-domain supervision.

6.5 Summary

This chapter explored the use of self-supervised training techniques to address the problem

of identifying individual cows in a challenging barn environment. Traditional supervised

training using milking parlour images proved ineffective in the barn domain due to a signifi-

cant domain gap, as evidenced by a notable drop in identification accuracy. To address this

issue, two novel self-supervised training pipelines were proposed that leverage the unique

properties of barn data. More specifically, the proposed self-supervised techniques exploit

weak labels obtained from time-synchronised detections and tracking information to improve

training efficacy.
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The first method used temporal information to ensure negative pair sampling, combined

with standard augmentation to generate positive pairs, enabling effective similarity learn-

ing without the need for a teacher-student framework. Although this approach showed

promising improvements over existing methods such as BYOL, its ability to learn intra-

class variation was limited due to its reliance on augmented positives alone. The second

approach addressed this issue by introducing tracking data to form real positive pairs, which

significantly improved performance on milking parlour data and enhanced clustering within

the barn domain. However, neither method yielded an improvement in cross-domain barn

identification performance compared to supervised models trained solely on milking parlour

data. This is likely due to the absence of a cross-domain constraint in the objective function,

which is also lacking in the supervised milking parlour models.

Overall, while the proposed self-supervised methods demonstrate strong potential and

enable fully automated dataset collection and training, their effectiveness in barn identifi-

cation remains constrained by the lack of a cross-domain objective during training. The

methods offer a valuable cow identification pretraining step due to the automated nature

of data gathering, making them easily scalable, and they significantly outperform existing

self-supervised techniques. An interesting direction for future research would be to integrate

data from both barn and milking parlour domains and introduce a cross-domain constraint

in the objective function to bridge the domain gap more explicitly.
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7 Conclusions

The aim of this thesis was to develop novel techniques to enhance deep learning performance

in various challenging image processing applications. Significant contributions were made

to several aspects of deep learning, including data preprocessing, model architecture, and

training algorithms, specifically applied to cow identification and Hyperspectral Image Super-

Resolution, offering substantial advancements in each area.

Chapter 4 explored the use of similarity learning to train cow identification models.

The properties of embeddings models produced by this technique were leveraged to perform

classification on new classes. Novel analysis was performed to evaluate the models’ perfor-

mance on these new classes, simulating the scenario where new cows are introduced to a

herd. In this Chapter, Self-ONN models were proposed to improve the parameter efficiency

of the identification models by extending each filter to more powerful non-linear variants,

significantly reducing the number of filters required to achieve similar performance. Novel

Self-ONN models were also proposed in Chapter 5 to improve HSI-SR performance in a

number of scenarios. Additional preprocessing techniques were proposed to further improve

performance and analysis was conducted on a novel dataset gathered in collaboration with

other researchers. In Chapter 6 novel self-supervised techniques were proposed to exploit

weak labels present within data extracted from dairy cattle barn video footage to address

the issue of barn identification. Two variants were explored where the first used an object

detection model to generate weak labels and greatly improve self-supervised training perfor-

mance over the popular BYOL technique, and a second variant which incorporated tracking

information was also proposed to further improve performance.

This chapter draws several conclusions about the work presented in this thesis and sug-

gests several directions for future research.
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7.1 Image Classification with Similarity Learning

Chapter 4 focused on supervised learning approaches for cow identification in the relatively

controlled milking parlour setting, where it is easily feasible to acquire labelled data. The

results demonstrated exceptional performance in this setting, particularly when evaluating

on the same cows used for training. Novel new class analysis was conducted on a reserved

group of cows not present within the training set to simulate the scenario of new cows being

introduced to a herd and examine how a production identification model might perform

on these cows without retraining. Performance was found to be high on new cows the

model has not been trained on, though a slight drop in performance was observed when

compared to identification performance on cows present within the training set. This finding

reveals that it is not necessary to retrain the identification model every single time a new

cow is introduced to a herd, making the deployment of the identification models presented

in this thesis much more practical than models trained with more traditional classification

techniques which would necessitate retraining after every new cow introduced.

In addition to retraining frequency, another important practical consideration for iden-

tification models is the computational cost per identification, particularly in large barns.

To address this consideration, various Self-ONN models were also proposed in Chapter 4.

Self-ONN models extend the standard linear filters of a CNN to learnable non-linear func-

tion approximators, increasing their theoretical ability to learn complex non-linear functions.

While this additional non-linear complexity introduces additional network parameters per

filter, it was found that the overall number of filters the network requires can be reduced

to achieve similar performance to an equivalent CNN identification model. The reduction

in filters meant that the proposed Self-ONN models contained ∼30% less parameters and

consequently this reduces the computation cost each time identification is performed.
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7.2 Image Enhancement with Non-Linear Filters and Improved

Preprocessing

Chapter 5 focused on exploring techniques for the challenging application area of HSI-SR,

proposing several different techniques to address the various challenges associated with this

area on a variety of datasets. Building off the parameter-efficient Self-ONN models pro-

posed in Chapter 4, novel Self-ONN models were also proposed for this task, improving both

parameter-efficiency as well as SR performance. First, a novel Self-ONN variant of the popu-

lar SRCNN model was proposed for use on small HSI datasets. The proposed SRONN model

was found to consistently outperform the SRCNN model, especially when a global residual

connection was incorporated into the model. However, due to the increased non-linear com-

plexity of the proposed SRONN model, the model contained significantly more parameters

than its SRCNN counterpart. To address this issue, another variant of this model, named

sSRONN, was proposed, which contained four times fewer filters per layer than the initial

SRONN and consequently contained significantly fewer parameters than the base SRCNN

model. It was found that the proposed sSRONN model also consistently outperformed the

SRCNN model and in some cases even outperformed the full SRONN model, demonstrating

the power of the Self-Operational layers used within the models. Various normalisation lay-

ers were also incorporated into the proposed models to try to further performance, though

this was found to have little effect.

Experiments were then carried out on the much larger ICONES dataset, although this

dataset introduced new challenges due to the size and complexity of the dataset. Therefore,

novel preprocessing algorithms were proposed to address these challenges. Several novel

algorithms were proposed that incorporated the standard normal variate – a normalisa-

tion technique commonly used to normalise data between DNN layers – and provide small

amounts of outlier removal to the data. A broad range of models were selected for exper-

imentation, including a novel Self-ONN variant of the FRSCNN model, named FSRONN.

With no normalisation techniques applied to the data, significant performance gaps were ob-
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served between the various models. However, when the proposed normalisation techniques

were applied, it was found that not only does each model see a performance gain, but also

the performance gap between the models was significantly reduced, indicating that the com-

plexity of the problem space is significantly reduced when using the proposed normalisation

techniques and by doing so, less powerful model architectures are required to achieve better

performance. Furthermore, it was also found to be more effective to normalise each band in a

given patch individually rather than normalising the entire patch. This indicates that band-

wise normalisation better handles the data variations between bands, improving the quality

and consistency of the data, and making it easier for the models to extract the necessary

features from the data.

The previously mentioned experiments in Chapter 5 were conducted on publicly available

HSI datasets, where low-resolution training pairs were required to be synthetically generated.

However, synthetic generation of low-resolution pairs imposes several assumptions on the

complex real high- to low-resolution relationship – something that has been shown to be

detrimental to performance in the RGB-SR field. To address the limitations of training

HSI-SR models on synthetically downsampled data, a novel HSI dataset was gathered in

collaboration with two other researchers, which consisted of real high- and low-resolution

HSI pairs for experimentation. Experiments were conducted by training models both on

the real high- and low-resolution image pairs, but also by synthetically downsampling the

high-resolution image to simulate the low-resolution generation process commonly used in

the field. All experiments were evaluated using the real high- and low-resolution image

pairs to evaluate true super-resolution performance and it was found that models trained

using synthetic downsampling processes failed to outperform simple bicubic interpolation

when applied to real data in the majority of cases. However, when training using real data

pairs, models significantly outperform bicubic interpolation, revealing the importance of

training with real data. For the experiments, a broad range of models were used including

deep CNN architectures in addition to the shallow SRONN model proposed earlier in the
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Chapter. It was found that the proposed SRONN model outperformed other larger and more

complex CNN models on the noise-free lens datasets, again demonstrating the power of the

non-linear filters within Self-ONN models. Interestingly though, the other experimental

models were found to outperform the proposed SRONN model on the sensor dataset. This is

likely due to the higher noise levels present within the low-resolution sensor making it more

challenging for the shallower SRONN model to extract and map the features from the low-

resolution sensor to the high-resolution sensor compared to the other deeper CNN models.

Furthermore, the CNN models used in the experiments contained 3D filters which perhaps

allowed them to more easily extract features from the noisy data than the 2D SRONN model,

though further analysis is required to draw any firm conclusions on this. However, although

the SRONN model did not preform as well in this case, it offers a significant performance

improvement in the case where the low- and high-resolution images contain the same noise

characteristics, despite only operating in two dimensions and being architecturally simpler

than the comparison CNN models.

7.3 Self-Supervised Cow Identification

The cow identification models developed in Chapter 4 perform extremely well when iden-

tifying cattle in the milking parlour domain – the same domain used to train the models.

However, it is also valuable to agritech applications to be able to perform identification in a

free moving barn. It was found that the identification models trained on milking parlour do-

main data were not transferable to the barn domain due the increased complexity of the barn

domain. Furthermore, barn domain data cannot be labelled using RFID scanners, making

acquiring labelled barn data for training practically infeasible. Chapter 6 addressed these

challenges by proposing novel self-supervised algorithms to take advantage of the large quan-

tities of unlabelled data available. The proposed methods leverage the inherent weak labels

resulting from the proposed data acquisition processes to produce triplet combinations. The

first unsupervised algorithm proposed leveraged an object detection model to extract cow
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detections from the barn camera footage and worked off the assumption that all detections

at a given instance in time were unique cows and could therefore be used to form negative

pairs for the triplet loss function. Positive pairs were formed by augmenting each detection,

similar to the popular BYOL algorithm. The proposed algorithm was found to significantly

outperform the comparison BYOL algorithm due to its significantly improved discriminative

ability resulting from the negative pairs used in training. However, it was also found that

performance begins to plateau with this algorithm as more training data is added, which was

hypothesised to be due to the lack of variation captured in the augmented positive pairs. To

address this limitation, a second variant of the algorithm was proposed which incorporates a

tracking model to match cow detections between frames in short video footage, allowing for

positive pairs to be formed using multiple frames from the same detection and not having

to rely on augmentation. This variant of the algorithm was found to boost identification

accuracy by over 10%.

Experiments were also conducted on the Self-ONN models proposed in Chapter 4. How-

ever, it was found that these models performed significantly worse than their CNN equivalents

in this scenario. This is likely because the non-linear filters caused the Self-ONN models to

be more tailored to the barn training domain and less generalisable to the milking parlour

domain used to generate the test metrics. Since the CNN filters are simpler, they are likely

slightly better suited to making the domain jump to boost evaluation performance, though

further research is required to draw any firm conclusions on this.

The self-supervised algorithms were found to significantly outperform the BYOL self-

supervised method, which does not take advantage of the weak labels present within the

proposed data extraction methods. It was found that incorporating the tracking informa-

tion into this algorithm provides a significant boost to performance on the milking parlour

dataset over the method that uses detections alone. However, it was found that barn iden-

tification does not improve with this method over the supervised models from Chapter 4.

This may be due to the very limited size of the barn identification test set, though it is
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most likely due to the absence of cross-domain supervision, making it challenging to learn

the desired objective. Despite this, the proposed algorithms show promise on the milking

parlour evaluation, suggesting that they may make a valuable scalable pretraining step for

supervised identification models.

7.4 Further Work

Despite the fact that the results presented in Chapter 4 may make it seem like cow identifica-

tion in a milking parlour environment is a solved problem, there is still potential for further

optimisations. One such example is the model size. The fact that the models using smaller

embedding sizes presented in Chapter 4 outperformed the models with larger embedding

sizes, particularly on new cows, suggests that reducing the model size or complexity may

provide generalisation benefits and may even improve cross-domain performance. Further-

more, another interesting direction for research would be to explore augmentation techniques

to improve cross-domain performance, potentially allowing for milking parlour models to be

transferrable to the barn domain, which also relates nicely to the work presented in Chapter

6.

An empirical observation made throughout the work conducted in this thesis is that Self-

ONN models are generally more challenging to train and require more careful hyperparameter

tuning. Another valuable direction for future work would be to address this increased training

difficulty, perhaps through the use of regularisation terms or more advanced optimisers.

Additionally, it would be interesting to explore the use of 3 dimensional Self-ONN filters

for HSI-SR models to see if this offers performance improvements to Self-ONN in the same

way that 3D filters offer improvement to CNN models. Of course, this comes with memory

consumption challenges, and so may necessitate novel computation methods for such 3D

Self-ONN layers.

Although the proposed self-supervised algorithms in Chapter 6 offer a valuable pretrain-

ing step to train identification models using easily attainable large quantities of unlabelled
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data, there is still a great deal of room for improvement when it comes to barn identification

via similarity measurements between barn images and milking parlour images. The proposed

self-supervised algorithms do not exploit the milking parlour data available, so a promising

direction for future work would be to leverage data from both domains during training using

domain adaptation techniques. Though, of course, the obvious challenge with this is acquir-

ing the labels for the barn domain. Therefore, a potentially promising route would be to

explore a human in the loop approach which attempts to predict IDs from the unlabelled

barn data while training on the labelled milking parlour data and have these predictions

verified by the human. When a correct prediction is verified, the barn data can be added to

the training data which in turn would improve the barn ID performance and result in more

correct barn predictions being verified and added to the training data, positively feeding

back and improving performance over time. Another promising avenue for performance im-

provement would be to encapsulate more variation in the data by significantly extending the

tracking time for individual cattle. This would require the development of a cross-camera

tracking algorithm to be able to track the animal as it moves across the entire barn instead

of within a single camera as is currently done in the existing algorithm.

7.5 Final Remarks

In summary, this thesis has introduced novel methodologies that advance the state-of-the-art

in deep learning for challenging image processing tasks, with particular emphasis on cattle

identification and HSI-SR. Across the diverse domains explored, this work has demonstrated

how innovations in Self-ONN architectures, data normalisation strategies, and self-supervised

learning can yield practical and efficient solutions to problems that have direct scientific and

real-world impact. While several avenues for improvement and extension remain, the con-

tributions made here establish a solid foundation upon which future research can build, not

just within the agricultural technology domain and HSI-SR, but also in broader applica-

tions of deep learning. Ultimately, the findings of this thesis highlight the value of bridging
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methodological innovation with application-driven challenges, and they provide a pathway

towards more robust, scalable, and transferable machine learning systems.
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LR
LR

Step
Accum

Iter
Triplet
Margin

Hardest
Triplets

Accuracy
(%)

F1
Score

New Class
Accuracy (%)

New Class
F1 Score

0.000717 66 182 0.2 TRUE 1.27 0.01 0.54 0.009
0.000126 131 14 0.5 TRUE 1.73 0.009 0.54 0.006
0.000826 150 81 4 FALSE 15.53 0.135 7.03 0.107
0.000314 82 8 3 TRUE 2.13 0.016 2.7 0.042
0.000749 947 3 1 TRUE 97.67 0.975 81.08 0.861
0.000362 252 66 5 TRUE 2.73 0.02 2.7 0.042
0.000539 47 2 0.5 FALSE 83.27 0.828 76.76 0.821
0.000172 457 228 0.1 TRUE 1.33 0.008 0 0
0.000313 48 216 0.2 FALSE 28.8 0.268 29.19 0.375
0.000577 655 2 2 TRUE 90.27 0.903 91.35 0.934
0.00048 92 1 5 FALSE 14.2 0.121 7.03 0.105
0.000705 206 36 4 TRUE 19.33 0.176 12.43 0.171
0.000199 24 171 5 FALSE 3.73 0.032 3.78 0.055
0.000773 20 40 0.1 FALSE 18.8 0.168 22.7 0.293
0.000838 32 1 2 FALSE 8.53 0.074 7.57 0.113
0.000953 26 207 0.1 TRUE 2.2 0.014 3.24 0.049
0.000551 256 9 4 FALSE 21.33 0.193 8.65 0.134
0.000004 22 8 0.2 FALSE 1.73 0.014 0.54 0.008
0.000616 155 62 1 FALSE 55.13 0.536 41.08 0.501
0.000194 153 38 0.1 TRUE 1.13 0.006 0 0
0.000923 20 3 0.1 FALSE 80.27 0.795 74.05 0.802
0.000169 93 2 0.1 FALSE 94.13 0.94 89.73 0.931
0.000236 123 6 4 FALSE 12.27 0.111 4.32 0.072
0.000158 208 6 2 FALSE 13.93 0.12 6.49 0.091
0.000023 41 5 3 FALSE 2.73 0.018 0.54 0.008
0.000636 568 45 0.2 FALSE 98.2 0.981 90.81 0.922
0.000092 122 8 0.1 FALSE 87.47 0.872 85.95 0.894
0.000286 36 19 0.2 TRUE 0.53 0.003 1.62 0.027
0.000894 33 4 4 FALSE 9.8 0.087 7.03 0.105
0.000087 95 9 0.1 FALSE 81.4 0.806 75.14 0.817
0.000549 186 5 0.2 TRUE 95.33 0.951 91.89 0.948
0.000446 271 18 0.2 TRUE 33.53 0.32 28.65 0.362
0.000583 15 255 4 TRUE 1.47 0.011 0 0
0.000667 104 72 0.1 FALSE 88.93 0.883 86.49 0.915
0.000289 860 238 0.5 FALSE 95.13 0.95 88.65 0.905
0.000686 396 163 2 FALSE 21.73 0.195 8.65 0.133
0.000275 17 169 1 TRUE 0.6 0.006 0 0
0.000141 10 105 3 TRUE 0.53 0.004 0 0
0.000363 29 3 4 TRUE 2.07 0.017 0.54 0.009
0.000219 934 54 5 TRUE 29.27 0.279 28.11 0.368
0.00018 529 1 0.1 FALSE 98.27 0.982 92.43 0.94
0.000708 204 11 3 TRUE 73.8 0.731 76.22 0.819
0.000756 469 13 4 TRUE 92.2 0.92 89.19 0.925
0.000124 244 105 0.2 TRUE 0.67 0.004 0.54 0.007
0.000917 12 7 5 TRUE 1.73 0.01 1.08 0.017
0.000895 13 31 2 FALSE 7 0.058 7.03 0.102
0.000414 750 32 4 TRUE 93.8 0.935 88.65 0.924
0.000529 38 15 0.1 FALSE 81.27 0.808 82.7 0.871
0.000093 193 3 2 FALSE 10.4 0.091 3.78 0.054
0.000459 186 51 0.5 TRUE 3.27 0.028 4.86 0.07

Table 7.1: Fold 1 Full Results.
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LR
LR

Step
Accum

Iter
Triplet
Margin

Hardest
Triplets

Accuracy
(%)

F1
Score

New Class
Accuracy (%)

New Class
F1 Score

0.00017 511 118 0.5 FALSE 90.53 0.9 82.7 0.852
0.000584 991 6 3 FALSE 36.2 0.339 16.76 0.232
0.000836 647 1 5 TRUE 89.47 0.893 87.03 0.899
0.0003 196 1 3 FALSE 22 0.206 12.97 0.175
0.000567 114 3 4 FALSE 20.53 0.185 13.51 0.184
0.000575 31 1 5 TRUE 25.6 0.238 25.41 0.336
0.000038 33 2 0.2 FALSE 24.27 0.226 22.7 0.307
0.000059 14 14 3 FALSE 2.13 0.015 0.54 0.009
0.000192 143 39 2 TRUE 1 0.007 1.62 0.026
0.000312 21 9 0.1 FALSE 62.2 0.608 54.05 0.639
0.000722 180 1 4 FALSE 22.6 0.21 18.38 0.258
0.000293 30 19 5 FALSE 6.33 0.052 5.95 0.09
0.000673 106 2 0.1 FALSE 94.8 0.945 93.51 0.953
0.000745 25 155 3 FALSE 6.93 0.058 4.86 0.074
0.000622 112 57 4 TRUE 2.07 0.015 1.08 0.014
0.000347 202 9 5 TRUE 34.33 0.33 29.73 0.387
0.00036 488 4 0.5 TRUE 98.4 0.983 94.05 0.943
0.000087 214 1 0.5 FALSE 93.4 0.932 87.57 0.905
0.000584 51 1 4 FALSE 12.87 0.11 8.65 0.127
0.000794 354 2 0.1 FALSE 97.47 0.973 94.59 0.95
0.000777 17 95 0.5 FALSE 7.33 0.06 5.95 0.086
0.000015 44 3 0.1 FALSE 3.07 0.021 2.7 0.041
0.000477 97 1 5 FALSE 13.2 0.116 7.57 0.112
0.000075 170 149 1 FALSE 10.8 0.096 5.41 0.077
0.000901 802 3 4 FALSE 35 0.327 19.46 0.261
0.0004 103 22 3 FALSE 11.53 0.105 3.24 0.049
0.000063 48 156 0.5 FALSE 2.47 0.016 3.24 0.045
0.000522 169 30 4 FALSE 18.47 0.172 9.73 0.144
0.000988 84 8 3 TRUE 37.13 0.359 34.05 0.429
0.000043 411 1 5 TRUE 95.4 0.953 91.35 0.936
0.000892 483 2 5 FALSE 27.87 0.257 22.7 0.279
0.000887 128 44 1 TRUE 4.6 0.036 3.78 0.062
0.00079 189 1 2 FALSE 16.13 0.141 18.92 0.245
0.000602 76 66 0.5 TRUE 1.07 0.005 1.08 0.017
0.000213 186 144 4 FALSE 10.67 0.096 8.11 0.115
0.00087 435 11 2 TRUE 93.73 0.937 90.81 0.935
0.00041 19 8 4 FALSE 8.13 0.069 4.32 0.072
0.000201 117 2 0.2 FALSE 95.27 0.952 90.27 0.922
0.000233 135 2 2 FALSE 15.13 0.135 8.11 0.123
0.000089 503 3 4 TRUE 95.13 0.949 89.73 0.915
0.000661 59 136 0.2 FALSE 50.4 0.483 41.08 0.508
0.000912 490 10 0.2 FALSE 98.6 0.986 94.05 0.955
0.000239 943 44 3 FALSE 25.33 0.241 8.11 0.113
0.000066 692 253 2 TRUE 1.6 0.01 0.54 0.009
0.000619 281 53 0.5 FALSE 94.67 0.942 89.19 0.913
0.00053 145 60 0.5 TRUE 1.67 0.012 0.54 0.007
0.000001 398 28 1 TRUE 0.27 0.002 0.54 0.008
0.000154 20 57 1 FALSE 3.4 0.026 2.7 0.045
0.000008 607 3 1 TRUE 4.2 0.029 2.7 0.044
0.000121 17 10 4 FALSE 2.87 0.022 2.7 0.042

Table 7.2: Fold 2 Full Results.
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LR
LR

Step
Accum

Iter
Triplet
Margin

Hardest
Triplets

Accuracy
(%)

F1
Score

New Class
Accuracy (%)

New Class
F1 Score

0.000217 23 154 5 FALSE 3.87 0.033 3.24 0.046
0.000233 369 113 0.2 TRUE 2.2 0.016 1.62 0.023
0.000363 17 147 0.5 TRUE 0.47 0.003 1.08 0.018
0.000469 14 3 4 FALSE 9.07 0.086 8.65 0.121
0.000541 155 247 4 TRUE 2.13 0.014 1.08 0.016
0.000121 239 88 0.1 TRUE 0.53 0.004 0 0
0.000798 258 18 3 TRUE 84.53 0.839 77.3 0.831
0.000961 32 70 0.5 FALSE 15.73 0.141 10.81 0.156
0.000813 215 1 0.1 TRUE 98.33 0.983 93.51 0.952
0.000872 156 27 5 TRUE 21.6 0.201 16.22 0.219
0.000382 39 43 0.1 FALSE 42.13 0.404 32.43 0.4
0.000286 330 5 3 TRUE 92.6 0.925 85.95 0.898
0.000774 304 200 0.1 TRUE 11.2 0.097 8.65 0.125
0.000829 366 26 1 FALSE 86 0.857 72.43 0.784
0.000665 24 3 5 FALSE 9.73 0.083 7.57 0.121
0.000928 388 74 0.5 TRUE 11.13 0.1 5.95 0.087
0.000313 289 1 0.1 FALSE 97.93 0.977 90.81 0.926
0.000256 922 5 5 FALSE 42.53 0.405 16.76 0.232
0.000618 12 1 0.1 FALSE 70.13 0.689 66.49 0.746
0.000932 331 72 2 TRUE 5.73 0.046 7.03 0.093
0.000375 284 7 0.1 TRUE 94.07 0.937 89.19 0.931
0.000204 29 28 3 TRUE 0.6 0.004 0 0
0.00012 130 65 2 TRUE 0.4 0.003 0 0
0.000754 465 84 3 TRUE 37 0.358 27.03 0.365
0.000885 217 5 5 FALSE 22.47 0.204 12.43 0.165
0.000632 691 3 2 FALSE 31.73 0.291 10.81 0.143
0.000774 255 3 0.2 TRUE 98.33 0.983 91.89 0.949
0.000196 296 31 4 TRUE 4.33 0.034 4.86 0.067
0.000092 660 11 2 TRUE 62.4 0.61 57.84 0.655
0.000541 431 158 1 TRUE 16.73 0.144 13.51 0.192
0.000546 55 2 0.1 TRUE 35.13 0.335 23.78 0.305
0.000828 104 6 5 FALSE 17.53 0.156 9.73 0.135
0.000574 24 82 0.5 FALSE 7.73 0.065 4.86 0.074
0.00027 256 148 4 FALSE 13 0.116 4.32 0.06
0.000554 145 4 1 TRUE 91.2 0.909 76.76 0.819
0.000339 217 5 1 TRUE 86.07 0.856 75.68 0.81
0.000857 25 5 0.5 FALSE 68.33 0.672 52.97 0.619
0.000543 55 3 5 TRUE 13.13 0.115 15.68 0.209
0.000099 71 27 3 FALSE 5.07 0.037 3.24 0.049
0.000668 14 250 0.5 FALSE 6.87 0.056 5.95 0.082
0.000611 170 1 0.1 TRUE 98.73 0.987 91.35 0.941
0.000928 435 9 5 FALSE 22.33 0.206 8.11 0.105
0.000081 20 117 1 TRUE 0.2 0.001 0 0
0.00081 641 1 0.1 TRUE 99 0.99 94.05 0.962
0.000446 177 24 2 FALSE 18.13 0.166 9.73 0.14
0.000104 23 43 4 FALSE 2.53 0.017 2.16 0.029
0.000567 635 3 2 FALSE 31.4 0.288 17.3 0.232
0.000061 18 9 3 FALSE 2 0.011 2.16 0.029
0.000413 38 10 1 TRUE 1.07 0.006 1.08 0.018
0.000332 22 30 1 TRUE 0.6 0.003 0 0

Table 7.3: Fold 3 Full Results.
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Training & Validation Plots

Figure 7.1: Training Loss Plots
Solid lines represent the mean values of all training runs for each preprocessing technique.

Same colour clouds represent the standard error.

Figure 7.2: Validation PSNR Plots
Solid lines represent the mean values of all training runs for each preprocessing technique.

Same colour clouds represent the standard error.
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Figure 7.3: Validation SSIM Plots
Solid lines represent the mean values of all training runs for each preprocessing technique.

Same colour clouds represent the standard error.

Figure 7.4: Validation SAM Plots
Solid lines represent the mean values of all training runs for each preprocessing technique.

Same colour clouds represent the standard error.
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Figure 7.5: Validation ERGAS Plots
Solid lines represent the mean values of all training runs for each preprocessing technique.

Same colour clouds represent the standard error.
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